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Abstract

Ž .We investigate the matching between 1q1 -dimensional nonlinear field theories coupled to an external stochastic
environment and their lattice simulations. In particular, we focus on how to obtain numerical results which are lattice-spac-
ing independent, and on how to extract the correct effective potential which emerges from the simulations. As an
application, we study the thermal production of kink-antikink pairs, obtaining a number density of pairs which is
lattice-spacing independent and the effective barrier for pair production, i.e., the effective kink mass. q 1998 Elsevier
Science B.V.
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1. Introduction

The possibility that the Universe underwent a
series of symmetry breaking phase transitions during
the earliest stages of its evolution has triggered a
great deal of interest in the application of nonequilib-
rium statistical mechanics to cosmology. Of particu-
lar interest is the potential role that coherent field
configurations, which arise from the interplay be-
tween nonlinearities and out-of-equilibrium condi-
tions, could have played in shaping the earlier evolu-
tion and present-day structure of the Universe. Ex-
amples range from the nucleation of bubbles in the
context of inflation and electroweak baryogenesis to

w xthe formation of topological defects 1 .
Given the relevance of the topic, and the obvious

difficulties in performing experiments in a cosmolog-
ical context, attempts to investigate the emergence of
coherent field structures rely heavily on numerical

simulations and possible analogies with condensed
w xmatter experiments 2 . Here we would like to focus

on the former, namely, on numerical simulations
designed to investigate the emergence of coherent
structures in thermal field theories. An obvious limi-
tation of such an approach is that, although field
theories are continuous and usually formulated in an
infinite volume, lattice simulations are discrete and

Žfinite, imposing both a maximum ‘‘size of the box’’
. Ž .L and a minimum lattice spacing d x wavelength

that can be probed by the simulation. When the
Žsystem is coupled to an external thermal or quan-

.tum bath, fluctuations will be constrained within the
allowed window of wavelengths, leading to discrep-
ancies between the continuum formulation of the
theory and its lattice simulations; the results will be
dependent on the choice of lattice spacing.

Parisi suggested that if proper counterterms were
used, this dependence on lattice spacing could be
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w xattenuated 3 . This technique was implemented in a
study of 2-dimensional nucleation by Alford and

w xGleiser 4 . However, these studies still left open the
question of how to match the lattice results to the
correct continuum field theory. This is a crucial step
if we want to test numerically certain predictions
from field theories of relevance not only for cosmol-
ogy but also for condensed matter physics, such as
decay rates of metastable states and the production
of topological defects. Recently, Borrill and Gleiser
Ž .BG have examined this question within the context

w xof 2-dimensional critical phenomena 5 . They have
computed the counterterms needed to render the
simulations independent of lattice spacing and have
obtained a match between the simulations and the
continuum field theory, valid within the one-loop
approximation used in their approach. Inspired by
their results, we decided to investigate the validity of
this method within the context of topological defects.
The results presented here should be relevant to
numerical studies of the formation of topological

w xdefects and their comparison with experiments 6 , as
well as to elucidating the general nature of the
effective potential which emerges from coupling

Žnonlinear field theories to a stochastic thermal or
.quantum background.

2. The method

The Hamiltonian for a classical scalar field with
Ž .potential V f and an environmental temperature T0

Ž .is, with k scs1B

2 2w xH f 1 1 Ef 1 Ef
s dx q qV f .Ž .H 0ž / ž /T T 2 E t 2 E x

1Ž .

Even though 1-dimensional field theories are free
of ultra-violet divergences, the ultra-violet cutoff
imposed by the lattice spacing will generate a finite
contribution to the effective potential which must be
taken into account if we are to obtain a proper match

Ž .between the theory formulated in Eq. 1 and its
numerical simulation on a discrete lattice. If ne-
glected, this contribution will compromise the mea-
surement of physical quantities such as the density of
kink-antikink pairs or the effective kink mass. How-

ever, before investigating the particular example of
kink-antikink production, we present the method in
its most general form.

For classical, 1-dimensional finite-temperature
field theories, the one-loop corrected effective poten-

w xtial is given by the momentum integral 3
XX

`T dk V fŽ .0
V f sV f q ln 1qŽ . Ž . H1L 0 22 2p k0

T
XXsV f q V f . 2(Ž . Ž . Ž .0 04

As mentioned before, the lattice spacing d x and
the lattice size L introduce long and short momen-
tum cutoffs Lsprd x and k s2prL, respec-min

tively. Lattice simulations are characterized by one
dimensionless parameter, the number of degrees of
freedom NsLrd x. For sufficiently large L one can
neglect the effect of k and integrate from 0 to L.min

XX 2 Ž .For V <L satisfied for sufficiently large L , the0

result can be expanded into
XX XX 2T T V V0 0XXV f , L sV q V y qLT OO .Ž . (1L 0 0 4ž /4 4p L L

3Ž .
As is to be expected for a 1-dimensional system,

the limit L™` exists and is well-behaved; there is
no need for renormalization of ultra-violet diver-
gences. However, the effective one-loop potential is
lattice-spacing dependent through the explicit ap-
pearance of L, and so are the corresponding numeri-
cal simulations. In order to remove this dependence
on d x, we follow the renormalization procedure

w xgiven by BG 5 ; it is irrelevant if the L-dependent
Ž . Ž .terms are ultra-violet finite ds1 or infinite dG2 .

In the lattice formulation of the theory, we add a
Ž .finite counterterm to the tree-level potential V to0

remove the lattice-spacing dependence of the results,

T V XX
fŽ .0

V f s . 4Ž . Ž .ct 4p L

There is an additional, L-independent, counterterm
which was set to zero by an appropriate choice of
renormalization scale. The lattice simulation then
uses the corrected potential

Td x
XXV f sV f q V f . 5Ž . Ž . Ž . Ž .latt 0 024p
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As we will show later in the context of kink-antikink
pair production, this lattice formulation simulates the

Ž .continuum limit to one loop as given by Eq. 2 .
Note that the above treatment yields two novel

results. First, that the use of V instead of V getslatt 0

rid of the dependence of simulations on lattice spac-
wing. Of course, as d x™0, V ™V . However, thislatt 0

xlimit is often not computationally efficient. Previous
w xworks 7 , have explored the influence of a countert-

erm quadratic on lattice spacing. However, we note
that for small enough d x, the limit of interest here,
our linear correction is dominant. Second, that the
effective interactions that are simulated must be

Ž .compared to the one-loop corrected potential V f1L
Ž .of Eq. 2 ; once the lattice formulation is made

independent of lattice spacing by the addition of the
Ž .proper counterterm s , it simulates, within its domain

of validity, the thermally corrected one-loop effec-
tive potential.

3. Application. Thermal nucleation of kink-anti-
kink pairs

As an application of the method discussed above
we consider the symmetric double-well potential

l 22 2Ž .V f s f yf . The excitations of the asso-Ž .0 04

ciated quantum theory have a mass ms"vs
'" 2l f . Thus, in order for the system to remain in0 'the classical regime, the condition T4" 2l f0

must hold. This constrains the dimensionless temper-
3 2' 'Ž .ature QsTr l f to be larger than 2 "rf . For0 0

˜ ˜'Q<M ' 8r9 , where M is the dimensionlessk k

kink mass corresponding to the tree-level potential
w xV 8 , we can expect to have only a dilute gas of0

kink-antikinks at thermal equilibrium. With these
two conditions jointly satisfied, the system will also

3 ˜'obey M ' l f M 4m, indicating weak cou-K 0 k

pling.
The corrected lattice potential is

3
2V f sV f q lTd xf ; 6Ž . Ž . Ž .latt 0 24p

simulations using V will, in principle, match thelatt

continuum theory

'T l
2 2(V f sV f q 3f yf , 7Ž . Ž . Ž .1L 0 04

Ž . Ž .which has shifted minima at "f T , withmin
Ž .f T -f .min 0

For the numerical simulations we introduce the
' '˜dimensionless variables ts l f t, xs l f x,˜0 0

˜and fsfrf . To keep the notation simple we will0

subsequently suppress the tilde. The field is prepared
Ž .as f ts0 sy1, and evolved in time according to

a Langevin equation with white noise that incorpo-
rates the environmental temperature T through the
fluctuation-dissipation theorem. The details of this
and of the numerical implementation are laid out in
w x5 . The viscosity coefficient h has been set to unity
throughout this study. The time step is d ts0.05,
and Ls2100. The heat bath takes a time Dtf3 to
achieve equipartition so that the energy per degree of
freedom is ErNsTr2.

4. Results

Ensemble aÕerage of field. For sufficiently low
temperatures the simulated field will remain in the

Ž .vicinity of the minimum fsyf T for a verymin
Žlong time compared to typical fluctuation time-

.scales , until large-amplitude fluctuations drive por-
tions of the space over the barrier at fs0 and
beyond. The subsequent evolution is then the forma-
tion of the first kink-antikink pair. True thermal
equilibrium consists of reaching the final equilibrium
kink-antikink density together with zero mean field.
In a lose sense, this situation corresponds to symme-
try restoration, although in one spatial dimension
‘‘symmetry restoration’’ will occur for any nonzero
temperature; it is all a matter of time.

As a first test of our procedure, we investigate the
Ž . Ž . Ž .mean field value f t s 1rL Hf x,t dx before the

nucleation of a kink-antikink pair, i.e., while the
field is still well localized in the bottom of the well.

ŽIn Fig. 1 we show the ensemble average of f after
.100 experiments for different values of d x, ranging

from 1 down to 0.1, at Ts0.1. The simulations
leading to the left graphs use the ‘‘bare’’ potential
V , whereas the right graphs are produced employing0

Ž Ž ..V Eq. 6 . Apart from a discrepancy for verylatt
Ž .coarse grids d xs1 , where the resolution nears the

correlation length, the average field value is clearly
lattice-spacing independent when using V , in con-latt

trast to the use of V .0
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Ž .Fig. 1. Average field value f t for Ts0.1 using the tree-level potential, left, and the corrected potential, right.

As discussed before, the average mean field value
Ž .should correspond to the minimum yf T of themin

effective potential. However, since we are only using
a one-loop approximation, this agreement will get
progressively worse as the temperature increases. For
example, for Ts0.2, the discrepancy between the

Ž .theoretical value, yf 0.2 , and the numerical re-min

sult is 10%. For higher temperatures, we should not
trust the one-loop approximation; other nonperturba-
tive effects, such as subcritical fluctuations, too small
in width and amplitude to emerge as a kink-antikink
pair but still large enough to bring the average value
of the field away from its one-loop value, will

w xbecome important 9 . Thus, we restrict our investi-
gation to temperatures safely within the limits of
validity of the one-loop approximation. In a subse-
quent study, we intend to investigate the role of these
nonperturbative effects.

Density of kink-antikink pairs. Perhaps the most
difficult task when counting the number of kink-anti-
kink pairs that emerge during a simulation is the
identification of what precisely is a kink-antikink
pair at different temperatures. Typically, we can

.identify three ‘‘types’’ of fluctuations: i small am-
plitude, perturbative fluctuations about one of the

.two minima of the potential; ii full-blown kink-anti-
kink pairs interpolating between the two minima of

.the potential; iii nonperturbative fluctuations which
have large amplitude but not quite large enough to
satisfy the boundary conditions required for a kink-
antikink pair. These latter fluctuations are usually
dealt with by a smearing of the field over a certain
length scale. Basically, one chooses a given smear-

ing length DL which will be large enough to ‘‘iron
out’’ these ‘‘undesirable’’ fluctuations but not too
large that actual kink-antikink pairs are also ironed-
out. In this study, a similar smoothing was imple-
mented as a four-pole Butterworth low-pass filter of
the field with a filter cutoff length DL. The filter
removes fluctuations with wavelengths smaller than
DL. The choice of DL is, in a sense, more an art
than a science, given our ignorance of how to handle
these nonperturbative fluctuations.

In Table 1 we show the number of pairs for
different choices of filter cutoff length and for differ-
ent temperatures. We counted pairs by identifying
the zeros of the filtered field. From Table 1 it is clear
that as the temperature increases, the discrepancies in
the count of pairs also increase. For this reason we
only trust our data for fairly low temperatures. The
problem is aggravated by the fact that the ‘‘size’’ of
the kink-antikink pair, i.e., the minimal separation
between the two, not only changes due to dynamical
effects, but also changes with temperature. Thus,
choosing the filter cutoff length to be too large may
actually undercount the number of pairs. Choosing it
too low may include nonpertubative fluctuations as

Table 1
Number of kink-antikink pairs for different choices of the filter
cutoff length DL and T.

DL T s0.15 T s0.20 T s0.25

3 10.3"0.2 39.0"0.5 75.6"0.6
5 8.9"0.2 32.7"0.5 62.0"0.5
7 8.4"0.2 29.8"0.4 54.6"0.5
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pairs. We chose DLs3 in the present work, as this
is the smallest ‘‘size’’ for a kink-antikink pair. In
contrast, in the works by Alexander et al. a different
method was adopted, that looked for zero-crossings

Ž .for eight lattice units they used d xs0.5 to the left
w xand right of a zero crossing 10 . We have checked

that our simulations reproduce the results of Alexan-
.der et al. if we: i use the bare potential in the lattice
.simulations and ii use a large filter cutoff length

DL. Specifically, the number of pairs found with the
bare potential for Ts0.2, d xs0.5 are: n s36,p

30, and 27, for DLs3, 5, and 7, respectively.
Ž .Alexander et al. found for our lattice length n sp

25. Comparing these with Table 1, it is clear that the
differences between our results and those of Alexan-
der et al. come from using a different potential in the
simulations, viz. a corrected vs. an uncorrected po-
tential.

We believe that at this point it is fair to say that
the ‘‘smearing issue’’ remains unresolved, at least
for temperatures T)0.25 or so. We intend to ad-
dress the issue of how to deal with these nonpertur-
bative effects in a forthcoming publication. In any
case, the focus of the present work is mostly on how
to achieve a lattice-independent count, irrespective of
the particular method used for identifying the kink-
antikink pairs.

Fig. 2 compares measurements of the kink-anti-
Žkink pair density half the number of zeros of the

.filtered field , ensemble-averaged over 100 experi-
ments, for different lattice spacings. Again it is clear
from the graphs on the left that using the tree-level

potential V in the simulations causes the results to0

be dependent on d x, whereas the addition of the
finite counterterm removes this problem quite effi-
ciently; both diagrams of Fig. 2 contain four graphs
each, although the graphs on the right are almost
indistinguishable. Unless the properly corrected po-
tential is used in the lattice simulations, the measured
number density of topological defects is sensitive to
the lattice spacing. One must be careful when count-
ing kinks, especially for large lattice spacings, say
d xs0.25 or larger.

The next step is to extract the correct continuum
theory from the lattice simulations. What theory is
the lattice simulating? Most previous simulations of
thermal nucleation of kink-antikink pairs have over-
looked this problem. Although a temperature-depen-
dent kink mass was conjectured in the works of Ref.
w x11 , not much has been done to understand its origin
or its value. One way of addressing it is by compar-
ing the numerically measured kink mass with its
theoretical prediction. It has been found that the
measured mass was smaller than the theoretical pre-

w xdiction by a factor ranging from 25% to 45% 11,12 ,
a disturbing result. This has been attributed to sev-
eral effects, such as the finite size of the lattice, the
finite size of the kinks, and phonon dressing effects

w xdue to the lattice discretization 13 . We will show
that this problem is rooted in the incorrect matching
between theory and numerical simulations. In the
works by Alexander et al. a beautiful agreement
between the low temperature limit and a Ts0 WKB
approximation was obtained, as well as between high

Ž .Fig. 2. Density of kink-antikinks half of density of zeros , for Ts0.2 and d xs1, 0.5, 0.2, and 0.1.
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temperatures and a double Gaussian nonperturbative
w xmethod 10 . Our method is effective precisely be-

tween these two regimes, and could be interpreted as
a T-dependent WKB approximation obtained natu-
rally from the inclusion of counterterms.

One should expect the equilibrium kink-antikink
w xpair density to follow the proportionality 14

1
n A exp yM rT 8Ž . Ž .kink k'T

where M is the kink mass, given byk

X 21M s dx f qV f , 9Ž . Ž .Hk k k2

Ž .and f x is the kink solution to the equation ofk
Ž .motion. Note that we left the potential V f unspec-k

Ž .ified. If we use the tree-level potential, V f , we0 k
3'obtain the well-known result M s 8lr9 f . Or,k 0

˜ 'in dimensionless variables, M s 8r9 . One cank

extract the numerical value of M by measuring thek

pair density and plotting the results in a logarithmic
w xscale, as in Ref. 12 . The result should be a straight

˜ 'line with negative slope yM sy 8r9 . However,k

as mentioned above, the measured slope was found
˜to be about y0.70M . The reason for the discrep-k

ancy is that the potential which should be used when
comparing theory and simulation is not the tree-level

Ž . Ž .potential V f but the effective potential V f .0 1L

Thus, one must compute the effective kink mass
Ž . Ž .M T using the corrected potential V f and thenk 1L

compare the results with the numerical simulations.
The effective kink mass can be found using the

w xequation of motion and the real part of V 15 ,1L

X 21M T s dx f qRe VŽ . Ž .Hk k 1L2

fmins2 2Re V f df . 10( Ž . Ž .Ž .H 1L
0

This integration can easily be carried out numeri-
˜ ˜Ž .cally. In Fig. 3 we plot the ratio M T rM vs. thek k

dimensionless temperature, Q . Of course, for Ts0,
˜ ˜Ž .M 0 rM s1. As the temperature increases, thek k

effective kink mass decreases. The points represent
the kink mass extracted from the numerical simula-
tions, while the error bars were obtained by propa-
gating the standard deviation of the ensemble aver-
age. It is quite clear that the effective kink mass
tracks the numerical values quite well. In fact, within

Ž .Fig. 3. The ratio of the effective kink mass, M T , to thek

uncorrected kink mass, M , vs. the temperature.k

the validity of our approximations, the ‘‘averaged’’
˜value for the effective kink mass is 0.75M . Also,k

since the mass extracted from the simulations de-
pends on the filter cutoff length DL, the reasonable
agreement between theory and numerical experiment
offers indirect support for our choice of DLs3. For
very small and very large temperatures the theory
fails to track the numerical data. At large tempera-
tures QG0.25, the one-loop approximation breaks
down, while for low temperatures QF0.12, the
large pair nucleation time-scale precludes a proper

Ž .statistical analysis not enough experiments . How-
ever, the conclusion is quite clear: by controlling the
dependence on lattice spacing of the simulations we
were able, within the validity of our approximations,
to obtain the correct effective potential that should
be used when comparing theory and numerical ex-
periment.
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