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We develop a first order formalism for the quantization of gravity. We take as canonical 
variables both the induced metric and the extrinsic curvature of the ( d -  1)-dimensional hyper- 
surfaces obtained by the foliation of the d-dimensional spacetime. After solving the constraint 
algebra we use the Dirac formalism to quantize the theory and obtain a new representation for the 
Wheeler-DeWitt equation, defined in the functional space of the extrinsic curvature. We also show 
how to obtain several different representations of the Wheeler-DeWitt equation by considering 
actions differing by a total divergence. In particular, the intrinsic and extrinsic time approaches 
appear in a natural way, as do equivalent representations obtained by functional Fourier 
transforms of appropriate variables. We conclude with some remarks about the construction of 
the Hilbert space within the first order formalism. 

I. Introduction 

One  of  the  long s tanding prob lems  of  physics  is the quant iza t ion  of  the gravita-  

t ional  field. A l though  this quest ion is a lmost  as old  as general  relat ivi ty,  it  has  been  

mos t ly  in the  last  thir ty years that  many  a t t empts  to ob ta in  a consis tent  theory  of  

q u a n t u m  gravi ty  have been developed [1]. In  fact, looking through the l i terature,  one 

soon real izes the various schools of  thought  that  ma in ly  reflect persona l  ways of 

t ack l ing  the p rob lem,  al though there is a t rad i t iona l  division in two groups;  on one 

side s tands  the par t ic le  physicis ts '  way of t reat ing the gravi ton as the bearer  of 

q u a n t u m  f luctuat ions  of the gravi ta t ional  field a round  a classical background ,  the 

goal  be ing  the const ruct ion  of  a r e n o r m a l i z a b l e -  or  even f i n i t e -  S-mat r ix  that  

wou ld  descr ibe  the interact ions  of the gravi tons  be tween themselves and  o ther  

m a t t e r  f ields present .  This is known as the covar iant  method.  On the o ther  side 

s t ands  the genera l  relat ivist 's  me thod  with its emphas is  on geometry,  topology  and  

space t ime  s t ructure  and its conceptua l  independence  on the asympto t ic  s tructure at 

in f in i ty  which, in principle,  is appl icab le  to bo th  closed and  open universes. This is 

k n o w n  as the  canonica l  method.  The first me thod  is more  adequa te  for ca lcula t ions  

of  sca t ter ing  ampl i tudes  in asympto t ica l ly  f lat  eucl idean spaces, while the second 
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method is concerned with the strong non-linear effects that appear near a spacetime 
singularity or at the Planck scale. 

This work was originally motivated by the important role that higher-order 
curvature terms are believed to play when studying gravity at distances close to the 
Planck length. These modifications of pure gravity seem to be justified even in light 
of string theories, where the "low energy" effective action naturally has higher-order 
curvature terms [2]. In fact, we were particularly interested in studying the effects of 
topological terms such as the Chern-Simons [3] terms in (2 + 1) dimensions and the 
Euler-Gauss-Bonnet (EGB) combination in d dimensions (d > 4) on the Wheeler- 
DeWitt approach to the wave function of the universe [4]. Nevertheless, as we will 
see below, the construction of a hamiltonian formalism for the quantization of these 
theories is far from trivial. 

As an illustration, let us consider the EGB combination for arbitrary d > 4. 
Contrary to the 4-dimensional case, the EGB is not a topological invariant and thus 
can be considered as a viable quadratic curvature action with the unique property 
amongst such actions that its variation does not involve explicit derivatives of the 
curvature. If we follow the usual canonical formalism, it is best to adopt the method 
of Arnowitt, Deser and Misner (ADM) [5], and consider a decomposition of 
spacetime into a one-parameter family of space-like hypersurfaces by writing the 
d-dimensional line element as 

ds 2 = - N 2 d t  2 + h~j(dxi+ N i d t ) ( d x  j + N J d t ) ,  (1.1) 

where N and N ~ are known as the lapse function and shift vector, respectively. The 
tensor h ij is the induced metric of the space-like hypersurface and the indices 
i, j . . . .  run from 1 to d -  1 [5]. In what follows, greek indices will cover the whole 
spacetime. Quantities built from hij have a tilde superscript. 

If we write the lagrangian density as 

...~= k - l R  + a(R~,~poR ~°° - 4R.~R ~ + R2),  (1.2) 

we obtain, after a tedious calculation, the action in ADM form 

I =  f d t d d - l x N h l / 2 { k - l ( t r K  2 -  K 2 + R)  

+ a [ ( 2 t r K  4 -  (trK2)2 + 2 K 2 t r K  2_  ~ K t r K  3 -  }K 4) 

+ ( - 4 k u k , K U K k ' - -  8 t r (KZk)  - 2 k K  2 + 2/~ t r K :  

+ 8 K ( t r K R ) +  ( k i y k ~ J k ' - 4 k , 2 h  '2 + R2)])  + s.t., 

(1.3) 
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where t r (KR) = Ki/ki / ;  K 2 = (h iJK~j) 2; t r (K 2/~) =/~ sk K ~SK~; tr K 4 = K]K IpK em Kin; 
tr K 3=  K]glpgpi;  tr K 2= Ki /K  ~/. K~j is the extrinsic curvature of the space-like 
hypersurface defined as the differential change in the unit normal projected into the 
surface, Kij = -nJlli. The parallel bars denote covariant derivatives with respect to 
the full metric of spacetime. 

Following the usual procedure, we should now obtain the canonical momenta 
(~r, ~r ~, ~r ~j) conjugate to the canonical variables (N, N i, h i/) and then write the 
hamiltonian in terms of the variables and the momenta. The reader can easily verify 
that, contrary to the Einstein-Hilbert case, the action has terms with K 4 and thus 
that ~r ij has terms proportional to K 3. As it stands, we cannot write the hamiltonian 
as being quadratic in the momenta. We then decided to treat K~/ as an independent 
variable by going to a first order formalism; the introduction of an extra canonical 
variable and its conjugate momentum could be useful in the construction of the 
correct hamiltonian of theories with higher order terms in the curvature. 

As a first step towards this final goal, we start with the simplest possible case: 
The construction of a first order formalism for Einstein gravity. As we will show, 
there is a rich structure to be explored by going to first order even in this apparently 
simple case. In fact, as it turns out, the theory is far from being trivial; we will have 
to deal with the quantization of a theory with second class constraints having, as a 
guideline, the final equivalence betwen the first and the second order formalisms. 
The advantage of using a first order formalism comes from the choice of different 
representations that are possible, due precisely to the second class constraints. As it 
is well known [6], when quantizing a theory with second class constraints, one has to 
reduce the largest possible number of second class constraints into first class since 
the latter are the ones to be applied on the wave functional. The remaining second 
class constraints are to be treated as identities between quantum operators, thus 
providing a relation between different possible representations. We will explore this 
idea extensively in this work, and will show how the pairs of canonical variables and 
conjugate momenta (h i/, ~rij ) and (Ki/,  p i / )  are related by the second class con- 
straints and can be used to obtain different representations of the Wheeler-DeWitt 
equation. We will also show how different representations found previously in the 
literature can be derived naturally from the first order formalism. 

The paper is organized as follows; in sect. 2 we develop the classical theory in 
first order form by building the total hamiltonian, implementing the relevant 
constraints and by classifying them into first and second class. We show that the 
theory has d 2 second class constraints but that d of those can be reduced to first 
class. We use the Dirac formalism [6] and construct the Dirac brackets in order to 
obtain the proper commutation relations between the variables. In sect. 3 we 
quantize the classical theory built in sect. 2. We show that once the commutation 
algebra is constructed we can have two possible representations of the Wheeler- 
DeWitt  equation, where the wave functional may depend either on the metric or on 
the extrinsic curvature of the space-like hypersurface. (Actually, things are not so 
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simple. In order to obtain the correct commutation relations we have to redefine the 
canonical variables. The pairs of variables that will furnish equivalent representa- 
tions are (h i j, %)) and (Ki'j, Pq), where the prime denotes the new canonical 
variable.) Sect. 3 ends with a discussion of several other representations that can be 
obtained by the proper manipulation of the first order action via different integra- 
tions by parts and the identification of the correct dynamical variables. We conclude 
in sect. 4 with a brief discussion on the construction of the Hilbert space within the 
first order formalism and by summing up our results and remaining questions. 

2. Constraint structure of gravity in first order form 

By using the ADM decomposition of spacetime as in eq. (1.1), we can write the 
Einstein-Hilbert action 

= f d'x (-g)l/2g~'"R~,~ (2.1) 

a s  

, [h", N, N'] = N(k + Ki,K") 

- 2 N i ( K / -  8 J K ) ; j -  2(N; i -  Ki ,N j) ;i]. (2.2) 

Note that we are taking both h q and Kij as independent variables, which is 
equivalent to the use of the Palatini formalism. The last term is a surface term that 
can be neglected since its variation vanishes. The dot indicates time derivatives, and 
the semicolon denotes covariant derivatives with respect to the metric of the 
hypersurface. We are only considering vacuum closed spacetimes. The extension of 
this formalism to include matter fields is straightforward. 

In order to obtain the action familiar of the second order treatment [7], we have 
to use the definition of the connection in terms of the metric that, in the language of 
the ADM decomposition, is given by 

fl ij = 2K q + N (i;j) , (2.3) 

where the parentheses imply symmetrization of the indices. If we integrate the first 
term of (2.2) by parts and use (2.3), the action (2.2) becomes, 
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where M is the d-dimensional manifold and 3 M its boundary. As it is well known 
in the literature [8,10], we must add the surface term appearing in (2.4) to the 
Einstein-Hilbert action (2.1) so that its variation with respect to h ~j will give 
Einstein's equations. 

Now we start the detailed study of the first order formalism. In order to build the 
hamiltonian from the action (2.2), we first calculate the conjugate momenta to the 
variables N, N i, h ij and Kij , 

3£'o 
~r -= O~ r = 0, (2.5a) 

OSf 
e/7"i ~ o)Qi = O, (2.5b) 

0£# 
~ij -- oiTij = -h l /2Ki j ,  (2.5c) 

0£# 
e i J _  J lrkO~'i - 2hl/2hiJ. (2.5d) 

The hamiltonian density is then given by 

,9~'0 = h l / 2 [ - N ( R  + K 2 -  KijK ij ) -1- 2 N i ( K J - 6 / K  );j]. (2.6) 

The subscript 0 is a reminder that this is not the most general hamiltonian of the 
theory. Following Dirac [6], whenever we have relations of the kind ~(q, p)  = 0 (the 
primary constraints) the total hamiltonian must include linear combinations of these 
constraints. We thus define the total hamiltonian density, 

o~'T=. ,~o--hl /2[~, iJ(~i j+ h l /2g i j )  .-1- w i j (P  ij q- 2hl/2hi-i) + h~r + hi,fi]. (2.7) 

~, Xi, Nj and wij are Lagrange multipliers that can, in principle, be functions of the 
canonical variables. 

We can write the Hamilton's equations of motion using the Poisson brackets, 
= ( g, H T ), where g is any function of the canonical variables and H T is the total 

hamiltonian. In order for the theory to be consistent classically, the constraints must 
be maintained by the time evolution of the system. In other words, their Poisson 
brackets with the total hamiltonian must vanish. We use the notation weakly equal 
( - )  to remind us of only using the constraints after calculating the brackets. The 
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only non-zero Poisson brackets between the canonical variables are 

( hiJ(x) ,  ~rtm(x,) } = l (  ~l~mi j .~_ ~ i ~ / ) ~ d ( x  -- X ' ) ,  (2.8a) 

{ Kij (x), p l m ( x  t) } = 1 ( ~lt~m + ~/~n ) ~d(x -- X t) 
2 \ vivj (2.8b) 

(Of course, (N,  ~r } and { N i, ~r i } are not zero but they will not be relevant, as we 
will see below.) 

Note  that Hamilton's equations for the canonical variables give, 

O~ = { N,  H T } = -h~ /2h  , (2.9a) 

]Q i __ O~TT 
( N i ,  H 7 )  = - h l / 2 X  i, (2.9b) 

O~r i 

. O~ffx 
h 'J= JO~ri-- = (hiJ, n T }  = - h X / 2 ~ k  i j  , (2.9c) 

0)ffT 
I~ij = O p i j  = ( g i j  , n T } = - h ' / 2 w i j .  (2.9d) 

From (2.9a) and (2.9b) we can see that N and N i are arbitrary. The Poisson 
brackets of ~r and ~r i with H a- will imply that the two terms in (2.6) are separately 
zero. They are called the secondary constraints, with N and N g playing the role of 
Lagrange multipliers. We can thus discard N and N ~ as canonical variables and 
consider ) f i r  without the last two terms. 

Now we must calculate the Poisson brackets of all the constraints with Ha-. 
According to Dirac, we can obtain four possible results: 

(i) 0 -- 0 which is trivial. 

(ii) ~(q,  p)  --- 0, i.e., we may obtain another condition on the canonical variables, 
independent of h and w, the secondary constraints. We must make sure that they are 
conserved in time in the same way as primary constraints and repeat the process 
until all consistency conditions are exhausted. As just mentioned, this is the case for 
('n', HT) and (~r i, HT}. 

(iii) We may obtain equations for the Lagrange multipliers as functions of the 
canonical variables. This will turn out to be the case in our formalism. In principle 
[6], we should add to the solutions of the inhomogeneous equations in (iii) the 
solutions of the associated homogeneous equations, (related to the eq. (0~,)fro ) + 
urn( q~i, ~,, ) ~ 0, where ~i is an abbreviation for the constraints) I'm{ ffi, qM } = 0, but 
in our case the coefficients Vm are all zero. 
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(iv) It may not be possible to obtain any solution. The lagrangian is inconsistent. 
Writing the constraints as 

O0= -h l /2( /~  -~ K 2 - K i j K i J ) = O ,  

H i = 2hl /2(K[  - ~ / K ) ; j  ~ 0, 

~ j  = ~ j  -k hl/ZKij ~ O, 

d?zij = pi j  -4- 2h1/2h ij ~ O, 

we obtain for the Poisson brackets between all the constraints (the ' denotes a 
quantity evaluated at the point x') 

{ H  o, Hi ' )  = { H  o, H~} = (Hi ,  H /}  = 0 ,  (2.10a) 

{ Ho, ~ ) )  = - h l / 2 [ h i j h C d S ( x  - x ' ) , c ; a - 6 ( x -  x ' ) , i ; j  

+ (  Ri j  + 2 K K i j -  2 K i k K { ) 8 (  x -  x ' ) ]  - ½H06(x -  x ' ) h i j ,  

(2.10b) 

{ Ho ' qjt2ij } = 2 h l / 2 ( K i j  _ h O K ) 8 ( x  _ x ' ) ,  (2.10c) 

{ Hi,  dp 1', } = H i h k t 6 ( x -  x ' )  + hl/2 [ ( K i k d ( x -  x'));t  + (Ki ,8(x - x'))  ;k 

X' - Kk t ; i S ( x  - x ' )  - ( K k t S ( x  - x ' ) ) ; i -  KT'hk lS (X  - );m], 

(2.10d) 

• = - x '  8/hkJ)8(x - x ' )  j ] ,  (2.10e) { H i , O  '2kl} 2hl /2[hklS(x  - ) , i - ½ ( 8 p h l J +  

{ gplij, ~b~.l/} = --½hl/2(Kishkt- hi jKkl)8 (x  - x') ,  (2.1Of) 

{ ,lij ' dDt2k'} = __h l /2 (~k /hk lh i j ) ,  (2.10g) 

{ q~2ij, q~,2k, } = 0. (2.10h) 

Note that there is no constraint that commutes with all others. Following Dirac's 
nomenclature, we call these second class constraints. Thus, all d 2 constraints of the 
theory are second class. Here, the differences from the first and second order 
formalisms are evident; in the latter case all d constraints are first class and can be 
directly imposed on the wave functional in the quantization of the theory. In first 
order form more work must be done before we quantize. 
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We must first impose the constancy in time of the d2 second class constraints by 
putting their Poisson brackets with the total hamiltonian weakly equal to zero. The 
results can be easily read out from eq. (2.10). From the brackets with the constraints 
q~l and ~2 it is easy to verify that one obtains two equations expressing the Lagrange 
multipliers in terms of the canonical variables as 

~,j = _ h l / 2 ( 2 N K i J _  Ni; J _ NJ; i )  , (2.11a) 

wij= - h t / 2 [  N(  R + KKij-2KmKmj)- N,i;j + Nm;iK ~' + Nm;jK m + NmKi,;m]. 

(2.11b) 

With the above values of ~ij and Wij w e  obtain Einstein's equations, 

I ~ i j = { K i j ,  H T } = W i j  (G~-L~a Z% = 0 ) ,  (2.12a) 

]liJ = ( hiJ, HT } = ~kiJ ( g~v[la = 0 ) ,  (2.12b) 

"kij= {~rij, HT)  (G,~_I_~_I_} = 0 and g,~ll~ = 0),  (2.12c) 

p i j  = ( p i j ,  HT ) ( gtxvlla = 0 ) ,  (2.12d) 

while the variation of the total hamiltonian with respect to the Lagrange multipliers 
give 

8HT 
= O = R + K 2 - K i j K i J = O  (G~n~n~=O), (2.12e) 

8N 

~ H  T 
8N i - 0 =, ( K~ - 8/K );j = 0 (Gu,n ~ _1_ • = 0),  (2.12f) 

8H T 

8~J 
-- 0 =~ qrij -t- h l /2Ki j  = 0 ,  (2.12g) 

8H T 
- -  = 0 ~ pij  + hl/2hiJ = 0, (2.12h) 
8 w ij 

where G~, is the Einstein tensor, the parallel bars denote covariant derivatives with 
respect to the full metric of spacetime and _1_ ~ is the projector onto the hyper- 
surface. 

Also, the d remaining Poisson brackets with H o and H i will not impose any 
restrictions on N and N i. This suggests that d out of the ½ d ( d -  1) + ½ d ( d -  1) + d 
second class constraints are first class, since there are d Lagrange multipliers that 
are not fixed by the dynamics [6]. 
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The next step is then to reduce d of the d2 second class constraints to first class 
by considering linear combinations of the second class constraints. We can do this 
by noting that the total hamiltonian, which is a linear combination of the second 
class constraints, is automatically a first class constraint since its Poisson brackets 
with all constraints are weakly equal to zero. In order to obtain d first class 
constraints that are not integral out of H T (the first class constraints are going to be 
applied on the wave function to generate a differential equation) we simply use the 
freedom in N and N i (remember they are arbitrary) by choosing, respectively 

(i) N = t~(x - x'); N i =  0 

Ho = hl/2( R + K 2 - KijKiJ)  + 2Kiirrij + (Rig + K K i j -  2K~Kpj)P i j -  P(~;j. 

(2.13a) 

(ii) N = 0; ~ -  - - x ' )  

/t~ = 2~rff; j - 2Kaj; iP ij + Kij; ~pij (2.13b) 

In this way we obtain d first class constraints ( H  0 and Ha) and are left with 
d ( d -  1) independent second class constraints ( ~ j  and ~2ij). The latter will become 
strong equalities between quantum operators once we introduce the Dirac brackets 
(i.e. they will commute with every function of the canonical variables) [6], 

{ A ( x ) ,  B(y ) }* -=  { A ( x ) ,  B(y)} 

- f dudv { A ( x ) , ~ " ( u ) } ( C - 1 ) ~ ( u , v ) { O B ,  B ( y ) } ,  (2.14) 

where the matrix C~g )(kt) = { q~, q~/} is built from the second class constraints only. 
In our case we obtain, 

( [ . -  l'~(ij)(kl) 
)(11) = 0 ,  

,,._l,(k,) ,,._l,(k,) h_1/2( 1 ) 
= = ~ij -- ( d -  2) hijhkl 8(x  - x ' ) ,  I~.-. )(21)(i j)  - -  I,t.- )(12)(i  j )  

( C-1)(22)(ij)(kl) = - ½h-1/2( h i jKk , -  hklKij)~( x - x') . 

With this prescription we eliminate the spurious variables that come from the 
second class constraints. In fact, we can now use these constraints to choose 
between two equivalent representations, 

,n.ij = _ h l / 2 g i j ,  p i j  = _ 2 h 1 / 2 h  U, 

since we now have 2 d ( d - 1 ) / 2  independent canonical 
4 d ( d -  1) /2  original ones. 

variables out of the 
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Let us start with the conventional pair (h iy, trig): 
The Dirac brackets are, 

(hiJ(x),h/Ct(y))*=O, 

7-£-~hi:hk/)8(x -y) ,  {hiJ(x),~kl(Y)},=(__~ikJ.t - 1 

hl/2 
{%j(x),%,(y)}*- d-  2 (Kijhk'-hijKk'))8(x-Y)" 

The two last brackets are telling us that ~rij is not a good canonical variable (i.e. 
when passing to the quantum formalism we cannot identify ~rij with - iS /Sh iQ.  We 
can easily find the correct variable to be ~ r i j= -%j+h i j~ r  with the two last 
brackets being now, 

{ ~'iPj(X), ~;l(y) }* =O, 

{ hiJ(x), rr/~t(y)}* = 8~{8(x - y ) .  

With this choice, the d first class constraints (eq. (2.13)) become 

& = 2~r';aj = O, (2.15a) 

O. (2.15b) 

"IriJ = .  __ ( __ 2 ) ( 1 - d ) / ( d - 3 ) p ( d - 3 )  lgij, 

h i S = ( 4 )  (d-3, 'pij ,  

where P - det p i j  and Pij - (WO -1- 

hi~2 = (_2)(1-d)/(d-3)p(d_3) 1, 

hij=(P) (a-3) 1pi,, 

H°= ½h-1/2[ hikhjt+hithjk d 2---2hiJh*t] qriJ~r[d-hl/2~= 

These are the familiar super-momentum and super-hamiltonian constraints fm 
Einstein gravity. Thus this choice of variables reproduces the results obtained fror~ 
the second order formalism as expected. 

The other possible choice is the pair (Kiy, pij).  Again, the Dirac brackets tell u, 
that the variable Kij is not the proper one. By introducing Kij= ½(Kij+(1 / 
(d-  3))hi/K ) we obtain 

(pij(x), p k t ( y ) } ,  = { Kig(X) ' K [ , ( y )  }* = 0 ,  

{ Ki,j(x) ' p k , ( y ) } ,  = 8kta(x_y). 

In order to express the first class constraints in eq. (2.13) in terms of these 
variables we must use the second class constraints to obtain 



1174 M. Gleiser et al. / Quantum gravity 

With these substitutions, the constraint (2.13b) becomes, 

_ , ij + Ki,j; , p i j  = 0 H a = 2 K a j ;  i P (2.16a) 

Note, however that the covariant derivative still has the metric h ~j (in the connec- 
tion) that must be replaced by P~J. After some algebra we obtain, 

D 

H~ , ij 2 K '  piJ Ki'j a Pij '~O" = - 2 K a j . i P  - ----aj--,i "]- , (2.16b) 

To understand the physical meaning of this constraint, we calculate its Dirac 
bracket with Ki~ and with p i j, 

, f _ o , o , a , K~,(x), d~-Xy~°(y)#o(y *-~ ,l% + ~,d~,o + ~ IQ., 

pkt(x), f de-ly~°(y)H~(y)}*=tzk p" + li' pk ' -  pkqi~.- pk.qi~ ~,i  ,i ,t ,l " 

Thus, we can see that they transform respectively as a tensor and as a tensor density 
of weight one under coordinate transformations on the hypersurface. The meaning 
of the constraint is then, essentially, the same in both representations, showing also 
that K,) is indeed the relevant canonical variable to be considered in the quantiza- 
tion. 

The constraint (2.13a) is, in terms of Kij and pij,  

Ho = ( P )  (d-3) ' R , j P  ij (d-a) K' K'- ] - -  + 2 ( d -  2~ m. ,, K t j K t i -  KtmiKtnj pmnptj = 0, 

(2.17a) 

where 

( 4 )  (d-3) ' R i j  P i j  

[ "' ! D  DlbDi j  1D D a l ~ i j  -I- = ( 2 1 - d p )  <d-3)-1 -P~Ji,  j -  4"tij x a, l ,b-~-  2 " i l a ,  j - - , a  - 4(d -  3) 

X ( -4Pi jP~bPiJ  b + ( d -  7)P, jPk'Pi~,k 

+ (d  - 7 )pk te i {p i j ,  t+ Pi jPabPktpi jp ,~)] .  (2.17b) 
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This concludes the construction of the classical theory in first order form. We 
checked that the imposition of the new constraints that appear in the first order 
formalism implies in particular expressions for Lagrange multipliers that are in 
agreement with what one obtains from Hamilton's equations of motion. We reduced 
some of the second class constraints to first class, and showed how the introduction 
of the Dirac brackets transforms the remaining second class constraints into strong 
identities between the canonical variables allowing two different representations of 
the first class constraints; the first case considered (h U and %~) gives rise to the 
super-momentum and super-hamiltonian constraints familiar from the second order 
formalism. The second choice (Kit and pu)  gives rise to the generator of coordinate 
transformations on the hypersurface for the relevant canonical variables and to a 
modified super-hamiltonian constraint whose meaning will be further clarified in 
the next section. 

3. Canonical quantization 

We are now ready to quantize the theory following the usual steps. Note that we 
have a choice between two pairs of canonical variables due to the second class 
constraints. We start with the pair (h U, ~ri~): First the canonical variables are turned 
into operators with the Dirac brackets becoming the usual commutation relations, 

(h,, 

[/~U(x), #,,(y)] = i3~{8(x - y ) .  

These operators are substituted into the super-momentum (eq. (2.15a)) and into the 
super-hamiltonian (eq. (2.15b)) constraints that are then turned into operators. The 
constraints are applied into the states g" selecting those that are physically permissi- 
ble, (from now on we suppress the carets on quantum operators) 

= = 0 ,  (3.1) H, fl'( h ) hJ' ~h-2} ;, 

( ) noqd'(h) "= G i y k ' -  + hl/2R kit(h) = O, (3.2) 
3h iJ3h kt 

where we have chosen the "h ij ' '  representation with ~ri~ = - i 3 / 3 h  ij and q = q(hU). 
Also, 

G ijk`= l h - 1 / 2  hikhJ'+ hith j k -  2~hiJh kl (3.3) 

is the metric of superspace, the space of all positive definite d -  1 metrics. 
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We have not solved the factor ordering problem. Following the standard proce- 
dure [1], we have chosen to put the metric terms on the left of the momenta in the 
super-momentum constraint, eq. (3.1), since with this choice its interpretation is 
more transparent: The wave functional '/'(h) is independent of the particular choice 
of representation for the metric components hiJ(x k) in some system of coordinates 
x i. The argument of the wave functional then belongs to the space of all metrics 
identified by a d -  1 diffeomorphism [7]. 

The super-hamiltonian constraint, eq. (3.2), is the "Wheeler-DeWitt" equation in 
its usual representation. We are also leaving aside the difficult problem of construct- 
ing a Hilbert space from the space of solutions of (3.2). We will come back to this 
question later on. 

Now we repeat the same steps for the other pair of coordinates, (K~), P~J). 
Choosing the "K '"  representation, we have that, pij = _ iS/SK~j and ~ = 'tlt(Kij ). 
The super-momentum and super-hamiltonian constraints are, respectively, 

- , [ I 
= ' 2 K a j l ~  ) +Ki),a - 0 ,  (3.4) H"rP - 2Kaj'i 8gig ,i gig " 

HorP = g~jK. i  + K,~iK~,j ~-(-d ~ ~ KijK'~" $KijSK~," t ~ K i j  
'/" = 0, 

(3.5) 

where F(6/6Kij ) is obtained using eq. (2.17b) with pi j= _i6/SKi J and P~j= 
- i 6 / 6 K ' i J .  

If we perform an infinitesimal coordinate transformation, U =  x~+ ~(x k) and 
note that K,j transforms as, 

8gig = ~a K/a + ~ajKSa + f l a g ,  , = i j ,  a ,  

it is easy to show that the super-momentum constraint has precisely the same 
meaning as in the other representation. 

The constraint (3.5) is a new representation for the Wheeler-DeWitt equation 
defined now in the functional space of Ki). Note that this representation can only 
be obtained by using the first-order formalism and is not simply a Fourier 
transform of the original equation. Although we expect the physics to be the same in 
both representations, this equation gives the probability amplitude for having a 
hypersurface with some K', thus providing information on the dynamics of the 
embedding of the hypersurface in spacetime. We hope to explore the consequences 
of this equation further [9]. 

As another illustration of the first-order formalism, we briefly show how other 
representations of the Wheeler-DeWitt equation can be generated by playing with 
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total derivatives in the original action, eq. (2.2). First, consider integrating by parts 
the second term in (2.2); in this way, the time derivative of the metric appears only 
in its determinant and the action becomes, 

I[hiJ, Kij, N , N  i] = f dd-lxdt(-hl:h'q ,j+ K h l / 2 - ~ o ) .  (3.6) 

If we follow the previous steps for the construction of the classical theory, we soon 
find that h ij is not the appropriate canonical variable but h x/2. We then write 
h ij = (hl/2)att i.j, where a = - 2 / ( d - 1 )  and det ~ij = 1. The conjugate momentum 
t O  h 1/2 is, qr ----- K = (hl/2)"[~"nK,,n and we must add the constraint z(det ~i; _ 1) to 
the lagrangian, where z is a Lagrange multiplier. We then construct the Dirac 
brackets and find that the correct momentum conjugate to h 1/2 is ~r' -- ( 2 ( d -  2) /  
( d -  1))K. In the quantum version, 7r' is identified with - i S / S h  1/2. Thus, in the 
super-hamiltonian constraint the "intrinsic time" (h 1/2) appears naturally. Likewise, 
writing K~j in terms of its traceless and trace parts (treating them as independent 
variables) and using the second class constraints, we could have obtained the 
Fourier transform of /~J in the "extrinsic time" (K)  approach to the Wheeler- 
DeWitt equation [10]. If we continue to explore the possibilities of the first order 
action, we can find various different representations of the Wheeler-DeWitt equa- 
tion, some of them not yet known in the literature. We stress that this is only 
possible within the first order formalism, since in the second order formalism the 
action is quadratic in the velocities not allowing for partial integrations. Also, in the 
second order formalism we cannot use the traceless and trace parts of K,j as 
canonical variables to reproduce the above results. 

4. Conclusion 

We have constructed a first order formalism for Einstein gravity within the ADM 
formulation. After classifying all the constraints as second class, we showed how 
some of them can be reduced to first class by using the arbitrariness in the lapse 
function and shift vector and the fact that the total hamiltonian is a first class 
constraint by construction. By introducing Dirac brackets, we reduced the remain- 
ing second class constraints to identities between pairs of canonical variables that 
allow us to choose between two possible representations, the h ij and the Ki) 
representations. We then quantized the theory using the canonical method and 
found that the first representation reproduces the well known super-momentum and 
super-hamiltonian constraints obtained in the second order formalism whereas the 
second choice gives rise to a new representation of the Wheeler-DeWitt equation, 
defined in the functional space of a modified extrinsic curvature Ki). 

We plan to try to solve it in the mini-superspace in the hope that using the 
connection between K and the expansion of the Universe we will obtain some 
insight into the arrow of time problem. 
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We have also showed how the first order formalism can generate many represen- 
tations of the Wheeler-DeWitt equation by manipulation of total derivatives in the 
action and identification of the relevant canonical variables. As an example, we 
indicated how to obtain the extrinsic and intrinsic time representations. We hope 
that by finding different representations of the Wheeler-DeWitt equation, more will 
be learned about the physics behind it. 

As mentioned in the introduction, the first order formalism can play a very 
important role in the quantization of theories with higher-order terms in the 
curvature. In particular, we note the similarity between Einstein gravity and the 
EGB theory in the sense that both have/(~j terms as surface terms contrary to other 
curvature squared actions. The Wheeler-DeWitt type equation in the EGB theory 
can be written, after a functional Fourier transform between the metric and its 
conjugate momentum, as a functional equation for fit(~r), as in the case for Einstein 
gravity. The difference between the two theories arises because, while in the Einstein 
gravity case the 7r~j is related linearly with Kij ,  in the EGB case the momentum is 
given by a complicated expression involving the extrinsic and intrinsic curvatures of 
the hypersurface. Thus, the advantage of going to the first order formalism is clear 
in the latter case: The (Ki'j, P~J) representation will indeed allow us to obtain an 
equation for the wave function which will be a functional only of the extrinsic 
curvature, providing information about the expansion of the Universe. 

Finally, we would like to make some remarks on the Hilbert space problem of 
quantum gravity. Going back to the intrinsic time representation, we can, after some 
algebra, write the super-hamiltonian constraint as (note that we are not using the 
second class constraints yet) 

[ (hi ) 
h l / 2 ( K 2 - K i j K i J ) +  2(hl /2)Z/(d-1)  K i g -  d ~ - ]  ~ij 

2( 
2: "1- ( R i j  + g g i j -  2 g i p g :  ) p i j _  e! j .  j l f i t  ] = 0 

d -  

d - 1  ' '  ' J 
(4.1) 

where we must make the substitution Ki '  j = K i j  "1- ( 1 / ( d  - 3))hijK, in order to write 

~r' = - i ¢$hl/-------5, ~ij = - i 8~i) , p i j  = _ i j~Ki------ 7 . 

Also, fit = fit(h a/z, h'g, Ki j  ). The second class constraints are or = K; ¢7ij = 0; p i j  = 
_ hl /2  hi). 

We can see that or' plays the role of a time derivative on superspace, thus making 
the above equation a SchrSdinger-like equation. It remains to be seen if it is possible 
to construct a Hilbert space based on the solutions of this equation before imposing 
the second class constraints. 
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