
PANTONE 2955 CPANTONE Orange 021 C

CMYK 100, 45, 0, 37CMYK O, 53, 100, 0

Black 100%Black 50%

CMYK:

Pantone:

Grey scale

FIFTH
EDITION

THE EASY WAY TO BUILD YOUR OWN DATABASE DRIVEN WEBSITE

PHP & MYSQL
NOVICE TO NINJA

BY KEVIN YANK

Summary of Contents

Preface . xvii

1. Installation . 1

2. Introducing MySQL . 27

3. Introducing PHP . 49

4. Publishing MySQL Data on the Web . 91

5. Relational Database Design . 141

6. Structured PHP Programming . 161

7. A Content Management System . 187

8. Content Formatting with Regular Expressions . 237

9. Cookies, Sessions, and Access Control . 263

10. MySQL Administration . 319

11. Advanced SQL Queries . 341

12. Binary Data . 359

A. Manual Installation Instructions . 391

B. MySQL Syntax Reference . 423

C. MySQL Functions . 449

D. MySQL Column Types . 469

Index . 483

PHP & MYSQL:
NOVICE TO NINJA

BY KEVIN YANK
5TH EDITION

PHP & MySQL: Novice to Ninja
by Kevin Yank

Copyright © 2012 SitePoint Pty. Ltd.

Editor: Kelly SteeleProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Diana MacDonald

Indexer: Fred Brown

Latest Update: May 2012Printing History:

1st Ed. Aug. 2001, 2nd Ed. Feb. 2003,

3rd Ed. Oct. 2004, 4th Ed. Jul. 2009

5th Ed. May 2012

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9871530-8-1 (print)

ISBN 978-0-9872478-1-0 (ebook)

Printed and bound in the United States of America

iv

About the Author

Kevin Yank has been building websites for over 15 years, and has produced numerous books,

articles, courses, newsletters, and podcasts on the subject.

Hired as SitePoint’s first staff writer in 2001, Kevin wrote the then new company’s first book,

Build Your Own Database Driven Website Using PHP & MySQL. Five editions later and you

are reading the latest incarnation of that very book. He went on to co-author two more books

(Simply JavaScript and Everything You Know About CSS Is Wrong!), and has written for the

SitePoint Tech Times email newsletter and co-hosted the SitePoint Podcast.

As learnable.com’s Chief Instructor, Kevin produced popular online courses on topics includ-

ing JavaScript, PHP and MySQL, and HTML and CSS. He also provided help and advice for

instructors building other new additions to the Learnable library of online courses.

These days, Kevin is CTO at Avalanche Technology Group, a creator and distributor of digital

products and services in the Australian and worldwide markets. He lives in Melbourne,

Australia with his partner Jessica and their dog, cat, and two guinea pigs.

Kevin has a passion for making web technology easy to understand for anyone.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for Web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums.

v

http://www.sitepoint.com/

To my parents, Cheryl and

Richard, for making all this

possible

Table of Contents

Preface . xvii

Who Should Read This Book . xviii

What’s in This Book . xix

Where to Find Help . xxii

The SitePoint Forums . xxii

The Book’s Website . xxii

The SitePoint Newsletters . xxiii

Your Feedback . xxiii

Conventions Used in This Book . xxiv

Code Samples . xxiv

Tips, Notes, and Warnings . xxv

Chapter 1 Installation . 1

Your Own Web Server . 2

Windows Installation . 3

Set the MySQL Root Password in XAMPP . 10

Mac OS X Installation . 11

Set the MySQL Root Password in MAMP . 17

Linux Installation . 20

What to Ask Your Web Host . 20

Your First PHP Script . 21

Full Toolbox, Dirty Hands . 25

Chapter 2 Introducing MySQL . 27

An Introduction to Databases . 27

Using phpMyAdmin to Run SQL Queries . 29

Structured Query Language . 35

Creating a Database . 35

Creating a Table . 37

Inserting Data into a Table . 41

Viewing Stored Data . 43

Modifying Stored Data . 45

Deleting Stored Data . 46

Let PHP Do the Typing . 47

Chapter 3 Introducing PHP . 49

Basic Syntax and Statements . 51

Variables, Operators, and Comments . 53

Arrays . 55

User Interaction and Forms . 57

Passing Variables in Links . 57

Passing Variables in Forms . 66

Control Structures . 70

Hiding the Seams . 81

Avoid Advertising Your Technology Choices 81

Use PHP Templates . 83

Many Templates, One Controller . 85

Bring on the Database . 89

Chapter 4 Publishing MySQL Data on the
Web . 91

The Big Picture . 91

Creating a MySQL User Account . 93

Connecting to MySQL with PHP . 96

A Crash Course in Object Oriented Programming 100

x

Configuring the Connection . 102

Sending SQL Queries with PHP . 109

Handling SELECT Result Sets . 112

Inserting Data into the Database . 119

Deleting Data from the Database . 130

Mission Accomplished . 138

Chapter 5 Relational Database Design 141

Giving Credit Where Credit Is Due . 142

Rule of Thumb: Keep Entities Separate . 144

SELECT with Multiple Tables . 148

Simple Relationships . 153

Many-to-many Relationships . 155

One for Many, and Many for One . 158

Chapter 6 Structured PHP Programming 161

Include Files . 162

Including HTML Content . 162

Including PHP Code . 164

Types of Includes . 169

Shared Include Files . 171

Custom Functions and Function Libraries . 173

Variable Scope and Global Access . 176

Structure in Practice: Template Helpers . 180

The Best Way . 185

Chapter 7 A Content Management System 187

The Front Page . 188

Managing Authors . 191

xi

Deleting Authors . 194

Adding and Editing Authors . 200

Managing Categories . 205

Managing Jokes . 212

Searching for Jokes . 212

Adding and Editing Jokes . 220

Deleting Jokes . 233

Summary . 234

Chapter 8 Content Formatting with Regular
Expressions . 237

Regular Expressions . 238

String Replacement with Regular Expressions . 247

Emphasized Text . 248

Paragraphs . 253

Hyperlinks . 255

Putting It All Together . 258

Real World Content Submission . 261

Chapter 9 Cookies, Sessions, and Access
Control . 263

Cookies . 263

PHP Sessions . 270

A Simple Shopping Cart . 272

Access Control . 282

Database Design . 282

Controller Code . 286

Function Library . 293

Managing Passwords and Roles . 302

xii

A Challenge: Joke Moderation . 314

The Sky’s the Limit . 316

Chapter 10 MySQL Administration 319

Backing Up MySQL Databases . 320

Database Backups Using phpMyAdmin . 321

Database Backups Using mysqldump . 322

Incremental Backups Using Binary Logs . 323

MySQL Access Control Tips . 326

Host Name Issues . 327

Locked Out? . 329

Indexes . 331

Multicolumn Indexes . 335

Foreign Keys . 336

Better Safe than Sorry . 339

Chapter 11 Advanced SQL Queries 341

Sorting SELECT Query Results . 341

Setting LIMITs . 343

Database Transactions . 345

Column and Table Name Aliases . 346

GROUPing SELECT Results . 350

LEFT JOINs . 352

Limiting Results with HAVING . 356

Further Reading . 357

Chapter 12 Binary Data . 359

Semidynamic Pages . 360

Handling File Uploads . 366

xiii

Assigning Unique Filenames . 369

Recording Uploaded Files in the Database . 371

Binary Column Types . 372

Storing Files . 374

Viewing Stored Files . 376

Putting It All Together . 381

Large File Considerations . 388

MySQL Packet Size . 388

PHP Memory Limit . 388

PHP Script Timeout . 389

The End . 389

Appendix A Manual Installation
Instructions . 391

Windows . 391

Installing MySQL . 391

Installing PHP . 393

OS X . 402

Installing MySQL . 402

Installing PHP . 406

Linux . 410

Installing MySQL . 411

Installing PHP . 415

Appendix B MySQL Syntax Reference 423

SQL Statements Implemented in MySQL . 423

ALTER TABLE . 423

ANALYZE TABLE . 427

BEGIN . 427

xiv

COMMIT . 427

CREATE DATABASE . 427

CREATE INDEX . 428

CREATE TABLE . 428

DELETE . 430

DESCRIBE/DESC . 431

DROP DATABASE . 432

DROP INDEX . 432

DROP TABLE . 432

EXPLAIN . 432

GRANT . 433

INSERT . 433

LOAD DATA INFILE . 435

OPTIMIZE TABLE . 435

RENAME TABLE . 436

REPLACE . 437

REVOKE . 437

ROLLBACK . 437

SELECT . 438

SET . 445

SHOW . 445

START TRANSACTION . 446

TRUNCATE . 447

UPDATE . 447

USE . 448

Appendix C MySQL Functions . 449

Control Flow Functions . 449

Mathematical Functions . 450

String Functions . 453

xv

Date and Time Functions . 457

Miscellaneous Functions . 464

Functions for Use with GROUP BY Clauses . 467

Appendix D MySQL Column Types 469

Numerical Types . 470

Character Types . 474

Date/Time Types . 479

Index . 483

xvi

Preface
PHP and MySQL have changed.

Back in 2001, when I wrote the first edition of this book (it was called Build Your

Own Database Driven Web Site with PHP & MySQL back then), readers were aston-

ished to discover that you could create a site full of web pages without having to

write a separate HTML file for each page. PHP stood out from the crowd of program-

ming languages, mainly because it was easy enough for almost anyone to learn and

free to download and install. The MySQL database, likewise, provided a simple

and free solution to a problem that, up until that point, had been solvable only by

expert programmers with corporate budgets.

Back then, PHP and MySQL were special—heck, they were downright miraculous!

But over the years, they have gained plenty of fast-moving competition. In an age

when anyone with a free WordPress1 account can set up a full-featured blog in 30

seconds flat, it’s no longer enough for a programming language like PHP to be easy

to learn; nor is it enough for a database like MySQL to be free.

Indeed, as you sit down to read this book, you probably have ambitions that extend

beyond what you can throw together using the free point-and-click tools of the Web.

You might even be thinking of building an exciting new point-and-click tool of your

own. WordPress, after all, is built using PHP and MySQL, so why limit your vision

to anything less?

To keep up with the competition, and with the needs of more demanding projects,

PHP and MySQL have had to evolve. PHP is now a far more intricate and powerful

language than it was back in 2001, and MySQL is a vastly more complex and capable

database. Learning PHP and MySQL today opens up a lot of doors that would have

remained closed to the PHP and MySQL experts of 2001.

That’s the good news. The bad news is that, in the same way that a butter knife is

easier to figure out than a Swiss Army knife (and less likely to cause self-injury!),

all these dazzling new features and improvements have indisputably made PHP

and MySQL more difficult for beginners to learn.

1 http://wordpress.com/

http://wordpress.com/

Worse yet, PHP has completely abandoned several of the beginner-friendly features

that gave it a competitive advantage in 2001, because they turned out to be oversim-

plifications, or could lead inexperienced programmers into building websites with

gaping security holes. This is a problem if you’re the author of a beginner’s book

about PHP and MySQL.

PHP and MySQL have changed, and those changes have made writing this book a

lot more difficult. But they have also made this book a lot more important. The more

twisty the path, the more valuable the map, right?

In this book, I’ll provide you with a practical look at what’s involved in building a

database driven website using PHP and MySQL. If your web host provides PHP and

MySQL support, you’re in great shape. If not, I’ll show you how to install them on

Windows, Mac OS X, and Linux computers, so don’t sweat it.

This book is your map to the twisty path that every beginner must navigate to learn

PHP and MySQL today. Grab your favorite walking stick; let’s go hiking!

Who Should Read This Book
This book is aimed at intermediate and advanced web designers looking to make

the leap into server-side programming. You’ll be expected to be comfortable with

simple HTML, as I’ll make use of it without much in the way of explanation. No

knowledge of Cascading Style Sheets (CSS) or JavaScript is assumed or required,

but if you do know JavaScript, you’ll find it will make learning PHP a breeze, since

these languages are quite similar.

By the end of this book, you can expect to have a grasp of what’s involved in

building a database driven website. If you follow the examples, you’ll also learn

the basics of PHP (a server-side scripting language that gives you easy access to a

database, and a lot more) and Structured Query Language (SQL—the standard

language for interacting with relational databases) as supported by MySQL, the most

popular free database engine available today. Most importantly, you’ll come away

with everything you need to start on your very own database driven site!

xviii

What’s in This Book
This book comprises the following 12 chapters. Read them in order from beginning

to end to gain a complete understanding of the subject, or skip around if you only

need a refresher on a particular topic.

Chapter 1: Installation

Before you can start building your database driven website, you must first ensure

that you have the right tools for the job. In this first chapter, I’ll tell you where

to obtain the two essential components you’ll need: the PHP scripting language

and the MySQL database management system. I’ll step you through the setup

procedures on Windows, Linux, and Mac OS X, and show you how to test that

PHP is operational on your web server.

Chapter 2: Introducing MySQL

Although I’m sure you’ll be anxious to start building dynamic web pages, I’ll

begin with an introduction to databases in general, and the MySQL relational

database management system in particular. If you have never worked with a

relational database before, this should definitely be an enlightening chapter that

will whet your appetite for what’s to come! In the process, you’ll build up a

simple database to be used in later chapters.

Chapter 3: Introducing PHP

Here’s where the fun really starts. In this chapter, I’ll introduce you to the PHP

scripting language, which you can use to build dynamic web pages that present

up-to-the-moment information to your visitors. Readers with previous program-

ming experience will probably only need a quick skim of this chapter, as I ex-

plain the essentials of the language from the ground up. This is a must-read

chapter for beginners, however, as the rest of this book relies heavily on the

basic concepts presented here.

Chapter 4: Publishing MySQL Data on the Web

In this chapter you’ll bring together PHP and MySQL, which you’ll have seen

separately in the previous chapters, to create some of your first database driven

web pages. You’ll explore the basic techniques of using PHP to retrieve inform-

ation from a database and display it on the Web in real time. I’ll also show you

how to use PHP to create web-based forms for adding new entries to, and

modifying existing information in, a MySQL database on the fly.

xix

Chapter 5: Relational Database Design

Although you’ll have worked with a very simple sample database in the previous

chapters, most database driven websites require the storage of more complex

forms of data than you’ll have dealt with at this point. Far too many database

driven website designs are abandoned midstream or are forced to start again

from the beginning, because of mistakes made early on during the design of the

database structure. In this critical chapter you’ll learn the essential principles

of good database design, emphasizing the importance of data normalization. If

you’re unsure what that means, then this is definitely an important chapter for

you to read!

Chapter 6: Structured PHP Programming

Techniques to better structure your code are useful in all but the simplest of

PHP projects. The PHP language offers many facilities to help you do this, and

in this chapter, I’ll cover some of the simple techniques that exist to keep your

code manageable and maintainable. You’ll learn to use include files to avoid

having to write the same code more than once when it’s needed by many pages

of your site, and I’ll show you how to write your own functions to extend the

built-in capabilities of PHP and to streamline the code that appears within your

scripts.

Chapter 7: A Content Management System

In many ways the climax of the book, this chapter is the big payoff for all you

frustrated site builders who are tired of updating hundreds of pages whenever

you need to make a change to a site’s design. I’ll walk you through the code for

a basic content management system that allows you to manage a database of

jokes, their categories, and their authors. A system like this can be used to

manage simple content on your website; just a few modifications, and you’ll

have a site administration system that will have your content providers submit-

ting content for publication on your site in no time—all without having to know

a shred of HTML!

Chapter 8: Content Formatting with Regular Expressions

Just because you’re implementing a nice, easy tool to allow site administrators

to add content to your site without their knowing HTML, that content can still

be jazzed up, instead of settling for just plain, unformatted text. In this chapter,

I’ll show you some neat tweaks you can make to the page that displays the

xx

contents of your database—tweaks that allow it to incorporate simple formatting

such as bold or italicized text, among other options.

Chapter 9: Cookies, Sessions, and Access Control

What are sessions, and how are they related to cookies, a long-suffering techno-

logy for preserving stored data on the Web? What makes persistent data so im-

portant in current ecommerce systems and other web applications? This chapter

answers all those questions by explaining how PHP supports both cookies and

sessions, and explores the link between the two. You’ll then put these pieces

together to build a simple shopping cart system, as well as an access control

system for your website.

Chapter 10: MySQL Administration

While MySQL is a good, simple database solution for those without the need

for many frills, it does have some complexities of its own that you’ll need to

understand if you’re going to rely on a MySQL database to store your content.

In this section, I’ll teach you how to perform backups of, and manage access to,

your MySQL database. In addition to a couple of inside tricks (like what to do

if you forget your MySQL password), I’ll explain how to speed up your database

when it gets slow, and how to link together the data in your database in useful

ways.

Chapter 11: Advanced SQL Queries

In Chapter 5 we saw what was involved in modeling complex relationships

between pieces of information in a relational database like MySQL. Although

the theory was quite sound, putting these concepts into practice requires that

you learn a few more tricks of Structured Query Language. In this chapter, I’ll

cover some of the more advanced features of this language to help you juggle

complex data like a pro.

Chapter 12: Binary Data

Some of the most interesting applications of database driven web design include

some juggling of binary files. Online file storage services are prime examples,

but even a system as simple as a personal photo gallery can benefit from storing

binary files (that is, pictures) in a database for retrieval and management on the

fly. In this chapter, I’ll demonstrate how to speed up your website by creating

static copies of dynamic pages at regular intervals—using PHP, of course! With

these basic file-juggling skills in hand, you’ll go on to develop a simple online

xxi

file storage and viewing system, and learn the ins and outs of working with

binary data in MySQL.

Where to Find Help
PHP and MySQL are moving targets, so chances are good that, by the time you read

this, some minor detail or other of these technologies has changed from what’s de-

scribed in this book. Thankfully, SitePoint has a thriving community of PHP de-

velopers ready and waiting to help you out if you run into trouble, and we also

maintain a list of known errata for this book you can consult for the latest updates.

The SitePoint Forums
The SitePoint Forums2 are discussion forums where you can ask questions about

anything related to web development. You may, of course, answer questions, too.

That’s how a discussion forum site works—some people ask, some people answer

and most people do a bit of both. Sharing your knowledge benefits others and

strengthens the community. A lot of fun and experienced web designers and de-

velopers hang out there. It’s a good way to learn new stuff, have questions answered

in a hurry, and just have fun.

The SitePoint Forums include separate forums for PHP and MySQL:

■ PHP: http://www.sitepoint.com/forums/forumdisplay.php?34-PHP
■ Databases & MySQL:

http://www.sitepoint.com/forums/forumdisplay.php?88-Databases-amp-MySQL

The Book’s Website
Located at http://www.sitepoint.com/books/phpmysql5/, the website that supports

this book will give you access to the following facilities:

The Code Archive
As you progress through this book, you’ll note a number of references to the code

archive. This is a downloadable ZIP archive that contains each and every line of

2 http://www.sitepoint.com/forums/

xxii

http://www.sitepoint.com/forums/
http://www.sitepoint.com/forums/forumdisplay.php?34-PHP
http://www.sitepoint.com/forums/forumdisplay.php?88-Databases-amp-MySQL
http://www.sitepoint.com/books/phpmysql5/

example source code that’s printed in this book. If you want to cheat (or save

yourself from carpal tunnel syndrome), go ahead and download the archive.3

Updates and Errata
No book is perfect, and we expect that watchful readers will be able to spot at least

one or two mistakes before the end of this one. The Errata page on the book’s website

will always have the latest information about known typographical and code errors.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters such

as the SitePoint newsletter, PHPMaster, CloudSpring, RubySource, DesignFestival,

and BuildMobile. In them you’ll read about the latest news, product releases, trends,

tips, and techniques for all aspects of web development. Sign up to one or more of

these newsletters at http://www.sitepoint.com/newsletter/.

Your Feedback
If you’re unable to find an answer through the forums, or if you wish to contact us

for any other reason, the best place to write is books@sitepoint.com. We have a

well-staffed email support system set up to track your inquiries, and if our support

team members are unable to answer your question, they’ll send it straight to us.

Suggestions for improvements, as well as notices of any mistakes you may find, are

especially welcome.

3 http://www.sitepoint.com/books/phpmysql5/code.php

xxiii

http://www.sitepoint.com/books/phpmysql5/code.php
http://www.sitepoint.com/newsletter/

Conventions Used in This Book
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

xxiv

Also, where existing code is required for context, rather than repeat all the code, a

⋮ will be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she
➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

xxv

Chapter1
Installation
In this book, I will guide you as you take your first steps beyond the static world of

building web pages with the purely client-side technologies of HTML, CSS, and

JavaScript. Together, we’ll explore the world of database driven websites and dis-

cover the dizzying array of dynamic tools, concepts, and possibilities that they open

up. Whatever you do, don’t look down!

Okay, maybe you should look down. After all, that’s where the rest of this book is.

But remember, you were warned!

Before you build your first dynamic website, you must gather together the tools

you’ll need for the job. In this chapter, I’ll show you how to download and set up

the two software packages required. Can you guess what they are? I’ll give you a

hint: their names feature prominently on the cover of this book! They are, of course,

PHP and MySQL.

If you’re used to building websites with HTML, CSS, and perhaps even a smattering

of JavaScript, you’re probably familiar with uploading the files that make up your

site to a certain location. It might be a web hosting service you’ve paid for, web

space provided by your Internet Service Provider (ISP), or maybe a web server set

up by the IT department of the company that you work for. In any case, once you

copy your files to any of these destinations, a software program called a web server

is able to find and serve up copies of those files whenever they’re requested by a

web browser like Internet Explorer, Google Chrome, Safari, or Firefox. Common

web server software programs you may have heard of include Apache HTTP Server

(Apache) and Internet Information Services (IIS).

PHP is a server-side scripting language. You can think of it as a plugin for your

web server that enables it to do more than just send exact copies of the files that

web browsers ask for. With PHP installed, your web server will be able to run little

programs (called PHP scripts) that can do tasks like retrieve up-to-the-minute in-

formation from a database and use it to generate a web page on the fly before sending

it to the browser that requested it. Much of this book will focus on writing PHP

scripts to do exactly that. PHP is completely free to download and use.

For your PHP scripts to retrieve information from a database, you must first have a

database. That’s where MySQL comes in. MySQL is a relational database manage-

ment system, or RDBMS. We’ll discuss the exact role it plays and how it works

later, but briefly it’s a software program that’s able to organize and manage many

pieces of information efficiently while keeping track of how all those pieces of in-

formation are related to each other. MySQL also makes that information really easy

to access with server-side scripting languages such as PHP, and, like PHP, is com-

pletely free for most uses.

The goal of this first chapter is to set you up with a web server equipped with PHP

and MySQL. I’ll provide step-by-step instructions that work on recent Windows

and Mac OS X, so no matter what flavor of computer you’re using, the instructions

you need should be right here.1

Your Own Web Server
If you’re lucky, your current web host’s web server already has PHP and MySQL

installed. Most do—that’s one of the reasons why PHP and MySQL are so popular.

If your web host is so equipped, the good news is that you’ll be able to publish your

1 Linux users, you’ll find instructions in Appendix A, because I suspect that most of you will probably

want to install it your own way, regardless of what I write here.

PHP & MySQL: Novice to Ninja2

first database driven website without having to shop for a web host that supports

the right technologies.

However, you’re still going to need to install PHP and MySQL yourself. That’s be-

cause you need your own PHP-and-MySQL-equipped web server on which to test

your database driven website before you publish it for all the world to see.

When developing static websites, you can simply load your HTML files directly

from your hard disk into your browser to see how they look. There’s no web server

software involved when you do this, which is fine, because web browsers can read

and understand HTML code all by themselves.

When it comes to dynamic websites built using PHP and MySQL, though, your web

browser needs some help! Web browsers are unable to understand PHP scripts;

rather, PHP scripts contain instructions for a PHP-savvy web server to execute in

order to generate the HTML code that browsers can understand. So, in addition to

the web server that will host your site publicly, you also require your own private

web server to use in the development of your site.

If you work for a company with an especially helpful IT department, you may find

there’s already a development web server provided for you. The typical setup is

that you must work on your site’s files on a network drive hosted by an internal

web server that can be safely used for development. When you’re ready to deploy

the site to the public, your files are copied from the network drive to the public web

server.

If you’re lucky enough to work in this kind of environment, you can skip most of

this chapter; however, you’ll want to ask the IT boffins responsible for the develop-

ment server the same questions I’ve covered in the section called “What to Ask Your

Web Host”. That’s because you’ll need to have that critical information handy when

you start using the PHP and MySQL support they’ve so helpfully provided.

Windows Installation
In this section, I’ll show you how to start running a PHP-and-MySQL-equipped web

server on a Windows XP, Windows Vista, or Windows 7 computer. If you’re using

an operating system other than Windows, you can safely skip this section.

3Installation

The easiest way to get a web server up and running on Windows is to use a free

software package called XAMPP for Windows. This all-in-one program includes

built-in copies of Apache, PHP, and MySQL. Let me take you through the process

of installing it.

The Do-it-yourself Option

In past editions of this book, I recommended that you set up Apache, PHP, and

MySQL individually, using the official installation packages for each. This is a

good practice for beginners, I argued, because it gives you a strong sense of how

these pieces all fit together.

Unfortunately, this meant that many readers spent their first few hours in “PHP

Land” wrestling their way through a protracted sequence of detailed installation

instructions. Worse still, sometimes the finer points of these became outdated due

to some subtle change to one of the software packages.

Nowadays, I strongly believe that the best way to learn PHP and MySQL is to start

using them right away. The quicker and more hassle-free the installation process,

the better. That’s why I ask you to use XAMPP in this edition. In addition, there’s

every chance you’re just dabbling in this stuff, so why junk up your computer

with a bunch of separate but interdependent pieces of software that will be tricky

to remove?

Nevertheless, if you’re a die-hard do-it-yourselfer, a tech-savvy power user, or if

you simply reach the end of this book and wonder how the pros do it, I’ve included

a detailed set of installation instructions for individual packages in Appendix A.

Feel free to follow them instead of the instructions in this section if you’re that

way inclined.

1. Download the latest version of XAMPP for Windows from the Apache Friends

website2 (you’ll need to scroll down to find the download links). Grab the In-

staller version that is recommended (as of this writing, XAMPP for Windows

1.7.7 is 81MB in size), then double-click the file to launch the installer, as

shown in Figure 1.1.

2 http://www.apachefriends.org/en/xampp-windows.html

PHP & MySQL: Novice to Ninja4

http://www.apachefriends.org/en/xampp-windows.html
http://www.apachefriends.org/en/xampp-windows.html

Figure 1.1. The XAMPP Installer

User Account Control (UAC) warning

Depending on the version of Windows you’re using and your exact system

configuration, the XAMPP installer may display the warning message shown

in Figure 1.2.

Although this message is a little alarming at first, be assured it’s no big deal.

It simply recommends not to install XAMPP in C:\Program Files as you do

most programs due to problems this will cause with file permissions. The

installer defaults to installing in C:\xampp anyway.

Figure 1.2. XAMPP may warn you about “User Account Control (UAC)”

5Installation

2. The installer will prompt you for a location to install XAMPP. The default of

c:\xampp shown in Figure 1.3 is an ideal choice, but if you have feel strongly

about installing it elsewhere (such as on a different drive), go ahead and specify

your preferred location. Just avoid the usual C:\Program Files (or similar) location,

since XAMPP requires permissions that Windows restricts for files in that

folder.

Figure 1.3. The default destination folder is a good choice

3. The installer will prompt you with a number of options. The default selections

shown in Figure 1.4 are probably what you want at this stage. If you like to

keep a clean desktop, you might want to uncheck the Create a XAMPP desktop

icon checkbox. If you want your Apache and MySQL servers running at all times

(rather than having to start them manually whenever you sit down to do some

development), you can check the Install Apache as service and Install MySQL as

service checkboxes. In the following instructions, though, I’ll assume you haven’t.

Figure 1.4. The default options are fine

4. Once the installer has completed, you’ll be prompted to start the XAMPP

Control Panel. Click No so that I can show you how to start it the conventional

way. Once its work is done, the installer will quit.

5. At this point, I recommend shutting down and restarting your computer (even

though the XAMPP installer won’t ask you to). In my testing, the next steps

failed to work until I restarted my system, and posts on the XAMPP support

forum support this.3

3 http://www.apachefriends.org/f/viewtopic.php?f=16&t=48484

PHP & MySQL: Novice to Ninja6

http://www.apachefriends.org/f/viewtopic.php?f=16&t=48484
http://www.apachefriends.org/f/viewtopic.php?f=16&t=48484

Once the installation is complete and your system has restarted, you can fire up the

XAMPP Control Panel. You’ll find it on the Start menu under All Programs > Apache

Friends > XAMPP > XAMPP Control Panel. An orange XAMPP icon will appear in your

Windows System Tray (although by default it will disappear after a few seconds),

and the XAMPP Control Panel Application shown in Figure 1.5 will open.

Figure 1.5. The XAMPP Control Panel

Click the Start buttons next to Apache and MySql (sic) in the Modules list to launch

the Apache and MySQL servers built into XAMPP. A green Running status indicator

should appear next to each server in the list.

Depending on your Windows version and configuration, you’ll probably receive a

Windows Firewall alert for each server, like the one in Figure 1.6. This will happen

when the servers attempt to start listening for browser requests from the outside

world.

7Installation

Figure 1.6. This security alert tells you Apache is doing its job

If you want to make absolutely sure that only you can access your development

servers, click Cancel. You’ll still be able to connect to the web server using a browser

running on your own computer. In some cases, however, it can be handy to access

your server from another computer on your network (such as from a co-worker’s

machine, to demonstrate the amazing website you have built); for this reason, I re-

commend selecting the Private networks, such as my home or work network option and

clicking Allow access.

Why doesn’t my server start?

If your Apache or MySQL server fails to start, there are a number of possible

causes. By far the most common reason is that you already have a web server (be

it another copy of Apache or Microsoft’s Internet Information Services) or MySQL

server running on your computer.

Look around your Start menu and the Uninstall a program section of your Windows

Control Panel to see if you can spot another installation of Apache HTTP Server

or MySQL in order to shut off or uninstall. There’s another program similar to

XAMPP called WampServer, which, if installed, could be the cause of the problem.

If you think you might have Microsoft’s own web server—Internet Information

Services (IIS)—running on your system, you can try following Microsoft’s instruc-

tions for shutting it down.4

4 http://technet.microsoft.com/en-us/library/cc732317(WS.10).aspx

PHP & MySQL: Novice to Ninja8

http://technet.microsoft.com/en-us/library/cc732317(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc732317(WS.10).aspx

Still stuck? The advice in the XAMPP for Windows FAQ5 might help, especially

if you’re running Skype (as it can interfere with web servers in some network

configurations).

Once both servers appear to be running smoothly, click the Admin… button next to

Apache. Launch your web browser and load http://localhost/xampp/, the XAMPP

for Windows admin page shown in Figure 1.7.

Figure 1.7. The admin page provided by XAMPP confirms your Apache web server is running

If you see this page it means your web server is up and running, because the page

you’re looking at was loaded from it! Notice that the URL in your browser’s address

bar starts with http://localhost/ (some modern browsers will hide the protocol,

“http://”); localhost is a special hostname that always points to your own computer.

Throughout this book, whenever you want to load a web page from your own web

server, you’ll use a URL that starts with http://localhost/.

When you’re done working with the XAMPP Control Panel, shut it down by clicking

the Exit button. Alternatively, you can just close the window, which will leave the

XAMPP icon in the Windows System Tray (if you have configured it to remain

5 http://www.apachefriends.org/en/faq-xampp-windows.html#nostart

9Installation

http://www.apachefriends.org/en/faq-xampp-windows.html#nostart

visible). Clicking the icon will promptly launch the XAMPP Control Panel again

when you need it.

XAMPP Control Panel Leaves the Lights On

When you exit the XAMPP Control Panel, the Apache and MySQL servers will

keep running on your system. If you’ve finished coding for the day, I’d advise you

to click the Stop button for each of these servers to shut them down before you

quit the XAMPP Control Panel. There’s no sense slowing down those Facebook

games you play in the evening by running unnecessary servers!

Set the MySQL Root Password in XAMPP
Once you’ve set up your Windows computer with the proper servers, you now need

to assign a root password for MySQL in XAMPP.

MySQL only allows authorized users to view and manipulate the information stored

in its databases, so you’ll need to tell MySQL who’s authorized and who isn’t. When

MySQL is first installed, it’s configured with a user named “root” that has access

to do most tasks without entering a password. Therefore, your first task should be

to assign a password to the root user so that unauthorized users are prohibited from

tampering with your databases.

Why bother?

It’s important to realize that MySQL, just like a web server, can be accessed from

any computer on the same network. If you’re working on a computer connected

to the Internet, then, depending on the security measures you’ve taken, anyone

in the world could connect to your MySQL server. The need to pick a difficult-

to-guess password should be immediately obvious!

XAMPP makes it easy to resolve this and other configuration security issues with

your new servers. With the Apache and MySQL servers running, open this address

in your web browser: http://localhost/security/. Alternatively, you can click the

Security link in the menu on the XAMPP administration page.

This page will list any security issues that XAMPP can identify with your current

server configuration. Among them, you should see “The MySQL admin user root

PHP & MySQL: Novice to Ninja10

has NO password.” Scroll down past the table and click the link that will fix the

problems listed.

The very first section of the resulting form will prompt you to set a MySQL root

user password. Go ahead and set one you’ll remember. Leave the PhpMyAdmin au-

thentification (sic) set to cookie, and use the option to save the password to a file if

you think you might forget it (but beware that the password will be saved where a

person using your computer could find it). Click the Password changing button to

change your password, then stop and start your MySQL server using the XAMPP

Control Panel.

Seriously, don’t forget this password. It’s a pain to change it if you do, but I’ll show

you how in Chapter 10. Here’s a spot for you to record your MySQL root password

in case you need to:

My MySQL Root Password (Windows)

root user password: _________________________

XAMPP Directory Protection

XAMPP’s security page will also warn you that your web pages are accessible to

anyone on your network. While this is technically true, I’m not too worried if a

co-worker or family member could stumble on my work-in-progress website; fur-

thermore, most home and office network configurations will prevent people outside

your network from accessing the web server running on your computer.

That said, if you want to follow XAMPP’s advice to set a username and password

that will be required to view pages on your web server, feel free to set one.

Mac OS X Installation
In this section, I’ll show you how to start running a PHP-and-MySQL-equipped web

server on a Mac computer running Mac OS X version 10.5 (Leopard). If you’re not

using a Mac, you can safely skip this section.

Mac OS X distinguishes itself by being the only consumer OS to install both Apache

and PHP as components of every standard installation. (For that matter, it also comes

11Installation

with Ruby, Python, and Perl—all of which are popular web programming languages.)

That said, they take a few tweaks to switch on, and you will need a MySQL database

server as well. The simplest way to handle it is to ignore the built-in software and

install everything you need in a convenient, all-in-one package.

MAMP (which stands for Mac, Apache, MySQL, and PHP) is a free all-in-one program

that includes built-in copies of recent versions of the Apache web server, PHP, and

MySQL. Let me take you through the process of installing it.

The Do-it-yourself Option

In past editions of this book, I recommended that you set up the built-in versions

of Apache and PHP that come with Mac OS X, and install MySQL using its official

installation package. This is a good practice for beginners, I argued, because it

gives you a strong sense of how these pieces all fit together.

Unfortunately, this meant that many readers spent their first few hours in “PHP

Land” wrestling their way through a protracted sequence of detailed installation

instructions. Worse still, sometimes the finer points of these became outdated due

to some subtle change to one of the software packages.

Nowadays, I strongly believe that the best way to learn PHP and MySQL is to start

using them right away. The quicker and more hassle-free the installation process,

the better. That’s why I ask you to use MAMP in this edition. There’s also every

chance you’re just dabbling in this stuff, so why spend time tweaking the innards

of your operating system when you can leave them safely set to the factory defaults?

Nevertheless, if you’re a die-hard do-it-yourselfer, a tech-savvy power user, or if

you simply reach the end of this book and wonder how the pros do it, I’ve included

a detailed set of installation instructions for the individual packages in Ap-

pendix A. Feel free to follow them instead of the instructions in this section if

you’re that way inclined.

1. Download the latest version from the MAMP website6 (you want the free MAMP,

not the commercial MAMP PRO). After downloading the file (as of this writing,

MAMP 2.0.5 is about 116MB in size), double-click it to unzip the installer

(MAMP.pkg). Then double-click it to launch the MAMP Installer, which is shown

in Figure 1.8.

6 http://www.mamp.info

PHP & MySQL: Novice to Ninja12

http://www.mamp.info

Figure 1.8. The MAMP package

Look Out Below!

The next step is a tricky one. Make sure you read on first before clicking

blindly through the installer!

2. During the installation, you’ll be prompted to choose whether or not to perform

a standard installation. At this step, instead of clicking the Install button, click

Customize. This will give you the opportunity to deselect MAMP PRO (which

the installer will otherwise sneakily install in the hopes that you’ll decide to

buy it after all). This is especially important because the free MAMP will display

a worrying warning message at startup if MAMP PRO is installed.

Miss this step?

If you missed this step and allowed the installer to put MAMP PRO on your

system, it’s easy enough to remove.

Open your Applications folder, double-click on the new MAMP PRO folder,

and double-click to run the MAMP PRO Uninstaller. Click each checkbox in

the Uninstaller window. Once they’re all checked, click Uninstall. Quit the

Uninstaller.

13Installation

Browse to your Applications folder and find the new MAMP folder there. Open it,

and double-click the MAMP icon inside to launch MAMP. As MAMP starts up, the

following will happen. First, the MAMP window shown in Figure 1.9 will appear.

The two status indicators will switch from red to green as the built-in Apache and

MySQL servers start up. Next, MAMP will open your default web browser and load

the MAMP welcome page, shown in Figure 1.10.

Figure 1.9. The MAMP window

Figure 1.10. The MAMP welcome page confirms Apache, PHP, and MySQL are up and running

If you see this page it means your web server is up and running, because the page

you’re looking at was loaded from it! Notice that the URL in your browser’s address

bar starts with http://localhost:8888/ (some modern browsers will hide the protocol,

PHP & MySQL: Novice to Ninja14

“http://”); localhost is a special hostname that always points to your own computer.

The “8888” is the port number that the browser is using to connect to your computer.

Every server running on a computer listens on a unique port number. Usually,

websites are hosted on port 80, and browsers use that to connect when no port

number is specified by the URL. By default, MAMP comes configured so that Apache

will listen on port 8888 and MySQL will listen on port 8889. This ensures that

MAMP will work even if your Mac already has a web server installed and listening

on port 80, or a MySQL server listening on port 3306 (the standard MySQL server

port).7

The code and instructions in the rest of this book will assume your web server is

running on port 80 and your MySQL server is on port 3306. Now would be a good

time to see if MAMP will run happily using these standard port numbers. Here’s

how:

1. In the MAMP window, click Stop Servers. Wait for the indicators to turn red.

2. Click the Preferences… button and navigate to the Ports tab.

3. Click the Set to default Apache and MySQL ports button so that Apache will use

port 80 and MySQL will use port 3306. Click OK.

4. Click Start Servers. MAMP will prompt you to enter your password, because

running a server on an “official” Internet port number like 80 requires admin-

istrator privileges.

If both indicators turn green, click the Open start page button again, and verify that

the MAMP welcome page shows up this time with a URL starting with

http://localhost/ (no port number). If so, you’re in good shape!

If one or both indicators don’t turn red in step 1, or if the welcome page fails to load

correctly, in all likelihood you have yourself a port conflict. Somewhere on your

Mac is another web or MySQL server that’s already using one or both of those ports.

One place to check is the Sharing icon in System Preferences. If Web Sharing is en-

7 Of course, there are no guarantees that another application won’t be using port 8888 or 8889 on your

system! I’ve had trouble with Playback by Yazsoft (an application for streaming media to game consoles

like the Xbox 360 and PlayStation 3), which uses port 8888 when it is running. If in doubt, try a different

port number!

15Installation

abled, Mac OS X’s built-in Apache server is running (normally on port 80). Another

option is to try shutting down various applications. Under some conditions, Skype

for Mac has prevented MAMP’s MySQL server from launching for me, for example.

If, in the end, you’re only able to make MAMP run happily on its default port

numbers (8888 and 8889), go ahead and use them. Whenever this book mentions a

URL starting with http://localhost/, you’ll have to add the port number

(http://localhost:8888/), and when the time comes to connect to MySQL, I’ll tell

you how to specify a nonstandard port number.

One last change to make to the default MAMP configuration is to switch on PHP

error display. By default, when you make a serious mistake in your PHP code (and

believe me, we all make plenty!), MAMP’s Apache server will produce a blank web

page. As a developer needing to figure out what you typed wrong, that’s rather un-

helpful; I’d much prefer to see a detailed error message in my browser window.

The reason why MAMP comes with the error display switched off is so that if you

decide to host a publicly accessible website using it, visitors to the site won’t see

embarrassing error messages when you make a mistake. What’s embarrassing on a

public website, however, is practically essential in the development stage.

To switch on PHP error display, open the MAMP folder in your Mac’s Applications

folder. From there, drill down into bin/php/. This php folder will contain a subfolder

for each version of PHP that comes with MAMP. You can double-check in MAMP’s

Preferences to be sure, but it’s probably configured to run the most recent version,

so open that folder (it’s php5.3.6 in my copy of MAMP 2.0.5), and then open the

conf subfolder. Open the php.ini file in your favorite text editor (TextEdit will work

fine), and look for these lines:

; Print out errors (as a part of the output). For production web
➥ sites,
; you're strongly encouraged to turn this feature off, and use
➥ error logging
; instead (see below). Keeping display_errors enabled on a
➥ production web site
; may reveal security information to end users, such as file paths
➥ on your Web
; server, your database schema or other information.
display_errors = Off

PHP & MySQL: Novice to Ninja16

Change the Off in that last line to On and save the file. Now click Stop Servers, then

Start Servers in MAMP to restart Apache with the new configuration. That’s it—PHP

will now display helpful (if a little soul-crushing) error messages.

When you’re done working with MAMP, shut it down (along with its built-in servers)

by clicking the Quit button in the MAMP window. And when you’re next ready to

do some work on a database driven website, just fire it up again!

Set the MySQL Root Password in MAMP
Once MAMP is up and running on your Mac with the relevant servers, your very

next action should be to assign a root password for MySQL.

MySQL only allows authorized users to view and manipulate the information stored

in its databases, so you’ll need to tell MySQL who’s authorized and who’s not. When

MAMP first installs MySQL, it’s configured with a user named “root” that has access

to perform most tasks. The password for this user is “root”—not exactly Fort Knox!

Hence why your first task should be to assign a new password to the root user,

preventing any tampering with your databases.

Why bother?

It’s important to realize that MySQL, just like a web server, can be accessed from

any computer on the same network. So if you’re working on a computer connected

to the Internet, depending on the security measures you’ve taken, anyone in the

world could connect to your MySQL server. The need to pick a password that’s

difficult for anyone to guess should be immediately obvious!

To set your MySQL root password, first make sure MAMP and its servers are running.

Then open the Mac OS X Terminal application (found in the Utilities folder in the

Applications folder) and type these commands (hitting Enter after each one):

1. cd /Applications/MAMP/Library/bin/

This navigates to the Library/bin/ subfolder of your MAMP installation, which

is where the Terminal utility programs are kept.

2. ./mysqladmin -u root -p password "newpassword"

17Installation

Replace newpassword with the new password you want to assign to your MySQL

root user.

When you hit Enter you’ll be prompted to enter the current password: root.

3. Quit Terminal.

Your password is now set, but this creates a new problem: MAMP itself needs un-

restricted access to your MySQL server so that it can control it. If you click the Open

start page button in MAMP at this point, you’ll receive an error message: “Error:

Could not connect to MySQL server!” Obviously, we need to tell MAMP what our

new MySQL root password is.

You must edit several files in the MAMP folder to make it work again. You can open

each of these files in TextEdit, or whichever text editor you prefer to use.

Editing PHP Scripts in Mac OS X with TextEdit

TextEdit has a nasty habit of mistaking .php files for HTML documents when

opening them, and attempting to display them as formatted text. To avoid this,

you must select the Ignore rich text commands checkbox in the Open dialog box.

/Applications/MAMP/bin/mamp/index.php

Find the line that looks like this:

$link = @mysql_connect(':/Applications/MAMP/tmp/mysql/mysql.sock',
 'root', 'root');

Replace the second 'root' with your new MySQL root password (that is,

'newpassword').

/Applications/MAMP/bin/phpMyAdmin/config.inc.php

This is a large file, so you may need to use your text editor’s Find feature to

locate these lines:

$cfg['Servers'][$i]['user'] = 'root';
➥ // MySQL user
$cfg['Servers'][$i]['password'] = 'root';

PHP & MySQL: Novice to Ninja18

➥ // MySQL password (only needed

➥ // with 'config' auth_type)

Again, replace the second 'root' with your new MySQL root password (that’s

'newpassword').

/Applications/MAMP/bin/checkMysql.sh

/Applications/MAMP/bin/quickCheckMysqlUpgrade.sh

/Applications/MAMP/bin/repairMysql.sh

/Applications/MAMP/bin/stopMysql.sh

/Applications/MAMP/bin/upgradeMysql.sh

The contents of each of these little files starts out looking a little like this (this

is checkMysql.sh):

/bin/sh
/Applications/MAMP/Library/bin/mysqlcheck --all-databases --check
➥ --check-upgrade -u root -proot
➥ --socket=/Applications/MAMP/tmp/mysql/mysql.sock

See that -proot? The p stands for “password” and the rest is the password.

Change it to your new password (-pnewpassword).

Make the same change to each of these five files.

With all those changes made and saved, MAMP should work normally again, with

your MySQL server nice and secure from outside intrusion!

Oh, and don’t forget this password. It’s kind of a pain to change it if you do (I’ll

show you how in Chapter 10). Here’s a spot for you to record your MySQL root

password in case you need to.

My MySQL Root Password (Mac)

root user password: _________________________

19Installation

Linux Installation
These days, most people who run Linux as their operating system of choice are

tech-savvy enough to know how to install software like Apache, PHP, and MySQL.

Indeed, they probably feel strongly about how they should be installed, which would

doubtlessly clash with any instructions I’d provide here.

If this describes you, go ahead and install the most recent versions of Apache, PHP,

and MySQL that you’re comfortable installing, using whichever package manager

or build process pushes your buttons. Nothing in this book is going to be so advanced

that the minutiae of how you configure these packages will matter.

That said, just in case you’re one of the rare Linux users who could use some

guidance on installing, I’ve included a detailed set of instructions for Linux users

in Appendix A.

What to Ask Your Web Host
While you tinker with PHP and MySQL on your own computer, it’s a good idea to

start collecting the information you’ll need when it comes time to deploy your first

database driven website to the public. Here’s a rundown of the details you should

ask of your web host.

First, you’ll need to know how to transfer files to your web host. You’ll be uploading

PHP scripts to your host the same way you normally send the HTML files, CSS files,

and images that make up a static website; so if you already know how to do that,

there’s no need to bother your host. If you’re just starting with a new host, however,

you’ll have to be aware of what file transfer protocol it supports (FTP or SFTP), as

well as knowing what username and password to use when connecting with your

(S)FTP program. You also must know what directory to put files into so that they’re

accessible to web browsers.

In addition, you’ll require a few details about the MySQL server your host has set

up for you. It’s important to know the host name to use in order to connect to it

(possibly localhost), and your MySQL username and password, which may or may

not be the same as your (S)FTP credentials. Your web host will probably have

provided an empty database for you to use, which prevents you from interfering

PHP & MySQL: Novice to Ninja20

with other users’ databases who may share the same MySQL server with you. If

they have provided this, you should establish the name of that database.

Have you taken all that in? Here’s a spot to record the information you’ll need about

your web host.

My Hosting Details

File transfer protocol (circle

one):

FTP■

■ SFTP

(S)FTP host name: _________________________

(S)FTP username: _________________________

(S)FTP password: _________________________

MySQL host name: _________________________

MySQL username: _________________________

MySQL password: _________________________

MySQL database name: _________________________

Your First PHP Script
It would be unfair of me to help you install everything, but then stop short of giving

you a taste of what a PHP script looks like until Chapter 3. So here’s a morsel to

whet your appetite.

Open your favorite text or HTML editor and create a new file called today.php. Type

this into the file:

chapter1/today.php

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Today’s Date</title>
 </head>

21Installation

 <body>
 <p>Today’s date (according to this web server) is
 <?php

 echo date('l, F jS Y.');

 ?>
 </p>
 </body>
</html>

It’s a Letter, Not a Number

The most important line of the code is this one:

 echo date('l, F jS Y.');

Unfortunately, it’s also the one most people type wrong when reading this book.

See the character before the comma? It’s not the number one (1), it’s a lowercase

L (l).

Editing PHP Scripts in Windows with Notepad

To save a file with a .php extension in Notepad, you’ll need to either select All

Files as the file type, or surround the filename with quotes in the Save As dialog

box. Otherwise, Notepad will unhelpfully save the file as today.php.txt, which

will fail to work.

Editing PHP Scripts in Mac OS X with TextEdit

Be careful when using TextEdit to edit .php files, as it will save them in Rich Text

Format with an invisible .rtf filename extension by default. To save a new .php

file, you must first remember to convert the file to plain text by selecting Format

> Make Plain Text (⇧+⌘+T) from the TextEdit menu.

TextEdit also has a nasty habit of mistaking existing .php files for HTML documents

when opening them, and attempting to display them as formatted text. To avoid

this, you must select the Ignore rich text commands checkbox in the Open dialog

box.

PHP & MySQL: Novice to Ninja22

Try a Free IDE!

As you can tell from the preceding warnings, the text editors provided with current

operating systems are a touch unsuitable for editing PHP scripts. However, there

are a number of solid text editors and Integrated Development Environments

(IDEs) with rich support for editing PHP scripts that you can download for free.

Here are a few that work on Windows, Mac OS X, and Linux:

NetBeans http://www.netbeans.org/features/php/

Aptana http://www.aptana.com/php

Komodo Edit http://www.activestate.com/komodo_edit/

If you’d prefer not to type out all the code, you can download this file—along with

the rest of the code in this book—from the code archive. See the Preface for details

on how to download the code archive.

Save the file, and move it to the web root directory of your local web server.

Where’s my server’s web root directory?

If you’re using an Apache server that you installed manually, the web root directory

is the htdocs directory within your Apache installation (that’s C:\Program

Files\Apache Software Foundation\Apache2.2\htdocs on Windows and

/usr/local/apache2/htdocs on Linux).

For the Apache server built into XAMPP, the web root directory is the htdocs dir-

ectory within your XAMPP installation directory. You can reach it simply by

choosing from the Start menu: All Programs > Apache Friends > XAMPP > XAMPP

htdocs folder.

If the Apache server you’re using is built into Mac OS X, the web root directory

is /Library/WebServer/Documents. It can be easily accessed by clicking the Open

Computer Website Folder… button under Web Sharing in the Sharing preference

panel in System Preferences.

The Apache server built into MAMP has a web root directory in the htdocs folder

inside the MAMP folder (/Applications/MAMP/htdocs). If you prefer using another

folder as your web root, you can change it on the Apache tab of the MAMP applic-

ation’s Preferences. This facility makes it especially easy to switch between mul-

tiple web development projects by pointing MAMP at different folders.

23Installation

http://www.netbeans.org/features/php/
http://www.aptana.com/php
http://www.activestate.com/komodo_edit/

Open your web browser of choice, and type http://localhost/today.php (or

http://localhost:port/today.php if Apache is configured to run on a port other than

the default of 80) into the address bar to view the file you just created.8

You Must Type the URL

You might be used to previewing your web pages by double-clicking on them, or

by using the File > Open… feature of your browser. These methods tell your browser

to load the file directly from your computer’s hard drive, so they won’t work with

PHP files.

As previously mentioned, PHP scripts require your web server to read and execute

the PHP code they contain before sending the HTML code that’s generated to the

browser. Only by typing the URL (http://localhost/today.php) will your browser

request the file from your web server for this to happen.

Figure 1.11 shows what the web page generated by your first PHP script should

look like.

Figure 1.11. See your first PHP script in action!

Neat, huh? If you use the View Source feature in your browser, all you’ll see is a

regular HTML file with the date in it. The PHP code (everything between <?php and

8 If you installed Apache on Windows, you may have selected the option to run it on port 8080. If you’re

using MAMP, it’s configured by default to run Apache on port 8888.

PHP & MySQL: Novice to Ninja24

?> in the code above) was interpreted by the web server and converted to normal

text before it was sent to your browser. The beauty of PHP, and other server-side

scripting languages, is that the web browser can remain ignorant—the web server

does all the work!

If you’re worried that the code you typed made little sense to you, rest assured that

you’ll be up to speed on exactly how it works by the end of Chapter 3.

If the date is missing, or if your browser prompts you to download the PHP file in-

stead of displaying it, something is amiss with your web server’s PHP support. If

you can, use View Source in your browser to look at the code of the page. You’ll

probably see the PHP code right there in the page. Since the browser fails to under-

stand PHP, it just sees <?php … ?> as one long invalid HTML tag, which it ignores.

Double-check that you’ve requested the file from your web server rather than your

hard disk (that is, the location bar in your browser shows a URL beginning with

http://localhost/), and make sure that your web server supports PHP. You should

be fine as long as you followed the installation instructions earlier in this chapter.

Full Toolbox, Dirty Hands
You should now be fully equipped with a web server that supports PHP scripts, a

MySQL database server, and a basic understanding of how to use each of these. You

should even have gotten your hands dirty by writing and successfully testing your

first PHP script!

If the today.php script didn’t work for you, drop by the SitePoint Forums9 and we’ll

be glad to help you figure out the problem.

In Chapter 2, you’ll learn the basics of relational databases and start working with

MySQL. I’ll also introduce you to the language of database: Structured Query Lan-

guage. If you’ve never worked with a database before, it’ll be a real eye-opener!

9 http://www.sitepoint.com/forums/

25Installation

http://www.sitepoint.com/forums/

Chapter2
Introducing MySQL
In Chapter 1, we installed and set up two software programs: the Apache web

server with PHP, and the MySQL database server. If you followed my recommend-

ation, you would have set them up using an all-in-one package like XAMPP or

MAMP, but don’t let that diminish your sense of accomplishment!

As I explained in that chapter, PHP is a server-side scripting language that lets you

insert instructions into your web pages that your web server software (in most cases,

Apache) will execute before it sends those pages to browsers that request them. In

a brief example, I showed how it was possible to insert the current date into a web

page every time it was requested.

Now, that’s all well and good, but it really gets interesting when a database is added

to the mix. In this chapter, we’ll learn what a database is, and how to work with

your own MySQL databases using Structured Query Language.

An Introduction to Databases
A database server (in our case, MySQL) is a program that can store large amounts

of information in an organized format that’s easily accessible through programming

languages like PHP. For example, you could tell PHP to look in the database for a

list of jokes that you’d like to appear on your website.

In this example, the jokes would be stored entirely in the database. The advantage

of this approach is twofold: First, instead of writing an HTML page for each joke,

you could write a single PHP script that was designed to fetch any joke from the

database and display it by generating an HTML page for it on the fly. Second, adding

a joke to your website would be a simple matter of inserting the joke into the data-

base. The PHP code would take care of the rest, automatically displaying the new

joke along with the others when it fetched the list from the database.

Let’s run with this example as we look at how data is stored in a database. A database

is composed of one or more tables, each of which contains a list of items, or things.

For our joke database, we’d probably start with a table called joke that would contain

a list of jokes. Each table in a database has one or more columns, or fields. Each

column holds a certain piece of information about each item in the table. In our

example, our joke table might have one column for the text of the jokes, and another

for the dates on which the jokes were added to the database. Each joke stored in

this way would be said to be a row or entry in the table. These rows and columns

form a table that looks like Figure 2.1.

Figure 2.1. A typical database table containing a list of jokes

Notice that, in addition to columns for the joke text (joketext) and the date of the

joke (jokedate), I’ve included a column named id. As a matter of good design, a

database table should always provide a means by which we can identify each of its

rows uniquely. Since it’s possible that two identical jokes could be entered on the

same date, we can’t rely upon the joketext and jokedate columns to tell all the

jokes apart. The function of the id column, therefore, is to assign a unique number

PHP & MySQL: Novice to Ninja28

to each joke so that we have an easy way to refer to them and to keep track of which

joke is which. We’ll take a closer look at database design issues like this in Chapter 5.

To review, the table in Figure 2.1 is a three-column table with two rows, or entries.

Each row in the table contains three fields, one for each column in the table: the

joke’s ID, its text, and the date of the joke. With this basic terminology under your

belt, you’re ready to dive into using MySQL.

Using phpMyAdmin to Run SQL Queries
Just as a web server is designed to respond to requests from a client (a web browser),

the MySQL database server responds to requests from client programs. Later in this

book, we’ll write our own MySQL client programs in the form of PHP scripts, but

for now we can use a client program that comes bundled with both XAMPP and

MAMP: phpMyAdmin.

phpMyAdmin is itself a sophisticated web application written in PHP. Besides being

included in XAMPP and MAMP, phpMyAdmin is provided by most commercial

web hosts who offer PHP and MySQL as a tool for developers to manage their

websites’ MySQL databases. Much like PHP and MySQL, phpMyAdmin’s ubiquity

makes it an attractive tool for beginners to learn and use.

Don’t have phpMyAdmin?

If you opted to follow the manual setup instructions in Appendix A rather than

use the all-in-one package offered by XAMPP or MAMP to set up your web server,

you probably don’t have phpMyAdmin installed on your server. The good news

is that you can download and install it from the phpMyAdmin website,1 where

instructions are provided.

If you’re using XAMPP on Windows, you can access phpMyAdmin by clicking the

Admin… button next to MySql (sic) in the XAMPP Control Panel window, as shown

in Figure 2.2.

1 http://www.phpmyadmin.net/

29Introducing MySQL

http://www.phpmyadmin.net/

Figure 2.2. Click the Admin… button to open phpMyAdmin

To access phpMyAdmin using MAMP on Mac OS X, click the Open start page button

in the MAMP window. Then click the phpMyAdmin tab at the top of the screen, as

shown in Figure 2.3.

Figure 2.3. You can access phpMyAdmin from MAMP’s start page

Either way, you should now have phpMyAdmin open in your default web browser,

which should look like Figure 2.4. As of this writing, XAMPP includes the more

recent (and better-looking) version 3.4 of phpMyAdmin, so I’ll be showing screen-

shots of that. If you’re using the older version 3.3, it won’t look quite as nice, but it

should work just the same.

PHP & MySQL: Novice to Ninja30

Figure 2.4. If you can see this, you have phpMyAdmin

If you go clicking around phpMyAdmin, you’ll discover all the tools you need to

manage every aspect of your MySQL server and the data it contains. For now, I’m

going to ignore all of those features and focus on a particular one: the SQL query

window.

See the row of buttons just beneath the phpMyAdmin logo? Clicking the second

icon, indicated in Figure 2.5, opens the SQL query window shown in Figure 2.6.

Figure 2.5. Click the second button …

31Introducing MySQL

Figure 2.6. … to open the SQL query window

Into that big, empty text box you can type commands to ask your database server

questions or make it perform tasks. Let’s try a few simple commands to take a look

around your MySQL server.

The MySQL server can actually keep track of more than one database. This allows

a web host to set up a single MySQL server for use by several of its subscribers, for

example. So, your first step after connecting to the server should be to choose a

database with which to work. First, let’s retrieve a list of databases on the current

server.

Type this command into the SQL query window, then click Go:

SHOW DATABASES

You might think at first that nothing has happened, but you should now see the

results in the main phpMyAdmin window, as shown in Figure 2.7.

PHP & MySQL: Novice to Ninja32

Figure 2.7. The query results are displayed in the main phpMyAdmin window

Your list of databases might be as long as the one shown in Figure 2.7, or if you’re

running MAMP it may only contain two critical databases. XAMPP uses additional

databases to store configuration of its own, whereas MAMP is designed to avoid

cluttering up your MySQL server with its own data. Either way, you will have

databases named information_schema and mysql.

The MySQL server uses the first database, named information_schema, to keep

track of all the other databases on the server. Unless you’re doing some very advanced

stuff, you’ll probably leave this database alone.

The second database, mysql, is special too. MySQL uses it to keep track of users,

their passwords, and what they’re allowed to do. We’ll steer clear of this for now,

but we’ll revisit it in Chapter 10 when we discuss MySQL administration.

A third database, named test, is a sample database that’s included with MySQL

out of the box (again, MAMP does away with this database so you can start clean).

If you see it in the list, you can delete the test database because you’ll be creating

your own database in a moment.

33Introducing MySQL

Deleting stuff in MySQL is called “dropping” it, and the command for doing so is

appropriately named:

DROP DATABASE test

If you type this command into the SQL query window and click Go, phpMyAdmin

will probably display an error message: "DROP DATABASE" statements are disabled.

This message indicates that a safety feature built into phpMyAdmin is preventing

you from running dangerous-looking queries like this one.

If you want to be able to drop databases (and this is probably a good ability to have,

given the amount of experimentation I’m going to encourage you to do in this book),

there is a way to do so tucked away in phpMyAdmin. In the main phpMyAdmin

window, click the Databases tab (the leftmost tab at the top of the main window

area). You’ll be presented with a list of databases on the server, with a checkbox

next to each. Check the one you want to delete (test in this case); then click the

Drop button at the bottom-right of the list as shown in Figure 2.8.

Figure 2.8. The ability to drop a database in phpMyAdmin is well hidden

phpMyAdmin presents one last prompt to make sure you mean to obliterate the

database. If you confirm this, MySQL will obediently delete the database, and

phpMyAdmin will display a message to verify it was successful.

Note that there are other potentially hazardous commands you can send to MySQL

in addition to DROP DATABASE, but phpMyAdmin won’t always protect you if you

PHP & MySQL: Novice to Ninja34

make a mistake. You have to be very careful to type your commands correctly in

the SQL query window, otherwise you can destroy your entire database—along

with all the information it contains—with a single command!

Structured Query Language
The commands we’ll use to direct MySQL throughout the rest of this book are part

of a standard called Structured Query Language, or SQL (pronounced as either

“sequel” or “ess-cue-ell”—take your pick). Commands in SQL are also referred to

as queries; I’ll use these two terms interchangeably.

SQL is the standard language for interacting with most databases, so, even if you

move from MySQL to a database like Microsoft SQL Server in the future, you’ll find

that the majority of commands are identical. It’s important that you understand the

distinction between SQL and MySQL. MySQL is the database server software that

you’re using. SQL is the language that you use to interact with that database.

Learn SQL in Depth

In this book, I’ll teach you the essentials of SQL that every PHP developer needs

to know. If you decide to make a career out of building database driven websites,

it pays to know some of the more advanced details of SQL, especially when it

comes to making your sites run as quickly and smoothly as possible. To dive

deeper into SQL, I highly recommend the book Simply SQL2 by Rudy Limeback.

Creating a Database
When the time comes to deploy your first database driven website on the Web,

you’re likely to find that your web host or IT department has already created a

MySQL database to use. Since you’re in charge of your own MySQL server, however,

you’ll need to create your own database to use in developing your site.

It’s just as easy to create a database as it is to delete one. Open the SQL query window

again, and type this command:

CREATE DATABASE ijdb

2 http://www.sitepoint.com/books/sql1/

35Introducing MySQL

http://www.sitepoint.com/books/sql1/

I chose to name the database ijdb, for Internet Joke Database,3 because that fits with

the example I gave at the beginning of this chapter: a website that displays a database

of jokes. Feel free to give the database any name you like, though.

Case Sensitivity in SQL Queries

Most MySQL commands are not case-sensitive, which means you can type CREATE

DATABASE, create database, or even CrEaTe DaTaBaSe, and it will know

what you mean. Database names and table names, however, are case-sensitive

when the MySQL server is running on an operating system with a case-sensitive

file system (such as Linux or Mac OS X, depending on your system configuration).

Additionally, table, column, and other names must be spelled exactly the same

when they’re used more than once in the same query.

For consistency, this book will respect the accepted convention of typing database

commands in all capitals, and database entities (databases, tables, columns, and

so on) in all lowercase.

Now that you have a database, you need to tell phpMyAdmin that you want to use

it. You’ve probably noticed by now that the left-hand sidebar in the main phpMy-

Admin window contains a list of all the databases on your MySQL server. When

you clicked Go to run your CREATE DATABASE command (you did click Go, didn’t

you?), this sidebar updated to show your new database’s name in a drop-down

menu, as shown in Figure 2.9.

Figure 2.9. phpMyAdmin autoselects your new database for you

3 With a tip of the hat to the Internet Movie Database [http://www.imdb.com].

PHP & MySQL: Novice to Ninja36

http://www.imdb.com

It’s nice of phpMyAdmin to autoselect your new database for you, but you’ll need

to know how to select it yourself. Click the home button (the first in the row of icons

beneath the phpMyAdmin logo) to go back to the home page of phpMyAdmin. The

sidebar will once again display a list of all databases on your server.

To select a database to work with, just click its name in the sidebar. With your

database selected, click the Query window button again to open a new SQL query

window. This query window is slightly different from the last one: the caption for

the text box now says Run SQL query/queries on database ijdb. Commands typed into

this query window will run on your new database, instead of your MySQL server

as a whole.

Figure 2.10. You must open a new query window to work with this database

You’re now ready to use your database. Since a database is empty until you add

tables to it, our first order of business is to create a table that will hold your jokes

(now might be a good time to think of some!).

Creating a Table
The SQL commands we’ve encountered so far have been reasonably simple, but as

tables are so flexible, it takes a more complicated command to create them. The

basic form of the command is as follows:

CREATE TABLE table_name (
column1Name column1Type column1Details,
column2Name column2Type column2Details,

 ⋮
) DEFAULT CHARACTER SET charset ENGINE=InnoDB

37Introducing MySQL

Let’s continue with the joke table I showed you in Figure 2.1. You’ll recall that it

had three columns: id (a number), joketext (the text of the joke), and jokedate

(the date on which the joke was entered). This is the command to create that table:

CREATE TABLE joke (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joketext TEXT,
 jokedate DATE NOT NULL
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

Looks scary, huh? Let’s break it down:

CREATE TABLE joke (

This first line is fairly simple; it says that we want to create a new table named

joke. The opening parenthesis (() marks the beginning of the list of columns

in the table.

id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

This second line says that we want a column called id that contains an integer

(INT); that is, a whole number. The rest of this line deals with special details

for the column:

1. First, when creating a row in this table, this column cannot be left blank (NOT

NULL).

2. Next, if we don’t specify a value for this column when we add a new entry

to the table, we want MySQL to automatically pick a value that’s one more

than the highest value in the table so far (AUTO_INCREMENT).

3. Finally, this column is to act as a unique identifier for the entries in the table,

so all values in this column must be unique (PRIMARY KEY).

joketext TEXT,

This third line is super simple; it says that we want a column called joketext,

which will contain text (TEXT).

jokedate DATE NOT NULL

This fourth line defines our last column, called jokedate; this will contain a

date (DATE) that cannot be left blank (NOT NULL).

PHP & MySQL: Novice to Ninja38

) DEFAULT CHARACTER SET utf8

The closing parenthesis ()) marks the end of the list of columns in the table.

DEFAULT CHARACTER SET utf8 tells MySQL that you’ll be storing UTF-8 encoded

text in this table. UTF-8 is the most common encoding used for web content,

so you should employ it in all your database tables that you intend to use on

the Web.

ENGINE=InnoDB

This tells MySQL which storage engine to use to create this table.

Think of a storage engine as a file format. When building a website, you’ll typ-

ically choose to use the JPEG format for the photos on your site, but stick with

the PNG format for the images that make up your site design. Both formats are

supported by browsers, but they each have strengths and weaknesses. Likewise,

MySQL supports multiple formats for database tables.

The InnoDB format is by far the best choice for website databases like the one

we’ll build in this book. The older MyISAM format is the default, however, so

we must tell MySQL that we want it to create an InnoDB table.

Note that we assigned a specific data type to each column we created. id will contain

integers, joketext will contain text, and jokedate will contain dates. MySQL re-

quires you to specify in advance a data type for each column. This helps to keep

your data organized, and allows you to compare the values within a column in

powerful ways, as we’ll see later. For a list of MySQL data types, see Appendix D.

Now, if you type the above command correctly and click Go, the main phpMyAdmin

window will confirm that the query executed successfully, and your first table will

be created. If you made a typing mistake, phpMyAdmin will tell you there was a

problem with the query you typed, and will try to indicate where it had trouble

understanding what you meant.

Let’s have a look at your new table to make sure it was created properly. Type the

following command into the SQL query window, and click Go:

SHOW TABLES

phpMyAdmin should display the output shown in Figure 2.11.

39Introducing MySQL

Figure 2.11. phpMyAdmin lists the tables in the currently selected database

This is a list of all the tables in your database (which we named ijdb). The list

contains only one table: the joke table you just created. So far, everything seems

fine. Let’s take a closer look at the joke table itself using a DESCRIBE query:

DESCRIBE joke

As you can see in Figure 2.12, there are three columns (or fields) in this table, which

appear as the three rows in this table of results. The details are a little cryptic, but

if you look at them closely, you should be able to figure out what they mean. It’s

nothing to be worried about, though. You have better things to do, like adding some

jokes to your table!

Figure 2.12. phpMyAdmin lists the columns in the joke table as rows

We need to look at just one more task before we do that, though: deleting a table.

This task is as frighteningly easy as deleting a database with a DROP DATABASE

command—except that phpMyAdmin won’t protect you here. Don’t run this com-

mand with your joke table, unless you actually do want to be rid of it! If you really

want to try it, be prepared to re-create your joke table from scratch:

DROP TABLE tableName

PHP & MySQL: Novice to Ninja40

Inserting Data into a Table
Your database is created and your table is built; all that’s left is to put some jokes

into the database. The command that inserts data into a database is called, appro-

priately enough, INSERT. This command can take two basic forms:

INSERT INTO tableName SET
column1Name = column1Value,
column2Name = column2Value,

 ⋮

INSERT INTO tableName
 (column1Name, column2Name, …)
 VALUES (column1Value, column2Value, …)

So, to add a joke to our table, we can use either of these commands:

INSERT INTO joke SET
joketext = "Why did the chicken cross the road? To get to the other
➥ side!",
jokedate = "2012-04-01"

INSERT INTO joke
(joketext, jokedate) VALUES (
"Why did the chicken cross the road? To get to the other side!",
"2012-04-01")

Note that in both forms of the INSERT command, the order in which you list the

columns must match the order in which you list the values. Otherwise, the order

of the columns isn’t important. Go ahead and swap the order of the column and

value pairs and try the query.

As you typed the query, you’ll have noticed that we used double quotes (") to mark

where the text of the joke started and ended. A piece of text enclosed in quotes this

way is called a text string, and this is how you represent most data values in SQL.

For instance, the dates are typed as text strings, too, in the form "YYYY-MM-DD".

If you prefer, you can type text strings surrounded with single quotes (') instead of

double quotes:

41Introducing MySQL

INSERT INTO joke SET
joketext = 'Why did the chicken cross the road? To get to the other
➥ side!',
jokedate = '2012-04-01'

You might be wondering what happens when there are quotes used within the joke’s

text. Well, if the text contains single quotes, you would surround it with double

quotes. Conversely, if the text contains double quotes, surround it with single quotes.

If the text you want to include in your query contains both single and double quotes,

you’ll have to escape the conflicting characters within your text string. You escape

a character in SQL by adding a backslash (\) immediately before it. This tells MySQL

to ignore any “special meaning” this character might have. In the case of single or

double quotes, it tells MySQL not to interpret the character as the end of the text

string.

To make this as clear as possible, here’s an example of an INSERT command for a

joke containing both single and double quotes:

INSERT INTO joke
(joketext, jokedate) VALUES (
'Knock-knock! Who\'s there? Boo! "Boo" who? Don\'t cry; it\'s only a
➥ joke!',
"2012-04-01")

As you can see, I’ve marked the start and end of the text string for the joke text using

single quotes. I’ve therefore had to escape the three single quotes (the apostrophes)

within the string by putting backslashes before them. MySQL would see these

backslashes and know to treat the single quotes as characters within the string,

rather than end-of-string markers.

If you’re especially clever, you might now be wondering how to include actual

backslashes in SQL text strings. The answer is to type a double-backslash (\\), which

MySQL will treat as a single backslash in the string of text.

Now that you know how to add entries to a table, let’s see how we can view those

entries.

PHP & MySQL: Novice to Ninja42

Viewing Stored Data
The command that we use to view data stored in database tables, SELECT, is the

most complicated command in the SQL language. The reason for this complexity

is that the chief strength of a database is its flexibility in data retrieval. At this early

point in our experience with databases, we need only focus on fairly simple lists

of results, so let’s consider the simpler forms of the SELECT command here.

This command will list everything that’s stored in the joke table:

SELECT * FROM joke

Read aloud, this command says “select everything from joke.” If you try this com-

mand, your results will resemble Figure 2.13.

Figure 2.13. phpMyAdmin lists the full contents of the joke table

If you were doing serious work on such a database, you might be tempted to stop

and read all the hilarious jokes in the database at this point. To save yourself the

distraction, you might want to tell MySQL to omit the joketext column. The

command for doing this is as follows:

SELECT id, jokedate FROM joke

This time, instead of telling it to “select everything,” we told it precisely which

columns we wanted to see. The result should look like Figure 2.14.

Figure 2.14. You can select only what you need

What if we’d like to see some of the joke text? As well as being able to name specific

columns that we want the SELECT command to show us, we can use functions to

43Introducing MySQL

modify each column’s display. One function, called LEFT, enables us to tell MySQL

to display a column’s contents up to a specified number of characters. For example,

let’s say we wanted to see only the first 20 characters of the joketext column. Here’s

the command we’d use:

SELECT id, LEFT(joketext, 20), jokedate FROM joke

The results are shown in Figure 2.15.

Figure 2.15. The LEFT function trims the text to a specified length

See how that worked? Another useful function is COUNT, which lets us count the

number of results returned. If, for example, you wanted to find out how many jokes

were stored in your table, you could use the following command:

SELECT COUNT(*) FROM joke

As you can see in Figure 2.16, you have just one joke in your table.

Figure 2.16. The COUNT function counts the rows

So far, the examples we’ve looked at have fetched all the entries in the table; how-

ever, you can limit your results to only those database entries that have the specific

attributes you want. You set these restrictions by adding what’s called a WHERE

clause to the SELECT command. Consider this example:

SELECT COUNT(*) FROM joke WHERE jokedate >= "2012-01-01"

This query will count the number of jokes that have dates greater than or equal to

January 1, 2012. In the case of dates, “greater than or equal to” means “on or after.”

Another variation on this theme lets you search for entries that contain a certain

piece of text. Check out this query:

PHP & MySQL: Novice to Ninja44

SELECT joketext FROM joke WHERE joketext LIKE "%chicken%"

This query displays the full text of all jokes containing the text “chicken” in their

joketext column. The LIKE keyword tells MySQL that the named column must

match the given pattern.4 In this case, the pattern we’ve used is "%chicken%". The

% signs indicate that the text “chicken” may be preceded and/or followed by any

string of text.

Conditions may also be combined in the WHERE clause to further restrict results. For

example, to display knock-knock jokes from April 2012 only, you could use the

following query:

SELECT joketext FROM joke WHERE
joketext LIKE "%knock%" AND
jokedate >= "2012-04-01" AND
jokedate < "2012-05-01"

Enter a few more jokes into the table (for example, the “Knock-Knock” joke men-

tioned earlier) and experiment with SELECT queries (for ideas, see Chapter 4).

You can do a lot with the SELECT command, so I’d encourage you to become quite

familiar with it. We’ll look at some of its more advanced features later, when we

need them.

Modifying Stored Data
Having entered data into a database table, you might find that you’d like to change

it. Whether you’re correcting a spelling mistake, or changing the date attached to a

joke, such alterations are made using the UPDATE command. This command contains

elements of the SELECT and INSERT commands, since the command both picks out

entries for modification and sets column values. The general form of the UPDATE

command is as follows:

UPDATE tableName SET
colName = newValue, …

WHERE conditions

4 In case you were curious, LIKE is case-insensitive, so this pattern will also match a joke that contains

“Chicken,” or even “FuNkYcHiCkEn.”

45Introducing MySQL

So, for example, if we wanted to change the date on the joke we entered earlier,

we’d use the following command:

UPDATE joke SET jokedate = "2013-04-01" WHERE id = "1"

Here’s where that id column comes in handy, enabling you to easily single out a

joke for changes. The WHERE clause used here works just as it did in the SELECT

command. This next command, for example, changes the date of all entries that

contain the word “chicken”:

UPDATE joke SET jokedate = "2010-04-01"
WHERE joketext LIKE "%chicken%"

Deleting Stored Data
Deleting entries in SQL is dangerously easy, which you’ve probably noticed is a

recurring theme. Here’s the command syntax:

DELETE FROM tableName WHERE conditions

To delete all chicken jokes from your table, you’d use the following query:

DELETE FROM joke WHERE joketext LIKE "%chicken%"

Careful with That Enter Key!

Believe it or not, the WHERE clause in the DELETE command is optional. Con-

sequently, you should be very careful when typing this command! If you leave

the WHERE clause out, the DELETE command will then apply to all entries in the

table.

The following command will empty the joke table in one fell swoop:

DELETE FROM joke

Scary, huh?

PHP & MySQL: Novice to Ninja46

Let PHP Do the Typing
There’s a lot more to the MySQL database server software and SQL than the handful

of basic commands I’ve presented here, but these commands are by far the most

commonly used.

At this stage, you might be thinking that databases seem a little cumbersome. SQL

can be tricky to type, as its commands tend to be long and verbose compared to

other computer languages. You’re probably dreading the thought of typing in a

complete library of jokes in the form of INSERT commands.

Don’t sweat it! As we proceed through this book, you’ll be surprised at how few

SQL queries you actually type by hand. Generally, you’ll be writing PHP scripts

that type your SQL for you. For example, if you want to be able to insert a bunch

of jokes into your database, you’ll typically create a PHP script for adding jokes that

includes the necessary INSERT query, with a placeholder for the joke text. You can

then run that PHP script whenever you have jokes to add. The PHP script prompts

you to enter your joke, then issues the appropriate INSERT query to your MySQL

server.

For now, however, it’s important to gain a good feel for typing SQL by hand. It will

give you a strong sense of the inner workings of MySQL databases, and will make

you appreciate all the more the work that PHP will save you!

To date, we’ve only worked with a single table, but to realize the true power of a

relational database, you’ll need to learn how to use multiple tables together to rep-

resent potentially complex relationships between the items stored in your database.

I’ll cover all this and more in Chapter 5, in which I’ll discuss database design

principles and show off some more advanced examples.

In the meantime, we’ve accomplished our objective, and you can comfortably interact

with MySQL using the phpMyAdmin query window. In Chapter 3, the fun continues

as we delve into the PHP language, and use it to create several dynamically generated

web pages.

If you like, you can practice with MySQL a little before you move on by creating a

decent-sized joke table (for our purposes, five should be enough). This library of

jokes will come in handy when you reach Chapter 4.

47Introducing MySQL

Chapter3
Introducing PHP
PHP is a server-side language. This concept may be a little difficult to grasp, espe-

cially if you’ve only ever designed websites using client-side languages like HTML,

CSS, and JavaScript.

A server-side language is similar to JavaScript in that it allows you to embed little

programs (scripts) into the HTML code of a web page. When executed, these programs

give you greater control over what appears in the browser window than HTML alone

can provide. The key difference between JavaScript and PHP is the stage of loading

the web page at which these embedded programs are executed.

Client-side languages like JavaScript are read and executed by the web browser after

downloading the web page (embedded programs and all) from the web server. In

contrast, server-side languages like PHP are run by the web server, before sending

the web page to the browser. Whereas client-side languages give you control over

how a page behaves once it’s displayed by the browser, server-side languages let

you generate customized pages on the fly before they’re even sent to the browser.

Once the web server has executed the PHP code embedded in a web page, the result

takes the place of the PHP code in the page. All the browser sees is standard HTML

code when it receives the page, hence the name “server-side language.” Let’s look

back at the today.php example presented in Chapter 1:

chapter3/today.php

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Today’s Date</title>
 </head>
 <body>
 <p>Today’s date (according to this web server) is

<?php

 echo date('l, F jS Y.');

 ?>
 </p>
 </body>
</html>

Most of this is plain HTML except the line between <?php and ?> is PHP code.

<?php marks the start of an embedded PHP script and ?> marks its end. The web

server is asked to interpret everything between these two delimiters and convert it

to regular HTML code before it sends the web page to the requesting browser. The

browser is presented with the following:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Today’s Date</title>
 </head>
 <body>
 <p>Today’s date (according to this web server) is

Sunday, April 1st 2012.
 </p>
 </body>
</html>

PHP & MySQL: Novice to Ninja50

Notice that all signs of the PHP code have disappeared. In its place the output of

the script has appeared, and it looks just like standard HTML. This example

demonstrates several advantages of server-side scripting:

No browser compatibility issues

PHP scripts are interpreted by the web server alone, so there’s no need to worry

about whether the language features you’re using are supported by the visitor’s

browser.

Access to server-side resources

In the above example, we placed the date according to the web server into the

web page. If we had inserted the date using JavaScript, we’d only be able to

display the date according to the computer on which the web browser was

running. Granted, there are more impressive examples of the exploitation of

server-side resources, such as inserting content pulled out of a MySQL database

(hint, hint …).

Reduced load on the client

JavaScript can delay the display of a web page significantly (especially on mobile

devices!), as the browser must run the script before it can display the web page.

With server-side code this burden is passed to the web server, which you can

make as beefy as your application requires (and your wallet can afford).

Basic Syntax and Statements
PHP syntax will be very familiar to anyone with an understanding of JavaScript, C,

C++, C#, Objective-C, Java, Perl, or any other C-derived language. But if these lan-

guages are unfamiliar to you, or if you’re new to programming in general, there’s

no need to worry about it.

A PHP script consists of a series of commands, or statements. Each statement is an

instruction that must be followed by the web server before it can proceed to the

next instruction. PHP statements, like those in the aforementioned languages, are

always terminated by a semicolon (;).

This is a typical PHP statement:

echo 'This is a test!';

51Introducing PHP

This is an echo statement, which is used to generate content (usually HTML code)

to send to the browser. An echo statement simply takes the text it’s given and inserts

it into the page’s HTML code at the position of the PHP script where it was contained.

In this case, we’ve supplied a string of text to be output: 'This is a

test!'. Notice that the string of text contains HTML tags

(and), which is perfectly acceptable. So, if we take this state-

ment and put it into a complete web page, here’s the resulting code:

chapter3/echo.php

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Today’s Date</title>
 </head>
 <body>
 <p><?php echo 'This is a test!'; ?></p>
 </body>
</html>

If you place this file on your web server and then request it using a web browser,

your browser will receive this HTML code:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Today’s Date</title>
 </head>
 <body>
 <p>This is a test!</p>
 </body>
</html>

The today.php example we looked at earlier contained a slightly more complex echo

statement:

chapter3/today.php (excerpt)

echo date('l, F jS Y.');

PHP & MySQL: Novice to Ninja52

Instead of giving echo a simple string of text to output, this statement invokes a

built-in function called date and passes it a string of text: 'l, F jS Y.'. You can

think of built-in functions as tasks that PHP knows how to do without you needing

to spell out the details. PHP has many built-in functions that let you do everything,

from sending email to working with information stored in various types of databases.

When you invoke a function in PHP—that is, ask it to do its job—you’re said to be

calling that function. Most functions return a value when they’re called; PHP then

behaves as if you’d actually just typed that returned value instead in your code. In

this case, our echo statement contains a call to the date function, which returns the

current date as a string of text (the format of which is specified by the text string in

the function call). The echo statement therefore outputs the value returned by the

function call.

You may wonder why we need to surround the string of text with both parentheses

((…)) and single quotes ('…'). As in SQL, quotes are used in PHP to mark the be-

ginning and end of strings of text, so it makes sense for them to be there. The paren-

theses serve two purposes. First, they indicate that date is a function that you want

to call. Second, they mark the beginning and end of a list of arguments that you

wish to provide, in order to tell the function what you want it to do.1In the case of

the date function, you need to provide a string of text that describes the format in

which you want the date to appear.2 Later on, we’ll look at functions that take more

than one argument, and we’ll separate those arguments with commas. We’ll also

consider functions that take no arguments at all. These functions will still need the

parentheses, even though there will be nothing to type between them.

Variables, Operators, and Comments
Variables in PHP are identical to variables in most other programming languages.

For the uninitiated, a variable can be thought of as a name given to an imaginary

box into which any literal value may be placed. The following statement creates a

variable called $testVariable (all variable names in PHP begin with a dollar sign)

and assigns it a literal value of 3:

1 I’m fairly sure they’re called arguments because that’s what often happens when you try to tell someone

what to do.
2 A full reference is available in the online documentation for the date function

[http://www.php.net/date/].

53Introducing PHP

http://www.php.net/date/

$testVariable = 3;

PHP is a loosely typed language. This means that a single variable may contain any

type of data, be it a number, a string of text, or some other kind of value, and may

store different types of values over its lifetime. The following statement, if you were

to type it after the aforementioned statement, assigns a new value to the existing

$testVariable. Where it used to contain a number, it now contains a string of text:

$testVariable = 'Three';

The equals sign we used in the last two statements is called the assignment operator,

as it’s used to assign values to variables. Other operators may be used to perform

various mathematical operations on values:

$testVariable = 1 + 1; // assigns a value of 2
$testVariable = 1 - 1; // assigns a value of 0
$testVariable = 2 * 2; // assigns a value of 4
$testVariable = 2 / 2; // assigns a value of 1

From these examples, you can probably tell that + is the addition operator, - is the

subtraction operator, * is the multiplication operator, and / is the division operator.

These are all called arithmetic operators, because they perform arithmetic on

numbers.

Each arithmetic line ends with a comment. Comments enable you to describe what

your code is doing. They insert explanatory text into your code—text that the PHP

interpreter will ignore. Comments begin with // and they finish at the end of the

same line. If you want a comment to span several lines, start it with /*, and end it

with */. The PHP interpreter will ignore everything between these two delimiters.

I’ll be using comments throughout the rest of this book to help explain some of the

code I present.

Returning to the operators, one that sticks strings of text together is called the string

concatenation operator:

$testVariable = 'Hi ' . 'there!'; // assigns a value of 'Hi there!'

PHP & MySQL: Novice to Ninja54

Variables may be used almost anywhere that you use a literal value. Consider this

series of statements:

$var1 = 'PHP'; // assigns a value of 'PHP' to $var1
$var2 = 5; // assigns a value of 5 to $var2
$var3 = $var2 + 1; // assigns a value of 6 to $var3
$var2 = $var1; // assigns a value of 'PHP' to $var2
echo $var1; // outputs 'PHP'
echo $var2; // outputs 'PHP'
echo $var3; // outputs '6'
echo $var1 . ' rules!'; // outputs 'PHP rules!'
echo "$var1 rules!"; // outputs 'PHP rules!'
echo '$var1 rules!'; // outputs '$var1 rules!'

Note the last two lines in particular. You can include the name of a variable right

inside a text string and have the value inserted in its place if you surround the string

with double quotes instead of single quotes. This process of converting variable

names to their values is known as variable interpolation; however, as the last line

demonstrates, a string surrounded with single quotes will not interpolate the variable

names it contains.

Arrays
An array is a special kind of variable that contains multiple values. If you think of

a variable as a box that contains a value, an array can be thought of as a box with

compartments where each compartment is able to store an individual value.

The simplest way to create an array in PHP is to use the array command:

$myArray = array('one', 2, '3');

This code creates an array called $myArray that contains three values: 'one', 2, and

'3'. Just like an ordinary variable, each space in an array can contain any type of

value. In this case, the first and third spaces contain strings, while the second con-

tains a number.

To access a value stored in an array, you need to know its index. Typically, arrays

use numbers as indices to point to the values they contain, starting with zero. That

is, the first value (or element) of an array has index 0, the second has index 1, the

third has index 2, and so on. Therefore, the index of the nth element of an array is

55Introducing PHP

n–1. Once you know the index of the value you’re interested in, you can retrieve

that value by placing that index in square brackets after the array variable name:

echo $myArray[0]; // outputs 'one'
echo $myArray[1]; // outputs '2'
echo $myArray[2]; // outputs '3'

Each value stored in an array is called an element of that array. You can use an index

in square brackets to add new elements, or assign new values to existing array ele-

ments:

$myArray[1] = 'two'; // assign a new value
$myArray[3] = 'four'; // create a new element

You can also add elements to the end of an array using the assignment operator as

usual, but leaving empty the square brackets that follow the variable name:

$myArray[] = 'the fifth element';
echo $myArray[4]; // outputs 'the fifth element'

While numbers are the most common choice for array indices, there’s another pos-

sibility. You can also use strings as indices to create what’s called an associative

array. It’s called this because it associates values with meaningful indices. In this

example, we associate a date (in the form of a string) with each of three names:

$birthdays['Kevin'] = '1978-04-12';
$birthdays['Stephanie'] = '1980-05-16';
$birthdays['David'] = '1983-09-09';

The array command also lets you create associative arrays, if you prefer that

method. Here’s how we’d use it to create the $birthdays array:

$birthdays = array('Kevin' => '1978-04-12', 'Stephanie' =>
 '1980-05-16', 'David' => '1983-09-09');

Now, if we want to know Kevin’s birthday, we look it up using the name as the index:

echo 'My birthday is: ' . $birthdays['Kevin'];

PHP & MySQL: Novice to Ninja56

This type of array is especially important when it comes to user interaction in PHP,

as we’ll see in the next section. I’ll demonstrate other uses of arrays throughout this

book.

User Interaction and Forms
For most database driven websites these days, you need to do more than dynamically

generate pages based on database data; you must also provide some degree of inter-

activity, even if it’s just a search box.

Veterans of JavaScript tend to think of interactivity in terms of event listeners, which

let you react directly to the actions of the user; for example, the movement of the

cursor over a link on the page. Server-side scripting languages such as PHP have a

more limited scope when it comes to support for user interaction. As PHP code is

only activated when a request is made to the server, user interaction occurs solely

in a back-and-forth fashion: the user sends requests to the server, and the server

replies with dynamically generated pages.3

The key to creating interactivity with PHP is to understand the techniques we can

employ to send information about a user’s interaction, along with a request for a

new web page. As it turns out, PHP makes this quite easy.

Passing Variables in Links
The simplest way to send information along with a page request is to use the URL

query string. If you’ve ever seen a URL containing a question mark that follows the

filename, you’ve witnessed this technique in use. For example, if you search for

“SitePoint” on Google, it will take you to a URL that looks like this one to see the

search results:

http://www.google.com/search?hl=en&q=SitePoint

3 To some extent, the rise of Ajax techniques in the JavaScript world in recent years has changed this.

It’s now possible for JavaScript code—responding to a user action such as mouse movement—to send a

request to the web server, invoking a PHP script. For the purposes of this book, however, we’ll stick to

non-Ajax applications. If you’d like to learn all about Ajax, check out jQuery: Novice to Ninja

[http://www.sitepoint.com/books/ajax1/] by Earle Castledine and Craig Sharkie.

57Introducing PHP

http://www.sitepoint.com/books/ajax1/

See the question mark in the URL? See how the text that follows the question mark

contains your search query (SitePoint)? That information is being sent along with

the request for http://www.google.com/search.

Let’s code up an easy example of our own. Create a regular HTML file called

name.html (no .php filename extension is required, since there will be no PHP code

in this file) and insert this link:

chapter3/links1/name.html (excerpt)

Hi, I’m Kevin!

This is a link to a file called name.php, but as well as linking to the file, you’re also

passing a variable along with the page request. The variable is passed as part of the

query string, which is the portion of the URL that follows the question mark. The

variable is called name and its value is Kevin. To restate, you have created a link

that loads name.php, and informs the PHP code contained in that file that name

equals Kevin.

To really understand the effect of this link, we need to look at name.php. Create it

as a new HTML file, but, this time, note the .php filename extension: this tells the

web server that it can expect to interpret some PHP code in the file. In the <body>

of this new web page, type the following:

chapter3/links1/name.php (excerpt)

<?php
$name = $_GET['name'];
echo 'Welcome to our website, ' . $name . '!';
?>

Now, put these two files (name.html and name.php) onto your web server, and load

the first file in your browser (the URL should be like http://localhost/name.html,

or http://localhost:8888/name.html if your web server is running on a port other

than 80). Click the link in that first page to request the PHP script. The resulting

page should say “Welcome to our website, Kevin!”, as shown in Figure 3.1.

PHP & MySQL: Novice to Ninja58

Figure 3.1. Greet users with a personalized welcome message

Let’s take a closer look at the code that made this possible. This is the most important

line:

chapter3/links1/name.php (excerpt)

$name = $_GET['name'];

If you were paying close attention in the section called “Arrays”, you’ll recognize

what this line does. It assigns the value stored in the 'name' element of the array

called $_GET to a new variable called $name. But where does the $_GET array come

from?

It turns out that $_GET is one of a number of variables that PHP automatically creates

when it receives a request from a browser. PHP creates $_GET as an array variable

that contains any values passed in the URL query string. $_GET is an associative

array, so the value of the name variable passed in the query string can be accessed

as $_GET['name']. Your name.php script assigns this value to an ordinary PHP

variable ($name), then displays it as part of a text string using an echo statement:

chapter3/links1/name.php (excerpt)

echo 'Welcome to our website, ' . $name . '!';

59Introducing PHP

The value of the $name variable is inserted into the output string using the string

concatenation operator (.) that we looked at in the section called “Variables, Oper-

ators, and Comments”.

But look out: there is a security hole lurking in this code! Although PHP is an easy

programming language to learn, it turns out it’s also especially easy to introduce

security issues into websites using PHP if you’re unaware of what precautions to

take. Before we go any further with the language, I want to make sure you’re able

to spot and fix this particular security issue, since it’s probably the most common

on the Web today.

The security issue here stems from the fact that the name.php script is generating a

page containing content that is under the control of the user—in this case, the $name

variable. Although the $name variable will normally receive its value from the URL

query string in the link on the name.html page, a malicious user could edit the URL

to send a different value for the name variable.

To see how this would work, click the link in name.html again. When you see the

resulting page (with the welcome message containing the name “Kevin”), take a

look at the URL in the address bar of your browser. It should look similar to this:

http://localhost/name.php?name=Kevin

Edit the URL to insert a tag before the name, and a tag following the name:

http://localhost/name.php?name=Kevin

Hit Enter to load this new URL, and note that the name in the page is now bold, as

shown in Figure 3.2.4

4 You might notice that some browsers will automatically convert the < and > characters into URL escape

sequences (%3C and %3E, respectively), but either way PHP will receive the same value.

PHP & MySQL: Novice to Ninja60

Figure 3.2. Easy exploitation will only embolden attackers!

See what’s happening here? The user can type any HTML code into the URL, and

your PHP script includes it in the code of the generated page without question. If

the code is as innocuous as a tag there’s no problem, but a malicious user could

include sophisticated JavaScript code that performed some low action like stealing

the user’s password. All the attacker would have to do is publish the modified link

on some other site under the attacker’s control, and then entice one of your users

to click it. The attacker could even embed the link in an email and send it to your

users. If one of your users clicked the link, the attacker’s code would be included

in your page and the trap would be sprung!

I hate to scare you with this talk of malicious hackers attacking your users by turning

your own PHP code against you, particularly when you’re only just learning the

language. The fact is that PHP’s biggest weakness as a language is how easy it is to

introduce security issues like this. Some might say that much of the energy you

spend learning to write PHP to a professional standard is spent on avoiding security

issues. The sooner you’re exposed to these issues, however, the sooner you become

accustomed to avoiding them, and the less of a stumbling block they’ll be for you

in future.

So, how can we generate a page containing the user’s name without opening it up

to abuse by attackers? The solution is to treat the value supplied for the $name

variable as plain text to be displayed on your page, rather than as HTML to be in-

61Introducing PHP

cluded in the page’s code. This is a subtle distinction, so let me show you what I

mean.

Open up your name.php file again and edit the PHP code it contains so that it looks

like this:5

chapter3/links2/name.php (excerpt)

<?php
$name = $_GET['name'];
echo 'Welcome to our website, ' .

htmlspecialchars($name, ENT_QUOTES, 'UTF-8') . '!';
?>

There’s a lot going on in this code, so let me break it down for you. The first line is

the same as it was previously, assigning to $name the value of the 'name' element

from the $_GET array. The echo statement that follows it is drastically different,

though. Whereas previously, we simply dumped the $name variable, naked, into

the echo statement, this version of the code uses the built-in PHP function

htmlspecialchars to perform a critical conversion.

Remember, the security hole occurs because in name.html, HTML code in the $name

variable is dumped directly into the code of the generated page, and can therefore

do anything that HTML code can do. What htmlspecialchars does is convert

“special HTML characters” like < and > into HTML character entities like < and

>, which prevents them from being interpreted as HTML code by the browser.

I’ll demonstrate this for you in a moment.

First, let’s take a closer look at this new code. The call to the htmlspecialchars

function is the first example in this book of a PHP function that takes more than

one argument. Here’s the function call all by itself:

htmlspecialchars($name, ENT_QUOTES, 'UTF-8')

5 In the code archive for this book, you’ll find the updated files in the links2 subfolder.

PHP & MySQL: Novice to Ninja62

The first argument is the $name variable (the text to be converted). The second argu-

ment is the PHP constant6 ENT_QUOTES, which tells htmlspecialchars to convert

single and double quotes in addition to other special characters. The third parameter

is the string 'UTF-8', which tells PHP what character encoding to use to interpret

the text you give it.

The Perks and Pitfalls of UTF-8 with PHP

You may have discerned that all the example HTML pages in this book contain

the following <meta> tag near the top:

<meta charset="utf-8">

This tag tells the browser receiving this page that the HTML code of the page is

encoded as UTF-8 text.7

In a few pages, we’ll reach the section called “Passing Variables in Forms” on

building HTML forms. By encoding your pages as UTF-8, your users can submit

text containing thousands of foreign characters that your site would otherwise be

unable to handle.

Unfortunately, many of PHP’s built-in functions, such as htmlspecialchars,

assume you’re using the much simpler ISO-8859-1 (or Latin-1) character encoding

by default. Therefore, you need to let them know you’re using UTF-8 when utilizing

these functions.

If you can, you should also tell your text editor to save your HTML and PHP files

as UTF-8 encoded text; this is only required if you want to type advanced charac-

ters (such as curly quotes or dashes) or foreign characters (like “é”) into your

HTML or PHP code. The code in this book plays it safe and uses HTML character

entities (for example, ’ for a curly right quote), which will work regardless.

6 A PHP constant is like a variable whose value you’re unable to change. Unlike variables, constants

don’t start with a dollar sign. PHP comes with a number of built-in constants like ENT_QUOTES that

are used to control built-in functions like htmlspecialchars.
7 UTF-8 is one of many standards for representing text as a series of ones and zeros in computer

memory, called character encodings. If you’re curious to learn all about character encodings, check

out The Definitive Guide to Web Character Encoding

[http://www.sitepoint.com/article/guide-web-character-encoding/].

63Introducing PHP

http://www.sitepoint.com/article/guide-web-character-encoding/

Open up name.html in your browser and click the link that now points to your up-

dated name.php. Once again, you’ll see the welcome message “Welcome to our

website, Kevin!” As you did before, modify the URL to include and tags

surrounding the name:

http://localhost/name.php?name=Kevin

This time when you hit Enter, instead of the name turning bold in the page, you

should see the actual text that you typed as shown in Figure 3.3.

Figure 3.3. It sure is ugly, but it’s secure!

If you view the source of the page, you can confirm that the htmlspecialchars

function did its job and converted the < and > characters present in the provided

name into the < and > HTML character entities, respectively. This prevents

malicious users from injecting unwanted code into your site. If they try anything

like that, the code is harmlessly displayed as plain text on the page.

We’ll make extensive use of the htmlspecialchars function throughout this book

to guard against this sort of security hole. No need to worry too much if you’re

having trouble grasping the details of how to use it just at the minute. Before long,

you’ll find its use becomes second nature. For now, let’s look at some more advanced

ways of passing values to PHP scripts when we request them.

PHP & MySQL: Novice to Ninja64

Passing a single variable in the query string was nice, but it turns out you can pass

more than one value if you want to! Let’s look at a slightly more complex version

of the previous example. Open up your name.html file again, and change the link

to point to name.php with this more complicated query string:8

chapter3/links3/name.html (excerpt)

Hi,
 I’m Kevin Yank!

This time, our link passes two variables: firstname and lastname. The variables

are separated in the query string by an ampersand (&, which must be written as

& in HTML—yes, even in a link URL!). You can pass even more variables by

separating each name=value pair from the next with an ampersand.

As before, we can use the two variable values in our name.php file:

chapter3/links3/name.php (excerpt)

<?php
$firstName = $_GET['firstname'];
$lastName = $_GET['lastname'];
echo 'Welcome to our website, ' .
 htmlspecialchars($firstName, ENT_QUOTES, 'UTF-8') . ' ' .
 htmlspecialchars($lastName, ENT_QUOTES, 'UTF-8') . '!';
?>

The echo statement is becoming quite sizable now, but it should still make sense

to you. Using a series of string concatenations (.), it outputs “Welcome to our

website,” followed by the value of $firstName (made safe for display using

htmlspecialchars), a space, the value of $lastName (again, treated with

htmlspecialchars), and finally an exclamation mark.

The result is shown in Figure 3.4.

8 The updated version of the files may be found in the code archive in the links3 subfolder.

65Introducing PHP

Figure 3.4. Create an even more personalized welcome message

This is all well and good, but we still have yet to achieve our goal of true user inter-

action, where the user can enter arbitrary information and have it processed by PHP.

To continue with our example of a personalized welcome message, we’d like to

invite the user to type their name and have it appear in the resulting page. To enable

the user to type in a value, we’ll need to use an HTML form.

Passing Variables in Forms
Rip the link out of name.html and replace it with this HTML code to create the form:9

chapter3/forms1/name.html (excerpt)

<form action="name.php" method="get">
 <div><label for="firstname">First name:
 <input type="text" name="firstname" id="firstname"></label>
 </div>
 <div><label for="lastname">Last name:
 <input type="text" name="lastname" id="lastname"></label>
 </div>
 <div><input type="submit" value="GO"></div>
</form>

The form this code produces is shown in Figure 3.5.

9 The updated version of the files are in the forms1 subfolder in the code archive.

PHP & MySQL: Novice to Ninja66

Figure 3.5. Make your own welcome message

Function Over Form

This form is quite plain looking, I’ll grant you. Some judicious application of CSS

would make this and all other examples in this book more attractive. Since this

is a book about PHP and MySQL, however, I’m sticking with the plain look. Check

out SitePoint’s The CSS3 Anthology10 for advice on styling your forms with CSS.

This form has the exact same effect as the second link we looked at in the section

called “Passing Variables in Links” (with firstname=Kevin&lastname=Yank

in the query string), except that you can now enter whichever names you like. When

you click the submit button (labeled GO), the browser will load name.php, and add

the variables and their values to the query string for you automatically. It retrieves

the names of the variables from the name attributes of the <input type="text">

tags, and obtains the values from the text the user types into the text fields.

Apostrophes in Form Fields

If you’re burdened with the swollen ego of most programmers (myself included),

you probably took this opportunity to type your own name into this form. Who

can blame you?

10 http://www.sitepoint.com/books/cssant4/

67Introducing PHP

http://www.sitepoint.com/books/cssant4/

If your last name happens to include an apostrophe (for example, Molly O’Reilly),

the welcome message you saw may have included a stray backslash before the

apostrophe (that is, “Welcome to our website, Molly O\'Reilly!”).

This bothersome backslash is due to a PHP security feature called magic quotes,

which we’ll learn about in Chapter 4. Until then, please bear with me.

The method attribute of the <form> tag is used to tell the browser how to send the

variables and their values along with the request. A value of get (as used in

name.html above) causes them to be passed via the query string (and appear in PHP’s

$_GET array), but there is an alternative. It can be undesirable—or even technically

unfeasible—to have the values appear in the query string. What if we included a

<textarea> tag in the form, to let the user enter a large amount of text? A URL

whose query string contained several paragraphs of text would be ridiculously long,

and would possibly exceed the maximum length for a URL in today’s browsers. The

alternative is for the browser to pass the information invisibly, behind the scenes.

Edit your name.html file once more. Modify the form method by setting it to post:11

chapter3/forms2/name.html (excerpt)

<form action="name.php" method="post">
 <div><label for="firstname">First name:
 <input type="text" name="firstname" id="firstname"></label>
 </div>
 <div><label for="lastname">Last name:
 <input type="text" name="lastname" id="lastname"></label>
 </div>
 <div><input type="submit" value="GO"></div>
</form>

This new value for the method attribute instructs the browser to send the form

variables invisibly as part of the page request, rather than embedding them in the

query string of the URL.

As we are no longer sending the variables as part of the query string, they stop ap-

pearing in PHP’s $_GET array. Instead, they are placed in another array reserved

especially for “posted” form variables: $_POST. We must therefore modify name.php

to retrieve the values from this new array:

11 The updated files are in forms2 in the code archive.

PHP & MySQL: Novice to Ninja68

chapter3/forms2/name.php (excerpt)

<?php
$firstname = $_POST['firstname'];
$lastname = $_POST['lastname'];
echo 'Welcome to our website, ' .
 htmlspecialchars($firstname, ENT_QUOTES, 'UTF-8') . ' ' .
 htmlspecialchars($lastname, ENT_QUOTES, 'UTF-8') . '!';
?>

Figure 3.6 shows what the resulting page looks like once this new form is submitted.

Figure 3.6. This personalized welcome is achieved without a query string

The form is functionally identical to the previous one; the only difference is that

the URL of the page that’s loaded when the user clicks the GO button will be without

a query string. On the one hand, this lets you include large values (or sensitive

values such as passwords) in the data that’s submitted by the form without their

appearing in the query string. On the other hand, if the user bookmarks the page

that results from the form’s submission, that bookmark will be useless, as it lacks

the submitted values. This, incidentally, is the main reason why search engines use

the query string to submit search terms. If you bookmark a search results page on

Google, you can use that bookmark to perform the same search again later, because

the search terms are contained in the URL.

69Introducing PHP

Sometimes, you want access to a variable without having to worry about whether

it was sent as part of the query string or a form post. In cases like these, the special

$_REQUEST array comes in handy. It contains all the variables that appear in both

$_GET and $_POST. With this variable, we can modify our form processing script

one more time so that it can receive the first and last names of the user from either

source:12

chapter3/forms3/name.php (excerpt)

<?php
$firstname = $_REQUEST['firstname'];
$lastname = $_REQUEST['lastname'];
echo 'Welcome to our website, ' .
 htmlspecialchars($firstname, ENT_QUOTES, 'UTF-8') . ' ' .
 htmlspecialchars($lastname, ENT_QUOTES, 'UTF-8') . '!';
?>

That covers the basics of using forms to produce rudimentary user interaction with

PHP. We’ll look at more advanced issues and techniques in later examples.

Control Structures
All the examples of PHP code we’ve seen so far have been either one-statement

scripts that output a string of text to the web page, or a series of statements that

were to be executed one after the other in order. If you’ve ever written programs in

other languages (JavaScript, Objective-C, Ruby, or Python), you already know that

practical programs are rarely so simple.

PHP, just like any other programming language, provides facilities that enable you

to affect the flow of control. That is, the language contains special statements that

you can use to deviate from the one-after-another execution order that has dominated

our examples so far. Such statements are called control structures. Don’t understand?

Don’t worry! A few examples will illustrate it perfectly.

The most basic, and most often used, control structure is the if statement. The flow

of a program through an if statement can be visualized as in Figure 3.7.

12 The files in the code archive are located in the forms3 subfolder.

PHP & MySQL: Novice to Ninja70

Figure 3.7. The logical flow of an if statement13

Here’s what an if statement looks like in PHP code:

if (condition)
{
 ⋮ conditional code to be executed if condition is true
}

This control structure lets us tell PHP to execute a set of statements only if some

condition is met.

If you’ll indulge my vanity for a moment, here’s an example that shows a twist on

the personalized welcome page example we created earlier. Start by opening up

name.html for editing again. For simplicity, let’s alter the form it contains so that it

submits a single name variable to name.php:14

13 This diagram and several similar ones in this book were originally designed by Cameron Adams for

the book, Simply JavaScript (Melbourne: SitePoint, 2006), which we wrote together. I have reused them

here with his permission, and my thanks.
14 I’ve placed the updated versions of the files in the if subfolder in the code archive.

71Introducing PHP

chapter3/if/name.html (excerpt)

<form action="name.php" method="post">
 <div><label for="name">Name:
 <input type="text" name="name" id="name"></label>
 </div>
 <div><input type="submit" value="GO"/></div>
</form>

Now edit name.php. Replace the PHP code it contains with the following:

chapter3/if/name.php (excerpt)

$name = $_REQUEST['name'];
if ($name == 'Kevin')
{
 echo 'Welcome, oh glorious leader!';
}

Now, if the name variable passed to the page has a value of 'Kevin', a special message

will be displayed as shown in Figure 3.8.

Figure 3.8. It’s good to be the king

PHP & MySQL: Novice to Ninja72

If a name other than Kevin is entered, this example becomes inhospitable: the con-

ditional code within the if statement fails to execute, and the resulting page will

be blank!

To offer a warmer welcome to all the plebs with names other than Kevin, we can

use an if-else statement instead. The flow of an if-else statement is shown in

Figure 3.9.

Figure 3.9. The logical flow of an if-else statement

The else portion of an if-else statement is tacked onto the end of the if portion:15

chapter3/ifelse1/name.php (excerpt)

$name = $_REQUEST['name'];
if ($name == 'Kevin')
{
 echo 'Welcome, oh glorious leader!';
}

15 This updated version of the example is located in the ifelse1 subfolder in the code archive.

73Introducing PHP

else
{
 echo 'Welcome to our website, ' .
 htmlspecialchars($name, ENT_QUOTES, 'UTF-8') . '!';
}

Now if you submit a name other than Kevin, you should see the usual welcome

message shown in Figure 3.10.

Figure 3.10. You gotta remember your peeps

The == used in the condition above is the equal operator, which is used to compare

two values to see whether they’re equal.

Double Trouble

Remember to type the double-equals (==). A common mistake among beginning

PHP programmers is to type a condition like this with a single equals sign:

if ($name = 'Kevin') // Missing equals sign!

This condition is using the assignment operator (=) that I introduced back in the

section called “Variables, Operators, and Comments”, instead of the equal operator

PHP & MySQL: Novice to Ninja74

(==). Consequently, instead of comparing the value of $name to the string 'Kevin',

it will actually set the value of $name to 'Kevin'. Oops!

To make matters worse, the if statement will use this assignment operation as a

condition, which it will consider to be true, so the conditional code within the

if statement will always be executed, regardless of what the original value of

$name happened to be.

Conditions can be more complex than a single check for equality. Recall that our

form examples would receive a first and last name. If we wanted to display a special

message only for a particular person, we’d have to check the values of both names.

To do this, edit name.html back to the two-field version of the form:16

chapter3/ifelse2/name.html (excerpt)

<form action="name.php" method="post">
 <div><label for="firstname">First name:
 <input type="text" name="firstname" id="firstname"></label>
 </div>
 <div><label for="lastname">Last name:
 <input type="text" name="lastname" id="lastname"></label>
 </div>
 <div><input type="submit" value="GO"></div>
</form>

Next, open up name.php and update the PHP code to match the following (I’ve

highlighted the changes in bold):

chapter3/ifelse2/name.php (excerpt)

$firstName = $_REQUEST['firstname'];
$lastName = $_REQUEST['lastname'];
if ($firstName == 'Kevin' and $lastName == 'Yank')
{
 echo 'Welcome, oh glorious leader!';
}
else
{
 echo 'Welcome to our website, ' .

16 The updated files for this version of the example are in the ifelse2 subfolder in the code archive.

75Introducing PHP

htmlspecialchars($firstName, ENT_QUOTES, 'UTF-8') . ' ' .
 htmlspecialchars($lastName, ENT_QUOTES, 'UTF-8') . '!';
}

This updated condition will be true if and only if $firstName has a value of 'Kevin'

and $lastName has a value of 'Yank'. The and operator in the condition makes the

whole condition true only if both comparisons are true. A similar operator is the

or operator, which makes the whole condition true if one or both of two simple

conditions are true. If you’re more familiar with the JavaScript or C forms of these

operators (&& and || for and and or, respectively), that’s fine—they work in PHP as

well.

Figure 3.11 shows that having just one of the names right in this example fails to

cut the mustard.

We’ll look at more complicated conditions as the need arises. For the time being, a

general familiarity with if-else statements is sufficient.

Figure 3.11. Frankly, my dear …

Another often-used PHP control structure is the while loop. Where the if-else

statement allowed us to choose whether or not to execute a set of statements depend-

PHP & MySQL: Novice to Ninja76

ing on some condition, the while loop allows us to use a condition to determine

how many times we’ll execute a set of statements repeatedly.

Figure 3.12 shows how a while loop operates.

Here’s what a while loop looks like in code:

while (condition)
{
 ⋮ statement(s) to execute repeatedly as long as condition is true
}

The while loop works very similarly to an if statement. The difference arises when

the condition is true and the statement(s) are executed. Instead of continuing the

execution with the statement that follows the closing brace (}), the condition is

checked again. If the condition is still true, the statement(s) are executed a second

time, and a third, and will continue to be executed as long as the condition remains

true. The first time the condition evaluates false (whether it’s the first time it’s

checked, or the 101st), the execution jumps immediately to the statement that follows

the while loop, after the closing brace.

Loops like these come in handy whenever you’re working with long lists of items

(such as jokes stored in a database … hint, hint), but for now I’ll illustrate with a

trivial example, counting to ten:

chapter3/count10.php (excerpt)

$count = 1;
while ($count <= 10)
{
 echo "$count ";
 ++$count;
}

This code may look a bit frightening, I know, but let me talk you through it line by

line:

$count = 1;

The first line creates a variable called $count and assigns it a value of 1.

77Introducing PHP

Figure 3.12. The logical flow of a while loop

while ($count <= 10)

The second line is the start of a while loop, the condition being that the value

of $count is less than or equal (<=) to 10.

{

The opening brace marks the beginning of the block of conditional code for the

while loop. This conditional code is often called the body of the loop, and is

executed over and over again, as long as the condition holds true.

echo "$count ";

This line simply outputs the value of $count, followed by a space. To make the

code as readable as possible, I’ve used a double-quoted string to take advantage

of variable interpolation (as explained in the section called “Variables, Operators,

and Comments”), rather than use the string concatenation operator.

++$count;

The fourth line adds one to the value of $count (++$count is a shortcut for

$count = $count + 1—either one would work).

PHP & MySQL: Novice to Ninja78

}

The closing brace marks the end of the while loop’s body.

So here’s what happens when this code is executed. The first time the condition is

checked, the value of $count is 1, so the condition is definitely true. The value of

$count (1) is output, and $count is given a new value of 2. The condition is still

true the second time it’s checked, so the value (2) is output and a new value (3) is

assigned. This process continues, outputting the values 3, 4, 5, 6, 7, 8, 9, and 10.

Finally, $count is given a value of 11, and the condition is found to be false, which

ends the loop.

The net result of the code is shown in Figure 3.13.

Figure 3.13. PHP demonstrates kindergarten-level math skills

The condition in this example used a new operator: <= (less than or equal). Other

numerical comparison operators of this type include >= (greater than or equal), <

(less than), > (greater than), and != (not equal). That last one also works when

comparing text strings, by the way.

Another type of loop that’s designed specifically to handle examples like the previous

one—in which we’re counting through a series of values until some condition is

met—is called a for loop. Figure 3.14 shows the flow of a for loop.

Here’s what it looks like in code:

for (declare counter; condition; increment counter)
{
 ⋮ statement(s) to execute repeatedly as long as condition is true
}

79Introducing PHP

Figure 3.14. The logical flow of a for loop

The declare counter statement is executed once at the start of the loop; the condition

statement is checked each time through the loop before the statements in the body

are executed; the increment counter statement is executed each time through the

loop after the statements in the body.

Here’s what the “counting to 10” example looks like when implemented with a for

loop:

PHP & MySQL: Novice to Ninja80

chapter3/count10–for.php (excerpt)

for ($count = 1; $count <= 10; ++$count)
{
 echo "$count ";
}

As you can see, the statements that initialize and increment the $count variable

join the condition on the first line of the for loop. Although, at first glance, the

code seems a little more difficult to read, putting all the code that deals with con-

trolling the loop in the same place actually makes it easier to understand once you’re

used to the syntax. Many of the examples in this book will use for loops, so you’ll

have plenty of opportunity to practice reading them.

Hiding the Seams
You’re now armed with a working knowledge of the basic syntax of the PHP pro-

gramming language. You understand that you can take any HTML web page, rename

it with a .php file name extension, and inject PHP code into it to generate page

content on the fly. Not bad for a day’s work!

Before we go any further, however, I want to stop and cast a critical eye over the

examples we’ve discussed so far. Assuming your objective is to create database

driven websites that hold up to professional standards, there are a few unsightly

blemishes we need to clean up.

The techniques in the rest of this chapter will add a coat of professional polish that

can set your work apart from the crowd of amateur PHP developers out there. I’ll

rely on these techniques throughout the rest of this book to ensure that, no matter

how simple the example, you can feel confident in the quality of the product you’re

delivering.

Avoid Advertising Your Technology Choices
The examples we’ve seen so far have contained a mixture of plain HTML files (with

names ending in .html) and files that contain a mixture of HTML and PHP (with

names ending in .php). Although this distinction between file types may be useful

to you, the developer, there’s no reason for your users to know which site pages

rely on PHP code to generate them.

81Introducing PHP

Furthermore, although PHP is a very strong choice of technology to build almost

any database driven website, the day may come when you want to switch from PHP

to some new technology. When it does, do you really want all the URLs for dynamic

pages on your site to become invalid as you change the file names to reflect your

new language of choice?

These days, professional developers place a lot of importance on the URLs they put

out into the world. In general, URLs should be as permanent as possible, so it makes

no sense to embrittle them with little “advertisements” for the programming language

you used to build each individual page.

An easy way to eliminate filename extensions in your URLs is to take advantage of

directory indexes. When a URL points at a directory on your web server, instead of

a particular file, the web server will look for a file named index.html or index.php

inside that directory, and display that file in response to the request.

For example, take the today.php page that I introduced at the end of Chapter 1. Re-

name it from today.php to index.php. Then, instead of dropping it in the root of your

web server, create a subdirectory named today and drop the index.php file in there.

Now, load http://localhost/today/ in your browser (or http://localhost:8888/today/

or similar if you need to specify a port number for your server).

Figure 3.15 shows the example with its new URL. This URL omits the unnecessary

.php extension, and is shorter and more memorable—desirable qualities when it

comes to URLs today.

Figure 3.15. A more fashionable URL

PHP & MySQL: Novice to Ninja82

Use PHP Templates
In the simple examples we’ve seen so far, inserting PHP code directly into your

HTML pages has been a reasonable approach. As the amount of PHP code that goes

into generating your average page grows, however, maintaining this mixture of

HTML and PHP code can become unmanageable.

Particularly if you work in a team of not-so-savvy web designers, PHP-wise, having

large blocks of cryptic PHP code intermingled with the HTML is a recipe for disaster.

It’s far too easy for designers to accidentally modify the PHP code, causing errors

they’ll be unable to fix.

A much more robust approach is to separate out the bulk of your PHP code so that

it resides in its own file, leaving the HTML largely unpolluted by PHP code.

The key to doing this is the PHP include statement. With an include statement,

you can insert the contents of another file into your PHP code at the point of the

statement. To show you how this works, let’s rebuild the “count to ten” for loop

example we looked at earlier.

Start by creating a new directory called count10, and create a file named index.php

in this directory. Open the file for editing and type in this code:

chapter3/count10/index.php

<?php
$output = '';
for ($count = 1; $count <= 10; ++$count)
{
 $output .= "$count ";
}

include 'count.html.php';

Yes, that’s the complete code for this file. It contains no HTML code whatsoever.

The for loop should be familiar to you by now, but let me point out the interesting

parts of this code:

Instead of echoing out the numbers 1 to 10, this script will add these numbers

to a variable named $output. At the start of this script, therefore, we set this

variable to contain an empty string.

83Introducing PHP

This line adds each number (followed by a space) to the end of the $output

variable. The .= operator you see here is a shorthand way to add a value to the

end of an existing string variable, by combining the assignment and string

concatenation operators into one. The longhand version of this line is $output

= $output . "$count ";, but the .= operator saves you some typing.

This is an include statement, which instructs PHP to execute the contents of

the count.html.php file at this location.17

Finally, you might have noticed that the file doesn’t end with a ?> to match

the opening <?php. You can put it in if you really want to, but it’s unnecessary.

If a PHP file ends with PHP code, there’s no need to indicate where that code

ends—the end of the file does it for you. The big brains of the PHP world gen-

erally prefer to leave it off the end of files like this one that contain only PHP

code.

Since the final line of this file includes the count.html.php file, you should create

this next:

chapter3/count10/count.html.php

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Counting to Ten</title>
 </head>
 <body>
 <p>
 <?php echo $output; ?>
 </p>
 </body>
</html>

17 Outside of this book, you’ll often see includes coded with parentheses surrounding the filename,

as if include were a function like date or htmlspecialchars, which is far from the case. These

parentheses, when used, only serve to complicate the filename expression, and are therefore avoided in

this book. The same goes for echo, another popular one-liner.

PHP & MySQL: Novice to Ninja84

This file is almost entirely plain HTML, except for the one line that outputs the

value of the $output variable. This is the same $output variable that was created

by the index.php file.

What we’ve created here is a PHP template: an HTML page with only very small

snippets of PHP code that insert dynamically generated values into an otherwise

static HTML page. Rather than embedding the complex PHP code that generates

those values in the page, we put the code to generate the values in a separate PHP

script—index.php in this case.

Using PHP templates like this enables you to hand over your templates to HTML-

savvy designers without worrying about what they might do to your PHP code. It

also lets you focus on your PHP code without being distracted by the surrounding

HTML code.

I like to name my PHP template files so that they end with .html.php. As far as your

web server is concerned, though, these are still .php files; the .html.php suffix serves

as a useful reminder that these files contain both HTML and PHP code.

Many Templates, One Controller
What’s nice about using include statements to load your PHP template files is that

you can have multiple include statements in a single PHP script, as well as have

it display different templates under various circumstances!

A PHP script that responds to a browser request by selecting one of several PHP

templates to fill in and send back is commonly called a controller. A controller

contains the logic that controls which template is sent to the browser.

Let’s revisit one more example from earlier in this chapter: the welcome form that

prompts a visitor for a first and last name.

We’ll start with the PHP template for the form. For this, we can just reuse the

name.html file we created earlier. Create a directory named welcome and save a copy

of name.html called form.html.php into this directory. The only code you need to

change in this file is the action attribute of the <form> tag:

85Introducing PHP

chapter3/welcome/form.html.php

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Form Example</title>
 </head>
 <body>
 <form action="" method="post">
 <div><label for="firstname">First name:
 <input type="text" name="firstname" id="firstname"></label>
 </div>
 <div><label for="lastname">Last name:
 <input type="text" name="lastname" id="lastname"></label>
 </div>
 <div><input type="submit" value="GO"></div>
 </form>
 </body>
</html>

As you can see, we’re leaving the action attribute blank. This tells the browser to

submit the form back to the same URL it received it from: in this case, the URL of

the controller that included this template file.

Let’s take a look at the controller for this example. Create an index.php script in the

welcome directory alongside your form template. Type the following code into this

file:

chapter3/welcome/index.php

<?php
if (!isset($_REQUEST['firstname']))
{
include 'form.html.php';

}
else
{
 $firstName = $_REQUEST['firstname'];
 $lastName = $_REQUEST['lastname'];
 if ($firstName == 'Kevin' and $lastName == 'Yank')
 {

$output = 'Welcome, oh glorious leader!';
 }

PHP & MySQL: Novice to Ninja86

 else
 {

$output = 'Welcome to our website, ' .
 htmlspecialchars($firstName, ENT_QUOTES, 'UTF-8') . ' ' .
 htmlspecialchars($lastName, ENT_QUOTES, 'UTF-8') . '!';
 }

include 'welcome.html.php';
}

This code should look quite familiar at first glance; it’s a lot like the name.php script

we wrote earlier. Let me explain the differences:

The controller’s first task is to decide whether the current request is a submis-

sion of the form in form.html.php or not. You can do this by checking if the re-

quest contains a firstname variable. If it does, PHP will have stored the value

in $_REQUEST['firstname'].

isset is a built-in PHP function that will tell you if a particular variable (or

array element) has been assigned a value or not. If $_REQUEST['firstname']

has a value, isset($_REQUEST['firstname']) will be true. If

$_REQUEST['firstname'] is unset, isset($_REQUEST['firstname']) will be

false.

For the sake of readability, I like to put the code that sends the form in my

controller first. We need this if statement to check if $_REQUEST['firstname']

is not set. To do this, we use the not operator (!). By putting this operator before

the name of a function, you reverse the value that function returns—from true

to false, or from false to true.

Thus, if the request does not contain a firstname variable, then

!isset($_REQUEST['firstname']) will return true, and the body of the if

statement will be executed.

If the request is not a form submission, the controller includes the form.html.php

file to display the form.

If the request is a form submission, the body of the else statement is executed

instead.

87Introducing PHP

This code pulls the firstname and lastname variables out of the $_REQUEST

array, and then generates the appropriate welcome message for the name sub-

mitted.

Instead of echoing the welcome message, the controller stores the welcome

message in a variable named $output.

After generating the appropriate welcome message, the controller includes the

welcome.html.php template, which will display that welcome message.

All that’s left is to write the welcome.html.php template. Here it is:

chapter3/welcome/welcome.html.php

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Form Example</title>
 </head>
 <body>
 <p>

<?php echo $output; ?>
 </p>
 </body>
</html>

That’s it! Fire up your browser and point it at http://localhost/welcome/ (or

http://localhost:8888/welcome/ or similar if you need to specify a port number for

your web server). You’ll be prompted for your name, and when you submit the

form, you’ll see the appropriate welcome message. The URL should stay the same

throughout this process.

One of the benefits of maintaining the same URL throughout this process of

prompting the user for a name and displaying the welcome message is that the user

can bookmark the page at any time during this process and gain a sensible result;

whether it’s the form page or the welcome message that’s bookmarked, when the

user returns, the form will be present once again. In the previous version of this

example, where the welcome message had its own URL, returning to that URL

without submitting the form would have generated a broken welcome message

PHP & MySQL: Novice to Ninja88

(“Welcome to our website, !”), or a PHP error message, depending on your server

configuration.

Why so forgetful?

In Chapter 9, I’ll show you how to remember the user’s name between visits.

Bring on the Database
In this chapter, we’ve seen the PHP server-side scripting language in action as we’ve

explored all the basic language features: statements, variables, operators, comments,

and control structures. The sample applications we’ve seen have been reasonably

simple, but we’ve still taken the time to ensure they have attractive URLs, and that

the HTML templates for the pages they generate are uncluttered by the PHP code

that controls them.

As you may have begun to suspect, the real power of PHP is in its hundreds (even

thousands) of built-in functions that let you access data in a MySQL database, send

email, dynamically generate images, and even create Adobe Acrobat PDF files on

the fly.

In Chapter 4, we’ll delve into the MySQL functions built into PHP, and see how to

publish the joke database we created in Chapter 2 to the Web. This chapter will set

the scene for the ultimate goal of this book: creating a complete content management

system for your website in PHP and MySQL.

89Introducing PHP

Chapter4
Publishing MySQL Data on the Web
This is it—the stuff you signed up for! In this chapter, you’ll learn how to take in-

formation stored in a MySQL database and display it on a web page for all to see.

So far, you’ve installed and learned the basics of MySQL, a relational database en-

gine, and PHP, a server-side scripting language. Now you’re ready to learn how to

use these tools together to create a true database driven website!

The Big Picture
Before we leap forward, it’s worth taking a step back for a clear picture of our ulti-

mate goal. We have two powerful tools at our disposal: the PHP scripting language

and the MySQL database engine. It’s important to understand how these will fit

together.

The whole idea of a database driven website is to allow the content of the site to

reside in a database, so that content may be pulled dynamically from the database

to create web pages for viewing on a regular browser. So, at one end of the system

you have a visitor to your site using a web browser to request a page. That browser

expects to receive a standard HTML document in return. At the other end you have

the content of your site, which sits in one or more tables in a MySQL database that

only understands how to respond to SQL queries (commands).

As shown in Figure 4.1, the PHP scripting language is the go-between that speaks

both languages. It processes the page request and fetches the data from the MySQL

database (using SQL queries just like those you used to create a table of jokes in

Chapter 2). It then spits it out dynamically as the nicely formatted HTML page that

the browser expects.

Figure 4.1. PHP retrieves MySQL data to produce web pages

Just so it’s clear and fresh in your mind, this is what happens when there’s a visitor

to a page on your database driven website:

1. The visitor’s web browser requests the web page from your web server.

2. The web server software (typically Apache) recognizes that the requested file

is a PHP script, so the server fires up the PHP interpreter to execute the code

contained in the file.

3. Certain PHP commands (which will be the focus of this chapter) connect to the

MySQL database and request the content that belongs in the web page.

4. The MySQL database responds by sending the requested content to the PHP

script.

5. The PHP script stores the content into one or more PHP variables, then uses

echo statements to output the content as part of the web page.

PHP & MySQL: Novice to Ninja92

6. The PHP interpreter finishes up by handing a copy of the HTML it has created

to the web server.

7. The web server sends the HTML to the web browser as it would a plain HTML

file, except that instead of coming directly from an HTML file, the page is the

output provided by the PHP interpreter. The browser has no way of knowing

this, however. From its perspective, it’s requesting and receiving a web page

like any other.

Creating a MySQL User Account
In order for PHP to connect to your MySQL database server, it will need to use a

username and password. So far, all that your joke database contains is a number of

pithy bon mots, but before long it may contain sensitive information like email ad-

dresses and other private details about the users of your website. For this reason,

MySQL is designed to be very secure, giving you tight control over what connections

it will accept and what those connections are allowed to do.

In Chapter 1, we set the password for the root user of your MySQL database server.

Now, you could use that username and password to connect your PHP scripts to

your MySQL server, but you really shouldn’t. The root user is an all-powerful ad-

ministration account; if the password for that account fell into the wrong hands, a

malicious user could wreak serious havoc. In most cases, there will be other layers

of security preventing this from happening (for example, a firewall that prevents

connections to your database from outside your web host’s network), but it’s better

to be safe than sorry.

Instead, you should create a new user account with only the specific privileges it

needs to work on the ijdb database that your website depends upon. Let’s do that

now:

1. Open up phpMyAdmin as you did in Chapter 2:

■ On Windows, open the XAMPP Control Panel and click the Admin… button

next to MySql (sic) to launch phpMyAdmin in your browser.

■ On Mac OS X, launch MAMP and click the Open start page button if the start

page fails to open automatically. Click the phpMyAdmin tab at the top of the

start page to load phpMyAdmin.

93Publishing MySQL Data on the Web

2. Click the ijdb database in the list on the left-hand side of the phpMyAdmin

interface, as shown in Figure 4.2.

Figure 4.2. Select the ijdb database

3. In the main part of the interface, above the list of tables in your database (of

which there should be only one—joke), click the Privileges tab.

Figure 4.3. Click the Privileges tab

4. You should now be looking at the list of Users having access to “ijdb” shown in

Figure 4.4.

PHP & MySQL: Novice to Ninja94

Figure 4.4. Just who has access to ‘ijdb’?

As you can see, only the root user has access to the ijdb database at this point.1

5. Click the Add a new User link at the bottom of the list, and fill in the new user

details as follows:

User name (Use text field) ijdbuser

If you prefer, you can just name the user ijdb. It’s common to give

an account restricted to accessing a single database the name of

that database. I’ve chosen to name it ijdbuser in this book to help

clarify the distinction between the name of the database (ijdb)

and the user account that is allowed to access it (ijdbuser).

Host (Local) localhost

Because your MySQL database server is running on the same

computer as your web server, we can restrict this account to only

accept connections from localhost. If you needed to accept con-

nections from other computers too, you would leave the default

option of Any host alone.2

Password (Use text field) mypassword

1 If you’re wondering why the root user is listed twice, it’s because MySQL actually comes configured

with two root user accounts: one for accepting connections from the IP address 127.0.0.1, and another

for accepting connections from the hostname localhost. Normally 127.0.0.1 and localhost both refer to

your own computer, but, depending on how you connect, it may see the connection coming from one

or the other. We’ll explore this issue in greater detail in Chapter 10.
2 For now, I strongly recommend you stick with a Local account. Any host accounts can cause problems

that we’ll explore in Chapter 10.

95Publishing MySQL Data on the Web

This is just the password I’m going to use in this book. You should

probably have your own unique password, and remember it for

later use in the PHP scripts you’re going to write.

6. Under Database for user, select Grant all privileges on database “ijdb”. This will

give the account carte blanche to do anything it likes to the ijdb database, but

only that database.

7. Under Global privileges, leave everything unchecked. The options here would

enable the account to execute specific query types on any database. We want

to keep this account restricted to our single database.

8. At the bottom of the form, click Go.

As shown in Figure 4.5, phpMyAdmin should confirm that you’ve added a new

user, even showing you the SQL queries it sent to the database server to do it. Don’t

worry about learning these queries; they’re documented in the MySQL manual if

you ever need to look them up, but it’s usually much easier just to use phpMyAdmin

to manage access to your MySQL server.

Figure 4.5. phpMyAdmin shows you what you’ve done

Connecting to MySQL with PHP
Before you can retrieve content from your MySQL database for inclusion in a web

page, you must know how to establish a connection to MySQL from inside a PHP

script. So far, you’ve used a PHP web application called phpMyAdmin to connect

to your database. Just as the PHP scripts in phpMyAdmin can connect directly to

PHP & MySQL: Novice to Ninja96

a running MySQL server, so too can your own PHP scripts; support for connecting

to databases like MySQL is provided by the PHP Data Objects (PDO) extension that

is built into PHP.

Here’s how you use PDO to establish a connection to a MySQL server:

new PDO('mysql:host=hostname;dbname=database', 'username',
 'password')

For now, think of new PDO as a built-in function, just like the date function we used

in Chapter 3. If you’re thinking “Hey, functions can’t have spaces in their names!”,

you are smarter than the average bear, and I’ll explain exactly what’s going on here

in a moment. In any case, it takes three arguments:

1. A string specifying the type of database (mysql:), the hostname of the server

(host=hostname;), and the name of the database (dbname=database).

2. The MySQL username you want PHP to use.

3. The MySQL password for that username.

You may remember from Chapter 3 that PHP functions usually return a value when

they’re called. This new PDO “function” returns a value called a PDO object that

identifies the connection that’s been established. Since we intend to make use of

the connection, we should hold onto this value by storing it in a variable. Here’s

how that looks, with the necessary values filled in to connect to your database:

chapter4/connect/index.php (excerpt)

 $pdo = new PDO('mysql:host=localhost;dbname=ijdb', 'ijdbuser',
 'mypassword');

As described, the exact values of the three function parameters may differ for your

MySQL server; at the very least, you’ll need to substitute in the password you set

for your ijdbuser user (assuming you used a different password to mypassword, the

one I chose). What’s important to see here is that the value returned by new PDO is

stored in a variable named $pdo.

The MySQL server is a completely separate piece of software from the web server;

therefore, we must consider the possibility that the server may be unavailable or

97Publishing MySQL Data on the Web

inaccessible due to a network outage, or because the username/password combination

you provided is rejected by the server, or because you just forgot to start your MySQL

server! In such cases, new PDO won’t run, and throw a PHP exception.

If you’re wondering what it means to “throw a PHP exception,” brace your-

self—you’re about to discover some more features of the PHP language!

A PHP exception is what happens when you tell PHP to perform a task, and it’s

unable to do it. PHP will try to do what it’s told but will fail, and in order to tell

you about the failure, it will throw an exception at you. As a responsible developer,

it’s your job to catch that exception and do something about it.

Catch!

If you don’t catch an exception, PHP will stop running your PHP script and display

a spectacularly ugly error message. That error message will even reveal the code

of your script that threw the error. In this case, that code contains your MySQL

username and password, so it’s especially important to avoid the error message

being seen by users!

To catch an exception, you should surround the code that might throw an exception

with a try-catch statement:

try
{
 ⋮ do something risky
}
catch (ExceptionType $e)
{
 ⋮ handle the exception
}

You can think of a try-catch statement like an if-else statement, except that the

second block of code is what happens if the first block of code fails to run.

Confused yet? I know I’m throwing (no pun intended) a lot of new concepts at you,

but let me put it all together and show you what we have; I think it will make more

sense that way:

PHP & MySQL: Novice to Ninja98

try
{
 $pdo = new PDO('mysql:host=localhost;dbname=ijdb', 'idjbuser',
 'mypassword');
}
catch (PDOException $e)
{
 $output = 'Unable to connect to the database server.';
 include 'output.html.php';
 exit();
}

As you can see, this code is a try-catch statement. In the try block at the top, we

attempt to connect to the database using new PDO. If this succeeds, we store the

resulting PDO object in $pdo so that we can work with our new database connection.

But if our database connection attempt fails, PHP will throw a PDOException, which

is the type of exception that new PDO throws. Our catch block, therefore, says that

it will catch a PDOException (and store it in a variable named $e). Inside that block,

we set the variable $output to contain a message about what went wrong. We then

include the template output.html.php. This is a generic template that simply outputs

the value of the $output variable:

chapter4/connect/output.html.php

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Script Output</title>
 </head>
 <body>
 <p>

<?php echo $output; ?>
 </p>
 </body>
</html>

Finally, after outputting the message, the last statement in the catch block calls the

built-in exit function.

99Publishing MySQL Data on the Web

exit is the first example in this book of a function that can be called with no para-

meters. When called this way, all this function does is cause PHP to stop executing

the script at this point. This ensures that the rest of the code in our controller (which

in most cases will depend on a successful database connection) will not be executed

if the connection has failed.

I hope that the aforementioned code is now making some sense to you. Feel free to

go back to the start of this section and read it all again if you’re lost—there were a

number of tricky concepts in there. Once you have a firm grip on the code, however,

you’ll probably realize that I’ve still left one mystery unexplained: PDOs. Just what

exactly is new PDO, and when I said it returns a “PDO object,” just what exactly is

an object?

A Crash Course in Object Oriented Programming
You may have noticed the word “object” beginning to creep into my vocabulary in

the previous section. PDO is the PHP Data Objects extension, and new PDO returns

a PDO object. In this section, I’d like to explain what objects are all about.

Perhaps you’ve come across the term object oriented programming (OOP) in your

own explorations of PHP or of programming in general. OOP is an advanced style

of programming that’s especially suited to building really complex programs with

a lot of moving parts. Most programming languages in active use today support

OOP; some of them even require you to work in an OOP style. PHP is a little more

easygoing about it, and leaves it up to the developer to decide whether or not to

write their scripts in the OOP style.

So far, we’ve written our PHP code in a simpler style called procedural program-

ming, and we’ll continue to do so for most of this book. Procedural style is well

suited to the relatively simple projects we’ll tackle here. Some very complex and

successful PHP projects are written in the procedural programming style (you’ve

heard of WordPress,3 right?).

That said, the PDO extension that we’ll use to connect to and work with a MySQL

database is designed in the object oriented programming style. What this means is

that rather than simply calling a function to connect to MySQL and then calling

other functions that use that connection, we must first create a PDO object that will

3 http://wordpress.org/

PHP & MySQL: Novice to Ninja100

http://wordpress.org/

represent our database connection, and then use the features of that object to work

with the database.

Creating an object is a lot like calling a function. In fact, you’ve already seen how

to do it:

chapter4/connect/index.php (excerpt)

 $pdo = new PDO('mysql:host=localhost;dbname=ijdb', 'ijdbuser',
 'mypassword');

The new keyword tells PHP that you want to create a new object. You then leave a

space and specify a class name, which tells PHP what type of object you want to

create. Just as PHP comes with a bunch of built-in functions that you can call, PHP

comes with a library of classes that you can create objects from. new PDO, therefore,

tells PHP to create a new PDO object; that is, a new object of the built-in PDO class.

In PHP an object is a value, just like a string, number, or array. You can store an

object in a variable or pass it to a function as an argument—all the same stuff you

can do with other PHP values. Objects, however, have some additional useful fea-

tures.

First of all, an object behaves a lot like an array in that it acts as a container for

other values. As we saw in Chapter 3, you can access a value inside an array by

specifying its index (for example, birthdays['Kevin']). When it comes to objects,

the concepts are similar but the names and code are different. Rather than accessing

the value stored in an array index, we say that we’re accessing a property of the

object. Instead of using square brackets to specify the name of the property we want

to access, we use arrow notation; for instance, $myObject->someProperty:

$myObject = new SomeClass(); // create an object
$myObject->someProperty = 123; // set a property's value
echo $myObject->someProperty; // get a property's value

Whereas arrays are normally used to store a list of similar values (such as an array

of birthdays), objects are used to store a list of related values (for example, the

properties of a database connection). Still, if that’s all objects did, there wouldn’t

be much point to them: we might just as well use an array to store these values,

right? Of course, objects do more.

101Publishing MySQL Data on the Web

In addition to storing a collection of properties and their values, objects can contain

a group of PHP functions designed to bring us more useful features. A function

stored in an object is called a method (one of the more confusing names in the

programming world, if you ask me). To call a method, we again use arrow nota-

tion—$myObject->someMethod():

$myObject = new SomeClass(); // create an object
$myObject->someMethod(); // call a method

Just like standalone functions, methods can take arguments and return values.

At this stage, this is probably all sounding a little complicated and pointless, but

trust me: pulling together collections of variables (properties) and functions

(methods) into little bundles called objects results in much tidier and easier-to-read

code for certain tasks—working with a database being just one of them. One day,

you may even want to develop custom classes that you can use to create objects of

your own devising.

For now, however, we’ll stick with the classes that come included with PHP. Let’s

keep working with the PDO object we’ve created, and see what we can do by calling

one of its methods.

Configuring the Connection
So far, I’ve shown you how to create a PDO object to establish a connection with

your MySQL database, and how to display a meaningful error message when

something goes wrong:

<?php
try
{
 $pdo = new PDO('mysql:host=localhost;dbname=ijdb', 'ijdbuser',
 'mypassword');
}
catch (PDOException $e)
{
 $output = 'Unable to connect to the database server.';
 include 'output.html.php';
 exit();
}

PHP & MySQL: Novice to Ninja102

Assuming the connection succeeds, though, you need to configure it before use.

You can configure your connection by calling some methods of your new PDO object.

Our first task is to configure how our PDO object handles errors. You’ve already

learned how to use a try-catch statement to handle any problems PHP might run

into when connecting to your database; however, by default, PDO switches to a

“silent failure” mode after establishing a successful connection,4 which makes it

more difficult for us to find out when something goes wrong and handle it gracefully.

We’d like our PDO object to throw a PDOException any time it fails to do what we

ask. We can configure it do to so by calling the PDO object’s setAttribute method:

chapter4/connect/index.php (excerpt)

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

The two values we’re passing as arguments are constants, just like the ENT_QUOTES

constant that you learned to pass to the htmlspecialchars function in Chapter 3.

Don’t be thrown by the PDO:: at the start of their names; that just indicates that

these constants are part of the PDO class that we’re using, rather than constants built

into the PHP language itself. Essentially, what we’re saying with this line is that we

want to set the PDO attribute that controls the error mode (PDO::ATTR_ERRMODE) to

the mode that throws exceptions (PDO::ERRMODE_EXCEPTION).4

Next, we need to configure the character encoding of our database connection. As

I mentioned briefly in Chapter 3, you should use UTF-8 encoded text in your web-

sites to maximize the range of characters users have at their disposal when filling

in forms on your site. By default, when PHP connects to MySQL, it uses the simpler

ISO-8859-1 (or Latin-1) encoding instead of UTF-8. Therefore, we now need to set

our new PDO object to use the UTF-8 encoding.

If you go searching, you’ll find several ways to set the character encoding of a MySQL

connection, but the most reliable way is to run this SQL query: SET NAMES "utf8".

The PDO object we have stored in $pdo has a method called exec that we can use to

send SQL queries to the database to be executed. Here’s what that looks like:

4 You can read about the details of PDO’s error-handling modes in the PHP Manual

[http://php.net/manual/en/pdo.error-handling.php].

103Publishing MySQL Data on the Web

http://php.net/manual/en/pdo.error-handling.php

chapter4/connect/index.php (excerpt)

 $pdo->exec('SET NAMES "utf8"');

Although I fully expect the exec method to run just fine, if it did fail to execute the

query for some reason (let’s say our MySQL server fell over immediately after we

connected to it), we should be prepared to catch the PDOException that it would

throw. The easiest way to do so is to tuck our configuration statements into the

same try block where we first create our PDO object. The complete code that we use

to connect to MySQL and then configure that connection, therefore, is this:

chapter4/connect/index.php (excerpt)

<?php
try
{
 $pdo = new PDO('mysql:host=localhost;dbname=ijdb', 'ijdbuser',
 'mypassword');
$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $output = 'Unable to connect to the database server.';
 include 'output.html.php';
 exit();
}

To polish off this example, let’s display a status message that indicates when

everything has gone right. Here’s the complete code of our controller:

chapter4/connect/index.php

<?php
try
{
 $pdo = new PDO('mysql:host=localhost;dbname=ijdb', 'ijdbuser',
 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{

PHP & MySQL: Novice to Ninja104

 $output = 'Unable to connect to the database server.';
 include 'output.html.php';
 exit();
}

$output = 'Database connection established.';
include 'output.html.php';

Fire up this example in your browser (if you put the index.php and output.html.php

files in a directory named connect on your web server, the URL will be along the

lines of http://localhost/connect/). If your MySQL server is up and running, and

everything is working properly, you should see the message indicating success in

Figure 4.6.

Figure 4.6. A successful connection

If PHP is unable to connect to your MySQL server, or if the username and password

you provided are incorrect, you’ll instead see a similar screen to that in Figure 4.7.

To make sure your error-handling code is working properly, you might want to

misspell your password intentionally to test it out.

105Publishing MySQL Data on the Web

Figure 4.7. A connection failure

This error message might be fine for visitors to your site, but what if you see this

message unexpectedly while working on your site? How are you supposed to fix

it? Well, the first step should be to find out exactly what’s gone wrong. You can do

that by tweaking the catch block that displays the error message:

chapter4/connect/index.php (excerpt)

catch (PDOException $e)
{
 $output = 'Unable to connect to the database server.';
 include 'output.html.php';
 exit();
}

In order to diagnose and fix this error, we’d like to see some more detail about the

problem by including it in the error message that’s displayed. We can do that using

the exception we’ve just caught.

If you look closely at the first line of the catch block, you can see that in addition

to telling PHP that we’re willing to catch a PDOException, we’re asking it to store

PHP & MySQL: Novice to Ninja106

the exception in a variable called $e. When an exception is caught, the value stored

in that variable is actually another PHP object; in fact, all exceptions are represented

by PHP objects! Like the PDO object we have stored in $pdo, the PDOException object

has properties we can access and methods we can call.

In order to find out what caused the exception, we can ask for the error message

stored in the exception:

catch (PDOException $e)
{
 $output = 'Unable to connect to the database server: ' .
➥ $e->getMessage();
 include 'output.html.php';
 exit();
}

As you can see, we’re calling the getMessage method on the object stored in $e,

and tacking the value it returns onto the end of our error message using the string

concatenation operator (.). With that change in place, Figure 4.8 shows what the

error message will look like if you have the wrong password in your PHP code.

Figure 4.8. The detailed error message resulting from an incorrect password

If you instead made a typing mistake when you specified the character set for the

connection to use, you’ll receive the detailed error message seen in Figure 4.9.

107Publishing MySQL Data on the Web

Figure 4.9. The detailed error message resulting from an invalid character set

If you’re curious, try inserting some other mistakes in your database connection

code (for example, a misspelled database name) and observe the detailed error

messages that result. When you’re done, and your database connection is working

correctly, go back to the simple error message. This way your visitors won’t be

bombarded with technical gobbledygook if a genuine problem emerges with your

database server.

With a connection established and a database selected, you’re ready to begin using

the data stored in the database.

PHP Automatically Disconnects

You might be wondering what happens to the connection with the MySQL server

after the script has finished executing. If you really want to, you can force PHP

to disconnect from the server by discarding the PDO object that represents your

connection. You do this by setting the variable containing the object to null:

$pdo = null; // disconnect from the database server

That said, PHP will automatically close any open database connections when it

finishes running your script, so you can usually just let PHP clean up after you.

PHP & MySQL: Novice to Ninja108

Sending SQL Queries with PHP
In Chapter 2, we connected to the MySQL database server using phpMyAdmin,

which allowed us to type SQL queries (commands) and view the results of those

queries immediately. The PDO object offers a similar mechanism—the exec method:

$pdo->exec(query)

Here, query is a string containing whatever SQL query you want to execute. Indeed,

we used exec in the section called “Configuring the Connection” to send the SET

NAMES "utf8" query that establishes the character set to be used by the database

connection.

As you know, if there’s a problem executing the query (for instance, if you made a

typing mistake in your SQL query), this method will throw a PDOException for you

to catch.

Consider the following example, which attempts to produce the joke table we created

in Chapter 2:

chapter4/createtable/index.php (excerpt)

try
{
 $sql = 'CREATE TABLE joke (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joketext TEXT,
 jokedate DATE NOT NULL
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB';
 $pdo->exec($sql);
}
catch (PDOException $e)
{
 $output = 'Error creating joke table: ' . $e->getMessage();
 include 'output.html.php';
 exit();
}

$output = 'Joke table successfully created.';
include 'output.html.php';

109Publishing MySQL Data on the Web

Note once again that we use the same try-catch statement technique to handle

possible errors produced by the query. This example also uses the getMessage

method to retrieve a detailed error message from the MySQL server. Figure 4.10

shows the error that’s displayed when, for example, the joke table already exists.

Figure 4.10. The CREATE TABLE query fails because the table already exists

For DELETE, INSERT, and UPDATE queries (which serve to modify stored data), the

exec method returns the number of table rows (entries) that were affected by the

query. Consider the SQL command following, which we used in Chapter 2 to set

the dates of all jokes that contained the word “chicken”:

chapter4/updatechicken/index.php (excerpt)

try
{
 $sql = 'UPDATE joke SET jokedate="2012-04-01"
 WHERE joketext LIKE "%chicken%"';
$affectedRows = $pdo->exec($sql);

}
catch (PDOException $e)
{

PHP & MySQL: Novice to Ninja110

 $output = 'Error performing update: ' . $e->getMessage();
 include 'output.html.php';
 exit();
}

By storing the value returned from the exec method in $affectedRows, we can

display the number of rows affected by this update:

chapter4/updatechicken/index.php (excerpt)

$output = "Updated $affectedRows rows.";
include 'output.html.php';

Figure 4.11 shows the output of this example, assuming there’s only one “chicken”

joke in your database.

Figure 4.11. The number of database records updated is displayed

If you refresh the page to run the same query again, you should see the message

change as per Figure 4.12. It indicates that no rows were updated, since the new

date being applied to the jokes is the same as the existing date.

111Publishing MySQL Data on the Web

Figure 4.12. MySQL lets you know when you’re wasting its time

SELECT queries are treated a little differently, as they can retrieve a lot of data and

PHP provides ways to handle that information.

Handling SELECT Result Sets
For most SQL queries, the exec method works just fine. The query does something

to your database, and you get the number of affected rows (if any) from the method’s

return value. SELECT queries, however, require something a little fancier than exec.

You’ll recall that SELECT queries are used to view stored data in the database. Instead

of only affecting the database, SELECT queries have results—we need a method to

return them.

The querymethod looks just like exec in that it accepts an SQL query as an argument

to be sent to the database server; what it returns, however, is a PDOStatement object,

which represents a result set containing a list of all the rows (entries) returned from

the query.

PHP & MySQL: Novice to Ninja112

chapter4/listjokes/index.php (excerpt)

try
{
 $sql = 'SELECT joketext FROM joke';
$result = $pdo->query($sql);

}
catch (PDOException $e)
{
 $error = 'Error fetching jokes: ' . $e->getMessage();
 include 'error.html.php';
 exit();
}

Just as before, errors are displayed using a very simple PHP template:

chapter4/listjokes/error.html.php

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Script Error</title>
 </head>
 <body>
 <p>
 <?php echo $error; ?>
 </p>
 </body>
</html>

Provided that no error was encountered in processing the query, this code will store

a result set (in the form of a PDOStatement object) into the variable $result. This

result set contains the text of all the jokes stored in the joke table. As there’s no

practical limit on the number of jokes in the database, the result set can be quite

big.

I mentioned back in Chapter 3 that the while loop is a useful control structure for

dealing with large amounts of data. Indeed, you could use a while loop here to

process the rows in the result set one at a time:

113Publishing MySQL Data on the Web

while ($row = $result->fetch())
{
 ⋮ process the row
}

The condition for the while loop is probably different to the conditions you’re used

to, so let me explain how it works. Consider the condition as a statement all by itself:

$row = $result->fetch();

The fetch method of the PDOStatement object returns the next row in the result set

as an array (we discussed arrays in Chapter 3). When there are no more rows in the

result set, fetch returns false instead.5

Now, the above statement assigns a value to the $row variable, but, at the same time,

the statement as a whole takes on that same value. This is what lets you use the

statement as a condition in the while loop. Since a while loop will keep looping

until its condition evaluates to false, this loop will occur as many times as there

are rows in the result set, with $row taking on the value of the next row each time

the loop executes. All that’s left to figure out is how to retrieve the values out of the

$row variable each time the loop runs.

Rows of a result set returned by fetch are represented as associative arrays, with

the indices named after the table columns in the result set. If $row is a row in our

result set, $row['joketext'] is the value in the joketext column of that row.

Our goal in this code is to store away the text of all the jokes so that we can display

them in a PHP template. The best way to do this is to store each joke as a new item

in an array, $jokes:

chapter4/listjokes/index.php (excerpt)

while ($row = $result->fetch())
{
 $jokes[] = $row['joketext'];
}

5 This is one case where asking a PDO object to do something it cannot do (as fetch cannot return the

next row when there are no rows left in the result set) will not throw a PDOException. If it did, we’d

be unable to use the fetch method in a while loop condition the way we do here.

PHP & MySQL: Novice to Ninja114

With the jokes pulled out of the database, we can now pass them along to a PHP

template (jokes.html.php) for display.

To summarize, here’s the complete code of the controller for this example:

chapter4/listjokes/index.php

<?php
try
{
 $pdo = new PDO('mysql:host=localhost;dbname=ijdb', 'ijdbuser',
 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $error = 'Unable to connect to the database server.';
 include 'error.html.php';
 exit();
}

try
{
 $sql = 'SELECT joketext FROM joke';
 $result = $pdo->query($sql);
}
catch (PDOException $e)
{
 $error = 'Error fetching jokes: ' . $e->getMessage();
 include 'error.html.php';
 exit();
}

while ($row = $result->fetch())
{
 $jokes[] = $row['joketext'];
}

include 'jokes.html.php';

All that’s left to complete this example is to write the jokes.html.php template.

In this template, we need to display the contents of an array for the first time, rather

than just a simple variable. The most common way to process an array in PHP is to

115Publishing MySQL Data on the Web

use a loop. We’ve already seen while loops and for loops; the foreach loop is

particularly helpful for processing arrays:

foreach (array as $item)
{
 ⋮ process each $item
}

Instead of a condition, the parentheses at the top of a foreach loop contain an array,

followed by the keyword as, and then the name of a new variable that will be used

to store each item of the array in turn. The body of the loop is then executed once

for each item in the array; each time that item is stored in the specified variable so

that the code can access it directly.

It’s common to use a foreach loop in a PHP template to display in turn each item

of an array. Here’s how this might look for our $jokes array:

<?php
foreach ($jokes as $joke)
{
?>
 ⋮ HTML code to output each $joke
<?php
}
?>

With this blend of PHP code to describe the loop and HTML code to display it, the

code looks rather untidy. Because of this, it’s common to use an alternative way of

writing the foreach loop when it’s used in a template:

foreach (array as $item):
 ⋮ process each $item
endforeach;

Here’s how this form of the code looks in a template:

<?php foreach ($jokes as $joke): ?>
 ⋮ HTML code to output each $joke
<?php endforeach; ?>

PHP & MySQL: Novice to Ninja116

With this new tool in hand, we can write our template to display the list of jokes:

chapter4/listjokes/jokes.html.php

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>List of Jokes</title>
 </head>
 <body>
 <p>Here are all the jokes in the database:</p>

<?php foreach ($jokes as $joke): ?>
 <blockquote>
 <p><?php echo htmlspecialchars($joke, ENT_QUOTES, 'UTF-8');
 ?>
 </p>
 </blockquote>

<?php endforeach; ?>
 </body>
</html>

Each joke is displayed in a paragraph (<p>) contained within a block quote

(<blockquote>), since we’re effectively quoting the author of each joke in this page.

Because jokes might conceivably contain characters that could be interpreted as

HTML code (for example, <, >, or &), we must use htmlspecialchars to ensure that

these are translated into HTML character entities (that is, <, >, and &)

so that they’re displayed correctly.

Figure 4.13 shows what this page looks like once you’ve added a couple of jokes to

the database.

117Publishing MySQL Data on the Web

Figure 4.13. All my best material—in one place!

You Can Use foreach to Loop through a Result Set, Too!

Remember how we used a while loop in our controller to fetch the rows out of

the PDOStatement result set one at a time?

chapter4/listjokes/index.php (excerpt)

while ($row = $result->fetch())
{
 $jokes[] = $row['joketext'];
}

It turns out PDOStatement objects are designed to behave just like arrays when

you pass them to a foreach loop. You can therefore slightly simplify your database

processing code using a foreach loop instead of a while loop:

foreach ($result as $row)
{
 $jokes[] = $row['joketext'];
}

PHP & MySQL: Novice to Ninja118

I’ll be using this tidier foreach form in the rest of this book.

Inserting Data into the Database
In this section, I’ll demonstrate how to use the tools at your disposal to enable site

visitors to add their own jokes to the database.

If you want to let visitors to your site enter new jokes, you’ll obviously need a form.

Here’s a template for a form that will fit the bill:

chapter4/addjoke/form.html.php

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Add Joke</title>
 <style type="text/css">
 textarea {
 display: block;
 width: 100%;
 }
 </style>
 </head>
 <body>
 <form action="?" method="post">
 <div>
 <label for="joketext">Type your joke here:</label>
 <textarea id="joketext" name="joketext" rows="3" cols="40">
 </textarea>
 </div>
 <div><input type="submit" value="Add"></div>
 </form>
 </body>
</html>

Once submitted, this form will request the same PHP script that generated the

form—the controller script (index.php)—as we’ve seen before. You’ll notice, however,

that instead of leaving the action attribute empty (""), we set its value to ?. As we’ll

see in a moment, the URL used to display the form in this example will feature a

query string, and setting the action to ? strips that query string off the URL when

submitting the form.

119Publishing MySQL Data on the Web

Figure 4.14 shows what this form looks like in a browser.

Figure 4.14. Another nugget of comic genius is added to the database

When this form is submitted, the request will include a variable, joketext, that

contains the text of the joke as typed into the text area. This variable will then appear

in the $_POST and $_REQUEST arrays created by PHP.

Let’s tie this form into the preceding example, which displayed the list of jokes in

the database. Add a link to the top of the list that invites the user to add a joke:

chapter4/addjoke/jokes.html.php (excerpt)

<body>
<p>Add your own joke</p>

 <p>Here are all the jokes in the database:</p>

Like the form, this link points back to the very same PHP script used to generate

this page, but this time it adds a query string (?addjoke), indicating the user’s inten-

tion to add a new joke. Our controller can detect this query string and use it as a

signal to display the “Add Joke” form instead of the list of jokes.

PHP & MySQL: Novice to Ninja120

Let’s make the necessary changes to the controller now:

chapter4/addjoke/index.php (excerpt)

if (isset($_GET['addjoke']))
{
 include 'form.html.php';
 exit();
}

This opening if statement checks if the query string contains a variable named

addjoke. This is how we detect that the user clicked the new link. Even though

there is no value specified by the query string (?addjoke) for the addjoke variable,

it does create it, which we can detect with isset($_GET['addjoke']).

When we detect this variable, we display the form by including form.html.php, and

then exit.

Once the user fills out the form and submits it, that form submission results in an-

other request to this controller. This we detect by checking if $_POST['joketext']

is set:

chapter4/addjoke/index.php (excerpt)

if (isset($_POST['joketext']))
{

To insert the submitted joke into the database, we must execute an INSERT query

using the value stored in $_POST['joketext'] to fill in the joketext column of the

joke table. This might lead you to write some code like this:

$sql = 'INSERT INTO joke SET
 joketext="' . $_POST['joketext'] . '",
 jokedate="today’s date"';
$pdo->exec($sql);

There is a serious problem with this code, however: the contents of

$_POST['joketext'] are entirely under the control of the user who submitted the

form. If a malicious user were to type some nasty SQL code into the form, this script

would feed it to your MySQL server without question. This type of attack is called

121Publishing MySQL Data on the Web

an SQL injection attack, and in the early days of PHP it was one of the most common

security holes that hackers found and exploited in PHP-based websites.6

These attacks were so feared, in fact, that the team behind PHP added some built-

in protection against SQL injections to the language; it still remains enabled by de-

fault in many PHP installations today. Called magic quotes, this protective feature

of PHP automatically analyzes all values submitted by the browser and inserts

backslashes (\) in front of any “dangerous” characters like apostrophes—which can

cause problems if they’re included in an SQL query inadvertently.

The problem with the magic quotes feature is that it causes as many problems as it

prevents. First of all, the characters that it detects and the method it uses to sanitize

them (prefixing them with a backslash) are only valid in some circumstances. De-

pending on the character encoding of your site and the database server you’re using,

these measures may be completely ineffective.

Second, when a submitted value is used for some purpose other than creating an

SQL query, those backslashes can be really bothersome. I mentioned this briefly in

Chapter 3 when, in the welcome message example, the magic quotes feature would

insert a spurious backslash into the user’s last name if it contained an apostrophe.

In short, magic quotes was a bad idea, so much so that it’s scheduled to be removed

from PHP in version 6. In the meantime, however, you have to deal with the problems

it creates in your code. The easiest way to do this is to detect if magic quotes is en-

abled on your web server and, if so, to undo the modifications it has made to the

submitted values.7 Thankfully, the PHP Manual8 provides a snippet of code that

will do this:

6 In many programming niches, SQL injection attacks are still surprisingly effective, as developers don’t

expect them. Consider this remarkable attempt to cause traffic cameras to drop their databases: “SQL

Injection Licence (sic) Plate Hopes to Foil Euro Traffic Cameras.”

[http://www.gizmodo.com.au/2010/03/sql-injection-license-plate-hopes-to-foil-euro-traffic-cameras/]
7 You can disable magic quotes—and save your web server a lot of work—by setting the ma-

gic_quotes_gpc option in your php.ini file to Off. To make sure your code still functions if this

setting is changed, however, you should still deal with magic quotes in your code when it’s enabled.
8 http://www.php.net/manual/en/security.magicquotes.disabling.php

PHP & MySQL: Novice to Ninja122

http://www.php.net/manual/en/security.magicquotes.disabling.php
http://www.gizmodo.com.au/2010/03/sql-injection-license-plate-hopes-to-foil-euro-traffic-cameras/
http://www.gizmodo.com.au/2010/03/sql-injection-license-plate-hopes-to-foil-euro-traffic-cameras/

chapter4/addjoke/index.php (excerpt)

if (get_magic_quotes_gpc())
{
 $process = array(&$_GET, &$_POST, &$_COOKIE, &$_REQUEST);
 while (list($key, $val) = each($process))
 {
 foreach ($val as $k => $v)
 {
 unset($process[$key][$k]);
 if (is_array($v))
 {
 $process[$key][stripslashes($k)] = $v;
 $process[] = &$process[$key][stripslashes($k)];
 }
 else
 {
 $process[$key][stripslashes($k)] = stripslashes($v);
 }
 }
 }
 unset($process);
}

Don’t try to understand the inner workings of this code. To keep it short, I’ve used

several advanced PHP features that we’re yet to cover—and one or two others that

are beyond the scope of this book. Just drop this code into the top of your control-

ler—and indeed any other PHP script that will receive user input in the form of

query variables or a form submission (or, as we’ll learn in Chapter 9, browser

cookies). And be assured that from this point forward, I’ll remind you whenever

this code is required by an example.9

With the damage done by magic quotes reversed, you’re now free to use submitted

values in your SQL queries the right way: using prepared statements.

A prepared statement is an SQL query that you’ve sent to your database server

ahead of time, giving the server a chance to prepare it for execution—but not actually

execute it. The SQL code in prepared statements can contain placeholders that

you’ll supply the values for later, when the query is to be executed. When filling

9 In Chapter 6, I’ll show you how to reduce the burden of repeatedly including this code snippet in your

controller code.

123Publishing MySQL Data on the Web

in these placeholders, PDO is smart enough to guard against “dangerous” characters

automatically.

Here’s how to prepare an INSERT query and then execute it safely with

$_POST['joketext'] as the text of the joke:

$sql = 'INSERT INTO joke SET
 joketext = :joketext,
 jokedate = "today's date"';
$s = $pdo->prepare($sql);
$s->bindValue(':joketext', $_POST['joketext']);
$s->execute();

Let’s break this down one statement at a time. First, we write out our SQL query as

a PHP string and store it in a variable ($sql) as usual. What’s unusual about this

INSERT query, however, is that no value is specified for the joketext column; in-

stead, it contains a placeholder for this value (:joketext). Don’t worry about the

jokedate field just now—we’ll circle back to it in a moment.

Next, we call the prepare method of our PDO object ($pdo), passing it our SQL

query as an argument. This sends the query to the MySQL server, asking it to prepare

to run the query. MySQL can’t run it yet—there’s no value for the joketext column.

The prepare method returns a PDOStatement object (yes, the same kind of object

that gives us the results from a SELECT query), which we store in $s.

Now that MySQL has prepared our statement for execution, we can send it the

missing value(s) by calling the bindValue method of our PDOStatement object ($s).

We call this method once for each value to be supplied (in this case, we only need

to supply one value: the joke text), passing as arguments the placeholder that we

want to fill in (':joketext') and the value we want to fill it with

($_POST['joketext']). Because MySQL knows we’re sending it a discrete value,

rather than SQL code that needs to be parsed, there’s no risk of characters in the

value being interpreted as SQL code. Using prepared statements, SQL injection

vulnerabilities simply aren’t possible!

PHP & MySQL: Novice to Ninja124

Finally, we call the PDOStatement object’s execute method to tell MySQL to execute

the query with the value(s) we’ve supplied.10

The lingering question in this code is how to assign today’s date to the jokedate

field. We could write some fancy PHP code to generate today’s date in the

YYYY-MM-DD format that MySQL requires, but it turns out that MySQL itself has a

function to do this: CURDATE:

$sql = 'INSERT INTO joke SET
 joketext = :joketext,
 jokedate = CURDATE()';
$s = $pdo->prepare($sql);
$s->bindValue(':joketext', $_POST['joketext']);
$s->execute();

The MySQL function CURDATE is used here to assign the current date as the value

of the jokedate column. MySQL actually has dozens of these functions, but I’ll in-

troduce them only as required. Appendix C provides a reference describing all

commonly used MySQL functions.

Now that we have our query, we can complete the if statement we started earlier

to handle submissions of the “Add Joke” form:

chapter4/addjoke/index.php (excerpt)

if (isset($_POST['joketext']))
{
 try
 {
 $sql = 'INSERT INTO joke SET
 joketext = :joketext,
 jokedate = CURDATE()';
 $s = $pdo->prepare($sql);
 $s->bindValue(':joketext', $_POST['joketext']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted joke: ' . $e->getMessage();

10 Yes, this PDOStatement method is called execute, unlike the similar method of PDO objects,

which is called exec. PHP has many strengths, but consistency isn’t one of them.

125Publishing MySQL Data on the Web

 include 'error.html.php';
 exit();
 }

header('Location: .');
 exit();
}

But wait! This if statement has one more trick up its sleeve. Once we’ve added the

new joke to the database, instead of displaying the PHP template as previously, we

want to redirect the user’s browser back to the list of jokes. That way they are able

to see the newly added joke among them. That’s what the two lines highlighted in

bold at the end of the if statement above do.

In order to achieve the desired result, your first instinct might be to allow the con-

troller to simply fetch the list of jokes from the database after adding the new joke,

and displaying the list using the jokes.html.php template as usual. The problem with

doing this is that the list of jokes, from the browser’s perspective, would be the

result of having submitted the “Add Joke” form. If the user were then to refresh the

page, the browser would resubmit that form, causing another copy of the new joke

to be added to the database! This is rarely the desired behavior.

Instead, we want the browser to treat the updated list of jokes as a normal web page

that’s able to be reloaded without resubmitting the form. The way to do this is to

answer the browser’s form submission with an HTTP redirect11—a special response

that tells the browser “the page you’re looking for is over here.”

The PHP header function provides the means of sending special server responses

like this one, by letting you insert specific headers into the response sent to the

browser. In order to signal a redirect, you must send a Location header with the

URL of the page to which you wish to direct the browser:

header('Location: URL');

In this case, we want to send the browser back to the very same page: our controller.

We’re asking the browser to submit another request, this time without a form sub-

11 HTTP stands for HyperText Transfer Protocol, and is the language that describes the request/response

communications that are exchanged between the visitor’s web browser and your web server.

PHP & MySQL: Novice to Ninja126

mission attached to it, rather than sending the browser to another location. Since

we want to point the browser at our controller (index.php) using the URL of the

parent directory, we can simply tell the browser to reload the current directory,

which is expressed as a period (.).

Here are the two lines that redirect the browser back to our controller after adding

the new joke to the database:

chapter4/addjoke/index.php (excerpt)

 header('Location: .');
 exit();
}

$_SERVER['PHP_SELF'] is the URL of the Current Page

Another common means of obtaining the URL of the current page in PHP is with

$_SERVER['PHP_SELF'].

Like $_GET, $_POST, and $_REQUEST, $_SERVER is an array variable that’s

automatically created by PHP. It contains a whole bunch of information supplied

by your web server. In particular, $_SERVER['PHP_SELF'] will always be set to

the URL of the PHP script that your web server used to generate the current page.

Unfortunately, because the web server automatically translates a request for

http://localhost/addjoke/ to a request for http://localhost/addjoke/index.php,

$_SERVER['PHP_SELF'] will contain the latter URL. Redirecting the browser to

. lets us preserve the shorter, more memorable form of the URL.

For this reason, I’ve avoided using $_SERVER['PHP_SELF'] in this book; however,

I thought you might like to know what it does, since it’s so commonly used in

basic PHP examples around the Web.

The rest of the controller is responsible for displaying the list of jokes as before.

Here’s the complete code of the controller:

chapter4/addjoke/index.php

<?php
if (get_magic_quotes_gpc())
{
 $process = array(&$_GET, &$_POST, &$_COOKIE, &$_REQUEST);

127Publishing MySQL Data on the Web

 while (list($key, $val) = each($process))
 {
 foreach ($val as $k => $v)
 {
 unset($process[$key][$k]);
 if (is_array($v))
 {
 $process[$key][stripslashes($k)] = $v;
 $process[] = &$process[$key][stripslashes($k)];
 }
 else
 {
 $process[$key][stripslashes($k)] = stripslashes($v);
 }
 }
 }
 unset($process);
}

if (isset($_GET['addjoke']))
{
 include 'form.html.php';
 exit();
}

try
{
 $pdo = new PDO('mysql:host=localhost;dbname=ijdb', 'ijdbuser',
 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $error = 'Unable to connect to the database server.';
 include 'error.html.php';
 exit();
}

if (isset($_POST['joketext']))
{
 try
 {
 $sql = 'INSERT INTO joke SET
 joketext = :joketext,

PHP & MySQL: Novice to Ninja128

 jokedate = CURDATE()';
 $s = $pdo->prepare($sql);
 $s->bindValue(':joketext', $_POST['joketext']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted joke: ' . $e->getMessage();
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

try
{
 $sql = 'SELECT joketext FROM joke';
 $result = $pdo->query($sql);
}
catch (PDOException $e)
{
 $error = 'Error fetching jokes: ' . $e->getMessage();
 include 'error.html.php';
 exit();
}

while ($row = $result->fetch())
{
 $jokes[] = $row['joketext'];
}

include 'jokes.html.php';

As you review this to ensure it all makes sense to you, note that the code that con-

nects to the database by creating a new PDO object must come before any of the code

that runs database queries. A database connection is unnecessary to display the

“Add Joke” form, though, so that code can come at the very top of the controller

script.

Load this up and add a new joke or two as per Figure 4.15 to the database via your

browser.

129Publishing MySQL Data on the Web

Figure 4.15. Look, Ma—no SQL!

There you have it. With a single controller (index.php) pulling the strings, you’re

able to view existing jokes in—and add new jokes to—your MySQL database.

Deleting Data from the Database
In this section, we’ll make one final enhancement to our joke database site. Next to

each joke on the page, we’ll place a button labeled Delete; when clicked, it will re-

move that joke from the database and display the updated joke list.

If you like a challenge, you might want to take a stab at writing this feature yourself

before you read on to see my solution. Although we’re implementing a brand new

feature, we’ll mainly be using the same tools as employed in the previous examples

in this chapter. Here are a few hints to start you off:

■ You’ll still be able to do it all with a single controller script (index.php).

■ The SQL DELETE command will be required, which I introduced in Chapter 2.

PHP & MySQL: Novice to Ninja130

■ To delete a particular joke in your controller, you’ll need to identify it uniquely.

The id column in the joke table was created to serve this purpose. You’re going

to have to pass the ID of the joke to be deleted with the request to delete a joke.

The easiest way to do this is to use a hidden form field.

At the very least, take a few moments to think about how you’d approach this. When

you’re ready to see the solution, read on!

To begin with, we need to modify the SELECT query that fetches the list of jokes

from the database. In addition to the joketext column, we must also fetch the id

column so that we can identify each joke uniquely:

chapter4/deletejoke/index.php (excerpt)

try
{
 $sql = 'SELECT id, joketext FROM joke';
 $result = $pdo->query($sql);
}
catch (PDOException $e)
{
 $error = 'Error fetching jokes: ' . $e->getMessage();
 include 'error.html.php';
 exit();
}

We also have to modify the while loop that stores the database results into the

$jokes array. Instead of simply storing the text of each joke as an item in the array,

we store both the ID and text of each joke. One way to do this is to make each item

in the $jokes array an array in its own right:

chapter4/deletejoke/index.php (excerpt)

while ($row = $result->fetch())
{
 $jokes[] = array('id' => $row['id'], 'text' => $row['joketext']);
}

131Publishing MySQL Data on the Web

The foreach version

If you’ve already switched to using a foreach loop to process your database result

rows, that will work just fine too:

foreach ($result as $row)
{
 $jokes[] = array('id' => $row['id'], 'text' =>
 $row['joketext']);
}

Once this while loop runs its course, we’ll have the $jokes array, each item of

which is an associative array with two items: the ID of the joke and its text. For each

joke ($jokes[n]), we can therefore retrieve its ID ($jokes[n]['id']) and its text

($jokes[n]['text']).

Our next step is to update the jokes.html.php template to retrieve each joke’s text

from this new array structure, as well as provide a Delete button for each joke:

chapter4/deletejoke/jokes.html.php (excerpt)

<?php foreach ($jokes as $joke): ?>
<form action="?deletejoke" method="post">

 <blockquote>
 <p>
 <?php echo htmlspecialchars($joke['text'], ENT_QUOTES,
 'UTF-8'); ?>

<input type="hidden" name="id" value="<?php
 echo $joke['id']; ?>">

<input type="submit" value="Delete">
 </p>
 </blockquote>
</form>

<?php endforeach; ?>

Here are the highlights of this updated code:

Each joke will be displayed in a form, which, if submitted, will delete that

joke. We signal this to our controller using the ?deletejoke query string in

the action attribute.

PHP & MySQL: Novice to Ninja132

Since each joke in the $jokes array is now represented by a two-item array

instead of a simple string, we must update this line to retrieve the text of the

joke. We do this using $joke['text'] instead of just $joke.

When we submit the form to delete this joke, we send along the ID of the joke

to be deleted. To do this, we need a form field containing the joke’s ID, but

we’d prefer to keep this field hidden from the user; that’s why we use a hidden

form field (<input type="hidden">). The name of this field is id, and its value

is the ID of the joke to be deleted ($joke['id']).

Unlike the text of the joke, the ID is not a user-submitted value, so there’s no

need to worry about making it HTML-safe with htmlspecialchars. We can

rest assured it will be a number, since it’s automatically generated by MySQL

for the id column when the joke is added to the database.

This submit button (<input type="submit">) submits the form when clicked.

Its value attribute gives it a label of Delete.

Finally, we close the form for this joke.

This Markup Could Be Better

If you know your HTML, you’re probably thinking that those <input> tags belong

outside of the blockquote element, since they aren’t a part of the quoted text

(the joke).

Strictly speaking, that’s true: the form and its inputs should really be either before

or after the blockquote. Unfortunately, making that tag structure display clearly

requires a little Cascading Style Sheets (CSS) code that’s really beyond the scope

of this book.

Rather than teach you CSS layout techniques in a book about PHP and MySQL,

I’ve decided to go with this imperfect markup. If you plan to use this code in the

real world, you should invest some time into learning CSS (or at least secure the

services of a CSS guru); that way you can take complete control of your HTML

markup without worrying about the CSS required to make it look nice.

Figure 4.16 shows what the joke list looks like with the Delete buttons added.

133Publishing MySQL Data on the Web

Figure 4.16. Each button can delete its respective joke

All that remains to make this new feature work is to update the controller. It can

then process the form submission that results from clicking one of our new Delete

buttons:

chapter4/deletejoke/index.php (excerpt)

if (isset($_GET['deletejoke']))
{
 try
 {
 $sql = 'DELETE FROM joke WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting joke: ' . $e->getMessage();
 include 'error.html.php';
 exit();

PHP & MySQL: Novice to Ninja134

 }

 header('Location: .');
 exit();
}

This chunk of code works exactly like the one we added to process the “Add Joke”

code earlier in the chapter. We start by preparing a DELETE query with a placeholder

for the joke ID that we wish to delete.12 We then bind the submitted value of

$_POST['id'] to that placeholder and execute the query. Once that query is achieved,

we use the PHP header function to ask the browser to send a new request to view

the updated list of jokes.

Why Not a Link?

If you tackled this example yourself, your first instinct might have been to provide

a Delete hyperlink for each joke, instead of going to the trouble of writing an entire

HTML form containing a Delete button for each joke on the page. Indeed, the code

for such a link would be much simpler:

<?php foreach ($jokes as $joke): ?>
 <blockquote>
 <p>
 <?php echo htmlspecialchars($joke['text'], ENT_QUOTES,
 'UTF-8'); ?>

<a href="?deletejoke&id=<?php echo $joke['id'];
 ?>">Delete
 </p>
 </blockquote>
<?php endforeach; ?>

In short, hyperlinks should never be used to perform actions (such as deleting a

joke); they must only be used to provide a link to some related content. The same

goes for forms with method="get", which should only be used to perform queries

12 You might think that a prepared statement is unnecessary in this instance to protect our database from

SQL injection attacks, since the joke ID is provided by a hidden form field invisible to the user. In fact,

all form fields—even hidden ones—are ultimately under the user’s control. There are widely distributed

browser add-ons, for example, that will make hidden form fields visible and available for editing by the

user. Remember: any value submitted by the browser is ultimately suspect when it comes to protecting

your site’s security.

135Publishing MySQL Data on the Web

of existing data. Actions must only ever be performed as a result of a form with

method="post" being submitted.

The reason why is that forms with method="post" are treated differently by

browsers and related software. If you were to submit a form with method="post"

and then click the Refresh button in your browser, for example, the browser would

ask if you’re certain you wish to resubmit the form. Browsers have no similar

protection against resubmission when it comes to links and forms with

method="get".

Similarly, web accelerator software (and some modern browsers) will automatically

follow hyperlinks present on a page in the background, so that the target pages

will be available for immediate display if the user clicks one of those links. If your

site deleted a joke as a result of a hyperlink being followed, you could find your

jokes being deleted automatically by your users’ browsers!

Here’s the complete code of the finished controller. If you have any questions, make

sure to post them in the SitePoint Forums!13

chapter4/deletejoke/index.php

<?php
if (get_magic_quotes_gpc())
{
 $process = array(&$_GET, &$_POST, &$_COOKIE, &$_REQUEST);
 while (list($key, $val) = each($process))
 {
 foreach ($val as $k => $v)
 {
 unset($process[$key][$k]);
 if (is_array($v))
 {
 $process[$key][stripslashes($k)] = $v;
 $process[] = &$process[$key][stripslashes($k)];
 }
 else
 {
 $process[$key][stripslashes($k)] = stripslashes($v);
 }
 }
 }

13 http://www.sitepoint.com/forums/

PHP & MySQL: Novice to Ninja136

http://www.sitepoint.com/forums/

 unset($process);
}

if (isset($_GET['addjoke']))
{
 include 'form.html.php';
 exit();
}

try
{
 $pdo = new PDO('mysql:host=localhost;dbname=ijdb', 'ijdbuser',
 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $error = 'Unable to connect to the database server.';
 include 'error.html.php';
 exit();
}

if (isset($_POST['joketext']))
{
 try
 {
 $sql = 'INSERT INTO joke SET
 joketext = :joketext,
 jokedate = CURDATE()';
 $s = $pdo->prepare($sql);
 $s->bindValue(':joketext', $_POST['joketext']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted joke: ' . $e->getMessage();
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

137Publishing MySQL Data on the Web

if (isset($_GET['deletejoke']))
{
 try
 {
 $sql = 'DELETE FROM joke WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting joke: ' . $e->getMessage();
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

try
{
 $sql = 'SELECT id, joketext FROM joke';
 $result = $pdo->query($sql);
}
catch (PDOException $e)
{
 $error = 'Error fetching jokes: ' . $e->getMessage();
 include 'error.html.php';
 exit();
}

while ($row = $result->fetch())
{
 $jokes[] = array('id' => $row['id'], 'text' => $row['joketext']);
}

include 'jokes.html.php';

Mission Accomplished
In this chapter, you learned all about PHP Data Objects (PDO), a collection of built-

in PHP classes (PDO, PDOException, and PDOStatement) that allow you to interface

with a MySQL database server by creating objects and then calling the methods

PHP & MySQL: Novice to Ninja138

they provide. While you were at it, you also picked up the basics of object oriented

programming (OOP), no mean feat for a PHP beginner!

Using PDO objects, you built your first database driven website, which published

the ijdb database online and allowed visitors to add and delete jokes.

In a way, you could say this chapter achieved the stated mission of this book: to

teach you how to build a database driven website. Of course, the example in this

chapter contained only the bare essentials. In the rest of the book, I’ll show you

how to flesh out the skeleton you learned to build in this chapter.

In Chapter 5, we return to the SQL Query window in phpMyAdmin. We’ll learn

how to use relational database principles and advanced SQL queries to represent

more complex types of information, and give our visitors credit for the jokes they

add!

139Publishing MySQL Data on the Web

Chapter5
Relational Database Design
Since Chapter 2, we’ve worked with a very simple database of jokes, composed of

a single table named, appropriately enough, joke. While this database has served

us well as an introduction to MySQL databases, there’s more to relational database

design than can be understood from this simple example. In this chapter, we’ll ex-

pand on this database and learn a few new features of MySQL, in an effort to realize

and appreciate the real power that relational databases have to offer.

Be forewarned that I will cover several topics only in an informal, nonrigorous sort

of way. As any computer science major will tell you, database design is a serious

area of research, with tested and mathematically provable principles that, while

useful, are beyond the scope of this text.

For more complete coverage of database design concepts and SQL in general, pick

up a copy of Simply SQL.1 If you’re really into learning the hard principles behind

relational databases, Database in Depth2 (Sebastopol: O’Reilly, 2005) is a worthwhile

read.

1 http://www.sitepoint.com/books/sql1/
2 http://oreilly.com/catalog/9780596100124/

http://www.sitepoint.com/books/sql1/
http://oreilly.com/catalog/9780596100124/

Giving Credit Where Credit Is Due
To start off, let’s recall the structure of our joke table. It contains three columns:

id, joketext, and jokedate. Together, these columns allow us to identify jokes

(id), and keep track of their text (joketext) and the date they were entered (joked-

ate). For your reference, here’s the SQL code that creates this table and inserts a

couple of entries:3

chapter5/sql/jokes1.sql

Code to create a simple joke table

CREATE TABLE joke (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joketext TEXT,
 jokedate DATE NOT NULL
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

Adding jokes to the table

INSERT INTO joke SET
joketext = 'Why did the chicken cross the road? To get to the other
➥ side!',
jokedate = '2009-04-01';

INSERT INTO joke
(joketext, jokedate) VALUES (
'Knock-knock! Who\'s there? Boo! "Boo" who? Don\'t cry; it\'s only a
➥ joke!',
"2009-04-01"
);

Now, let’s say we wanted to track another piece of information about our jokes: the

names of the people who submitted them. It would be natural to add a new column

to our joke table for this. The SQL ALTER TABLE command (which we’ve yet to see)

lets us do exactly that.

3 If you ever need to re-create your database from scratch, you can use phpMyAdmin to drop all the

tables and then go to the Import tab of the now-empty ijdb database and feed it this SQL file. phpMy-

Admin will run all the commands it contains, thereby restoring the database. In this way, you can use

the .sql files in the code archive for this book as database snapshots to load up whenever you need them.

PHP & MySQL: Novice to Ninja142

Open up phpMyAdmin as you did in Chapter 2, select your database (ijdb if you

used the name I suggested), and type this command:

ALTER TABLE joke ADD COLUMN authorname VARCHAR(255)

This code adds a column called authorname to your table. The type declared is a

variable-length character string of up to 255 characters, VARCHAR(255)—plenty

of space for even very esoteric names. Let’s also add a column for the authors’ email

addresses:

ALTER TABLE joke ADD COLUMN authoremail VARCHAR(255)

For more information about the ALTER TABLE command, see Appendix B. Just to

make sure the two columns were added properly, we’ll ask MySQL to describe the

table to us:4

DESCRIBE joke

This should give you a table of results like the one in Figure 5.1.

Figure 5.1. Our joke table now contains five columns

Looks good, right? Obviously, to accommodate this expanded table structure, we’d

need to make changes to the HTML and PHP form code we wrote in Chapter 4 that

allowed us to add new jokes to the database. Using UPDATE queries, we could now

add author details to all the jokes in the table. But before we spend too much time

on such changes, we should stop and consider whether this new table design was

the right choice here. In this case, it turns out it wasn’t.

4 Instead of typing the DESCRIBE query yourself, you could just select the joke table in phpMyAdmin

and click the Structure tab. At this point in your database administration career, though, it’s advisable

to take every opportunity you can to become familiar with SQL queries like DESCRIBE.

143Relational Database Design

Rule of Thumb: Keep Entities Separate
As your knowledge of database driven websites continues to grow, you may decide

that a personal joke list is too limited. In fact, you might receive more submitted

jokes than you have original jokes of your own. Let’s say you decide to launch a

website where people from all over the world can share jokes with each other.

Adding the author’s name and email address to each joke certainly makes a lot of

sense, but the method we used above leads to potential problems:

■ What if a frequent contributor to your site named Joan Smith changed her email

address? She might begin to submit new jokes using the new address, but her

old address would still be attached to the jokes she’d submitted in the past.

Looking at your database, you might simply think there were two people named

Joan Smith who had submitted jokes. She might inform you of the change of

address, and you may try to update all the old jokes with the new address, but

if you missed just one joke, your database would still contain incorrect informa-

tion. Database design experts refer to this sort of problem as an update anomaly.

■ It would be natural for you to rely on your database to provide a list of all the

people who’ve ever submitted jokes to your site. In fact, you could easily obtain

a mailing list using the following query:

SELECT DISTINCT authorname, authoremail
FROM joke

The word DISTINCT in the above query stops MySQL from outputting duplicate

result rows. For example, if Joan Smith submits 20 jokes to your site, using the

DISTINCT option would cause her name to only appear once in the list instead

of 20 times.

Then, if for some reason, you decided to remove all the jokes that a particular

author had submitted to your site, you’d remove any record of this person from

the database in the process, and you’d no longer be able to email him or her with

information about your site! Database design experts call this a delete anomaly.

As your mailing list might be a major source of income for your site, it’s unwise

to go throwing away an author’s email address just because you disliked the

jokes that person submitted.

PHP & MySQL: Novice to Ninja144

■ You have no guarantee that Joan Smith will enter her name the same way each

time; consider the variations: Joan Smith, J. Smith, Smith, Joan—you catch my

drift. This makes keeping track of a particular author exceedingly difficult, espe-

cially if Joan Smith also has several email addresses she likes to use.

These problems—and more—can be dealt with very easily using established database

design principles. Instead of storing the information for the authors in the joke

table, let’s create an entirely new table for our list of authors. Just as we have an id

column in our joke table to identify each joke with a unique number, we’ll use an

identically named column in our new table to identify our authors. We can then

use those author IDs in our joke table to associate authors with their jokes. The

complete database layout is shown in Figure 5.2.

Figure 5.2. The authorid field associates each row in joke with a row in author

These tables show that there are three jokes and two authors. The authorid column

of the joke table establishes a relationship between the two tables, indicating that

Kevin Yank submitted jokes 1 and 2 and Joan Smith submitted joke 3. Notice that

since each author now only appears once in the database, and independently of the

jokes submitted, we’ve avoided all the potential problems just outlined.

What’s really important to note about this database design is that we’re storing in-

formation about two types of things (jokes and authors), so it’s most appropriate to

have two tables. This is a rule of thumb that you should always keep in mind when

145Relational Database Design

designing a database: each type of entity (or “thing”) about which you want to be

able to store information should be given its own table.

To set up the aforementioned database from scratch is fairly simple (involving just

two CREATE TABLE queries), but since we’d like to make these changes in a

nondestructive manner (that is, without losing any of our precious knock-knock

jokes), we will use the ALTER TABLE command again. First, we remove the author-

related columns in the joke table:

ALTER TABLE joke DROP COLUMN authorname

ALTER TABLE joke DROP COLUMN authoremail

Now, we create our new table:

CREATE TABLE author (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(255),
 email VARCHAR(255)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

Finally, we add the authorid column to our joke table:

ALTER TABLE joke ADD COLUMN authorid INT

If you prefer, here are the CREATE TABLE commands that will create the two tables

from scratch:

chapter5/sql/2tables.sql (excerpt)

Code to create a simple joke table that stores an author ID

CREATE TABLE joke (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joketext TEXT,
 jokedate DATE NOT NULL,
 authorid INT
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

Code to create a simple author table

PHP & MySQL: Novice to Ninja146

CREATE TABLE author (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(255),
 email VARCHAR(255)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

All that’s left to do is add some authors to the new table, and assign authors to all

the existing jokes in the database by filling in the authorid column.5 Go ahead and

do this now if you like—it should give you some practice with INSERT and UPDATE

queries. If you’re rebuilding the database from scratch, however, here’s a series of

INSERT queries that will do the trick:

chapter5/sql/2tables.sql (excerpt)

Adding authors to the database
We specify the IDs so they are known when we add the jokes below.

INSERT INTO author SET
 id = 1,
 name = 'Kevin Yank',
 email = 'thatguy@kevinyank.com';

INSERT INTO author (id, name, email)
VALUES (2, 'Joan Smith', 'joan@example.com');

Adding jokes to the database

INSERT INTO joke SET
 joketext = 'Why did the chicken cross the road? To get to the
➥ other side!',
 jokedate = '2012-04-01',
 authorid = 1;

INSERT INTO joke (joketext, jokedate, authorid)
VALUES (
 'Knock-knock! Who\'s there? Boo! "Boo" who? Don\'t cry; it\'s only
➥ a joke!',
 '2012-04-01',
 1
);

5 For now, you’ll have to do this manually. But rest assured, in Chapter 7 we’ll see how PHP can insert

entries with the correct IDs automatically, reflecting the relationships between them.

147Relational Database Design

INSERT INTO joke (joketext, jokedate, authorid)
VALUES (
 'A man walks into a bar. "Ouch."',
 '2012-04-01',
 2
);

SELECT with Multiple Tables
With your data now separated into two tables, it may seem that you’re complicating

the process of data retrieval. Consider, for example, our original goal: to display a

list of jokes with the name and email address of the author next to each joke. In the

single-table solution, you could gain all the information needed to produce such a

list using a single SELECT query in your PHP code:

try
{
 $sql = 'SELECT joketext, authorname, authoremail FROM joke';
 $result = $pdo->query($sql);
}
catch (PDOException $e)
{
 $error = 'Error fetching jokes ' . $e->getMessage();
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $jokes[] = array(
 'id' => $row['id'],
 'text' => $row['joketext'],
 'name' => $row['authorname'],
 'email' => $row['authoremail']
);
}

With our new database layout, this would, at first, no longer seem possible. As the

author details of each joke are no longer stored in the joke table, you might think

that you’d have to fetch those details separately for each joke you wanted to display.

The code required would involve a call to the PDO query method for each and every

PHP & MySQL: Novice to Ninja148

joke to be displayed. This would be messy and slow. As your database of jokes in-

creased in size, the overhead of all those queries would drag down your site’s per-

formance in a big way.

Taking all this into account, it would seem that the “old way” was the better solution,

despite its weaknesses. Fortunately, relational databases like MySQL are designed

to make it easy to work with data stored in multiple tables! Using a new form of the

SELECT statement, called a join, you can have the best of both worlds. Joins allow

you to treat related data in multiple tables as if they were stored in a single table.

Here’s what the syntax of a simple join looks like:

SELECT columns
FROM table1 INNER JOIN table2
 ON condition(s) for data to be related

In your case, the columns we’re interested in are id and joketext in the joke table,

and name and email in the author table. The condition for an entry in the joke table

to be related to an entry in the author table is that the value of the authorid column

in the joke table is equal to the value of the id column in the author table.

Let’s look at an example of a join. The first two queries show you what’s contained

in the two tables—they’re unnecessary to perform the join. The third query is where

the action’s at:

SELECT id, LEFT(joketext, 20), authorid FROM joke

The results of this query are shown in Figure 5.3.

Figure 5.3. A peek at the contents of the joke table

SELECT * FROM author

The results of this query are shown in Figure 5.4.

149Relational Database Design

Figure 5.4. A peek at the contents of the author table

SELECT joke.id, LEFT(joketext, 20), name, email
FROM joke INNER JOIN author
 ON authorid = author.id

Finally, Figure 5.5 shows the results of this query.

Figure 5.5. The results of your first join

See? The results of the third SELECT—a join—group the values stored in the two

tables into a single table of results, with related data correctly appearing together.

Even though the data is stored in two tables, you can still access all the information

you need to produce the joke list on your web page with a single database query.

Note in the query that, since there are columns named id in both tables, you must

specify the name of the table when you refer to either id column. The joke table’s

id is referred to as joke.id, while the author table’s id column is author.id. If

the table name is unspecified, MySQL won’t know which id you’re referring to,

and will produce the error shown in Figure 5.6:

SELECT id, LEFT(joketext, 20), name, email
FROM joke INNER JOIN author
 ON authorid = id

Figure 5.6. MySQL has a low tolerance for ambiguity

PHP & MySQL: Novice to Ninja150

Now that you know how to access the data stored in your two tables efficiently, you

can rewrite the code for your joke list to take advantage of joins:

chapter5/jokes/index.php (excerpt)

try
{
 $sql = 'SELECT joke.id, joketext, name, email
 FROM joke INNER JOIN author
 ON authorid = author.id';
 $result = $pdo->query($sql);
}
catch (PDOException $e)
{
 $error = 'Error fetching jokes: ' . $e->getMessage();
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $jokes[] = array(
 'id' => $row['id'],
 'text' => $row['joketext'],

'name' => $row['name'],
 'email' => $row['email']
);
}

include 'jokes.html.php';

You can then update your template to display the author information for each joke:

chapter5/jokes/jokes.html.php (excerpt)

<?php foreach ($jokes as $joke): ?>
 <form action="?deletejoke" method="post">
 <blockquote>
 <p>
 <?php echo htmlspecialchars($joke['text'], ENT_QUOTES,
➥ 'UTF-8'); ?>
 <input type="hidden" name="id" value="<?php echo
➥ $joke['id']; ?>">
 <input type="submit" value="Delete">
 (by <a href="mailto:<?php

151Relational Database Design

 echo htmlspecialchars($joke['email'], ENT_QUOTES,
 'UTF-8'); ?>"><?php
 echo htmlspecialchars($joke['name'], ENT_QUOTES,
 'UTF-8'); ?>)
 </p>
 </blockquote>
 </form>
<?php endforeach; ?>

The resulting display is shown in Figure 5.7.

Figure 5.7. I wrote all the best ones myself

The more you work with databases, the more you’ll come to realize the power of

combining data from separate tables into a single table of results. Consider, for ex-

ample, the following query, which displays a list of all jokes written by Joan Smith:

SELECT joketext
FROM joke INNER JOIN author
 ON authorid = author.id
WHERE name = "Joan Smith"

The results that are output from this query, shown in Figure 5.8, come only from

the joke table, but the query uses a join to let it search for jokes based on a value

stored in the author table. There will be plenty more examples of clever queries

PHP & MySQL: Novice to Ninja152

like this throughout the book, but this example alone illustrates that the practical

applications of joins are many and varied, and, in almost all cases, can save you a

lot of work!

Figure 5.8. Joan’s joke

Simple Relationships
The type of database layout for a given situation is usually dictated by the form of

relationship that exists between the data that it needs to store. In this section, I’ll

examine the typical relationship types, and explain how best to represent them in

a relational database.

In the case of a simple one-to-one relationship, a single table is all you’ll need. An

example of a one-to-one relationship is the email address of each author in our joke

database. Since there will be one email address for each author, and one author for

each email address, there’s no reason to split the addresses into a separate table.6

A many-to-one relationship is a little more complicated, but you’ve already seen

one of these as well. Each joke in our database is associated with just one author,

but many jokes may have been written by that one author. This joke–author relation-

ship is many-to-one. I’ve already covered the problems that result from storing the

information associated with a joke’s author in the same table as the joke itself. In

brief, it can result in many copies of the same data, which are difficult to keep

synchronized and waste space. If we split the data into two tables and use an ID

column to link them together (making joins possible as shown before), all these

problems disappear.

A one-to-many relationship is simply a many-to-one relationship seen from the

opposite direction. As the joke–author relationship is many-to-one, the author–joke

relationship is one-to-many (there is one author for, potentially, many jokes). This

is easy to see in theory, but when you’re coming at a problem from the opposite

6 There are exceptions to this rule. For example, if a single table grows very large with lots of columns,

some of which are rarely used in SELECT queries, it can make sense to split those columns out into

their own table. This can improve the performance of queries on the now-smaller table.

153Relational Database Design

direction, it’s less obvious. In the case of jokes and authors, we started with a library

of jokes (the many) and then wanted to assign an author to each of them (the one).

Let’s now look at a hypothetical design problem where we start with the one and

want to add the many.

Say we wanted to allow each of the authors in our database (the one) to have multiple

email addresses (the many). When an inexperienced person in database design ap-

proaches a one-to-many relationship like this one, often the first thought is to try

to store multiple values in a single database field, as shown in Figure 5.9.

Figure 5.9. Never overload a table field to store multiple values as is done here

This would work, but to retrieve a single email address from the database, we’d

need to break up the string by searching for commas (or whatever special character

you chose to use as a separator); it’s a not-so-simple, potentially time-consuming

operation. Try to imagine the PHP code necessary to remove one particular email

address from a specific author! In addition, you’d need to allow for much longer

values in the email column, which could result in wasted disk space because the

majority of authors would have just one email address.

Now take a step back, and realize that this one-to-many relationship is just the same

as the many-to-one relationship we faced between jokes and authors. The solution,

therefore, is also the same: split the new entities (in this case, email addresses) into

their own table. The resulting database structure is shown in Figure 5.10.

PHP & MySQL: Novice to Ninja154

Figure 5.10. The authorid field associates each row of email with one row of author

Using a join with this structure, we can easily list the email addresses associated

with a particular author:

SELECT email
FROM author INNER JOIN email
 ON authorid = author.id
WHERE name = "Kevin Yank"

Many-to-many Relationships
Okay, you now have a steadily growing database of jokes published on your website.

It’s growing so quickly, in fact, that the number of jokes has become unmanageable!

Your site visitors are faced with a mammoth page that contains hundreds of jokes

without any structure whatsoever. We need to make a change.

You decide to place your jokes into the following categories: Knock-knock jokes,

“Crossing the road” jokes, Lawyer jokes, Light bulb jokes, and Political jokes. Re-

155Relational Database Design

membering our rule of thumb from earlier, you identify joke categories as a new

entity, and create a table for them:

CREATE TABLE category (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(255)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

Now you come to the daunting task of assigning categories to your jokes. It occurs

to you that a “political” joke might also be a “crossing the road” joke, and a “knock-

knock” joke might also be a “lawyer” joke. A single joke might belong to many cat-

egories, and each category will contain many jokes. This is a many-to-many rela-

tionship.

Once again, many inexperienced developers begin to think of ways to store several

values in a single column, because the obvious solution is to add a category column

to the joke table and use it to list the IDs of those categories to which each joke

belongs. A second rule of thumb would be useful here: if you need to store multiple

values in a single field, your design is probably flawed.

The correct way to represent a many-to-many relationship is by using a lookup

table. This is a table that contains no actual data, but lists pairs of entries that are

related. Figure 5.11 shows what the database design would look like for our joke

categories.

Figure 5.11. The jokecategory table associates pairs of rows from the joke and category tables

PHP & MySQL: Novice to Ninja156

The jokecategory table associates joke IDs (jokeid) with category IDs (categoryid).

In this example, we can see that the joke that starts with “How many lawyers …”

belongs to both the Lawyers and Light bulb categories.

A lookup table is created in much the same way as is any other table. The difference

lies in the choice of the primary key. Every table we’ve created so far has had a

column named id that was designated to be the PRIMARY KEY when the table was

created. Designating a column as a primary key tells MySQL to forbid two entries

in that column from having the same value. It also speeds up join operations based

on that column.

In the case of a lookup table, there is no single column that we want to force to have

unique values. Each joke ID may appear more than once, as a joke may belong to

more than one category, and each category ID may appear more than once, as a

category may contain many jokes. What we want to prevent is the same pair of

values appearing in the table twice. And, since the sole purpose of this table is to

facilitate joins, the speed benefits offered by a primary key would come in very

handy. For this reason, we usually create lookup tables with a multicolumn primary

key as follows:

CREATE TABLE jokecategory (
 jokeid INT NOT NULL,
 categoryid INT NOT NULL,
 PRIMARY KEY (jokeid, categoryid)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

This creates a table in which the jokeid and categoryid columns together form

the primary key. This enforces the uniqueness that’s appropriate to a lookup table,

preventing a particular joke from being assigned to a specific category more than

once, and speeds up joins that make use of this table.7

Now that your lookup table is in place and contains category assignments, you can

use joins to create several interesting and practical queries. This query lists all jokes

in the Knock-knock category:

7 If you like, you can use the CREATE TABLE and INSERT commands in Example 7.1 to create the

jokecategory table from scratch (and others, including the jokes within the tables) to follow along.

157Relational Database Design

SELECT joketext
FROM joke INNER JOIN jokecategory
 ON joke.id = jokeid
INNER JOIN category
 ON categoryid = category.id
WHERE name = "Knock-knock"

As you can see, this query uses two joins. First, it takes the joke table and joins it

to the jokecategory table; then it takes that joined data and joins it to the category

table. As your database structure becomes more complex, multijoin queries like this

one become common.

The following query lists the categories that contain jokes beginning with “How

many lawyers …”:

SELECT name
FROM joke INNER JOIN jokecategory
 ON joke.id = jokeid
INNER JOIN category
 ON categoryid = category.id
WHERE joketext LIKE "How many lawyers%"

And this query—which also makes use of our author table to join together the

contents of four tables—lists the names of all authors who have written knock-knock

jokes:

SELECT author.name
FROM joke INNER JOIN author
 ON authorid = author.id
INNER JOIN jokecategory
 ON joke.id = jokeid
INNER JOIN category
 ON categoryid = category.id
WHERE category.name = "Knock-knock"

One for Many, and Many for One
In this chapter, I explained the fundamentals of good database design, and we

learned how MySQL and, for that matter, all relational database management systems

provide support for the representation of different types of relationships between

entities. From your initial understanding of one-to-one relationships, you should

PHP & MySQL: Novice to Ninja158

now have expanded your knowledge to include many-to-one, one-to-many, and

many-to-many relationships.

In the process, you learned a few new features of common SQL commands. In par-

ticular, you learned how to use a SELECT query to join data spread across multiple

tables into a single set of results.

With the increased expressiveness that multiple database tables bring, you’re now

equipped to extend the simple “joke list” site you assembled in Chapter 4 to include

authors and categories, and that’s exactly what Chapter 7 will be all about. Before

you tackle this project, however, you should take some time to add to your PHP

skills. Just as you spent this chapter learning some of the finer points of MySQL

database design, Chapter 6 will teach you some of the subtleties of PHP program-

ming—which will make the job of building a more complete joke database site much

more fun.

159Relational Database Design

Chapter6
Structured PHP Programming
Before we plow headlong into the next enhancements of our joke database, let’s

spend a little time honing your “PHP-fu.” Specifically, I want to show you a few

techniques to better structure your code.

Structured coding techniques are useful in all but the simplest of PHP projects.

Already in Chapter 3, you’ve learned how to split up your PHP code into multiple

files: a controller and a set of associated templates. This lets you keep the server-

side logic of your site separate from the HTML code used to display the dynamic

content generated by that logic. In order to do this, you learned how to use the PHP

include command.

The PHP language offers many such facilities to help you add structure to your

code. The most powerful of these is undoubtedly its support for object oriented

programming (OOP), which we touched on briefly in Chapter 4. But there’s no need

to learn all the complexities of OOP to build complex (and well-structured) applic-

ations with PHP;1 thankfully, there are also opportunities for structuring your code

through the more basic features of PHP.

1 Indeed, possibly the most-used PHP application today, WordPress, is not written in the OOP style.

In this chapter, I’ll explore some simple ways to keep your code manageable and

maintainable without requiring you to become a total programming wizard (though

you might still like to become one later on!).

Include Files
Even very simple PHP-based websites often need the same piece of code in several

places. You already learned to use the PHP include command to load a PHP template

from inside your controller; it turns out you can use the same feature to save yourself

from having to write the same code again and again.

Include files (also known as just includes) contain snippets of PHP code that you

can then load into your other PHP scripts instead of having to retype them.

Including HTML Content
The concept of include files came long before PHP. If you’re an old codger like me

(which, in the Web world, means you’re over 25), you may have experimented with

Server-side Includes (SSIs). A feature of just about every web server out there, SSIs

let you put commonly used snippets of HTML (and JavaScript, and CSS) into include

files that you can then use in multiple pages.

In PHP, include files most commonly contain either pure PHP code or, in the case

of PHP templates, a mixture of HTML and PHP code. But you don’t have to put PHP

code in your include files. If you like, an include file can contain strictly static

HTML. This is most useful for sharing common design elements across your site,

such as a copyright notice to appear at the bottom of every page:

chapter6/static-footer/footer.inc.html.php

<div id="footer">
 The contents of this web page are copyright © 1998–2012
 Example Pty. Ltd. All Rights Reserved.
</div>

This file is a template fragment—an include file to be used by PHP templates. To

distinguish this type of file from others in your project, I recommend giving it a

name ending with .inc.html.php.

You can then use this fragment in any of your PHP templates:

PHP & MySQL: Novice to Ninja162

chapter6/static-footer/samplepage.html.php

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>A Sample Page</title>
 </head>
 <body>
 <p id="main">
 This page uses a static include to display a standard
 copyright notice below.
 </p>

<?php include 'footer.inc.html.php'; ?>
 </body>
</html>

Finally, here’s the controller that loads this template:

chapter6/static-footer/index.php

<?php
include 'samplepage.html.php';
?>

Figure 6.1 shows what the page looks like in the browser.

Figure 6.1. A static include displays the site’s copyright notice

163Structured PHP Programming

Now all you need to do to update your copyright notice is to edit footer.inc.html.php.

No more time-consuming, error-prone find-and-replace operations!

Of course, if you really want to make your life easier, you can just let PHP do the

work for you:

chapter6/dynamic-footer/footer.inc.html.php

<p id="footer">
 The contents of this web page are copyright ©
 1998–<?php echo date('Y'); ?> Example Pty. Ltd.
 All Rights Reserved.
</p>

Including PHP Code
On database driven websites, almost every controller script must establish a database

connection as its first order of business. As we’ve already seen, the code for doing

this is fairly substantial:

try
{
 $pdo = new PDO('mysql:host=localhost;dbname=ijdb', 'ijdbuser',
 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $error = 'Unable to connect to the database server.';
 include 'error.html.php';
 exit();
}

At some 12 lines long, it’s only a slightly cumbersome chunk of code, but having

to type it at the top of every controller script can quickly become annoying. Many

new PHP developers will often omit essential error checking to save typing (for

example, by leaving out the try-catch statement in this code), which can result in

a lot of lost time looking for the cause when an error does occur. Others will make

heavy use of the clipboard to copy pieces of code like this from existing scripts for

PHP & MySQL: Novice to Ninja164

use in new ones. Some even use features of their text editor software to store useful

pieces of code as snippets for frequent use.

But what happens when the database password or some other detail of the code

changes? Suddenly you’re on a treasure hunt to find every occurrence of the code

in your site to make the necessary change—a task that can be especially frustrating

if you’ve used several variations of the code that you need to track down and update.

Figure 6.2 illustrates how include files can help in this situation. Instead of repeating

the code fragment in every file that needs it, write it just once in a separate

file—known as the include file. That file can then be included in any other PHP

files that need to use it.

Figure 6.2. Include files allow several scripts to share common code

165Structured PHP Programming

Let’s apply this technique to create the database connection in our joke list example

to see how it works in detail. First, create a file called db.inc.php2 and place the

database connection code inside it:

chapter6/jokes/db.inc.php

<?php
try
{
 $pdo = new PDO('mysql:host=localhost;dbname=ijdb', 'ijdbuser',
 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $error = 'Unable to connect to the database server.';
 include 'error.html.php';
 exit();
}

As you can see, include files are just like normal PHP files, but typically they contain

snippets of code that are only useful within the context of a larger script. Now you

can put this db.inc.php file to use in your controller:

chapter6/jokes/index.php

<?php
if (get_magic_quotes_gpc())
{
 $process = array(&$_GET, &$_POST, &$_COOKIE, &$_REQUEST);
 while (list($key, $val) = each($process))
 {
 foreach ($val as $k => $v)
 {

2 The current convention of naming include files with a .inc.php extension allows you to easily identify

them among ordinary PHP scripts, while at the same time ensuring that they’re identified and processed

as PHP scripts by the web server and the development tools you use. In practice, though, you can name

include files however you like. Previously, it was common to simply give include files an .inc extension,

but unless the web server was specifically configured to process such files as PHP scripts or protect them

from being downloaded, there was a security risk: users who guessed the names of your include files

could download them as plain text and gain access to sensitive information (such as database passwords)

that appeared in the source code.

PHP & MySQL: Novice to Ninja166

 unset($process[$key][$k]);
 if (is_array($v))
 {
 $process[$key][stripslashes($k)] = $v;
 $process[] = &$process[$key][stripslashes($k)];
 }
 else
 {
 $process[$key][stripslashes($k)] = stripslashes($v);
 }
 }
 }
 unset($process);
}

if (isset($_GET['addjoke']))
{
 include 'form.html.php';
 exit();
}

if (isset($_POST['joketext']))
{
include 'db.inc.php';

 try
 {
 $sql = 'INSERT INTO joke SET
 joketext = :joketext,
 jokedate = CURDATE()';
 $s = $pdo->prepare($sql);
 $s->bindValue(':joketext', $_POST['joketext']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted joke: ' . $e->getMessage();
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

167Structured PHP Programming

if (isset($_GET['deletejoke']))
{
include 'db.inc.php';

 try
 {
 $sql = 'DELETE FROM joke WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting joke: ' . $e->getMessage();
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

include 'db.inc.php';

try
{
 $sql = 'SELECT joke.id, joketext, name, email
 FROM joke INNER JOIN author
 ON authorid = author.id';
 $result = $pdo->query($sql);
}
catch (PDOException $e)
{
 $error = 'Error fetching jokes: ' . $e->getMessage();
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $jokes[] = array(
 'id' => $row['id'],
 'text' => $row['joketext'],
 'name' => $row['name'],
 'email' => $row['email']

PHP & MySQL: Novice to Ninja168

);
}

include 'jokes.html.php';

As you can see, wherever our controller needs a database connection, we can obtain

it simply by including the db.inc.php file with an include statement. And because

the code to do this is a simple one-liner, we can make our code more readable by

using a separate include statement just before each SQL query in our controller.

Previously, we established a database connection at the top of the controller, regard-

less of whether the code that followed would end up needing one or not.

When PHP encounters an include statement, it puts the current script on hold and

runs the specified PHP script. When it’s finished, it returns to the original script

and picks up where it left off.

Include files are the simplest way to structure PHP code. Because of their simplicity,

they’re also the most widely used method. Even very simple web applications can

benefit greatly from using include files.

Types of Includes
The include statement we’ve used so far is actually only one of four statements

that can be used to include another PHP file in a currently running script:

■ include

■ require

■ include_once

■ require_once

include and require are almost identical. The only difference between them is

what happens when the specified file is unable to be included (that is, if it doesn’t

exist, or if the web server doesn’t have permission to read it). With include, a

warning is displayed and the script continues to run. With require, an error is

displayed and the script stops.3

3 In production environments, warnings and errors are usually disabled in php.ini. In such environments,

a failed include has no visible effect (aside from the lack of content that would normally have been

generated by the include file), while a failed require causes the page to stop at the point of failure.

169Structured PHP Programming

In general, you should use require whenever the main script is unable to work

without the included script. I do recommend using include whenever possible,

however. Even if the db.inc.php file for your site is unable to load, for example, you

might still want to let the script for your front page continue to load. None of the

content from the database will display, but the user might be able to use the Contact

Us link at the bottom of the page to let you know about the problem!

include_once and require_once work just like include and require, respect-

ively—but if the specified file has already been included at least once for the current

page request (using any of the four statements described here), the statement will

be ignored. This is handy for include files performing a task that only needs to be

done once, like connecting to the database.

Figure 6.3 shows include_once in action. In the figure, index.php includes two files:

categories.inc.php and top10.inc.php. Both files use include_once to include

db.inc.php, as they both need a database connection in order to do their job. As

shown, PHP will ignore the attempt to include db.inc.php in top10.inc.php because

the file was already included in categories.inc.php. As a result, only one database

connection is created.

Figure 6.3. Use include_once to avoid opening a second database connection

When a failed require occurs before any content is sent to the browser, the unlucky user will see

nothing but a blank page!

PHP & MySQL: Novice to Ninja170

include_once and require_once are also useful for loading function libraries, as

we’ll see in the section called “Custom Functions and Function Libraries”.

Shared Include Files
In all the examples I’ve shown you so far, I’ve assumed that the include file is located

in the same directory on your web server as the file(s) that use it. Often, this is an

invalid assumption! On many sites, you’ll want to share include files among scripts

that span potentially complex directory structures. A solid candidate for a shared

include file would be the database connection include, db.inc.php.

So the question is, when the include file is in a different directory, how does a PHP

script find it? The most obvious method is to specify the location of the include file

as an absolute path. Here’s how this would look on a Windows server:4

<?php include 'C:/Program Files/Apache Software Foundation/Apache2.2
➥/htdocs/includes/db.inc.php'; ?>

And here’s the code on a Linux server:

<?php include '/usr/local/apache2/htdocs/includes/db.inc.php'; ?>

While this method will work, it’s undesirable because it ties your site’s code to your

web server configuration. Ideally, you should be able to drop your PHP-based

website onto any PHP-enabled web server and just watch it run. This is particularly

important because many developers will build a site on one server, then deploy it

publicly on a different server. That’s impractical if your code refers to drives and

directories that are specific to one particular server. And, even if you do have the

luxury of working on a single server, you’ll be kicking yourself if you ever need to

move your website to another drive/directory on that server.

A better method is to let PHP keep track of the document root of your web server,

then specify the path from that location. The document root is the directory on your

server that corresponds to the root directory of your website. For example, to make

index.php available at http://www.example.com/index.php, you’d have to place it in

4 I recommend always using forward slashes in your paths, even when you’re working with a Windows

server. PHP is smart enough to do the conversion for you, and using forward slashes saves you from

having to type double-backslashes (\\) to represent single backslashes in PHP strings.

171Structured PHP Programming

the document root directory on the www.example.com web server. In any PHP

script, you can obtain the document root of your web server using $_SERVER

['DOCUMENT_ROOT']. As I briefly explained in Chapter 4, $_SERVER is an array

variable that’s automatically created by PHP, just like $_GET, $_POST, and $_REQUEST.

$_SERVER contains a whole bunch of information supplied by your web server, in-

cluding $_SERVER['DOCUMENT_ROOT'].

Here’s an example:

<?php include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php'; ?>

This will work on Windows, Mac, and Linux servers with either Apache or Internet

Information Services (IIS) installed.5

Another excellent candidate for a shared include file is the snippet of code that we

used to reverse the changes to submitted values made by PHP’s misguided magic

quotes feature, which we looked at in Chapter 4. Simply drop this code into its own

file:

chapter6/includes/magicquotes.inc.php

<?php
if (get_magic_quotes_gpc())
{
 $process = array(&$_GET, &$_POST, &$_COOKIE, &$_REQUEST);
 while (list($key, $val) = each($process))
 {
 foreach ($val as $k => $v)
 {
 unset($process[$key][$k]);
 if (is_array($v))
 {
 $process[$key][stripslashes($k)] = $v;
 $process[] = &$process[$key][stripslashes($k)];
 }

5 The one place where you’re unable to count on $_SERVER['DOCUMENT_ROOT'] is on a server

running the Common Gateway Interface (CGI) version of PHP. The CGI specification does not require

the web server to inform PHP of the document root directory for the site, so this value will usually be

absent on such configurations. Thankfully, CGI installations of PHP are increasingly rare, and should

certainly be avoided in production environments. If you followed the installation instructions for PHP

in this book, you can rest assured that $_SERVER['DOCUMENT_ROOT'] will work.

PHP & MySQL: Novice to Ninja172

 else
 {
 $process[$key][stripslashes($k)] = stripslashes($v);
 }
 }
 }
 unset($process);
}

From this point on, you can use this include file to remove the effects of magic

quotes with a single line at the top of your controller scripts:

<?php
include $_SERVER['DOCUMENT_ROOT'] . '/includes/magicquotes.inc.php';

I’ll use the two shared include files discussed in this section—the database connec-

tion script and the magic quotes removal script—in many of the examples from this

point forward in the book. You’ll be able to follow along too, as long as the two files

in question (db.inc.php and magicquotes.inc.php) can be found in a directory called

includes situated in the document root directory of your web server.

Custom Functions and Function Libraries
By this point, you’re probably quite comfortable with the idea of functions. A

function in PHP that you can invoke at will, where you’d usually provide one or

more arguments for it to use, and often receiving a return value as a result. You can

use PHP’s vast library of functions to do just about anything a PHP script could ever

be asked to do, from retrieving the current date (date) to generating graphics on the

fly (imagecreatetruecolor6).

But what you may be unaware of is that you can create functions of your own!

Custom functions, once defined, work just like PHP’s built-in functions, and they

can do anything a normal PHP script can do.

Let’s start with a really simple example. Say you had a PHP script that needed to

calculate the area of a rectangle given its width (3) and height (5). Thinking back to

6 http://www.php.net/imagecreatetruecolor

173Structured PHP Programming

http://www.php.net/imagecreatetruecolor

your basic geometry classes in school, you should recall that the area of a rectangle

is its width multiplied by its height:

$area = 3 * 5;

But it would be nicer to have a function called area that simply calculated the area

of a rectangle given its dimensions:

chapter6/calculate-area/index.php (excerpt)

$area = area(3, 5);

As it happens, PHP has no built-in area function, but clever PHP programmers like

you and me can just roll up our sleeves and write the function ourselves:

chapter6/calculate-area/area-function.inc.php

<?php
function area($width, $height)
{
 return $width * $height;
}

This include file defines a single custom function: area. The <?php marker is

probably the only line that looks familiar to you in this code. What we have here

is a function declaration; let me break it down for you one line at a time:

function area($width, $height)

The keyword function tells PHP that we wish to declare a new function for

use in the current script. Then, we supply the function with a name (in this

case, area). Function names operate under the same rules as variable

names—they are case-sensitive, must start with a letter or an underscore (_),

and may contain letters, numbers, and underscores—except, of course, that

there’s no dollar sign prefix. Instead, function names are always followed by a

set of parentheses ((…)), which may or may not be empty.

The parentheses that follow a function name enclose the list of arguments that

the function will accept. You should already be familiar with this from your

experience with PHP’s built-in functions. For example, when you use date to

PHP & MySQL: Novice to Ninja174

retrieve the current date as a PHP string, you provide a string describing the

format you want the date to be written in within the parentheses.

When declaring a custom function, instead of giving a list of values for the ar-

guments, you give a list of variable names. In this example, we list two variables:

$width and $height. When the function is called, it will therefore expect to be

given two arguments. The value of the first argument will be assigned to $width,

while the value of the second will be assigned to $height. Those variables can

then be used to perform the calculation within the function.

{

Speaking of calculations, the rest of the function declaration is the code that

performs the calculation, or does whatever else the function is supposed to do.

That code must be enclosed in a set of braces ({…}), so here’s the opening brace.

return $width * $height;

You can think of the code within those braces as a miniature PHP script. This

function is a simple one, because it contains just a single statement: a return

statement.

A return statement can be used in the code of a function to jump back into the

main script immediately. When the PHP interpreter hits a return statement, it

immediately stops running the code of this function and goes back to where the

function was called. It’s sort of an ejection seat for functions!

In addition to breaking out of the function, the return statement lets you specify

a value for the function to return to the code that called it. In this case, the value

we’re returning is $width * $height—the result of multiplying the first para-

meter by the second.

}

The closing brace marks the end of the function declaration.

In order to use this function, we must first include the file containing the function

declaration:

175Structured PHP Programming

chapter6/calculate-area/index.php

<?php
include_once 'area-function.inc.php';

$area = area(3, 5);

include 'output.html.php';

Technically, you could write the function declaration within the controller script

itself, but by putting it in an include file you can reuse the function in other scripts

much more easily. It’s tidier, too. To use the function in the include file, a PHP

script need only include it with include_once (or require_once if the function is

critical to the script).

Avoid using include or require to load include files that contain functions; as ex-

plained in the section called “Types of Includes”, that would risk defining the

functions in the library more than once and covering the user’s screen with PHP

warnings.

It’s standard practice (but not required) to include your function libraries at the top

of the script, so that you can quickly see which include files containing functions

are used by any particular script.

What we have here are the beginnings of a function library—an include file that

contains declarations for a group of related functions. If you wanted to, you could

rename the include file to geometry.inc.php and add to it a whole bunch of functions

to perform various geometrical calculations.

Variable Scope and Global Access
One big difference between custom functions and include files is the concept of

variable scope. Any variable that exists in the main script will also be available and

can be changed in the include file. While this is useful sometimes, more often it’s

a pain in the neck. Unintentionally overwriting one of the main script’s variables

in an include file is a common cause of error—and one that can take a long time to

track down and fix! To avoid such problems, you need to remember the variable

names in the script that you’re working on, as well as any that exist in the include

files your script uses.

PHP & MySQL: Novice to Ninja176

Functions protect you from such problems. Variables created inside a function (in-

cluding any argument variables) exist only within that function, and disappear

when the function has run its course. In programmer-speak, the scope of these

variables is the function; they’re said to have function scope. In contrast, variables

created in the main script outside of any function are unavailable inside functions.

The scope of these variables is the main script, and they’re said to have global scope.

Okay, but beyond the fancy names, what does this really mean for us? It means that

you can have a variable called, say, $width in your main script, and another variable

called $width in your function, and PHP will treat these as two entirely separate

variables! Perhaps more usefully, you can have two different functions each using

the same variable names, and they’ll have no effect on each other because their

variables are kept separate by their scope.

On some occasions, you may actually want to use a global-scope variable (global

variable for short) inside one of your functions. For example, the db.inc.php file

creates a database connection for use by your script and stores it in the global variable

$pdo. You might then want to use this variable in a function that needed to access

the database.

Disregarding variable scope, here’s how you may write such a function:

<?php
include_once $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

function totalJokes()
{
 try
 {
 $result = $pdo->query('SELECT COUNT(*) FROM joke');
 }
 catch (PDOException $e)
 {
 $error = 'Database error counting jokes!';
 include 'error.html.php';
 exit();
 }

 $row = $result->fetch();

177Structured PHP Programming

 return $row[0];
}

Shared Database Include in Use!

Note that the first line of this controller script uses a shared copy of the db.inc.php

file in the includes directory, as discussed earlier in the section called “Shared

Include Files”. Make sure you’ve placed a copy of this file (and the associated

error.html.php file that it uses to display errors) in the includes directory in your

server’s document root; otherwise, PHP will complain that it’s unable to find the

db.inc.php file.

The problem here is that the global variable $pdo (shown in bold) is unavailable

within the scope of the function. If you attempt to call this function as it is, you’ll

receive the errors shown in Figure 6.4.

Figure 6.4. The totaljokes function cannot access $pdo

Now, of course, you could just add an argument to the totaljokes function and

send it the value of $pdo that way, but having to pass this value to every function

that needs database access would become quite tedious.

PHP & MySQL: Novice to Ninja178

Instead, let’s use the global variable directly within our function. There are two

ways to do this. The first is to import the global variable into the function’s scope:

chapter6/totaljokes-global1/totaljokes-function.inc.php

<?php
include_once $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

function totalJokes()
{
global $pdo;

 try
 {
 $result = $pdo->query('SELECT COUNT(*) FROM joke');
 }
 catch (PDOException $e)
 {
 $error = 'Database error counting jokes!';
 include 'error.html.php';
 exit();
 }

 $row = $result->fetch();

 return $row[0];
}

The global statement, shown here in bold, lets you give a list of global variables

(separated by commas, if you want to import more than one) that you want to make

available within the function. Programmers call this importing a variable. This is

different from passing the variable as an argument, because if you modify an impor-

ted variable inside the function, the value of the variable changes outside the

function, too.

The alternative to importing the variable is to use the $GLOBALS array:

chapter6/totaljokes-global2/totaljokes-function.inc.php

<?php
include_once $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

function totalJokes()

179Structured PHP Programming

{
 try
 {
 $result = $GLOBALS['pdo']->query('SELECT COUNT(*) FROM joke');
 }
 catch (PDOException $e)
 {
 $error = 'Database error counting jokes!';
 include 'error.html.php';
 exit();
 }

 $row = $result->fetch();

 return $row[0];
}

As you can see, all we’ve done here is replace $pdo with $GLOBALS['pdo']. The

special PHP array $GLOBALS is available across all scopes (for this reason, it’s known

as a superglobal), and contains an entry for every variable in the global scope. You

can therefore access any global variable within a function as $GLOBALS['name'],

where name is the name of the global variable (without a dollar sign). The advantage

of using $GLOBALS is that you can still create a separate function-scope variable

called $pdo if you want.

Other special PHP arrays that are superglobal, and are therefore accessible inside

functions, include $_SERVER, $_GET, $_POST, $_COOKIE, $_FILES, $_ENV, $_REQUEST,

and $_SESSION. See the page on superglobals in the PHP Manual for full details.7

Structure in Practice: Template Helpers
To cap this chapter off, let’s make a start on a function library you can actually use.

There are few functions more tedious to call in the PHP language than

htmlspecialchars. As I explained in Chapter 3, every time you wish to output

some piece of text that was submitted by a user, you need to use htmlspecialchars

to prevent hackers from inserting malicious code into your page.

7 http://php.net/manual/en/language.variables.superglobals.php

PHP & MySQL: Novice to Ninja180

http://php.net/manual/en/language.variables.superglobals.php

For example, this is the code we’ve used to output user-submitted jokes in our joke

list examples so far:

chapter6/jokes/jokes.html.php (excerpt)

<?php echo htmlspecialchars($joke['text'], ENT_QUOTES, 'UTF-8'); ?>

As well as htmlspecialchars being an inordinately long function name, it takes

three arguments—two of which are always the same!

Because outputting text as HTML is such a common task in PHP template code,

let’s write a much shorter function that does this for us:

chapter6/includes/helpers.inc.php (excerpt)

<?php
function html($text)
{
 return htmlspecialchars($text, ENT_QUOTES, 'UTF-8');
}

With this custom html function, we can call htmlspecialcharswith a lot less typing!

<?php echo html($joke['text']); ?>

We can take this even further by writing a second custom function, htmlout, that

takes the value generated by the first and outputs it:

chapter6/includes/helpers.inc.php

<?php
function html($text)
{
 return htmlspecialchars($text, ENT_QUOTES, 'UTF-8');
}

function htmlout($text)
{
 echo html($text);
}

181Structured PHP Programming

I like to name these little convenience functions that make writing templates easier

template helpers. Here’s what our joke listing template looks like when we use

these helpers:

chapter6/jokes-helpers/jokes.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>List of Jokes</title>
 </head>
 <body>
 <p>Add your own joke</p>
 <p>Here are all the jokes in the database:</p>
 <?php foreach ($jokes as $joke): ?>
 <form action="?deletejoke" method="post">
 <blockquote>
 <p>
 <?php htmlout($joke['text']); ?>
 <input type="hidden" name="id" value="<?php echo
 $joke['id']; ?>">
 <input type="submit" value="Delete">
 (by <a href="mailto:<?php htmlout($joke['email']); ?>">
 <?php htmlout($joke['name']); ?>)
 </p>
 </blockquote>
 </form>
 <?php endforeach; ?>
 </body>
</html>

Helpers Belong in the Shared includes Directory

Like db.inc.php and magicquotes.inc.php, the helpers.inc.php file belongs in the

shared includes directory under your server’s document root, as described in the

section called “Shared Include Files”.

As you write templates with more and more user-submitted content in them, these

little gems will come in very handy indeed!

PHP & MySQL: Novice to Ninja182

While you’re at it, update the controller script to use the shared includes db.inc.php

and magicquotes.inc.php:

chapter6/jokes-helpers/index.php

<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
➥ '/includes/magicquotes.inc.php';

if (isset($_GET['addjoke']))
{
 include 'form.html.php';
 exit();
}

if (isset($_POST['joketext']))
{
include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 try
 {
 $sql = 'INSERT INTO joke SET
 joketext = :joketext,
 jokedate = CURDATE()';
 $s = $pdo->prepare($sql);
 $s->bindValue(':joketext', $_POST['joketext']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted joke: ' . $e->getMessage();
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

if (isset($_GET['deletejoke']))
{
include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 try
 {

183Structured PHP Programming

 $sql = 'DELETE FROM joke WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting joke: ' . $e->getMessage();
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

try
{
 $sql = 'SELECT joke.id, joketext, name, email
 FROM joke INNER JOIN author
 ON authorid = author.id';
 $result = $pdo->query($sql);
}
catch (PDOException $e)
{
 $error = 'Error fetching jokes: ' . $e->getMessage();
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $jokes[] = array(
 'id' => $row['id'],
 'text' => $row['joketext'],
 'name' => $row['name'],
 'email' => $row['email']
);
}

include 'jokes.html.php';

PHP & MySQL: Novice to Ninja184

The Best Way
In this chapter, I have helped you to rise above the basic questions of what PHP can

do for you, and begin to look for the best way to code a solution. Sure, you can ap-

proach many simple scripts as lists of actions you want PHP to do for you, but when

you tackle site-wide issues such as database connections, shared navigation elements,

visitor statistics, and access control systems, it really pays off to structure your code

carefully.

We’ve now explored a couple of simple but effective devices for writing structured

PHP code. Include files let you reuse a single piece of code across multiple pages

of your site, greatly reducing the burden when you need to make changes. Writing

your own functions to put in these include files lets you build powerful libraries

of functions that can perform tasks as needed and return values to the scripts that

call them. These new techniques will pay off in a big way in the rest of this book.

If you want to take the next step into structuring your PHP code, you’ll want to ex-

plore PHP’s object oriented programming (OOP) features. The section on Classes

and Objects in The PHP Manual8 has some useful information on the subject, but

for a more complete guide you’ll want to check out PHP Master: Write Cutting-edge

Code.9

In Chapter 7, you’ll use all the knowledge you’ve gained so far, plus a few new

tricks, to build a content management system in PHP. The aim of such a system is

to provide a customized, secure, web-based interface that enables you to manage

the contents of your site’s database, instead of requiring you to type everything into

phpMyAdmin by hand.

8 http://www.php.net/oop5
9 http://www.sitepoint.com/books/phppro1/

185Structured PHP Programming

http://www.php.net/oop5
http://www.sitepoint.com/books/phppro1/
http://www.sitepoint.com/books/phppro1/

Chapter7
A Content Management System
To make the leap from a web page that displays information stored in a database to

a completely database driven website, we need to add a content management system

(CMS). Such a system usually takes the form of a series of web pages, access to

which is restricted to users who are authorized to make changes to the site. These

pages provide a database administration interface that allows a user to view and

change the information stored in the database without bothering with the mundane

details of SQL queries.

We built the beginnings of a CMS at the end of Chapter 4, where we allowed site

visitors to add and delete jokes using a web-based form and a Delete button, respect-

ively. While impressive, these are features that you’d normally exclude from the

interface presented to casual site visitors. For example, you’d want to prevent visitors

from adding offensive material to your website without your knowledge. And you

definitely don’t want just anyone to be able to delete jokes from your site.

By relegating those dangerous features to the restricted-access site administration

pages, you avoid the risk of exposing your data to the average user, and you maintain

the power to manage the contents of your database without having to memorize

SQL queries. In this chapter, we’ll expand on the capabilities of our joke management

system to take advantage of the enhancements we made to our database in Chapter 5.

Specifically, we’ll allow a site administrator to manage authors and categories, and

assign these to appropriate jokes.

As we have seen, these administration pages must be protected by an appropriate

access-restriction scheme. One approach would be to configure your web server to

protect the relevant PHP files by prompting users for valid usernames and passwords.

On Apache servers, you can do this with an .htaccess file that lists authorized users.

Another method protects the administration pages with PHP itself. This option is

generally more flexible and produces a much slicker result, but it takes a bit more

work to set up. I’ll show you how it’s done in Chapter 9.

For now, let’s focus on building the pages that will make up your CMS.

The Front Page
At the end of Chapter 5, your database contained tables for three types of entities:

jokes, authors, and joke categories. This database layout is represented in Figure 7.1.

Note that we’re sticking with our original assumption that we’ll have one email

address per author.

Figure 7.1. The structure of the finished ijdb database contains three entities

PHP & MySQL: Novice to Ninja188

If you need to recreate this table structure from scratch, here are the SQL queries

to do so, along with some sample data:

chapter7/sql/ijdb.sql

CREATE TABLE joke (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joketext TEXT,
 jokedate DATE NOT NULL,
 authorid INT
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

CREATE TABLE author (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(255),
 email VARCHAR(255)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

CREATE TABLE category (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(255)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

CREATE TABLE jokecategory (
 jokeid INT NOT NULL,
 categoryid INT NOT NULL,
 PRIMARY KEY (jokeid, categoryid)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

Sample data
We specify the IDs so they are known when we add related entries

INSERT INTO author (id, name, email) VALUES
(1, 'Kevin Yank', 'thatguy@kevinyank.com'),
(2, 'Joan Smith', 'joan@example.com');

INSERT INTO joke (id, joketext, jokedate, authorid) VALUES
(1, 'Why did the chicken cross the road? To get to the other side!',
➥ '2012-04-01', 1),
(2, 'Knock-knock! Who\'s there? Boo! "Boo" who? Don\'t cry; it\'s
➥ only a joke!', '2012-04-01', 1),
(3, 'A man walks into a bar. "Ouch."', '2012-04-01', 2),
(4, 'How many lawyers does it take to screw in a lightbulb? I can\'t
➥ say: I might be sued!', '2012-04-01', 2);

189A Content Management System

INSERT INTO category (id, name) VALUES
(1, 'Knock-knock'),
(2, 'Cross the road'),
(3, 'Lawyers'),
(4, 'Walk the bar');

INSERT INTO jokecategory (jokeid, categoryid) VALUES
(1, 2),
(2, 1),
(3, 4),
(4, 3);

The front page of the content management system, therefore, will contain links to

pages that manage these three entities. The following HTML code produces the index

page shown in Figure 7.2:

chapter7/admin/index.html

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Joke CMS</title>
 </head>
 <body>
 <h1>Joke Management System</h1>

 Manage Jokes
 Manage Authors
 Manage Joke Categories

 </body>
</html>

PHP & MySQL: Novice to Ninja190

Figure 7.2. The Joke CMS index page offers three links

Each of these links points to a different subdirectory in our code: jokes, authors, and

categories. Each directory will contain the controller (index.php) and associated

templates needed to manage the corresponding entities in our database.

Managing Authors
Let’s begin with the code that will handle adding new authors, and deleting and

editing existing ones. All of this code will go in the authors subdirectory.

The first information we’ll present to an administrator needing to manage authors

is a list of all authors currently stored in the database. Code-wise, this is the same

as listing the jokes in the database. As we’ll want to allow administrators to delete

and edit existing authors, we’ll include buttons for these actions next to each author’s

name. Just like the Delete buttons we added at the end of Chapter 4, these buttons

will send the ID of the associated author, so that the controller knows which author

the administrator wishes to edit or delete. Finally, we’ll provide an Add new author

link that leads to a form similar in operation to the Add your own joke link we created

in Chapter 4.

Here’s the controller code to do this:

191A Content Management System

chapter7/admin/authors/index.php (excerpt)

// Display author list
include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

try
{
 $result = $pdo->query('SELECT id, name FROM author');
}
catch (PDOException $e)
{
 $error = 'Error fetching authors from the database!';
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $authors[] = array('id' => $row['id'], 'name' => $row['name']);
}

include 'authors.html.php';

There should be no surprises for you in this code, but do note that the database

connection is created using the shared include file (db.inc.php) stored in the includes

directory under the document root.

Here’s the template that the code uses to display the list of authors:

chapter7/admin/authors/authors.html.php (excerpt)

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Manage Authors</title>
 </head>
 <body>
 <h1>Manage Authors</h1>
 <p>Add new author</p>

 <?php foreach ($authors as $author): ?>

PHP & MySQL: Novice to Ninja192

 <form action="" method="post">
 <div>
 <?php htmlout($author['name']); ?>
 <input type="hidden" name="id" value="<?php
 echo $author['id']; ?>">
 <input type="submit" name="action" value="Edit">
 <input type="submit" name="action" value="Delete">
 </div>
 </form>

 <?php endforeach; ?>

 <p>Return to JMS home</p>
 </body>
</html>

Again, this code should be fairly familiar to you by now. A few points of interest:

This template will use the same shared include file we developed in Chapter 6

to make outputting values safely with htmlspecialchars less tedious.

This link sends a query string (?add) to our controller so that it can tell when

the user wants to add a new author.

Notice the empty action attribute. When submitted, this form will be asking

our controller either to edit or to delete the author. In Chapter 4, we used a

query string (?deletejoke) in the action attribute to signal the action to be

performed to our controller. Since the action to be performed will be up to the

user in this example, we’ll use a different method of communicating it to the

controller.

Here we use our custom htmlout function to output each author’s name safely.

This form contains two submit buttons: one to edit the author and another to

delete the author. We’ll give each button the same name attribute value (action)

so that our controller will be able to tell which button was clicked just by

checking the submitted value for that name ($_POST['action']).

Figure 7.3 shows the list of authors produced by this template.

193A Content Management System

Figure 7.3. The maintenance of author details begins with the Manage Authors interface

Deleting Authors
When the user clicks one of the Delete buttons, our controller should remove the

corresponding author from the database using the author’s ID submitted with the

form.

As we’ve seen before, this is frighteningly easy to do, but there’s added complexity

here. Remember that our joke table has an authorid column that indicates the author

responsible for any given joke. When we remove an author from the database, we

must also remove any references to that author in all tables. Otherwise, our database

might contain jokes associated with nonexistent authors.

We have three possible ways to handle this situation:

■ We prohibit users from deleting authors that are associated with jokes in the

database.

■ When we delete an author, we also delete any jokes attributed to that author.

■ When we delete an author, we set the authorid of any jokes attributed to that

author to NULL to indicate that they have no author.

When we take measures like these to preserve the relationships in our database, we

are said to be protecting the database’s referential integrity. MySQL, like most

PHP & MySQL: Novice to Ninja194

database servers, supports a feature called foreign key constraints that can do this

automatically. By setting up these constraints, you can instruct MySQL to take any

of the steps listed in order to keep your data properly related.

We’ll look at foreign key constraints in Chapter 10, but we won’t use them here. If

we did we’d be defining some of the behavior of our CMS in our PHP code, while

defining other aspects of its behavior in our database design. If we did this, and

then later decided that we wanted to change how deleting an author worked (for

example, preventing the user from deleting authors with any jokes to their name),

we’d need to remember to make adjustments in both places. Instead, we can keep

our author-deleting logic all in our PHP code, making life easier for whoever might

need to make changes to your code in the future (even if it’s you!).

Since most authors would like us to give credit when using their jokes, we’ll choose

the second option: delete all associated jokes when we delete an author. This also

saves us from having to handle jokes with NULL values in the authorid column

when we display our library of jokes.

As we’ll be deleting jokes, there’s yet another layer of complexity to consider. Jokes

may be assigned to categories by means of entries in the jokecategory table. When

we delete jokes, we must also ensure that such entries are removed from the database.

In summary, our controller will delete an author, any jokes belonging to that author,

and any category assignments that pertain to those jokes.

The code to do all this is rather lengthy, as you might imagine. Take your time to

read through it and see if you can understand how it works:

chapter7/admin/authors/index.php (excerpt)

if (isset($_POST['action']) and $_POST['action'] == 'Delete')
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 // Get jokes belonging to author
 try
 {
 $sql = 'SELECT id FROM joke WHERE authorid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }

195A Content Management System

 catch (PDOException $e)
 {
 $error = 'Error getting list of jokes to delete.';
 include 'error.html.php';
 exit();
 }

$result = $s->fetchAll();

// Delete joke category entries
 try
 {
 $sql = 'DELETE FROM jokecategory WHERE jokeid = :id';
 $s = $pdo->prepare($sql);

 // For each joke
 foreach ($result as $row)
 {
 $jokeId = $row['id'];
 $s->bindValue(':id', $jokeId);
 $s->execute();
 }
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting category entries for joke.';
 include 'error.html.php';
 exit();
 }

 // Delete jokes belonging to author
 try
 {
 $sql = 'DELETE FROM joke WHERE authorid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting jokes for author.';
 include 'error.html.php';
 exit();
 }

PHP & MySQL: Novice to Ninja196

 // Delete the author
 try
 {
 $sql = 'DELETE FROM author WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting author.';
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

Although this code will be mostly familiar to you, there are a few new twists, which

are highlighted in bold.

The first element that may seem unfamiliar is the if statement that triggers it all:

chapter7/admin/authors/index.php (excerpt)

if (isset($_POST['action']) and $_POST['action'] == 'Delete')

As we saw in the section called “Managing Authors”, the user asks for an author to

be deleted by clicking the Delete button next to the author name. Since the button’s

name attribute is set to action, we can detect this button click by checking if

$_POST['action'] is set, and if so, check if its value is 'Delete'.

Next, there’s this statement:

chapter7/admin/authors/index.php (excerpt)

 $result = $s->fetchAll();

At this point in the script, we’ve just executed a SELECT query to retrieve all the

jokes belonging to the author that we’re about to delete. With this list of jokes in

hand, we’re going to execute a series of DELETE queries, one for each joke, to delete

197A Content Management System

all the category entries for that joke. But that’s the thing—we’re yet to actually have

the list of jokes in hand! Let me explain.

Normally when we perform a SELECT query, we use the condition of a while loop

or a foreach loop to retrieve each row of the results, one at a time:

while ($row = $result->fetch())

foreach ($result as $row)

When we process the result of a query this way, PHP actually retrieves each row

from the database as the loop requests it, and throws it away when it moves on to

the next row. This saves PHP from having to use a lot of memory to hold onto all

the rows of results at once.

Most of the time, we developers have no need to know that PHP is taking this

clever shortcut. But every once in a while, we’ll want to send another SQL query

to the MySQL server before we’ve worked through all the results of the previous

query.

That’s exactly what’s about to happen in this code if we aren’t careful: we’ve just

run a SELECT query to ask for a list of all jokes belonging to a particular author, and

as we work through that list, we’d like to perform a DELETE query for each one. The

problem is, as far as MySQL knows, it will still be busy sending us the results of

the SELECT query; we can’t just interrupt it and ask for it to start running DELETEs!

Doing so would cause our DELETEs to fail with an error.

That’s where the fetchAllmethod comes in. By calling this method on our prepared

statement ($s), we ask PHP to retrieve the entire set of results for the query and store

them in a PHP array ($result):

chapter7/admin/authors/index.php (excerpt)

 $result = $s->fetchAll();

We can now loop through this array with a foreach loop just as we’d normally loop

through a PDOStatement object to retrieve each row one at a time. The difference

now is that PHP will hold onto all the results at once, which frees us up to send

more queries to MySQL.

PHP & MySQL: Novice to Ninja198

And that’s where the third novel piece of code in our author-deleting script comes

in:

chapter7/admin/authors/index.php (excerpt)

 // Delete joke category entries
 try
 {
 $sql = 'DELETE FROM jokecategory WHERE jokeid = :id';
 $s = $pdo->prepare($sql);

 // For each joke
 foreach ($result as $row)
 {
 $jokeId = $row['id'];
 $s->bindValue(':id', $jokeId);
 $s->execute();
 }
 }

With this code, we run a DELETE query to remove the jokecategory entries for each

joke from the database. Your first impulse might be to begin with a foreach loop,

but instead we start by creating a single prepared statement.

This code demonstrates the second big advantage of prepared statements (which

we first learned about in Chapter 4).1 Once you’ve prepared a statement, you can

execute it over and over again, assigning its placeholders different values each time.

In this case, we want to execute essentially the same DELETE query, but using a dif-

ferent joke ID in the WHERE clause each time. By using the same prepared statement

for each of these queries, we can save MySQL the trouble of scrutinizing the SQL

code for each query and coming up with a plan for how to do what we’re asking.

Instead, MySQL reads the SQL code once when we prepare the statement; it figures

out the most efficient way to perform such a DELETE operation, and then it simply

executes that same plan over and over, using each of the IDs that we send it in turn.

With this in mind, look again at this fragment of code: it should make a lot more

sense now. First, it creates a prepared statement from the SQL code with a place-

holder in it. Then it uses a foreach loop to work through the result set of the pre-

1 In case it’s slipped your mind, the first big advantage of prepared statements is that they can contain

placeholders, to which you can assign values safely without worrying about SQL-injection attacks.

199A Content Management System

ceding SELECT query. It executes the newly prepared DELETE query once for each

joke using bindValue to set the :id placeholder in the query to the joke’s ID.

Make sense? Don’t worry if you have to read all that a couple of times to understand

it. It’s some of the most complex PHP code you’re going to see in this book!

When you’re satisfied, go ahead and try deleting one of the authors from your

database. Use phpMyAdmin to verify that all the author’s jokes and their category

entries are also deleted. The categories themselves should remain, even if they have

no jokes left in them.

Confirm on Delete

As a challenge, try adding a confirmation prompt to this process.

If you’ve yet to dive in and try some coding, use the code in the code archive for

this chapter as a starting point. Modify your controller to respond to the Delete

button by simply displaying another template, this one prompting the user to

confirm the action. When the user submits the form in this page, it should trigger

the code in the controller that actually deletes the data. This second form will

also have to submit in a hidden field the ID of the author to be deleted.

Adding and Editing Authors
You could implement the Add new author link at the top of the author list page the

same way you did the Add your own joke link in Chapter 4. Instead of prompting the

user for the text of the joke, you’d instead prompt for the author’s name and email

address.

But our author management page includes a new, related feature: the ability to edit

existing authors. Since both features will require the user to fill in a similar form,

let’s tackle both at once and kill two birds with one stone. Here’s the code for the

form template that will be used for both adding and editing authors:

chapter7/admin/authors/form.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>

PHP & MySQL: Novice to Ninja200

 <meta charset="utf-8">
 <title><?php htmlout($pageTitle); ?></title>
 </head>
 <body>
 <h1><?php htmlout($pageTitle); ?></h1>
 <form action="?<?php htmlout($action); ?>" method="post">
 <div>
 <label for="name">Name: <input type="text" name="name"
 id="name" value="<?php htmlout($name); ?>"></label>
 </div>
 <div>
 <label for="email">Email: <input type="text" name="email"
 id="email" value="<?php htmlout($email); ?>"></label>
 </div>
 <div>
 <input type="hidden" name="id" value="<?php
 htmlout($id); ?>">
 <input type="submit" value="<?php htmlout($button); ?>">
 </div>
 </form>
 </body>
</html>

Note the six PHP variables that are inserted into the content of this page:

$pageTitle sets the title and top-level heading (<h1>) for this page

$action sets the value passed in the query string when the form is submitted

$name sets the initial value of the form field for the author’s name

$email sets the initial value of the form field for the author’s email address

$id sets the value of the hidden form field for the author’s database ID

$button sets the label of the form’s submit button

These variables enable us to use the form for two purposes: creating new authors

and editing existing ones. Table 7.1 shows the values we’d like to assign to every

variable in each instance.

201A Content Management System

Table 7.1. Variable values for dual-mode author form

Existing author valueNew author valueTemplate variable

'Edit Author''New Author'$pageTitle

'editform''addform'$action

existing name'' (empty string)$name

existing email address'' (empty string)$email

existing author ID'' (empty string)$id

'Update author''Add author'$button

So, here’s the controller code that loads the form in “new author mode” when the

Add new author link is clicked:

chapter7/admin/authors/index.php (excerpt)

<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

if (isset($_GET['add']))
{
 $pageTitle = 'New Author';
 $action = 'addform';
 $name = '';
 $email = '';
 $id = '';
 $button = 'Add author';

 include 'form.html.php';
 exit();
}

When the user submits the form in this mode, you can detect it by watching for

$_GET['addform']:

chapter7/admin/authors/index.php (excerpt)

if (isset($_GET['addform']))
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

PHP & MySQL: Novice to Ninja202

 try
 {
 $sql = 'INSERT INTO author SET
 name = :name,
 email = :email';
 $s = $pdo->prepare($sql);
 $s->bindValue(':name', $_POST['name']);
 $s->bindValue(':email', $_POST['email']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted author.';
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

When the user clicks one of the Edit buttons in the author list, you can use the same

form, but this time you need to load the author’s existing details from the database:

chapter7/admin/authors/index.php (excerpt)

if (isset($_POST['action']) and $_POST['action'] == 'Edit')
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 try
 {
 $sql = 'SELECT id, name, email FROM author WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching author details.';
 include 'error.html.php';
 exit();
 }

203A Content Management System

 $row = $s->fetch();

 $pageTitle = 'Edit Author';
 $action = 'editform';
 $name = $row['name'];
 $email = $row['email'];
 $id = $row['id'];
 $button = 'Update author';

 include 'form.html.php';
 exit();
}

You can detect the form submitted in this mode by watching for $_GET['editform'].

The code for processing this form submission is very similar to how you add a new

author, but instead of issuing an INSERT query, it issues an UPDATE query:

chapter7/admin/authors/index.php (excerpt)

if (isset($_GET['editform']))
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 try
 {
 $sql = 'UPDATE author SET
 name = :name,
 email = :email
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->bindValue(':name', $_POST['name']);
 $s->bindValue(':email', $_POST['email']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error updating submitted author.';
 include 'error.html.php';
 exit();
 }

PHP & MySQL: Novice to Ninja204

 header('Location: .');
 exit();
}

That’ll do the trick! Go ahead and try the completed author management system,

which includes our new dual-mode form template shown in Figure 7.4. Make sure

you can add, edit, and delete authors smoothly. If you see any error messages, go

back and make sure you typed the code exactly as it appears here. If you become

stuck, try using the completed code from the code archive and then compare it with

your own.

Figure 7.4. I’ll bet she’s funny …

Managing Categories
The roles of the authors and joke categories in the database really are very similar.

They both reside in tables of their own, and they both serve to group jokes together

in some way. As a result, categories can be handled with code very similar to what

we just developed for authors, but with one important exception.

When we delete a category, we must avoid simultaneously deleting any jokes that

belong to that category, because those jokes may also belong to other categories. We

205A Content Management System

could check each joke to see if it belonged to any other categories, and only delete

those that did not, but rather than engage in such a time-consuming process, let’s

allow for the possibility of including jokes in our database with no assigned category.

These jokes might be invisible to our site’s visitors (depending on how we decide

to display jokes), but would remain in the database in case we wanted to assign

them to a category later on.

Thus, to delete a category, we also need to delete any entries in the jokecategory

table that refer to that category:

chapter7/admin/categories/index.php (excerpt)

 // Delete joke associations with this category
 try
 {
 $sql = 'DELETE FROM jokecategory WHERE categoryid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error removing jokes from category.';
 include 'error.html.php';
 exit();
 }

 // Delete the category
 try
 {
 $sql = 'DELETE FROM category WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting category.';
 include 'error.html.php';
 exit();
 }

PHP & MySQL: Novice to Ninja206

Other than this one detail, category management is functionally identical to author

management. The complete code for the four files involved will follow. This code

also relies on the shared include files db.inc.php, magicquotes.inc.php, and

helpers.inc.php introduced in Chapter 6:

chapter7/admin/categories/index.php

<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

if (isset($_GET['add']))
{
 $pageTitle = 'New Category';
 $action = 'addform';
 $name = '';
 $id = '';
 $button = 'Add category';

 include 'form.html.php';
 exit();
}

if (isset($_GET['addform']))
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 try
 {
 $sql = 'INSERT INTO category SET
 name = :name';
 $s = $pdo->prepare($sql);
 $s->bindValue(':name', $_POST['name']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted category.';
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

207A Content Management System

if (isset($_POST['action']) and $_POST['action'] == 'Edit')
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 try
 {
 $sql = 'SELECT id, name FROM category WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching category details.';
 include 'error.html.php';
 exit();
 }

 $row = $s->fetch();

 $pageTitle = 'Edit Category';
 $action = 'editform';
 $name = $row['name'];
 $id = $row['id'];
 $button = 'Update category';

 include 'form.html.php';
 exit();
}

if (isset($_GET['editform']))
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 try
 {
 $sql = 'UPDATE category SET
 name = :name
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->bindValue(':name', $_POST['name']);
 $s->execute();
 }

PHP & MySQL: Novice to Ninja208

 catch (PDOException $e)
 {
 $error = 'Error updating submitted category.';
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

if (isset($_POST['action']) and $_POST['action'] == 'Delete')
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 // Delete joke associations with this category
 try
 {
 $sql = 'DELETE FROM jokecategory WHERE categoryid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error removing jokes from category.';
 include 'error.html.php';
 exit();
 }

 // Delete the category
 try
 {
 $sql = 'DELETE FROM category WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting category.';
 include 'error.html.php';
 exit();
 }

209A Content Management System

 header('Location: .');
 exit();
}

// Display category list
include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

try
{
 $result = $pdo->query('SELECT id, name FROM category');
}
catch (PDOException $e)
{
 $error = 'Error fetching categories from database!';
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $categories[] = array('id' => $row['id'], 'name' => $row['name']);
}

include 'categories.html.php';

chapter7/admin/categories/categories.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Manage Categories</title>
 </head>
 <body>
 <h1>Manage Categories</h1>
 <p>Add new category</p>

 <?php foreach ($categories as $category): ?>

 <form action="" method="post">
 <div>
 <?php htmlout($category['name']); ?>
 <input type="hidden" name="id" value="<?php

PHP & MySQL: Novice to Ninja210

 echo $category['id']; ?>">
 <input type="submit" name="action" value="Edit">
 <input type="submit" name="action" value="Delete">
 </div>
 </form>

 <?php endforeach; ?>

 <p>Return to JMS home</p>
 </body>
</html>

chapter7/admin/categories/form.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title><?php htmlout($pageTitle); ?></title>
 </head>
 <body>
 <h1><?php htmlout($pageTitle); ?></h1>
 <form action="?<?php htmlout($action); ?>" method="post">
 <div>
 <label for="name">Name: <input type="text" name="name"
 id="name" value="<?php htmlout($name); ?>"></label>
 </div>
 <div>
 <input type="hidden" name="id" value="<?php
 htmlout($id); ?>">
 <input type="submit" value="<?php htmlout($button); ?>">
 </div>
 </form>
 </body>
</html>

chapter7/admin/categories/error.html.php

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">

211A Content Management System

 <title>Script Error</title>
 </head>
 <body>
 <p>
 <?php echo $error; ?>
 </p>
 </body>
</html>

Managing Jokes
Along with adding, deleting, and modifying jokes in our database, we also have to

be able to assign categories and authors to our jokes. Furthermore, we’re likely to

have many more jokes than authors or categories. To try to display a complete list

of jokes, as we did for the authors and categories, could result in an unmanageably

long list with no easy way to spot the joke we’re after. We need to create a more

intelligent method of browsing our library of jokes.

Searching for Jokes
Sometimes we may know the category, author, or some of the text in a joke with

which we want to work, so let’s support all these methods for finding jokes in our

database. When we’re done, it should work like a simple search engine.

The form that prompts the administrator for information about the desired joke

must present lists of categories and authors. Let’s start with the controller code that

fetches these details from the database:

chapter7/admin/jokes/index.php (excerpt)

// Display search form
include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

try
{
 $result = $pdo->query('SELECT id, name FROM author');
}
catch (PDOException $e)
{
 $error = 'Error fetching authors from database!';
 include 'error.html.php';

PHP & MySQL: Novice to Ninja212

 exit();
}

foreach ($result as $row)
{
 $authors[] = array('id' => $row['id'], 'name' => $row['name']);
}

try
{
 $result = $pdo->query('SELECT id, name FROM category');
}
catch (PDOException $e)
{
 $error = 'Error fetching categories from database!';
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $categories[] = array('id' => $row['id'], 'name' => $row['name']);
}

include 'searchform.html.php';

This code builds two arrays for use by the searchform.html.php template: $authors

and $categories. We’ll use each of these arrays to build a drop-down list in our

search form:

chapter7/admin/jokes/searchform.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Manage Jokes</title>
 </head>
 <body>
 <h1>Manage Jokes</h1>
 <p>Add new joke</p>
 <form action="" method="get">

213A Content Management System

 <p>View jokes satisfying the following criteria:</p>
 <div>
 <label for="author">By author:</label>

<select name="author" id="author">
 <option value="">Any author</option>
 <?php foreach ($authors as $author): ?>
 <option value="<?php htmlout($author['id']); ?>"><?php
 htmlout($author['name']); ?></option>
 <?php endforeach; ?>
 </select>
 </div>
 <div>
 <label for="category">By category:</label>

<select name="category" id="category">
 <option value="">Any category</option>
 <?php foreach ($categories as $category): ?>
 <option value="<?php htmlout($category['id']); ?>"><?php
 htmlout($category['name']); ?></option>
 <?php endforeach; ?>
 </select>
 </div>
 <div>
 <label for="text">Containing text:</label>
 <input type="text" name="text" id="text">
 </div>
 <div>
 <input type="hidden" name="action" value="search">
 <input type="submit" value="Search">
 </div>
 </form>
 <p>Return to JMS home</p>
 </body>
</html>

As you can see in each select list, we generate a series of option items using a

PHP foreach loop. The value of each option is the author or category ID, and the

text label of each option is the author or category name. Each of the drop-downs

begins with an option with no value, which can be left alone to leave the corres-

ponding field out of the search criteria.

Note also that the form’s method attribute is set to get so that it’s possible to book-

mark the results of a search, since the form values will be submitted in the URL

query string. You should generally apply this method to any search form you write.

PHP & MySQL: Novice to Ninja214

The finished form appears in Figure 7.5.

It’s up to the controller to use the values submitted by this form to build a list of

jokes that satisfies the criteria specified. Obviously, this will be done with a SELECT

query, but the exact nature of that query will depend on the search criteria specified.

Because the building of this SELECT statement is a fairly complicated process, let’s

work through the controller code responsible a little at a time.

Figure 7.5. Search for a classic

To start, we define a few strings that, when strung together, form the SELECT query

we’d need if no search criteria whatsoever had been selected in the form:

chapter7/admin/jokes/index.php (excerpt)

if (isset($_GET['action']) and $_GET['action'] == 'search')
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 // The basic SELECT statement

215A Content Management System

 $select = 'SELECT id, joketext';
 $from = ' FROM joke';
 $where = ' WHERE TRUE';

You might find the WHERE clause in this code a little confusing. The idea here is for

us to be able to build on this basic SELECT statement, depending on the criteria se-

lected in the form. These criteria will require us to add to the FROM and WHERE clauses

(portions) of the SELECT query. But, if no criteria were specified (that is, the admin-

istrator wanted a list of all jokes in the database), there would be no need for a WHERE

clause at all! Because it’s difficult to add to a WHERE clause that’s nonexistent, we

need to come up with a “do nothing” WHERE clause that will have no effect on the

results unless added to. Since TRUE is always true, WHERE TRUE fits the bill nicely.2

Our next task is to check each of the possible constraints (author, category, and

search text) that may have been submitted with the form, and adjust the three

components of our SQL query accordingly. First, we deal with the possibility that

an author was specified. The blank option in the form was given a value of "", so

if the value of that form field (stored in $_GET['author']) is not equal to '' (the

empty string), an author has been specified and we must adjust our query:

chapter7/admin/jokes/index.php (excerpt)

 $placeholders = array();

 if ($_GET['author'] != '') // An author is selected
 {
 $where .= " AND authorid = :authorid";
 $placeholders[':authorid'] = $_GET['author'];
 }

As we’ve seen before, .= (the append operator) is used to tack a new string onto

the end of an existing one. In this case, we add to the WHERE clause the condition

that the authorid in the joke table must match the value of a placeholder, :author-

id. We’re going to want the value of that placeholder to be $_GET['author'], but

we can’t use bindValue to set it, because we’re yet to have a prepared statement

object to call it on; at this stage, our query is still spread across our three strings

2 In fact, the “do nothing” WHERE clause could just be WHERE 1, since MySQL considers any positive

number true. Feel free to change it if you like it better.

PHP & MySQL: Novice to Ninja216

($select, $from, and $where). Eventually, we’ll combine these strings together to

create a prepared statement; in the meantime, we’ll store our placeholders in a PHP

array variable ($placeholders), with the name of each placeholder as the array index.

Next, we handle the specification of a joke category:

chapter7/admin/jokes/index.php (excerpt)

 if ($_GET['category'] != '') // A category is selected
 {
 $from .= ' INNER JOIN jokecategory ON id = jokeid';
 $where .= " AND categoryid = :categoryid";
 $placeholders[':categoryid'] = $_GET['category'];
 }

As the categories associated with a particular joke are stored in the jokecategory

table, we need to add this table to the query to create a join. To do this, we simply

tack INNER JOIN jokecategory ON id = jokeid onto the end of the $from variable.

This joins the two tables on the condition that the id column (in the joke table)

matches the jokeid column (in jokecategory).

With the join in place, we can then apply the criterion specified in the form submis-

sion—that the joke belongs to the specified category. By adding to the $where vari-

able, we can require the categoryid column (in jokecategory) to match a particular

category ID (:categoryid). Again, we store the value that we want to assign to this

placeholder ($_GET['category']) in the $placeholders array.

Handling search text is fairly simple thanks to the LIKE SQL operator that we learned

way back in Chapter 2:

chapter7/admin/jokes/index.php (excerpt)

 if ($_GET['text'] != '') // Some search text was specified
 {
 $where .= " AND joketext LIKE :joketext";
 $placeholders[':joketext'] = '%' . $_GET['text'] . '%';
 }

We add percent signs (%) to the start and end of $_GET['text'] to get our placeholder

value in this case. Remember that LIKE treats percent signs as wildcards, so in this

217A Content Management System

case we’re looking for joketext values that contain the value of $_GET['text'],

but which may contain any other text before or after that value.

Now that we’ve assembled the component parts of our SQL query, we can put them

together and use it to retrieve and display our jokes:

chapter7/admin/jokes/index.php (excerpt)

 try
 {
 $sql = $select . $from . $where;
 $s = $pdo->prepare($sql);

$s->execute($placeholders);
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching jokes.';
 include 'error.html.php';
 exit();
 }

 foreach ($s as $row)
 {
 $jokes[] = array('id' => $row['id'], 'text' =>
 $row['joketext']);
 }

 include 'jokes.html.php';
 exit();
}

Take particular notice of the line highlighted in bold. Because we have the values

of all our placeholders stored in a PHP array variable ($placeholders), we can use

a handy feature of the execute method: it lets us supply an array containing the

values that we want to assign to the placeholders in our prepared statement, rather

than having to use bindValue separately for each one. Slick!

The template to display these jokes will include Edit and Delete buttons for each

joke. To keep the page as organized as possible, it will structure the results using

an HTML table:

PHP & MySQL: Novice to Ninja218

chapter7/admin/jokes/jokes.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Manage Jokes: Search Results</title>
 </head>
 <body>
 <h1>Search Results</h1>
 <?php if (isset($jokes)): ?>
 <table>
 <tr><th>Joke Text</th><th>Options</th></tr>

<?php foreach ($jokes as $joke): ?>
 <tr>
 <td><?php htmlout($joke['text']); ?></td>
 <td>
 <form action="?" method="post">
 <div>
 <input type="hidden" name="id" value="<?php
 htmlout($joke['id']); ?>">
 <input type="submit" name="action" value="Edit">
 <input type="submit" name="action" value="Delete">
 </div>
 </form>
 </td>
 </tr>

<?php endforeach; ?>
 </table>
 <?php endif; ?>
 <p>New search</p>
 <p>Return to JMS home</p>
 </body>
</html>

The search results will display as shown in Figure 7.6.

219A Content Management System

Figure 7.6. A classic is found

Nothing to Report

If you’re up for a challenge, try adding a little code to this template to gracefully

handle the case where no jokes satisfy the criteria specified in the search form.

Right now, the template simply outputs nothing where the search results table

should be.

Adding and Editing Jokes
At the top of the joke search form, we have our usual link to create a new joke:

chapter7/admin/jokes/searchform.html.php (excerpt)

 <p>Add new joke</p>

Let’s implement this feature now. The code will be very similar to what we used

to create new authors and categories, but in addition to specifying the joke text, the

page must allow an administrator to assign an author and categories to a joke.

As with authors and categories, we can use the same form template for creating new

jokes and editing existing jokes. Let’s take a look at the important elements of this

PHP & MySQL: Novice to Ninja220

form. We begin with a standard text area into which we can type the text of the joke.

If we’re editing an existing joke, we’ll populate this field with that joke’s text ($text):

chapter7/admin/jokes/form.html.php (excerpt)

 <div>
 <label for="text">Type your joke here:</label>
 <textarea id="text" name="text" rows="3" cols="40"><?php
 htmlout($text); ?></textarea>
 </div>

Next, we’ll prompt the administrator to select the author who wrote the joke:

chapter7/admin/jokes/form.html.php (excerpt)

 <div>
 <label for="author">Author:</label>
 <select name="author" id="author">
 <option value="">Select one</option>
 <?php foreach ($authors as $author): ?>
 <option value="<?php htmlout($author['id']); ?>"<?php
 if ($author['id'] == $authorid)
 {
 echo ' selected';
 }
 ?>><?php htmlout($author['name']); ?></option>
 <?php endforeach; ?>
 </select>
 </div>

Again, we’ve seen this kind of drop-down before (for example, in the joke search

form), but the important difference is that we want to control the initial selection

in the drop-down menu when we’re editing an existing joke. The code in bold inserts

the attribute selected into the <option> tag if the ID of the corresponding author

($author['id']) matches the author ID of the existing joke ($authorid).

Next, we need to prompt the administrator to select the categories the joke should

belong to. A drop-down list is unsuitable because we want the administrator to be

able to select multiple categories. Thus, we’ll use a series of checkboxes (<input

type="checkbox">)—one for each category. Since we have no way of knowing in

advance the number of checkboxes we’ll need, the matter of setting their name attrib-

ute becomes an interesting challenge.

221A Content Management System

What we’ll do is use a single variable for all the checkboxes; thus, all the checkboxes

will have the same name. To be able to receive multiple values from a single variable

name, we must make that variable an array. Recall from Chapter 3 that an array is

a single variable with compartments, each of which can hold a value. To submit a

form element as part of an array variable, we simply add a pair of square brackets

to the end of the name attribute (making it categories[] in this case).

A Multiple Selection List

Another way to submit an array is with a <select multiple="multiple">

tag. Again, you’d set the name attribute to end with square brackets. What will be

submitted is an array of all the option values selected from the list by the user.

Feel free to experiment with this approach by modifying the form to present the

categories as a list of option elements; however, be aware that many users won’t

realize that they’re able to select multiple options from the list by holding down

Ctrl (⌘ on a Mac).

With all of our checkboxes named the same, we’ll need a way to identify which

particular checkboxes have been selected. To this end, we assign a different value

to each checkbox—the ID of the corresponding category in the database. Thus, the

form submits an array containing the IDs of all the categories to which the new joke

should be added.

Again, since we need to edit an existing joke, we’ll include some code to output

selected if the joke already belongs to the corresponding category. This we’ll indic-

ate in our controller by setting $category['selected'] to TRUE:

chapter7/admin/jokes/form.html.php (excerpt)

 <fieldset>
 <legend>Categories:</legend>
 <?php foreach ($categories as $category): ?>
 <div><label for="category<?php htmlout($category['id']);
 ?>"><input type="checkbox" name="categories[]"
 id="category<?php htmlout($category['id']); ?>"

value="<?php htmlout($category['id']); ?>"<?php
 if ($category['selected'])
 {
 echo ' checked';
 }

PHP & MySQL: Novice to Ninja222

 ?>><?php htmlout($category['name']); ?></label></div>
 <?php endforeach; ?>
 </fieldset>

Other than these details, the form will work just like the other add/edit forms we’ve

built. Here’s the complete code:

chapter7/admin/jokes/form.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title><?php htmlout($pageTitle); ?></title>
 <style type="text/css">
 textarea {
 display: block;
 width: 100%;
 }
 </style>
 </head>
 <body>
 <h1><?php htmlout($pageTitle); ?></h1>
 <form action="?<?php htmlout($action); ?>" method="post">
 <div>
 <label for="text">Type your joke here:</label>
 <textarea id="text" name="text" rows="3" cols="40"><?php
 htmlout($text); ?></textarea>
 </div>
 <div>
 <label for="author">Author:</label>
 <select name="author" id="author">
 <option value="">Select one</option>
 <?php foreach ($authors as $author): ?>
 <option value="<?php htmlout($author['id']); ?>"<?php
 if ($author['id'] == $authorid)
 {
 echo ' selected';
 }
 ?>><?php htmlout($author['name']); ?></option>
 <?php endforeach; ?>
 </select>

223A Content Management System

 </div>
 <fieldset>
 <legend>Categories:</legend>
 <?php foreach ($categories as $category): ?>
 <div><label for="category<?php htmlout($category['id']);
 ?>"><input type="checkbox" name="categories[]"
 id="category<?php htmlout($category['id']); ?>"
 value="<?php htmlout($category['id']); ?>"<?php
 if ($category['selected'])
 {
 echo ' checked';
 }
 ?>><?php htmlout($category['name']); ?></label></div>
 <?php endforeach; ?>
 </fieldset>
 <div>
 <input type="hidden" name="id" value="<?php
 htmlout($id); ?>">
 <input type="submit" value="<?php htmlout($button); ?>">
 </div>
 </form>
 </body>
</html>

Figure 7.7 shows what the form will look like.

Figure 7.7. The hits just keep on coming

PHP & MySQL: Novice to Ninja224

Let’s now turn our attention back to the controller, which will display and then

handle the submission of this form in both its modes.

When the user clicks the Add new joke link, we need to display the form with all its

fields blank. None of this code should be unfamiliar. Take your time, look over it,

and make sure it all makes sense to you. If you’re unsure what a particular variable

is for, go find it in the form template and identify its purpose:

chapter7/admin/jokes/index.php (excerpt)

<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

if (isset($_GET['add']))
{
 $pageTitle = 'New Joke';
 $action = 'addform';
 $text = '';
 $authorid = '';
 $id = '';
 $button = 'Add joke';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 // Build the list of authors
 try
 {
 $result = $pdo->query('SELECT id, name FROM author');
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching list of authors.';
 include 'error.html.php';
 exit();
 }

 foreach ($result as $row)
 {
 $authors[] = array('id' => $row['id'], 'name' => $row['name']);
 }

 // Build the list of categories
 try

225A Content Management System

 {
 $result = $pdo->query('SELECT id, name FROM category');
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching list of categories.';
 include 'error.html.php';
 exit();
 }

 foreach ($result as $row)
 {
 $categories[] = array(
 'id' => $row['id'],
 'name' => $row['name'],

'selected' => FALSE);
 }

 include 'form.html.php';
 exit();
}

Note especially that we’re setting the 'selected' item in each of the arrays stored

in the $categories array to FALSE. As a result, none of the category checkboxes in

the form will be selected by default.

When the user clicks the Edit button next to an existing joke, the controller must

instead load the form with its fields populated with the existing values. This code

is similar in structure to the code we used to generate the empty form:

chapter7/admin/jokes/index.php (excerpt)

if (isset($_POST['action']) and $_POST['action'] == 'Edit')
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 try
 {
 $sql = 'SELECT id, joketext, authorid FROM joke WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }

PHP & MySQL: Novice to Ninja226

 catch (PDOException $e)
 {
 $error = 'Error fetching joke details.';
 include 'error.html.php';
 exit();
 }
 $row = $s->fetch();

 $pageTitle = 'Edit Joke';
 $action = 'editform';
 $text = $row['joketext'];
 $authorid = $row['authorid'];
 $id = $row['id'];
 $button = 'Update joke';

 // Build the list of authors
 try
 {
 $result = $pdo->query('SELECT id, name FROM author');
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching list of authors.';
 include 'error.html.php';
 exit();
 }

 foreach ($result as $row)
 {
 $authors[] = array('id' => $row['id'], 'name' => $row['name']);
 }

 // Get list of categories containing this joke
 try
 {
 $sql = 'SELECT categoryid FROM jokecategory
➥WHERE jokeid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $id);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching list of selected categories.';
 include 'error.html.php';

227A Content Management System

 exit();
 }

 foreach ($s as $row)
 {
 $selectedCategories[] = $row['categoryid'];
 }

 // Build the list of all categories
 try
 {
 $result = $pdo->query('SELECT id, name FROM category');
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching list of categories.';
 include 'error.html.php';
 exit();
 }

 foreach ($result as $row)
 {
 $categories[] = array(
 'id' => $row['id'],
 'name' => $row['name'],
 'selected' => in_array($row['id'], $selectedCategories));
 }

 include 'form.html.php';
 exit();
}

In addition to fetching the details of the joke (ID, text, and author ID), this code

fetches a list of categories to which the joke in question belongs:

The SELECT query is straightforward, since it’s simply fetching records from

the jokecategory lookup table. It grabs all the category IDs associated with

the joke ID for the joke that the user wishes to edit.

This foreach loop stores all the selected category IDs into an array variable,

$selectedCategories.

PHP & MySQL: Novice to Ninja228

And here’s the big trick: while building the list of all categories for the form

to display as checkboxes, we check each category’s ID to see if it’s listed in our

$selectedCategories array. The built-in function in_array does this for us

automatically. We store the return value (either TRUE or FALSE) in the 'selec-

ted' item of the array that represents each category. This value will then be

used by the form template (as we’ve already seen) to select the appropriate

checkboxes.

That takes care of generating the form in each of its two modes; now let’s look at

the controller code that processes the form submissions.

Since we’re submitting an array for the first time (the list of selected category

checkboxes), the code processing this form will feature a couple of new tricks as

well. It starts off fairly simply as we add the joke to the joke table. As an author is

required, we make sure that $_POST['author'] contains a value. This prevents the

administrator from choosing the Select One option in the author select list (that

choice has a value of "", the empty string):

chapter7/admin/jokes/index.php (excerpt)

if (isset($_GET['addform']))
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 if ($_POST['author'] == '')
 {
 $error = 'You must choose an author for this joke.
 Click ‘back’ and try again.';
 include 'error.html.php';
 exit();
 }

 try
 {
 $sql = 'INSERT INTO joke SET
 joketext = :joketext,
 jokedate = CURDATE(),
 authorid = :authorid';
 $s = $pdo->prepare($sql);
 $s->bindValue(':joketext', $_POST['text']);
 $s->bindValue(':authorid', $_POST['author']);
 $s->execute();

229A Content Management System

 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted joke.';
 include 'error.html.php';
 exit();
 }

$jokeid = $pdo->lastInsertId();

The last line in the above code uses a method that we’ve yet to see: lastInsertId.

This method returns the number assigned to the last inserted entry by the

AUTO_INCREMENT feature in MySQL. In other words, it retrieves the ID of the newly

inserted joke, which we’ll need in a moment.

I expect you’re a little foggy on how to write the code that adds the entries to

jokecategory based on which checkboxes were checked. First of all, we’ve never

seen how a checkbox passes its value to a PHP variable before. Additionally, we

need to deal with the fact that these particular checkboxes will submit into an array

variable.

A typical checkbox will pass its value to a PHP variable if it’s checked, and will do

nothing when it’s unchecked. Checkboxes without assigned values pass 'on' as the

value of their corresponding variables when they’re checked. However, we’ve as-

signed values to our checkboxes (the category IDs), so this isn’t an issue.

The fact that these checkboxes submit into an array actually adds quite a measure

of convenience to our code. In essence, we’ll receive from the submitted form either:

■ an array of category IDs to which we’ll add the joke
■ nothing at all (if none of the checkboxes were checked)

In the latter case, there’s nothing to do—no categories were selected, so we have

nothing to add to the jokecategory table. If we do have an array of category IDs to

process, however, we’ll use a foreach loop to issue an INSERT query for each ID

(using a single prepared statement):

PHP & MySQL: Novice to Ninja230

chapter7/admin/jokes/index.php (excerpt)

 if (isset($_POST['categories']))
 {
 try
 {
 $sql = 'INSERT INTO jokecategory SET
 jokeid = :jokeid,
 categoryid = :categoryid';
 $s = $pdo->prepare($sql);

 foreach ($_POST['categories'] as $categoryid)
 {
 $s->bindValue(':jokeid', $jokeid);
 $s->bindValue(':categoryid', $categoryid);
 $s->execute();
 }
 }
 catch (PDOException $e)
 {
 $error = 'Error inserting joke into selected categories.';
 include 'error.html.php';
 exit();
 }
 }

 header('Location: .');
 exit();
}

Note the use of the $jokeid variable, which we obtained from lastInsertId.

That takes care of adding new jokes. The form processing code for editing existing

jokes is predictably similar, with two important differences:

■ It uses an UPDATE query instead of an INSERT query to store the joke’s details in

the joke table.

■ It removes all existing entries for the joke from the jokecategory table before

INSERTing entries for the selected checkboxes in the form.

Here’s the code. Take the time to read through it and make sure it all makes sense

to you:

231A Content Management System

chapter7/admin/jokes/index.php (excerpt)

if (isset($_GET['editform']))
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 if ($_POST['author'] == '')
 {
 $error = 'You must choose an author for this joke.
 Click ‘back’ and try again.';
 include 'error.html.php';
 exit();
 }

 try
 {
 $sql = 'UPDATE joke SET
 joketext = :joketext,
 authorid = :authorid
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->bindValue(':joketext', $_POST['text']);
 $s->bindValue(':authorid', $_POST['author']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error updating submitted joke.';
 include 'error.html.php';
 exit();
 }

 try
 {
 $sql = 'DELETE FROM jokecategory WHERE jokeid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error removing obsolete joke category entries.';
 include 'error.html.php';
 exit();

PHP & MySQL: Novice to Ninja232

 }

 if (isset($_POST['categories']))
 {
 try
 {
 $sql = 'INSERT INTO jokecategory SET
 jokeid = :jokeid,
 categoryid = :categoryid';
 $s = $pdo->prepare($sql);

 foreach ($_POST['categories'] as $categoryid)
 {
 $s->bindValue(':jokeid', $_POST['id']);
 $s->bindValue(':categoryid', $categoryid);
 $s->execute();
 }
 }
 catch (PDOException $e)
 {
 $error = 'Error inserting joke into selected categories.';
 include 'error.html.php';
 exit();
 }
 }

 header('Location: .');
 exit();
}

Deleting Jokes
The last feature to implement is the Delete button displayed next to each joke. The

controller code responsible for this feature mirrors the code we wrote for the author

and category Delete buttons, with only minor adjustments. For example, besides

deleting the selected joke from the joke table, it must also remove any entries in

the jokecategory table for that joke.

Here’s the code. There’s nothing new here, but take a look and make sure you’re

comfortable with everything that’s going on:

233A Content Management System

chapter7/admin/jokes/index.php (excerpt)

if (isset($_POST['action']) and $_POST['action'] == 'Delete')
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 // Delete category assignments for this joke
 try
 {
 $sql = 'DELETE FROM jokecategory WHERE jokeid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error removing joke from categories.';
 include 'error.html.php';
 exit();
 }

 // Delete the joke
 try
 {
 $sql = 'DELETE FROM joke WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting joke.';
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

Summary
There are still a few minor tasks that our content management system is incapable

of. For example, it’s unable to provide a listing of just the jokes that don’t belong

PHP & MySQL: Novice to Ninja234

to any category—and this listing could be very handy as the number of jokes in the

database grows. You might also like to sort the joke lists by various criteria. These

particular capabilities require a few more advanced SQL tricks that we’ll see in

Chapter 11.

Some Code We’ve Left Behind

If you were to scrutinize closely the code archive for this chapter, you might notice

that I’ve also tweaked the joke list page (in the joke folder) to remove the Add your

own joke link and the Delete buttons. Because these features weren’t designed to

work with the new database structure we developed in this chapter, I’ve removed

them for now.

In the section called “A Challenge: Joke Moderation” in Chapter 9, I challenge

you to find a way to handle user-submitted jokes in an elegant way.

If we ignore these little details for the moment, you’ll see that you now have a system

that allows a person without SQL or database knowledge to administer your database

of jokes with ease! Together with a set of PHP-powered pages through which regular

site visitors can view the jokes, this CMS allows us to set up a complete database

driven website that can be maintained by a user with absolutely no database

knowledge. And if you think that sounds like a valuable commodity to businesses

looking to be on the Web today, you’re right!

In fact, only one aspect of our site requires users to have special knowledge (beyond

the use of a web browser): content formatting. If we wanted to enable administrators

to include rich-text formatting in the jokes they entered, we could invite them to

type the necessary HTML code directly into the New Joke form. To preserve this

formatting, we’d then echo out the content of our jokes “raw” instead of using our

htmlout function.

This is unacceptable for two reasons: first, we’d have to stop accepting joke submis-

sions from the general public, otherwise we’d be opening the door to attackers

submitting harmful code in their jokes; our site would then display these unfiltered,

since we’d no longer be passing our content through htmlspecialchars.

Second, as we stated way back in the introduction to this book, one of the most

desirable features of a database driven website is that people can be responsible for

adding content despite being unfamiliar with technical mumbo jumbo like HTML.

235A Content Management System

If we require knowledge of HTML for a task as simple as dividing a joke into para-

graphs, or applying italics to a word or two, we’ll have failed to achieve our goal.

In Chapter 8, I’ll show you how to use some of the features of PHP that make it

simpler for your users to format content without knowing the ins and outs of HTML.

We’ll also revisit the Submit your own joke form, and discover how we can safely

accept content submissions from casual site visitors.

PHP & MySQL: Novice to Ninja236

Chapter8
Content Formatting with
Regular Expressions
We’re almost there! We’ve designed a database to store jokes, organized them into

categories, and tracked their authors. We’ve learned how to create a web page that

displays this library of jokes to site visitors. We’ve even developed a set of web

pages that a site administrator can use to manage the joke library without knowing

anything about databases.

In so doing, we’ve built a site that frees the resident webmaster from continually

having to plug new content into tired HTML page templates, and from maintaining

an unmanageable mass of HTML files. The HTML is now kept completely separate

from the data it displays. If you want to redesign the site, you simply have to make

the changes to the HTML contained in the PHP templates that you’ve constructed.

A change to one file (for example, modifying the footer) is immediately reflected in

the page layouts of all pages in the site. Only one task still requires knowledge of

HTML: content formatting.

On any but the simplest of websites, it will be necessary to allow content (in our

case, jokes) to include some sort of formatting. In a simple case, this might merely

be the ability to break text into paragraphs. Often, however, content providers will

expect facilities such as bold or italic text, hyperlinks, and so on.

Supporting these requirements with our current code is deceptively easy. In the

past couple of chapters, we’ve used htmlout to output user-submitted content:

chapter7/jokes/jokes.html.php (excerpt)

<?php htmlout($joke['text']); ?>

If, instead, we just echo out the raw content pulled from the database, we can enable

administrators to include formatting in the form of HTML code in the joke text:

<?php echo $joke['text']; ?>

Following this simple change, a site administrator could include HTML tags that

would have their usual effect on the joke text when inserted into a page.

But is this really what we want? Left unchecked, content providers can do a lot of

damage by including HTML code in the content they add to your site’s database.

Particularly if your system will be enabling nontechnical users to submit content,

you’ll find that invalid, obsolete, and otherwise inappropriate code will gradually

infest the pristine website you set out to build. With one stray tag, a well-meaning

user could tear apart the layout of your site.

In this chapter, you’ll learn about several new PHP functions that specialize in

finding and replacing patterns of text in your site’s content. I’ll show you how to

use these capabilities to provide a simpler markup language for your users that’s

better suited to content formatting. By the time we’ve finished, we’ll have completed

a content management system that anyone with a web browser can use—no know-

ledge of HTML required.

Regular Expressions
To implement our own markup language, we’ll have to write some PHP code to

spot our custom tags in the text of jokes and then replace them with their HTML

equivalents. For tackling this sort of task, PHP includes extensive support for regular

expressions.

PHP & MySQL: Novice to Ninja238

A regular expression is a short piece of code that describes a pattern of text that

may occur in content like our jokes. We use regular expressions to search for and

replace patterns of text. They’re available in many programming languages and en-

vironments, and are especially prevalent in web development languages like PHP.

The popularity of regular expressions has everything to do with how useful they

are, and absolutely nothing to do with how easy they are to use—because they’re

not at all easy. In fact, to most people who encounter them for the first time, regular

expressions look like what might eventuate if you fell asleep with your face on the

keyboard.

Here, for example, is a relatively simple (yes, really!) regular expression that will

match any string that might be a valid email address:

/^[\w\.\-]+@([\w\-]+\.)+[a-z]+$/i

Scary, huh? By the end of this section, you’ll actually be able to make sense of that.

The language of a regular expression is cryptic enough that, once you master it, you

may feel as if you’re able to weave magical incantations with the code that you

write. To begin with, let’s start with some very simple regular expressions.

This is a regular expression that searches for the text “PHP” (without the quotes):

/PHP/

Fairly simple, right? It’s the text for which you want to search surrounded by a pair

of matching delimiters. Traditionally, slashes (/) are used as regular expression

delimiters, but another common choice is the hash character (#). You can actually

use any character as a delimiter except letters, numbers, or backslashes (\). I’ll use

slashes for all the regular expressions in this chapter.

Escape Delimiter Characters

To include a forward slash as part of a regular expression that uses forward slashes

as delimiters, you must escape it with a preceding backslash (\/); otherwise, it

will be interpreted as marking the end of the pattern.

239Content Formatting with Regular Expressions

The same goes for other delimiter characters: if you use hash characters as delim-

iters, you’ll need to escape any hashes within the expression with backslashes

(\#).

To use a regular expression, you must be familiar with the regular expression

functions available in PHP. preg_match is the most basic, and can be used to determ-

ine whether a regular expression is matched by a particular text string.

Consider this code:

chapter8/preg_match1/index.php

<?php
$text = 'PHP rules!';

if (preg_match('/PHP/', $text))
{
 $output = '$text contains the string “PHP”.';
}
else
{
 $output = '$text does not contain the string “PHP”.';
}

include 'output.html.php';

In this example, the regular expression finds a match because the string stored in

the variable $text contains “PHP”. This example will therefore output the message

shown in Figure 8.1 (note that the single quotes around the strings in the code pre-

vent PHP from filling in the value of the variable $text).

Figure 8.1. The regular expression finds a match

PHP & MySQL: Novice to Ninja240

By default, regular expressions are case-sensitive; that is, lowercase characters in

the expression only match lowercase characters in the string, and uppercase char-

acters only match uppercase characters. If you want to perform a case-insensitive

search instead, you can use a pattern modifier to make the regular expression ignore

case.

Pattern modifiers are single-character flags following the ending delimiter of an

expression. The modifier for performing a case-insensitive match is i. So while

/PHP/ will only match strings that contain “PHP”, /PHP/i will match strings that

contain “PHP”, “php”, or even “pHp”.

Here’s an example to illustrate this:

chapter8/preg_match2/index.php

<?php
$text = 'What is Php?';

if (preg_match('/PHP/i', $text))
{
 $output = '$text contains the string “PHP”.';
}
else
{
 $output = '$text does not contain the string “PHP”.';
}

include 'output.html.php';

Again, as shown in Figure 8.2, this outputs the same message despite the string ac-

tually containing “Php”.

Figure 8.2. No need to be picky …

241Content Formatting with Regular Expressions

Regular expressions are almost a programming language unto themselves. A dazzling

variety of characters have a special significance when they appear in a regular ex-

pression. Using these special characters, you can describe in great detail the pattern

of characters that a PHP function like preg_match will search for. To show you what

I mean, let’s look at a slightly more complex regular expression:

/^PH.*/

The caret (^), the dot (.), and the asterisk (*) are all special characters that have a

specific meaning inside a regular expression. Specifically, the caret means “the start

of the string,” the dot means “any character,” and the asterisk means “zero or more

of the preceding character.”

Therefore, the pattern /^PH.*/ matches not only the string “PH”, but “PHP”, “PHX”,

“PHP: Hypertext Preprocessor”, and any other string beginning with “PH”.

When you first encounter it, regular expression syntax can be downright confusing

and difficult to remember, so if you intend to make extensive use of it, a good refer-

ence might come in handy. The PHP Manual includes a very thorough regular ex-

pression reference,1 but let’s start with the basics.

Here are some of the most commonly used regular expression special characters

(try not to lose too much sleep memorizing these), and some simple examples to

illustrate how they work:

^ (caret) The caret matches the start of the string. This excludes

any characters—it considers merely the position itself.

$ (dollar) A dollar character matches the end of the string. This ex-

cludes any characters—it considers merely the position

itself:

/PHP/ Matches 'PHP rules!' and 'What is PHP?'
/^PHP/ Matches 'PHP rules!' but not 'What is PHP?'
/PHP$/ Matches 'I love PHP' but not 'What is PHP?'
/^PHP$/ Matches 'PHP' and no other string.

1 http://php.net/manual/en/reference.pcre.pattern.syntax.php

PHP & MySQL: Novice to Ninja242

http://php.net/manual/en/reference.pcre.pattern.syntax.php
http://php.net/manual/en/reference.pcre.pattern.syntax.php

. (dot) This is the wildcard character. It matches any single

character except a newline (\n):2

/^...$/ Matches any three-character string (no newlines).

* (asterisk) An asterisk requires that the preceding character appears

zero or more times.

When matching, the asterisk will be greedy, including as

many characters as possible. For example, for the string

'a word here, a word there', the pattern /a.*word/

will match 'a word here, a word'. In order to make a

minimal match (just 'a word'), use the question mark

character (explained shortly).

+ (plus) This character requires that the preceding character ap-

pears one or more times. When matching, the plus will

be greedy (just like the asterisk) unless you use the ques-

tion mark character.

? (question mark) This character makes the preceding character optional.

If placed after a plus or an asterisk, it instead dictates that

the match for this preceding symbol will be a minimal

match (also known as non-greedy or lazy matching), in-

cluding as few characters as possible:

/bana?na/ Matches 'banana' and 'banna', but not 'banaana'.
/bana+na/ Matches 'banana' and 'banaana', but not 'banna'.
/bana*na/ Matches 'banna', 'banana', and 'banaaana',

but not 'bnana'.
/^[a-zA-Z]+$/ Matches any string of one or more letters only.

| (pipe) The pipe causes the regular expression to match either

the pattern on the left of the pipe, or the pattern on the

right.

2 If you put an s pattern modifier at the end of your regular expression, the dot character will also match

newlines.

243Content Formatting with Regular Expressions

(…) (round brackets) Round brackets define a group of characters that must

occur together, to which you can then apply a modifier

like *, +, or ? by placing it after the closing bracket.

You can also refer to a bracketed portion of a regular ex-

pression later to obtain the portion of the string that it

matched:

/^(yes|no)$/ Matches the strings 'yes' and 'no' only.
/ba(na)+na/ Matches 'banana' and 'banananana',

but not 'bana' or 'banaana'.
/ba(na|ni)+/ Matches 'bana' and 'banina',

but not 'naniba'.

[…] (square brackets) Square brackets define a character class. A character class

matches one character out of those listed within the square

brackets.

A character class can include an explicit list of characters

(for instance, [aqz], which is the same as (a|q|z)), or a

range of characters (such as [a-z], which is the same as

(a|b|c|…|z).

A character class can also be defined so that it matches

one character that’s not listed in the brackets. To do this,

simply insert a caret (^) after the opening square bracket

(so [^a] will match any single character except ‘a’).

Let’s see all these in action:

/[12345]/ Matches '1a' (contains ‘1’) and '39' (contains ‘3’),
but doesn’t match 'a' or '76'.

/[^12345]/ Matches '1a' (contains ‘a’) and '39' (contains ‘9’),
but not '1', or '54'.

/[1-5]/ Equivalent to /[12345]/.
/^[a-z]$/ Matches any single lowercase letter.
/^[^a-z]$/ Matches any single character not a lowercase letter.
/[0-9a-zA-Z]/ Matches any string containing a letter or number.

PHP & MySQL: Novice to Ninja244

If you want to use one of these special characters as a literal character to be matched

by the regular expression pattern, escape it by placing a backslash (\) before it:

/1\+1=2/ Matches any string containing '1+1=2'.
/\$\$\$/ Matches any string containing '$$$'.

There are also a number of so-called escape sequences that will match a character

that’s either not easily typed, or a certain type of character:

\n This sequence matches a newline character.

\r This matches a carriage-return character.

\t This matches a tab character.

\s This sequence matches any whitespace character, which includes any newline,

carriage-return, or tab character; it’s the same as [\n\r\t].

\S This matches any nonwhitespace character, and is the same as [^ \n\r\t].

\d This matches any digit; it’s the same as [0-9].

\D This sequence matches anything but a digit, and is the same as [^0-9].

\w This matches any “word” character. It’s the same as [a-zA-Z0-9_].

\W This sequence matches any “non-word” character, and is the same as [^a-zA-

Z0-9_].

\b This code is a little special because it doesn’t actually match a character. In-

stead, it matches a word boundary—the start or end of a word.

\B Like \b, this won’t match a character. Rather, it matches a position in the string

that is not a word boundary.

\\ This matches an actual backslash character. So if you want to match the string

“\n” exactly, your regular expression would be /\\n/, not /\n/ (which matches

a newline character). Similarly, if you wanted to match the string “\\” exactly,

your regular expression would be /\\\\/.

245Content Formatting with Regular Expressions

\\ becomes \\\\

To use your regular expression with a PHP function like preg_match, you

need to write it as a PHP string. Just like regular expressions, however, PHP

uses \\ to indicate a single backslash in a PHP string. A regular expression

like /\\n/must therefore be written in PHP as '/\\\\n/' to work properly.

PHP takes the four backslashes to mean two backslashes, which is what you

want your regular expression to contain.

Believe it or not, we now have everything we need to be able to understand the

email address regular expression I showed you at the start of this section:

/^[\w\.\-]+@([\w\-]+\.)+[a-z]+$/i

/ The slash is the starting delimiter that marks the beginning of the

regular expression.

^ We match the beginning of the string to make sure that nothing

appears before the email address.

[\w\.\-]+ The name portion of the email address is made up of one or more

(+) characters that are either “word” characters, dots, or hyphens

([\w\.\-]).

@ The name is followed by the @ character.

([\w\-]+\.)+ Then we have one or more (+) subdomains (such as “sitepoint.”),

each of which is one or more “word” characters or hyphens

([\w\-]+) followed by a dot (\.).

[a-z]+ Next, there’s the top-level domain (for example, “com”), which

is simply one or more letters ([a-z]+).

$ Finally, we match the end of the string, to make sure that nothing

appears after the email address.

/i The slash is the ending delimiter marking the end of the regular

expression. The pattern modifier i following the slash indicates

PHP & MySQL: Novice to Ninja246

that the letters in the regular expression (such as [a-z]) should

be treated case-insensitively.

Got all that? If you’re feeling anything like I was when I first learned regular expres-

sions, you’re probably a little nervous. Okay, so you can follow along with a

breakdown of a regular expression that someone else wrote for you, but can you

really come up with this gobbledygook yourself? Don’t sweat it: in the rest of this

chapter, we’ll look at a bunch more regular expressions, and before you know it

you’ll be writing expressions of your own with confidence.

String Replacement with
Regular Expressions
As you may recall, we’re aiming in this chapter to make it easier for non-HTML-

savvy users to add formatting to the jokes on our website. For example, if a user

puts asterisks around a word in the text of a joke (for example, 'Knock *knock*…'),

we’d like to display that joke with HTML emphasis tags around that word (Knock

knock…').

We can detect the presence of plain-text formatting such as this in a joke’s text using

preg_match with the regular expression syntax we’ve just learned; however, what

we need to do is pinpoint that formatting and replace it with appropriate HTML

tags. To achieve this, we need to look at another regular expression function offered

by PHP: preg_replace.

preg_replace, like preg_match, accepts a regular expression and a string of text,

and attempts to match the regular expression in the string. In addition, preg_replace

takes another string of text and replaces every match of the regular expression with

that string.

The syntax for preg_replace is as follows:

$newString = preg_replace(regExp, replaceWith, oldString);

Here, regExp is the regular expression, and replaceWith is the string that will replace

matches in oldString. The function returns the new string with all the replacements

made. In that code, this newly generated string is stored in $newString.

247Content Formatting with Regular Expressions

We’re now ready to build our joke formatting function.

Emphasized Text
In Chapter 6, we wrote a helper function, htmlout, for outputting arbitrary text as

HTML. This function is housed in a shared include file, helpers.inc.php. Since we’ll

now want to output text containing plain-text formatting as HTML, let’s add a new

helper function to the file for this purpose:

chapter8/includes/helpers.inc.php (excerpt)

function markdown2html($text)
{
 $text = html($text);

 ⋮ Convert plain-text formatting to HTML

 return $text;
}

The plain-text formatting syntax we’ll support is a simplified form of Markdown,

created by John Gruber.

Markdown is a text-to-HTML conversion tool for web writers.

Markdown allows you to write using an easy-to-read, easy-to-write

plain-text format, then convert it to structurally valid XHTML (or

HTML).

—the Markdown home page3

Since this helper function will convert Markdown to HTML, it’s named

markdown2html.

This function’s first action is to use the html helper function to convert any HTML

code present in the text into HTML text. We want to avoid any HTML code appearing

in the output except that which is generated from plain-text formatting.4

3 http://daringfireball.net/projects/markdown/
4 Technically, this breaks one of the features of Markdown: support for inline HTML. “Real” Markdown

can contain HTML code, which will be passed through to the browser untouched. The idea is that you

can use HTML to produce any formatting that is too complex to create using Markdown’s plain-text

formatting syntax. Since we don’t want to allow this, it might be more accurate to say we’ll support

Markdown-style formatting.

PHP & MySQL: Novice to Ninja248

http://daringfireball.net/projects/markdown/

Let’s start with formatting that will create bold and italic text.

In Markdown, you can emphasize text by surrounding it with a pair of asterisks (*),

or a pair of underscores (_). Obviously, we’ll replace any such pair with an

and tag.5

To achieve this, we’ll use two regular expressions: one that handles a pair of asterisks

and one that handles a pair of underscores.

Let’s start with the underscores:

/_[^_]+_/

Breaking this down:

/ We choose our usual slash character to begin (and therefore delimit) our

regular expression.

_ There’s nothing special about underscores in regular expressions, so this

will simply match an underscore character in the text.

[^_] A sequence of one or more characters that aren’t underscores.

_ The second underscore, which marks the end of the italicized text.

/ The end of the regular expression.

Now, it’s easy enough to feed this regular expression to preg_replace, but we have

a problem:

 $text = preg_replace('/_[^_]+_/', 'emphasized text',
➥$text);

The second argument we pass to preg_replace needs to be the text that we want

to replace each match with. The problem is, we have no idea what the text that goes

5 You may be more accustomed to using and <i> tags for bold and italic text; however, I’ve chosen

to respect the most recent HTML standards, which recommend using the more meaningful

and tags, respectively. If bold text doesn’t necessarily indicate strong emphasis in your content,

and italic text isn’t representative of emphasis, you might want to use and <i> instead.

249Content Formatting with Regular Expressions

between the and tags should be—it’s part of the text that’s being matched

by our regular expression!

Thankfully, another feature of preg_replace comes to our rescue. If you surround

a portion of the regular expression with round brackets (or parentheses), you can

capture the corresponding portion of the matched text and use it in the replacement

string. To do this, you’ll use the code $n, where n is 1for the first parenthesized

portion of the regular expression, 2 for the second, and so on, up to 99 for the 99th.

Consider this example:

$text = 'banana';
$text = preg_replace('/(.*)(nana)/', '$2$1', $text);
echo $text; // outputs 'nanaba'

So $1 is replaced with the text matched by the first round-bracketed portion of the

regular expression ((.*)—zero or more non-newline characters), which is ba in this

case. $2 is replaced by nana, which is the text matched by the second round-brack-

eted portion of the regular expression ((nana)). The replacement string '$2$1',

therefore, produces 'nanaba'.

We can use the same principle to create our emphasized text, adding a pair of round

brackets to our regular expression:

/_([^_]+)_/

These brackets have no effect on how the expression works at all, but they create a

group of matched characters that we can reuse in our replacement string:

chapter8/includes/helpers.inc.php (excerpt)

 $text = preg_replace('/_([^_]+)_/', '$1', $text);

The pattern to match and replace pairs of asterisks looks much the same, except we

need to escape the asterisks with backslashes, since the asterisk character normally

has a special meaning in regular expressions:

chapter8/includes/helpers.inc.php (excerpt)

 $text = preg_replace('/*([^*]+)*/', '$1', $text);

PHP & MySQL: Novice to Ninja250

That takes care of emphasized text, but Markdown also supports creating strong

emphasis (tags) by surrounding text with a pair of double asterisks or

underscores (**strong emphasis** or __strong emphasis__). Here’s the regular

expression to match pairs of double underscores:

/__(.+?)__/s

The double underscores at the start and end are straightforward enough, but what’s

going on inside the round brackets?

Previously, in our single-underscore pattern, we used [^_]+ to match a series of

one or more characters, none of which could be underscores. That works fine when

the end of the emphasized text is marked by a single underscore, but when the end

is a double underscore we want to allow for the emphasized text to contain single

underscores (for example, __text_with_strong_emphasis__). “No underscores al-

lowed,” therefore, won’t cut it—we must come up with some other way to match

the emphasized text.

You might be tempted to use .+ (one or more characters, any kind), giving us a

regular expression like this:6

/__(.+)__/s

The problem with this pattern is that the + is greedy—it will cause this portion of

the regular expression to gobble up as many characters as it can. Consider this joke,

for example:

__Knock-knock.__ Who’s there? __Boo.__ Boo who? __Aw, don’t cry
➥ about it!__

When presented with this text, the regular expression above will see just a single

match, beginning with two underscores at the start of the joke and ending with two

underscores at the end. The rest of the text in between (including all the other double

underscores) will be gobbled up by the greedy .+ as the text to be emphasized!

6 The s pattern modifier at the end of the regular expression ensures that the dot (.) will truly match

any character, including newlines.

251Content Formatting with Regular Expressions

To fix this problem, we can ask the + to be non-greedy by adding a question mark

after it. Instead of matching as many characters as possible, .+? will match as few

characters as possible while still matching the rest of the pattern, ensuring we’ll

match each piece of emphasized text (and the double-underscores that surround it)

individually. This gets us to our final regular expression:

/__(.+?)__/s

Using the same technique, we can also come up with a regular expression for double-

asterisks. This is how the finished code for applying strong emphasis ends up

looking:

chapter8/includes/helpers.inc.php (excerpt)

 $text = preg_replace('/__(.+?)__/s', '$1',
➥ $text);
 $text = preg_replace('/**(.+?)**/s', '$1',
➥ $text);

One last point: we must avoid converting pairs of single asterisks and underscores

into and tags until after we’ve converted the pairs of double asterisks

and underscores in the text into and tags. Our markdown2html

function, therefore, will apply strong emphasis first, then regular emphasis:

chapter8/includes/helpers.inc.php (excerpt)

function markdown2html($text)
{
 $text = html($text);

 // strong emphasis
 $text = preg_replace('/__(.+?)__/s', '$1',
➥ $text);
 $text = preg_replace('/**(.+?)**/s', '$1',
➥ $text);

 // emphasis
 $text = preg_replace('/_([^_]+)_/', '$1', $text);
 $text = preg_replace('/*([^*]+)*/', '$1', $text);
 ⋮
 return $text;
}

PHP & MySQL: Novice to Ninja252

Paragraphs
While we could choose characters to mark the start and end of paragraphs just as

we did for emphasized text, a simpler approach makes more sense. Since your users

will type the content into a form field that allows them to create paragraphs using

the Enter key, we’ll take a single newline to indicate a line break (
) and a double

newline to indicate a new paragraph (</p><p>).

As I explained earlier, you can represent a newline character in a regular expression

as \n. Other whitespace characters you can write this way include a carriage return

(\r) and a tab space (\t).

Exactly which characters are inserted into text when the user hits Enter depends

on the user’s operating system. In general, Windows computers represent a line

break as a carriage return followed by a newline (\r\n), whereas Mac computers

used to represent it as a single carriage return character (\r). These days, Macs and

Linux computers use a single newline character (\n) to indicate a new line.7

To deal with these different line-break styles, any of which may be submitted by

the browser, we must do some conversion:

 // Convert Windows (\r\n) to Unix (\n)
 $text = preg_replace('/\r\n/', "\n", $text);
 // Convert Macintosh (\r) to Unix (\n)
 $text = preg_replace('/\r/', "\n", $text);

Regular Expressions in Double Quoted Strings

All the regular expressions we’ve seen so far in this chapter have been expressed

as single-quoted PHP strings. The automatic variable substitution provided by

PHP strings is sometimes more convenient, but they can cause headaches when

used with regular expressions.

Double-quoted PHP strings and regular expressions share a number of special

character escape codes. "\n" is a PHP string containing a newline character.

7 In fact, the type of line breaks used can vary between software programs on the same computer. If

you’ve ever opened a text file in Notepad to see all the line breaks missing, you’ve experienced the

frustration this can cause. Advanced text editors used by programmers usually let you specify the type

of line breaks to use when saving a text file.

253Content Formatting with Regular Expressions

Likewise, /\n/ is a regular expression that will match any string containing a

newline character. We can represent this regular expression as a single-quoted

PHP string ('/\n/') and all is well, because the code \n has no special meaning

in a single-quoted PHP string.

If we were to use a double-quoted string to represent this regular expression, we’d

have to write "/\\n/"—with a double-backslash. The double-backslash tells PHP

to include an actual backslash in the string, rather than combining it with the n

that follows it to represent a newline character. This string will therefore generate

the desired regular expression, /\n/.

Because of the added complexity it introduces, it’s best to avoid using double-

quoted strings when writing regular expressions. Note, however, that I have used

double quotes for the replacement strings ("\n") passed as the second parameter

to preg_replace. In this case, we actually do want to create a string containing

a newline character, so a double-quoted string does the job perfectly.

With our line breaks all converted to newline characters, we can convert them to

paragraph breaks (when they occur in pairs) and line breaks (when they occur alone):

 // Paragraphs
 $text = '<p>' . preg_replace('/\n\n/', '</p><p>', $text) . '</p>';
 // Line breaks
 $text = preg_replace('/\n/', '
', $text);

Note the addition of <p> and </p> tags surrounding the joke text. Because our jokes

may contain paragraph breaks, we must make sure the joke text is output within

the context of a paragraph to begin with.

This code does the trick: the line breaks in the text will now become the natural

line- and paragraph-breaks expected by the user, removing the requirement to learn

anything new to create this simple formatting.

It turns out, however, that there’s a simpler way to achieve the same result in this

case—there’s no need to use regular expressions at all! PHP’s str_replace function

works a lot like preg_replace, except that it only searches for strings instead of

regular expression patterns:

$newString = str_replace(searchFor, replaceWith, oldString);

PHP & MySQL: Novice to Ninja254

We can therefore rewrite our line-breaking code as follows:

chapter8/includes/helpers.inc.php (excerpt)

 // Convert Windows (\r\n) to Unix (\n)
 $text = str_replace("\r\n", "\n", $text);
 // Convert Macintosh (\r) to Unix (\n)
 $text = str_replace("\r", "\n", $text);

 // Paragraphs
 $text = '<p>' . str_replace("\n\n", '</p><p>', $text) . '</p>';
 // Line breaks
 $text = str_replace("\n", '
', $text);

str_replace is much more efficient than preg_replace because there’s no need

for it to apply the complex rules that govern regular expressions. Whenever

str_replace (or str_ireplace, if you need a case-insensitive search) can do the

job, you should use it instead of preg_replace.

Hyperlinks
While supporting the inclusion of hyperlinks in the text of jokes may seem unne-

cessary, such a feature makes plenty of sense in other applications.

Here’s what a hyperlink looks like in Markdown:8

[linked text](link URL)

Simple, right? You put the text of the link in square brackets, and follow it with the

URL for the link in round brackets.

As it turns out, you’ve already learned everything you need to match and replace

links like this with HTML links. If you’re feeling up to the challenge, you should

stop reading right here and try to tackle the problem yourself!

First, we need a regular expression that will match links of this form. The regular

expression is as follows:

8 Markdown also supports a more advanced link syntax where you put the link URL at the end of the

document, as a footnote. But we won’t be supporting that kind of link in our simplified Markdown im-

plementation.

255Content Formatting with Regular Expressions

/\[([^\]]+)]\(([-a-z0-9._~:\/?#@!$&'()*+,;=%]+)\)/i

This is a rather complicated regular expression. You can see how regular expressions

have gained a reputation for being indecipherable!

Squint at it for a little while, and see if you can figure out how it works. Grab a pen

and break it into parts if you need to. If you have a highlighter pen handy, you might

use it to mark the two pairs of parentheses (()) used to capture portions of the

matched string: the linked text ($1) and the link URL ($1).

Let me break it down for you:

/

As with all our regular expressions, we choose to mark its beginning with a

slash.

\[

This matches the opening square bracket ([). Since square brackets have a special

meaning in regular expressions, we must escape it with a backslash to have it

interpreted literally.

([^\]]+)

First of all, this portion of the regular expression is surrounded with round

brackets, so the matching text will be available to us as $1 when we write the

replacement string.

Inside the round brackets, we’re after the linked text. Because the end of the

linked text is marked with a closing square bracket (]), we can describe it as

one or more characters, none of which is a closing square bracket ([^\]]+).

]\(

This will match the closing square bracket that ends the linked text, followed

by the opening round bracket that signals the start of the link URL. The round

bracket needs to be escaped with a backslash to prevent it from having its usual

grouping effect. (The square bracket doesn’t need to be escaped with a backslash

because there is no unescaped opening square bracket currently in play.)

PHP & MySQL: Novice to Ninja256

([-a-z0-9._~:\/?#@!$&'()*+,;=%]+)

Again, the round brackets make the matching text available to us as $2 in the

replacement string.

As for the gobbledygook inside the brackets, it will match any URL.9 The square

brackets contain a list of characters that may appear in a URL, which is followed

by a + to indicate that one or more of these acceptable characters must be present.

Within a square-bracketed list of characters, many of the characters that normally

have a special meaning within regular expressions lose that meaning. ., ?, +, *,

(, and) are all listed here without the need to be escaped by backslashes. The

only character that does need to be escaped in this list is the slash (/), which

must be written as \/ to prevent it from being mistaken for the end-of-regular-

expression delimiter.

Note also that to include the hyphen (-) in the list of characters, you have to

list it first. Otherwise, it would have been taken to indicate a range of characters

(as in a-z and 0-9).

\)

This escaped round bracket matches the closing round bracket ()) at the end of

the link URL.

/i

We mark the end of the regular expression with a slash, followed by the case-

insensitivity flag, i.

We can therefore convert links with the following PHP code:

chapter8/includes/helpers.inc.php (excerpt)

 $text = preg_replace(
 '/\[([^\]]+)]\(([-a-z0-9._~:\/?#@!$&\'()*+,;=%]+)\)/i',
 '$1', $text);

9 It will also match some strings that are invalid URLs, but it’s close enough for our purposes. If you’re

especially intrigued by regular expressions, you might want to check out RFC 3986,

[http://tools.ietf.org/html/rfc3986#appendix-B] the official standard for URLs. Appendix B of this spe-

cification demonstrates how to parse a URL with a rather impressive regular expression.

257Content Formatting with Regular Expressions

http://tools.ietf.org/html/rfc3986#appendix-B

As you can see, $1 is used in the replacement string to substitute the captured link

text, and $2 is used for the captured URL.

Additionally, because we’re expressing our regular expression as a single-quoted

PHP string, you have to escape the single quote that appears in the list of acceptable

characters with a backslash.

Putting It All Together
Here’s our finished helper function for converting Markdown to HTML:

chapter8/includes/helpers.inc.php (excerpt)

function markdown2html($text)
{
 $text = html($text);

 // strong emphasis
 $text = preg_replace('/__(.+?)__/s', '$1',
➥ $text);
 $text = preg_replace('/**(.+?)**/s', '$1',
➥ $text);

 // emphasis
 $text = preg_replace('/_([^_]+)_/', '$1', $text);
 $text = preg_replace('/*([^*]+)*/', '$1', $text);

 // Convert Windows (\r\n) to Unix (\n)
 $text = str_replace("\r\n", "\n", $text);
 // Convert Macintosh (\r) to Unix (\n)
 $text = str_replace("\r", "\n", $text);

 // Paragraphs
 $text = '<p>' . str_replace("\n\n", '</p><p>', $text) . '</p>';
 // Line breaks
 $text = str_replace("\n", '
', $text);

 // [linked text](link URL)
 $text = preg_replace(
 '/\[([^\]]+)]\(([-a-z0-9._~:\/?#@!$&\'()*+,;=%]+)\)/i',
 '$1', $text);

 return $text;
}

PHP & MySQL: Novice to Ninja258

For added convenience when using this in a PHP template, we’ll add a markdownout

function that calls markdown2html and then echoes out the result:

chapter8/includes/helpers.inc.php (excerpt)

function markdownout($text)
{
 echo markdown2html($text);
}

We can then use this helper in our two templates that output joke text. First, in the

admin pages, we have the joke search results template:

chapter8/admin/jokes/jokes.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Manage Jokes: Search Results</title>
 </head>
 <body>
 <h1>Search Results</h1>
 <?php if (isset($jokes)): ?>
 <table>
 <tr><th>Joke Text</th><th>Options</th></tr>
 <?php foreach ($jokes as $joke): ?>
 <tr valign="top">
 <td><?php markdownout($joke['text']); ?></td>
 <td>
 <form action="?" method="post">
 <div>
 <input type="hidden" name="id" value="<?php
 htmlout($joke['id']); ?>">
 <input type="submit" name="action" value="Edit">
 <input type="submit" name="action" value="Delete">
 </div>
 </form>
 </td>
 </tr>
 <?php endforeach; ?>
 </table>

259Content Formatting with Regular Expressions

 <?php endif; ?>
 <p>New search</p>
 <p>Return to JMS home</p>
 </body>
</html>

Second, we have the public joke list page:

chapter8/jokes/jokes.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>List of Jokes</title>
 </head>
 <body>
 <p>Here are all the jokes in the database:</p>
 <?php foreach ($jokes as $joke): ?>
 <blockquote>
 <p>
 <?php markdownout($joke['text']); ?>
 (by <a href="mailto:<?php htmlout($joke['email']); ?>">
 <?php htmlout($joke['name']); ?>)
 </p>
 </blockquote>
 <?php endforeach; ?>
 </body>
</html>

With these changes made, take your new plain-text formatting for a spin! Edit a few

of your jokes to contain Markdown syntax and verify that the formatting is correctly

displayed.

Use the PHP Markdown Library

What’s nice about adopting a formatting syntax like Markdown for your own

website is that there’s often plenty of open-source code out there to help you deal

with it.

PHP & MySQL: Novice to Ninja260

Your newfound regular expression skills will serve you well in your career as a

web developer, but if you want to support Markdown formatting on your site, the

easiest way to do it would be to not write all the code to handle Markdown

formatting yourself!

Instead, a quick Google search will find you the PHP Markdown project,10 from

which you can download a markdown.php file that you can drop in your site’s

includes folder. You can then use the Markdown function it contains in your

markdown2html helper function:

function markdown2html($text)
{
 $text = html($text);

 include_once $_SERVER['DOCUMENT_ROOT'] .
➥ '/includes/markdown.php';
 return Markdown($text);
}

Go ahead and give this a try. Make sure your formatting still works, and then curse

me for dragging you through the ordeal of regular expressions when you could

have avoided it. (Seriously, it’s a handy skill.)

Real World Content Submission
It seems a shame to have spent so much time and effort on a content management

system that’s really easy to use, when the only people who are actually allowed to

use it are the site administrators. Furthermore, while it’s extremely convenient for

an administrator not having to edit HTML when making updates to the site’s content,

submitted documents still need to be transcribed into the “Add new joke” form,

and any formatted text converted into Markdown—a tedious and mind-numbing

task, to say the least.

What if we put the “Add new joke” form in the hands of casual site visitors? If you

recall, we actually did this in Chapter 4 when we put an Add your own joke link on

our public joke list page, through which users could submit their own jokes. At the

time, this was simply a device that demonstrated how INSERT statements could be

made from within PHP scripts, and we’ve since removed it (because it was incom-

10 http://michelf.com/projects/php-markdown/

261Content Formatting with Regular Expressions

http://michelf.com/projects/php-markdown/

patible with some changes we made to our database structure), but given how easy

Markdown is to write, it sure would be nice to put a joke submission form back in

the hands of our visitors.

In the next chapter, we’ll introduce access control to your joke database, making

your website one that could survive in the real world. Most importantly, you’ll

limit access to the admin pages for the site to authorized users only. But perhaps

more excitingly, we will revisit the idea of accepting joke submissions from your

visitors.

PHP & MySQL: Novice to Ninja262

Chapter9
Cookies, Sessions, and Access Control
Cookies and sessions are two of those mysterious technologies that are almost always

made out to be more intimidating and complex than they really are. In this chapter,

I’ll debunk those myths by explaining in simple language what they are, how they

work, and what they can do for you. I’ll also provide practical examples to demon-

strate each.

Finally, we’ll use these new tools to provide sophisticated access control to the

administration features of your Internet Joke Database site.

Cookies
Most computer programs these days preserve some form of state when you close

them. Whether it be the position of the application window, or the names of the

last five files that you worked with, the settings are usually stored in a small file on

your system so that they can be read back the next time the program is run. When

web developers took web design to the next level, and moved from static pages to

complete, interactive online applications, there was a need for similar functionality

in web browsers—so cookies were born.

A cookie is a name-value pair associated with a given website, and stored on the

computer that runs the client (browser). Once a cookie is set by a website, all future

page requests to that same site will also include the cookie until it expires or becomes

out of date. Other websites are unable to access the cookies set by your site, and

vice versa, so, contrary to popular belief, they’re a relatively safe place to store

personal information. Cookies in and of themselves are incapable of compromising

a user’s privacy.

Illustrated in Figure 9.1 is the life cycle of a PHP-generated cookie.

Figure 9.1. The life cycle of a cookie

First, a web browser requests a URL that corresponds to a PHP script. Within

that script is a call to the setcookie function that’s built into PHP.

The page produced by the PHP script is sent back to the browser, along with

an HTTP set-cookie header that contains the name (for example, mycookie)

and value of the cookie to be set.

When it receives this HTTP header, the browser creates and stores the specified

value as a cookie named mycookie.

Subsequent page requests to that website contain an HTTP cookie header that

sends the name/value pair (mycookie=value) to the script requested.

PHP & MySQL: Novice to Ninja264

Upon receipt of a page request with a cookie header, PHP automatically creates

an entry in the $_COOKIE array with the name of the cookie

($_COOKIE['mycookie']) and its value.

In other words, the PHP setcookie function lets you set a variable that will auto-

matically be set by subsequent page requests from the same browser. Before we ex-

amine an actual example, let’s take a close look at the setcookie function:

setcookie(name[, value[, expiryTime[, path[, domain[, secure[,
httpOnly]]]]]])

Square Brackets Indicate Optional Code

The square brackets ([…]) indicate portions of the code that are optional. Leave

out the square brackets when using the syntax in your code.

Like the header function we saw in Chapter 4, the setcookie function adds HTTP

headers to the page, and thus must be called before any of the actual page content

is sent. Any attempt to call setcookie after page content has been sent to the browser

will produce a PHP error message. Typically, therefore, you’ll use these functions

in your controller script before any actual output is sent (by an included PHP tem-

plate, for example).

The only required parameter for this function is name, which specifies the name

of the cookie. Calling setcookie with only the name parameter will actually delete

the cookie that’s stored on the browser, if it exists. The value parameter allows you

to create a new cookie, or modify the value stored in an existing one.

By default, cookies will remain stored by the browser, and thus will continue to be

sent with page requests until the browser is closed by the user. If you want the

cookie to persist beyond the current browser session, you must set the expiryTime

parameter to specify the number of seconds from January 1, 1970 to the time at

which you want the cookie to be deleted automatically. The current time in this

format can be obtained using the PHP time function. Thus, a cookie could be set to

expire in one hour, for example, by setting expiryTime to time() + 3600. To delete

a cookie that has a preset expiry time, change this expiry time to represent a point

in the past (such as one year ago: time() – 3600 * 24 * 365). Here are two ex-

amples showing these techniques in practice:

265Cookies, Sessions, and Access Control

// Set a cookie to expire in 1 year
setcookie('mycookie', 'somevalue', time() + 3600 * 24 * 365);

// Delete it
setcookie('mycookie', '', time() – 3600 * 24 * 365);

The path parameter lets you restrict access to the cookie to a given path on your

server. For instance, if you set a path of '/admin/' for a cookie, only requests for

pages in the admin directory (and its subdirectories) will include the cookie as part

of the request. Note the trailing /, which prevents scripts in other directories begin-

ning with /admin (such as /adminfake/) from accessing the cookie. This is helpful

if you’re sharing a server with other users, and each user has a web home directory.

It allows you to set cookies without exposing your visitors’ data to the scripts of

other users on your server.

The domain parameter serves a similar purpose: it restricts the cookie’s access to a

given domain. By default, a cookie will be returned only to the host from which it

was originally sent. Large companies, however, commonly have several host names

for their web presence (for example, www.example.com and support.example.com).

To create a cookie that’s accessible by pages on both servers, you would set the

domain parameter to '.example.com'. Note the leading ., which prevents another

site at fakeexample.com from accessing your cookies on the basis that their domain

ends with example.com.

The secure parameter, when set to 1, indicates that the cookie should be sent only

with page requests that happen over a secure (SSL) connection (that is, with a URL

that starts with https://).

The httpOnly parameter, when set to 1, tells the browser to prevent JavaScript code

on your site from seeing the cookie that you’re setting. Normally, the JavaScript

code you include in your site can read the cookies that have been set by the server

for the current page. While this can be useful in some cases, it also puts the data

stored in your cookies at risk should an attacker figure out a way to inject malicious

JavaScript code into your site. This code could then read your users’ potentially

sensitive cookie data and do unspeakable things with it. If you set httpOnly to 1,

the cookie you’re setting will be sent to your PHP scripts as usual, but will be invis-

ible to JavaScript code running on your site.

PHP & MySQL: Novice to Ninja266

While all parameters except name are optional, you must specify values for earlier

parameters if you want to specify values for later ones. For instance, to call

setcookie with a domain value, you also need to specify a value for the expiryTime

parameter. To omit parameters that require a value, you can set string parameters

(value, path, domain) to '' (the empty string) and numerical parameters (expiryTime,

secure) to 0.

Let’s now look at an example of cookies in use. Imagine you want to display a special

welcome message to people on their first visit to your site. You could use a cookie

to count the number of times a user had been to your site before, and only display

the message when the cookie was not set. Here’s the code:

chapter9/cookiecounter/index.php

<?php

if (!isset($_COOKIE['visits']))
{
 $_COOKIE['visits'] = 0;
}
$visits = $_COOKIE['visits'] + 1;
setcookie('visits', $visits, time() + 3600 * 24 * 365);

include 'welcome.html.php';

This code starts by checking if $_COOKIE['visits'] is set. If it isn’t, it means the

visits cookie has yet to be set in the user’s browser. To handle this special case,

we set $_COOKIE['visits'] to 0. The rest of our code can then safely assume that

$_COOKIE['visits'] contains the number of previous visits the user has made to

the site.

Next, to work out the number of this visit, we take $_COOKIE['visits'] and add

the value 1. This variable, $visits, will be used by our PHP template.

Finally, we use setcookie to set the visits cookie to reflect the new number of

visits. We set this cookie to expire in one year’s time.

With all the work done, our controller includes the PHP template welcome.html.php:

267Cookies, Sessions, and Access Control

chapter9/cookiecounter/welcome.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Cookie counter</title>
 </head>
 <body>
 <p>
 <?php
 if ($visits > 1)
 {
 echo "This is visit number $visits.";
 }
 else
 {
 // First visit
 echo 'Welcome to my website! Click here for a tour!';
 }
 ?>
 </p>
 </body>
</html>

Figure 9.2 shows what this example looks like the first time a browser visits the

page. Subsequent visits look like Figure 9.3.

PHP & MySQL: Novice to Ninja268

Figure 9.2. The first visit

Figure 9.3. The second visit

Before you go overboard using cookies, be aware that browsers place a limit on the

number and size of cookies allowed per website. Some browsers will start deleting

old cookies to make room for new ones after you’ve set 20 cookies from your site.

Other browsers will allow up to 50 cookies per site, but will reject new cookies

beyond this limit. Browsers also enforce a maximum combined size for all cookies

from all websites, so an especially cookie-heavy site might cause your own site’s

cookies to be deleted.

269Cookies, Sessions, and Access Control

For these reasons, do your best to keep the number and size of the cookies your site

creates to a minimum.

PHP Sessions
Because of the limitations I’ve just described, cookies are inappropriate for storing

large amounts of information. If you run an ecommerce website that uses cookies

to store items in shopping carts as users make their way through your site, it can

be a huge problem; the bigger a customer’s order, the more likely it will run afoul

of a browser’s cookie restrictions.

Sessions were developed in PHP as the solution to this issue. Instead of storing all

your (possibly large) data as cookies in your visitor’s web browser, sessions let you

store the data on your web server. The only value that’s stored in the browser is a

single cookie containing the user’s session ID—a long string of letters and numbers

that serves to identify that user uniquely for the duration of their visit to your site.

It’s a variable for which PHP watches on subsequent page requests, and uses to load

the stored data that’s associated with that session.

Unless configured otherwise, a PHP session automatically sets a cookie in the user’s

browser that contains the session ID. The browser then sends that cookie, along

with every request for a page from your site, so that PHP can determine to which

of potentially numerous sessions-in-progress the request belongs. Using a set of

temporary files that are stored on the web server,1 PHP keeps track of the variables

that have been registered in each session, and their values.

Before you can go ahead and use the spiffy session-management features in PHP,

you should ensure that the relevant section of your php.ini file has been set up

properly. If you’re using one of the all-in-one packages described in Chapter 1 (like

XAMPP or MAMP), or if you’re using a server that belongs to your web host, it’s

probably safe to assume this has been done for you. Otherwise, open your php.ini

file in a text editor and look for the section marked [Session] (say that ten times

fast!). Beneath it, you’ll find around 20 options that begin with the word session.

Most of them are fine as they are, but there are a few crucial ones you’ll want to

check:

1 PHP can also be configured to store sessions in your MySQL database; however, this is only necessary

if you need to share session data between multiple web servers.

PHP & MySQL: Novice to Ninja270

session.save_handler = files
session.save_path = "C:\WINDOWS\TEMP"
session.use_cookies = 1

session.save_path tells PHP where to create the temporary files used to track

sessions. It must be set to a directory that exists on the system, or you’ll receive

ugly error messages when you try to create a session on one of your pages. On Mac

OS X and Linux systems, /tmp is a popular choice. In Windows, you could use

C:\WINDOWS\TEMP, or some other directory if you prefer (D:\PHP\SESSIONS, for

example). With these adjustments made, restart your web server software to allow

the changes to take effect.

You’re now ready to start working with PHP sessions. Before we jump into an ex-

ample, let’s quickly look at the most common session management functions in

PHP. To tell PHP to look for a session ID, or start a new session if none is found,

you simply call session_start. If an existing session ID is found when this function

is called, PHP restores the variables that belong to that session. Since this function

attempts to create a cookie, it must come before any page content is sent to the

browser, just as we saw for setcookie above:

session_start();

To create a session variable that will be available on all pages in the site when ac-

cessed by the current user, set a value in the special $_SESSION array. For example,

the following will store the variable called password in the current session:

$_SESSION['password'] = 'mypassword';

To remove a variable from the current session, use PHP’s unset function:

unset($_SESSION['password']);

Finally, should you want to end the current session and delete all registered variables

in the process, clear all the stored values and use session_destroy:

$_SESSION = array();
session_destroy();

271Cookies, Sessions, and Access Control

For more detailed information on these and the other session-management functions

in PHP, see the relevant section of the PHP Manual.2

Now that we have these basic functions under our belt, let’s put them to work in a

simple example.

A Simple Shopping Cart
This example will consist of a controller script feeding two PHP templates:

■ a product catalog, through which you can add items to your shopping cart
■ a checkout page, which displays the contents of the user’s shopping cart for

confirmation

From the checkout page, the order could then be submitted to a processing system

that would handle the details of payment acceptance and shipping arrangements.

That system is beyond the scope of this book, but if you’d like to try one I’d recom-

mend playing with PayPal,3 which is quite easy to set up. The documentation page

should be well within reach of your PHP skills at this point.

Let’s start with the controller code that sets up the list of items we’ll have for sale

in our online store. For each item, we wish to list a description and a price per unit.

For this example, we’ll code these details as a PHP array. In a real-world system,

you would probably store these details in a database, but I’m using this method so

that we can focus on the session code. You should already have all the knowledge

to put together a database driven product catalog, so if you’re feeling ambitious, go

ahead and write it now.

Here’s the code for our list of products:

chapter9/shoppingcart/index.php (excerpt)

<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

$items = array(
 array('id' => '1', 'desc' => 'Canadian-Australian Dictionary',

2 http://www.php.net/session
3 http://www.paypal.com/

PHP & MySQL: Novice to Ninja272

http://www.php.net/session
http://www.paypal.com/

 'price' => 24.95),
 array('id' => '2', 'desc' => 'As-new parachute (never opened)',
 'price' => 1000),
 array('id' => '3', 'desc' => 'Songs of the Goldfish (2CD set)',
 'price' => 19.99),
 array('id' => '4', 'desc' => 'Simply JavaScript (SitePoint)',
 'price' => 39.95));

Each item in this array is itself an associative array of three items: a unique item

ID, the item description, and the price. It’s no coincidence that this looks like an

array of results we might build from querying a database.

Now we’re going to store the list of items the user placed in the shopping cart in

yet another array. Because we’ll need this variable to persist throughout a user’s

visit to your site, we’ll store it using PHP sessions. Here’s the code that’s responsible:

chapter9/shoppingcart/index.php (excerpt)

session_start();
if (!isset($_SESSION['cart']))
{
 $_SESSION['cart'] = array();
}

session_start either starts a new session (and sets the session ID cookie), or restores

the variables registered in the existing session, if one exists. The code then checks

if $_SESSION['cart'] exists, and, if it doesn’t, initializes it to an empty array to

represent the empty cart.

That’s all we need to display a product catalog using a PHP template:

chapter9/shoppingcart/index.php (excerpt)

include 'catalog.html.php';

Let’s look at the code for this template:

chapter9/shoppingcart/catalog.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>

273Cookies, Sessions, and Access Control

<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Product Catalog</title>
 <style>
 table {
 border-collapse: collapse;
 }
 td, th {
 border: 1px solid black;
 }
 </style>
 </head>
 <body>
 <p>Your shopping cart contains <?php
 echo count($_SESSION['cart']); ?> items.</p>
 <p>View your cart</p>
 <table border="1">
 <thead>
 <tr>
 <th>Item Description</th>
 <th>Price</th>
 </tr>
 </thead>
 <tbody>
 <?php foreach ($items as $item): ?>
 <tr>
 <td><?php htmlout($item['desc']); ?></td>
 <td>
 $<?php echo number_format($item['price'], 2); ?>
 </td>
 <td>
 <form action="" method="post">
 <div>
 <input type="hidden" name="id" value="<?php
 htmlout($item['id']); ?>">
 <input type="submit" name="action" value="Buy">
 </div>
 </form>
 </td>
 </tr>
 <?php endforeach; ?>
 </tbody>
 </table>

PHP & MySQL: Novice to Ninja274

 <p>All prices are in imaginary dollars.</p>
 </body>
</html>

Here are the highlights:

We use the built-in PHP function count to output the number of items in the

array stored in the $_SESSION['cart'].

We provide a link to let the user view the contents of the shopping cart. In a

system that provided checkout facilities, you might label this link Proceed to

Checkout.

We use PHP’s built-in number_format function to display the prices with two

digits after the decimal point (see the PHP Manual4 for more information about

this function).

For each item in the catalog, we provide a form with a Buy button that submits

the unique ID of the item.

Figure 9.4 shows the product catalog produced by this template.

Figure 9.4. The completed product catalog

4 http://www.php.net/number_format

275Cookies, Sessions, and Access Control

http://www.php.net/number_format

Now, when a user clicks one of the Buy buttons, our controller will receive a form

submission with $_POST['action'] set to 'Buy'. Here’s how we process this in the

controller:

chapter9/shoppingcart/index.php (excerpt)

if (isset($_POST['action']) and $_POST['action'] == 'Buy')
{
 // Add item to the end of the $_SESSION['cart'] array
 $_SESSION['cart'][] = $_POST['id'];
 header('Location: .');
 exit();
}

We add the product ID of the item to the $_SESSION['cart'] array before redirecting

the browser back to the same page, but without submitted form data, thereby ensuring

that the user can refresh the page without adding the item to the cart again.

When the user clicks the View your cart link, our controller will receive a request

with $_GET['cart'] set. Here’s how our controller will handle this:

chapter9/shoppingcart/index.php (excerpt)

if (isset($_GET['cart']))
{
 $cart = array();
 $total = 0;
 foreach ($_SESSION['cart'] as $id)
 {
 foreach ($items as $product)
 {
 if ($product['id'] == $id)
 {
 $cart[] = $product;
 $total += $product['price'];
 break;
 }
 }
 }

 include 'cart.html.php';
 exit();
}

PHP & MySQL: Novice to Ninja276

What this code does is build an array ($cart) much like the $items array, except

that the items in $cart reflect the items the user has added to the shopping cart.

To do this, it uses two nested foreach loops. The first loops through the IDs in

$_SESSION['cart']. For each of these IDs, it uses the second foreach loop to search

through the $items array looking for a product whose ID ($product['id']) is equal

to the $id from the cart. When it finds the product, it adds it to the $cart array.

At the same time, this code tallies the total price of the items in the shopping cart.

Each time the second foreach loop finds the product in the cart, it adds its price

($product['price']) to the $total.

The break command tells PHP to stop executing the second foreach loop, since

it’s found the product it has been searching for.

Once the $cart array is built, we load the second of our two PHP templates,

cart.html.php.

The code for cart.html.php is very similar to the product catalog template. All it does

is list the items in the $cart array instead of the $items array. It also outputs the

total in the footer of the table:

chapter9/shoppingcart/cart.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Shopping Cart</title>
 <style>
 table {
 border-collapse: collapse;
 }
 td, th {
 border: 1px solid black;
 }
 </style>
 </head>
 <body>
 <h1>Your Shopping Cart</h1>
 <?php if (count($cart) > 0): ?>

277Cookies, Sessions, and Access Control

 <table>
 <thead>
 <tr>
 <th>Item Description</th>
 <th>Price</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <td>Total:</td>
 <td>$<?php echo number_format($total, 2); ?></td>
 </tr>
 </tfoot>
 <tbody>
 <?php foreach ($cart as $item): ?>
 <tr>
 <td><?php htmlout($item['desc']); ?></td>
 <td>
 $<?php echo number_format($item['price'], 2); ?>
 </td>
 </tr>
 <?php endforeach; ?>
 </tbody>
 </table>
 <?php else: ?>
 <p>Your cart is empty!</p>
 <?php endif; ?>
 <form action="?" method="post">
 <p>
 Continue shopping or
 <input type="submit" name="action" value="Empty cart">
 </p>
 </form>
 </body>
</html>

Once you have filled your cart with goodies, Figure 9.5 shows the output of this

template.

PHP & MySQL: Novice to Ninja278

Figure 9.5. A full cart

This template also provides an Empty cart button that causes the controller script

to unset the $_SESSION['cart'] variable, which results in a new, empty shopping

cart. Here’s the code:

chapter9/shoppingcart/index.php (excerpt)

if (isset($_POST['action']) and $_POST['action'] == 'Empty cart')
{
 // Empty the $_SESSION['cart'] array
 unset($_SESSION['cart']);
 header('Location: ?cart');
 exit();
}

And Figure 9.6 shows what the cart looks like once emptied.

279Cookies, Sessions, and Access Control

Figure 9.6. Avoid going home empty-handed!

That’s it! Here’s the complete code for the controller, with all the pieces assembled:

chapter9/shoppingcart/index.php

<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

$items = array(
 array('id' => '1', 'desc' => 'Canadian-Australian Dictionary',
 'price' => 24.95),
 array('id' => '2', 'desc' => 'As-new parachute (never opened)',
 'price' => 1000),
 array('id' => '3', 'desc' => 'Songs of the Goldfish (2CD set)',
 'price' => 19.99),
 array('id' => '4', 'desc' => 'Simply JavaScript (SitePoint)',
 'price' => 39.95));

session_start();
if (!isset($_SESSION['cart']))
{

PHP & MySQL: Novice to Ninja280

 $_SESSION['cart'] = array();
}

if (isset($_POST['action']) and $_POST['action'] == 'Buy')
{
 // Add item to the end of the $_SESSION['cart'] array
 $_SESSION['cart'][] = $_POST['id'];
 header('Location: .');
 exit();
}

if (isset($_POST['action']) and $_POST['action'] == 'Empty cart')
{
 // Empty the $_SESSION['cart'] array
 unset($_SESSION['cart']);
 header('Location: ?cart');
 exit();
}

if (isset($_GET['cart']))
{
 $cart = array();
 $total = 0;
 foreach ($_SESSION['cart'] as $id)
 {
 foreach ($items as $product)
 {
 if ($product['id'] == $id)
 {
 $cart[] = $product;
 $total += $product['price'];
 break;
 }
 }
 }

 include 'cart.html.php';
 exit();
}

include 'catalog.html.php';

281Cookies, Sessions, and Access Control

Access Control
One of the most common reasons for building a database driven website is that it

allows the site owner to update the site from any web browser, anywhere! But, in

a world where roaming bands of jubilant hackers will fill your site with viruses and

pornography, you need to stop and think about the security of your administration

pages.

At the very least, you’ll want to require username and password authentication

before a visitor to your site can access the administration area. There are two main

ways of doing this:

■ configure your web server software to require a valid login for the relevant pages
■ use PHP to prompt the user and check the login credentials as appropriate

If you have access to your web server’s configuration, the first option is often the

easiest to set up, but the second is by far the more flexible. With PHP, you can design

your own login form, even embed it into the layout of your site if you wish. PHP

also makes it easy to change the credentials required to gain access, or manage a

database of authorized users, each with their own credentials and privileges.

In this section, you’ll enhance your joke database site to protect sensitive features

with username/password-based authentication. In order to control which users can

do what, you’ll build a sophisticated role-based access control system.

“What does all this have to do with cookies and sessions?” you might wonder. Well,

rather than prompting your users for login credentials every time they wish to view

a confidential page or perform a sensitive action, you can use PHP sessions to hold

onto those credentials throughout their visit to your site.

Database Design
Depending on the type of application you’re working on, you may need to create a

new database table to store the list of authorized users and their passwords. In the

case of the joke database site, you already have a table to do the job—the author

table shown in Figure 9.7.

PHP & MySQL: Novice to Ninja282

Figure 9.7. The existing structure of the author table

Rather than track authors and users separately, let’s extend this existing database

table so that authors can log in to your site. Some authors in the database may

never log in, and may exist only to be given credit for jokes. Other authors may

never write a joke, existing only to give a person administrative access to the site.

But for those users who do both, it will be more elegant to have their details stored

in this one table, rather than spread across two different tables.

We can use each author’s email address as a username, but to do this, we’ll want

to ensure that each author in the database has a unique email address. We can

achieve this with an ALTER TABLE ADD UNIQUE command. Use phpMyAdmin’s

Query window to run this command:5

ALTER TABLE author ADD UNIQUE (email)

With this change made, MySQL will now generate an error if you try to create a

new author with the same email address as an existing author.

Now all this table needs is an extra column to store each author’s password:

ALTER TABLE author ADD COLUMN password CHAR(32)

Note that we refrain from using the NOT NULL modifier on this column, so some

authors may have no password. When we write the PHP code that uses this column,

we’ll simply prevent authors with no password from logging in.

Note the column type: CHAR(32). It’s a big no-no to store users’ actual passwords

in your database. Many users share a bad habit of reusing the same password across

5 In this chapter, I’ll show you the SQL commands needed to modify the database we’ve built up to this

point. If you need to recreate the database from scratch, the necessary commands are provided in the

ijdb.sql file in the code archive for this chapter.

283Cookies, Sessions, and Access Control

many different websites. It’s an expected courtesy, therefore, as a site administrator,

to scramble the passwords your users give you, so that even if your database were

stolen out from under you, those passwords would be useless to an attacker trying

to gain access to your users’ accounts on other websites.

A typical method of scrambling passwords is to use the md5 function built into PHP:

$scrambled = md5($password . 'ijdb');

Adding 'ijdb' to the end of the password supplied by the user before scrambling

it ensures that the scrambled password in your site’s database is different to the

scrambled version of the same password in another site’s database. Security experts

call this salt, as in “add a dash of salt before you scramble the eggs.”

A Note from the Security Experts

Security experts will tell you that using the same salt for every password in your

database is asking for trouble, since an attacker who’s able to figure out your salt

(by obtaining a copy of your site’s code, for example) will be one step closer to

guessing the original passwords based on the scrambled versions in your database.

Of course, those same security experts will tell you that rather than write your

own password-handling code, you should rely on a proven solution developed

by security experts like themselves.

This example provides a basic level of security with plenty of room for improve-

ment if you’re interested in doing a little research.

The md5 function creates a string exactly 32 characters long made up of apparently

random letters and numbers. Although the same password will always generate the

same string of 32 characters, it’s effectively impossible to guess the password that

was used to generate a given 32-character string. By storing only these strings in

your database, you’ll be able to check if a user has entered the correct password.

Unlike the VARCHAR column type, a column of type CHAR(32) will only store values

exactly 32 characters long. This added regularity makes your database perform

faster. Since the md5 function always generates a string 32 characters long, we can

safely take advantage of this speed boost.

PHP & MySQL: Novice to Ninja284

It turns out that MySQL has an MD5 function that performs the same task. Go ahead

and store a password for your own author entry—or create one from scratch if you

need to—now:

UPDATE author SET password = MD5('passwordijdb')
WHERE id = 1

Note that you have to tack onto your desired password the same suffix ('ijdb' in

this example) that you’re using in your PHP code.

Next, we need to store the list of sensitive actions each author is permitted to do.

While you could simply give every logged-in user carte blanche—blanket permission

to do absolutely anything—on most sites it will make greater sense to have more

granular control over what each user’s able to do.

Let’s build a new table that will contain a list of roles that you’ll be able to assign

to each of your authors. Each author may have one or more of these roles assigned

to them. An author who’s assigned the role of Content Editor, for example, would

be able to edit jokes in your CMS. This type of system is called role-based access

control:

CREATE TABLE role (
 id VARCHAR(255) NOT NULL PRIMARY KEY,
 description VARCHAR(255)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

Each role will have a short string ID and a longer description. Let’s fill in a few roles

now:

INSERT INTO role (id, description) VALUES
('Content Editor', 'Add, remove, and edit jokes'),
('Account Administrator', 'Add, remove, and edit authors'),
('Site Administrator', 'Add, remove, and edit categories')

Finally, we will need a lookup table to assign roles to users in a many-to-many re-

lationship:

285Cookies, Sessions, and Access Control

CREATE TABLE authorrole (
 authorid INT NOT NULL,
 roleid VARCHAR(255) NOT NULL,
 PRIMARY KEY (authorid, roleid)
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

While you’re at it, assign yourself the Account Administrator role:

INSERT INTO authorrole (authorid, roleid) VALUES
(1, 'Account Administrator')

That takes care of the database. Now let’s turn our attention to the PHP code that

will use these new database structures.

Controller Code
Obviously, access control is a feature that will be handy in many different PHP

projects. Therefore, like our database connection code and view helpers, it makes

sense to write as much of our access control code as possible as a shared include

file, so that we can then reuse it in future projects.

Rather than try to guess what functions our shared include file should contain, let’s

start by modifying our controller code as if we already had the include file written.

You’ll recall that our administration pages start with an ordinary HTML page that

displays the menu shown in Figure 9.8.

PHP & MySQL: Novice to Ninja286

Figure 9.8. No protection required on this page

Your instinct might be to protect this page, but in fact it contains no sensitive in-

formation, so we can safely leave it alone. Each of the three links, however, point

to a PHP controller script that performs all sorts of sensitive operations:

/admin/jokes/index.php

Searches for, displays, adds, edits, and removes jokes from the system. Only

users with the Content Editor role should be able to perform these actions.

/admin/authors/index.php

Lists, adds, edits, and removes authors from the system. Users with the Account

Administrator role only should be able to perform these actions.

/admin/categories/index.php

Lists, adds, edits, and removes categories from the system. Only users with the

Site Administrator role should be able to perform these actions.

Each of these controllers, therefore, should check if the user is currently logged in

and assigned the required role before proceeding. If the user has yet to log in, a login

form should be displayed. If the user is logged in but lacks the required role, it

should display an appropriate error message.

287Cookies, Sessions, and Access Control

If we imagine that we already have functions to achieve all these actions, here’s

what the code might look like:

chapter9/admin/authors/index.php (excerpt)

<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

require_once $_SERVER['DOCUMENT_ROOT'] . '/includes/access.inc.php';

if (!userIsLoggedIn())
{
 include '../login.html.php';
 exit();
}

if (!userHasRole('Account Administrator'))
{
 $error = 'Only Account Administrators may access this page.';
 include '../accessdenied.html.php';
 exit();
}

⋮ The rest of the controller code is unchanged.

We add similar code to each of our other two controllers, but with the appropriate

role specified for each:

chapter9/admin/categories/index.php (excerpt)

<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

require_once $_SERVER['DOCUMENT_ROOT'] . '/includes/access.inc.php';

if (!userIsLoggedIn())
{
 include '../login.html.php';
 exit();
}

if (!userHasRole('Site Administrator'))

PHP & MySQL: Novice to Ninja288

{
 $error = 'Only Site Administrators may access this page.';
 include '../accessdenied.html.php';
 exit();
}

⋮ The rest of the controller code is unchanged.

chapter9/admin/jokes/index.php (excerpt)

<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

require_once $_SERVER['DOCUMENT_ROOT'] . '/includes/access.inc.php';

if (!userIsLoggedIn())
{
 include '../login.html.php';
 exit();
}

if (!userHasRole('Content Editor'))
{
 $error = 'Only Content Editors may access this page.';
 include '../accessdenied.html.php';
 exit();
}

⋮ The rest of the controller code is unchanged.

From each of these blocks of code, we can see that we have the following tasks

ahead of us:

■ Write the login form, login.html.php.
■ Write the “access denied” error page, accessdenied.html.php.
■ Write the shared include file access.inc.php containing the following functions:

userIsLoggedIn Checks if the user’s already logged in, or if the user has just

submitted the login form with a correct email address and

password.

289Cookies, Sessions, and Access Control

userHasRole Checks if the user who’s logged in has been assigned the

specified role in the database.

Since the login form and the error page will be shared by all three of our controllers,

we’ll put them in the admin directory alongside index.html.

The code for the error page is completely straightforward. All it does is output the

$error variable set by the controller:

chapter9/admin/accessdenied.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Access Denied</title>
 </head>
 <body>
 <h1>Access Denied</h1>
 <p><?php htmlout($error); ?></p>
 </body>
</html>

The login form takes a little more thought. Here’s the code:

chapter9/admin/login.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Log In</title>
 </head>
 <body>
 <h1>Log In</h1>
 <p>Please log in to view the page that you requested.</p>
 <?php if (isset($loginError)): ?>
 <p><?php htmlout($loginError); ?></p>
 <?php endif; ?>
 <form action="" method="post">

PHP & MySQL: Novice to Ninja290

 <div>
 <label for="email">Email: <input type="text" name="email"
 id="email"></label>
 </div>
 <div>
 <label for="password">Password: <input type="password"
 name="password" id="password"></label>
 </div>
 <div>
 <input type="hidden" name="action" value="login">
 <input type="submit" value="Log in">
 </div>
 </form>
 <p>Return to JMS home</p>
 </body>
</html>

The form takes an email address and a password, as you might expect.

If the user submits the login form with an incorrect email address or password,

the user will be denied access, simply being presented with the login form

again. We need a way to tell the user what went wrong in this situation; this

template will check if a variable named $loginError exists, and if so, will

display it above the form.

The <form> tag has an empty action attribute, so this form will be submitted

back to the same URL that produced it. Thus, if the user’s login attempt is

successful, the controller will display the page that the browser originally re-

quested.

Notice the second <input> tag has its type attribute set to password. This tells

the browser to hide the value that the user types in, to shield the password

from prying eyes.

This hidden field will be submitted with the form, to act as a signal to the

userIsLoggedIn function that the user has submitted this form in an attempt

to log in. You might be tempted simply to put the name="action" attribute on

the submit button’s <input> tag and watch for that—but if the user submits

the form by hitting Enter while editing one of the two text fields, the submit

button will not be sent with the form. Using a hidden field like this ensures

291Cookies, Sessions, and Access Control

that the action variable will be submitted no matter how the submission is

triggered.

A user might request a protected page by accident, or might be unaware that

a page is protected until they see the login form. We therefore provide a link

back to an unprotected page as a way out.

This form will take care of people logging in, but we also want to provide a way for

a logged-in user to log out. Just as our userIsLoggedIn function will detect submis-

sions of the login form to log users in, we can also make it detect the submission of

a logout form to log users out. Let’s add this form to the bottom of each protected

page:

chapter9/admin/logout.inc.html.php

<form action="" method="post">
 <div>
 <input type="hidden" name="action" value="logout">
 <input type="hidden" name="goto" value="/admin/">
 <input type="submit" value="Log out">
 </div>
</form>

Again, we use a hidden action field to signal the user’s intentions. The goto field

indicates where we wish to send the user who’s just logged out.

To add this form to all our protected pages, simply add the necessary include

command to the bottom of each template:

chapter9/admin/authors/authors.html.php (excerpt)

 ⋮
 <p>Return to JMS home</p>
 <?php include '../logout.inc.html.php'; ?>
 </body>
</html>

PHP & MySQL: Novice to Ninja292

chapter9/admin/categories/categories.html.php (excerpt)

 ⋮
 <p>Return to JMS home</p>
 <?php include '../logout.inc.html.php'; ?>
 </body>
</html>

chapter9/admin/jokes/jokes.html.php (excerpt)

 ⋮
 <p>Return to JMS home</p>
 <?php include '../logout.inc.html.php'; ?>
 </body>
</html>

chapter9/admin/jokes/searchform.html.php (excerpt)

 ⋮
 <p>Return to JMS home</p>
 <?php include '../logout.inc.html.php'; ?>
 </body>
</html>

Function Library
Finally, we can look at writing the shared include file, access.inc.php. Our code de-

mands a lot from this humble file, but having written all the code that depends on

it ahead of time, we have a fairly good idea of what it needs to do.

Let’s review. This file must define two custom functions:

userIsLoggedIn

This function should return TRUE if the user is logged in, or FALSE if not.

This function should also detect and handle a couple of special cases:

■ If the current request contains a submission of the login form, as indicated

by the hidden field in the form (which sets $_POST['action'] to 'login'),

it should check if the submitted username and password are correct. If they

are, it should log in the user and return TRUE. Otherwise, it should set the

293Cookies, Sessions, and Access Control

global variable $loginError to an appropriate error message, and return

FALSE.

■ If the current request contains a submission of the logout form, as indicated

by the hidden field in the form (which sets $_POST['action'] to 'logout'),

it should log out the user and redirect the browser to the URL specified by

$_POST['goto'].

userHasRole

This function should look in the database and check if the currently logged-in

user has been assigned the role that’s passed to the function. If the role has been

assigned, the function should return TRUE; if not, it should return FALSE.

Let’s work through these two functions a few lines at a time:

chapter9/includes/access.inc.php (excerpt)

<?php

function userIsLoggedIn()
{
 if (isset($_POST['action']) and $_POST['action'] == 'login')
 {

We start with the userIsLoggedIn function. The first deed it does is check if the

login form has been submitted:

chapter9/includes/access.inc.php (excerpt)

 if (!isset($_POST['email']) or $_POST['email'] == '' or
 !isset($_POST['password']) or $_POST['password'] == '')
 {
 $GLOBALS['loginError'] = 'Please fill in both fields';
 return FALSE;
 }

Next, before we go looking in the database, we should make sure that the user has

filled in a value for both the email address and password. If either of these were not

submitted, or were submitted as an empty string, we set the global $loginError

variable (using the special $GLOBALS array we looked at in Chapter 6) and return

FALSE.

PHP & MySQL: Novice to Ninja294

Now that we’ve checked that an email address and password were actually submit-

ted, we can look for a matching author in the database. Our first task is to scramble

the submitted password to match the scrambled version that will be stored in the

database:

chapter9/includes/access.inc.php (excerpt)

 $password = md5($_POST['password'] . 'ijdb');

Next, we’ll query the database for a matching author record. Since this is an under-

taking we’ll have to do more than once in this code, we’ll write another custom

function to do it:

chapter9/includes/access.inc.php (excerpt)

function databaseContainsAuthor($email, $password)
{
 include 'db.inc.php';

 try
 {
 $sql = 'SELECT COUNT(*) FROM author
 WHERE email = :email AND password = :password';
 $s = $pdo->prepare($sql);
 $s->bindValue(':email', $email);
 $s->bindValue(':password', $password);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error searching for author.';
 include 'error.html.php';
 exit();
 }

 $row = $s->fetch();

 if ($row[0] > 0)
 {
 return TRUE;
 }
 else
 {

295Cookies, Sessions, and Access Control

 return FALSE;
 }
}

This code should be quite familiar to you by now. We start by connecting to the

database using our shared db.inc.php include file.6 We then use our usual approach

to execute a prepared SELECT query containing our two submitted values—the email

address and the scrambled password. This database query will count the number

of records in the author table that have a matching email address and password. If

the number returned is greater than zero, we return TRUE; if not, we return FALSE.

Back in the userIsLoggedIn function, we can call our new databaseContainsAuthor

function:

chapter9/includes/access.inc.php (excerpt)

 if (databaseContainsAuthor($_POST['email'], $password))
 {

If the database contains a matching author, it means the user filled out the login

form correctly and we have to log in the user. But what exactly does “log in the

user” mean? There are two approaches to this, both of which involve using PHP

sessions:

■ You can log in the user by setting a session variable as a “flag” (for example,

$_SESSION['loggedIn'] = TRUE). On future requests, you can just check if this

variable is set. If it is, the user is logged in, and the isUserLoggedIn function

can return TRUE.

■ You can store the “flag” variable as well as the submitted email address and

scrambled password in two additional session variables. On future requests, you

can check if these variables are set. If they are, you can use the

databaseContainsAuthor function to check if they still match an author stored

in the database. If they do, the isUserLoggedIn function can return TRUE.

6 We use include instead of include_once here, since the $pdo variable that db.inc.php creates

will be unavailable outside this function. Code elsewhere in our application that requires a database

connection will therefore have to include db.inc.php again.

PHP & MySQL: Novice to Ninja296

The first option will give better performance, since the user’s credentials are only

checked once—when the login form is submitted. The second option offers greater

security, since the user’s credentials are checked against the database every time a

sensitive page is requested.

In general, the more secure option is preferable, since it allows you to remove authors

from the site even while they’re logged in. Otherwise, once a user is logged in, they’ll

stay logged in for as long as their PHP session remains active. That’s a steep price

to pay for a little extra performance.

So, here’s the code for the second option:

chapter9/includes/access.inc.php (excerpt)

 session_start();
 $_SESSION['loggedIn'] = TRUE;
 $_SESSION['email'] = $_POST['email'];
 $_SESSION['password'] = $password;
 return TRUE;
 }

And finally, of course, if the user submits a login form with incorrect values, we

need to ensure the user is logged out, set an appropriate error message, and return

FALSE:

chapter9/includes/access.inc.php (excerpt)

 else
 {
 session_start();
 unset($_SESSION['loggedIn']);
 unset($_SESSION['email']);
 unset($_SESSION['password']);
 $GLOBALS['loginError'] =
 'The specified email address or password was incorrect.';
 return FALSE;
 }
 }

That takes care of processing the login form. The second special case we need to

handle is the logout form. This one’s much simpler—so much so that the code

should be self-explanatory:

297Cookies, Sessions, and Access Control

chapter9/includes/access.inc.php (excerpt)

 if (isset($_POST['action']) and $_POST['action'] == 'logout')
 {
 session_start();
 unset($_SESSION['loggedIn']);
 unset($_SESSION['email']);
 unset($_SESSION['password']);
 header('Location: ' . $_POST['goto']);
 exit();
 }

Finally, if neither of the two special cases are detected, we simply check if the user

is logged in using the session variables we’ve already discussed:

chapter9/includes/access.inc.php (excerpt)

 session_start();
 if (isset($_SESSION['loggedIn']))
 {
 return databaseContainsAuthor($_SESSION['email'],
 $_SESSION['password']);
 }
}

That takes care of userIsLoggedIn. Now let’s look at userHasRole. This function

really just performs a complex database query: Given an author’s email address

(stored in the session), and a role ID (passed to the function), we need to check if

the specified author has been assigned that role. This query will involve three

database tables, so let’s look at the SQL code in isolation:

SELECT COUNT(*) FROM author
INNER JOIN authorrole ON author.id = authorid
INNER JOIN role ON roleid = role.id
WHERE email = :email AND role.id = :roleId

We join the author table to the authorrole table by matching up the author table’s

id field with the authorrole table’s authorid field. We then join those with the

role table by matching up the authorrole table’s roleid field with the role table’s

id field. Finally, with our three tables joined, we use the WHERE clause to look for

records with the email address and role ID we’re after.

PHP & MySQL: Novice to Ninja298

From there, it’s just a matter of writing the PHP code to execute this query and in-

terpret the results:

chapter9/includes/access.inc.php (excerpt)

function userHasRole($role)
{
 include 'db.inc.php';

 try
 {
 $sql = "SELECT COUNT(*) FROM author
 INNER JOIN authorrole ON author.id = authorid
 INNER JOIN role ON roleid = role.id
 WHERE email = :email AND role.id = :roleId";
 $s = $pdo->prepare($sql);
 $s->bindValue(':email', $_SESSION['email']);
 $s->bindValue(':roleId', $role);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error searching for author roles.';
 include 'error.html.php';
 exit();
 }

 $row = $s->fetch();

 if ($row[0] > 0)
 {
 return TRUE;
 }
 else
 {
 return FALSE;
 }
}

Understand all that? Save your changes, and try visiting some of the protected pages.

If you gave yourself the Account Administrator role as I suggested, you should be

able to visit and use the Manage Authors section of the admin pages. The other sec-

tions should display the appropriate “access denied” errors. Also try clicking the

Log out button on any of the protected admin pages. These should return you to the

299Cookies, Sessions, and Access Control

admin index, and prompt you to log in again if you try to access a protected page

afterwards.

If you have any problems, check your code using whatever error messages you see

as a guide. For easy reference, here’s the completed access.inc.php file:

chapter9/includes/access.inc.php

<?php

function userIsLoggedIn()
{
 if (isset($_POST['action']) and $_POST['action'] == 'login')
 {
 if (!isset($_POST['email']) or $_POST['email'] == '' or
 !isset($_POST['password']) or $_POST['password'] == '')
 {
 $GLOBALS['loginError'] = 'Please fill in both fields';
 return FALSE;
 }

 $password = md5($_POST['password'] . 'ijdb');

 if (databaseContainsAuthor($_POST['email'], $password))
 {
 session_start();
 $_SESSION['loggedIn'] = TRUE;
 $_SESSION['email'] = $_POST['email'];
 $_SESSION['password'] = $password;
 return TRUE;
 }
 else
 {
 session_start();
 unset($_SESSION['loggedIn']);
 unset($_SESSION['email']);
 unset($_SESSION['password']);
 $GLOBALS['loginError'] =
 'The specified email address or password was incorrect.';
 return FALSE;
 }
 }

 if (isset($_POST['action']) and $_POST['action'] == 'logout')
 {

PHP & MySQL: Novice to Ninja300

 session_start();
 unset($_SESSION['loggedIn']);
 unset($_SESSION['email']);
 unset($_SESSION['password']);
 header('Location: ' . $_POST['goto']);
 exit();
 }

 session_start();
 if (isset($_SESSION['loggedIn']))
 {
 return databaseContainsAuthor($_SESSION['email'],
 $_SESSION['password']);
 }
}

function databaseContainsAuthor($email, $password)
{
 include 'db.inc.php';

 try
 {
 $sql = 'SELECT COUNT(*) FROM author
 WHERE email = :email AND password = :password';
 $s = $pdo->prepare($sql);
 $s->bindValue(':email', $email);
 $s->bindValue(':password', $password);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error searching for author.';
 include 'error.html.php';
 exit();
 }

 $row = $s->fetch();

 if ($row[0] > 0)
 {
 return TRUE;
 }
 else
 {
 return FALSE;

301Cookies, Sessions, and Access Control

 }
}

function userHasRole($role)
{
 include 'db.inc.php';

 try
 {
 $sql = "SELECT COUNT(*) FROM author
 INNER JOIN authorrole ON author.id = authorid
 INNER JOIN role ON roleid = role.id
 WHERE email = :email AND role.id = :roleId";
 $s = $pdo->prepare($sql);
 $s->bindValue(':email', $_SESSION['email']);
 $s->bindValue(':roleId', $role);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error searching for author roles.';
 include 'error.html.php';
 exit();
 }

 $row = $s->fetch();

 if ($row[0] > 0)
 {
 return TRUE;
 }
 else
 {
 return FALSE;
 }
}

Managing Passwords and Roles
Now that we’ve added passwords and roles to the database, we should update our

author admin pages so that they can manipulate these aspects of authors.

First, let’s add to the author add/edit form a Set password field, as well as a set of

checkboxes for choosing the roles that the user should be assigned:

PHP & MySQL: Novice to Ninja302

chapter9/admin/authors/form.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title><?php htmlout($pageTitle); ?></title>
 </head>
 <body>
 <h1><?php htmlout($pageTitle); ?></h1>
 <form action="?<?php htmlout($action); ?>" method="post">
 <div>
 <label for="name">Name: <input type="text" name="name"
 id="name" value="<?php htmlout($name); ?>"></label>
 </div>
 <div>
 <label for="email">Email: <input type="text" name="email"
 id="email" value="<?php htmlout($email); ?>"></label>
 </div>

<div>
 <label for="password">Set password: <input type="password"
 name="password" id="password"></label>
 </div>
 <fieldset>
 <legend>Roles:</legend>
 <?php for ($i = 0; $i < count($roles); $i++): ?>
 <div>
 <label for="role<?php echo $i; ?>"><input
 type="checkbox"
 name="roles[]" id="role<?php echo $i; ?>"
 value="<?php htmlout($roles[$i]['id']); ?>"<?php
 if ($roles[$i]['selected'])
 {
 echo ' checked';
 }
 ?>><?php htmlout($roles[$i]['id']); ?></label>:
 <?php htmlout($roles[$i]['description']); ?>
 </div>
 <?php endfor; ?>
 </fieldset>
 <div>
 <input type="hidden" name="id" value="<?php
 htmlout($id); ?>">

303Cookies, Sessions, and Access Control

 <input type="submit" value="<?php htmlout($button); ?>">
 </div>
 </form>
 </body>
</html>

The Set password field is a little special because, when it’s left blank, it should cause

the controller to leave the user’s current password alone. Remember that because

we store only scrambled passwords in the database, we’re unable to display a user’s

existing password in the form for editing.

The role checkboxes are a lot like the category checkboxes we created for the joke

add/edit form in Chapter 7, with one notable difference. Since we’re using strings

instead of numbers for our role IDs in the database, we’re unable to use the IDs to

generate the <input> tags’ id attributes. The id attribute can’t contain spaces. We

therefore have to go a little out of our way to generate a unique number for each

role. Instead of using a foreach loop to step through our array of roles, we use an

old-fashioned for loop:

chapter9/admin/authors/form.html.php (excerpt)

 <?php for ($i = 0; $i < count($roles); $i++): ?>

The counter variable $i starts at 0 and each time through the loop it’s incremented

by one. We can therefore access each role within the loop as $roles[$i], and we

can also use $i to build our unique id attributes:

chapter9/admin/authors/form.html.php (excerpt)

 id="role<?php echo $i; ?>"

Now you can update the controller to handle these new fields. The code for the

password field is straightforward, and the code for the role checkboxes is nearly

identical to what we wrote to process joke categories. I’ve highlighted the changes

in bold below. Take a look, and satisfy yourself that you understand everything

that’s going on:

PHP & MySQL: Novice to Ninja304

chapter9/admin/authors/index.php

<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

require_once $_SERVER['DOCUMENT_ROOT'] . '/includes/access.inc.php';

if (!userIsLoggedIn())
{
 include '../login.html.php';
 exit();
}

if (!userHasRole('Account Administrator'))
{
 $error = 'Only Account Administrators may access this page.';
 include '../accessdenied.html.php';
 exit();
}

if (isset($_GET['add']))
{
include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $pageTitle = 'New Author';
 $action = 'addform';
 $name = '';
 $email = '';
 $id = '';
 $button = 'Add author';

// Build the list of roles
 try
 {
 $result = $pdo->query('SELECT id, description FROM role');
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching list of roles.';
 include 'error.html.php';
 exit();
 }

 foreach ($result as $row)

305Cookies, Sessions, and Access Control

 {
 $roles[] = array(
 'id' => $row['id'],
 'description' => $row['description'],
 'selected' => FALSE);
 }

 include 'form.html.php';
 exit();
}

if (isset($_GET['addform']))
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 try
 {
 $sql = 'INSERT INTO author SET
 name = :name,
 email = :email';
 $s = $pdo->prepare($sql);
 $s->bindValue(':name', $_POST['name']);
 $s->bindValue(':email', $_POST['email']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error adding submitted author.';
 include 'error.html.php';
 exit();
 }

$authorid = $pdo->lastInsertId();

 if ($_POST['password'] != '')
 {
 $password = md5($_POST['password'] . 'ijdb');

 try
 {
 $sql = 'UPDATE author SET
 password = :password
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':password', $password);

PHP & MySQL: Novice to Ninja306

 $s->bindValue(':id', $authorid);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error setting author password.';
 include 'error.html.php';
 exit();
 }
 }

 if (isset($_POST['roles']))
 {
 foreach ($_POST['roles'] as $role)
 {
 try
 {
 $sql = 'INSERT INTO authorrole SET
 authorid = :authorid,
 roleid = :roleid';
 $s = $pdo->prepare($sql);
 $s->bindValue(':authorid', $authorid);
 $s->bindValue(':roleid', $role);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error assigning selected role to author.';
 include 'error.html.php';
 exit();
 }
 }
 }

 header('Location: .');
 exit();
}

if (isset($_POST['action']) and $_POST['action'] == 'Edit')
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 try
 {
 $sql = 'SELECT id, name, email FROM author WHERE id = :id';

307Cookies, Sessions, and Access Control

 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching author details.';
 include 'error.html.php';
 exit();
 }

 $row = $s->fetch();

 $pageTitle = 'Edit Author';
 $action = 'editform';
 $name = $row['name'];
 $email = $row['email'];
 $id = $row['id'];
 $button = 'Update author';

// Get list of roles assigned to this author
 try
 {
 $sql = 'SELECT roleid FROM authorrole WHERE authorid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $id);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error fetching list of assigned roles.';
 include 'error.html.php';
 exit();
 }

 $selectedRoles = array();
 foreach ($s as $row)
 {
 $selectedRoles[] = $row['roleid'];
 }

 // Build the list of all roles
 try
 {
 $result = $pdo->query('SELECT id, description FROM role');

PHP & MySQL: Novice to Ninja308

 }
 catch (PDOException $e)
 {
 $error = 'Error fetching list of roles.';
 include 'error.html.php';
 exit();
 }

 foreach ($result as $row)
 {
 $roles[] = array(
 'id' => $row['id'],
 'description' => $row['description'],
 'selected' => in_array($row['id'], $selectedRoles));
 }

 include 'form.html.php';
 exit();
}

if (isset($_GET['editform']))
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 try
 {
 $sql = 'UPDATE author SET
 name = :name,
 email = :email
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->bindValue(':name', $_POST['name']);
 $s->bindValue(':email', $_POST['email']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error updating submitted author.';
 include 'error.html.php';
 exit();
 }

if ($_POST['password'] != '')
 {

309Cookies, Sessions, and Access Control

 $password = md5($_POST['password'] . 'ijdb');

 try
 {
 $sql = 'UPDATE author SET
 password = :password
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':password', $password);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error setting author password.';
 include 'error.html.php';
 exit();
 }
 }

 try
 {
 $sql = 'DELETE FROM authorrole WHERE authorid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error removing obsolete author role entries.';
 include 'error.html.php';
 exit();
 }

 if (isset($_POST['roles']))
 {
 foreach ($_POST['roles'] as $role)
 {
 try
 {
 $sql = 'INSERT INTO authorrole SET
 authorid = :authorid,
 roleid = :roleid';
 $s = $pdo->prepare($sql);
 $s->bindValue(':authorid', $_POST['id']);

PHP & MySQL: Novice to Ninja310

 $s->bindValue(':roleid', $role);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error assigning selected role to author.';
 include 'error.html.php';
 exit();
 }
 }
 }

 header('Location: .');
 exit();
}

if (isset($_POST['action']) and $_POST['action'] == 'Delete')
{
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

// Delete role assignments for this author
 try
 {
 $sql = 'DELETE FROM authorrole WHERE authorid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error removing author from roles.';
 include 'error.html.php';
 exit();
 }

 // Get jokes belonging to author
 try
 {
 $sql = 'SELECT id FROM joke WHERE authorid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {

311Cookies, Sessions, and Access Control

 $error = 'Error getting list of jokes to delete.';
 include 'error.html.php';
 exit();
 }

 $result = $s->fetchAll();

 // Delete joke category entries
 try
 {
 $sql = 'DELETE FROM jokecategory WHERE jokeid = :id';
 $s = $pdo->prepare($sql);

 // For each joke
 foreach ($result as $row)
 {
 $jokeId = $row['id'];
 $s->bindValue(':id', $jokeId);
 $s->execute();
 }
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting category entries for joke.';
 include 'error.html.php';
 exit();
 }

 // Delete jokes belonging to author
 try
 {
 $sql = 'DELETE FROM joke WHERE authorid = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting jokes for author.';
 include 'error.html.php';
 exit();
 }

 // Delete the author
 try

PHP & MySQL: Novice to Ninja312

 {
 $sql = 'DELETE FROM author WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Error deleting author.';
 include 'error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

// Display author list
include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

try
{
 $result = $pdo->query('SELECT id, name FROM author');
}
catch (PDOException $e)
{
 $error = 'Error fetching authors from the database!';
 include 'error.html.php';
 exit();
}

foreach ($result as $row)
{
 $authors[] = array('id' => $row['id'], 'name' => $row['name']);
}

include 'authors.html.php';

That’s it! Take your enhancements for a spin and give yourself ultimate power by

assigning yourself all the roles! Make sure everything works, and if it doesn’t, fix

it. Just for kicks, try changing your own password while you’re logged in. You should

be kicked out to the login form with the next link or button you click, where you

can enter your new password to log back in.

313Cookies, Sessions, and Access Control

A Challenge: Joke Moderation
It’s all well and good to follow along with the code that I present, but it’s quite an-

other to write a significant new feature yourself. Now is a good time to try your

hand at planning and building a major feature for the joke database website.

For the past few chapters, we’ve been so focused on the administration pages that

the public side of the site hasn’t progressed much. In fact, it’s gone backwards. Before

we removed the Add your own joke link and Delete buttons, the main page of our

joke database site looked like Figure 9.9.

Figure 9.9. The joke list we left behind

Obviously, those Delete buttons had to go, but what about that Add your own joke

link? Originally, this link went to the form shown in Figure 9.10.

PHP & MySQL: Novice to Ninja314

Figure 9.10. Another nugget of comic genius is added to the database

When submitted, this form inserted a new joke into the database with no associated

author or categories (because our database didn’t contain those features at the time).

Those features would be easy enough for you to add if you wanted to, however;

what’s not easy to deal with is the possibility of abuse. Launch the site with a pub-

licly accessible joke submission form like this, and spammers will be filling up your

database with junk in no time!

How would you deal with this problem? Remove the feature? Force authors to email

their submissions to a content editor? Think about it: there must be a way to preserve

this “easy submission” feature without having your front page filled with spam.

Is it necessary for new joke submissions to appear on the site immediately? What

if you add a new column to the joke table called visible that could take one of

two values: 'YES' and 'NO'? Newly submitted jokes could automatically be set to

'NO', and be prevented from appearing on the site if you simply added WHERE

visible='YES' to any query of the joke table where the results are intended for

public viewing. Jokes with visible set to 'NO' would wait in the database for review

by a Content Editor, who could edit each joke and assign it an author and categories

before making it visible, or just delete it as unwanted.

315Cookies, Sessions, and Access Control

To create a column that can contain either of two values, of which one is the default,

you’ll need a new MySQL column type called ENUM:

ALTER TABLE joke ADD COLUMN
visible ENUM('NO', 'YES') NOT NULL

Since we declared this column as required (NOT NULL), the first value listed within

the parentheses ('NO' in this case) is the default value, which is assigned to new

entries if no value is specified in the INSERT command. All that’s left for you to do

is modify the administration system, enabling Content Editors to make hidden jokes

visible. A simple checkbox in the joke add/edit form should do the trick. You also

may want to modify the joke search form to allow Content Editors to search only

for visible or hidden jokes.

If you begin with the code as we left it in Chapter 6, newly submitted jokes won’t

have an author associated with them. How to deal with that I’ll leave up to you.

The Add your own joke form could prompt visitors to include contact information

with their submissions, which Content Editors could then use to identify and assign

authors to submitted jokes. A more challenging solution might be to invite authors

to sign up, set a password, and then log in before submitting new jokes.

There’s no right answer, but I challenge you to find a way to deal with the issue,

and build that into your Internet Joke Database site. You have all the tools you need:

set aside some time and see what you can build if you put your mind to it. If you

get stuck, the SitePoint PHP Forum7 is a friendly place to gain answers to your

questions.

The Sky’s the Limit
In this chapter, you learned about the two main methods of creating persistent

variables—those variables that continue to exist from page to page in PHP. The first

stores the variable in the visitor’s browser in the form of a cookie. By default,

cookies terminate at the end of the browser session, but by specifying an expiry

time, they can be preserved indefinitely. Unfortunately, cookies are fairly unreliable

because you have no way of knowing when the browser might delete your cookies,

7 http://www.sitepoint.com/forums/forumdisplay.php?34-PHP

PHP & MySQL: Novice to Ninja316

http://www.sitepoint.com/forums/forumdisplay.php?34-PHP

and because some users occasionally clear their cookies out of concern for their

privacy.

Sessions, on the other hand, free you from all the limitations of cookies. They let

you store an unlimited number of potentially large variables. Sessions are an essential

building block in modern ecommerce applications, as we demonstrated in our

simple shopping cart example. They’re also a critical component of systems that

provide access control, like the one we built for your joke content management

system.

At this point, you should be equipped with all the basic skills and concepts you

need to build your very own database driven website. While you may be tempted

to skip the challenge of building a complete system for safely accepting public

submissions, I encourage you to give it a try. You already have all the skills necessary

to build it, and there is no better way to learn than to make a few mistakes of your

own to learn from. At the very least, set this challenge aside for now and come back

to it when you’ve finished this book.

If you can tackle it with confidence, you may wish to try another challenge. Want

to let users rate the jokes on the site? How about letting joke authors make changes

to their jokes, but with the backup of requiring an administrator to approve the

changes before they go live on the site? The power and complexity of the system is

limited only by your imagination.

In the rest of this book, I’ll cover more advanced topics that will help optimize your

site’s performance and solve some complex problems using less code. Oh, and of

course we’ll explore more exciting features of PHP and MySQL!

In Chapter 10, we’ll take a step away from our joke database and have a close-up

look at MySQL server maintenance and administration. We’ll learn how to make

backups of our database (a critical task for any web-based company), to administer

MySQL users and their passwords, and to log in to a MySQL server if you’ve forgotten

your password.

317Cookies, Sessions, and Access Control

Chapter10
MySQL Administration
At the core of most well-designed content-driven sites is a relational database. In

this book, we’ve used the MySQL Relational Database Management System (RDBMS)

to create our database. MySQL is a popular choice among web developers because

it’s free, and because MySQL servers are fairly simple to set up. As I demonstrated

in Chapter 1, armed with proper instructions a new user can have a MySQL server

up and running in less than five minutes—under two if you practice a little!

If all you want is a MySQL server to play with a few examples and experiment a

little, the initial installation process we went through in Chapter 1 is likely to be

all you’ll need. If, on the other hand, you want to set up a database back end to a

real live website—perhaps a site your company depends on—there are a few more

fundamentals you’ll need to learn before you can rely on a MySQL server day-in,

day-out.

First, we’ll look at backups. Backing up data that’s important to you or your business

should be an essential item on any administrator’s list of priorities. Because admin-

istrators usually have more interesting work to do, though, backup procedures are

often arranged once out of necessity and deemed “good enough” for all applications.

If, until now, your answer to the question, “Should we back up our databases?” has

been, “It’s okay; they’ll be backed up along with everything else,” you really should

read on. I’ll show you why a generic file-backup solution is inadequate for many

MySQL installations, and I’ll demonstrate the right way to back up and restore a

MySQL database.

Next, it’s time we looked more closely at how to control access to your MySQL

database. I showed you the basics early in this book, but it turns out there are some

tricky details that can make your life difficult if you don’t understand them. Oh,

and I’ll show you how to regain control of your MySQL server should you forget

your password!

Then we’ll turn our attention to performance, and how to keep your SELECT queries

running quickly. With the careful application of database indexes (a skill many

working PHP developers lack, surprisingly), you can keep your database speedy

even as it grows to contain thousands (or even hundreds of thousands) of rows.

Finally, I’ll show you how to use a relatively new feature of MySQL—foreign

keys—to express the structure of your database, and how each of the tables it contains

are related to one another.

As you can see, this chapter’s a real mixed bag, but by the end of it you’ll understand

MySQL a whole lot better!

Backing Up MySQL Databases
Like web servers, most MySQL servers are expected to remain online 24 hours a

day, seven days a week. This makes backups of MySQL database files problematic.

Because the MySQL server uses memory caches and buffers to improve the efficiency

of updates to the database files stored on disk, these files may be in an inconsistent

state at any given time. Since standard backup procedures involve merely copying

system and data files, backups of MySQL data files are unreliable, as there’s no

guarantee the files that are copied are in a fit state to be used as replacements in the

event of a crash.

Furthermore, as many website databases receive new information at all hours of

the day, standard backups can provide only periodic snapshots of database data.

Any information stored in the database that’s changed after the last backup will be

lost in the event that the live MySQL data files are destroyed or become unusable.

PHP & MySQL: Novice to Ninja320

In many situations, such as when a MySQL server is used to track customer orders

on an ecommerce site, this is an unacceptable loss.

Facilities exist in MySQL to keep up-to-date backups that are largely unaffected by

server activity at the time at which the backups are generated. Unfortunately, they

require you to set up a backup scheme specifically for your MySQL data, completely

apart from whatever backup measures you’ve established for the rest of your data.

As with any good backup system, however, you’ll appreciate it when the time comes

to use it.

Database Backups Using phpMyAdmin
The browser-based MySQL administration tool we’ve been using throughout this

book, phpMyAdmin, also offers a convenient facility for obtaining a backup of your

site’s database. Once you’ve selected your database, click the Export tab as shown

in Figure 10.1.

Figure 10.1. Click Export to save a backup of your database

The default Export options, to perform a Quick export in SQL format, are perfect for

our needs. Just click Go and your browser will download an ijdb.sql file (assuming

your database is named ijdb).

If you open this file in a text editor, you’ll find it contains a series of SQL CREATE

TABLE and INSERT commands that, if run on a blank database, would reproduce the

current contents of your database. Yes, a MySQL database backup is just a series of

SQL commands!

To restore your database from a backup file like this one, first make sure your

database is empty (select all the tables on the Structure tab and from the With selected

menu choose Drop); then just click the Import tab and select the backup file from

321MySQL Administration

your computer (as before, the other default options on this page are fine). Moments

later, the contents of your database will be restored to their previous state.

In this way, we can use phpMyAdmin to create backups of our databases. phpMy-

Admin connects to the MySQL server to perform backups, rather than accessing

directly the MySQL database data files. The backup it produces is therefore guaran-

teed to be a valid copy of the database, instead of merely a point-in-time snapshot

of the database files stored on disk, which may be in a state of flux as long as the

MySQL server is running.

Database Backups Using mysqldump
phpMyAdmin makes it really easy to obtain a database backup whenever the mood

strikes you, but the best backups are automated, and an automated backup tool

phpMyAdmin is not.

As you’ll already know if you’ve ever worked with MySQL on Linux, the MySQL

database server software comes with a handful of utility programs designed to be

run from the command prompt. One of these programs is mysqldump.

When run, mysqldump connects to a MySQL server (in much the same way as PHP

does) and downloads the complete contents of the database(s) you specify. It then

outputs the series of SQL commands required to create a database with those same

contents. If you save the output of mysqldump to a file, you’ll have yourself the same

kind of backup file that phpMyAdmin can generate for you!

New to the Command Prompt?

If you’re unfamiliar with your operating system’s command prompt, some of the

instructions that follow may likely confuse you. Don’t sweat it! If you find yourself

floundering, feel free to skip ahead to the next section of this chapter.

Practically speaking, there’s no real need to set up automated MySQL backups on

your development server. When you shut down XAMPP at the end of the day,

whatever backup software you run on your computer (you do back up your com-

puter, don’t you?) will be able to back up your MySQL database files in their

dormant state. As for the production MySQL server you use when you launch

your website to the Internet at large, any good web host will handle your MySQL

backups for you.

PHP & MySQL: Novice to Ninja322

You’ll probably only need to set up automated MySQL backups if you launch and

manage your own production database server. I’m going to assume that if that’s a

job you’re tackling, you’re already familiar with using the command prompt on

your operating system of choice.

That said, if you’re a Windows user especially keen to learn this stuff, I wrote an

article back in 2002 called Kev’s Command Prompt Cheat Sheet1 that will fill you

in on the basics.

The following command (typed all on one line) connects to the MySQL server

running on the local machine as user root with password password, and saves a

backup of the ijdb database into the file ijdb.sql:2

mysqldump -u root -ppassword ijdb > ijdb.sql

To restore this database after a server crash, you could again feed this SQL file to

phpMyAdmin;3 alternatively, you could use the mysql utility program:

mysql -u root -ppassword ijdb < ijdb.sql

This command connects to the MySQL server, selects the ijdb database, and feeds

in our backup file as a list of SQL commands to be executed.

But how do we bridge the gap between these snapshots to maintain a database

backup that’s always up to date?

Incremental Backups Using Binary Logs
As I mentioned, many situations in which MySQL databases are used would make

the loss of data—any data—unacceptable. In cases like these, we need a way to

bridge the gaps between the backups we made using phpMyAdmin or mysqldump

as recently described.

1 http://www.sitepoint.com/command-prompt-cheat-sheet/
2 To run mysqldump and the other MySQL utility programs, you need to be in the bin directory of your

MySQL installation (or the /Applications/MAMP/Library/bin folder on a Mac with MAMP installed, or the

mysql subdirectory of your XAMPP installation), or that directory must be added to the system path.
3 Unlike the SQL files created by phpMyAdmin’s Export facility, mysqldump backups include commands

to drop the tables if they happen to exist before creating them, so you don’t have to worry if your database

isn’t empty first.

323MySQL Administration

http://www.sitepoint.com/command-prompt-cheat-sheet/

The solution is to configure the MySQL server to keep a binary log, a record of all

SQL queries that were received by the database, and which modified the contents

of the database in some way. This includes INSERT, UPDATE, and DELETE statements

(among others), but excludes SELECT statements.

The basic idea of a binary log is that you should be able to restore the contents of

the database at the very moment at which a disaster occurs. This restoration involves

applying a backup (made using phpMyAdmin or mysqldump), and then applying

the contents of the binary logs that were generated after that backup was made.

You can also edit binary logs to undo mistakes that might have been made. For ex-

ample, if a co-worker comes to you after accidentally issuing a DROP TABLE command,

you can export your binary log to a text file and then edit that file to remove the

command. You can then restore the database using your last backup and then running

the edited binary log. In this way, you can even preserve database changes that were

made after the accident. And, as a precaution, you should probably also revoke

your co-worker’s DROP privileges.

To tell your MySQL server to keep binary logs, you need to edit the server’s my.ini

(Windows) or my.cnf (OS X or Linux) configuration file. This is a simple text file

with a list of options that control some of the finer points of how your MySQL

server works. In many cases, MySQL is installed without a configuration file, and

simply runs with the default settings. In this situation, you’ll need to create a new

file and set the appropriate option.

Where does my.ini/my.cnf belong?

On Windows, XAMPP comes with a my.ini file already made for you:

C:\xampp\mysql\bin\my.ini. You can open it in Notepad to make changes.

On OS X, the MySQL server built into MAMP will look for a /etc/my.cnf file to

read when it starts up. You may have some trouble creating this file (Finder gen-

erally keeps you from messing with files in sensitive locations like this); you’ll

need to create it elsewhere, and then use a sudo mv command in Terminal to

move it to /etc with administrator privileges:

sudo mv my.cnf /etc/

PHP & MySQL: Novice to Ninja324

To enable binary logging, you add a log-bin setting to the [mysqld] section of your

configuration file. If you’re creating a new configuration file from scratch, you’ll

have to type the [mysqld] section heading yourself on the first line before adding

the setting on the next line.

The log-bin setting tells MySQL where to store the binary log files and what name

to give them. On Windows, for example, you might want it to store them in your

MySQL data directory:4

[mysqld]
log-bin="C:/xampp/mysql/data/binlog"

On OS X, MAMP’s logs folder is a good place for them:

[mysqld]
log-bin=/Applications/MAMP/logs/binlog

Both these examples tell MySQL to create files named binlog.000001, binlog.000002,

and so on. A new file will be created each time the server flushes its log files; in

practice, this occurs whenever the server is restarted.

Store Binary Logs on Another Hard Disk

If possible, you should store your binary logs on a hard disk other than the one

where your MySQL database files are stored. That way, if a hard disk goes bad,

you won’t lose both your database and your backups!

With your new configuration file in place, restart your MySQL server. From now

on, the server will create binary log files. To make sure, check the location you

specified to verify that a new log file was created when the server started up.

Obviously, binary logs can take up a lot of space on an active server. For this reason,

it’s important to tell MySQL to delete obsolete binary logs whenever you perform

a full backup. This is easy to do if you use mysqldump to perform your backup:

mysqldump -u root -ppassword --flush-logs
➥ --master-data=2 --delete-master-logs ijdb > ijdb.sql

4 Note that MySQL configuration files use slashes (/) instead of backslashes (\) in Windows filepaths.

325MySQL Administration

The --flush-logs option tells the MySQL server to close the current binary log file

and start a new one, as if the MySQL server had been restarted. The --master-

data=2 option instructs mysqldump to include a comment at the end of the ijdb.sql

file that indicates the name of the new binary log file; this will contain the first

changes that are made to the database following the full backup. Finally, the --de-

lete-master-logs command tells mysqldump to delete the binary log files that are

no longer needed, now that a full backup has taken place.

In the event of a disaster, as long as you have a full backup and the binary log files

that were generated after the backup was made, restoring your database should be

fairly simple. Set up a new, empty MySQL server, then apply the full backup as

described in the previous section. All that’s left is to apply the binary logs using

the mysqlbinlog utility program.

mysqlbinlog’s job is to convert the data format of MySQL binary logs into SQL com-

mands that you can run on your database. Say you had two binary log files that you

needed to apply after restoring your most recent full backup. You can generate an

SQL text file from the two files using mysqlbinlog, and then apply that file to your

MySQL server just as you would a file generated by mysqldump:

mysqlbinlog binlog.000041 binlog.000042 > binlog.sql
mysql -u root -ppassword < binlog.sql

MySQL Access Control Tips
In Chapter 2, I mentioned that the database called mysql, which appears on every

MySQL server, is used to keep track of users, their passwords, and what they’re al-

lowed to do. In Chapter 4, I showed you how to use phpMyAdmin to create another

user account, with access only to your website’s database.

The MySQL access control system is fully documented in Chapter 5 of the MySQL

Reference Manual.5 In essence, user access is governed by the contents of five tables

in the mysql database: user, db, host, tables_priv, and columns_priv. If you plan

to edit these tables directly using INSERT, UPDATE, and DELETE statements, I suggest

you read the relevant section of the MySQL manual first. But, for us mere mortals,

5 http://dev.mysql.com/doc/refman/5.5/en/privilege-system.html

PHP & MySQL: Novice to Ninja326

http://dev.mysql.com/doc/refman/5.5/en/privilege-system.html
http://dev.mysql.com/doc/refman/5.5/en/privilege-system.html

phpMyAdmin provides all the tools you’ll need to manage access to your MySQL

server.

As a result of the way the access control system in MySQL works, there are a couple

of idiosyncrasies of which you should be aware if you’re going to be responsible

for controlling access to a MySQL server.

Host Name Issues
When you create users that can log in to the MySQL server only from the computer

on which that server is running (for example, you require them to log in to the

server and run the mysql command prompt utility from there, or to communicate

using server-side scripts like PHP), you may ask yourself what to enter in the Host

field of phpMyAdmin’s Add a new User form. Imagine the server is running on

www.example.com. Should you specify the Host as www.example.com or localhost?

The answer is that both are unreliable to handle all connections. In theory, if, when

connecting, the user specifies the host name either with the mysql command prompt

utility program, or with PHP’s PDO class, that host name will have to match the entry

in the access control system. However, as you probably want to avoid forcing your

users to specify the host name a particular way (in fact, users of the mysql utility

program are likely to want to steer clear of stating the host name at all), it’s best to

use a workaround.

For users who need the ability to connect from the machine on which the MySQL

server is running, it’s best to create two user entries in the MySQL access system:

one with the actual host name of the machine (www.example.com, for example), the

other with localhost. Of course, you’ll have to grant/revoke all privileges to both

user entries individually, but it’s the only workaround that you can really rely upon.

Another problem commonly faced by MySQL administrators is that user entries

whose host names contain wild cards (for example, %.example.com) may fail to

work. When MySQL’s access control system behaves unexpectedly, it’s usually due

to the way MySQL prioritizes the user entries. In particular, it orders entries so that

more specific host names appear first (for example, www.example.com is absolutely

specific, %.example.com is less specific, and % is totally unspecific).

327MySQL Administration

In a fresh installation,6 the MySQL access control system contains two anonymous

user entries (these allow connections to be made from the local host using any

username—the two entries support connections from localhost and the server’s

actual host name, as described before), and two root user entries. The problem just

described occurs when the anonymous user entries take precedence over our new

entry because their host name is more specific.

Let’s look at the abridged contents of the user table on www.example.com, a fictitious

MySQL server, where we’ve just added a new account for a user named Jess. The

rows are sorted in the order in which the MySQL server considers them when it

validates a connection:

PasswordUserHost

encrypted valuerootlocalhost

encrypted valuerootwww.example.com

localhost

www.example.com

encrypted valuejess%.example.com

As you can see, since Jess’s entry has the least specific host name, it comes last in

the list. When Jess attempts to connect from www.example.com, the MySQL server

matches her connection attempt to one of the anonymous user entries (a blank User

value matches anyone). Since a password is unnecessary for these anonymous

entries, and presumably Jess enters her password, MySQL rejects the connection

attempt. Even if Jess managed to connect without a password, she would be given

the very limited privileges that are assigned to anonymous users, as opposed to the

privileges assigned to her entry in the access control system.

The solution is either to make your first order of business as a MySQL administrator

the deletion of those anonymous user entries (DELETE FROM mysql.user WHERE

User=""), or to give two more entries to all users who need to connect from localhost

(that is, entries for localhost and the actual host name of the server):

6 All-in-one installers like XAMPP and MAMP tend to differ in this respect.

PHP & MySQL: Novice to Ninja328

PasswordUserHost

encrypted valuerootlocalhost

encrypted valuerootwww.example.com

encrypted valuejesslocalhost

encrypted valuejesswww.example.com

localhost

www.example.com

encrypted valuejess%.example.com

As it’s excessively burdensome to maintain three user entries (and three sets of

privileges) for each user, I recommend that you remove the anonymous users, unless

you have a particular need for them:

PasswordUserHost

encrypted valuerootlocalhost

encrypted valuerootwww.example.com

encrypted valuejess%.example.com

Locked Out?
Like locking your keys in the car, forgetting your password after you’ve spent an

hour installing and tweaking a new MySQL server can be an embarrassment—to

say the least! Fortunately, if you have administrator access to the computer on which

the MySQL server is running, or if you can log in as the user you set up to run the

MySQL server, all is well. The following procedure will let you regain control of

the server.

Command Prompt Knowledge Assumed

Again, I’m going to go ahead and assume in this section that if you’re locked out

of your MySQL server, you know how to use your system’s command prompt.

If you’re using the MySQL server bundled with XAMPP or MAMP on your devel-

opment machine, there’s probably no mission-critical data stored in your database,

329MySQL Administration

and the easiest way to recover from a lost root password will usually be just to

reinstall your server and start from scratch.

That said, if you’re a Windows user, my trusty old Kev’s Command Prompt Cheat

Sheet7 article should provide everything you need to get going.

First, you must shut down the MySQL server. If you normally do this using the

mysqladmin command prompt utility, which requires your forgotten password, you’ll

instead need to kill the server process to shut it down. Under Windows, use Task

Manager to find and end the MySQL process, or simply stop the MySQL service if

you’ve installed it as such. Under OS X or Linux, use the ps command, or look in

the server’s PID file in the MySQL data directory to determine the process ID of the

MySQL server; then terminate it with this command:

kill pid

pid is the process ID of the MySQL server.

This should be enough to stop the server. Do not use kill -9 (a forced kill) unless

absolutely necessary, as this may damage your data files. If you’re forced to do so,

however, the next section provides instructions on how to check and repair those

files.

Now that the server’s down, you must restart it using the skip-grant-tables option.

You can do this by adding the option to your MySQL server’s my.ini or my.cnf con-

figuration file (see the instructions for setting up such a file in the section called

“Incremental Backups Using Binary Logs”):

[mysqld]
skip-grant-tables

This instructs the MySQL server to allow unrestricted access to anyone. Obviously,

you’ll want to run the server in this mode as briefly as possible, to avoid the inherent

security risks.

Once you’re connected to your server (using phpMyAdmin or the mysql command

prompt utility), change your root password to a memorable one:

7 http://www.sitepoint.com/command-prompt-cheat-sheet/

PHP & MySQL: Novice to Ninja330

http://www.sitepoint.com/command-prompt-cheat-sheet/
http://www.sitepoint.com/command-prompt-cheat-sheet/

UPDATE mysql.user SET Password=PASSWORD("newpassword")
WHERE User="root"

Finally, disconnect, shut down your MySQL server, and remove the skip-grant-

tables option.

That does it—and nobody ever has to know what you did. As for locking your keys

in your car, you’re on your own there.

Indexes
Just like the index in this book makes it a lot easier to find every mention of a par-

ticular topic in its pages, a database index can make it much easier for MySQL to

find the records you’ve asked for in a SELECT query. Let me give you an example.

As the Internet Joke Database grows, the joke table might grow to contain thousands,

if not hundreds of thousands of rows. Now let’s say PHP asks for the text of a par-

ticular joke:

SELECT joketext FROM joke WHERE id = 1234

In the absence of an index, MySQL must look at the value of the id column in each

and every row of the joke table, one by one, until it finds the one with the value

1234. Worse yet, without an index, MySQL has no way of knowing that there is

only one row with that value, so it must also scan the rest of the table for more

matching rows to make sure it gets them all!

Computers are fast, and good at menial labor, but in the web development game

where half seconds count, large tables and complex WHERE clauses can easily combine

to create delays of 30 seconds or more!

Fortunately for us, this query will always run quickly, and that’s because the id

column of the joke table has an index. To see it, open phpMyAdmin, select the

joke table, and click the Structure tab. There, below the list of columns in the table,

you’ll see the list of indexes shown in Figure 10.2.

331MySQL Administration

Figure 10.2. Each of our tables already has a single index

Take a look at the Column column; this index lists the values of the id column. From

the name in the Keyname column, PRIMARY, you might even guess where this index

came from: it was created automatically when we told MySQL to make the id column

the primary key of this table.

Remember how we defined the id column of the table:

CREATE TABLE joke (
id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

 joketext TEXT,
 jokedate DATE NOT NULL,
 authorid INT
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

In fact, “key” is just a fancy way to say “index” in database parlance, and a primary

key is just an index named PRIMARY that requires each value in the table for that

particular column to be unique. Note in Figure 10.2 that the Unique property of the

index is Yes.

What all this boils down to is that every database table we’ve created so far has an

index on its id column. Any WHERE clause that seeks a particular id value will be

able to find the record with that value quickly, because it will be able to look it up

in the index.

You can confirm this by asking MySQL to explain how it performs a particular SE-

LECT query. To do this, just add the command EXPLAIN at the start of the query:

EXPLAIN SELECT joketext FROM joke WHERE id = 1

PHP & MySQL: Novice to Ninja332

Use Real Values to See Real Results

Note that I’ve specified a joke ID of 1 in this query, which actually exists in my

database. Had I used a made-up value like 1234, MySQL is smart enough to know

that this ID didn’t exist in the joke table and wouldn’t even try to fetch results

from the table.

If you run this EXPLAIN query in phpMyAdmin, you will have a similar view to

Figure 10.3.

Figure 10.3. These results confirm that the SELECT query will use the PRIMARY index

By the same mechanism, an SQL query that joins two tables together using id values

(for example, finding the author that goes with each joke using the value of the

authorid column) will be able to find related records quickly.

Now consider this SELECT query, which fetches all jokes by a particular author:

SELECT * FROM joke WHERE authorid = 2

Ask MySQL to EXPLAIN this SELECT, and Figure 10.4 shows the result.

Figure 10.4. Those NULLs indicate slowness

As you can see, MySQL is unable to find an index to assist with this query, so it is

forced to perform a complete scan of the table for results. We can speed up this

query by adding an index to the table for the authorid column.

But surely author IDs are already indexed?

Yes, the id column of the author table has an index by virtue of it being the

primary key for that table. This won’t help in the case of this query, however,

which has no involvement with the author table at all.

333MySQL Administration

The WHERE clause in this case is looking for a value in the authorid field of the

joke table, which is without an index.

In phpMyAdmin, select the joke table, click the Structure tab, then under Indexes

use the form to “Create an index on 1 columns.” This will give you the Create a new

index form shown in Figure 10.5.

Figure 10.5. Creating a new index for the authorid column

Fill out the form as shown:

■ Set the Index name to match the name of the column it will index (although you

could actually call it anything you like).

■ Choose to create a plain INDEX as opposed to a PRIMARY index (the table already

has one), a UNIQUE index (there’s no requirement for each joke to have a unique

author), or FULLTEXT index (an index used for searching large amounts of text).

■ Select the column to index—authorid in this case. Leave the Size field blank to

index the full value of the column (as opposed to, say, just the first few characters

of a text column).

PHP & MySQL: Novice to Ninja334

Click Save, and you should see the second index listed along with the PRIMARY index.

Ask MySQL to EXPLAIN the SELECT query again to confirm that it will use your new

authorid index this time.

It might be tempting to index each and every column in your database, but I’d advise

against it. Not only do indexes require extra disk space, but every time you make a

change to the contents of your database (with an INSERT or UPDATE query, for ex-

ample), MySQL has to spend time rebuilding all affected indexes!

For this reason, you should usually add the indexes required to keep your website’s

SELECT queries speedy and no more.

Multicolumn Indexes
But wait! Not every table we’ve created so far has an id column. What about the

jokecategory table?

CREATE TABLE jokecategory (
 jokeid INT NOT NULL,
 categoryid INT NOT NULL,
PRIMARY KEY (jokeid, categoryid)

) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

This table’s primary key is made up of two columns: jokeid and categoryid. Fig-

ure 10.6 shows what this index looks like in phpMyAdmin.

Figure 10.6. Indexes can contain multiple columns

A multicolumn index like this is called a composite index. It’s great at speeding up

queries that involve both indexed columns, like this one that checks if joke ID 3 is

in category ID 4 (it is):

SELECT * FROM jokecategory WHERE jokeid = 3 AND categoryid = 4

335MySQL Administration

A two-column index like this one can also be used as a one-column index on the

first column in the list. In this case, that’s the jokeid field, so this query will also

use the index to list the categories that joke ID 1 belongs to:

SELECT name
FROM jokecategory
 INNER JOIN category ON categoryid = category.id
WHERE jokeid = 1

Foreign Keys
By now, you should be used to the concept of a column in one table pointing to the

id column in another table to represent a relationship between the two tables. For

example, the authorid column in joke points to the id column in author to record

which author wrote each joke.

In database design lingo, a column that contains values that match those in another

table is called a foreign key. That is, we say that authorid is a foreign key that ref-

erences the id column in author.

Up to this point, we’ve simply designed tables with foreign key relationships in

mind, but these relationships have not been enforced by MySQL. That is, we’ve

made sure to only store values in authorid that correspond to entries in the author

table. But if we carelessly inserted an authorid value without any matches for an

author record, MySQL would do nothing to stop us; as far as MySQL is concerned,

authorid is just a column that contains whole numbers.

MySQL supports a feature called foreign key constraints, which you can use to re-

cord relationships between tables like this one explicitly and have MySQL enforce

them. You can include foreign key constraints in your CREATE TABLE commands,

or you can add foreign key constraints to existing tables using ALTER TABLE:

chapter10/sql/ijdb.sql (excerpt)

CREATE TABLE joke (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joketext TEXT,
 jokedate DATE NOT NULL,

PHP & MySQL: Novice to Ninja336

 authorid INT,
FOREIGN KEY (authorid) REFERENCES author (id)

) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

ALTER TABLE joke
ADD FOREIGN KEY (authorid) REFERENCES author (id)

You can also use phpMyAdmin to create foreign key constraints. First, you must

make sure the foreign key column (authorid in this case) has an index. MySQL will

create this index for you automatically if you use either of these two queries, but

phpMyAdmin requires you to do it yourself. Thankfully, we already added an index

to authorid. Next, on the Structure tab for the joke table, click Relation view as shown

in Figure 10.7.

Figure 10.7. Clicking Relation view to edit the foreign keys in a table

The resulting page shows each of the columns in the table, and lets you configure

a foreign key constraint for each one that has an index. For the authorid column,

under Foreign key constraint (INNODB) choose `ijdb`.`author`.`id` (where ijdb is the

name of your database). Leave the Internal relation option blank,8 and leave the ON

DELETE and ON UPDATE menus set to RESTRICT as shown in Figure 10.8, then click

Save.

8 The Internal relation setting lets you record a relationship between tables in phpMyAdmin without ac-

tually creating a foreign key constraint (or even an index for the column) in the database. This enables

you to navigate from table to table more easily in phpMyAdmin, but MySQL won’t enforce the relationship

in any way.

337MySQL Administration

Figure 10.8. Setting up a foreign key in phpMyAdmin

With this foreign key constraint in place, MySQL will reject any attempt to insert

into joke an authorid value that fails to correspond to an entry in the author table;

furthermore, it will stop you from deleting an entry in the author table unless you

first remove any joke records that point to it.

Perhaps best of all, however, in phpMyAdmin if you click on a value in the authorid

column while browsing the joke table, you will now be taken immediately to the

corresponding row in the author table! Because MySQL (and therefore phpMyAd-

min) now understands the structure of your database, it can help you navigate it.

To make sure you’ve got the hang of it, go ahead and create a foreign key constraint

to represent each of the relationships between your tables. See if you can do it

without peeking at the list of ALTER TABLE commands following (hint: there are

four others):

ALTER TABLE jokecategory
ADD FOREIGN KEY (jokeid) REFERENCES joke (id)

ALTER TABLE jokecategory
ADD FOREIGN KEY (categoryid) REFERENCES category (id)

ALTER TABLE authorrole
ADD FOREIGN KEY (authorid) REFERENCES author (id)

ALTER TABLE authorrole
ADD FOREIGN KEY (roleid) REFERENCES role (id)

PHP & MySQL: Novice to Ninja338

A Word on Referential Actions

Instead of rejecting attempts to delete or update records that have foreign keys

pointing to them (for example, preventing you from deleting authors who still

have jokes associated with them), you can perform a referential action. This in-

volves configuring a foreign key constraint in MySQL to automatically resolve

the conflict.

It can do this either by cascading the operation (that is, deleting any jokes associ-

ated with the author that you’re deleting), or by setting the values of any affected

foreign key columns to NULL (setting the authorid of the author’s jokes to NULL).

That’s what the ON RESTRICT and ON UPDATE options for the foreign key constraint

in phpMyAdmin are all about.

It can be tempting to use this feature to let MySQL take care of what happens to

affected jokes when a user deletes an author or a category. It’s certainly easier to

select an option in phpMyAdmin than it is to write the PHP code to automatically

delete related jokes before removing an author.

The problem with doing this is that it splits the logic of your website into two

places: your PHP code and the foreign key constraints. No longer will you be able

to see and control everything that happens when you delete a joke by just looking

at the PHP controller responsible for doing that job.

For this reason, most experienced PHP developers (myself included) prefer to

avoid using referential actions in foreign key constraints. In fact, some developers

prefer to avoid using foreign key constraints altogether!

Better Safe than Sorry
Admittedly, this chapter hasn’t been the usual nonstop, action–packed codefest to

which you may have become accustomed by now. But our concentration on these

topics—the backup and restoration of MySQL data, the inner workings of the MySQL

access control system, the improvement of query performance with indexes, and

the enforcement of the structure of your database with foreign keys—has armed you

with the tools you’ll need to set up a MySQL database server that will stand the test

of time, as well as endure the constant traffic your site will attract.

In Chapter 11, we’ll return to the fun stuff and learn some advanced SQL techniques

that can make a relational database server perform tricks you may never have thought

possible.

339MySQL Administration

Chapter11
Advanced SQL Queries
As you’ve worked through the construction of the Internet Joke Database website,

you’ve had opportunities to explore most aspects of Structured Query Language

(SQL). From the basic form of a CREATE TABLE query to the two syntaxes of INSERT

queries, you probably know many of these commands by heart now.

In an effort to tie up some loose ends in this chapter, we’ll look at a few more SQL

tricks that we’ve yet to come across—some having been a bit too advanced to delve

into before now. As is typical, most of these will expand on your knowledge of

what’s already the most complex and potentially confusing SQL command available

to you: the SELECT query.

Sorting SELECT Query Results
Long lists of information are always easier to use when they’re presented in some

kind of order. To find a single author in a list from your author table, for example,

could become an exercise in frustration if you had more than a few dozen registered

authors in your database.

Fortunately, there’s an optional part of the SELECT query that lets you specify a

column by which your table of results should be sorted. Let’s say you wanted to

print out a listing of the entries in your author table for future reference. Here’s a

short list of a table of authors, with the result in Figure 11.1:

SELECT id, name, email FROM author

Figure 11.1. An unsorted list of authors

The entries are unsorted, which is fine for a short list like this; it would be easier,

though, to find a particular author’s email address (that of Amy Mathieson, for ex-

ample) in a very long list of authors—say a few hundred or so—if the authors’ names

appeared in alphabetical order. Here’s how you’d create that ordering (as seen in

Figure 11.2):

SELECT id, name, email FROM author ORDER BY name

Figure 11.2. Authors sorted by name

The entries now appear sorted alphabetically by their names. Just as you can add

a WHERE clause to a SELECT statement to narrow down the list of results, you can

also add an ORDER BY clause to specify a column by which a set of results should

be sorted. Adding the keyword DESC after the name of the column allows you to

sort the entries in descending order, as shown in Figure 11.3:

PHP & MySQL: Novice to Ninja342

SELECT id, name, email FROM author ORDER BY name DESC

Figure 11.3. Authors in descending name order

You can actually use a comma-separated list of several column names in the ORDER

BY clause to have MySQL sort the entries by the first column, then sort any sets of

tied entries by the second, and so on. Any of the columns listed in the ORDER BY

clause may use the DESC keyword to reverse the sort order.

Obviously in a large table, MySQL must do a lot of work to sort the result set. You

can ease this burden by setting up indexes for columns (or sets of columns) that

you expect to use to sort result sets, as we learned in Chapter 10.

Setting LIMITs
Often, you might work with a large database table but only be interested in a few

entries within it. Let’s say you wanted to track the popularity of different jokes on

your site. You could add a column named timesviewed to your joke table. Start it

with a value of zero for new jokes, and add one to the value of the requested joke

every time the joke is viewed, to keep count of the number of times each joke in

your database has been read.

The query that adds one to the timesviewed column of a joke with a given ID is as

follows:

try
{
 $sql = 'UPDATE joke SET
 timesviewed = timesviewed + 1
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $id);
 $s->execute();

343Advanced SQL Queries

}
catch (PDOException $e)
{
 $error = 'Error updating joke view count.';
 include 'error.html.php';
 exit();
}

You might use this joke view counter to present a “Top 10 Jokes” list on the front

page of your site, for example. Using ORDER BY timesviewed DESC to list the jokes

from highest timesviewed to lowest, you’d just have to pick the first ten values from

the top of the list. But if you have thousands of jokes in your database, retrieving

that entire list to gain a mere ten results would be quite wasteful in terms of the

processing time and server system resources required, such as memory and CPU

load.

However, if you use a LIMIT clause, you can specify a certain number of results to

be returned. As stated, in this example you need only the first ten:

$sql = 'SELECT joke.id, joketext, name, email
 FROM joke INNER JOIN author
 ON authorid = author.id
 ORDER BY timesviewed DESC

LIMIT 10';

Although it’s much less interesting, you could eliminate the word DESC and retrieve

the ten least popular jokes in the database.

Often, you’ll want to let users view a long list of entries—for example, the results

of a search—but display only a few at a time.1 Think of the last time you went

looking through pages of search engine results to find a particular website. You can

use a LIMIT clause to do this sort of action; simply specify the result with which

the list will begin, and the maximum number of results to display. The query below,

for example, will list the 21st to 25th most popular jokes in the database:

1 I’ve written an article that explores this technique in greater detail at sitepoint.com, entitled Object

Oriented PHP: Paging Result Sets. [http://www.sitepoint.com/php-paging-result-sets/]

PHP & MySQL: Novice to Ninja344

http://www.sitepoint.com/php-paging-result-sets/
http://www.sitepoint.com/php-paging-result-sets/

$sql = 'SELECT joke.id, joketext, name, email
 FROM joke INNER JOIN author
 ON authorid = author.id
 ORDER BY timesviewed DESC

LIMIT 20, 5';

Remember, the first entry in the list of results is entry number zero. Thus, the 21st

entry in the list is entry number 20.

Database Transactions
In some situations, you may wish to perform a series of multiple SQL queries and

have them take effect all at once. An advanced feature called transactions makes

this possible.

Let’s say your site’s database contained tables listing the products for sale on your

site, the number of each product available in inventory, and the orders placed by

visitors to your site. When a visitor places an order, you’d like to update your in-

ventory to reflect the purchased item(s) at the same time as you add to the list of

orders. If one of these updates occurred before the other, there’s a risk that another

visitor to your site might view a page and see an inconsistent state: for example,

your site might show that the ten widgets you had for sale are now sold out, but

only nine have been ordered.

Transactions let you perform complex multiquery operations as a group to take effect

simultaneously. To begin a transaction, just send a START TRANSACTION SQL com-

mand:

START TRANSACTION

You can then perform your series of SQL queries as you normally would. When

you’re done and ready for all the changes to be committed to the database at once,

send a COMMIT SQL command:

COMMIT

Transactions also let you change your mind. If you’re partway through your group

of queries and decide you don’t want to perform the queries after all, just use a

ROLLBACK command:

345Advanced SQL Queries

ROLLBACK

ROLLBACK is especially useful for dealing with errors. If you’ve run a first query in

a transaction successfully but the second one gives you an error, you can use

ROLLBACK to cancel the effects of the first query, in order to rethink your strategy.

In a PHP script, your PDO object offers methods to make working with transactions

very convenient. Begin a transaction with the beginTransaction method, then

commit it with the commit method or cancel it with the rollBack method:

try
{
$pdo->beginTransaction();

 ⋮ perform a series of queries…

$pdo->commit();
}
catch (PDOException $e)
{
$pdo->rollBack();

 $error = 'Error performing the transaction.';
 include 'error.html.php';
 exit();
}

Transactions Require InnoDB

Support for transactions is one of the reasons we’ve always used the newer InnoDB

table type (ENGINE=InnoDB) when creating database tables in this book. MySQL’s

older MyISAM table type does not support transactions.

Column and Table Name Aliases
In some situations, it may be more convenient to refer to MySQL columns and tables

using different names. Let’s take the example of a database used by an airline’s online

booking system; this example actually came up in the SitePoint Forums when I was

first writing this book. The database structure can be found in airline.sql in the code

archive if you want to follow along.

PHP & MySQL: Novice to Ninja346

To represent the flights offered by the airline, the database contains two tables:

flight and city. Each entry in the flight table represents an actual flight between

two cities—the origin and destination of the flight. Obviously, origincityid and

destinationcityid are columns in the flight table; other columns record inform-

ation like the date and time of the flight, the type of aircraft, the flight numbers, and

the various fares.

The city table contains a list of all the cities to which the airline flies. Thus, both

the origincityid and destinationcityid columns in the flight table will just

contain IDs referring to entries in the city table.

Now, consider these queries. To retrieve a list of flights with their origins, here’s

what you do:

SELECT flight.number, city.name
FROM flight INNER JOIN city
 ON flight.origincityid = city.id

Figure 11.4 shows the results.

Figure 11.4. Flights with their origins

To obtain a list of flights with their destinations, the query is very similar:

SELECT flight.number, city.name
FROM flight INNER JOIN city
 ON flight.destinationcityid = city.id

Again, Figure 11.5 shows the results.

347Advanced SQL Queries

Figure 11.5. Flights with their destinations

Now, what if you wanted to list both the origin and destination of each flight with

a single query? That’s reasonable, right? Here’s a query you might try:

SELECT flight.number, city.name, city.name
FROM flight INNER JOIN city
 ON flight.origincityid = city.id
INNER JOIN city
 ON flight.destinationcityid = city.id

Try this query, and phpMyAdmin will display an error: #1066 - Not unique

table/alias 'city'.

Why does this fail? Have another look at the query, and this time focus on what it

actually says, rather than what you expect it to do. It tells MySQL to join the flight,

city, and city (yes, twice!) tables. This attempt at joining the same table twice is

what produces the error message.

But even without this error, the query lacks sense. It attempts to list the flight

number, city name, and city name (twice again) of all entries obtained, by matching

up the origincityid with the city id, and the destinationcityid with the city

id. In other words, the origincityid, destinationcityid, and city id must all be

equal. Even if this query worked, it would result in a list of all flights where the

origin and the destination are the same. Unless your airline offers scenic flights, it’s

unlikely there’ll be any entries that match this description.

What we need is a way to use the city table twice without confusing MySQL. We

want to be able to return two different entries from the city table—one for the origin

and one for the destination—for each result. If we had two copies of the table—one

called origin and one called destination—this would be much easier to do, but

why maintain two tables that contain the same list of cities? The solution is to give

the city table two unique aliases (temporary names) for the purposes of this query.

PHP & MySQL: Novice to Ninja348

If we follow the name of a table with AS alias in the FROM portion of the SELECT

query, we can give it a temporary name by which we can refer to it elsewhere in

the query. Here’s that first query again (to display flight numbers and origins only),

but this time we’ve given the city table origin as its alias:

SELECT flight.number, origin.name
FROM flight INNER JOIN city AS origin
 ON flight.origincityid = origin.id

The query still works the same way and the results remain unchanged, but for long

table names it can save some typing. Consider, for example, if we’d given aliases

of f and o to flight and origin, respectively. The query would be much shorter

as a result.

Let’s now return to our problem query. If we refer to the city table twice using

different aliases, we can use a three-table join (in which two of the tables are actually

one and the same) to achieve the effect we want:

SELECT flight.number, origin.name, destination.name
FROM flight INNER JOIN city AS origin
 ON flight.origincityid = origin.id
INNER JOIN city AS destination
 ON flight.destinationcityid = destination.id

You can see the expected results in Figure 11.6.

Figure 11.6. Flights with origins and destinations

You can also define aliases for column names. We could use this to differentiate

the two name columns in our table of results:

349Advanced SQL Queries

SELECT f.number, o.name AS origin, d.name AS destination
FROM flight AS f INNER JOIN city AS o
 ON f.origincityid = o.id
INNER JOIN city AS d
 ON f.destinationcityid = d.id

The very readable result is in Figure 11.7.

Figure 11.7. Flights with origins and destinations clearly labeled

You could use this same technique to add a messaging system to the Internet Joke

Database website, whereby one author could send a message to another author on

the site. The table of sent messages would reference the author table twice: once

for the sender of the message, and another for the recipient. If you’re keen for a fresh

challenge, try building this system.

GROUPing SELECT Results
In Chapter 2, you saw the following query, which tells you how many jokes are

stored in your joke table:

SELECT COUNT(*) FROM joke

The MySQL function COUNT used in this query belongs to a special class of functions

called aggregate functions or group-by functions, depending on where you look. A

complete list of these functions is provided in Chapter 11 of the MySQL Manual2

and in Appendix C. Unlike other functions, which affect each entry individually

in the result of the SELECT query, summary functions group together all the results

and return a single result. In the aforementioned example, for instance, COUNT returns

the total number of result rows.

2 http://dev.mysql.com/doc/mysql/en/group-by-functions.html

PHP & MySQL: Novice to Ninja350

http://dev.mysql.com/doc/mysql/en/group-by-functions.html

Let’s say you want to display a list of authors along with the number of jokes they

have to their names. Your first instinct might be to retrieve a list of all the authors’

names and IDs, then use COUNT to count the number of results when you SELECT the

jokes with each author’s ID. The PHP code (presented without error handling, for

simplicity) would look a little like this:

// Get a list of all the authors
$result = $pdo->query('SELECT id, name FROM author');

// Read all of the authors
foreach ($result as $row)
{
 $authors[] = array(
 'id' => $row['id'],
 'name' => $row['name']
);
}

// Get count of jokes attributed to an author
$sql = 'SELECT COUNT(*) AS numjokes FROM joke WHERE authorid = :id';
$s = $pdo->prepare($sql);

// Process each author
foreach ($authors as $author)
{
 $s->bindValue(':id', $author['id']);
 $s->execute();
 $row = $s->fetch();
 $numjokes = $row['numjokes'];

 // Display the author & number of jokes
 $output .= htmlspecialchars($author['name'], ENT_QUOTES, 'UTF-8')
 . " ($numjokes jokes)
";
}

Note the use of AS in the second query to give a friendlier name (numjokes) to the

result of COUNT(*).

This technique will work, but will require n+1 separate queries (where n is the

number of authors in the database). Having the number of queries depend on a

number of entries in the database is always worth avoiding, as a large number of

authors would make this script unreasonably slow and resource-intensive. Fortu-

nately, another advanced feature of SELECT comes to the rescue!

351Advanced SQL Queries

If you add a GROUP BY clause to a SELECT query, you can tell MySQL to group the

query results into sets, the results in each set sharing a common value in the specified

column. Aggregate functions like COUNT then operate on those groups, rather than

the entire result set as a whole. The next query, for example, lists the number of

jokes attributed to each author in the database:

SELECT author.name, COUNT(*) AS numjokes
FROM joke INNER JOIN author
 ON authorid = author.id
GROUP BY authorid

The results shown in Figure 11.8 confirm that we’ve obtained our per-author joke

count with a single SELECT query.

Figure 11.8. Number of jokes per author

Note that you could have specified GROUP BY author.id and achieved the same

result (since, as stipulated in the FROM clause, these columns must be equal). GROUP

BY author.name would also work in most cases, but as there’s always the possibility,

however slight, that two different authors might have the same name (in which case

their results would be lumped together), it’s best to stick to the ID columns, which

are guaranteed to be unique for each author.

LEFT JOINs
You can see from the results just shown that Kevin Yank has three jokes to his name,

and Jessica Graham has one. What they conceal is that there’s a third and fourth

author, Amy Mathieson and Michael Yates, who have no jokes. Since there are no

entries in the joke table with authorid values that match either of the absent authors’

ID, there will be no results that satisfy the ON clause in the aforementioned query

and they’ll be excluded from the table of results.

About the only practical way to overcome this challenge with the tools we’ve seen

so far would be to add another column to the author table and store the number of

jokes attributed to each author in that column. Keeping that column up to date,

PHP & MySQL: Novice to Ninja352

however, would be a real pain, because we’d have to remember to update it each

time a joke was added, removed, or changed (for example, if the value of authorid

was changed) in the joke table. To keep it all synchronized, we’d have to use

transactions whenever we made such changes as well. Quite a mess, to say the least!

Besides the INNER JOINs we’ve used so far, MySQL provides another type of join.

Called a left join, it’s designed for this type of situation. To understand how left

joins differ from standard joins, we must first recall how inner joins work.

As shown in Figure 11.9, MySQL performs a standard join of two tables by listing

all possible combinations of the rows of those tables. In a simple case, a standard

join of two tables with two rows apiece will contain four rows: row 1 of table 1 with

row 1 of table 2, row 1 of table 1 with row 2 of table 2, row 2 of table 1 with row 1

of table 2, and row 2 of table 1 with row 2 of table 2. With all these result rows cal-

culated, MySQL then looks to the ON condition for guidance on which rows should

be kept (for example, those where the id column from table 1 matches the authorid

column from table 2).

Figure 11.9. Inner joins take all possible combinations of rows

353Advanced SQL Queries

The reason why this solution is unsuitable for our purposes is that we’d like to also

include rows in table 1 (that is, author) that don’t match any rows in table 2 (joke).

A left join does exactly what we need: it forces a row to appear in the results for

each row in the first (left-hand) table, even if no matching entries are found in the

second (right-hand) table. Such forced rows are given NULL values for all columns

in the right-hand table.

To perform a left join between two tables in MySQL, simply type LEFT JOIN instead

of INNER JOIN within the FROM clause. Here’s our revised query for listing authors

and the number of jokes to their credit:

SELECT author.name, COUNT(*) AS numjokes
FROM author LEFT JOIN joke
 ON authorid = author.id
GROUP BY author.id

A couple of important points to note about this query:

■ We must type author LEFT JOIN joke, rather than joke LEFT JOIN author.

The order in which we list the tables to be joined is significant. A LEFT JOIN

will only force all rows from the table on the left to appear in the results. In this

example, we want every row in the author table to appear in the results.

■ We must use GROUP BY author.id, rather than GROUP BY authorid.

author.id is the id field of the author table, whereas authorid is the authorid

field of the joke table. In all previous SELECT queries, our join has guaranteed

that these would always have matching values; however, when the LEFT JOIN

creates a forced row based on a row in the author table that has no matching

row in the joke table, it assigns a value of NULL to all columns in the joke table.

This includes the authorid field. If we used GROUP BY authorid, the query

would group all our authors with no jokes together, since they all share an au-

thorid value of NULL following the LEFT JOIN.3

If you type that query right, you should achieve the results shown in Figure 11.10.

3 You may find you have to read this a few times to understand it. That’s because this is by far the subtlest

aspect of the SQL language you’ll find in the book.

PHP & MySQL: Novice to Ninja354

Figure 11.10. Something’s not quite right …

Wait just a minute! Suddenly Amy Mathieson and Michael Yates have one joke

apiece. That can’t be right, surely? In fact, it is—but only because the query is still

wrong. COUNT(*) counts the number of rows returned for each author. If we look at

the ungrouped results of the LEFT JOIN, we can see what’s happened:

SELECT author.name, joke.id AS jokeid
FROM author LEFT JOIN joke
 ON authorid = author.id

Figure 11.11 reveals that Amy Mathieson and Michael Yates do have rows—the

rows that are forced because there are no matching rows in the right-hand table of

the LEFT JOIN (joke). The fact that the joke ID value is NULL has no effect on

COUNT(*); it still counts it as a row.

Figure 11.11. Ungrouped results

If, instead of *, you specify an actual column name (say, joke.id) for the COUNT

function to look at, it will ignore NULL values in that column and give us the count

we want:

SELECT author.name, COUNT(joke.id) AS numjokes
FROM author LEFT JOIN joke
 ON authorid = author.id
GROUP BY author.id

355Advanced SQL Queries

The long-awaited results are shown in Figure 11.12.

Figure 11.12. At last!

Limiting Results with HAVING
What if we wanted a list of only those authors that had no jokes to their name? Once

again, let’s look at the query that many developers would try first:

SELECT author.name, COUNT(joke.id) AS numjokes
FROM author LEFT JOIN joke
 ON authorid = author.id
WHERE numjokes = 0
GROUP BY author.id

This will cause phpMyAdmin to spit out the error #1054 - Unknown column 'numjokes'

in 'where clause'.

By now, you’re probably unfazed that it failed to work as expected. The reason why

WHERE numjokes = 0 caused an error has to do with the way MySQL processes

result sets. First, MySQL produces the raw, combined list of authors and jokes from

the author and joke tables. Next, it processes the ON portion of the FROM clause and

the WHERE clause so that only the relevant rows in the list are returned (in this case,

rows that match authors with their jokes, and which have a numjokes value of 0).

Finally, MySQL processes the GROUP BY clause by grouping the results according

to their authorid, COUNTing the number of entries in each group that have non-NULL

joke.id values, and producing the numjokes column as a result.

Notice that the numjokes column is actually created after the GROUP BY clause is

processed, and that happens only after the WHERE clause does its stuff. Hence the

error message—the WHERE clause is looking for a numjokes column that is yet to be

created.

PHP & MySQL: Novice to Ninja356

If you wanted to exclude jokes that contained the word “chicken” from the count,

you could use the WHERE clause without a problem, because that exclusion doesn’t

rely on a value that the GROUP BY clause is responsible for producing. Conditions

that affect the results after grouping takes place, however, must appear in a special

HAVING clause. Here’s the corrected query:

SELECT author.name, COUNT(joke.id) AS numjokes
FROM author LEFT JOIN joke
 ON authorid = author.id
GROUP BY author.id
HAVING numjokes = 0

The expected results are shown in Figure 11.13.

Figure 11.13. Our least prolific authors

Some conditions work both in the HAVING and the WHERE clauses. For example, if

we wanted to exclude a particular author by name, we could do this by using au-

thor.name != 'Author Name' in either the WHERE or HAVING clause; that’s because,

regardless of whether you filter out the author before or after you group the results,

the same results are returned. In such cases, it’s always best to use the WHERE clause,

because MySQL is better at optimizing such queries internally so they happen faster.

Further Reading
In this chapter, you rounded out your knowledge of Structured Query Language

(SQL) as supported by MySQL. We focused predominantly on features of SELECT

that allow you to view information stored in a database with an unprecedented

level of flexibility and power. With judicious use of the advanced features of SELECT,

you can have MySQL do what it does best, lightening the load on PHP in the process.

There are still a few isolated query types that we’ve yet to see, and MySQL offers a

whole library of built-in functions to do tasks like calculate dates and format text

strings (see Appendix C). To become truly proficient with MySQL, you should also

have a firm grasp on the various column types offered by MySQL. The TIMESTAMP

357Advanced SQL Queries

type, for example, can be a real time-saver (no pun intended). All of these are fully

documented in the MySQL Manual,4 and briefly covered in Appendix D.

For more detailed coverage of the features of SQL covered in this chapter—and a

whole lot more that wasn’t—I highly recommend the book Simply SQL by Rudy

Limeback.5

4 http://dev.mysql.com/doc/refman/5.5/en/datetime.html
5 http://www.sitepoint.com/books/sql1/

PHP & MySQL: Novice to Ninja358

http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://www.sitepoint.com/books/sql1/
http://www.sitepoint.com/books/sql1/

Chapter12
Binary Data
All the examples of database driven websites we’ve seen so far have dealt with sites

based around textual data. Jokes, authors, categories … all these elements can be

fully represented with strings of text. But what if you ran, say, an online digital

photo gallery to which people could upload pictures taken with digital cameras?

For this idea to work, visitors need to be able to upload their photos to our site, and

we need the ability to keep track of them.

In this chapter, you will develop a system whereby users can upload binary files

(images, documents … whatever!) and have them stored on your web server for

display on your site. There are several techniques you’ll need to learn on the way,

though, and I’ll cover all of these in this chapter: working with files in PHP, handling

uploaded files in PHP, and storing and retrieving binary data in MySQL.

As we learn to juggle files with PHP, we’ll also take the opportunity to relieve some

of the load on your web server with the help of semidynamic pages.

Semidynamic Pages
As the owner of a successful—or soon-to-be successful—website, site traffic is

probably worth encouraging. Unfortunately, high site traffic can be just what a web

server administrator dreads—especially when that site’s primarily composed of

dynamically generated, database driven pages. Such pages use a great deal more

horsepower on the computer that runs the web server software than do plain old

HTML files, because every page request is like a miniature program that runs on

that computer.

While some pages of a database driven site must always display current-to-the-

second data taken from the database, others do not. Consider the front page of a

website like sitepoint.com. Typically, it presents a digest of what’s new and fresh

on the site. But how often does that information actually change? Once an hour?

Once a day? And how important is it that visitors to your site see those changes the

instant they occur? Would your site really suffer if changes took effect after a slight

delay?

By converting high-traffic dynamic pages into semidynamic equivalents—static

pages that are regenerated dynamically at regular intervals to freshen their con-

tent—you can significantly reduce the toll that the database driven components of

your site take on your web server’s performance.

Say that you have a controller script—index.php—that uses a PHP template to gen-

erate your front page, which provides a summary of new content on your site.

Through examining the server logs, you’ll probably find that this is one of the most

requested pages on your site. If you ask yourself some of the questions just men-

tioned, you’ll realize that there’s no need to dynamically generate this page for every

request. As long as it’s updated every time new content is added to your site, it’ll

be as dynamic as it needs to be. Instead of using a controller script to handle every

request for the front page of your site, you can use the PHP code to generate a static

snapshot of the PHP template’s output and put this snapshot online—in place of

the dynamic version—as index.html.

This little trick will require some reading, writing, and juggling of files. PHP is

perfectly capable of accomplishing this task, but we’re yet to cover the functions

we’ll need:

PHP & MySQL: Novice to Ninja360

file_get_contents

This function opens a file and reads the contents, returning them in the form

of a PHP string. The file can be stored on the server’s hard disk, or PHP can load

it from a URL just like a web browser would. If an error occurs, the function

returns FALSE instead.

file_put_contents

This function opens a file and writes the specified data into it. You can option-

ally specify settings such as whether the data should be added to the end of the

existing file, rather than replacing the file completely (the default).1

file_exists

This function checks if a file with a specific name exists or not. If the file exists,

the function returns TRUE; otherwise, it returns FALSE.

copy

This function performs a run-of-the-mill file copy operation.

unlink

This function deletes a file from the hard disk.

Do you see where we’re headed? If not, I assure you that you will in a moment.

Let’s begin with a dead-simple controller script and template for displaying a list

of the three most recent jokes in the databases of the Internet Joke Database, as we

last left it in Chapter 10:

chapter12/recentjokes/controller.php

<?php

include_once $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

try
{
 $sql = 'SELECT id, joketext FROM joke
 ORDER BY jokedate DESC
 LIMIT 3';
 $result = $pdo->query($sql);

1 For full details of the available options, check out the PHP Manual [http://php.net/file_put_contents].

361Binary Data

http://php.net/file_put_contents

}
catch (PDOException $e)
{
 $error = 'Error fetching jokes.';
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
}

foreach ($result as $row)
{
 $jokes[] = array('text' => $row['joketext']);
}

include 'jokes.html.php';

chapter12/recentjokes/jokes.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Recent Jokes</title>

<link rel="canonical" href="/recentjokes/">
 </head>
 <body>
 <p>Here are the most recent jokes in the database:</p>
 <?php foreach ($jokes as $joke): ?>
 <?php markdownout($joke['text']); ?>
 <?php endforeach; ?>
 </body>
</html>

Normally, you’d name the controller script index.php, so that a browser request for

http://www.example.com/recentjokes/ would run the controller script and build

the list of jokes on the fly. However, the controller is named controller.php in this

case. A browser that knew this filename could still request the controller, but as

indicated by the <link rel="canonical"> tag2 in the jokes.html.php template, we

still expect most visitors to access the page as http://www.example.com/recentjokes/.

2 For a full description of the <link rel="canonical"> tag, check out the Google Webmaster

Central Blog [http://googlewebmastercentral.blogspot.com/2009/02/specify-your-canonical.html].

PHP & MySQL: Novice to Ninja362

http://googlewebmastercentral.blogspot.com/2009/02/specify-your-canonical.html
http://googlewebmastercentral.blogspot.com/2009/02/specify-your-canonical.html

Instead of triggering the controller, though, browsers that request this URL will hit

a static version of the page that’s been prepared in advance.

To generate this static version, we’ll write another script: generate.php. It will be

the responsibility of this script to load controller.php—the dynamic version of your

front page—as a web browser would, then to write an up-to-date static snapshot of

the page as index.html. If anything goes wrong in this process, you’ll want to hold

onto the existing version of index.html; we’ll make this script write the new static

version into a temporary file (tempindex.html), then copy it over index.html if all is

well.

We start out by setting some PHP variables to configure the URL of the PHP script

we wish to load, the temporary filename to use in the process, and the name of the

static page we wish to create:

chapter12/recentjokes/generate.php (excerpt)

<?php
$srcurl = 'http://localhost/recentjokes/controller.php';
$tempfilename = $_SERVER['DOCUMENT_ROOT'] .
 '/recentjokes/tempindex.html';
$targetfilename = $_SERVER['DOCUMENT_ROOT'] .
 '/recentjokes/index.html';

$srcurl Must Be a URL

Resist the temptation to set $srcurl to the filename of controller.php on your web

server. In order for this script to retrieve the page produced by the controller.php

script, it must request the script using a URL that points to your web server. If

you pointed the script directly at the file, it would receive the code of the

controller.php script itself rather than the HTML output it produces.

Now, to do the work. We start out by deleting the temporary file, in case it was

previously left lying around by a failed execution of this script. We use file_exists

to check if the file exists, then unlink to delete it if it does:

363Binary Data

chapter12/recentjokes/generate.php (excerpt)

if (file_exists($tempfilename))
{
 unlink($tempfilename);
}

Now we can load the dynamic page (controller.php) by requesting its URL with

file_get_contents. Since we’re requesting the file as a URL rather than directly

using its filename, the PHP script will be processed by the web server before we

receive it, so what we’ll end up with is essentially a static HTML page:

chapter12/recentjokes/generate.php (excerpt)

$html = file_get_contents($srcurl);
if (!$html)
{
 $error = "Unable to load $srcurl. Static page update aborted!";
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
}

With the page contents tucked away in the $html variable, we now want to write

them into a static HTML file. The file_put_contents function makes this a piece

of cake:

chapter12/recentjokes/generate.php (excerpt)

if (!file_put_contents($tempfilename, $html))
{
 $error = "Unable to write $tempfilename. Static page update
➥ aborted!";
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
}

The static page has now been written into a temporary file, so we should copy the

temporary file and paste over the previous version of the static file using copy. We

can then delete the temporary file with unlink:

PHP & MySQL: Novice to Ninja364

chapter12/recentjokes/generate.php (excerpt)

copy($tempfilename, $targetfilename);
unlink($tempfilename);

Now, whenever generate.php is executed, a fresh copy of index.html will be generated

from controller.php. Go ahead and request generate.php with your browser, then load

the recentjokes directory (for example, http://localhost/recentjokes/). You should

see the contents of the generated index.html file.

Errors Due to File Permissions

Particularly on Mac OS X and Linux servers, the script could be tripped up if it

has insufficient privileges to copy and delete files in this directory on your server.

If generate.php outputs errors that indicate this, you’ll need to make the directory

containing these files writable by your web server. Usually, this can be done with

a simple chmod command:

chmod 777 /path/to/recentjokes/

Check with your web host if you need help setting permissions to make a directory

PHP-writable on your site.

Of course, it would be a pain to have to manually request the generate.php script

whenever the content of your site changes. The easiest way to automate this process

is to include the generate.php script from within the code of your site’s content

management system whenever a joke is added, updated, or removed from the site.

If a page is quite complex, it may be difficult to find all the right places within your

CMS to regenerate its static version. Alternatively, you may simply wish to set up

your server to run generate.php at regular intervals—say, every hour. Under Windows,

you can use the Task Scheduler to run php.exe (a standalone version of PHP included

with XAMPP and other distributions of PHP for Windows) automatically every

hour. Just create a batch file called generate.bat that contains this line of text:

chapter12/recentjokes/generate.bat

@C:\xampp\php\php.exe generate.php

365Binary Data

Adjust the paths and filenames as necessary, then set up Task Scheduler to run

generate.bat every hour. Done!

Under OS X or Linux, you can do a similar thing with cron—a system-level utility

that lets you define tasks to be run at regular intervals. Type man crontab at your

system’s Terminal prompt to read about how you can set up tasks for cron.

The task you’ll set cron to run will be very similar to the Windows task just discussed.

MAMP includes a standalone version of PHP that you can run with cron (it’s

/Applications/MAMP/bin/php/php5.3.6/bin/php in the version I’m using).

For experienced cron users in a hurry, here’s what the line in your crontab file should

look like:

0 0-23 * * * /Applications/MAMP/bin/php/php5.3.6/bin/php
➥/path/to/generate.php > /dev/null

Handling File Uploads
Okay, we can now juggle files we’ve created ourselves. The next piece of the puzzle

is to accept files uploaded by visitors to your site, and handle them just as deftly.

We’ll start with the basics: let’s write an HTML form that allows users to upload

files. HTML makes this quite easy with its <input type="file"> tag. By default,

however, only the name of the file selected by the user is sent. To have the file itself

submitted with the form data, we need to add enctype="multipart/form-data"

to the <form> tag:

<form action="index.php" method="post"
enctype="multipart/form-data">

 <div><label for="upload">Select file to upload:
 <input type="file" id="upload" name="upload"></label></div>
 <div>
 <input type="hidden" name="action" value="upload">
 <input type="submit" value="Submit">
 </div>
</form>

As we can see, a PHP script (index.php, in this case) will handle the data submitted

with this form. Information about uploaded files appears in a array called $_FILES

PHP & MySQL: Novice to Ninja366

that’s automatically created by PHP. As you’d expect, an entry in this array called

$_FILES['upload'] (from the name attribute of the <input> tag) will contain inform-

ation about the file uploaded in this example. However, instead of storing the con-

tents of the uploaded file, $_FILES['upload'] contains yet another array. We

therefore use a second set of square brackets to select the information we want:

$_FILES['upload']['tmp_name']

Provides the name of the file stored on the web server’s hard disk in the system

temporary file directory, unless another directory has been specified using the

upload_tmp_dir setting in your php.ini file. This file is only kept as long as the

PHP script responsible for handling the form submission is running. So, if you

want to use the uploaded file later on (for example, store it for display on the

site), you need to make a copy of it elsewhere. To do this, use the copy function

described in the section called “Semidynamic Pages”.

$_FILES['upload']['name']

Provides the name of the file on the client machine before it was submitted. If

you make a permanent copy of the temporary file, you might want to give it its

original name instead of the automatically generated temporary filename that’s

described.

$_FILES['upload']['size']

Provides the size (in bytes) of the file.

$_FILES['upload']['type']

Provides the MIME type of the file. (It is sometimes referred to as file type or

content type, an identifier used to describe the file format; for example,

text/plain, image/png, and so on.)

Remember, 'upload' is just the name attribute of the <input> tag that submitted the

file, so the actual array index will depend on that attribute.

You can use these variables to decide whether to accept or reject an uploaded file.

For example, in a photo gallery we’d only really be interested in JPEG, and possibly

GIF and PNG files. These files have MIME types of image/jpeg, image/gif, and

367Binary Data

image/png, respectively, but to cater for differences between browsers,3 you should

use regular expressions to validate the uploaded file’s type:

if (preg_match('/^image\/p?jpeg$/i', $_FILES['upload']['type']) or
 preg_match('/^image\/gif$/i', $_FILES['upload']['type']) or
 preg_match('/^image\/(x-)?png$/i', $_FILES['upload']['type']))
{
 ⋮ Handle the file…
}
else
{
 $error = 'Please submit a JPEG, GIF, or PNG image file.';
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
}

See Chapter 8 for help with regular expression syntax.

While you can use a similar technique to disallow files that are too large (by

checking the $_FILES['upload']['size'] variable), I advise against it. Before this

value can be checked, the file is already uploaded and saved in the temporary dir-

ectory. If you try to reject files because you have limited disk space and/or band-

width, the fact that large files can still be uploaded (even though they’re deleted

almost immediately) may be a problem for you.

Instead, you can tell PHP in advance the maximum file size you’ll accept. There

are two ways to do this. The first is to adjust the upload_max_filesize setting in

your php.ini file. The default value is 2MB, so if you want to accept uploads larger

than that, you’ll need to change that value immediately.4

The second method is to include a hidden <input> field in your form with the name

MAX_FILE_SIZE, and the actual maximum file size you want to accept with this form

as its value. For security reasons, this value can’t exceed the upload_max_filesize

setting in your php.ini, but it does provide a way for you to accept different maximum

3 The exact MIME type depends on the browser in use. Internet Explorer uses image/pjpeg for JPEG

images and image/x-png for PNG images, while Firefox and other browsers use image/jpeg and

image/png, respectively.
4 A second restriction, affecting the total size of form submissions, is enforced by the post_max_size
setting in php.ini. Its default value is 8MB, so if you want to accept really big uploads you’ll need to

modify that setting, too.

PHP & MySQL: Novice to Ninja368

sizes on different pages. The following form, for example, will allow uploads of up

to one kilobyte (1024 bytes):

<form action="upload.php" method="post"
 enctype="multipart/form-data">
 <p><label id="upload">Select file to upload:
<input type="hidden" name="MAX_FILE_SIZE" value="1024">

 <input type="file" id="upload" name="upload"></label></p>
 <p>
 <input type="hidden" name="action" value="upload">
 <input type="submit" value="Submit">
 </p>
</form>

Note that the hidden MAX_FILE_SIZE field must come before any <input

type="file"> tags in the form, so that PHP is apprised of this restriction before it

receives any submitted files. Note also that this restriction can easily be circumvented

by malicious users who simply write their own form without the MAX_FILE_SIZE

field. For fail-safe security against large file uploads, use the upload_max_filesize

setting in php.ini.

Assigning Unique Filenames
As I explained, to keep an uploaded file you need to copy it to another directory.

And while you have access to the name of each uploaded file with its

$_FILE['upload']['name'] variable, there’s no guarantee that two files with the

same name will not be uploaded. In such a case, storage of the file with its original

name may result in newer uploads overwriting older ones.

For this reason, you’ll usually want to adopt a scheme that allows you to assign a

unique filename to every uploaded file. Using the system time (which you can access

using the PHP time function), you can easily produce a name based on the number

of seconds since January 1, 1970. But what if two files happen to be uploaded

within one second of each other? To help guard against this possibility, we’ll also

use the client’s IP address (automatically stored in $_SERVER['REMOTE_ADDR'] by

PHP) in the filename. Since you’re unlikely to receive two files from the same IP

address within one second of each other, it’s acceptable for most purposes:

369Binary Data

// Pick a file extension
if (preg_match('/^image\/p?jpeg$/i', $_FILES['upload']['type']))
{
 $ext = '.jpg';
}
else if (preg_match('/^image\/gif$/i', $_FILES['upload']['type']))
{
 $ext = '.gif';
}
else if (preg_match('/^image\/(x-)?png$/i',
 $_FILES['upload']['type']))
{
 $ext = '.png';
}
else
{
 $ext = '.unknown';
}

// The complete path/filename
$filename = 'C:/uploads/' . time() . $_SERVER['REMOTE_ADDR'] . $ext;

// Copy the file (if it is deemed safe)
if (!is_uploaded_file($_FILES['upload']['tmp_name']) or
 !copy($_FILES['upload']['tmp_name'], $filename))
{
 $error = "Could not save file as $filename!";
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
}

Important to note in this code is the use of the is_uploaded_file function to check

if the file is “safe.” All this function does is return TRUE if the filename it’s passed

as a parameter ($_FILES['upload']['tmp_name'] in this case) was uploaded as

part of a form submission. If a malicious user loaded this script and manually spe-

cified a filename such as /etc/passwd (the system password store on Linux servers),

and you had failed to use is_uploaded_file to check that $_FILES['upload']

really referred to an uploaded file, your script might be used to copy sensitive files

on your server into a directory where they’d become publicly accessible over the

Web! Thus, before you ever trust a PHP variable that you expect to contain the file-

name of an uploaded file, be sure to use is_uploaded_file to check it.

PHP & MySQL: Novice to Ninja370

A second trick I’ve used in the aforementioned code is to combine is_uploaded_file

and copy together as the condition of an if statement. If the result of

is_uploaded_file($_FILES['upload']['tmp_name']) is FALSE (making

!is_uploaded_file($_FILES['upload']['tmp_name']) TRUE), PHP will know

immediately that the entire condition will be TRUE when it sees the or operator

separating the two function calls. To save time, it will refrain from bothering to run

copy, so the file won’t be copied when is_uploaded_file returns FALSE. On the

other hand, if is_uploaded_file returns TRUE, PHP goes ahead and copies the file.

The result of copy then determines whether or not an error message is displayed.

Similarly, if we’d used the and operator instead of or, a FALSE result in the first part

of the condition would cause PHP to skip evaluating the second part. This charac-

teristic of if statements is known as short-circuit evaluation, and it works in other

conditional structures such as while and for loops, too.

Finally, note that I’ve used UNIX-style forward slashes (/) in the path, despite it

being a Windows path. If I’d used backslashes, I would’ve had to replace them with

double-backslashes (\\) to stop PHP from interpreting them as escaped characters.

PHP is smart enough to convert forward slashes in a filepath to backslashes when

it’s running on a Windows system. Since we can also use single slashes (/) as usual

on non-Windows systems, adopting forward slashes in general for filepaths in PHP

will make your scripts more portable.

Recording Uploaded Files in the Database
So, you’ve created a system whereby visitors can upload JPEG, GIF, and PNG images

and have them saved on your server … but this book was supposed to be about

database driven websites—right? If we used the system as it stands now, the submit-

ted images would need to be collected from the folder in which they’re saved, then

added to the website by hand! If you think back to the end of Chapter 9 when I

suggested you develop a system that enabled site visitors to submit jokes to be stored

in the database ready for quick approval by a content administrator, you’ll know

there must be a better way!

MySQL has several column types that allow you to store binary data. In database

parlance, these column types let us store BLOBs (Binary Large OBjects); however,

the storage of potentially large files in a relational database is often a bad idea. While

there’s convenience in having all the data located in one place, large files lead to

371Binary Data

large databases, and large databases lead to reduced performance and humongous

backup files.

The best alternative is usually to store the filenames in the database. As long as you

remember to delete files when you delete their corresponding entries in the database,

everything should work the way you need it to. Since we’ve seen all the SQL code

involved in this time and again, I’ll leave the details to you. As usual, the SitePoint

Forum community is there to offer a helping hand if necessary.

In cases where you’re dealing with relatively small files—for example, head shots

for use in a staff directory—the storage of data in MySQL is quite practical. In the

rest of this chapter, I’ll demonstrate how to use PHP to store binary files uploaded

over the Web in a MySQL database, and how to retrieve those files for download

or display.

Binary Column Types
As with most database driven web applications, the first factor to consider is the

layout of the database. To keep this example separate from the Internet Joke Database,

I recommend creating a new database for it:

CREATE DATABASE filestore

If this isn’t possible (for example, if you’re working on a hosted MySQL server where

you’re only allowed a single database), go ahead and stick with your existing data-

base.

For each file that’s stored in our database, we’ll store the filename, the MIME type

(for example, image/jpeg for JPEG image files), a short description of the file, and

the binary data itself. Here’s the CREATE TABLE statement to create the table:

chapter12/sql/filestore.sql (excerpt)

CREATE TABLE filestore (
 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 filename VARCHAR(255) NOT NULL,
 mimetype VARCHAR(50) NOT NULL,
 description VARCHAR(255) NOT NULL,
 filedata MEDIUMBLOB
) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB

PHP & MySQL: Novice to Ninja372

Most of this syntax should be familiar to you; however, the MEDIUMBLOB column

type is new. If you consult the MySQL Column Type Reference in Appendix D,

you’ll find that MEDIUMBLOB is the same as MEDIUMTEXT, except that it performs case-

sensitive searches and sorts. In fact, there’s no difference between binary data and

blocks of text from MySQL’s point of view—both are just long strings of bytes to be

stored in the database. MySQL just applies a bunch of extra rules to text column

types to ensure that the expected sorting behavior and character encoding conver-

sions are performed transparently.

Aside from the increased performance you gain from avoiding these extra rules,

MySQL provides BLOB column types like MEDIUMBLOB to support situations in

which you might need to compare the contents of one binary file with another. In

such cases, you’d want the comparison to be case-sensitive, as binary files may use

byte patterns that are the equivalent to alphabetical letters; for example, you’d want

to distinguish the byte pattern that represents “A” from that representing “a,” which

a MEDIUMTEXT column would consider equal.

MEDIUMBLOB is one of several BLOB column types designed to store variable-length

binary data. These column types differ from one another only in two aspects: the

maximum size of the data a particular value in the column can contain, and the

number of bytes used to store the length of each data value. The different binary

column types are listed with these details in Table 12.1.

Table 12.1. Binary Column Types in MySQL

Space required per entryMaximum sizeColumn type

Data size + 1 byte255BTINYBLOB

Data size + 2 bytes65KBBLOB

Data size + 3 bytes16.7MBMEDIUMBLOB

Data size + 4 bytes4.3GBLONGBLOB

As you can see, the table we’ve created will be able to store files up to 16.7MB in

size. If you think you’ll need larger files, you can bump the filedata column up

to a LONGBLOB. Each file will occupy one more byte in the database, because MySQL

will require that extra byte in order to record larger file sizes, but you’ll be able to

store files up to 4.3GB (assuming that your operating system allows files of this

size)!

373Binary Data

If you took my advice to create this table in a separate database, you’ll need a new

db.inc.php file to enable this example to connect to the database:

chapter12/filestore/db.inc.php

<?php
try
{
 $pdo = new PDO('mysql:host=localhost;dbname=filestore',
 'filestoreuser', 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $error = 'Unable to connect to the database server.';
 include 'error.html.php';
 exit();
}

Storing Files
With the database ready and waiting, the next step is to create a PHP controller

script and template that lets users upload files and store them in the database. You

can hold off copying the code in the next two sections; I’ll present the completed

code at the end of the chapter. Here’s the code for the form—there should be no

surprises here:

chapter12/filestore/files.html.php (excerpt)

<form action="" method="post" enctype="multipart/form-data">
 <div>
 <label for="upload">Upload File:
 <input type="file" id="upload" name="upload"></label>
 </div>
 <div>
 <label for="desc">File Description:
 <input type="text" id="desc" name="desc"
 maxlength="255"></label>
 </div>
 <div>
 <input type="hidden" name="action" value="upload">

PHP & MySQL: Novice to Ninja374

 <input type="submit" value="Upload">
 </div>
</form>

As you’ll know from your reading in this chapter, this form will create a temporary

file on the server and store the name of that file in $_FILES['upload']['tmp_name'].

It also creates $_FILES['upload']['name'] (the original name of the file),

$_FILES['upload']['size'] (the file size measured in bytes), and finally,

$_FILES['upload']['type'] (the MIME type of the file).

Inserting the file into the database is a relatively straightforward process: read the

data from the temporary file into a PHP variable, then use that variable in a standard

MySQL INSERT query. Again, we make use of is_uploaded_file to make sure the

filename we use does, in fact, correspond to an uploaded file before we start any of

this. Here’s the code:

chapter12/filestore/index.php (excerpt)

<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

if (isset($_POST['action']) and $_POST['action'] == 'upload')
{
 // Bail out if the file isn't really an upload
 if (!is_uploaded_file($_FILES['upload']['tmp_name']))
 {
 $error = 'There was no file uploaded!';
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
 }
 $uploadfile = $_FILES['upload']['tmp_name'];
 $uploadname = $_FILES['upload']['name'];
 $uploadtype = $_FILES['upload']['type'];
 $uploaddesc = $_POST['desc'];
 $uploaddata = file_get_contents($uploadfile);

 include 'db.inc.php';

 try
 {
 $sql = 'INSERT INTO filestore SET

375Binary Data

 filename = :filename,
 mimetype = :mimetype,
 description = :description,
 filedata = :filedata';
 $s = $pdo->prepare($sql);
 $s->bindValue(':filename', $uploadname);
 $s->bindValue(':mimetype', $uploadtype);
 $s->bindValue(':description', $uploaddesc);
 $s->bindValue(':filedata', $uploaddata);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Database error storing file!';
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

Viewing Stored Files
Armed with the code that accepts file uploads and stores them in a database, you’re

halfway home. But you still need to be able to pull that data out of the database to

use it. For our purposes, this will mean sending the file to a requesting browser.

Once again, this turns out to be a relatively straightforward process. We simply re-

trieve the data for the requested file from the database and send it to the web browser.

The only tricky part is to send the browser information about the file:

the file size so that the browser can display accurate download-progress in-

formation to the user

the file type so that the browser knows what to do with the data it receives;

that is, display it as a web page, text file, or image, or offer to

save the file

the filename without specifying this, the browser will assume all files

downloaded from our script have the same filename as our

controller script

PHP & MySQL: Novice to Ninja376

All this information is sent to the browser using HTTP headers, which is information

that precedes the transmission of the file data itself. As we’ve already seen, sending

HTTP headers via PHP is quite easy using the header function, but as headers must

be sent before plain content, any calls to this function must come before anything

is output by your script.

The file size is specified with a Content-length header:

chapter12/filestore/index.php (excerpt)

 header('Content-length: ' . strlen($filedata));

strlen is a built–in PHP function that returns the length of the given string. Since

binary data is just a string of bytes as far as PHP is concerned, you can use this

function to count the length (in bytes) of the file data.

The file type is specified with a Content-type header:

chapter12/filestore/index.php (excerpt)

 header("Content-type: $mimetype");

Finally, the filename is specified with a Content-disposition header:

 header("Content-disposition: inline; filename=$filename");

You could use the following code to fetch a file with a given ID from the database,

and send it to the browser:

include 'db.inc.php';

try
{
 $sql = 'SELECT filename, mimetype, filedata
 FROM filestore
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_GET['id']);
 $s->execute();
}
catch (PDOException $e)

377Binary Data

{
 $error = 'Database error fetching requested file.';
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
}

$file = $s->fetch();
if (!$file)
{
 $error = 'File with specified ID not found in the database!';
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
}

$filename = $file['filename'];
$mimetype = $file['mimetype'];
$filedata = $file['filedata'];

header('Content-length: ' . strlen($filedata));
header("Content-type: $mimetype");
header("Content-disposition: inline; filename=$filename");

echo $filedata;
exit();

One final trick we can add to this code is to allow a file to be downloaded, instead

of viewed, if the user so desires. Web standards suggest that the way to do this is

to send a Content-disposition of attachment instead of inline. Here’s the modified

code. It checks if $_GET['action'] equals 'download', which would indicate that

this special file type should be sent:

 include 'db.inc.php';

 try
 {
 $sql = 'SELECT filename, mimetype, filedata
 FROM filestore
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_GET['id']);
 $s->execute();
 }
 catch (PDOException $e)

PHP & MySQL: Novice to Ninja378

 {
 $error = 'Database error fetching requested file.';
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
 }

 $file = $s->fetch();
 if (!$file)
 {
 $error = 'File with specified ID not found in the database!';
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
 }

 $filename = $file['filename'];
 $mimetype = $file['mimetype'];
 $filedata = $file['filedata'];
$disposition = 'inline';

 if ($_GET['action'] == 'download')
 {
 $disposition = 'attachment';
 }

 header('Content-length: ' . strlen($filedata));
 header("Content-type: $mimetype");
 header("Content-disposition: $disposition; filename=$filename");

 echo $filedata;
 exit();

Unfortunately, many older browsers generally ignore the Content-disposition

header, deciding what to do with a file based on the Content-type header in-

stead—especially when it comes after the Content-disposition header.

To achieve the desired download behavior in as many browsers as possible, make

sure the Content-type header comes before the Content-disposition header. Then

replace the file’s actual MIME type with a generic Content-type of application/

octet-stream (which is required to force a download in older browsers):

379Binary Data

chapter12/filestore/index.php (excerpt)

 include 'db.inc.php';

 try
 {
 $sql = 'SELECT filename, mimetype, filedata
 FROM filestore
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_GET['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Database error fetching requested file.';
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
 }

 $file = $s->fetch();
 if (!$file)
 {
 $error = 'File with specified ID not found in the database!';
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
 }

 $filename = $file['filename'];
 $mimetype = $file['mimetype'];
 $filedata = $file['filedata'];
 $disposition = 'inline';

 if ($_GET['action'] == 'download')
 {

$mimetype = 'application/octet-stream';
 $disposition = 'attachment';
 }

// Content-type must come before Content-disposition
 header('Content-length: ' . strlen($filedata));
 header("Content-type: $mimetype");
 header("Content-disposition: $disposition; filename=$filename");

PHP & MySQL: Novice to Ninja380

 echo $filedata;
 exit();

Putting It All Together
You’ll find the complete file store example following. It combines all the elements

given previously with some simple code that will list the files in the database, and

allow them to be viewed, downloaded, or deleted. As always, this code is available

in the code archive.

First, the controller script:

chapter12/filestore/index.php

<?php
include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/magicquotes.inc.php';

if (isset($_POST['action']) and $_POST['action'] == 'upload')
{
 // Bail out if the file isn't really an upload
 if (!is_uploaded_file($_FILES['upload']['tmp_name']))
 {
 $error = 'There was no file uploaded!';
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
 }
 $uploadfile = $_FILES['upload']['tmp_name'];
 $uploadname = $_FILES['upload']['name'];
 $uploadtype = $_FILES['upload']['type'];
 $uploaddesc = $_POST['desc'];
 $uploaddata = file_get_contents($uploadfile);

 include 'db.inc.php';

 try
 {
 $sql = 'INSERT INTO filestore SET
 filename = :filename,
 mimetype = :mimetype,
 description = :description,
 filedata = :filedata';

381Binary Data

 $s = $pdo->prepare($sql);
 $s->bindValue(':filename', $uploadname);
 $s->bindValue(':mimetype', $uploadtype);
 $s->bindValue(':description', $uploaddesc);
 $s->bindValue(':filedata', $uploaddata);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Database error storing file!';
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
 }

 header('Location: .');
 exit();
}

if (isset($_GET['action']) and
 ($_GET['action'] == 'view' or $_GET['action'] == 'download') and
 isset($_GET['id']))
{
 include 'db.inc.php';

 try
 {
 $sql = 'SELECT filename, mimetype, filedata
 FROM filestore
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_GET['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Database error fetching requested file.';
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
 }

 $file = $s->fetch();
 if (!$file)
 {
 $error = 'File with specified ID not found in the database!';
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

PHP & MySQL: Novice to Ninja382

 exit();
 }

 $filename = $file['filename'];
 $mimetype = $file['mimetype'];
 $filedata = $file['filedata'];
 $disposition = 'inline';

 if ($_GET['action'] == 'download')
 {
 $mimetype = 'application/octet-stream';
 $disposition = 'attachment';
 }

 // Content-type must come before Content-disposition
 header('Content-length: ' . strlen($filedata));
 header("Content-type: $mimetype");
 header("Content-disposition: $disposition; filename=$filename");

 echo $filedata;
 exit();
}

if (isset($_POST['action']) and $_POST['action'] == 'delete' and
 isset($_POST['id']))
{
 include 'db.inc.php';

 try
 {
 $sql = 'DELETE FROM filestore
 WHERE id = :id';
 $s = $pdo->prepare($sql);
 $s->bindValue(':id', $_POST['id']);
 $s->execute();
 }
 catch (PDOException $e)
 {
 $error = 'Database error deleting requested file.';
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
 }

 header('Location: .');
 exit();

383Binary Data

}

include 'db.inc.php';

try
{
 $result = $pdo->query(
 'SELECT id, filename, mimetype, description
 FROM filestore');
}
catch (PDOException $e)
{
 $error = 'Database error fetching stored files.';
 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';
 exit();
}

$files = array();
foreach ($result as $row)
{
 $files[] = array(
 'id' => $row['id'],
 'filename' => $row['filename'],
 'mimetype' => $row['mimetype'],
 'description' => $row['description']);
}

include 'files.html.php';

Next, the PHP template that includes the upload form and list of files:

chapter12/filestore/files.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .
 '/includes/helpers.inc.php'; ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>PHP/MySQL File Repository</title>
 </head>
 <body>
 <h1>PHP/MySQL File Repository</h1>

 <form action="" method="post" enctype="multipart/form-data">

PHP & MySQL: Novice to Ninja384

 <div>
 <label for="upload">Upload File:
 <input type="file" id="upload" name="upload"></label>
 </div>
 <div>
 <label for="desc">File Description:
 <input type="text" id="desc" name="desc"
 maxlength="255"></label>
 </div>
 <div>
 <input type="hidden" name="action" value="upload">
 <input type="submit" value="Upload">
 </div>
 </form>

 <?php if (count($files) > 0): ?>

 <p>The following files are stored in the database:</p>

 <table>
 <thead>
 <tr>
 <th>Filename</th>
 <th>Type</th>
 <th>Description</th>
 </tr>
 </thead>
 <tbody>
 <?php foreach($files as $f): ?>
 <tr>
 <td>
 <a href="?action=view&id=<?php htmlout($f['id']); ?>
 "><?php htmlout($f['filename']); ?>
 </td>
 <td><?php htmlout($f['mimetype']); ?></td>
 <td><?php htmlout($f['description']); ?></td>
 <td>
 <form action="" method="get">
 <div>
 <input type="hidden" name="action"
 value="download"/>
 <input type="hidden" name="id"
 value="<?php htmlout($f['id']); ?>"/>
 <input type="submit" value="Download"/>
 </div>

385Binary Data

 </form>
 </td>
 <td>
 <form action="" method="post">
 <div>
 <input type="hidden" name="action" value="delete"/>
 <input type="hidden" name="id"
 value="<?php htmlout($f['id']); ?>"/>
 <input type="submit" value="Delete"/>
 </div>
 </form>
 </td>
 </tr>
 <?php endforeach; ?>
 </tbody>
 </table>

 <?php endif; ?>
 </body>
</html>

And just to be thorough, the database connection include file:

chapter12/filestore/db.inc.php

<?php
try
{
 $pdo = new PDO('mysql:host=localhost;dbname=filestore',
 'filestoreuser', 'mypassword');
 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $pdo->exec('SET NAMES "utf8"');
}
catch (PDOException $e)
{
 $error = 'Unable to connect to the database server.';
 include 'error.html.php';
 exit();
}

Note that this uses a different database (filestore) than the Internet Joke Database

site and user (filestoreuser). If you prefer to put the filestore table in the ijdb

database along with everything else that’s in there, you can just use the shared

db.inc.php include file instead.

PHP & MySQL: Novice to Ninja386

With all these files in place and the database set up, fire up your browser and take

a look. The empty repository should produce a page like the one in Figure 12.1.

Figure 12.1. The Empty Repository

Upload a few files and you should see them listed in a table, as shown in Figure 12.2.

Figure 12.2. A couple of files on board

387Binary Data

Click on a filename and the file should be displayed in the browser (assuming the

file is of a type that your browser supports). In addition, try out the Download and

Delete buttons provided for each file. They should work as you would expect.

This example demonstrates all the techniques you need in order to juggle binary

files with PHP and MySQL, and I invite you to think of some creative uses of this

code. Consider, for example, a file archive to which users must provide a username

and password before they’re allowed to view or download the files. If a user enters

an incorrect username/password combination, your script can display an error page

instead of sending the file data. Another possibility would be a script that sends

different files depending on the details submitted by the form.

Large File Considerations
In systems like those we’ve just developed, large files present some unique challenges

to the developer. I’ll explain these here briefly, but fully developed solutions to

these problems are beyond the scope of this book.

MySQL Packet Size
By default, MySQL rejects commands (packets) that are longer than 1MB. This default

puts a reasonably severe limit on the maximum file size you can store, unless you’re

prepared to write your file data in 1MB chunks using an INSERT followed by several

UPDATEs. Increase the maximum packet size by setting the max_allowed_packet

option in your my.cnf or my.ini file. Refer to the MySQL manual5 for more information

on this issue.

PHP Memory Limit
PHP is configured by default to consume no more than 8MB of memory for the

processing of any particular request. If your script needs to read a file whose size

is close to or even larger than that limit, your browser will likely display an ugly

error message about PHP having been unable to allocate memory.

To fix this issue, edit your server’s php.ini file and change the value of the

memory_limit setting to a more generous figure.

5 http://dev.mysql.com/doc/refman/5.1/en/packet-too-large.html

PHP & MySQL: Novice to Ninja388

http://dev.mysql.com/doc/refman/5.1/en/packet-too-large.html

PHP Script Timeout
PHP is configured by default to kill PHP scripts that run for more than 30 seconds.

Needless to say, for large downloads over slow connections, this limit will be reached

fairly quickly. Use PHP’s set_time_limit function to set an appropriate time limit

for the download, or simply set the time limit to zero, which allows the script to

run to completion, however long it takes. But only do this if you’re positive your

script will always terminate, and not run forever!

The End
In this chapter, we completed our exploration of PHP and MySQL with a practical

look at handling file uploads and storing binary data in MySQL databases. Admit-

tedly, this is a rather arbitrary place to end this book; there are plenty of other aspects

of PHP and MySQL that you could explore, some of which could be called no less

basic or essential than binary data.

PHP in particular—with its “batteries included” philosophy of packing as much

functionality as possible directly into the language in the form of built-in func-

tions—could fill ten books this size. Exactly which aspects you’ll need to learn before

tackling any particular project will vary wildly. Having worked as a professional

PHP developer for many years now, I have to admit that I remain unfamiliar with

most of the functionality that PHP has to offer. There’s just so much available to

explore. That’s why very few people bother to print out the PHP Manual6 in its

entirety.

By far the best way to cement your newfound knowledge of PHP and MySQL is to

put it to work: build your own database driven website from scratch using the

techniques covered in this book. Publish it on the Web, and ask for feedback from

real, live users. Chances are they’ll push you to make improvements to the site that

you might lack the knowhow to implement right away. These real-world require-

ments should direct your further exploration of PHP and MySQL—and there’s plenty

more to be learned!

A great resource on your adventures would be a copy of SitePoint’s PHP Master:

Write Cutting-edge Code.7 Beginning with an exploration of PHP’s object oriented

6 http://php.net/docs.php
7 http://www.sitepoint.com/books/phppro1/

389Binary Data

http://php.net/docs.php
http://www.sitepoint.com/books/phppro1/
http://www.sitepoint.com/books/phppro1/

programming features, it builds on that foundation to demonstrate efficient ways

of tackling some of the problems we looked at in this book, and many more that we

didn’t.

If you end up tackling more than one project, you may find yourself writing the

same pieces of code over and over again. Rather than spending time perfecting your

own collection of shared include files, you might like to spend some time learning

a PHP framework such as Zend Framework,8 CakePHP,9 or Symfony.10

Each of these frameworks represent many thousands of hours’ work by PHP experts

who’ve developed ready-made solutions for the most common problems tackled by

PHP developers. By using these solutions in your own projects, you can focus on

writing the code to solve the problems that are unique to your project and waste

less time reinventing the wheel. Each framework has its own philosophy, strengths,

and weaknesses, and finding the right one for you will take some work. If you plan

on becoming a professional PHP developer, however, you’ll find it time well spent.

However you proceed from this point, rest assured you’re starting out with a solid

grounding in the essentials. That’s more than can be said for many developers

working today. Take that advantage and use it.

Most importantly, go out there and write some code!

8 http://framework.zend.com/
9 http://cakephp.org/
10 http://www.symfony-project.org/

PHP & MySQL: Novice to Ninja390

http://framework.zend.com/
http://cakephp.org/
http://www.symfony-project.org/

Appendix A: Manual Installation
Instructions
In Chapter 1, I recommended using a packaged solution like XAMPP or MAMP to

set up a PHP-capable web server and MySQL database server on your computer.

Especially when you’re just starting out, it’s useful to have your development web

server bundled together so that you can switch it on and off—even throw it away

and start from scratch all at once, whenever you need to.

That said, the time may come when you want to do it all yourself, if only to under-

stand how all the parts fit together. In this appendix, I’ll walk you through a

manual installation process on each of the three major platforms that PHP and

MySQL support: Windows, OS X, and Linux.

Windows
Installing MySQL
You can download MySQL free of charge. Simply proceed to the MySQL Downloads

page1 and click the Download link for the free MySQL Community Server. This will

take you to a page with a list of download links for the current recommended version

of MySQL (as of this writing, it’s MySQL 5.5.22).

At the top of the list you’ll see links for Windows 64-bit and Windows 32-bit. If

you’re positive you’re running a 64-bit version of Windows, go ahead and click the

Download button next to Windows (x86, 64-bit), MSI Installer to download the package

(about 33MB in size). If you know you’re running a 32-bit version of Windows, or

if you’re at all unsure, click the Download button next to Windows (x86, 32-bit), MSI

Installer to download that package (about 31MB); it will work even if it turns out

you’re running a 64-bit version of Windows.

Once you’ve downloaded the file, double-click it and go through the installation as

you would for any other program. Choose the Typical option when prompted for the

setup type, unless you have a particular preference for the directory in which MySQL

1 http://dev.mysql.com/downloads/

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/

is installed. When you reach the end, you’ll be prompted to choose whether you

want to Launch the MySQL Instance Configuration Wizard. Go ahead and launch it, and

choose Detailed Configuration, which we’ll use to specify a number of options that

are vital to ensuring compatibility with PHP. For each step in the wizard, select the

options indicated here:

1. Server Type

Assuming you’re setting up MySQL for development purposes on your desktop

computer, choose Developer Machine.

2. Database Usage

Although any of these options will work fine with the examples in this book,

go with the default Multifunctional Database option.

3. InnoDB Tablespace Settings

This lets you control where your database files are stored. The default option

of storing them in your MySQL Installation Path is perfect for a development

server. No need to touch anything here.

4. Connection Limit

Select Decision Support (DSS)/OLAP to optimize MySQL for a relatively modest

number of connections.

5. Networking Options

Uncheck the Enable Strict Mode option to ensure MySQL’s compatibility with

older PHP code that you might need to use in your own work.

6. Default Character Set

Select Best Support For Multilingualism to tell MySQL to assume you want to use

UTF-8 encoded text, which supports the full range of characters in use on the

Web today.

PHP & MySQL: Novice to Ninja392

7. Windows Options

Allow MySQL to be installed as a Windows Service that’s launched automatic-

ally. Select Include Bin Directory in Windows PATH to make it easier to run MySQL’s

administration tools from the command prompt.

8. Security Options

Go ahead and set a password for the MySQL root user account, which grants

full access to all databases stored in your MySQL server. Leave the other options

alone.

Once the wizard has completed, your system should now be fully equipped with a

running MySQL server!

To verify that the MySQL server is running properly, type Ctrl+Alt+Del and choose

the option to open the Task Manager. On the Processes tab, click the Show processes

from all users button unless it’s already selected. If all is well, the server program

(mysqld.exe) should be listed. It will also start up automatically whenever you restart

your system.

Installing PHP
The next step is to install PHP, so head over to the PHP Downloads page.2 There

are two versions of PHP 5.4.x for Windows: VC9 Non Thread Safe and VC9 Thread

Safe. Talk about confusing! You definitely want a Thread Safe version of PHP. The

Non Thread Safe versions are unsuitable for use as a plugin for Apache.

Download the Zip package of the VC9 Thread Safe release of PHP.

PHP was designed to run as a plugin for existing web server software such as Apache

or Internet Information Services, so before you can install PHP, you must first set

up a web server.

Many versions of Windows come with Microsoft’s powerful Internet Information

Services (IIS) web server, but not all do. Windows XP Home, Windows Vista Home,

and Windows 7 Home Basic (among others) are without IIS, so you need to install

your own web server on these versions of Windows if you want to develop database

2 http://windows.php.net/download/

393Appendix A: Manual Installation Instructions

http://windows.php.net/download/

driven websites. On top of that, assorted versions of Windows come with different

versions of IIS, some of which vary dramatically in how you configure them to work

with PHP.

With that in mind, if you’re still considering IIS, you should know it’s relatively

uncommon to host websites built using PHP with IIS in the real world. It’s generally

less expensive and more reliable to host PHP-powered sites on servers running some

flavor of the Linux operating system, with the free Apache web server installed.

About the only reason for hosting a PHP site on IIS is if your company has already

invested in Windows servers to run applications built using ASP.NET (a Microsoft

technology built into IIS), and you want to reuse that existing infrastructure to host

a PHP application as well.

Although it’s by no means a requirement, it’s generally easiest to set up your devel-

opment server to match the environment your website will be deployed in publicly

as closely as possible. For this reason, I recommend using the Apache web server

—even for development on a Windows computer. If you insist (or your boss insists)

on hosting your PHP-based site using IIS, you’ll find the necessary installation in-

structions in the install.txt file contained in the PHP zip package you downloaded

from the PHP website.

If you need to install Apache on your computer, surf on over to the Apache Lounge3

website and download the latest version of Apache (as of writing it’s version 2.4.1).

Once the ZIP file has downloaded, right-click it and choose Extract All… to extract

the file’s contents into a folder. Inside, you’ll find a couple of text files containing

installation instructions. The first is a reminder to download and install the latest

Microsoft Visual C++ Redistributable Package. Go ahead and do that now. When

you’re done, drag the .exe file you downloaded to the Recycle Bin.

Next, the installation instructions will tell you to drag the Apache24 folder that you

extracted from the ZIP file to the root of your C: drive, so that Apache will be in-

stalled in C:\Apache24. (It’s possible to change this path if you really want to, but

it’s a bit of a pain to edit the relevant configuration files so I recommend just going

with it.)

3 http://www.apachelounge.com/

PHP & MySQL: Novice to Ninja394

http://www.apachelounge.com/

Now Apache is installed, but to launch it for the first time (and configure it to run

automatically at system startup), you’ll need to open a Command Prompt. On your

Start Menu, find All Programs > Accessories > Command Prompt, then right-click on

Command Prompt and choose Run as administrator. This will drop you in a window

showing the current directory (C:\Windows\system32 on my system):

C:\Windows\system32>

At the end of this prompt, you’ll see a cursor blinking away. Type C: and hit Enter

to make sure you’re working on C: drive, then type cd \Apache24\bin and hit Enter

to switch to the C:\Apache24\bin folder:

C:\Windows\system32>C:

C:\Windows\system32>cd \Apache24\bin

C:\Apache24\bin>

Now, to launch Apache for the first time, type httpd.exe and hit Enter:

C:\Apache24\bin>httpd.exe

If all goes well, it should look like nothing is happening. There won’t be another

prompt; your command will just sit there running.

On the other hand, you might receive an error message like this:

C:\Apache24\bin>httpd.exe
(OS 10013)An attempt was made to access a socket in a way forbidden
by its access permissions. : AH00072: make_sock: could not bind to
address [::]:80(OS 10013)An attempt was made to access a socket in a
way forbidden by its access permissions. : AH00072: make_sock:
could not bind to address 0.0.0.0:80AH00451: no listening sockets
available, shutting downAH00015: Unable to open logs

C:\Apache24\bin>

This overwhelming error is Apache’s way of telling you that you already have a

web server running on your computer, listening for web browsers to connect on

port 80 (the standard port for web servers). Check if you have IIS running, or another

395Appendix A: Manual Installation Instructions

copy of Apache (perhaps bundled in a package like XAMPP?). Shut it down, then

try launching Apache from the Command Prompt again.

With Apache up and running, open your web browser of choice and type

http://localhost into the location bar. Hit Enter, and you should see a page like that

shown in Figure A.1, confirming Apache is working correctly.

Figure A.1. You can take my word for it!

Close your browser and return to the Command Prompt. Shut down Apache by

hitting Ctrl+C. After a moment, there’ll be another prompt:

C:\Apache24\bin>httpd.exe

C:\Apache24\bin>

You probably don’t want to have to open a Command Prompt every time you need

to run Apache. Instead, type httpd.exe -k install to install Apache as a system

service. Here’s what you should see:

C:\Apache24\bin>httpd.exe -k install
Installing the Apache2.4 service
The Apache2.4 service is successfully installed.
Testing httpd.conf....
Errors reported here must be corrected before the service can be
➥started.

But you might see this instead:

C:\Apache24\bin>httpd.exe -k install
Installing the Apache2.4 service
(OS 5)Access is denied. : AH00369: Failed to open the WinNT service
➥ manager, perhaps you forgot to log in as Adminstrator?yoss

PHP & MySQL: Novice to Ninja396

If that’s the case, it means you neglected to right-click and choose Run as administrator

when launching Command Prompt above. Try again with a Command Prompt

window running as administrator.

With Apache set up as a system service, close the Command Prompt and navigate

to C:\Apache24\bin in Windows Explorer. In that folder, you’ll find a file named

ApacheMonitor.exe. This is a program that will help you monitor and control your

Apache server now that it’s set up as a service. Pin it to your Start Menu (or, if you

prefer, create a shortcut to it and put that wherever you like in your All Programs

menu), then launch it. A new Apache Monitor icon will appear in your system tray

(you may need to customize your system tray to keep it visible).

Click the icon, and you’ll see the Apache2.4 system service listed. Hover over that

service and a fly-out menu will appear with options to Start, Stop, and Restart the

server. Choose Start to fire up Apache. The icon will change to show a tiny green

arrow that indicates Apache is running.

Figure A.2. The green light means Apache is up and running

You can also use the Apache Monitor icon to stop Apache running, once you’ve

finished your web development work for the day.

With Apache standing on its own two feet, you can now install PHP. Follow these

steps:

1. Unzip the file you downloaded from the PHP website into a directory of your

choice. I recommend C:\php and will refer to this directory from this point

forward, but feel free to choose another directory if you like.

2. Find the file called php.ini-development in the PHP folder and make a duplicate

copy of it. The easiest way to do it is to right-click and drag the file’s icon, drop

it in the same Explorer window, and choose Copy Here from the pop-up menu.

You’ll be left with a new file named along the lines of php - Copy.ini-development

(depending on the version of Windows you’re using). Find this new file and

397Appendix A: Manual Installation Instructions

rename it to php.ini. Windows will ask if you’re sure about changing the filename

extension (from .ini-dist to .ini); click Yes.

Windows Hides Known Filename Extensions by Default

When you rename the file to php.ini, you might notice that the new filename

appearing next to the icon is actually just php. If this happens, it’s because

your copy of Windows is set up to hide the filename extension if it recognizes

it. Since Windows knows that .ini files are Configuration Settings files, it

hides this filename extension.

As you can imagine, this feature can cause a certain amount of confusion.

When you return to edit the php.ini file in the future, it would help to be able

to see its full filename so that you could tell it apart from the php.gif and

php.exe files in the same folder.

To switch off filename extension hiding, open the Windows Control Panel

and search for Folder Options. Open the Folder Options window and switch

to the View tab. Under Files and Folders, uncheck the Hide extensions for known

file types checkbox, as shown in Figure A.3.

Figure A.3. Make filename extensions visible for all files

PHP & MySQL: Novice to Ninja398

3. Open the php.ini file in your favorite text editor. If you have no particular pref-

erence, just double-click the file to open it in Notepad. It’s a large file with a

lot of confusing options, but look for the line that begins with doc_root (Note-

pad’s Edit > Find… feature will help). Out of the box, the line looks like this:

doc_root =

To the end of this line, add the path to your web server’s document root direct-

ory. For the Apache server, this is the htdocs folder in the main Apache web

server directory. If you installed Apache in the default location, the path should

be "C:\Apache24\htdocs". If you installed it elsewhere, find the htdocs folder and

type its path:

doc_root = "C:\Apache24\htdocs"

Just a little further down in the file, look for the line that begins with ;

extension_dir, remove the semicolon from the start of the line, and set it so

that it points to the ext subfolder of your PHP folder:

extension_dir = "C:\php\ext"

Scroll further down in the file and you’ll see a bunch of lines beginning with

;extension=. These are optional extensions to PHP, disabled by default. We

want to enable the MySQL extension so that PHP can communicate with MySQL.

To do this, remove the semicolon from the start of the php_mysqli.dll line:

extension=php_mysqli.dll

php_mysqli, not php_mysql

Just above the line for php_mysqli.dll there is a line for php_mysql.dll.

The i in php_mysqli stands for improved. You want to enable the new im-

proved MySQL extension. The one without the i is obsolete, and some of its

features are incompatible with current versions of MySQL.

Keep scrolling even further down in the file, and look for a line that starts with

;session.save_path. Once again, remove the semicolon to enable this line,

and set it to your Windows Temp folder:

399Appendix A: Manual Installation Instructions

session.save_path = "C:\Windows\Temp"

Save the changes you made and close your text editor.

That takes care of setting up PHP. Now you can set up your Apache server to use

it as a plugin:

1. Launch Notepad (or your text editor of choice) and choose File > Open…. Browse

to the conf subfolder in your Apache installation folder (by default,

C:\Apache24\conf), and select the httpd.conf file located there. In order to make

this file visible for selection, you’ll need to select All Files (*.*) from the file type

drop-down menu at the bottom of the Open window.

2. Look for the existing line in this file that begins with DirectoryIndex, shown

here:

<IfModule dir_module>
DirectoryIndex index.html

</IfModule>

This line tells Apache which filenames to use when it looks for the default page

for a given directory. Add index.php to the end of this line:

<IfModule dir_module>
 DirectoryIndex index.html index.php
</IfModule>

3. The remaining options in this long and intimidating configuration file should

be fine as is. All you need to do is add the following lines to the very end of

the file:

LoadModule php5_module "C:/php/php5apache2_4.dll"
AddType application/x-httpd-php .php
PHPIniDir "C:/php"

Make sure the LoadModule and PHPIniDir lines point to your PHP installation

directory, and note the use of forward slashes (/) instead of backslashes (\) in

the paths.

PHP & MySQL: Novice to Ninja400

PHP and Apache Versions

Historically, major new versions of the Apache server have required new

versions of the .dll file you see referenced in the LoadModule line, and

sometimes PHP lags behind new Apache releases. At the time of this writing,

for example, the Windows PHP distribution doesn’t actually include a

php5apache2_4.dll file!

If you take another look in your PHP installation directory, you’ll probably

see there are files named php5apache2_2.dll and php5apache2_3.dll in there.

These files were provided for use with Apache 2.2 and 2.3, respectively.

By the time you read this, it’s possible that Apache has undergone another

major release, which might need yet another new .dll file. For example, Apache

2.5 might require you to use a new file named php5apache2_5.dll.

If indeed there is no file to match the version of Apache you’ve installed,

return to the Apache Lounge download page;4 you should find it available

for download there (for example, php5apache2_4.dll-php-5.4-win32.zip).

Download the ZIP file, extract it, and drop the missing .dll file in your PHP

installation folder. Apache will now be able to find it where your LoadModule

command says it should be.

4. Save your changes and close Notepad.

5. Restart Apache using the Apache Monitor system tray icon. If all is well, Apache

will start up again without complaint. If Apache fails to start, try launching it

from the Command Prompt again (as previously); this will give you a more

detailed error message. Chances are you made a small mistake when editing

httpd.conf.

6. Double-click the Apache Monitor icon to open the Apache Service Monitor

window. If PHP is installed correctly, the status bar of this window should in-

dicate the version of PHP you’ve installed, as shown in Figure A.4.

7. Click OK to close the Apache Service Monitor window.

4 http://www.apachelounge.com/download/

401Appendix A: Manual Installation Instructions

http://www.apachelounge.com/download/

Figure A.4. The PHP version number indicates Apache is configured to support PHP

With MySQL, Apache, and PHP installed, you’re ready to start working with your

new web server!

OS X
The following instructions assume you’re running Mac OS X 10.6 (Snow Leopard)

or later. If you’re running an earlier version of OS X, you should stick with the all-

in-one option.

Installing MySQL
Start by visiting the The MySQL Downloads page.5 Click the Download link for the

free MySQL Community Server. This will take you to a page with a long list of

download links for the current recommended version of MySQL (as of this writing,

it’s MySQL 5.5.22).

You’ll be presented with the list of downloads shown in Figure A.5. Which one you

need to choose depends on your operating system version and platform architecture.

If you know your Mac has a 64-bit processor, you can safely pick the Mac OS X ver.

10.6 (x86, 64-bit), DMG Archive version. If you’re at all unsure, your best bet is the

Mac OS X ver. 10.6 (x86, 32-bit), DMG Archive version; all it requires is that you have

5 http://dev.mysql.com/downloads/

PHP & MySQL: Novice to Ninja402

http://dev.mysql.com/downloads/

an Intel-based Mac (to be sure, check the processor information in the About This

Mac window, which you can access from the Apple menu). The 32-bit version is

the safe bet, since it will run on 64-bit systems too.

Figure A.5. The 32-bit version of MySQL for Intel processors will work on most current Macs

Once you’ve downloaded the mysql-version-osxversion-platform.dmg file, double-click

it to mount the disk image. As shown in Figure A.6, it contains the installer in .pkg

format, as well as a MySQLStartupItem.pkg file. Double-click the installer, which will

guide you through the installation of MySQL.

Figure A.6. The MySQL Mac OS X package contains lots of goodies

403Appendix A: Manual Installation Instructions

With MySQL is installed, you can launch the MySQL server. Open a Terminal

window6 and type this command:

Machine:~ user$ sudo /usr/local/mysql/bin/mysqld_safe

What to Type

The Machine:~ user$ portion (where Machine is your computer’s name) rep-

resents the prompt that’s already displayed. You only need to type the command,

which is shown in bold.

When you’ve typed the command, hit Enter.

This command runs the mysqld_safe script with administrator privileges, which will

require you to input your password. A status message will confirm that MySQL is

running.

Once MySQL is running, you can switch it to background execution by typing Ctrl+Z

to stop the process, and then typing this command to let it continue running in the

background:

Machine:~ user$ bg

You can then quit the Terminal application and MySQL will continue to run as a

server on your system. When you want to shut down the MySQL server, open a new

Terminal window and type this command:

Machine:~ user$ sudo /usr/local/mysql/bin/mysqladmin shutdown

Though you’ll gain plenty of geek cred for memorizing these commands, there’s a

much less tedious way to control your MySQL server. Back in the installation disk

image shown in Figure A.6, you’ll notice a file named MySQL.prefPane. Double-click

this to install a new pane in Mac OS X’s System Preferences, and the window shown

in Figure A.7 will open.

6 To open a Terminal window, launch the Terminal application, which you can find in the Utilities folder

in the Applications folder.

PHP & MySQL: Novice to Ninja404

Figure A.7. The MySQL System Preferences pane

This window will tell you if your MySQL server is running or not, and lets you start

it up and shut it down with the click of a button!

Presumably, you’ll want your system to launch the MySQL server at startup auto-

matically, so that you can avoid having to repeat the above process whenever you

restart your system. The system preferences pane has a checkbox that does this, but

for this checkbox to do anything you must first install the MySQLStartupItem.pkg

from the installation disk image.

When you have everything set up the way you want it, you can safely drag the

MySQL installation disk icon on your desktop to the trash, then delete the .dmg file

you downloaded.

One last task you’ll want to do is add the /usr/local/mysql/bin directory to your system

path. Doing this enables you to run programs like mysqladmin and mysql in the Ter-

minal without typing out their full paths. Pop open a new Terminal window and

type these commands:

Machine:~ user$ sudo su
Password: (type your password)
sh-3.2# echo '/usr/local/mysql/bin' >> /etc/paths.d/mysql
sh-3.2# exit

405Appendix A: Manual Installation Instructions

Close the Terminal window and open a new one to allow this change to take effect.

Then, with your MySQL server running, try running the mysqladmin program from

your home directory:

Machine:~ user$ mysqladmin status

If everything worked the way it’s supposed to, you should see a brief list of statistics

about your MySQL server.

Installing PHP
Mac OS X 10.5 (Leopard) comes with Apache 2.2 and PHP 5 built right in! All you

need to do is switch them on:

1. Open System Preferences (System Preferences… on the Apple menu).

2. In the main System Preferences menu, click Sharing under Internet & Wireless.

3. Make sure that Web Sharing is checked, as shown in Figure A.8.

Figure A.8. Enable Web Sharing in Mac OS X

4. Quit System Preferences.

PHP & MySQL: Novice to Ninja406

5. Open your browser, type http://localhost into the address bar, and hit Enter.

Your browser should display the standard Apache welcome message shown in

Figure A.9.

Figure A.9. The standard Apache welcome page

With this procedure complete, Apache will be run at startup automatically on your

system. You’re now ready to enhance this server by enabling PHP support:

1. In the Finder menu bar, choose Go > Go to folder (⇧+⌘+G), and type

/private/etc/apache2/ before clicking Go.

2. In the Finder window that opens, there should be a file named httpd.conf. This

is the Apache configuration file. By default, it’s read-only. Right-click the file

and choose Get Info (⌘+I) to open the file’s properties. Scroll down to the bottom

of the httpd.conf Info window to find the Sharing & Permissions setting.

By default, the settings in this section are disabled. Click the little lock icon

shown in Figure A.10 to enable them. Enter your password when prompted.

407Appendix A: Manual Installation Instructions

Figure A.10. Click the lock to make changes to these settings

To make this file editable, change the value in the Privilege column for everyone

to Read & Write, as shown in Figure A.11.

Figure A.11. Set the permissions for everyone to Read & Write

3. Back in the Finder window for the apache2 folder, right-click in the background

of the folder window and choose Get Info to open the folder’s properties. As in

the previous step, set the Sharing & Permissions settings from everyone to Read

& Write.

4. Finally, double-click the httpd.conf file to open it in TextEdit.

5. In the httpd.conf file, search for this line:

#LoadModule php5_module libexec/apache2/libphp5.so

Enable this command by deleting the hash (#) character at the start of the line.

PHP & MySQL: Novice to Ninja408

6. Save your changes, and close the file.

7. If you like to tidy up after yourself, you can go back and reset the privileges on

the httpd.conf file and the apache2 folder. This will keep other users of your

computer from making changes to the Apache configuration.

8. Open a Terminal window and type this command to restart Apache:

Machine:~ user$ sudo /usr/sbin/apachectl restart

Type your password when prompted.

9. Load http://localhost in your browser again to ensure that Apache is still run-

ning. Give it a minute if it’s not available right away.

If it fails to come back up, open Console (in the Utilities subfolder of Applications).

In the sidebar under /var/log, select apache2 > error_log to view the Apache error

log and look for clues as to what went wrong. If you’re still stuck, you could

head over to the SitePoint Forums for help.

Your computer is now equipped with an Apache web server with PHP support. If

you need to make changes to Apache’s configuration, you know how to edit its

httpd.conf file using the instructions above. The PHP plugin, however, has its own

configuration file, named php.ini. You need to edit that file to tell PHP how to connect

to your MySQL server.

With the version of PHP built into Mac OS X, there is no php.ini file by default—PHP

just runs with the default settings. In order to modify those settings, you’ll need to

open Terminal and copy the /private/etc/php.ini.default file to /private/etc/php.ini:

Machine:~ user$ cd /private/etc
Machine:etc user$ sudo cp php.ini.default php.ini
Password: (type your password)

To make this new php.ini file editable by users like yourself, use the same procedure

described above for editing httpd.conf: in Finder use Go > Go to folder to open

/private/etc, modify the permissions of both the php.ini file and the folder that con-

tains it, then open the file with TextEdit.

409Appendix A: Manual Installation Instructions

Scroll down through the file or use Edit > Find > Find… (⌘+F) to locate the

mysql.default_socket option. Edit this line of the php.ini file so that it looks like

this:

mysql.default_socket = /tmp/mysql.sock

You should only have to add the portion in bold.

Scroll down further to locate the mysqli.default_socket option (mysqli, not

mysql), and make the same change:

mysqli.default_socket = /tmp/mysql.sock

Save your changes, quit TextEdit, and restore the file and directory permissions if

you want to. Finally, open a Terminal window and type this command to restart

Apache once more:

Machine:~ user$ sudo /usr/sbin/apachectl restart

Type your password when prompted. Once Apache is up and running again, load

http://localhost in your browser once more to make sure that all is well.

And we’re done! With MySQL, Apache, and PHP installed, you’re ready to get to

work.

Linux
This section will show you the procedure for manually installing Apache, PHP, and

MySQL under most current distributions of Linux. These instructions were tested

under Ubuntu 10.04.4;7 however, they should work on other distributions such as

Fedora,8 Debian,9 openSUSE,10 and Gentoo11 without much trouble. The steps in-

volved will be very similar, almost identical.

7 http://www.ubuntu.com
8 http://fedoraproject.org
9 http://www.debian.org
10 http://www.opensuse.org
11 http://www.gentoo.org

PHP & MySQL: Novice to Ninja410

http://www.ubuntu.com
http://fedoraproject.org
http://www.debian.org
http://www.opensuse.org
http://www.gentoo.org

Most Linux distributions come with a package manager of one kind or another.

Ubuntu’s Synaptic Package Manager12 is a graphical front end to APT,13 the Debian

package manager. Other distributions use the older RPM package manager. Regardless

of which distribution you use, prepackaged versions of Apache, PHP, and MySQL

should be readily available. These prepackaged versions of software are really easy

to install; unfortunately, they also limit the software configuration options available

to you. For this reason—and because any attempt to document the procedures for

installing the packaged versions across all popular Linux distributions would be

doomed to failure—I will instead show you how to install them manually.

If you already have Apache, PHP, and MySQL installed in packaged form, feel free

to use those versions. If you encounter any problems, you can always uninstall the

packaged versions and return here to install them by by hand.

Installing MySQL
Start by downloading MySQL. Simply proceed to the MySQL Downloads page14

and click the Download link for the free MySQL Community Server. This will take

you to a page with a long list of download links for the current recommended version

of MySQL (as of this writing, it’s MySQL 5.5.22).

Make sure Linux – Generic is selected from the menu near the top of the list of files

to download. Now you need to choose the package that corresponds to your system

architecture. If you’re positive you’re running a 64-bit version of Linux, go ahead

and download the Linux – Generic 2.6 (x86, 64-bit), Compressed TAR Archive package

(about 177MB in size). If you’re running a 32-bit version of Linux, download the

Linux – Generic 2.6 (x86, 32-bit), Compressed TAR Archive package (about 171MB); this

will still work even if it turns out you’re running a 64-bit version of Linux. Click

the Download button next to whichever version is right for you.

Once you’ve downloaded the file, open a Terminal and log in as the root user:

user@machine:~$ sudo su

You will, of course, be prompted for your password.

12 https://help.ubuntu.com/community/SynapticHowto
13 http://www.debian.org/doc/user-manuals#apt-howto
14 http://dev.mysql.com/downloads/

411Appendix A: Manual Installation Instructions

https://help.ubuntu.com/community/SynapticHowto
http://www.debian.org/doc/user-manuals#apt-howto
http://dev.mysql.com/downloads/

Change directories to /usr/local and unpack the downloaded file:

root@machine:/home/user# cd /usr/local
root@machine:/usr/local# tar xfz ~user/Desktop/mysql-version-linux2.
➥6-platform.tar.gz

The second command assumes you left the downloaded file on your desktop, which

is the Desktop directory in your home directory. You’ll need to replace user with

your username, version with the MySQL version you downloaded, and platform

with the architecture and compiler version of the release you downloaded; this is

so that the command matches the path and filename of the file you downloaded

exactly. On my computer, for example, the exact command looks like this:

root@mythril:/usr/local# tar xfz ~kyank/Desktop/mysql-5.5.22-linux2.
➥6-x86_64.tar.gz

After a minute or two, you’ll be returned to the command prompt. A quick ls will

confirm that you now have a directory named mysql-version-linux-platform. This is

what it looks like on my computer:

root@mythril:/usr/local# ls
bin games lib mysql-5.5.22-linux2.6-x86_64 share
etc include man sbin src

Next, create a symbolic link to the new directory with the name mysql to make ac-

cessing the directory easier. Then enter the directory:

root@machine:/usr/local# ln -s mysql-version-linux-platform mysql
root@machine:/usr/local# cd mysql

While you can run the server as the root user, or even as yourself (for example, if

you were to install the server in your home directory), you should normally set up

a special user on the system whose sole purpose is to run the MySQL server. This

will remove any possibility of an attacker using the MySQL server as a way to break

into the rest of your system. To create a special MySQL user, type the following

commands (still logged in as root):

root@machine:/usr/local/mysql# groupadd mysql
root@machine:/usr/local/mysql# useradd -g mysql mysql

PHP & MySQL: Novice to Ninja412

Now give ownership of your MySQL directory to this new user:

root@machine:/usr/local/mysql# chown -R mysql .
root@machine:/usr/local/mysql# chgrp -R mysql .

MySQL is now installed, but before it can do anything useful, its database files need

to be installed, too. Still in the new mysql directory, type the following command:

root@machine:/usr/local/mysql# scripts/mysql_install_db --user=mysql

If this command generates an error about libaio.so, you’ll need to install that library

before trying again. On Ubuntu Linux, you can do that with a simple apt-get:

root@machine:/usr/local/mysql# apt-get install libaio1
root@machine:/usr/local/mysql# scripts/mysql_install_db --user=mysql

Now everything’s prepared for you to launch the MySQL server for the first time.

From the same directory, type the following command:

root@machine:/usr/local/mysql# bin/mysqld_safe --user=mysql &

If you see the message mysql daemon ended, the MySQL server was prevented from

starting. The error message should have been written to a file called hostname.err

(where hostname is your machine’s host name) in MySQL’s data directory. You’ll

usually find that this happens because another MySQL server is already running

on your computer.

If the MySQL server was launched without complaint, the server will run (just like

your web or FTP server) until your computer is shut down. To test that the server

is running properly, type the following command:

root@machine:/usr/local/mysql# bin/mysqladmin -u root status

A little blurb with some statistics about the MySQL server should be displayed. If

you receive an error message, check the hostname.err file to see if the fault lies with

the MySQL server upon starting up. If you retrace your steps to ensure you followed

413Appendix A: Manual Installation Instructions

the process described above, and this fails to solve the problem, a post to the Site-

Point Forums15 will help you pin it down in little time.

If you want your MySQL server to run automatically whenever the system is running,

you’ll have to set it up to do so. In the support-files subdirectory of the mysql directory,

there’s a script called mysql.server that can be added to your system startup routines

to do this. For most versions of Linux, you can do this by creating a link to the

mysql.server script in the /etc/init.d directory, then create two links to that:

/etc/rc2.d/S99mysql and /etc/rc0.d/K01mysql. Here are the commands to type:

root@machine:/usr/local/mysql# cd /etc
root@machine:/etc# ln -s /usr/local/mysql/support-files/mysql.server
➥ init.d/
root@machine:/etc# ln -s /etc/init.d/mysql.server rc2.d/S99mysql
root@machine:/etc# ln -s /etc/init.d/mysql.server rc0.d/K01mysql

That’s it! To test that this works, reboot your system, and request the status of the

server with mysqladmin as you did earlier.

You should now take a moment to set a root user password. Run the

bin/mysql_secure_installation program to do this:

root@machine:/usr/local/mysql# ./bin/mysql_secure_installation

Having trouble removing test database?

If the mysql_secure_installation program appears to struggle dropping the test

database, don’t worry about it. This is a problem in the packaging of the MySQL

database for Linux: the data/test folder (where the test database files are stored)

contains a file named .empty that MySQL fails to recognize, and therefore will not

delete.

If you delete this file yourself, MySQL will be able to drop the test database.

One final task you might like to do for the sake of convenience is to place the MySQL

client programs—which you’ll use to administer your MySQL server later on—in

the system path. To this end, you can place symbolic links to mysql, mysqladmin,

and mysqldump in your /usr/local/bin directory:

15 http://www.sitepoint.com/forums/

PHP & MySQL: Novice to Ninja414

http://www.sitepoint.com/forums/
http://www.sitepoint.com/forums/

root@machine:/etc# cd /usr/local/bin
root@machine:/usr/local/bin# ln -s /usr/local/mysql/bin/mysql .
root@machine:/usr/local/bin# ln -s /usr/local/mysql/bin/mysqladmin .
root@machine:/usr/local/bin# ln -s /usr/local/mysql/bin/mysqldump .

Once you’ve done this, you can log out of the root account. From this point on, you

can administer MySQL from any directory on your system:

root@machine:/usr/local/bin# exit
user@machine:~$ mysqladmin -u root -p status

Installing PHP
As mentioned, PHP is more a web server plugin module than a program. There are

actually three ways to install the PHP plugin for Apache:

■ as a CGI program that Apache runs every time it needs to process a PHP-enhanced

web page
■ as an Apache module compiled right into the Apache program
■ as an Apache module loaded by Apache each time it starts up

The first option is the easiest to install and set up, but it requires Apache to launch

PHP as a program on your computer every time a PHP page is requested. This

activity can really slow down the response time of your web server, especially if

more than one request needs to be processed at a time.

The second and third options are almost identical in terms of performance, but the

third option is the most flexible, since you can add and remove Apache modules

without having to recompile it each time. For this reason, we’ll use the third option.

Assuming you don’t already have Apache running on your computer (and don’t

simply want to install it automatically with, say, sudo apt-get install apache2

on Ubuntu Linux), surf on over to the Apache HTTP Server Project16 and look for

the version of Apache described as “the best available version” (as of this writing

it’s version 2.4.1).

Once you get to the Download page, scroll down to find the links to the various

versions available. The one you want is Unix Source, shown in Figure A.12. Both

16 http://httpd.apache.org/

415Appendix A: Manual Installation Instructions

http://httpd.apache.org/

the .tar.gz or the .tar.bz2 are the same; just grab whichever archive format you’re

used to extracting.

Figure A.12. This is the one you need

What you’ve just downloaded is actually the source code for the Apache server.

The first step, then, is to compile it into an executable binary installation. Pop open

a Terminal, navigate to the directory where the downloaded file is located, extract

it, and then navigate into the resulting directory:

user@machine:~$ cd Desktop
user@machine:~/Desktop$ tar xfz httpd-version.tar.gz
user@machine:~/Desktop$ cd httpd-version

The first step in compiling Apache is to configure it to your requirements. Most of

the defaults will be fine for your purposes, but you’ll need to enable dynamic

loading of Apache modules (like PHP), which is off by default. Additionally, you

should probably enable the URL rewriting feature, upon which many PHP applica-

tions rely (although it’s unnecessary for the examples in this book). To make these

configuration changes, type this command:

user@machine:~/Desktop/httpd-version$./configure --enable-so
➥ --enable-rewrite

A long stream of status messages will scroll up your screen. If the process stops

with an error message, your system may be missing some critical piece of software

that’s required to compile Apache. Some Linux distributions lack the essential de-

PHP & MySQL: Novice to Ninja416

velopment libraries or even a C compiler installed by default. Installing these should

enable you to return and run this command successfully. Current versions of Ubuntu,

however, should come with everything that’s needed.

After several minutes, the stream of messages should come to an end:

⋮
config.status: creating build/rules.mk
config.status: creating build/pkg/pkginfo
config.status: creating build/config_vars.sh
config.status: creating include/ap_config_auto.h
config.status: executing default commands
user@machine:~/Desktop/httpd-version$

You’re now ready to compile Apache. The one-word command make is all it takes:

user@machine:~/Desktop/httpd-version$ make

Again, this process will take several minutes to complete, and should end with the

following message:

⋮
make[1]: Leaving directory `/home/user/Desktop/httpd-version'
user@machine:~/Desktop/httpd-version$

To install your newly compiled copy of Apache, type sudo make install (the sudo

is required, since you need root access to write to the installation directory).

user@machine:~/Desktop/httpd-version$ sudo make install

Enter your password when prompted.

As soon as this command has finished copying files, your installation of Apache is

complete. Navigate to the installation directory and launch Apache using the

apachectl script:

user@machine:~/Desktop/httpd-version$ cd /usr/local/apache2
user@machine:/usr/local/apache2$ sudo bin/apachectl -k start

417Appendix A: Manual Installation Instructions

You’ll likely see a warning message from Apache complaining that it was unable

to determine the server’s fully qualified domain name. That’s because most personal

computers come without one. Don’t sweat it.

If instead you elected to use your Linux distribution’s package installer to install

Apache, you should be able to fire it up with a command like this (on Ubuntu):

user@machine:~$ sudo service apache2 start

Fire up your browser and type http://localhost into the address bar. If Apache is up

and running, you should see a welcome message like the one in Figure A.13.

Figure A.13. You can take my word for it!

As with your MySQL server, you’ll probably want to configure Apache to start

automatically when your system boots. If you installed Apache with a package in-

staller, it’s likely to be already set up for you.

The procedure to set this up is similar to that for MySQL; just copy and link the

apachectl script from your Apache installation:

user@machine:/usr/local/apache2$ sudo su
root@machine:/usr/local/apache2# cd /etc
root@machine:/etc# ln -s /usr/local/apache2/bin/apachectl init.d/
root@machine:/etc# ln -s /etc/init.d/apachectl rc2.d/S99httpd
root@machine:/etc# ln -s /etc/init.d/apachectl rc0.d/K01httpd

To test that this works, restart your computer and then hit the http://localhost page

in your browser again.

PHP & MySQL: Novice to Ninja418

With a shiny new Apache installation up and running, you’re now ready to add

PHP support to it. To start, download the PHP Complete Source Code package from

the PHP Downloads page.17 Again, the .tar.gz and .tar.bz2 versions are identical;

just download whichever one you’re used to extracting.

The file you downloaded should be called php-version.tar.gz (or .bz2). Pop open a

new Terminal window, navigate to the directory containing the downloaded file,

extract it, and move into the resulting directory:

user@machine:~$ cd Desktop
user@machine:~/Desktop$ tar xfz php-version.tar.gz
user@machine:~/Desktop$ cd php-version

To install PHP as an Apache module, you’ll need to use the Apache apxs program.

This will have been installed along with the Apache server if you followed the in-

structions to compile it yourself. But if you used your distribution’s package manager

to install Apache, you may need to install the Apache development package to access

Apache apxs. You should be able to install this package by using the same package

manager you used to install Apache. For example, on Ubuntu, you can use apt-get

to install it as follows:

user@machine:~$ sudo apt-get install apache2-dev

Now, to install PHP you must be logged in as root:

user@machine:~/Desktop/php-version$ sudo su
[sudo] password for user: (type your password)
root@machine:/home/user/Desktop/php-version#

The first step is to configure the PHP installation program by telling it which options

you want to enable, and where it should find the programs it needs to know about

(such as Apache apxs and MySQL). The command should look like this (all on one

line):

root@machine:/home/user/Desktop/php-version# ./configure
➥ --prefix=/usr/local/php --with-apxs2=/usr/local/apache2/bin/apxs
➥ --with-mysqli=/usr/local/mysql/bin/mysql_config

17 http://www.php.net/downloads.php

419Appendix A: Manual Installation Instructions

http://www.php.net/downloads.php

The --prefix option tells the installer where you want PHP to be installed

(/usr/local/php is a good choice).

The --with-apxs2 option tells the installer where to find the Apache apxs program

mentioned. When installed using your Linux distribution’s package manager, the

program is usually found at /usr/bin/apxs2. If you compiled and installed Apache

yourself as described before, however, it will be in the Apache binary directory, at

/usr/local/apache2/bin/apxs.

The --with-mysqli option tells the installer where to find your MySQL installation.

More specifically, it must point to the mysql_config program in your MySQL install-

ation’s bin directory (/usr/local/mysql/bin/mysql_config).

Again, a parade of status messages will appear on your screen. When it stops, check

for error messages and install any files it identifies as missing. On a default Ubuntu

10.04.4 installation, for example, you’re likely to see an error complaining about

an incomplete libxml2 installation. To correct this particular error, open Synaptic

Package Manager, then locate and install the libxml2-dev package (libxml2 should

already be installed). Alternatively, at the Terminal prompt, just run apt-get in-

stall libxml2-dev. Once it’s installed, try the configure command again.

After you watch several screens of tests scroll by, you’ll be returned to the command

prompt with the comforting message “Thank you for using PHP.” The following

two commands will compile and then install PHP:

root@machine:/home/user/Desktop/php-version# make
root@machine:/home/user/Desktop/php-version# make install

Take a coffee break. This will take some time.

Upon completion of the make install command, PHP will be installed in

/usr/local/php (unless you specified a different directory with the --prefix option

of the configure script). Now you just need to configure it.

The PHP configuration file is called php.ini. PHP comes with two sample php.ini

files called php.ini-development and php.ini-production. Copy these files from your

installation work directory to the /usr/local/php/lib directory, then make a copy of

the php.ini-development file and call it php.ini:

PHP & MySQL: Novice to Ninja420

root@machine:/home/user/Desktop/php-version# cp php.ini* /usr/local/
➥php/lib/
root@machine:/home/user/Desktop/php-version# cd /usr/local/php/lib
root@machine:/usr/local/php/lib# cp php.ini-development php.ini

You may now delete the directory from which you compiled PHP—it’s no longer

needed.

We’ll worry about fine-tuning php.ini shortly. For now, we need to tweak Apache’s

configuration to make it more PHP-friendly, so locate your Apache configuration

file. It can usually be found in the conf subdirectory of your Apache installation

(/usr/local/apache2/conf/httpd.conf), or in /etc/apache2/apache2.conf if you installed

Apache with a package manager.

To edit this file you must be logged in as root, so launch your text editor from the

Terminal window where you’re still logged in as root:

root@machine:/usr/local/php/lib# cd /usr/local/apache2/conf
root@machine:/usr/local/apache2/conf# gedit httpd.conf

Go right to the bottom of the file and add these lines to tell Apache that files with

names ending in .php should be treated as PHP scripts:

<FilesMatch \.php$>
 SetHandler application/x-httpd-php
</FilesMatch>

That should do it. Save your changes and restart your Apache server:

root@machine:/usr/local/apache2/conf# /usr/local/apache2/bin/
➥apachectl -k restart

If it all goes according to plan, Apache should start up without any error messages.

If you run into any trouble, the helpful individuals in the SitePoint Forums18 (myself

included) will be happy to help.

18 http://www.sitepoint.com/forums/

421Appendix A: Manual Installation Instructions

http://www.sitepoint.com/forums/

Appendix B: MySQL Syntax Reference
This appendix describes the syntax of the most commonly used SQL statements in

MySQL, as of version 5.5.22 (current as of this writing).

The following conventions are used in this reference:

■ Commands are listed in alphabetical order for easy reference.

■ Optional portions of each command are surrounded by square brackets ([]).

■ Lists of elements from which one element must be chosen are surrounded by

braces ({}), with the elements separated by vertical bars (|).

■ An ellipsis (…) means that the preceding element may be repeated.

The query syntax documented in this appendix has been simplified in several places

by the omission of the alternative syntax, and of keywords that performed no

function, but which were originally included for compatibility with other database

systems. Query features having to do with some advanced features such as transac-

tions have also been omitted. For a complete, up-to-date reference to supported

MySQL syntax, see the MySQL Reference Manual.1

SQL Statements Implemented in MySQL
ALTER TABLE

ALTER [IGNORE] TABLE tbl_name action[, action …]

In this code, action refers to an action as defined as follows.

ALTER TABLE queries may be used to change the definition of a table without losing

any of the information in that table (except in obvious cases, such as the deletion

of a column). Here are the main actions that are possible:

1 http://dev.mysql.com/doc/mysql/en/

http://dev.mysql.com/doc/mysql/en/

ADD [COLUMN] create_definition [FIRST | AFTER column_name]

This action adds a new column to the table. The syntax for create_definition is

as described for the section called “CREATE TABLE”. By default, the column will

be added to the end of the table, but by specifying FIRST or AFTER column_name,

you can place the column wherever you like. The optional word COLUMN performs

no actual function—leave it off unless you particularly like to see it there.

ADD INDEX [index_name] (index_col_name, …)

This action creates a new index to speed up searches based on the column(s)

specified. You may assign a name to your indexes by specifying the index_name;

otherwise, a default name based on the first column in the index will be used.

When creating an index based on CHAR and/or VARCHAR columns, you can specify

a number of characters to index as part of index_col_name (for example, my-

Column(5) will index the first five characters of myColumn). This number must

be specified when indexing BLOB and TEXT columns.

ADD FULLTEXT [index_name] (index_col_name, …)

This action creates a full-text index on the column(s) specified. This special

type of index allows you to perform complex searches for text in CHAR, VARCHAR,

or TEXT columns using the MATCH MySQL function. For full details, see the

MySQL Reference Manual.2

ADD FOREIGN KEY [index_name] (index_col_name, …) reference_definition

On InnoDB tables, this creates a foreign key constraint, requiring the values in

this index to correspond to matching entries in another table.

reference_definition specifies the table and column(s) that are referenced by the

constraint:

REFERENCES tbl_name (index_col_name, …)
 [ON DELETE { RESTRICT | CASCADE | SET NULL | NO ACTION }]
 [ON UPDATE { RESTRICT | CASCADE | SET NULL | NO ACTION }]

The optional ON DELETE and ON UPDATE portions of reference_definition specify

what should happen to entries in this table when the corresponding entry in

2 http://dev.mysql.com/doc/mysql/en/fulltext-search.html

PHP & MySQL: Novice to Ninja424

http://dev.mysql.com/doc/mysql/en/fulltext-search.html

the referenced table is deleted or updated. For full details, see the MySQL Ref-

erence Manual.3

ADD PRIMARY KEY (index_col_name, …)

This action creates an index for the specified row(s) with the name PRIMARY,

identifying it as the primary key for the table. All values (or combinations of

values) must be unique, as described for the ADD UNIQUE action below. This

action will cause an error if a primary key already exists for the table. in-

dex_col_name is defined as it is for the ADD INDEX action before.

ADD UNIQUE [index_name] (index_col_name, …)

This action creates an index on the specified columns, but with a twist: all

values in the designated column—or all combinations of values if more than

one column is included in the index—must be unique. The parameters in-

dex_name and index_col_name are defined as they are for the ADD INDEX action.

ALTER [COLUMN] col_name {SET DEFAULT value | DROP DEFAULT}

This action assigns a new default value to a column (SET DEFAULT), or removes

the existing default value (DROP DEFAULT). Again, the word COLUMN is completely

optional and has no effect.

CHANGE [COLUMN] col_name create_definition

This action replaces an existing column (col_name) with a new column, as

defined by create_definition (the syntax of which is as specified for the section

called “CREATE TABLE”). The data in the existing column is converted, if neces-

sary, and placed in the new column. Note that create_definition includes a new

column name, so this action may be used to rename a column. If you want to

leave the name of the column unchanged, however, remember to include it

twice (once for col_name and once for create_definition), or use the MODIFY action

below.

DISABLE KEYS

ENABLE KEYS

When you insert a large number of records into a table, MySQL can spend a lot

of time updating the index(es) of the table to reflect the new entries. Executing

ALTER TABLE … DISABLE KEYS before you perform the inserts will instruct

MySQL to postpone those index updates. Once the inserts are complete, execute

3 http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html

425Appendix B: MySQL Syntax Reference

http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html

ALTER TABLE … ENABLE KEYS to update the indexes for all the new entries at

once. This will usually save time over performing the updates one at a time.

DROP [COLUMN] col_name

Fairly self-explanatory, this action completely removes a column from the table.

The data in that column is irretrievable after this query completes, so be sure

of the column name you specify. COLUMN, as usual, can be left off; it just makes

the query sound better when read aloud.

DROP PRIMARY KEY

DROP INDEX index_name

DROP FOREIGN KEY index_name

These actions are quite self-explanatory: they remove from the table the primary

key, index, or foreign key constraint, respectively.

MODIFY [COLUMN] create_definition

Nearly identical to the aforementioned CHANGE action, this action lets you specify

a new declaration for a column in the table, but assumes the name will remain

the same. Thus, you simply have to re-declare the column with the same name

in the create_definition parameter (as defined for the section called “CREATE

TABLE”). As before, COLUMN is completely optional and does nothing. Although

convenient, this action is not standard SQL syntax, and was added for compat-

ibility with an identical extension in Oracle database servers.

ORDER BY col_name

This action lets you sort a table’s entries by a particular column. However, as

soon as new entries are added to the table or existing entries modified, ordering

can no longer be guaranteed. The only practical use of this action would be to

increase performance of a table that you sorted regularly in a certain way in

your application’s SELECT queries. Under some circumstances, arranging the

rows in (almost) the right order to begin with will make sorting quicker.

RENAME [TO] new_tbl_name

This action renames the table. The word TO is completely optional, and does

nothing. Use it if you like it.

PHP & MySQL: Novice to Ninja426

table_options

Using the same syntax as in the CREATE TABLE query, this action allows you to

set and change advanced table options. These options are fully documented in

the MySQL Reference Manual.4

ANALYZE TABLE

ANALYZE TABLE tbl_name[, tbl_name …]

This function updates the information used by the SELECT query in the optimization

of queries that take advantage of table indexes. It pays in performance to run this

query periodically on tables whose contents change a lot over time. The table(s) in

question are locked as “read-only” while the analysis runs.

BEGIN

BEGIN

BEGIN performs the same action as START TRANSACTION.

COMMIT

COMMIT

Once a transaction has been started (that is, autocommit mode has been disabled)

with START TRANSACTION, MySQL collects the changes made to the database so that

they may be applied simultaneously. A COMMIT query applies all those changes at

once, ending the transaction.

CREATE DATABASE

CREATE DATABASE [IF NOT EXISTS] db_name

This action simply creates a new database with the given name (db_name). This

query will fail if the database already exists (unless IF NOT EXISTS is specified),

or if you lack the required privileges.

4 http://dev.mysql.com/doc/refman/5.5/en/create-table.html

427Appendix B: MySQL Syntax Reference

http://dev.mysql.com/doc/refman/5.5/en/create-table.html

CREATE INDEX

CREATE [UNIQUE | FULLTEXT] INDEX index_name ON tbl_name
(col_name[(length)], …)

This query creates a new index on an existing table. It works identically to ALTER

TABLE ADD {INDEX | UNIQUE | FULLTEXT}, described in the section called “ALTER

TABLE”.

CREATE TABLE

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] [db_name.]tbl_name
 { [(create_definition, …)]
 [table_options] [[IGNORE | REPLACE] select_statement]

 | LIKE [db_name.]old_tbl_name }

Where create_definition is:

{ col_name type [NOT NULL] [DEFAULT default_value]
 [AUTO_INCREMENT] [PRIMARY KEY]

 | PRIMARY KEY (index_col_name, …)

 | INDEX [index_name] (index_col_name, …)

 | UNIQUE [INDEX] [index_name] (index_col_name, …)

 | FULLTEXT [index_name] (index_col_name, …)

 | FOREIGN KEY [index_name] (index_col_name, …)
 REFERENCES tbl_name (index_col_name, …)
 [ON DELETE { RESTRICT | CASCADE | SET NULL | NO ACTION }]
 [ON UPDATE { RESTRICT | CASCADE | SET NULL | NO ACTION }]}

In this code, type is a MySQL column type (see Appendix D), and index_col_name

is as described for ALTER TABLE ADD INDEX in the section called “ALTER TABLE”.

CREATE TABLE is used to create a new table called tbl_name in the current database

(or in a specific database if db_name is specified). If TEMPORARY is specified, the

table disappears when the connection that created it is terminated. A temporary

PHP & MySQL: Novice to Ninja428

table created with the same name as an existing table will hide the existing table

from the current client session until the temporary table is deleted or the session

ends; however, other clients will continue to see the original table.

Assuming TEMPORARY is not specified, this query will fail if a table with the given

name already exists, unless IF NOT EXISTS is specified (in which case the query is

ignored). A CREATE TABLE query will also fail if you lack the required privileges.

Most of the time, the name of the table will be followed by a series of column de-

clarations (create_definition above). Each column definition includes the name and

data type for the column, and any of the following options:

NOT NULL

This specifies that the column may not be left empty (NULL). Note that NULL is

a special “no value” value, which is quite different from, say, an empty string

(''). A column of type VARCHAR, for instance, which is set NOT NULL may be set

to '' but will not be NULL. Likewise, a NOT NULL column of type INT may contain

zero (0), which is a value, but it may not contain NULL, as this is not a value.

DEFAULT default_value

DEFAULT lets you specify a value to be given to a column when no value is as-

signed in an INSERT statement. When there’s no value given in an INSERT

statement, NULL columns (that is, columns where the NOT NULL option isn’t set)

are normally assigned a value of NULL. When DEFAULT is specified, NOT NULL

columns will instead be assigned a “default default value”: an empty string (''),

zero (0), '0000-00-00', or a current timestamp, depending on the data type of

the column.

AUTO_INCREMENT

As described in Chapter 2, an AUTO_INCREMENT column will automatically insert

a number that is one greater than the current highest number in that column

when NULL is inserted. AUTO_INCREMENT columns must also be NOT NULL, and

be either a PRIMARY KEY or UNIQUE.

PRIMARY KEY

This option specifies that the column in question should be the primary key

for the table; that is, the values in the column must identify uniquely each of

the rows in the table. This forces the values in this column to be unique, and

429Appendix B: MySQL Syntax Reference

speeds up searches for items based on this column by creating an index of the

values it contains.

UNIQUE

Very similar to PRIMARY KEY, this option requires all values in the column to

be unique, and indexes the values for high-speed searches.

In addition to column definitions, you can list additional indexes you wish to create

on the table using the PRIMARY KEY, INDEX, UNIQUE, FULLTEXT, and FOREIGN KEY

forms of create_definition. See the descriptions of the equivalent forms of ALTER

TABLE in the section called “ALTER TABLE” for details.

The table_options portion of the CREATE TABLE query is used to specify advanced

properties of the table, such as DEFAULT CHARACTER SET utf8 and the ENGINE=In-

noDB, and is described in detail in the MySQL Reference Manual.5

The select_statement portion of the CREATE TABLE query allows you to create a table

from the results of a SELECT query (see the section called “SELECT”). When you

create this table, it’s unnecessary to declare separately the columns that correspond

to those results. This type of query is useful if you want to obtain the result of a

SELECT query, store it in a temporary table, and then perform a number of SELECT

queries upon it.

Instead of defining a table from scratch, you can instead instruct MySQL to create

the new table using the same structure as another table. Rather than a list of cre-

ate_definitions and the table_options, simply end the CREATE TABLE query with

LIKE, followed by the name of the existing table.

DELETE

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
 { FROM tbl_name
 [WHERE where_clause]
 [ORDER BY order_by_expr]
 [LIMIT rows]

 | tbl_name[, tbl_name …]
 FROM table_references

5 http://dev.mysql.com/doc/mysql/en/create-table.html

PHP & MySQL: Novice to Ninja430

http://dev.mysql.com/doc/mysql/en/create-table.html

 [WHERE where_clause]

 | FROM tbl_name[, tbl_name …]
 USING table_references
 [WHERE where_clause] }

The first form of this query deletes all rows from the specified table, unless the op-

tional (but desirable) WHERE or LIMIT clauses are specified. The WHERE clause works

the same way as its twin in the SELECT query (see the section called “SELECT”). The

LIMIT clause simply lets you specify the maximum number of rows to be deleted.

The ORDER BY clause lets you specify the order in which the entries are deleted,

which, in combination with the LIMIT clause, allows you to perform actions such

as delete the ten oldest entries from the table.

The second and third forms are equivalent, and enable you to delete rows from

multiple tables in a single operation, in much the same way as you can retrieve

entries from multiple tables using a join in a SELECT query (see the section called

“SELECT”). The table_references work the same way as they do for SELECT queries

(you can create simple joins or outer joins), while the WHERE clause lets you narrow

down the rows that are considered for deletion. The first list of tables (tbl_name[,

tbl_name …]), however, identifies from the table_references the tables where rows

will actually be deleted. In this way, you can use a complex join involving a number

of tables to isolate a set of results, then delete the rows from only one of those tables.

The LOW_PRIORITY option causes the query to wait until there are no clients reading

from the table before performing the operation. The QUICK option attempts to speed

up lengthy delete operations by changing the way it updates the table’s index(es).

The IGNORE option instructs MySQL to refrain from reporting any errors that occur

while the delete is performed.

DESCRIBE/DESC

{DESCRIBE | DESC} tbl_name [col_name | wild]

This command supplies information about the columns, a specific column

(col_name), or any columns that match a pattern containing the wild cards % and _

(wild) that make up the specified table. The information returned includes the

column name, its type, whether it accepts NULL as a value, whether the column has

431Appendix B: MySQL Syntax Reference

an index, the default value for the column, and any extra features it has (for example,

AUTO_INCREMENT).

DROP DATABASE

DROP DATABASE [IF EXISTS] db_name

This is a dangerous command. It will immediately delete a database, along with all

its tables. This query will fail with an error if the database does not exist (unless IF

EXISTS is specified, in which case it will fail silently), or if you lack the required

privileges.

DROP INDEX

DROP INDEX index_name ON tbl_name

DROP INDEX has exactly the same effect as ALTER TABLE DROP INDEX, described in

the section called “ALTER TABLE”.

DROP TABLE

DROP TABLE [IF EXISTS] tbl_name[, tbl_name, …]

This query completely deletes one or more tables. This is a dangerous query, since

the data can never be retrieved once this action is executed. Be very careful with

it!

The query will fail with an error if the table doesn’t exist (unless IF EXISTS is

specified, in which case it will fail silently) or if you lack the required privileges.

EXPLAIN
The explain query has two very different forms. The first,

EXPLAIN tbl_name

is equivalent to DESCRIBE tbl_name or SHOW COLUMNS FROM tbl_name.

The second format,

PHP & MySQL: Novice to Ninja432

EXPLAIN select_statement

where select_statement can be any valid SELECT query, will produce an explanation

of how MySQL would determine the results of the SELECT statement. This query is

useful for finding out where indexes will help speed up your SELECT queries, and

for determining if MySQL is performing multi-table queries in optimal order. See

the STRAIGHT_JOIN option of the SELECT query in the section called “SELECT” for

information on how to override the MySQL optimizer and control this order

manually. See the MySQL Reference Manual6 for complete information on how to

interpret the results of an EXPLAIN query.

GRANT

GRANT priv_type [(column_list)], …
 ON {tbl_name | * | *.* | db_name.*}
 TO username [IDENTIFIED BY 'password'], …
 [WITH GRANT OPTION]

GRANT adds new access privileges to a user account, and creates a new account if

the specified username does not yet exist. It may also change the password if

IDENTIFIED BY 'password' is used on an account that already has a password.

See the MySQL Reference Manual7 for a complete description of this and other

queries that may be used to manage user accounts.

INSERT

INSERT [LOW_PRIORITY | DELAYED] [IGNORE] [INTO] tbl_name

 { [(col_name, …)] VALUES (expression, …), …

 | SET col_name=expression, col_name=expression, …

 | [(col_name, …)] SELECT … }

 [ON DUPLICATE KEY UPDATE col_name=expression[, …]]

6 http://dev.mysql.com/doc/mysql/en/explain.html
7 http://dev.mysql.com/doc/mysql/en/account-management-sql.html

433Appendix B: MySQL Syntax Reference

http://dev.mysql.com/doc/mysql/en/explain.html
http://dev.mysql.com/doc/mysql/en/account-management-sql.html

The INSERT query is used to add new entries to a table. It supports three general

options:

LOW_PRIORITY

The query will wait until there are no clients reading from the table before it

proceeds.

DELAYED

The query completes immediately from the client’s point of view, and the INSERT

operation is performed in the background. This option is useful when you wish

to insert a large number of rows without waiting for the operation to complete.

Be aware that the client will not know the last inserted ID on an AUTO_INCREMENT

column when a DELAYED insert is performed (for example, PHP’s PDO

lastInsertId method will fail to work correctly).

IGNORE

Normally, when an insert operation causes a clash in a PRIMARY KEY or UNIQUE

column, the insert fails and produces an error message. This option allows the

insert to fail silently; the new row is not inserted, but no error message is dis-

played.

The word INTO is entirely optional, and has no effect on the operation of the query.

As you can see above, INSERT queries may take three forms. The first form lets you

insert one or more rows by specifying the values for the table columns in parentheses.

If the optional list of column names is omitted, the list(s) of column values must

include a value for every column in the table, in the order in which they appear in

the table.

The second form of INSERT can be used only to insert a single row, but, very intuit-

ively, it allows you to assign values to the columns in that row by giving them in

col_name=value format.

In the third and final form of INSERT, the rows to be inserted result from a SELECT

query. Again, if the list of column names is omitted, the result set of the SELECT

must contain values for each and every column in the table, in the correct order. A

SELECT query that makes up part of an insert statement may not contain an ORDER

BY clause, and you’re unable to use the table into which you’re inserting in the FROM

clause.

PHP & MySQL: Novice to Ninja434

Columns to which you assign no value (for example, if you leave them out of the

column list) are assigned their default. By default, inserting a NULL value into a NOT

NULL field will also cause that field to be set to its default value; however, if MySQL

is configured with the DONT_USE_DEFAULT_FIELDS option enabled, this sort of INSERT

operation will cause an error. For this reason, it’s best to avoid them.

The optional ON DUPLICATE KEY UPDATE clause takes effect when the INSERT query

attempts to add a new entry to the table that would introduce a duplicate value

disallowed by a unique index or primary key. Instead of the query failing with an

error, this clause specifies how the existing entry in the table should be updated.

The form of this clause is very similar to an UPDATE statement: it specifies one or

more columns and the new value that should be assigned to each. See the section

called “UPDATE” for more information.

LOAD DATA INFILE

LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE
 'file_name.txt' [REPLACE | IGNORE] INTO TABLE tbl_name
 [FIELDS
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']]
 [LINES [STARTING BY ''] [TERMINATED BY 'string']]
 [IGNORE number LINES]
 [(col_name, …)]

The LOAD DATA INFILE query is used to import data from a text file either on the

MySQL server, or on the LOCAL (client) system (for example, a text file created with

a SELECT INTO OUTFILE query). The syntax of this command is in the code, but I’d

refer you to the MySQL Reference Manual8 for a complete explanation of this query

and the issues that surround its use.

OPTIMIZE TABLE

OPTIMIZE TABLE tbl_name[, tbl_name …]

8 http://dev.mysql.com/doc/mysql/en/load-data.html

435Appendix B: MySQL Syntax Reference

http://dev.mysql.com/doc/mysql/en/load-data.html

Much like a hard-disk partition becomes fragmented if existing files are deleted or

resized, MySQL tables become fragmented as you delete rows and modify variable-

length columns (such as VARCHAR or BLOB) over time. This query performs the data-

base equivalent of a defrag on the table, reorganizing the data it contains to eliminate

wasted space.

It’s important to note that a table is locked while an optimize operation occurs, so

if your application relies on a large table being constantly available, that application

will grind to a halt while the optimization takes place. In such cases, it’s better to

copy the table, optimize the copy, and then replace the old table with the newly

optimized version using a RENAME query. Changes made to the original table in the

interim will be lost, so this technique is only appropriate for some applications.

RENAME TABLE

RENAME TABLE tbl_name TO new_table_name[, tbl_name2 TO …, …]

This query quickly and conveniently renames one or more tables. This differs from

ALTER TABLE tbl_name RENAME in that all the tables being renamed in the query

are locked for the duration of the query, so that no other connected clients may access

them. As the MySQL Reference Manual explains,9 this assurance of atomicity lets

you replace a table with an empty equivalent; for example, if you wanted to safely

start a new table once a certain number of entries was reached:

CREATE TABLE new_table (…);
RENAME TABLE old_table TO backup_table, new_table TO old_table;

You can also move a table from one database to another by specifying the table name

as db_name.tbl_name, as long as both tables are stored on the same physical disk,

which is usually the case.

You must have ALTER and DROP privileges on the original table, as well as CREATE

and INSERT privileges on the new table, in order to perform this query. A RENAME

TABLE query that fails to complete halfway through will automatically be reversed,

so that the original state is restored.

9 http://dev.mysql.com/doc/mysql/en/rename-table.html

PHP & MySQL: Novice to Ninja436

http://dev.mysql.com/doc/mysql/en/rename-table.html

REPLACE

REPLACE [LOW_PRIORITY | DELAYED] [INTO] tbl_name

 { [(col_name, …)] VALUES (expression, …), …

 | [(col_name, …)] SELECT …

 | SET col_name=expression, col_name=expression, … }

REPLACE is identical to INSERT, except that if an inserted row clashes with an existing

row in a PRIMARY KEY or UNIQUE column, the old entry is replaced with the new.

REVOKE

REVOKE priv_type [(column_list)], …
 ON {tbl_name | * | *.* | db_name.*}
 FROM user, …

This function removes access privileges from a user account. If all privileges are

removed from an account, the user will still be able to log in but unable to access

any information.

See the section called “MySQL Access Control Tips” in Chapter 10 for a complete

description of this query.

ROLLBACK

ROLLBACK

Once a transaction has been started (that is, autocommit mode has been disabled)

with START TRANSACTION, MySQL collects the changes made to the database so that

they may be applied all at once. A ROLLBACK query discards all those changes, can-

celing the transaction.

437Appendix B: MySQL Syntax Reference

SELECT

SELECT [select_options]
select_expression, …

 [INTO {OUTFILE | DUMPFILE} 'file_name' export_options]
 [FROM table_references
 [WHERE where_definition]
 [GROUP BY {col_name | col_pos } [ASC | DESC], …]
 [HAVING where_definition]
 [ORDER BY {col_name | col_pos } [ASC | DESC], …]
 [LIMIT [offset,] rows]]

SELECT is the most complex query in SQL, and is used to perform all data retrieval

operations. This query supports the following select_options, which may be specified

in any sensible combination simply by listing them, separated by spaces:

ALL

DISTINCT

DISTINCTROW

Any one of these options may be used to specify the treatment of duplicate rows

in the result set. ALL (the default) specifies that all duplicate rows appear in the

result set, while DISTINCT and DISTINCTROW (they have the same effect) specify

that duplicate rows should be eliminated from the result set.

HIGH_PRIORITY

This option does exactly what it says: it assigns a high priority to the SELECT

query. Normally, if a query is waiting to update a table, all read-only queries

(such as SELECT) must yield to it. A SELECT HIGH_PRIORITY, however, will go

first.

STRAIGHT_JOIN

Forces MySQL to join multiple tables specified in the table_references portion

of the query in the order specified there. If you think MySQL’s query optimizer

is doing it the slow way, this argument lets you override it. See the section called

“Joins” for more information.

PHP & MySQL: Novice to Ninja438

SQL_BUFFER_RESULT

This option forces MySQL to store the result set in a temporary table. This frees

up the tables employed in the query for use by other processes, while the result

set is transmitted to the client.

SQL_CACHE

This option instructs MySQL to store the result of this query in the query cache,

an area of memory set aside by the server to store the results of frequently run

queries so that there’s no need to recalculate them from scratch if the contents

of the relevant tables are still the same. MySQL can be configured so that only

queries with the SQL_CACHE option are cached. If the query cache is disabled,

this option will have no effect.

SQL_NO_CACHE

This option instructs MySQL to avoid storing the result of this query in the

query cache (see the previous option). MySQL can be configured so that every

query is cached unless it has the SQL_NO_CACHE option. If the query cache is

disabled, this option will have no effect.

SQL_CALC_FOUND_ROWS

For use in conjunction with a LIMIT clause, this option calculates and sets aside

the total number of rows that would be returned from the query if no LIMIT

clause were present. You can then retrieve this number using SELECT

FOUND_ROWS() (see Appendix C).

select_expression defines a column of the result set to be returned by the query.

Typically, this is a table column name, and may be specified as col_name,

tbl_name.col_name, or db_name.tbl_name.col_name, depending on how specific

you need to be for MySQL to identify the column that you’re referring to. select_ex-

pressions can refer to other expressions apart from the database column; simple

mathematical formulas including column names as variables, and complex expres-

sions calculated with MySQL functions may also be used. Here’s an example of the

latter, which will give the date one month from now in the form “January 1, 2010”:

SELECT DATE_FORMAT(DATE_ADD(CURDATE(), INTERVAL 1 MONTH), '%M %D,
 %Y')

439Appendix B: MySQL Syntax Reference

select_expressions may also contain an alias or assigned name for the result column,

if the expression is followed with [AS] alias (the AS is entirely optional). This

expression must be used when referring to that column elsewhere in the query (for

example, in WHERE and ORDER BY clauses), as follows:

SELECT jokedate AS jd FROM joke ORDER BY jd ASC

MySQL lets you use an INTO clause to output the results of a query into a file instead

of returning them to the client. The most typical use of this clause is to export the

contents of a table into a text file containing comma-separated values (CSV). Here’s

an example:

SELECT * INTO OUTFILE '/home/user/myTable.txt'
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 LINES TERMINATED BY '\n'
 FROM myTable

The file to which the results are dumped must not exist beforehand, or this query

will fail. This restriction prevents an SQL query from being used to overwrite crit-

ical operating system files. The created file will also be world-readable on systems

that support file security, so consider this before you export sensitive data to a text

file that anyone on the system can read.

DUMPFILE may be used instead of OUTFILE to write only a single row to the file,

without row or column delimiters. It can be used, for example, to dump a BLOB

stored in the table to a file (SELECT blobCol INTO DUMPFILE …). For complete in-

formation on the INTO clause, see the MySQL Reference Manual.10 For information

on reading data back from a text file, see the section called “LOAD DATA INFILE”.

The FROM clause contains a list of tables from which the rows composing the result

set should be formed, along with instructions on how they should be joined together.

At its most basic, table_references is the name of a single database table, which may

be assigned an alias with or without using AS as described for select_expression

beforehand. If you specify more than one table name, you’re performing a join.

These are discussed in the section called “Joins” shortly.

10 http://dev.mysql.com/doc/mysql/en/select.html

PHP & MySQL: Novice to Ninja440

http://dev.mysql.com/doc/mysql/en/select.html

The where_definition in the WHERE clause sets the condition for a row to be included

in the table of results sent in response to the SELECT query. This may be a simple

condition (for example, id = 5), or a complex expression that makes use of MySQL

functions and combines multiple conditions using Boolean operators (AND, OR, NOT).

The GROUP BY clause lets you specify one or more columns (by name, alias, or

column position, where 1 is the first column in the result set) for which rows with

equal values should be collapsed into single rows in the result set. This clause

should normally be used in combination with the MySQL grouping functions such

as COUNT, MAX, and AVG, described in Appendix C, to produce result columns that

give summary information about the groups created. By default, the grouped results

are sorted in ascending order of the grouped column(s); however, the ASC or DESC

argument may be added following each column reference to explicitly sort that

column’s results in ascending or descending order, respectively. Results are sorted

by the first column listed, then tying sets of rows are sorted by the second, and so

on.

Note that the WHERE clause is processed before GROUP BY grouping occurs, so condi-

tions in the WHERE clause may not refer to columns that depend on the grouping

operation. To impose conditions on the post-grouping result set, you should use

the HAVING clause instead. This clause’s syntax is identical to that of the WHERE

clause, except the conditions specified here are processed just prior to returning

the set of results, and are not optimized. For this reason, you should use the WHERE

clause whenever possible. For more information on GROUP BY and the HAVING clause,

see Chapter 11.

The ORDER BY clause lets you sort results according to the values in one or more

rows before they’re returned. As for the GROUP BY clause, each column may be

identified by a column name, alias, or position (where 1 is the first column in the

result set), and each column may have an ASC or DESC argument to specify that

sorting occurs in ascending or descending order, respectively (ascending is the de-

fault). Rows are sorted initially by the first column listed, then tying sets of rows

are sorted by the second, and so on.

The LIMIT clause instructs the query to return only a portion of the results it would

normally generate. In the simplest case, LIMIT n returns only the first n rows of the

complete result set. You can also specify an offset by using the form LIMIT x, n.

441Appendix B: MySQL Syntax Reference

In this case, up to n rows will be returned, beginning from the xth row of the complete

result set. The first row corresponds to x = 0, the second to x = 1, and so on.

Joins
As recently described, the FROM clause of a SELECT query lets you specify the tables

that are combined to create the result set. When multiple tables are combined in

this way, it’s called a join. MySQL supports several types of joins, as defined by the

following supported syntaxes for the table_references component of the FROM clause:

table_ref

table_references, table_ref

table_references [CROSS] JOIN table_ref

table_references INNER JOIN table_ref join_condition

table_references STRAIGHT_JOIN table_ref

table_references LEFT [OUTER] JOIN table_ref join_condition
 { OJ table_ref LEFT OUTER JOIN table_ref ON cond_expr }

table_references NATURAL [LEFT [OUTER]] JOIN table_ref

table_references RIGHT [OUTER] JOIN table_ref join_condition

table_references NATURAL [RIGHT [OUTER]] JOIN table_ref

where table_ref is defined as:

table_name [[AS] alias] [USE INDEX (key_list)]
 [IGNORE INDEX (key_list)]

and join_condition is defined as one of the following:

ON cond_expr

PHP & MySQL: Novice to Ninja442

USING (column_list)

Don’t be disheartened by the sheer variety of join types; I’ll be explaining how each

of them works.

The most basic type of join, an inner join, produces rows made up of all possible

pairings of the rows from the first table with the second. You can perform an inner

join in MySQL either by separating the table names with a comma (,) or with the

words JOIN, CROSS JOIN, or INNER JOIN (these are all equivalent).

It’s common—especially in older PHP code—to use the comma (,) form to create

an inner join, and then use the WHERE clause of the SELECT query to specify a condi-

tion, in order to narrow down which of the combined rows are actually returned

(for example, to match up a primary key in the first table with a column in the

second); however, this is generally considered untidy and bad practice today.

Instead, the INNER JOIN syntax followed by a join_condition should be used. The

ON form of the join_condition puts the condition(s) required to join two tables right

next to the names of those tables, keeping the WHERE clause for conditions unrelated

to the join operations.

As a final alternative, the USING (column_list) form of join_condition lets you

specify columns that must match between the two tables. For example:

SELECT * FROM t1 INNER JOIN t2 USING (tid)

This is equivalent to:

SELECT * FROM t1 INNER JOIN t2 ON t1.tid = t2.tid

STRAIGHT_JOIN works in the same way as an inner join, except that the tables are

processed in the order listed (left first, then right). Normally, MySQL selects the

order that will produce the shortest processing time, but if you think you know

better, you can use a STRAIGHT_JOIN.

The second type of join is an outer join, which is accomplished in MySQL with

LEFT/RIGHT [OUTER] JOIN (OUTER is completely optional, and has no effect). In a

LEFT outer join, any row in the left-hand table that has no matching rows in the

443Appendix B: MySQL Syntax Reference

right-hand table (as defined by the join_condition), will be listed as a single row in

the result set. NULL values will appear in all the columns that come from the right-

hand table.

The { OJ … } syntax is equivalent to a standard left outer join; it’s included for

compatibility with other ODBC (Open Database Connectivity) databases.

RIGHT outer joins work in the same way as LEFT outer joins, except in this case, it’s

the table on the right whose entries are always included, even if they lack a

matching entry in the left-hand table. Since RIGHT outer joins are nonstandard, it’s

usually best to stick to LEFT outer joins for cross-database compatibility.

For some practical examples of outer joins and their uses, see Chapter 11.

Natural joins are “automatic” in that they automatically match up rows based on

column names that are found to match between the two tables. Thus, if a table called

joke has an authorid column referring to entries in an author table whose primary

key is another authorid column, you can perform a join of these two tables on that

column very simply (assuming there are no other columns with identical names in

the two tables):

SELECT * FROM joke NATURAL JOIN author

Unions
A union combines the results from a number of SELECT queries to produce a single

result set. Each of the queries must produce the same number of columns, and these

columns must be of the same type. The column names produced by the first query

are used for the union’s result set:

SELECT …
 UNION [ALL | DISTINCT]
 SELECT …
 [UNION [ALL | DISTINCT]
 SELECT …] …

By default, duplicate result rows in the union will be eliminated so that each row

in the result set is unique. The DISTINCT option can be used to make this clear, but

it has no actual effect. The ALL option, on the other hand, allows duplicate results

through to the final result set.

PHP & MySQL: Novice to Ninja444

SET

SET option = value, …

The SET query allows you to set a number of options both on your client and on the

server.

For example, you can SET autocommit = 0 to disable autocommit mode for the

current session. In effect, this is like running START TRANSACTION, and then running

it again automatically after every COMMIT or ROLLBACK. With autocommit off, you

always have a transaction open, and queries like INSERT, UPDATE, and DELETE will

not take effect until you COMMIT them.

For a complete list of the options that may be SET, refer to the MySQL Reference

Manual.11

SHOW
The SHOW query may be used in a number of forms to obtain information about the

MySQL server, the databases, and the tables it contains. Many of these forms have

an optional LIKE wild component, where wild is a string that may contain wildcard

characters (% for multiple characters, _ for just one) to filter the list of results. Each

of the forms of the SHOW query are described here:

SHOW DATABASES [LIKE wild]

This query lists the databases that are available on the MySQL server.

SHOW [OPEN] TABLES [FROM db_name] [LIKE wild]

This query lists the tables (or, optionally, the currently OPEN tables) in the default

or specified database.

SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [LIKE wild]

When FULL is not used, this query provides the same information as a DESCRIBE

query (see the section called “DESCRIBE/DESC”). The FULL option adds a listing

of the privileges you have on each column to this information. SHOW FIELDS is

equivalent to SHOW COLUMNS.

11 http://dev.mysql.com/doc/mysql/en/set-option.html

445Appendix B: MySQL Syntax Reference

http://dev.mysql.com/doc/mysql/en/set-option.html
http://dev.mysql.com/doc/mysql/en/set-option.html

SHOW INDEX FROM tbl_name [FROM db_name]

This query provides detailed information about the indexes that are defined on

the specified table. See the MySQL Reference Manual12 for a guide to the results

produced by this query. SHOW KEYS is equivalent to SHOW INDEX.

SHOW TABLE STATUS [FROM db_name] [LIKE wild]

This query displays detailed information about the tables in the specified or

default database.

SHOW STATUS [LIKE wild]

This query displays detailed statistics for the server. See the MySQL Reference

Manual13 for details on the meaning of each figure.

SHOW VARIABLES [LIKE wild]

This query lists the MySQL configuration variables and their settings. See the

MySQL Reference Manual14 for a complete description of these options.

SHOW [FULL] PROCESSLIST

This query displays all threads running on the MySQL server and the queries

being executed by each. If you lack the process privilege, you’ll only see threads

executing your own queries. The FULL option causes complete queries to be

displayed, rather than only the first 100 characters of each (the default).

SHOW GRANTS FOR user

This query lists the GRANT queries that would be required to recreate the priv-

ileges of the specified user.

SHOW CREATE TABLE table_name

This query displays the CREATE TABLE query that would be required to reproduce

the specified table.

START TRANSACTION

START TRANSACTION

12 http://dev.mysql.com/doc/en/show-index.html
13 http://dev.mysql.com/doc/en/show-status.html
14 http://dev.mysql.com/doc/en/show-variables.html

PHP & MySQL: Novice to Ninja446

http://dev.mysql.com/doc/en/show-index.html
http://dev.mysql.com/doc/en/show-status.html
http://dev.mysql.com/doc/en/show-status.html
http://dev.mysql.com/doc/en/show-variables.html

Once a transaction has been started (that is, autocommit mode has been disabled)

with START TRANSACTION, MySQL collects the changes made to the database so that

they may be applied all at once (with COMMIT) or discarded (with ROLLBACK).

TRUNCATE

TRUNCATE [TABLE] tbl_name

A TRUNCATE command deletes all the rows in a table, just like a DELETE command

with no WHERE clause. TRUNCATE, however, takes a number of shortcuts to make the

process go much faster, especially with large tables. In effect, TRUNCATE performs a

DROP TABLE query, followed by a CREATE TABLE query to re-create an empty table.

UPDATE

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name
 SET col_name = expr[, …]
 [WHERE where_definition]
 [ORDER BY …]
 [LIMIT #]

The UPDATE query updates existing table entries by assigning new values to the

specified columns. Columns that aren’t listed are left alone, except columns with

the TIMESTAMP type (see Appendix D). The WHERE clause lets you specify a condition

(where_definition) that rows must satisfy if they’re to be updated, while the LIMIT

clause lets you specify a maximum number of rows to be updated.

Avoid Omitting WHERE or LIMIT

If WHERE and LIMIT are unspecified, every row in the table will be updated!

The ORDER BY clause lets you specify the order in which entries are updated. This

is most useful when combined with the LIMIT clause; together they let you create

queries like “update the ten most recent rows.”

An UPDATE operation will fail with an error if the new value assigned to a row clashes

with an existing value in a PRIMARY KEY or UNIQUE column, unless the IGNORE option

is specified; in this case the query will simply have no effect on that particular row.

447Appendix B: MySQL Syntax Reference

The LOW_PRIORITY option instructs MySQL to wait until there are no other clients

reading the table before it performs the update.

Like the DELETE query (see the section called “DELETE”), UPDATE has an alternate

form that can affect multiple tables in a single operation:

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name[, tbl_name …]
 SET col_name = expr[, …]
 [WHERE where_definition]

USE

USE db_name

This simple query sets the default database for MySQL queries in the current session.

Tables in other databases may still be accessed as db_name.tbl_name.

PHP & MySQL: Novice to Ninja448

Appendix C: MySQL Functions
MySQL provides a sizeable library of functions to format and combine data within

SQL queries in order to produce the desired results in the preferred format. This

appendix provides a reference to the most useful of these functions, as implemented

in MySQL as of version 5.5.22 (current this writing).

For a complete, up-to-date reference to supported SQL functions, see the MySQL

Reference Manual.1

Control Flow Functions
IFNULL(expr1, expr2)

This function returns expr1 unless it’s NULL, in which case it returns expr2.

NULLIF(expr1, expr2)

This function returns expr1 unless it equals expr2, in which case it returns NULL.

IF(expr1, expr2, expr3)

If expr1 is TRUE (that is, not NULL or 0), this function returns expr2; otherwise,

it returns expr3.

CASE value WHEN [compare-value1] THEN result1 [WHEN …] [ELSE else-

result] END

This function returns result1 when value=compare-value1 (note that several

compare-value/result pairs can be defined); otherwise, it returns else-result,

or NULL if none is defined.

CASE WHEN [condition1] THEN result1 [WHEN …] [ELSE else-result] END

This function returns result1 when condition1 is TRUE (note that several condi-

tion/result pairs can be defined); otherwise, it returns else-result, or NULL if none

is defined.

1 http://dev.mysql.com/doc/mysql/en/functions.html

http://dev.mysql.com/doc/mysql/en/functions.html
http://dev.mysql.com/doc/mysql/en/functions.html

Mathematical Functions
ABS(expr)

This function returns the absolute (positive) value of expr.

SIGN(expr)

This function returns -1, 0, or 1 depending on whether expr is negative, zero,

or positive, respectively.

MOD(expr1, expr2)

expr1 % expr2

This function returns the remainder of dividing expr1 by expr2.

FLOOR(expr)

This function rounds down expr (that is, it returns the largest integer value that

is less than or equal to expr).

CEILING(expr)

CEIL(expr)

This function rounds up expr (that is, it returns the smallest integer value that’s

greater than or equal to expr).

ROUND(expr)

This function returns expr rounded to the nearest integer. Note that this func-

tion’s behavior when the value is exactly an integer plus 0.5 is system-dependent.

Thus, you should avoid relying on any particular outcome when migrating to

a new system.

ROUND(expr, num)

This function rounds expr to a number with num decimal places, leaving trailing

zeros in place. Use a num of 2, for example, to format a number as dollars and

cents. Note that the same uncertainty about the rounding of 0.5 applies as dis-

cussed for ROUND.

EXP(expr)

This function returns eexpr, the base of natural logarithms raised to the power

of expr.

PHP & MySQL: Novice to Ninja450

LOG(expr)

This function returns ln(expr), or loge(expr), the natural logarithm of expr.

LOG(B, expr)

This function returns the logarithm of expr with the arbitrary base B.

From High School Mathematics …

LOG(B, expr) = LOG(expr) / LOG(B)

LOG10(expr)

This function returns the base-10 logarithm of expr.

POW(expr1, expr2)

POWER(expr1, expr2)

This function returns expr1 raised to the power of expr2.

SQRT(expr)

This function returns the square root of expr.

PI()

This function returns the value of π (pi).

COS(expr)

This function returns the cosine of expr in radians (for example, COS(PI()) =

-1).

SIN(expr)

This function returns the sine of expr in radians (for example, SIN(PI()) = 0).

TAN(expr)

This function returns the tangent of expr in radians (for example, TAN(PI()) =

0).

ACOS(expr)

This function returns the arc cosine (cos-1 or inverse cosine) of expr (for example,

ACOS(-1) = PI()).

451Appendix C: MySQL Functions

ASIN(expr)

This function returns the arc sine (sin-1 or inverse sine) of expr (for example,

ASIN(0) = PI()).

ATAN(expr)

This function returns the arc tangent (tan-1 or inverse tangent) of expr (for ex-

ample, ATAN(0) = PI()).

ATAN(y, x)

ATAN2(y, x)

This function returns the angle (in radians) made at the origin between the

positive x axis and the point (x,y); for example, ATAN(1, 0) = PI() / 2.

COT(expr)

This function returns the cotangent of expr (for example, COT(PI() / 2) = 0).

RAND()

RAND(expr)

This function returns a random, floating point number between 0.0 and 1.0. If

expr is specified, a random number will be generated based on that value, which

will always be the same.

LEAST(expr1, expr2, …)

This function returns the smallest of the values specified.

GREATEST(expr1, expr2, …)

This function returns the largest of the values specified.

DEGREES(expr)

This function returns the value of expr (in radians) in degrees.

RADIANS(expr)

This function returns the value of expr (in degrees) in radians.

TRUNCATE(expr, num)

This function returns the value of floating point number expr truncated to num

decimal places (that is, rounded down).

PHP & MySQL: Novice to Ninja452

BIN(expr)

This function converts decimal expr to binary, equivalent to CONV(expr, 10,

2).

OCT(expr)

This function converts decimal expr to octal, equivalent to CONV(expr, 10,

8).

HEX(expr)

This function converts decimal expr to hexadecimal, equivalent to CONV(expr,

10, 16).

CONV(expr, from_base, to_base)

This function converts a number (expr) in base from_base to a number in base

to_base. Returns NULL if any of the arguments are NULL.

String Functions
ASCII(str)

This function returns the ASCII code value of the left-most character in str, 0 if

str is an empty string, or NULL if str is NULL.

ORD(str)

This function returns the ASCII code of the left-most character in str, taking

into account the possibility that it might be a multibyte character.

CHAR(expr, …)

This function creates a string composed of characters, the ASCII code values of

which are given by the expressions passed as arguments.

CONCAT(str1, str2, …)

This function returns a string made up of the strings passed as arguments joined

end to end. If any of the arguments are NULL, NULL is returned instead.

CONCAT_WS(separator, str1, str2, …)

This is CONCAT “with separator” (WS). This function is the same as CONCAT, except

that the first argument is placed between each of the additional arguments when

they’re combined.

453Appendix C: MySQL Functions

LENGTH(str)

OCTET_LENGTH(str)

CHAR_LENGTH(str)

CHARACTER_LENGTH(str)

All of these return the length in characters of str. CHAR_LENGTH and

CHARACTER_LENGTH, however, take multibyte characters into consideration when

performing the count.

BIT_LENGTH(str)

This function returns the length (in bits) of str (that is, BIT_LENGTH(str) = 8 *

LENGTH(str)).

LOCATE(substr, str)

POSITION(substr IN str)

This function returns the position of the first occurrence of substr in str (1 if it

occurs at the beginning, 2 if it starts after one character, and so on). It returns 0

if substr doesn’t occur in str.

LOCATE(substr, str, pos)

This is the same as LOCATE(substr, str), but it begins searching from character

number pos.

INSTR(str, substr)

This function is the same as LOCATE(substr, str), but with the argument order

swapped.

LPAD(str, len, padstr)

This function shortens or lengthens str so that it’s of length len. Lengthening is

accomplished by inserting padstr to the left of the characters of str (for example,

LPAD('!', '5', '.') = '....!').

RPAD(str, len, padstr)

This function shortens or lengthens str so that it’s of length len. Lengthening is

accomplished by inserting padstr to the right of the characters of str (for example,

RPAD('!','5','.') = '!....').

LEFT(str, len)

This function returns the left-most len characters of str. If str is shorter than len

characters, str is returned with no extra padding.

PHP & MySQL: Novice to Ninja454

RIGHT(str, len)

This function returns the right-most len characters of str. If str is shorter than

len characters, str is returned with no extra padding.

SUBSTRING(str, pos, len)

SUBSTRING(str FROM pos FOR len)

MID(str, pos, len)

This function returns a string up to len characters long taken from str beginning

at position pos (where 1 is the first character). The second form of SUBSTRING

is the ANSI standard.

SUBSTRING(str, pos)

SUBSTRING(str FROM pos)

This function returns the string beginning from position pos in str (where 1 is

the first character) and going to the end of str.

SUBSTRING_INDEX(str, delim, count)

MySQL counts count occurrences of delim in str, then takes the substring from

that point. If count is positive, MySQL counts to the right from the start of the

string, then takes the substring up to but not including that delimiter. If count

is negative, MySQL counts to the left from the end of the string, then takes the

substring that starts right after that delimiter, and runs to the end of str.

LTRIM(str)

This function returns str with any leading whitespace trimmed off.

RTRIM(str)

This function returns str with any trailing whitespace trimmed off.

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

This function returns str with either whitespace (by default) or occurrences of

the string remstr removed from the start of the string (LEADING), end of the string

(TRAILING), or both (BOTH, the default).

SOUNDEX(str)

This function produces a string that represents how str sounds when read aloud.

Words that sound similar should have the same “soundex string.”

For example:

455Appendix C: MySQL Functions

SOUNDEX("tire") = "T600"
SOUNDEX("tyre") = "T600"
SOUNDEX("terror") = "T600"
SOUNDEX("tyrannosaur") = "T6526"

SPACE(num)

This function returns a string of num space characters.

REPLACE(str, from_str, to_str)

This function returns str after replacing all occurrences of from_str with to_str.

REPEAT(str, count)

This function returns a string made up of str repeated count times, an empty

string if count <= 0, or NULL if either argument is NULL.

REVERSE(str)

This function returns str spelled backwards.

INSERT(str, pos, len, newstr)

This function takes str, and removes the substring beginning at pos (where 1 is

the first character in the string) with length len, then inserts newstr at that pos-

ition. If len = 0, the function simply inserts newstr at position pos.

ELT(N, str1, str2, str3, …)

This function returns the Nth string argument (str1 if N = 1, str2 if N = 2, and so

on), or NULL if there’s no argument for the given N.

FIELD(str, str1, str2, str3, …)

This function returns the position of str in the subsequent list of arguments (1

if str = str1, 2 if str = str2, and so on).

FIND_IN_SET(str, strlist)

When strlist is a list of strings of the form 'string1,string2,string3,…', this

function returns the index of st****r in that list, or 0 if str is not in the list. This

function is ideally suited (and optimized) for determining if str is selected in a

column of type SET (see Appendix D).

MAKE_SET(bits, str1, str2, …)

This function returns a list of strings of the form 'string1,string2,string3,…'

using the string parameters (str1, str2, and so on) that correspond to the bits

PHP & MySQL: Novice to Ninja456

that are set in the number bits. For example, if bits = 10 (binary 1010), bits 2

and 4 are set, so the output of MAKE_SET will be 'str2,str4'.

EXPORT_SET(bits, on_str, off_str[, separator[, number_of_bits]])

This function returns a string representation of which bits are—and are not—set

in bits. Set bits are represented by the on_str string, while unset bits are repres-

ented by the off_str string. By default, these bit representations are comma-

separated, but the optional separator string lets you define your own. By default,

up to 64 bits are read; however, number_of_bits lets you specify that a smaller

number be read.

For example:

EXPORT_SET(10, 'Y', 'N', ',', 6) = 'N,Y,N,Y,N,N'

LCASE(str)

LOWER(str)

This function returns str with all letters in lowercase.

UCASE(str)

UPPER(str)

This function returns str with all letters in uppercase.

LOAD_FILE(filename)

This function returns the contents of the file specified by filename (an absolute

path to a file readable by MySQL). Your MySQL user should also have file

privileges.

QUOTE(str)

This function returns str surrounded by single quotes, and with any special

characters escaped with backslashes. If str is NULL, the function returns the

string NULL (without surrounding quotes).

Date and Time Functions
DAYOFWEEK(date)

This function returns the weekday of date in the form of an integer, according

to the ODBC standard (1 = Sunday, 2 = Monday, 3 = Tuesday … 7 = Saturday).

457Appendix C: MySQL Functions

WEEKDAY(date)

This function returns the weekday of date in the form of an integer (0 = Monday,

1 = Tuesday, 2 = Wednesday … 6 = Sunday).

DAYOFMONTH(date)

This function returns the day of the month for date, from 1 to 31.

DAYOFYEAR(date)

This function returns the day of the year for date, from 1 to 366—remember

leap years!

MONTH(date)

This function returns the month for date, from 1 (January) to 12 (December).

DAYNAME(date)

This function returns the name of the day of the week for date (for example,

'Tuesday').

MONTHNAME(date)

This function returns the name of the month for date (for example, 'April').

QUARTER(date)

This function returns the quarter of the year for date (for example,

QUARTER('2005-04-12') = 2).

WEEK(date[, mode])

This function returns the week of the year for date by default in the range 0-53

(where week 1 is the first week of the year), assuming that the first day of the

week is Sunday.

By specifying one of the mode values in Table C.1, you can alter the way this

value is calculated.

PHP & MySQL: Novice to Ninja458

Table C.1. Modes for week calculations

Week 1Return Value
Range

Week starts
on

mode

first week that starts in this year0 to 53Sunday0

first week that has more than 3 days in this year0 to 53Monday1

first week that starts in this year1 to 53Sunday2

first week that has more than 3 days in this year1 to 53Monday3

first week that has more than 3 days in this year0 to 53Sunday4

first week that starts in this year0 to 53Monday5

first week that has more than 3 days in this year1 to 53Sunday6

first week that starts in this year1 to 53Monday7

YEAR(date)

This function returns the year for date, from 1000 to 9999.

YEARWEEK(date)

YEARWEEK(date, first)

This function returns the year and week for date in the form 'YYYYWW'. Note

that the first or last day or two of the year may often belong to a week of the

preceding or following year, respectively.

For example:

YEARWEEK("2006-12-31") = 200701

HOUR(time)

This function returns the hour for time, from 0 to 23.

MINUTE(time)

This function returns the minute for time, from 0 to 59.

SECOND(time)

This function returns the second for time, from 0 to 59.

459Appendix C: MySQL Functions

PERIOD_ADD(period, num_months)

This function adds num_months months to period (specified as 'YYMM' or

'YYYYMM') and returns the value in the form 'YYYYMM'.

PERIOD_DIFF(period1, period2)

This function returns the number of months between period1 and period2 (each

of which should be specified as 'YYMM' or 'YYYYMM').

DATE_ADD(date, INTERVAL expr type)

DATE_SUB(date, INTERVAL expr type)

ADDDATE(date, INTERVAL expr type)

SUBDATE(date, INTERVAL expr type)

This function returns the result of either adding or subtracting the specified

interval of time to or from date (a DATE or DATETIME value). DATE_ADD and ADDDATE

are identical, as are DATE_SUB and SUBDATE. expr specifies the interval to be

added or subtracted and may be negative if you wish to specify a negative inter-

val, and type specifies the format of expr, as shown in Table C.2.

If date and expr involve only date values, the result will be a DATE value; other-

wise, this function will return a DATETIME value.

Here are a few examples to help you see how this family of functions works.

The following both return the date six months from now:

ADDDATE(CURDATE(), INTERVAL 6 MONTH)

DATE_ADD(CURDATE(), INTERVAL '0-6' YEAR_MONTH)

The following all return this time tomorrow:

ADDDATE(NOW(), INTERVAL 1 DAY)

SUBDATE(NOW(), INTERVAL -1 DAY)

DATE_ADD(NOW(), INTERVAL '24:0:0' HOUR_SECOND)

DATE_ADD(NOW(), INTERVAL '1 0:0' DAY_MINUTE)

PHP & MySQL: Novice to Ninja460

Table C.2. Interval types for date addition/subtraction functions

Format for exprtype

number of secondsSECOND

number of minutesMINUTE

number of hoursHOUR

number of daysDAY

number of monthsMONTH

number of yearsYEAR

'minutes:seconds'MINUTE_SECOND

'hours:minutes'HOUR_MINUTE

'days hours'DAY_HOUR

'years-months'YEAR_MONTH

'hours:minutes:seconds'HOUR_SECOND

'days hours:minutes'DAY_MINUTE

'days hours:minutes:seconds'DAY_SECOND

TO_DAYS(date)

This function converts date to a number of days since year 0. It allows you to

calculate differences in dates (that is, TO_DAYS(date1) - TO_DAYS(date2) =

days between date1 and date2).

FROM_DAYS(days)

Given the number of days since year 0 (as produced by TO_DAYS), this function

returns a date.

DATE_FORMAT(date, format)

This function takes the date or time value date and returns it formatted according

to the formatting string format, which may contain as placeholders any of the

symbols shown in Table C.3.

461Appendix C: MySQL Functions

Table C.3. DATE_FORMAT symbols (2004-01-01 01:00:00)

ExampleDisplaysSymbol

JanuaryMonth name%M

ThursdayWeekday name%W

1stDay of the month with English suffix%D

2004Year, numeric, 4 digits%Y

03Year, numeric, 2 digits%y

ThuAbbreviated weekday name%a

01Day of the month%d

1Day of the month%e

01Month of the year, numeric%m

1Month of the year, numeric%c

JanAbbreviated month name%b

001Day of the year%j

01Hour of the day (24 hour format, 00-23)%H

1Hour of the day (24 hour format, 0-23)%k

01Hour of the day (12 hour format, 01-12)%h

01Hour of the day (12 hour format, 01-12)%I

1Hour of the day (12 hour format, 1-12)%l

00Minutes%i

01:00:00 AMTime, 12 hour (hh:mm:ss AM/PM)%r

01:00:00Time, 24 hour (hh:mm:ss)%T

00Seconds%S

00Seconds%s

AMAM or PM%p

4Day of the week, numeric (0=Sunday)%w

00Week (00-53), Sunday first day of the week%U

01Week (00-53), Monday first day of the week%u

2003Year of the week where Sunday is the first day of the week,

4 digits (use with %V)

%X

PHP & MySQL: Novice to Ninja462

ExampleDisplaysSymbol

53Week (01-53), Sunday first day of week (%X)%V

2004Like %X, Monday first day of week (use with %v)%x

01Week (01-53), Monday first day of week (%x)%v

%An actual percent sign%%

TIME_FORMAT(time, format)

This function is the same as DATE_FORMAT, except that the format string may

only contain symbols referring to hours, minutes, and seconds.

CURDATE()

CURRENT_DATE

This function returns the current system date in the SQL date format

'YYYY-MM-DD' (if used as a date) or as YYYYMMDD (if used as a number).

CURTIME()

CURRENT_TIME

CURRENT_TIME()

This function returns the current system time in the SQL time format 'HH:MM:SS'

(if used as a time) or as HHMMSS (if used as a number).

NOW()

SYSDATE()

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP()

LOCALTIME

LOCALTIME()

LOCALTIMESTAMP

LOCALTIMESTAMP()

This function returns the current system date and time in SQL date/time format

'YYYY-MM-DD HH:MM:SS' (if used as a date/time) or as YYYYMMDDHHMMSS (if used

as a number).

UNIX_TIMESTAMP()

UNIX_TIMESTAMP(date)

This function returns either the current system date and time, or the specified

date/time as the number of seconds since 1970-01-01 00:00:00 GMT.

463Appendix C: MySQL Functions

FROM_UNIXTIME(unix_timestamp)

The opposite of UNIX_TIMESTAMP, this function converts a number of seconds

from 1970-01-01 00:00:00 GMT to 'YYYY-MM-DD HH:MM:SS' (if used as a

date/time) or YYYYMMDDHHMMSS (if used as a number), local time.

FROM_UNIXTIME(unix_timestamp, format)

This function formats a UNIX timestamp according to the format string, which

may contain any of the symbols listed in Table C.3.

SEC_TO_TIME(seconds)

This function converts some number of seconds to the format 'HH:MM:SS' (if

used as a time) or HHMMSS (if used as a number).

TIME_TO_SEC(time)

This function converts a time in the format 'HH:MM:SS' to a number of seconds.

Miscellaneous Functions
DATABASE()

This function returns the currently selected database name, or an empty string

if no database is currently selected.

USER()

SYSTEM_USER()

SESSION_USER()

This function returns the current MySQL username, including the client host

name (for example, 'kevin@localhost'). The SUBSTRING_INDEX function may

be used to obtain the username alone:

SUBSTRING_INDEX(USER(), "@", 1) = 'kevin'

CURRENT_USER()

This function returns the user entry in the MySQL access control system that

was used to authenticate the current connection—and which controls its priv-

ileges—in the form 'user@host'. In many cases, this will be the same as the

value returned by USER, but when entries in the access control system contain

wild cards, this value may be less specific (for example, '@%.mycompany.com').

PHP & MySQL: Novice to Ninja464

PASSWORD(str)

This is a one-way password encryption function that converts any string (typic-

ally a plain-text password) into an encrypted format precisely 16 characters in

length. A particular plain-text string always will yield the same encrypted string

of 16 characters; thus, values encoded in this way can be used to verify the

correctness of a password without actually storing the password in the database.

This function uses a different encryption mechanism to UNIX passwords; use

ENCRYPT for that type of encryption.

ENCRYPT(str[, salt])

This function uses standard UNIX encryption (via the crypt() system call) to

encrypt str. The salt argument is optional, and lets you control the seed that’s

used for generating the password. If you want the encryption to match a UNIX

password file entry, the salt should be the two first characters of the encrypted

value you’re trying to match. Depending on the implementation of crypt() on

your system, the encrypted value may only depend on the first eight characters

of the plain-text value.

On systems where crypt() is unavailable, this function returns NULL.

ENCODE(str, pass_str)

This function encrypts str using a two-way password-based encryption algorithm

with password pass_str. To subsequently decrypt the value, use DECODE.

DECODE(crypt_str, pass_str)

This function decrypts the encrypted crypt_str using two-way password-based

encryption with password pass_str. If the same password is given that was

provided to ENCODE, the original string will be restored.

MD5(string)

This function calculates an MD5 hash based on string. The resulting value is a

32-digit hexadecimal number. A particular string will always produce the same

MD5 hash; however, MD5(NOW()) may be used, for instance, to obtain a semi-

random string when one is needed (as a default password, for instance).

LAST_INSERT_ID()

This function returns the last number that was automatically generated for an

AUTO_INSERT column in the current connection.

465Appendix C: MySQL Functions

FOUND_ROWS()

When you execute a SELECT query with a LIMIT clause, you may sometimes

want to know how many rows would have been returned if you omitted a LIMIT

clause. To do this, use the SQL_CALC_FOUND_ROWS option for the SELECT query

(see Appendix B), then call this function in a second SELECT query.

Calling this function is considerably quicker than repeating the query without

a LIMIT clause, since the full result set doesn’t need to be sent to the client.

FORMAT(expr, num)

This function formats a number expr with commas as “thousands separators”

and num decimal places (rounded to the nearest value and padded with zeros).

VERSION()

This function returns the MySQL server version (for example, '5.1.34').

CONNECTION_ID()

This function returns the thread ID for the current connection.

GET_LOCK(str, timeout)

If two or more clients must synchronize tasks beyond what table locking can

offer, named locks may be used instead. GET_LOCK attempts to obtain a lock with

a given name (str). If the named lock is already in use by another client, this

client will wait up to timeout seconds before giving up waiting for the lock to

become free.

Once a client has obtained a lock, it can be released either using RELEASE_LOCK

or by using GET_LOCK again to obtain a new lock.

GET_LOCK returns 1 if the lock was successfully retrieved, 0 if the time specified

by timeout elapsed, or NULL if some error occurred.

GET_LOCK is not a MySQL command in and of itself; it must appear as part of

another query.

For example:

SELECT GET_LOCK("mylock", 10)

PHP & MySQL: Novice to Ninja466

RELEASE_LOCK(str)

This function releases the named lock that was obtained by GET_LOCK. It returns

1 if the lock was released, 0 if the lock wasn’t locked by this thread, or NULL if

the lock doesn’t exist.

IS_FREE_LOCK(str)

This function checks if the named lock is free to be locked. It returns 1 if the

lock was free, 0 if the lock was in use, or NULL if an error occurred.

BENCHMARK(count, expr)

This function repeatedly evaluates expr count times for the purposes of speed

testing. The MySQL command line client allows the operation to be timed.

INET_NTOA(expr)

This function returns the IP address represented by the integer expr. See

INET_ATON to create such integers.

INET_ATON(expr)

This function converts an IP address expr to a single integer representation.

For example:

INET_ATON('64.39.28.1') = 64 * 2553 + 39 * 2552 + 28 * 255 + 1
 = 1063751116

Functions for Use with GROUP BY Clauses
Also known as summary functions, the following are intended for use with GROUP

BY clauses, where they’ll produce values based on the set of records making up each

row of the final result set.

If used without a GROUP BY clause, these functions will cause the result set to be

displayed as a single row, with a value calculated based on all the rows of the

complete result set. Without a GROUP BY clause, mixing these functions with columns

where there are no summary functions will cause an error, because you’re unable

to collapse those columns into a single row and gain a sensible value.

467Appendix C: MySQL Functions

COUNT(expr)

This function returns a count of the number of times that expr had a non-NULL

value in the ungrouped result set. If COUNT(*) is used, it will simply provide a

count of the number of rows in the group, irrespective of NULL values.

COUNT(DISTINCT expr[, expr …])

This function returns a count of the number of different non-NULL values (or

sets of values, if multiple expressions are provided).

AVG(expr)

This function calculates the arithmetic mean (average) of the values appearing

in the rows of the group.

MIN(expr)

MAX(expr)

This function returns the smallest or largest value of expr in the rows of the

group.

SUM(expr)

This function returns the sum of the values for expr in the rows of the group.

STD(expr)

STDDEV(expr)

This function returns the standard deviation of the values for expr in the rows

of the group (either of the two function names may be used).

BIT_OR(expr)

BIT_AND(expr)

This function calculates the bit-wise OR and the bit-wise AND of the values for

expr in the rows of the group, respectively.

PHP & MySQL: Novice to Ninja468

Appendix D: MySQL Column Types
When you create a table in MySQL, you must specify the data type for each column.

This appendix documents all the column types that MySQL provides as of version

5.5.22 (current this writing).

In this reference, many column types can accept optional parameters to further

customize how data for the column is stored or displayed. First, there are the M and

D parameters, which are indicated (in square brackets when optional) immediately

following the column type name.

The parameter M is used to specify the display size (that is, maximum number of

characters) to be used by values in the column. In most cases, this will limit the

range of values that may be specified in the column. M may be any integer between

1 and 255. Note that for numerical types (for example, INT), this parameter doesn’t

actually restrict the range of values that may be stored. Instead, it causes spaces (or

zeros in the case of a ZEROFILL column—see further on for details) to be added to

the values so that they reach the desired display width when they’re displayed.

Additionally, storing values longer than the specified display width can cause

problems when the values are used in complex joins, and thus should be avoided

whenever possible.

The parameter D lets you specify how many decimal places will be stored for a

floating-point value. This parameter may be set to a maximum of 30, but M should

always allow for these places (that is, D should always be less than or equal to M –

2 to allow room for a zero and a decimal point).

The second type of parameter is an optional column attribute. The attributes sup-

ported by the different column types are listed for each; to enable them, simply type

them after the column type, separated by spaces. Here are the available column at-

tributes and their meanings:

ZEROFILL Values for the column always occupy their maximum display length,

as the actual value is padded with zeros. This option automatically

sets the UNSIGNED option as well.

UNSIGNED The column may accept only positive numerical values (or zero). This

restriction frees up more storage space for positive numbers, effectively

doubling the range of positive values that may be stored in the column,

and should always be set if you know that there’s no need to store

negative values.

BINARY By default, comparisons of character values in MySQL (including

sorting) are case-insensitive. However, comparisons for BINARY columns

are case-sensitive.

For a complete, up-to-date reference to supported SQL column types, see the MySQL

Reference Manual.1

Numerical Types
TINYINT[(M)]

Description:

A tiny integer value

Attributes allowed:

UNSIGNED, ZEROFILL

Range:

-128 to 127 (0 to 255 if UNSIGNED)

Storage space:

1 byte (8 bits)

SMALLINT[(M)]

Description:

A small integer value

Attributes allowed:

UNSIGNED, ZEROFILL

Range:

-32768 to 32767 (0 to 65535 if UNSIGNED)

1 http://dev.mysql.com/doc/mysql/en/data-types.html

PHP & MySQL: Novice to Ninja470

http://dev.mysql.com/doc/mysql/en/data-types.html
http://dev.mysql.com/doc/mysql/en/data-types.html

Storage space:

2 bytes (16 bits)

MEDIUMINT[(M)]

Description:

A medium integer value

Attributes allowed:

UNSIGNED, ZEROFILL

Range:

-8588608 to 8388607 (0 to 16777215 if UNSIGNED)

Storage space:

3 bytes (24 bits)

INT[(M)]

Description:

A regular integer value

Attributes allowed:

UNSIGNED, ZEROFILL

Range:

-2147483648 to 2147483647 (0 to 4294967295 if UNSIGNED)

Storage space:

4 bytes (32 bits)

Alternative syntax:

INTEGER[(M)]

BIGINT[(M)]

Description:

A large integer value

Attributes allowed:

UNSIGNED, ZEROFILL

471Appendix D: MySQL Column Types

Range:

-9223372036854775808 to 9223372036854775807 (0 to

18446744073709551615 if UNSIGNED)

Storage space:

8 bytes (64 bits)

Notes:

MySQL performs all integer arithmetic functions in signed BIGINT format;

thus, BIGINT UNSIGNED values over 9223372036854775807 (63 bits) will

only work properly with bit functions (for example, bit-wise AND, OR, and

NOT). Attempting integer arithmetic with larger values may produce inac-

curate results due to rounding errors.

FLOAT[(M, D)]

FLOAT(precision)

Description:

A floating point number

Attributes allowed:

ZEROFILL

Range:

0 and ±1.175494351E-38 to ±3.402823466E+38

Storage space:

4 bytes (32 bits)

Notes:

precision (in bits), if specified, must be less than or equal to 24, or else a

DOUBLE column will be created instead.

DOUBLE[(M, D)]

DOUBLE(precision)

Description:

A high-precision floating point number

PHP & MySQL: Novice to Ninja472

Attributes allowed:

ZEROFILL

Range:

0 and ±2.2250738585072014-308 to ±1.7976931348623157E+308

Storage space:

8 bytes (64 bits)

Notes:

precision (in bits), if specified, must be greater than or equal to 25, or else

a FLOAT column will be created instead (see earlier). precision may not be

greater than 53.

Alternative syntax:

DOUBLE PRECISION[(M,D)] or REAL[(M,D)]

DECIMAL[(M[, D])]

Description:

A floating point number stored as a character string

Attributes allowed:

ZEROFILL

Range:

As for DOUBLE, but constrained by M and D (see Notes)

Storage space:

Depends on the stored value. For a value with X digits before the decimal

point and Y digits after, the storage space used is approximately (X + Y) ×

4 ÷ 10 bytes.

Notes:

If D is unspecified, it defaults to 0 and numbers in this column will have

no decimal point or fractional part. If M is unspecified, it defaults to 10.

Alternative syntax:

NUMERIC([M[,D]])

473Appendix D: MySQL Column Types

BIT(M)

Description:

An M-bit binary value, where M can be 1 to 64. In other words, a series of

M digits, each of which may be 1 or 0.

Range:

As constrained by M

Storage space:

M + 2 bytes (8 × M + 16 bits)

Notes:

Intended for storing sets of Boolean (true or false) flags. To write BIT val-

ues, use the form b'ddd…', where each digit d can be 1 (to indicate “true”)

or 0 (to indicate “false”). For example, an 8-bit binary value where all the

flags are true is b'11111111'.

Character Types
CHAR(M)

Description:

A fixed-length character string

Attributes allowed:

BINARY

Maximum length:

M characters

Storage space:

M bytes (8 × M bits)

Notes:

CHAR values are stored as strings of length M, even though the assigned value

may be shorter. When the string is shorter than the full length of the field,

spaces are added to the end of the string to bring it exactly to M characters.

Trailing spaces are stripped off when the value is retrieved.

PHP & MySQL: Novice to Ninja474

CHAR columns are quicker to search than variable-length character column

types such as VARCHAR, since their fixed-length nature makes the underlying

database file format more regular.

M may take any integer value from 0 to 255, with a CHAR(0) column able to

store only two values: NULL and '' (the empty string), which occupy a single

bit.

Alternative syntax:

CHARACTER(M)

VARCHAR(M)

Description:

A variable-length character string

Attributes allowed:

BINARY

Maximum length:

M characters

Storage space:

Length of stored value, plus 1 byte to store length (2 bytes if M > 255)

Notes:

As VARCHAR values occupy only the space they require, there’s usually no

point specifying a maximum field length M of anything less than 255 (the

maximum for MySQL versions before 5.0.3). From 5.0.3 onward, MySQL

will let you specify a maximum length up to 65,535 characters; however,

65,535 also happens to be the maximum number of bytes of data that a single

table row is allowed to contain, so in practice you’ll want to stick to much

smaller limits, or consider a more appropriate column type like TEXT.

Strings longer than the specified limit will be chopped to the maximum

length when inserted. MySQL versions before 5.0.3 would strip trailing

spaces from values before they were stored, but this usually unexpected

(and nonstandard) behavior has been removed and values are stored as

supplied in MySQL 5.0.3 and later.

475Appendix D: MySQL Column Types

Alternative syntax:

CHARACTER VARYING(M)

BINARY(M)

Description:

A fixed-length binary string

Maximum length:

M characters

Storage space:

M bytes (8 × M bits)

Notes:

Just like CHAR, except MySQL treats the values stored in this column as non-

textual byte strings.

VARBINARY(M)

Description:

A variable-length binary string

Maximum length:

M characters

Storage space:

Length of stored value, plus 1 byte to store length

Notes:

Just like VARCHAR, except MySQL treats the values stored in this column as

non-textual byte strings.

TINYBLOB

TINYTEXT

Description:

A short, variable-length character string

Maximum length:

255 characters

PHP & MySQL: Novice to Ninja476

Storage space:

Length of stored value, plus 1 byte to store length

Notes:

These types are basically equivalent to VARCHAR(255) BINARY and

VARCHAR(255), respectively. However, these column types do not trim

trailing spaces from inserted values. The only difference between TINYBLOB

and TINYTEXT is that the former performs case-sensitive comparisons and

sorts, while the latter does not.

BLOB

TEXT

Description:

A variable-length character string

Maximum length:

65,535 characters (65KB)

Storage space:

Length of stored value, plus 2 bytes to store length

Notes:

The only difference between BLOB and TEXT is that the former performs case-

sensitive comparisons and sorts, while the latter does not.

MEDIUMBLOB

MEDIUMTEXT

Description:

A medium, variable-length character string

Maximum length:

16,777,215 characters (16.8MB)

Storage space:

Length of stored value, plus 3 bytes to store length

477Appendix D: MySQL Column Types

Notes:

The only difference between MEDIUMBLOB and MEDIUMTEXT is that the former

performs case-sensitive comparisons and sorts, while the latter does not.

LONGBLOB

LONGTEXT

Description:

A long, variable-length character string

Maximum length:

4,294,967,295 characters (4.3GB)

Storage space:

Length of stored value, plus 4 bytes to store length

Notes:

The only difference between LONGBLOB and LONGTEXT is that the former

performs case-sensitive comparisons and sorts, while the latter does not.

ENUM(value1, value2, ...)

Description:

A set of values from which a single value must be chosen for each row

Maximum Length:

One value chosen from up to 65,535 possibilities

Storage space:
■ 1 to 255 values: 1 byte (8 bits)
■ 256 to 65,535 values: 2 bytes (16 bits)

Notes:

Values in this type of field are stored as integers that represent the element

selected. 1 represents the first element, 2 the second, and so on. The special

value 0 represents the empty string '', which is stored if a value is assigned

that doesn’t appear in a column declaration.

NOT NULL columns of this type default to the first value in the column de-

claration if no particular default is assigned.

PHP & MySQL: Novice to Ninja478

SET(value1, value2, ...)

Description:

A set of values, each of which may be set or not set

Maximum length:

Up to 64 values in a given SET column

Storage space:
■ 1 to 8 values: 1 byte (8 bits)
■ 9 to 16 values: 2 bytes (16 bits)
■ 17 to 24 values: 3 bytes (24 bits)
■ 25 to 32 values: 4 bytes (32 bits)
■ 33 to 64 values: 8 bytes (64 bits)

Notes:

Values in this type of field are stored as integers representing the pattern

of bits for set and unset values. For example, if a set contains eight values,

and in a particular row the odd values are set, the binary representation

01010101 becomes the decimal value 85. Values may therefore be assigned

either as integers, or as a string of set values, separated by commas (for ex-

ample, 'value1,value3,value5,value7' = 85). Searches should be per-

formed either with the LIKE operator, or the FIND_IN_SET function.

Date/Time Types
DATE

Description:

A date

Range:

'1000-01-01' to '9999-12-31', and '0000-00-00'

Storage space:

3 bytes (24 bits)

479Appendix D: MySQL Column Types

TIME

Description:

A time

Range:

'-838:59:59' to '838:59:59'

Storage space:

3 bytes (24 bits)

DATETIME

Description:

A date and time

Range:

'1000-01-01 00:00:00' to '9999-12-31 23:59:59'

Storage space:

8 bytes (64 bits)

YEAR

Description:

A year

Range:

1901 to 2155, and 0000

Storage space:

1 byte (8 bits)

Notes:

You can specify a year value with a four-digit number (1901 to 2155, or

0000), a four-digit string ('1901' to '2155', or '0000'), a two-digit number

(70 to 99 for 1970 to 1999, 1 to 69 for 2001 to 2069, or 0 for 0), or a two-digit

string ('70' to '99' for 1970 to 1999, '00' to '69' for 2000 to 2069). Note

that you cannot specify the year 2000 with a two-digit number, nor the year

0 with a two-digit string. Invalid year values are always converted to 0.

PHP & MySQL: Novice to Ninja480

TIMESTAMP[(M)]

Description:

A timestamp (date/time), in YYYYMMDDHHMMSS format

Range:

19700101000000 to some time in 2037 on current systems

Storage space:

4 bytes (32 bits)

Notes:

An INSERT or UPDATE operation on a row that contains one or more

TIMESTAMP columns will automatically update the first TIMESTAMP column

in the row with the current date/time. This lets you use such a column as

the “last modified date/time” for the row. Assigning a value of NULL to the

column will have the same effect, thereby providing a means of “touching”

the date/time. You can also assign actual values as you would for any other

column.

Allowable values for M are 14, 12, 10, 8, 6, 4, and 2, and correspond to the

display formats YYYYMMDDHHMMSS, YYMMDDHHMMSS, YYMMDDHHMM, YYYYMMDD,

YYMMDD, YYMM, and YY respectively. Odd values from 1 to 13 automatically

will be bumped up to the next even number, while values of 0 or greater

than 14 are changed to 14.

481Appendix D: MySQL Column Types

Index

Symbols
$ (dollar sign), end of string, 242, 246

$_FILES[], 366

$srcurl, 363

% (percent sign), 217

&& (double ampersand), and operator,

76

(…) round brackets, 244

* (asterisk)

multiplication operator, 54

zero or more of the preceding charac-

ters, 242

+ (plus sign)

addition operator, 54

pattern modifier, 243

. (dot), any character, 242

.= (append operator), 216

/ (forward slash)

delimiter, 246

division operator, 54

= (equals sign), assignment operator, 54

== (double-equals), equal operator, 74

? (question mark), 243

[…] square brackets

character class, 244

optional code, 265

\ (backslash)

with apostrophes in PHP, 68

escape delimiter, 239

^ (caret), start of string, 242

| (vertical bar), pipe, 243

|| (double vertical bar), or operator, 76

‘ (apostrophe), form fields, 67

A
ABS(), 450

absolute paths, 171

access control, 282–316

controller code, 286–292

databases, 282–286

example, 314

function library, 293–300

MySQL, 326–331

host name issues, 327

locked out?, 329

passwords and roles, 302–313

user accounts

GRANT, 433

MySQL, 93

REVOKE, 437

ACOS(), 451

actions, hyperlinks, 135

ADDDATE(), 460

addition operator (+), 54

aggregate functions, 350

aliases, tables, 346

ALTER TABLE, 142, 146, 423–427

ALTER TABLE ADD UNIQUE, 283

ANALYZE TABLE, 427

and operator (&&), 76

any character (.), 242

Apache server, versions, 401

apostrophe ('), form fields, 67

append operator (.=), 216

arguments, PHP statements, 53

arithmetic operators, 54

arrays, PHP, 55

arrow notation (->), 101

ASCII(), 453

ASIN(), 452

assignment operator (=), 54

associative arrays, 56

asterisk (*)

multiplication operator, 54

zero or more of the preceding charac-

ters, 242

ATAN(), 452

ATAN2(), 452

authors, 191–205

adding and editing, 200–205

deleting, 194–200

AUTO_INCREMENT, 230

AVG(), 468

B
backing up MySQL databases, 320–326

incremental backups using binary

logs, 323

mysqldump, 322

phpMyAdmin, 321

backslash (\)

with apostrophes in PHP, 68

escape delimiter, 239

BEGIN, 427

BENCHMARK(), 467

BIGINT, 471

BIN(), 453

binary column types in MySQL, 372

binary data, 359–390

example, 381–388

large files, 388

recording uploaded files in the data-

base, 371–379

binary column types, 372

storing files, 374

viewing stored files, 376–379

semidynamic pages, 360

uploading files, 366

binary logs, incremental backups of

MySQL databases, 323

BIT, 474

BIT_AND(), 468

BIT_LENGTH(), 454

BIT_OR(), 468

BLOB, 373, 477

break, 277

C
caret (^), start of string, 242

CASE, 449

case sensitivity in SQL queries, 36

catch block, 106

categories, CMS, 205–212

CEIL(), 450

CEILING(), 450

CHAR, 474

CHAR(), 453

CHAR_LENGTH(), 454

character class, 244

character MySQL column types, 474–479

CHARACTER_LENGTH(), 454

checkboxes, 221

classes

character class […], 244

PHP, 101

CMS (content management systems),

187–236

authors, 191–205

adding and editing, 200–205

deleting, 194–200

categories, 205–212

484

example, 212–233

adding and editing, 220–231

deleting, 233

searching, 212–220

front page, 188

column names aliases, 346

columns

binary column types in MySQL, 372

defined, 28

DESCRIBE/DESC, 431

types, 469–481

character types, 474–479

date/time types, 479

numerical types, 470–474

command prompts, MySQL, 322

comments, PHP, 53

COMMIT, 427

composite indexes, 335

CONCAT(), 453

CONCAT_WS(), 453

configuration, connecting MySQL with

PHP, 102–108

confirmation on delete, 200

CONNECTION_ID(), 466

content formatting (see formatting)

content management systems (see CMS)

Content-disposition header, 377

Content-length header, 377

Content-type header, 377

control (see access control)

control structures, PHP, 70–81

controllers

access control, 286–292

PHP templates, 85

CONV(), 453

cookies, 263–270

copy, 361

COS(), 451

COT(), 452

COUNT(), 355, 468

CREATE DATABASE, 427

CREATE INDEX, 428

CREATE TABLE, 146, 428

CURDATE(), 463

CURRENT_DATE(), 463

CURRENT_TIME(), 463

CURRENT_TIMESTAMP(), 463

CURRENT_USER(), 464

CURTIME(), 463

D
data

(see also binary data)

inserting into MySQL tables, 41

LOAD DATA INFILE, 435

databases

(see also MySQL; relational databases;

SELECT; SQL)

access control, 282–286

COMMIT, 427

CREATE DATABASE, 427

DATABASE(), 464

DROP DATABASE, 40, 432

indexes, 331

INSERT, 41, 47, 147

recording uploaded files, 371–379

binary column types, 372

storing files, 374

viewing stored files, 376–379

ROLLBACK, 437

SQL queries and database transac-

tions, 345

test databases

removing, 414

485

XAMPP, 33

USE, 448

date and time MySQL column types, 479

date and time MySQL functions, 457–

464

DATE_ADD(), 460

DATE_FORMAT(), 461

DATE_SUB(), 460

DAYNAME(), 458

DAYOFMONTH(), 458

DAYOFWEEK(), 457

DAYOFYEAR(), 458

DECIMAL, 473

DECODE(), 465

DEGREES(), 452

DELETE, 46

delete anomalies, 144

deleting

authors: CMS, 194–200

CMS, 233

confirmation on, 200

data from a MySQL database, 130–136

DELETE, 431

stored data in MySQL, 46

test databases, 414

delimiters, regular expressions, 239

DESCRIBE, 40

DESCRIBE/DESC, 431

DISTINCT option, 144

division operator (/), 54

document root, 171

dollar sign ($), end of string, 242, 246

domain parameter (setcookie), 266

dot (.), any character, 242

DOUBLE, 472

double ampersand (&&), and operator,

76

double vertical bar (||), or operator, 76

double-equals (==), equal operator, 74

double-quoted PHP strings and regular

expression, 253

DROP DATABASE, 40, 432

DROP INDEX, 432

DROP TABLE, 324, 432

E
echo, 52

editing

authors: CMS, 200–205

CMS, 220–231

elements, arrays, 56

ELT(), 456

emphasized text, string replacement with

regular expressions, 248–252

ENCODE(), 465

ENCRYPT(), 465

end of string ($), 242, 246

ENUM, 478

equal operator (==), 74

equals sign (=), assignment operator, 54

escape delimiter (\), 239

escape sequences, list of, 245

exceptions, PHP, 98

EXP(), 450

expiryTime parameter (setcookie), 265

EXPLAIN, 432

EXPORT_SET(), 457

expressions (see regular expressions)

F
FIELD(), 456

file_exists, 361

file_get_contents, 361

486

file_put_contents, 361

files

(see also include files)

assigning unique filenames, 369

large files, 388

LOAD DATA INFILE, 435

permissions, 365

storing, 374

uploading, 366

viewing stored files, 376–379

FIND_IN_SET(), 456

FLOAT, 472

FLOOR(), 450

flow of control, 70

for loop, 79

foreach loop, 116, 198, 277

foreign key constraints, 195, 336

foreign keys, MySQL, 336–339

FORMAT(), 466

formatting, 237–262

regular expressions, 238–247

string replacement, 247–261

emphasized text, 248–252

example, 258–261

hyperlinks, 255

paragraphs, 253

forms

passing variables in: PHP, 66–70

variables, 201

forward slash (/)

delimiter, 246

division operator, 54

FOUND_ROWS(), 466

FROM_DAYS(), 461

FROM_UNIXTIME(), 464

front page, CMS, 188

functions

declarations, 174

libraries, 173–180, 260, 293–300

MySQL, 449–468

control flow functions, 449

date and time functions, 457–464

mathematical functions, 450

miscellaneous functions, 464

string functions, 453–457

summary functions, 467

PDO, 97

PHP, 173–180

scope, 177

G
GET_LOCK(), 466

global access: PHP, 176–180

global scope, 177

GRANT, 433

GREATEST(), 452

GROUP BY, MySQL functions, 467

group-by functions, 350

GROUPing SELECT results, 350

H
HAVING, SQL queries, 356

headers

HTTP headers, 377

PHP, 126

HEX(), 453

host name, MySQL access control, 327

HOUR(), 459

HTML, including HTML content: PHP,

162

htmlspecialchars, 64

487

HTTP

headers, 377

redirect, 126

httpOnly parameter (setcookie), 266

hyperlinks

actions, 135

string replacement with regular expres-

sions, 255

I
IDEs (Integrated Development Environ-

ments), 23

if statements, 70

IF(), 449

IFNULL(), 449

import, 179

include files, 162–173

HTML content, 162

PHP code, 164–169

shared, 171

types of includes, 169

include statements, 83, 85

include_once, 170, 175

incremental backups using binary logs,

323

indexes

CREATE INDEX, 428

DROP INDEX, 432

MySQL, 331–336

INET_ATON(), 467

INET_NTOA(), 467

INNER JOINs, 353

InnoDB, 346

INSERT, 41, 47, 147, 434

INSERT(), 456

inserting data into a MySQL database,

119–130

installation, 1–25, 391–421

MySQL

Linux, 20, 411–415

Mac OS X, 11–19, 402

Windows, 3–11, 391

PHP

Linux, 20, 415–421

Mac OS X, 11–19, 406

Windows, 3–11, 393–402

web servers, 2

your first PHP script, 21

INSTR(), 454

INT, 471

Integrated Development Environments

(IDEs), 23

interactivity

passing variables

in forms, 66–70

in links, 57–66

PHP, 57–70

IS_FREE_LOCK(), 467

J
joins

about, 149

left joins, 352

SELECT, 442–444

K
keys

foreign key constraints, 195, 336

foreign keys, 336

kill, 330

L
LAST_INSERT_ID(), 465

488

LCASE(), 457

LEAST(), 452

LEFT JOINs, 354

left joins, SQL queries, 352

LEFT(), 454

LENGTH(), 454

libraries, 173–180, 260, 293–300

LIMITs, SQL queries, 343

links, passing variables in: PHP, 57–66

Linux, 410–421

installation, 20

MySQL installation, 411–415

PHP installation, 415–421

lists, multiple selection lists, 222

LOAD DATA INFILE, 435

LOAD_FILE(), 457

localhost, 328

LOCALTIME(), 463

LOCALTIMESTAMP(), 463

LOCATE(), 454

Location headers, 126

LOG(), 451

LOG10(), 451

logs, binary logs, 323

LONGBLOB, 373, 478

LONGTEXT, 478

lookup tables, many-to-many relation-

ships, 156

LOWER(), 457

LPAD(), 454

LTRIM(), 455

M
Mac OS X

installation, 11–19

MySQL installation, 402

PHP installation, 406

magic quotes, 68, 122

MAKE_SET(), 456

MAMP

compared to XAMPP, 33

MySQL root password, 17

using, 12

many-to-many relationships, relational

databases, 155–158

many-to-one relationships, 153

Markdown, 260

MAX(), 468

md5, 284

MD5(), 465

MEDIUMBLOB, 373, 477

MEDIUMINT, 471

MEDIUMTEXT, 477

memory, PHP limit, 388

methods, 102

Microsoft Windows

installation, 3–11

MySQL installation, 391

PHP installation, 393–402

MID(), 455

MIN(), 468

minus sign (-), subtraction operator, 54

MINUTE(), 459

MOD(), 450

modifying stored data in MySQL, 45

MONTH(), 458

MONTHNAME(), 458

multiple selection lists, 222

multiplication operator (*), 54

my.cnf, 324

my.ini, 324

MySQL, 27–47, 91–139, 319–339

about, 2, 91

access control, 326–331

489

host name issues, 327

locked out?, 329

backups, 320–326

incremental backups using binary

logs, 323

mysqldump, 322

phpMyAdmin, 321

column types, 469–481

character types, 474–479

date/time types, 479

numerical types, 470–474

connecting with PHP, 96–108

configuring, 102–108

OOP, 100

databases, 27, 35

deleting data from the database, 130–

136

foreign keys, 336–339

functions, 449–468

control flow functions, 449

date and time functions, 457–464

mathematical functions, 450

miscellaneous functions, 464

string functions, 453–457

summary functions, 467

indexes, 331–336

inserting data into the database, 119–

130

installation

Linux, 20, 411–415

Mac OS X, 11–19, 402

Windows, 3–11, 391

packet size, 388

phpMyAdmin: SQL queries, 29

root password

in MAMP, 17

in XAMPP, 10

SELECT result sets, 112–119

sending SQL queries in PHP, 109

SQL basics, 35

SQL statements, 423–448

ALTER TABLE, 423–427

ANALYZE TABLE, 427

BEGIN, 427

COMMIT, 427

CREATE DATABASE, 427

CREATE INDEX, 428

CREATE TABLE, 428

DELETE, 431

DESCRIBE/DESC, 431

DROP DATABASE, 432

DROP INDEX, 432

DROP TABLE, 432

EXPLAIN, 432

GRANT, 433

INSERT, 434

LOAD DATA INFILE, 435

OPTIMIZE TABLE, 436

RENAME TABLE, 436

REPLACE, 437

REVOKE, 437

ROLLBACK, 437

SELECT (see SELECT)

SET, 445

SHOW, 445

START TRANSACTION, 447

TRUNCATE, 447

UPDATE, 447

USE, 448

stored data, 43–46

deleting, 46

modifying, 45

viewing, 43

tables, 37–42

490

creating, 37

inserting data, 41

typing commands using PHP, 47

user accounts, 93

XAMPP, 33

mysqlbinlog, 326

mysqldump, backing up MySQL data-

bases, 322

N
name parameter, 265

new keyword, 101

Notepad, 22

NOW(), 463

NULLIF(), 449

numerical comparison operators, 79

numerical MySQL column types, 470–

474

O
object oriented programming (OOP),

connecting MySQL with PHP, 100

OCT(), 453

OCTET_LENGTH(), 454

one-to-many relationships, 153

one-to-one relationships, 153

OOP (object oriented programming),

connecting MySQL with PHP, 100

operators

and operator, 76

append operator, 216

arithmetic operators, 54

equal operator, 74

numerical comparison operators, 79

or operator, 76

PHP, 53

string concatenation operator, 54

OPTIMIZE TABLE, 436

or operator (||), 76

ORD(), 453

ORDER BY clause (SELECT), 342

OS X

installation, 11–19

MySQL installation, 402

PHP installation, 406

P
packet size, MySQL, 388

pages

front page, 188

semidynamic pages, 360

paragraphs, string replacement with reg-

ular expressions, 253

PASSWORD(), 465

passwords

access control, 302–313

MySQL root password

MAMP, 17

XAMPP, 10

security, 284

path parameter (setcookie), 266

pattern modifiers, 241

PDO (PHP Data Objects), 97

PDOException, 103

percent sign (%), 217

PERIOD_ADD(), 460

PERIOD_DIFF(), 460

permissions, files, 365

PHP, 49–89, 161–185

about, 2

arrays, 55

connecting MySQL to PHP, 96–108

control structures, 70–81

491

custom functions and function librar-

ies, 173–180

disconnecting from MySQL, 108

exceptions, 98

include files, 162–173

HTML content, 162

PHP code, 164–169

shared, 171

types of includes, 169

installation

Linux, 20, 415–421

Mac OS X, 11–19, 406

Windows, 3–11, 393–402

interactivity, 57–70

passing variables in forms, 66–70

passing variables in links, 57–66

memory limit, 388

MySQL commands, 47

script timeout, 389

sending SQL queries with: MySQL,

109

sessions, 270–280

syntax and statements, 51

template helpers, 180–183

templates, 83–89

URLs, 81

variables, operators and comments,

53

PHP Markdown library, 260

PHP scripts

about, 3, 92

editing

in Mac OS X with TextEdit, 18, 22

in Windows with Notepad, 22

timeouts, 389

your first PHP script, 21

phpMyAdmin

authentication, 11

backing up MySQL databases, 321

SQL queries, 29

PI(), 451

pipe (|), 243

placeholders, 123

plus sign (+)

addition operator, 54

pattern modifier, 243

port numbers, 15

POSITION(), 454

POW(), 451

POWER(), 451

prepared statements, 123

procedural programming, 100

properties, PHP, 101

Q
QUARTER(), 458

queries (see SQL queries)

question mark (?), 243

QUOTE(), 457

R
RADIANS(), 452

RAND(), 452

referential actions, 339

referential integrity, 194

regular expressions

about, 238–247

string replacement, 247–261

emphasized text, 248–252

example, 258–261

hyperlinks, 255

paragraphs, 253

492

relational databases

(see also MySQL; SELECT; SQL)

keeping entities separate, 144–147

many-to-many relationships, 155–158

SELECT with multiple tables, 148–153

simple relationships, 153–155

tables, 142

relationships

between tables, 145

many-to-many, 155–158

simple, 153–155

RELEASE_LOCK(), 467

removing (see deleting)

RENAME TABLE, 436

REPEAT(), 456

REPLACE, 437

REPLACE(), 456

require compared to include, 169

require_once, 170

REVERSE(), 456

REVOKE, 437

RIGHT(), 455

role-based access control, 282, 285

roles, access control, 302–313

ROLLBACK, 345, 437

root passwords

MySQL root password in MAMP, 17

MySQL root password in XAMPP, 10

root user, MySQL, 95

round brackets (…), 244

ROUND(), 450

rows

defined, 28

GROUP BY, MySQL functions, 467

TRUNCATE, 447

RPAD(), 454

RTRIM(), 455

S
scope, variables, 176–180

scripts (see PHP scripts)

searching, CMS, 212–220

SEC_TO_TIME(), 464

SECOND(), 459

secure parameter (setcookie), 266

security

passwords, 284

PHP, 60

SQL injection attacks and magic

quotes, 122

SELECT, 438–444

about, 43

DISTINCT option, 144

GROUPing SELECT results, 350

joins, 442–444

multiple tables, 148–153

result sets in MySQL, 112–119

sorting SELECT query results, 341

unions, 444

semidynamic pages, binary data, 360

servers, web servers, 2

Server-side Includes (SSIs), 162

SESSION_USER(), 464

sessions, PHP, 270–280

SET, 445, 479

setcookie, 265

shared include files: PHP, 171

shopping cart example, 272–280

short-circuit evaluation, 371

SHOW, 445

SIGN(), 450

simple relationships, relational data-

bases, 153–155

SIN(), 451

493

skip-grant-tables, 330

SMALLINT, 470

sorting SELECT query results, 341

SOUNDEX(), 455

SPACE(), 456

SQL (Structured Query Language)

(see also SELECT; MySQL)

about, 35

SQL injection attacks, 122

statements implemented in MySQL,

423–448

ALTER TABLE, 423–427

ANALYZE TABLE, 427

BEGIN, 427

COMMIT, 427

CREATE DATABASE, 427

CREATE INDEX, 428

CREATE TABLE, 428

DELETE, 431

DESCRIBE/DESC, 431

DROP DATABASE, 432

DROP INDEX, 432

DROP TABLE, 432

EXPLAIN, 432

GRANT, 433

INSERT, 434

LOAD DATA INFILE, 435

OPTIMIZE TABLE, 436

RENAME TABLE, 436

REPLACE, 437

REVOKE, 437

ROLLBACK, 437

SELECT (see SELECT)

SET, 445

SHOW, 445

START TRANSACTION, 447

TRUNCATE, 447

UPDATE, 447

USE, 448

SQL queries, 341–358

case sensitivity, 36

column and table name aliases, 346

database transactions, 345

GROUPing SELECT results, 350

HAVING, 356

in links, 343

left joins, 352

phpMyAdmin, 29

sending in PHP: MySQL, 109

sorting SELECT query results, 341

statements implemented in MySQL,

423–448

SQRT(), 451

square brackets […]

character class, 244

optional code, 265

SSIs (Server-side Includes), 162

start of string (^), 242

START TRANSACTION, 447

state, cookies, 263

statements, PHP, 51

STD(), 468

STDDEV(), 468

str_replace, 254

string concatenation operator, 54

strings

double-quoted PHP strings and regular

expressions, 253

escape sequences, 245

MySQL functions, 453–457

pattern matching, 242

replacement with regular expressions,

247–261

494

Structured Query Language (see SQL)

SUBDATE(), 460

SUBSTRING(), 455

SUBSTRING_INDEX(), 455

subtraction operator (-), 54

SUM(), 468

summary functions, 467

superglobal, 180

syntax, PHP, 51

SYSDATE(), 463

SYSTEM_USER(), 464

T
tables

aliases, 346

ALTER TABLE, 142, 146, 423–427

ALTER TABLE ADD UNIQUE, 283

ANALYZE TABLE, 427

CREATE TABLE, 146, 428

defined, 28

DROP TABLE, 324, 432

INNER JOINs, 353

INSERT, 434

LEFT JOINs, 354

MySQL, 37–42

OPTIMIZE TABLE, 436

relational databases, 142

relationships, 145

RENAME TABLE, 436

REPLACE, 437

SELECT with multiple tables, 148–153

TRUNCATE, 447

UPDATE, 45, 447

TAN(), 451

templates

fragments, 162

helpers, 182

PHP, 83–89, 180–183

test databases

removing, 414

XAMPP, 33

TEXT, 477

TextEdit, 18, 22

time and date MySQL column types, 479

time and date MySQL functions, 457–

464

TIME_FORMAT(), 463

TIME_TO_SEC(), 464

timeouts, PHP scripts, 389

TIMESTAMP, 481

TINYBLOB, 373, 476

TINYINT, 470

TINYTEXT, 476

TO_DAYS(), 461

transactions

SQL queries and database transac-

tions, 345

START TRANSACTION, 447

TRUNCATE, 447

TRUNCATE(), 452

try-catch statements, 98

types

MySQL column types, 469–481

character types, 474–479

date/time types, 479

numerical types, 470–474

U
UCASE(), 457

unions, SELECT, 444

UNIX_TIMESTAMP(), 463

unlink, 361

UPDATE, 45, 447

update anomalies, 144

495

upload_max_filesize, 368

uploading files, 366

UPPER(), 457

URLs

PHP, 81

query strings, 57

USE, 448

user accounts

GRANT, 433

MySQL, 93

REVOKE, 437

USER(), 464

userHasRole, 290, 294, 298

userIsLoggedIn, 289, 293

UTF-8, PHP, 63

V
values, PHP, 101

VARBINARY, 476

VARCHAR, 475

variable interpolation, 55

variables

forms, 201

PHP, 53

passing variables in forms, 66–70

passing variables in links, 57–66

scope, 176–180

VERSION(), 466

versions, PHP and Apache, 401

vertical bar (|), pipe, 243

viewing stored data in MySQL, 43

W
web hosts, what information to ask, 20

web root directory, 23

web servers, installation, 2

WEEK(), 458

WEEKDAY(), 458

while loop, 77, 113

Windows

installation, 3–11

MySQL installation, 391

PHP installation, 393–402

X
XAMPP

directory protection, 11

MySQL root password, 10

Windows, 4

Y
YEAR, 480

YEAR(), 459

YEARWEEK(), 459

496

SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

 Provide working code for your website

 Make learning easy and fun

phpmysql5-barcode.pdf 1 24/04/12 11:37 AM

WEB DEVELOPMENT
PRINT ISBN: 978-0-9871530-8-1

EBOOK ISBN: 978-0-9872478-1-0

Kevin Yank is a world-renowned leader in web development. Hired as SitePoint’s

Build Your Own Database Driven Website Using PHP & MySQL, and

has contributed countless articles, courses, newsletters, and podcasts on

building websites. Kevin has a passion for making web technology easy to

understand for anyone.

ABOUT KEVIN YANK

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

USD $39.95 CAD $39.95

ALL SOURCE CODE AVAILABLE FOR DOWNLOAD

PHP & MySQL: Novice to Ninja is a hands-on guide that will help you

selling book, you’ll learn how to use PHP (used on 20 million sites
worldwide) to build your own working content management system (CMS)
using entirely free software. The book also teaches you best practices in
database design using MySQL, and covers all the latest technologies.

What’s covered:

 Tutorials: Easy-to-follow examples with downloadable code snippets

 PHP coding: Learning the correct PHP syntax

 Database design: Mastering SQL, table construction, and interaction

 Object Oriented Programming: Crash course in OOP principles

 Shopping carts: Developing an ecommerce platform from scratch

 Latest technologies: Updated for Win 7, Mac OS X Lion, and the latest

versions of PHP, MySQL, phpMyAdmin, XAMPP, MAMP, and HTML5

And a whole lot more ...

TEACH YOURSELF PHP & MYSQL
THE SIMPLE WAY

WHAT’S INSIDE

Hassle-free Setup Instructions
Get yourself up and running on OS X,
Windows, and Linux with ease.

Fun Example Project
Build your own working CMS: an
online joke database.

Best-practice Coding
Learn rock-solid PHP programming
principles from the start.

	Front cover
	Summary of Contents
	PHP & MySQL: Novice to Ninja
	Credits
	About the Author
	Dedication
	Table of Contents
	Preface
	Who Should Read This Book
	What’s in This Book
	Where to Find Help
	The SitePoint Forums
	The Book’s Website
	The Code Archive
	Updates and Errata

	The SitePoint Newsletters
	Your Feedback
	Conventions Used in This Book
	Code Samples
	Tips, Notes, and Warnings

	Installation
	Your Own Web Server
	Windows Installation
	Set the MySQL Root Password in XAMPP

	Mac OS X Installation
	Set the MySQL Root Password in MAMP

	Linux Installation
	What to Ask Your Web Host
	Your First PHP Script
	Full Toolbox, Dirty Hands

	Introducing MySQL
	An Introduction to Databases
	Using phpMyAdmin to Run SQL Queries
	Structured Query Language
	Creating a Database
	Creating a Table
	Inserting Data into a Table
	Viewing Stored Data
	Modifying Stored Data
	Deleting Stored Data
	Let PHP Do the Typing

	Introducing PHP
	Basic Syntax and Statements
	Variables, Operators, and Comments
	Arrays
	User Interaction and Forms
	Passing Variables in Links
	Passing Variables in Forms

	Control Structures
	Hiding the Seams
	Avoid Advertising Your Technology Choices
	Use PHP Templates
	Many Templates, One Controller

	Bring on the Database

	Publishing MySQL Data on the Web
	The Big Picture
	Creating a MySQL User Account
	Connecting to MySQL with PHP
	A Crash Course in Object Oriented Programming
	Configuring the Connection

	Sending SQL Queries with PHP
	Handling SELECT Result Sets
	Inserting Data into the Database
	Deleting Data from the Database
	Mission Accomplished

	Relational Database Design
	Giving Credit Where Credit Is Due
	Rule of Thumb: Keep Entities Separate
	SELECT with Multiple Tables
	Simple Relationships
	Many-to-many Relationships
	One for Many, and Many for One

	Structured PHP Programming
	Include Files
	Including HTML Content
	Including PHP Code
	Types of Includes
	Shared Include Files

	Custom Functions and Function Libraries
	Variable Scope and Global Access

	Structure in Practice: Template Helpers
	The Best Way

	A Content Management System
	The Front Page
	Managing Authors
	Deleting Authors
	Adding and Editing Authors

	Managing Categories
	Managing Jokes
	Searching for Jokes
	Adding and Editing Jokes
	Deleting Jokes

	Summary

	Content Formatting with Regular Expressions
	Regular Expressions
	String Replacement with Regular Expressions
	Emphasized Text
	Paragraphs
	Hyperlinks
	Putting It All Together

	Real World Content Submission

	Cookies, Sessions, and Access Control
	Cookies
	PHP Sessions
	A Simple Shopping Cart

	Access Control
	Database Design
	Controller Code
	Function Library
	Managing Passwords and Roles
	A Challenge: Joke Moderation

	The Sky’s the Limit

	MySQL Administration
	Backing Up MySQL Databases
	Database Backups Using phpMyAdmin
	Database Backups Using mysqldump
	Incremental Backups Using Binary Logs

	MySQL Access Control Tips
	Host Name Issues
	Locked Out?

	Indexes
	Multicolumn Indexes

	Foreign Keys
	Better Safe than Sorry

	Advanced SQL Queries
	Sorting SELECT Query Results
	Setting LIMITs
	Database Transactions
	Column and Table Name Aliases
	GROUPing SELECT Results
	LEFT JOINs
	Limiting Results with HAVING
	Further Reading

	Binary Data
	Semidynamic Pages
	Handling File Uploads
	Assigning Unique Filenames

	Recording Uploaded Files in the Database
	Binary Column Types
	Storing Files
	Viewing Stored Files

	Putting It All Together
	Large File Considerations
	MySQL Packet Size
	PHP Memory Limit
	PHP Script Timeout

	The End

	Appendix A: Manual Installation Instructions
	Windows
	Installing MySQL
	Installing PHP

	OS X
	Installing MySQL
	Installing PHP

	Linux
	Installing MySQL
	Installing PHP

	Appendix B: MySQL Syntax Reference
	SQL Statements Implemented in MySQL
	ALTER TABLE
	ANALYZE TABLE
	BEGIN
	COMMIT
	CREATE DATABASE
	CREATE INDEX
	CREATE TABLE
	DELETE
	DESCRIBE/DESC
	DROP DATABASE
	DROP INDEX
	DROP TABLE
	EXPLAIN
	GRANT
	INSERT
	LOAD DATA INFILE
	OPTIMIZE TABLE
	RENAME TABLE
	REPLACE
	REVOKE
	ROLLBACK
	SELECT
	Joins
	Unions

	SET
	SHOW
	START TRANSACTION
	TRUNCATE
	UPDATE
	USE

	Appendix C: MySQL Functions
	Control Flow Functions
	Mathematical Functions
	String Functions
	Date and Time Functions
	Miscellaneous Functions
	Functions for Use with GROUP BY Clauses

	Appendix D: MySQL Column Types
	Numerical Types
	Character Types
	Date/Time Types

	Index
	Back Cover

