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When a quantity is the greatest or the
least that it can be, at that moment it neither
flows backwards nor forwards; for if it flows
forwards or increases it was less, and will
presently be greater than it is; and on the
contrary if it flows backwards or decreases,
then it was greater, and will presently be less
than it is.
— Isaac Newton on maximums and

minimums, in Methodus fluxionum et
serierum infinitarum, 1671

There are hardly any speculations in
geometry more useful or more entertaining
than those which relate to maxima and
minima.
— the great English mathematician Colin

Maclaurin, in A Treatise of Fluxions, 1742

The great body of physical science, a
great deal of the essential fact of financial
science, and endless social and political
problems are only accessible and only
thinkable to those who have had a sound
training in mathematical analysis, and the
time may not be very remote when it will be
understood that for complete initiation as an
efficient citizen of one of the great complex
world-wide States that are now developing, it
is as necessary to be able to compute, to think
in averages and maxima and minima, as it is
now to be able to read and write.
— H. G. Wells, from Mankind in the Making, 1903
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Preface to the 2021 Edition

The selection of When Least Is Best, first published in
2004, for inclusion in the Princeton Science Library was a wonder-
ful surprise for me (and that’s a vast understatement), joining two of
my other math books (An Imaginary Tale andDr. Euler’s Fabulous For-
mula). That event provided me with the until-now-only-dreamed-of
chance to eliminate some awkward missteps that somehow slipped
through while preparing the earlier editions of the book. On the
flip side, the book’s reissue also providedmewith the opportunity to
present one more problem discussion, a problem I have long wished
I had included in the original work. I have berated myself for years
in having overlooked this particular problem, with its many educa-
tional features. It is, in particular, a minimization problem that (1) is
understandable in its goal by even a grammar school student; (2) is
well within the mathematical reach of a high school AP calculus
student; (3) and yet, despite (2), is analytically pretty nasty unless
one is just a bit clever and sees a “trick” that foreshadows one of the
great principles of classical physics, a trick that neatly sidesteps the
nastiness; and finally (4) is a practical, realistic problem that almost
surely has, more than just a few times, actually occurred in “real
life.” So, with that big buildup, here it is.

Two towns, A and B, are located on the same side of a straight
river. The distance ofA from the river is a, and the distance ofB from
the river is b. The distance between A and B is c. The towns enter
into an agreement to jointly construct a water filtration and pump-
ing station on the river’s edge and to directly connect that facility
to each town with two pipelines, one of length l1 to A and another
of length l2 to B. The total length of pipeline required obviously
depends on where the facility is constructed, with the optimum
choice for the location being that which minimizes l1 + l2. What
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FIGURE 1. The geometry of the water filtration/pumping station problem.

(in terms of a, b, and c) is that minimum value?1 The geometry of
this problem is shown in Figure 1, where, with no loss of generality,
we take a ≥ b.

In Figure 1 the point on the river edge that is directly below A is
assigned the coordinate of zero, and the facility is assigned coor-
dinate x (which is, of course—at least for now—unknown). The
point on the river edge that is directly below B has coordinate√

c2 − (a − b)2, an expression that follows from an obvious appli-
cation of the Pythagorean theorem. The angles α and β that the
pipelines make with the river’s edge may not have immediately
obvious significance but, as you’ll soon see, they will be key to
answering our question.

1 If A and B are on opposite sides of the river the problem becomes nearly trivial.
Simply draw the straight-line segment connecting A and B, and where that line
crosses the river is where the facility should be built, and l1 + l2 is the length of the
line segment. This is because of what even grammar school kids know: the shortest
path between two points in a plane is a straight path.
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If we write T = l1 + l2 then

T =
√

a2 + x2 +
√

b2 + {
√

c2 − (a − b)2 − x}2. (1)

Our problem is to find the x that minimizes T and, as we know from
AP calculus, that suggests our next step is to study the equation

dT

dx
= 0. (2)

The vanishing of the first derivative does not ensure the existence
of an extrema (like a local minimum), of course, but the geome-
try of the problem does make it highly plausible, by inspection of
Figure 1, that a minimum of T does exist for some x between 0 and√

c2 − (a − b)2. If so, then expression (2) will hold there, and in the
following analysis we will establish that a minimum does, in fact,
exist.

So, returning to expression (2), we would like to solve

1

2
(a2 + x2)−1/22x + 1

2

(
b2 +

{√
c2 − (a − b)2 − x

}2
)−1/2

× 2
(√

c2 − (a − b)2 − x
)

(−1) = 0

for x. Or, after a little bit of obvious simplification, we want to solve

x√
a2 + x2

=
√

c2 − (a − b)2 − x√
b2 + {√c2 − (a − b)2 − x}2

. (3)

Well, we might want to solve expression (3) for x, but to that all I
can say is: lots of luck! And even if you manage to do that, you then
have to plug that value of x into expression (1) to get the minimum
value for l1 + l2.

Fortunately, we don’t have to do any of that, and here’s how we
can sidestep those terrifying calculations. With reference to Figure 1,
we see that the left-hand side of expression (3) is cos(α) and the right-
hand side of expression (3) is cos(β). That is, when dT

dx
= 0 we have
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cos(α)= cos(β); namely, α =β when T is minimized.2 Now, concen-
trate your attention on the triangle with vertices at A, B, and x.
Recalling the law of cosines from trigonometry, we can immediately
write

c2 = l2
1 + l2

2 − 2l1l2 cos(π − 2α) (4)

because, when l1 + l2 is minimized, the angle formed by l1 and
l2 at x is π −α −β =π − 2α. Since cos(π − 2α)= cos(π) cos(2α)+
sin(π) sin(2α)=− cos(2α), expression (4) becomes

c2 = l2
1 + l2

2 − 2l1l2 cos(2α) (5)

or, recalling the double angle formula for the cosine,

c2 = l2
1 + l2

2 + 2l1l2[1 − 2 sin2(α)]. (6)

Referring again to Figure 1, we have

sin(α) = α

l1

and

sin(β) = sin(α) = b

l2
.

Putting these two expressions into expression (6),

c2 = l2
1 + l2

2 + 2l1l2

[
1 − 2

(
a

l1

)(
b

l2

)]
= l2

1 + l2
2 + 2l1l2 − 4ab

and so

c2 = (l1 + l2)
2 − 4ab,

which, just like that, gives us our answer:

(l1 + l2)min =
√

c2 + 4ab. (7)

2 You’ll see this result again when we get to Fermat’s famous principle of least time,
concerning the propagation of light.
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FIGURE 2. Computer solution of the water filtration/pumping station
problem.

The sudden appearance of this result strikes many students as
being borderline miraculous, but we have paid a price for the “mir-
acle.” We still don’t know where to build the water filtration/pump
station! That is, what is x? If we knew l1 and l2 individually, this
would be an easy calculation, but all we know is their sum. We could
try struggling with this analysis some more, but far easier is to take
advantage of the fact that, today, computers are so commonly avail-
able that it is foolish to ignore them. (You’ll see lots of computer
usage in this book.)

I think any competent civil engineer would stop a formal analysis
at this point and simply write the easy computer code that computes
l1 + l2 for a large number of assumed x values (say, 1,000 values)
uniformly spaced from 0 to

√
c2 − (a − b)2 and then plots the result-

ing curve. Thatwill give us the optimum x. As an illustration of this,
for a = 10, b = 8, and c = 20 (all in some common units), see Figure 2,
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which confirms the claim of expression (7) that the minimum total
pipeline is

√
202 + 4(10)(8) =√

720 = 26.8, as well as telling us that
x = 11. Another thing Figure 2 gives us, that a pure mathematical
analysis wouldn’t (if we could even do it), is that the minimum is a
relatively broad one. That is, there is a fairly wide interval of x val-
ues (in which the optimal x resides) over which the total pipeline
changes but little from the absolute minimum value.

As I wrote earlier, I’ve added this problem to the book mostly
because of its intrinsic merit, but also because it provides a nice illus-
tration of the nature of the book in general. The problem discussions
in the book present challengingmath issues,3 all the while retaining
obvious connections to the real, physical world.

I thank my editor at Princeton University Press, Susannah Shoe-
maker, for giving me this opportunity to revisit When Least is Best.
It has been a maximum treat for me!

Paul Nahin
Exeter, New Hampshire

July 2020

3 One once open challenge problem in the book, however, has been answered.
That problem, on page 259, was solved in 2008 by a clever reader. You can find
his solution in either of two of my books, Number-Crunching, (Princeton, 2011,
pp. 12–13 and pp. 345–346), or Inside Interesting Integrals, 2nd ed. (Springer
Science+Business Media, 2020, pp. 273–274 and pp. 479–480).



Preface to the 2007 Paperback
Edition

All the greatest mathematicians have long
since recognized that the method presented
in this book is not only extremely useful in
analysis, but that it also contributes greatly to
the solution of physical problems. For since
the fabric of the universe is most perfect, and
is the work of a most wise Creator, nothing
whatsoever takes place in the universe in
which some relation of maximum and
minimum does not appear.
—the great Swiss-born mathematician Leonhard

Euler, in Methodus inveniendi lineas curvas
maximi minimive proprietate gaudentes, sive
solutio problematis isoperimetrici lattissimo
sensu accepti, 1744∗

Ina letter datedOctober 11, 1709, thewell-knownEnglish
scientist Roger Cotes wrote to his even better-known friend Isaac
Newton. Cotes, who was in charge of preparing the second edition
of Newton’s monumental Principia for publication, had a gloomy
message to deliver, stating “It is impossible to print the bookwithout
some faults.” Events proved him to be correct. After the appearance
of the second edition, Newton sent Cotes a list of new corrections,
which prompted Cotes to reply, in a letter dated December 22, 1713,
“I observe you have put down 20 Errata.… I believe you will not be
surprised if I tell you I can send you 20 more.” Cotes then went
on to reveal that while he was preparing the second edition he had

∗ In English, A Method for Finding Curved Lines Enjoying Properties of Maximum
or Minimum, or Solution of Isoperimetric Problems in the Broadest Accepted Sense.
The quotation is taken from the opening paragraph of the book’s appendix, which
is titled “De curvis elasticis.” You can find a complete, annotated English transla-
tion of the appendix in W. A. Oldfather et al., “Leonhard Euler’s Elastic Curves,”
Isis 20, no. 1 (November 1933): 72–160.
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“made some hundreds [of additional corrections to the first edition]
with which I never acquainted you.”

Well, this book isn’t the Principia (and I’m no Newton), but it
does share one characteristic with that genius’s masterpiece—the
first editions of both books had some errors! Not quite so many in
this book as Cotes mentioned, I think, but a few. The appearance
of the paperback edition of When Least Is Best has given me the
opportunity to make those missteps go away, and I gratefully thank
Vickie Kearn, my longtime editor at Princeton University Press, for
that opportunity.

Besides typographical errors, there were two errors of citation
omission that I would like to now correct. First, the discussion
on pages 28 through 33 was motivated when I read the paper by
Nathaniel Silver, “A Refraction Problem in Several Variables,” Amer-
ican Mathematical Monthly, June-July 1987: 545–47. And second, the
perfect basketball shot discussion on pages 158 through 165, al-
though presented as a natural spin-off of Halley’s gunnery problem
(for which I cited a 1997 paper by C. W. Groetsch) was actually dis-
cussed sixteen years before the appearance of Professor Groetsch’s
more general, historical paper, in an analysis by G. J. Porter, “New
Angles on an Old Game,” American Mathematical Monthly, April
1981: 285–86.

In the discussion on pages 56 through 60, on Jacob Steiner’s
flawed geometric proof of the isoperimetric theorem, I make ref-
erence to Besicovitch’s solution to Kakeya’s problem. I make only
some brief, general comments on what Besicovitch proved, but you
can find much more in two papers: “On a Theorem of Besicovitch”
by Hans Rademacher, and “On the Besicovitch-Perron Solution to
the Kakeya Problem,” both of which are in Studies in Mathematical
Analysis and Related Topics: Essays in Honor of George Pólya, edited
by Gábor Szegö et al. (Stanford University Press, 1962). In the sec-
ond paper, the “Perron” is the German mathematician Oskar Per-
ron (1880–1975), who in 1913 formulated an amusing “proof” to
illustrate the flaw in Steiner’s isoperimetric proof. As I discuss in the
text, Steiner made his error right at the start, with his assumption
that there actually is a closed curve of given length that encloses the
maximum area. Assuming that an extrema question actually has an
answer can lead one astray, however, as it does in dramatic fashion
in Perron’s paradox, which is a “proof” that 1 is the largest integer!

P R E F A C E T O T H E 2 0 0 7 PA P E R B A C K E D I T I O N
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Here’s how it goes: start by assuming that there is in fact an N > 1
that is the largest integer. Then, N2 is an integer and, of course,
N2 > N , which is in conflict with the assumption that N is the
largest integer. Therefore our starting assumption that N > 1 must
be wrong and so it must be true that N = 1.

Now I’d be willing to bet that all readers of this book know that
the proper concluding statement should actually be that the starting
assumption that there actually is a largest integer is wrong, i.e., that
the assumption that we can actually determine the largest integer is
wrong. This is because we know how integers “work”—there is no
largest one because there is always a bigger one, no matter how big
the one we think of is. Just add one! And that’s the whole point to
Perron’s paradox, of course; in those problems where we really don’t
know a priori how things “work,” the assumption of the existence of
a solution might well lead us into disaster.

On page 259 there is a challenge problem for you to consider,
based on the isoperimetric theorem, the proof of which has just
been completed on the preceding pages. As I explain there, I don’t
know how to solve that challenge problem, and in the first edition
I asked readers to send me a solution if they had success. You can
read the details of the challenge problem on page 259, but for now
let me just say that the problem is that of finding a derivation of the
(claimed) inequality

2π∫
0

√
a2 sin2(t) + b2 cos2(t)dt ≥

√
4π{πab + (a − b)2},

where a and b are non-negative (but otherwise arbitrary) constants.
This inequality is arrived at in this book by purely geometric argu-
ments—the challenge (for you) is to find an analytical derivation.

I received just three letters. The first, from a reader in Pennsyl-
vania, claimed to have a proof. But it was simply a demonstration
that if an ellipse and a circle have the same perimeter, then the area
of the ellipse is no greater than that of the circle. It was a clever
bit of analysis, but of course, while true, it is just a special case of
the isoperimetric theorem, which is proven in the book just before
I state the challenge problem. The second letter (whose author did
properly understand what was to be shown) was from the other end

P R E F A C E T O T H E 2 0 0 7 PA P E R B A C K E D I T I O N
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of the spectrum; it was from a physicist in Scotland who asserted
that the claimed inequality is “false and [so] there is no possible
derivation for it.” He believed that my reasoning in arriving at the
inequality contained “a deep flaw,” and that I had been led astray
by “one of those rare situations where the crazy world of topology
intrudes into the ‘real’ world in a ‘visible’ way.” Since all I do in the
book is cut an ellipse into four good-sized parts and then rearrange
them, I found his assertion to be just a bit hard to accept. Now, one
might counter my reaction by observing that a simple half-twist to
a long strip of paper, followed by joining the two distant ends of
the strip, turns a two-sided object (the original strip) into a loop
with a single side (the famous Möbius band) and that certainly is
a bizarre topological intrusion. Perhaps my shuffling of the ellipse
pieces had done something equally weird. There was a lot of hand-
written mathematical analysis included in the physicist’s letter to
back up his words, and although it was clearly the work of an intel-
ligent author, I was reluctant to devote what I was sure would be a
time-consuming effort to wade through it.

But, what if he was right? It wouldn’t be the first time I had made a
mistake!

I decided to follow his suggestion that “perhaps the best check [of
the inequality] would be to look at numerical values of the integral
and compare with calculated values of

√
4π{πab + (a − b)2}.” He

admitted that he had not done that. I, on the other hand, keep a hot-
to-trot MATLAB application idling on my computer’s desktop 24/7.
After all, one never knows when a number-crunching emergency
might occur—and if there ever was such an emergency, this was it!
It was duck soup to write the brief code to do what the physicist
suggested, and here’s how I proceeded.

The claimed inequality can be slightly altered as follows:

b

2π∫
0

√(a

b

)2
sin2(t) + cos2(t) dt ≥ b

√
4π

{
π

a

b
+
(a

b
− 1

)2
}
.

Or, writing x = a/b, where 0 ≤ x < ∞, the challenge problem is
equivalent to analytically deriving the following inequality (valid
for all non-negative x):

P R E F A C E T O T H E 2 0 0 7 PA P E R B A C K E D I T I O N
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2π∫
0

√
x2 sin2(t) + cos2(t) dt −

√
4π{πx + (x − 1)2} ≥ 0.

Before studying the “truth” of this inequality by computer, there are
two special cases we can use to partially check the MATLAB coding.

For x = 0 the claim becomes

2π∫
0

√
cos2(t) dt − √

4π ≥ 0,

that is,

2π∫
0

| cos (t)| dt − 2
√

π ≥ 0.

(Notice, carefully, that
2π∫
0

√
cos2(t) dt �=

2π∫
0

cos(t) dt .) Now, since

cos(t) ≥ 0 for 0 ≤ t ≤π/2, our claim becomes

4

π/2∫
0

cos(t) dt − 2
√

π ≥ 0

or,

4
{
sin(t)|π/2

0

} − 2
√

π ≥ 0

or,

4 − 2
√

π = 0.4551 ≥ 0,

which is, of course, true (even easier is to just recall that π < 4). For
x = 1 the claim becomes

2π∫
0

√
sin2(t) + cos2(t) dt −

√
4π2 ≥ 0
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or,

2π∫
0

dt − 2π ≥ 0

or,

2π − 2π = 0 ≥ 0,

which is, of course, true. The results from our MATLAB code should
be consistent with these two particular calculations.

Figure P shows the left-hand side of the boxed inequality, as a
function of x, over the interval 0 ≤ x ≤ 5. The plot agrees in
particular with our two special cases above, and in general with the
inequality, because the curve never dips below the x-axis. Because of
this plot, I conclude it is safe to say that the challenge problem still
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FIGURE P. Computer verification of the boxed inequality.
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stands. And, I should tell you, two weeks after his first letter arrived, I
got a second letter from the Scottish physicist telling me, in so many
words, “oops”: he had found a fatal error in his original analysis and
had graciously written to say “your result . . . stands unchallenged!”

Now, as long as I’ve been discussing a challenge problem, let me
give you a new one to consider as you read the paperback edition of
the book.

New Challenge Problem for the Paperback Edition

Let a, b, and c be the lengths of the sides of any triangle. Show
that

abc ≥ (a + b − c)(b + c − a)(a + c − b).

Hint: You may find it helpful to recall the following result
from high school plane geometry (it was known to Euclid
and appears as a proposition in his Elements): the bisector
lines of any triangle’s three interior vertex angles cross at a
common point called the incenter (so named because that point
is guaranteed to be inside the triangle). For now I’ll let you
see if you can prove this for yourself, too; but if you can’t,
its (elementary) proof is included in appendix I, along with a
derivation of the challenge inequality.

For the specific cases of the 45°-45°-90° and the 30°-60°-
90° triangles, you can verify by direct calculation that the
challenge inequality reduces to the claims that 9 > 8 and
4 > 3, respectively, which are both (of course!) true.

I’ll conclude on the somber note that the mathematicians Leonid
Khachiyan and George Dantzig, who appear in this book’s chapter 7
discussion of linear programming, have both died since the publica-
tion of the hardcover. Remarkably, their obituary notices appeared
on the same day, next to each other, in the New York Times (May 23,
2005, p. A17). Dantzig’s long, productive life ended at age ninety,
while Khachiyan’s was cut tragically short by a heart attack at the
young age of only fifty-two.

Lee, New Hampshire
January 24, 2007
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Preface

This is a history of mathematics book, but it is not simply
a collection of biographical, prose essays on the lives of various
mathematicians. There is a place for that sort of book (e.g., see E. T.
Bell’s classic Men of Mathematics), but this isn’t one of them. What it
is is the technical story of what many brilliant mathematicians have
done in the subject of extrema over the last two dozen centuries. To
be blunt, there is a lot of mathematics in this book. Stephen Hawk-
ing’s famous line about how every equation cuts a book’s readership
in half doesn’t apply here—that’s for coffee table books, ones more
for displaying than for reading. This book is for readers with calluses
on their fingers because they read with pencil and paper in hand!

While I hope much of what you read here will be new and exciting
to you, I do expect you to bring some intellectual background to
the table. In general, what a science or engineering major learns in
the first year of undergraduate calculus and physics is pretty much
enough (I’ll be specific in the next paragraph). Actually, as far as the
physics goes, all you really need to remember is that force is a vector,
and what potential and kinetic energy are. For the math, however,
there is a list of things I am assuming that is just a bit longer. First of
all, do you find the following question easy? If we assume x is real,
then what is

lim
n→∞

sin(x)

n
= ?

The answer is, of course, zero, since no matter what x may be the
value of sin(x) is always in the interval −1 to +1, and so as n → ∞
the expression goes to zero. Now, when I ask even my second-year
engineering students this, I almost always get the correct answer of
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zero, and so they are astounded when I tell them the answer is really
6! Then I write on the blackboard, without saying a word,

lim
n→∞

sin(x)

n
= lim

n→∞
sin/(x)

n/
= si(x) = 6.

If they laugh at this astonishing “calculation” then I take that as a
good sign—only a student who has reached a certain level of skill
and knowledge would find the above to be so wrong as to be funny.

More seriously, I am assuming that you have a good background
in high school algebra, trigonometry, and geometry, as well as in
the elementary integration techniques of freshman calculus. For
example, I am assuming that it will be unnecessary for me to explain
the quadratic formula, or what it means to quote a trig identity, or
what solid angles, hyperbolic functions, and factorials are (and that
0! = 1, not 0), or what it means to say a real number is irrational,
or what a vector is, or what the Pythagorean theorem is, or what
it means to prove something by induction, or how to differentiate
and integrate “simple” functions. On this last point, I expect you to
know that not only is ∫ 1

0
x dx = 1

2

but also, without actually doing the integrals, that we can write∫ 8

1
sin17(x + √

x) dx =
∫ 8

1
sin17(y + √

y) dy.

I will assume, finally, that the physical interpretation of an integral
as the area under a curve is a familiar one.

It might appear just a bit odd for me to assume you already know
what a derivative is, since the evolution of that concept is a major
part of chapter 4 in this book. But not to make that assumption
is awkward; there will be places in the first three chapters where,
to make a point, I’ll want to compare a noncalculus calculation
with one using differentiation. If you know what an integral is, then
assuming you know what a derivative is seems (to me) to be logical.

As a more specific (and more interesting) example of what I have
in mind, I am assuming that the following little analysis, while per-
haps astonishing in its conclusion, also is understandable. One of

x v i i i



P R E F A C E x x i x

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

[-23],

Lines: 59 to 65

———
1.70999pt PgVar
———
Normal Page

* PgEnds: Eject

[-23],

y

x

z

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

–0.8

–1.0
1.0

0.5
0.0

–0.5
–1.0 1 2 3 4 5 6 7 8 9 10

FIGURE I. Torricelli’s paradoxical funnel.

the mathematical gems of seventeenth-century mathematics was
the discovery of a surface of revolution that, even though infinite in
extent, nevertheless bounds a finite volume. Prior to this discovery
it was commonly accepted that a surface extended to infinity would
necessarily have to be of infinite size, i.e., enclose infinite volume. In
contradiction to that common belief, in 1641 the Italian mathemat-
ical physicist Evangelista Torricelli (1608–47) discovered that if the
first quadrant branch of the hyperbola xy = 1 (with x ≥ a) is rotated
about the x-axis, as shown in Figure I with a = 1, then the result-
ing surface (resembling an infinitely long horn, sometimes called
Gabriel’s horn, after the Biblical story of the archangel who blew it
before making an announcement) bounds finite volume.

The demonstration of this result is technically quite simple
(which is why I am assuming you will be able to follow the details).
We first imagine that the volume is sliced up into arbitrarily many
thin cylindrical disks, each with thickness �x. The radius of a disk
with its center at x is y = 1/x. Thus, the volume of that disk is, from
solid geometry, approximately given by
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�V ≈ πy2�x = π

x2
�x.

As �x → 0, we can replace �V and �x with the differentials dV

and dx, respectively; our approximation becomes exact, and so we
have

dV = π
dx

x2
.

To find the total volume V we simply integrate from x = a to
infinity, and so

V =
∫

dV = π

∫ ∞

a

dx

x2
= π

{
− 1

x
|∞a = π

a
.

Torricelli’s result was thought paradoxical in the years following
its announcement—see Paolo Mancosu and Ezio Vailati, “Torricelli’s
Infinitely Long Solid and Its Philosophical Reception in the Seven-
teenth Century” (Isis, March 1991, pp. 50–70); in 1672 the English
philosopher Thomas Hobbes declared that one would have to be
crazy to believe Torricelli. (If Hobbes’ philosophical powers had been
equal to his mathematical skills no one would remember him to-
day.) Even today Torricelli’s calculation can provoke a great deal of
discussion in freshman calculus classrooms. Consider, for example,
the fact that the area A of the Torricelli surface of revolution is in-
finite, a result easily confirmed by calculating the value of the area
integral:

A =
∫ ∞

a

y

√
1 +

(
dy

dx

)2

dx.

(You can find this general formula for the surface area of the rotated
curve y = y(x) discussed in section 6.9). Thus, since y = 1/x, we
have

dy

dx
= − 1

x2
,

and so

A =
∫ ∞

a

1

x

√
1 + 1

x4
dx =

∫ ∞

a

√
x4 + 1

x3
dx >

∫ ∞

a

√
x4

x3
dx =

∫ ∞

a

dx

x
.

The inequality follows as I have replaced the numerator of the
integral with an expression that is, for every x in the interval of
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integration, smaller than the exact numerator, i.e., x4 < x4 + 1. But
the last integral diverges logarithmically and so A is infinite. This
would appear to mean that we could not paint the interior of Tor-
ricelli’s surface, as we would require an infinite amount of paint to
cover an infinite area. And yet we could paint the interior by simply
filling the finite volume with paint. We seem to have a paradox.

Well, even if you are now mumbling to yourself over whether
or not we can paint Torricelli’s surface, if the mathematics itself is
understandable to you then you know all of the mathematics you
need to know to start reading this book. (Can you see how to resolve
this paradox? The answer is at the end of this preface, but don’t look
until you’ve thought about it for a while. Hint: there is a difference
between real paint and mathematical paint!)

Finally, to conclude this little essay, to read this book for the
maximum gain you should have something that professors like to
call “mathematical maturity.” This is an attribute intentionally left
fuzzy, meant only to describe a “mind ready to receive” new material
(or perhaps old material in a new way). My quick test for mathemat-
ical maturity is to see how a student reacts to the following little
gem of reasoning.

Recall that all real numbers can be separated into one of two
sets—the rationals (expressible as m/n, the ratio of two integers),
and the irrationals (all the remaining reals which are, of course, not
rational). Every real number is one or the other. An example of each
is 0.3333 · · · = 1

3 , and
√

2, respectively. In some sense, then, the
irrationals have a “more complicated” structure than the rationals.
Now, here’s the problem: if we raise an irrational number to an
irrational power, can the result be rational? Most students come
down on the side of no, arguing that combining two irrationals
through the power operation is “messy” and seems incapable of
producing something simple like m/n. But then I show them it is
possible, and watch how they respond.

Start by considering (
√

2)
√

2, an irrational number raised to an
irrational power. It is itself a real number and so it is either rational or
it is irrational (we do not have to actually calculate it). If it is rational,
we are done. If it is irrational, then raise it to an irrational power,
e.g., consider ((

√
2)

√
2)

√
2. But this is (

√
2)2 = 2, which is rational

and so, again, we are done. Notice that we still don’t know from
this argument if (

√
2)

√
2 is rational or not—and it doesn’t matter! (It
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has been known since 1930 that (
√

2)
√

2 is not only irrational, but
transcendental.)

To judge mathematical maturity, I look for two things. First, of
course, is simply that there is a technical understanding of the ar-
gument. But I also want to see excitement, a “Wow, what a neat
proof!” reaction. For me, that’s the signature of a mind “ready to
receive.” I hope that was your reaction to the above, and that this
book will give you lots more (indeed, a maximum) of “Wow, that’s
neat!” moments.

Painting Torricelli’s Funnel

The reason for the “paradox” is that you are simultaneously
holding two contradictory ideas about the nature of paint.
Real paint has a molecular structure, i.e., there is a smallest
(nonzero) volume of real paint, while mathematical paint is
infinitely divisible. Consistently using either one of these two
conceptions of paint removes the paradox. Here’s how.

For mathematical paint: We can indeed paint the funnel’s
inner surface by simply filling the funnel with a finite volume
of paint. It does not follow, however, that it takes an infinite
volume of mathematical paint to cover an infinite surface area,
since the thickness of mathematical paint is zero. That is, infi-
nite area times zero thickness is an indeterminate volume. The
paradox has vanished.

For real paint: It would, indeed, require an infinite volume
of real paint to paint the outer surface of the funnel because
real paint has a nonzero thickness. But it is impossible to paint
the entire inner surface (equal in area, of course, to the outer
surface area) because the paint won’t fit! At some point along
the ever narrowing funnel, the opening will be smaller than
a single molecule of real paint. This means we simply cannot
compare the two different ways of painting the funnel since
filling the funnel with real paint cannot even be done.

We have a “paradox” only if we imagine filling the funnel
with mathematical paint but painting the outer surface with
real paint. Getting a paradox by changing the rules in “mid-
game” is no surprise at all.







1.
Minimums, Maximums,

Derivatives, and

Computers

1.1 Introduction

This book has been written from the practical point of view of the
engineer, and so you’ll see few rigorous proofs on any of the pages
that follow. As important as such proofs are inmodernmathematics,
I make no claims for rigor in this book (plausibility and/or direct
computation are the themes here), and if absolute rigor is what you
are after, well, you have the wrong book. Sorry!

Why, you may ask, are engineers interested in minimums? That
question could be given a very long answer, but instead I’ll limit
myself to just two illustrations (one serious and one not, perhaps,
quite as serious). Consider first the problem of how to construct a
gadget that has a fairly short operational lifetime and which, during
that lifetime, must perform flawlessly. Short lifetime and low failure
probability are, as is often the case in engineering problems, po-
tentially conflicting specifications: the first suggests using low-cost
material(s) since the gadget doesn’t last very long, but using cheap
construction may result in an unacceptable failure rate. (An exam-
ple from everyday life is the ordinary plastic trash bag—how thick
should it be? The bag is soon thrown away, but we definitely will be
unhappy if it fails too soon!) The trash bag engineer needs to calcu-
late the minimum thickness that still gives acceptable performance.
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For my second example, let me take you back to May 1961, to the
morning the astronaut Alan Shepard lay on his back atop the rocket
that wouldmake himAmerica’s firstman in space. Hewas very brave
to be there, as previous unmanned launches of the same type of
rocket had shown a disturbing tendency to explode into stupendous
fireballs.When askedwhat he had been thinking just before blastoff,
he replied “I was thinking that the whole damn thing had been built
by the lowest bidder.”

This book is a math history book, and the history of minimums
starts centuries before the time of Christ. So, soon, I will be starting
at the beginning of our story, thousands of years in the past. But
before we climb into our time machine and travel back to those
ancient days, there are a few modern technical issues I want to
address first.

First, to write a book on minimums might seem to be a bit nar-
row; why not include maximums, too? Why not write a history of
extremas, instead? Well, of course minimums and maximums are
indeed certainly intimately connected, since a maximum of y(x) is
a minimum of −y(x). To be honest, the reason for the book’s ti-
tle is simply that I couldn’t think of one I could use with extrema
as catchy as is “When Least Is Best.” I did briefly toy with “When
Extrema Are xxx” with the xxx replaced with exotic, exciting, and
even (for a while, in a temporary fit of marketing madness that I
hoped would attract Oprah’s attention), erotic. Or even “Minimums
Are from Venus, Maximums Are from Mars.” But all of those (cer-
tainly the last one) are dumb, and so it stayed “When Least Is Best.”
There will be times, however, when I will discuss maximums, too.
And now and then we’ll use a computer as well.

For example, consider the problemof finding themaximumvalue
of the rather benign-looking function

y(x) = 3 cos(4πx − 1.3) + 5 cos(2πx + 0.5).

Some students answer too quickly and declare the maximum value
is 8, believing that for some value of x the individual maximums of
the two cosine terms will add. That is not the case, however, since
it is equivalent to saying that there is some x = x̂ such that

4πx̂ − 1.3 = 2πn

2πx̂ + 0.5 = 2πk,
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where n and k are integers. That is, those students are assuming there
is an x̂ such that

x̂ = 2πn + 1.3

4π
= 2πk − 0.5

2π
, n and k integers.

Thus,

2nπ + 1.3 = 4πk − 1,

or

2.3 = 4πk − 2πn = 2π(2k − n),

or

π = 2.3

2(2k − n)
= 23

20(2k − n)
.

But if this is actually so, then as n and k are integers wewould have
π as the ratio of integers, i.e., π would be a rational number. Since
1761, however, π has been known to be irrational and so there are
no integers n and k. And that means there is no x̂ such that y(x̂) = 8,
and so ymax(x) < 8.

Well, then, what is ymax(x)? Is it perhaps close to 8? You might try
setting the derivative of y(x) to zero to find x̂, but that quickly leads
to a mess. (Try it.) The best approach, I think, is to just numerically
study y(x) and watch what it does. The result is that ymax(x) =
5.7811, significantly less than 8. My point in showing you this is
twofold. First, a computer is often quite useful in minimum studies
(and we will use computers a lot in this book). Second, taking the
derivative of something and setting it equal to zero is not always
what you have to do when finding the extrema of a function.

An amusing (and perhaps, for people who like to camp, even use-
ful) example of this is provided by the following little puzzle. Imag-
ine that you have been driving for a long time along a straight road
that borders an immense, densely wooded area. It looks enticing,
and so you park your car on the side of the road and hike into the
woods for a mile along a straight line perpendicular to the road. The
woods are very dense (you instantly lose sight of the road when you
are just one step into the woods), and after a mile you are exhausted.
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You call it a day and camp overnight. When you get up the next
morning, however, you’ve completely lost your bearings and don’t
know which direction to go to get back to your car. You could, if
you panic, wander around in the woods indefinitely! But there is a
way to travel that absolutely guarantees that you will arrive back at
your car’s precise location after walking a certain maximum distance
(it might take even less). How do you walk out of the woods, and
what is the maximum distance you would have to walk? The answer
requires only simple geometry—if you are stumped the answer is at
the end of this chapter.

1.2 When Derivatives Don’t Work

Here’s another example of a minimization problem for which cal-
culus is not only not required, but in fact seems not to be able to
solve. Suppose we have the real line before us (labeled as the x-axis),
stretching from −∞ to +∞. On this line there are marked n points,
labeled in increasing value as x1 < x2 < · · · < xn. Let’s assume all the
xi are finite (in particular x1 and xn), and so the interval of the x-axis
that contains all n points is finite in length. Now, somewhere (any-
where) on the finite x-axis we mark one more point (let’s call it x).
We wish to pick x so that the sum of the distances between x and all
of the original points is minimized. That is, we wish to pick x so that

S = |x − x1| + |x − x2| + · · · + |x − xn|
is minimized. I’ve used absolute-value signs on each term to insure
each distance is non-negative, independent of where x is, either to
the left or to the right of a given xi . Those absolute-value signs may
seem to badly complicate matters, but that’s not so. Here’s why.

First, focus your attention on the two points that mark the ends
of the interval, x1 and xn. The sum of the distances between x and
x1, and between x and xn, is

|x − x1| + |x − xn|
and this is at least |x1 − xn|. If x > xn, or if x < x1 (i.e., if x is
outside the interval), then strict inequality holds, but if x is anywhere
inside the interval (i.e., x1 ≤ x ≤ xn) then equality holds. Thus, the
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minimumvalue of |x−x1|+|x−xn| is achieved by placing x anywhere
between x1 and xn.

Next, shift your attention to the two points x2 and xn−1. We can
repeat the above argument, without modification, to conclude that
the minimum value of |x − x2| + |x − xn−1| is achieved when x is
anywhere between x2 and xn−1. Note that this automatically satisfies
the condition for minimizing the value of |x − x1| + |x − xn|, i.e.,
placing x anywhere between x2 and xn−1 minimizes |x − x1| + |x −
x2| + |x − xn−1| + |x − xn|. You can now see that we can repeat this
line of reasoning, over and over, to conclude

|x − x3| + |x − xn−2| is minimized by placing x anywhere
between x3 and xn−2,

|x − x4| + |x − xn−3| is minimized by placing x anywhere
between x4 and xn−3,

...

and finally, if we suppose that n is an even number of points, then

|x − xn
2
| + |x − xn

2 +1| is minimized by placing x anywhere
between xn

2
and xn

2 +1.

So, we simultaneously satisfy all of these individual minimizations
by placing x anywhere between xn/2 and x(n/2)+1 (if n is even), and
this of course minimizes S.

But what if n is odd? Then the same reasoning as for even n still
works, until the final step; then there is no second point to pair with
x(n+1)/2. Thus, simply let x = x(n+1)/2 and so |x − x(n+1)/2| = 0, which
is certainly the minimum value for a distance. Thus, we have the
somewhat unexpected, noncalculus solution that, for n even, S is
minimized by placing x anywhere in an interval, but for n odd there
is just one, unique value for x (the middle xi) that minimizes S.

1.3 Using Algebra to Find Minimums

As another elementary but certainly not a trivial example of the
claim that derivatives are not always what you want to calculate,
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consider the fact that ancient mathematicians knew that of all rect-
angles with a given perimeter it is the square that has the largest area.
(This is a special result from a general class of maximum/minimum
questions of great historical interest and practical value called iso-
perimetric problems, and I’ll have more to say about them in the next
chapter.) Ask most modern students to show this and you will al-
most surely get back something like the following. Define P to be
the given perimeter of a rectangle, with x denoting one of the two
side lengths. The other side length is then (P − 2x)/2, and so the
area of the rectangle is

A(x) = x

(
P − 2x

2

)
= 1

2
Px − x2.

A(x) is maximized by setting dA/dx = 1
2P −2x equal to zero, and so

x = 1
4P , which completes the proof. Using only algebra, however,

an ancient mathematician could have argued that

A = x

(
P − 2x

2

)
= 1

2
Px − x2 = P 2

16
− P 2

16
+ 1

2
Px − x2

= P 2

16
−
(
x2 − 1

2
Px + P 2

16

)
= P 2

16
−
(
x − P

4

)2

≤ P 2

16

since (x − (P/4))2 ≥ 0 for all x. That is, A is never larger than the
constant P 2/16 and is equal to P 2/16 if and only if (a useful phrase
I will henceforth write as simply iff) x = P/4, which completes the
ancient, noncalculus proof.

As a final comment on this result, which again illustrates the
intimate connection between minimum and maximum problems,
we can restate matters as follows: of all rectangles with a given
area, the square has the smallest perimeter. This is the so-called
dual of our original problem and, indeed, all isoperimetric prob-
lems come in such pairs. I’ll prove this particular dual in section
1.5. Another useful isoperimetric result that seems much like the
one just established—one also known to the precalculus, ancient
mathematicians—is not so easy to prove: of all the triangles with
the same area, the equilateral has the smallest perimeter. See if you
can show this (or its dual) before I do it later in this chapter.

We can use the previous result—of all rectangles with a fixed
perimeter, the square has the maximum area—to solve without
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calculus a somewhat more complicated appearing problem found
in all calculus textbooks. Suppose we wish to enclose a rectangular
plot of land with a fixed length of fencing, with the side of a barn
forming one side of the enclosure. How should the fencing now be
used? We could, of course, use calculus as follows: let x be the length
of each of the two sides perpendicular to the barn wall, and � − 2x

be the length of the side parallel to the barn wall (� is the fixed, total
length of the fencing). Then the enclosed area is

A = x(� − 2x) = x� − 2x2

and so

dA

dx
= � − 4x,

which, when set equal to zero, gives x = 1
4�. Thus, � − 2x = 1

2�,
which says the enclosed area is maximized when it is twice as long
as it is wide. But this solution is far more sophisticated than required.
Simply imagine that we enclose another rectangular area on the
other side of the barn wall. We already know that, together, the
two rectangular plots should form a square, and so each of the two
rectangular plots are half of the square, i.e., twice as long in one
dimension as in the other.

Our ancient mathematician’s trick of completing the square is a
very old one, and some historians claim that it can be found implicit
in Euclid’s Elements (Book 6, Proposition 27), circa 300 B.C. There, the
problem discussed is equivalent to that of dividing a constant into
two parts so that their product is maximum. So, if the constant is C,
then the two parts are x and C − x, with the product

M = x(C − x) = Cx − x2 = −(x2 − Cx)

= −
(

x2 − Cx + C2

4
− C2

4

)
= −

(
x − C

2

)2

+ C2

4
.

Thus, as (x − (C/2))2 ≥ 0 for all x, then M is never larger than C2/4
and is equal to C2/4 iff x = C/2.

Stated this way, Euclid’s problem surely seems rather abstract, but
in 1673 the Dutch mathematical physicist Christiaan Huygens gave
a nice physical setting to the calculation. Suppose we have a line and
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A

C

B
a

x

b

c

d1

d2

FIGURE 1.1. Huygen’s problem.

two points (A and B) not on the line. Where should the point C be
located on the line so that the sum of the squares of the distances
from C to A and C to B, (AC)2 + (BC)2, is minimum? With no loss
in generality we can draw the geometry of this problem as shown
in figure 1.1, with A on the y-axis. The figure shows A and B on
the same side of the line, and places C between A and B, but as the
analysis continues you’ll see that these assumptions in no way affect
the result.

In the notation of the figure we are to find the value of x that,
with a, b, and c constants, minimizes d2

1 + d2
2 . Now,

d2
1 + d2

2 = {
x2 + a2} + {

(b − x)2 + c2}
= a2 + b2 + c2 − 2x(b − x)

Thus, we need to maximize the product x(b − x); but we already
know from Euclid how to do that—set x = 1

2b. That is, C is midway
between A and B. If you redraw figure 1.1 so that either x >b or
x < 0, and then write the expression for d2

1 + d2
2 , you’ll see that the

result is unchanged.
An elementary example of an extremal problem in which there is

(by the very nature of the problem) nothing to differentiate comes
from discrete probability theory. Then the independent variable
does not vary continuously but, rather, in discontinuous jumps. In
such cases, taking a derivative simply has no meaning. So, suppose
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we toss four fair die, i.e., each one of the six faces on each die has
probability 1

6 of showing. What is the most likely number of die
that will show a 3? The answer can only be one of five numbers,
of course, the integers zero through four. If we define the value of
the random variable X as the number of die that show a 3, then
elementary probability theory tells us that P(X = k) = probability
that X = k is given by

P(X = k) =
(
n

k

)(
1

6

)k (5

6

)n−k

,

where n is the number of die and
(
n

k

) = n!/(k!(n−k)!). So, with n = 4,

P(X = 0) = 625

1296

P(X = 1) = 500

1296

P(X = 2) = 150

1296

P(X = 3) = 20

1296

P(X = 4) = 1

1296
.

Thus, the most likely number of 3’s to show is zero. But even more
likely to happen is that at least one 3 shows, as

P(X ≥ 1) =
4∑

k=1

P(X = k) = 671

1296
> P(X = 0).

This strikes many as a paradoxical result, but that is part of the
inexhaustible charm of probability!

1.4 A Civil Engineering Problem

As amore sophisticated example of howminimization problems can
sometimes be attacked with noncalculus approaches, consider the
following. We have two towns, A and B, on opposite sides of a river
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B

b

w

A

a

x

d 

river

FIGURE 1.2. Minimum-distance bridge placement problem.

with constant width w. As shown in figure 1.2, A is distance a from
the river, B is distance b, and the lateral separation of the two towns
is d. Our problem is to determine where we should build a bridge
over the river (perpendicular to the river’s banks) so as to make the
journey between A and B as short as possible. That is, what is x?

With calculus, this question is not hard to answer. We simply
write the total distance as

T =
√
a2 + x2 + w +

√
b2 + (d − x)2

and then set dT /dx = 0. Thus,

dT

dx
= 1

2

[
2x√

a2 + x2
− 2(d − x)√

b2 + (d − x)2

]
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and setting this equal to zero gives

x = ad

a + b
.

Ancient mathematicians could also have solved this problem,
however, long before the invention of the calculus, using just el-
ementary geometry. To see how, let me first make a fundamental,
exceedingly important and useful mathematical observation called
the triangle inequality. The triangle inequality asserts that, given any
triangle, the sum of any two of its sides is at least as large as the
third side. It is really just a statement of the fact that the shortest
path connecting two points in a plane is the straight line passing
through the two points. Thinking of the triangle’s sides as directed
line segments with both magnitude and direction (i.e., as vectors),
we can write

→
u and

→
v as two of the sides and

→
u + →

v as the third side,
as shown in figure 1.3.

The triangle inequality says that | →
u |+ | →

v | ≥ | →
u + →

v |, where the
absolute value signs denote the length of the vector. It is obvious
that the inequality becomes an equality iff

→
u and

→
v point in the

same direction (and so the triangle collapses to the “trivial triangle”
with zero area).We can, in fact, now drop the imagery of the triangle
itself, and simply think of

→
u and

→
v as any two vectors not necessarily

associated with a triangle (although in many problems there will be
a triangle).

Now, redraw figure 1.2 as figure 1.4 and label the various path seg-
ments as vectors. Notice that nomatter what

→
x is, the sum (

→
a + →

x )+
(
→
d − →

x + →
b ) is constant. Mathematically this is trivial (the two

→
x ’s

u + v

u

 v

FIGURE 1.3. Vector addition.
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B

b

w

A

a

d

x

a + x

d − x + b

d − xα

θ

FIGURE 1.4. Bridge geometry in vector notation.

cancel), but physically this is because of the important observation
that every vector sum (plus a constant

→
w term to account for the

bridge) starts at A and ends at B, no matter what
→
x may be. By

the triangle inequality | →
a + →

x | + | →
d − →

x + →
b | ≥ | →

a + →
d + →

b |; an
equality (which is the minimum sum) is achieved only when

→
a + →

x

and
→
d − →

x + →
b are in the same direction. That is, when θ = α in the

notation of figure 1.4.
Since the two triangles in figure 1.4 are right triangles with their

other two angles equal, they are similar triangles. Thus, dropping
the vector notation, we have

a

x
= b

d − x
,

which is easily solved to give the location of the bridge at

x = ad

a + b
,

just as before. But this time no derivative was required. And, in
fact, our ancient mathematician’s solution actually provides some
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immediate extra physical insight that the calculus one does not;
since θ = α, the path segments connecting each town to its respec-
tive river bank are parallel.

1.5 The AM-GM Inequality

There are yet other methods the mathematicians of old, in the days
before calculus, could have used to solve many problems that seem-
ingly require the calculation of derivatives. One of the most elegant
of these methods is what is called the AM-GM inequality (the arith-
metic mean-geometric mean inequality). It is easy to state:

If x1, x2, · · · , xn are any n positive numbers, n ≥ 1, and
if A = (1/n) (x1 + x2 + · · · + xn) is the arithmetic mean of the x’s
and if G = (x1x2 · · · xn)1/n is the geometric mean of the x’s,
then A ≥ G with equality iff x1 = x2 = · · · = xn.

New demonstrations of this famous and remarkably useful in-
equality appear on a regular basis to this day, but one of the easiest
to understand (as well as one of the most elegant) is the 1954 proof
by a mathematician named G. Ehlers. I know nothing more about
Ehlers, but his proof of the AM-GM inequality is a gem and you can
find it in appendix A. That proof uses just simple algebra and induc-
tion, but no calculus, which is appropriate since the whole point here
is to show how we can solve many minimum/maximum problems
without the techniques of calculus.

For example, recall the isoperimetric dual problem mentioned at
the start of section 1.3: show that of all rectangles with a given area
it is the square that has the smallest perimeter. This is actually quite
easy to demonstrate with the AM-GM inequality. If we call the sides
of the rectangle x and y, then the problem is to determine x and y

so that we minimize

P = 2x + 2y = 2(x + y),

given that

A = xy

is a constant. From the AM-GM inequality with n = 2 we immedi-
ately have
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1

2
(x + y) ≥ √

xy = √
A

with equality iff x = y. That is,

P = 2(x + y) ≥ 4
√
A,

which says P is never smaller than the constant 4
√
A and is equal to

that constant iff x = y (iff the rectangle is a square).
Closely related to this result is one concerning right triangles.

Imagine all possible right triangles with perpendicular sides of
lengths x and y that sum to a constant, i.e.,

x + y = k.

If we write A to denote the areas of the triangles, then

A = 1

2
xy.

Now, the AM-GM inequality for n = 2 says

x + y

2
≥ √

xy = √
2A

with equality iff x = y. Thus,

k

2
≥ √

2A,

or

A ≤ k2

8

with equality iff x = y. This shows that of all right triangles with
perpendicular sides that sum to a constant, it is the isosceles right tri-
angle that has the largest area (a result known since ancient times).

For another elegant illustration of the power of the AM-GM in-
equality, think back a bit to a question I asked you to ponder: of all
triangles with a given area, show that it is the equilateral that has
the smallest perimeter. Did you have any success doing that? It’s
not trivial! I’ll do it here with the aid of the AM-GM inequality by
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showing the dual theorem: of all triangles with a given perimeter P ,
the equilateral has the largest area. As a prelude, recall the amazing
formula for the area A of any triangle in terms of the lengths of its
sides (a, b, and c). This formula is named after the Egyptian mathe-
matician Heron of Alexandria, who is thought to have lived in the
first century A.D. Some historians have speculated that the formula
was known by Archimedes three centuries earlier, but there is no
real evidence of that (other than Archimedes’ genius, which makes
it probable that he did know it), while the formula does appear in
Heron’sMetrica. It is not an easy formula to derive [seeWilliamDun-
ham, Journey throughGenius: The Great Theorems ofMathematics (John
Wiley 1990, pp. 118–27)], but it is easy to state:

A = √
s(s − a)(s − b)(s − c),

where s = 1
2 (a + b+ c) = 1

2P , the so-called semiperimeter of the tri-
angle. Since P is given, then so is s and Heron’s formula tells us that
to maximize A we must maximize the product (s − a)(s − b)(s − c).

Notice first that each of the factors in that product is indeed
positive, e.g.,

s − a = a + b + c

2
− a = −a + b + c

2
> 0

because from the triangle inequality for nontrivial triangles (trian-
gles with nonzero area) we have b + c > a. Now, from the AM-GM
inequality, we have

(s − a) + (s − b) + (s − c)

3
= 3s − (a + b + c)

3
= 3s − 2s

3

= s

3
≥ [(s − a)(s − b)(s − c)]1/3

with equality iff (s − a) = (s − b) = (s − c), i.e., iff a = b = c. The
term s/3 is a constant upper-bound to the inequality and so the area
is maximized if a = b = c, and that’s the entire proof!

As a third example of the AM-GM inequality solving a problem
ordinarily thought to require calculus, consider the following ques-
tion that probably appears in every calculus textbook ever written.
A food can (with both ends sealed, of course) with the given vol-
ume V is to have the shape of a right circular cylinder. What are the
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dimensions of the can (the radius r and the height h) so that the
surface area is minimum? The “calculus way” to answer this is to
write the surface area S and the volume as

S = 2πr2 + 2πrh

V = πr2h

and then to eliminate h. Thus, h = V/πr2, and so

S = 2πr2 + 2πr
V

πr2
= 2πr2 + 2V

r
.

We minimize S (as we’ll see in chapter 4) by setting dS/dr to zero,
i.e.,

dS

dr
= 4πr − 2V

r2
= 0,

which gives the solution for r. Thus, V = 2πr3, or

V

πr2
= h = 2r.

That is, the height of the can with minimum surface area is equal
to the diameter of the can.

Here’s how the AM-GM inequality answers the same question. As
before,

S = 2π
(
r2 + rh

) = 2π

(
r2 + V

πr

)
= 2π

(
r2 + V

2πr
+ V

2πr

)
.

Or

S

6π
= 1

3

(
r2 + V

2πr
+ V

2πr

)
.

From the AM-GM inequality, we have

1

3

(
r2 + V

2πr
+ V

2πr

)
≥
(
r2 · V

2πr
· V

2πr

)1/3

=
(

V 2

4π2

)1/3

,

and so
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S

6π
≥
(

V 2

4π2

)1/3

or S ≥ 6π

(
V 2

4π2

)1/3

.

Thus, the surface area is never less than the constant 6π
(
V 2

4π2

)1/3
, and

is equal to that minimum value when r2 = V
2πr = V

2πr , i.e., when
V = 2πr3 just as we found before (but before we had to know how
to calculate a derivative).

Now, here’s a little variation for you to play with: in the example
just done, both ends of the can were sealed. Suppose instead that
only the bottom end is sealed. For the same volume as before, what
now is the relationship between r and h to minimize the surface
area, and what is the ratio of the new minimized surface area to the
one just calculated? It should be obvious that the ratio is less than
one, but how much less than one? Remember, no calculus! There are
two ways for you to attack this problem. You can start over and use
the AM-GM inequality, of course. More clever, however, is to use our
previous result, by noticing that if we take two cans, each with only
one end sealed, and butt the unsealed ends together, we get a can
with both ends sealed! Either way, you should get the same answers.
(The answers are at the end of this section.)

We can use the AM-GM inequality to prove the following curious,
and I think unobvious, fact: given two food cans of equal volume
and equal height, one cylindrical and the other rectangular in shape,
the cylindrical can will always have the smaller total surface area. To
see this, observe that if V is the common volume, then, for either
shape, we can write

V = (area of bottom) × (height).

So, since the heights are also equal, then the areas of the bottoms
(and tops) of the two shapes are equal, too. Thus, to decide which
can shape has the smaller total surface area we need only to com-
pare the vertical surface areas. To do that, let’s make the following
definitions:

Sc = vertical surface area of a cylindrical can of radius r and
height h, i.e., Sc = 2πrh,

Sr = vertical surface area of a rectangular can with dimensions
a × b × h, i.e., Sr = 2ha + 2hb = 2h(a + b).
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This means

Sr − Sc = 2h(a + b) − 2πrh = 2h[(a + b) − πr].

From the AM-GM inequality we have (a + b) ≥ 2
√
ab, and so

Sr − Sc ≥ 2h
[
2
√
ab − πr

]
because I’ve replaced (a+b) with a smaller quantity. Now, since the
volumes of the two cans are equal we can also write

V = πr2h = abh,

and so

√
ab =

√
V

h

and

πr = π

√
V

πh
= √

π

√
V

h
.

This gives us

Sr − Sc ≥ 2h

[
2

√
V

h
− √

π

√
V

h

]
= 2h

√
V

h

[
2 − √

π
]
> 0

because it is clear that 2 >
√
π (i.e., 4 > π). So, no matter how you

choose the various dimensions of the two cans, if they have equal
volume and equal height then the cylindrical can will always have
the smaller total surface area.

If we don’t require the two can shapes to have the same height,
then it is no longer true that the cylindrical can will have the smaller
surface area no matter what the dimensions may be. For example,
suppose the rectangular can has dimensions 1× 1×π , for a volume
of π . Its total surface area is then 2 + 4π = 14.57. If the cylindrical
can has a radius of r and height h, then for the same volume we
have πr2h = π , or

h = 1

r2
.
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Its total surface area is

T = 2πr2 + 2πrh = 2πr2 + 2πr
1

r2

= 2π

(
r2 + 1

r

)
.

It is clear that we could pick r tomake T arbitrarily larger than 2+4π .
But it is also true that, if we pick r to give the minimum surface

area for the cylindrical can, that area will be smaller than 2 + 4π .
That is, differentiating T gives

dT

dr
= 2π

(
2r − 1

r2

)

which is zero when r = (
1
2

)1/3
, which gives

T = 2π



(
1

2

)2/3

+ 1(
1

2

)1/3


 = 2π

1

2
+ 1(

1

2

)1/3 = 2π21/3 · 3
2

= 3π21/3 = 11.87,

nearly 19% less than the surface area of the rectangular can.
As the final example of this section, let me show you howmathe-

maticians of old could have solved yet another maximum problem.
As shown in appendix B, using nothing but algebra (no calculus),
a consequence of the AM-GM inequality is yet another inequality
called the arithmetic mean-quadratic mean inequality (the AM-QM
inequality): if x1, x2, · · · , xn are n numbers, then

x1 + x2 + · · · + nn

n
≤
√
x21 + x22 + · · · + x2n

n
, n ≥ 1

with equality iff x1 = x2 = · · · = xn. But the AM-GM inequality itself
tells us that

(x1x2 · · · xn)1/n ≤ x1 + x2 + · · · + xn

n
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with equality iff x1 = x2 = · · · = xn, and so

(x1x2 · · · xn)1/n ≤
√
x21 + x22 + · · · + x2n

n

with equality iff x1 = x2 = · · · = xn.
This general result has a very pretty geometric interpretation for

n = 2, i.e., for

√
x1x2 ≤

√
x21 + x22

2
.

Suppose that x21 + x22 = R2 (a constant). The equation x21 + x22 = R2

is a circle (centered on the origin of the x1, x2 coordinate system)
with radius R, and so

√
x1x2 is bounded from above by the constant

R/
√
2. And since 4x1x2 is the area of a rectangle inscribed in that

circle, then that area is bounded from above by the constant 2R2 and
that area is equal to 2R2 iff x1 = x2. That is, the inscribed rectangle
of maximum area is the inscribed square.

The answers to the problem of the cylindrical can with min-
imum surface area, with just one end sealed, are

a. r = h

b. ratio of surface areas = 1

2
3
√
4 = 0.7937.

1.6 Derivatives from Physics

There are minimum/maximum problems of great interest that do
contain derivatives, but not because we are going to set them equal
to zero. They are present because, for example, the physics of the
problem requires them. The actual determination of a minimum
(or a maximum) of something in such problems, however, depends
on other sorts of arguments. So, for the penultimate section of this
introductory chapter, let me take you through the details of one
such problem that has derivatives aplenty because of the physics and
not because of the mathematics.
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center of Earth (r = 0)

surface of Earth
(r = R)

FIGURE 1.5. Vertical cannon shot.

Consider figure 1.5. There we have a cannon pointing straight up,
directly away from the center of the earth (not drawn to scale!). If
we fire the cannon a shell is ejected with initial velocity v0, it rises
upward to some maximum height, stops, and then falls back down
to the ground. It is clear that the larger v0, the higher the shell will
go before gravity brings its upward motion to a halt. We can show,
in fact, that if v0 has a certain critical minimum value, then the
shell will not return to earth. That minimum value for v0 is called
the escape velocity.

If we measure distance from the center of the earth as r (r = 0
is the center, and r = R is the surface of the earth), then Newton’s
second law of motion (force equals mass times acceleration) and his
inverse-square law of gravity tells us that if we ignore air-drag on the
shell, then

m
d2r

dt2
= −G

Mm

r2
, r ≥ R,
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where: m = mass of the shell,
M = mass of the earth,
G = universal constant of gravitation.

The minus sign on the right side of the differential equation is
present because increasing r is directed upward, while the gravi-
tational force on the shell is in the opposite direction, downward
toward the center of the earth.

We can solve this second-order differential equationwith the help
of a powerful result from differential calculus called the chain rule
(discussed in chapter 4): if we write v(r) as the velocity of the shell
at distance r from the center of the earth, then by definition

v = dr

dt
,

and so the acceleration of the shell is

d2r

dt2
= dv

dt
= dr

dt
· dv
dr

= v
dv

dr
.

This reduces our original differential equation to the more tractable
(with m canceled on both sides) equation

v
dv

dr
= −GM

1

r2
, r ≥ R.

We can “separate the variables” in this equation and write

v dv = −GM
dr

r2
,

which is easily integrated to give

1

2
v2 = GM

1

r
+ C,

where C is the so-called “constant of indefinite integration.” Now,
since v = v0 when r = R, then

1

2
v20 = GM

1

R
+ C,

or
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C = 1

2
v20 − GM

1

R
,

and thus

1

2
v2 = GM

1

r
+ 1

2
v20 − GM

1

R
.

If we define H as the shell’s maximum distance from the center of
the earth, then, as by definition v = 0 when r = H , we have

0 = GM

H
+ 1

2
v20 − GM

R
,

or

H = GM

GM

R
− 1

2
v20

.

If v0 = 0 then H = R, which is simply the obvious; if the shell
“leaves” the cannon with zero initial velocity, then it doesn’t go
anywhere! But as v0 increases from zero, then H increases from R

and, obviously, as 1
2v

2
0 approaches GM/R we see that H diverges to

infinity, i.e., the shell does not return to earth. So, the minimum
escape velocity is the initial velocity given by

v0 =
√
2GM

R
.

Any velocity greater than this also means the shell isn’t coming
back, of course.

We can express this result in the following interesting alternative
way.When r = R, the gravitational force on the shell is simply what
we call its weight at the surface of the earth, which is mg, where g

is the acceleration of gravity at the surface. Thus,

mg = G
Mm

R2
,

and so GM = g R2. This gives the escape velocity as

v0 =
√
2gR2

R
= √

2gR.
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Taking the earth’s radius as 3,950 miles, and g as 32.2 ft/sec2, we
have the escape velocity as

v0 =
√
2 × 32.2 × 3,950 × 5,280 ft/sec

= 36,649 ft/sec = 6.94 miles/sec.

This is not the way we send people into space, of course, as
the initial acceleration of the shell (spaceship) from zero to almost
seven miles per second over the length of a cannon barrel would be
unsurvivable. (But see Jules Verne’s From the Earth to the Moon. In
his 1865 novel, he proposed getting around the problem of shoot-
ing men to the moon using a fantastic 900-foot-long cannon. It
wouldn’t work, but it is clever.) But, serious proposals have been
made to put nonhuman payloads into orbit or on the moon, using
super-high acceleration up to the escape velocity. Such accelerations
would be achieved not with a cannon but, rather, with the far more
exotic technology of electromagnetic launchers, which are in ac-
tual use today at several sophisticated rollercoaster rides around the
world.

1.7 Minimizing with a Computer

For the final two examples of this chapter, which return to the theme
of the computer as a useful tool in extremal problems, suppose first
that a man can walk n times faster than he can swim (it seems
reasonable that n ≥ 1, but I’ll not use that assumption in what
follows). He wants to travel from A, on the edge of a circular lake
with radius R (centered on point O) to C, also on the edge of the
lake. C’s location is specified by the given angle β (measured from
the diameter AOD), as shown in figure 1.6. His general strategy is to
first swim along the chord AB, and then to walk the rest of the way
along the lake’s edge from B to C. If his total travel time is T , then
where should B be to minimize T ?

If we denote by θ the central angle subtended by the man’s walk,
then the isosceles triangle OAB (with the chord AB as its base) has
equal base angles of α and a third angle of γ = π − θ − β. Thus,

(2α) + (π − θ − β) = π radians,
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FIGURE 1.6. Crossing a circular lake in minimum time.

or

α = 1

2
(θ + β).

It is clear from figure 1.6 that the man’s swimming and walking
distances are, respectively, 2R cos

{
1
2 (θ + β)

}
and Rθ . So, if we call

his swimming speed unity (in arbitrary units) then his walking speed
is n and we have the total travel time as

T = 2R cos

{
1

2
(θ + β)

}
+ Rθ

n

= R

[
2 cos

{
1

2
(θ + β)

}
+ θ

n

]
.



26 C H A P T E R 1

As a quick, partial check on this expression, notice that if β = π

radians (C = A) then we also have θ = 0 and T = 0, just as we
should have (it doesn’t take any time to travel from where you are
to where you are!).

Our problem then is simply this: given a value of β in the interval
0 to π (thus locating C), what θ minimizes T (thus locating B)? This
is an easy question to study with the aid of a computer. Figure 1.7
shows how T varies with θ , for five values of n, with β = 0 (C is
directly across the lake from A) and figure 1.8 assumes β = 90°. In
both figures the constant scale factor of R in the expression for T
has been ignored since it has no affect on the value for θ that gives
an extrema in T .

The plots in the two figures contain a wealth of information. In
figure 1.7, for example, the n = 1 and n = 1.5 curves have their
minimum values at θ = 0 (the man should swim, all the way, from
A to C), while the n = 2, n = 2.5, and n = 3 curves have their

T/
R

θ (in degrees)

n = 1.0

n = 1.5

n = 2.0

n = 2.5

n = 3.0

3.5

3.0

2.5

2.0

1.5

1.0

β = 0˚

200 40 60 80 100 120 140 160 180

FIGURE 1.7. Total travel time across the lake, β = 0°.
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FIGURE 1.8. Total travel time across the lake, β = 90°.

minimumvalues at θ = 180° (theman shouldwalk, all the way, from
A to C). The curves suggest that there is some value of n between 1.5
and 2 where either of the pure walk-only and swim-only strategies
would give the minimum travel time. What is that critical value of
n? A little thought should convince you it is n = 1

2π = 1.57. The
curves of figure 1.8 suggest the same general conclusion for β > 0,
i.e., as n increases from unity the strategy for minimizing the total
travel time begins as the pure strategy of swimming all the way and
then switches to the pure strategy of walking all the way. Is this
always true? That is, for any value of β, is it true that there is never
a mixed strategy of walking and swimming that minimizes T ? I’ll
leave that for you to think about!

For my last example in this chapter, consider the following prob-
lem that is superficially similar to the one just treated, but which
offers some surprising complications. But not so much complica-
tion that we can no longer make a fruitful computer analysis. So,
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FIGURE 1.9. Another water-crossing problem.

suppose now that the man is initially at point A on a beach with a
right-angle bend, as shown in figure 1.9. The man wishes to travel
from A to E in minimum time; at any point B, as he walks along
the first section of beach toward C, he can enter the water and swim
toD, where he exits the water and continues walking on the second
section of beach toE. That is, he can “cut a corner” from one section
of beach to the other. The lengths of the two sections of beach are
a and b, as shown in figure 1.9.

It is not difficult to express the problem mathematically. If we
write v1 and v2 for the man’s speeds while swimming and walking,
respectively, and if x and y are the distances of pointsD and B from
the corner of the beach (C), respectively, then the total travel time
is a function of two variables:

T (x, y) = a − y

v2
+

√
x2 + y2

v1
+ b − x

v2



M I N I M UM S A N D M A X I M UM S 29

= (a + b) − (x + y)

v2
+

√
x2 + y2

v1
.

Our problem, then, is to determine the values of x and y that mini-
mize T for given values of a, b, v1, and v2.

The answer for v1 > v2, for any a and b, is physically obvious:
x = b and y = a, i.e., the man swims the entire trip because then
he travels the straight line path (shortest possible path) from A to
E at the greater speed. As argued before, swimming faster than he
can walk isn’t very plausible, however, and the case of v1 < v2 is
far more interesting (both physically and mathematically). Before
continuing with the analysis of T (x, y), it is important to notice
that, with a single exception, the values of x and y are independent,
subject only to the constraints of 0 ≤ x ≤ b, 0 ≤ y ≤ a. The single
exception is that if either x or y is zero then so must be the other;
this is because of the physically required continuous nature of a path
from A to E.

Now, we could attack the problem of minimizing T (x, y) with
the aid of rather sophisticated calculus, but that isn’t attractive for
several reasons. First, that would be out of place so early in this book
and, second, there is a very pretty geometric interpretation of the
problem. Indeed, you’ll see the same approach used later, when we
get to linear programming in chapter 7. And third, the approach I’ll
show you nowmakes great use of the sheer computational power of
a computer.

To begin, all pairs of points (x, y) that satisfy the constraints
0 ≤ x ≤ b, 0 ≤ y ≤ a form what is called the set of feasible solutions.
For our problem, this set is the rectangle shown in figure 1.10, with
the understanding that the bottom edge (x > 0, y = 0) and the left
vertical edge (x = 0, y > 0) are not included in the feasible solution
set; the corner point (0, 0) is, however, in the feasible solution set.
We want to find the point in the feasible solution set that minimizes
T (x, y). Now, notice that we can write

v1v2 T = v1(a + b) − v1(x + y) + v2
√
x2 + y2,

or √
x2 + y2 −

(
v1

v2

)
(x + y) = U,
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FIGURE 1.10. Feasible solution set for the geometry of figure 1.7.

where

U = v1T −
(
v1

v2

)
(a + b).

Since v1, v2, a, and b are given positive constants, then it is clear
that the minimization of T is equivalent to the minimization of U .
This simple observation turns out to be the key observation in the
following analysis.

The equation

√
x2 + y2 =

(
v1

v2

)
(x + y) + U

defines a curve y = y(x) for any given U ; as we vary U we will also
vary the curve y = y(x). We wish to determine the minimum U that
results in a curve that still passes through at least one point of the
feasible solution set. Using a computer to draw these curves will give
us all the insight we need to determine the minimizing U(= Umin)

and, hence, the minimized T (= Tmin):
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Tmin = 1

v2
(a + b) + 1

v1
Umin.

To plot y = y(x) as a function of U , it is convenient to change to
polar coordinates:

x = r cos(θ)

y = r sin(θ),

and so√
r2 cos2(θ) + r2 sin2(θ) =

(
v1

v2

)
[r cos(θ) + r sin(θ)] + U.

This is easily reduced to

r = U

1 −
(

v1

v2

)
[sin(θ) + cos(θ)]

,

where, of course, it is understood that the radius vector r (at polar
angle θ from the origin to the arbitrary point (x, y) on the y(x)

curve) is always nonnegative, i.e., r ≥ 0. That is, the numerator
and the denominator must have the same sign.

For the remainder of this analysis, let’s assume that both the
numerator and denominator are nonnegative, i.e., that

U ≥ 0

1 −
(

v1

v2

)
[sin(θ) + cos(θ)] ≥ 0.

Since f (θ) = sin(θ) + cos(θ) achieves a maximum value of
√

2 at
θ = 45° (easily verified by either setting df/dθ = 0 or by simply
plotting f (θ)), then as long as(

v1

v2

)
≤ 1√

2
,

we will have r ≥ 0 for any U ≥ 0 for all values of the polar angle
θ . That is, we are now dealing with a restrictive case of v1 < v2, i.e.,
with v1 ≤ (1/

√
2)v2.
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Returning to the original x, y coordinate system, we have the
result we are after: the y = y(x) curve is the curve defined by

x = U cos(θ)

1 −
(
v1

v2

)
[sin(θ) + cos(θ)]

,

y = U sin(θ)

1 −
(
v1

v2

)
[sin(θ) + cos(θ)]

.

We can see now that all U “does” is scale the plot. Indeed, in figure
1.11 you’ll find the curve y = y(x) for v2 = 5 with four different
values of v1 (all satisfy the condition v1 ≤ (1/

√
2)v2), for two values

of U (solid for U = 1, dashes for U = 0.4). It is clear from these plots
that y = y(x) is elliptical, and that as U decreases toward zero, the
curves shrink inward to around the lower-left-corner point of the
feasible solution set (in solid).

0 1 2−1

1.5

1.0

0.5

0.0

−0.5

−1.0
0 1 2−1

2.0

1.5

1.0

0.5

−0.5

−1.0

0.0

0 10 20−5

20

15

10

5

−5

0

5 150 6−2

5

4

3

2

−1

0

2 4

1

v1 = 1   v2 = 5 v1 = 2   v2 = 5

v1 = 3   v2 = 5 v1 = 3.4   v2 = 5

FIGURE 1.11. Converging to the minimum-time solution as U vanishes.
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I have, to be specific, used a = 1 and b = 2 to define the feasible
solution rectangle, but it should be obvious that the actual size of
the rectangle doesn’t matter. That is, for any choice of the a and b

values, the smallest nonnegative U is U = 0, which collapses the
y = y(x) curve to the single point x = 0, y = 0. Since the smallest
U gives the smallest T , then T (0, 0) is the minimum journey time.

Thus, somewhat surprisingly I think, if v1 ≤ (1/
√
2)v2 then the

man should walk the entire way, and that is so no matter what are
the dimensions of the beach. So, we have solved the problem for
the two cases of v1 ≥ v2 (swim all the way) and v1 ≤ (1/

√
2)v2 (walk

all the way). What if (1/
√
2)v2 < v1 < v2? I’ll leave that case for you

to ponder!

How to Walk Out of the Woods

Our lost hiker doesn’t know which way to go to walk di-
rectly back to his car, but he does know that the car is some-
where on the circumference of the circle, with a one-mile ra-
dius, centered on his present location. So, to insure he returns
to his car, he should first walk one mile in a randomly selected
direction—if he is very lucky he’ll walk straight back along the
radius that was his original path—and then walk along the
circular (one-mile-radius) path centered on his starting point.
Somewhere along that circular path is his car. The absolutemax-
imum distance he’ll have to walk is the initial one-mile radius
plus the 2π -mile circumference, i.e., 1 + 2π = 7.2832 miles.

This is a mathematician’s solution, of course, as it ignores
the practical detail of just how one manages to walk along a
circular arc in a densely wooded forest. Another setting for this
problem, that avoids that objection, is to have our lost soul be
a fisherman in a rowboat one mile off shore, in a dense fog.
Rowing in a circle is now “easy”; all the fisherman need do is to
take one end of a rope, drop it overboard with a heavy anchor,
measure the depth of the water, and then (with due regard for
the depth) row away until enough rope has played out to put
him a mile away. He can then, keeping the rope taunt, swing
in a circular path about his original position.

Now, here’s a new twist on this puzzle for you to think
about. Is this solution the best one can do, where best means
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(continued)

having the minimum maximum path length? The answer is
no, there are paths that require smaller maximum travel dis-
tances that, with certainty, return the fisherman back to shore
(this is not quite the same as getting back to the car itself,
of course, but for both the hiker and fisherman it is probably
good enough!)

To see this, imagine our lost fisherman first picks some angle
θ > 0, and then at random picks a direction that he assumes
is the direct one-mile path to the shore. He then rows at angle
θ to this line for a distance of

√
1 + tan2(θ), as shown in figure

shore
line

θ

θ 1

√1 + tan2(θ)

fisherman’s
original
position

tan(θ)

FIGURE 1.12. Geometry of the lost fisherman problem.
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(continued)

1.12. That is, the triangle formed by his initial position, his
new position, and the end of the one-mile path in the assumed
direction to the shore, is a right triangle. If the assumed di-
rection to the shore happens to be correct, then his journey
is over. Otherwise, he next rows along a circular path with ra-
dius

√
1 + tan2(θ) until the line fromhis original position to his

present position is once again θ with respect to the assumed
one-mile path. That is, he rows along a circular path through
an angle of 2π − 2θ radians. Since the original solution was
sure to eventually return him to shore, it is clear from figure
1.12 that this new path will also eventually reach the shore
as well (since the original solution path lies entirely inside the
new path). The maximum total length of this new path is

L(θ) =
√
1 + tan2(θ) + 2π

√
1 + tan2(θ)

(
2π − 2θ

2π

)

= [1 + 2π − 2θ ]
√
1 + tan2(θ).
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FIGURE 1.13. Proof that 2π + 1 is not the minimum path length.
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(continued)

Notice thatL(0) = 1+2π , themaximum length of the original
solution. The astonishing result is that there are values for
θ > 0 that do result in L(θ) < L(0)!

This claim is easily established by simply plotting the quan-
tityL(0)−L(θ) versus θ , as shown in figure 1.13. (Wemight try
setting the derivative ofL(θ) to zero, of course, to calculate the
value of θ that minimizes L(θ), but if you do that you’ll find
you are led to a transcendental equation in θ , i.e., you will still
need to use a computer—see section 4.5.) Figure 1.13 shows
that, for θ = 16.61°, L(θ) is 0.2879miles less than 7.2832miles.

Now, one final question for you—can our fisherman do
even better? Is there a rowing path that has an even smaller
maximum length that is still certain to get him to shore? The
answer is again yes, and an analysis demonstrating that is
given in appendix H—but don’t look until you’ve made an
honest try.



2.
The First Extremal

Problems

2.1 The Ancient Confusion of Length and Area

Ancient mathematicians, the Greeks and the Egyptians of the sev-
eral centuries before Christ, treated a number of questions of the
type we are interested in. They included the isoperimetric problem
(what closed curve of given length encloses the greatest area?), and
such questions as how to determine the line of minimum length
that joins a given point to a given curve. Apollonius of Perga (262–
190 B.C.) gave many ingenious geometric constructions to the latter
question in his work Conics, but generally such problems are now
handled easily with calculus. I’ll not discuss Apollonius’ solutions
here, then, but if you are curious, you can see how he reasoned in
volume 2 of Thomas Heath’s classic work A History of Greek Mathe-
matics, (Oxford 1921, pp. 159–63).

At just about the same time, the great Archimedes (287–212 B.C.)
had tackled a fascinating problem concerning the volumes of the
spherical caps cut off by planes passing through spheres of various
radii, with the constraint that the caps all have the same surface
area. (A spherical cap is the region of a sphere that lies above, or be-
low, a plane that cuts through a sphere. Any plane passing through a
sphere’s center, for example, divides the sphere into two equal spher-
ical caps called hemispheres.) In hismasterpieceDe Sphaera et Cylindro
(On the Sphere and the Cylinder), Archimedes showed that of all such
equal-area caps it is the hemispherical cap that has the largest vol-
ume. Again, I won’t go into Archimedes’ geometric demonstration
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of this but, if curious, you can read how he did it in Thomas Heath’s
1897 book TheWorks of Archimedes (reprinted in 1953 by Dover Pub-
lications), pp. 88–90.

Yet another extremal problem of ancient origin is the geodesic
problem in the plane (what is the curve of minimum length that joins
two given points?). The answer was intuitively accepted by the an-
cients as a straight line, and so will we for the time being. In fact,
however, the isoperimetric and the geodesic questions, all too eas-
ily dismissed by students as having “obvious” answers, are actually
extremely deep questions that stretched brilliant minds to find and
prove the answers. The answer to the first (a circle) defied a rigorous
derivation until the nineteenth century (!), while the answer to the
second was formally proven only just a bit earlier (in the eighteenth
century). The ancients “knew” the answers long before these mod-
ern proofs, of course, and their proofs are actually quite convincing.
But they contain a common, very subtle flaw (bymodern standards),
the explanation of which I’ll save for the last section of this chapter.

To say that the ancients knew the answer to the isoperimetric
problem, however, is not to say it was commonly known. There is,
for example, an amusing passage in Book 4 of Polybius’ Histories (of
the Greek world more than a century before Christ) that shows this.
Titled “Computation of the size of Cities,” it reads:

Most people judge the size of cities simply from their circumfer-
ence. So that when one says that Megalopolis is fifty stades in
circumference [about five miles] and Sparta forty-eight, but that
Sparta is twice as large as Megalopolis, the statement seems in-
credible to them. And when in order to puzzle them still more,
one tells them that a city or camp with a circumference of forty
stades may be twice as large as one the circumference of which is
one hundred stades, this statement seems to them absolutely as-
tounding. The reason of this is that we have forgotten the lessons
we learnt as children. I was led to make these remarks by the fact
that not only ordinary men but even some statesmen and com-
manders of armies are thus astounded, and wonder how it is possi-
ble for Sparta to be larger and even much larger than Megalopolis,
although its circumference is smaller; or at other times attempt to
estimate the number of men in a camp by taking into considera-
tion its circumference alone. . . . So much for those who aspire to
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political power and the command of armies but are ignorant of
such things and surprised by them.

Polybius wrote that in the second century B.C., but the ignorance
he was complaining about was difficult to overcome. Six hundred
years later, for example, we find in a commentary written by the
mathematically trained philosopher Proclus (on the first book of
Euclid’s Elements) the following warning about the possibility of be-
ing short-changed by someone who has not forgotten his geometry
lessons:

We often fail to watch out for [the error of equating area with
perimeter] in the distribution of plots of land; and many persons
have taken the larger of two plots and [improperly] got a repu-
tation for justice as having chosen an equal portion because the
sum of the boundaries is the same in both cases.

Proclus gives the further interesting example of two isosceles trian-
gles, one with sides 5, 5, and 6, and the other with sides 5, 5, and
8. The unwary might assume the first to have the smaller area be-
cause it has the smaller perimeter, but in fact a quick application
of Heron’s area formula (or of the 3, 4, 5 right triangle geometry
created by drawing the altitude to the longest side) shows that the
two triangles have the same area (of 12).

With these words of Polybius and Proclus in mind, it is now
easy to understand why the average Greek of ancient times found it
paradoxical that the two triangles shown in figure 2.1 should have
the same area (because they have the same base and equal height),
even though the perimeter ofA is clearly less than that of B. Indeed,

B

P

A

FIGURE 2.1. Two triangles with equal areas but unequal perimeters.



40 C H A P T E R 2

by sliding the vertex P of B arbitrarily far to either the left or right
along the upper dashed line we can increase the perimeter of B

without bound, without changing the area of B. This increase in
perimeter comes with a price, of course: we need a bigger and bigger
“expanse” of the plane to contain B even though its area remains
constant. What is still astonishing to this day is that it is possible to
do this example one better; to have a closed, simple (i.e., non-self-
intersecting) curve that bounds finite area with an infinite perimeter
in a finite region of the plane.

In 1906, for example, the Swedish mathematician Helge von
Koch (1870–1924) published what has come to be called the “von
Koch snowflake,” a closed curve of infinite length that lies totally
within a finite region of the plane (and so encloses a finite area). The
iterative construction of this astonishing curve is easy to describe.
We start with an equilateral triangle, with sides of unit length. Then,
as the first iteration, the middle third of each side is removed and
replaced with equilateral triangles with sides of length 1

3 . Then, as
the second iteration, the middle third of the sides in the first itera-
tion curve are removed and replaced with equilateral triangles with
sides of length 1

9 . And so on indefinitely, as suggested in figure 2.2;
the von Koch snowflake is the curve that results as the number of
iterations increases without limit.

To see the astonishing perimeter/area property of the von Koch
snowflake, let’s make the following definitions. After the nth itera-
tion, n ≥ 0,

Nn = number of sides

�n = length of each side

Ln = length of perimeter = Nn�n.

So, �0 = 1, N0 = 3, and L0 = 3. It is obvious that with each iteration
the number of sides increases by a factor of 4 (inserting a triangle
in the middle of a side increases one side to four sides—the original
side is split into two sections, plus the two sides of the triangle itself).
Since N0 = 3, then

Nn = 3 · 4n, n = 0, 1, 2, · · · .
Also obvious is that with each iteration the length of a side decreases
by a factor of 3. Since �0 = 1, then
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�n = 1 ·
(
1

3

)n
= 1

3n
, n = 0, 1, 2, · · · .

Thus, the perimeter after the nth iteration is

Ln = Nn�n = 3 · 4n · 1

3n
= 3 ·

(
4

3

)n

,

and so

lim
n→∞Ln = lim

n→∞ 3 ·
(
4

3

)n

= ∞.

It is probably obvious as well that the total area bounded remains
finite as n → ∞ because each iteration results in an increasingly
“crinkly” curve (so crinkly, in fact, that in the limit n → ∞ we can’t
draw it!) through the use of ever smaller triangles. Certainly all of
the iterative curves remain inside a circle with a radius of, say, 1. But,
to be sure this claim of finite area is clear, let’s calculate the precise
area of the von Koch snowflake.

To begin, observe that the area of an equilateral triangle with
side lengths �n is, by Heron’s formula from chapter 1, with s = 1

2
(�n + �n + �n) = 3

2 �n, given by

√
s(s − �n)(s − �n)(s − �n) =

√
3

2
�n · 1

2
�n · 1

2
�n · 1

2
�n =

√
3

4
�2n.

So, for example, if An is the area bounded after the nth iteration,
then

A0 =
√
3

4
.

Now, with each iteration we clearly increase the enclosed area;
from An−1 we increase to An by adding 3 · 4n−1 equilateral triangles
(a triangle for each side) with �n = 1

3n . (For example, with n = 1 we
increase from A0 to A1 by adding three equilateral triangles, each
with �1 = 1

3 .) The area of each one of these added triangles is

√
3

4
·
(

1

3n

)2

=
√
3

4
· 1

9n
,

and so
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An = An−1 + 3 · 4n−1 ·
√
3

4
· 1

9n
= An−1 +

√
3

4

[
3 · 4n−1

9n

]

= An−1 + A0
3 · 4n−1

9 · 9n−1
= An−1 + A0 · 1

3

(
4

9

)n−1

.

Writing this expression for An explicitly for the first few values of

n ≥ 1, we see that

n = 1: A1 = A0 + A0
1

3

(
4

9

)0

= A0

[
1 + 1

3

(
4

9

)0
]

;

n = 2: A2 = A1 + A0
1

3

(
4

9

)
= A0

[
1 + 1

3

(
4

9

)0
]

+ A0
1

3

(
4

9

)
,

or A2 = A0

[
1 + 1

3

(
4

9

)0

+ 1

3

(
4

9

)]
;

n = 3: A3 = A2 + A0
1

3

(
4

9

)2
= A0

[
1 + 1

3

(
4

9

)0

+ 1

3

(
4

9

)]

+ A0
1

3

(
4

9

)2
,

or A3 = A0

[
1 + 1

3

(
4

9

)0

+ 1

3

(
4

9

)
+ 1

3

(
4

9

)2
]
.

In general, then, we can write

lim
n→∞An = A0

[
1 + 1

3

(
4

9

)0

+ 1

3

(
4

9

)
+ 1

3

(
4

9

)2

+ · · ·
]

= A0

[
1 + 1

3

{
1 +

(
4

9

)
+
(
4

9

)2

+ · · ·
}]

.

The expression in the braces is a geometric series, i.e.,

1 + x + x2 + · · · = 1

1 − x
, |x| < 1
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and, with x = 4/9 in the expression for limn→∞ An, we have

lim
n→∞An = A0


1 + 1

3
· 1

1 − 4

9


 = 8

5
A0.

So, in the limit n → ∞, the von Koch process increases the initial
enclosed area by just 60%, while increasing the initial perimeter to
infinity. The von Koch snowflake occupies a finite region of the
plane as well, unlike triangle B in figure 2.1. Even Polybius and
Proclus, I think, would have been astonished by the area/perimeter
properties of the von Koch snowflake.

2.2 Dido’s Problem and the Isoperimetric Quotient

The origin of the isoperimetric problem can be traced back to the
legendary story of the Phoenician queen Dido, told by Virgil in his
Aenid. In that tale of events supposed to have taken place in the
middle of the ninth century B.C., we read of Dido fleeing from her
brother Pygmalion, who has murdered her husband. Escaping by
sea, she finally lands in North Africa in what today is called the Bay
of Tunis. There she comes to an agreementwith the local inhabitants
that she may buy all the land that can be bounded by the hide
of a bull. The locals must have thought that to be a great joke,
but Dido had the last laugh; she cut the hide into a great many
long, narrow strips and attached them end-to-end. Then, using the
seashore (given as straight) as part of the boundary, she laid out the
hide-strip to enclose the maximum possible area, which she “knew”
would be in the shape of a semicircle. Thus was founded, so goes
the legend, both the ancient city of Carthage as well as the problem
of Dido.

Carthage disappeared long ago (destroyed for the last time at the
end of the seventh century A.D.), but the problem of Dido has re-
mained one of the classics of mathematics: to find, among all possi-
ble curves of fixed length that connect two points on another given
curve, the one curve that bounds the largest area. For the original
problem of this type the given curve is a straight line (the seashore)
and, from the assumption that the solution curve is semicircle, it
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So, in the limit n → ∞, the von Koch process increases the initial
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the legend, both the ancient city of Carthage as well as the problem
of Dido.

Carthage disappeared long ago (destroyed for the last time at the
end of the seventh century A.D.), but the problem of Dido has re-
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ble curves of fixed length that connect two points on another given
curve, the one curve that bounds the largest area. For the original
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and, from the assumption that the solution curve is semicircle, it
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is then “easy to see” that the solution curve to the isoperimetric
problem is a circle. You’ll see how all this works by the end of this
chapter.

The “Problem of Dido” is also less well known as the “Prob-
lem of Hengist and Horsa.” The name comes from two German
brothers, mercenaries that British legend says were hired to
squash a fifth-century-A.D. invasion by the Saxons that resulted
fromRome’s withdrawal of its occupying legions because Rome
itself was under attack (thus leaving Britain vulnerable). As pay-
ment for their services the brothers asked “only” for all the
land that could be bounded by the hide of an ox (of course,
they then did as Dido, cutting the hide into many thin strips
and forming a large circle). This legend is at least as bloody and
deceitful as is Dido’s, but perhaps with a bit more romance—
the tale serves as the prologue to the story of Merlin and King
Arthur. The isoperimetric legend, like worldwide flood legends,
seems to be common to many civilizations across both geog-
raphy and time.

We will generally not be very much interested here in the meta-
physical musings of philosophers, but Aristotle’s passage in Book 2
of his De caelo (On the Heavens) is provocative, where he argues for
circular motion of the stars:

. . . the revolution of the heaven is the measure of all motions, be-
cause it alone is continuous and unvarying and eternal, the mea-
sure in every class of things is the smallest member, and the short-
est motion is the quickest, therefore the motion of the heaven
must clearly be the quickest of all motions. But the shortest path
of those which return upon their starting-point is represented by the
circumference of a circle [my emphasis] and the quickest motion is
that along the shortest path.

Did Aristotle write this because he knew the solution to the isoperi-
metric problem? It certainly would seem so.

The first mathematical attack on the isoperimetric problem is
thought to have appeared in the work On Isometric Figures by the
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somewhat mysterious Greek mathematician Zenodorus. Very little
of his life is known. Even when he lived is open to some debate,
but most historians place him shortly after the time of Archimedes,
i.e., in the second century B.C. Indeed, there is mention by the
Greek mathematical-philosopher Simplicius in the sixth century
A.D. (in his commentary of De caelo) of a proof by Archimedes of
the isoperimetric theorem, but many historians today believe that
may be an error. Writing so soon after Archimedes, we might expect
that Zenodorus himself would have had something to say about his
predecessor’s work, but unfortunately On Isometric Figures has been
lost to history, with our knowledge about its contents formed only
by what later writers had to say. In particular, from the commen-
taries written by the fourth-century-A.D. Egyptians Theon of Alexan-
dria (on Ptolemy’s Syntaxis mathematica, better known today as the
Almagest) and by Pappus of Alexandria (in his Mathematical Collec-
tion). In his work, Zenodorus is said to have shown a number of
results, such as

1. the area of a regular n-gon is greater than the area of any
other n-gon with the same perimeter;

2. given two regular n-gons with the same perimeter, one with
n = n1, and the other with n = n2 > n1, then the regular
n2-gon has the larger area.

From these two results it is easy to see that the circle (which can be
thought of as a regular “infinity-gon”) with a given perimeter will
have an area greater than any regular n-gonwith the same perimeter.

We can get a mathematical “feel” for these claims with the aid
of what is called the isoperimetric quotient. This quantity, called the
I.Q., is defined for any closed curve as

I.Q. = A

π

(
L

2π

)2 = 4πA

L2

where L is the perimeter of the curve and A is the area enclosed by
the curve. This definition is motivated by the fact that the denom-
inator in the first expression is the area of the circle with perimeter
L, and so the I.Q. of that circle (actually, any circle) is 1. Thus, the
isoperimetric theorem says all closed curves obey the inequality I.Q.
≤ 1 with equality iff the curve is a circle.
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A similar inequality can be written in three dimensions by
using the claim that, for a given surface area A, it is the sphere
that has the largest volume, V . That is,

V

4

3
π

(
A

4π

)3/2 ≤ 1

with equality iff the three-dimensional body is a sphere. So,
here’s a pretty little problem for you to play with. First, ex-
plain what the above inequality “means,” that is, where does
it come from? Then, use it to derive the following interesting
inequality: if x1, x2, · · · , xn are n real numbers, then(

x21 + x22 + · · · + x2n
)3 ≥ (

x31 + x32 + · · · + x3n
)2

.

The solution is at the end of this chapter (but don’t look until
you spend at least a little effort on it!).

It is instructive to calculate the numerical values of the I.Q. for
some common curves, if only to see how they compare to unity. A
semicircle with radius r, for example, has

A = 1

2
πr2

L = 2r + πr = r(2 + π),

and so its I.Q. is

4π

(
1

2
πr2

)
r2(2 + π)2

= 2π2

(2 + π)2
= 0.7467.

We can generalize this a bit by computing the I.Q. of an arbitrary
sector of a circle with central angle θ (θ = π is the special case of the
semicircle). Then,

A = πr2
(

θ

2π

)
= 1

2
r2θ
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L = 2r + 2πr

(
θ

2π

)
= r(2 + θ).

Therefore, the I.Q. of the general circular sector is

4π

(
1

2
r2θ

)
r2(2 + θ)2

= 2πθ

(2 + θ)2
.

We already know the value of the I.Q. for θ = π , but is that the
largest possible value? The answer is no, and here’s why.

To maximize the circular sector I.Q. is equivalent to minimizing
its reciprocal, i.e., to finding that value of θ that minimizes (because
we can ignore the constant “2π” factor) the expression

(2 + θ)2

θ
= 4 + 4θ + θ2

θ
= θ + 4 + 4

θ
.

And that problem is equivalent to minimizing θ + 4/θ because we
can ignore the constant additive 4. Now, the AM-GM inequality says
that

θ + 4

θ
≥ 2

√
θ · 4

θ
= 4

with equality iff θ = 4/θ , i.e., iff θ = 2 radians. For this θ , the I.Q.
of the circular sector is

2π(2)

(2 + 2)2
= π

4
= 0.7854.

The I.Q.’s of Zenodorus’ regular n-gon’s are, of course, particularly
interesting, and we would expect that as n → ∞, the I.Q. should
approach unity (as the n-gon approaches a circle). To see that this is
indeed what happens, consider figure 2.3, which shows one of the n
similar triangles that a regular n-gon can be decomposed into. The
two equal sides of the triangle have unity length, and the central
angle is α, where

α = 2θ = 2π

n
.
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FIGURE 2.3. Triangular building block of a regular n-gon.

If we denote the height of the triangle by h and the base by x, then

h = cos(θ) = cos
(π
n

)
x = 2 sin(θ) = 2 sin

(π
n

)
.

The area of the triangle is At , where

At = 1

2
hx = cos

(π
n

)
sin

(π
n

)
,

and so the area of the regular n-gon is

A = nAt = n cos
(π
n

)
sin

(π
n

)
.

The perimeter of the regular n-gon is

L = nx = 2n sin
(π
n

)
,
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and so the I.Q. of the regular n-gon is

I.Q.n =
4πn sin

(π
n

)
cos

(π
n

)
4n2 sin2

(π
n

) = π

n
cot

(π
n

)
.

In particular, the I.Q.’s for the equilateral triangle (n = 3), the square
(n = 4), the regular pentagon (n = 5), and the regular hexagon
(n = 6), are:

I.Q.3 = π

3
cot

(π
3

)
= 0.6046

I.Q.4 = π

4
cot

(π
4

)
= 0.7854

I.Q.5 = π

5
cot

(π
5

)
= 0.8648

I.Q.6 = π

6
cot

(π
6

)
= 0.9069.

Thus, all regular n-gons except for the first one (n = 3) have I.Q.’s
that exceed that of the semicircle, the I.Q. of the square is exactly
equal to the I.Q. of the circular sector of maximum I.Q., and these
results suggest limn→∞ I.Q.n = 1, the I.Q. of the circle. Still, these
numerical results in no way prove the isoperimetric theorem. To do
that, we need much deeper arguments.

As an aside, before we get into those arguments, it is interesting
to note that the ancient question of how to tile the plane (how to
divide an infinite two-dimensional surface into congruent n-gons)
is intimately related to the concept of the I.Q. Pappus’ fame today,
for example, is due at least in part to his speculation that bees
make their honeycombs with hexagonal cells because that structure
minimizes the total wax needed to store a given amount of honey in
a regular array of cells (see appendix C). This so-called “honeycomb
conjecture” defied a mathematical proof until very recently (1999),
when the American mathematician Thomas Hales at the University
of Michigan finally succeeded in finding one. The ancients were
pretty good at formulating tough problems!

A problem closely related to one that Zenodorus treated is
that of inscribing the maximum area N -gon in a given circle
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FIGURE 2.4. Making a regular N -gon.

(of radius R). The answer is that the N -gon should be regular,
and the proof by modern methods is elegant. With reference
to figure 2.4, θn is the central angle subtended by the nth side
of the N -gon, which divides the N -gon into N triangles (and
so

∑N
n=1 θn = 2π); the nth triangle has area An.

To find An, write x (half the base of the nth triangle) as

x = R sin

(
1

2
θn

)
,

and h (the height of the triangle) as

h = R cos

(
1

2
θn

)
.

Thus,

An = xh = R2 sin

(
1

2
θn

)
cos

(
1

2
θn

)
,
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or from the trigonometric identity sin(α) cos(α) = 1
2 sin(2α), we

have

An = 1

2
R2 sin (θn)

and so the total area of the N -gon is

A =
N∑

n=1

An = NR2

2
· 1

N

N∑
n=1

sin (θn) .

I’ll now use a result that is a special case of a general re-
sult due to the self-taught Danish mathematician Johan L.W.V.
Jensen (1859–1925), who spent his career not as an academic
but rather as an engineer for the Copenhagen Telephone Com-
pany (he eventually became Chief Engineer). In 1906 he pub-
lished what has come to be known as Jensen’s inequality (you
can find it stated and proven in appendix B); the special case
of it that I’ll use here is

1

N

N∑
n=1

sin (θn) ≤ sin

(
1

N

N∑
n=1

θn

)

with equality iff θ1 = θ2 = · · · = θN , i.e., when all of the central
angles are equal, and so the N -gon of maximum area is the
regular N -gon with area (NR2/2) sin(2π/N).

It is immediately clear, before we get into details, that if there
is a solution to the isoperimetric problem, then it must be what is
called a convex figure. A convex figure is one that, given any two
points A and B (with the requirement that these points are either
on the boundary edge of the figure or inside the figure) then all
the points on the chord AB are also either on the boundary edge
or inside the figure. More graphically, the boundary edge (a convex
curve) of the figure has no indentations, and there are no holes in
the figure. Figure 2.5 shows two examples of nonconvex figures.

The reason why a nonconvex figure cannot be the solution to
the isoperimetric problem is that it is always possible to transform
such a figure into another figure (possibly still nonconvex) that has
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FIGURE 2.5. Two nonconvex figures.

the same (or even less) perimeter and a larger area. For example,
for ϕb in figure 2.5, simply remove the hole and you have a new
figure with more area and a smaller perimeter. For ϕa, reflect the
indentation through the dashed tangent line (as shown), giving a
new figure with increased area and the same perimeter. So, whatever
the solution figure to the isoperimetric problem may be, it must be
convex, and fromnow onwe’ll limit our attention to convex figures.

I’m not going to show you Zenodorus’ proofs here (if you’re curi-
ous you can find them in volume 2 of Heath’s previously cited work
A History of Greek Mathematics, pp. 207–12). Rather, I’ll show you a
more “recent” geometric analysis from the nineteenth century, due
to the Swiss mathematician Jakob Steiner (1796–1863). I should tell
you that in 1789 Steiner’s fellow countryman Simon Lhuilier (1750–
1840) also proved Zenodorus’ results in a manner quite different
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from the approach you’ll find in Heath’s book. It is Steiner’s beauti-
fully elegant 1842 arguments, however, first for the problem of Dido
and then the isoperimetric theorem, that are models of mathemati-
cal ingenuity even if they do suffer from that subtle flaw I tantalized
you about in the previous section.

Before actually presenting proofs, however, I’ll conclude this
section by addressing, one last time, the concept of duality (intro-
duced in the previous chapter) as it relates to the isoperimetric
theorem. The following two statements are logically equivalent,
quite independent of whether or not they are actually true (they
are true, but that will be established in the next section):

A. Of all closed curves in a plane with equal perimeters, the
circle bounds the largest area;

B. Of all closed curves in a plane with equal areas, the circle has
the smallest perimeter.

To prove the claim of logical equivalency, I’ll first assume that A

holds, and then show that B necessarily follows. To do this, begin
by assuming that B does not follow (and this will, as you’ll soon
see, quickly lead to a contradiction and so B must follow A). Thus,
contrary to B, let’s assume that for a given circle C with a given area,
there is some other closed curve D with the same area but with a
smaller perimeter.

So, imagine that we shrink C down to the smaller circle Ĉ that
has a perimeter equal to that of D. Obviously the area of Ĉ is smaller
than that of C, i.e., the area of Ĉ is smaller than the area of D. Thus,
C and D have the same perimeter but it is D, not the circle Ĉ, with
the larger area, which contradicts A. This contradiction must be the
result of our using the negative of B (that B does not follow from
A), and so B must follow from A.

To complete this demonstration of duality wemust next show the
reverse, i.e., if we assume that B holds, then A necessarily follows.
So, as before, let’s assume that A does not follow and, as before, we’ll
be able to derive a contradiction. Thus, contrary to A, let’s assume
that for a given circle C with a given perimeter there is some closed
curve D with the same perimeter that has a larger area. We now
imagine that C is expanded up to the larger circle Ĉ that has an area
equal to that of D. Since we expanded C to get Ĉ, then the perimeter
of Ĉ will be greater than the perimeter of C, i.e., the perimeter of Ĉ is
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greater than the perimeter ofD. That is, Ĉ andD have the same area
but it is D, not the circle Ĉ, that has the smaller perimeter, which
contradicts B. This contradiction must be the result of our using the
negative of A (that A does not follow from B), and so Amust follow
from B.

None of this proves the isoperimetric theorem itself, however.
What we need to do next is to show either the truth of A or of B
(either one will do, of course, as the other will then logically follow).
That’s our task in the next section.

2.3 Steiner’s “Solution” to Dido’s Problem

To show how Steiner arrived at his demonstration of the solution of
the original problem of Dido, we need to establish two preliminary
results in elementary geometry. The first one is a standard high
school exercise, that of showing that any triangle inscribed in a
circle, with a diameter as a side (the hypotenuse), is a right triangle.
You can find a proof of this in any high school geometry text. The
second result we’ll need is that, of all possible triangles with two
sides of given length, the triangle of maximum area is the right
triangle with the given sides as the perpendicular sides. This is very
easy to show. With reference to figure 2.6, let x and y be the two
given sides, with angle θ between them. The height of the triangle
is then h = x sin(θ) and the area of the triangle is

x

h

θ

y

FIGURE 2.6. Maximizing the area of a triangle.
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A = 1

2
yh = 1

2
xy sin(θ).

A is maximized, then, by making the factor sin(θ) maximum, i.e.,
sin(θ) = 1, which means θ = 90°, and we are done.

Now we can follow Steiner’s solution to the original problem of
Dido: what curve of given length joins two points on a given straight
line so as to maximize the enclosed area? Let A and B be the two
points on the given straight line L, as shown in figure 2.7, and
suppose the solution curve C is not a semicircle. That means, by
our first preliminary result, that there must be a point P on C such
that angle APB �= 90°. (Actually, for us to conclude this we should
really show that the circle is the only curve such that for any P the
angle APB = 90°, but I’ll skip over this detail.) Figure 2.7 shows that
the dashed chords AP and PB divide the area enclosed by L and C

into the three regions R1, R2, and R3.
Next, imagining AP and PB to be rigid rods “hinged” at P , with

sliding contacts on L at A and B, let’s adjust either A or B (or per-
haps both) to A′ and B ′ in such a way that the angle A′P ′B ′ is a right
angle (as shown in figure 2.8). That is, as we make the adjustments
A → A′ and B → B ′, then P will move to some new point P ′ such
that the lengths AP and A′P ′ are equal (and also the lengths BP and
P ′B ′ are equal). I’ll call the resulting new curve C ′; it is not neces-
sarily a semicircle since there may be more points where the angle

C

L

P

A B

R1

R2

R3

FIGURE 2.7. Steiner’s isoperimetric argument, part 1.
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FIGURE 2.8. Steiner’s isoperimetric argument, part 2.

APB �= 90°). Since the two chord lengths are unchanged by these
adjustments we can place regions R1 and R3 on the chords A′P ′ and
P ′B ′, respectively, while region R2 will adjust to the new region R′

2.
Now, by our second preliminary result, the area of R′

2 is greater
than the area of R2. So, we have taken an arbitrary curve C and
transformed it into a curve C ′ with the same perimeter that encloses
(with L) an area greater than that enclosed by C and L. (We do
have another potential objection here; how do we know that the R1

and R2 regions don’t “bump into” each other, i.e., overlap, during
the adjustment? We don’t, but again I’ll pass over this detail.) The
only curve C that does not allow such an area-increasing, perimeter-
preserving transformation is the semicircle (as then there is no point
P on C such that the angle APB �= 90°).

At this point Steiner believed he had constructed a purely geo-
metric solution to the original problem of Dido, and he proceeded
to attack the isoperimetric problem by next making the following
preliminary observation: if ϕ is the (convex) solution figure to the
isoperimetric problem, then any chord joining two points on the
boundary of ϕ that bisects the perimeter (assuming such a chord
exists) would also bisect the area. (The existence of such a perimeter-
bisecting chord is demonstrated in appendix D.) This is so because
if we suppose the area is not bisected, then we could take the larger
area and reflect it through the chord. That would give us a new figure
with the same perimeter and a larger area than that of ϕ, which is
impossible because it is ϕ (by assumption) that is the solution figure.
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Now, given the solution figure ϕ to the isoperimetric problem,
we draw a chord that bisects the perimeter of ϕ, as well as, as shown
above, the area of ϕ. This bisection splits ϕ into ϕ1 and ϕ2, where ϕ1
and ϕ2 have equal areas and equal perimeters (indeed, they have a
shared perimeter, since the bisection chord is common to ϕ1 and ϕ2).
We clearly maximize the area of ϕ by maximizing the (equal) areas
of ϕ1 and ϕ2. Notice, however, that ϕ1 and ϕ2 are each semicircular
disks by Steiner’s original solution to the Dido question, and so ϕ

is a circular disk. So, concluded Steiner, the solution curve to the
isoperimetric problem is a circle.

2.4 How Steiner Stumbled

Steiner’s analysis is undeniably clever. His contemporary, however,
the German mathematician Peter Dirichlet (1805–59), pointed out
that in addition to the objections I mentioned in the previous sec-
tion, Steiner had made the unstated assumption that there actually
is, in fact, a solution to the isoperimetric problem.Most people reply
to that objection by saying “Of course there is a solution—it’s obvious
there is a solution!” That was Steiner’s reply, in fact, at least at first,
but it ignores the fact that there are plenty of geometry questions
that look at first glance like they should have solutions—but in fact
do not.

Consider, for example, the problem of finding that convex figure
of greatest area among all convex figures with a perimeter less than
1. The fact is that there is no solution to this problem; here’s why. Let
ε be some arbitrarily small positive number, and suppose that the
convex figure ϕ has perimeter 1 − ε. Then, simply expand ϕ up in
scale to a new (similar) figure with the larger perimeter 1− 1

2ε (which
of course is still less than 1). This new figure has an area greater than
that of ϕ, and in fact we can repeat this process as many times as we
wish. That is, we can generate an endless sequence of convex figures
all with perimeters less than 1 but with ever increasing areas; there
is no “largest area” figure, and so we would be in error to a priori
assume that there is a solution figure.

An evenmore dramatic illustration of the danger in assuming the
existence of a solution is the surprise answer to a problem that is of
a nature opposite to the one just considered. Called the “Kakeya
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problem” after S. Kakeya (1886–1947), the Japanese mathematician
who posed it in 1917, it asks: what is the smallest area in which a line
segment of unit length (in arbitrary units) can be rotated through
360°? Virtually everybody believes, upon first hearing this, that
there is a smallest area. Kakeya himself conjectured that the min-
imum area is 1

8π . In a paper published in 1928, however, the Rus-
sian mathematician Abram Besicovitch (1891–1970) showed that
no matter how long the line segment, there is no smallest area! That
is, there does exist a figure with the area (for example) of the period
at the end of this sentence in which a line segment onemillion light
years long can be rotated through 360°. Besicovitch actually showed
how to make such a figure (it’s nonconvex and very complicated—
no surprise there!), and you can find an elementary discussion of
just how to construct it in Besicovitch’s own words, in his paper
“The Kakeya Problem” (American Mathematical Monthly, September
1963, pp. 697–706). Besicovitch’s result shows that onemust be very
careful before assuming there is always a solution.

I’ll close this section with the observation that the entire point
of one of the great, historically important maximum problems in
pure number theory was to prove that there is no maximum. This
is Euclid’s wonderful demonstration, in his Elements (Book 9), that
there is no largest prime, i.e., that there is an infinity of integers
with no factors other than themselves and unity. His elegant proof
is perhaps the ultimate in simplicity. Suppose that there are only n
primes, labeled p1, p2, · · · , pn. That is, pn is the largest prime. Then,
form the new (obviously much larger) integer:

P = p1p2 · · ·pn + 1.

What can we say about P ?
By our assumption that pn is the largest prime, we conclude that

P must not be prime. It therefore must be possible to write P as the
product of primes (simply keep factoring the factors of P until all
the factors are prime), but clearly none of the assumed finite number
of primes divides P (because of that “+1”). So, P is not factorable
into a product of primes, which says P itself must be a prime. But
that contradicts our assumption that pn(<P ) is the largest prime.
The only way out of this swamp is to admit that our assumption is
false and that there is no largest prime; there is an infinity of primes.
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Before leaving the primes, let me show you just one more “there
is no maximum” fact about primes that surprises most people when
they first encounter it. Since the primes are infinite in number,
then of course no matter how far up we go in the integers we
will always keep finding them. But that doesn’t mean they occur
in any sort of regular way. Far from it! Indeed, if we call g(pn)

the gap between consecutive primes pn and pn+1, i.e., if we write
g(pn) = pn+1 − pn − 1, then in fact g(pn) has no maximum. There
are always two consecutive primes such that the gap between them
is as large as we like. For example, if g is to be at least 10100 (the
famously huge googol), or if it is to be the even more impressive
10googol (the equally famous but stupendously larger googolplex)
then there exist two consecutive primes that have a gap as least as
large as those g’s.

The proof is direct: the production of a specific sequence of con-
secutive integers with a length g that is obviously free of primes
(every integer in the sequence is evenly divisible.) Simply take the
desired value of g and form the sequence of consecutive integers of
length g defined by

(g + 1)! + 2, (g + 1)! + 3, (g + 1)! + 4, · · · , (g + 1)! + g + 1.

The first integer is divisible by 2, the second is divisible by 3, etc.,
etc., etc. and the last integer is divisible by g+1. Since we could have
started with g as any finite integer, then there is no maximum g.

Even though there are arbitrarily large gaps between suc-
cessive primes, it has also been shown that successive primes
do obey a certain rule on when they must occur. In 1845 the
French mathematician Joseph Bertrand (1822–1900) conjec-
tured that for all n > 3 there is at least one prime between
n and 2n−2 (the conjecture is often stated in the alternative—
and perhaps more elegant—form of for all n > 1 there is at
least one prime between n and 2n). Bertrand’s conjecture was
proven in 1850, by the Russianmathematician Pafnuty Cheby-
shev (1821–94). Arbitrarily large gaps are compatible with this
result because large gaps occur only when the numbers in the
gap are vastly greater than the gap length.
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In 1932 a much simpler proof of Bertrand’s conjecture was
found by the Hungarian mathematician Paul Erdõs (1913–96),
when he was but an eighteen-year-old student in Budapest.
When Erdõs announced his proof, he accompanied it with the
rhyme “Chebyshev said it, and I say it again, there is always a
prime between n and 2n.”

2.5 A “Hard” Problem with an Easy Solution

Here’s an elegant solution to an interesting problem that occurs in
many advanced books on calculus, which we can attack using the
elementary concepts developed earlier in this chapter. Suppose we
are presented with a length of string, which we are to cut into two
pieces. Then, with those two pieces we are to form two figures with
prescribed shapes, e.g., a square and a circle, or a half-circle and an
equilateral triangle. How should we cut the string to minimize the
total area of the two figures? Or, what if instead of just one cut and
two figures we are more generally to cut the string n − 1 times and
then to form n figures (with prescribed shapes) enclosing minimum
total area? The general question sounds like a tough problem (our
first question is fairly easy) but, perhaps astonishingly, we can solve
the general case easily, too, with the aid of the isoperimetric quotient
(I.Q.) and Jensen’s inequality (see appendix B).

First, recall from the first part of this chapter that every planar
figure shape, independent of its actual size, has the same I.Q., de-
fined as

I.Q. = 4πA

L2
,

where A is the area of the figure and L is the figure’s perimeter. If we
write 1/λi as the I.Q. of the ith prescribed figure (and so λi is a given),
and if Ai and Li denote the area and the perimeter, respectively, of
that figure, then the total enclosed area is A, where

A = A1 + A2 + · · · + An = 1

4π

(
L2
1

λ1
+ L2

2

λ2
+ · · · + L2

n

λn

)
.
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+ · · · + L2

n

λn

)
.
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If we write L as the total uncut length of the string, then of course

L1 + L2 + · · · + Ln = L, with all Li > 0,

and it is with this constraint that we wish to find the Li that min-
imize A. This is the sort of problem usually treated with a calculus
technique called Lagrange multipliers (discussed in chapter 6), but
we can do it now with no calculus, using Jensen’s inequality. (The
calculus approach is much faster, so don’t conclude that calculus
isn’t important!)

Applying Jensen’s inequality to the strictly convex function f (x)

= x2, we have (with all ci > 0 and summing to one)

(c1x1 + c2x2 + · · · + cnxn)
2 ≤ c1x

2
1 + c2x

2
2 + · · · + cnx

2
n,

with equality iff x1 = x2 = · · · = xn. So, define ci and xi as

ci = λi

λ1 + λ2 + · · · + λn
,

xi = Li

λi
.

Note that ci > 0 for any i and that, indeed, the ci sum to 1.
Our inequality then becomes[

λ1

λ1 + λ2 + · · · + λn
· L1

λ1
+ λ2

λ1 + λ2 + · · · + λn
· L2

λ2

+ · · · + λn

λ1 + λ2 + · · · + λn
· Ln

λn

]2

≤ λ1

λ1 + λ2 + · · · + λn

(
L1

λ1

)2

+ λ2

λ1 + λ2 + · · · + λn

(
L2

λ2

)2

+ · · · + λn

λ1 + λ2 + · · · + λn

(
Ln

λn

)2

,

or, after some canceling,
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(L1 + L2 + · · · + Ln)
2

(λ1 + λ2 + · · · + λn)
2 ≤ 1

(λ1 + λ2 + · · · + λn)

[
L2
1

λ1
+ L2

2

λ2
+ · · · + L2

n

λn

]
,

or, again after some canceling,

(L1 + L2 + · · · + Ln)
2

λ1 + λ2 + · · · + λn
= L2

λ1 + λ2 + · · · + λn

≤ L2
1

λ1
+ L2

2

λ2
+ · · · + L2

n

λn
= 4πA,

with equality iff x1 = x2 = · · · = xn.
So, A is minimized (becomes equal to its lower bound) when

L1

λ1
= L2

λ2
= · · · = Ln

λn
= α, to be determined next.

That is, when A is minimized, we have A equal to

L2

4π (λ1 + λ2 + · · · + λn)
= 1

4π

(
L2
1

λ1
+ L2

2

λ2
+ · · · + L2

n

λn

)
,

or

L2

4π (λ1 + λ2 + · · · + λn)
= 1

4π
α (L1 + L2 + · · · + Ln) = αL

4π
,

and so

α = L

λ1 + λ2 + · · · + λn
.

Thus,

L1

λ1
= L2

λ2
= · · · = Ln

λn
= L

λ1 + λ2 + · · · + λn
,

or, at last,

Li = λi

λ1 + λ2 + · · · + λn
L, i = 1, 2, 3, · · · , n,

which is the solution to the problem of how to cut the original string
of length L into n pieces, each of length Li . For example, suppose
we are to cut the string into two pieces and use those pieces to form
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the circle and the half-circle that enclose minimum total area. As
shown earlier, λ1 (circle) = 1/1 = 1, and λ2 (semicircle) = 1/0.7467.
Thus,

L1 = 1

1 + 1

0.7467

L = 0.7467

1.7467
L = 0.4275 L,

and so, to minimize the total area of the two figures, 42.75% of the
string should go to the circle and the rest should go to the semicircle.

2.6 Fagnano’s Problem

To end this chapter I’ll describe two fascinating examples of geomet-
ric minimization; in the first the demonstration of the existence of
a solution is explicit. To begin, consider the so-called “minimum-
perimeter triangle of Fagnano.” This problemhas its origins with the
Italian mathematician Giulio Carlo Toschi di Fagnano (1682–1766),
who showed the existence part, and his priest-mathematician son
Giovanni Francesco Fagnano (1715–97), who completed the mini-
mization argument in 1775. The father’s contribution was to show,
given any acute-angled triangle ABC (as shown in figure 2.9) and
any given point U on one of the sides (BC in the figure), how to
construct the inscribed triangle of minimum perimeter with a vertex

B CU

W
V

A

U´´

U´

α

βα

β

FIGURE 2.9. Fagnano’s problem, part 1.
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at U. (You’ll soon see why the restriction of an acute triangle is nec-
essary). The son later showed how to pick U to select the absolute
minimum-perimeter triangle. For this problem, then, there is no
question about the existence of a solution. The son used the dif-
ferential calculus to arrive at his answer, but the clever geometric
proof that follows is due to the Hungarian mathematician Lipót
Fejer (1880–1959), who discovered it while still a student at the Uni-
versity of Budapest.

To see the existence of a solution for a given U , first connect U to
vertex A to form line segment AU , and then “reflect” AU about the
triangle sides AB and AC to form the line segments AU ′′ and AU ′,
respectively. Then, withW and V as arbitrary points onAB and BC,
respectively, connect U ′′ to W and U ′ to V . And finally, connect W ,
V , and U to form an inscribed triangle. By this construction it is
clear that (in terms of length)WU ′′ = WU , and also that U ′V = UV .
Now, the perimeter of the inscribed triangle UVW is UV +VW +WU ,
but this is equal to U ′V +VW +WU ′′, the length of the broken line
connecting U ′ to V to W to U ′′. The length of the broken line will
be minimized when, instead of being broken, it is straight. That is,
after reflectingAU about the sidesAB andAC, we can determine the
W and the V that minimize the perimeter of the inscribed triangle
UVW by simply connecting U ′′ and U ′ with a straight line and
observing where that line intersects AB and AC, respectively, as
shown in figure 2.10. Thus, we have found by construction the
unique inscribed minimum-perimeter triangle UVW for a given U.

B CU

W V

A

U´´ U´

FIGURE 2.10. Fagnano’s problem, part 2.
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The final part of the problem is to determine that particular U
that gives the minimum of the minimums. Notice, first, that by
construction the triangle AU ′U ′′ is an isosceles triangle, with the
angle at vertex A equal to 2α + 2β = 2(α + β), i.e., this angle
is always twice the vertex A angle of the original ABC triangle,
and so the vertex A angle of AU ′U ′′ is the same for any choice of
the point U . Thus, the “best” choice for U , the particular U that
minimizes the perimeter of UVW , is the U that minimizes the equal
length sides AU ′′ and AU ′ of the isosceles triangle AU ′U ′′. That is so
because, given an isosceles triangle with a fixed vertex angle at A, we
minimize the base of that triangle (U ′′WVU ′, equal to the inscribed
triangle’s perimeter) by minimizing the lengths of the two equal
sides of the isosceles triangle. But that simply says we pick U to
minimize the length of AU , i.e., we should draw AU perpendicular
to BC. In other words, when we have the best U , we have AU as the
altitude from vertex A to the side BC.

If you look back at what we have done you’ll see that the points
W and V are uniquely determined, i.e., the minimum-perimeter
inscribed triangle is unique. The immediate consequence of this is
that we don’t have to go through all of the detailed steps of the
proof (e.g., reflecting lines about other lines) to actually draw the
minimum-perimeter triangle. This is because our choice of the side
BC to work from was arbitrary—we could have started with side
AC and found that the resulting line BU would be the altitude from
vertex B to AC. Or we could have started with side AB and found
that the resulting line CU would be the altitude from vertex C to
AB. In the end, however, we would arrive at the same inscribed
minimum-perimeter triangle because that triangle is unique. So, to
actually constructUVW , simply draw the three altitudes and thereby
immediately locate the points U , V , andW . The resulting inscribed
triangle is called the pedal or orthic triangle of the original triangle
ABC. You can also now see why ABC must be acute—it insures that
all three altitudes are inside ABC, i.e., that U , V , and W lie on the
sides of ABC and so the triangle UVW is truly an inscribed triangle.

As my final example to demonstrate that interest in geometric
minimization did not cease with the ancients, consider the prob-
lem of the “spanning circle of n points.” Imagine that you have n

points positioned arbitrarily in the plane. We can measure the dis-
tance between every possible pair of points and call the maximum
distance d. There are, of course, just 1

2n(n−1) such distances, and so



68 C H A P T E R 2

computing the value of d is a straightforward matter. Now, suppose
we wish to draw a circle whose interior contains all n points; such
a circle is said to span the points. The problem is to determine the
smallest circle that spans the points. A practical form of this problem
would be, for example, determining where to locate a fire station
within a community to minimize the maximum distance from the
fire station to any of the surrounding homes. It is clear, of course,
that a circle with radius d spans the points; simply pick any one of
the points as the center of a circle with radius d and observe that,
by definition, no other point is more distant than d.

Is it possible to construct a spanning circle that is smaller? Yes,
indeed it is. A spanning circle with a radius no greater than 1

3

√
3d ≈

0.577 d always exists. The proof is by elementary (but ingenious)
geometry, and you can find it all worked out in the book by Hans
Rademacher andOtto Toeplitz, The Enjoyment of Mathematics (Prince-
ton University Press 1957, pp. 103–10). Evenmore on theminimum
spanning circle—which dates back to at least 1860 and the work of
the English mathematician J. J. Sylvester (1814–97)—can be found
in the book by Franco P. Preparata and Michael Ian Shamos, Com-
putational Geometry (Springer-Verlag 1985, pp. 248–54). Those pages
also discuss the dual problem: what is the largest empty circle inside
the convex hull of the given n points (think of the points as verti-
cal posts, and a rubber band snapped all around them, as shown in

FIGURE 2.11. A convex hull and its largest interior empty set.
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figure 2.11) that contains none of the points? That would tell us, for
example, where to place an objectional service facility for the town,
e.g., a centrally located waste-treatment plant that nobody wants to
live near!

Solution to the Problem in Section 2.2

A sphere of radius r has surface area A = 4πr2. Thus,

r =
(

A

4π

)1/2

,

and so its volume is

V = 4

3
πr3 = 4

3
π

(
A

4π

)3/2

.

The claim is that, for a given A, this V (for a sphere) is the
largest possible. So, ifV is the volume of any three-dimensional
body, then

V

4

3
π

(
A

4π

)3/2 ≤ 1,

with only the sphere achieving equality (see the end of this
box).

For the second part of this problem, suppose we have n

spheres with radii x1, x2, · · · , xn. The total surface area and total
enclosed volume are

A = 4πx21 + 4πx22 + · · · + 4πx2n =
∑
i

4πx2i

V = 4

3
πx31 + 4

3
πx32 + · · · + 4

3
πx3n =

∑
i

4

3
πx3i .

Now, imagine that we glue all of these spheres together to
form a (rather lumpy!) single body. This single body will obey
the above inequality (which, after squaring and rearranging,
becomes A3 ≥ 36πV 2). So,
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(continued) (∑
i

4πx2i

)3

≥ 36π

(∑
i

4

3
πx3i

)2

,

which quickly reduces to(∑
i

x2i

)3

≥
(∑

i

x3i

)2

.

Notice that this argument only makes physical sense if all of
the xi ≥ 0, because a physical sphere can’t have a negative
radius. However, if one or more of the xi < 0, it is clear that
the left-hand side of the inequality is indifferent to the sign,
while the right-hand side becomes smaller. That is, one ormore
xi < 0 simply strengthens the inequality. Thus,

(
x21 + x22 + · · · + x2n

)3 ≥ (
x31 + x32 + · · · + x3n

)2
for all real xi .

Historical note: The entire argument of this box is based
on the assumed truth of the three-dimensional isoperimetric
theorem, i.e., on the inequality A3 ≥ 36πV 2. This was for-
mally established in 1884 by the Germanmathematician H. A.
Schwarz (1843–1921). The general n-dimensional isoperimet-
ric inequality was later shown to be

An ≥ 2π
n
2 nn−1V n−1

;
(n
2

) ,

where ; is Euler’s generalization (with his gamma function
integral) of the factorial function:

;(x) =
∫ ∞

0
e−t t x−1dt.

The general isoperimetric inequality was established in 1939
by the German mathematician Erhard Schmidt (1876–1959).



3.
Medieval Maximization

and Some Modern Twists

3.1 The Regiomontanus Problem

After the ancient isoperimetric problems discussed in the previ-
ous chapter, it seems that very little if anything new on minimiza-
tion/maximization theory appeared in mathematics for a very long
time. Indeed, not for another fifteen centuries after Christ! And then,
in 1471, theGermanmathematician JohannMüller (1436–76),more
commonly known today as Regiomontanus, posed a clever maxi-
mization problem totally unlike any that had come before. I’ll state
it here in slightly more dramatic fashion than he did, but the basic
problem itself is as Regiomontanus conceived it.

A somewhat confusing trait of some of the medieval math-
ematicians makes it appear that there were more of them than
there were—they often used more than one name. In the case
of Johann Müller, for example, who was born in Königsberg
(which mean “King’s Mountain”), he Latinized that to “Re-
gio monte,” which soon evolved into Regiomontanus. Two
other famous examples of the double-named syndrome are
the Italians Leonardo of Pisa (1170–circa 1250), also known
as “Fibonacci,” and Niccolo Fontana (1500–57), who was also
called “Tartaglia.” So, we have six names, but only threemathe-
maticians.
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FIGURE 3.1. Tartaglia’s cubic function.

As an aside on Tartaglia, a moderately interesting maximiza-
tion problem is due to him, dating from some time between
1556 and 1560; but it is, at heart, really only a slightly more
sophisticated version of Euclid’s ancient problem of dividing
a number into two parts to maximize their product. The Re-
giomontanus problem is far more advanced, for two reasons:
it is motivated by a physical setting, and it requires the use of a
trigonometric function. In Tartaglia’s abstract, algebraic prob-
lem, we are to divide 8 into two parts so that the product of
their product and their difference is maximized. Thus, if the
parts are x and 8−x, then we are to maximize x(8−x)[x− (8−
x)] = −2x3 + 24x2 − 64x, where of course 0 ≤ x ≤ 8. Tartaglia
almost certainly structured the statement of this problem with
the intent of arriving at a cubic; see my book An Imaginary
Tale: The Story of

√−1 (Princeton University Press 1998), for
Tartaglia’s part in the history of the cubic equation. He did not
reveal his method of solution, but he did publish the correct
answer: x = 4(1+1/

√
3) = 6.309401 (see figure 3.1). For how he
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might have reasoned, see V. M. Tikhomirov, Stories about Max-
ima and Minima [translated from the Russian] (The American
Mathematical Society 1990, pp. 37–39).

A painting is hung flat against an art museum wall, with its bot-
tom and top edges at distances a and b, respectively, from the floor.
That is, the vertical dimension of the painting is (b − a). The paint-
ing is viewed by a tourist whose eye level is distance h from the
floor, where h < a. That is, the picture is hung high on the wall to
avoid the front of a crowd of tourists from blocking the view of those
in the back. How far from the wall should a tourist stand to max-
imize the viewing angle subtended at his eye by the painting, i.e.,
so that the painting appears as large as possible? Figure 3.2 shows
the geometry of the problem, and introduces our notation. (Note
that the figure shows that the condition h > a leads immediately—
by inspection—to the “uninteresting” result that, to maximize his
viewing angle, the tourist should stand at x = 0, i.e., with his nose
pushed hard into the painting! The geometry says the “viewing an-
gle” is 180°, but it seems clear he would not enjoy the view.)

Mathematically, our problem is simply that of determining the
value of x that maximizes the angle θ = α − β. Today this prob-
lem is popular with the authors of calculus textbooks, but the year

picture

tourist’s eye

α
β

θ

h

a

b

x

FIGURE 3.2. Regiomontanus’ hanging picture (one-dimensional).
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1471 was still a couple of hundred years short of the beginnings of
the differential calculus. That’s why the original solution (it is not
known if it is due to Regiomontanus himself) was in the form of a
complicated (in my opinion) geometric construction; you can find
it discussed in the book by Ivan Niven, Maxima and Minima without
Calculus (The Mathematical Association of America 1981, pp. 71–
72). What I’ll show you here, instead, is a very clever noncalculus
solution that is only slightly more general than the one given in
Eli Maor’s Trigonometric Delights (Princeton University Press 1998,
pp. 46–48). Later, in section 3.5, I’ll make the solution a bit more
realistic (and complicated, which will require a computer to give us
numerical results).

The essential idea is to maximize tan(θ) = tan(α − β), which
is equivalent to our problem of maximizing θ = α − β since the
tangent functionmonotonically increases as its argument increases.
We begin, then, with the trigonometric identity

tan(θ) = tan(α − β) = tan(α) − tan(β)

1 + tan(α) tan(β)
,

where, from figure 3.2, we have

tan(α) = b − h

x

tan(β) = a − h

x
.

So,

tan(θ) =
b − h

x
− a − h

x

1 + b − h

x
· a − h

x

= (b − h)x − (a − h)x

x2 + (b − h)(a − h)

= (b − a)x

x2 + (b − h)(a − h)
.

To maximize tan(θ), and hence θ itself, I’ll use the trick of minimiz-
ing its reciprocal, i.e., let’s examine the function

1

tan(θ)
= x2 + (b − h)(a − h)

(b − a)x
= x

b − a
+ (a − h)(b − h)

x(b − a)

and ask for what value of x do we have a minimum?
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To answer that question, recall the AM-GM inequality. For any
two positive numbers, y1 and y2, the AM-GM inequality says y1 +
y2 ≥ 2

√
y1y2, with equality iff y1 = y2. Thus, setting

y1 = x

b − a

y2 = (a − h)(b − h)

x(b − a)
,

we have

1

tan(θ)
≥ 2

√[
x

b − a

] [
(a − h)(b − h)

x(b − a)

]
= 2

√
(a − h)(b − h)

(b − a)2
,

with equality iff

x

b − a
= (a − h)(b − h)

x(b − a)
.

That is, 1/ tan(θ) is never less than the constant [2/(b − a)]√
(a − h)(b − h) and is equal to that constant iff x=√

(a − h)(b − h).
This value of x minimizes 1/ tan(θ) or, to say the equivalent, max-
imizes tan(θ), which means θ itself is maximized. For this value of
x, the value of tan(θ) is (using the expression for tan(θ) given in the
previous paragraph)

(b − a)
√
(a − h)(b − h)(√

(a − h)(b − h)
)2 + (b − h)(a − h)

= (b − a)
√
(a − h)(b − h)

2(a − h)(b − h)

= b − a

2
√
(a − h)(b − h)

.

So, the answer to the Regiomontanus problem is that the tourist
should stand away from the wall by the distance

x = √
(a − h)(b − h)

and, at that distance, he will experience the maximum viewing
angle of

θmax = tan−1
{

b − a

2
√
(a − h)(b − h)

}
.
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A special, amusing case of interest is that of the “bug’s-eye view,”
with h = 0. Then,

x = √
ab

θmax = tan−1
{
b − a

2
√
ab

}
.

For example, if we have a large painting hung such that a = 8 feet
and b = 20 feet, then a bug on the floor should position itself at a
distance of

√
8 · 20 ft = 12.65 ft

and, at that distance from the wall, it will enjoy a viewing angle of

θmax = tan−1
{
20 − 8

2
√
160

}
= 25.4°.

As a less whimsical example, suppose a six-foot-tall adult comes
to the museum with his three-foot-tall child. To maximize their
individual views of that same painting, each will of course stand
at a different distance and, perhaps even more interestingly, each
will experience a significantly different maximized viewing angle.
So, the optimal viewing distances for each are

adult:
√
(8 − 6)(20 − 6) ft = 5.29 ft

child:
√
(8 − 3)(20 − 3) ft = 9.22 ft

while the maximized viewing angles for each are

adult: θmax = tan−1
{
20 − 8

2
√
28

}
= 48.6°

child: θmax = tan−1
{
20 − 8

2
√
85

}
= 33.1°.

The adult sees a nearly 50% larger painting (in the vertical direction)
than does the child.

An amusing little twist on these calculations appeared in the May
1984 issue of the American Journal of Physics. There, as a challenge
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problem for readers, the question called for the calculation of the
distance a man (wearing trousers of length �) should stand away
from a dressing room mirror to have the best view of his trousers,
if his eyes are distance h above the floor. There was no historical
discussion given, but you can now see that it is just a slight variation
on the original Regiomontanus problem. It was solved in the AJP

using calculus, but it is easily handled with the AM-GM inequality,
just as in the last analysis. See if you can do it (the answer is at the
end of this chapter).

3.2 The Saturn Problem

A very interesting, somewhat more complicated, variation on the
original Regiomontanus problem is the not so well known Saturn
problem. It doesn’t yield to the AM-GM inequality, but we will still
be able to find a pretty solution. For this new problem, the viewer
is imagined to be on the surface of a (spherical) planet that has a
ring—which, for the solar system, of course means Saturn. If we
further imagine that we measure latitude upward from the plane
that contains the ring (see figure 3.3), then the latitude α increases
from 0° in the ring plane up to 90° at the geographical north pole.

ring

location of ring observer

θ

α
l1

l2

r

b

a

a − b

r

FIGURE 3.3. Geometry of the Saturn problem.
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FIGURE 3.3. Geometry of the Saturn problem.
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If we denote the radius of the planet by r, and the outer and inner
radii of the ring by a and b, respectively, then our problem is to find
that value of α at which the observed angular width θ of the ring
is maximum. This value, of course, actually determines two circles
of latitude all around the planet that give the maximum viewing
angle, one above the ring plane (as shown in figure 3.3) and one
symmetrically positioned below the ring plane.

The geometry of the Saturn problem is really quite straightfor-
ward. In the notation of figure 3.3 we have, from a triple application
of the law of cosines,

(a − b)2 = �21 + �22 − 2�1�2 cos(θ)

�22 = r2 + a2 − 2ra cos(α)

�21 = r2 + b2 − 2rb cos(α).

So,

cos(θ) = �21 + �22 − (a − b)2

2�1�2

= r2 + b2 − 2rb cos(α) + r2 + a2 − 2ra cos(α) − (a − b)2

2�1�2

= 2r2 + a2 + b2 − 2r cos(α)(a + b) − (a2 − 2ab + b2)

2�1�2

= 2r2 − 2r cos(α)(a + b) + 2ab

2�1�2
= r2 + ab − r(a + b) cos(α)

�1�2
.

Since

�1�2 =
√{

r2 + a2 − 2ra cos(α)
} {

r2 + b2 − 2rb cos(α)
}
,

then we have

θ = cos−1


 r2 + ab − r(a + b) cos(α)√{

r2 + a2 − 2ra cos(α)
} {

r2 + b2 − 2rb cos(α)
}

 .

This expression for the angle subtended by the ring at the ob-
server’s eye makes sense, of course, only as long as α is such that the



MA X I M I Z AT I O N A N D S OM E MOD E R N TW I S T S 79

entire ring is visible. Too large an α would require “looking through
the ground” to see the inner edge of the ring. We can calculate the
maximum value of α at which the inner ring edge is still visible by
observing that at that α (call it α̂), the line-of-sight from the sur-
face of the planet to the inner ring edge is tangent to the surface
of the planet. That is, the radius to the location of the observer is
perpendicular to �1, and so

cos(α̂) = r

b
,

or

α̂ = cos−1
( r
b

)
.

The case of Saturn (with the values r = 56,900 km, a = 138,800 km,
and b = 88,500 km), gives us

α̂ = cos−1
(
56,900
88,500

)
= 49.99°,

and so we need consider only the values of θ that occur for the
interval 0° ≤ α ≤ 49.99°.

And by “consider” I mean that this formulation of the problem
literally demands a computer analysis. That is, let’s simply plot θ as
we let α vary from 0° to 49.99°. If there is a maximum for θ in this
interval (where the entire ring is visible) we’ll see it in the plot. This
is an approach not easily available to precomputer-age analysts, of
course, but today it requires only a little time and effort with the
aid of a personal computer. The program I used took five minutes to
write (I used MATLAB, but the code is so simple it is just as easy
to do in any other language), ten minutes to type, and just one
second to execute (on an 800-MHzmachine). The result, after a total
of 88,486 floating-point arithmetic operations, is figure 3.4, which
shows that θ does, indeed, have a rather broad maximum around
θ = θmax = 18.44°, which occurs at α = 33.5°.

3.3 The Envelope-Folding Problem

For our next problem, on how a computer can play a highly useful
role in minimization analyses, consider the following problem that
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FIGURE 3.4. Observed angular width of Saturn’s ring versus latitude.

appears to be deceptively simple. We are given a right triangle, with
perpendicular sides of lengths a and b meeting at the corner O, as
shown in figure 3.5. Suppose we fold the right angle over to placeO
at some point P on the hypotenuse. This can be done in an infinity
of ways (with the folded triangle’s sides OX and OY having lengths
x and y, respectively, and such that 0 ≤ x ≤ a, 0 ≤ y ≤ b). Each
such way results in the folded triangle OYX having some area; our
question is: what is the minimum possible area ofOYX? This sounds
like a simple question, but I don’t think it is. If you don’t agree, then
shut the book right now and try your hand at it before you read what
follows.

To start, let me make some elementary but crucial geometric ob-
servations. When we fold O onto P we create an image triangle
(YPX, in dashed lines) that is a copy of the actual, folded triangle. For
example, the angle YPX is a right angle because angle YOX is a right
angle. Similarly, angle OYX equals angle PYX (called θ), and angle
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FIGURE 3.5. Geometry of the envelope-folding problem.

OXY equals angle PXY (called α). The other angles, called u1, u2, v1,
and v2, are as shown in the figure. (Angle YOP = u1 = angle YPO be-
cause, by construction, triangle YOP is isosceles.) Finally, the dashed
line segment OP (with length 2h) is, of course, bisected by YX be-
cause the triangles YPX and YOX are identical. Most importantly,
v1 = v2 = 90°, i.e., the line segment OP is perpendicular to the line
segment YX. This last claim may or may not be obvious (try folding
some paper triangles—that’s what I did!), but it is easy to formally
establish. That is,

θ + u1 + v2 = 180° (triangle OYC)

and

θ + u1 + v1 = 180° (triangle PYC),

and so v1 = v2. But, since v1 + v2 = 180°, we have v1 = v2 = 90°, as
claimed. Also,
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2θ + 2u1 = 180° (triangle OYP)

and so θ + u1 = 90°, or u1 = 90° − θ . But as u1 + u2 = 90°, then
u2 = 90°−u1, and so u2 = θ . All of this is straightforward, almost so
simple you might wonder why I’ve bothered to spell it out. Here’s
why.

We have the area of the folded triangle as

A = 1

2
xy,

where

h

x
= cos(θ) and

h

y
= sin(θ).

Thus,

A = h2

2 cos(θ) sin(θ)
.

Next, using the law of cosines repeatedly on various triangles in
figure 3.5, we can find h (and thus A) as a function of just θ .

In the notation of figure 3.5, we have

�21 = (2h)2 + a2 − 2(2h)a cos(θ),

or

�21 = 4h2 + a2 − 4ha cos(θ). (1)

Also,

�22 = (2h)2 + b2 − 2(2h)b cos(90° − θ),

or

�22 = 4h2 + b2 − 4hb sin(θ). (2)
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And,

(2h)2 = �22 + b2 − 2�2b cos
{
tan−1

(a
b

)}
,

or, as

cos
{
tan−1

(a
b

)}
= b√

a2 + b2
,

we have

4h2 = �22 + b2 − 2�2 b2√
a2 + b2

. (3)

With one more application of the law of cosines, we have

(2h)2 = �21 + a2 − 2�1a cos

{
tan−1

(
b

a

)}
,

or

4h2 = �21 + a2 − 2�1a2√
a2 + b2

. (4)

Finally, we get our last equation from the Pythagorean theorem:

(�1 + �2)
2 = a2 + b2,

or

�1 + �2 =
√
a2 + b2. (5)

Substituting (1) into (4) gives

�1 =
√
a2 + b2

2a2
[
2a2 − 4ha cos(θ)

]
,
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while substituting (2) into (3) gives

�2 =
√
a2 + b2

2b2
[
2b2 − 4hb sin(θ)

]
.

Substituting these two results for �1 and �2 into (5) then gives us h
as a function of θ :

h = 1

2

[
cos(θ)

a
+ sin(θ)

b

] ,

and so, at last, we have the area of the folded triangle as

A = (ab)2

8 cos(θ) sin(θ)[a sin(θ) + b cos(θ)]2
.

Setting dA/dθ = 0 to find the minimum of A is a nasty business (try
it!), and so I won’t do that. Instead, let’s use a computer to study the
behavior of A directly.

We know, physically, that the extrema (minimum) of A occurs
somewhere in the interval 0° ≤ θ ≤ 90°. Not all values of θ in this in-
terval are possible, however, because we must satisfy the constraints
of 0 ≤ x ≤ a and 0 ≤ y ≤ b. Themaximum value of θ occurs whenwe
fold the entire length a up onto the hypotenuse (again, fold some
actual paper triangles if this isn’t clear). Thus,

2θmax + tan−1
(
b

a

)
= 180° (triangle OPB),

or

θmax = 90° − 1

2
tan−1

(
b

a

)
.

The minimum value of θ occurs when we fold the entire length b up
onto the hypotenuse. Thus,

2 (90° − θmin) + tan−1
(a
b

)
= 180° (triangle OPA),

or
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FIGURE 3.6. Area of the folded triangle, versus the folding angle a = 1, b = 1.

θmin = 1

2
tan−1

(a
b

)
.

Figures 3.6 and 3.7 show A(θ) plotted over the interval θmin ≤ θ ≤
θmax for the cases of a = b = 1 and a = 2, b = 1, respectively. For the
first case we get the obvious (by symmetry) result that Amin = 0.125,
at θ = 45°, and in the second (not so obvious case) the answer is
Amin = 0.2144.

3.4 The Pipe-and-Corner Problem

Suppose we want to transport a long, cylindrical pipe through one
underground tunnel (of width a) into another tunnel at a right angle
to the first tunnel, all the while keeping the pipe horizontal. We
imagine that during the move the pipe pivots on the tunnel corner
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θmin = 1

2
tan−1

(a
b

)
.

Figures 3.6 and 3.7 show A(θ) plotted over the interval θmin ≤ θ ≤
θmax for the cases of a = b = 1 and a = 2, b = 1, respectively. For the
first case we get the obvious (by symmetry) result that Amin = 0.125,
at θ = 45°, and in the second (not so obvious case) the answer is
Amin = 0.2144.

3.4 The Pipe-and-Corner Problem

Suppose we want to transport a long, cylindrical pipe through one
underground tunnel (of width a) into another tunnel at a right angle
to the first tunnel, all the while keeping the pipe horizontal. We
imagine that during the move the pipe pivots on the tunnel corner
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FIGURE 3.7. Area of the folded triangle, versus the folding angle a = 2, b = 1.

(point A) of figure 3.8, and also that it always slides along the left
wall of the first tunnel (moving point B). Our question is: how wide
must the second tunnel be to allow the pipe to be somoved? This is a
popular textbook problem in introductory calculus courses, where it
is invariably simplified by reducing the pipe’s diameter to zero, i.e.,
by imagining in figure 3.8 that the pipe is a line segment of length �

and outside diameterw=0. That makes it easy to find themaximum
value of y, i.e., themaximumextension of the pipe across the second
tunnel, which, of course, thus determines the required minimum
width of the second tunnel for the move to be physically possible.

Far more realistic, however, is to allow the pipe to be able to
have something inside of it, i.e., to have a nonzero diameter! From
the geometry shown in figure 3.8, we have (in the notation of that
figure)

d1 + d2 = �,
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FIGURE 3.8. Geometry of the pipe-and-corner problem.

as well as

y − w

cos(θ)
d1 − w tan(θ)

= sin(θ)

and

a − w sin(θ)

d2
= cos(θ).

Solving these last two expressions for d1 and d2 and then substituting
into the first expression, we can solve for y as a function of θ (the
pivot angle):

y = � sin(θ) − a tan(θ) + w

cos(θ)
.
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It is physically obvious that there will be some unique angle
θ = θ̂ , between 0° and 90°, at which y will attain its maximum
value. To determine θ̂ analytically we could, as taught in freshman
calculus (and as discussed in the next chapter), set the derivative
of y with respect to θ equal to zero and solve for θ̂ . If you try this,
however, you’ll get

� cos3(θ̂) − a + w sin(θ̂) = 0,

which is not easily solved analytically for θ̂ . We could, of course,
just plot the left-hand side of this expression and observe where the
curve crosses the θ -axis, and then plug that value for θ̂ back into the
y-equation, but why bother? If we are going to use a computer to
plot a curve then why not just use it to plot the y-equation itself and
directly observe the maximum of y? And that’s just what I’ll do.

Since a is a “natural” dimension of the problem, let’s actually
study the so-called normalized equation

y

a
=
(
�

a

)
sin(θ) − tan(θ) +

(w
a

)
cos(θ)

.

That is, we will find the maximum of y in units of a, given both the
pipe length and the pipe’s outside diameter also in units of a. For
example, if the pipe is 100 feet long, with an outside diameter of
one foot, and if the first tunnel has a width of a = 10 feet, then our
normalized equation becomes

y

a
= 10 sin(θ) − tan(θ) + 1

10 cos(θ)
.

This equation is plotted in figure 3.9, which shows that y/a has a
maximum value of 7.168. Thus, the second tunnel must be at least
71.68 feet wide.

If we had used the simple textbook model with w = 0, however,
we would have calculated

θ̂ = cos−1
{

3

√
a

�

}
= cos−1 {(0.1)1/3} = 1.0881 radians,

which, when substituted back into the y-equation, gives the smaller
result
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FIGURE 3.9. Turning a nonzero-diameter pipe around.

ymax = 100 sin(θ̂) − tan(θ̂) = 69.49 ft.

Is this two-foot difference significant? Ask yourself that question
the next time you try to move a (nonzero width) couch around a
hallway corner from one room to another—half-an-inch (much less
two feet) too little in the hallway width will ruin your day (I speak
from experience!).

3.5 Regiomontanus Redux

Purists may not like the use of a computer to solve extremal prob-
lems, preferring pure mathematical demonstrations. They claim that
while the sheer brute power of amodern computer may be sufficient
to show some premise is either true or not true, such “calculate to ex-
haustion” demonstrations don’t show why the conjecture is true or
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hallway corner from one room to another—half-an-inch (much less
two feet) too little in the hallway width will ruin your day (I speak
from experience!).

3.5 Regiomontanus Redux

Purists may not like the use of a computer to solve extremal prob-
lems, preferring pure mathematical demonstrations. They claim that
while the sheer brute power of amodern computer may be sufficient
to show some premise is either true or not true, such “calculate to ex-
haustion” demonstrations don’t show why the conjecture is true or
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false. For example, the use of Eratosthenes’ sieve to find the primes
is perfect for use on a computer and yet nobody would claim to
say it tells us, at some deep level, why there is an infinity of primes
(and the sieve certainly doesn’t tell us anything about the still open
question of the infinity—or not—of the twin primes).

I expect that new generations of mathematicians will be able
to expand their list of acceptable tools (which once included just
the straight edge and the compass) to routinely include computers.
Indeed, two famous extremal problems ofmathematics have already
yielded to computer analysis in the last quarter of the twentieth
century. Thomas Hales (of honeycomb conjecture fame, mentioned
in chapter 2) showed (in 1998, with the aid of enormous computer
support) that the Kepler Sphere Packing Conjecture (dating from
1611) is true; face-centered cubic packing of identical spheres (the
way oranges are displayed in pyramids in grocery stores) gives the
maximum packing density. And Wolfgang Haken (1928– ) and
Kenneth Appel (born 1932 and now my colleague at the University
of New Hampshire) at the University of Illinois showed (in 1976
and with the help of a huge computer program) that the Four-Color
Conjecture (dating from 1852) is true: to color any planar map so
that countries sharing a border have different colors requires, at
most, four colors.

While the Regiomontanus problem, and its Saturn variant, are
both clever and distinct in nature from the isoperimetric problems
of the ancients, they too were initially treated with geometrical
thinking. That was because the development of calculus, the next
great step forward in the methods of extremal analysis, still had a
century to wait. Many students today associate only the name of
Newton with that development (or perhaps that of Leibniz as well,
if they’ve heard a bit of history in their math or physics classes). In
fact, it was the French lawyer and amateur mathematician Pierre
de Fermat who took the first step toward introducing analytical
techniques to extremal problems, where once only geometry was
the means of attack. In the next chapter, then, Fermat and his work
will take center stage. But, before Fermat, let’s take one last look
at the Regiomontanus problem and the use of a computer. The
approach I’ll use here is based on ideas presented in a letter by A. Tan
and O. Castillo in the October 1983 issue of Mathematics Teacher
(“Maximizing Paintings,” p. 472).
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The analysis of section 3.1 was literally one-dimensional, with
the “painting” reduced to merely having a vertical dimension. A
real painting, of course, also has a width, as shown in figure 3.10.
Notice carefully that in that figure I have changed the symbols to
be in agreement with Tan and Castillo. The painting’s dimensions
are now a and b, and the bottom edge of the painting is distance c

above the eyes of the viewer. The viewer is imagined to be standing
directly in front of the center of the painting, at a distance x from
the vertical wall on which the painting is hanging.

As Tan and Castillo point out, what we really want to do is maxi-
mize the solid angle subtended at the viewer’s eyes by the painting.

θ

θ

b

b

z

x

y
x

cnorm
al

a dz
dy

r

FIGURE 3.10. Regiomontanus’ hanging picture (two-dimensional).
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This will require us to evaluate a double integral, a big step beyond
anything done so far in this book; you should definitely consider
what follows, then, as optional reading (at least for now). If we locate
an arbitrary patch of differential area of the painting, located at co-
ordinates (y, z) as shown in figure 3.10, then that differential area is
dA = (dy)(dz) and the distance of dA from the viewer’s eyes is, by a
double application of the Pythagorean theorem, r = (x2+y2+z2)1/2.
Now, if θ is the angle made by the viewer’s line of sight to dA, then

cos(θ) = x

r
,

and the (differential) solid angle subtended at the viewer’s eyes by
dA is

d@ = dA cos(θ)

r2
= x dA

r3
= x (dy)(dz)(

x2 + y2 + z2
)3/2 .

We get the total solid angle subtended by the entire painting by
integrating over all y and z that define the painting’s extent, and so

@ =
∫ ∫
entire

painting

d@ =
a+c∫

z=c

b∫
y=−b

x(dy)(dz)(
x2 + y2 + z2

)3/2 .

The actual details of doing the integrations are routine but
lengthy and a bit messy (a good table of integrals is the “method” I
used!), and so I’ll simply quote the result:

@ = sin−1

{(
b2 − x2

) [
x2 + (a + c)2

] − 2x2b2(
b2 + x2

) [
x2 + (a + c)2

]
}

− sin−1

{(
b2 − x2

) (
x2 + c2

) − 2x2b2(
b2 + x2

) (
x2 + c2

)
}
.

We could play with this, algebraically, to get a somewhat simpler
appearing expression (indeed, Tan and Castillo’s formula for @ is a
bit less intimidating), but I’m not going to bother. After all, what
we would do next, analytically, would be to set the derivative of
@ with respect to x equal to zero and solve for x. Even with Tan
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and Castillo’s expression (and certainly with mine) that proves to
be an astonishingly ugly business! Even with their slightly less aw-
ful formula, Tan and Castillo were still forced to conclude “The
value of x at which @ maximizes can [read that as must!] be found
numerically.”

In figure 3.11, I have plotted@ versus x for a particular Regiomon-
tanus problem considered in section 3.1: a bug on the floor viewing
a painting with its lower edge 8 feet above the floor and its upper
edge 20 feet above the floor. (I first compared the results my expres-
sion gives for the x that maximizes @ with the numerical results
given by Tan and Castillo’s expression for the examples treated in
their analysis, and they agree exactly.) In the notation of figure 3.10,
then, we have a = 12 feet and c = 8 feet. Assuming a square paint-
ing (b = 6 feet), the plot shows @ is maximized when the bug is
x = 8.58 feet from the wall, considerably closer than the value of
x = 12.65 feet found when the painting was modeled as having only
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FIGURE 3.11. Maximizing a bug’s solid viewing angle.
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a vertical dimension. It is only for very wide paintings (b → ∞) that
the solid-angle solution approaches the solution for the case of the
one-dimensional painting.

3.6 The Muddy Wheel Problem

For the final problem of this chapter, consider the geometry of figure
3.12, showing an event that a multitude of medieval mathemati-
cians must have observed countless times: a wagon wheel rolling
through a muddy street. The wheel, with radius R, is thickly coated
with mud, and the rim is continually throwing off mud from every
point. Our question here is: what is the maximum height above the
ground reached by the ejectedmud? The answer would be of consid-
erable interest to those sitting in the wagon! To solve this problem,
I’ll use mathematical methods and physical arguments unknown to
any medieval mathematician. How those methods came to be de-
veloped will be the central concern of the next two chapters; seeing
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FIGURE 3.12. Geometry of the muddy wheel problem.
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how neatly and elegantly these methods make short work of the
muddy wheel problem will graphically illustrate how very different
are the worlds of medieval and modern mathematics.

The maximum height of the tossed mud obviously depends on
the speed at which the wheel rotates, and so let’s say that all points
on the rim are moving a steady speed of ν. Thus, when mud comes
off the rim, it is moving at speed ν tangent to the rim, at the instant
it leaves the rim. I think it is clear that, for the mud that reaches
the maximum elevation above the road, it must come off the rim
somewhere between the points marked A and B in the figure. So
suppose, as shown, that the radius from the center of the wheel to
some point in that quarter-circle makes angle α with the horizontal.
The vertical component of the ejected mud’s speed, at the instant of
ejection, is thus ν cos(α); it is of course the vertical component only
of the mud’s speed that is responsible for the height reached by the
mud. At the instant of ejection (let’s call that instant time t = 0), the
mud is therefore already at a height of R + R sin(α) above the road.

Now, as the ejected mud rises, its vertical speed is continually
reduced by gravity, which is given by ν cos(α) − gt , where g is the
acceleration of gravity. The mud’s height above the ejection point is
the integral of its speed, i.e., it is given by ν cos(α)t − 1

2gt
2. The mud

reaches its maximum height, by definition, when its vertical speed
has been reduced to zero. Thus, if t = T is the time it takes to reach
that maximum height, we have

ν cos(α) − gT = 0,

or

T = ν

g
cos(α).

And so the maximum height above the ground reached by the mud,
h(α), is

h(α) = R + R sin(α) + ν cos(α)
ν

g
cos(α) − 1

2
g
ν2

g2
cos2(α),

or

h(α) = R + R sin(α) + ν2

2g
cos2(α).
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To find that α that maximizes h(α)—let’s call the maximum H—
we set dh/dα = 0 and find that

R cos(α) − ν2

g
cos(α) sin(α) = 0,

or

sin(α) = Rg

ν2
.

This, of course, makes sense only if Rg ≤ ν2 (because | sin(α)| ≤ 1
for all real α) and so, for now, let’s assume this condition is satisfied.
(I’ll return to what Rg > ν2 means at the end of this section.) So,
since we also have

cos2(α) = 1 − sin2(α) = 1 − R2g2

ν4
,

then

H = R + R
Rg

ν2
+ ν2

2g

(
1 − R2g2

ν4

)
= R + R2g

ν2
+ ν2

2g
− R2g

2ν2
,

or

H = R + ν2

2g
+ R2g

2ν2
.

Since we are assuming that ν2 ≥ Rg, we see that our result says

H ≥ R + Rg

2g
+ Rν2

2ν2
= 2R.

That is, as long as ν2 ≥ Rg, then mud will always rise to at least
a height even with the top of the wheel (and, of course, the more
ν2 exceeds Rg, the more above the wheel will mud be flung, perhaps
onto the clothing of those riding too near to the sides of the wagon).

But what if ν2 < Rg? Then our condition of sin(α) = Rg/ν2 is
impossible to satisfy; so, let’s return to the expression for h(α), to
just before we differentiated it. Then,

h(α) = R

[
1 + sin(α) + ν2

2Rg
cos2(α)

]
,



MA X I M I Z AT I O N A N D S OM E MOD E R N TW I S T S 97

and so

h(α) < R

[
1 + sin(α) + 1

2
cos2(α)

]
.

Defining f (α) = 1 + sin(α) + 1
2 cos

2(α), we have

h(α) < Rf (α).

Since

df

dα
= cos(α) − cos(α) sin(α) = cos(α)[1 − sin(α)],

and since sin(α) ≤ 1 for all α, and since cos(α) ≥ 0 for 0° ≤ α < 90°
(α never equals 90°, as we have ν2 < Rg, not ν2 ≤ Rg), then

df

dα
> 0, 0° ≤ α < 90°.

Since the derivative of f (α) is the slope of the tangent line to the
f (α) versus α curve, then this result says f (α), over the semiclosed
interval 0° ≤ α < 90°, approaches a maximum as α approaches 90°.
That is, over that interval f (α) approaches a maximum value of 2 as
α approaches 90°. Thus, when ν2 < Rg, the value of H is strictly less
than 2R (the top of the wheel). Mud coming off the wheel right at
the top of the wheel (with no vertical speed) automatically achieves
the height of 2R, but certainly no mud is ever flung above the wheel
if ν2 < Rg.

As late as the start of the seventeenth century, there were no
mathematicians on earth who could have done this analysis. At the
end of the seventeenth century, there were many. What happened
during that century—that advanced the mathematics of extrema in
such a revolutionary way—is the central topic we take up next.

Solution to the Problem in Section 3.1

The answer to the trousers/mirror version of the Regiomon-
tanus problem is that the man should stand at a distance of
1
2

√
h(h − �) from the mirror. (The key observation is that the
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(continued)

man’s trousers appear as far behind the mirror as he stands in
front of it). This is the correct mathematical result, but does it
really “make sense”? For example, I wear 31-inch trousers and
my eyes are 70 inches above the floor. But, when I try trousers
on at my local men’s clothing store, I stand significantly far-
ther away from the dressing roommirror than 1

2

√
70(70 − 31)

= 26.1 inches. Apparently simply maximizing the viewing an-
gle does not really capture what is meant by “best view.”



4.
The Forgotten War of

Descartes and Fermat

4.1 Two Very Different Men

Modern students, when first introduced to the differential calculus,
learn that it was the simultaneous and independent creation of the
Englishman Isaac Newton (1642–1727) and the German Gottfried
Leibniz (1646–1716). Perhaps they are told that Newton and Leibniz
(and their respective followers) engaged in a lengthy and acrimo-
nious debate over intellectual priority, and that Newton continued
the battle even after Leibniz’s death, right up to the day of his own
death. Almost certainly, however, they are not told anything about
an equally nasty war of words between two French mathematicians
a half-century earlier, on some of the same issues that later engaged
Newton and Leibniz.

Pierre de Fermat (1601–65) and René Descartes (1596–1650) were
very different men. Fermat was a family man, trained as a lawyer
who loved mathematics as a pastime, and who so valued his privacy
that he published very little (and even then, only anonymously). He
was a classical scholar as well, fluent in Italian, Spanish, Latin, and
Greek, and an omnivorous student of the writings of the ancient
mathematicians. Descartes, also trained as a lawyer, was a man who
soon came to embrace public acclaim, who published widely, and
who devoted his whole life to the single-minded pursuit of abstract
knowledge. A family would have been a distraction, and Descartes
never married (although in 1635 he did have a daughter by one of
his servants).
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Unlike Fermat, Descartes gave the impression that he was often
uninformed of what others had done before him; at least he only
rarely mentioned the work of anybody else in his writings. And
when he did, it was often in the most unpleasant manner one could
imagine: at various times in his life he called his critics “two or three
flies,” “less than a rational animal,” “a little dog,” and “extremely
contemptible.” The actual works of others were often rejected in
incredibly offensive language, e.g., as being fit only for use as “toilet
paper” or, in the case of Fermat, as being “shit.”

We remember bothmen for very different reasons than what they
fought over: Descartes for his philosophical writings and the joining
of algebra with geometry into analytic geometry, and Fermat for
his work in probability and number theory, particularly the famous
and only recently resolved “Fermat’s Last Theorem.”What these two
brilliant intellects battled over, however, was none of this, but rather
first a problem in physics, and then the beginnings of how to answer
extremal questions through analysis rather than the classical tool of
geometry.

The origins of the conflict between the two men can be found in
Descartes’ essay on optics, La Dioptrique, one of the appendices in his
1637 bookDiscourse onMethod. There he treated the phenomenon of
the refraction of light, which is the next natural question to pursue
after noticing the details of the reflection of light. (Descartes’ interest
in the law of refraction was also motivated by his research into the
nature of the rainbow, which he—and others before him—correctly
believed to be due to the scattering of sunlight by water droplets in
the air. Descartes needed the law of refraction to mathematically de-
scribe that scattering, and I’ll return to the rainbow problem in the
next chapter.) Both phenomena, reflection and refraction, involve
extremal arguments of a quite different nature (and the solution to
one of the first problems in the calculus of variations—discussed in
chapter 6—used the refraction law), so letmemake a brief digression
to describe them.

“And God said, ‘Let there be light’; and there was light. . . .
But we can imagine the angelic architect asking for more de-
tails: ‘What path shall light follow in going from P to Q?’
And the answer might have been, ‘Don’t bother me with such
details. See that it makes the trip in minimum time.’ From this
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minimal principle one finds that for reflection the angle of inci-
dence should equal the angle of reflection, while for refraction
at an interface the ratio of the sine of the angle of incidence to
the sine of the angle of refractionmust equal the ratio of speeds
in the two media.”

“And God saw that the light was good.”
—Arthur Bernhart, Scripta Mathematica 1959, p. 206.

Professor Bernhart might have mentioned, however, that there
are two ways to form the ratio of the speeds; Descartes got it
wrong, but Fermat got it right as you’ll see in what follows.

4.2 Snell’s Law

It was Euclid who first made note (three centuries before Christ) of
the now familiar reflection law of light: if a beam of light is sent
toward a mirror, then the angle of incidence equals the angle of
reflection (θi = θr in figure 4.1), not only for a flat mirror but for

mirror

A

B

B´

d

d

R
θi θr

θŕ

FIGURE 4.1. Geometry of Heron’s reflection law.
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a curved mirror as well (for curved mirrors we measure the two
angles with respect to the tangent line at the point of reflection,
R). It was Heron of Alexandria, however, who first observed (in
the first century A.D., in his book on mirrors, Catoptrica) that the
reflection law is the immediate consequence of assuming that the
beam path ARB is the minimum length path. That is, if the point
R on the mirror were such that θi �= θr , then the resulting total
path length would be longer. (The implicit assumption is, of course,
that the beam of light does reflect off of the mirror—the absolute
shortest path from A to B is simply the direct, straight line segment
joining the two points. Indeed, if a light bulb is at A, broadcasting
light in all directions, then B receives light along the two paths ARB
and AB.) Heron’s observation is the first occurrence of a minimum
principle in mathematical physics; such principles play central roles
in modern theoretical physics. It is impressive and instructive to
examine how Heron derived the reflection law from this particular
minimum principle.

If the destination point B is distance d above the mirror, then
B’s reflected point (B ′) is distance d “below” the mirror. RB and RB ′
are, therefore, the equal-length hypotenuses of two congruent right
triangles, which means θ ′

r = θr (referring again to figure 4.1). Now,
the total light path length is AR + RB = AR + RB ′, and this last
sum is the path length from A to B ′. The shortest path from A to B ′
(and so the shortest length for the reflected path, as well) is along a
straight line, and so θ ′

r = θi , which immediately gives θi = θr , i.e.,
the reflection law.

With the reflection law thus established, attention turned next to
refraction, the phenomenon of the change in direction experienced
by a beam of light when it crosses the interface between one trans-
parent medium into another (from air into water or into glass, for
example), as shown in figure 4.2. Attempts to formulate a mathe-
matical description of refraction can be traced as far back as Ptolemy;
the first preliminary mathematical results appeared in the German
astronomer Johannes Kepler’s 1611 Dioptrice, but it wasn’t until the
experimental work of the Dutch physicist Willebrord Snel (1580–
1626) that the precise form of the refraction law was discovered. If
we measure the angles θi and θr with respect to the interface nor-
mal (the dashed line in figure 4.2), then Snel discovered around
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medium 1
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θi
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FIGURE 4.2. Geometry of Snell’s refraction law.

1621 (but didn’t publish) what is now called Snell’s law (the double-l
spelling is from the Latinized form of his name, Snellius):

sin(θi)

sin(θr)
= “constant”,

where the “constant” is a function of the nature of the two media.
Snel observed that if medium 2 is denser than medium 1 (as with
a light beam traveling from air into water) then the “constant” is
greater than one. That is, sin(θi) > sin(θr) or, equivalently, θi >

θr ; i.e., upon entering the water the light beam bends toward the
normal.

Snel’s notes on his experiments were lost some time after 1662,
and what we know of them is only through the writings of those
who saw them. Somewhat less well known, unpublished experimen-
tal research leading to Snell’s law, years before Snel, is also attributed
to the English mathematical physicist Thomas Hariot (1560–1621).
Hariot died from a cancer of the nose—due to a youthful intoxica-
tionwith tobaccowhile serving as the science officer on a colonizing
expedition to Virginia in 1585(?)—and his scientific research had
ceased by 1618, three years before Snel’s research. History records,
however, that it was Descartes who first published, in La Dioptrique,
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a theoretical derivation of the law of refraction, as well as offering an
explanation of the “constant.” Many historians have long believed
that Descartes learned of Snel’s experimental work and then used
that knowledge to guide the often strained physical assumptions of
the nature of light that appear in his analysis. Other historians dis-
agree but, for a while at the end of the 1600’s, there were nasty rum-
blings in the scientific community about plagiarism on Descartes’
part. Descartes’ former admirer, ChristiaanHuygens, who as a young
boy met Descartes often when the Frenchman visited Huygens’ fa-
ther, was among those who suspected the worse. The matter is still
not fully resolved.

It is Descartes’ “derivation” of Snell’s law that Fermat read in
1637 and found lacking in merit, and he said as much in a letter
to a correspondent who also had contact with Descartes. Fermat’s
skeptical reaction soon got back to Descartes, and the war was on.
So, how did Descartes derive Snell’s law, and why did Fermat think
that derivation wrong, a view shared by all modern physicists since
the middle of the nineteenth century?

Adopting a particle view of light, Descartes began his analysis
by making an analogy with a tennis ball hitting a cloth barrier at
incident angle θi . He argued that the ball would lose some of its
speed in the vertical direction only, because the cloth would offer
no resistance to the ball in the horizontal direction. The horizontal
speed component, therefore, would be unchanged. To express this
claim mathematically, let the ball’s speed before hitting the cloth
barrier be v1 (as shown in figure 4.3) and v2 after penetrating the
cloth. Then, the ball’s horizontal component of speed above the
cloth (in medium 1) is v1 sin(θi), which is, according to Descartes,
also the horizontal component of speed below the cloth (inmedium
2). Since that component is v2 sin(θr), then

v1 sin(θi) = v2 sin(θr),

or

sin(θi)

sin(θr)
= constant = v2

v1
.

The first equality is Snell’s law (the ratio of sines is a constant), but
Descartes’ derivation has actually led him into serious difficulty. Snel
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FIGURE 4.3. Geometry of Descartes’ refraction law “derivation.”

had not explainedwhat the constant actually is, while Descartes had
apparently shown it is the ratio of the ball’s speeds in the twomedia.
If we stick with the tennis ball analogy to light (i.e., a particle or so-
called corpuscular view of light), with v2 < v1 (the ball loses speed as
it penetrates the cloth barrier), then Descartes’ version of Snell’s law
must be wrong since it says

sin(θi)

sin(θr)
< 1, i.e., θi < θr .

That is, the ball (particle of light) would veer away from the normal
as it enters a denser medium. As mentioned before, however, light
is observed to do precisely the opposite. To bring his result into
agreement with experiment, then, Descartes had to drop the ball
analogy in midstream and conclude that v2 > v1, i.e., that light
speeds up as it penetrates the barrier. Thus, Descartes was forced
to conclude that the speed of light is greater in denser media. In
Descartes’ day there was no experimental measurement of the speed
of light in any medium, and so no one could say whether he was
right or not. And experiment is, of course, the only way to really
settle such a question—unless you are a philosopher. To “explain”
how light gains speed as it passes from air into water Descartes put
forth arguments in the tradition of Aristotle (“physics the way we
think it should be, rather than what experiment shows it to be”),
arguments that today seem ludicrous.
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Descartes’ view of space was that there is no empty space (for
him a vacuum was impossible), and that all apparently empty space
between macroscopic bodies was actually filled with an invisible
“something.” This view was long in dying, and right up to the end
of the nineteenth century all physicists—until Einstein—believed
that light needed that “something” to move through. They called
it the ether and, while not Descartes’ term, it represented his view.
Descartes also believed that light was a “pressure” that traveled in-
finitely fast (some historians claim he really only asserted it trav-
els very fast, not infinitely fast) through the “something,” a view
that would be logically at odds with an assertion that light travels
faster in water than in air. Both Fermat and Descartes were dead be-
fore the first experimental measurement of the finite speed of light
was made (an astronomical experiment in 1675 by the Danish as-
tronomer Olaus Roemer, based on the timing of Jupiter’s eclipsing of
itsmoons). And it wasn’t until almost another two centuries later that
the speed of light in water was measured to be less than that in air (a
terrestrial experiment in 1850, by the French physicists Hippolyte
Fizeau and Jean Foucault). If one assumes that light is the wave phe-
nomenon pioneered by Huygens, rather than a particle one, then
the slowing of light in water allows one to derive Snell’s law of re-
fraction (see any college freshman physics textbook); indeed, the
Fizeau/Foucault result was interpreted as proof that beams of light
are waves, not particles. Things are actually not quite that simple,
but that is an issue for a book on quantum electrodynamics!

You can find more on Descartes and his flawed optical physics, at
a fairly technical level, in the paper by W. B. Joyce and Alice Joyce,
“Descartes, Newton, and Snell’s Law” (Journal of the Optical Society
of America, January 1976, pp. 1–8), and at the historian’s level in
the books by William R. Shea, The Magic of Numbers and Motion: The
Scientific Career of René Descartes (Science History Publications 1991)
and A. I. Sabra, Theories of Light: From Descartes to Newton, (Cam-
bridge University Press 1981). The second book, in particular, details
the bitter feelings Descartes had toward Fermat because of Fermat’s
rejection of Descartes’ “derivation” of Snell’s law. You can find more
on Descartes’ flawed physics, in general, in Herman Erlichson’s “The
Young Huygens Solves the Problem of Elastic Collisions” (American
Journal of Physics, February 1997, pp. 149–54). And finally, you can
find a very detailed description of Hariot’s ingenious experiments
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on refraction in John W. Shirley, “An Early Experimental Determi-
nation of Snell’s Law” (American Journal of Physics, December 1951,
pp. 507–8).

When Fermat read La Dioptrique hewas unimpressed and, asmen-
tioned earlier, was blunt in his criticism. He wrote, in part, “of all the
infinite ways [to analyze the motion of light] the author [Descartes]
has taken only that one which serves him for his conclusion; he has
thereby accommodated his means to his end, and we know as little
about the subject as we did before.” An uncharitable reading of this
might be that Descartes knew what the answer must be—from his
earlier knowledge of Snel’s experimental work—and so he simply
fiddled with his physical assumptions until he got what he knew
experiment said he had to get. In other words, Descartes’ so-called
derivation of Snell’s law of refraction was no more than a begging of
the question. (When I was a college undergraduate, the writing of
a made-up lab report for a missed chemistry experiment was called
a “dry lab,” as compared to actually doing the experiment and get-
ting real data, which was, of course, a “wet lab.” Fermat thought
Descartes’ “derivation” to be a dry lab!) Further, Fermat rejected as
nonsense Descartes’ assertion of the infinite speed of light and his
subsequent illogical argument that light travels faster (than infin-
ity?) in water than in air. Fermat’s position was that light traveled at
a (very fast) finite speed in air, and that it was slowed when traveling
through a denser (“more resistive”) medium such as water.

Fermat initially believed that, since Descartes’ derivation was
clearly (to Fermat) built on sand, then the “ratio of sines is a con-
stant” result must be incorrect. Eventually Fermat learned that the
formula was, in fact, generally accepted as true because it could be
verified by direct experiment! This greatly puzzled Fermat; how had
Descartes managed to derive the correct law of refraction from er-
roneous arguments? It became a quest for Fermat to find a phys-
ically correct derivation of the law of refraction; he believed that
the law would be mathematically different from Descartes’ ratio of
sines result while also being able to give nearly the same numerical
results, thus explaining the (coincidental) experimental agreement
with Descartes’ result. With Fermat’s subsequent great discovery of
the “principle of least time” (discussed later in this chapter) his quest
ended in 1658 with success—but with a surprising twist that aston-
ished Fermat.
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To carry out the calculations involved in applying the principle of
least time to the refraction of light, Fermat used new mathematical
techniques of his own devising, including almost what is now called
the derivative of a function. Stimulated by an observation due to
Kepler (see the box at the end of this section)—at an extrema, either
minimum or maximum, a function f (x) is not changing as tiny
changes are made in x—Fermat transformed Kepler’s insight into
mathematics. Completed by 1629, Fermat published his discoveries
in 1637 as Method for Determining Maxima and Minima and Tangents
to Curved Lines. The date is important, as Descartes saw it just after
learning of Fermat’s rejection of La Dioptrique, and so, Descartes be-
ing Descartes, replied in kind to Fermat’s work. (Descartes also saw a
challenge in Fermat’sMethod to yet another of Descartes’ appendices
to his Discourse; Descartes thought his Geometry did what Fermat
claimed to do, only better, with his—Descartes’—mathematics.)

The irony in all of this is delicious. Descartes rejected Fermat’s
work on maxima and minima largely because Fermat had rejected
Descartes’ derivation of the law of refraction. Then Fermat used his
maxima/minima technique to correctly derive the refraction law, as
well as giving a proper explanation to the “constant” in Snell’s law.
We’ll take up Fermat’s mathematics for our next discussion.

When engineers and scientists think of Johannes Kepler
(1571–1603) it is almost certainly in connection with his fa-
mous three laws of planetary motion. An often ignored aspect
of his genius, however, is his contribution to the early devel-
opment of the differential and integral calculus. What is par-
ticularly amusing about this is what motivated Kepler in those
mathematical researches; shortly after his second marriage in
1613, while setting up a new household, he learned how wine
merchants determined the “volume” of wine barrels. They sim-
ply stuck a rod in through a hole at the edge of the top lid
and measured the length of the barrel diagonal from top to
bottom, without regard to the actual shape of the barrel. This
made no sense to a man with Kepler’s mathematical ability,
of course, and he began to think upon the question of just
how one would compute the volumes of various barrel shapes.
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Kepler published the results of his work in the 1615 book Stereo-
metria doliorum vinariorum (New Solid Geometry of Wine Barrels).
One result is particularly interesting for us: of all cylinders with
the same diagonal, the one with the maximum volume is the
one in which the ratio of the diameter to the height is

√
2 (a

rather squat barrel resembling, in fact, the storage tanks used
to hold oil in petroleum refineries). This result is worked out in
the next chapter as an example of the new calculus of Newton
and Leibniz.

4.3 Fermat, Tangent Lines, and Extrema

Recall the problemwe solved back in chapter 1, using themethod of
completing the square: how should a constantC be divided into two
parts so their product is maximized? There we wrote the two parts as
x and C − x, and their product as M = x(C − x). Fermat solved this
same problem with a new approach, as follows. Expanding, we have

x2 − Cx + M = 0.

Solving for x gives

x = C ± √
C2 − 4M

2
.

He next argued that ifM is themaximum product then there should
be just one value of x that achieves that maximum. Thus, the quan-
tity under the square root sign must be zero. So,

M = 1

4
C2

and

x2 − Cx + 1

4
C2 = 0 =

(
x − 1

2
C

)2

= 0.

Thus, x = 1
2C gives the maximum product.
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FIGURE 4.4. Constructing a tangent to a parabola.

Fermat also applied his “double-root” idea to the problem of
drawing tangents to a given curve, at a given point. For example,
consider the parabola x = −y2 shown in figure 4.4. Suppose the
given point is B, with coordinates x = −s, y = √

s, s ≥ 0. The
generic equation of the tangent line is, of course, the well-known
equation for a straight line

y = mx + b,

where m is the slope and b is a constant. Now, this straight line
intersects the parabola at the solutions to

x = −(mx + b)2,

which is easily solved to give
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x = −(2mb + 1) ± √
(2mb + 1)2 − 4m2b2

2m2
.

Fermat next invoked his central argument, that there is only one
actual intersection of the tangent line with the curve, and so it must
be true that

(2mb + 1)2 − 4m2b2 = 0.

This is easily solved to give

b = − 1

4m
.

Therefore, at the given point B we have (since B is on the tangent
line)

√
s = −ms − 1

4m
,

which is again easily solved to give

m = − 1

2
√
s

(
and so b = 1

2

√
s

)
.

Thus, the equation of the tangent line is

y = − 1

2
√
s
x + 1

2

√
s, s ≥ 0.

To actually draw the tangent line, it is sufficient to locate point E
in figure 4.4, the intersection point of the tangent line with the x-
axis. Setting y = 0 then, the x-coordinate of E is x = s. So, Fermat’s
procedure for drawing the tangent line at any given point B on the
parabola x = −y2 is the following four-step process:

1. drop the perpendicular from B to the x-axis, to the point C in
figure 4.4.

2. measure the length CD = s, where D is the coordinate system
origin.

3. DE = s, too, thus determining E.
4. connect B and E with a straight line.
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Fermat later altered his “double-root” argument into what is
nearly the modern approach for finding the extrema of a function
by setting the first derivative to zero. That is, returning to the exam-
ple that started this section, suppose x̂ is the value of x that gives
the maximum product, and that E is a “very small” quantity. Then
using x̂ or x̂ + E should give nearly equal results, i.e.,

x̂2 − Cx̂ + M ≈ (
x̂ + E

)2 − C
(
x̂ + E

)+ M,

and the near-equality will become a true equality as we let E → 0.
So, expanding and canceling equal terms on both sides, we arrive at

0 ≈ 2x̂E + E2 − CE.

Since we haven’t yet let E go all the way to zero, we can divide
through by E to get

0 ≈ 2x̂ + E − C.

This division by E is crucial, of course, because otherwise as we let
E → 0 we would get nothing but the undeniably true (but not very
interesting and certainly not useful) tautology of 0 = 0. But, if after
the division we let E → 0, we get the equality

0 = 2x̂ − C.

Thus, as before, x̂ = 1
2C.

As another example of this technique, Fermat showed how to find
the extreme value of the more complicated function f (x) = ax2−x3,
where a is a given constant. As before, let x̂ be the value of x that
gives the extreme value of f , and let E be “very small.” Then,

f (x̂) ≈ f (x̂ + E),

or

f (x̂) − f (x̂ + E) ≈ 0,

with the near-equality becoming an equality as E → 0. So,[
ax̂2 − x̂3]− [

a(x̂ + E)2 − (x̂ + E)3] ≈ 0,
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or, after expanding and canceling, and dividing through by E,

− 2ax̂ − aE2 + 3x̂2 + 3x̂E + E2 ≈ 0.

Then, letting E → 0, the near-equality becomes an equality and

− 2ax̂ + 3x̂2 = 0 = x̂(−2a + 3x̂).

There are two solutions: x̂ = 0 and x̂ = 2a/3. Notice that

f (x̂ = 0) = 0

and

f

(
x̂ = 2a

3

)
= 4a3

27
.

So, with reference to figure 4.5, what these results say is that x̂ =
2a/3 gives a local maximum if a > 0 (in the left plot, where a = 3 and
x̂ = 2) and a local minimum if a < 0 (in the right plot, where a = −3
and x̂ = −2). The x̂ = 0 solution gives a local minimum if a > 0
and a local maximum if a < 0. For both x̂ values, no matter what
the sign of a, there is no absolute or global minimum or maximum
since f (x) becomes unbounded as x → ±∞.

The reason for emphasizing that the extremas of f (x) are local is
that extrema are completely distinguished by the behavior of the
function in the neighborhood of the extrema. It is entirely possible,
for example, to have a two-extrema functionwith its localminimum
larger than its local maximum. An example of this is shown in
figure 4.6, for the function f (x) = x + (1/x) (which is, of course,
discontinuous at x = 0). The local minimum at x = +1(f (+1) = 2)
is larger than the local maximum at x = −1(f (−1) = −2).

As a muchmore complicated example of his method, Fermat also
treated a geometric problem from Pappus’ Mathematical Collection
(Proposition 61), one that leads (in modern algebraic notation) to
calculating the minimum of a ratio of two polynomials:

(a − x)(b + x)

x(c − x)
,
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where a, b, and c are given constants. This is not an easy problem!
You can find the original geometric statement in Alexander Jones’
translation of Book 7 of the Collection (Springer-Verlag 1986, p. 186.)

4.4 The Birth of the Derivative

It is obvious, at this point, that in his examples Fermat was essen-
tially calculating the limit that we call today the first derivative,

lim
E→0

f (x + E) − f (x)

E
= df

dx
= f ′(x),

and then setting it equal to zero. (Today’s textbooks commonly use
ε, or 
x, rather than E, in this definition.) This definition was not
formally introduced into mathematics until 1817, by the Czech
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mathematician Bernard Bolzano (1781–1848), but the idea was in
Fermat’s work long before 1817. Indeed, it was in print in Fermat’s
1637 Method, five years before Newton was born and nine years
before Leibniz’s birth (the two men normally credited with the in-
vention of the differential calculus). This tells us, for example, that
the derivative of any constant is zero, since df = 0 (constants don’t
change!) There were, of course, others who also contributed to the
concept of the derivative, e.g., the Dutch mathematician Johann
Hudde (1628–1704), who in 1659 showed how to differentiate a
polynomial of any degree and so how to find its extrema. An out-
standing historical exposition on the evolution of the derivative is
the paper by Judith V. Grabiner, “The Changing Concept of Change:
The Derivative from Fermat to Weierstrass” (Mathematics Magazine,
September 1983, pp. 195–206). Grabiner starts off with the wonder-
ful observation “The derivative was first used; it was then discovered;
it was then explored and developed; and it was finally defined.”
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As a more sophisticated example of the use of the limit definition
of the derivative, which will provide us with a result we’ll use in the
next section, suppose we know how to differentiate some simple
function of x, called g(x). For example, if g(x) = x or x2, then the
derivative is 1 or 2x, respectively (both results follow easily from
the derivative definition—try it!). Then, our question is: what is the
derivative of h(x) = √

c + g(x), where c is a constant?
Using the definition of the derivative, we have

dh

dx
= lim

ε→0

h(x + ε) − h(x)

ε
= lim

ε→0

√
c + g(x + ε) − √

c + g(x)

ε
.

Now,

dg

dx
= lim

ε→0

g(x + ε) − g(x)

ε
,

or, approximately, if ε is not equal to zero but “very close” to zero:

ε
dg

dx
+ g(x) ≈ g(x + ε).

Thus,

dh

dx
= lim

ε→0

√
c + g(x) + ε

dg

dx
− √

c + g(x)

ε

= lim
ε→0

√
{c + g(x)}

{
1 + ε

c + g(x)

dg

dx

}
− √

c + g(x)

ε

= √
c + g(x) lim

ε→0

√
1 + ε

c + g(x)

dg

dx
− 1

ε
.

Next, and finally, using the approximation
√
1 + u ≈ 1 + 1

2u for u
“small,” we have our result:

dh

dx
= √

c + g(x) lim
ε→0

1 + 1

2

ε

c + g(x)

dg

dx
− 1

ε
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= √
c + g(x)

1

2
· 1

c + g(x)

dg

dx
= 1

2
· 1√

c + g(x)

dg

dx
.

The modern notation for the derivative, e.g., dx/dt and d2x/dt2

for the first and second derivatives of x(t) with respect to t (time), is
due to Leibniz. In Newton’s notation they would be written as ẋ(t)
and ẍ(t), respectively. Newton’s dot notation is still used today, but is
generally regarded as less useful. Leibniz’s notation lends itself to the
useful device of thinking of the differentials dx and dt as algebraic
quantities, and to treating them as such. For example, a little later in
the next section I’ll formally derive what is called the chain rule, but
in Leibniz’s notation (and not in Newton’s) it is trivially obvious: if
u(t) and v(t) are two functions of the independent variable t , and if
f (t) = u{v(t)}, then

df

dt
= du

dv
· dv
dt

“because” we can cancel the two dv differentials on the right-hand
side.

Even Newton’s name for the new math has been discarded. Find-
ing his original motivation in considering how quantities change
with the “flux of time” (in his Principia he writes of time as flow-
ing), Newton called x(t) a flowing quantity, or fluent, and the rate
at which x(t) changes with time (that is, the derivative of x(t)) the
fluxion. The use of the word calculus, rather than Newton’s “method
of fluxions,” is again due to Leibniz from some time before 1680.
Newton himself had adopted Leibniz’s term by 1691.

Much of the failure by Fermat to receive credit for his wonder-
ful discovery is almost certainly due to the criticisms of Descartes,
who simply failed to appreciate what he read inMethod. This isn’t to
say all mathematicians failed to appreciate Fermat’s contributions to
the invention of the differential calculus. The Italian-born French
mathematician Joseph Lagrange (1736–1813), who developed the
modern approach to the calculus of variations (see chapter 6), wrote
“One may regard Fermat as the first inventor of the new calculus.”
And the French genius Pierre Simon de Laplace (1749–1827) de-
clared “Fermat should be regarded, then, as the true discoverer of
Differential Calculus.” Modern historians disagree, however, argu-
ing that Fermat’s calculations are quite limited in scope, while New-
ton and Leibniz developed calculus in breadth; in particular, they
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discovered general formulas for the differentiation of complicated
functions. Still, when Lewis Trenchard More published his 1934
biography Isaac Newton (Charles Scribner’s Sons) he announced
(p. 185) that he had discovered, in the major archival holdings of
Newton’s papers, a previously unknown draft of a letter in which
Newton himself stated his debt to Fermat for the invention of the
differential calculus: “I had the hint of this method from Fermat’s
way of drawing tangents and by applying it to abstract equations,
directly and indirectly, I made it general.”

To see why Newton wrote those words, consider again the para-
bola x = −y2 shown in figure 4.4. Recall that Fermat took the
tangent at B as the dashed line through B that intersects the x-axis
at E. Dropping the perpendicular from B to the x-axis (to C), then,
reduces the problem of drawing the tangent to determining just
where E is located, i.e., to determining the length of CE. Fermat’s
ultimate method for doing this (developed after his “double-root”
approach) was to take O as an arbitrary point (between B and E)
on the tangent line and then dropping the perpendicular from O

to the x-axis (to I ). Point A is the intersection of this perpendicular
with the parabola. From the equation of that curve (remember, D is
the origin) we have the distance relationships

CD = (BC)2

ID = (AI)2,

and so

(BC)2

(AI)2
= CD

ID
.

Since OI > AI , then

(BC)2

(OI)2
<

CD

ID
.

By similar triangles we also have

BC

CE
= OI

IE
,

or
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(BC)2

(OI)2
= (CE)2

(IE)2
.

Thus,

(CE)2

(IE)2
<

CD

ID
.

Now, let CD = d, CE = a, and CI = e. Since B (and so C) is given,
Fermat knew the value of d. The value of a is what Fermat wanted
to calculate, while the value of e is variable as it depends on the
choice for O (which determines I and so CI ). In any case, we have
ID = CD − CI = d − e, and IE = CE − CI = a − e, and so

a2

(a − e)2
<

d

d − e
,

or

a2(d − e) < d(a − e)2.

With a little algebra this becomes

2ade < a2e + de2.

To complete his argument, Fermat let O move ever closer to B,
and this would of course move I ever closer to C, and so e → 0. But,
before doing that, e �= 0, and so we can divide by e to get

2ad < a2 + de.

Then letting e → 0 transforms the inequality into an equality (obvi-
ous from the geometry of figure 4.4) and so 2ad = a2, or d(= CD) =
1
2a(= 1

2CE). This is, of course, the same result he obtained from
the double-root method, but this is the technique that so inspired
Newton in his development of the differential calculus.

It didn’t inspire Descartes, however, who thought the approach
not to be general. He believed it would work only if an explicit
relation of the form y = y(x) could be written. In what he thought
would convince Fermat (and others) that Fermat’s method wouldn’t
be able to handle a curve more complicated than a mere parabola,
Descartes challenged (in 1638) Fermat to apply it to the curve x3 +
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y3 = 3axy, where a is a given positive constant. Notice that the
x and y cannot be separated in this equation into the form y =
y(x). It is amusing to learn that, in addition to Descartes’ failure to
correctly draw his own curve, Fermat was able to quickly determine
the tangent to the curve (now known as the “folium of Descartes.”)

4.5 Derivatives and Tangents

The intimate connection between the derivative of a function f (x)

and the tangent to the curve y = f (x) was used by Newton to solve
the practical problem of calculating the roots to the equation f (x) =
0. As is now well known, if f (x) is a polynomial of degree greater
than four then there is no analytic solution, in general. What is
called “Newton’s method” is an iterative, numerical technique (see
the next box) that can find the solutions to f (x) = 0 quickly, to any
degree of accuracy desired, even in cases where f (x) is a polynomial
of infinite degree, e.g., f (x) = x − cos(x). Newton wrote up his
discovery in 1671, as part of his book Methodus fluxionum et serierum
infinitarum, but it wasn’t actually published until 1736. Meanwhile,
in 1690, the English mathematician Joseph Raphson (1648–1715)
published the same method in his Analysis aequationum universalis.
In modern calculus textbooks, this method (easily programmed on
a computer) is often called the Newton-Raphson method in honor
of both men.

To understand the geometry behind the Newton-Raphson method,
let’s consider the continuous function f (x) = x3 − 2x − 5, the same
function used by Newton in his Method of Fluxions to illustrate the
method. It is easy to calculate that f (2) and f (3) have opposite
algebraic signs, and so there must be some value of x = x̂ (between
2 and 3) where f (x̂) = 0. Figure 4.7, which plots f (x), shows that
the value of x̂ is actually between 2 and 2.5, but suppose we want to
find x̂ much more precisely—e.g., accurate let’s say, to ten decimal
places? How can we do that?

The Newton-Raphson method generates a sequence of values, xn

for n = 1, 2, 3, · · · , that approach x̂, i.e., limn→∞ xn = x̂. That is,
given the value xk, the method then calculates xk+1 that is closer to
x̂; |xk+1 − x̂| < |xk − x̂|. The Newton-Raphson method can then
use xk+1 to calculate xk+2, and so on, until we have the accuracy we
desire. Here’s how it works.
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FIGURE 4.7. Newton’s function.

The derivative of f (x) at x = xn is f ′(xn), which is the slope of
the line tangent to y = f (x) at x = xn. This tangent line thus has
the equation

y = f ′(xn)x + b,

where b is a constant. But, since y = f (xn) at x = xn, then

f (xn) = f ′(xn)xn + b,

and so b = f (xn)−f ′(xn)xn. Thus, the tangent line has the equation

y = f ′(xn)x + f (xn) − f ′(xn)xn.

This tangent line crosses the x-axis (and so y = 0) at x = xn+1, our
next (often better, although not always—see figures 4.8a and 4.8b)
approximation to x̂. Thus,

0 = f ′(xn)xn+1 + f (xn) − f ′(xn)xn,
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FIGURE 4.8. Geometry of the Newton-Raphson method.

or, solving for xn+1, we have our result:

xn+1 = xn − f (xn)

f ′(xn)
.

For Newton’s example, f ′(x) = 3x2 − 2 and so the iterative algo-
rithm for solving f (x) = 0 is

xn+1 = xn − x3n − 2xn − 5

3x2n − 2
= 2x3n + 5

3x2n − 2
.
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All we need now, to use this algorithm, is a “starting value” for the
sequence of xn, i.e., the value of x0, the obvious choice for which is
2. Subsequent values generated by the algorithm are

x1 = 2.1

x2 = 2.09456812110419

x3 = 2.09455148169820

x4 = 2.09455148154233

x5 = 2.09455148154233,

and so, after just four iterations we have the value of x̂ to better than
ten decimal places. The Newton-Raphson method itself is nothing
but arithmetic, but it is fundamentally based on the connection
between the derivative of a function and the tangent line (at a given
point) to the curve determined by that function.

Relatively recent scholarship, I should tell you, convinc-
ingly argues that neither Newton or Raphson should have this
method named after them! Themethod I just illustrated is both
iterative and employs the derivative concept. Newton’s own,
specific calculation of the solution to the cubic has neither
feature, and Raphson’s method does not use derivatives (al-
though it is iterative). It was actually the English mathemati-
cian Thomas Simpson (1710–61) who published the modern
algorithm in 1740. For more on this interesting story, which
has not yet (as far as I know) been incorporated into modern
textbooks on the history of mathematics, see Nick Kollerstrom,
“Thomas Simpson and ‘Newton’s Method of Approximation’:
An enduring myth” (The British Journal for the History of Science,
September 1992, pp. 347–54).

Fermat came as close as one could to discovering the derivative
without actually making the discovery. An “infinitesimal miss,” yes,
but for the credit of being declared the inventor of the differential
calculus it made all the difference in the world. He could have taken
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the final step, too, as I’ll illustrate in the next section on how Fermat
finally constructed a proper derivation of Snell’s law.

As one last example of the connection between derivatives and
tangents, consider the problem of calculating the derivative of the
function f (x) = ln(x). Using Fermat’s idea, let’s write

df

dx
= lim


x→0

ln(x + 
x) − ln(x)


x
= lim


x→0

ln

(
x + 
x

x

)

x

= lim

x→0

1


x
· ln

(
1 + 
x

x

)
= lim


x→0
ln

(
1 + 
x

x

)1/
x

.

Recall now that lims→∞(1+(a/s))s = ea. If you don’t recall this, there
is a nice noncalculus derivation of it, using the binomial theorem, in
Eli Maor’s e: The Story of a Number (Princeton University Press, 1994,
p. 35.) So, with s = 1/
x, and a = 1/x, we have

d

dx
ln(x) = lim


x→0
ln

(
1 + 
x

x

)1/
x

= lim
s→∞ ln

(
1 + 1/x

s

)s

= ln
(
e1/x

) = 1

x
.

Figure 4.9 shows plots of ln(x) and 1/x, and it is immediately obvious
that 1/x does indeed “look like” the slope of ln(x). I’ll use this result
in the opening section of the next chapter to answer a famous
“puzzle problem” in mathematics.

One of the most valuable of the differentiation rules tells us how
to differentiate what are called composite functions. For example, we
just learned what the derivative of ln(x) is, but what is the derivative
of ln{v(x)}, where v(x) is any function of x, not simply v(x) = x?
What, for example, is the derivative of ln{ln(x)}? The very definition
of the derivative is the key to answering this. So, suppose u = u(x)

and v = v(x), and that we already know how to differentiate u(x)

and v(x), individually. We can find the derivative of u{v(x)} by first
writing

du

dv
= lim


v→0

u(v + 
v) − u(v)


v
and

dv

dx
= lim


x→0

v(x + 
x) − v(x)


x
.
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FIGURE 4.9. The natural log function and its derivative.

Also,

d

dx
u{v(x)} = lim


x→0

u{v(x + 
x)} − u{v(x)}

x

= lim

x→0

u{v(x + 
x)} − u{v(x)}
v(x + 
x) − v(x)

· v(x + 
x) − v(x)


x
.

Now, by definition 
v = v(x + 
x) − v(x), and so v(x + 
x) =
v(x) + 
v, which means that

d

dx
u{v(x)} = lim


x→0

u{v(x) + 
v} − u{v(x)}

v

· v(x + 
x) − v(x)


x
.

Since 
v → 0 as 
x → 0, we thus have

d

dx
u{v(x)} = lim


v→0

u(v + 
v) − u(v)


v
· lim

x→0

v(x + 
x) − v(x)


x

= du

dv
· dv
dx

,
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a result commonly called the chain rule and known to Leibniz no
later than 1676. I used it in chapter 1 (in the minimum escape
velocity problem of section 1.6), and I’ll use it in the next chapter
to solve a famous problem from 1686.

Now, to answer our original question on how to differentiate
ln{v(x)}, we have u = ln(v) and v(x) = ln(x), and so

d

dx
ln{v(x)} = d

dv
ln(v) · dv

dx
= 1

v

dv

dx
.

For example, if v(x) = ln(x), then we have

d

dx
ln{ln(x)} = 1

ln(x)
· 1
x

= 1

x ln(x)
,

which of course is defined only for x > 1.
And finally, we can turn all of this on its head and calculate the

derivative of f (x) = ex . This means x = ln f (x), and so

d

dx
x = 1 = d

dx
ln{f (x)}.

But, our result for composite functions says

d

dx
ln{f (x)} =

{
d

df
ln(f )

}
·
{
df

dx

}
= 1

f

df

dx
.

So,

1 = 1

f

df

dx
,

or

df

dx
= f, i.e.,

d

dx
ex = ex.

The exponential function is its own derivative.
Two highly useful results that immediately follow from this

unique property of the exponential are the derivatives of the hyper-
bolic functions. Thus, with A some constant, if
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f (x) = cosh(Ax) = eAx + e−Ax

2

g(x) = sinh(Ax) = eAx − e−Ax

2
,

then

df

dx
= d

dx
cosh(Ax) = AeAx − Ae−Ax

2
= A sinh(Ax)

dg

dx
= d

dx
sinh(Ax) = AeAx + Ae−Ax

2
= A cosh(Ax).

These formulas will be very helpful in chapter 6.

4.6 Snell’s Law and the Principle of Least Time

Fermat’s solution to finding a physically correct derivation of Snell’s
law of refraction was the result of developing a generalization of
Heron’s derivation of the reflection law. UsingHeron’s originalmini-
mum-path-length criterion wouldn’t work for refraction, of course,
as that path would simply be the straight line connecting A and B

(in figure 4.10, where A and B have a lateral separation of d), rather
than the actual broken path ARB. Fermat’s generalization was to
argue that the correct path, for both reflection and refraction, is the
path of minimum time. For reflection, where the light is always in
the same medium, minimum length and minimum time give the
same path. But for refraction, the paths are different, and the least-
time path is indeed the actual path. In the notation of figure 4.10,
then, the total transit time from A to B is

T =
√
h21 + x2

v1
+

√
h22 + (d − x)2

v2
.

The mathematical problem for Fermat was to determine x = x̂ so
that T is minimized. One of the reasons why Fermat is not recog-
nized as the inventor of the differential calculus is that he failed to
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FIGURE 4.10. Geometry of Snell’s law from the principle of least time.

discover the rules for applying his basic idea of f (x̂ +E) ≈ f (x̂) for
E “small” to functions more complicated than simple polynomials,
e.g., to the square roots that appear in the formula for T . Fermat
was, however, through some special algebraic manipulations, still
able to solve this specific problem. Here’s how.

Let’s start by observing from figure 4.10 that

sin(θi) = x√
h21 + x2

sin(θr) = d − x√
h22 + (d − x)2

.

Then, using T (x̂) − T (x̂ + E) ≈ 0 for E “nearly zero,” we have
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√
h21 + x̂2

v1
+

√
h22 + (d − x̂)2

v2




−


√
h21 + (x̂ + E)2

v1
+

√
h22 + (d − x̂ − E)2

v2


 ≈ 0.

Look now at the square root in the first term in the second pair of
brackets; we can write it as (since E is “nearly zero” then E2 is even
“more nearly zero”)√

h21 + (x̂ + E)2 =
√
h21 + x̂2 + 2x̂E + E2 ≈

√
h21 + x̂2 + 2x̂E

=
√(

h21 + x̂2
) (

1 + 2x̂E

h21 + x̂2

)

=
√
1 + 2x̂E

h21 + x̂2

√
h21 + x̂2.

Recalling once again the approximation
√
1 + u ≈ 1 + 1

2u for u

“small,” we arrive at

√
h21 + (x̂ + E)2 ≈

[
1 + x̂E

h21 + x̂2

]√
h21 + x̂2.

Repeating this process for the second square root (and using
√
1 − u

≈ 1 − 1
2u) results in√
h22 + (d − x̂ − E)2 ≈

[
1 − (d − x̂)E

(d − x̂)2 + h22

]√
h22 + (d − x̂)2.

We thus have

T (x̂) − T (x̂ + E) =


√
h21 + x̂2

v1
−

√
h21 + (x̂ + E)2

v1
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+


√
h22 + (d − x̂)2

v2
−

√
h22 + (d − x̂ − E)2

v2




≈
√
h21 + x̂2

v1

[
1 −

{
1 + x̂E

h21 + x̂2

}]

+
√
h22 + (d − x̂)2

v2

[
1 −

{
1 − (d − x̂)E

(d − x̂)2 + h22

}]

=
√
h22 + (d − x̂)2

v2
· (d − x̂)E

(d − x̂)2 + h22
−

√
h21 + x̂2

v1
· x̂E

h21 + x̂2
≈ 0.

Next, dividing through by E (which is not yet exactly zero) and then
imagining E vanishes, we arrive at the equality√

h22 + (d − x̂)2

v2
· (d − x̂)

(d − x̂)2 + h22
=

√
h21 + x̂2

v1
· x̂

h21 + x̂2
,

or

1

v2
· d − x̂√

h22 + (d − x̂)2
= 1

v1
· x̂√

h21 + x̂2
.

But this is just

1

v2
sin(θr) = 1

v1
sin(θi),

or, at last,

sin(θi)

sin(θr)
= v1

v2
= constant.

I say at last because while this is once again our now familiar Snell’s
law, now we (Fermat) have the constant right! It is v1/v2, the inverse
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of Descartes’ result of v2/v1, which had forced him to conclude that
v2 (= the speed of light in water) > v1 (= the speed of light in
air) because experiment shows the constant in Snell’s law is greater
than one. For Fermat, however, the conclusion was just the reverse:
v2 < v1.

Fermat was both astonished and pleased at this success of his prin-
ciple of least time, as it simultaneously explained how Descartes’
result could be in agreement with experiment and at the same time
wrong in its conclusion about the speed of light in different medi-
ums. A modern student would, of course, be perplexed at all of the
algebra Fermat used. She would wonder at why he hadn’t simply set
the derivative of T equal to zero to find Snell’s law. The answer is,
as I mentioned earlier, that Fermat didn’t know how to do that. But
he was so very close.

Indeed, the general differentiation formulas for Fermat’s problem
are not hard to develop and, in June 1682, Leibniz carried out the
following analysis. Looking at the expression for T , we see that we
have just two fundamental forms: if c1 and c2 are constants, the
forms are

g(x) = c1 + (c2 − x)2

h(x) = √
c + g(x).

In section 4.4 you saw how to differentiate h(x). To differentiate
g(x), we write (using Fermat’s basic idea) in modern notation,

dg

dx
= lim

ε→0

g(x + ε) − g(x)

ε
.

So,

dg

dx
= lim

ε→0

[
c1 + {c2 − (x + ε)}2] − [

c1 + (c2 − x)2
]

ε

= lim
ε→0

[
c1 + c22 − 2c2(x + ε) + (x + ε)2

] − [
c1 + c22 − 2c2x + x2

]
ε

= lim
ε→0

−2c2(x + ε) + (x + ε)2 + 2c2x − x2

ε
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= lim
ε→0

−2c2x − 2c2ε + x2 + 2xε + ε2 + 2c2x − x2

ε

= lim
ε→0

−2c2ε + 2xε + ε2

ε
= lim

ε→0
(−2c2 + 2x + ε)

= −2 (c2 − x) .

And from section 4.4 we have

dh

dx
= 1

2
· 1√

c + g(x)
· dg
dx

.

With these formulas in hand, the modern student would take T ,
written as

T =
√
h21 + x2

v1
+

√
h22 + (d − x)2

v2
,

and, as did Leibniz, write (by inspection)

dT

dx
= 1

2
· 1

v1
· 1√

h21 + x2
[2x] + 1

2
· 1

v2
· 1√

h22 + (d−x)2
[−2(d−x)] = 0,

or

x

v1

√
h21 + x2

− d − x

v2

√
h22 + (d − x)2

= 0.

Recalling the expressions for sin(θi) and sin(θr), this immediately
reduces to Snell’s law,

sin(θi)

sin(θr)
= v1

v2
.

Fermat’s principle of least time does strike many as being out-
side of mathematics, and perhaps even outside of physics as well;
as being metaphysical. Of course, Heron’s derivation of the law of
reflection from the principle of minimum distance is open to the
same criticism (and, obviously, minimum distance is equivalent
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to minimum time for travel always in the same medium, and so
Heron’s principle is simply a special case of Fermat’s). Students al-
ways want to know how does light “know,” at the start of a journey,
what path will result in minimum length (time)? That seems to re-
quire light to be prescient! Before the development of quantum elec-
trodynamics, which explains how light “knows,” Fermat’s principle
did have to be taken on faith, and formany that was toomuch to ask.
Fermat himself was not sympathetic to those who rejected the least-
time principle on the grounds that it asked for light to know where
it was going before it started. As he replied in a (unconscious?) pun
to one of his critics, “I do not pretend to be in the secret confidence
of nature. She works by paths obscure and hidden. . . .”

In fact, Fermat’s principle of least time is not always correct. The
modern statement of the principle says the path a light beam follows
is simply a stationary path, which means that a slight variation in
the optical path leaves the travel time unchanged. This may indeed
result in a path with minimum travel time, but another possibility
is a path with maximum travel time! To see how such a thing could
happen, imagine a point source of light in the center (point O) of
an ellipsoidal mirror, as shown in figure 4.11. There are four points
around the mirror (A, B, C, and D) which reflect light directly back
toO. Two of them (A and B) determineminimum time paths, while
the other two (C and D) determine maximum time paths.

The criticism Fermat received about the principle of least timewas
slight indeed compared to that which descended upon Pierre Louis
Moreau de Maupertuis (1698–1759) over his so-called principle of
least action. A number of people, long before Fermat (and probably

A

B

C D
O

FIGURE 4.11. Minimum and maximum time paths are stationary paths.
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even before Heron) had thought that a universe made by God must
be a perfect universe, and consequently should always operate with
economy. Leonardo da Vinci, for example, who wasn’t really even
a very good mathematician, nevertheless was a thoughtful intellect
and declared (more than a century before Fermat) that “Every action
done by nature is done in the shortest way.” He failed, however, to
explain just what that might mean. Fermat added an explanation
for the case of light, but Maupertuis went light-years further by both
defining action and claiming “least action” to be universally appli-
cable: “in all the changes that take place in the universe, the sum of
the products of each body multiplied by the distance it moves and
by the speed with which it moves is the least possible.” He published
this in 1746, shortly after becoming President of the Academy of Sci-
ences in Berlin. Least action was later made more precise by such gi-
ants as Euler, Hamilton, and Lagrange, and it has found enormously
fruitful applications in such diverse fields as physics (quantum me-
chanics) and biology (self-regulating, living systems).

For Maupertuis, however, who seemingly was guided more by
theological reasoning than by mathematical physics, least action
brought ridicule down on his head, with the worst of it coming
from his one-time friend Voltaire. That argument over least action
became one of the nastiest scientific brawls in history, and it was
initiated by a claim from a mathematician named König (for more
on him, see the end of appendix C) that, first, it was wrong, and
second, that Maupertuis had stolen it anyway from an unpublished
1707 letter by Leibniz! Euler declared Maupertuis was right, but he
was no match for the poison-pen of math-illiterate Voltaire; both
Euler and Maupertuis were the initial losers in this battle. Today
we better understand who was right and who was not, but that is of
little consequence for the dead. You can readmore about this savage,
bitter controversy in the essay by Bently Glass, “Maupertuis, Pioneer
of Genetics and Evolution,” included in Forerunners of Darwin, 1745–
1859 (The Johns Hopkins University Press 1959).

4.7 A Popular Textbook Problem

The refraction of light and Fermat’s principle of least time have
served as the inspiration for numerous calculus textbook problems
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FIGURE 4.12. Geometry of yet another minimum-time lake-crossing problem.

of the following type (illustrated in figure 4.12). Aman is in a power-
boat in a lake, distance d from the nearest point (A) on the shore
(which is taken to be straight). He wishes to travel, by a combina-
tion of motoring and running, to point C on the shore. Point C is
a distance � from A. That is, he will motor directly to some point
B on the shore, distance x from A, and then run from B to C. If
the boat travels at speed v1 and if the man runs at speed v2, then
what is x (where is B?) so as to minimize his total travel time? To
be as general as possible, we’ll consider both the case of v1 < v2 and
of v1 > v2. This problem, even though less sophisticated than the
superficially similar problem at the end of chapter 1, is worth some
attention here because it has an easy-to-miss, subtle issue.

We start by writing the total travel time T , as a function of x, as

T (x) =
√
d2 + x2

v1
+ � − x

v2
.
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Following the standard prescription for finding an extrema (a min-
imum for T ) we set the derivative of T (x) to zero:

dT

dx
= 1

2
· 1√

d2 + x2
· 2x · 1

v1
− 1

v2
= 0.

With just a little algebra this is easily solved to give

x =

(
v1

v2

)
d√

1 −
(
v1

v2

)2
.

It does seem a bit odd that this formal result for x (the location
of B) is independent of �, and so we might well wonder if this
formal result is actually correct. Well, it might be correct—but not
necessarily! Here’s why.

If (v1/v2) > 1 (if the boat travels faster than the man runs), then
there is no real formal solution for x1 because the denominator is
imaginary. The physical interpretation for this case is simply that
x = �, i.e., the man should motor straight, all the way, to C. This is,
of course, the obvious statement that if the boat moves faster than
the man can run, then the shortest total travel time is achieved by
always traveling at the greater speed along the shortest path (the
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But even if v1/v2 < 1 (and so the formal solution for x is real)
it is not always the correct solution. This is because it is physically
obvious that, for any values of v1 and v2, x will be confined to the
interval 0 ≤ x ≤ �. After all, it makes no sense to motor to either
an x > � or an x < 0 and then run all the way back to C! Now, x
is confined to this interval only if 0 ≤ v1/v2 ≤ m, where m is the
finite value of v1/v2 that gives x = � (the condition v1/v2 = 0 gives
the other extreme, so-called end-point value for x, that is, x = 0). We
can solve for m by setting (

v1

v2

)
d√

1 −
(
v1

v2

)2
= �,
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which gives (
v1

v2

)
max

= m = 1√
1 +

(
d

�

)2
.

So, even if v1 < v2, there is the possibility that the straight path from
A to C is the minimum-time path.

The answer to this problem is therefore actually not independent
of �, as the formal result misleadingly suggests. That is,

if 0 ≤ v1

v2
≤ 1√

1 +
(
d

�

)2
then x =

(
v1

v2

)
d√

1 −
(
v1

v2

)2
,

otherwise x = �.

The moral is obvious: the solution to a minimization problem may
be given by the vanishing of a derivative, but then it may also not
be! This important conclusion is forgotten at the analyst’s peril.

4.8 Snell’s Law and the Rainbow

Physicists write Snell’s law in a slightly different manner than we
have so far used, with c denoting the speed of light in a vacuum:

sin(θi)

sin(θr)
= v1

v2
= c/v2

c/v1
= n2

n1
,

where n1 = c/v1 and n2 = c/v2 are called the indices of refraction for
medium 1 and medium 2, respectively. That is, the index of refrac-
tion for a medium is simply the ratio of the speed of light in a vac-
uum to the speed of light in themedium. The usual case is, of course,
that the index of refraction is a positive number greater than 1. For
the normalmediums of air, water, and glass, the indices of refraction
are usually taken to be 1, 1.333, and 1.5, respectively, but these are
really just typical values. The index of refraction for a givenmedium
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isn’t just a single number, but rather is a function of the frequency
(wavelength) of the light. For example, the index of refraction for
water decreases with increasing wavelength; in the visible portion of
the electromagnetic spectrum (the so-called optical region), as light
varies through the colors violet (“short” wavelength), blue, green,
yellow, orange, to red (“long” wavelength), the index of refraction
varies from 1.344 to 1.331.

The fact that the index of refraction for a medium depends on the
frequency of the light explains why what appears to be white light
can be separated by refraction into various colored constituents.
Each colored component of the total white light experiences a
slightly different angle of refraction in Snell’s law, and so is sepa-
rated from its other differently colored (different wavelength) com-
panions. This effect, called dispersion, was discovered by Newton
in his famous glass prism experiment of 1666 (after both Descartes
and Fermat were dead).

With Snell’s law written as

sin(θr) = n1

n2
sin(θi),

we can see that if n2 > n1 (as is the case when light, in air, is incident
on a water surface), then θr < θi . That is, the refracted light is bent
toward the normal. However, since θr is still positive, the refracted
light is not bent beyond the normal. The bent light beam travels
into the water on the opposite side of the normal from the incident
light. The contrary case, never seen in nature, would mean θr < 0
and thus require a negative index of refraction. But would such a
thing be impossible?

In the late 1960s, theoretical studies in the Soviet Union showed
that a negative indexmedium, while undeniably strange, would not
violate any of the fundamental laws of physics. In 2001, American
physicists at the University of California/San Diego actually fabri-
cated what they call a “structured metamaterial” that, in the micro-
wave frequency band of 10.2 to 10.6 GHz, has a negative index of
refraction. This is an extremely high frequency by many standards,
e.g., the middle of the AM radio frequency band is one megahertz =
0.001 GHz. Ten gigahertz, however, is a very low frequency com-
pared to optical frequencies (on the order of 500,000 GHz), and
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whether or not negative index optical frequency devices can be
made is still very much an open question. See R. A. Shelby, et. al,
“Experimental Verification of a Negative Index of Refraction” (Sci-
ence, April 6, 2001, pp 77–79).

My reason for getting into the physics of refraction as much as I
have is that Descartes next used Snell’s law to explain, using a maxi-
mum argument, the first mystery of the rainbow: why there is often
a bright, circular arc of light in the sunlit sky after a rainstorm. You’ll
see how he did this in the next chapter, and how calculus (which
he did not use) is the perfect tool with which to study the rainbow.
The second mystery of the rainbow (why is it a multicolored arc of
light, and not just a white arc?) remained a mystery to Descartes
because he didn’t know about dispersion, and so he used a single
number for the index of refraction for water (droplets in the sky).
Descartes did have an “explanation” for the colors, but it is (like
his “derivation” of Snell’s law itself) physical nonsense. My second
reason for discussing the physics of the refraction of light is that, in
1696, the Swiss mathematician Johann Bernoulli used Snell’s law to
solve a physics minimization problem (discussed in chapter 6) that
marks the origin of the calculus of variations, the next step up in
advanced mathematics beyond the calculus itself.



5.
Calculus Steps Forward,

Center Stage

5.1 The Derivative: Controversy and Triumph

Starting with Fermat’s near miss of the derivative, and the later
work by Newton and Leibniz, and others, in developing general
differentiation formulas, the differential and integral calculus had,
by 1700, become the mathematics for solving many (but not all, as
you’ll see when we get to later chapters) extrema problems. But not
everybody was convinced that a quantum leap in mathematics had
been achieved. As late as 1734, for example, the British philosopher
George Berkeley (1685–1753) could rightfully pen an attack on the
logical foundations of calculus, as he did in The Analyst: or a discourse
addressed to an infidel mathematician. His motivation for this was
more theological than mathematical, however; appointed a bishop
that same year, he wrote The Analyst as a rebuttal to those who were
turning away from the faith and embracing instead the so-called
rationality of mathematics and science. Bishop Berkeley thought
that view misguided, writing in his polemic “He who can digest a
second or third fluxion, . . . need not, we think, be squeamish about
any point of divinity.” Even more famous is his remark, also from
The Analyst, which appears to try to tie calculus to the supernatural
as much as to religion: “And what are the fluxions? The velocities
of evanescent increments? They are neither finite quantities, nor
quantities infinitely small, nor yet nothing. May we not call them
ghosts of departed quantities?” Bishop Berkeley’s hope of showing
calculus to be fatally flawed failed in the long run, but his criticisms
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did result in mathematicians returning time and again to the vital
task of placing calculus on a logically secure foundation.

Since the start of the eighteenth century calculus has leapt from
one spectacular triumph to the next, and continues to this day to be
the rite-of-passage from high school math to the so-called advanced
maths. Calculus has earned this reputation because of its ability to
successfully handle problems that, without it, are simply impossible.
In this chapter I’ll discuss a number of such problems, all mathemat-
ically interesting, with some also having important historical signif-
icance as well. So, to start, consider the following freshman calculus
puzzle that has been known to drive evenmath professors to despair.

Imagine you are stranded on a desert island, with only a stick to
write in the acres of sand that surround you. You certainly do not
have a table of logarithms or a calculator! If asked “which is larger,
34 or 43?”, you would have no problem scribbling the solution in the
sand with your stick: 34 = 3 · 3 · 3 · 3 = 81 > 43 = 4 · 4 · 4 = 64. This
is easy because 3 and 4 are (small) integers. But what if the question
is “which is larger, eπ or πe?”? Both e and π are transcendental, and
that complicates matters (how do you write e π times, or π e times?).
Since both e and π are close to 3 you would probably correctly
guess that the two expressions have nearly the same value, but that
doesn’t tell us which is the larger. What to do? With the derivative,
it is “easy” (it’s always easy, if you think of the right approach).

Start by defining the function h(x) = (ln(x)/x) (thinking of this
definition is the “hard” part of the problem!). With f (x) and g(x)

as two functions of x, such that

h(x) = f (x)

g(x)
,

one of the fundamental differentiation formulas of calculus tells us
that

d

dx
h(x) = d

dx

{
f (x)

g(x)

}
=

g(x)
df

dx
− f (x)

dg

dx

g2(x)
.

For example, since tan(x) = sin(x)/ cos(x), and as (d/dx) sin(x) =
cos(x) and (d/dx) cos(x) = − sin(x), results easily established with
the fundamental definition of the derivative, we then have
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d

dx
tan(x) =

cos(x)
d

dx
sin(x) − sin(x)

d

dx
cos(x)

cos2(x)
= cos2(x) + sin2(x)

cos2(x)

= 1

cos2(x)
.

Now, with f (x) = ln(x) and g(x) = x, we have from results estab-
lished in the last chapter that

dh

dx
=

x
d

dx
ln(x) − ln(x)

x2
=

x · 1
x

− ln(x)

x2
= 1 − ln(x)

x2
.

Thus, the derivative vanishes (our condition for an extrema) when
1− ln(x) = 0, i.e., when x = e. But what kind of extrema does x = e

give us? Is it aminimumor amaximum?We can argue geometrically
that it is a maximum, as the plot of h(x) in figure 5.1 shows.
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FIGURE 5.1. This function has a (broad) maximum at x = e (= 2.718 . . .).
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Geometrical arguments and plots are limited, however, to those
situations where we can easily see “what is going on” with the
function of interest. More generally, we need an analytical way to
distinguishminimums frommaximums, and such a way is provided
by the second derivative. Isaac Newton was the first (1665) to see
this and, ironically, the basic idea behind this analytical method
is intuitively obvious if we look at it physically. So, to be specific,
suppose h(t) represents the height at time t of a ball thrown upward.
Then dh/dt is the speed of the ball, and dh/dt = 0 simply says
that the ball has an instantaneous speed of zero at its maximum
height, i.e., it has stopped moving upward (positive speed) and is
about to begin its fall back to the ground (negative speed because
the direction of motion is reversed).

The second derivative, d2h/dt2, is the rate of change of the speed,
i.e., it is the ball’s acceleration (due entirely to the force of gravity).
But that force is always pointed downward toward the center of the
Earth, opposite to the direction of increasing h(t). Thus, d2h/dt2 <

0, always. This gives us the so-called second derivative test for a
(local) maximum. If d2h/dt2 < 0 when dh/dt = 0, then h(t) has an
extrema that is a (local) maximum. If d2h/dt2 > 0 when dh/dt = 0,
however, then h(t) has an extrema that is a (local) minimum.

Bishop Berkeley was, as mentioned earlier, greatly distressed over
the logical basis of the first derivative; one can easily imagine his
horror at the second derivative. Indeed, here are his ownwords from
The Analyst : “But the velocities of the velocities, the second, third,
fourth, and fifth velocities, &c., exceed, if I mistake not, all human
understanding. The further the mind analyseth and pursueth these
fugitive ideas the more it is lost and bewildered. . . .”

In the above discussion, t (time) is the independent variable, but
that is of no special consequence. The second derivative test applies
equally well to functions of any independent variable, e.g., to the
h(x) of our original problem. So, calculating the second derivative,
we have

d2h

dx2
=

x2
(

−1

x

)
− [1 − ln(x)]2x

x4
= −x − 2x + 2x ln(x)

x4
.

Thus,
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d2h

dx2

∣∣∣
x=e

= −3e + 2e ln(e)

e4
= −3e + 2e

e4
= − 1

e3
< 0.

That is, x = e is the location of the maximum of h(x), just as
illustrated in figure 5.1.

By the very meaning of maximum, any value of x �= e, such as
x = π , will give a smaller value for h(x). Thus, for the h(x) of our
original problem,

ln(e)

e
= 1

e
>

ln(π)

π
,

or

π > e ln(π) = ln(πe).

Thus,

eπ > eln(π
e) = πe,

andwe are done. In fact, a calculator does confirm that eπ= 23.14069
. . . is indeed larger (but not by very much) than πe = 22.45915. . . .

The differentiation rule for a quotient also quickly gives us
the rule for differentiating a product, i.e., the formula for

d

dx
{f (x) u(x)} = ?

If we define u(x) = 1/g(x), then we have from before that,

d

dx

{
f (x)

g(x)

}
=

g
df

dx
− f

dg

dx

g2
=

1

u

df

dx
− f

d

dx

(
1

u

)
1/u2

.

Applying the quotient rule to (d/dx)[(1/u)], and remembering
that the derivative of a constant is zero, we have

d

dx

(
1

u

)
=

−du

dx

1/u2
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and so

d

dx
{f (x) u(x)} =

1

u

df

dx
− f

[
−du

dx

u2

]

1/u2

= u
df

dx
+ f

du

dx
.

By 1677 the rules for differentiating quotients and products
were known to Leibniz.

The rule for differentiating a product leads immediately to
one of the fundamental results of integral calculus: the for-
mula for integration-by-parts. If we take advantage of Leibniz’s
differential notation and “multiply through” by dx, then we
obtain

d(f u) = u df + f du,

or

u df = d(f u) − f du.

Then, integrating from x = a to x = b, we arrive at∫ b

a

u(x) df =
{
f (x) u(x)

∣∣b
a
− ∫ b

a
f (x)du .

We’ll use this result at a crucial point in chapter 6 when we
derive the Euler-Lagrange differential equation, which is at the
core of the calculus of variations.

What does it mean if, when h′(x) = dh/dx = 0, we have h′′(x) =
d2h/dx2 = 0 as well? The second derivative test, which asks if h′′(x)
is either greater than or less than zero, would seem to be equivocating
when h′′(x) is equal to zero. And indeed it is. In this case h(x)

may or may not have an extrema. It is easy to demonstrate both
possibilities. Suppose h(x) = x3. Then h′(x) = 3x2 and h′′(x) = 6x.
Both derivatives vanish at x = 0, where there is not an extrema, as
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FIGURE 5.2. (a) Zero 2nd derivative, no extrema. (b) Zero 2nd derivative,
with extrema.

shown in the first half of figure 5.2. However, if h(x) = x4, then
h′(x) = 4x3 and h′′(x) = 12x2, and again both derivatives vanish at
x = 0 where there is an extrema (a minimum), as shown in the
second half of figure 5.2. We can distinguish the “extrema” and
“no extrema” cases by observing that, for an extrema, h′′(x) does
not change sign around the extrema (indeed, 12x2 never changes its
sign), while when there is no extrema, h′′(x) does change its sign
around the value of x that gives h′′(x) = 0 (6x does change sign
around x = 0). In this last case, we say h(x) has an inflection point.

Here’s a pretty little differentiation problem of historical in-
terest, using all of the above ideas, for you to try your hand at.
Posed by the nineteenth-century Swiss mathematician Jacob
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Steiner (mentioned in chapter 2 in connectionwith the isoperi-
metric problem), it asks for the value of x for which the xth root
of x is a maximum. That is, if we define f (x) as

f (x) = x
√
x = x

1
x , x > 0,

then for what x is f (x) the largest (and what is that maximum
value)? Before starting your analysis you should convince your-
self (with noncalculus reasoning!) that, as x increases from zero,
f (x) first increases and then decreases, which suggests f (x)

does indeed have a maximum. The answer is at the end of this
chapter.

5.2 Paintings Again, and Kepler’s Wine Barrel

With the derivative, the original Regiomontanus problem from sec-
tion 3.1, of determining the “best” distance to stand away from a
painting hanging on a wall, becomes routine. In the notation of
figure 3.2, the problem was to determine the x that maximizes θ in
the expression

tan(θ) = (b − a)x

x2 + (b − h)(a − h)
.

Since tan(θ) increases with increasing θ , then simplymaximizing the
right-hand side will also maximize θ . In chapter 3 we used a tricky,
noncalculus approach. But now we can write

d

dx
tan(θ) = d

dx

{
f (x)

g(x)

}
= 0,

with f (x) = (b−a)x and g(x) = x2 + (b−h)(a−h), and solve. From
the differentiation formula in the last section for a quotient, we see
that this is equivalent to solving

g(x)
df

dx
= f (x)

dg

dx
,

i.e., to solving
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[
x2 + (b − h)(a − h)

]
(b − a) = (b − a)x(2x).

This quickly results in x = √
(b − h)(a − h), just as we found in

chapter 3.
Another historical problem that yields easily to the derivative is

Kepler’s wine barrel problem (mentioned in the previous chapter),
on how to make the right cylindrical wine barrel of maximum vol-
ume and prescribed diagonal (�). With the aid of the derivative, this
is now a standard problem (in various disguises) in freshman cal-
culus texts with, sadly, the history almost always unmentioned. In
the notation of figure 5.3, where r, h, and V are the barrel’s radius,
height, and volume, respectively, we have

�2 = (2r)2 + h2 = 4r2 + h2

V = πr2h.

So,

r2 = �2 − h2

4
,

and thus

V = π
�2 − h2

4
h = π

4

(
�2h − h3

)
.

With V now expressed in terms of the single variable h, we can
find the extrema of V by writing

dV

dh
= 0 = π

4

(
�2 − 3h2

)
,

which says h2 = 1
3 �2. Thus,

�2 = (2r)2 + 1

3
�2,

or, with d = 2r as the barrel’s diameter, we have

�2 = d2 + 1

3
�2,



C A L C U L U S , C E N T E R S TA G E 149

l

r

h

FIGURE 5.3. Kepler’s wine barrel.

or, d2 = 2
3 �2. That is,

d2

h2
=

2

3
�2

1

3
�2

= 2, i.e.,
d

h
= √

2,

as stated back in chapter 4. The actual volume of the largest barrel is

Vmax = πr2h = π

(
d

2

)2

h = π

4
d2h = π

4
· 2
3
�2 · �√

3

= π

6
√
3
�3 = 0.3023 �3.

5.3 The Mailable Package Paradox

An interesting maximization problem of more recent vintage gives
rise to the mailable package paradox. When you send a package by
UPS (United Parcel Service), there are certain physical constraints
you have to satisfy. These have changed over the years, but as I write,
the maximum allowable length is 108'', and the maximum size—
defined by UPS as the length plus the package’s maximum girth—is
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130''. The girth at any point along the length is the distance around
the cross section at that point (taken perpendicular to the length).
Since it is themaximumgirth that is used to determine the size, then
it is clear that to maximize the package’s volume we should have
all cross sections with the same girth. Since for a given girth (cross
section perimeter) a circular cross section has the largest area, it then
follows that a right circular cylinder is the shape of the maximum
volume package (and not a sphere, as you’ll soon see).

This seemingly peculiar definition of size (length plus maximum
girth) is used instead of the more obvious one of volume because it
is easier and faster for a mail agent to determine. All that is needed is
a flexible measuring tape, and no complicated volume calculations
are required (just addition). But, there is a price paid for the conve-
nience of this definition: it does occasionally lead to a paradoxical
result. That is, it is possible to make two packages that, when pre-
sented to a mail agent, are such that the agent will accept the larger
volume but will reject the smaller volume! With calculus, this odd
situation is easy to understand.

Consider a cylindrical package with maximum volume with ra-
dius r, length x, and volume v. If S denotes the maximum size al-
lowed, then

v = πr2x and S = x + 2πr.

Thus,

r = S − x

2π
and so v = π

(
S − x

2π

)2

x = 1

4π

(
xS2 − 2Sx2 + x3

)
.

We have an extrema for the volume when dv/dx = 0, i.e., when

S2 − 4Sx + 3x2 = 0.

This is easily solved to give either x = S or x = 1
3S. We reject the

first solution because then r = 0, which certainly gives theminimum
volume of zero!We therefore have x = 1

3S for themaximum volume
(I’ll leave it for you to verify that d2v/dx2 < 0 at x = 1

3S, which
means we have a maximum), which for UPS is acceptable, since
then x = 1

3 ·130'' < 108''. Thus, the cylindrical package of maximum
volume has the volume
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π


S − 1

3
S

2π




2

· S
3

= S3

27π
= 0.0117893 S3.

This is considerably larger than the spherical package of maxi-
mum volume, because the circular cross sections of a sphere do not
all have the same (maximum) girth. We can see that this is so be-
cause, if the sphere has length (diameter) x then its radius is 1

2x and
so its maximum girth is 2π

(
1
2x
) = πx. Thus, the UPS size is

x + πx = x(π + 1)

and the volume is

v = 4

3
π

(
1

2
x

)3

= π
x3

6
.

We clearly maximize v by simply maximizing x, which is achieved
by dividing the maximum size S by π + 1. So, the volume of the
largest mailable spherical package is

π

(
S

π + 1

)3

6
= 0.0073705 S3,

which is less than 63% the volume of the cylindrical package of
maximum mailable volume.

Now, what if the cross sections of a package are all the same but
are not necessarily circular? This results in a somewhat surprising
conclusion. Let each identical cross section have area A and perime-
ter P . If we vary P (keeping the cross section shape fixed), then it
is dimensionally clear that A = kP 2, where k is some positive con-
stant (“depending” on the shape). Thus, if x is the package length,
we have the package volume and size as

v = kP 2x and S = x + P.

So,

x = S − P and v = kP 2(S − P) = kSP 2 − kP 3.
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To find that P that maximizes v, we write

dv

dP
= 0 = 2kSP − 3kP 2,

or P = 2
3S. (Again, you should confirm that d2v/dP 2 < 0 at P = 2

3S,
which means we have a maximum.) Thus, x = S − P = 1

3S, just as
before for a constant, circular cross section. That is, independent of
the shape of the package’s cross section, as long as it is the same
everywhere, the package with maximum volume has length 1

3S,
one-third of the specified maximum size.

Finally, the paradox. Imagine a cubical package with edge length
5S/24. Its size exceeds the maximum allowable because

5S

24︸︷︷︸
length

+ 4 · 5S

24︸︷︷︸
girth

= 25S

24
> S,

and so this package is not mailable. But, it has a volume of(
5S

24

)3

= 0.0090422 S3,

which is significantly less than the volume of the maximum volume
cylindrical package. So, a UPS mail agent would accept the larger
volume cylindrical package as small enough to mail, but would
reject the smaller volume cubical package because it is too large!
Ah, the complications of modern life.

5.4 Projectile Motion in a Gravitational Field

A classic use of the derivative is in the study of projectile motion
through the Earth’s gravitational field. In this section I’ll first show
a simple application of the derivative to a number of athletic events
and then, in the next section, a related military example dating
from 1686.

To start, imagine an athlete is a specialist in not only the shot put
and the discus throw, but also in heaving the javelin and in golf!
As different as these events are in their details, all can be expressed
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mathematically (at the most elementary level of sophistication) by
a common model: the release of a projectile at height h above the
ground, with initial speed v0 at release, and at a release angle of θ .
Eventually, the projectile returns to the Earth at some distance R

from the point directly beneath the release point. The values of h
and v0 are assumed to be given for a given athlete; our problem here
is to find the angle θ that maximizes R.

In the geometry of figure 5.4 (where the origin is the release
point) we see that y = −h when the projectile hits the ground at
distance x = R. Using g to denote the acceleration of gravity, and
realizing that only the vertical component of the projectile’s speed
is affected by gravity (I am ignoring any air-drag effect), we can write
the horizontal and vertical components of the projectile’s speed, at
time t , as

dx

dt
= v0 cos(θ)

dy

dt
= v0 sin(θ) − gt, t ≥ 0.

y

O

R
x

−h

v0

θ

FIGURE 5.4. Projectile motion in Earth’s gravitational field.
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(Notice, carefully, that these two derivatives are present because of
the physics of the problem, and not because of any extrema calcu-
lation.) Since x(0) = y(0) = 0, these two differential equations are
easily integrated to give

x(t) = v0t cos(θ)

y(t) = v0t sin(θ) − 1

2
gt2.

If we solve the first equation for t , i.e., if we write

t = x

v0 cos(θ)
,

and then substitute into the second equation, we get

y = x tan(θ) − x2
g

2 v20 cos
2(θ)

.

That is, y is a quadratic function of x, and sowe have thewell-known
result that, for given values of v0 and θ , the path of the projectile is
a parabola.

Since x = R when y = −h, then when the projectile hits the
ground at time t = t̂ , we have

v0 t̂ cos(θ) = R

v0 t̂ sin(θ) − 1

2
gt̂2 = −h.

So, from the first equation,

t̂ = R

v0 cos(θ)
,

and thus, from the second equation,

R sin(θ)

cos(θ)
− 1

2
g

R2

v20 cos
2(θ)

= −h.

Or

Rv20 cos(θ) sin(θ) − 1

2
gR2 + hv20 cos

2(θ) = 0.
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Using the trigonometric identity sin(2θ) = 2 sin(θ) cos(θ), this last
expression becomes

1

2
Rv20 sin(2θ) − 1

2
gR2 + hv20 cos

2(θ) = 0,

or, at last, a result so important I’ll put it in a box:

Rv20 sin(2θ) − gR2 + 2hv20 cos
2(θ) = 0.

As our athlete’s goal is to pick that θ (call it θ̂) that maximizes R,
it now seems that we should introduce a derivative formathematical
reasons. Specifically, let’s differentiate term-by-term with respect to
θ using the result from section 5.1 for how to differentiate products:

Rv202 cos(2θ) + v20 sin(2θ)
dR

dθ
− 2gR

dR

dθ
− 2hv202 cos(θ) sin(θ) = 0.

At an extrema (amaximumofR), we will haveR′(θ)=0, which gives

2Rv20 cos(2θ) − 4hv20 cos(θ) sin(θ) = 0.

And finally, using the above double-angle identity once more, this
reduces to

2Rv20 cos(2θ) − 2hv20 sin(2θ) = 0,

or

R = h tan(2θ).

This isn’t, however, quite what we are after, which is the particular
θ that maximizes R for a given v0 and h. But this result isn’t useless,
either; once we do have the value of that optimum θ = θ̂ , we
can then find the actual distance achieved from Rmax = h tan(2θ̂ ).
But, first, what is θ̂? We can get our hands on θ̂ by substituting
Rmax = h tan(2θ̂ ) into our earlier boxed result that is true for any
value of θ : Rv20 sin(2θ) − gR2 + 2hv20 cos

2(θ) = 0. Thus,

hv20 tan(2θ̂ ) sin(2θ̂ ) − gh2 tan2(2θ̂ ) + 2hv20 cos
2(θ̂) = 0,
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or

v20 tan(2θ̂ ) sin(2θ̂ ) + 2v20 cos
2(θ̂) = gh tan2(2θ̂ ),

or

v20

[
sin2(2θ̂ )

cos(2θ̂ )
+ 2 cos2(θ̂)

]
= gh

sin2(2θ̂ )

cos2(2θ̂ )
.

Since another trigonometric identity tells us that

cos2(θ̂) = 1

2

[
1 + cos(2θ̂ )

]
,

this last result becomes

v20

[
sin2(2θ̂ )

cos(2θ̂ )
+ 1 + cos(2θ̂ )

]
= gh

1 − cos2(2θ̂ )

cos2(2θ̂ )
,

or

v20

[
sin2(2θ̂ ) + cos(2θ̂ ) + cos2(2θ̂ )

cos(2θ̂ )

]
= v20

1 + cos(2θ̂ )

cos(2θ̂ )

= gh

[
1 + cos(2θ̂ )

][
1 − cos(2θ̂ )

]
cos2(2θ̂ )

.

So, after the obvious cancellation,

v20 cos(2θ̂ ) = gh
[
1 − cos(2θ̂ )

]
,

or, solving this easy equation for cos(2θ̂ ),

cos(2θ̂ ) = gh

v20 + gh
= g

g + v20

h

= g

g + α
, α = v20

h
.

The parameter α is characteristic of each particular athlete, depend-
ing on both height h and strength (the speed v0 of the projectile at
the instant of release). So now, at last, we have the optimum value
of θ :



C A L C U L U S , C E N T E R S TA G E 157

θ̂ = 1

2
cos−1

{
g

g + α

}

to give

Rmax = h tan
(
2θ̂
)
.

An exceptional case occurs for golf. There, h is not a height
associated with the player, as in the track-and-field events of
the shot put, the javelin throw, and the discus toss. Rather,
h is the height of the ball tee, which I’ll take as essentially
zero. Thus, independent of v0 we have α = ∞ and so θ̂ =
1
2 cos

−1(0) = 45°, i.e., all golfers, independent of their individ-
ual strengths, have the same optimal angle when swinging for
distance. The actual distance achieved does of course, depend
greatly on v0.

Interestingly, for golf, our result for Rmax,

Rmax = h tan(2θ̂ ),

is indeterminate (useless) because it reduces to

Rmax = 0 · ∞ = ???

To determine Rmax for the golf case of h = 0, let’s return to our
earlier boxed result just before we differentiated with respect to
θ , which is true for any θ :

Rv20 sin(2θ) − gR2 + 2hv20 cos
2(θ) = 0.

For θ = θ̂ = 45°, we have R = Rmax, and as h = 0, then

Rmaxv
2
0 − g R2

max = 0,

or

Rmax = v20

g
.
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A strong golfer can drive a ball off its tee at about v0 = 160
feet/second, and so this analysis predicts themaximumdriving
distance to be

Rmax = (160 ft/sec)2

32.2 ft/sec2
= 795 ft.

This is, indeed, a long drive, but one that occasionally is actu-
ally observed.

Now, one last point. A physicist or engineer would argue that it is
physically obvious that our result for θ̂ gives a maximum in R, not a
minimum. For θ > θ̂ , the projectile spends most of its time traveling
vertically, not horizontally. For θ < θ̂ , gravity pulls the projectile
back to Earth “too soon.” Amathematician, however, would want to
apply the second derivative test, and this is a good exercise for you to
run through. Simply start with the result of the first differentiation
(beforewe setR′(θ) = 0) and differentiate it again. Then setR′(θ) = 0,
as well as use our two results for that optimal case R = h tan(2θ) and
cos(2θ) = gh/(v20 + gh)). That will result (if you are careful with the
algebra) in R′′(θ) < 0, which means the extrema in R is, indeed, a
maximum.

5.5 The Perfect Basketball Shot

An interesting (and historically important, as you’ll soon see) twist
to the analysis of the previous section can also be found in a non-
track-and-field athletic event: basketball. Assume a player is standing
directly in front of a basketball hoop, preparing tomake a free-throw
shot. If we construct a coordinate systemwith its origin at the release
point (i.e., where the ball leaves the player’s hands), then we have
the geometry shown in figure 5.5. The ball is released at time t = 0
from the origin, at a launch angle θ , with initial speed v0, with the
goal of having the ball drop through the hoop, i.e., of having the
ball pass through the hoop’s location at (x = �, y = h) on the falling
portion of its parabolic trajectory. In this section, I’ll show you how
calculus lets us determine the minimum value of v0 required to do
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y

x

h

t = t0

t = 0

l

θ

FIGURE 5.5. Geometry of basketball shooting.

this, and then I’ll explain how (and why) this problem was stated
and solved more than three centuries ago, long before the invention
of basketball. (The explanation does not involve time travel!) Much
of what follows was inspired by an essay written by C. W. Groetsch,
“Halley’s Gunnery Rule” (The College Mathematics Journal, January
1997, pp. 47–50).

If we say that the ball passes through the hoop at time t = t0, then
from the previous section we know that x(t0) = � and y(t0) = h,
where

x(t) = v0t cos(θ), y(t) = v0t sin(θ) − 1

2
gt2.

That is, we require

� = v0t0 cos(θ), h = v0t0 sin(θ) − 1

2
gt20 ,

and so

t0 = �

v0 cos(θ)
,
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and therefore,

h = �
sin(θ)

cos(θ)
− 1

2
g

�2

v20 cos
2(θ)

.

That is,

h = � tan(θ) − 1

2

g�2

v20
sec2(θ).

Solving for v20 , we arrive at the somewhat complicated looking result,

v20 =
1

2
g�2 sec2(θ)

� tan(θ) − h
,

which tells us with what initial speed the player must send the ball
on its way, given the hoop location (the values of h and �) and the
launch angle (θ).

We can now derive an interesting mathematical constraint on v20
that shows there is a minimum initial speed if the ball is to pass
through the point (�, h). This makes sense physically, of course. Af-
ter all, if the loop is (for example) 25 feet (horizontally) away from
the player, and the hoop is 10 feet above the court, then even a
nonmathematician, couch-potato, Larry Bird wanna-be knows in-
tuitively that the puny launch speed of v0 = 1 foot/second isn’t
going to score any points! With some simple algebra we can find
an expression for the minimum launch speed, in terms of � and h.
(This is equivalent to asking for the minimum energy shot.)

Since sec2(θ) = 1 + tan2(θ), then

v20 =
1

2
g�2

[
1 + tan2(θ)

]
� tan(θ) − h

,

or

1

2
g�2 + 1

2
g�2 tan2(θ) = v20� tan(θ) − v20h,

or



C A L C U L U S , C E N T E R S TA G E 161

1

2
g�2 tan2(θ) − v20� tan(θ) + 1

2
g�2 + v20h = 0,

or, finally,

tan2(θ) − 2v20
g�

tan(θ) + 1 + 2v20h

g�2
= 0,

a quadratic in tan(θ). So, using the quadratic formula to solve for
tan(θ), we have a result so important I’ll put it in a box:

tan(θ) = v20

g�
± 1

2

√
4v40
g2�2

− 4 − 8v20h

g�2
.

For this to make physical sense we demand that tan(θ) be real, i.e.,
that the square root be of a nonnegative quantity. So,

4v40
g2�2

− 4 − 8v20h

g�2
≥ 0,

which is easily manipulated into

v40 − 2ghv20 − g2�2 ≥ 0.

The left-hand side of this inequality is a quadratic in v20 , to which
we can again apply the quadratic formula to conclude that

v20 ≥ gh ± g
√
h2 + �2.

But we can immediately reject the negative root because v20 must, of
course, be positive. Thus, we write

v20 ≥ g
(
h +

√
h2 + �2

)
.

From our earlier numerical example of � = 25 feet and the hoop 10
feet above the court, then h = 4 feet for a player who releases the
ball at a height 6 feet above the court, and we have
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v20 ≥ 32.2
(
4 + √

16 + 625
) ft2

sec2
= 944

ft2

sec2
.

For the ball to pass through the hoop at (25,4) we must have v0 ≥
30.7 feet/second, i.e., the minimum speed is v0 = 30.7 feet/second.
This result does not, however, completely define what the player
has to do to score with minimum expended energy; he must also
determine the launch angle.

To find the angle of the minimum energy shot, return to the
boxed tan(θ) expression and use the fact that at minimum launch
speed the quartic inequality for v0 becomes an equality (v40−2ghv20−
g2�2 = 0), and so

tan(θ) = v20

g�
,

or

θ = tan−1
(
v20

g�

)
= tan−1

[
944

(32.2)(25)

]
= 49.54°.

But we still are not quite done. We have, so far, not specifically
imposed the requirement that the ball drop through the hoop (the
other way for the ball to pass through the hoop is on the upward
portion of its trajectory, which is clearly not a legal basketball play!)
We need to explore this issue next.

The mathematical requirement we need, at time t = t0, is that

dy

dt

∣∣∣
t=t0

< 0,

which is simply the requirement that the ball’s vertical speed be
negative as the ball passes through the hoop, i.e., downward-directed
toward the ground. That insures that the ball is falling through the
hoop. Thus, as

dy

dt
= v0 sin(θ) − gt

in general, then at time t = t0, we can write

v0 sin(θ) − gt0 < 0.
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This says

v0 <
gt0

sin(θ)
=

g
�

v0 cos(θ)
sin(θ)

= g�

v0 sin(θ) cos(θ)
.

That is,

v20 <
g�

sin(θ) cos(θ)
.

Combining this with our previous result for v20 , we have

1

2
g�2 sec2(θ)

� tan(θ) − h
<

g�

sin(θ) cos(θ)
.

Dividing through by g� and then cross-multiplying, this becomes

1

2
� sin(θ) cos(θ) sec2(θ) < � tan(θ) − h,

or, since sin(θ) cos(θ) sec2(θ) = tan(θ), we have

1

2
� tan(θ) < � tan(θ) − h.

Thus,

h <
1

2
� tan(θ)

and so, for the ball to drop through the hoop, we have the following
inequality that must be satisfied by the launch angle:

θ > tan−1
(
2h

�

)
.

The question now is: what angle θ goes with the minimum ve-
locity, i.e., does the θ associated with the minimum energy shot
satisfy the above inequality? If it does, then the ball does indeed
drop through the hoop. Otherwise, the ball must rise through the
hoop and that would, in the context of our original problem, be
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an illegal shot. So, as I just did for the specific numerical example,
let’s return to the boxed tan(θ) equation but now insert the general
expression for the minimum v20 . As in the numerical example, the
square root in the boxed tan(θ) equation is zero and so the required
launch angle is

tan(θ) = v20

g�
= g

(
h + √

h2 + �2
)

g�
= h + √

h2 + �2

�

= h

�
+
√(

h

�

)2

+ 1 > 2

(
h

�

)
.

Thus, the answer to our question is yes, if the minimum launch
speed is used, then the condition on θ , for the ball to drop through
the hoop, is satisfied.

The minimum speed (minimum energy) launch angle has a very
interesting geometric interpretation. In figure 5.6, I have constructed
a right triangle with a base angle of θ , by giving it a base length of

player

hoop

√ h2 + l2

√h
2  + l2

tan−1(h/l)

l

h

α

β

θ

β

FIGURE 5.6. Geometry of the minimum energy launch angle.
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� and then two consecutive components to the vertical side; one of
length h and the other of length

√
h2 + �2. This right triangle has

then been divided into two other triangles, which I’ll call the up-
per and lower triangles. Since the hypotenuse of the lower triangle
(which is also a side of the upper triangle) has length

√
h2 + �2, then

the upper triangle is isosceles, which is why I have given the same
angle β to the two angles shown in figure 5.6. The last angle labeled
is α, the top angle of the lower triangle.

From elementary geometry we can now write the following se-
quence of statements:

(a) θ + β = 90°, or θ = 90° − β;
(b) α + tan−1(h/�) = 90°, or α = 90° − tan−1(h/�);
(c) 2β + (180° − α) = 180°, or β = 1

2 α = 45° − 1
2 tan−1(h/�).

Substituting the expression for β into the expression for θ in (a), we
have

θ = 90° −
[
45° − 1

2
tan−1

(
h

�

)]
= 45° + 1

2
tan−1

(
h

�

)

=
90° + tan−1

(
h

�

)
2

.

That is, the minimum-launch-energy shot has a launch angle given
by the average of the line-of-sight angle from the player to the hoop,
and the vertical. For example, returning to our numerical example
of � = 25 feet and h = 4 feet, the line-of-sight angle to the hoop
is tan−1(4/25) = 9.09°, and so the launch angle for the minimum
speed (minimum energy) shot is

θ = 90° + 9.09°
2

= 49.54°,

just as we calculated earlier in the numerical example.

5.6 Halley’s Gunnery Problem

The basketball problem was originally solved in 1686, and it ap-
peared in print in a paper published in 1688 by the Royal Society in
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� and then two consecutive components to the vertical side; one of
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√
h2 + �2. This right triangle has

then been divided into two other triangles, which I’ll call the up-
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√
h2 + �2, then
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2 α = 45° − 1
2 tan−1(h/�).
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�
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�
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5.6 Halley’s Gunnery Problem
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peared in print in a paper published in 1688 by the Royal Society in
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its Philosophical Transactions. The author (who as Editor was easily
able to arrange to have the publication back-dated to 1686), was
Edmond Halley (1656–1742), and he was obviously motivated by
something other than basketball, of course, as that activity didn’t
arrive on the scene until considerably later. Today we remember Hal-
ley mostly for two reasons; the comet named after him because he
was the first to recognize it as a periodically returning body traveling
on a greatly elongated elliptical orbit around the sun, and for being
the force (both spiritually and financially) behind getting Newton’s
masterpiece Principia Mathematica published in 1687. (Halley was
also the “infidel”—because he had convinced a mutual acquain-
tance that the Christian faith is a fairy tale—mentioned in the subti-
tle of Bishop Berkeley’s attack on the logic of calculus, The Analyst.)
But Halley was also an accomplished scientist and mathematician
in his own right, and his solution to the “basketball problem” shows
a first-class intellect at work.

The last phrase of the rather long title to Halley’s paper gives us
a clue to his motivation: “A discourse concerning gravity, and its
properties wherein the descent of heavy bodies, and the motion of
projectiles is briefly but fully handled: together with the solution of
a problem of great use in gunnery.” What Halley did in this paper
was to address the problemof determining the best way for a cannon
to lob a projectile onto a target located above the gun, e.g., onto
a town high up on a mountain side, with the gun located in the
plains far below. As Halley wrote, in a second paper published in
1695 (which contains a derivation of the minimum speed launch
angle as the average of the line of sight and the vertical angles),
it isn’t a good idea to simply blast away with all of the power the
gun could possibly provide. That’s because such energetic projectiles
arrive on target at such high speed that they “bury themselves too
deep in the ground, to do all the damage that they might . . . which
is a thing acknowledged by the besieged in all towns, who unpave
their streets, to let the bombs bury themselves and thereby stifle the
force of their splinters.”

Halley therefore reasoned that the proper way to launch a bomb
at the higher elevation target was to arrange for the bomb to drop
onto the target with minimum kinetic energy. Now, even though a
cannon-fired projectile is moving through the air at speeds much
faster than a shot, a discus, a basketball, or even a golf ball, Halley
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did as I have done in the basketball analysis, and ignored all air-drag
effects. That is, we will continue to assume energy is conserved, and
so the sum of the kinetic and potential energies of the projectile will,
at every instant of time, be a constant.

At launch, the projectile has only kinetic energy of motion, and
zero potential energy. At impact, it has the potential energy due to
the height of the target, plus the kinetic energy of its motion at
impact (which should be as small as possible). There is, of course,
nothing we can do about the potential energy at the target height,
and so to minimize the impact kinetic energy, one must minimize
the launch (kinetic) energy, i.e., minimize the launch speed. And so
Halley arrived at the basketball problem, long before the invention
of basketball. An immediate implication of this conclusion is that
the powder charge needed to send the projectile on its way is also
minimized. This was, no doubt, attractive to those responsible for
how the king’s coin was spent. The immediate question this raises, of
course, is just what is the powder charge required to deliver a projec-
tile, with minimum energy, to an elevated target? Halley answered
this question, too.

As derived in the golf ball example of section 5.4, a ball driven
off of its tee at an initial speed of v0, at an angle of 45°, achieves its
maximum horizontal range of v20/g over a horizontal surface. What
is true for the golf ball is true for the cannon projectile (ignoring air
drag), if the cannon is fired over a horizontal surface with its barrel
elevated to 45°. Since v20 = g(h+√

h2 + �2) for the minimum energy
shot, then the value of v20/g is h+√

h2 + �2, and this gives us Halley’s
so-called calibration rule: the powder charge required to deliver a
projectile onto a target at (�, h) with minimum kinetic energy is
the same charge required to shoot the same projectile out of the
cannon (with 45° of barrel elevation) to a distance of h + √

h2 + �2.
A series of test firings for any given cannon and projectile could give
a table of powder charge versus projectile range. It is clear, of course,
that it is possible to have two targets, with very different values of
� and h, requiring the same powder charge. For example, a target
at (2000, 1000) has the same required powder charge as a target at
(2690, 500). All that remained for the gunner to do, then, was to
use Halley’s angle rule to get the proper elevation of the cannon
barrel. For our two targets, for example, the elevation angles are,
respectively,
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90° + tan−1

(
1,000
2,000

)
2

= 58.3°

and

90° + tan−1

(
500

2,690

)
2

= 50.3°.

The proper barrel elevation angle has a special minimization
property that Halley also discovered, in response to a very practi-
cal concern. Suppose the gunner makes a slight error in setting the
elevation angle. How would that affect the accuracy of the bom-
bardment? That is, if he makes a slight change (error) of 
θ from
the correct θ , then how much of a change is made in the impact
point? Note carefully that we are making an error only in θ ; the
powder charge, and hence v0, is taken as correct.

We start by recalling a result from the previous section,

tan2(θ) − 2v20
g�

tan(θ) + 1 + 2v20h

g�2
= 0.

Remember what these symbols mean: h is the height of the target,
and thus is a constant, but � (the range of the projectile when it
is at height h) depends on θ . If � is the range to the target, then, by
definition, θ is set correctly because then the projectile and target co-
incide! To simplify the algebra, let’s make the following definitions:

u = tan(θ), a variable;

a = h

�
, a variable;

p = 2v20
g

, a constant.

Then,

u2 − p

�
u + 1 + p

a

�
= 0,

which is easily solved for �:
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� = p(u − a)

u2 + 1
.

To find how � varies with small changes in θ , we can use the chain
rule. From the very definition of the derivative, if 
θ is a “small”
change in θ , then the change in � is 
�, where


� ≈ 
θ
d�

dθ
.

By the chain rule,

d�

dθ
= d�

du
· du
dθ

= d�

du
· d

dθ
[tan(θ)] = 1

cos2(θ)
· d�
du

.

Now,

d�

du
= d

du

[
p(u − a)

u2 + 1

]
= p

d

du

[
u − a

u2 + 1

]

= p

(u2 + 1)

(
1 − da

du

)
− (u − a)2u

(u2 + 1)2

= p

u2 + 1 − 2u2 + 2au − (u2 + 1)
da

du

(u2 + 1)2

= p

1 + 2au − u2 − (u2 + 1)
da

du

(u2 + 1)2
.

Remembering that h is a constant, we have

da

du
= d

du

(
h

�

)
=

�
dh

du
− h

d�

du

�2
= − h

�2
· d�
du

= −a

�
· d�
du

,

and so

d�

du
= p

1 + 2au − u2 + (u2 + 1)
a

�
· d�
du

(u2 + 1)2
.
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This can be solved for d�/du to give

d�

du
=
{

p�[
�(u2 + 1) − ap

]
(u2 + 1)

}{(
1 + 2au − u2

)}
.

The two factors on the right-hand side are such that the second one
is zero and the first one is finite. To see this, consider the following.

When the gunner’s aim is perfect, i.e., when he has set the angle
θ so that

tan(θ) = u = h

�
+
√(

h

�

)2

+ 1 = a +
√
a2 + 1,

(as shown in the previous section), then we have

1 + 2au − u2 = 1 + 2a
[
a +

√
a2 + 1

] − [
a +

√
a2 + 1

]2
= 1 + 2a2 + 2a

√
a2 + 1 − [

a2 + 2a
√
a2 + 1 + a2 + 1

]
= 0.

Thus, the second factor of d�/du vanishes.
For the first factor of d�/du, notice that since u2 − (pu/�) + 1 +

p(a/�) = 0, then �u2 + � = pu − ap. Thus,

1 + �(u2 + 1) − ap = �u2 + � − ap = pu − ap − ap = pu − 2ap,

and so the first factor of d�/du is proportional to

p�

pu − 2ap
= �

u − 2a
= �

a + √
a2 + 1 − 2a

= �√
a2 + 1 − a

> 0,

i.e., the first factor is positive and, more importantly, finite. Thus,
when the gunner’s aim is perfect we see that

d�

du
= 0,

which says

d�

dθ
= 1

cos2(θ)
· d�
du

= 0.



C A L C U L U S , C E N T E R S TA G E 171

Thus, when the angle is set correctly, we have d�/dθ = 0 and this
says that, even when the aim is set not so perfect but is still “in the
neighborhood” around perfect aim, we have


� ≈ 
θ
d�

dθ
≈ 0.

Halley summarized his minimum results, including this last one, as
follows: “This Rule may be of good use to all Bombardiers and Gun-
ners, not only that they may use no more Powder than is necessary,
to cast their Bombs into the place assigned, but that they may shoot
with much more certainty, for that a small Error committed in the
Elevation of the Piece, will produce no sensible difference in the fall
of the Shot.” Thus wrote Edmond Halley over three centuries ago,
one of the world’s first modern theoreticians in the arcane art of
military weapons analysis.

5.7 De L’Hospital and His Pulley Problem, and a New
Minimum Principle

It is a curious fact that while Newton’s Principia is the origin of
modern physics, a subject universally presented to modern students
using Newton’s co-invention of the calculus, Principia itself does not
use calculus. Rather, Newton presented the new physics with the
mathematical aid of the “old math,” Euclidean geometry, which
makes for a presentation vastly more difficult than does the modern
approach. Why did Newton do that, even though he obviously
possessed the math we use today (he invented it!)? Almost surely
the answer is that Newton wanted to avoid distracting his readers
from the physics, which the then still mysterious calculus would
have done. In Principia, Newton’s goal was to champion his physics,
not his math.

The recognition for publishing the world’s first calculus book,
then, goes not to Newton but to another. The Frenchmathematician
Guillaume-Francois-Antoinė de L’Hospital (1661–1704), whowas an
army cavalry officer until bad eyesight caused him to resign, has
that honor. He was a quick study who could readily absorb the
discoveries of others and then present them in a coherent manner
for a wide audience. The contemplation of mathematics, then, was
the perfect activity for a bright but nearsighted gentleman.
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In de L’Hospital’s time, when elementary calculus techniques
were first being discovered, there weren’t a lot of pedagogical re-
sources around. So, what he did was hire the brightest of Leibniz’s
own students, Johann Bernoulli (1667–1748), then still a young
man, to teach him the new math. (We’ll hear again from Bernoulli,
in the next chapter, in connectionwith one of themost famousmin-
imization problems in mathematics.) De L’Hospital paid Bernoulli
well and came to believe that, since he had paid for the new results,
then those accomplishments were his. Such a “purchase” of intel-
lectual property rights would, today, be considered acceptable only
in matters like a celebrity hiring a ghostwriter to pen a so-called
autobiography, an activity that is itself on the borderline of dubious
authorship.

By 1696, de L’Hospital felt he had sufficient material on hand
from Bernoulli to publish a book, Analyse des Infiniment Petits (anal-
ysis of the infinitely small). While containing nothing of his own
discoveries, the book was well written and quickly became famous.
It did contain, however, many of Bernoulli’s discoveries, as well as
those of Newton, Leibniz, and Bernoulli’s older brother Jacob. Some
writers have commented that de L’Hospital gave no mention at
all to the Bernoulli brothers, and others have said that he did. In
fact, he did—but not very much! Two brief sentences appear in the
preface—“I am obliged to the gentlemen Bernoulli for their many
bright ideas; particularly to the younger Mr. Bernoulli who is now a
professor. I have made free use of their discoveries. . . .” In fact, de
L’Hospital’s words are a vast understatement. After de L’Hospital’s
death, Bernoulli began to claim credit for nearly all of the book,
a claim initially rejected by mathematicians and historians alike.
However, in 1922, a copy of a set of notes taken during a series
of lectures Bernoulli gave on the differential calculus in Geneva, in
1691, was discovered. The organization and content of those notes,
written five years before de L’Hospital’s book, are virtually identical
with the book.

The classic example of de L’Hospital’s appropriation of Ber-
noulli’s work is the famous rule for calculating indeterminate
limits. It is often the case that an analyst needs to compute
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the value of a ratio of two functions of the same independent
variable (call it x) as x approaches zero. That is, she needs to
compute the limit

R = lim
x→0

R(x) = lim
x→0

g(x)

h(x)
.

Often, this is an easy calculation. For example, it is clear that

R = lim
x→0

R(x) = lim
x→0

3x + 8

2x + 4
= 8

4
= 2.

But what do we do with something like

R = lim
x→0

R(x) = lim
x→0

sin(x)

x
,

which reduces to the indeterminate 0/0 if we simply stick x = 0
into the numerator and the denominator of the ratio? While
it was Bernoulli who showed

R = lim
x→0

R(x) = lim
x→0

g′(x)
h′(x)

,

and so

R = lim
x→0

R(x) = lim
x→0

sin(x)

x
= lim

x→0

cos(x)

1
= lim

x→0
cos(x) = 1,

this formula is instead known today as L’Hospital’s rule, not as
Bernoulli’s rule. It is easy to derive.

Since g(x) = R(x)h(x), then differentiation of both sides
gives

g′(x) = R(x)h′(x) + R′(x)h(x).

Since limx→0 h(x) = 0, and if we assume R(x) really does have
a limit as x → 0, i.e., limx→0 R(x) = R, then

lim
x→0

g′(x) = lim
x→0

R(x) h′(x) + lim
x→0

R′(x) h(x)

= R lim
x→0

h′(x) + lim
x→0

R′(x) lim
x→0

h(x).
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The last term is zero because limx→0 h(x) = 0 and because the
very fact that limx→0 R(x) = R implies that limx→0 R

′(x) = 0,
too (i.e., the y = R(x) curvemust approach the horizontal, zero-
slope line y = R as x → 0). So,

lim
x→0

g′(x) = R lim
x→0

h′(x),

and we have L’Hospital’s rule.

Oddly enough, de L’Hospital was actually quite a good mathe-
matician in his own right, and so why he did what he did remains,
I think, a bit of a puzzle. Bernoulli, for his part, had remained silent
until 1704 because his agreement with de L’Hospital had been that,
in exchange for the rather large payments made for giving his math
lessons, Bernoulli would remain quiet. Bernoulli’s own complicity in
this peculiar “contract” is also perplexing. Well, no matter the con-
flicted ethical issues involved with de L’Hospital’s book, it does con-
tain a number of interesting mathematical problems. One of them,
in particular, demonstrates not only the differential calculus, but
also the power of a new minimum principle similar in spirit to Fer-
mat’s least-time principle (see Alexander J. Hahn, “Two Historical
Applications of Calculus,” The College Mathematics Journal, March
1998, pp. 93–103).

The problem, easy to visualize, is illustrated in figure 5.7. At point
A on a ceiling we attach one end of an idealized, weightless cable of
length r. The other end of this completely flexible cable is attached
to the center axle of a weightless pulley. At point B on the ceiling,
distance d from A, we attach one end of another idealized cable of
length �, and pass it over the pulley. The other end of this second
cable is attached to a block of material with weight W . We then let
this system of cables, pulley, and weight freely adjust itself to its
final, stationary (unmoving) configuration under the influence of
gravity, with the pulley’s ultimate location labeled as point C.

If r < d, then it is physically clear that the final equilibrium
position of the system will be as shown in the illustration, with C

below and between A and B, and with the weight directly below
C, at point D. This is the case of mathematical interest, as well,
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(d − x)2 + r2 − x2l − 

FIGURE 5.7. Geometry of L’Hospital’s pulley problem.

because if r > d, it is equally obvious that then the weight would
simply hang straight below B. That is, the weightless pulley would
slide along the cable attached to the weight until the weightless
pulley cable is pulled straight (or, if r >

√
�2 + d2, until the pulley

rests on top of the weight). Therefore, if r > d, the weight hangs
directly beneathB, distance � below the ceiling, and that completely
describes the equilibrium configuration of the system.

Far more interesting, physically and mathematically, is the case
r < d. What, then, is the equilibrium configuration of the system?
That is, where does the pulley end up? To start the analysis of this
question, let point C be distance x to the left of A (and so distance
d−x to the right of B). Obviously, 0 ≤ x ≤ r. Using the Pythagorean
theorem twice, it is easy to see, as illustrated in figure 5.7, that the
distance the weight hangs below the ceiling is the function x (let’s
call it f (x)) given by

f (x) =
√
r2 − x2 + � −

√
(d − x)2 + r2 − x2.
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It may not be obvious, however, just what we should do with f (x)

to help us find where C is. In fact, to continue with the calculus so-
lution I now need to introduce that new minimum principle I men-
tioned earlier. Before I do that, however, let me solve the problem
in an entirely different way, not using calculus, and then when we
return to f (x) and apply calculus to it, we will be able to check the
answer (be assured, the answers will agree!) The calculus approach
will prove to be the easier to perform.

De L’Hospital’s pulley problem is actually a type of problem com-
monly encountered by students in a first-year course in physics and
engineering, when studying statics (the physics of unmoving sys-
tems). The key physical observation is that the cables, pulley, and
weight are not moving in their final, stable configuration. In partic-
ular, the pulley is not moving. Newton’s physics then tells us that
this means there is no net force acting on the pulley; otherwise the
pulley would be accelerated, i.e., it would move. So, the stable, or
equilibrium, configuration can be found by setting the sum of all
of the individual horizontal forces acting on the pulley to zero, and
similarly for the sum of all the individual vertical forces acting on
the pulley. Those forces come from the tensions in the two cables.
The cable attached to the weight has tension W . This is clearly so
for the vertical portion of that cable and, since the tension must be
the same all along the cable (if not, there would be some place on
the cable with a nonzero net force there and that part of the cable
would move, contrary to the reality that the cable is not moving)
the tension is everywhereW , even in the nonvertical portion of the
cable. The horizontal component of this tension is directed to the
left, with value W cos(β). If we call the tension in the other cable
(the one attached to the pulley) T , then that tension has horizontal
component T cos(α) directed to the right. Thus,

W cos(β) − T cos(α) = 0,

or

T = W
cos(β)

cos(α)
.

Now, the vertical sum of forces on the pulley is given by

W sin(β) + T sin(α) − W = 0.
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Substituting in for T ,

W sin(β) + W
cos(β) sin(α)

cos(α)
− W = 0,

or

sin(β) + cos(β) tan(α) − 1 = 0.

From the geometry of figure 5.7, we can write

sin(β) =
√
r2 − x2√

(d − x)2 + r2 − x2
,

cos(β) = d − x√
(d − x)2 + r2 − x2

,

tan(α) =
√
r2 − x2

x
.

Thus,

√
r2 − x2√

(d − x)2 + r2 − x2
+ d − x√

(d − x)2 + r2 − x2
·
√
r2 − x2

x
− 1 = 0,

which can be algebraically manipulated into

2x2d − r2x − r2d = 0.

This quadratic in x is now easy to solve (and I’ll do that in just a bit),
and our question (where is point C, the location of the pulley?) is
answered.

Now, let’s return to that f (x) function derived earlier (which tells
us how far below the ceiling the weight hangs). The new minimum
principle I mentioned before is now applied—the system is in stable
equilibrium when its potential energy is minimum. (We’ll use this
same argument again, in the next chapter, to solve a much more
famous problem than this one.) That is, stable equilibrium occurs
when the weight hangs as far below the ceiling as possible, which
occurs when f (x) is maximum. So, all we need to do is set the
derivative of f (x) equal to zero and solve for x, i.e.,
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df

dx
= −2x

2
√
r2 − x2

− −2(d − x) − 2x

2
√
(d − x)2 + r2 − x2

= 0.

Once again, this expression is easy to algebraically manipulate to
give

2x2d − r2x − r2d = 0,

precisely the quadratic result we got from the statics analysis.
To finish the problem, all we need do now is to actually solve the

quadratic. We, of course, formally get two answers:

x = r2 ± √
r4 + 8d2r2

4d
= r

4d

[
r ±

√
r2 + 8d2

]
.

It is physically obvious that x is not negative, and so we reject the
negative root. So, the location of the pulley is given by

x = r

4d

[
r +

√
r2 + 8d2

]
.

Notice, too, that the constraint x < r is also satisfied, because we
can write x as

x = 1

4
r

[
r

d
+
√( r

d

)2 + 8

]

and, since r/d < 1, it follows that

x <
1

4
r
[
1 + √

1 + 8
] = r.

As a final comment on de L’Hospital’s pulley problem, notice that
the solution value of x has no dependence on either the weight W ,
or on the length � of cable attached to the weight. (For many people,
including me, this is not intuitively obvious!) Only the length of the
cable connected to the pulley (r), and distance between the ceiling
connections (d), determine the location of the pulley. Of course,
the actual value of f (x), the distance the weight hangs below the
ceiling, does depend on �.
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5.8 Derivatives and the Rainbow

For the final section of this chapter, giving yet another illustration
of applying calculus to understand a physical problem, we return
to Snell’s law. Imagine you are standing on a wide, level plain,
with the sun at your back, as shown in figure 5.8. The sun is angle
ϕ above the horizon. In front of you the sky is full of raindrops,
either because of a storm or, perhaps, because you are watering the
lawn with the garden hose set on spray. Some of the sun’s light
rays will be scattered by the drops, i.e., through a combination of
internal reflections and refractions by the drops, light rays will be
bent backward and downward, into your eyes. This is the light you
see as the rainbow (more, later, on the colors), one of the most
beautiful of naturally occurring phenomena. As shown in figure 5.8,
if we extend the line from the sun to the observer (this is called the
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anti-solar line) into the ground, then the primary rainbow appears
at an angle α of about 42° up from the anti-solar line. (You’ll soon
see why that is so!) An immediate consequence of this, of course,
is that there is a primary rainbow “there to see” only if the sun
is sufficiently low in the sky so that the 42° “up angle” places the
rainbow in the sky at all; this is clearly not the case if the sun is
higher than 42° above the horizon. So, from the ground you can see
rainbows in the morning, and in the afternoon, but never when the
sun is directly overhead.

The search for understanding the origin of the rainbowwas a long
one, with speculations about it appearing in the writings of Aristotle
(he incorrectly thought reflections off of entire clouds, rather than
individual raindrops, was the mechanism involved). Indeed, when
the first human eyes looked up into a passing rain shower, thou-
sands of years ago, and saw the rainbow, who can doubt that awe
wasn’t inspired as much in primitive humans then as with Aristo-
tle and us today? There often is also a secondary, much less bright
rainbow (with the colors in reverse order) visible as well, at an angle
of about 52° up from the anti-solar line. Why is that, and are there
even more rainbows in the sky? People have wondered about such
questions for centuries. The definitive history of the search for the
answers is given in the book by the mathematician Carl Boyer, The
Rainbow: FromMyth toMathematics (PrincetonUniversity Press 1987;
first published in 1959). Two beautiful, nonmathematical books on
the rainbow, each with many spectacular color images, are Robert
Greenlear’s Rainbows, Halos, and Glories (Cambridge University Press
1980; Professor Greenlear wrote the new introductory essay to the
Princeton reprint of Boyer’s book), and Color and Light in Nature (sec-
ond edition) by David K. Lynch andWilliam Livingston (Cambridge
University Press 2001).

To start our analysis, we need to model in detail what happens to
light rays arriving at a typical raindrop (assumed to be a sphere) in
the sky. Figure 5.8 is pretty thin on detail! Figure 5.9 shows one such
incident ray, and what happens to it.

1. As the ray arrives at point A on the drop’s surface, a fraction
of it is reflected off of the surface and the rest is refracted into
the drop. The angles of incidence and refraction are, as in
chapter 4, θi and θr , respectively.
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2. The portion refracted into the drop travels onward until,
upon arriving at point B on the back surface, a portion is
refracted back out into space and the rest is internally reflected
back into the drop. Since the sides OA and OB are equal in
length (both are radii of the spherical drop), the triangle OAB
is isosceles and the internal reflection angle is θr .

3. The internally reflected portion continues to “bounce
around” inside the drop as it experiences a reflection/
refraction with each additional interaction with the drop/air
interface. Figure 5.9 shows only the refracted portion of the
light ray that emerges from the drop at point C after the
single reflection at point B. We’ll come back later to the
portions that go on to further adventures inside the drop,
which will explain the secondary rainbow.

α 2θr − θi

θi

θr

θr

θr

θr
θi − θr

θi
θi

180˚ − θr

2θr − θi

incident ray

emergent ray
normal to drop surface

normal to drop surface reflected ray

A

C

O
B

D

I

FIGURE 5.9. Detailed geometrical origin of the primary rainbow.
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How much light is reflected and how much is refracted, at
each interaction between the light ray and the water drop’s
air/water interface, is a complicated business. The answer de-
pends on such details as the actual angle of incidence and the
polarization of the light (which describes the electromagnetic
details of the light). Fortunately, we don’t have to go into the
physics of light that far; all we care about here is that some
light does emerge at the proper angle to arrive at our eyes. Light
that goes elsewhere is light we don’t see, in any case. For those
who are interested in understanding how such intensity calcu-
lations are done, there is no better place to start than with the
beautiful paper by Jearl D. Walker, “Multiple Rainbows from
Single Drops of Water and Other Liquids” (American Journal of
Physics, May 1976, pp. 421–33).

Concentrating for now on the ray emerging at pointC, after just a
single internal reflection (and two refractions), we extend (as shown
in figure 5.9) the lines of the incident and the emergent rays until
they intersect at point I . This defines the angleD, which is the total
angular deviation suffered by the light ray from when it entered the
drop until it left the drop. As shown by the geometry of figures 5.8
and 5.9, the angle (what we might call the deflection angle) between
the incident and emerging rays is

α = 2(2θr − θi) ,

and so

D = 180° − α = 180° + 2θi − 4θr .

Now, from Snell’s law we have, with n1 and n2, the indices of
refraction of air and water, respectively:

sin(θi)

sin(θr)
= n2

n1
= n,

or
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θr = sin−1
{
1

n
sin(θi)

}

and

D = 180° + 2θi − 4 sin−1
{
1

n
sin(θi)

}
.

In particular, if the incident ray passes through the center of the
drop (through point O), then θi = 0° and thus the deflection angle
is α = 0°, and the deviation angle isD = 180°, i.e., the ray is reflected
back out of the drop along the same path as it entered. The center-
passing ray serves as an obvious reference axis.

Of course, the entire surface of the drop facing the sun receives
rays, which we can assume are parallel rays because the sun is so very
far away. There will be rays incident on the drop above the reference
ray, and rays incident on the drop below the reference ray. From
figure 5.9, which shows an incident ray above the center-passing
reference ray, it is evident that such rays will emerge from below the
reference ray. By symmetry, then, incident rays below the reference
ray will emerge above the reference ray. An observer on the ground
will therefore see rays of light emerging from the bottom portion of a
drop due to incident rays illuminating the upper portion of the drop.

The observed rays come out of the dropwith various values for the
angle α, but not all values are equally likely. This is easy to see if we
simply plot α as a function of where the incident ray strikes the drop.
The geometry of this is illustrated in figure 5.10, which shows the
center-passing ray as the horizontal (for ease in drawing) reference
axis, and a typical ray incident on the drop above the reference ray.
We can calculate the angle of incidence, θi , as

sin(θi) = y

R
, 0 ≤ y ≤ R,

where R is the radius of the spherical drop and y is the vertical
displacement of the incident ray from the reference ray. The reason
for formulating the mathematics this way is because, for a drop in
uniform sunlight, there are no preferred values for y. That is, in loose
probabilistic jargon, of all the rays striking the drop, a randomly
selected ray is as likely to have one value of y as any other (this is
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R
y

θi

θi

FIGURE 5.10. Illuminating a raindrop.

not true for θi ; θi is not uniformly distributed from 0° to 90° for a
spherical drop in uniform sunlight).

From Snell’s law, we have

θr = sin−1
{
1

n
sin(θi)

}
= sin−1

{
1

n
· y

R

}
,

and so

α = 4θr − 2θi = 4 sin−1
(

y

nR

)
− 2 sin−1

(
y

R

)
, θ ≤ y ≤ R.

Figure 5.11 shows a plot of the angle α as y/R varies from 0 to 1 (the
actual value ofR is, then, for our simple analysis here, unimportant),
using the value of n = 4/3 for a water drop in air, and it is obvious
that α has a maximum at about 42°. (Aha!—the rainbow angle I
mentioned at the start of this section. You are almost at the point
of understanding the physical significance of this angle.) This is
interesting, yes, but what makes it really interesting is that it is
a broad maximum, i.e., there is a concentration of rays with α-
angles at and around 42°. For example, 20% of the emergent light
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FIGURE 5.11. The primary rainbow.

(0.75 ≤ y/R ≤ 0.95) has an α-angle in the narrow interval from
40° to 42°. The other 80% of the emergent light is (more or less)
uniformly distributed over the much larger α-angle interval of 0°
to 40°.

We can calculate the precise value of the maximum α directly,
using calculus. Since α = 2(2θr − θi) = 4θr − 2θi , then

dα

dθi
= 4

dθr

dθi
− 2

and, setting the derivative equal to zero at the maximum of α gives

dθr

dθi
= 1

2
.

Then, differentiating Snell’s law (using the chain rule) with respect
to θi , i.e., differentiating sin(θi) = n sin(θr), we get
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cos(θi) = n cos(θr)
dθr

dθi
= 1

2
n cos(θr).

Thus,

cos2(θi) = 1

4
n2 cos2(θr),

and since cos2(θr) = 1 − sin2(θr), then

cos2(θi) = 1

4
n2

[
1 − sin2(θr)

] = 1

4
n2

[
1 − 1

n2
sin2(θi)

]
,

or

4 cos2(θi) = n2 − sin2(θi).

Since sin2(θi) = 1 − cos2(θi), this becomes

4 cos2(θi) = n2 − 1 + cos2(θi),

or, when α is maximum, θi is given by

θi = cos−1

{√
n2 − 1

3

}
.

Now, as before,

α = 4θr − 2θi = 4 sin−1
[
1

n
sin(θi)

]
− 2θi,

and so, finally,

αmax = 4 sin−1

[
1

n
sin

{
cos−1

(√
n2 − 1

3

)}]
− 2 cos−1

{√
n2 − 1

3

}
.

For n = 4/3, this reduces to

αmax = 4 sin−1

[
3

4
sin

[
cos−1

(
1

3

√
7

3

)}]
− 2 cos−1

{
1

3

√
7

3

}

= 42.03°,
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just as shown in figure 5.11, and as had been known by direct
observation of rainbows for centuries before Descartes.

The crucial observation, of a broad maximum for α, is due to
Descartes, who discovered the concentration of emergent rays at α =
42° by a laborious tracing of many incident rays (using Snell’s law)
through a single gigantic, artificial drop (a glass spherical globe). As
he wrote in Les Météores (“Meteorology”), another appendix to his
1637 Discours de la Méthode:

I took my pen and calculated in detail all the rays which fall on
the various points of a drop of water, in order to see under what
angles they could come toward our eyes after two refractions and
one or two reflections. I found that after one reflection and two
refractions, very many more of them can be seen under the angle
of 41° to 42° than under any lesser one; and that none of them
can be seen under a larger angle. [This gives the primary rainbow.]
Then I also found that after two reflections and two refractions,
very many more of them come toward the eye under a 51° to 52°
angle, than under any larger one; and no such rays come under
a lesser [angle]. [This gives the secondary rainbow, as you’ll see
soon.]

The concentration of light rays around the extrema of α is, of
course, in the very nature of an extrema; i.e., rays with α-angles on
either side of αmax have nearly equal α-angles. We can now under-
stand the first central question about rainbows—why do they appear
as circular arcs in the sky? Geometry, alone, answers that. Figure 5.8
shows just a single raindrop scattering a ray of light into the eyes of
an observer on the ground. That drop, the observer, and the parallel
rays of light incident on the drop, are all shown in the same plane
(the plane defined by the page the figure is printed on). In the ac-
tual world, however, there are infinitely many planes that contain
the observer, raindrops, and parallel light rays incident on those
raindrops. Those drops also reflect light rays into the eyes of the
observer because, as a little mental imagery should convince you,
all of the geometry of figures 5.8 and 5.9 are preserved if we rotate
those figures around the anti-solar line. That is, all of the raindrops
scattering light back into the observer’s eyes lie on the surface of a
cone with a central angle of about 84° (angular radius of 42°) and
the anti-solar line as its axis; the light entering the observer’s eyes
appears to come from a circular arc.
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But notice, too, that the distance of any particular drop from the
observer’s eyes is not important; all of the drops on the cone’s sur-
face scatter light rays back down to the observer’s eyes, and so the
rainbow is not in any particular place in the sky. The drops can be
mere inches away, as well as many miles distant. And notice, too,
that “the” cone is different for different observers. That means each
observer receives scattered light from different sets of raindrops and
so, while different observers see a rainbow, it is not the same rain-
bow. Indeed, each eye of a lone observer “sees” a different rainbow.
The rainbow, then, as befits its ethereal beauty, is literally nowhere
in particular and everywhere in general; if it is anywhere, it is in
“the eye of the beholder”!

The second central question—why is the rainbow multicolored?
—requires more than geometry, which is why the answer escaped
Descartes and all those before him. The explanation comes from
the fact that n is not a constant; the value n = 4/3 (= 1.333) I used
to compute αmax is simply a typical value of the refractive index of
water in the visible portion of the spectrum. As mentioned at the
end of the previous chapter, n depends on the frequency (color)
of the light rays, with n = 1.344 for violet and n = 1.331 for
red (the extreme ends of the visible spectrum). There will therefore
be a different value for αmax for each color, and the various colors
will appear as distinctly separate but adjacent rainbows. If you run
the red and violet values for n through the equation for αmax, the
numbers work out to be

αmax (for red) = 42.37°

αmax (for violet) = 40.5°.

Since αmax(red) > αmax(violet), the red rainbow appears higher in
the sky than does the violet rainbow, and so red and violet are
predicted to define the outer and inner edge colors of the rainbow,
respectively—just as is observed.

Now, what of those light rays inside the drop shown in figure 5.9
that do not exit the drop after just one internal reflection, but rather
after two such reflections, and then enter the eyes of an observer
on the ground? Such a light ray is shown in figure 5.12, which
illustrates the fact that, for the exiting ray to be directed downward
to earth, the incident ray must arrive at the bottom portion of
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FIGURE 5.12. Detailed geometrical origin of the secondary rainbow.

the drop and emerge from the upper portion. This is precisely the
opposite of what is depicted in figure 5.9, which gives rise to the
primary rainbow. The situation shown in figure 5.12 will give us,
instead, the secondary rainbow. Figure 5.12 again defines the angles α
andD as, respectively, the angle between the incident and emergent
rays, and the total angular deviation experienced by the light ray
from when it enters the drop until it leaves the drop. From figure
5.12 it is clear that now D = 180° + α, i.e.,

α = D − 180°,

whereas in figure 5.9 (for a single internal reflection) we had α =
180° − D.

To find α, which is the “up-angle” from the anti-solar line to the
(secondary) rainbow, I’ll first find D and then subtract 180°. From
the geometry of figure 5.12, we see that when the incident ray enters
the drop by refraction it suffers an initial deviation of θi − θr , and
then at each internal reflection it undergoes an additional deviation
of 180° − 2θr . Finally, at the second refraction that produces the
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emergent ray, there is a final deviation, again, of θi − θr . (Indeed,
a look back at figure 5.9 shows we could have calculated D for the
primary rainbow in this manner rather than the way actually used.)
Thus, with two internal reflections, we have

D = (θi − θr) + 2(180° − 2θr) + (θi − θr)

= 360° + 2θi − 6θr .

And so

α = D − 180° = 180° + 2θi − 6θr ,

or

α = 180° − 2(3θr − θi).

Now, just as we did before, let’s imagine a drop in uniform sun-
light and plot α as a function of y/R, where y is (again) the vertical
displacement of the incident ray from a horizontal center-passing
reference ray, and R is the radius of the drop. And, as before, from
Snell’s law we have

θr = sin−1
{
1

n
· y

R

}

θi = sin−1
(
y

R

)
,

and so

α = 180° − 2

[
3 sin−1

{
1

n
· y

R

}
− sin−1

{ y

R

}]
, 0 ≤ y

R
≤ 1.

Figure 5.13 shows the result for n = 4/3, with α now exhibiting a
minimum (rather than the maximum we got for the primary rain-
bow) at about 52°, just as reported by Descartes. Thus, we have the
secondary rainbow at about 10° higher in the sky than the primary
rainbow, which is just as observed when the secondary rainbow
can, in fact, be observed (it is, of course, much less bright than the
primary—only about 43% as bright—because of the additional loss
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FIGURE 5.13. The secondary rainbow.

of intensity from the further adventures the light rays experience
within the water drops). Again, if we examine α as a function of n
(color), we find that αmin is different for different colors, but now
there is (literally) a new twist—the color sequence in the secondary
rainbow is the reverse of the primary rainbow. That is, the red rain-
bow will appear lower in the sky than does the violet rainbow, and
so red is predicted to be the inner edge color (and violet the outer
edge color) of the secondary rainbow. And that is precisely what
is seen.

The secondary rainbow has occasionally appeared in fic-
tional literature. In her episodic novel Strange Attractors (Viking
1993), for example, Rebecca Goldstein ends her story with a
description of a group of mathematicians running outdoors to
observe a double rainbow. Her words are lovely to read, but
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flawed ever so slightly by positioning the secondary rainbow
in the wrong part of the sky:

And outside the mathematicians all stand gathered together on
the wet lawn, staring up into the western sky, where there’s a
rare double rainbow stretching itself: The colors of the primary
arc are intense and beneath [my emphasis] is the secondary
rainbow, with its paler inversion of the spectrum. And all of
the mathematicians are standing together in silence; on every
face the same look of transfixed bliss.

As was Descartes’ practice, he failed (for whatever reason) to ac-
knowledge the prior work of others into the nature of the rainbow.
In fact, the 42° angle of the primary rainbow can be found in the
Opus Majus (1267) of the English philosopher and Franciscan friar
Roger Bacon. And it was only a few decades later, in 1304, that
the German monk Dietrich von Freiberg (1250–1310) advanced the
correct explanation for the rainbow as the scattering of light by in-
dividual raindrops. It is in his writing, too, that we find the conclu-
sion that each observer sees a personal rainbow from different sets
of drops. And not only that, it was Theodoric of Freiberg (as he is
generally called in the English literature) who was the first to exper-
iment with water-filled transparent containers, as artificial drops, to
trace the paths of light rays. And not only that, it was Theodoric
of Freiberg, not Descartes, who was the first to associate the pri-
mary rainbow with two refractions and one internal reflection, and
the secondary rainbow with two internal refractions and two reflec-
tions. His small book De iride et radialibus impressionibus (“On the
Rainbow and ‘Radiant Impressions’ ”) put forth all of these funda-
mental ideas, but not a word about any of it appears in Les Météores.
To give Descartes his due, however (which ismore than he did for his
predecessors), discovery of the concentration of rays at the observed
rainbow angle is Descartes’ alone.

The primary (secondary) rainbow is the result of two refractions
and one (two) internal reflection(s). Wouldn’t three internal reflec-
tions therefore produce yet another rainbow (the so-called tertiary
rainbow)? And why stop there—what of the possibility of rain-
bows produced after N internal reflections, where N is any positive
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integer? Such high-order rainbows would, of course, be expected to
be even dimmer, but perhaps sufficiently sensitive eyes could see
them—if they exist. The question of higher-order rainbows, partic-
ularly the tertiary, intrigued many people over the centuries, and
they searched the sky for them. The logical place to look would seem
to be in the sky above the secondary, which itself is 10° above the
primary. Despite occasional claims to have seen the third-order rain-
bow, however, nobody ever has seen it, and nobody ever will—even
though it surely does exist! Calculus explains this apparent para-
dox, with a calculation first done by Newton, probably some time
around 1670.

An easy extension of the analysis just done for D, the angle of
total deviation experienced by a light ray from when it first arrives
on the surface of a drop until it exits the drop, leads to the result

D = (θi − θr) + N(180° − 2θr) + (θi − θr)

= 2(θi − θr) + N(180° − 2θr)

if there are N internal reflections (for the particular case of the
secondary rainbow, we used N = 2). Notice that for N = 1, the
case of the primary rainbow, this expression reduces to D = 180° +
2θi − 4θr , which is, indeed, the result arrived at in the discussion at
the start of this section. As was the case for the first two rainbows,
all rainbows occur at the extrema of the angle D. So, differentiation
of D with respect to θi gives

dD

dθi
= 2 − 2

dθr

dθi
− 2N

dθr

dθi
,

which, when set equal to zero, says

dθr

dθi
= 1

1 + N

when D (for the Nth order rainbow) is at its extrema (which is
what gives rise to the concentration of observed light rays, i.e., the
rainbow).

Remembering the result we calculated earlier from a differentia-
tion of Snell’s law,
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cos(θi) = n cos(θr)
dθr

dθi
,

we therefore have

dθr

dθi
= 1

n
· cos(θi)
cos(θr)

= 1

1 + N
.

Cross-multiplication and squaring gives

(N + 1)2 cos2(θi) = n2 cos2(θr).

From trigonometry and Snell’s law, we have

cos2(θr) = 1 − sin2(θr) = 1 − 1

n2
sin2(θi),

and so

(N + 1)2 cos2(θi) = n2 − sin2(θi) = n2 − [
1 − cos2(θi)

]
,

or

(N + 1)2 cos2(θi) = n2 − 1 + cos2(θi).

This is easily solved for cos(θi) to give Newton’s equation for the
condition that must be satisfied for the Nth order rainbow:

cos(θi) =
√

n2 − 1

N(N + 2)
.

As a check, notice that for the case of N = 1 (the primary rainbow)
this does reduce correctly to the result calculated earlier: cos(θi) =√
(n2 − 1)/3.
So, where is the tertiary rainbow? Inserting N = 3 (and using

n = 4/3), we have

cos(θi) =

√√√√√
(
4

3

)2

− 1

(3)(5)
= 1

3

√
7

15
,
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or θi = 76.84°. And so, from Snell’s law,

sin(θr) = 1

n
sin(θi) = 3

4
sin(76.84°),

or

θr = sin−1
{
3

4
sin(76.84°)

}
= 46.91°.

Thus,

D = 2(76.84° − 46.91°) + 3[180° − 2(46.91°)]

= 318.4°.

To understand what this value means, take a look at figure 5.14,
which shows the case of N = 3 internal reflections. It is clear from
the geometry there that the ray enters through the bottom portion

D

α

FIGURE 5.14. Detailed geometrical origin of the tertiary rainbow.
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of the drop, bounces once nearly all around the inside of the drop,
exits the bottom portion of the drop, and so is scattered downward
and forward out of the drop. That is, for an observer on the ground
to see the scattered ray, she must turn around and look behind her!
The tertiary rainbow is indeed “there” (if there are raindrops in the
skies between the sun and the observer), and it is indeed higher
in the sky than is the secondary. It is actually higher than straight
up. Until Newton’s calculation, people had been looking forward
with the sun behind them, just above the secondary rainbow, and
that’s simply the wrong place to look. But even if somebody had
turned around, they still wouldn’t have seen the tertiary rainbow
because, in addition to its inherent dimness (the tertiary is only
about 24% as bright as the primary), it is completely overwhelmed
by the nearby glare of the sun, as shown in the following box.
And that’s why nobody ever will see the natural tertiary rainbow.
Artificially produced rainbows, generated in the laboratory with a
laser playing the role of the sun, have let experimenters actually see
rainbows up to at leastN = 20. They are right where Newton’s boxed
equation for cos(θi) says they should be.

The tertiary rainbow has one last surprise for us—its shape.
Celebrity intellectual Marilyn vos Savant stumbled on this
point when replying to a reader’s question on where the third-
order rainbow is. In her Parade Magazine column “AskMarilyn”
(August 4, 2002), she wrote that the tertiary rainbow “arches
over [my emphasis] the second [i.e., secondary] one.” This is
not so, and here’s why.

Just as the primary and secondary rainbows are rotationally
symmetric around the anti-solar line (the observer is facing
away from the sun), the tertiary rainbow is rotationally sym-
metric around the solar line (the line from the sun to the ob-
server who is now facing the sun). As shown in figure 5.15,
the scattered ray from a typical raindrop that is between the
sun and the observer makes an angle of (about) 41.6° with
respect to the solar line. Because of the rotational symmetry,
then, scattered light rays reach the observer from raindrops on
the surface of a cone (with the solar line as the axis) with an
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direct ray from sun onto rain drop

rain drop

extension of direct ray

forward scattered ray from
raindrop into the eyes of the
observer who is facing the sun

observer on ground

surface
of Earth

solar line, parallel to direct
rays from the (distant) sun

41.6˚

41.6˚

318.4˚

FIGURE 5.15. Locating the tertiary rainbow in the sky.

angular radius of 41.6°. That is, the tertiary rainbow is a circular
halo around the sun!

The “discovery” of the tertiary’s place in the sky has an interest-
ing history. After Newton was appointed in late 1669, at age 26, to
the Lucasian Professorship of Mathematics at Cambridge (the chair
now held by the famous theoretical physicist Stephen Hawking), he
gave a series of inaugural lectures during the period 1670–72. Those
lectures were not published at the time (they are available to the
modern reader in The Optical Papers of Isaac Newton, edited by Alan
E. Shapiro, Cambridge University Press 1984), but they did serve as
the basis for his 1704 book Opticks. In his optical lectures, Newton
discussed the rainbow, including calculations concerning rainbows
beyond the secondary. It isn’t entirely clear if he used his general
results to actually calculate the specific angular position of the ter-
tiary rainbow (he certainly didn’t publish it), and inOpticks he wrote
only that “The light which passes through a drop of rain after two
refractions, and three or more reflections, is scarcely strong enough
to cause a sensible bow.” There is no mention of the glare of the
sun overwhelming the tertiary rainbow halo. Johann Bernoulli later
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reproduced Newton’s general approach, but he too failed to specif-
ically calculate the location of the tertiary. Like Newton, Bernoulli
made only a single suggestive comment, to the effect that while the
tertiary rainbowmight be visible to eagles or lynxes, it would not be
visible to human eyes. Where in the heavens is home to the tertiary
rainbow was finally specifically published in 1700, in the Philosoph-
ical Transactions of the Royal Society. The author was Edmond Halley,
Newton’s friend and the cannon-shooter extraordinaire from earlier
in this chapter.

And, finally, to end this chapter on a cosmological note, what will
rainbows look like in the very far future? This question is not quite as
odd as youmight think—when the sun is vastly older than it is now,
it will be much less hot, and its spectrum will be predominantly at
the longer (infrared) wavelengths. Will there still be a rainbow to
be “seen”? There will be, indeed, but only seen by (nonhuman?)
eyes that have adapted to the shifted spectrum. We know this is
so, because there is an infrared rainbow in the sky right now, and
it has been photographed. You can read how that was done in the
article by Robert Greenlear, “Infrared Rainbow” (Science, September
24, 1971, pp. 1231–32). Professor Greenlear ends on a poetic note,
writing of his “fascination in ‘seeing’ for the first time an infrared
rainbow which has hung in the sky undetected since before the
presence of man on this planet.” And he found it right where all
the math theory of this chapter says it should be.

Solution to Steiner’s Problem in Section 5.1

With the Steiner function written as

f (x) = x
1
x = eln(x

1/x) = e
1
x
ln(x) = eg(x),

we have

g(x) = 1

x
ln(x).

Now, from our result in section 4.5 on how to differentiate a
composite function,
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(continued)

df

dx
=
{

d

dg
eg
}

·
{
dg

dx

}
= eg

[
1

x2
− 1

x2
ln(x)

]
,

or

df

dx
= x

1
x

x2
[1 − ln(x)].

Since x1/x/x2 > 0 for all x > 0, then f ′(x) = 0 only when
1 − ln(x) = 0, i.e., when x = e.

We could now use the second derivative test to show that
x = e gives a maximum, but we can see this more directly by
simply observing that

f (1) = 1

f (2) = 21/2 > f (1)

f (3) = 31/3 > f (2)

f (4) = 41/4 = (22)1/4 = 21/2 = f (2) < f (3).

That is,

f (1) < f (2) < f (3) > f (4),

and so we expect f (x) to have a maximum at some x between
2 and 4; notice that e = 2.718 . . . satisfies that requirement.
(Do you see why f (3) = 31/3 > f (2) = 21/2? Just raise both
quantities to the sixth power and observe that f 6(3) = 32 = 9
and f 6(2) = 23 = 8. Since 9 > 8, then f (3) > f (2).) Thus, the
maximum value of f (x) is

f (e) = e1/e = 1.444667861 . . . ,

often called Steiner’s number.



6.
Beyond Calculus

6.1 Galileo’s Problem

The story of Galileo Galilei (1564–1642), and of his research into
the physics of free-fall by dropping various weights from the top
of the Leaning Tower of Pisa, is too well known to be retold here.
Whatever the truth of the details of that story, it is undeniable that
the Italian astronomer was deeply interested in how things move
under the influence of gravity. It was that interest that eventually
led to what is generally thought to be the first solved problem in
the calculus of variations, which was the next great step beyond the
calculus of Newton and Leibniz in solving minimization problems.
Galileo’s own attempt at the original version of the problemwas one
of mixed success and, indeed, one that still prompts some debate
among historians.

Galileo did the work that set the stage for the ultimate version
of the so-called “minimum descent time” problem during the fi-
nal, most troubled years of his life, troubles caused by his belief in
Copernicanism. Copernicanism teaches that all the planets (includ-
ing Earth) orbit the sun, not a stationary Earth. In direct contra-
diction with Biblical scripture, such a belief was bound to lead to a
collision with the Church. After the 1632 publication of his book
Dialogue Concerning the Two Chief World Systems, in which he ad-
vocated positions in conflict with religious teachings, Galileo was
summoned to Rome in 1633 on the charge of suspicion of heresy.
He was sick in bed when summoned, and so he declined to make
the journey. He perhaps first realized how precarious was his posi-
tion when the Pope (a friend of many years!) threatened to forcibly
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transfer him to Rome, in chains, if he continued to refuse. So he
went, but the “trial” was a farce, with an outcome no one could
doubt.

His very life hung in the balance, and he was lucky to get off with
“only” the placing of theDialogue on the Index (of forbidden books),
a prohibition against ever publishing again, being forced to recant,
and imprisonment (later commuted to house arrest, with surveil-
lance, for life). Although now very sick and nearly blind, Galileo
proved to be tougher than the religious thugs of the Inquisition;
he used his cruel confinement to write one more book, Discourses
and Mathematical Demonstrations Concerning Two New Sciences. It was
smuggled out of Italy and published in Holland in 1638, just as
Descartes and Fermat were doing battle in France over Snell’s law.
Galileo’s new, groundbreaking ideas on how things fall in gravity
were described in that final work.

Imagine a bead with a wire threaded through a hole in it, such
that the bead can slide (with no friction) along the wire. Suppose
that the wire is bent into the shape of a circular arc with radius L,
and positioned vertically. The bead is held at point D, as shown in
figure 6.1, so that the radius to the bead makes angle α with the

α

C

L

L

L

D

circular wire, of radius L

initial position of bead

FIGURE 6.1. A bead sliding under gravity along a vertical, circular wire.
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vertical. We then release the bead, which slides to the bottom of the
wire at point C. That is, the bead makes a circular descent under the
influence of gravity. An immediate and natural question to ask is,
how long does the descent take? It was far beyond the mathematics
of Galileo’s day to compute the precise answer, and his approach to
the problem is via ingenious geometrical constructions. Today we
can compute the answer (see appendix E for the details): if T is the
descent time, and g denotes the acceleration of gravity, then

T =
√
L

g

∫ π
2

0

dβ√
1 − k2 sin2(β)

, k = sin

(
1

2
α

)
,

an expression that would have been meaningless to Galileo (or, for
that matter, to any other mathematician of the first half of the sev-
enteenth century). Instead, Galileo used inclined planes as approx-
imations to a circular arc to calculate approximations to the time of
descent. What I’ll show you here is a modern treatment of Galileo’s
ideas, although his development was strictly geometric (and very
subtle). You can find the original geometric approach discussed in
the paper by Herman Erlichson, “Galileo’s Work on Swiftest Descent
from a Circle and How He Almost Proved the Circle Itself Was the
Minimum Time Path” (American Mathematical Monthly, April 1998,
pp. 338–47).

As Professor Erlichson pointed out in an earlier paper [“Galileo’s
Pendulums and Planes” (Annals of Science, May 1994, pp. 263–72)],
the original motivation for Galileo’s interest in the question of the
descent time along a vertical circular path came from his interest in
pendulum motion; a light fixture hanging from a chain attached to
the ceiling of a church executes a circular swing when disturbed by
an earthquake. The period of such a swing (the time for one complete
swing, from the starting point of the fixture back to the starting
point) would thus be given by 4T , a value Galileo incorrectly be-
lieved to be independent of α (the amplitude of the swing). Galileo
was wrong but, actually, not by very much.

The first, crudest approximation to circular descent, using straight
line segments (or inclined planes, as Galileo thought of the approx-
imations), would be descent along the direct, single segment con-
necting D and C. The next, somewhat less crude approximation
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FIGURE 6.2. Galileo’s approximation to a circular wire.

would use the broken line descent along two inclined planes (D to
B, then B to C), as shown in figure 6.2. The arcDBC is, as drawn in
that figure, one-quarter of a circle of radius L, centered onM. Point
B is arbitrary, with the radius from M to B making angle θ1 with
the radius from M to D (if θ1 = 0° then B = D, and if θ1 = 90°
then B = C). What I’ll do next is derive TD and TB , the times for the
bead (starting from rest) to slide under gravity from D to C along
the Direct path and along the Broken path, respectively.

The calculation of TD is easy, once you observe that the bead’s
speed during the descent increases linearly from vD = 0 at D to
vC = √

2gL at C. The linear part follows from the fact that, along
the entire, direct path from D to C, the acceleration of the bead
by gravity is constant. The expression for vC follows from simply
equating the change in the bead’s kinetic energy of motion from
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D to C to the change in its potential energy of position (since we
are assuming zero friction, then conservation of energy holds). So,
if the bead has mass m,

1

2
mv2C = mgL,

and so, as claimed,

vC = √
2gL.

The average speed of the descent is then given by

vC + vD

2
= 1

2

√
2gL.

The length of the direct path from D to C is obviously√
L2 + L2 = L

√
2,

and so

TD = L
√
2

1

2

√
2gL

= 2

√
L

g
.

As shown in appendix E, if α = 90°, then the time for true circular
descent on the quarter circle is T = 1.8541

√
L/g, and so TD is less

than 8% longer than T , i.e.,

TD

T
=

2

√
L

g

1.8541

√
L

g

= 1.0787.

Galileo didn’t know this, but he did know one astonishing fact about
TD—it is independent of the position of D. In the above discussion,
I took D as at the top end of a quarter-circular arc, but if we instead
let the radius from M to D be at some (arbitrary) angle θ below the
full quarter circle (see figure 6.3) we’ll find the descent time remains
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45˚ − ½θ
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L

L

L

FIGURE 6.3. Time of descent is independent of D.

unchanged. This is, I think, not at all obvious, but it is not hard to
demonstrate.

Since we now have the bead’s initial position, D, decreased verti-
cally by the amount h = L sin(θ), then the vertical drop of the bead
during its descent is L − L sin(θ). Thus, its speed at C is

vC = √
2gL{1 − sin(θ)}

and its average speed during the descent is 1
2vC , just as before. The

length of the direct path is now

2� = 2L sin

(
45° − 1

2
θ

)
,
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and so the time of descent (Tθ ) is (in our notation, TD = 2
√
L/g is

the special case of Tθ=0°)

Tθ =
2L sin

(
45° − 1

2
θ

)
1

2

√
2gL{1 − sin(θ)}

= 2

√
L

g

√
2
sin

(
45° − 1

2
θ

)
√
1 − sin(θ)

,

or

Tθ = TD




√
2
sin

(
45° − 1

2
θ

)
√
1 − sin(θ)


 .

This looks complicated but, in fact, the quantity in the braces
equals one for all θ ! This is so because, from the trigonometric addi-
tion identity for the sine,

√
2
sin

(
45° − 1

2
θ

)
√
1 − sin(θ)

= √
2
sin(45°) cos

(
1

2
θ

)
− cos(45°) sin

(
1

2
θ

)
√
1 − sin(θ)

= √
2

1√
2
cos

(
1

2
θ

)
− 1√

2
sin

(
1

2
θ

)
√
1 − sin(θ)

=
cos

(
1

2
θ

)
− sin

(
1

2
θ

)
√
1 − sin(θ)

.

If we square this last expression and then use the trigonometric
identity sin(α) cos(β) = 1

2 {sin(α − β) + sin(α + β)}, we get

cos2
(
1

2
θ

)
− 2 cos

(
1

2
θ

)
sin

(
1

2
θ

)
+ sin2

(
1

2
θ

)
1 − sin(θ)

=
1 − 2 · 1

2

{
sin

(
1

2
θ − 1

2
θ

)
+ sin

(
1

2
θ + 1

2
θ

)}
1 − sin(θ)

= 1 − sin(θ)

1 − sin(θ)
= 1,

and so Tθ = TD, for any θ , not just for θ = 0°. Amazing!
Let’s next calculate TB , the descent time along the broken path

DBC in figure 6.2. As before, vD = 0 at D. To get to B, the bead falls
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through a vertical distance of L sin(θ1) and so vB = √
2gL sin(θ1).

And, as before, at the end of the descent, vC = √
2gL. Also as before,

since the accelerations on DB and BC are constant (although not
equal), then the speed of the bead along each segment increases
linearly from its initial speed to its final speed on each segment. So,
the average speed onDB is 1

2

√
2gL sin(θ1), and the average speed on

BC is 1
2

{√
2gL + √

2gL sin(θ1)
}
. The lengths of the two segments are

DB = 2�1 = 2L sin
(
1
2θ1

)
and BC = 2�2 = 2L sin

(
1
2θ2

)
and thus, the

time of descent, along the two-segment broken path fromD to C, is

TB =
2L sin

(
1

2
θ1

)
1
2

√
2gL sin(θ1)

+
2L sin

(
1

2
θ2

)
1
2

{√
2gL + √

2gL sin(θ1)
}

= 2

√
2L

g
·
sin

(
1

2
θ1

)
√
sin(θ1)

+ 2
2L sin

(
1

2
θ2

)
√
2gL

{
1 + √

sin(θ1)
}

= 2
√
2

√
L

g
·
sin

(
1

2
θ1

)
√
sin(θ1)

+ 2
√
2

√
L

g
·

sin

(
1

2
θ2

)
1 + √

sin(θ1)
,

or, at last,

TB = 2
√
2

√
L

g



sin

(
1

2
θ1

)
√
sin(θ1)

+
sin

(
90° − θ1

2

)
1 + √

sin(θ1)


 .

We can compare TB to TD by studying their ratio as a function of
θ1, i.e.,

R = TB

TD
= √

2



sin

(
1

2
θ1

)
√
sin(θ1)

+
sin

(
45° − 1

2
θ1

)
1 + √

sin(θ1)


 .

A plot of R is given in figure 6.4, which shows that R ≤ 1 for all
θ1 in the interval 0° to 90°, which means the bead always takes
less time to descend along a broken path (even though it is the
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FIGURE 6.4. The two-segment broken line is almost as fast as the circle!

longer path) than along the direct path. (It is geometrically obvious
that the broken path is longer than the direct path.) Only when
θ1 = 0° or 90° is R = 1, which is geometrically obvious since for
both cases the broken path degenerates into the direct path. The
plot shows that the time of descent is minimized when θ1 is around
25°, although it is not a sharp minimum. A careful examination
of the plot shows that the minimum value of R is 0.9313, i.e., at
the minimum TB = 0.9313TD. Since TD = 1.0787T , then at the
minimum of figure 6.4, we have TB = (0.9313)(1.0787)T = 1.0046T .
With just a two-segment approximation to the circle, then, we can
have a descent time less than 1

2 of 1% greater than the circular
descent time.

With this result in hand, TB < TD, Galileo then made his first
mistake. He argued that the double-broken path (DBEC, shown in
figure 6.5) would have a descent time even shorter than TB . This
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FIGURE 6.5. Galileo’s mistake.

conclusion is correct, but his reasoning was not. He argued that, in
terms of time, the single-broken path DBC is such that

DC > DB + BC,

and that the single-broken path BEC is such that

BC > BE + EC.

The first statement is of course true (we derived it!), but the second
does not follow from our analysis because in the first analysis we
assumed that the initial velocity is zero (as it is at D). But the initial
velocity is not zero at B. By continuing to add more and more break
points along the circular arc, Galileo concluded that the fastest way
from D to C was along the circle itself, which is true (but, again, his
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reasoningwas faulty).What some historians think hemeantwas that
this is so if all the break pointsmust be on the circle. Others think he
meant the circle was the fastest descent curve of all possible curves
from D to C. In fact, it is not, as the next section will demonstrate.

6.2 The Brachistochrone Problem

Once Galileo’s original problem had focused attention on the gen-
eral problem of gravitational descent, it was a natural question to
then ask what is the curve of swiftest descent? Mathematicians of
the caliber of the Bernoulli brothers, Newton, and Leibniz knew that
Galileo’s analysis had not established that it is a circular arc. What
if, they asked, the broken-line approximation to the descent curve
was no longer constrained to have all of its endpoints on a circular
arc—perhaps then there could be an even “faster” curve.

It was this problem, of determining what is called the brachis-
tochrone, that Johann Bernoulli posed “to themost acutemathemati-
cians of the entire world” in June 1696. (The name comes from the
Greek brachistos (shortest) and chronos (time) and is due to Bernoulli.
Leibniz preferred tachystoptote, from tachystos (swiftest) and piptein
(to fall), but deferred to Bernoulli.) Notice that this is not a problem
of “ordinary” calculus, where what is asked for is the particular value
of a variable that minimizes a function of that variable. Rather, we
are now to find the function (i.e., a particular entire curve) that mini-
mizes some other function (the so-called functional) whose indepen-
dent “variable” takes on “values” from the set of all possible curves
connecting two given points (in the brachistochrone problem, the
“other function” is the descent time). This is an entirely new sort of
minimization problem, and its solution initiated a new branch of
mathematics—the calculus of variations.

Bernoulli’s challenge to find the brachistochrone was accepted
by some of the great mathematical minds of the day, but it was
Bernoulli’s own original solution that was the most beautiful and
compelling, using a brilliant application of Fermat’s principle of
least time and Snell’s law. In a 1697 letter, Bernoulli claimed to have
had, however, no prior knowledge of Galileo’s work on gravitational
descent, and perhaps he was being honest. It strikes me as most un-
likely, however, that Bernoulli could really have been so unaware—
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it wasn’t as if Galileo had published his circular descent analysis in
some obscure journal. Discourses was a famous book! In addition, it
is known that Johann Bernoulli had an extraordinarily jealous na-
ture, and hated to share credit in mathematical work. We’ve already
seen that side of him in the affair over who really wrote de L’ Hospi-
tal’s calculus book, and it was on display again in a later, very ugly
business with his own son, Daniel, an accomplished mathematician
in his own right. Daniel’s important book Hydrodynamica was pub-
lished in 1738, just as his father’s similarly titled book Hydraulica
was being published. Rather than being proud of his son, Johann
claimed he had priority, even though he knew Daniel had actually
finished his writing several years earlier. If Johann would deny his
own son honest credit, then it is difficult to believe he would worry
much about denying the long-dead Galileo any credit for motivat-
ing the brachistochrone problem.

Still, while Johann Bernoulli apparently had a serious problem
with intellectual honesty, it cannot be denied he was a genius. His
solution for the brachistochrone would alone insure his mathe-
matical fame. Here’s how he did it. From Snell’s law, as correctly
explained by Fermat’s invoking of the principle of least time (see
section 4.6), we have

sin(θ1)

v1
= sin(θ2)

v2
= constant

for a light ray traveling in the two mediums from B to A (speed
v1 and v2 in the upper and lower mediums, respectively), shown in
figure 6.6. That figure is similar to figure 4.10 (here I have written
θ1 and θ2 for θi and θr , respectively), where it was understood that
v2 < v1 (the upper medium, 1, is less dense than the lower medium,
2, as would be the case for medium 1 as air and medium 2 as water).
We could, however, simply reverse the path of the ray to get figure
6.7, which is just figure 6.6 flipped over. Snell’s law is still true for
Figure 6.7, of course, just as written above.

Now, imagine that instead of just the two mediums of figure 6.7,
there are a great many layered mediums, each less dense than the
layer above it. Then the light ray’s speed increases as it penetrates
the layers in the downward direction, and the ray bends ever more
away from the vertical, as does the ray path illustrated in figure 6.8.
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FIGURE 6.6. Snell’s refraction geometry, again.

As we let the number of layers increase (and the thickness of each
layer decrease) without bound, the path becomes a smooth curve,
and at every point along this curve we will have

sin(θ)

v
= constant.

Bernoulli’s brilliant insight into how to solve theminimum-descent-
time problem was to turn the above argument on its head. That is,
if the above condition is the result of assuming minimum travel (de-
scent) time (Fermat’s principle of least time for light), then starting
with the above condition should result in the curve of minimum
descent time.

Therefore, as shown in figure 6.9, I have sketched the curve of
minimum descent time (whatever it is!) from B (the origin) to A,
with θ as the angle between the tangent at an arbitrary point (x, y)
on the curve and the vertical. Notice that the positive y-axis points
downward because we are studying a falling bead. At the arbitrary
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FIGURE 6.7. Snell’s refraction geometry, again (flipped).
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FIGURE 6.8. Layered approximation to a variable density optical medium.
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FIGURE 6.9. Geometry of Bernoulli’s solution.

point (x, y) the speed of the descending bead along the curve is v.
If we assume, as in Galileo’s original analysis, that the bead starts
its descent from B with zero initial speed, then conservation of
energy says (for a bead withmassm) that the loss of potential energy
(mgy) equals the gain in kinetic energy

(
1
2 mv2

)
, and so, after falling

through a vertical distance of y, the speed of the bead is

v = √
2gy.

So, Bernoulli’s ingenious approach to the brachistochrone problem
is “simply” to imagine that the “speed of light” in a variable-density
optical medium is

√
2gy and to find the path a ray of light will

follow, because light takes the least-time path. This solution could
only have occurred to a mind equally at home with mathematics
and physics. Mathematical skill alone would not have been enough.
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As de L’Hospital wrote to Bernoulli in a letter dated June 15, 1696,
“This problem [of minimum descent time] seems to be one of the
most curious and beautiful that has ever been proposed, and I would
very much like to apply my efforts to it, but for this it would be
necessary that you reduce it to pure mathematics, since physics
bothers me.”

From the geometry of figure 6.9 it is clear that

sin(θ) = cos(α) = 1

sec(α)
= 1√

1 + tan2(α)
= 1√

1 +
(
dy

dx

)2

= 1√
1 + (y ′)2

.

Therefore,

sin(θ)

v
= constant =

1√
1 + (y ′)2√

2gy
.

Squaring the second equality gives

2gy
[
1 + (y ′)2

] = constant,

or, finally, withC a constant, we arrive at the (nonlinear) differential
equation for the curve of minimum descent time:

y

[
1 +

(
dy

dx

)2
]

= C.

Nonlinear differential equations are generally not easy to solve an-
alytically (with each new one requiring, it seems, its own unique
“trick”), but we can solve this one for y in the following way. Taking
advantage of Leibniz’s notational advantage over that of Newton’s,
and treating the differentials dx and dy as algebraic quantities, we
can solve for dx to get

dx = dy

√
y

C − y
.
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Next, making the change of variable to ϕ (notice that ϕ = 0when
y = 0), where

tan(ϕ) =
√

y

C − y
= sin(ϕ)

cos(ϕ)
,

we have

y

C − y
= sin2(ϕ)

cos2(ϕ)
,

y cos2(ϕ) = C sin2(ϕ) − y sin2(ϕ),

y cos2(ϕ) + y sin2(ϕ) = y = C sin2(ϕ).

Differentiation of the last equality with respect to ϕ gives

dy

dϕ
= 2C sin(ϕ) cos(ϕ),

and so dy = 2C sin(ϕ) cos(ϕ)dϕ, which says

dx = 2C sin(ϕ) cos(ϕ)
√

y

C − y
dϕ = 2C sin(ϕ) cos(ϕ) tan(ϕ)dϕ.

Or, as cos(ϕ) tan(ϕ) = sin(ϕ), we have (using a trigonometric double-
angle identity)

dx = 2C sin2(ϕ)dϕ = C[1 − cos(2ϕ)] dϕ.

This last expression we can integrate by inspection: with C1 as
the constant of indefinite integration, we arrive at

x = C

[
ϕ − sin(2ϕ)

2

]
+ C1 = 1

2
C[2ϕ − sin(2ϕ)] + C1.

We can determine the value ofC1 by inserting the coordinates of the
point B at which the descent begins, that is, the origin x = y = 0.
Or, equivalently, x = ϕ = 0. Then, C1 is obviously zero and so

x = 1

2
C[2ϕ − sin(2ϕ)].
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Earlier we also found that y = C sin2(ϕ) = C[1 − cos2(ϕ)] and so,
again from a trigonometric double-angle identity, we have

y = 1

2
C[1 − cos(2ϕ)].

As our final step, tomake the equations as simple-appearing as possi-
ble, I’ll replace the constant 1

2C with simply a, and make the change
of variable β = 2ϕ. Then, at last, we arrive at the so-called parametric
equations for the minimum-descent-time curve, or brachistochrone:

x = a[β − sin(β)]
.

y = a[1 − cos(β)]

This result greatly surprised Bernoulli, who recognized these equa-
tions as describing a previously known (for at least a century) curve,
the cycloid (a name coined by Galileo in 1599), which is the curve
traced by a point (starting at the origin) on the circumference of
a wheel, with radius a, rolling without slipping along the x-axis.
Although it seems incredible that the cycloid could have been over-
looked by the ancient mathematicians, it appears that the first time
it was discussed in print was in 1501, in thework of the Frenchmath-
ematician Charles Bouvelles (1470–1553). You can findmore discus-
sion in the paper by E. A. Whitman, “Some Historical Notes on the
Cycloid” (American Mathematical Monthly, May 1943, pp. 309–15).

The cycloid equations do not directly connect x and y, but rather
link them together via the parameter β. We can thus simply vary
β, calculate x and y for each of many different values of β, and
arrive at the x, y plot of the cycloid. Figure 6.10 shows such a plot,
for a = 1, in the interval 0 ≤ β ≤ 2π . It should be clear that a is
simply a scale factor and, as we make a smaller or larger, the curve
shrinks or inflates, respectively. We can make the cycloid, starting
at the origin, pass through any given point (x > 0, y > 0) by simply
picking the constant a properly (start with a = 0 and then increase
it, i.e., “inflate” the cycloid, until it passes through the given point).
This shouldmake it obvious, too, that there is a unique value of a that
does this. Thus, the brachistochrone joining two points is unique,
and it is an inverted section of the arch of a cycloid.
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FIGURE 6.10. The cycloid a = 1.

You should not think of the parametric representation of
a curve as being something less than desirable, as somehow
being less useful than a direct expression of y in terms of x. We
will not find ourselves at any disadvantage with a parametric
representation. For example, if we want to know the slope of
the cycloid at some point, we simply use the chain rule to
calculate

dy

dx
= dy

dβ
· dβ
dx

= dy

dβ

/dx

dβ
= sin(β)

1 − cos(β)
.

There can be occasions, in fact, where the parametric repre-
sentation is the only proper way to formulate a problem. For
example, in appendix F you’ll find the derivation of an expres-
sion for the area inside a closed, non-self-intersecting curve:
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if the parametric equations of the curve C are x = x(t) and
y = y(t), then

area enclosed by C = 1

2

∫ T

0

(
y
dx

dt
− x

dy

dt

)
dt,

where C is imagined to be the clockwise path traversed by a
moving point, starting at time t = 0 at some place and return-
ing to that initial place at time t = T . This result will be crucial
to the solution of the ancient isoperimetric problem discussed
in chapter 2 (what figure of given perimeter encloses the max-
imum area?), and which we will finally be able to do in this
chapter.

Johann Bernoulli’s brother Jacob (1654–1705), Leibniz, and New-
ton also submitted solutions in response to Johann’s challenge.
Bernoulli’s challenge to Newton, in particular, was not really a
friendly one. Bernoulli had taken Leibniz’s side in the dispute over
who was the “true” discoverer of the calculus, and he meant to em-
barrass Newton by showing that he was unable to solve a problem
that both Bernoulli and Leibniz had already solved. As Bernoulli
stated in the public announcement of the brachistochrone prob-
lem, “so few have appeared to solve our extraordinary problem,
even among those who boast that through special methods, which
they commend so highly, they have not only penetrated the deepest
secrets of geometry but also extended its boundaries in marvelous
fashion; although their golden theorems which they imagine were
known to no one, have been published by others long before.”

Newton was not amused by this; as he later stated, “I do not
love to be dunned and teased by foreigners about Mathematical
things.” Newton quickly set about answering Bernoulli’s challenge
and, according to second-hand accounts, solved the problem in a
single night using a then unknown method (but see the box in
section 6.4). Newton’s “solution,” however, is simply a description
for how to construct the minimum-descent-time cycloid, with no
explanation for how he arrived at that curve as the brachistochrone.
The construction was published anonymously in the Philosophical
Transactions of the Royal Society of January 1697 (backdated by his
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editor/friend Edmond Halley, as Newton actually first read aloud his
“solution” at a meeting of the Royal Society on February 24, 1697).

A famous story about the anonymous publication is that, after
reading it, Johann claimed he knew the unnamed author was New-
ton because he “recognized the lion by his paw.” For once in his
life Johann Bernoulli, despite his bias against Newton, was gracious
to a competing mathematician working on the same problem, per-
haps because in this case Bernoulli clearly had priority. [However, for
a more sympathetic view of Johann Bernoulli’s relationships with
competing mathematicians see the old but still valuable paper by
Constantin Carathéodory, “The Beginning of Research in the Cal-
culus of Variations” (Osiris, 1938, pp. 224–40)].

The brachistochrone has a second remarkable property, in ad-
dition to being the curve of minimum descent time. In 1656 the
Dutch mathematical physicist Christiaan Huygens (1629–95) con-
structed the first successful pendulum clock, which he knew had
a period slightly dependent on the amplitude of the pendulum
swing. To achieve complete independence, i.e., to invent the so-
called isochronous pendulum clock, Huygens inserted curved metal
surfaces at the suspension point on each side of the flexible cord
that (along with a weight at the end) served as the pendulum. These
surfaces forced the pendulum cord to deviate from being straight
as it swung back and forth, in just such a way as to make the pe-
riod independent of the amplitude of the swing. In his 1673 mas-
terpiece, Horologium Oscillatorium (The Pendulum Clock), Huygens
showed that the curved constraint surfaces should be cycloidal arcs
(he had actually known this since the end of 1659). That would force
the swinging weight to follow a cycloidal path (a mathematician
would say that Huygens had discovered that the involute of a cy-
cloid is another cycloid), which was known to be isochronous, i.e., a
bead undergoing gravitational descent along a cycloidal curve takes
the same time to reach the bottom of the curve, no matter where it
starts its descent (this is shown in the next section). This means the
brachistochrone is also a tautochrone (from the Greek tauto, the same,
and of course, chronous, time), a discovery that so pleased Huygens
he said it was “the most fortunate finding which ever befell me.”
In actual practice, however, the friction between the curved metal
surfaces and the pendulum cord resulted in a bigger source of time-
keeping error than was the original amplitude-period dependency.
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As I mentioned earlier, Bernoulli was astonished to learn the
brachistochrone is a cycloid, and so, when he revealed his deriva-
tion in January 1697, he first discussed Huygen’s cycloid and its
tautochronous property and then stated, “you will be petrified with
astonishment when I say that precisely this same cycloid . . . is our
required brachistochrone. . . . Nature always tends to act in the sim-
plest way [certainly Bernoulli would say this, since he had used Fer-
mat’s principle of least time in arriving at his solution], and so it
here lets one curve serve two different functions.”

6.3 Comparing Galileo and Bernoulli

Now that we have the analytic form of the true minimum-descent-
time curve, the next natural question to ask is how much faster is it
than Galileo’s circular descent curve? We found in section 6.1 that,
on a quarter circle of radius L, it takes the time T for the bead to
make the descent, where

T = 1.8541

√
L

g
.

Galileo didn’t actually calculate this result, but he came close to
it, and so I’ll now write T as TG. What we want to calculate now is TB ,
the time to fall along the brachistochrone curve from (0, 0) to (L,L).
(Note carefully: this TB is not the TB of section 6.1!) Everything we’ve
done so far tells us TB < TG. Let’s see by how much.

If we define s as the distance from the origin to the arbitrary point
(x, y) on the descent curve, as measured along the curve, then, as
argued before from the conservation of energy, we have

v = ds

dt
= √

2gy,

where, from the Pythagorean theorem, we have the differential arc
length ds along the curve as ds = √

(dx)2 + (dy)2. Thus,

v =
√

(dx)2 + (dy)2

dt
=

dx

√
1 +

(
dy

dx

)2

dt
,
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brachistochrone is a cycloid, and so, when he revealed his deriva-
tion in January 1697, he first discussed Huygen’s cycloid and its
tautochronous property and then stated, “you will be petrified with
astonishment when I say that precisely this same cycloid . . . is our
required brachistochrone. . . . Nature always tends to act in the sim-
plest way [certainly Bernoulli would say this, since he had used Fer-
mat’s principle of least time in arriving at his solution], and so it
here lets one curve serve two different functions.”

6.3 Comparing Galileo and Bernoulli

Now that we have the analytic form of the true minimum-descent-
time curve, the next natural question to ask is how much faster is it
than Galileo’s circular descent curve? We found in section 6.1 that,
on a quarter circle of radius L, it takes the time T for the bead to
make the descent, where

T = 1.8541

√
L

g
.

Galileo didn’t actually calculate this result, but he came close to
it, and so I’ll now write T as TG. What we want to calculate now is TB ,
the time to fall along the brachistochrone curve from (0, 0) to (L,L).
(Note carefully: this TB is not the TB of section 6.1!) Everything we’ve
done so far tells us TB < TG. Let’s see by how much.

If we define s as the distance from the origin to the arbitrary point
(x, y) on the descent curve, as measured along the curve, then, as
argued before from the conservation of energy, we have

v = ds

dt
= √

2gy,

where, from the Pythagorean theorem, we have the differential arc
length ds along the curve as ds = √

(dx)2 + (dy)2. Thus,

v =
√

(dx)2 + (dy)2

dt
=

dx

√
1 +

(
dy

dx

)2

dt
,
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and so

dt =
dx

√
1 +

(
dy

dx

)2

v
=

dx

√
1 +

(
dy

dx

)2

√
2gy

.

Integrating, where, as t goes from 0 to TB we have x go from 0 to L,

∫ TB

0
dt =

∫ L

0

√√√√√1 +
(
dy

dx

)2

2gy
dx = TB.

Because we already have the equations relating y and x (the para-
metric equations of the cycloid), we can now directly evaluate this
integral, as I’ll do next. But first, notice that we have arrived at this
integral (the so-called functional) without using our knowledge of
the specific relationship between y and x. Indeed, the general ap-
proach of the calculus of variations (which we’ll take up in the next
section) does not require that knowledge, but instead derives the
brachistochrone by determining the function y(x) that minimizes
the time functional. For now, however, let’s evaluate TB directly.

From the boxed parametric equations for the brachistochrone
given in the previous section, we have

dx

dβ
= a[1 − cos(β)]

dy

dβ
= a sin(β).

We have β = 0when x = 0 from the definition of β, and let’s further
suppose that β = β̂ when x = L. Then,

TB =
∫ L

0

√√√√√1 +
(
dy

dx

)2

2gy
dx =

∫ L

0

√
(dx)2 + (dy)2

2gy

=
∫ β̂

0

√
a2[1 − cos(β)]2 + a2 sin2(β)

2ga [1 − cos(β)]
dβ =

∫ β̂

0

√
2a2[1 − cos(β)]

2ga[1 − cos(β)]
dβ

= β̂

√
a

g
.
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To find β̂ (which certainly must be greater than zero) and a, we
use the fact that the brachistochrone ends at (L,L)—remember, as
in figure 6.9, we are thinking of the positive y-axis as increasing
downward. Thus,

L = a
[
β̂ − sin(β̂)

]
L = a

[
1 − cos(β̂)

]
,

and so

a = L

β̂ − sin(β̂)
= L

1 − cos(β̂)
.

The second equality is equivalent to solving the equation

f (β) = β + cos(β) − sin(β) − 1 = 0.

A plot of f (β) is shown in figure 6.11, which tells us there is just one
positive solution to f (β) = 0. Using the Newton-Raphson iterative
method discussed in section 4.5, it is easy to calculate that solution
to be β̂ = 2.412 radians. Thus,

a = L

1 − cos(2.412)
= L

2.412 − sin(2.412)
= 0.5729 L,

and so

TB = 2.412

√
0.5729 L

g
= 1.8257

√
L

g
,

which is, indeed, less than TG. But only by about 1.5%. Galileo’s
quarter-circle is pretty close to being the brachistochrone.

We can show the isochronous property of the cycloid as follows.
For a cycloid starting at (0, 0) and ending at the very bottom of the
cycloidal path, we have (from before)

T = β̂

√
a

g
,

where now β̂ is the value of β at the bottom. (For the brachis-
tochrone joining (0,0) to (L,L), the problem we just analyzed, the
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FIGURE 6.11. Estimating β when x = L.

point (L,L) is not the bottom of the cycloidal path). From the para-
metric equations of the cycloid, we see that this means β̂ = π : at
the bottom, x = πa and y = 2a (take a look again at figure 6.10).
Thus, the time required for a bead to slide from top to bottom is

T = π

√
a

g
.

If the fall along the cycloid does not start at (0,0), however, but
rather at some lower point (x0, y0) on the cycloid, then the speed of
the descending bead, at the general point (x, y), is

v = √
2g(y − y0),

and so the time to reach the bottom is now given by

T ′ =
∫ πa

x0

√√√√√1 +
(
dy

dx

)2

2g(y − y0)
dx.
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The isochronous property discovered by Huygens says T ′ = T .
Here’s why.

Inserting dx and dy in terms of β, as we did before, and changing
the integration limits to the appropriate values for β (let β = β0 at
(x0, y0)), we have

T ′ =
∫ πa

x0

√
(dx)2 + (dy)2

2g(y − y0)

=
∫ π

β0

√
a2[1 − cos(β)]2 + a2 sin2(β)

2g[{a − a cos(β)} − {a − a cos(β0)}] dβ

=
∫ π

β0

√
2a2[1 − cos(β)]

2ag cos(β0) − 2ag cos(β)
dβ

=
√
a

g

∫ π

β0

√
1 − cos(β)

cos(β0) − cos(β)
dβ.

From the half-angle trigonometric identity

sin

(
1

2
β

)
=
√
1 − cos(β)

2
,

we then have

T ′ =
√
a

g

∫ π

β0

√
2 sin

(
1

2
β

)
√
cos(β0) − cos(β)

dβ.

And from the half-angle identity

cos

(
1

2
β

)
=
√
1 + cos(β)

2
,

we have cos(β) = 2 cos2
(
1
2 β

) − 1, and so

T ′ =
√
a

g

∫ π

β0

√
2 sin

(
1

2
β

)
√
2 cos2

(
1

2
β0

)
− 1 − 2 cos2

(
1

2
β

)
+ 1

dβ
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=
√
a

g

∫ π

β0

sin

(
1

2
β

)
√
cos2

(
1

2
β0

)
− cos2

(
1

2
β

) dβ.

If we now change the integration variable to

u =
cos

(
1

2
β

)

cos

(
1

2
β0

) ,

then

du

dβ
= −

sin

(
1

2
β

)

2 cos

(
1

2
β0

) ,

and so the T ′ integral becomes

T ′ =
√
a

g

∫ 0

1

−2 cos

(
1

2
β0

)
√
cos2

(
1

2
β0

)
− u2 cos2

(
1

2
β0

) du

= 2
√
a

g

∫ 1

0

du√
1 − u2

.

From integral tables, we find this integral is sin−1(u), and so

T ′ = 2
√
a

g

{
sin−1(u)

∣∣∣1
0

= 2
√
a

g

{
sin−1(1) − sin−1(0)

}

= 2
√
a

g

{π
2

− 0
}

= π

√
a

g
= T ,

as claimed.
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With a knowledge of the chain rule in differentiation, we
can actually derive the above integral easily, with no need for
tables. In figure 6.12, I’ve drawn a right triangle such that the
angle ϕ is given by sin(ϕ) = u, i.e., ϕ = sin−1(u). Thus,

d

du
sin−1(u) = dϕ

du
.

From the chain rule, and the figure,

d

du
sin(ϕ) = cos(ϕ)

dϕ

du
=
√
1 − u2

dϕ

du
.

But of course we also have

d

du
sin(ϕ) = du

du
= 1.

Thus,

1 =
√
1 − u2

dϕ

du
, or

dϕ

du
= 1√

1 − u2
,

1 u

√ 1 − u2

φ

FIGURE 6.12. Differentiating the inverse sine function.
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and so

d

du
sin−1(u) = 1√

1 − u2
.

Integrating both sides then immediately gives us∫
du√
1 − u2

= sin−1(u).

Bernoulli was certainly correct in saying the cycloid has a fasci-
nation all of its own, even for nonmathematicians. Its isochronous
property, for example, received attention in, of all places, a famous
work of fiction, Herman Melville’s 1851 classic whaling story Moby-
Dick. In chapter 96 (“The Try-Works”), where the book’s narrator (re-
member him?—“Call me Ishmael”) is describing how the try-pots of
the ship Pequod are cleaned (a try-pot is an enormous iron cauldron
used to reduce whale blubber to liquid oil), we read the following
passage:

. . . an American whaler is outwardly distinguished by her try-
works. . . . The try-works are planted between the foremast and
main-mast, the most roomy part of the deck. The timbers beneath
are of a peculiar strength, fitted to sustain the weight of an almost
solid mass of brick and mortar, some ten feet by eight square, and
five in height. The foundation does not penetrate the deck, but
the masonry is firmly secured to the surface by ponderous knees
of iron bracing it on all sides, and screwing it down to the timbers.
On the flanks it is cased with wood, and at top completely covered
by a large, sloping, battened hatchway. Removing this hatch we
expose the great try-pots, two in number, and each of several bar-
rels’ capacity. When not in use, they are kept remarkably clean.
Sometimes they are polished with soapstone and sand, till they
shine within like silver punch bowls. During the night watches
some cynical old sailors will crawl into them and coil themselves
away there for a nap. While employed in polishing them—one
man in each pot, side by side—many confidential communica-
tions are carried on, over the iron lips. It is a place also for profound
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mathematical meditation. It was in the left hand try-pot of the Pequod,
with the soapstone diligently circling around me, that I was first indi-
rectly struck by the remarkable fact, that in geometry all bodies gliding
along the cycloid, my soapstone for example, will descend from any
point in precisely the same time [my emphasis].

The problem of determining the curve of swiftest descent is not
simply one of historical interest. It has reappeared over the centuries
in various forms, right up to modern times (it represents the ulti-
mate in fast roller coaster rides, for example, especially right at the
start with a vertical drop!), and it continues to capture the imagina-
tion. For example, in 1966, Paul W. Cooper, an industrial mathe-
matician, published a short note in the American Journal of Physics
(“Through the Earth in Forty Minutes,” January, pp. 68–70). In his
paper, Cooper pointed out that the gravitational field of the interior
of the Earth would allow “falling through” a frictionless, straight
tunnel connecting any two points on the surface of the planet in the
same time interval of 42.2 minutes. Cooper imagined “a transporta-
tion system without timetables wherein the world’s cities are linked
with chords and where the departure time is universally on the hour
and arrival time forty-two minutes later. Such a chord link between
Boston and Washington, D.C., would involve a maximum penetra-
tion of about 50 miles below the Earth’s surface.” [For a somewhat
more realistic tunnel transportation system, see the earlier paper by
L. K. Edwards, “High-Speed Tube Transportation” (Scientific Ameri-
can, August 1965, pp. 30–40).]

Straight tunnels do not define the fastest travel times, however,
andCooper alsowrote “Onemightwant, in fact, the actualminimal-
time path. . . . This ismore complex than the classic brachistochrone
problem in that here [by here Cooper means inside the Earth] the
gravitational field is radial instead of rectangular, and it is not uni-
form.” The brachistochrone tunnel connecting Los Angeles and
NewYork City, for example, has a travel time of just 28minutes—but
it comes with a high price. The curved tunnel dips 1,000miles below
the surface! See J. E. Prussing, “Brachistochrone-tautochrone Prob-
lem in a Homogeneous Sphere” (American Journal of Physics, March
1976, pp. 304–5).

Cooper’s paper on straight tunnels was noticed by Timemagazine
(February 11, 1966, pp. 42–43) and given a science fiction flavor
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for its popular audience, which prompted a number of physicists to
write the AJP to say the whole idea was actually an old idea (see the
replies in the August 1966 issue of the American Journal of Physics,
pp. 701–4). Indeed, one writer traced it back to a paper delivered
to the French Association for the Advancement of Science, in 1883!
That paper may well have been the inspiration for Lewis Carroll,
who used the concept in chapter 7 of his novel Sylvie and Bruno
Concluded ten years later.

Three years after Cooper’s paper appeared, a brief solution to the
brachistochrone problem inside the Earth was given in the American
Mathematical Monthly (“Fast Tunnels through the Earth,” June–July
1969, pp. 708–9). That solution uses the modern calculus of varia-
tions approach. Twelve years after that, P. K. Aravind, a chemist (!)
at the University of California/Santa Barbara, showed how to use
Bernoulli’s original optical analogy approach to solve the interior
problem (“Simplified Approach to Brachistochrone Problems,”
American Journal of Physics, September 1981, pp. 884–86). And fi-
nally, the brachistochrone problem can be solved in closed form
even if the additional complication of friction is included (we’ve ig-
nored that important reality in all that we’ve done in this chapter).
It is not a trivial exercise, however, and I’ll simply refer you to the
paper by N. Ashby et al., “Brachistochrone with Coulomb Friction,”
American Journal of Physics, October 1975, pp. 902–6.

In this section we saw, for the first time, the formula for the
length of a curve traced out by a moving point. If that motion
is described by x = x(t) and y = y(t), then the path length
traveled over the time interval t = 0 to t = T is

∫ T

0

√(
dx

dt

)2

+
(
dy

dt

)2

dt.

An interesting extrema problem uses this result: if Tiger Woods
wants to hit a golf ball for maximum range, then we showed
in section 5.4 that he should drive the ball off of its tee at a 45°
angle. But suppose instead that he wants to drive the ball for
maximum distance through space, i.e., for maximum trajectory
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length? Then the angle is not 45°, but rather the not-so-obvious
56.466°. You can find it all worked out in the paper by Ze-Li
Dou and Susan G. Staples, “Maximizing the Arclength in the
Cannonball Problem” (The CollegeMathematics Journal, January
1999, pp. 44–45).

6.4 The Euler-Lagrange Equation

The brachistochrone problem is generally accepted by historians as
marking the beginning of the calculus of variations. This, despite
the fact that Bernoulli’s solution, using Fermat’s principle of least
time and Snell’s law, does not use the methods of that yet to be de-
veloped subject. The reason for this is because it was quickly under-
stood by all that, while undeniably brilliant, Bernoulli’s solution by
optical analogy was too specialized, with no hope of being extended
to other such questions, e.g., to the ancient isoperimetric question,
discussed in chapter 2, of what closed curve, of given length, en-
closes the maximum area? What was needed was a general theory
to attack such problems, and the brachistochrone problem itself, not
Bernoulli’s particular solution of it, was the spark that initiated the
search for that theory.

Sometimes one does read of an earlier problem that is said to actu-
ally be the first such problem in the calculus of variations, but its his-
tory is a murky one indeed. This is the question, briefly mentioned
in Newton’s Principia (in 1687, nine years before Bernoulli’s brachis-
tochrone challenge), of what solid of revolution would experience
the least resistance to motion through a medium with certain phys-
ical properties (e.g., a ship’s hull in water)? As did his later brachis-
tochrone “solution,” Newton’s answer to the minimum-resistance
problem appeared in the original Latin printing of the Principia as
just that; an answer with no derivation (as the Scholium to Propo-
sition 34 of Book 2). This has led some modern writers to conclude
(oddly and without justification, in my opinion) that Newton had
no proofs! See, for example, the paper by Robert Weinstock, “Isaac
Newton: Credit Where Credit Won’t Do,” and the replies to it, in
The College Mathematics Journal (May 1994, pp. 179–222). Neither
Professor Weinstock nor his critics seem to be aware of the fact that
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when the English translation of the Principia appeared in 1729, the
minimum-resistance solid was treated analytically (those calculus-
based arguments were included without attribution, but it was es-
tablished in 1888 that they were, indeed, from Newton—see the
following box).

The analytical treatment appearing in the 1729 edition of
the Principia of the minimum resistance solid, discovered in
Newton’s papers in 1888, was prompted by a request he re-
ceived from a reader of the original Latin printing of the Prin-
cipia. Newton replied with the requested analysis in a letter
dated July 14, 1694, to David Gregory (1659–1708), two years
before Bernoulli’s challenge; themethod used is easily extended
to the brachistochrone problem. Gregory, a Scot who ended his
career as the Savilian Professor of Astronomy at Oxford, had a
reputation as a not very outstanding mathematician. His entry
in theDictionary of Scientific Biography tells us, for example, that
“the impression gained from his printed work [is] that a mod-
icum of talent, effectively lacking originality, was stretched a
long way.” The last paragraph of that same entry also makes
it clear, however, that Gregory has all math historians in his
debt: “In retrospect, Gregory’s true role in the development of
seventeenth-century science was not that of original innova-
tor but that of custodian of certain precious papers and verbal
communications passed to him . . . as privileged information,
by Newton.”

It seems clear (to me, at least) that Newton simply thought
both theminimum-resistance-solid problem and theminimum-
descent-time curve problem to be interesting but not worthy
of lengthy elaboration. This remarkable pair of decisions si-
multaneously illustrates both his monumental genius as well
as an even more monumental mistake in judgment! Without
Gregory’s request, we might well never have learned the de-
tails of Newton’s solutions. You can find discussions of New-
ton’s “missing” solutions in H. W. Turnbull, The Mathematical
Discoveries of Newton (Blackie & Son 1945, pp. 39–42), in Her-
man H. Goldstine, AHistory of the Calculus of Variations from the
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17th through the 19th Century (Springer-Verlag 1980, pp. 7–29),
and in I. Bernard Cohen, “Isaac Newton, the Calculus of Vari-
ations, and the Design of Ships,” in For Dirk Struik (D. Reidel
1974, pp. 169–87).

As with Bernoulli’s solution to the brachistochrone problem,
Newton’s solution to theminimum-resistance solid (using amethod
easily extended to the brachistochrone problem, which means he
surely did derive the cycloid solution) is not the proper basis for at-
tacking other functional problems in general. The development of a
general theory began with the Swiss genius Leonhard Euler (1707–
83), a student of Bernoulli who went on to exceed his mentor.

What I’ll do next, then, is derive the basis for just such a general
approach to these problems, the so-called Euler-Lagrange equation.
The presentation that follows is the modern one found in textbooks
today, and is fairly close to the way it was first done by the French-
Italian mathematical-physicist Joseph Louis Lagrange (1736–1813).
The equation was known to Euler by 1736, but today it is univer-
sally derived in the same way that Lagrange did it (in a 1755 letter
to Euler when Lagrange was, yes, just nineteen!), which Euler en-
thusiastically adopted as the superior approach. Lagrange’s use of a
“variational” technique prompted Euler to coin the name calculus of
variations. For the historically minded, excellent papers to read for
the detailed history are G. A. Bliss, “The Evolution of Problems of the
Calculus of Variations” (American Mathematical Monthly, December
1936, pp. 598–609) and Craig G. Fraser, “Isoperimetric Problems in
the Variational Calculus of Euler and Lagrange” (Historia Mathemat-
ica, February 1992, pp. 4–23).

The simplest form of our general, fundamental problem is easy
to state: find the function y(x) that minimizes the integral (or func-
tional)

J =
∫ x2

x1

F
{
x, y(x), y ′(x)

}
dx,

where x1 and x2 are given, the function F is given, and y ′(x) =
d/dx y(x). Many of the classical problems of the calculus of varia-
tions can be put in this form. For example, recall from the previous
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section the expression for TB , the descent time along the curve
y = y(x) from (0,0) to (L,L):

TB =
∫ L

0

√
1 + (y ′)2

2gy
dx.

We were able, there, to directly evaluate the minimum descent time
(the minimum of the integral) because we already knew from other
considerations what the equations for the minimum-descent-time
curve are (the brachistochrone is a cycloid). Soon, however, we will
redo this problem by a direct minimization of the integral. In this
particular case, we have

F
{
x, y, y ′} = 1√

2g
·
√
1 + (y ′)2

y
.

In this case, as will be true all through this chapter, F is a known
function of x, y, and y ′, but y is not a known function of x. Indeed,
that is our problem: what is y = y(x) to minimize J ? In this book
we aremostly interested in the pioneering problems of extrema, and
the above integral J is almost all we need to consider. I say almost
because I will eventually make two extensions to the above problem
statement, but I’ll save them for later. So, let’s begin.

In figure 6.13, I’ve drawn the curve defined by y = y(x), in the
interval x1 < x < x2, where we will take that y(x) to be the actual
solution curve we are after. Around it, as the dashed curve, is

Y (x) = y(x) + εµ(x),

where ε is any constant and µ(x) is an almost arbitrary (but always
differentiable, as we’ll also assume y(x) to be) function. I say almost
because we will put two constraints on µ(x); it must vanish at the
endpoints, i.e., µ(x1) = µ(x2) = 0. You’ll see why, soon, this is a
desirable property for µ(x). Notice, too, that Y (x) = y(x) if ε = 0,
which will be useful to remember in just a bit. That is, Y (x) is a
perturbed version of the solution y(x), and εµ(x) is the variation of
Y (x) around y(x).

Because J will, in general, depend on the value of ε, we can
write our formulation of the general problem as: find the y(x) that
minimizes the integral
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y

x
x1 x2

y(x)

Y(x) = y(x) + εµ(x)

FIGURE 6.13. A true solution and a variation around it.

J (ε) =
∫ x2

x1

F {x, Y (x), Y ′(x)} dx,

where

Y (x) = y(x) + εµ(x)

Y ′(x) = y ′(x) + εµ′(x).

J = J (ε), since Y and Y ′ depend on ε. Now, since we have intention-
ally constructed this formulation so that by definition Y (x) collapses
to the solution y(x) when ε = 0, then the J (ε) integral is minimized
(by definition!) when ε = 0. Thus, it must be true that

dJ

dε

∣∣∣
ε=0

= 0,

because this is the necessary (although of course not sufficient) con-
dition for an extrema (e.g., a minimum) to exist. The distinction
between an extrema being a maximum or a minimum will gener-
ally be obvious from the physics of the particular problem we will
be studying.



236 C H A P T E R 6

To proceed to our next step, I now need to use a result in calculus
called Leibniz’s rule for differentiating an integral. In the simple case
we have, where the integration limits are not functions of ε, that rule
reduces to the intuitively appealing result that the derivative of the
integral is the integral of the derivative [the general rule, which is a
bit more complicated, is nicely discussed by Marc Frantz, “Visualiz-
ing Leibniz’s Rule” (Mathematics Magazine, April 2001, pp. 143–45)],
and so

dJ

dε
= d

dε

∫ x2

x1

F {x, Y (x), Y ′(x)} dx =
∫ x2

x1

∂F

∂ε
dx,

where ∂F/∂ε denotes the partial derivative of F . The partial refers to
the fact that F is a function of variables other than just ε, i.e., x, Y ,
and Y ′.

Using the chain rule, we can write ∂F/∂ε in terms of those other
variables as

∂F

∂ε
= ∂F

∂Y
· ∂Y
∂ε

+ ∂F

∂Y ′ · ∂Y
′

∂ε
+ ∂F

∂x
· ∂x
∂ε

.

Since we have

∂Y

∂ε
= µ(x),

∂Y ′

∂ε
= µ′(x), and

∂x

∂ε
= 0,

then

dJ

dε
=
∫ x2

x1

{
∂F

∂Y
µ(x) + ∂F

∂Y ′ µ
′(x)

}
dx.

Since setting ε = 0 is equivalent to setting Y = y and Y ′ = y ′, we
therefore have

dJ

dε

∣∣∣
ε=0

= 0 =
∫ x2

x1

{
∂F

∂y
µ(x) + ∂F

∂y ′ µ
′(x)

}
dx.

To continue we next need to recall yet another result from cal-
culus, the formula for integrating-by-parts that was developed in
section 5.1: if g(x) and h(x) are two functions of x (in chapter 5, I
used u(x) in place of g(x) and f (x) in place of h(x)), then
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∫ x2

x1

g dh =
(

gh

∣∣∣x2

x1

−
∫ x2

x1

h dg.

We can use this to integrate the second term of our expression for
dJ/dε. To do this, first set

g(x) = ∂F

∂y ′ , dh = μ′(x) dx.

Then,

dg

dx
= d

dx

(
∂F

∂y ′

)
or dg = d

dx

(
∂F

∂y ′

)
dx

and

h(x) = μ(x).

Thus,∫ x2

x1

∂F

∂y ′ μ′(x) dx =
(

∂F

∂y ′ μ(x)

∣∣∣x2

x1

−
∫ x2

x1

μ(x)
d

dx

(
∂F

∂y ′

)
dx.

However, since μ(x1) = μ(x2) = 0, we have(
∂F

∂y ′ μ(x)

∣∣∣x2

x1

= 0,

and now you can see how convenient was that earlier stipulation
that μ(x) vanish at both x = x1 and x = x2! This, then, lets us write

dJ

dε

∣∣∣
ε=0

= 0 =
∫ x2

x1

{
∂F

∂y
μ(x) − μ(x)

d

dx

(
∂F

∂y ′

)}
dx

=
∫ x2

x1

μ(x)

{
∂F

∂y
− d

dx

(
∂F

∂y ′

)}
dx.

We are now at the final step in deriving the Euler-Lagrange equa-
tion, a step so “obvious” to Lagrange that he zipped right through
it. Later mathematicians thought this final step to be not quite so
obvious, and so provided proofs for it, but I’ll follow Lagrange and
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simply state the following so-called fundamental lemma of the calcu-
lus of variations (which I think is plausible):

if, for arbitrary µ(x),

∫ x2

x1

µ(x)H(x)dx = 0,

then H(x) = 0, x1 < x < x2.

For us, this means

∂F

∂y
− d

dx

(
∂F

∂y ′

)
= 0

which I’ve put in a box because it is the famous Euler-Lagrange
differential equation. Now, what do we do with it? That’s what the
rest of this chapter is about.

6.5 The Straight Line and the Brachistochrone

For our first application of the Euler-Lagrange equation, let’s prove
that the curve of minimum length connecting two given points in
a plane is a straight line. Recall that the differential length ds along
the curve y = y(x) is

ds =
√
(dx)2 + (dy)2 =

√
1 +

(
dy

dx

)2

dx =
√
1 + (y ′)2 dx.

The total length of the curve connecting the points (x1, y1) and
(x2, y2) is, therefore,

J =
∫ x2

x1

ds =
∫ x2

x1

√
1 + (y ′)2 dx,

which means we have

F =
√
1 + (y ′)2 = {

1 + (y ′)2
}1/2

.

Since F has no explicit dependence on y, we have
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∂F

∂y
= 0,

and we also see that

∂F

∂y ′ = 1

2

{
1 + (y ′)2

}−1/2
2y ′ = y ′√

1 + (y ′)2
.

Inserting these two results into the Euler-Lagrange equation gives

d

dx

[
y ′√

1 + (y ′)2

]
= 0,

which immediately tells us that

y ′√
1 + (y ′)2

= constant.

And this, in turn, immediately says that y ′(x) = constant, which
means y(x) = mx+b, wherem and b are constants. This is, of course,
the equation for a straight line, with m and b selected to make the
line pass through the given points (x1, y1) and (x2, y2). So, at last,
we have mathematical proof of what we all knew all along! This is
nonetheless an important result, helping to build our confidence in
the Euler-Lagrange equation.

As a further confidence builder, let’s solve another problem to
which we also already know the answer. Recall from section 6.3 the
expression for the time required by a bead to slide under gravity
(and no friction) along the curve y = y(x) from (0,0) to (L,L):

J =
∫ L

0

√√√√√1 +
(
dy

dx

)2

2gy
dx = 1√

2g

∫ L

0

√
1 + (y ′)2

y
dx.

Thus, ignoring the constant factor of 1/
√
2g, we have

F =
{
1 + (y ′)2

y

}1/2

.
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Unlike the previous example for the straight line, this F has an
explicit dependence on y. This is a complication, but, on the other
hand, notice as well that this F does not explicitly depend on x. In
this case, then, we can use a “reduced” form of the Euler-Lagrange
equation, derived in 1868 by the Italian mathematician Eugenio
Beltrami (1835–1900):

if
∂F

∂x
= 0 then F − y ′ ∂F

∂y ′ = constant,

a result called Beltrami’s identity (derived in appendix G).
Substituting the F for the descent-time integral into Beltrami’s

identity gives (with K some constant),

{
1 + (y ′)2

y

}1/2

− y ′ · 1
2

{
1 + (y ′)2

y

}−1/2

· 2y
′

y
= K.

Or, with just a little bit of algebra,

y
[
1 + (y ′)2

] = 1

K2
,

which, replacing the constant 1/K2 with C, becomes

y

[
1 +

(
dy

dx

)2
]

= C.

But this is precisely the differential equation for y = y(x) that
was derived in section 6.2 for the brachistochrone using Bernoulli’s
optical analogy. This means that, once again, the Euler-Lagrange
equation has given us the correct answer.

6.6 Galileo’s Hanging Chain

This chapter started with Galileo, and in this section we return to
him once more. Imagine a given length of flexible, linked chain
hanging under gravity from nails at each end, as shown in figure
6.14. A modern version of the hanging chain is a telephone wire
or power transmission line hanging from adjacent support poles
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O

FIGURE 6.14. Galileo’s hanging chain.

or towers. Our question here is easy to state: what is the shape of
the hanging chain? Galileo’s answer, in his Discourses of 1638, was
equally plainspoken; a parabola. Since the Latin word for chain is
catena, the shape of the hanging chain was said (by Huygens in a
1690 letter to Leibniz) to be a catenary, and Galileo’s claim, then,
was that the catenary is a parabolic curve.

Galileo was, however, wrong, and it was known for quite some
time that he was wrong. The German mathematician Joachim Jun-
gius (1587–1657) is generally given credit for formally establishing
this negative result in 1669. It wasn’t until 1691, however, that
Leibniz and Johann Bernoulli actually figured out what the catenary
is. (You’ll see, in just a bit, however, how it could be known that the
catenary is not a parabola—Huygens claimed to have known this
since his teenage years—without knowing what it actually is.)

We can solve Galileo’s problem without the calculus of variations
and, of course, that is how itmust have been solved in 1691, five years
before the brachistochrone challenge and long before the develop-
ment of the Euler-Lagrange equation. Following how Bernoulli did
this will give us yet another solution that we can again compare to
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what the Euler-Lagrange equation will tell us (and, of course, we will
get the same answer). Bernoulli started by making the obvious ob-
servation that no matter how the chain hangs, it will have a lowest
point. Let’s call this point A, as shown in figure 6.15, and position
the coordinate system so that A is on the y-axis. The tangent to the
curve of the hanging chain at A is clearly horizontal. Bernoulli then
said the chain to the left of A(x < 0) is completely represented by
the left-directed horizontal force it exerts on the rest of the chain to
the right of A. Let’s call that unknown force (or tension) at A, TA;
whatever it is, it is a constant.

Bernoulli then marked B as an arbitrary point with coordinates
(x, y) on the chain, as shown in figure 6.15. If the mass M of the
chain is uniformly distributed along its length L, then the mass
density is simply ρ = M/L, a constant. So, if the length of the
section of chain from A to B is s, and if as usual g is the acceleration
of gravity, then the weight of the chain section between A and B is
ρsg. Finally, Bernoulli denoted the tension in the chain at B by T ,
directed of course along the tangent to the chain’s curve at B. Call
the angle that T makes at B, with the horizontal, θ (as shown in
figure 6.15). Bernoulli then used the physical observation that the
section of chain from between A and B is not moving. Thus, the net
force acting on the chain must be zero. In particular, the sum of the

y

x
O

A
TA ρsg

T

B
Tsin(θ)

Tcos(θ)

s

θ

FIGURE 6.15. Static forces acting on a hanging chain.
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horizontal forces, and the sum of the vertical forces, must each be
zero. Thus,

TA = T cos(θ), (horizontal force equation)

and

ρgs = T sin(θ), (vertical force equation).

Dividing these two equations into each other, and writing the con-
stant TA/ρg as simply k, we have

T sin(θ)

T cos(θ)
= ρgs

TA
= tan(θ) = 1

k
s.

Since tan(θ) is the slope of the catenary at B, we can write

dy

dx
= 1

k
s.

Differentiating both sides with respect to x gives Bernoulli’s differ-
ential equation for the catenary:

d2y

dx2
= 1

k

ds

dx
= 1

k

√
(dx)2 + (dy)2

dx
= 1

k

√
1 +

(
dy

dx

)2

.

At this point I’ll depart from Bernoulli’s calculations (which be-
came quite complicated) and continue with a pretty little trick that
wasn’t developed until years later (in 1712) but which will allow
us to neatly and quickly solve Bernoulli’s differential equation for
y = y(x). Following the lead of the Italian mathematician Jacopo
Francesco Riccati (1676–1754), let’s define the new variable p as

p = dy

dx
, and so

dp

dx
= d2y

dx2
.

Then, Bernoulli’s equation becomes

dp

dx
= 1

k

√
1 + p2, or dx = k dp√

1 + p2
,

which can now be easily integrated.
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A table of indefinite integrals tells us, in fact, that

x = k sinh−1(p) + C1

where C1 is the constant of integration, and so

p = sinh

(
x − C1

k

)
= dy

dx
.

This is even easier to integrate once more; since the derivative of the
hyperbolic cosine is the hyperbolic sine, we can immediately write
the equation of the catenary as

y(x) = k cosh

(
x − C1

k

)
+ C2,

where C2 is another constant of integration.
We clearly have three adjustable constants to play with here

(remember, k has the unknown tension TA in it), and they can be
determined from three conditions. Obvious candidates for those
conditions are the coordinates of the ends of the catenary, and the
length of the hanging chain. To be honest, however, the numerical
work in finding those three constants can in general be a formidable
task, and I will pursue it no further. (A short but quite interesting
essay on how to do the number crunching is by Paul Cella, “Reexam-
ining the Catenary,” College Mathematics Journal, November 1999,
pp. 391–93.)

I have written before of Johann Bernoulli’s obsessively competi-
tive personality, and the solution of the catenary problem provides
yet another illustration of that unpleasant aspect of his nature.Writ-
ing a quarter of a century later of his memories of the competition
between himself and his brother Jacob, he still gloried as much in
his long-dead brother’s failure as in his own success. As he wrote in
a 1718 letter to a French correspondent:

The efforts of my brother were without success; for my part, I
was more fortunate, for I found the skill (I say it without boasting,
why should I conceal the truth?) to solve it in full and to reduce
it to the rectification of the parabola. It is true that it cost me
study that robbed me of rest for an entire night. It was much
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for those days and for the slight age and practice I then had, but
the next morning, filled with joy, I ran to my brother, who was
still struggling miserably with this Gordian knot without getting
anywhere, always thinking like Galileo that the catenary was a
parabola. Stop! Stop! I say to him, don’t torture yourself any more
to try to prove the identity of the catenary with the parabola, since
it is entirely false. The parabola indeed serves in the construction
of the catenary, but the two curves are so different that one is
algebraic, the other is transcendental.

(This example of Johann’s petty nastiness toward Jacob was not
an isolated case. In an earlier 1712 letter to a mathematician in
England, Johann called the forthcoming posthumous publication of
Jacob’s seminal probability book Ars Conjectandi “A monster which
bears my brother’s name.”)

One last point. We see now that the catenary is not a parabola
as Galileo believed because we have calculated what it actually is
(a hyperbolic cosine). How could it have been discovered that the
catenary is not a parabola without finding what it actually is? This
can be done by a simple negative demonstration. That is, suppose
we examine the curve of the suspension cable of a bridge, attached
to a heavy bridge roadway, as shown in figure 6.16. Now we have
a chain (the cable) hanging not by virtue of just its own mass, but
also because of the enormously greater load of the massive bridge

suspension cable
y

x = 0

bridge deck

x

FIGURE 6.16. A hanging cable with uniform horizontal loading is a parabola.
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deck connected to the suspension cable by a very large number of
vertical hanger wires. In the original catenary problem, the force
on the cable was due just to the mass of the cable itself, but in the
suspension cable case, the cable mass is insignificant compared to
themass of the supported bridge deck. If we suppose the bridge deck
has a uniform mass distribution along its length, and if we position
the coordinate axes as shown in figure 6.16, then the equation for
the catenary

dy

dx
= 1

k
s

is replaced with

dy

dx
= Kx,

where K is some constant. This is immediately integrable to give

y = 1

2
Kx2 + C2,

or, writing 1
2K = C1, we have the parabola

y = C1 x
2 + C2.

That is, assuming uniform mass density along the cable gives a cate-
nary, while assuming uniformmass density along the x-axis gives the
parabola. Two different assumptions, two different curves.

The physical interpretations of the constants C1 and C2 for the
suspension bridge cable’s parabolic curve are easy to see.C2 is simply
the height of the cable’s low point (at x = 0) above the bridge
deck. Also, if the tops of adjacent, uniform height support towers
are at (−a, b) and (a, b), where a and b are both positive, then C1 =
(b − C2)/a

2.
As with the brachistochrone, the catenary has been mentioned

in fictional literature. One character in Mark Helprin’s 1983 novel
Winter’s Tale, for example, proclaims:

A bridge is a very special thing. Haven’t you seen how delicate they
are in relation to their size? They soar like birds; they extend and
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embody our finest efforts; and they utilize the curve of heaven.
When a catenary of steel a mile long is hung in the clear over a
river, believe me, God knows. . . . I would go as far as to say that
the catenary, thismarvelous graceful thing, this joy of physics, this
perfect balance between rebellion and obedience, is God’s own
signature on earth. I think it pleases Him to see them raised.

Beautiful words, yes, but it would of course have been better for Hel-
prin to have clearly distinguished between the unloaded hyperbolic
catenary and the loaded parabola as the curve of the bridge’s cable.

6.7 The Catenary Again

To see how the calculus of variations handles the catenary prob-
lem, let’s return to the physical principle we used in the analysis of
de L’Hospital’s pulley problem in section 5.7. There it was argued
that a massive body hanging under the effect of gravity alone (as
does Galileo’s chain—see figure 6.14 again) will hang in such a way
as to minimize its total gravitational potential energy. For the pul-
ley problem we needed only ordinary calculus, as the pulley was
modeled as a single point mass and the supporting cables were taken
as massless. For the catenary problem, however, the entire length
of hanging chain has mass and so we have a massive, spatially dis-
tributed body.

To set the catenary problem inmathematics, let’s assume as before
that the chain’s mass is uniformly distributed with constant density
ρ. If we look at a differential length (ds) of the chain, located at the
arbitrary point (x, y) on the curve y = y(x), then the differential
mass is dm = ρds and the potential energy of that differential mass
is (ρds)gy, where g is, as usual, the acceleration of gravity. Thus, the
total potential energy of the hanging chain, which we wish to min-
imize by finding the “right” curve y = y(x), is given by the integral

J =
∫ x2

x1

ρgy ds =
∫ x2

x1

ρgy
√
(dx)2 + (dy)2

=
∫ x2

x1

ρgy

√
1 +

(
dy

dx

)2

dx =
∫ x2

x1

ρgy
√
1 + (y ′)2 dx.
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Complicating matters just a bit here, however, is the first of the
two extensions I mentioned back in section 6.4—we need to min-
imize J under the constraint of a given, fixed length of chain. That
is, we must find that y = y(x) that minimizes J while keeping the
chain’s length L constant:

L =
∫ x2

x1

ds =
∫ x2

x1

√
(dx)2 + (dy)2 =

∫ x2

x1

√
1 + (y ′)2 dx = constant.

The clever idea that allows this additional twist to be taken into
account is simply to write∫ x2

x1

√
1 + (y ′)2 dx − L = 0 =

∫ x2

x1

{√
1 + (y ′)2 − L

x2 − x1

}
dx,

and then to argue that we can add zero (as many times as we wish)
to J and we will have changed nothing! That is, with λ anything (λ
is formally called a Lagrange multiplier) we will minimize not J but
rather ∫ x2

x1

[
ρgy

√
1 + (y ′)2 + λ

{√
1 + (y ′)2 −

(
L

x2 − x1

)}]
dx.

The integrand function to be inserted into the Euler-Lagrange
equation is therefore

F = ρgy
√
1 + (y ′)2 + λ

√
1 + (y ′)2 − λL

x2 − x1
.

Notice, however, that the last term, if we take λ as any constant, is
itself a constant and thus it will immediately vanish upon taking
any derivative. So, the actual F that we need to consider is simply

F = ρgy
√
1 + (y ′)2 + λ

√
1 + (y ′)2.

That is, F is the integrand of the integral we wish to minimize plus
a yet undetermined constant multiple of the constraint integral’s
integrand.

Notice that this F does not have an explicit dependence on x,
and so we can use the already partially integrated form of the Euler-
Lagrange equation called Beltrami’s identity, just as we did in section
6.5. That is,
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−F + y ′ ∂F
∂y ′ = C1 (a constant).

Since

∂F

∂y ′ = ρgy
1

2

{
1 + (y ′)2

}−1/2
2y ′ + λ

1

2

{
1 + (y ′)2

}−1/2
2y ′

= ρgyy ′√
1 + (y ′)2

+ λy ′√
1 + (y ′)2

,

then we have

− ρgy
√
1 + (y ′)2 − λ

√
1 + (y ′)2 + ρgy(y ′)2√

1 + (y ′)2
+ λ(y ′)2√

1 + (y ′)2
= C1.

This reduces, after just a bit of simple algebra, to

(y ′)2 = (ρgy + λ)2 − C2
1

C2
1

.

We can now get two useful expressions from this. First,

ρgy + λ = C1

√
1 + (y ′)2.

And second, differentiation with respect to x of the (y ′)2 expression
gives

2y ′y ′′ = 2(ρgy + λ) ρgy ′

C2
1

,

which reduces (with the aid of the first expression) to

y ′′ = (ρgy + λ)ρg

C2
1

= ρgC1

√
1 + (y ′)2

C2
1

= ρg

C1

√
1 + (y ′)2.

But this is precisely the same differential equation Bernoulli arrived
at in the previous section (with C1ρg replaced with k) by summing
the horizontal and vertical forces on a section of the hanging chain.
And we have already solved that (and this) equation using Riccati’s
trick of defining p = y ′.
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Well, all this is wonderful, you say, but so far all we have done is
use the calculus of variations to solve problems previously solved by
other means! Is this all we are going to get from the Euler-Lagrange
equation? The answer is no, and in the final sections of this chapter
I’ll show you a couple of problems that the Euler-Lagrange formu-
lation handles easily (including, at last, a proof of the isoperimetric
theorem) that we have not found solutions to before.

Before leaving the catenary, however, let me tell you about one
last wonderful property it has, one that, while known for centuries,
seems not to be well known. Imagine that you want to build an
arch (e.g., the entrance to a church) out of a nonorganic material
(i.e., something that won’t rot) that is very strong in compression
but weak in tension. Such materials are brick, concrete, and stone,
materials readily available to construction engineers for thousands
of years. (Wood is very strong in both compression and tension, but
it eventually decays.) The trick, then, to using bricks, concrete, and
stone when building strong, durable structures is to avoid tension;
in particular, we should construct our arch so that at every point
there is only compression.

Now, think of the catenary, the curve of a chain hanging in
complete repose. It is, at every point, in tension only, i.e., there
clearly is no point where a hanging chain is in compression. This was
apparently first pointed out in 1675 byNewton’s contemporary (and
sometimes rival) Robert Hooke (1635–1703). (After Hooke loudly
claimed he was the true discoverer of the inverse square law of
gravity, Newton deleted all mention of Hooke from the Principia. It
didn’t pay to irritate Newton!) Further, Hooke went on to observe, if
the hanging catenary was “frozen in place” (e.g., glue the links of the
flexible chain together) and then inverted, the resulting arch would be
in compression only, and at no point would there be tension. Thus,
an inverted catenary is the best (strongest) curve for a stone arch.

Hooke did not publish this result as a formalmathematical deduc-
tion (he was, in fact, not a very good mathematician), and it wasn’t
until considerably after Hooke’s time that that was done. This is il-
lustrated in a letter (dated December 23, 1788) written by Thomas
Jefferson, in reply to a letter he had received a fewmonths earlier. In
his letter, Jefferson’s correspondent had described his uncertainty in
deciding between using a circular or a catenarian arch for the curve
of the iron support tubes in the construction of a bridge. In his re-
ply, Jefferson reports having just read a treatise on bridge arches,
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written by the Italian mathematician Lorenzo Mascheroni (1750–
1800) which showed “every part of the Catenary is in perfect equi-
librium.” Amodern example of an inverted catenary arch is the huge
St. Louis Gateway Arch, made of stainless steel and standing 630
feet high. You can find much more on the use of the catenary in
construction in the beautiful little book by Jacques Heyman, The
Stone Skeleton: Structural Engineering of Masonry Architecture (Cam-
bridge University Press 1995).

Here’s a calculus of variations problem, of engineering im-
portance, for you to try your hand at, and to which I don’t
think you can guess the answer by intuition. It occurs in the
statistical theory of communication and information (and so
electrical engineers are interested in it), but you don’t have to
know anything about those fields to do the math. The pure
mathematical problem is simply this:

find the y(x) that maximizes J = − ∫∞
−∞ y(x) ln{y(x)}dx, sub-

ject to the constraints y(x) = 0 unless 0 ≤ x ≤ M and∫∞
−∞ y(x) dx = 1, where M is a given positive constant.

For those who are curious, y(x) is the probability density func-
tion of some nonnegative random variable, the J integral is
the entropy (a measure of information) of that random vari-
able, and M is the maximum value of that random variable.
The constraint integral is simply the obvious statement that
the total probability that the random variable has a value some-
where between minus infinity and plus infinity is one. But, as I
said before, you don’t really need to know any of this to solve
the problem. Can you see why the solution y(x) maximizes J
(as opposed to minimizing it)? The solution is at the end of
this chapter.

6.8 The Isoperimetric Problem, Solved (at last!)

The first complete proof of the ancient isoperimetric problem using
the calculus of variations is due to the German mathematician Karl
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Weierstrass (1815–97), dating from the period 1879–82. He never
published that work, perhaps because of extremely poor health (af-
ter 1860 he could lecture only while sitting down as a student wrote
the mathematics on a blackboard), but a record of it nevertheless
survived. His students kept detailed notes of his lectures, and in 1927
his isoperimetric analyses were at last published.

To cast the isoperimetric problem into the generic form required
by the Euler-Lagrange equation will throw yet a new twist at us.
Recall the formula given in section 6.2 for the area enclosed by a
closed, non-self-intersecting curveC that is traced out by a clockwise
moving point in the time interval from 0 to T : if the parametric
equations of C are x = x(t) and y = y(t), then

area enclosed by C = 1

2

∫ T

0

{
y(t)

dx

dt
− x(t)

dy

dt

}
dt.

We want to find the C that maximizes this integral, given a fixed
prescribed perimeter. That is, we want to maximize the area integral
subject to a perimeter constraint, just as we had a length constraint
in the previous section in the hanging chain problem. A differential
length of the curve C is, of course,

ds =
√
(dx)2 + (dy)2 =

√(
dx

dt

)2

+
(
dy

dt

)2

dt,

and so the total perimeter is (in terms of time) given by

∫
ds =

∫ T

0

√(
dx

dt

)2

+
(
dy

dt

)2

dt.

With the area and perimeter integrals written out explicitly like
this we can see the new complication—both x and y are functions
of a new, third variable, time, which we did not have in our earlier
work. The easiest way to see how to handle this new feature is to
simply back up and rederive the Euler-Lagrange equation, taking
time into consideration (as you’ll soon see, we will actually get two
Euler-Lagrange equations). So, just as we did before, let’s assume
x = x(t) and y = y(t) are the parametric equations for the solution
curveC that we seek, and write perturbations around the solution as
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X(t) = x(t) + εµ1(t)

Y (t) = y(t) + εµ2(t).

µ1(t) and µ2(t) are now two differentiable, independent, arbitrary
functions, and ε is some constant. Our problem is to find the ex-
trema of the functional

J (ε) =
∫ t2

t1

F
{
t, ε,X(t), Ẋ(t), Y (t), Ẏ (t)

}
dt,

where I am using Newton’s dot-notation for time derivatives (see
section 4.4) to distinguish them from our earlier derivatives that
were with respect to x, i.e.,

ẋ(t) = dx

dt
and Ẏ (t) = d

dt
Y (t).

So,

Ẋ(x) = ẋ(t) + εµ̇1(t)

Ẏ (t) = ẏ(t) + εµ̇2(t).

We can write the perimeter constraint integral as

P(ε) =
∫ t2

t1

G
{
t, ε,X(t), Ẋ(t), Y (t), Ẏ (t)

}
dt,

which is a given constant. So, doing as we did in the previous
section, let’s form the sum integral J + λP (where λ, the Lagrange
multiplier, is for now any constant); finding the curve C that gives
the extrema to J + λP will find the curve that gives the extrema of
J while also satisfying the perimeter constraint.

What we have, then, is

J (ε) + λP (ε) =
∫ t2

t1

(F + λG) dt,

where F is the integrand of the original J integral andG is the inte-
grand of the constraint integral. To keep the notation from becom-
ing “busy,” let’s call F + λG = H . Then,
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J (ε) + λP (ε) =
∫ t2

t1

H
{
t, ε,X(t), Ẋ(t), Y (t), Ẏ (t)

}
dt,

and we know that if J (ε) + λP (ε) has an extrema, it occurs at
ε = 0 (because that’s how we constructed things!). Therefore, just as
before,

d

dε
{J (ε) + λP (ε)}

∣∣∣
ε=0

= 0 =
∫ t2

t1

∂H

∂ε
dt.

Writing ∂H/∂ε out in terms of the other variables, we have

∂H

∂ε
= ∂H

∂X
· ∂X
∂ε

+ ∂H

∂Ẋ
· ∂Ẋ
∂ε

+ ∂H

∂Y
· ∂Y
∂ε

+ ∂H

∂Ẏ
· ∂Ẏ
∂ε

= ∂H

∂X
µ1 + ∂H

∂Ẋ
µ̇1 + ∂H

∂Y
µ2 + ∂H

∂Ẏ
µ̇2.

Because setting ε = 0 is equivalent to setting X(t) to x(t) and Y (t)

to y(t), we have

0 =
∫ t2

t1

{
∂H

∂x
µ1 + ∂H

∂ẋ
µ̇1 + ∂H

∂y
µ2 + ∂H

∂ẏ
µ̇2

}
dt.

Analogous to what we did in the original derivation of the Euler-
Lagrange equation, let’s assume that both µ1(t) and µ2(t) vanish
at times t = t1 and t = t2 (the given start and stop times of our
functional integral J ). That is, µ1(t1) = µ1(t2) = µ2(t1) = µ2(t2) = 0.
Now, remember that we are free to separately choose µ1(t) and µ2(t)

in any way we wish, as long as both vanish at t = t1 and t = t2. In
particular, we could choose µ2(t) = 0 for all t . Then,∫ t2

t1

{
∂H

∂x
µ1 + ∂H

∂ẋ
µ̇1

}
dt = 0.

Or we could choose µ1(t) = 0 for all t , and thus conclude that∫ t2

t1

{
∂H

∂y
µ2 + ∂H

∂ẏ
µ̇2

}
dt = 0.

Just as in our earlier derivation of the Euler-Lagrange equation,
we now simply integrate (by parts) the second term of each of these
two integrals. Everything goes through just as before (I’ll leave the
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filling in of all the easy details for you), but now we will end up with
two Euler-Lagrange equations. I’ll enclose them in a box because of
their central importance in the calculus of variations:

∂H

∂x
− d

dt

(
∂H

∂ẋ

)
= 0

.
∂H

∂y
− d

dt

(
∂H

∂ẏ

)
= 0

Now, at last, we can finally solve the isoperimetric problem. We
have, from the start of this section, the integrand of the area func-
tional as

F = 1

2
(yẋ − xẏ)

and the integrand of the perimeter constraint as

G = (
ẋ2 + ẏ2

)1/2
.

Thus,

H = 1

2
(yẋ − xẏ) + λ

(
ẋ2 + ẏ2

)1/2
.

So, for our first Euler-Lagrange equation, we have

∂H

∂ẋ
= 1

2
y + 1

2
λ
(
ẋ2 + ẏ2

)−1/2
2ẋ

= 1

2
y + λẋ

(
ẋ2 + ẏ2

)−1/2
,

and therefore

d

dt

(
∂H

∂ẋ

)
= 1

2
ẏ + d

dt

[
λẋ√

ẋ2 + ẏ2

]
.

Since

∂H

∂x
= −1

2
ẏ,
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then

− 1

2
ẏ − 1

2
ẏ − d

dt

[
λẋ√

ẋ2 + ẏ2

]
= 0,

or

d

dt

[
y + λẋ√

ẋ2 + ẏ2

]
= 0,

which can be integrated by inspection to give

y + λẋ√
ẋ2 + ẏ2

= C1, a constant.

Thus, at last,

y − C1 = − λẋ√
ẋ2 + ẏ2

.

Repeating the calculations for the second Euler-Lagrange equa-
tion, we have

∂H

∂ẏ
= −1

2
x + 1

2
λ
(
ẋ2 + ẏ2

)−1/2
2ẏ

= −1

2
x + λẏ

(
ẋ2 + ẏ2

)−1/2
,

and so

d

dt

(
∂H

∂ẏ

)
= −1

2
ẋ + d

dt

[
λẏ√

ẋ2 + ẏ2

]
.

Since

∂H

∂y
= 1

2
ẋ,

then

1

2
ẋ + 1

2
ẋ − d

dt

[
λẏ√

ẋ2 + ẏ2

]
= 0,
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or

d

dt

[
x − λẏ√

ẋ2 + ẏ2

]
= 0,

which immediately integrates to

x − λẏ√
ẋ2 + ẏ2

= C2, a constant.

And so, at last,

x − C2 = λẏ√
ẋ2 + ẏ2

.

Squaring and adding the (x − C2) and (y − C1) expressions gives

(y − C1)
2 + (x − C2)

2 = λ2ẋ2 + λ2ẏ2

ẋ2 + ẏ2
= λ2.

But this is just the equation for a circle (yes!) of radius λ centered on
the point (C2, C1). We can, of course, pick the integration constants
C1 and C2 to center the circle anywhere we wish. We now see, too,
that if P is the given perimeter of the closed curve ofmaximum area,
then 2πλ = P , i.e., the Lagrange multiplier constant (of previously
unknown value) is equal to P/2π . Once again the Euler-Lagrange
formulation has formally given us what we “knew” to be the answer
to an historically important problem. But now we have a proof, and
that is what a mathematician wants. Intuition, after all, is too often
a passport to the “land of error”!

Now that the mathematical certainty of the isoperimetric theo-
rem has been established, let me end this section with a challenge
problem for you. Unlike the other challenges in this book, this one
does not come with an answer, because I don’t have one. And yet,
it should require only first-year calculus. To start, consider figure
6.17, which shows an ellipse (divided into four quarters) with semi-
major axes of lengths a and b. The area of this ellipse is (a stan-
dard freshman calculus problem) given by πab. In figure 6.18, the
four quarters have been rearranged to form a new figure with area
πab + (a − b)2. The crucial observation about these two figures is
that they have the same perimeter (I’ll call it P ).
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b

a

FIGURE 6.17. An ellipse.

(a − b)2

FIGURE 6.18. The ellipse of figure 6.17 quartered and rearranged (same peri-
meter but increased area).
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The parametric equations for the ellipse are

x(t) = −a cos(t)

y(t) = b sin(t),

equations that describe a point traveling in a clockwise sense along
the boundary edge of the ellipse. The point makes one complete
orbit of the perimeter in time interval 2π (see appendix F). From
the formula for the length of a curve (see section 6.3), we then have

P =
∫ 2π

0

√
(dx)2 + (dy)2 =

∫ 2π

0

√(
dx

dt

)2

+
(
dy

dt

)2

dt

=
∫ 2π

0

√
a2 sin2(t) + b2 cos2(t) dt.

Now, the isoperimetric theorem says that the area of a plane
region with a perimeter of P = 2πR cannot exceed the area of a
circle with radius R. That is,

A ≤ πR2 = π

(
P

2π

)2

= P 2

4π
.

Thus, P ≥ √
4πA, and so, using the area of figure 6.18 for A, we

have ∫ 2π

0

√
a2 sin2(t) + b2 cos2(t) dt ≥

√
4π

{
πab + (a − b)2

}
,

where the equality obviously holds when a = b.
Here’s the challenge—there seems to be no “easy” way to derive

this inequality directly, by manipulating the integral on the left-
hand side. That is, I can’t see how to do it. If you try your hand
at it and succeed, please write to me and tell me how you did it!

6.9 Minimal Area Surfaces, Plateau’s Problem,
and Soap Bubbles

In 1744, Euler solved the following purely mathematical problem,
and thereby started an area of research that continues to this day:
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FIGURE 6.19. Surface of revolution with circular ends.

“If we connect the two given points (x1, y1) and (x2, y2)with a curve
y = y(x) ≥ 0, and then revolve that curve about the x-axis, a
‘cylinder-like’ surface will be created (with circular, open ends).What
should that curve be to make the area of the surface as small as
possible?” Euler actually considered the slightly less general case of
y1 = y2 (the open circular ends have the same radius), but the case of
y1 �= y2 offers no additional complications and so that’s the problem
I’ll discuss in this section, with reference to figure 6.19.

With ds as a differential length along the curve y = y(x), then
the differential surface area dA swept out by revolving ds about the
x-axis is

dA = (2πy)ds = 2πy
√
(dx)2 + (dy)2 = 2πy

√
1 + (y ′)2 dx,

and so the total area of the “cylinder-like” surface is

J =
∫

dA = 2π
∫ x2

x1

y
√
1 + (y ′)2 dx.

Thus, the F to be inserted into the Euler-Lagrange equation of sec-
tion 6.4 is simply (ignoring the constant factor of 2π)
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F = y
{
1 + (y ′)2

}1/2
.

Since F has no explicit dependence on x, we can use Beltrami’s
partially integrated form of the Euler-Lagrange equation,

F − y ′ ∂F
∂y ′ = constant = C1.

Now

∂F

∂y ′ = y
1

2

{
1 + (y ′)2

}−1/2
2y ′ = yy ′√

1 + (y ′)2
,

and so Beltrami’s identity becomes

y
√
1 + (y ′)2 − y(y ′)2√

1 + (y ′)2
= C1,

or

y√
1 + (y ′)2

= C1.

I’ve put this result in a box as I’ll be referring back to it soon.
Thus, if we square and multiply, we have

y2 = C2
1 + C2

1 (y ′)2,

and differentiation with respect to y gives

2yy ′ = 2C2
1 y ′y ′′,

or, using the boxed result,

y ′′

y
= 1

C2
1

= y ′′

C1

√
1 + (y ′)2

,

which becomes

y ′′ = 1

C1

√
1 + (y ′)2.
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But this is just Bernoulli’s equation (with k written instead of C1) for
the catenary, derived in section 6.6! The surface formed by rotating
a catenary is called a catenoid, and so the answer to Euler’s surface
problem is seen to be intimately related to Galileo’s problem of the
hanging chain. Amazing! But this is only the start of the amazing
results that flow from Euler’s pioneering calculation.

A fascinating physical interpretation of Euler’s problem is found
in the physics of soap films. Such films (or bubbles) are easily made
from ordinary dishwashing detergent, warm water and, if desired,
some glycerin to add stability to the films. Soap films have the
property that their surface energy is proportional to their surface
area, which means a minimum energy film (what Nature “strives”
for) is equivalent to a minimum area film. [For a brief but quite
interesting physics tutorial on this point, see A. Fomenko, “Minimal
Surfaces” (Quantum, May/June 2000, pp. 4–7, 13), as well as the
classic paper by two (husband andwife)mathematicians: Frederick J.
Almgren, Jr., and Jean E. Taylor, “The Geometry of Soap Films and
Soap Bubbles” (Scientific American, July 1976, pp. 82–93).] Therefore,
to experimentally solve Euler’s problem all one need do is dip two
circular wire rings into a soap solution and allow a film to form
between them, as shown in figure 6.19.

Euler’s problem is, in fact, a special case of the so-called Plateau
problem: given a contour in space, show that a surface of minimal
area bounded by that contour exists. The name comes from the
Belgium physicist Joseph Plateau (1801–83) who, over the period
1843–69, experimentally studied minimal areas using wire contours
dipped into soap solution (more on Plateau is in the final section
of this chapter). The problem actually dates, however, from about
1761, when it was posed by Lagrange. Lagrange’s formulation of the
Plateau problem asks for the demonstration of a surface of min-
imum area for any given single contour edge, i.e., for any given
frame consisting of a single closed length of wire. Note carefully that
the two unconnected circular rings of Euler’s problem are not such
a contour, and that if the centers of the two rings are sufficiently
displaced, laterally, then a soap film will not form. More precisely,
there is no minimal surface for Euler’s two-ring contour if the pro-
jections of the two rings do not have some overlap [see Johannes
C. C. Nitsche, “Plateau’s Problems and Their Modern Ramifications”
(American Mathematical Monthly, November 1974, pp. 945–68)].
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For a single, closed contour, however, no matter how bizarre its
twists and turns in three-dimensional space may be, the answer to
Lagrange’s original question is yes, there is always a minimal sur-
face. That was first proven in 1931 by the American mathemati-
cian Jesse Douglas (1897–1965) and, independently in 1933, by the
Hungarian-born American mathematician Tibor Radó (1895–1965).
What Douglas and Radó provided were existence proofs, which is, of
course, not the same thing as actually displaying the specific mini-
mal surface that goes with a given closed contour as its edge. Specific
minimal surfaces for given edges are generally quite difficult to find;
for example, in 1890, H. A. Schwarz (see the box at the end of section
2.6) found the minimal surface determined by a skew quadrilateral
contour, as shown in figure 6.20. Nitsche’s paper, cited above, gives

FIGURE 6.20. Surface with a skew quadrilateral boundary.
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the solution—its expression requires three hyperelliptic integrals,
i.e., it is complicated!

The general solution for Euler’s y = y(x) curve was shown in
section 6.6 to be the hyperbolic cosine, i.e., with C1 and C2 as
adjustable constants (and now no length constraint),

y = C1 cosh

(
x − C2

C1

)
.

To keep things mathematically nice, let’s now drop back down to
Euler’s original problem with y1 = y2. In particular, let’s write y1 =
y2 = y0 = 1, and position the y-axis so that x1 = −x0 < 0 and
x2 = x0 > 0. That is, the two soap rings are 2x0 apart. By symmetry
we have y minimum at x = 0, and so C2 = 0. Thus,

y = C1 cosh

(
x

C1

)
.

To be even more particular (so we can calculate some numbers),
suppose x0 = 1

2 . Then we have y = 1 at both ends
(
x = ± 1

2

)
, and so

1 = C1 cosh

(
1

2C1

)
.

This is a transcendental equation for C1, which means we can’t
solve explicitly in closed form for C1. We need to resort to numerical
methods to find the value of C1 and this is, in fact, a perfect problem
to which we can apply the Newton-Raphson algorithm developed
in section 4.5. A plot of f (C1) = C1 cosh(1/2C1) − 1 shows (see
figure 6.21) that there are actually two values of C1 that satisfy
f (C1) = 0. This may at first seem puzzling as, after all, the minimal
area surface would seem to be a unique surface. Do two solutions to
f (C1) = 0 mean that a soap film can be either one of two possible
shapes? The answer is no, and this will be explained by the end
of this section. For now, however, the plot in figure 6.21 gives us
initial guesses with which to start the Newton-Raphson algorithm,
which fine-tunes the solutions to f (C1) = 0 when C1 = 0.235 and
C1 = 0.848.

If we separate the two rings even more, from x0 = 1
2 to x0 = 1,

then we have yet another surprise waiting for us. With x0 = 1, our
condition on C1 becomes (at the rings where y = y0 = 1)
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FIGURE 6.21. f (C1) = C1 cosh(1/2C1) − 1.

1 = C1 cosh

(
1

C1

)
.

As figure 6.22 shows, there is now no real solution for C1, i.e., the
plot of f (C1) = C1 cosh(1/C1) − 1 never crosses the C1 axis! We
can understand what this means, mathematically, as follows. As x0
increases from 1

2 to 1, the f (C1) curve “rises upward” and, at some
critical value of x0 (call it x̂0), the two crossings of the C1 axis merge
together into a double root. For x0 > x̂0 the f (C1) curve rises above
the C1 axis and there are no crossings (no real solutions). What is
happening, physically, as we increase x0, is that at x0 = x̂0 the soap
film breaks, and for x0 > x̂0 there is no cylindrical soap film surface
connecting the two rings.

So, what happens to the soap film after it breaks when x0 exceeds
x̂0? The answer (verified experimentally) is that it forms two circular
films, one at each ring. Reducing x0 to less than x̂0 does not, of course,
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FIGURE 6.22. f (C1) = C1 cosh(1/C1) − 1.

cause the catenoid surface to reappear, and so the breaking of the
soap film is both sudden and irreversible. This discontinuous behav-
ior is called the Goldschmidt solution, after the German mathemati-
cian C.W.B. Goldschmidt (1807–51) who discovered it (on paper)
in 1831.

We can calculate the value of x̂0, the maximum value of x0 that
can support a catenoid minimum area soap film surface in Euler’s
problem, as follows. We have, from before, that at the circular rings
(where x = ±x0 and y = 1),

1

C1
= cosh

(
x0

C1

)
.

We also know from our earlier discussion that a plot (for a given x0)
of f (C1) = cosh(x0/C1)− (1/C1) will, in general, have two solutions
to f (C1) = 0. When x0 = x̂0, however, the plot of f (C1) will just
touch the C1 axis at a single point. This means the C1 axis is tangent
to the f (C1) curve when x0 = x̂0, and so
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df

dC1

∣∣∣
x0=x̂0

= 0.

So,

df

dC1
= − x0

C2
1

sinh

(
x0

C1

)
+ 1

C2
1

,

and thus, when x0 = x̂0,

0 = −x̂0 sinh

(
x̂0

C1

)
+ 1,

or

x̂0 sinh

(
x̂0

C1

)
= 1.

We also have, of course, that

cosh

(
x̂0

C1

)
= 1

C1
.

Dividing these two results into each other gives

cosh

(
x̂0

C1

)

x̂0 sinh

(
x̂0

C1

) = 1

C1
= 1

x̂0
coth

(
x̂0

C1

)
,

or

coth

(
x̂0

C1

)
= x̂0

C1
.

This can be solved (numerically) to give x̂0/C1 = 1.1997, and so

x̂0 = 1

sinh

(
x̂0

C1

) = 1

sinh(1.1997)
= 0.6627.

In summary, if we have twowire rings each of unit radius, then there
is a catenoid soap film if their separation is less than 2x̂0 = 1.3254,
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and there can not be such a surface if their separation is greater than
1.3254.

Finally, to clean up the last loose end of this section, we need to
explain why (for a given ring separation of 2x0) there are generally
two possible values for C1. To understand this, let’s calculate the
actual surface area of the soap film catenoid as a function of C1.
We have, by symmetry, that this area is simply twice the area of half
of the catenoid surface, i.e., of the surface from one end to halfway
to the other end:

A = 2(2π)
∫ x0

0
y
√
1 + (y ′)2 dx,

where

y = C1 cosh

(
x

C1

)
, −x0 ≤ x ≤ x0.

But, looking back at the result (which I placed in a box at the
beginning of this section) that we got from Beltrami’s identity, we
have √

1 + (y ′)2 = y

C1
.

Thus,

A = 4π
∫ x0

0

y2

C1
dx = 4π C1

∫ x0

0
cosh2

(
x

C1

)
dx.

From any good table of integrals, we find that∫
cosh2(u) du = sinh(2u)

4
+ u

2
,

from which it immediately follows that

A = π C2
1

[
sinh

(
2x0
C1

)
+ 2x0

C1

]
.

For the case of x0 = 1
2 , for example, we found earlier that C1 = 0.235

or C1 = 0.848. Evaluating A for each value, we find A(C1 = 0.235) =
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6.85 and A(C1 = 0.848) = 5.99. Thus, C1 = 0.848 is the value to use
to have theminimal area catenoid, the one that is actually observed
to form.

The discussion in this section on the Plateau problem of mini-
mal area surfaces with a specified boundary edge has not even been
a minimal scratch on the topmost surface of the topic (please for-
give the outrageous pun!). Ever since Plateau’s pioneering soap film
studies, there have been more questions than answers, and mini-
mal surfaces will surely be an active area of mathematical research
for many decades to come. Two of the most fundamental questions
have, however, only recently been answered: (1) the reasons for the
empirical Plateau rules for how soap films connect to each other, and
(2) the wonderfully named double bubble conjecture. Each is easy to
understand, but each required deep mathematical attacks for their
solution. I’ll end this section with a paragraph on each.

His extensive examination of countless soap films led Plateau to
the conclusion that those structures do not assume their shapes at
random. Rather, they follow two simple rules. Either

1. three film surfaces connect along a common edge, with the
surfaces making 120° angles with each other, or

2. six film surfaces connect at a common point (making four
edges together) with an angle of about 109° between any two

of the edges (the exact value is cos−1
(
− 1

3

)
= 109.47122 . . . °).

Both of these rules are illustrated in figure 6.23, which shows the
soap film that forms on a cubical wire frame (there are a total of
13 films meeting along common edges and/or points). These rules
appear to explain every soap film ever observed, but that’s hardly
a proof that they actually do. There was always the possibility that
a sufficiently complicated wire frame might result in a film struc-
ture not explainable by Plateau’s rules alone. Only in 1976 (as a
follow up to her 1972 Princeton doctoral dissertation) was it at
last proven by the American mathematician Jean Taylor (1944– )
that the rules follow as necessary and sufficient consequences of
the surface-energy-minimizing property of soap films. You can find
more on Plateau’s rules, and their implications, in the following two
papers: Cyril Isenberg, “Problem-Solving with Soap Films” (Physics
Teacher, January 1977, pp. 9–18), and Dale T. Hoffman, “Smart Bub-
bles Can Do Calculus” (Mathematics Teacher, May 1979, pp. 377–88).
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FIGURE 6.23. Plateau’s rules illustrated on a cubical frame.

The double bubble conjecture says that if two prescribed but sepa-
rate volumes are to be enclosed by the minimum surface area, then
two bubbles made of three portions of spherical surfaces (one in
common, of course) is the way to do it. Many have thought the
double bubble conjecture to be obvious, e.g., the classic, popular
1890 book on soap bubbles is by the brilliant English experimental-
ist C. V. Boys (1855–1945)—Soap Bubbles and the Forces Which Mould
Them—who wrote there of the spherical double bubble not as con-
jecture but as obvious fact. Boys was wrong, however, and while the
conjecture is true it is not at all obvious. As astonishing as it may
seem, just the two-dimensional version (substitute areas for volumes,
and perimeter for surface area, and then figure 6.24 shows a planar
double bubble for two equal prescribed areas) remained unproven
until 1993. The three-dimensional case, for two volumes, was even
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FIGURE 6.24. Double (planar) bubble.

tougher, resisting all efforts until 2000. You can read about these
proofs (based in large part on the efforts of a team of undergradu-
ate college mathematics students!) in the following two papers: Joel
Foisy et al., “The Standard Double Soap Bubble in R2 Uniquely Min-
imizes Perimeter” (Pacific Journal of Mathematics, May 1993, pp. 47–
58), and Frank Morgan, “Proof of the Double Bubble Conjecture”
(American Mathematical Monthly, March 2001, pp. 193–205).

6.10 The Human Side of Minimal Area Surfaces

This last section to chapter 6 is a bit different from the rest of
the book. It is all prose, with not a single equation. The reason is
that, as I wrote the previous section on minimal surfaces and soap
films, I came across some curious and (in one case) interlocking
stories of the people (all mentioned in the last section) who did
the pioneering mathematical and physical research. I wasn’t able
to weave any of that material into the mathematical discussions,
but instead have saved these little vignettes for a section of their
own. I’ll start with C.W.B. Goldschmidt, the man who discovered
the mathematics behind the breaking of the soap film solution to
Euler’s minimal surface problem.

Almost all books on the calculus of variations discuss the Gold-
schmidt solution, but none (as far as I know) says anything about
the man. My curiosity was sparked by the silence, and so I searched
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for more information. That search eventually led to the discovery
of a brief obituary notice that appeared in the 1851 volume of the
American Journal of Science (pp. 443–44). There it was reported that
Carl Wolfgang Benjamin Goldschmidt was a professor of astron-
omy at the University of Göttingen (“though perhaps not a great
astronomer he was an enthusiastic and laborious one”) and served
as an assistant to the great Gauss at the observatory there. The notice
made the observation, now ironic considering how history turned
out, that “Goldschmidt’s name will be long honored by those who
never knew him.” After mentioning “his investigation of the min-
imum surfaces of rotation of curves about a fixed axis,” the no-
tice ends by revealing (with a typically Victorian romantic view of
death) the nature of Goldschmidt’s early demise: “His death was
like his life—quiet and peaceful. He had long suffered from the con-
sequences of an enlargement of the heart; and on the morning of
Feb. 15th, he was found in his bed, sleeping the sleep that knows
no waking.”

Just two years before Goldschmidt’s insight into the Euler prob-
lem, the soap film pioneer Joseph Plateau conducted a fateful ex-
periment that would lead to his loss of sight. At the University of
Liège, while conducting his doctoral dissertation research in physi-
ological optics (in particular, the formation of images on the retina),
Plateau stared at the sun for nearly half a minute. How he managed
to do this incredibly stupid thing without being under the influence
of brain-deadening drugs has always mystified me, but he did. He
ended up paying a very big price for his diploma—after temporarily
losing his vision and then partially regaining it, by 1841 his corneas
were severely inflamed and by 1843 he was completely and irre-
versibly blind. A very bad state for anyone, of course, and extraordi-
narily bad for an experimentalist. Or so one would think. His classic
soap film experiments were just beginning, and so Plateau enlisted
the eyes and help of his colleagues and students (at the University of
Ghent) to make the actual observations from which were deduced
“Plateau’s rules.” The laws governing one of Nature’s most beautiful
displays in the everyday world are, then, due to a blind man, an
achievement that brings to mind the creation of beautiful music by
the deaf Beethoven.

In 1855, even as Plateau was pondering the soap films he could
no longer see, the man who would “popularize” them was born.
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Charles Vernon Boys eventually became famous as an inspired ex-
perimental physicist, remembered to this day as the inventor of
(among many inventions) the Boys camera. With that camera he was
able to photograph rifle bullets in flight (at 1,400 miles per hour!),
along with the acoustic shock waves they produced. You can find in-
flight bullet images produced by Boys with his nineteenth-century
camera, still fascinating to view in the twenty-first century, in Na-
ture (March 2, pp. 415–21, and March 9, pp. 440–46, 1893). With his
superfast camera you could even record the very bursting of a soap
bubble by a bullet.

During the Christmas season of 1889–90, Boys delivered a se-
ries of lectures to a juvenile audience at the Royal Institution (Lon-
don), and those lectures and the accompanying lantern slides were
brought out as his famous book Soap Bubbles and the Forces Which
Mould Them. The lectures (and book) were enormous successes, and
both displayed wonderful teaching and expository skills. Interest-
ingly, that wasn’t always the case for Boys. In his 1934 Experiment in
Autobiography, H. G. Wells revealed that he had been a former stu-
dent of Boys in 1886, at the Normal School of Science (London), and
that he had been singularly unimpressed. As Wells wrote of Boys, he
was “[T]hen an extremely blond and largely inaudible young man
already famous for his manipulative skill and ingenuity with soap
bubbles. . . . In those days I thought him one of the worst teach-
ers who has ever turned his back upon a resistive audience, messed
about with the blackboard, galloped through an hour of talk and
bolted back to the apparatus in his private room. . . . Boys was too
fast.” By the time Wells wrote those words he was world famous as
the author of The Time Machine, War of the Worlds, and other “sci-
entific romances,” as he called his science fiction novels. Indeed,
Wells was far more famous than was the still-living Boys. It would
be interesting to know what Boys thought when he read Wells’ de-
scription of him (and it is hard to imagine that it wasn’t brought to
his attention by someone).

Brilliant at experiment as he was, Boys had a dark side to him,
too; he loved to play practical jokes on people, a sophomoric activity
that mostly amuses the jokester. Certainly his wife, Marion, was not
amused by her husband’s antics; she put up with them from the start
of their marriage in 1892, but finally divorced him in 1910. There is
some speculation, even today, that Boys’ treatment of his wife might
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have strayed as far south as to be labeled abusive, but in any case the
marriage was so wounded that even before 1910 Marion had begun
an affair with the Cambridgemathematician Andrew Forsyth (1858–
1942). The two married after her divorce, but the resulting scandal
forced Forsyth to resign from Cambridge. As his obituary notice
in Nature put it, “In painful circumstances he made a marriage of
affection, and gained ten years of a happiness for which he counted
the loss of many old associations a price not too high.” Forsyth later
(1927), after Marion’s death, published the influential book Calculus
of Variations (its dedication is simply “To Marion in Remembrance”)
but in his discussion of Euler’s minimal surface problem there is no
mention, none at all, of soap films, bubbles, or Boys.

And finally, the authors of the Scientific American article on soap
bubbles that is almost universally cited by authors writing on min-
imal surfaces are, in a sense, a mirror image reflection of Marion
and Andrew. Jean Taylor was Frederick Almgren’s (1933–97) first
doctoral student at Princeton, and through him was introduced to
minimal surfaces. (Her undergraduate degree, and a master’s too,
are in chemistry, representing scientific knowledge that certainly
must have given her physical insight into the behavior of soap films
that a strictly pure mathematician would lack.) Taylor and Almgren
later married and continued their mutual work on minimal sur-
faces, work that eventually led to Taylor’s solution to the century-
old problem of explaining Plateau’s rules. Jean Taylor (who I suspect
was the inspiration for Rebecca Goldstein’s fictional Princetonmath
professor Phoebe Saunders, an expert in the mathematics of soap
films—see Strange Attractors) is presently professor of mathematics
at Rutgers University.

Solution to the Problem in Section 6.7

Writing λ as the arbitrary, constant Lagrange multiplier that
allows us to apply the constraints, we wish to minimize the
integral ∫ ∞

−∞
{−y ln(y) + λy} dx.
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(continued)

So,

F = −y ln(y) + λy,

and thus

∂F

∂y
= −y

1

y
− ln(y) + λ = −1 − ln(y) + λ.

Since F has no y ′ dependence, then ∂F/∂y ′ = 0 and the Euler-
Lagrange equation becomes

− 1 − ln(y) + λ = 0,

or

ln(y) = λ − 1,

which says

y = eλ−1, a constant (because λ is a constant).

We can calculate the value of this constant from the integral
constraint:∫ M

0
y(x) dx = 1 =

∫ M

0
eλ−1 dx = eλ−1 M.

Thus,

y(x) = eλ−1 = 1

M
, 0 ≤ x ≤ M

= 0, otherwise.

Now, how do we know this y(x) gives a maximum J , and
not a minimum? Because it is easy to demonstrate a different
y(x) that gives a J smaller than the above solution y(x) gives,
i.e., the solution y(x) does not minimize J . For the solution
y(x), we have
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(continued)

J = −
∫ M

0

1

M
ln

(
1

M

)
dx = − 1

M
ln

(
1

M

)
M = − ln

(
1

M

)
= ln(M).

Suppose, however, that we let

y(x) = 2

M
, 0 ≤ x ≤ 1

2
M

= 0, otherwise,

which clearly satisfies the given constraints. For this y(x), we
have

J = −
∫ 1

2M

0

2

M
ln

(
2

M

)
dx = − 2

M
ln

(
2

M

)
1

2
M = − ln

(
2

M

)
= ln(M) − ln(2) < ln(M).

Historical update: The calculus of variations applications that I have
discussed in this chapter are the ones of historical interest, but its
use today has gone far beyond that of studying beads sliding down
wires, and making fences of fixed length to enclose the maximum
land. Today’s applications have mathematical structures far more
complex than I have treated here, with differential equations and in-
equalities serving as the constraint conditions. Such problems rou-
tinely occur in what is called optimal control theory. To read much
of the modern literature in that subject requires much more back-
ground than I have assumed here, but interesting exceptions can be
found.

For example, consider the question of how a human runner
should vary (i.e., control) her speed v(t) during a race of given dis-
tance D in order to minimize her running time T . The runner starts
from rest, of course, and so v(0) = 0. This problem was beauti-
fully analyzed by Joseph B. Keller in “Optimal Velocity in a Race”
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(American Mathematical Monthly, May 1974, pp. 474–80). Keller be-
gins by writing the mathematical statement

D =
∫ T

0
v(t) dt,

along with Newton’s second law of motion (“F = ma”) as

dv

dt
+ v

τ
= f (t),

where v/τ is the resistive force per unit mass of the runner (τ , called
a physiological constant, is characteristic of the particular runner)
and f (t) is the propulsive force per unit mass of the runner. The
runner controls f (t) (and, hence, v(t)) with the constraint that
there is some maximum force, F , that she can exert (F is another
physiological constant characteristic of the particular runner).

Keller next writes E(t) as the oxygen available (per unit mass)
to the runner’s muscles, and argues that oxygen is used at a rate
proportional to the product f v (more oxygen is used the faster
she runs and/or the harder she tries to run). On the other hand,
oxygen is supplied at a rate proportional to yet another physiological
constant, σ , which measures the efficiency of the lungs and of the
blood circulation of the particular runner. That is,

dE

dt
= σ − f v.

Finally, the runner ismodeled as starting with an initial oxygen level
E0, where of course we demand that E(t) ≥ 0 (think of what an
E(t) < 0 would mean, physically, for the runner!).

So, Keller’s problem reduces to the following mathematical ques-
tion:

given the positive constants τ, F, σ,E0, and D, find v(t) and f (t)

such that the T in

D =
∫ T

0
v(t) dt, v(0) = 0

is minimized, subject to the constraints that
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1. (dv/dt) + (v/τ) = f (t);
2. f (t) ≤ F (Keller doesn’t say f (t) ≥ 0, but I consider that to

be an obvious requirement);
3. dE/dt = σ − f v, where E(0) = E0, E(t) ≥ 0.

For the (lengthy but nicely explained) details for how to solve
this fascinating calculus of variations problem, and how to use the
solution to “explain” some world records in long-distance track-
and-field, see Keller’s paper.



7.
The Modern Age Begins

7.1 The Fermat/Steiner Problem

With the development of the calculus of variations well under way
as mathematics entered the nineteenth, attention was redirected to
an old problem in geometry. The problem is deceptively simple, but
it proved to be a signpost to the future for extrema studies: given a
triangle, as shown in figure 7.1, where is the point P inside that
triangle that minimizes the sum of the distances from P to the
three vertices? P is often called Steiner’s point, after the nineteenth-
century Swiss mathematician Jacob Steiner, whose geometric work
on the isoperimetric problem was discussed in section 2.3. In fact,
however, the question about P greatly predates Steiner. Indeed, it
was originally posed two centuries before Steiner, by Fermat, in his
1629 Method for Determining Maxima and Minima and Tangents to
Curved Lines. Torricelli in Italy (see the preface again) read this, and
took up the challenge.

We know that sometime before 1640 Torricelli was successful
in locating P—and so it is occasionally called Torricelli’s point (of-
ten called Fermat’s point, too)—because his student Vincenzo Vi-
viani (1622–1703) published his late mentor’s geometric solution
in his book De maximis et minimis (1659). It was their fellow Ital-
ian, Bonaventura Francesco Cavalieri (1598–1647), however, who is
given credit for publishing in 1647 the following interesting prop-
erty of P , a property that reminds us immediately of one of Plateau’s
rules for soap films: the lines connecting P to the three vertices
meet at P at 120° angles, as long as all three of the vertex angles
are each less than 120°. This result is often so very useful in modern
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A

B C

P

FIGURE 7.1. Steiner’s problem.

applications called facility location problems (e.g., where to locate the
town fire department), that a derivation of the result is instructive.
Curiously, a number of published analyses of P use the power of cal-
culus to derive the 120° property, but fail to show where P actually
is. This is odd because there is a beautiful but elementary geometric
proof (different from Torricelli’s) that both deduces the 120° rule as
well as shows how to locate P . What follows is based on that ele-
gant proof, due to German historian of mathematics J. E. Hoffmann
(1900–73), who published it in 1929.

With reference to figure 7.1, rotate the triangle APB counterclock-
wise around B by 60°, to arrive at C ′P ′B, as shown in figure 7.2. P

rotates into P ′ and, in particular, PA rotates into C ′P ′, AB rotates
into BC ′, and PB rotates into P ′B. Thus,

PA + PB + PC = C ′P ′ + PB + PC.

Since PB = P ′B then the triangle PBP ′ is isosceles, which means
the base angles � BP ′P and � BPP ′ are equal. But since the third angle
of the triangle PBP ′ is 60° (by construction), then all three angles of
the triangle PBP ′ are equal (to 60°), and so triangle PBP ′ is more
than just isosceles—it is equilateral. (By the same sort of argument,
so is triangle AC ′B.) Thus PB = P ′P . So,

PA + PB + PC = C ′P ′ + P ′P + PC.
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FIGURE 7.2. The 120° rule.

The right-hand side of this equality is, in general, a broken path
from C ′ to C, which of course is shortest when it is straight. That
would require � BPC + � BPP ′ = 180°, or

� BPC = 180° − � BPP ′ = 180° − 60° = 120°.

Since we could equally well have drawn AC or AB as the horizontal
side of the triangle in figure 7.1, we can conclude, too, that

� APC = � APB = 120°.

The beauty of Hofmann’s analysis is that, in addition to deducing
the 120° property, it also shows us how to actually locate P . Here’s
how.

As stated before, the triangle AC ′B is equilateral, and it is easily
constructed. If we now construct the analogous equilateral triangle
on either of the other two sides of the original triangle (as shown
in figure 7.3)—remember, any one of the three sides of triangle
ABC could be the one drawn horizontally—then not only will the
straight line joining C ′ to C pass through P but so will the straight
line joining the outermost vertex of the second constructed equilat-
eral triangle and the opposite vertex of the triangle ABC. Thus, the
intersection point of those two lines is P! These two lines (as well as
the third line connecting the third equilateral triangle’s outermost
vertex to its opposite vertex of the triangleABC) all three through P .
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FIGURE 7.3. Locating P when P is inside the triangle.

And finally, this elegant analysis also does something else for us—
it tells us that, if one of the angles of the original triangle ABC is
equal to or greater than 120°, then the point P is not inside the tri-
angle. It is easy to see this because, as the vertex angle at B increases
toward 120°, the point P moves toward B and, when the vertex an-
gle reaches 120° the point P is B. But what if the angle at B increases
beyond 120°? What happens then to P ? It is not hard to show in
that case that P remains at B. Here’s why.

Just to be different from the previous discussion, which was based
on Hofmann’s proof, let’s now assume it is the angle at vertex A

that is greater than 120°, and that the point P is outside the triangle
ABC (as shown in figure 7.4). By the first assumption, the angle β

between the side AB and the straight-line extension of the side AC

is less than 60°. Now, rotate the triangle APB clockwise through the
angle β. Thus P rotates into P ′ and B rotates into B ′, where it is
clear that B ′ is on the straight-line extension of the side AC. Also,
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FIGURE 7.4. When P is not inside the triangle.

it is equally obvious that PB =P ′B ′ and that PA =P ′A. Thus, the
triangle PAP ′ is an isosceles triangle with angle β at vertex A. Since
β < 60◦, then the equal base angles in that isosceles triangle are
each greater than 60◦, which says the base side PP ′ <PA. Thus,
the quantity we are trying to minimize, PA +PB +PC, satisfies the
inequality

PA + PB + PC > PP′ + P ′B ′ + PC,

where the right-hand side is the length of the broken-line path
B ′P ′PC, which in turn is at least as long as the straight-line path
B ′A+ AC. That is,

PA + PB + PC ≥ B ′A+ AC.

Equality is achieved, i.e., the sum PA + PB + PC is minimized, when
P =A, and we are done.

The Fermat/Steiner problem is important today because it, or
generalizations of it, appear in many interesting problems of our
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technological society. One such generalized version is called the fac-
tory problem, for example. To make a direct connection to the Fer-
mat/Steiner problem, suppose there are three factories labeled A, B,
and C whose locations mark the vertices of a triangle. These fac-
tories are to be supplied with monthly shipments of a crucial part
from a soon-to-be-built central warehouse. If the cost of shipping
a load of parts from the warehouse to any distant point is directly
proportional to both the number of parts shipped and to the ship-
ping distance, then where should the warehouse be located? If the
warehouse is at P , and if factory A, factory B, and factory C need
a, b, and c parts per month, respectively, then we obviously wish
to locate P to minimize the quantity a(PA) + b(PB) + c(PC). If
a = b = c then we have the original Fermat/Steiner problem, but
if this condition does not hold then we have a more difficult prob-
lem. That is, suppose we increase the number of factories from three
to n, and write the parts required each month, by each factory, as
c1, c2, · · · , cn. Now we have to locate P by minimizing the quan-
tity

∑n
i=1 ci (PXi), where PXi is the distance between P and factory

Xi . For a clever (but lengthy) outline of the general solution for
the n = 3 case (c1, c2, and c3 are not necessarily equal), see Irwin
Greenberg et al., “The Three Factory Problem” (Mathematics Maga-
zine, March-April 1965, pp. 67–72).

As a final (and amusing) example of the Fermat/Steiner problem,
consider the following little tale. Some years ago (1960), while con-
structing private telephone networks to connect multiple locations
operated by a single business customer, the Bell Telephone Com-
pany had to deal with a curious government regulation on how
much Bell could charge for the use of a network. Rather than basing
its charges on the actual usage of the network (calls per month),
they were to be calculated in proportion to the length of the mini-
mum length of wire needed to construct a network that could link
all the distinct customer locations, even if that wasn’t the way the
network was actually constructed. One of Bell’s customers was Delta
Airlines, which had three airport sites (Atlanta, Chicago, and New
York City) to be linked. Those sites just happen to form (approx-
imately) the vertices of an equilateral triangle, as shown in figure
7.5, and Bell concluded that its charges should thus be based on a
path of wire with length 2 (measured in arbitrary units), shown in
the solid line.
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FIGURE 7.5. Geometry of the Delta Airlines problem.

Delta complained, arguing that would result in an overcharge.
Somebody at Delta had remembered the Fermat/Steiner problem!
What if, Delta asserted, it simply opened a fourth site, a ghost hub,
at the Fermat point of the three-airport triangle? Then a network
linking the three real sites and the ghost site could be built, as shown
in the dashed lines of figure 7.5. That network, which we have just
seen is of minimum length, has length

√
3 = 1.732 (Delta’s hypo-

thetical path is called the Steiner span of the equilateral triangle).
That is, Delta claimed (correctly) that the minimum-length net-
work that could be built was 13.4% shorter than Bell’s proposed net-
work, and that its billing charges should be correspondingly reduced
(Delta was being overcharged by 15.5%). Bell Lab mathematicians,
of course, knew a good argument when they saw it and agreed.

If Delta had wanted to link four airport sites that had just hap-
pened to lie on the vertices of a square, then we can see that the
savings achieved by the Steiner span are less dramatic but still sig-
nificant. Extending Bell’s original network idea to four points would
give a path length of 3 (in arbitrary units), as shown in the solid line
of figure 7.6. The Steiner span, however, in the dashed lines, uses
two ghost hubs to achieve a length of 1 + √

3 = 2.732, a reduction
of 8.9%.

Other problems, similar in spirit to the Fermat/Steiner problem,
are treated in the paper by Bennett Eisenberg and Samir Khabbaz,
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FIGURE 7.6. An extension of the Delta Airlines problem to two ghost hubs.

“Optimal Locations” (The College Mathematics Journal, September
1992, pp. 282–89). One that is particularly interesting concerns the
optimal location of the transmitting antenna for a radio station
serving several towns. If we make the reasonable assumption that
the received signal strength decreases with increasing distance from
the antenna, and further, that we demand the signal strength at the
town most distant from the antenna be as strong as possible, then
we have the following mathematical problem. If A represents the
location of the antenna, andDi is the distance between A and town
i, then we want to position A so that the maximum of the Di is
minimized.

7.2 Digging the Optimal Trench, Paving the
Shortest Mail Route, and Least-Cost Paths
through Directed Graphs

For a path-length-minimization problem of an entirely different na-
ture than that of the Steiner/Fermat problem, consider the follow-
ing passage that I have taken from a 1986 paper (citation to follow
soon):
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A telephone company, while repairing buried cable, has discov-
ered that although the cable is buried 1 m deep, often the cable is
not directly under the marker that is supposed to be erected above
it. They do know that the cable is always within 2 m of the marker
in the horizontal plane. To ensure finding the cable, even when
its direction is unknown, the repairmen dig a 1-m-deep trench in
a circle of radius 2 m about the marker.

The geometry of this situation is shown in figure 7.7.
In 1974 it was speculated that a trench with length shorter than

the circumference of a circle (but still ensuring the discovery of the
cable) could be dug as shown in the solid line of figure 7.7. It has
length 2π + 4, and so the ratio of that length to the circumference
of the circular trench is

2π + 4

4π
= π + 2

2π
= 0.81831,

i.e., the shorter trench is more than 18% shorter. It wasn’t until
1984, however, that this shorter trench geometry was proven to be
the shortest possible trench that is a continuous arc. Amazingly,

buried telephone cable

2m

marker 

FIGURE 7.7. Geometry of the buried telephone cable problem.
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if one allows the trench to be dug as several discontinuous (i.e.,
unconnected) parts, then this ratio can be further reduced to 0.7639.
For the details elaborating on all of these statements, see the paper
by V. Faber and J. Mycielski, “The Shortest Curve That Meets All the
Lines That Meet a Convex Body” (American Mathematical Monthly,
December 1986, pp. 796–801).

Another minimal-length problem, in a different context, is that
of finding a shortest closed path such as is illustrated in figure 7.8.
The path is to start on the west side (W ) of a quadrilateral (the solid
line) at the given point p, and is to eventually return to p (the points
A, B, C, and D, the vertices of the quadrilateral, are also specified).
The path is constrained only by the requirement that it connects
to each of the other three sides of the quadrilateral.Where the path
actually touches the S, E, and N sides is unspecified—only that the
total path length be minimum.

p

B

C

DA

S

E

N

W common green

y

x

FIGURE 7.8. Shortest interior path around a quadrilateral that visits each side.
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One might imagine, for example, that the N , E, and S sides
(BC,CD, and AD) of the quadrilateral represent the front property
lines of three proposed newhomes to be built facing onto a common
green, and that p will be on the street entrance (AB) to the common
green. The common green is, by covenant, to contain nothing but
grass and a closed-path brick walkway allowing access to each of the
three homes. Before laying out the walkway, the builder receives a
request, from the post office, to make the walkway of minimum
length, thus allowing the mail carrier to make his daily journey
around the common green in minimum time. (Another example of
the Postal Service ever striving formaximum efficiency!) The builder
likes this request, too, since it minimizes the number of bricks he has
to lay.

There is a very clever solution to this problem, given in the paper
by R. A. Jacobson and K. L. Yocom, “Shortest Paths within Polygons”
(Mathematics Magazine, November-December 1966, pp. 290–93). If
we call the quadrilateral Q, and if we then reflect Q through side S

to get quadrilateralQ1 (see figure 7.9), and then continue reflecting

N

W

S

E

p

Q

p1

W1

N1

S1

E1

Q1
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E

p
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N1

W1

Q1

E1

Q

S2E2

N2

p1

p2

p3

Q2

N3

Q3

S3

E3

W

FIGURE 7.9. Finding the shortest path by reflection.
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p

v

u

t

FIGURE 7.10. The shortest path is a straight line.

(i.e.,Q1 is reflected throughE1 to getQ2, andQ2 is reflected through
N2 to get Q3), we then can follow point p through the reflections
(marked as p1, p2, and p3). The solution is now obvious—the shortest
path connecting p to p3 (a closed loop) is the straight path. Where
this path crosses S(= S1), E1(= E2), andN2(= N3) determines the
touching points t , u, and v, respectively (see figure 7.10).

As another minimum-path-length problem of yet an entirely dif-
ferent form, consider the directed graph of figure 7.11. That graph has
n = 8 nodes (the circled numbers) that are connected with arcs that
are always directed from left-to-right, i.e., from a lower-numbered
node to a higher-numbered node. Associated with each arc is a non-
negative number, called the cost of that arc, i.e., the cost of traveling
from the lower-numbered node to the higher-numbered node. This
cost may be the actual distance between the two nodes (in some ar-
bitrary units), or perhaps it is a measure of the difficulty of traversing
the arc (as measured by some means of the analyst’s choosing). We
will impose only one constraint on a directed graph: the nodesmust
be numbered in such a way that if node i and node j are linked by
an arc from i to j , then i < j . This restriction prevents the existence
of endless closed-loop subpaths within the directed graph.
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FIGURE 7.11. A directed graph.

The problem is to determine, among all of the possible ways to
travel from node 1 at the far left to node 8 at the far right (more gen-
erally from node 1 to node n), which path has the minimum total
cost. The total cost of a path is defined to be the sum of the costs of
the individual arcs that form the path. For example, the total cost
of the path 1 → 3 → 7 → 8 is 9. But is that the minimum-total-cost
path? The answer is no—can you see which path is the minimum-
total-cost path? Even if you can, what if instead of n = 8, we had a
directed graph with n = 100 nodes (or 10,000 nodes)? Such large di-
rected graphs would clearly present enormous computational chal-
lenges if you resorted to a brute-force enumeration and comparison.
I’ll not solve this problem now, but instead let you think about it for
a while. In section 7.5, as an illustration of dynamic programming,
I’ll show you how to easily find the minimum-total-cost path, by
hand, even for pretty large values of n.With the aid of a computer, di-
rected graphs with very large values of n are just as easily processed.

We can see why something better than a simple comparison of
the total costs of all possible paths is required by calculating what
computer scientists call the computational burden of enumeration.
To make this calculation general, and not specific for any particular
directed graph, let’s imagine that every node i links to every node
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j > i (with the exception, of course, that node n is the end of the
path). We’ll call such a directed graph a complete directed graph. (In
section 7.5 I’ll show you how directed graphs occur, in a natural
way, in a modern production control problem.) In any particular
directed graph where a linking arc doesn’t actually exist between
two nodes, we can effectively remove that arc by simply giving it
an extremely large cost, which means the minimum-total-cost path
will surely not include that particular arc. The number of arcs, N , in
a complete directed graph is easy to calculate. Since node 1 connects
to all of the remaining n−1 nodes, and since node 2 connects to all
of the remaining n − 2 nodes, etc., we have

N = (n − 1) + (n − 2) + · · · + 1,

a sum well known to be 1
2 n(n − 1). (Gauss is said to have done this

calculation at age ten!) More subtle, however, is the calculation of
the number of paths through those arcs, from node 1 to node n, in
a complete directed graph.

To calculate this, let’s define f (i) to be the number of paths from
node i to node n (the answer to our question is f (1)). It is clear, to
start, that since at node n − 1 we can go only to node n, then

f (n − 1) = 1.

What is f (n − 2)? Well, at node n − 2, we can go to just two places;
directly to node n or to node n − 1. Thus,

f (n − 2) = 1 + f (n − 1) = 1 + 1 = 2.

What is f (n−3)? Well, at node n−3, we can go to just three places;
directly to node n or to node n−1 or to node n − 2. Thus,

f (n − 3) = 1 + f (n − 1) + f (n − 2) = 1 + 1 + 2 = 4.

One more time. What is f (n− 4)? Well, at node n− 4, we can go to
just four places; directly to node n or to node n− 1 or to node n− 2
or to node n − 3. Thus,

f (n − 4) = 1 + f (n − 1) + f (n − 2) + f (n − 3) = 1 + 1 + 2 + 4 = 8.
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The pattern is clear:

f (n − k) = 2k−1

The answer to our problem, f (1), means k = n−1. So, in a complete
directed graph with n nodes, there are a total of

f (1) = 2n−2 = 1

4
· 2n paths.

The number of paths grows exponentially with the number of nodes,
and so gets very big, very fast. For example, with just n = 35 nodes,
there are a total of

f (1) = 1

4
· 235 = 8,589,934,592 paths.

Would you want to compute the total cost of each one of them to
find the path with minimum total cost? I didn’t think so!

7.3 The Traveling Salesman Problem

A characteristic of a number of modern optimal-path problems is
that the existence of a solution is theoretically obvious by inspec-
tion, and yet they remain unsolvable in practice. This is in dramatic
contrast to the historically important problems discussed in the pre-
vious chapters. For those problems it was not at all obvious, by any
means, what the solutions might be or even if there was a solution.
The most famous of the modern optimal-path problems is the so-
called “traveling salesman problem,” which gets its name from the
amusing context in which the problem is usually presented. Imag-
ine that a salesman, who lives in City 0, periodically drives to n

other cities to visit clients. He travels to one city after another, vis-
iting each city exactly once, and then after seeing the nth client
returns home to City 0. He knows the distance between each pair
of cities, and from this knowledge he wishes to determine the par-
ticular sequence of city visits that minimizes the total, closed-loop
travel distance.

If we write d(i, j) as the distance to travel from City i to City
j , then determining the total travel distance for a given ordering
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of cities is a trivial exercise in addition. (By the way, notice that in
general d(i, j) �= d(j, i), because the roads connecting two cities
may be one-way roads of different length. Indeed, if two cities are
linked in just one direction we could have the case d(i, j) < ∞ and
d(j, i) = ∞.)

The “solution” to the traveling salesman problem is now obvious
—simply look at all permutations of the integers 1 to n that, ad-
ditionally, start and end with 0 (each such string of numbers is a
possible closed-loop path that represents a legitimate travel route),
compute the total travel distance for each string, and select the
string with the smallest total. This approach is certain to find the
solution, but the problem with it is that the number of permuta-
tions grows at an enormous rate with n. This is because, starting at
City 0, the salesman has n choices for the city to visit first, then n−1
choices for the second city to visit, n − 2 choices for the third city
to visit, etc. Finally, after visiting the last city on his list (after his
nth choice), he returns home to City 0. So, there are a total of n!
closed-loop candidate paths for a tour of n + 1 cities (City 0, plus
Cities 1 through n).

For n = 6 (7 cities) there are just 6! = 720 closed-loop paths to
compare. But for n = 70 (71 cities) there are 70! routes to compare,
i.e., almost 1.2 × 10100 routes. Increasing the tour by a factor of
10 (7 cities to 71 cities) has resulted in a supernova explosion of
the number of tours that must be compared. n! grows far more
rapidly than exponential growth, and for n = 70, the solution, by
brute-force enumeration, has become computationally beyond any
computer we can imagine being built using today’s technology of
clocked, sequential logic. So, while the traveling salesman problem
clearly has a solution for any value of n, once n exceeds just amodest
value, nobody can actually determine, by enumeration, what that
solution actually is!

A dramatic illustration of just how absurd the brute-force enu-
meration “solution” is was given some years ago by George Dantzig
(1914– ), the American mathematician who in 1947 developed
the astonishingly effective simplex algorithm for solving linear pro-
gramming problems (the topic of the next section). In his paper
“Reminiscences about the Origins of Linear Programming” (Oper-
ations Research Letters, April 1982, pp. 43–48), Dantzig wrote
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Now 70! is a big number, greater than 10100. Suppose we had an
IBM 370-168 [a very big computer in the 1980s] available at the
time of the Big Bang 15 billion years ago. Would it have been able
to look at all the 70! combinations by the year 1981? No! Suppose
instead it could examine 1 billion assignments per second? The
answer is still no. Even if the Earth were filled with such computers
all working in parallel, the answer would still be no. If, however,
therewere 1050 earths or 1044 suns all filledwith nanosecond speed
computers all programmed in parallel from the time of the Big
Bang until the Sun grows cold, then perhaps the answer is yes.

A large number of important problems that commonly occur
in modern society have this same property of enormous computa-
tional complexity if attacked head-on by brute-force enumeration.
For example, in the above illustration, Dantzig was writing not of
the traveling salesman problem but rather of the so-called “assign-
ment problem”: how to assign 70 men to 70 jobs (with each man
providing different skill levels for each job) in such a way as to get
all 70 jobs done in minimum time. Because of the “n! problem”
much effort has gone into discovering computationally efficient algo-
rithms. Two general approaches that have been developed are the
one I just mentioned, called linear programming (Dantzig’s simplex
algorithm could, in 1981, solve the 70! assignment problem in less
than a second), and the very different method of dynamic program-
ming. To finish this book I’ll briefly discuss each in the next two
sections.

7.4 Minimizing with Inequalities (Linear Programming)

In this section you’ll encounter the fundamental ideas of linear pro-
gramming, a topic on which literally hundreds of books have been
written over the last fifty years, from very elementary treatments
to ones using mathematical techniques far beyond the level of this
book. The presentation, here, in a single section, will necessarily be
at the most basic level, along with some historical commentary. But
let me clear away one commonmisunderstanding, immediately, be-
fore I begin. Linear programming is a mathematical technique that
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can be (usually is) implemented as a computer program, but that is
not what the word “programming” means. Rather, its original his-
torical usage was as the name for the administrative task of schedul-
ing a sequence of time-ordered events (usually with the objective
of optimizing some measure, e.g., minimizing the total cost, or the
total time required). Indeed, the naming of the task of writing code
for a computer as programming derives from that historical origin, as
after all that is what writing a computer program is—the schedul-
ing of a time-ordered sequence of events, with each event being the
execution of an individual instruction in the program code. Pro-
gramming (i.e., scheduling) problems, however, were studied long
before the first programmable electronic computers were built.

The formal definition of the mathematical linear programming
problem is quite simple, in principle:

given a linear function f (called the objective function) of n inde-
pendent, nonnegative real variables x1, x2, · · · , xn, along with a
system of inequalities linear in the xi , find the specific values of
the xi that minimize (maximize) f .

A vast number of important optimization problems in modern so-
ciety have this structure. The mathematical study of systems of
inequalities can be traced as far back as 1826, to the French mathe-
matician Joseph Fourier (1768–1830). That year he published a short
paper in which he considered a problem involvingmultiple inequal-
ities that, together, define what he called an “irregular polygon”
and what is today called a convex region. He elaborated on these
ideas in a second paper published the following year. Fourier’s work
was a fundamental foreshadowing of concepts basic to modern lin-
ear programming. You can find more on what he did in two pa-
pers by I. Grattan-Guiness, “Joseph Fourier’s Anticipation of Linear
Programming” (Operational Research Quarterly, 1970, pp. 361–64),
and “On the Prehistory of Linear and Non-Linear Programming,”
in The History of Modern Mathematics, vol. 3 (Academic Press 1994,
pp. 43–89), and in the paper by H. P. Williams, “Fourier’s Method of
Linear Programming and Its Dual” (American Mathematical Monthly,
November 1986, pp. 681–95).

The concepts of linear programming optimization are no longer
limited to just scholarly journals, but have actually penetrated into
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popular fiction as well. For example, in Robert K. Tanenbaum’s 1987
novelNo Lesser Plea, we find the following little speech from a lawyer
in the San Francisco District Attorney’s Office:

To gain maximum efficiency, we have to view the entire criminal
justice system as a whole, and adjust the inputs of resources at
each node so as to optimize throughput. . . . so we have developed
a Trial Screening Profile that assigns priorities to different sorts
of cases and generates scores. Then we can observe the trial dis-
positions of various [assistant district attorneys] and bureaus and
see whose scores diverge from the optimum and take corrective
action.

Later in the same novel we get a skeptical response from another
lawyer who heard the above:

Look, they’re trying to control the whole office with numbers. But
you can’t really control anything with numbers unless you have
a sense of what the numbers mean. Which they don’t. . . . It’s like
that story about the Russian chandelier factory. They get a quota
from Moscow each year—make six tons of chandeliers. So they
make one six-ton chandelier and take the rest of the year off.

As the first example of a linear programming problem, the famous
“diet problem” formulated by the American economist George Stig-
ler (1911–91) is, I think, the best choice. The diet problem is a main-
stay in today’s textbook discussions of linear programming, both
because it is obviously important and easy to understand. It is not
generally easy to solve, however, at least not by hand. Imagine that
we have two lists in front of us. One gives a number of different
foods, their nutritional content (vitamins, minerals, fiber, fat, calo-
ries, etc.) per unit amount, as well as the cost of each food per unit
amount. The other list contains the minimum and/or maximum
amounts of nutritional intake, per unit time, required by an adult
to maintain good health. The solution to the diet problem is the
determination of the amount of each food required, per unit time,
to satisfy the nutritional needs at minimum cost.

In a paper published in 1945 (“The Cost of Subsistence,” Journal
of Farm Economics, pp. 303–14), Stigler attempted to solve the diet
problem using actual data for Americans. For a total of 77 available



298 C H A P T E R 7

foods in August 1939, along with nine nutritional constraints, he
arrived at a diet with a yearly cost of $39.93. It was a pretty awful
diet (wheat flour, evaporated milk, cabbage, spinach and beans!), of
which Stigler said “No one recommends [this diet] for anyone, let
alone everyone.” It does sound a little like the gruel given byDickens
to Oliver Twist but, still, if not particularly tasty, it is a low-cost,
nutritionally sound diet. But was it the minimum-cost nutritionally
sound diet? Stigler was careful to not make that claim because, as he
wrote, his “[analysis] procedure is experimental because there does
not appear to be any direct method of finding the minimum of a
linear function subject to linear conditions.”

Just two years later, however, Dantzig published just such a
method, his now famous simplex algorithm. Indeed, in the fall of
1947, the Mathematical Tables Project (MTP) at the National Bu-
reau of Standards used the simplex algorithm to solve Stigler’s array
of nine inequalities in 77 nonnegative variables. [The MTP was a
Depression-era Work Projects Administration effort that employed
hundreds of out-of-work office clerks. See David Alan Grier, “The
Math Tables Project of the Work Projects Administration: the Re-
luctant Start of the Computing Era” (IEEE Annals of the History of
Computing, no. 3, 1998, pp. 33–50)]. Using just desk calculators, it
required almost 17,000 multiplications and divisions spread over
more than 100 man-days of work to do the job; the least expensive,
nutritionally sound diet was determined to cost $39.69 per year, us-
ing not Stigler’s five foods but instead nine (wheat flour, corn meal,
evaporated milk, peanut butter, lard, beef liver, cabbage, potatoes
and spinach—still pretty awful!).

Stigler’s accomplishment of getting to within 0.6% of the correct
solution to such a complex problem was certainly impressive, in-
deed amazing, but his trial-and-error approach would have no hope
of producing similar success in the face of a problem with tens of
thousands of variables and constraints. And such monster problems
are the typical linear programming problem today, occurring in such
applications as scheduling airline flights and routing telephone calls
(both of which attempt to maximize a flow through a global net-
work with varying local limits on congestion). Dantzig’s simplex
algorithm, on the other hand, handles such problems with ease.
Programmed on a modern home computer, for example, Stigler’s
original diet problem is solved in the blink of an eye.
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The simplex algorithm requires linear algebra to properly explain
it, but we can appreciate what it does with the following simplified
diet problem. Imagine that, to be healthy and grow into a fine, fat
chicken dinner, a chicken needs to consume a minimum weekly
amount of three different nutrients each (called A,B, and C). Let’s
further assume, to be specific, that the minimal amounts are (in
some unit system) 60, 84, and 72, respectively. The local feed store
stocks two brands of chicken feed, markedly different from each
other. One is cheap because it’s low on nutrients per ounce, and
the other is expensive because it’s high on nutrients per ounce. To
be specific, suppose the details are

A B C Cost
(nutrients per ounce) (pennies per ounce)

Feed #1 3 7 3 10
Feed #2 2 2 6 4

From this we can see that if the farmer buys just feed #1, then,
to provide a chicken with its minimum weekly nutrients, he must
buy the maximum of {60/3, 84/7, 72/3} ounces = the maximum of
{20, 12, 24} ounces = 24 ounces, at a cost of $2.40 per week. On
the other hand, if the farmer buys just feed #2, then, to provide
a chicken with its minimum weekly nutrients, he must buy the
maximum of (60/2, 84/2, 72/6) ounces = the maximum of (30, 42,
12) ounces = 42 ounces, at a cost of $1.68 per week. Obviously, if he
is going to buy just one of the feeds then feed #2 is the better (i.e.,
cheaper) pure strategy. But is that the best possible choice? That is,
could he feed a chicken a nutritionally adequate diet for less than
$1.68 per week if he used a mixed strategy, i.e., if he used a mix of
the two feeds? We can answer this question by stating the problem
as one in linear programming.

If we denote the weekly amount (in ounces) of feed #1 by x1 and
of feed #2 by x2, thenwe can express the nutritional constraints with
the following three inequalities:

(a) 3x1 + 2x2 ≥ 60 (nutrient A)

(b) 7x1 + 2x2 ≥ 84 (nutrient B)

(c) 3x1 + 6x2 ≥ 72 (nutrient C).
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The objective function to be minimized is the weekly cost:

f (x1, x2) = 10x1 + 4x2.

The constraint inequalities can be written as

x2 ≥ 30 − 3

2
x1

x2 ≥ 42 − 7

2
x1

x2 ≥ 12 − 1

2
x1.

The geometric meaning of each inequality is easy to understand: if,
for example, we plot the line x2 = 30 − 3

2x1 (the equality version of
the first inequality), then the inequality is satisfied by any point on
the line or above the line. The three inequalities are simultaneously
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FIGURE 7.12. Chicken diet feasible solution set (shaded).
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satisfied by any point that is (the shaded region shown in figure
7.12) above all three lines (or on the boundary edge of that region).
All of those points together form the so-called feasible solution set. For
this problem we see that the feasible solution set is an unbounded
convex region in the first quadrant of the x1, x2 plane. We also see
that the two pure strategies considered earlier are represented by the
point (0, 42), which is the pure strategy of using only feed #2, and
the point (24, 0), which is the pure strategy of using only feed #1. In
addition, there are two other vertex points on the boundary of the
convex feasible solution set. One, the point (6, 21), is determined
by the intersection of the A and B lines and the other point, (18, 3),
is determined by the intersection of the A and C lines.

The feasible solution set is often called a polytope or simplex
(hence the algorithm’s name), but this is a loose use of tech-
nical language. A simplex in n-dimensional space is the most
elementary (minimum complexity) structure that exists in the
complete space, e.g., a triangle in two-dimensional space is a
simplex, while a line is not because it uses only one of the two
dimensions available. An n-space simplex has n + 1 noncol-
linear vertices (e.g., a triangle in 2-space has three vertices not
all on the same line). A feasible solution set, however, as I’ll
soon demonstrate, can have lots more than n + 1 vertices! The
concept of the simplex greatly predates linear programming;
it was introduced a century earlier as the prime confine by the
great English mathematician William Kingdon Clifford (1845–
79). Citing the two- and three-dimensional versions as the tri-
angle and the tetrahedron for the “simplest form of confine”
of an area and a volume, respectively, Clifford generalized the
idea to n-dimensions, noting that the prime confine in n-space
has n + 1 vertices.

Let’s now plot the objective function on top of the feasible so-
lution set, as shown in figure 7.13, using several different constant
values for f . We see that the result is a family of parallel, straight
lines with the general equation
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FIGURE 7.13. Chicken diet feasible solution set with objective function.

x2 = 1

4
f − 5

2
x1.

The lines are parallel, of course, since each has the same slope of
− 5

2 . To solve our problem geometrically, then, we simply look for
that objective function line with the smallest value of f that still
passes through the feasible solution set. Since the feasible solution
set is convex, then the minimum f line will be the line that is as far
to the left as possible, i.e., the line that passes through the feasible
solution set vertex at (x1 = 6, x2 = 21). Thus, the minimum-cost
weekly diet for a chicken consists of 6 ounces of feed #1 mixed with
21 ounces of feed #2, at a weekly cost of (6×10¢)+(21×4¢) = $1.44.
This is more than 14% cheaper than the cheaper of the two pure-
strategy diets.

What happened, geometrically, in this problem is that each con-
straint inequality divided a two-dimensional space in half with a
one-dimensional line. All of those divisions together carved out a
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convex region (unbounded, in this case) of the two-dimensional
space, which we call the feasible solution set. Any point in that
set satisfies all of the constraints. The minimum of the objective
function was located at one of the extreme points of that set, i.e.,
at a vertex of the feasible solution set. The same thing happens
as we encounter problems with more than two variables. Thus,
in an n-variable problem, each constraint inequality divides an n-
dimensional space in half with an (n − 1)-dimensional surface. All
of these divisions together carve out a convex region of the n-
dimensional space, which is the feasible solution set. The extreme
of the objective function is located at one of the extreme, outermost
points of that set, i.e., at a vertex of the feasible solution set.

For a two-variable problem like the chicken diet problem, it is
easy to literally watch all of this taking place on a flat piece of paper.
In n-dimensional space it is not so easy to “see”! And while we do
not have to consider all of the points in the feasible solution set, but
only those points on the surface that are the vertices of the set, there
are nevertheless a lot of vertices as n increases into the thousands. In
n-dimensional space, the convex feasible solution set resembles the
faceted face of an n-dimensional diamond; the simplex algorithm
moves over the face from vertex to vertex with the goal of increas-
ing/decreasing the objective function at each move. When that can
no longer be done, the optimum vertex has been found. How the
movement from vertex to vertex is controlled is the simplex algo-
rithm, and, in general, is explainable only in themathematics of lin-
ear algebra andmatrix theory; I refer you to any good book on linear
programming—see, for example, the last paragraph of this section.

We can calculate an upper bound on the number of vertices for
the feasible solution set as follows: if there are n variables (each
defining a nonnegativity constraint of the form xi ≥ 0), and m

additional constraints, then there may be as many as
(
m+n

n

) = (m+
n)!/m! n! vertices. This claim follows from the simple idea of taking
any n of the total ofm+n constraints and solving them as equalities,
thus defining the values of xi for a possible vertex. The reason I say
that this is an upper bound is because we may find that, for certain
selections of the n constraints from the m + n total constraints, a
true vertex is not defined. For example, in the chicken diet problem
we had n = 2 variables and m = 5 constraints (the x1 ≥ 0 and
x2 ≥ 0 ones, plus the three nutritional constraints). For a problem
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of this size, the upper bound on the number of feasible solution set
vertices is

7!

5! 2!
= 21,

but in fact we found in the chicken diet problem that there are
just four vertices (look back at figure 7.12). A potential vertex that
didn’t make the final cut is, for example, the solution of the equation
versions of the nutritional constraint inequalities for B and C. Their
solution point is clearly not a vertex of the feasible solution set. But
even if only a very small fraction of the upper bound is realized,
the number of vertices can be enormous. For example, in Stigler’s
original diet problem with n = 77 variables and m = 9 nutritional
constraints, the upper bound is nearly half-a-trillion, i.e.,(

86

9

)
= 86!

77! 9!
= 4.6 × 1011.

For a second example of what appears to be linear programming
(but actually isn’t), imagine a large industrial production facility
with (initially) 1,000 identical operational machines, each of which
can make either of two parts (I’ll call the two parts A and B). The
manager of the facility can assign each operational machine, each
week, to the task of making either part A or part B. The manager’s
goal is to maximize the total profit generated by his facility over the
next four-week period. Part B generates more profit than does Part
A, but mechanically stresses a machine more than does Part A. He
has to decide how to assign his operational machines, at the start of
each new week, with the following constraints:

1. if a machine makes part A for a week, then that machine will
generate a profit for that week of $400.

2. if a machine makes part B for a week, then that machine will
generate a profit for that week of $600.

3. of all the operational machines assigned each week to make
part A, 20% will suffer some mechanical breakdown and be
unavailable for future assignment.

4. of all the operational machines assigned each week to make
part B, 40% will suffer some mechanical breakdown and be
unavailable for future assignment.
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To formulate the manager’s problem in mathematical terms, let’s
write

xi = number of operational machines assigned to make
part A during week i, i = 1, 2, 3, 4

yi = number of operational machines assigned to make
part B during week i, i = 1, 2, 3, 4

and the objective function (the total, four-week profit) as

f = 400 (x1 + x2 + x3 + x4) + 600 (y1 + y2 + y3 + y4) .

The manager’s problem is to determine the integers x1, x2, x3, x4,

y1, y2, y3, and y4 that maximize f , subject to the following con-
straints:

x1 + y1 = 1000

x2 + y2 = 0.8 x1 + 0.6 y1

x3 + y3 = 0.8 x2 + 0.6 y2

x4 + y4 = 0.8 x3 + 0.6 y3

xi ≥ 0, i = 1, 2, 3, 4

yi ≥ 0, i = 1, 2, 3, 4.

The requirement that the xi, yi be integers is, of course, the result
of the obvious condition that operational machines come only in
integers. This is a requirement that was not present in the diet
problem, and it dramatically alters the mathematical structure of
the problem. One can attempt to use linear programming to find
the xi, yi , and if the result happens to give them as integers, then
all is well. But there is no guarantee that will happen. Indeed, when
it does happen, it is simply a lucky accident of the numbers. I’ll
solve this problem in the next section, with the entirely different
method of dynamic programming, which will automatically give
us the integer solution.

One might naively hope that, if linear programming arrives at a
noninteger solution, then perhaps simply rounding that solution to
integers will solve the problem. That, unfortunately, is not generally
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true, as shown by a simple counterexample. Suppose we wish to
maximize the objective function f = 40 x1 + 70 x2, subject to the
constraints 3 x1 + 5 x2 ≤ 15 and x1 + 5 x2 ≤ 10, as well as that x1 and
x2 must be nonnegative integers. If we initially ignore the integer
constraint, then we will arrive at the shaded convex region of figure
7.14 as the feasible solution set (for now, ignore the circled points).
Plotting a family of parallel objective function lines shows that the
one giving the maximum f that still intersects the feasible solution
set is the one that passes through the vertex at (2.5, 1.5), i.e., x1 = 2.5
and x2 = 1.5. Thus,

fmax = 40(2.5) + 70(1.5) = 100 + 105 = 205.

Rounding the linear programming solution to the integer-coordin-
ate points in the feasible solution set (to the points (3,1) and (2,1))
might seem like the next thing to do, but neither of these is the
solution to the so-called integer-programming problem. Here’s why.

For the problem at hand, we can find the integer solution by
enumeration, i.e., by simply testing all points in the feasible solution
set with integer coordinates. There are 11 such points, the points
circled in figure 7.14. For this small-scale two-dimensional problem,
enumeration is only a bit tedious (in problems with more variables,
you can see matters would get very tedious, very quickly):

Integer Coordinates f = 40 x1 + 70 x2

(0, 0) 0
(0, 1) 70
(0, 2) 140
(1, 0) 40
(1, 1) 110
(2,0) 80
(2,1) 150
(3,0) 120
(3,1) 190
(4,0) 160
(5,0) 200

Thus, the solution to the integer programming problem is x1 =
5, x2 = 0, which gives fmax = 200. This solution is not even close to
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FIGURE 7.14. Integer programming.

the solution to the linear programming problem (x1 = 2.5, x2 = 1.5),
or to its possible “rounded” values, and so rounding is discredited.

It wasn’t until 1958 that the American mathematician Ralph
Gomory (1929– ), then an assistant professor of mathematics at
Princeton, published an algorithm for solving the integer program-
ming problem. You can find Gomory’s breakthrough idea (the so-
calledmethod of cuts) discussed in the tutorial paper by Joe Wampler
and Steve Newman, “Integer Programming” (The College Mathemat-
ics Journal, March 1996, pp. 95–100). In 1991 Gomory wrote a fasci-
nating historical essay onhowhe came to integer programming, and
you can find that paper (“Early Integer Programming”) reprinted in
the January–February 2002 issue of Operations Research, (pp. 78–81).
His original motivation came from a chance remark he heard dur-
ing a lecture on the Navy’s use of linear programming to study its
ship assignments within the fleet: getting answers like “1.3 aircraft
carriers” were of little value for planners!
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Linear Programming and the Nobel Prize in Economics

The economics Nobel prize is not one of the original prizes,
but rather is formally “The Bank of Sweden Prize in Economic
Sciences in Memory of Alfred Nobel,” first awarded in 1969.
In 1975 the economics prize was shared by the Soviet math-
ematician Leonid Kantorovich (1912–86) and the Dutch-born
American economist Tjalling Koopmans (1910–86). The cita-
tion on their award was “for their contributions to the theory
of optimum allocation of resources,” i.e., for linear program-
ming. Those two men certainly were of the caliber one would
expect for a Nobel laureate, but what of George Dantzig, who
is the recognized inventor of the simplex algorithm? (Dantzig’s
1975 National Medal of Science specifically cites him as the
inventor of linear programming.) Dantzig was simply passed
over by the Nobel awards committee, an act of stunning omis-
sion. Even the winners alluded to this, with both mentioning
Dantzig in their Nobel speeches. In fact, when George Stigler
won the same prize seven years later, in 1982, he too men-
tioned Dantzig. (Stigler’s prize was not specifically for his diet
problem work, but rather for unrelated analyses in market be-
havior and public regulation theory.)

Some Nobel observers feel the Nobel awards committee ig-
nored Dantzig because he is a mathematician, while Kantoro-
vich and Koopmans made their marks as economists. That ar-
gument is somewhat supported by a statement made by the
economist Robert Dorfman in his paper “The Discovery of
Linear Programming” (Annals of the History of Computing, July
1984, pp. 283–95): “Linear programming is not a branch of
mathematics. It lies in the domains of economics (both ap-
plied and theoretical) and management.” Dorfman’s paper is,
in many respects, an admirable piece of historical writing; in
particular, he nicely explains the motivations behind the work
of Kantorovich and Koopmans. But his erroneous “not math-
ematics” claim did not pass unnoticed. Vigorous letters of re-
buttal from pioneers in the use of linear programming were
received and printed in the Annals (see vol. 11, no. 2, 1989,
pp. 145–51). And even before Dorfman’s paper appeared, a
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counterexample to his assertion had appeared in a physics jour-
nal, showing how to apply linear programming to solve cer-
tain difficult electrical circuits problems: J. N. Boyd and P. N.
Raychowdhury, “Linear Programming Applied to a Simple Cir-
cuit” (American Journal of Physics, May 1980, pp. 376–78). The
authors cite Dantzig’s work, not Koopmans’ or Kantrovich’s.

The snub argument is, however, somewhat weakened by
noting that Kantorovich’s doctorate was in mathematics, and
that the 1994 economics prize was awarded (in part) to mathe-
matician JohnNash (of “A Beautiful Mind” fame) for his purely
mathematical work in game theory. Perhaps, in fact, Nash’s
prize was partially motivated by a desire on the part of the No-
bel awards committee to show there is no bias by economists
against mathematicians. Still, wouldn’t it be more direct for
economists to simply honor the man who invented an al-
gorithm used millions of time each day around the world—
mostly by economists? It should be no surprise to learn that
the top prize among mathematicians is not the economics No-
bel, but rather the Fields Medal (often called the “Nobel prize
of mathematics”).

As a fabulously successful algorithm, the simplex algorithm had
long been viewed as the gold standard. It had also long been sus-
pected that it is not perfect in the computationally efficient sense.
What that means is this: define the size S of a linear programming
problem to be the sum of the number of variables and constraint
conditions. For example, the chicken diet problem discussed earlier
has a size of S = 2 (variables) +3 (constraint conditions) = 5. Now,
a computationally efficient algorithm (for any problem) is one that
requires, at most, a solution time that increases as some polynomial
function of S. The simplex algorithm has been shown, however, in
its worst case, to require an exponential solution time. Such worst-
case problems, I should mention, do not actually seem to occur very
often in “real life,” and the simplex algorithm almost always works
quite well on problems with sizes up to S = 20,000 or more. This
is because, despite being theoretically exponential, it nearly always
performs (i.e., converges to a solution) in a time approximately pro-
portional to S1. This (desirable) average behavior caught Dantzig’s
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early attention. In a long interview given some years ago (College
Mathematics Journal, September 1986, pp. 293–314), he said of the
simplex algorithm:

Most of the time it solved problems with m equations in 2m or
3m steps—that was truly amazing. I certainly did not anticipate
that it would turn out to be so terrific. I had no experience at
the time with problems in higher dimensions, and I didn’t trust
my geometrical intuition. For example, my intuition told me that
the procedure would require too many steps wandering from one
adjacent vertex to the next. In practice it takes few steps. In brief,
one’s intuition in higher dimensional space is not worth a damn!

Still, linear programming problems with sizes much larger than
20,000 are becoming increasingly common (tens of thousands of
constraints and hundreds of thousands of variables occur in routine
“industrial strength” problems), and so the search started decades
ago for alternatives to the simplex algorithm, for algorithms that
would always execute in polynomial time. In 1979, the Soviet math-
ematician Leonid Khachiyan (now on the computer science faculty
at Rutgers University) announced the final step to earlier work (by
others) that resulted in what is called the ellipsoid algorithm, which
always runs in polynomial time (in a time proportional to S6). But
since the simplex algorithm exhibits an S1 behavior nearly all the
time anyway, the 1979 result was mostly of academic interest only.
That interest was intense, however, and a wonderfully funny and
insightful essay on how even usually serious people went “off the
deep end” about the ellipsoid algorithm is by Eugene L. Lawler,
“The Great Mathematical Sputnik of 1979” (Mathematical Intelli-
gencer, 1980, pp. 191–98).

The nonpolynomial time property of the simplex algorithm
wasn’t proven until 1972, but when it was it was by the most con-
vincing type of mathematical proof there is—the production of
specific examples. That year the American mathematicians Victor
Klee (1925– ) and George Minty (1929–86) published the follow-
ing class of n-variable (pick n to be any integer greater than zero)
linear programming problems:

maximize f = 2n−1x1 + 2n−2x2 + · · · + 2xn−1 + xn subject to the
n constraints
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x1 ≤ 5

4x1 + x2 ≤ 25

8x1 + 4x2 + x3 ≤ 125
...

...

2nx1 + 2n−1x2 + · · · + 4xn−1 + xn ≤ 5n.

There are 2n vertices on the resulting feasible solution set and, start-
ing at x1 = x2 = · · · = xn = 0 (which obviously both satisfies the
constraints and is a vertex), Klee and Minty showed the simplex al-
gorithm would find the vertex that maximizes f—(0, 0, · · · , 5n)—as
the last vertex. As a simple example of how polynomial and expo-
nential times compare, consider the following table of 2S and S6:

S 2S S6

2 4 64
5 32 15,625
10 1,024 1,000,000
20 1,048,576 64,000,000
29 536,870,912 594,823,321
30 1,073,741,824 729,000,000

The exponential time algorithm is actually faster (2S < S6) than the
polynomial time algorithm for S ≤ 29. Of course, for S ≥ 30, we
would obviously prefer the polynomial time algorithm. S = 30 is,
in fact, actually a pretty small linear programming problem.

In 1984, the Indian analyst Narendra Karmarkar (then at AT&T
Bell Laboratories and not yet 30 years old) announced an entirely
different polynomial time algorithm, one that runs in a time pro-
portional to S3.5. (It is interesting to note that he was not trained as
a mathematician, but rather as an electrical engineer.) His algorithm
seems to possess the simplex algorithm’s property of nearly always
performing better than its absolute worst-case limit when applied
to problems of everyday structure. For problems with sizes much
larger than 20,000, it appears to run from 50 to 100 times faster than
does the simplex algorithm. The Karmarkar algorithm is called an
interior algorithm because, unlike the simplex algorithm, the search
for the extreme vertex starts from inside the feasible solution set.
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The simplex algorithm, by contrast, remains entirely on the hyper-
dimensional surface of that set as it moves from vertex to vertex.

Karmarkar’s algorithm was initially viewed with great skepticism,
not only because of the dramatic speed claims for its performance,
but also because AT&T refused to reveal important details until after
it received a patent on the algorithm (in 1988). There was precedent
for this—the first U.S. software patent had been granted years before,
in 1968. Many computer science observers, however, don’t believe
patenting software is the best way for computer science research
to develop. Dantzig openly published his simplex algorithm, and
from that public accessibility came enormous productive research
and useful knowledge. But, of course, we see today a parallel legal
path being taken in the biotechnology fields, with companies at-
tempting to patent the DNA codes of everything from microbes to
humans, the very “algorithms of life”! Today, the detailed theory be-
hind the Karmarkar algorithm is readily available: you can find it,
the ellipsoid algorithm, and the simplex algorithm, all discussed in
solid mathematics in the single book by the mathematician Howard
Karloff, Linear Programming (Birkhäuser 1991). A very nice discus-
sion of Karmarkar’s algorithm, with some interesting applications
of it, had already appeared a few years before in the journal liter-
ature; see Gilbert Strang, “Karmarkar’s Algorithm and Its Place in
Applied Mathematics” (The Mathematical Intelligencer, vol. 9, no. 2,
1987, pp. 4–10).

7.5 Minimizing by Working Backwards
(Dynamic Programming)

In this final section of the book I’ll discuss an important mathe-
matical development that occurred almost at the same time as did
the start of linear programming. When a problem can be formu-
lated as a time-ordered sequence of decisions, then the solution
(what those decisions should be to achieve the extreme of some
function) can often be found with dynamic programming. The de-
velopment and proselytizing of this mathematical theory for solv-
ing multistage decision processes is most closely associated with
the American mathematician Richard Bellman (1920–84). His 1957
book Dynamic Programming (Princeton) is recognized today as a
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classic and, although now almost a half-century old, it is still a
source of fascinating problems.

Dynamic programming is much more of an “art form” than is
linear programming, and in that sense resembles classical analysis
much more than does linear programming. Indeed, the simplex
algorithm is available in a number of different (huge) standardized
computer programs into which one need only enter the objective
function and constraint inequalities and out comes the answer. In
dynamic programming, by contrast, wemust develop a new analysis
for each new problem, which generally takes the form of deriving a
functional equation characteristic of the particular problem. Here’s a
simple but instructive example of that process for solving a problem,
which will also illustrate the use of Bellman’s famous principle of
optimality:

IfP = x1x2 · · · xn, with xi ≥ 0 for i = 1, 2, · · · , n, and if∑n
i=1 xi =

a, a given constant, then what values for the xi maximize P ?

It should be obvious that, for n ≥ 2, none of the xi can be either 0
or a, as then P = 0, which is clearly not the largest P possible.

Whatever the answer is, it is certainly the case that it could only
be a function (at most) of n—the dimension of the problem—and of
a, as those are the only parameters in the problem. So, let’s write
the maximum value of P as fn(a). Now, for the trivial case of n = 1,
i.e., for

P = x1, x1 ≥ 0,
1∑

i=1

xi = a = x1,

we obviously have f1(a) = a. For the somewhat more interesting
case of n = 2, i.e., for

P = x1x2, x1 ≥ 0, x2 ≥ 0,
2∑

i=1

xi = a = x1 + x2,

we have x2 = a−x1 and so P = x1(a−x1), where 0 ≤ x1 ≤ a. It is easy
to see that to maximize P we should pick x1 = 1

2a (and so x2 = 1
2a,

as well). This gives f2(a) = 1
4a

2. How to proceed for the cases of
n ≥ 3, to find f3(a), f4(a), etc., is perhaps not so immediately clear,
however. Consider the following approach.
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Imagine that we have somehow found the value for x1. We are
left, then, with the problem of maximizing the product x2x3 · · · xn

subject to the constraints

xi ≥ 0, i = 2, 3, · · · , n

n∑
i=2

xi = a − x1.

But that is exactly our original problem, except that we have reduced
the problem dimension by 1 from nxi to (n− 1)xi , and that the
(n− 1)xi sum to a − x1 (not to a). Thus, by the very definition of
fn we can write the maximum value of the product x2x3 · · · xn as
fn−1(a − x1). So, to find the maximum value of P for the original
problem, we pick x1 to maximize x1fn−1(a − x1), i.e., we have the
multiplicative recurrence

fn(a) = max
0≤x1≤a

{x1fn−1(a − x1)},

which is the characteristic functional equation for this problem.
Observe, carefully, how we got this functional equation. We

argued that the proper choices for the n-dimensional problem (the
values for x1, x2, · · · , xn), what Bellman called the optimal policy, are
such that the values of x2, x3, · · · , xn form the optimal policy for the
(n− 1)-dimensional problem. This is Bellman’s principle of optimal-
ity for a multistage decision process, which he stated as follows in
his Dynamic Programming: “An optimal policy has the property that
whatever the initial state and initial decision are [in our case, here,
that is the value of x1], the remaining decisions [that is, the values
of x2, x3, · · · , xn] must constitute an optimal policy with regard to
the state resulting from the first decision.”

Once we have the functional equation for a problem, the second
phase of a dynamic programming analysis is to solve (either analyti-
cally or, more usually, numerically) the functional equation. For our
problem at hand, here’s how to do that analytically. (I’ll show you
a numerical solution in my next example.) Let’s return to the case
of n= 3, the first case for which we found the problem getting less
easy to handle. We have, from the functional equation, that
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f3(a) = max
0≤x1≤a

{x1f2(a − x1)} .

But since f2(a) = 1
4a

2, then f2(a − x1) = 1
4 (a − x1)

2, and so

f3(a) = max
0≤x1≤a

{
x1

1

4
(a − x1)

2
}
.

We can easily find the appropriate value of x1 by simply setting the
derivative of 1

4x1(a − x1)
2 equal to zero. This gives x1 = 1

3a, and so

f3(a) = a3

27
.

If we summarize our results so far, we have

f1(a) = a =
(
a

1

)1

,

f2(a) = 1

4
a2 =

(
a

2

)2

,

f3(a) = 1

27
a3 =

(
a

3

)3

.

It would seem to be obvious that a good guess to the general an-
swer is

fk(a) =
(
a

k

)k

,

and this is, indeed, easy to confirm by induction.We certainly know
the conjecture is true for k = 1, 2, and 3. So, let’s assume the conjec-
ture is true for k = n − 1 and see if that implies it is true for k = n.
Thus,

fn(a) = max
0≤x1≤a

{x1fn−1(a − x1)} = max
0≤x1≤a

{
x1

(
a − x1

n − 1

)n−1
}
.

Setting the derivative of x1((a − x1)/(n − 1))n−1 equal to zero gives
x1 = a/n, and so
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fn(a) = a

n


a − a

n

n − 1




n−1

= a

n

[
na − a

n(n − 1)

]n−1

= a

n

[
a(n − 1)

n(n − 1)

]n−1

= a

n

(
a

n

)n−1

=
(
a

n

)n

,

which confirms the conjecture. Thus, to maximize P , set x1 = x2 =
· · · = xn = a/n, which gives the maximum value of P = x1x2 · · · xn
as fn(a) = (a/n)n.

In slightly less formal language, the principle of optimality
is the mathematical version of what your parents always told
you is the way to live an honorable life—“always do your best.”
That is, you’ll make the most of what you started with if you
always make the most of what you have left. Bellman was very
much taken with the principle of optimality and, in his fas-
cinating, eccentric autobiography Eye of the Hurricane (World
Scientific), published the same year as his death (as befits a true
autobiography), he wrote: “My first task in dynamic program-
ming was to put it on a rigorous basis. I found that I was us-
ing the same technique over and over to derive a functional
equation. I decided to call this technique, ‘The principle of
optimality.’ ”

When a friend objected, saying, “The principle is not rigor-
ous,” Bellman wrote that he replied “ ‘Of course not. It’s not
even precise.’ A good principle should guide the intuition.”
As you might gather from this, Bellman was a character! He
was a brilliant (even though his greatest admirers also thought
him supremely arrogant) if somewhat erratic genius, and his
job title at the time of his death shows the broad range of his
interests: he held a professorship at the University of South-
ern California with joint appointments in mathematics, elec-
trical engineering, biomedical engineering, and medicine. His
breadth of mathematical accomplishment is illustrated by the
recognition he received in 1979 from the world’s largest en-
gineering professional society, the Institute of Electrical and
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Electronics Engineers (IEEE). That year Bellman received the
IEEE Medal of Honor (the most prestigious award of all in elec-
trical engineering) for his work in dynamic programming.

We are now in a position to understand how to use the principle
of optimality to solve the directed-graph minimum-total-cost path
problem from section 7.2; i.e., look back at figure 7.11. Let’s write
c(i, j) as the cost of traveling the arc that links node i to node j

(where you’ll recall that our convention in numbering the nodes of
a directed graph is that i < j ). Also, let’s write f (i) as the minimum
total cost in traveling from node i to the terminal node (node 8 in
figure 7.11). Obviously, then, f (8) = 0.

Now, suppose that we have somehow arrived at node 7. There is
only one way to travel to node 8, at a cost of c(7, 8) = 4. So, next
to node 7 let’s write a 4 inside of a box, as shown in figure 7.15.
Similarly, if we have somehow arrived at either node 5 or node 6,
then, in each case, there is only one way to get to node 8 (at the
costs of c(5, 8) = 1 and c(6, 8) = 1, respectively). So, next to nodes
5 and 6 we write a 1 inside of a box. The numbers in the boxes
represent the total cost to travel from a box’s node to node 8, i.e.,
f (7) = 4, f (6) = 1, f (5) = 1.

Continuing to work our way backwards toward node 1 (it is, after
all, the value of f (1) and the path that achieve that minimum total
cost that we are after), suppose next that somehow we have arrived
at node 4. From there we now have more than one way to proceed;
we could go to either node 5 or to node 6. If we go to node 5, the total
cost to travel to node 8 is c(4, 5)+ f (5) = 4+ 1 = 5, and if we go to
node 6, the total cost to travel to node 8 is c(4, 6)+f (6) = 1+1 = 2.
Since f (4) is the minimum total cost to travel from node 4 to node
8, we obviously have

f (4) = min

{
c(4, 5) + f (5)

c(4, 6) + f (6)

}
= min

{
5

2

}
= 2.

So, next to node 4 we write 2 in a box. What we’ve done so far is
shown in figure 7.15, which also shows a slanted bar struck through
each arc that is traveled in going from one node to the next (this is
equivalent to dropping rice behind us, so we can find our way back).
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FIGURE 7.15. Solving a directed graph by working backwards.

The general process should now be clear. If we have somehow
managed to arrive at node i, then the minimum total cost of travel-
ing from that node to node 8 is given by

f (i) = min
j>i

{c(i, j) + f (j)},

and f (i) is the number wewrite in a box next to node i. This additive
recurrence is the dynamic programming functional equation for the
least-cost path through a directed graph. It clearly incorporates the
principle of optimality because, no matter how we may have gotten
to a particular node, the path onward from that node to the terminal
node is an optimal policy itself. If we continue to use the functional
equation, we find that

f (3) = min

{
c(3, 5) + f (5)

c(3, 7) + f (7)

}
= min

{
5 + 1

3 + 4

}
= 6,

f (2) = min

{
c(2, 7) + f (7)

c(2, 6) + f (6)

}
= min

{
6 + 4

6 + 1

}
= 7,
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f (1) = min



c(1, 3) + f (3)
c(1, 2) + f (2)
c(1, 4) + f (4)


 = min



2 + 6
4 + 7
7 + 2


 = 8,

and the final result is shown in figure 7.16. The minimum cost path
is 1 → 3 → 5 → 8, and the cost of that path is 8. It should be evident
by now that the functional equation for this problem would be very
easy to code for automatic execution on a computer and, given the
connection topology of even a very large (say, n = 1,000 nodes)
directed graph, the least-cost path could be found quickly.

There is one curious aspect to our solution—we found the op-
timal policy in the reverse order from which it would be actually
implemented. That is, we worked backwards from node 8 to node 1
to find the least-cost path from node 1 to node 8. Since our conven-
tion for numbering the nodes means that we will encounter ever
increasing node numbers as we move forward in time during our
journey from node 1 to node 8, then increasing node numbers are a
measure of increasing time. So, our numerical solution of the func-
tional equation is a backwards-in-time process. This sort of thing is a
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FIGURE 7.16. Final dynamic programming solution to the directed graph of
figure 7.15.
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general property of dynamic programming solutions, and it brings
to mind an observation made more than 150 years ago by the Dan-
ish philosopher Søren Kierkegaard: “You can only understand life
backwards, but we must live it forwards.”

Our solution by dynamic programming of the directed graph
problem is a pretty mathematical result, all by itself, but it has im-
mediate practical applications, too. Consider, for example, the fol-
lowing problem faced by a manufacturing firm that sells a certain
large, expensive earth-moving machine to construction engineers.
Suppose we are given the following information about the firm’s
business practices and orders:

1. the construction of a machine takes one month;
2. if any machines are built during a month, then there is a

fixed overhead production cost (independent of the number
of machines constructed) of 2 units of money charged to the
earth-moving budget (defining money this way keeps the
numbers in the problem from becoming awkwardly large,
e.g., define a unit to be $1,000);

3. the firm can construct any number of machines during any
particular month (including none, with the production
facility devoted that month to other manufacturing duties,
and the overhead production cost charged against other
budgets);

4. completed machines are shipped to customers only at the end
of a month;

5. if a completed machine is not shipped at the end of a month,
then it is stored on-site (as inventory) at a cost of 1 unit of
money per machine per month (the month of construction
does not incur a storage cost);

6. the production line for earth-moving machines is shut down
during the winter months of December and January, and is
available for production only during the other ten months of
the year; the firm plans its operation in production cycles of
5-months duration, i.e., there are two production cycles per
12-month period.

7. at the start of each production cycle the inventory is zero;
8. the firm’s marketing department has contracts for 16

machines, to be delivered according to the following schedule
for the first production cycle:
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Number of machines
At the end of to be shipped

February 2
March 4
April 2
May 5
June 3

The firm’s production manager needs to determine the construc-
tion schedule (i.e., policy) that has the minimum total overhead/
storage cost. That is, he needs to calculate how many machines
should be constructed each month. One possible (extreme) policy,
for example, would be to simply construct all 16 machines in Febru-
ary. The cost of doing that can be easily calculated as follows:

Machines Machines
Stored Delivered at

Machines Constructed during the End of
during the Month of This Month This Month Cost

February 16 0 2 2
March 0 14 4 14
April 0 10 2 10
May 0 8 5 8
June 0 3 3 3

The total overhead/storage cost for this particular policy is then 37
units of money. But is this the policy with the minimum total cost?
The answer is no and, in fact, the optimal policy has a significantly
lower cost.

To find the least-cost policy, we can represent themanager’s prob-
lem as finding the least-cost path through a complete directed graph.
To see how this is done, first observe that the following two conclu-
sions can bemade from the above list of the firm’s business practices:

1. during any given month the firm should construct just
enough machines to fill orders for an integer (including zero)
number of months, because to do otherwise would result in
excess machines that will incur storage costs while waiting for
the next delivery date;
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2. conclusion #1 implies the firm should construct new
machines only when the inventory has shrunk to zero and,
because of business practice #3, this causes no problems.

Now, let node i in a directed graph represent the firm at the start of
month i, where i = 1 ⇒ February, i = 2 ⇒ March, and so on, to
i = 6 ⇒ July. (Notice that the end of June, when machines can last
be shipped, is the start of July.) This gives us the graph of figure 7.17,
where c(i, j) is the cost of the arc joining node i to node j . That is,
c(i, j) is the cost of, at the start of month i (with zero inventory),
constructing (and perhaps storing) enough machines to make all
deliveries to the start of month j . We have already, for example,
calculated that c(1, 6) = 37. Similar calculations result in the costs
shown in the figure (as shown in section 7.2, with n = 6 nodes there
are 1

2 (6)(5) = 15 arcs in this graph).
Applying the dynamic programming procedure for directed

graphs to the graph of figure 7.17 gives the result shown in figure
7.18, which shows that there are actually two production schedule
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FIGURE 7.17. The directed graph of the machine construction problem.
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FIGURE 7.18. Dynamic programming solution of figure 7.17.

policies that result in the same least cost of 10 units of money:
1 → 2 → 3 → 4 → 5 → 6 and 1 → 2 → 4 → 5 → 6. The optimal
(least-cost) policy is not unique. The first policy says to construct
2 machines in February, 4 in March, 2 in April, 5 in May, and 3
in June, i.e., to construct the machines to be shipped at the end of
eachmonth during that month. The second policy says to construct
2 machines in February, 6 in March, none in April, 5 in May, and
3 in June. The choice between these two policies would have to be
made on issues other than the cost, e.g., perhaps having the pro-
duction facility available for another project during April would tip
the decision toward the second policy.

A Question for You to Play With

Suppose the fixed overhead cost is changed to 4 units of
money. The storage cost remains at 1 unit ofmoney permachine
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per month. Now what is the optimal production policy? The
answer is at the end of this section.

As the final example of dynamic programming, let’s return to
the 1,000-machine integer programming problem discussed in sec-
tion 7.4. I left it unsolved there because the number of integer-
valued variables (8) means the feasible solution set is a collection of
points in hyperspace (which, as Dantzig observed, is a hard thing to
“visualize”!) The dynamic programming formulation has no such
complications. Recall that we are to determine how many of the
still-operational machines to allocate, at the beginning of each week
over a four-week period, to making partA (with the remaining oper-
ational machines assigned to making part B). As with the previous
dynamic programming examples, we’ll solve this problem “back-
wards in time.”

To start, let’s define fk(n) as themaximum profit that can be made
during a period of k weeks that starts with n operational machines.
So, if we assign x machines to make part A (and thus n−x machines
to make part B), then we can immediately write, for a one-week
period (k = 1),

f1(n) = max
0≤x≤n

{400x + 600(n − x)} = max
0≤x≤n

(600n − 200x)

= 600n,

because we obviously achieve the maximum of 600n − 200x by
setting x = 0. This result tells us that, at the start of week 4 (when we
have just one week left), we should assign all of the then-operational
machines to making to part B.

Let’s now back up to the start of week 3, i.e., we are now con-
cerned with f2(n), the maximum profit to be made from n opera-
tional machines with two weeks to go. Since f2(n) is the sum of the
profits from week 3 and week 4, then if we start week 3 by assigning
x machines to making part A (and so n−x machines to making part
B), we can write

f2(n) = max
0≤x≤n

{[600n − 200x] + f1[0.8x + 0.6(n − x)]} .
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Since f1(n) = 600n, then

f2(n) = max
0≤x≤n

{600n − 200x + 600[0.8x + 0.6(n − x)]}

= max
0≤x≤n

{960n − 80x} = 960n,

as we clearly maximize 960n − 80x by setting x = 0. So, as we start
week 3, we should assign all of the operational machines to making
part B.

Let’s now back up to the start of week 2, i.e., we are now con-
cerned with f3(n), the maximum profit to be made from n opera-
tional machines with three weeks to go. Since f3(n) is the sum of
the profits from week 2 and the final two weeks, then if we start
week 2 by assigning x machines to making part A (and so n − x

machines to making part B), we can write

f3(n) = max
0≤x≤n

{[600n − 200x] + f2[0.8x + 0.6(n − x)]} .

Since f2(n) = 960n, then

f3(n) = max
0≤x≤n

{600n − 200x + 960[0.8x + 0.6(n − x)]}

= max
0≤x≤n

{1,176n − 8x} = 1,176n,

as we clearly maximize 1,176n − 8x by setting x = 0. So, as we start
week 2, we should assign all of the operational machines to making
part B.

Finally, let’s back up to the start of week 1, i.e., we are now con-
cerned with f4(n) (where of course now n = 1,000 for our particular
problem). As usual, let’s assign x machines to making part A and
n − x machines to making part B. Then, as before,

f4(n) = max
0≤x≤n

{[600n − 200x] + f3[0.8x + 0.6(n − x)]} ,

or, as f3(n) = 1,176n, we have

f4(n) = max
0≤x≤n

{600n − 200x + 1,176[0.8x + 0.6(n − x)]}

= max
0≤x≤n

{1,305.6n + 35.2x} = 1340.8n,
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as we clearly maximize 1,305.6n + 35.2x by setting x = n. So, as we
start week 1, we should assign all of the operational machines to
making part A.

Our optimal (maximum four-week profit) policy is, thus,

start of week 1: assign all 1,000 machines to making part A;
start of week 2: assign all remaining machines (= 800) to

making part B;
start of week 3: assign all remaining machines (= 480) to

making part B;
start of week 4: assign all remaining machines (= 288) to

making part B.

This policy will generate a total profit of $1,340,800, and all other
policies would generate less profit.

As a final comment on this problem, its solution by dynamic pro-
gramming is in one important sense more general than is a solution
by linear or integer programming; dynamic programming will still
work even if the objective function is nonlinear. For example, sup-
pose we keep all as before except for the profit that is generated
from making each part. Suppose now that, instead of varying lin-
early with the amount of each part made (i.e., linearly with the
number of machines assigned to make each part), the profit from
each part varies quadratically with the number ofmachines assigned.
This might occur, for example, from the reduced cost per part expe-
rienced by purchasing in large quantity the raw material required to
make the parts. The problem of determining the optimal (maximum
profit) policy is now one of nonlinear programming and the linear
simplex algorithm will not work. Dynamic programming, however,
doesn’t miss a beat.

To see this, suppose that if n machines are assigned to make part
A for a week, then the profit is 2n2, while if those n machines are
assigned to make part B for a week, then the profit is 3n2. Defining
fk(n) as before, if we have n operational machines at the start of
week 4 and we assign x of them to making part A (and n − x to
making part B), then we can write

f1(n) = max
0≤x≤n

{
2x2 + 3(n − x)2

} = max
0≤x≤n

(
5x2 − 6nx + 3n2

)
= 3n2,
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because 5x2 − 6nx + 3n2 achieves its maximum value in the interval
0 ≤ x ≤ n at x = 0. This is because the quadratic expression
has a minimum at an x within the interval (at x = 3

5n), and so the
maximummust occur at one of the endpoint values for x; which one
is easy to determine. For x = n the quadratic is 2n2, and for x = 0
the quadratic is 3n2. So, the conclusion is that x = 0. This result says
that at the start of week 4 we should assign all operational machines
to making part B, just as we concluded in the linear profit case.

Let’s now back up to the start of week 3. Then, if we assign x

machines out of n to making part A (and n − x to making part B),
we have

f2(n) = max
0≤x≤n

{
5x2 − 6nx + 3n2 + f1[0.8x + 0.6(n − x)]

}
= max

0≤x≤n

{
5x2 − 6nx + 3n2 + f1(0.6n + 0.2x)

}
= max

0≤x≤n

{
5x2 − 6nx + 3n2 + 3(0.6n + 0.2x)2

}
as f1(n) = 3n2. So,

f2(n) = max
0≤x≤n

{
5x2 − 6nx + 3n2 + 1.08n2 + 0.72nx + 0.12x2

}
= max

0≤x≤n

{
5.12x2 − 5.28nx + 4.08n2

} = 4.08n2

when x = 0. Thus, as we start week 3, we should assign all opera-
tional machines to making part B, just as we concluded in the linear
profit case.

Let’s now back up to the start of week 2. Then, as before, if we
assign x out of n machines to making part A and n − x to making
part B, we have

f3(n) = max
0≤x≤n

[
5x2 − 6nx + 3n2 + f2[0.6n + 0.2x]

}
= max

0≤x≤n

{
5x2 − 6nx + 3n2 + 4.08(0.6n + 0.2x)2

}
= max

0≤x≤n

{
5.1632x2 − 5.0208nx + 4.4688n2

}
= 4.6112n2
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when x = n. So, as we start week 2, we should assign all operational
machines to making part A, which is not what the optimal policy
says to do in the linear profit case.

And finally, let’s back up to the start of week 1. Then,

f4(n) = max
0≤x≤n

{
5x2 − 6nx + 3n2 + f3[0.6n + 0.2x]

}
= max

0≤x≤n

{
5x2 − 6nx + 3n2 + 4.6112(0.6n + 0.2x)2

}
= max

0≤x≤n

{
5.184448x2 − 4.893312nx + 4.660032n2

}
= 4.951168n2

when x = n. So, as we start week 1, we should assign all operational
machines to making part A, just as we concluded in the linear profit
case. The quadratic profit function has caused the decision at the
start of week 2 in the optimal policy to switch from what it is in the
linear profit case.

The next complication we might introduce in these calculations
is to recognize that some of the given conditions of the problem
are unrealistic. For example, why would exactly 20% (40%) of the
machines making part A (part B) during each week break each and
every week? On average this could perhaps make sense, but from
week to week to week a better model would specify probability den-
sity functions for the breakdown percentages. But then the optimal
policy solution would also have a probability density function and
what could that mean? One possible answer is to say that the opti-
mal policy is optimal on the average, i.e., if the multistage decision
process is one that is repeated over and over many times, then the
average cost is minimized by that policy. For a process that is to be
carried out only once, however, this definition of optimality has no
meaning. What do we do then? There is an answer to that question,
too, but you are not going to find it here.

In the spirit of this book’s title, more is not always better. And so,
at last, this is finally the end.

Solution to the Challenge Problem

The directed graph for the modified earth-moving machine
problem (with the fixed overhead cost changed to 4 units of
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(continued)

money and the storage cost remaining at 1 unit of money
per machine per month) is shown in figure 7.19, along with
the dynamic programming results. The optimal policy is 1 →
2 → 4 → 6, with a cost of 17, i.e., the optimal production
policy (now unique) is to construct 2 machines in February, 6
in March, none in April, 8 in May, and none in June.
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2
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3

4
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4
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FIGURE 7.19. Dynamic programming solution to the challenge
problem.

A final note: I opened this book with a number of quotes to indi-
cate the importance of studying extrema. Let me close with one last
quote, an (unintentionally hilarious) illustration of the elusive na-
ture of extrema among even highly educated professionals. In a re-
cent (2002) report on the need to sensitize doctors to the benefits of
eliminating avoidable pain during medical procedures, the authors
concluded that “Optimal pain control should be the minimum ac-
ceptable standard.” No one would disagree in spirit with the noble
nature of this goal, but I’m afraid it is a priori an impossible goal.
After reading this book, you should know why.





Appendix A.

The AM-GM Inequality

If x1, x2, · · · , xn are any n nonnegative numbers, n ≥ 1, and if
A = (1/n)(x1 + x2 + · · · + xn) is the arithmetic mean of the x’s,
and if G = (x1x2 · · · xn)1/n is the geometric mean of the x’s, then
A ≥ G with equality iff x1 = x2 = · · · = xn.

This was known to Euclid for the n = 2 case. The first proof, for
arbitrary n, is due to the Scottish mathematician Colin Maclaurin
(1698–1746), who published it in 1729.

PROOF. Suppose we have any n positive numbers (if one or more of
the xi are zero, then the inequality is trivially obvious, and so we’ll
suppose all the xi > 0) whose product is 1, i.e.,

x1x2 · · · xn = 1.

This may seem at odds with the above statement that the x’s can
be any n positive numbers, because the product may then not be 1.
Suppose, in fact, the product is P . In that case we divide through
both sides by P and replace each xi with

yi = xi

P 1/n
.

Then we do have

y1y2 · · · yn = 1.

I’ll continue on at this point with the y’s and, at the end, simply
replace each yi with xi/P

1/n. You’ll see soon how nicely things then
turn out.
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Now, it is clear that either all of the yi are equal (and so all are
equal to 1) or that they are not all equal. If they are all equal (to 1),
it is equally clear that then

y1 + y2 + · · · + yn = n.

If they are not all equal, then the claim is that their sum is at least
equal to n, i.e.,

y1 + y2 + · · · + yn ≥ n

with equality iff y1 = y2 = · · · = yn. Thus, our claim is that
this last inequality is true whether all the yi are equal or not (as
obviously n ≥ n). I’ll establish this result in the next paragraph but,
assuming for now this is so, you can see how the AM-GM inequality
immediately follows. That’s because if we divide through by n, we
have

y1 + y2 + · · · + yn

n
≥ 1 = y1y2 · · · yn = 11/n = (y1y2 · · · yn)1/n .

Then, replacing each yi with xi/P
1/n as explained above,

x1 + x2 + · · · + xn

nP 1/n
≥
(
x1x2 · · · xn

P

)1/n

= (x1x2 · · · xn)1/n
P 1/n

,

or, as P now conveniently vanishes from the inequality, we have

x1 + x2 + · · · + xn

n
≥ (x1x2 · · · xn)1/n ,

with equality iff x1 = x2 = · · · = xn. So, all we have to do is show
the truth of our assumption, i.e., that, indeed, y1 +y2 +· · ·+yn ≥ n.

We’ve already seen that the case of all the yi equal (to 1) is trivial,
so now we’ll treat the case where all the yi are not equal. Can all
the yi be greater than 1? No, as then their product would be greater
than 1. Can all of the yi be less than 1? Again, no, as then their
product would be less than 1. So, at least one yi must be greater
than 1 (label it y1) and at least one yi must be less than 1 (label it
y2). Thus, 1 − y1 < 0 and 1 − y2 > 0, and so

(1 − y1)(1 − y2) < 0,
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or

1 − y1 − y2 + y1y2 < 0,

or

1 + y1y2 < y1 + y2.

What are we going to do with this? We’ll use it to complete an
induction proof, i.e., we’ll assume that our claim is true for n = k

(that y1y2 · · · yk = 1means y1+y2 +· · ·+yk ≥ k) and then show that
the claim must be true for n = k + 1. Since the claim is obviously
true for n = 1, then the claim would be true for n = 2, and so on; it
would be true for all n ≥ 1.

So, by assumptionwe have y1y2 · · · yk = 1 and y1+y2+· · ·+yk ≥ k,
i.e., if any k positive numbers have a product of one then their sum
is at least k. Our concern now is with k + 1 positive numbers whose
product is 1—what can we say about their sum? I’ll write these k+1
numbers as ŷi , 1 ≤ i ≤ k+1, to indicate that they are not necessarily
the k yi numbers. The only important consideration is that now we
have k + 1 numbers. So, we have

ŷ1ŷ2 · · · ŷkŷk+1 = 1,

and we consider the sum ŷ1 + ŷ2 + · · · + ŷk + ŷk+1. By the same
argument above it must be true that

1 + ŷ1ŷ2 < ŷ1 + ŷ2,

and so

ŷ1 + ŷ2 + · · · + ŷk + ŷk+1 ≥ 1 + ŷ1ŷ2 + ŷ3 + · · · + ŷk+1.

But, ŷ1ŷ2+ ŷ3+· · ·+ ŷk+1 is the sum of k (not k+1) positive numbers
whose product is ŷ1ŷ2ŷ3 · · · ŷk+1 = 1 and we already know that sum
is at least k. So,

ŷ1 + ŷ2 + · · · + ŷk + ŷk+1 ≥ 1 + k

and we are done.



Appendix B.

The AM-QM Inequality,

and Jensen’s Inequality

If x1, x2, · · · , xn are any n real numbers, then

x1 + x2 + · · · + xn

n
≤
√
x21 + x22 + · · · + x2n

n

with equality iff x1 = x2 = · · · = xn.

PROOF. Squaring the arithmetic mean, we have(
x1 + x2 + · · · + xn

n

)2

= x21 + x22 + · · · + x2n + all possible xixj cross-products with i �= j

n2
.

We canwrite this more compactly (andmore clearly, as well, I think)
as

(
x1 + x2 + · · · + xn

n

)2

=




n∑
i=1

xi

n




2

=

n∑
i=1

x2i +
n∑

i=1

n∑
j=1

i �=j

xixj

n2
.

Now, since the square of a real number is never negative, we have

0 ≤ (
xi − xj

)2 = x2i − 2xixj + x2j ,
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and so 2xixj ≤ x2i + x2j with equality iff xi = xj . Thus,




n∑
i=1

xi

n




2

≤

n∑
i=1

x2i + 1

2

n∑
i=1

n∑
j=1

i �=j

(
x2i + x2j

)
n2

=
1

2

n∑
i=1

(
x2i + x2i

) + 1

2

n∑
i=1

n∑
j=1

i �=j

(
x2i + x2j

)
n2

.

This may look somewhat cryptic, but the right-hand side becomes
easy to visualize if you sketch the n × n array (or square matrix) of
values as shown in the table below, where the value of the element
at (i, j) is x2i +x2j . The first summation,

∑n
i=1 (x

2
i +x2i ), is the sum of

the entries along the main diagonal, while the second summation∑n

i=1

∑n

j=1
i �=j

(x2i + x2j ), is the sum of all the off-diagonal entries.

−−−− j −−→

i

↓

1 2 3 4 ·
1 x21 + x21 x21 + x22 x21 + x23 x21 + x24 etc.

2 x22 + x21 x22 + x22 x22 + x23 x22 + x24 etc.

3 x23 + x21 x23 + x22 x23 + x23 x23 + x24 etc.

4 x24 + x21 x24 + x22 x24 + x23 x24 + x24 etc.

· etc. etc. etc. etc. etc.

· etc.

·

Thus, the sum of the two summations is simply the sum of all of
the terms in the array, i.e., our inequality becomes




n∑
i=1

xi

n




2

≤
1

2

n∑
i=1

n∑
j=1

(
x2i + x2j

)
n2

.
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The table clearly shows that each x2 term, for a given subscript,
appears a total of 2n times in the array, and so




n∑
i=1

xi

n




2

≤
1

2
2n

n∑
i=1

x2i

n2
= 1

n

n∑
i=1

x2i ,

with equality iff x1 = x2 = · · · = xn. The right-hand side is the
quadratic mean (QM). Taking the square root, we have

1

n

n∑
i=1

xi ≤
√√√√1

n

n∑
i=1

x2i

with equality iff x1 = x2 = · · · = xn, and we are done. The right-
hand side of this inequality is often called the rms value of the x’s
(rms is the abbreviation for “root-mean-square”) as it is the square
root of the mean of the squares.

The AM-QM inequality is actually just a special case of a far
more general result called Jensen’s inequality (see section 2.2 for who
Jensen was). To understand Jensen’s result, let’s start by consider-
ing the graph of the function f (x) = x2 in figure B1, which is of
course an upward-opening parabola. If we take any two values of x,
say x1 and x2, then it is geometrically clear that the chord joining
the two points on the parabola (x1, x

2
1) and (x2, x

2
2) lies above the

section of the parabola cut off by the chord. This property identifies
f (x) = x2 as what mathematicians call a strictly convex function. If,
on the other hand, f (x) is a function whose graph opens downward
(e.g., f (x) = sin(x) for 0 ≤ x ≤ π), then the chord joining any two
points on f (x) lies below the curve and f (x) = sin(x) is said to be
strictly concave over the interval 0 ≤ x ≤ π .

For such functions, Jensen’s inequality says:

if f (x) is strictly convex (strictly concave) on some interval, and if
x1, x2, · · · , xn are n values of x from that interval, and if c1, c2, · · · ,
cn are n positive constants such that c1 + c2 + · · · + cn = 1, then

f

(
n∑

i=1

cixi

)
≥
≤

n∑
i=1

cif (xi)
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f(x) = x2

x1 x2O
x

FIGURE B1. A parabola is a strictly convex function.

with equality iff x1 = x2 = · · · = xn, where we use ≤ if f (x) is
convex, and we use ≥ if f (x) is concave.

For example, it is geometrically clear that f (x) = x2 is strictly
convex on the entire real line and so, if we pick c1 = c2 = · · · =
cn = 1/n, then Jensen’s inequality becomes for any set of n numbers
x1, x2, · · · , xn,

f

(
1

n

n∑
i=1

xi

)
≤ 1

n

n∑
i=1

f (xi),

or (
x1 + x2 + · · · + xn

n

)2

≤ x21 + x22 + · · · + x2n

n
,

or

x1 + x2 + · · · + xn

n
≤
√
x21 + x22 + · · · + x2n

n

with equality iff x1 = x2 = · · · = xn, which is the AM-QM inequality.
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As another example, if f (θ) = sin(θ), which is strictly concave in
the interval 0 ≤ θ ≤ π , and if we pick c1 = c2 = · · · = cn = 1/n, then
Jensen’s inequality becomes for any set of n numbers in the interval
0 to π ,

sin

(
1

n

n∑
i=1

θi

)
≥ 1

n

n∑
i=1

sin(θi),

with equality iff θ1 = θ2 = · · · = θn, a result used in chapter 2 to
show that the maximum area N -gon inscribed in a given circle is a
regular N -gon.

And finally, as you probably suspect by now, we can derive the
AM-GM inequality (which started all of our discussion of inequal-
ities) as also simply a special case of Jensen’s inequality. If we pick
f (x) = − ln(x), a function that is strictly convex over the nonneg-
ative real axis (f (x) is complex for x < 0), then Jensen’s inequality
becomes

−ln

(
n∑

i=1

cixi

)
≤ −

n∑
i=1

ci ln(xi) for xi ≥ 0,

with equality iff x1 = x2 = · · · = xn. That is,

ln (c1x1 + c2x2 + · · · + cnxn) ≥ ln
(
x
c1
1

) + ln
(
x
c2
2

) + · · · + ln
(
xcn
n

)
= ln

(
x
c1
1 x

c2
2 · · · xcn

n

)
.

Thus,

c1x1 + c2x2 + · · · + cnxn ≥ x
c1
1 x

c2
2 · · · xcn

n ,

and so, if we pick c1 = c2 = · · · = cn = 1/n, then, with all the xi > 0,
we have

x1 + x2 + · · · + xn

n
≥ (x1x2 · · · xn)1/n ,

with equality iff x1 = x2 = · · · = xn, which is the AM-GM inequality.
Clearly, Jensen’s inequality is a very powerful result and deserves

to be better known than it is, at least among engineers and scientists,
especially considering that Jensen himself was an engineer! It is also



AM - QM AND J E N S E N ’ S I N E Q U A L I T I E S 339

not difficult to prove; I’ll do it here for the case of f (x) strictly con-
vex, and the strictly concave version will then follow immediately.
That is so because if f (x) is strictly concave, then −f (x) is strictly
convex and, after multiplying through the inequality for −f (x) by
minus one, all that happens is that the sense of the inequality is
reversed.

Proof (by induction) of Jensen’s Inequality.

Step 1. The inequality is true for the case of n = 2 and f (x) convex
because it says

f (c1x1 + c2x2) ≤ c1f (x1) + c2f (x2) , c1 + c2 = 1,

with equality iff x1 = x2. That is, if we drop the subscripts and simply
write c for c1 and 1 − c for c2, the inequality says (for n = 2)

f [cx1 + (1 − c)x2] ≤ cf (x1) + (1 − c)f (x2), 0 < c < 1.

But this is just what is meant geometrically by saying f (x) is strictly
convex; the left-hand side is the height of the plot of f at an arbi-
trary value of x between x = x1 and x = x2 (x varies from x1 to x2 as
c varies from 1 to 0), while the right-hand side is the height of the
straight-line chord joining the two points (x1, f (x1)) and (x2, f (x2)),
which varies linearly between f (x1) and f (x2) as c varies between 1
and 0. That is, for n = 2, the inequality simply says that the chord
lies above the graph of the function for any x such that x1 < x < x2.

To show the iff condition, first suppose x1 = x2. Then, the in-
equality says

f [cx1 + (1 − c)x1] ≤ cf (x1) + (1 − c)f (x1).

Thus, as both sides reduce to f (x1), we have equality. To go in the
opposite direction, now suppose that

f [cx1 + (1 − c)x2] = cf (x1) + (1 − c)f (x2), 0 < c < 1.

But this says the function and the chord are equal at all points be-
tween x1 and x2 which is clearly impossible for a strictly convex f

unless x1 = x2. This shows the iff condition for the n = 2 case.
Step 2. We now assume that the inequality is true for n = k and

show that this implies it is true for n = k+1. That is, we take as true
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f

(
k∑

i=1

cixi

)
≤

k∑
i=1

cif (x1) with
k∑

i=1

ci = 1, ci > 0

and ask what we can say about

f

(
k+1∑
i=1

ĉi xi

)
with

k+1∑
i=1

ĉi = 1, ĉi > 0?

Notice that I am not assuming the first k values of the k+1ĉi are the
kci ; only that whatever the ĉi are they satisfy the conditions of all
being positive, and summing to 1.

Now, we can write

f

(
k+1∑
i=1

ĉi xi

)
= f

[{(
1 − ĉk+1

) k∑
i=1

ĉi

1 − ĉk+1
xi

}
+ ĉk+1 xk+1

]
.

From Step 1, we have, by the definition of strict convexity of f , that

f [(1 − c)u + cv] ≤ cf (v) + (1 − c)f (u),

and so

f

(
k+1∑
i=1

ĉi xi

)
≤ ĉk+1f (xk+1) + (1 − ĉk+1) f

(
k∑

i=1

ĉi

1 − ĉk+1
xi

)
.

Now, since ĉi/(1 − ĉk+1) > 0 for all i (because ĉi > 0 for all i, and
ĉk+1 < 1 because the ĉi sum to 1), and since

k∑
i=1

ĉi

1 − ĉk+1
= ĉ1

1 − ĉk+1
+ ĉ2

1 − ĉk+1
+ · · · + ĉk

1 − ĉk+1

= ĉ1 + ĉ2 + · · · + ĉk

1 − ĉk+1
= 1 − ĉk+1

1 − ĉk+1
= 1,

then from the assumed truth of the n = k case, we have

f

(
k∑

i=1

ĉi

1 − ĉk+1
xi

)
≤

k∑
i=1

ĉi

1 − ĉk+1
f (xi).



A M - Q M A N D J E N S E N ’ S I N E Q U A L I T I E S 341

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

[341],

Lines: 474 to 494

———
* 220.2527pt PgVar

———
Long Page

* PgEnds: PageBreak

[341],

But this says

f

(
k+1∑
i=1

ĉi xi

)
≤ ĉk+1f (xk+1) + (1 − ĉk+1)

k∑
i=1

ĉi

1 − ĉk+1
f (xi)

= ĉk+1f (xk+1) +
k∑

i=1

ĉi f (xi)

=
k+1∑
i=1

ĉif (xi).

That is, the truth of the inequality for the n = k+1 case follows from
the assumption the inequality holds for the n = k case. And, since
the inequality does hold for the n = 2 case, it holds for all n > 2 as
well, and we are done. I’ll let you fill in the remaining iff arguments.

As a final note, Jensen’s inequality (1906) was actually derived
earlier (1889) by the German mathematician Otto Hölder (1859–
1937), but in a formal, nongeometric context, i.e., Hölder’s initial
assumption was simply that the second derivative of f (x) exist and
be nonnegative. The geometric interpretation of a convex function is
Jensen’s (as is the term convex). Another famous inequality is named
after Hölder (1884), but it is not the one studied here.



Appendix C.

“The Sagacity of the

Bees” (the preface to

Book 5 of Pappus’

Mathematical Collection)

ThoughGodhas given tomen,most excellentMegethion, the best
and most perfect understanding of wisdom and mathematics, He
has allotted a partial share to some of the unreasoning creatures
as well. To men, as being endowed with reason, He granted that
they should do everything in the light of reason and demonstra-
tion, but to the other unreasoning creatures He gave only this gift,
that each of them should, in accordance with a certain natural
forethought, obtain so much as is needful for supporting life. This
instinct may be observed to exist in many other species of crea-
tures, but it is specially marked among bees. Their good order and
their obedience to the queens who rule in their commonwealths
are truly admirable, but much more admirable still is their emu-
lation, their cleanliness in the gathering of honey, and the fore-
thought and domestic care they give to its protection. Believing
themselves, no doubt, to be entrusted with the task of bringing
from the gods to the more cultured part of mankind a share of am-
brosia in this form, they do not think it proper to pour it carelessly
into earth or wood or any other unseemly and irregular material,
but, collecting the fairest parts of the sweetest flowers growing on
the earth, from them they prepare for the reception of the honey
the vessels called honeycombs, [with cells] all equal, similar and
adjacent, and hexagonal in form.
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That they have contrived this in accordance with a certain ge-
ometrical forethought we may thus infer. They would necessarily
think that the figuresmust all be adjacent one to another and have
their sides common, in order that nothing else might fall into the
interstices and so defile their work. Now there are only three rec-
tilineal figures which would satisfy the condition, I mean regular
figures which are equilateral and equiangular, inasmuch as irreg-
ular figures would be displeasing to the bees. For equilateral tri-
angles and squares and hexagons can lie adjacent to one another
and have their sides in common without irregular interstices. For
the space about the same point can be filled by six equilateral tri-
angles and six angles, of which each is 2

3 [of a] right angle, or by
four squares and four right angles, or by three hexagons and three
angles of a hexagon, of which each is 11

3 [of a] right angle. But
three pentagons would not suffice to fill the space about the same
point, and four would be more than sufficient; for three angles
of the pentagon are less than four right angles (inasmuch as each
angle is 11

5 [of a] right angle), and four angles are greater than four
right angles. Nor can three heptagons be placed about the same
point so as to have their sides adjacent to each other; for three
angles of a heptagon are greater than four right angles (inasmuch
as each is 13

7 [of a] right angle). And the same argument can be
applied even more to polygons with a greater number of angles.
There being, then, three figures capable by themselves of filling
up the space around the same point, the triangle, the square and
the hexagon, the bees in their wisdom chose for their work that
which has the most angles, perceiving that it would hold more
honey than either of the two others.

Bees, then, know just this fact which is useful to them, that the
hexagon is greater than the square and the triangle and will hold
more honey for the same expenditure of material in constructing
each. But we, claiming a greater share in wisdom than the bees,
will investigate a somewhat wider problem, namely that, of all
equilateral and equiangular plane figures having an equal perimeter,
that which has the greater number of angles is always greater, and the
greatest of them all is the circle having its perimeter equal to them.

Pappus’ ancient words motivated mathematicians many centuries
later, by then in possession of the calculus, to analytically study the
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“best” way to make a honeycomb. Two such mathematicians were
the German Johann Samuel König (1712–57), who published his
analysis (with some errors) in 1740, and then later (1755) Ruggero
Boscovich (1711–87). You can find Boscovich’s work described in
the paper by R. M. Dimitrić: “Using Less Calculus in Teaching Cal-
culus: An Historical Approach” (Mathematics Magazine, June 2001,
pp. 201–11). For what a modern mathematician has to say on just
how well the bees actually do, see L. Fejes Tóth, “What the Bees
Know andWhat They Do Not Know” (Bulletin of the American Math-
ematical Society, 1964, pp. 468–81). Tóth concludes that they do
pretty well! As he wrote, “We must admit that all this [i.e., Tóth’s
construction of a honeycomb structure just slightly more efficient
than the structures real bees actually build] has no practical conse-
quence. By building such cells [Tóth’s cells] the bees would save per
cell less than 0.35% of the area of an opening . . . under such condi-
tions the above ‘saving’ is quite illusory. Besides, the building style of
bees is definitely simpler . . . so we would fail in shaking someone’s
conviction that the bees have a deep geometrical intuition.”



Appendix D.

Every Convex Figure Has

a Perimeter Bisector

Let ϕ denote a convex figure, and Q a point not inside or on the
boundary edge of ϕ, as shown in figure D1. Let a line be drawn
through Q, with α denoting the angle that line makes with the x-
axis. In the figure I’ve assumed that ϕ is positioned so that it lies
entirely in the first quadrant, above the positive x-axis and to the
right of the positive y-axis. To make things really easy to visualize

Q

x

y
φ

O

α

FIGURE D1. For some α, the line through Q bisects the perimeter of φ.
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and explain, I have also assumed that ϕ is positioned so that the
left- and bottommost points of ϕ are to the right of and above
Q, respectively, as shown in figure D1. None of these assumptions
limits the generality of our eventual result. Finally, let P(α) denote
the fraction of ϕ’s perimeter below the line we drew throughQ. Thus
0 ≤ P(α) ≤ 1 with P(0°) = 0 with P(90°) = 1.

It is geometrically clear thatP(α) is a smoothly increasing function
of increasing α, i.e., P(α) is what mathematicians call a continuous
function (there are no sudden, discontinuous jumps in the value of
P(α) as α increases from 0° to 90°). So, in particular, there must be
some α = α̂ where P(α̂) = 1

2 , i.e., at angle α = α̂, the line through
Q bisects the perimeter of ϕ. Notice that this is an existence proof;
it tells us only, for a given ϕ andQ, that there is a line at some angle
α̂ that bisects the perimeter of ϕ, but it does not tell us what α̂ is. It
should also now be clear, since we could locateQ in infinitely many
places, that there is not just one perimeter bisector for ϕ but, in fact,
there is an infinity of perimeter bisectors.



Appendix E.

The Gravitational

Free-Fall Descent Time

along a Circle

The exact analysis of Galileo’s problem, that of determining the
descent time of a bead, due to gravity, constrained to a vertical
circular path of radius L, is a classic in the marriage of physics
and calculus. In figure E1, a bead of mass m is constrained to move
along a vertical circular wire arc that threads through a hole in the
bead. It is assumed that friction can be ignored. The initial angle
the radius to the bead makes with the vertical radius is α, and the
instantaneous angle, as the bead slides along the wire is θ (also
measured with respect to the vertical radius). That is, θ(t = 0) = α.
If the bead arrives at the bottom of the wire at time t = T , then of
course θ(t = T ) = 0. Our problem here is to calculate T .

At time t let the distance along the circular path from the bead to
the bottom of the wire be s, and let v(t) be the speed of the bead.
Then, since we are ignoring friction, we can set the bead’s change in
kinetic energy of motion equal to the change in its potential energy
of position. We assume that the bead starts its fall from rest, i.e.,
that v(0) = 0. Then, at time t , and writing g for the acceleration of
gravity, we have

1

2
mv2 = mg{L cos(θ) − L cos(α)}.

Also, since s = Lθ and as v = ds/dt , then
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Lcos(α)

Lcos(θ)

α

θ

L

m

position at
time = t > 0

initial position
at time t = 0

s

FIGURE E1. A bead sliding under gravity along a vertical, circular wire.

v = L
dθ

dt

and, thus,

1

2
L2

(
dθ

dt

)2

= gL {cos(θ) − cos(α)} .

We can now take great advantage of Leibniz’s differential nota-
tion, treat the differential dt just as an algebraic quantity, and solve
for it. To start, write

dθ

dt
= ±

√
2g

L
{cos(θ) − cos(α)}.
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Since θ decreases as t (time) increases (because the bead is sliding
downward) we know the change in θ has algebraic sign opposite to
that of the change in t . That is, dθ and dt have opposite signs, and
so we use the negative sign with the square root and write

dt = −
√

L

2g
· dθ√

cos(θ) − cos(α)
.

For the complete descent, we have t going from 0 to T as θ goes
from α to 0, and so, integrating,

∫ T

0
dt = −

√
L

2g

∫ 0

α

dθ√
cos(θ) − cos(α)

,

or

T =
√

L

2g

∫ α

0

dθ√
cos(θ) − cos(α)

.

From the trigonometric half-angle identities,

cos(θ) = 1 − 2 sin2
(
1

2
θ

)

cos(α) = 1 − 2 sin2
(
1

2
α

)
,

and so

T =
√

L

2g

∫ α

0

dθ√
2 sin2

(
1

2
α

)
− 2 sin2

(
1

2
θ

)

= 1

2

√
L

g

∫ α

0

dθ√
sin2

(
1

2
α

)
− sin2

(
1

2
θ

) .

Since α is a constant, then so is sin
(
1
2α
)
, which I’ll now write as

simply k. Thus,
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T = 1

2

√
L

g

∫ α

0

dθ√
k2 − sin2

(
1

2
θ

) , k = sin

(
1

2
α

)
.

Next, if we make the change of variable from θ to β, defining β

to be such that

sin(β) =
sin

(
1

2
θ

)

sin

(
1

2
α

) =
sin

(
1

2
θ

)
k

,

then as θ varies from α to 0, we have sin(β) varying from 1 to 0, i.e., β
varies from 90° (= π/2 radians) to 0. Differentiating the relationship
sin

(
1
2θ
) = k sin(β) with respect to θ , using the chain rule, we have

1

2
cos

(
1

2
θ

)
= k cos(β)

dβ

dθ
,

or, solving for dθ ,

dθ = 2k cos(β)

cos

(
1

2
θ

)dβ.

Next, we use sin
(
1
2θ
) = k sin(β) to write (since sin2 + cos2 = 1)

cos

(
1

2
θ

)
=
√
1 − k2 sin2(β).

Also, since

cos(β) =
√
1 − sin2(β) =

√√√√√
1 −

sin2
(
1

2
θ

)
k2

= 1

k

√
k2 − sin2

(
1

2
θ

)
,

then
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dθ =
2k · 1

k

√
k2 − sin2

(
1

2
θ

)
√
1 − k2 sin2(β)

dβ = 2

√
k2 − sin2

(
1

2
θ

)
√
1 − k2 sin2(β)

dβ.

Inserting this into the integral for T (and modifying the limits to fit
the new variable of integration, β) we arrive at our final answer:

T =
√
L

g

∫ π
2

0

dβ√
1 − k2 sin2(β)

, k = sin

(
1

2
α

)
.

None of the math in this appendix had been invented yet in
Galileo’s time, and so his approach to studying the descent time
along a circular path was by the different, approximate method dis-
cussed in section 6.1. And even after the integral for T had been
derived (by 1700), nobody knew how to evaluate it. Not even the
genius of Euler or Newton could see how to do it. All of the attempts
to express the integral in terms of the then-known elementary func-
tions (e.g., logarithms, powers, exponentials, trigonometric func-
tions) failed. It wasn’t until more than 150 years after Galileo’s
death, with the work of the French mathematician Andrien Marie
Legendre (1752–1833), that it was appreciated that the failure is due
to impossibility; the integral for T represents an entirely new func-
tion! The integral, called the complete elliptic integral of the first kind,
has been numerically evaluated for numerous values of α and can
be found in many mathematical tables. For example, if α = 90° (the
bead descends along a full one-quarter arc of a circle), then

T = 1.8541

√
L

g
.



Appendix F.

The Area Enclosed by a

Closed Curve

Imagine that the closed, non-self-intersecting curve C shown in
figure F1 is described by the parametric equations

x = x(t)

y = y(t),

where the parameter t denotes time. That is, at time t = 0 we
imagine a point particle is at A, the location of the left vertical
tangent to C. Then, as time increases, the particle moves according
to the parametric equations, thereby tracing out the curve C until
it returns to A at time t = TA. We also define the time t = TB as
the time at which the moving particle reaches B, the location of
the right vertical tangent to C. (The two vertical tangent lines are
called C’s lines of support.) To be very specific, let’s also assume that
the parametric equations describe a clockwisemotion of the particle.
The claim, then, is that the area enclosed by C is given by

enclosed area = 1

2

∫ TA

0
(yẋ − xẏ) dt,

where ẋ = dx/dt and ẏ = dy/dt , where I am using Newton’s dot
notation to denote a time derivative.

Before deriving this result, let me give you an example of its use.
For the special case ofC, a circle of unit radius centered on the origin
(see figure F2), the parametric equations of C are
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C

y

x
xA xB

t = 0

t = TA

t = TB

FIGURE F1. A closed, non-self-intersecting curve C is the path of a moving
point.

x(t) = − cos(t)

y(t) = sin(t),

with TA = 2π and TB = π . This describes clockwise motion, with
A = (−1, 0) and B = (1, 0). Now, since ẋ = sin(t) and ẏ = cos(t),
then the claim says

enclosed area = 1

2

∫ 2π

0

[
sin2(t) + cos2(t)

]
dt = 1

2

∫ 2π

0
dt = 2π

2
= π,

which is, indeed, the area of the circle.
In this example, C actually cuts through all four quadrants of

the xy-plane, but in the proof I’ll assume C lies entirely in the first
quadrant (as drawn in figure F1). This assumption is strictly for
convenience, however, and when we are done you’ll see it will in
no way weaken the result. And finally, in figure F1, I have drawn
C as a closed convex curve and so for each value of x there are
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y

x
O

−1

−1

1

1

t = 0
t = π

FIGURE F2. A unit circle traced out by a moving point in time interval 2π .

at most two values of y. Our result is easy to extend to concave
curves, too, however, by dividing such a C up into sections, each of
which has just two lines of support. For all curves but for those that
mathematicians call pathological (i.e., diseased!) this sectioning can
always be done in a finite number of steps. This issue of concavity is
actually not important for us in this book, as we will use the result
only (in chapter 6) to solve the ancient isoperimetric problem of
determining the closed curve of given perimeter that encloses the
greatest area. And, as shown in section 2.2, the solution must be
convex, just as drawn in figure F1.

So, we begin. If we write the integral∫ xB

xA

y(x) dx,

we get the area between the top of C and the x-axis (because I have
assumed the x-axis lies completely below C) if we use y(x) for the
upper half of C. Writing
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dx = dx

dt
dt,

the integral becomes

area under top half of C = A1 =
∫ TB

0
y(t)

dx

dt
dt,

where the limits on the integral are changed to match the new
integration variable t . That is, x = xA at t = 0 and x = xB at t = TB .
Next, if we write the integral∫ xA

xB

y(x) dx,

we get the negative of the area (because xB > xA) between the bottom
of C and the x-axis if we use y(x) for the lower half of C. Thus,

area under bottom half of C = A2 = −
∫ TA

TB

y(t)
dx

dt
dt.

Now, the area inside of C, i.e., the enclosed area, is simplyA1−A2,
and so

area enclosed by C =
∫ TB

0
y(t)

dx

dt
dt +

∫ TA

TB

y(t)
dx

dt
dt

=
∫ TA

0
yẋ dt.

This expression is the answer, as it stands, to the question of what
area is enclosed by C. It does have the property, however, of appear-
ing to treat x and y differently (one is differentiated and the other is
not), despite the fact that a choice of coordinate system is arbitrary.
We can get our answer to look symmetrical (to treat x and y the
same) with the following last step.

Imagine we rotate the coordinate axes (and C) counterclockwise
by 90°, to arrive at figure F3. That is, y is replaced with x and x

is replaced with −y. Since the enclosed area is a physical invariant
unaffected by a particular choice of coordinate axes, our result for
the enclosed area must be
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C

x

y

FIGURE F3. Coordinate rotation of C does not affect the enclosed area.

area enclosed by C =
∫ TA

0
x(−ẏ) dt = −

∫ TA

0
xẏ dt.

(If we had rotated clockwise by 90°, then we would have replaced y

with −x and x with y, which would lead to the same conclusion.
Can you see what happens with a 180° rotation, either clockwise or
counterclockwise? Then we get our original expression back, which,
while not wrong, is not useful.) Thus, adding this expression to the
original expression says

twice the area enclosed by C =
∫ TA

0
yẋ dt −

∫ TA

0
xẏ dt,

or, at last, the symmetrical result

area enclosed by C = 1

2

∫ TA

0
(yẋ − xẏ) dt.

This result can easily be shown to be invariant under coordinate
axes translation and/or rotation, which of course merely says area is
(as mentioned already) a physical invariant.



A R E A E N C L O S E D B Y A C L O S E D C U R V E 357

Cr

θ

∆θ

FIGURE F4. The curve C is traced out by the end of a rotating radius vector.

This important result is so important that seeing an alternative
derivation is not a waste of time. It is, in fact, a result that is often
not derived even once in first treatments of the calculus of variations,
with authors usually writing something like “see any advanced cal-
culus text for a derivation.” I don’t like that approach, and so let’s
do it here again.

We begin anew with the curve C expressed in polar coordinates
this time, i.e., a general point on C is located by drawing the radius
vector from the origin to that point, at angle θ with length r, as
shown in figure F4. (Without loss of generality, we imagine the
origin of our coordinate system is inside, i.e., is surrounded by) C.
Then, as θ varies through a total change of 2π radians, the varying
length r of the radius vector causes the tip of the radius vector to
trace out C in a counterclockwise sense.

Since the little “triangle” swept over by the radius vector, through
a tiny angular change of 
θ , has a base of r
θ and a height of r,
then its area is
A = 1

2 r2
θ . As we let
θ → 0, we have
A → dA,
and so the total area enclosed by C is



358 A P P E N D I X F

A =
∫

dA = 1

2

∫ 2π

0
r2 dθ.

Now, in terms of rectangular coordinates, we have the familiar rela-
tions

x = r cos(θ)

y = r sin(θ),

and so the total differentials dx and dy are, in terms of the partial
derivatives,

dx = ∂x

∂r
dr + ∂x

∂θ
dθ = cos(θ) dr − r sin(θ) dθ

dy = ∂y

∂r
dr + ∂y

∂θ
dθ = sin(θ) dr + r cos(θ) dθ.

From these expressions we can now write

x(dy) − y(dx) = [r cos(θ)] [sin(θ)dr + r cos(θ)dθ ]

− [r sin(θ)] [cos(θ)dr − r sin(θ)dθ ],

which, after expansion and the obvious simplifications, reduces to
just r2dθ .

So, if θ = 0 at time t = 0 and if θ = 2π at time t = TA, we have
(the symbol

∫
C
means the integral is completely around the curveC)

A = 1

2

∫
C

(x dy − y dx) = −1

2

∫ TA

0

{
y
dx

dt
− x

dy

dt

}
dt

= −1

2

∫ TA

0
(yẋ − xẏ) dt.

This is just what we got in the first derivation, except for the
sign. Remember, however, that now we are moving around C in
the counterclockwise sense, opposite to the sense of travel in the
first derivation. So all is, indeed, consistent. Two very different
approaches, with the same result, which should add confidence in
our minds that we have a correct result.
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Beltrami’s Identity

If we multiply through the Euler-Lagrange equation of section 6.4
by y ′, we get

y ′ ∂F
∂y

− y ′ d

dx

(
∂F

∂y ′

)
= 0, y ′ = dy

dx

where, in general, F = F {x, y(x), y ′(x)}. Now, the change, dF , in F

as we allow each of the three explicit variables (x, y, y ′) to change is
given in terms of the partial derivatives of F by

dF = ∂F

∂y
dy + ∂F

∂y ′ dy
′ + ∂F

∂x
dx.

Or, dividing through by dx, we have

dF

dx
= dy

dx
· ∂F
∂y

+ dy ′

dx
· ∂F

∂y ′ + dx

dx
· ∂F
∂x

= y ′ ∂F
∂y

+ y ′′ ∂F

∂y ′ + ∂F

∂x
,

assuming y is twice differentiable with respect to x. That is,

y ′ ∂F
∂y

= dF

dx
− y ′′ ∂F

∂y ′ − ∂F

∂x
, y ′′ = dy ′

dx
= d2y

dx2
.

Substituting this expression for y ′(∂F/∂y) into the first equation
above gives

dF

dx
− y ′′ ∂F

∂y ′ − ∂F

∂x
− y ′ d

dx

(
∂F

∂y ′

)
= 0.
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If we now notice that

d

dx

{
F − y ′ ∂F

∂y ′

}
= dF

dx
− y ′′ ∂F

∂y ′ − y ′ d

dx

(
∂F

∂y ′

)
,

then we see that

− ∂F

∂x
+ d

dx

{
F − y ′ ∂F

∂y ′

}
= 0.

At this point we simply have an alternative form for the Euler-
Lagrange equation. But, if we now suppose that F has no explicit
dependence on x, i.e., if we suppose that

∂F

∂x
= 0,

then we can write

d

dx

{
F − y ′ ∂F

∂y ′

}
= 0.

This is immediately integrable to give

F − y ′ ∂F

∂y ′ = constant.

This is Beltrami’s identity of 1868, a partially integrated form of the
Euler-Lagrange equation for the special (but important) case when
F does not depend explicitly on x. This condition is satisfied in
a number of historically important problems, and great use of the
Beltrami identity is made in chapter 6.



Appendix H.

The Last Word on the

Lost Fisherman Problem

At the end of Chapter 1, I challenged you to find a solution path that
is even better (shorter) than the one that gets the fisherman back to
shore in no more than 6.9953 miles. Consider the path shown in
figure H1, which is but a slight variation of the 6.9953-mile path
of figure 1.12; two straight-line segments have been added to the
beginning and the end of the circular portion.

Once again, the fisherman rows at some arbitrary angle θ to an
assumed straight one-mile path to shore. Then, looking back along
the path he has just rowed, he turns through an angle of 90° − θ

and rows a distance of sin(θ)
√
1 + tan2(θ). This puts him, as shown

in figure H1, at an angle of 2θ from the assumed direct path to shore
(as well as once again one mile from his starting position). He then
rows in a circular path of radius one mile until he is once again at
angle 2θ with respect to the assumed direct path to shore. That is,
as measured from the assumed path to shore, he swings through an
angle of 360° − 4θ . Finally, he then rows straight ahead along the
tangent to the circle at the end of the circular portion of his path.
After rowing a maximum of sin(θ)

√
1 + tan2(θ), he is sure to arrive at

the shore, because the original (1 + 2π)-mile path lies on or inside
this path. The total distance rowed is, with θ measured in radians,

L(θ) =
√
1 + tan2(θ) + 2 sin(θ)

√
1 + tan2(θ) + 2π

(
2π − 4θ

2π

)

= 2π − 4θ + [1 + 2 sin(θ)]
√
1 + tan2(θ).
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√1 + tan2(θ)

1

1

start of journey

end of
journey

shore

90˚ − θ

√sin(θ)     1 + tan2(θ)

2θ

θ

θ

FIGURE H1. The lost fisherman problem, one last time: is this the shortest
path possible?

We could use a computer to numerically find the θ thatminimizes
L(θ) but, somewhat surprisingly, setting dL/dθ = 0 in this more
complicated case now gives an analytically solvable equation! If
you work through the algebra, you should arrive at the quadratic
equation

4 sin2(θ) + sin(θ) − 2 = 0,

which has the solution
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sin(θ) =
√
33 − 1

8
.

Thus, L(θ) is minimized (do you see why the extrema is not a max-
imum?) when θ = 0.63487 radians (= 36.375°), at which value
L = 6.4589 miles, an impressive 11.3% less than the original (2π +
1) miles = 7.2832 miles calculated in chapter 1.
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Appendix I.

Solution to the New

Challenge Problem

In figure I1 I’ve drawn a triangle with side lengths a, b, and c. The
three solid lines represent the bisector lines of the vertex angles
(dividing the vertex angles into the half-angles α, β, and γ ), and
these bisector lines meet (as stated in the hint* given in the preface
to the paperback edition of the book) at a common point, the point
P in the figure. From P I’ve then dropped perpendiculars (shown
as dashed lines) to the three sides. This immediately explains where
the three pairs of equal lengths (marked as x, y, and z) come from,
which in turn gives us the equations

a = z + y,

and

b = x + z,

* The proof is elementary. Suppose we call angle A the interior vertex angle formed
by sides a and b, angle B the interior vertex angle formed by sides b and c, and
angle C the interior vertex angle formed by sides c and a. Then, every point on the
bisector line of angle A is equidistant (by symmetry) from a and b, and every point
on the bisector line of angle B is equidistant (again, by symmetry) from b and c.
Thus, the point P where those two bisector lines cross—and they must cross since
they are not parallel lines—is a point on both bisector lines and so is equidistant
from a and b as well as equidistant from b and c; point P is equidistant from a,
b, and c. That means, in particular, that P is equidistant from a and c and so P
is a point on the bisector line of angle C. That is, all three bisector lines of the interior
vertex angles intersect at P .
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and

c = x + y.

While it may not be (almost certainly isn’t) obvious at this point
why we would be interested in doing so, we can now use these three
equations to show that

a + b − c = (z + y) + (x + z) − (x + y) = 2z,

and

b + c − a = (x + z) + (x + y) − (z + y) = 2x,

and

a + c − b = (z + y) + (x + y) − (x + z) = 2y.

You’ll see, soon, how these expressions will be of great use to us.
Now, a brief pause to establish a result we’ll need to finish our

analysis. If u and v are any two numbers, then it is clear that

b

x

z

a

z

y

x y

c

P

β

β

γ

γ

α α

FIGURE I1. The new challenge problem triangle.
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(u − v)2 ≥ 0

or,

u2 − 2uv + v2 ≥ 0

or,

u2 + 2uv + v2 ≥ 4uv

or,

(u + v)2 ≥ 4uv.

For our problem u and v are both non-negative numbers—they will
denote the lengths of two of the sides of any triangle—and so this
last inequality says that

u + v ≥ 2
√

uv.

This is, in fact, the most elementary possible special case of the
AM-GM inequality, which is proven in much more generality in
appendix A and which is used in numerous places in this book.
Okay, back to our original problem.

Using our first three equations, we have

abc = (z + y)(x + z)(x + y).

But since our above AM-GM inequality tells us that z+y ≥ 2
√

zy, x+
z ≥ 2

√
xz, and x + y ≥ 2

√
xy, we have

abc ≥ (2
√

zy)(2
√

xz)(2
√

xy) = (2z)(2x)(2y).

And then, finally, our earlier equations for 2z, 2x, and 2y complete
the analysis:

abc ≥ (a + b − c)(b + c − a)(a + c − b),

where a, b, and c are the lengths of the sides of any triangle. Q.E.D.
This result is called Padoa’s inequality, after the Italian mathemati-

cian Alessandro Padoa (1868–1937).
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