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The question of the stability of matter against gravitational collapse is of general interest to 
astrophysics. In this work we investigate the stability against small radial oscillations of equilib- 
rium configurations of cold, gravitationally bound states of complex scalar fields, known as boson 
stars. These equilibrium configurations exhibit a mass profile against central density which is very 
similar to that of ordinary neutron stars, with a pronounced maximum mass at M c = 0.633Mgl/m, 
where MpI is the Planck mass, for a certain value of the central density %(0). We give analytical 
and numerical proof that configurations with central densities greater than %(0) are unstable 
against radial perturbations by studying the behavior of the eigenfrequencies of the perturbations 
for different values of o(0). 

1. Introduction 

The general problem of the stability of relativistic matter, be it via Coulomb or 
gravitational interactions is of fundamental importance in physics. A great deal of 
progress has been made in the past years by studying the boundedness of the 
quan tum mechanical hamiltonian operator of a system of particles with the above 
interactions [1]. Using these methods Lieb and Yau [2] were able to reproduce the 

results of the semi-classical Chandrasekhar analysis to less than 0.01% accuracy. 
This general framework gives good results for fermionic bound systems, despite the 

exclusion of general relativistic effects. However, results on the stability of bosonic 
bound systems with the inclusion of strong gravitational effects are still lacking. 

I t  is our intention in this work to continue the previous efforts of one of us [3] to 
study the stability of gravitational bound states of complex scale fields (known as 
boson stars) taking into account the full effects of general relativity. As in ref. [3], 
we only consider stability of the lowest mass configurations, i.e., with nodeless 
scalar fields in the first spherical shell. The motivation for studying such objects is 
twofold; there is a growing interest in cosmology in the use of scalar fields to 
explain several problems of the so-called standard model, such as the horizon and 
flatness problems and the generation of large-scale structure [4]. Although so far no 
mechanism for the formation of boson stars has been successfully proposed [5], it is 
important  to study their general properties as a first step towards understanding 
their possible role in cosmology. In fact, recent work on boson stars was generally 
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motivated by the axion field [6], proposed in connection with a possible solution to 
the strong CP problem in QCD, and also by the interesting relation between these 
objects and non-topological solitons, as stressed in the thorough analysis of Lee and 
his collaborators [7]. 

The second reason for studying these objects comes from relativistic astrophysics 
and has to do with the unusual properties of bosonic condensates at zero tempera- 
ture. As shown in the analysis of Ruffini and Bonazzola [8], boson stars naturally 
exhibit fractional anisotropy; the radial and tangential components of the pressure 
are different, precluding a macroscopic description of these objects in terms of an 
effective perfect fluid energy-momentum tensor. In the mid-seventies, there were 
some efforts to understand how the inclusion of fractional anisotropy could influ- 
ence general properties of spherically symmetric and static distributions of matter 
such as critical masses and surface redshifts [9]. The motivation for that work came 
from the fact that deviations from the perfect fluid assumption for nuclear matter 
are expected in the presence of strong gravitational fields. Nevertheless, in the works 
of ref. [9] local anisotropy is unavoidably included in a very ad hoc fashion. Boson 
stars provide a unique way for studying the effects of local anisotropy from first 
principles [3], since for any given model we start with an explicit knowledge of the 
interactions involved. In particular, it was shown in ref. [3] how the inclusion of a 

[~[4 self-interaction for the scalar field provides a way of varying the fractional 
anisotropy for the equilibrium configurations, the greater the value of ~ the smaller 
the fractional anisotropy for a given central density [10]. As can be seen from the 
results of ref. [3], configurations with higher fractional anisotropy were stable up to 
higher values of the central density, the limiting case being of course for h = 0. 

However, the results of ref. [3] were based on the construction of a variational 
principle for the linearized perturbations that allows one to compute upper bounds 
for the values of the eigenfrequencies that describe their time evolution, as in the 
work of Chandrasekhar concerning the dynamical instability of gaseous masses 
against baryon number conserving, infinitesimal radial perturbations [11]. As the 
analysis involves a variational principle, the estimates for the eigenfrequencies 
depend on the choice of trial functions used. (Of course, this is also the advantage of 
the variational formulation, to obtain an estimate for the eigenfrequencies without 
explicitly solving the linearized perturbation equations, which in general is not 
extremely sensitive to the choice of trial functions, so long as the trial functions 
obey the correct boundary conditions at the origin and, in the boson star case, at 
infinity.) Contrary to the case studied by Chandrasekhar, it is not possible to reduce 
the problem to one linearized equation; as shown in ref. [3] (see also ref. [12]), one 
obtains two coupled second order differential equations for the two components of 
the scalar field, making the choice of trial functions a non-trivial problem. Also, due 
to the complexity of the Einstein-Klein-Gordon system, the method used in ref. [3] 
to obtain the two linearized equations is not the most natural to the problem, as we 
hope to show in the present work. 
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Fig. 1. Boson star mass in units of M~/m (continuous line) and particle number in units of M~l/rn 2 
(dotted line) as a function of the central density. Note the location of the critical points where 
dN/do(0 )  = 0. The fundamental mode goes unstable at o(0)= 0.271, the first such point. Each 

successive critical point has a higher mode going unstable. 

Thus, we can improve dramatically the results of ref. [3] (and, for similar reasons, 
those of ref. [12]), so as to have instability for configurations with considerably 
smaller central densities than those quoted in ref. [3]. In fact, we show that boson 
stars behave qualitatively in a similar way as neutron stars [13]; configurations with 
central densities higher than the critical value (the critical value being the one 
corresponding to the maximum mass, see fig. 1) are all unstable against small radial 
perturbations. 

The paper is organized as follows. In sect. 2 we obtain the equilibrium configura- 
tions and briefly describe their properties. More details can be found in refs. 
[6-8,10]. In sect. 3 we obtain the linearized perturbation equations and discuss the 
role of charge conservation in studying the stability problem. Sect. 4 gives a general 
argument as to why the critical points of fig. 1 correspond to changes in stability; at 
each successive critical point another mode becomes negative. In sect. 5 we give the 
results of the numerical integration of the pulsation equations and show how the 
eigenvalues change with central density. The analysis confirms the results of sect. 4. 
We summarize our results in sect. 6. 

2. Equilibrium configurations 

The discussion of the equilibrium configurations that follows is essentially the 
same as that of ref. [3]. In the present analysis we do not include the scalar 
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self-interaction term. The results obtained here can be trivially extended to the 
self-interacting case without any qualitative change. (As shown in ref. [10], although 
the inclusion of the self-interaction changes the value of the maximum mass and the 
corresponding critical central density, the qualitative features are essentially as in 
fig. 1). 

The starting point for the calculation is the action 

, ~=  f d4x f f - ~  ~ + g~V*;*~dp; v - m21dpl 2 . (1) 

This action is invariant under a global phase transformation, ~ --, e i~ ~, that implies 
the conservation of its generator N, the total particle number. By varying the action 
with respect to g ~  and ~ (or equivalently e:*), we obtain respectively Einstein 
equations 

R~,,, - ½g~,,R = - 8rrGT~., (2) 

with 

T~ = @*~,~ + ~*~,~ - g~,[ g~a~*~,/~ - m21ff12], (3) 

and the scalar field equation 

g-,e:;o~ + m2~ = 0. (4) 

As we are considering a spherically symmetric system with motions only in the 
radial direction, we take as the spacetime metric 

ds 2 = e~dt 2 - eXdr 2 - r2(d0 2 + sin2 8 dq02), (5) 

where v and ~ are functions of r and t only. 
It proves convenient to write the scalar field as 

~ ( r ,  t) --- [~l ( r ,  t )  + iep2(r,  t)] e -i'~`, (6) 

where q~l(r, t) and ~2(r ,  t )  are real functions. With the metric (5) Einstein equations 
are 

1 , 1 
R ° -  1 R  = - 8 ~ r G T  ° - - 8 ¢ r G p  = ~-~ ( r e  -x)  r2 , (7) 

( v '  r~ )  1 Rll - ~ R  = - 8 ~ r G T 1  x - 8qrGpr = e -x --r + r 2 '  (8) 

R~ - iR' = R~ - ' i R -  8 , ~ G r ?  = - 8 , ~ G r ?  =- 8 ~ G p ~  

( ' ,) = e - h  1 t, 1 ¢xt 1.t2 __(/pt ~kt 
iv  - ~ v ^  + ~  + 2r 

- e  -~ [ - ¼ } ~  + ½X + ¼(}~)2], (9) 
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a n d  

e - ~  ° 

Rio = - 8~rGTo 1 = X, (10) 
F 

where the prime and the dot denote differentiation with respect to r and t 
respectively. For the reader's convenience, the usual definitions of the energy 
density p, the radial pressure Pr, and the tangential pressure p± were introduced. 
Combining eqs. (7) and (8) we obtain the useful relation 

e - h  

- - ( x ' +  . ' ) =  - 8 ~ G ( r , '  - to°). (11) 
r 

As is well known, eqs. (7)-(10) are not all independent due to the Bianchi identities. 
As a consequence, the conservation of energy-momentum T ~  = 0 leads, in the 
present framework, to 

a n d  

t°  + ro~' + ~(r°-  r~)x + T~(~(x' + .') + 2) =o, 

2 
t l  ° + r?' + kro(x + ~) + ~(r, 1 -  r ° ) . '  + r(r(- r?)  =o .  

(12) 

(13) 

The equations for ~x and ~2 can be obtained by using eqs. (5) and (6) into eq. (4) 
and its complex conjugate giving 

v' ~,' ) 
_ # 2 2 q't + eX (~°2 e - ~ -  mE)qh 

- e X - ~ + ½ e X - " (  k - X ) 4 1  +--15ex-v''tv-X)~°ff2~2e x - "w42=0 ,  (14) 

where the equation for qh is obtained by interchanging the subscripts 1 ~ 2 and by 
taking the lower signs. 

Finally, as mentioned before, the global invariance of the action (1) leads to the 
continuity equation 

J~, = 0, (15) 

where the current four-vector j r  is given by 

J "  = ig"~(  ~, , ~  * - ~;~) .  

The conserved charge is then 

(16) 

N= f d3xC-~sO (17) 
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For the equilibrium configurations the metric functions are time independent. 
Also, the scalar field components can be written as 4,1(r, t) = ~o(r) and ~2(r, t) = 0. 
Thus, there are only three unknown functions of r to be determined; v0, ~0 and ~0, 
where the subscript 0 is used to characterize the equilibrium quantities. There must 
be only three independent equations. First note that for the static solutions, eqs. 
(10), (12) and (15) are trivially satisfied. Also, eq. (13) (the hydrostatic equilibrium 
equation) is identical to eq. (14) which can be obtained from a combination of eqs. 
(7)-(9). It is then a matter of choice which set of equations is taken to be 
independent; one can use Einstein eqs. (7)-(9) or, say, eqs. (7), (8) and (13). We will 
follow the current practice [6-8,10] and take the latter combination. We are left 
with the three equations 

( r e - X ° ) ' =  l - 8 ~ r G r 2 [ ( m 2  +e-~°~2)dp2 +e-X°(a~2], (18) 

e -x° 1 
- 7 -  < -  7 (1 - e- o) = - 8~rG [(m2 - e - ' °  o:2) ~,~ - e-X° ff~2], (19) 

Po o 
~6'+ + - - - 7  ~ 6 -  eXo ( m 2 -  e-"o ~2),0 = 0. (20) 

Eq. (11) becomes 

X' 0 + vd = 161rGr(e xo-v0 ~2~20 + ~62). (21) 

These equations can be integrated numerically once we introduce the dimension- 
less variables x = rm, o(r)  = (8~rG)t/2%(r), with the factor ~2/m2 being absorbed 
into the definition of the metric function e vo. The boundary conditions are Xo(r = O) 
= O, o(r  = O) = o(O), o '(r  --- 0) = 0 and o(oo) = 0. Note that the equilibrium config- 
urations can be parametrized by the value of the scalar field at the origin o(0). For 
each value of o(0) it is possible to calculate all relevant quantities of the equilibrium 
configurations such as the mass M and the charge N. For details see refs. [6-8]. In 
fig. 1 we plot the total mass M and particle number N against o(0). The total mass 
M is defined by 

f0 °° ( )  
M = 4~r pr2dr .  22 

Note the existence of a critical mass and particle number and how the extrema of 
the two curves overlap. Note also that for a finite value of the central density the 
binding energy of the configurations E b =- M - Nm becomes positive, signaling the 
existence of configurations with excess energy. This property is also shared by 
neutron stars and expresses a global instability of the equilibrium configurations 
against dispersion of the particles to infinity. The excess energy is translated into 
kinetic energy of the free particles at infinity. 
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3. Radial perturbations 

We now wish to study the behavior of small, radial perturbations about the 
equilibrium configurations described above. We write the perturbed fields as 

= )k 0 -'1- ~ X ,  P = P0 -'t- 8P ,  alP1 = ~0( 1 + ~qbl ) ,  alP2 = ~o 8~2  (23) 

where all the quantities are taken to be functions of r and t only, consistent with 
radial perturbations. Plugging these fields into eqs. (7)-(10) and keeping only the 
first order terms in the perturbations we find 

with 

with 

(re-Xo 8X)' = 87rGr2 8 T  ° , (24) 

8 T  ° = 80  = - 8 v w 2 ~  g e -  "° - 3heO; 2 e -Xo  + 2 e - "o  w2eog 8eO~ - 2 e - "o  weOg 842  

+ 2 e -xo t~;  2 ~t~l -4- 2 e-Xo ~o~6 8,1,~ + 2m2~ g 8~bl, (25) 

1 e -x° 
- ( 6 v ' -  vd 8~,)e -xo = r----- T -  SX  - 8 , rG  S T ?  , (26) 
r 

ST11 = --Spr = - S T  ° + 4m2tho 2 ~d?l , (27) 

( ) e -~o ~ 8 . "  - ~ol ' s x ' -  ~,,ov~l~' ~ ' + ~o~ ' 8~' + ~ ( 8 ~ ' -  ~x')  - I e -~osX 

( ;(o )) - 8 ) t  iv o~  " -  x,,,x,,.o,,o + a¢o~ .,2 + - -  v ' -  2t' o e -xo = - 8 , r G S T  ] (28) 

with 

,57"22 = - 8 p  j_ = 8vw2eO~ e - " o  _ 8 h  e -Xo  ~2  _ 2 e- 'o  w2~2o 84h + 2 e-~o w4~ 8~ 2 

+ 2 e-Xo dp~z 8cb 1 + 2 e -xo ~bo~b/~ 8th~ + 2m2~ g 8~ I , (29) 

d{~ = 16~rGrffo [ ff~ ~t~l - -  (,Ot~0 ~ t ~ ]  . 

and, finally, 

Similarly, using eq. (14) we obtain 

' )  1 e O ' o ( S v , _ S X , ) _ e X o _ , o ( 2 w 3 4 2 + 8 ~ 1 )  - - + 2  ~° 8~i+ 

(30) 

2 v;-X% 
3 ~ [ ' +  - + 

r 2 

+eXo-vo w2(SX - B y )  - e X o m 2 8 ) t  = 0, (31) 
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and 

+ X'o 
2 

(32) 

Instead of taking eqs. (24) and (26) independently, it proves more convenient to 
take as independent equations, eq. (24) and the difference between eqs. (26) 
and (24), 

8p'-SX'= (v; -  )t'o + 2 ) Sh -  32~rGreXom2epg Sdpl . (33) 

Note that we have six equations and only four unknown functions. As for the 
equilibrium configurations, it is easy to show that the equations for the components 
of the scalar field perturbations (the linearized Klein-Gordon equations), eqs. (31) 
and (32), are a consequence of energy-momentum conservation. Thus, they can 
both be obtained from appropriate combinations of the linearized Einstein equa- 
tions, eqs. (24)-(30). It is thus a matter of choice what set of four equations forms 
the independent set to be solved, the goal being to eventually obtain eigenvalue 
equations for the perturbations. After some frustrated attempts, it became clear that 
the most appropriate independent set of equations for this purpose consists of eqs. 
(24), (28), (31) and (33). (Note that the present approach differs from that of ref. [3]. 
As we will see later, the results of ref. [3] are not the most general possible.) 

This system of four coupled differential equations is still quite complicated. It 
turns out, however, that these equations can be reduced to two second order 
differential equations by eliminating 8~2 and ~1,. Eq. (24) can be solved for 842. 
Plugging this into eq. (31), we obtain an equation involving 81, only through its first 
derivative, 8v'. This can then be eliminated using eq. (33), and we end up with a 
second order equation for 8~1: 

~ J l  S At- "1- --PO -- )ktO ~ t l  nt - _ _  eh° -v°  ~ 1  
2 8¢rGVo2r 

+ ~° 2+eX° eX°m2+ tho]\ 2 ~oo 8-~r--~o 2 + eX°-~° *02- 

[ 2 ] -2eX° e-~°t°2+e-X° --~o] +rn2+8~rGrm2eo'°eO° 8ff1=0" (34) 
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To get our second equation, we first add eq. (24) to eq. (28). This gives us an 
equation involving Sv only through 6v’ and 6~“. These terms can be eliminated by 
using eq. (33) and its derivative. The resulting equation is 

+32~G (35) 

The change in the total charge of the star due to the perturbations can be 
obtained from eq. (17) and is given to first order in the perturbations by 

Using eqs. (24) and (25) we can eliminate SV and 64,. 
In terms of St$, and SX we have 

dN= “/” w o drr2e-(b-Y0)/2+~ 

As in the case with the conventional stability analysis (see e.g. refs. [11,13]) it 
is necessary to impose that the radial perturbations conserve charge. In 
Chandrasekhar’s analysis, charge conservation guarantees that the perturbation in 
the fluid’s pressure can be expressed in terms of the lagrangian displacement. Here, 
it will guarantee the proper behavior of the perturbations at infinity and will be a 
fundamental tool in looking for the solutions of eqs. (34) and (35). 

Suppose we now assume a harmonic time dependence for the perturbations with 
frequency x. The system of two coupled equations, along with the condition 6N = 0, 
defines a characteristic value problem for x 2. Furthermore, it is easy to show that 
the system is self-adjoint so that the values of x2 must be real. The question of 
stability is thus reduced to a study of the possible values of x2 [13]; if any of the 
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values of X 2 are found to be negative, then the perturbations will grow and the 
boson star will be unstable against radial oscillations. Of course, as the eigenvalues 
form an infinite discrete ordered sequence, if the fundamental radial mode of the 
star is stable (X 2 > 0), then all higher modes are stable. In other words, examining 
how X 2 changes for different values of the central density should be enough to find 
instability since it will be the first mode to go unstable. 

4. Zero frequency perturbations 

We are interested in finding the values of a(0) for which the equilibrium 
configurations are stable. (Recall that the central density can be parametrized by the 
value of the scalar field at the origin, o(0).) As mentioned above, by studying the 
behavior of X~ with o(0) we can establish the boundaries between stable and 
unstable configurations; it is clear that such boundaries will be defined whenever 
X2o = 0, i.e., where the lowest frequency perturbations are static. Thus a study of 
static perturbations will tell us for which values of the central density the stars are 
stable. 

The analysis described in sect. 3 simplifies considerably in the case of static 
perturbations. In particular, it is easy to show that in the case of static perturbations 
the perturbed quantities defined in eq. (23) ep, ~ and I, satisfy the same equations as 
the equilibrium solutions t0, 2~0, and ~0- Thus if we begin with an equilibrium 
configuration with a(0), the perturbed fields will describe another equilibrium 
configuration with o(0) + 8o(0), for some infinitesimal 8o(0). However, as we stated 
above, perturbed configurations must have the same charge as the equilibrium 
configuration. Thus zero frequency perturbations will exist if and only if there exist 
two neighboring equilibrium solutions with the same charge; i.e. when dN/do(0 )  = 
0. Note that the presence of a zero frequency perturbation need not signal a change 
in stability. If the lowest X~ perturbation is already negative, this could be a higher 
frequency perturbation going negative, in which case the stability will be unchanged. 
Stability is established by examining for which values of o(0) the fundamental mode 
crosses through zero. 

Examination of fig. 1 reveals that the condition dN/do(0 )  = 0 is satisfied only at 
a discrete set of points. Thus transitions from stability to instability or vice versa 
can occur at these points only. This is very similar to the usual stability analysis of 
compact objects [13]. 

5. Numerical study of perturbations 

In this section we will use numerical integration to determine the characteristic 
values for the frequency X 2. The idea is to choose a value of X 2 and then integrate 
the perturbation equations (eqs. (34) and (35)) from the origin out to infinity. If the 
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resulting perturbation satisfies 8N --- 0, then the chosen X 2 is a characteristic value. 
If not, then another value is chosen and the process is repeated. 

In general, this is a very tedious procedure. However, we recall that our interest 
lies in finding points where the lowest characteristic value is 0, and we know that 
these points occur only when d N / d o ( 0 ) =  0. Thus our problem is reduced to 
finding these zero frequency perturbations and determining whether they are the 
lowest frequency mode. This involves counting the number of nodes of the perturba- 
tions. (Remember that the eigenfunction corresponding to the fundamental mode 
X~ has no nodes from 0 < r < oo and that the eigenfunction corresponding to the 
n th mode has n nodes.) 

A further check is required to insure that the characteristic value actually crosses 
zero and in which direction. To determine this we consider points close to where 
d N / d o ( O )  = 0 and determine the sign of X~. Since X~ will deviate from zero only 
slightly around the critical point, finding its value at these points is relatively simple. 

For  simplicity, we use the same dimensionless variables and rescalings introduced 
for numerical work in sect. 2. Before we can integrate eqs. (34) and (35) we must 
discuss the boundary conditions at the origin. A study of the equations for small x 

3 

2 

~k 

1 

o 

-1 

~(o)=1.e2 

- 

~(o)=1.1o 

0 1 2 3 4 5 6 

X 

Fig. 2. The perturbation in the metric function 8k is shown as a function of the radial coordinate for the 
first three modes. The number of nodes is related in a trivial way with the discrete sequence of 

eigenfrequencies. 
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shows that the only regular solution for 8ffl and 8X has the form 

1 ( 1 ~  X2 
8 q h = l  + ~ - - + 1 - - -  o(o): + O(x'), 

8h = ~,x 2 + O(x4) ,  (38) 

where b = e ~0 (x = 0), y is an undetermined constant, and we have used the linearity 
of eqs. (34) and (35) to scale 8~x(X = 0) to one. 

The presence of an undetermined constant in eq. (38) complicates somewhat our 
procedure (a similar problem arises in the case of polytropes [13]). For each value of 
XZo we must search the entire range of - / in  order to see if there exists a solution with 
~N = 0. Again, this is greatly simplified by our only looking for characteristic values 
near zero at points where we know they must exist. 

In fig. 2 we plot 8h for the first three local extrema. By counting nodes, it is clear 
that the lowest characteristic value is zero at the first local extrema, the next highest 
at the second, etc. By looking at points on either side of the local extrema we 
determined that the characteristic values were in fact crossing from positive to 
negative. In fig. 3 we present a schematic drawing of how the characteristic values 
vary as we change 0(0) in a small neighborhood of the zero modes. 

z 

o(0) 

Fig. 3. Schematic behavior of the first three eigenfrequencies as a function of the central density. Each 
related mode of vibration goes unstable at the crossing point where the frequencies are zero. 
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6. Conclusion 

We have examined the stability against small radial oscillations of spherically 
symmetric gravitational bound states of complex scalar fields known as boson stars. 
We gave analytical and numerical arguments to prove that the transition from 
stability to instability occurs at the critical points of the profile of mass (or charge) 
against central density. In particular, as the fundamental mode is the first to go 
unstable, we found that the critical value for stability is given by M c = 0.633Mp2t/m 
for a central value of the scalar field given by ~o(0)= 0.271(8rrG) -1/2. Using a 
definition for the radius of the configuration as suggested by Lee and his collabora- 
tors [7], R = 4 ~ r M - l f ~  ° o r  3 dr ,  the density of the critical equilibrium configuration is 

, 0633.  ( m ,o"I m ~ = 5 . 0 X  \~-e--e-V] gcm-3"  

Note that the inclusion of general relativistic effects decreases the upper bound 
for stability found by analysing the relativistic hamiltonian [14], N < 1.273M2p1/m 2, 

as expected. 
The fact that such objects have radii very close to their Schwarzschild limit 

produces very high surface redshifts. If they exist in appreciable numbers, their 
astrophysical effects can be very interesting and deserve further study. 

We would like to thank J. Hartle for a stimulating discussion and S.A. Teukolsky 
for very useful advice on the integration techniques for the perturbation equations. 
M.G. was supported in part by the National Science Foundation under Grant No. 
PHY-82-17853, by DOE and by the National Aeronautics and Space Administra- 
tion at the University of California at Santa Barbara. R.W. was supported in part by 
the National Science Foundation under Grant No. PHY-86-14185. 

Upon completion of this work it came to our attention that similar results have 
been very recently obtained in a thorough analysis by Lee and Pang [15]. They have 
also shown that higher spherical configurations (with 1 = 0) for the scalar field are 
unstable. Thus, the limit quoted above is the absolute limit for the stability of boson 
stars. 
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