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Introduction

Alternative reality

The real numbers are fundamental. Although mostly taken for granted, they

are what make possible all of mathematics from high school algebra and

Euclidean geometry through the calculus and beyond, and also serve as the

basis for measurement in science, industry, and ordinary life. In this book

we study alternative systems of numbers: systems that generalize and ex-

tend the reals yet stay close to the fundamental properties that make the

reals central to so much mathematics.

By an alternative number system we mean a set of objects that can be

combined using two operations, addition and multiplication, and that share

some significant algebraic and geometric properties with the real numbers.

Exactly what these properties are is made clear in Chapter One. We are not

concerned with numeration, however. A numeration system is a means of

giving names to numbers, for example, the decimal system for writing real

numbers. We go beyond numeration to describe number systems that in-

clude numbers different from ordinary numbers including multi-dimensional

numbers, infinitely small and infinitely large numbers, and numbers that

represent positions in games.

Although we present some eccentric and relatively unexplored parts of

mathematics, each system that we study has a well-developed theory. Each

system has applications to other areas of mathematics and science, in par-

ticular to physics, the theory of games, multi-dimensional geometry, formal

logic, and the philosophy of mathematics. Most of these number systems

are active areas of current mathematical research and several were discov-

vii
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viii Introduction

ered relatively recently. As a group, they illuminate the central, unifying

role of the reals in mathematics.

Design of this book

This book is designed to encourage readers to participate in the mathemat-

ical development themselves. The proofs of many results are either con-

tained in problems or depend on results proved in problems. The problems

should be read at least, if not worked out.

With two exceptions the chapters are independent and can be read in any

order. The exceptions are that the first two chapters contain essential back-

ground for the rest of the book and that Chapter Four depends somewhat on

the proceeding chapter.

Use of this book

This book presents material that, in addition to being of general interest to

mathematics students, is appropriate for an upper level course for under-

graduates that can serve as introduction to or sequel to a course in advanced

calculus. Alternatively, it can take the place of a course in the foundations

of the real number system, or be given as an upper level seminar emphasiz-

ing different methods of proof. Prerequisites are standard sophomore level

courses: discrete mathematics, multivariable calculus, and linear algebra. A

course in advanced calculus or foundations of analysis would also be useful.

The goal

The goal is to present some interesting, even exotic, mathematics. I hope

to convey a sense of the immense freedom available in mathematics, where

even in a mundane and well-established area such as the real numbers, al-

ternatives are always possible.

Acknowledgements

This book owes a tremendous debt to previous expositors in this area to

whose work this book is closely tied, in particular, to the work of Elwyn

Berlekamp, Errett Bishop, John H. Conway, Richard Guy, James Henle,
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Part I

THE REALS

What makes a number system a number system? In this book the real

numbers serve as the standard with which other number systems are com-

pared. To be called a number system a mathematical system must share

most if not all of the fundamental properties of the reals.

What are the fundamental properties of the reals? We use a set of prop-

erties (or laws or axioms) that characterize the reals completely, meaning

that any mathematical system with these properties is the same as the re-

als. Such a set of properties for a particular mathematical object is called

a categorical axiom system. Many such systems are known. A famous one

for plane geometry goes back to Euclid, although a correct and complete

categorical axiom system for Euclidean geometry was formulated only late

in the 19th century. In this later period and on into the 20th century there

has been tremendous interest in axiom systems and their application to all

areas of mathematics.

Part One of this book describes a categorical axiom system for the reals.

Chapter One lists the axioms of this system. Chapter Two constructs the

reals (from the rational numbers), and shows that they satisfy the axioms

presented in Chapter One. In addition, we prove that any mathematical sys-

tem satisfying these axioms is identical (more technically, isomorphic) to

the reals.

A categorical axiom system is a powerful tool. The one we describe is

used in this book to analyze and compare number systems. Given any sys-

tem we ask: which axioms for the reals does it satisfy? The answer reveals

how close the new system is to the standard set by the reals themselves.

Of course, any proposed system that is genuinely different from the reals

cannot satisfy all the axioms, for then it would be the reals.

In principle, we could survey systematically all possible number sys-

tems, first by finding those satisfying all but one of the axioms of the reals,
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then finding systems satisfying all but two axioms, and so forth. We cannot

accomplish this ambitious program; only partial results are known! Even

these encompass a veritable ocean of important modern mathematics. How-

ever, we can present the most important mathematical systems that satisfy

all but a few of the axioms.

Important Note: We assume that the reader is already familiar with two

kinds of numbers: the integers (i.e., the whole numbers, positive, negative

and zero), and the rational numbers (the common fractions). The basic prop-

erties of these numbers are assumed. The theory of the reals and other num-

ber systems will be based on them.
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Axioms for the Reals

1.1 How to Build a Number System

Equivalence relations

In this section we describe a process that is used to construct many num-

ber systems and other mathematical systems as well. It is used to construct

about half of the number systems in this book. This process uses the concept

of an equivalence relation. Here is the definition:

Definition. Let S be a set and � a relationship that may or may not hold

between two elements of S . A relation on S satisfying these properties:

(a) For every a in S , a � a, — reflexivity

(b) For a, b in S , if a � b, then b � a, — symmetry

(c) For a, b, c in S , if a � b, and b � c, then a � c. — transitivity

is called an equivalence relation on S .

The three properties—reflexivity, symmetry, and transitivity—are the

axioms of equivalence relations, sometimes called laws of equivalence. An

example of an equivalence relation is the relation of equality. Every set S

has this relation. The idea of an equivalence relation is an abstraction of

equality, and, as we will soon see, every equivalence relation can be turned

into the relationship of equality on some set.

We see many examples of equivalence relations connected with number

systems later. Here are a few diverse examples.

3
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4 1. Axioms for the Reals

Problems

1. Let S be the set of all triangles in the plane. For A, B in S , set A � B

if A and B are congruent. Explain why � is an equivalence relation

for S .

(Hint: We are asked to show that “�” has the three properties: reflexiv-

ity, symmetry and transitivity. For example, is � reflexive? According

to the definition, this means: Is every triangle congruent to itself? Con-

gruence of triangles means that corresponding sides are equal (in some

order) and corresponding angles. Therefore, any triangle is congruent

to itself: the sides are equal to themselves, and the angles are equal to

themselves. The answer is yes: congruence is reflexive.)

2. Consider two further relations between triangles:

A � B if A and B are similar triangles,

A † B if at least one angle of A equals an angle of B .

Are � and † equivalence relations?

3. Let S be the set of people in Australia. For A, B in S define A � B if

A and B have the same birthday. Is � an equivalence relation?

4. Let a set U be given. Let S be the set of subsets of U . For A, B in S ,

define A , B if jAj D jBj (i.e., A and B have the same number of

elements). Is , an equivalence relation?

5. Let Z be the set of integers, positive, negative and zero. Let p be a

positive integer. For x and y in Z define x � y .mod p/ if p divides

x � y with remainder zero. Is � an equivalence relation?

6. Let F be the set of all symbols of the form a=b where a and b are

integers and b is not zero. (For the purpose of this exercise forget that =

is sometimes used for fractions.) Define a relation � for these symbols

a=b � c=d if ad D bc. Is � an equivalence relation?

7. Find a set S and a relation on S that is

(a) reflexive, but not symmetric or transitive,

(b) symmetric, but not reflexive or transitive,

(c) transitive, but not reflexive or symmetric,

(d) reflexive and symmetric but not transitive,

(e) symmetric and transitive but not reflexive,
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1.1. How to Build a Number System 5

(f) transitive and reflexive but not symmetric.

(Hint: Good examples of relationships can be found outside mathe-

matics. For example, “cousinhood” has an interesting combination of

properties. It is symmetric, but not reflexive (i.e., one is not one’s own

cousin).

Examples of relations can be found on any finite set. Furthermore, if

S is finite, a relation on S can be diagrammed as in Figure 1.1.1. The

set S there has only three elements, A, B , and C . The arrows indicate

the relationships that exist among the elements of S . If the relation is

symbolized by “:”, say, thenA:B ,B:C andC:C . It is not reflexive

(A is not related to itself), nor symmetric (A:B , but not B:A), nor

transitive (A:B and B:C , but not A:C ).

A

B

C

Figure 1.1.1. A simple relation on a small set.

Equivalence classes

To use equivalence relations to construct number systems, we need another

definition.

Definition. Let S be a set with an equivalence relation �. For each a in

S let

Sa D fbjb � ag:
The set Sa is called the equivalence class containing a. The set of all the

equivalence classes is written S=�.

Usually, an equivalence relation is defined on a set S precisely in or-

der to study the set S=� of equivalence classes. S=� is the new set built

by introducing the equivalence relation. In this book this new set will usu-

ally be a number system but the same construction is used for many other

mathematical concepts.

Proof is one of the most difficult of mathematical concepts (see the

shaded text below). The next exercises provide the opportunity to supply

proofs of some fundamental facts about equivalence classes.
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6 1. Axioms for the Reals

What is a proof?

Originally, to prove something meant to try it out, or to test it

(leaving open, of course, the possibility of failure). For example, a

baker proofs the yeast before baking, and Christopher Marlowe’s pas-

sionate shepherd says, “Come live with me and be my love, and we

will all the pleasures prove.”

In mathematics, on the other hand, a proof is supposed to be an ar-

gument that leaves no possible doubt of its truth. Mathematical proofs

are not supposed to fail. Some do, however, because of human error,

because standards of proof evolve so that what was once certain be-

comes doubtful or even wrong, and because of the intrinsic subtlety

of the whole process.

No one has ever set down exactly what makes a mathematical

proof a proof. No one knows infallibly what a proof is. On the other

hand, attacking proofs is easy: every statement that does not carry

utter conviction is vulnerable to criticism.

Perhaps proof, like Zen Buddhism (as described by Alan Watts)

“can have no positive definition. It has to be suggested by saying what

it is not, somewhat like a sculptor reveals an image by the act of re-

moving pieces of stone from a block.” Unfortunately, this makes find-

ing proofs something like “a game in which the rules [have] been

partially concealed.”

How do we cope with this situation? When a proof is proposed, it

is read by other mathematicians. As more and more people study it,

test it, and work with it, it gradually achieves acceptance.

In summary, although we can’t say exactly what a proof is, it’s

always possible to proof proofs, that is, to test them. To test your

proof, let others read it. See whether they are convinced.

Problems

8. Describe a typical equivalence class for the equivalence relations de-

scribed in problems 1–5.

(Example: For congruence for triangles (Problem 1), a typical equiva-

lence class consists of all triangles of a particular shape and size.)
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1.1. How to Build a Number System 7

9. Prove that all the elements of Sa are equivalent to each other.

(Hint: Let b and c be elements of Sa. Then b � a and c � a. Use the

laws of equivalence to draw the desired conclusion.)

10. Prove that if a � b, then Sa D Sb .

11. Prove that every element a ofS is a member of exactly one equivalence

class.

Building number systems with equivalence classes: a
discussion

Let’s start with one of the simplest number systems: the integers, Z, consist-

ing of the whole numbers—positive, negative, and zero—i.e., Z D f0;˙1;
˙2; : : : g. Besides numbers, Z comes with the two operations of addition

and multiplication, so we can add and multiply integers—always obtaining,

as it happens, another integer as a result.

Addition is an invertible operation in Z; that is, given integers p and q, it

is possible to un-add p to q. For example, un-adding 5 to 7 gives 2. (Check

this: take 2, add back the 5, and note that we do get 7.) “Un-adding,” of

course, is usually called “subtraction”. Un-adding 5 is adding �5 to 7, the

number �5 being the additive inverse of 5. The point here is that un-adding

is not a problem in the integers: �5 is an integer. It is inside Z with all the

other integers. Every integer has an additive inverse in Z.

Multiplication is not invertible. We cannot un-multiply 7 by 5 because

there is no integer x such that multiplying it by 5 gives 7. In symbols, the

equation 5x D 7 has no integer solution. We can fix this by building a new

number system, the rational numbers Q, where un-multiplication (except

by zero!) is possible. (For the sake of this discussion, please forget, for a

page or two, that you know about the rational numbers already.)

Towards the goal of building from the integers a number system in

which un-multiplication is possible, let F be the set of all symbols of the

form p=q where p and q are integers and q is not zero. Call the symbols

p=q fractions. Think of p=q as representing the result of un-multiplyingp

by q (if only this were possible), but at the moment p=q is a pure symbol

symbolizing nothing.

These so-called fractions name the numbers in our new system, the ra-

tional numbers. But the set of fractions is not the same as the set of rational

numbers because many fractions name the same number.

How do I know that many different fractions name the same number?
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8 1. Axioms for the Reals

Here is one argument that suggests this must be true. In Z, multipli-

cation is commutative. In our new number system, let us agree that un-

multiplication will be commutative, a natural property we might desire any

operation possess. We stipulate that commutativity hold for fractions and

hope that nothing bad happens, where ‘bad’ means a contradiction appears.

It happens that un-multiplication is sometimes possible even within Z.

If an integer p factors, say p D bc, then we can un-multiplyp by b, getting

c. For example, we can un-multiply 12 by 4 getting 3—all within the inte-

gers. Ah, but suppose that p factors in two different ways: p D ad D bc. In

this situation, if we un-multiplyp by b we get c, and if we then un-multiply

c by d , we get the fraction c=d . If un-multiplication is commutative, this

must be the same as un-multiplying p by d first (getting a), and then un-

multiplyinga by b getting a=b. Therefore, if un-multiplication is commuta-

tive, and ad D bc, then the fractions a=b and c=d name the same rational

number. Let us write a=b � c=d in this situation. This is an equivalence

relation for F (see problem 6), and the new number system we seek is the

set of equivalence classes Q D F=�.

In summary, 3=6, 4=8 and 23=46, for example, are all names for the

same rational number, namely 1=2 or one-half (to use its simplest fractional

name). We are so used to this particular equivalence relation that we call

the fractions 4=8 and 23=46 equal without thinking anything of it. They are

not equal, however, at least not as elements of F . (Look at them: 4=8 and

23=46 are different!) They are equal in the set Q, though, since they belong

to the same equivalence class.

The view of equivalence relations and equivalence classes that emerges

from this discussion is this: An equivalence relation on S supplies S with

a new definition of equality, since equivalence relations have the same al-

gebraic properties as equality. If we use the equivalence relation in place of

equality, then the original set S functions as a set of names for a new set of

objects: the set of equivalence classes: S=�.

An essential feature of our equivalence relation for fractions is that a=b

and c=d can be tested for equivalence by a calculation (does ad D bc?)

carried out entirely within Z without using any un-multiplications. Un-

multiplication is still a fictitious operation since we have not completed

construction of the new number system Q.

What else is needed to complete the creation of Q? Quite a lot of work!

First is the problem of definition: the operations of addition and multiplica-

tion must be defined for rational numbers, and it must be proved that they

satisfy the same basic properties in Q as in Z, for example the commutative
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1.1. How to Build a Number System 9

and associative laws. Then there is the embedding problem: verifying that

the old system Z is contained inside the new system Q. This means that

inside Q a copy of the integers Z must be found that behaves, so far as ad-

dition and multiplication are concerned, exactly as the original integers do.

Finally, it must be shown that un-multiplication is possible in Q since this

was the reason for the construction of Q in the first place.

We will not tackle all this right now as we will have similar tasks to

complete while constructing the real numbers and various alternative real

number systems.

(You are now allowed to remember that you already know about the

rational numbers.)

The problem of definition

One unfinished element of the construction of the rational numbers is worth

pursuing here: the problem of how to define operations on a set of equiva-

lence classes.

For the symbols a=b, addition is defined by

a=b C c=d D .ad C bc/=.bd/:

This is the well-known law for the addition of fractions based on a common

denominator bd of the two fractions. It defines addition not for the rational

numbers themselves, however, but only for their symbolic names from F .

Can this symbolic addition be applied to the equivalence classes? It can, if

it is well-defined, meaning that if

a=b � a0=b0;

and

c=d � c0=d 0;

then

a=b C c=d � a0=b0 C c0=d 0:

In other words, for an operation defined on a set of symbols to be well-

defined on the equivalence classes, it must be proved that equivalent sym-

bols combined with equivalent symbols give equivalent results. The issue

of well-definedness arises whenever a mathematical system is defined us-

ing equivalence classes.
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10 1. Axioms for the Reals

In praise of names

It may seem that we belittle the fractions a=b by saying that they only are

names for the rational numbers. If so, we should correct this impression

right away. It is true that, for example, 20=25 and 80=100 and 580=725,

and so on are names for an underlying ideal rational quantity (4=5), but for

practical purposes we have to have these names in order to do anything with

the rationals. In general, when a new number system S=� is constructed

using an equivalence relation, S is not discarded. We need those names.

Problems

12. Prove that the symbolic addition of fractions is well-defined for the

equivalence classes Q D F=�.

13. For the symbolic fractions a=b of the set F , define multiplication by

setting

.a=b/.c=d/ D .ac/=.bd/:

Prove that multiplication is well-defined.

14. The fractions in F of the form p=1 serve as embedded copies of the

integers in the rationals.

(a) Verify that equivalence on F for fractions of this form is the same

as equality.

(b) Verify that addition of fractions of this form is the same as the

usual addition of integers.

(c) Verify that multiplication of fractions of this form is the same as

the usual multiplication of integers.

Where do number systems really come from?

The reader at this point may object that the process by which we have ob-

tained the rational numbers from the integers cannot possibly be how the

rational numbers were actually discovered. A few words about this now

will place the theoretical description of number systems, to which this book

is devoted, in the context of their historical development.

The discovery and development of the rational numbers was a long pro-

cess beginning before the dawn of written history. Because fractions are es-

sential for commercial and astronomical calculation, they were discovered
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1.1. How to Build a Number System 11

by many civilizations, including the ancient Egyptians and Babylonians.

Over the centuries, rules for calculation with specific fractions slowly gave

way to more general procedures. Many notations were invented and used.

The current, standard notation was invented several times, most recently

by Hindu mathematicians sometime before 600 AD. They used it without

the bar separating numerator from denominator, which was added by Arab

mathematicians later.

In the history of the discovery of the rational numbers and other number

systems, theory follows calculation. Thus, a theory of number was estab-

lished, by the Greeks, only after centuries of systematic calculation. Eu-

clid’s Elements (c. 300 BC) contains the first formal exposition of a theory

of numbers (as well as a theory of geometry). One of the most important

Greek discoveries about rational numbers, incidentally, is that there are ir-

rational numbers. This is attributed to the Pythagorean school (c. 400 BC).

After the Greeks, the theory of number systems is dominated by efforts to

come to terms with various troublesome numbers: the negative, the irra-

tional, and the complex—among others. In all this, the positive rationals

remain uncontroversial.

Although much was learned in the post-Grecian era about calculation

with numbers, not much progress was made toward understanding their the-

oretical nature until the nineteenth century. Then rapid progress was made

as part of a general program undertaken by European mathematicians to

place the ideas of the calculus on a firm foundation. All the classical num-

ber systems received definitive treatment in the nineteenth century: the com-

plexes first (c. 1800: Gauss and others), then the reals (1852–83: Dedekind

and Cauchy), then the rationals (c. 1854–67: described by Bolzano and Han-

kel as a system of numbers closed under addition, subtraction, multiplica-

tion, and division), and, finally, the integers (1889: Peano). The equivalence

relation � on F appears first in an 1895 algebra text by Weber. The order

in which the theory of these number systems developed is the reverse of the

order in which they were discovered for computation and the reverse of the

order in which they are usually studied.

The theoretical development of number systems made possible the in-

vention of many more systems in the 19th and the 20th centuries. In this

book we describe five of the most important of these. They appear in histor-

ical order: the complex numbers (1800 and earlier), the quaternions (1843),

the constructive reals (1870–1930), the (1961), and the surreals (1970).

Each of these systems was created in response to a computational challenge:

the complexes in order to solve quadratic and higher degree equations, the
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12 1. Axioms for the Reals

quaternions in order to calculate with vectors and compute transformations

of three-dimensional space, the constructive reals in order to deal with per-

ceived limits on the nature of computation, the hyperreals in order to cal-

culate with infinitesimals, and the surreals in order to evaluate positions in

combinatorial games. Their discovery is a legacy of theoretical develop-

ments of the 19th century including the description of the rationals as F=�.

For more on the history of number systems, see references [A1] and [A2].

For more on the history of mathematics in general, see [A3].

Summary

Number systems have a long practical history but their theory developed

only rather recently. One important theoretical development is the inven-

tion of equivalence relations, which permit the elements of a set to serve

as names for a new set constructed from the old. Equivalence relations ap-

pear in many parts of mathematics. In this book they are used to create new

number systems.

1.2 The Field Axioms

The algebra of the reals

In this and the next two sections we describe a categorical axiom system for

the reals. The axioms of this system divide conveniently into three subsets:

axioms for the algebra of the reals, axioms for the geometry of the reals,

and a final axiom called completeness.

Algebra is the most familiar of these; it is the natural place to start.

Definition. Let S be a set with two operations called addition and mul-

tiplication and written with the usual signs. We assume that the set S is

closed under these operations, so that applying the operations to two ele-

ments of S produces another element of S .

Then S is a field if addition and multiplication have the properties:

(a) For a, b, c in S ,

.aCb/Cc D aC.bCc/, — associativity of addition

and

.ab/c D a.bc/. — associativity of multiplication

(b) For a, b in S ,
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1.2. The Field Axioms 13

aC b D bC a, — commutativity of addition

and

ab D ba. — commutativity of multiplication

(c) For a, b in S ,

a.b C c/ D ab C ac. — distributivity

(d) There are distinct, special elements 0 (zero) and 1 (one) in S such that

for any b in S ,

0C b D b C 0 D b, — additive identity

and

1b D b1 D b. — multiplicative identity

(e) For any b in S , there is an element �b in S so that

b C .�b/ D 0, — additive inverse

and for any b in S , except 0, there is an element c in S so that

bc D 1, — multiplicative inverse

Properties (a)–(e) are the field axioms. They summarize the algebra of

the real numbers, the rational numbers, and many other number systems.

They were first collected together under the term ‘field’ by Weber in 1893.

See reference [C7].

Assumption. Let Q be the set of all rational numbers, that is numbers of

the form p=q, where p and q are integers and q is not zero. We assume that

Q is a field.

Problems

1. Let Z be the set of all integers. Z is not a field. List the axiom(s) not

satisfied by Z.

2. Let n be a positive integer, and consider the set Z=n of integers modulo

n, that is Z=n is the set of equivalence classes of Z under the equiva-

lence relation x � y .mod n/ if n divides x � y with remainder zero.

How many equivalence classes are there in Z=n?

3. Show that addition and multiplication are well-defined on Z=n, that is

if a � b .mod n/ and c � d .mod n/, then aC c � bC d .mod n/

and ac � bd .mod n/.
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14 1. Axioms for the Reals

4. Write out the complete addition and multiplication tables for Z=2,

Z=3, Z=4, Z=5, and Z=6.

5. For what values of n is Z=n a field?

(Hint: Problem 14 below describes the integral domain property, a

property that all fields have. For which n does Z=n have the integral

domain property.)

6. For rational numbers a and b define a � b, if .a � b/ is an integer. Is

� an equivalence relation? If so, are addition and multiplication well-

defined? If so, is Q=� a field?

7. Here is another relation on the rationals. Let a, b, c, d , be integers,

with b and d not zero, and define a=b $ c=d if ad � bc is even.

Is $ an equivalence relation? If so, are addition and multiplication

well-defined? If so, is Q=$ a field?

8. Let Q.�/ be the set of symbols of the form aC b�, where a and b are

rationals. (Call � ‘blob’, then Q.�/ is ‘cue-blob’.) Define addition and

multiplication in Q.�/ by setting

.a C b�/C .c C d�/ D .aC c/C .b C d/�;

and
.a C b�/.c C d�/ D .ac C 3bd/C .bc C ad/ � :

Prove that Q.�/ is a field.

(Hint: To find the multiplicative inverse of the element .a C b�/ in

Q.�/ solve the equation

.aC b�/.c C d�/ D 1C 0�;

for c and d by solving a pair of linear equations.)

9. Let Q.x/ be the set of all rational functions

f .x/ D p.x/

q.x/
;

where p.x/ and q.x/ are polynomials with rational coefficients and

q.x/ is not the zero polynomial. Let addition and multiplication in

Q.x/ be the usual addition and multiplication of functions. Show that

Q.x/ is a field.
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1.2. The Field Axioms 15

Solving equations with the field axioms

The field axioms justify many algebraic techniques for solving equations.

The problems show how.

Problems

10. Prove the cancellation law of addition: in any field S , if aCb D aCc,

then b D c.

(Hint: Use an inverse operation.)

11. Prove the cancellation law of multiplication: in any field S , if ab D ac

and a ¤ 0, then b D c.

12. Explain how to solve the linear equation axC b D c for x, where a, b

and c are elements in a field S and a ¤ 0, using the cancellation laws

of addition and multiplication.

13. Solve these linear equations:

(a) 1
2
x C 1

3
D 4

9
, for x in the field Q,

(b) 2C 3 � aC b C 1 � 4� D 3C �, for aC b� in the field Q�,

(c)

�

x2 � 1
x

�

f .x/C
�

x3 � 2x C 3

x2 C 1

�

D
�

x4 C 4x2 � 5
x2 C 1

�

; for f .x/

in the field Q.x/.

14. Prove the integral domain property: in a field S , if ab D 0, then

either a D 0 or b D 0.

15. Explain how to solve the quadratic equation x2 C .aC b/xC ab D 0,

where a and b are elements in a field S and x is unknown, using the

integral domain property.

16. Solve these quadratic equations:

(a) x2 C 4x � 60 D 0, for x in the field Q,

(b) .a C b�/2 C .2 C 2�/.a C b�/C .3 C 2�/ D 0, for .a C b�/ in

the field Q.�/,

(c) f .x/2 � x3 � 4x2 C x � 2
x2 � 4

f .x/ � x3 � x2 C x

x2 � 4
D 0, for f .x/ in

the field Q.x/.

(Hint: Factor the left-hand side of these equations in the usual way by

factoring the constant terms, e.g., 60 in equation (a). Remember that

3 D �2, in Q.�/.)
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16 1. Axioms for the Reals

How to find a proof

There is no sure way to find proofs, but there are general principles,

called heuristics, useful in all problem-solving situations. They in-

clude:

1. Talk to yourself. Ask: What do I know already about this? Ask: Is

there extra information I need and where can I get it? Ask: What

if I could prove such-and-such, then can I prove what I want?

2. Work out a plan. Divide the proof into stages or cases that can

be tackled separately.

3. Be flexible. Work both forward and backward, i.e., from the be-

ginning or from the end. It may even be possible to start in the

middle and work toward both ends.

4. Draw a picture. Also doodle, invent your own symbols, make up

notation, build models.

5. Successively refine. Don’t expect your first thoughts to be perfect

in all detail. Scribble down ideas for later polishing. Go over

the proof several times with a critical eye asking yourself: Is it

convincing?

6. Indirect proof. If necessary, try proof by contradiction.

The next exercises describe results that hold in all fields. Try heuristics

on the proofs.

Problems

17. Let n be a positive integer, and let a be an element of a field. Define

na by setting

na D aC aC aC � � � C a: — exactly n a’s

Prove that

n.a C b/ D na C nb;

.nCm/a D na Cma;
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1.2. The Field Axioms 17

and

.na/b D a.nb/ D n.ab/;

where n and m are positive integers, and a and b are field elements.

18. Prove that the additive inverse of an element of a field is unique.

19. Prove that the multiplicative inverse of a non-zero element of a field is

unique.

20. Prove that �a D .�1/a and �.�a/ D a where a is an element of a

field.

(Hint: Use the uniqueness of additive inverses.)

21. For a nonzero element b in a fieldS , let b�1 stand for the multiplicative

inverse of b. Prove that

.�b/�1 D �.b�1/;

.b�1/�1 D b;

and

.ab/�1 D b�1a�1:

(Hint: Use the uniqueness of multiplicative inverses.)

When are two fields the same?

The answer is provided by the concept of isomorphism.

Definition. Two fields S and T are (field) isomorphic if there is a one-

to-one, onto function i WS ! T (i.e., a bijection) such that

i.a C b/ D i.a/ C i.b/;

and

i.ab/ D i.a/i.b/:

The function i is called a (field) isomorphism.

Informally, the isomorphism of two fields, S and T , means that every

algebraic operation in one of them (for example, a C b in S ) is imitated by

a parallel operation in the other (that is, i.a/ C i.b/ in T ).
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18 1. Axioms for the Reals

Problems

22. Show that the identity function i WS ! S is an isomorphism.

23. Show that the fields Z=p for different p are not isomorphic to each

other.

24. Prove that field isomorphism is an equivalence relation on a set of

fields.

Summary

The field axioms set forth algebraic laws that, as we shall see, are satisfied

by the real numbers. We therefore expect them to be satisfied by any num-

ber system that is an alternative to the reals. The field axioms are the basis

for many of the usual algebraic techniques of solving equations. The con-

cept of isomorphism makes precise when two fields have identical algebraic

structure.

1.3 The Order Axioms

The geometry of the reals

Geometrically the reals are a straight line. This is expressed by order ax-

ioms.

Definition. A field S is (linearly) ordered if there is a subset SC of S

satisfying:

(a) If a and b are in SC, then so are aC b and ab,

(b) If a is in S , then exactly one of the following is true: a D 0, a is in

SC, or �a is in SC (the trichotomy law).

The elements of SC are called positive, while if �x is in SC we call x

negative.

Two ordered fields S and T are (order) isomorphic if there is a field

isomorphism i W S ! T such that a is in SC if and only if i.a/ is in T C.

To say that the reals form a line means that given two real numbers, x

and y, we can tell which is further along the line, that is, whether x < y

or y < x. Thus, the linear nature of the reals takes the algebraic form of

working with inequalities. Here is how inequalities are defined in an ordered

field.
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1.3. The Order Axioms 19

Definition. Let S be any ordered field. Let a and b be elements of S . We

write
a < b;

when b � a is positive. We write a � b when b � a is positive or zero.

Assumption. The rationals Q are an ordered field.

The order axioms are not satisfied in many fields. Most of the fields we

have introduced are not ordered.

Problems

1. Prove that 1 is positive in an ordered field.

2. Show that the fields Z=p are not ordered.

(Hint: 1 is positive by the previous exercise, so 1 C 1 is also positive.

Argue that 0 is positive.)

3. Let .aCb�/ be an element in the field Q.�/. Let us say that .aCb�/ is

a positive element of Q.�/ if either a and b are both positive, or a � 0,

b > 0 and a2 < 3b2, or a > 0, b � 0 and a2 > 3b2. Show that Q.�/
is an ordered field.

4. For an element f .x/ D p.x/=q.x/ in the field Q.x/ of all rational

functions the degree of f is the degree of p minus the degree of q. For

example the degree of

f .x/ D x2 � 1

x3 C x C 1

is 2� 3 D �1. Show that defining the positive elements of Q.x/ to be

those whose degree is positive does not make Q.x/ an ordered field.

Solving inequalities with the order axioms

The order axioms justify the usual algebraic laws of inequalities, including

those in the next problems.

Problems

5. Prove the trichotomy law for inequalities: given a and b in an ordered

field S , exactly one of a D b, a < b, and b < a is true.
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20 1. Axioms for the Reals

6. Prove the transitive law of inequalities: for a, b, and c in an ordered

field S , if a < b and b < c, then a < c.

7. Prove the law of addition of inequalities: in an ordered field if a < b

and c < d , then aC c < b C d .

8. Prove in any ordered field that if a > b then �b > �a.

9. In an ordered field, prove that the product of two negatives is positive,

while the product of a negative and a positive is negative.

10. Let S be an ordered field. Prove that 1 C 1 ¤ 0. Deduce that between

any two elements of S there are an infinite number of other elements.

(Hint: Define 2 by 1C 1. Given two field elements, a and b, show that

their average .a C b/=2 lies between them.)

Absolute value and distance

Every ordered field has absolute values. They are used to define distance.

Here is the definition.

Definition. Let S be an ordered field and let a and b be elements of S .

The absolute value is defined by

jaj D
(

a if a is positive or zero,

�a otherwise.

The distance between a and b is defined as ja � bj.

The absolute value ja � bj is the distance between a and b measured

in units from the ordered field itself. The next few problems develop some

properties of absolute values and distance.

Problems

11. Prove that in any ordered field the absolute value function satisfies:

ja C bj � jaj C jbj; — triangle inequality

and

jnaj D njaj;

where n is a positive integer.
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1.3. The Order Axioms 21

12. Prove that in any ordered field:

(a) The distance of any point to itself is the zero of the field.

(b) The distance from a to b equals the distance from b to a.

(c) Given three points,a, b, and c, the distance from a to c is less than

or equal to the sum of the distance from a to b plus the distance

from b to c.

13. In an ordered field, show that if jaj < k, then �k < a < k. Prove that

if jb � aj < k, then a � k < b < aC k.

Embedding Theorems

The next theorem is the first of many embedding theorems we prove. It

describes how the natural numbers are embedded inside every ordered field.

Theorem 1.3.1. Let S be an ordered field. For any natural number n define

i.n/ D 1C 1C � � � C 1: — exactly n ones

where 1 is the multiplicative identity of S . Then i satisfies:

(a) i.nCm/ D i.n/C i.m/,

(b) i.nm/ D i.n/i.m/,

(c) i is one-to-one.

Embedding the natural numbers in an ordered field S is executed by a

function. The theorem says that every integer n has a copy of itself, i.n/,

inside S . Parts (a) and (b) express the fact that given two natural numbers

(n and m) their copies (that is, i.n/ and i.m/) in S behave arithmetically

exactly like the originals. Part (c) says that the embedding is strict, i.e., one-

to-one.

As this is our first formal theorem, we give a complete proof, the heart

of which is an argument by mathematical induction.

Proof. The definition of i.n/ implies that i.nC 1/ D i.n/C 1. This makes

proof by induction work.

Proof of (a). (By mathematical induction) Let s.n/ be the statement

“i.nCm/ D i.n/C i.m/ for all m.”

Base Case: The statement s.1/ is “i.mC 1/ D i.m/C 1”. This is clear

from the definition of i.n/.
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22 1. Axioms for the Reals

Mathematical induction

This powerful technique is used to prove a sequence of propositions,

one for each natural number. Let s.n/ be some statement that depends

on the value of the natural number n. Proof by induction consists of

two steps:

Base case: Prove s.1/.

Inductive case: Assume that s.n/ has been proved. Use this as-

sumption to prove s.nC 1/.

What justifies this kind of proof? From a modern point-of-view,

the validity of mathematical induction is a fundamental assumption

concerning the nature of the natural numbers. Still, what do we to

say to someone who challenges a proof by induction? It is not very

satisfying simply to assert that we assume that this kind of proof is

valid.

If someone challenges proof by mathematical induction, ask them

in return, “If you question my proof (that s.n/ is true for all n), then

for what number n do you think s.n/ is false?” The rest of the con-

versation might proceed along the following lines.

“You say you doubt s.7/? But s.1/ is true, right, because I proved

the base case. And you know that s.2/ follows from s.1/ because I

proved the inductive case. Similarly s.3/ follows from s.2/, and s.4/

from s.3/, and so forth, and so on. Eventually, we reach 7. So s.7/ is

true.”

Eventually, we reach any particular natural number. This is one of

Peano’s axioms for the natural numbers and is what ultimately justi-

fies mathematical induction.

Inductive Case: Assume that “i.nCm/ D i.n/C i.m/ for allm” is true

for a specific n. Then for nC 1 we have

i
�

.nC 1/Cm
�

D i.nCmC 1/

D i.nCm/C 1 — by definition of i.nCm/

D i.n/ C i.m/C 1 — by assumption

D i.nC 1/C i.m/: — by definition of i.n/

Thus we have proved the statement s.n C 1/. This completes the proof of

(a).
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1.3. The Order Axioms 23

Proof of (b). (By mathematical induction) Let s.n/ be the statement

“i.nm/ D i.n/i.m/ for all m.”

Base Case: The statement s.1/ is “i.m/ D i.m/” which is clear.

Inductive Case: Assume that “i.nm/ D i.n/i.m/ for all m” is true for

a specific n. Then for nC 1 we have

i..nC 1/m/ D i.nm Cm/ — distributive law for integers

D i.nm/ C i.m/ — by (a)

D i.n/i.m/ C i.m/ — by assumption

D .i.n/ C 1/i.m/ — distributive law in S

D i.nC 1/i.m/: — definition of i.n/

Thus we have proved the statement s.n C 1/. This completes the proof of

(b).

Proof of (c). Suppose that i.n/ D i.m/. This means that

1C 1C � � � C 1 (n times) D 1C 1C � � � C 1: (m times) (�)

As long as there is a 1 on each side of this equation we can cancel it from

both sides. Eventually (after many cancellations, perhaps), one side or the

other of the equation will be reduced to zero. If this happens on just one

side, we get

1C 1C � � � C 1 (q times) D 0:

Because 1 is positive, the sum 1C 1C � � � C 1 (q times) is also positive. By

the trichotomy law for S , it is impossible that a positive number be zero.

Therefore, as we cancel 1’s from both sides of (�), both sides will become

zero simultaneously, proving that the two sides of (�) have the same number

of 1’s or thatm D n. This proves that i is one-to-one.

This embedding of the natural numbers in an ordered field can be ex-

tended to the integers as described in the next theorem.

Theorem 1.3.2. Let S be an ordered field. Let i be the embedding defined

in Theorem 1.3.1. Extend i to negative integers and 0 by setting i.0/ D 0

and i.�n/ D �i.n/. Then i still has the properties

(a) i.nCm/ D i.n/C i.m/,

(b) i.nm/ D i.n/i.m/, and

(c) i is one-to-one.
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Problems

14. Where in the proof of the Theorem 1.3.1 did we use the fact that 1 is

the multiplicative identity of S?

15. Prove Theorem 1.3.2.

(Hint: The three parts of this theorem have already been proved for

positive numbers. To prove them for negative numbers, survey all pos-

sible cases. The result of Problem 13 in �1.2 may be useful. To prove

(c) show that if i.n/ D i.m/, then i.n �m/ D 0.)

Summary

The order axioms are the properties that characterize a straight line. They

are the basis for the usual algebraic techniques for solving inequalities. Or-

der isomorphism makes precise when two ordered fields have identical or-

dered structure.

An ordered field has an embedded copy of the integers. These copies of

the integers combine according to the same laws of addition and multipli-

cation as the integers themselves. From now on we always assume that an

ordered field contains the integers and use n (rather than i.n/) to stand for

the copy of n in that field.

1.4 The Completeness Axiom

What makes the reals unique?

The rationals Q and the reals R are ordered. So are many fields in between

them. For example, the set of all numbers of the form a C b
p
3, where a

and b are rational numbers, is an ordered field that contains the rationals but

does not contain all reals. This is the field Q.�/ of problem 8 in �1.2 and

problem 3 of �1.3. What makes the real numbers unique among ordered

fields is another property (or law or axiom) called completeness, which

amounts to the assertion that the field has no gaps or holes. The purpose

of this section is to make this precise and intelligible.

There is no rational number in Q whose square is 2. This is what we

mean by a hole: the rationals are missing the square root of 2, a number

we can approximate to as many places as we like, that occupies, it seems,
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–1 0 1 2 3 4 5

G upper bounds for G

Figure 1.4.1. A set bounded above and some of its upper bounds.

a definite place along a number line, but cannot be expressed as a fraction

p=q where p and q are integers.

Consider the set of rational numbers less than
p
2. To be specific, let

G D faja is rational and a2 < 2g:

This set contains rationals whose square is arbitrarily close to 2, but no

number whose square equals 2. (See Figure 1.4.1.)

The set G is bounded above in the sense of the following definition. We

use the bounds of G to get at the missing
p
2.

Definition. Let S be an ordered field. A subsetG of S is bounded above

if there is an element k of S such that a < k for all a inG. Then k is called

an upper bound for G.

An element b of S is a least upper bound (lub for short) for a set G if

b is an upper bound for G and b � k for all upper bounds k of G.

For example,G in Figure 1.4.1 is bounded above by k D 3 (see problem

2). AlthoughG is bounded above, G does not have a least upper bound in

the rationals. In the reals, however, G has a least upper bound, which, after

we construct the reals, turns out to be
p
2).

Problems

1. Prove that there is no rational number p=q whose square is 2.

(Hint: Assume that p=q is in lowest terms, that is, that p and q have

no common factor. Use the fact that 2 is prime.)

2. Prove that the set G D faja is rational and a2 < 2g has a rational

upper bound.

(Hint: 100, for example, is an upper bound. Try a contrapositive proof.)

3. Let H be a subset of an ordered field S , and suppose that H has least

upper bound b. For a positive integer n prove that
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(a) b C 1=n is not inH , but is an upper bound for H ,

(b) b � 1=n is not an upper bound for H ,

(c) there is an element g of H such that b � 1=n < g � b.

4. Verify that G (Figure 1.4.1) has no rational least upper bound with-

out using the square root of 2, i.e., give a proof using only rational

numbers.

5. Find an example of a set of rationals that has a rational least upper

bound.

6. Define greatest lower bound (glb) and find an example of a set of ra-

tionals that is bounded below but has no rational greatest lower bound.

7. Find and describe a set of rationals whose least upper bound is �
p
5.

Do this without explicitly using the number �
p
5.

8. Find and describe a set of rationals whose least upper bound is e. Do

this without explicitly using the number e.

(Hint: Use an infinite series for e.)

9. Find and describe a set of rationals whose least upper bound is � . Do

this without explicitly using the number � .

Completeness

The completeness axioms uses the terminology of boundedness and least

upper bounds.

Completeness Axiom. An ordered field S is called (order) complete if

every non-empty subset of S with an upper bound has a least upper bound

in S .

If we accept that the least upper bound of G is
p
2, then by insisting

that the reals be complete we force
p
2 to be a real number.

Problems

10. Show that if a field S is complete, then a subset of S that is has a

greatest lower bound.

11. In a complete, ordered field S , for each a in SC there is a unique

integer n such that n � a < nC 1 called the greatest integer in a and

denoted dae. Prove the existence and uniqueness of dae.
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Order completeness and the Archimedean property

To understand completeness, we introduce some related properties, the first

of which is the Archimedean property. Suppose we have obtained a ruler

marked in units of length a in order to measure a line of length b, where a

and b are positive elements from an ordered field. (See Figure 1.4.2.) The

Archimedean property asserts that we can measure the lengthb using a ruler

marked in units of a provided the ruler is long enough. More precisely, the

Archimedean property says that there is a natural number n such that if the

ruler is at least n units of length a long, then it can measure any length up

to b. Here is the formal statement.

Definition. An ordered field S is Archimedean if, given two positive

numbers a and b, there is a positive integer n such that b < na.

b

a

ruler marked in units of a

Figure 1.4.2. Units, a ruler, and a length to be measured by it.

It may seem obvious that a ruler marked in one length can measure any

other length but this cannot be proved using the axioms of an ordered field

alone. A further axiom or assumption is needed.

The Archimedean property is linked to the existence (or not) of infinite

elements. As it happens, the axioms for an ordered field don’t prevent it

from containing infinitely large elements. (An infinitely large element is

an element b of an ordered field S larger than all the natural numbers n1

embedded in S .) The hyperreals and the surreals, for example (see Chap-

ters 6 and 7), contain infinitely large numbers. In an Archimedean field,

however, this cannot happen. There, for any positive b, there is a positive

integer n such that b < n1.

The Archimedean property is also linked with completeness: order com-

pleteness implies that a field is Archimedean:

Theorem 1.4.1. A complete field is Archimedean.
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Problems

12. In an Archimedean field S , prove that for a in SC there is an integer n

such that 0 < 1=n < a. This says that an Archimedean field does not

contain elements that are infinitely small.

13. Prove Theorem 1.4.1.

(Detailed hint: Let T D fn 2 S j n is a positive integer and na D
bg. Show that T is bounded above by 1 C b=a. If T is empty there

is nothing to prove (why?). Otherwise, T is non-empty and bounded

above, so that by the completeness of S , T has a least upper bound,

sayM . NowM �1 is not an upper bound for T (why?), so there exists

an integer k in T such that

M � 1 < k � M:

The integer n D k C 1 is greater than M , hence not in T (why?).

Therefore na > b, which is the desired conclusion.)

14. Prove that the rationals are Archimedean.

Order completeness and Cauchy completeness

Completeness, as defined above, is called order completeness, because it is

formulated in terms of the order of the field. Another kind of completeness,

Cauchy completeness, is formulated in terms of distances and is related to

the familiar notion of limit.

Definition. An infinite sequence of numbers
˚

x.n/
	

from an ordered field

S has limit b (or converges to b) if, given any element k of SC, there is an

integer N such that

jx.n/ � bj < k; for n > N:

The sequence
˚

x.n/
	

is a Cauchy sequence if, given any element k of

SC there is an integer M such that

jx.n/ � x.m/j < k; for m; n > M:
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The terms of a Cauchy sequence get closer and closer to each other

as you move out in the sequence. In this way, the sequence is trying to

converge, so to speak. The definition of Cauchy sequence, however, makes

no mention of a limit, and, in fact, it is possible that a sequence be Cauchy

but not have a limit in the field. This does not happen, however, in a Cauchy

complete field according to the following definition.

Definition. An ordered field S is Cauchy complete if every Cauchy se-

quence in S has a limit in S .

Cauchy completeness is similar to (order) completeness in intention.

Both require that S be without holes of some sort. One difference between

the two is that Cauchy completeness is defined using only the concept of

distance which can be defined in some contexts without using order (for

example in a plane). Cauchy completeness is sometimes called metric com-

pleteness, to emphasize its connection with distance.

Problems

15. Find an example of a sequence of numbers from an ordered field of

your choice that is Cauchy but does not have a limit in that field.

16. If a sequence has a limit, prove that it is a Cauchy sequence.

17. Prove that a Cauchy sequence is bounded above and below.

Order completeness implies Cauchy completeness:

Theorem 1.4.2. A complete field is Cauchy complete.

Lemma. In a complete field, every bounded monotonic (i.e., increasing or

decreasing) sequence converges.

Proof of the lemma. See problem 19.

Proof of the theorem. Let S be a complete field. Let
˚

x.n/
	

be a Cauchy

sequence in S . The goal is to prove that this sequence has a limit. By prob-

lem 17, the set
˚

x.n/
	

is bounded above and below. Therefore, by (order)

completeness, we can define

y.1/ D lub
˚

x.1/; x.2/; x.3/; : : :
	

;
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30 1. Axioms for the Reals

and

y.2/ D lub
˚

x.2/; x.3/; x.4/; : : :
	

;

and, more generally,

y.n/ D lub
˚

x.n/; x.nC 1/; x.nC 2/; : : :
	

:

Note that y.n/ is an upper bound for all the numbers for which y.nC 1/ is

least upper bound, namely, y.n/ is the least upper bound of a set consisting

of just one more number than the set of numbers of which y.n C 1/ is the

least upper bound. Therefore

y.n/ � y.n C 1/:

The new sequence
˚

y.n/
	

is nicer than
˚

x.n/
	

because
˚

y.n/
	

is mono-

tonically decreasing and is bounded below by glb
˚

x.n/
	

. Therefore, by the

lemma,
˚

y.n/
	

converges to an element b.

We conclude the proof by showing that
˚

x.n/
	

also converges to b. Thus

let k be an element of SC. Because
˚

x.n/
	

is Cauchy there is an integer N

such that for n;m > N ,

jx.m/ � x.n/j < k=2:

In view of the definition of y.n/, this means that jy.n/ � x.n/j � k=2 for

n > N . (See problem 18). Next because
˚

y.n/
	

converges to b, we can

assume thatN is so large that for n > N

jy.n/ � bj < k=2:

Now for n > N we have

jx.n/ � bj � jx.n/ � y.n/j C jy.n/ � bj < k:

This proves the theorem.

Problems
18. Let G be a set of numbers bounded above. Let y D lubG. Prove that

if jx C bj < k for all x in G, then jy C bj � k.

(Hint: Rewrite the conclusion as two inequalities without the absolute

value: �k � y C b � k. Prove them separately.)

19. Prove the lemma.

(Hint: Apply the completeness axiom to a bounded monotonic se-

quence. Show that the sequence converges to its greatest lower bound,

if the sequence is decreasing, or least upper bound, if it is increasing.)
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[ ,a1

[ ,a2

[ ,a3 b3]

b4][ ,a4

S

G

b1]

b2]

Figure 1.4.3. Proof by bisection: the first few intervals.

Completeness = Cauchy Completeness + the
Archimedean property

The Archimedean property and Cauchy completeness are consequences of

order completeness. Conversely, together they imply order completeness.

This is useful as it allows two simpler ideas to replace the difficult con-

cept of order completeness. The proof of this theorem is also significant. It

employs a powerful technique called proof by bisection.

Theorem 1.4.3. An ordered field that is Archimedean and Cauchy complete

is order complete.

Proof. Let S be a linearly ordered field that is both Archimedean and Cauchy

complete. LetG be a non-empty subset ofS that is bounded above. Our goal

is to prove that G has a least upper bound.

The proof uses a trick; a trick so useful that it has become a technique:

proof by bisection. We start with an interval Œa1; b1�, which is then divided

in half at its midpoint .a1 Cb1/=2. One of the resulting half intervals is cho-

sen, call it Œa2; b2�, and subdivided in turn into subintervals that are quarters

of the original interval. One of these subintervals, Œa3; b3�, is chosen and in

turn divided in half and one of those halves chosen. Continuing to choose

subintervals and halve them, the i th interval obtained is called Œai ; bi �. This

is the setup for proof by bisection. It is illustrated in Figure 1.4.3.

What we have not yet explained is how to pick the very first interval

Œa1; b1� and how to choose between the two subintervals at each step be-

fore proceeding to the next bisection. These choices depend on what one

is trying to prove. However, in all proofs by bisection the left endpoints ai

increase and the right endpoints bi decrease. In the middle is a point c that

is the limit of both sequences of endpoints. Under favorable circumstances,

c has whatever property is needed to complete the proof.

For the proof of Theorem 1.4.3 we choose Œai ; bi � so that bi is an upper

bound for G and ai is not. (See Figure 1.4.3.) The proof is completed by
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proving:

1. it is possible to choose the subintervals Œai ; bi � as described,

2. the sequence of upper endpoints fbi g is a Cauchy sequence (this uses

the Archimedean property of S ),

3. the sequence fbi g converges to a limit b (this uses the Cauchy com-

pleteness of S ), and, finally,

4. b is the least upper bound of G.

Proof of (1). We are given that G is a non-empty subset of S that

is bounded above. Let g be an element of G (G is non-empty), let a1 D
.g � 1/, and let b1 be an upper bound of G (G is bounded above) greater

than a1. Then a1 is not an upper bound for G but b1 is, so Œa1; b1� can be

our first interval.

In order to choose the next subinterval, let d D .a1 Cb1/=2. Either d is

an upper bound for G or not. If d is an upper bound, then set a2 D a1, and

b2 D d ; if d is not an upper bound, then set a2 D d and b2 D b1. In either

case Œa2; b2� is a subinterval consisting of half of the first interval Œa1; b1�

and such that the left endpoint a2 is not an upper bound for G, while the

right endpoint b2 is an upper bound for G. The choices of Œa3; b3�, Œa4; b4�,

and so on proceed in a similar manner.

Proof of (2). Let L1 D b1 �a1 be the length of the first interval. If Li

is the length of the i th interval, then Li D L1=2
i .

Let k be an element of SC. To prove that fbig is a Cauchy sequence, we

need to find an integer N such that jbi � bj j < k for all i; j > N . Here it

suffices to show that there is an integerN such thatLN < k since the terms

of the sequence fbig are in the N th subinterval from i D N on.

By the Archimedean property, there is an integer N such that L1=N <

k. Furthermore, 2N � N (see problem 20), so that

LN D L1=2
N � L1=N < k:

Proof of (3). Since fbig is Cauchy, it follows immediately from the

Cauchy completeness of S , that the sequence converges to a limit c in S .

Proof of (4). It is clear that c is also the limit of the sequence fai g.

Therefore given a positive integer k there are elements an and bm such that

c � 1=k < an � c � bm < c C 1=k: (�)

(See Figure 1.4.4.) The inequality (�) can then be used to show:
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bm

G

an

c

1/k

S

1/k

Figure 1.4.4. Proof by bisection at a later stage.

(a) that every element g of G satisfies g � c and

(b) that every upper bound B of G satisfies c � B . In other words c is an

upper bound for G, and is the least upper bound.

To prove (a) suppose, contrary to what we want to prove, that there is

an element g of G such that g > c. By the Archimedean property there is

an integer k such that 1=k < g � c. Then, by (�), there is an element bm

such that

c � bm < c C 1=k < c C .g � c/ D g;

which contradicts the fact that bm is an upper bound forG! The proof of (b)

is similar. (See Problem 21.)

Corollary. A field is complete if and only if it is Cauchy complete and

Archimedean.

In other words, order completeness is equivalent to metric completeness

plus the Archimedean property.

Problems

20. Prove that 2N � N for every natural number N .

(Hint: Try proof by induction.)

21. Complete the proof of Theorem 1.4.3 part (4) (b).

Summary

Completeness is a technical condition whose purpose is to ensure that an

ordered field have no gaps. It restricts the field in two ways that relate to

properties of the field on a small scale. A complete ordered field cannot,
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for example, have an infinitely small element (the Archimedean property),

and if the elements of a sequence from a complete ordered field are getting

closer and closer to each other, then there is an element of the field toward

which the sequence converges.

Completeness completes the list of axioms for the reals. In the next

chapter, we prove that the reals actually exist, by constructing them, and

prove that our axiom system is categorical.
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Construction of the Reals

Why construct the reals?

We will prove the existence of the real numbers two times—by twice con-

structing a complete, linearly ordered field. Afterwards, we prove that all

complete, linearly ordered fields are isomorphic, meaning that our axiom

system for the reals is categorical.

The reader might well object to this chapter in the following terms: “I’ve

used the reals all my life; their properties are familiar; I know how to cal-

culate with them; I know the calculus; I know everything. Why should I

bother to construct the reals, when I know the result in advance?”

How do we know the reals exist? Just because we’ve used a few of them

over the years and assumed some properties for them does not allow us to

conclude that they are really out there. Physicists argued for years about

properties of the æther before it was discovered that it doesn’t exist. To

avoid a similar fate the reals’ existence must be proved. The simplest and

most reliable way to do this is to construct them.

It was empirical evidence (the Michelson-Morley experiment, 1887)

that did the æther in. The reader might argue that generations of mathemati-

cians, scientists, and engineers have used the reals without encountering any

problems: doesn’t that constitute experimental evidence for the existence of

the reals? Certainly it does, but the goal of mathematics is to construct the-

ories backed by stronger evidence than experiment. Experimental evidence

only makes the existence of the reals plausible. It is possible, despite years

of use, that the axioms of the reals contain a hidden inconsistency. By carry-

35
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36 2. Construction of the Reals

ing out a construction, we prove that the axioms of the reals are consistent,

or, more precisely, are at least as consistent as the axioms of set theory.

Furthermore, by constructing the reals we learn more about them and

we learn methods that apply to the construction of other number systems.

This is the primary reason for constructing the reals here.

OK, but why construct the reals twice?

Well, perhaps two constructions is overkill. Certainly, reading this book for

the first time, one may skim over (or even entirely omit) one construction.

However each construction furnishes ideas used later to construct alterna-

tive number systems.

One must read at least one of the constructions to understand why the

axioms of the reals are categorical. That proof depends on a construction of

the reals (though it doesn’t matter which).

2.1 Cantor’s Construction

Real numbers are sequences of rationals

Any construction of the reals from the rationals must fill in the gaps in the

rational number system. One well-known way to get at these gaps is through

approximation. For example � , a fairly famous irrational, is approximated

more and more closely by the familiar sequence of fractions:

3;
31

10
;
314

100
;
3141

1000
;
31415

10000
;
314159

100000
; � � � ;

derived from its decimal expansion. In Cantor’s construction of the reals

(first published in 1883) a sequence like this is treated as a single num-

ber. Cantor’s idea is to define the reals as the set of all approximating

sequences of rationals, and to manipulate sequences as though they were

numbers. This means defining algebraic operations and a linear ordering

for sequences.

One difficulty the reader will spot right away is that many sequences ap-

proximate the same number. For example also approaching � is the rational

sequence

3;
22

7
;
333

106
;
355

113
;
103993

33102
; � � � ;

derived from its continued fraction expansion. To deal with this, we impose

an equivalence relation on the set of sequences. The equivalence classes

actually form the real number system.
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2.1. Cantor’s Construction 37

Two types of rational sequences are needed to carry out Cantor’s ideas

in detail: Cauchy sequences (already introduced in Chapter 1), and null se-

quences (defined below).

Definition. A null sequence is a convergent sequence whose limit is zero.

The next theorem gives the most important properties of these sequences.

Theorem 2.1.1. Let x D fx.n/g and y D fy.n/g be sequences of rationals.

1) If x and y are Cauchy sequences, then so are fx.n/ C y.n/g and

fx.n/y.n/g.

2) If x and y are null sequences, then so are fx.n/Cy.n/g and fx.n/y.n/g.

3) If x is a Cauchy sequence and y is a null sequence, then fx.n/y.n/g
is a null sequence.

Proof of (1): To prove that fx.n/ C y.n/g is a Cauchy sequence, let k

be a positive rational number. We must find M so that

j.x.n/ C y.n// � .x.m/ C y.m//j < k; for m; n > M:

In other words, we must make j.x.n/Cy.n//� .x.m/Cy.m//j small (that

is, less than k) as m and n get large (i.e., become greater than M ).

Well, using the triangle inequality for absolute values

j.x.n/C y.n// � .x.m/C y.m//j D jx.n/ � x.m/C y.n/ � y.m/j
� jx.n/ � x.m/j C jy.n/ � y.m/j:

The advantage of this is that if the two quantities jx.n/�x.m/j and jy.n/�
y.m/j are separately made small (say less than k=2) then their sum will be

small and, by the above inequality,

j.x.n/C y.n// � .x.m/C y.m//j

will also be small. This is what we want.

Now jx.n/ � x.m/j and jy.n/ � y.m/j can be made small separately

because, by hypothesis, x and y are Cauchy sequences.

Here is how the proof is completed: Given k; k=2 is also a positive ra-

tional. Therefore, by the definition of Cauchy sequence, there are integers

M1 and M2 such that

jx.n/ � x.m/j < k=2 for m; n > M1;
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38 2. Construction of the Reals

and

jy.n/ � y.m/j < k=2 for m; n > M2:

Let M be the larger of the two integers M1 and M2. Then for m; n > M ,

we have

j.x.n/ C y.n// � .x.m/C y.m//j D jx.n/ � x.m/C y.n/ � y.m/j
� jx.n/ � x.m/j C jy.n/ � y.m/j

<
k

2
C k

2
D k:

This proves that fx.n/C y.n/g is a Cauchy sequence.

For the product sequence xy D fx.n/y.n/g the trick of adding and

subtracting the same term must be used before the triangle inequality can

be applied:

jx.n/y.n/ � x.m/y.m/j
D jx.n/y.n/ � x.n/y.m/ C x.n/y.m/ � x.m/y.m/j
� jx.n/y.n/ � x.n/y.m/j C jx.n/y.m/ � x.m/y.m/j
D jx.n/jjy.n/ � y.m/j C jx.n/ � x.m/jjy.m/j:

Thus we can make jx.n/y.n/ � x.m/y.m/j small if we can make jx.n/ �
x.m/j and jy.n/ � y.m/j both small (as before), and if jx.n/j and jy.m/j
aren’t large. Now, in fact, jx.n/j and jy.m/j are bounded above and below

(according to problem 11 in 1.4), so this strategy will succeed!

Here is how the proof is completed: Let B be an integer bounding x and

y, that is, such that jx.n/j < B and jy.n/j < B . Given the positive rational

k; k=2B is also positive, so by the definition of Cauchy sequence there are

integersM1 and M2 such that

jx.n/ � x.m/j < k

2B
for m; n > M1

and

jy.n/ � y.m/j < k

2B
form; n > M2:
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2.1. Cantor’s Construction 39

Let M be the larger of M1 and M2. Then for m; n > M , we have

jx.n/y.n/ � x.m/y.m/j � jx.n/j jy.n/ � y.m/j C jx.n/ � x.m/j jy.m/j

< B
k

2B
C k

2B
B

D k:

This proves that fx.n/y.n/g is a Cauchy sequence. �

Problems

1) Prove Theorem 2.1.1 part (2).

2) Prove Theorem 2.1.1 part (3).

Proof by trick?

Proofs often use devices so surprising that they deserve to be

called tricks. But a trick used a second time becomes a technique.

Every branch, sub-branch and sub-sub-branch of mathematics has

its characteristic tricks. Upon repeated use they become techniques.

While working with the real numbers we have already seen two such

tricks/techniques: adding and subtracting something and proof by bi-

section.

Equivalence of Cauchy sequences

Here is the equivalence relation converting the set of Cauchy sequences into

the real numbers.

Definition. Two sequences x D fx.n/g and y D fy.n/g are equivalent,

written x � y, if the difference fx.n/ � y.n/g is a null sequence.

Theorem 2.1.2. Equivalence of sequences is an equivalence relation.

This leads to Cantor’s definition of the real numbers:

Definition. Let S be the set of all Cauchy sequences of rationals. The set

of real numbers R is the set of equivalence classes, S.n/.
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40 2. Construction of the Reals

Note that the rational numbers Q are embedded in R as the constant

sequences (e.g., the rational number 1=2 is represented in R by f1=2, 1=2,

1=2; : : : g.

Problems

3) Which of these sequences are equivalent?

f1=ng f1=n2g fn2=.n2 C 2/g f.�1/n=ng
f1g f.n4 � 4/=.n4 C 4/g f0g

4) Let fx.n/g be a sequence converging to a (rational) limit b. Let x be the

equivalence class containing fx.n/g. Let fy.n/g be another sequence

in the equivalence class x. Prove that fy.n/g converges to b.

5) Prove Theorem 2.1.2.

The algebra of the Cantor reals

Our goal is to prove that R, as defined by Cantor, satisfies all the axioms of

the reals listed in Chapter 1. For the field axioms, we first define addition

and multiplication:

Definition. Let x and y be in R. Let fx.n/g be a sequence belonging to

x, and let fy.n/g be a sequence belonging to y. Addition and multiplication

for R are defined by saying that x C y is the equivalence class that contains

the sequence fx.n/ C y.n/g, and xy is the equivalence class that contains

fx.n/y.n/g.

Whenever an operation is defined on a set of equivalence classes, one

must verify that it is well-defined. This is stated in the following theorem.

Theorem 2.1.3. If fx.n/g and fx0.n/g are equivalent Cauchy sequences

and likewise fy.n/g and fy0.n/g, then fx.n/ C y.n/g and fx0.n/ C y0.n/g
are equivalent, and fx.n/y.n/g and fx0.n/y0.n/g are equivalent.

Loosely speaking Theorem 2.1.3 says: equivalent sequences added to

equivalent sequences are equivalent, and equivalent sequences multiplied

by equivalent sequences are equivalent.
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2.1. Cantor’s Construction 41

Theorem 2.1.4. R is a field.

Problems

6) Prove that addition and multiplication of the Cantor reals is well-defined.

(Hint: Use the results on null sequences proved earlier.)

7) Prove this lemma: If x is not zero, and fx.n/g is a sequence from x,

then there are positive integers M and N so that when n > N , then

jx.n/j > 1=M .

(Hint: Use the Cauchyness of the sequence fx.n/g.)

8) Prove Theorem 2.1.4.

(Hint: All the field axioms must be verified. Of greatest interest and

complexity is the proof that if x is not zero, then there is a multiplica-

tive inverse for x. For this use the preceding problem.)

The geometry of the Cantor reals

We turn to ordering the Cantor reals. This requires the concept of a positive

sequence and positive equivalence class of sequences:

Definition. A Cauchy sequence of rationals fx.n/g is called positive if

there exist positive integersM and N so that if n > N , then x.n/ > 1=M .

If x is in R, we say that x is positive if one of the sequences in x is

positive.

Is the concept of positive real well-defined? The next theorem resolves

this.

Theorem 2.1.5. Let x be a real number. If one sequence from x is positive,

then all sequences in x are positive.

Now we have

Theorem 2.1.6. R is an ordered field.
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42 2. Construction of the Reals

Problems

9) Prove Theorem 2.1.5.

10) Prove that the positive Cantor reals are closed under addition and mul-

tiplication. This is the first part of the proof of Theorem 2.1.6.

11) Prove that the Cantor reals satisfy the trichotomy law. This completes

the proof of Theorem 2.1.6.

(Hint: There are two parts to the proof. The first is to show that the

three conditions: x is positive, �x is positive, and x D 0 are mutually

exclusive. The second part is to show that every equivalence class x in

R satisfies one of them. Perhaps the simplest way to attack the second

part is to prove that if x is not positive and �x is not positive, then

x D 0. Use Cauchyness to prove that any sequence fx.n/g in x is a

null sequence.)

Completeness of the Cantor reals

Since it is completeness that sets the reals apart from other number systems,

the next theorem is the climax of Cantor’s construction.

Theorem 2.1.7. R is complete.

Problems

12) Prove that the Cantor reals are Archimedean.

(Hint: Let x and y be positive reals. Show that there exist rational num-

bers a and b such that 0 < a < x and y < b. Using the Archimedean

property of the rationals, find an integer n such that na > b. It then

follows that nx > y:)

13) Prove that the Cantor reals are Cauchy complete.

(Hint: To prove that R is Cauchy complete, let fx.n/g be a Cauchy

sequence in R. That is, x.n/ is an equivalence class of Cauchy se-

quences for each n. Show that there exists a rational b.n/ such that

jx.n/ � b.n/j < 1=n:)

(Detailed Hint: Show that there exists a double sequence fx.n;m/g
of rationals such that the sequence fx.n;m/g (holding n constant, but
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varyingm) represents the real x.n/. Use this double sequence to prove

that the sequence fb.n/g is a Cauchy sequence of rationals. Conclude

that fb.n/g defines an element b of R. Finally, prove that b is the limit

of the sequence fx.n/g.)

14) Combine problems 12 and 13 to prove Theorem 2.1.7.

Summary

Cantor conceived of the reals as equivalence classes of sequences. To imple-

ment this idea requires defining addition, multiplication, and order for se-

quences. Then the axioms of the reals can be verified, completing Cantor’s

construction. A similar construction will be used to build the constructive

reals (Chapter 5) and the hyperreals (Chapter 6).

2.2 Dedekind’s Construction of the Reals

Dedekind cuts

Dedekind has the distinction of being the first to construct the reals (in the

mid 1800s). His construction differs substantially from Cantor’s and is not

as straightforward. The two make an interesting pair. With Cantor’s con-

struction, the algebraic and geometric axioms are easy to verify, while the

proof of completeness is long. With Dedekind’s construction, completeness

is easy, but some of the algebraic details require lengthy verification.

Definition. A Dedekind cut (or simply a cut) is a subset x of the rationals

Q such that

(a) neither x nor the complement of x is empty,

(b) if r is in x, and s > r , then s is in x,

(c) x has no smallest element.

With this definition, the Dedekind reals are easily defined.

Definition. The set of real numbers R is defined as the set of all cuts.

One example of a cut is the set of positive rationals; others are given in

the problems.
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44 2. Construction of the Reals

Problems

1) Prove that the positive rationals, QC, is a cut (called the null cut).

2) If x is a rational number, verify that fr jr > xg is a cut. These cuts are

called rational cuts.

3) Prove that the set fr jr > 0; r2 > 2g is a cut.

4) Prove that the union of a finite number of cuts is a cut.

Addition of the Dedekind reals

This is easy to define.

Definition. If x and y are cuts, then the sum x C y is defined.

x C y D fr C sjr 2 x and s 2 yg:

Theorem 2.2.1. Addition of cuts is well-defined, that is, x C y is a cut.

Theorem 2.2.2. Addition on R satisfies the laws of commutativity, associa-

tivity, additive identity, and additive inverse.

Problems

5) Prove that addition of cuts is well-defined.

6) Prove Theorem 2.2.2.

(Hint: Most parts of this proof are straightforward. The last part re-

quires a definition: the negative of a cut x is

�x D f�r jr is neither in x nor is the glb of xg:

Note: The glb of x is specifically excluded so that �x will satisfy prop-

erty (c) of cuts.)
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Geometry of the Dedekind reals

The multiplication of Dedekind cuts is not simple. The problem is deter-

mining the sign of a product. It is best to start with multiplication of the

positive Dedekind reals, but then we must define positive cuts:

Definition. A cut is non-negative if it is a subset of the null cut. It is

called positive if it is a proper subset of the null cut.

Theorem 2.2.3. The positive cuts are closed under addition. The Dedekind

reals satisfy the trichotomy law.

Theorem 2.2.4. R is complete.

Thus, except for properties of multiplication, we now know that the

Dedekind reals form a complete ordered field.

Problems

7) Prove Theorem 2.2.3.

8) Let x and y be cuts. Prove that x < y if and only if x � y.

9) Prove Theorem 2.2.4.

(Hint: LetG be a subset of R that is bounded above. The problem is to

prove that G has a least upper bound. Form the union of all cuts that

are upper bounds forG. Use problem 8 to show that the union is a cut.)

Multiplication of Dedekind Reals

For non-negative reals multiplication is simple.

Definition. If x and y are non-negative cuts, their product is defined by

xy D frsjr 2 x and s 2 yg:

Theorem 2.2.5. Multiplication is well-defined for non-negative cuts and

the set of non-negative cuts is closed under multiplication. In addition, mul-

tiplication satisfies the laws of commutativity, associativity, identity, inverse,

and the distributive law (non-negative cuts only).
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46 2. Construction of the Reals

Problem

9) Prove Theorem 2.2.5.

This completes the construction of the Dedekind reals except for the

extension of multiplication to non-negative reals. The theory at this point

becomes complicated due to the difficulty of determining the signs of prod-

ucts. For completeness we state the following definition.

Definition. If x is a cut, exactly one of x and �x is non-negative. Thus we

define:

jxj D the non-negative one of x and �x:

For cuts x and y we define

xy D

8

ˆ

ˆ

<

ˆ

ˆ

:

jxjjyj if x and y are both positive,

jxjjyj if x and y are both negative,

�jxjjyj otherwise:

Theorem 2.2.6. With this definition of multiplication, R is a complete, or-

dered field.

The proof of this theorem is tedious since the verification of each ax-

iom breaks down into many separate cases depending on the signs of the

different quantities.

This completes Dedekind’s construction of the reals. We use an analo-

gous construction to build the surreals (in Chapter 7).

2.3 Uniqueness of the Reals

So, just what are the real numbers?

The reader might want to know: What are the reals really? Are they equiv-

alence classes of Cauchy sequences? Are they Dedekind cuts? Or what?

Without entirely settling the matter, we prove that it doesn’t matter what

the reals are: all complete, ordered fields are identical. More precisely, given

two complete, ordered fields (that is, two versions of the reals), there is a

one-to-one correspondence between them that is both a field and an order
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isomorphism, that is, they have the same algebra and geometry. This proves

that the axioms for the reals are categorical.

That all versions of the reals are algebraically and geometrically iso-

morphic does not necessarily answer the question: what is a real number?

Some readers will be dissatisfied that different constructions result in such

different kinds of entities. To them a number like
p
2, for example, should

be a definite thing, and not an equivalence class of Cauchy sequences or

a Dedekind cut. For some the nature of the real numbers is not settled by

these constructions; it remains a problem in the philosophy of mathematics.

That all complete, ordered fields are isomorphic does clarify, however,

why the real numbers are so important, so fundamental. They are the only

numbers that obey the basic rules of algebra (the field axioms), have the

geometry of a straight line (the order axioms), and are without gaps (com-

pleteness). We proceed to prove this.

The Rational Subfield

Let S be a complete, ordered field. Our goal is to prove that S is isomor-

phic to R. In this section we start by showing that S contains a subfield

isomorphic to the rational numbers.

Definition. Let 1 be the multiplicative identity of S . For every integer n,

define

i.n/ D
(

1C 1C � � � C 1 — n ones, if n < 0

�1 � 1 � � � � � 1 — n minus ones, if n < 0.

For a rational number p=q define

i.p=q/ D i.p/=i.q/:

This allows us to extend the embedding theorems of Chapter 1 to the

rationals.

Theorem 2.3.1. The function i is well-defined. It is a field and order iso-

morphism from the set of rationals Q onto a subfield of S .

This theorem says that S contains a subfield that is in every algebraic

and geometrical sense identical to the rationals. From now on we simply

assume that the field S contains the rationals. The next theorem explains

how the rationals are distributed inside S .



“master” — 2012/6/18 — 10:53 — page 48 — #58
i

i

i

i

i

i

i

i

48 2. Construction of the Reals

Theorem 2.3.2. Let a and b be two elements of S and assume that a < b.

Then there is a rational number q between a and b, that is, there are integers

m and n, such that if q D m=n then a < q < b.

The conclusion of this theorem is summarized by saying the rationals

are dense in S . The denseness of Q in S implies, as we see in the proof of

the next theorem, that the rational subfield (together with the operations of

lub and glb) determines the whole field S .

Problems

1) Prove that i as defined above is well-defined, that is that i.p=q/ D
i.r=s/ when p=q D r=s.

2) Prove Theorem 2.3.1.

3) Prove Theorem 2.3.2.

(Hint: Choose n so that 0 < 1=n < ba. (Why is this possible?). Let

m D dnae C 1. (See Problem 11 in Section 1.4.) Let q D m=n.)

Isomorphism of Complete Ordered Fields

The following theorem completes the proof of the uniqueness of the reals.

Theorem 2.3.3. Every complete, ordered field is isomorphic to R.

Proof. Let S be a complete, ordered field. We must construct an isomor-

phism i W R ! S . We have just seen that S contains a dense copy of the

rational numbers Q. The isomorphism i can begin by mapping each ratio-

nal in R to the corresponding rational in S . The problem is to extend i from

the rationals to the rest of R. At this point, we choose R to be either the

Cantor or Dedekind reals. The rest of the proof varies in detail depending

on this choice (see problems 4 and 5).

Corollary. The Cantor reals and the Dedekind reals are isomorphic.
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Problems

4) Complete the proof of Theorem 2.3.3 using the Cantor reals.

(Hint: For R the Cantor reals, proceed as follows: each x in R is an

equivalence class of Cauchy sequences of rationals. If fx.n/g is a rep-

resentative sequence for x, define

i.x/ D lim
n!1

i.x.n//;

where the limit is taken in S . The limit exists because S is complete

and because i.x.n// is a Cauchy sequence in S . (Why?)

Prove: (1) i is well-defined, (2) i is one-to-one, (3) i maps R onto

S , (4) i is a field isomorphism, and (5) i is an order isomorphism.

5) Complete the proof of Theorem 2.3.3 using the Dedekind reals.

(Hint: For R the Dedekind reals, proceed as follows: each x in R is cut

in the rationals. Therefore we can define

i.x/ D glbfi.r/jr 2 xg;

where the greatest lower bound is taken in S . The greatest lower bound

exists because S is complete and because fi.r/jr 2 xg is a set with a

lower bound in S . (Why?)

Prove: (1) i is well-defined, (2) i is one-to-one, (3) i maps R onto

S , (4) i is a field isomorphism, and (5) i is an order isomorphism.

6) Let S be an ordered field. A gap in S is a pair fX; Y g of subsets of S

such that:

(a) X \ Y D ˛ and X \ Y D S ,

(b) if x 2 X and y 2 Y , then x < y,

(c) X has no greatest element and Y has no least element.

Prove that if S has no gaps, then S is field and order isomorphic to R.

Summary

This section completes the agenda announced at the beginning of Chapter

1: the reals have been constructed and their fundamental properties have

proven to be categorical.
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50 2. Construction of the Reals

2.4 The Differential Calculus

The construction of the reals is the start of a long story. Whole branches

of mathematics including much of the calculus are, in a sense, parts of this

story. We can’t begin to cover all this here. Instead we list a few important

theorems that extend the process of construction which we have just fin-

ished. It will be amusing to track how these results alter as we move from

the reals through various alternative number systems.

Continuous Functions

Continuity is fundamental to the calculus. It is a simple form of smoothness,

yet working with it is far from easy. As examples, consider the intermediate

value theorem, the boundedness theorem and the maximum value theorem

(statements of these follow). These are important results about continuous

functions that seem intuitively obvious, yet none are easy to prove. Signifi-

cantly, their proofs depend on the completeness of the real numbers, which

we have gone to such pains to develop.

In this section we outline proofs of these fundamental results in the

interest of examining how these results come out in other number systems.

First the definition of continuity.

Definition. Let f be a function defined on the interval Œa; b�. Then f is

called continuous on Œa; b� if for any sequence fx.n/g in Œa; b� with limit

k,

lim
n!1

f .x.n// D f .k/:

Intuitively a continuous function is one whose graph can be drawn with-

out taking your pencil off the paper. The intermediate value theorem, one

of the most famous and important theorems about continuity, expresses this

intuitive idea precisely.

Theorem 2.4.1. (Intermediate value theorem for continuous functions.) Let

f be a continuous function on the closed interval Œa; b�. If f .a/ < 0 and

f .b/ > 0, then there is a real number c; a < c < b, such that f .c/ D 0.

Problems

1) Prove the intermediate value theorem.
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2.4. The Differential Calculus 51

(Hint: Use proof by bisection. Choose successive subintervals Œak; bk�

of the interval Œa; b� so that f .ak/ < 0 and f .bk/ > 0. Let c be the

limit of ak:)

2) Use the intermediate value theorem to prove that every positive real

number has a positive square root, that is, for every real x > 0, there

is a real y > 0 such that y2 D x.

3) Prove that f is continuous on Œa; b� if and only if for every " > 0 and c

in Œa; b� there is a ı > 0 such that if jx�cj � " then jf .x/�f .c/j � ı.

4) Prove the boundedness theorem for continuous functions: If f is a

continuous function on a closed interval Œa; b� then there is a constant

K such that jf .x/j < K; for all x in Œa; b�.

(Hint: Suppose that f is not bounded. Use proof by bisection to deduce

that there must be a point c in Œa; b� at which f has limit ˙1. This

contradicts the fact that f has a finite value at c.

5) Prove the maximum value theorem for continuous functions. If f is a

continuous function on a closed interval Œa; b� then there is a point c in

Œa; b� such that f .x/ � f .c/ for all x in Œa; b�. In other words, f .c/ is

a maximum value of the function f on the interval Œa; b�.

(Hint: Use proof by bisection.)

The Derivative

The differential calculus is based on this definition.

Definition. Let the function f .x/ be defined on the interval Œa; b�. Let x

be a point in Œa; b�. Then f is differentiable at x with derivative f 0.x/ if

the following limit exists:

f 0.x/ D lim
h!0

f .x C h/ � f .x/
h

:

We make no pretense of developing the calculus in any detail. However,

it will be interesting to take one or two typical results and observe how they

must be adapted to the number systems presented in subsequent chapters.
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Problems

6) Prove the product rule:

.f .x/g.x//0 D f 0.x/g.x/ C f .x/g0.x/:

(Hint: Add and subtract something.)

7) Prove the chain rule:

f .g.x//0 D f 0.g.x//g0 .x/:

(Hint: The chain rule is more difficult conceptually than the product

rule, and its proof is trickier. A natural proof starts with:

lim
x!c

f .g.x// � f .g.c//

x � c
D lim

x!c

f .g.x// � f .g.c//
g.x/ � g.c/

g.x/ � g.c/
x � c ;

which appears to give the desired result since as x approaches c; g.x/

will approach g.c/ (differentiable functions are continuous), so that

the two factors on the right tend to f 0.g.x// and g0.x/ respectively.

This simple computation is the reason why the chain rule works, how-

ever a technical problem prevents this from being a correct proof: the

denominator g.x/ � g.c/ may be zero. A proof must be found that

avoids dividing by zero!)

2.5 A Final Word about the Reals

The reals go back to the most ancient of periods in the history of mathe-

matics, at least in the form of natural numbers and simple fractions. The

first number known to be irrational was the square root of five, which is

connected with the geometry of a regular pentagon. Its irrationality was dis-

covered by the Pythagoreans. According to legend, this discovery caused a

crisis since the brotherhood of Pythagoreans believed in the primacy of in-

tegers: specifically, although they would not have put it this way, they held

that all numbers could be expressed by finite combinations of integers.

Considering their roots in antiquity, it is perhaps surprising that the theo-

retical foundation of the real numbers should be of such recent formulation.

The work of Richard Dedekind (1831–1916) on the construction of the reals



“master” — 2012/6/18 — 10:53 — page 53 — #63
i

i

i

i

i

i

i

i

2.5. A Final Word about the Reals 53

occurred in the period 1852–1872, the last year being the date of publication

of his theory. The idea of Cauchy sequences was introduced by Augustin-

Louis Cauchy (17890–1857) in 1821 in connection with his development

of the calculus, but was not used to describe the real numbers until Georg

Cantor (1845–1918) took up this problem, publishing his theory of the reals

in 1883.

The development of the theory of the real numbers was only part of a

large scale mathematical movement spanning the whole nineteenth century

whose goal was to construct a satisfactory logical basis for the calculus. A

remarkable thing about this movement is that it worked its way backwards

through the number systems. First to be treated were the fundamental theo-

rems of the calculus itself, whose proofs can be based directly on the idea of

limit (for example, the intermediate value theorem). As this theory reached

a satisfactory state, it was realized that these proofs depended on several

fundamental assumptions about limits that in turn needed proof. Typical of

these assumptions is the statement that every bounded monotonic sequence

converges. Most of these assumptions turned out to involve the complete-

ness of the reals. This realization led to the development of the theory of the

real numbers described in these notes. Finally attention turned (even more

fundamentally) to the integers and rational numbers whose theory was given

definitive formulation by Giuseppe Peano (1858–1932) in 1889. This move-

ment through the number systems was systematic, methodical, and logical,

although seemingly backwards.

Work on the foundations of the reals and other number systems has

led to new results and new areas of research still being pursued today. In

particular, clarification of the foundation of the real numbers led naturally

to the development of such fields as topology, set theory, abstract algebra,

mathematical logic, and differential geometry, all of which were of major

importance in twentieth-century mathematics.

References: This chapter is based on [E2] and [E3]. Two excellent com-

prehensive sources on number systems are [A1] and [A2], while [A3] is

an outstanding resource on the history of mathematics. Readers interested

in a detailed discussion of how to find proofs can consult references [B1]

through [B5].
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Part II

MULTI-

DIMENSIONAL

NUMBERS

The real numbers are the only complete, linearly ordered field. Any

other system of numbers we construct will either be incomplete, not lin-

early ordered, or not a field. Consider these three possibilities briefly.

The most fundamental aspect of any system of numbers is their algebra.

Our intention is to consider number systems that can seriously be used in

place of the reals. So number systems that are not fields, stray too far, we

believe, from what makes the reals the reals. Thus, we avoid systems that

are not fields (with one exception).

Linear order is another matter. There are many practical problems to

which the geometry of a line does not apply. Therefore, we shall con-

sider number systems that are complete fields, but not linearly ordered. To

simplify this situation, we only consider systems with the geometry of n-

dimensional space (for some integer n). With this restriction, we give a

complete account of all such systems.

Finally, there are several interesting number systems that preserve the

algebra and the geometry of the reals, but are incomplete. They appear in

Part III.
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3
The Complex Numbers

3.1 Two-Dimensional Algebra and

Geometry

Introducing the complexes

The complex numbers are the oldest and best-known extension of the reals.

They have an elaborate theory and many important applications. Complex

numbers were viewed with suspicion by mathematicians for many years and

used only with reluctance because they seemed to have no basis in reality.

True understanding of the complexes came after it was grasped that they are

a two-dimensional number system. Interpreting the complexes as points in

the plane gave them concreteness and opened the door to their exploration

and application.

Algebra of the complex numbers

For convenience, we define the complexes as certain 2 by 2 matrices. This

gives the theory a head start since matrices already have a well-known al-

gebraic structure:

Definition. A complex number is a (2 by 2) real matrix of the form

"

a b

�b a

#

:

Addition and multiplication of complex numbers are the usual matrix oper-

57
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58 3. The Complex Numbers

ations, namely

"

a b

�b a

#

C
"

c d

�d c

#

D
"

aC c b C d

�.b C d/ a C c

#

;

and
"

a b

�b a

# "

c d

�d c

#

D
"

ac � bd ad C bc

�.bc C ad/ �bd C ac

#

:

The set of all complex numbers is written C.

Although we have defined the complexes as 2 by 2 matrices, which are

four-dimensional in nature, the complex numbers are two-dimensional. To

make this clear we introduce the matrix

i D
"

0 1

�1 0

#

:

Then every complex number can be written in the form z D a C bi

where the matrix
"

a 0

0 a

#

is abbreviated a. This is the Cartesian form of the complex number. The

quantity a is the real part of z and written Re.z/, while b is the imaginary

pa, written Im.z/. Both the real and imaginary parts of z are real.

Theorem 3.1.1. C is a field.

Problems

1) Verify that i is a square root of �1.

2) Prove Theorem 3.1.1

(Hint: The algebra of matrices already has most of the properties of a

field. Prove that the complex numbers are closed under the operations

of matrix addition and multiplication.)

3) Prove that i and �i are the only square roots of �1.

4) Express these complex numbers in Cartesian form:

(a) .1C 2i/.3 � 4i/
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(b) .i � 1/2

(c) .i � 1/4

5) Express these complex numbers in Cartesian form:

(a) 1
1�2i

(b) 1
1Ci

(c) �2

1Ci
p

3

(d) 1C2i
2C2i

(Example:
1

1 � i D 1

1 � i
1C i

1C i
D 1C i

2
:

This is called rationalizing the denominator.)

6) Let z D a C bi and w D c C di . Write the product zw in Cartesian

form.

Geometry of the complex numbers

As a two-dimensional number system, it is almost obvious that the complex

field is not linearly ordered. This is, nonetheless, important enough to state

as a theorem. For a proof, see problem 7.

Theorem 3.1.2. The complex numbers cannot be linearly ordered.

a

b z = a + bi

y

x

Figure 3.1.1. Complex numbers form a plane.

As two-dimensional quantities, it is natural to visualize the complex

numbers as points in the Cartesian plane (as in Figure 3.1.1). The planar na-

ture of the complex numbers is the source of many important applications.

The next definition introduces some geometric quantities:
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60 3. The Complex Numbers

Definition. For a complex number z D aC bi , let

z D a � bi; — the conjugate

jzj D
p

a2 C b2; — the modulus

arg.z/ D the polar angle �; — the argument

These are illustrated in Figure 3.1.2. Note that jzj and � D arg.z/ are

the polar coordinates of the Cartesian point .a; b/.

x

y

|z|

|z|

b = |z| sin(  )
a = |z| cos(  )θ

z = a + bi

z = a – bi

θ
θ

Figure 3.1.2. Locating a complex number in the plane.

Problems

7) Prove Theorem 3.1.2.

(Hint: Give an indirect proof. Compare i with 0. If the trichotomy law

held, then either i > 0, i < 0, or i D 0. Each leads to a contradiction.)

8) Verify these properties of the conjugate:

(a) z Cw D z C w,

(b) zw D z w;

(c) z D z;

(d) z is the reflection of z across the x-axis;

(e) Re.z/ D zCz
2
;

(f) Im.z/ D z�z
2i
:

9) Verify these properties of the modulus:

(a) jkzj D kjzj; for realk > 0;

(b) jz C wj � jzj C jwj;
(c) jzj2 D zz;
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(d) jz � wj is the Euclidean distance from z to w;

(e) jzj D 0 if and only if z D 0;

(f) z�1 D z
jzj2 :

10) Considering the complex numbers as matrices, what terms from matrix

algebra are used for the conjugate and modulus?

11) Let z D 2Ci . On the same pair of axes plot the points z; 1=z;�z;�1=z
and their conjugates.

12) Sketch the set of points z in the plane such that

(a) jz � 1j D 4;

(b) jz C i j D 2;

(c) jz C 2j < 5;
(d) jz � 1j D jzj;
(e) jz C i j D jz � i j;
(f) j4z C i j > 2:

Completeness of the complex numbers

C is not an ordered field, so order completeness makes no sense. Nor does

the Archimedean property. However, because the complex numbers corre-

spond to the points of a plane, they have a distance function (problem 9(d)).

Therefore we can define limits in C and then ask whether C is Cauchy (i.e.,

metric) complete.

Definition. A sequence of complex numbers z.n/ has limit the complex

number w, if for any integer N there is an integer M such that for n > M

we have

jz.n/ �wj < 1=N:

A sequence of complex numbers is Cauchy if for any integer N there is an

integer M such that form; n > M we have

jz.m/ � z.n/j < 1=N:

The notions of complex limit and of Cauchy sequence are directly re-

ducible to real limits and real Cauchy sequences according to this lemma:
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62 3. The Complex Numbers

Lemma. A sequence fz.n/g of complex numbers has a limit if and only

if both real sequences fRe.z.n//g and fIm.z.n//g have a limit. A sequence

fz.n/g of complex numbers is Cauchy if and only if fRe.z.n//g and fIm.z.n//g
are Cauchy.

The lemma makes possible the proof of the following theorem:

Theorem 3.1.3. C is Cauchy complete, that is, every sequence of complex

numbers that is Cauchy has a limit in the complex numbers.

Problems

13) Prove the lemma.

(Hint: Prove and use these inequalities:

jRe.z/j � jzj � jRe.z/j C jIm.z/j;
jIm.z/j � jzj � jRe.z/j C jIm.z/j:/

14) Prove Theorem 3.1.3.

Summary

Like the reals, the complex numbers are a field; unlike the reals, they are a

plane, not a line. They are Cauchy complete. The only axioms of the reals

not satisfied by the complex numbers are those that concern linear order.

3.2 The Polar Form of a Complex Number

The complex exponential

It is the relationship between algebra and geometry that makes the complex

numbers useful. A central tool is the polar form of a complex number. The

Cartesian form of a complex number uses Cartesian coordinates; the polar

form uses polar coordinates. It is important because it supplies a geometric

meaning to the operation of complex multiplication.

The polar form requires the complex exponential, defined by Euler as

follows.

Definition. The complex exponential is defined by

exp.i�/ D ei� D cos.�/ C i sin.�/:
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3.2. The Polar Form of a Complex Number 63

This definition is justified by the many ways that it ties together proper-

ties of real exponential functions (i.e., the laws of exponents) and properties

of the trigonometric functions. For example, the fact that e0 D 1 (a law of

exponents) agrees with the values cos.0/ D 1 and sin.0/ D 0. More exam-

ples are in problem 1.

Problems

1) Show that

(a) ei�ei� D ei.�C�/,

(b) d.ei� /=d� D iei� ;

(c) .ei� /n D ein� :

(Note: Each of these equations expresses a law of real exponents ex-

tended to complex exponents. Euler’s definition converts each of them

into an equation expressing properties of the trigonometric functions.)

2) Plot the set of points fei� j0 � � � 2�g in the complex plane.

Polar form and complex multiplication

For a complex number z D aC bi , we write

z D r cos.�/C ir sin.�/

D r.cos.�/ C i sin.�//

D jzjei� ;

where � D arg.z/ and r D jzj. This is the polar form of z (see Figure

3.2.1).

x

y

|z|

b = |z| sin(  )

a = |z| cos(  )

z = a + bi  = |z| e i

θ

θ

θ

θ

Figure 3.2.1. Polar form.
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64 3. The Complex Numbers

If we multiply two complex numbers in polar form: z D rei� and w D
sei'. We get:

zw D rei�sei' D rsei.�C'/:

Thus a simple way to multiply complex numbers is to put them in polar

form, then multiply the moduli and add the arguments. In formulas,

jzwj D jzjjwj;
arg.zw/ D arg.z/C arg.w/:

This is algebraically simple and makes geometric sense of complex mul-

tiplication (see Figure 3.2.2.).

x

y

z

w

ϕ

+

(b)  Add polar angles

z w

|zw| = |z||w|

(a)  Multiply moduli

θ

θ

ϕ

Figure 3.2.2. Multiplication of complex numbers using polar form.

Problems

3) Put into polar form

(a) 1C i1

(b) i �
p
3

(c) �i
(d) �3 � 3i
(e) �1

4) Let z D a C bi D jzjei� and w D c C di D jwjei'. Prove alge-

braically that jzwj D jzjjwj.
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5) Let w D f .z/ D az, where a D rei� is a complex constant in polar

form. Show that w is obtained by stretching (or compressing) z away

from (or towards) the origin by the factor r while rotating about the

origin by � .

6) Show that every complex number has two square roots. What is the

geometric relationship between them?

(Hint: Use polar form.)

7) Find these square roots in polar form.

(a)
p
4i

(b)
p

�
p
3C i

(c)
p
1C i

8) Verify these formulas. (See Figure 3.2.3.)

(a) Re.zw/ D jzjjwj cos. / D the dot product of z and w as vectors;

(b) Im.zw/ D jzjjwj sin. / D twice the area of triangle 4Ozw:

x

y

z

w

O

w

ψ

Figure 3.2.3. More complex geometry.

9) Prove that a complex number z D rei� has n n-th roots given by:

n
p
z D n

p
reik�=n;

for k D 1; 2; 3; : : : ; n. Plot them in the complex plane

(a) for z D 1; n D 3

(b) z D 1C i; n D 4
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66 3. The Complex Numbers

10) Give an appropriate definition for ez, for z D x C iy, an arbitrary

complex number (not purely imaginary).

(Hint: Use the laws of exponents.)

11) Use your answer to problem 10 to solve these equations:

(a) ez D 0

(b) ez D 1

(c) ez D 2i

3.3 Uniqueness of the Complex Numbers

The complex numbers are a two-dimensional field. The reader may per-

haps hope that we will next present a three-dimensional field, then a four-

dimensional field and so on—but this is impossible. In this section we prove

that the complex numbers are the only finite-dimensional field properly con-

taining the reals. This unexpected circumstance, like the uniqueness of the

reals proved in Chapter 2, sums up the significance of the complex numbers.

They are the only multi-dimensional field.

We begin with a famous result:

The Fundamental Theorem of Algebra. Every polynomial p.z/ of

degree n with complex coefficients factors into n linear factors with complex

coefficients.

The proof involves many ideas (primarily from the theory of complex

differentiation and integration) irrelevant to the rest of these notes. (Proofs

can be found in [A1]. See also [F1].)

It follows from the fundamental theorem of algebra that every polyno-

mial p.z/ with complex coefficients factors into linear factors:

p.z/ D anz
n Can�1z

n�1 C� � �Ca1zCa0 D an.z�r1/.z�r2/ : : : .z�rn/;

where the roots r1; : : : ; rn are in C. The implication for polynomials with

real coefficients is explained in the following corollary:

Corollary. Any non-constant polynomial with real coefficients that does

not factor into more than one factor is either linear or quadratic.

This corollary is the key to proving the uniqueness of the complex num-

bers as stated in the following theorem:
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Theorem 3.3.1. Every field that is finite-dimensional over the reals is either

isomorphic to R or to C.

Outline of the proof: Let S be a field that is a finite-dimensional vector

space over the reals. The proof strategy is: (1) show that S contains the reals

R, (2) show that if S is larger than R, then S contains the complex numbers

C, and (3) show that S is contained in C.

Problems

1) Prove the corollary to the fundamental theorem of algebra stated above.

(Hint: According to the fundamental theorem of algebra, a polynomial

p can be factored into complex linear factors. The burden of the proof

is to show that for a polynomial p, as described in the corollary, the

number of linear factors is either one or two.

First show that in the complex factorization of a polynomial with

real coefficients the roots come in sets of conjugates; that is, if z is a

root, then so is z. Such a set of conjugates consists of either one real

number or two complex numbers.

Then verify that the product of the (one or two) linear factors aris-

ing from such a set of conjugate roots is a polynomial divisor of p with

real coefficients (either linear or quadratic). Conclude that p must have

only one set of conjugate roots, otherwise it would have a real factor-

ization.)

2) Complete part (1) of the proof of Theorem 3.3.1.

(Hint: Let 1 be the multiplicative identity of S . For every real x, let

i.x/ D x1. This multiplication is justified by the assumption that S is

a vector space over the reals. Prove that i is an embedding of R into

S . This proves that S contains an isomorphic copy of R.)

3) Complete part (2) of the proof of Theorem 3.3.1.

(Hint: Suppose that S is larger than the isomorphic copy of the reals

that it contains. Let w be an element of S not in R. Deduce that w is

the root of a polynomialp.x/ with real coefficients by considering the

sequence of elements 1; w; w2; w3; etc, and using the assumption that

S is finite-dimensional over R.

Use the corollary to the fundamental theorem of algebra, to conclude

that there is a quadratic polynomialp.x/with real coefficients and root
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w. Show that p.x/ D x2 C 2bx C c can be assumed to have leading

coefficient 1.

Complete the square in the polynomial p.x/. Because w is not real,

it follows that the discriminant .b2 �c/ is negative, say b2 �c D �d 2:

(Why?). Conclude that .w C b/=d is a square root of �1, so that S

contains an isomorphic copy of the field C.

4) Complete part (3) of the proof of Theorem 3.3.1.

(Hint: Let w be any element of S . Use the finite-dimensionality of S

over the reals, to conclude that w is the root of a polynomial p.x/

with real coefficients. Apply the fundamental theorem of algebra to

conclude that w is complex. This proves that S is contained in the

field C.

More two-dimensional number systems

Although the complexes are the only multi-dimensional field, there are

other interesting two-dimensional number systems. In this section we de-

fine some and invite the reader to explore them.

Let R.j/ be the set of numbers of the form aCbj, where a and b are real

numbers, and j is, for the moment, an undefined symbol. We first stipulate

that addition in R.j/ follows the natural rule:

.a C bj/C .c C d j/ D .aC c/C .b C d/j;

which is almost implied by our use of the plus sign. For multiplication, we

insist that the real numbers inside R.j/ multiply as they usually do and that

the distributive law continues to hold. Then we can calculate:

.a C bj/.c C d j/ D a.c C d j/C bj.c C d j/ D ac C ad j C bjc C bjd j:

Finally, supposing that j commutes with real numbers, we get:

.a C bj/.c C d j/ D ac C ad j C bcj C bd j2

To complete the definition of multiplication for R.j/, we must assign a

meaning to the symbol j2. At a minimum we want R.j/ to be closed un-

der multiplication, but this only means that j2 must be in R.j/, say

j2 D p C qj;
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where p and q are real. Then we have

.a C bj/.c C d j/ D ac C ad j C bcj C bd.p C qj/

D .ac C bdp/C .ad C bc C bdq/j:

There are three natural choices for p and q, namely (a) j2 D �1, (b)

j2 D 1, and (c) j2 D 0. In case (a), R.j/ is the complex numbers; in (b),

R.j/ is called the double numbers; in case (c), R.j/ is called the dual

numbers.

Problems

1) Regardless of the choice of j2, verify that R.j/ satisfies the commuta-

tive and associative laws of multiplication.

2) Regardless of the choice of j2, verify that R.j/ has a multiplicative

identity.

3) Which double numbers have multiplicative inverses? How do the dou-

ble numbers fail to be a field?

4) Which dual numbers have multiplicative inverses? How do the dual

numbers fail to be a field?

It might appear that R.j/ provides an infinite number of algebraic sys-

tems, but the three examples—the complex numbers, the double numbers

and the dual numbers—are the only truly distinct ones. To prove this, start

with

j2 � qj D p;

and complete the square, getting

�

j � q

2

�2

D p C q2

4
:

There are now three cases, depending whether the real p C q2=4 is posi-

tive, negative, or zero. These correspond to the three systems: the double,

complex, and dual numbers.

Problems

5) Explain why completing the square is justified in all the number sys-

tems R.j/.
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6) If p C q2=4 is positive, show that R.j/ is isomorphic to the double

numbers.

7) If p C q2=4 is negative, show that R.j/ is isomorphic to the complex

numbers.

8) If pC q2=4 is zero, show that R.j/ is isomorphic to the dual numbers.

3.4 Complex Calculus

Complex functions

A complex function w D f .z/ of a complex variable involves four real

variables: two for z D x C iy and two for w D f .z/ D u C iv. To

visualize f .z/ as a transformation, it is necessary to draw two planes, one

for z the other for w.

Figure 3.4.1 illustrates this for w D f .z/ D 2z. For example, the point

z D 2 C i with real coordinates x D 2; y D 1, is transformed to the point

w D 4 C 2i with real coordinates u D 4; v D 2. Judging from the picture,

the function w D 2z is a stretching (or magnification) of the plane.

z-plane 1 2 3 4 5

1

2

3

4

5

w-plane
1 2 5 10

1

2

5

10

w  =  f(z)  =  2 z

Figure 3.4.1. Graph of the function w D 2z on the domain 0 � Re.z/, Im.z/ � 5.

Problems

1) Graph these complex functions.

(a) f .z/ D z C .2 C i/
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(b) f .z/ D z=2

(c) f .z/ D iz

(d) f .z/ D .i C z/=i

(e) f .z/ D .1C i/z

(f) f .z/ D iz � i C 1

2) Explain why the geometric interpretation given for each of these func-

tions is correct.

(a) f .z/ D z C a, a real, is a horizontal translation of the plane.

(b) f .z/ D z C bi , b real, is a vertical translation of the plane.

(c) f .z/ D z C z0, z0 is a constant, is an arbitrary translation.

(d) f .z/ D ei�z is a rotation of the plane about the origin by the

angle � .

3) The function f .z/ D kz (where k > 0) is called a homothetic trans-

formation. Describe its action on the complex plane.

4) What transformation does the function f .z/ D �z represent?

w-plane-20 -10 10 20

10

20

30

40

50

z-plane 1 2 3 4 5

1

2

3

4

5

w  =  f(z)  =  z2

Figure 3.4.2. Graph of the function w D z2:

5) The graph of f .z/ D z2 is given in Figure 3.4.2. Find equations for

the curves shown in the w-plane. Verify that they are parabolas with

focus at the origin.

(Hint: In the complex equation

uC iv D w D f .z/ D .x C iy/2;
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pretend that x is a constant. Derive two real equations by separately

equating the real and imaginary parts of this one. Eliminate y to get a

single equation in u and v. Repeat, interchanging x and y.)

6) Graph w D f .z/ D 1=z on the square 0 � x, y � 5, creating a figure

like Figure 3.4.2. Find equations for the curves in the w-plane. Verify

that they are circles passing through the origin.

Complex differentiation

The definition of the derivative for a complex function is the same as for a

real function.

Definition. Let the function f .z/ be defined on a rectangle in the complex

plane. Let z be a point therein. Then f is differentiable at z with derivative

f .z/ if the following limit exists:

f 0.z/ D lim
h!0

f .z C h/ � f .z/
h

:

Algebraically, the limit used here is the same as for real functions, so

most of the same differentiation rules apply. In particular, the complex

derivative obeys the sum, product, and chain rules. In other ways, com-

plex analysis is very different from real analysis. A complex function with

a derivative is much more special among complex functions of a complex

variable than a differentiable function is among real-valued functions of a

real variable.

To understand this, we separate a complex function f .z/ into real and

imaginary parts:

f .z/ D f .x C iy/ D u.x; y/C iv.x; y/;

where u D Re.f / and v D Im.f /. Both u and v are real-valued functions

of the two real variables x and y. Now the real limit as h ! 0 is taken two

ways: the real number h approaches 0 from above and from below. If the

limit exists, it is because both give the same result. Complex numbers are

two-dimensional, so the complex limit as h ! 0 can be taken many ways.

A complex h can approach 0 along any curve in the complex plane ending

at 0. For the complex limit to exist, all ways of taking the limit must give

the same result. This idea leads to the following theorem:
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Theorem 3.4.1. The real and imaginary parts, u and v, of a complex, dif-

ferentiable function satisfy the Cauchy-Riemann Equations:

@u

@x
D @v

@y
;

@u

@y
D �@v

@x

Part of the conclusion of this theorem is that the real and imaginary

parts of a differentiable function of a complex variable are themselves dif-

ferentiable real-valued functions (or at least have partial derivatives). By

itself, this is not surprising. What is surprising is the link between the par-

tial derivatives described by the Cauchy-Riemann equations.

Problems

7) Prove Theorem 3.4.1

(Hint: Let h D x C iy. One way that h can approach 0 is to let h D x,

that is keep y fixed at 0. If we do this, then we get this formula for

f 0.z/:

f 0.z/ D @u

@x
.z/ C i

@v

@x
.z/:

(Why?) On the other hand, we can let h D iy, keeping x at 0. Carefully

work out a formula for f 0.z/ in this second case and compare it with

the previous result.)

8) Separate these complex functions into real and imaginary parts. Deter-

mine which are differentiable and check the Cauchy-Riemann equa-

tions.

(a) f .z/ D z2

(b) f .z/ D jzj
(c) f .z/ D ez

(d) f .z/ D z C 1

(e) f .z/ D 1=.z C 1/

(f) f .z/ D z3

9) Prove that the real and imaginary parts (u and v) of a differentiable

function of a complex variable separately satisfy Laplace’s equation:

@2w

@x2
C @2w

@y2
D 0:

Verify this for the functions in problem 8.
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Conformality

The Cauchy-Riemann equations are the algebraic expression of the special

nature of a complex differentiable function; conformality is the geomet-

ric expression. A conformal mapping is a transformation of the plane that

preserves angles between curves. Figure 3.4.3 illustrates the difference be-

tween a conformal mapping and a non-conformal mapping when applied to

a square grid. The lines of this grid in the z-plane meet at right angles. The

conformal map preserves these angles, but the non-conformal map distorts

them.

z-plane

conformal map

non-conformal map

w-plane

w-plane

Figure 3.4.3. Conformal vs. non-conformal maps.

After seeing this illustration and comparing it with the other figures in

this section, the reader will not be surprised by the next theorem:

Theorem 3.4.2. A differentiable function of a complex variable is confor-

mal.

Proof. Let z.t/ D x.t/ C iy.t/ represent a planar curve  parametrically

and let � be the transformed curve f ./ (see Figure 3.4.4).

The derivative z0.0/ D x0.0/ C iy0.0/ gives the direction and magni-

tude of the tangent vector to the curve at t D 0, as in the figure. Applying

the transformation f .z/ we get a curve w.t/ D f .z.t// in the w-plane.
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z'(0)

z(0)

tangent vector

tangent vector

w(0)

w'(0) = f'(z(0)) z'(0)

z-plane w-plane

z'(0)

θf

γ Γ

Figure 3.4.4. Proof of conformality.

According to the chain rule, w0.0/ D f 0.z.0//z0.0/. Therefore the tangent

vector on the transformed curve is found algebraically by multiplying the

original tangent vector .z0.0// by the derivative of f at z.0/.

Let f 0.z.0// D rei� :Multiplying this times z0.0/ stretches (or shrinks)

z0.0/ by r and rotates it by � , according to problem 5 in Section 3.2.

Suppose now that two parametric curves intersect in the z-plane at an

angle '. After transformation by f .z/, their tangents will both have been

rotated by the same angle, so the transformed curves will continue to meet

at the angle '. (Draw your own graph.) This proves that f is conformal.

Applications of Complex Functions

Figure 3.4.5 contains a graph of the complex square root f .z/ D ˙
p
z.

The lines parallel to the x-axis become hyperbolas with the coordinate axes

as asymptotes; the lines parallel to the y-axis become hyperbolas with the

45ı lines as asymptotes. The square root is conformal so these hyperbolas

meet at right angles. Note the striking complexity of complex square roots

compared with real square roots.

Figure 3.4.5 is also a typical application of complex functions. The w-

plane depicts a quadrupole field, the electrostatic field produced by four

plates carrying electrical charges, two positive and two negative, placed as

indicated. The hyperbolas with the axes as asymptotes are the field lines

or lines of force; the other hyperbolas are equipotential lines, curves that

connect points with the same potential energy. A quadrupole field is, for

example, used to focus electron beams. Calculations of the strength and

shape of the quadrupole field use the complex square root. Fields created

by plates with other shapes require other complex functions.

The graphs of complex functions describe many important families of

curves including: isotherms (used to study heat flow), isobars (for the study

of atmospheric pressure), contour lines (for the study of topography), and
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w-plane
z-plane

1-1

+

–

1-1

-1

-1

1

1

+

–

w = √z

Figure 3.4.5. A quadrupole field.

stream lines (used to study fluid flow and the diffusion of gases). Complex

functions have extensive practical applications in the design of objects that

have to pass smoothly through a fluid. Airplane wings, automobile bodies,

and submarine hulls are examples.

3.5 A Final Word about the Complexes

Although complex numbers were known and used from medieval times on,

their geometric nature as points in a plane was not understood. Since their

systematic treatment and application requires appreciation of their geome-

try, they languished for many years—as the name imaginary suggests—in a

kind of mathematical limbo, occasionally used but not fully accepted.

It was Johann Carl Friederich Gauss (1777–1855) who first understood

the geometry of the complex numbers and used them with confidence, giv-

ing in 1799 the first proof of the fundamental theorem of algebra. Complex

numbers still required many more decades before they won complete ac-

ceptance. Their theory is now well-established and their use indispensible

in many areas.

References for the complex numbers: This is the favorite subject of so

many mathematicians that there is a host of excellent books among which

[F1] is outstanding. [F3] is also excellent and includes a good discussion of

applications; [F4] emphasizes the geometry of the complexes.



“master” — 2012/6/18 — 10:53 — page 77 — #87
i

i

i

i

i

i

i

i

4
The Quaternions

4.1 Four-Dimensional Algebra and

Geometry

Skew fields

It is disappointing that C is the only multi-dimensional field containing the

reals. It would particularly be useful if some kind of multiplication could be

defined in three-dimensional space making it a field. (We live, after all, in

three-dimensional space.)

Unfortunately, this is impossible. However, if we give up one field ax-

iom, we can proceed.

Definition. A skew field is a set S together with operations of addition

and multiplication satisfying all the axioms of a field except the commuta-

tive law of multiplication.

There is no skew field of three-dimensions, sad to say, but there is a

four-dimensional skew field. As with the complex numbers, it is convenient

to start with matrices.

Definition. A quaternion is a 4 by 4 matrix of the form

q D

2

6

6

6

6

4

a b c d

�b a �d c

�c d a �b
�d �c b a

3

7

7

7

7

5

;

where a; b; c, and d are real numbers. Let W be the set of all quaternions.

77
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Like the complex numbers, W inherits operations of addition and mul-

tiplication from the algebra of matrices. These operations already satisfy

most of the field axioms.

Theorem 4.1.1. W is a skew field.

If we introduce the matrices

i D

2

6

6

6

6

4

0 1 0 0

�1 0 0 0

0 0 0 �1
0 0 1 0

3

7

7

7

7

5

; j D

2

6

6

6

6

4

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

3

7

7

7

7

5

; and k D

2

6

6

6

6

4

0 0 0 1

0 0 �1 0

0 1 0 0

�1 0 0 0

3

7

7

7

7

5

;

then a quaternion can be written in the Cartesian form a C bi C cj C dk,

where the matrix
2

6

6

6

6

4

a 0 0 0

0 a 0 0

0 0 a 0

0 0 0 a

3

7

7

7

7

5

is abbreviated by a. Looked at this way, a quaternion is like a complex

number with three imaginary parts. The next definition makes this analogy

even clearer.

Definition. Let q D aCxi Cyj C zk be a quaternion, where a; x; y, and

z are real numbers. The scalar part of q is defined

Sq D a;

and the vector part of q is

V q D xi C yj C zk:

We also have the conjugate

q D Sq � V q D a � xi � yj � zk;

and the norm

jqj D .a2 C x2 C y2 C z2/1=2:

If Sq D 0, then q is called a pure quaternion. If jqj D 1, then q is a unit

quaternion.
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Problems

1) Show that the quaternions i; j; k satisfy:

(a) i2 D j2 D k2 D �1
(b) ij D �ji D k

(c) jk D �kj D i

(d) ki D �ik D j

(Note: Multiplication of quaternions is not commutative!)

2) Prove Theorem 4.1.1.

3) Find the Cartesian form of these quaternions.

(a) ijk

(b) .2i C j/.j C k/

(c) .2C 3j/.i C j � k/

4) Prove:

(a) qr D qr

(b) jqj2 D qq

(c) jqrj D jqjjrj
(d) jq C rj � jqj C jrj
(e) Sq D qCq

2

(f) V q D q�q

2

(g) q�1 D q

jqj2

5) Prove that .qr/�1 D r�1q�1:

6) Find the Cartesian form of

(a) .1C i/�1

(b) .i C j C 2k/�1

(c) .2 � i C j/�1

7) Show that the reciprocal of a pure quaternion is a pure quaternion.

8) Show that a normalized quaternion q=jqj is a unit quaternion.

9) Is W Cauchy complete?

10) Do the quaternions satisfy the integral domain property?
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80 4. The Quaternions

11) Verify that all pure, unit quaternions are square roots of �1. Prove that

these are the only square roots of �1.

12) There are many more than two quaternion square roots of �1 (see the

previous exercise). What, then, is wrong with this argument? Let q be

a solution of the equation q2 D �1. Rewriting we get q2 C 1 D 0.

Factoring gives .q � i/.q C i/ D 0, therefore q D i or q D �i and we

see that there are exactly two quaternion square roots of �1.

Dot and cross product

A pure quaternion q D xiCyjCzk represents a point in three-dimensional

space. Multivariable calculus gives us two multiplications for 3-dimensional

vectors: the dot and the cross product. The next theorem interprets the mul-

tiplication of pure quaternions in these terms.

Theorem 4.1.2. Let q and r be pure quaternions:

q D x1i C y1j C z1k;

and

r D x2i C y2j C z2k:

Then

S.qr/ D x1x2 C y1y2 C z1z2

D .q � r/

D jqjjrj cos.�/; — the dot product

and

V.qr/ D .y1z2 � y2z1/i � .x1z2 � x2z1/j C .x1y2 � x2y1/k

D q � r

D jqjjrj sin.�/u: — the cross product

Here � is the angle from the vector q to the vector r and the pure unit

quaternion u represents a unit vector in three-dimensional space perpen-

dicular to the plane of the vectors represented by q and r and forming a

right-handed system with them.
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y

z

x q

r

u

φ

q × r

Figure 4.1.1. Direction u of the cross product q � r in relation to q and r.

In summary,

qr  =  – (q   r) +  (q × r), .

scalar part vector part

which gives a geometric interpretation for the multiplication of pure quater-

nions, because the dot and cross products themselves have simple geometric

interpretations.

Problems

13) What form does the product of two pure quaternions take when they

are perpendicular vectors in 3-dimensional space? When they are par-

allel vectors?

14) Verify, using quaternions:

(a) .q � r/ D .r � q/,

(b) q � r D �r � q,

(c) jq � rj2 D jqj2jrj2 � .q � r/2;

where q and r are 3-dimensional vectors.

15) Use quaternion multiplication to find a formula for the area of the tri-

angle determined by three points q; r, and s.

(Hint: What is S.qrs/?)
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4.2 The Polar Form of a Quaternion

A quaternion has a polar form analogous to the polar form of a complex

number.

Theorem 4.2.1. Every quaternion can be represented in the form

q D jqj.cos.�/C u sin.�//;

where u is a pure, unit quaternion, and 0 � � < 2�:

Problems

1) Prove Theorem 4.2.1.

(Hint: u is the normalized vector part of q.)

2) The polar form of a quaternion features a pure, unit quaternion. What

complex number or numbers plays the role of the pure, unit quaternion

in the polar form of a complex number?

3) Is the polar form of a quaternion unique?

Geometric application of quaternions

Many geometric transformations of 3- and 4-dimensional space can be writ-

ten compactly using the algebra of quaternions. Polar form plays a crucial

role. Here is an example.

Theorem 4.2.2. Let r D cos.�/C u sin.�/, where u is a pure unit quater-

nion (i.e., a unit vector in 3-dimensional space). Define algebraically the

operationR on a vector q by

R.q/ D rqr�1:

Then geometricallyR.q/ is the rotation of q around the axis u by the angle

2� . Every rotation of 3-dimensional space about an axis passing through

the origin can be represented in this way.

Proof. Let T be the geometric transformation of three-dimensional space

consisting of a rotation of 2� about the axis u. The goal is to show that

T D R.
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We first prove that T and R are linear transformations; that is, that

T .q C s/ D T .q/ C T .s/; R.q C s/ D R.q/CR.s/;

and

T .˛q/ D ˛T .q/; R.˛q/ D ˛R.q/;

where q and s are arbitrary pure quaternions and ˛ is a scalar (a real num-

ber).

For T , these properties are geometrically obvious. For example, if q is

a quaternion and ˛ is a scalar, it makes no difference whether we multiply

q by ˛ first (which stretches or compresses q) and then rotate about u, or

rotate first and then multiply. For R, linearity follows by algebraic compu-

tation:

R.q C s/ D r.q C s/r�1 D rqr�1 C rsr�1 D R.q/CR.s/;

and

R.˛q/ D r˛qr�1 D ˛rqr�1 D ˛R.q/;

using the distributive law for the first equation and the fact that real numbers

commute with quaternions for the second.

To apply linearity, we choose a basis consisting of the vector u, plus

two orthogonal vectors, and proceed to check that R D T for these basis

vectors. It then follows that R D T for all vectors.

(a) If q D u, then

R.u/ D rur�1 D .cos.�/C u sin.�//u.cos.�/ � u sin.�//

D cos.�/2u � sin.�/2u3 D cos.�/2u � sin.�/2.�u/ D u:

Likewise T .u/ D u, since the axis of rotation is fixed in place by rotation.

T(q)

u

q

2θ (u × q)

sin(2θ) (u × q)

cos(2θ) q

Figure 4.2.1. Transformation of a vector q perpendicular to u.
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84 4. The Quaternions

(b) If q is in the plane perpendicular to u (see Figure 4.2.1), then

R.q/ D rqr�1 D .cos.�/C u sin.�//q.cos.�/ � u sin.�//

D cos.�/2 q Cuq cos.�/ sin.�/ � qu cos.�/ sin.�/

� uqu sin.�/2:

Because u and q are perpendicular,

uq D �.u � q/C .u � q/ D .u � q/;

and

qu D .q � u/ D �.u � q/;

so that

uqu D .u � .u � q// � .u � .u � q// D �.u � .u � q//;

since (u � q) is also perpendicular to u. Using the right-hand rule, we see

that

uqu D q:

Putting all this together, gives

R.q/ D cos.�/2q C 2 cos.�/ sin.�/.u � q/ � sin.�/2q

D cos.2�/q C sin.2�/.u � q/;

therefore R.q/ is the rotation of q through an angle of 2� about the axis u,

that is,

R.q/ D T .q/:

Problems

4) Prove that two three-dimensional vectors q and r represented by pure

quaternions are orthogonal if and only if

qr D �rq;

that is, anti-commuting vectors are orthogonal.
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5) Let r be any quaternion. Prove that the transformation

R.q/ D rqr�1

of the pure quaternion q is a rotation in 3-dimensional space.

6) Let r1 and r2 be quaternions. Let R1 and R2 be the corresponding

rotations a la Theorem 4.2.2. Show that R1 composed with R2 corre-

sponds to the quaternion r1r2.

7) Prove that the composition of two rotations of 3-dimensional space is

another rotation.

8) Let R1 be a rotation of 90 degrees about an axis u1. Let R2 be a second

rotation of 90 degrees about an axis u2 perpendicular to u1. Using

quaternions, find a formula for the composition R1 and R2. Describe

the resulting transformation geometrically.

9) The preceding exercise points out that the rules governing the com-

bination of rotations in three dimensions are complicated. In contrast,

what is the rule governing the combination of rotations in two dimen-

sions?

10) Find a formula for rotation of three-dimensional space about an axis

not passing through the origin.

11) Let r be a pure unit quaternion. Let � be the plane in 3-dimensional

space perpendicular to r and passing through the origin. Prove that

T .q/ D rqr

is a reflection across the plane �.

(Hint: Imitate the proof of Theorem 4.2.2.)

Uniqueness of the quaternions

One might hope to find skew fields of still higher dimension, but there are

no more, at least that are finite dimensional. (For a proof, see [A1] or [C2].)

Uniqueness of the Quaternions. (Frobenius) Every skew field finite-

dimensional over the reals is isomorphic to R or to C or to W .
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4.3 Complex Quaternions and the

Quaternion Calculus

Complex quaternions

Although there are no skew fields of dimension higher than four, there are

some other interesting number systems. The complex quaternions are an

example. They provide a model for the theory of relativity.

Definition. A complex quaternion is a quantity of the form

q D t C ixi C iyj C izk;

where i is the complex unit.

In other words q is a quaternion with one real and three imaginary co-

efficients (weird). As with ordinary quaternions, the scalar part of q is

defined by

Sq D t:

the vector part by

V q D ixi C iyj C izk;

the conjugate of q by

q� D Sq � V q D t � ixi � iyj � izk;

and the (Minkowski) norm of q by

jjqjj D jt2 � x2 � y2 � z2j1=2:

Absolute values are needed for the norm since t2 � x2 � y2 � z2 can be

negative.

Problems

1) Prove that complex quaternions obey the associative and distributive

laws.

2) Which of the axioms of a skew field don’t hold for the complex quater-

nions?

3) Prove:

(a) .qr/� D r�q�;
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(b) jjqjj2 D jqq�j D jq�qj;
(c) jjqrjj D jjrqjj:

4) Find a nonzero complex quaternion with jjqjj D 0.

5) Verify that not every nonzero complex quaternion has an inverse. Show

that complex quaternions do not satisfy the cancellation law. Do the

quaternions satisfy the integral domain property?

6) Prove that a complex quaternion of nonzero Minkowski norm can be

written in the form

q D jjqjj.cosh.�/ C iu sinh.�//;

where u is a pure unit quaternion. This is polar form for the complex

quaternions.

(Hint: The functions cosh and sinh parametrize the unit hyperbolax2�
y2 D 1, in the same way that cos and sin parametrize the unit circle.

If x2 � y2 D 1, and x > 0, there is a � such that .cosh.�/; sinh.�// D
.x; y/:/

Lorentz transformations

The transformation L.w/ D qwq where jjqjj D 1 is called a Lorentz

transformation. Lorentz transformations are a kind of rotation in the 4-

dimensional space of complex quaternions. Let us compute one. Thus let q

be the particular unit quaternion

q D .cosh.�/ C i j sinh.�//;

where, for simplicity, q has been given only two nonzero components. If w

is a typical complex quaternion

w D t C ixi C iyj C izk;

then

L.w/ D qwq D .cosh.�/C i j sinh.�//.t C ixi C iyj C izk/

.cosh.�/C i j sinh.�//:
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Multiplying out,

L.w/ D Œ.cosh.�/2 C sinh.�/2/t C 2 cosh.�/ sinh.�/y�

C i.cosh.�/2 � sinh.�/2/xi

C i Œ2 cosh.�/ sinh.�/t C .cosh.�/2 C sinh.�/2/y�j

C i.cosh.�/2 � sinh.�/2/zk;

and using the hyperbolic identities:

cosh.�/2 � sinh.�/2 D 1;

cosh.2�/ D cosh.�/2 C sinh.�/2 ;

sinh.2�/ D 2 cosh.�/ sinh.�/;

L.w/ becomes

L.w/ D Œcosh.2�/tC sinh.2�/y�C ixiC i Œsinh.2�/tCcosh.2�/y�jC izk:

Note the similarity between this formula and the corresponding formula

for a Euclidean rotation (using ordinary quaternions):

R.v/ D qvq�

D .cos.�/C j sin.�//.xi C yj C zk/.cos.�/ � j sin.�//

D Œ.cos.�/2 � sin.�/2/x C 2 cos.�/ sin.�/z�i

C .cos.�/2 C sin.�/2/yj

C Œ�2 cos.�/ sin.�/x C .cos.�/2 � sin.�/2/z�k

D Œcos.2�/x C sin.2�/z�i C yj C Œ� sin.2�/x C cos.2�/z�k;

where v D xi C yj C zk is an ordinary pure quaternion and q D cos.�/ C
j sin.�/ is an ordinary unit quaternion.

It is the analogy between a Euclidean rotation and a Lorentz transfor-

mation suggests that the Lorentz transformation is a kind of hyperbolic ro-

tation.

Problems

7) Check the algebraic details of the formulas for L.w/ and R.v/ given

above.

8) Derive the hyperbolic identities used above.
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The special theory of relativity

Einstein’s theory of relativity describes physical events as seen by an ideal

observer occupying what is called an inertial reference frame, essentially a

position free of gravitational influence. Einstein maintained that under these

special conditions (whence the term “special” relativity) the laws of physics

would appear the same to all observers.

According to the special theory, physical events relative to an inertial

frame of reference are described by four coordinates: time t and the three

space coordinates x; y; and z. The resulting four-dimensional coordinate

system is called space-time. The coordinates of this system correspond to

the four components of a complex quaternion. Thus let

w1 D t1 C ix1i C iy1j C iz1k;

and

w2 D t2 C ix2i C iy2j C iz2k

represent two events seen by an observer in an inertial frame of reference.

In classical physics there are two ways to measure the distance between

events: time separation and spatial distance. In quaternion terms these are

time separation D jS.w1/� S.w2/j D jt1 � t2j D ..t1 � t2/
2/1=2;

and

space separation D jV.w1/� V.w2/j
D ..x1 � x2/

2 C .y1 � y2/
2 C .z1 � z2/

2/1=2:

In classical physics two observers of the events w1 and w2 would measure

the same time separation and space separation.

In contrast, according to Einstein’s theory, two observers of w1 and w2

do not necessarily observe the same time and space separations; they will

observe the same relativistic separation or Minkowski separation:

jjw1 � w2jj D j.t1 � t2/2 � .x1 � x2/
2 � .y1 � y2/

2 � .z1 � z2/
2j1=2:

Thus Minkowski separation is the appropriate distance function for the ge-

ometry of relativistic space-time.

The quantity

M D .t1 � t2/2 � .x1 � x2/
2 � .y1 � y � 2/2 � .z1 � z2/

2
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can be negative as well as positive or zero. This gives rise to three different

types of intervals between events. IfM is positive, then the time separation

predominates and the interval between w1 and w2 is called timelike. If M

is negative, then space separation predominates and the interval is called

spacelike. Figure 4.3.1 illustrates these possibilities with the z dimension

suppressed.

If M is zero, the interval is called lightlike. Lightlike intervals are ob-

served when it is possible for a ray of light to travel between the two events.

Units have been chosen so that the speed of light is 1. Any other particle

travels at a rate of speed less than that of light (less than 1). Therefore in

the interval separating two events along the path followed by non-light par-

ticles, time separation predominates over space separation. In other words,

particles, other than rays of light, travel so as to create timelike intervals

between events along their path through space-time.

y

x

t
timelike interval

lightlike interval

spacelike interval

2
w 

2
w 

2
w 

w 
1

Figure 4.3.1. Relativistic intervals.

For two observers in inertial frames of reference, suppose that the refer-

ence frame of observer 2 is traveling at a constant speed of � in relation to

the frame of observer 1. For simplicity, suppose that the motion of observer

2 in relation to observer 1 is in the y direction. Based on physical arguments

the relativistic transformation connecting the views w1 and w2 of the two

observers is
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8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

t1 D t2p
1��2

C y2�p
1��2

;

x1 D x2;

y1 D t2�p
1��2

C y2p
1��2

;

z1 D z2:

The important thing is to notice that the coefficients a and b of t2 and y2:

a D 1=.1 � �2/1=2;

b D �=.1 � �2/1=2

satisfy a2 � b2 D 1, therefore there is a number � , called the velocity

parameter, such that a D cosh.�/ and b D sinh.�/. Written using � , it

is apparent that the relativistic transformation is the same as the Lorentz

transformation:

w1 D L.w2/ D qw2q;

where q D cosh.�/ C i sinh.�/j. Thus a Lorentz transformation connects

the viewpoints of two observers in relativistic space-time.

The calculus of quaternions

The best feature of the quaternion calculus is the nabla operator, invented

by William Hamilton. It is defined as follows:

r D @

@x
i C @

@y
j C @

@z
k:

The next theorem shows how this operator is connected with all the princi-

pal operators of vector calculus:

Theorem 4.3.1. Let f .x; y; z/ be a real-valued function. Then rf is the

gradient of f :

rf D @f

@x
i C @f

@y
j C @f

@z
k;

and

r2f D
@2f

@x2
C
@2f

@y2
C
@2f

@z2

is the Laplacian.
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If

F.x; y; z/ D u.x; y; z/i C v.x; y; z/j C w.x; y; z/k

is a vector function, then

rF D curl.F /C div.F /;

where

curl.F / D r � F D
�

@w

@y
� @v

@z

�

i C
�

@u

@z
� @w

@x

�

j C
�

@v

@x
� @u

@y

�

k;

and

div.F / D r � F D @u

@x
C @v

@y
C @w

@z
:

The nabla operator applies only to real functions of real variables. What

about functions of a quaternion variable? One way to define them is through

power series. For example, here is a quaternion version of the exponential

function.

Definition. The quaternion exponential function is defined by

exp.q/ D 1C q C q2

2
C q3

3Š
C � � � C qn

nŠ
C � � �

Unfortunately, this function does not have the nice properties that the

real and complex exponential functions have (see problem 11 below). Its

difficulties stem from the fact that the quaternions are not commutative.

Turning to differentiation, a problem immediately arises with the deriva-

tive

f0.q/ D lim
h!0

f.q C h/ � f.q/

h
;

where f.q/ is quaternion function of a quaternion variable and the limit is

taken as the quaternion h approaches the zero quaternion 0. The problem

is rooted in the concept of a quaternion fraction. The usual notation for

fractions p=q isn’t appropriate because it does not discriminate between

pq�1 and q�1p, which may differ because quaternions don’t necessarily

commute. To form a proper difference quotient, we must choose whether to

multiply f.q C h/ � f.q/ by h�1 on the right or on the left. In other words,

there are two quaternion derivatives.

Definition. Let f.q/ be a quaternion function of a quaternion variable. The

right derivative of f is given by

f0
R.q/ D lim

h!0
.f.q C h/ � f.a//h�1 ;
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while the left derivative is given by

f0
L.q/ D lim

h!0
h�1.f.q C h/� f.q//:

The theory of these derivatives is quite unsatisfactory, as the problems

show.

Problems

9) Prove Theorem 4.3.1.

10) Show that the infinite series for the quaternion exponential converges

for any quaternion q.

11) When is the fundamental exponential law

exp.q C r/ D exp.q/ � exp.r/

valid if q and r are quaternions?

12) Use the polar form of q to obtain another formula for exp.q/. Find a

connection between the quaternion and complex exponentials.

13) Using the left derivative alone, what differentiation rules can you prove?

What about the product rule?

14) Find the left and right quaternion derivatives of these functions:

(a) f .q/ D jq C k

(b) exp.q/

15) Show that the limit

lim
h!0

.hqh�1/

does not exist. Conclude that the simple function f.q/ D q2 has neither

a left nor a right derivative.

(Hint: Let q be a simple pure quaternion and let h approach 0 first

along the i axis and then along the j axis.)
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94 4. The Quaternions

4.4 A Final Word about the Quaternions

During the course of at least fifteen years spent thinking about the problem

of finding a set of multi-dimensional numbers that would reflect the laws

governing rotations in three dimensions, William Rowan Hamilton (1805–

1865) came to realize that such a set of numbers would require four compo-

nents not three and that the commutative law of multiplication, which had

hitherto held for all systems of numbers, would have to be sacrificed. One

evening in October 1843, the final element of the solution of the problem

came to him while he walked along the Royal Canal in Dublin. This was

the formula

i2 D j2 D k2 D ijk D �1;

which determines the strange multiplication of the quaternions. With a pocket

knife, Hamilton engraved this formula on the stone of Brougham Bridge

(now called Broom Bridge). The bridge is still there and Hamilton’s dis-

covery is marked by a plaque.

As the first non-commutative and first non-planar set of numbers to be

developed, the quaternions were a powerful influence on the development

of algebra, contributing to the invention of matrix algebra later in the nine-

teenth century and the development of abstract algebra in the twentieth. The

quaternions seem also to have anticipated some of the four-dimensional ge-

ometric ideas of the theory of relativity.

The quaternions were used for some years in the study of motion of

three-dimensional objects. Great hopes were expressed for them, but no

calculus of quaternions was forth-coming, and soon quaternions were sup-

planted by more general matrix and linear algebra methods. However, with

the use of computers, quaternions have come to be a standard tool for exe-

cuting three-dimensional rotations efficiently for the purpose of animation.

Quaternions are also still in use in the investigation of fundamental geomet-

ric and topological problems in three and four dimensions.

References for the quaternions: [A1] and [C3] are good introductory

sources. For more on quaternions and relativity, see [G4]. Finally, for the

application of quaternions to animation, see [G8].

What number systems lurk beyond four dimensions? An important fam-

ily of such systems are the geometric algebras (also called Clifford alge-

bras). See [G5] and [G7] for these. The latter reference is an extensive bib-

liography.
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Part III

ALTERNATIVE LINES

We turn to alternative real lines, number systems that contain the real

numbers and have the same algebraic and geometric properties as the reals.

If these systems are so similar, same algebra, same geometry, and even, to a

certain extent, the same numbers, then the reader may well ask, why bother

with them?

These systems are interesting not so much because they contain dif-

ferent numbers. They embody different ideas of number, radically differ-

ent philosophies of mathematics. They have conflicting visions about what

should be allowed to be a number, what properties are possible for numbers,

and what tools should be permitted to prove those properties.

The three systems we present portray a kind of political spectrum of

mathematical philosophies, from the radical right (the constructive reals),

through moderately liberal (the hyperreals), to the radical left (the surreals).

Each embodies a distinctive vision of what numbers are, how to calculate

with them, and how to prove theorems about them.
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5
The Constructive Reals

God made the integers, everything else is the work of man.

—Leopold Kronecker

Building on the positive integers, weaving a web of ever more sets and

more functions, we get the basic structures of mathematics: the ratio-

nal number system, the real number system, the Euclidean spaces, the

complex number system, the algebraic number fields, Hilbert space,

the classical groups, and so forth. Within the framework of these struc-

tures most mathematics is done. Everything attaches itself to number,

and every mathematical statement ultimately expresses the fact that if

we perform certain computations within the set of positive integers, we

shall get certain results. —Errett Bishop

5.1 Constructivist Criticism of Classical

Mathematics

The constructive reals are the product of a radically conservative approach

to mathematics. The constructivists take the integers as intuitively given,

god given as Kronecker said, and the one and only source of truth in math-

ematics. To preserve this truth, they insist that all mathematical statements

should be verifiable by computations within integers. The key idea here is

that of a computation, by which is meant an operation or sequence of oper-

ations that can be performed by a finite intelligence (you or me, for example,

or a digital computer) in a finite number of steps. By insisting that math-

97
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98 5. The Constructive Reals

ematics be computationally verifiable or reducible to finite computations

with integers, the constructivists aim to guarantee truth in mathematics.

As an example of a mathematical statement that can be computationally

verified we have the rational inequality

1

2
<
5

7
;

which can be verified by reducing it by cross multiplication to an integer

inequality

7 < 10

that can be directly verified within the integers.

For a more complicated example, take the inequality

p
2 > 0:

In Cantor’s construction of the reals,
p
2 is represented by a Cauchy se-

quence of rationals, fang, for example, the sequence

�

2;
3

2
;
17

12
;
577

408
; � � �

�

;

obtained inductively, using Newton’s Method, by setting

a1 D 2;

and, for n > 1,

an D 1

2

�

an�1 C 2

an�1

�

:

The problem of dealing with
p
2 is thus reduced to dealing with a particular

sequence of rationals. The definition of positivity in Chapter 1 requires that

we now find two integersM and N such that if n > N then an > 1=M . In

this case, we can easily prove by mathematical induction that 1 < an � 2

for all n � 1, so that bothM andN can be taken to be 1. This argument uses

only operations on rational numbers, which can be reduced to operations on

integers. Thus we have verified that

p
2 > 0:

by computations within the integers.
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Problems

1) Using mathematical induction, prove that 1 < an � 2, where fang is

the sequence defined above.

2) Prove that a2
n > 2 for all n.

(Hint: Consider a2
n � 2.)

3) Prove that the sequence fang converges.

(Hint: Use mathematical induction to prove that fang is bounded and

monotonically decreasing.)

4) Prove that fang converges to
p
2. Conclude that 1 <

p
2 � 2.

Constructive criticism

In the constructive view, some well-known mathematical ideas and theo-

rems are meaningless or, worse, actually false. How is it that falsehood has

crept into mathematics?

One source is the increasing abstraction of modern mathematics. Dur-

ing the last century mathematics has grown rapidly. By some estimates more

than 90% of all known mathematics is the product of the twentieth century.

Much recent mathematics is abstract in the sense that it refers to mathemat-

ical objects whose existence is hypothetical. For example, in linear algebra

when a theorem begins

“Let V be a vector space . . . ,”

the existence of V is hypothetical. While in many cases there is no harm

in this, critics have pointed out that the trend toward abstract mathematics

tends to produce mathematics that is without computational basis; that is,

the statements made cannot be confirmed by performing, in Errett Bishop’s

words, “computations within the set of positive integers.” Such mathematics

strays from the principle (not embraced by all mathematicians) that mathe-

matical results should refer to and be verified by computation.

Thus, for example,

“Let V be a vector space, then V has a basis.”
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is a mathematical statement that cannot be verified by computation be-

cause there is no way to construct (i.e., compute) a basis for many infinite-

dimensional vector spaces. All proofs of this result for infinite dimensional

vector spaces are non-constructive (see problems 5–7). This is one way ab-

stract mathematics leads away from results that are strictly computable.

Problems

5) Let <1 be the vector space of all infinite sequences of reals (that is,

infinite vectors or infiniten-tuples of reals). Try to find a basis for <1.

Recall that a basis for a vector space is a set of vectors such that every

vector in the space can be expressed as a finite linear combination of

the basis vectors.

6) Try to find a specific basis for the vector space CŒ0; 1� consisting of all

continuous real-valued functions f .x/ defined for 0 � x � 1.

(Discussion: No specific basis is known. Try to find one anyway, that

is, consider how one might go about selecting basis functions.)

7) Try to prove that every vector space has a basis. With what can you

begin? How can you proceed?

More constructive criticism

Abstract mathematics is not the only source of results that are not compu-

tationally verifiable. Take the completeness of the real number system:

“Every bounded non-empty set of reals

has a least upper bound.”

Following Bishop [H1], consider the simpler statement:

“Every bounded sequence fang of rational

numbers has a real least upper bound b.”

If this is constructively verifiable, then it should be possible, given a se-

quence fang, to compute its least upper bound b, or at least rational approx-

imations to b of any desired accuracy. In particular, it should be possible to

compute (in a finite length of time!) the nearest integer to b.

To see just how powerful this assumption is, consider the Fermat num-

bers: Fn D 22n C 1. The first few of these are 5; 17; 257; 65537, and

4294967297. In 1650 Pierre Fermat conjectured that all of them are prime,
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but in 1732 Euler discovered that F5 D 4294967297 D 641 � 6700417.

Subsequently, no other Fermat number has proven to be prime. Nor has

anyone been able to prove that all Fermat numbers beyond the first four are

composite. Define the sequence ˛n by

˛n D
(

0 if Fn is not prime,

1 if Fn is prime.

Then f˛njn > 4g is a bounded sequence each term of which is computable

(with some difficulty) in a finite amount of time. The least upper bound of

f˛njn > 4g is either 0 (if no Fermat number beyond the first four is prime)

or 1 (if there is a prime Fermat number Fn for some n > 4). Thus the

computation of even the nearest integer to this particular least upper bound

is equivalent to solving a famous, longstanding, unsolved problem, namely

the possible primality of the Fermat numbers. This we are unable to do at

all, much less program a computer to do it in a finite amount of time.

Many other unsolved problems can be coded as the least upper bound of

a sequence. If the completeness axiom were constructively verifiable, then

these problems would all be solvable—in a finite amount of time—by the

same computer program, namely the one that finds least upper bounds. We

conclude that the completeness of the reals is almost certainly not compu-

tationally verifiable.

To the extent that we agree with this discussion and believe that math-

ematical statements should be constructively verifiable, we are construc-

tivists. This word refers, in particular, to a school of mathematicians going

back to Kronecker and Brouwer, and represented today by Bishop, Bridges,

and others. On the other hand, if we are willing to tolerate statements with-

out strict computational confirmation, then we are classical mathemati-

cians. The issue dividing these groups is fundamental: What can and should

mathematics mean?

More non-constructive mathematics

The most straight-forward way to prove the existence of some mathemat-

ical object is actually to construct the object (e.g., by a process implicitly

programmable on a computer). Proof by contradiction, however, allows us

to avoid a direct or affirmative existence proof. Instead we prove that the as-

sumption of the object’s non-existence leads to a contradictory conclusion.

Assuming that mathematics is consistent (that is, that a contradiction is im-

possible), we are allowed to conclude from this contradiction that the initial
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102 5. The Constructive Reals

assumption is wrong, and hence the object does not not-exist; rather, by

double negation, it exists. Such proofs are sometimes called pure existence

proofs.

To a constructivist, this method of proof is simply wrong. A pure ex-

istence proof provides no way actually to construct or compute the object

whose existence is being proved. In general, constructivists avoid proof by

contradiction, not just in existence proofs. The consistency of mathemat-

ics is unproven, and, as Gödel has shown, is extremely unlikely ever to be

proven. Belief in it is a matter of faith, hence so is belief in the validity of

proof-by-contradiction.

In this chapter, we choose to adopt a fairly strict constructivist point-of-

view. Thus, we insist that all proofs be affirmative, all statements be compu-

tationally verifiable, and all objects introduced be finitely constructible. We

explore the consequences of these assumptions for the real number system.

Note that a proof by mathematical induction is constructive. This may

seem paradoxical because proofs by induction prove an infinite number of

things at once. However, to reach any single instance of the conclusion of a

proof by induction requires only a finite number of induction steps, hence

is a finite proof.

Who cares?

Few mathematicians are practicing constructivists. Of what interest then

is constructivism? The typical mathematician (whoever that is) probably

does not agree with constructivist principles, not in their strict form at least,

but most mathematicians see some validity in the constructivist criticisms

of classical mathematics and are sympathetic to the constructivist point of

view. Although practicing classical mathematics, the average mathemati-

cian is enough of a constructivist to prefer affirmative proofs, computation-

ally verifiable statements, and constructive proofs of existence whenever

possible. From this point of view the constructive reals are of quite general

interest.

Problems

8) Problem 3 suggests that the reader prove that fa.n/g is a convergent se-

quence by applying the lemma (proved in section 1.4) to the effect that,

in a complete field, bounded monotonic sequences converge. Criticize

this suggestion from a constructivist point of view.
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Summary

The fundamental issues of mathematical theory and practice raised by con-

structivists are the non-computational and hence unverifiable nature of some

parts of modern mathematics, including pure existence proofs, arguments

based on double negation, and the excessive pursuit of abstraction. The rest

of this chapter puts forward the positive side of constructivism by present-

ing the theory of the real numbers formulated by Errett Bishop, the foremost

expositor of constructivism in the second half of the 20th century.

5.2 The Constructivization of

Mathematics

A clash of philosophies

What is mathematics about? Platonism, the oldest answer to this, the funda-

mental question of the philosophy of mathematics, holds that mathematics

is about some thing, that mathematics is real—even though you don’t see

numbers, equations, functions, and other mathematical objects around us in

the material real world. Platonism (named after the ancient Greek philoso-

pher who was a major force in founding Western philosophy) maintains that

mathematical concepts and other abstractions are real in the sense that one

can investigate them (mentally at least, if not physically), draw conclusions

that link them together in a web of results and consequences, and therefore

know them. A Platonist believes that mathematics is out there somewhere

waiting for us to find it. This is encapsulated in the Platonist preference

for saying that “mathematics is discovered” (rather than “invented”). Pla-

tonism is probably the most influential of all mathematical philosophies. It

has immense appeal to those who work with and use mathematics. A naive

Platonism is the working philosophy of many mathematicians.

One consequence of the belief that mathematics is out there waiting to

be discovered is the belief that there is a ‘truth of the matter’ regarding

mathematical conjectures. Platonists (and many other mathematicians who

might not label themselves as such) believe, for example, that the statement

that there are no prime Fermat numbers Fn for n � 5, is definitely either

true or false, that is, that either all Fermat numbers Fn for n � 5 are com-

posite, or some one of them is prime. The same dichotomous belief applies

to many other simple, declarative mathematical statements; a faith that they

must be either true or false—even if at present we don’t know which.
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On the basis of this belief, proof by contradiction and, in particular, pure

existence proofs make perfect sense. If a statement must be true or false and

you can prove that it is not false, then it has to be true. If there is always a

‘truth of the matter,’ then it makes sense to base a logic on this circumstance,

i.e., the idea that statements are either true or false. Thus one is led to the

classical, Aristotelian logic used by most mathematicians.

Constructivists, in contrast, base their logic, not on truth, but on proof.

To appreciate how constructive mathematics works, we first learn its logic.

We begin by explaining the meaning of classical logical terms.

Classical logic

Here are the rules of classical, Aristotelian, truth-based logic.

(1) Conjunction. Let P and Q be statements. A compound statement of

the form “P and Q” (in symbols, P ^Q) means that statement P is

true and statement Q is true.

(2) Disjunction. Let P and Q be statements. A compound statement of

the form “P or Q” (in symbols, P _Q) means that either statement

P is true, or statement Q is true, or both.

(3) Implication. Let P and Q be statements. A compound statement of

the form “P impliesQ” (in symbols, P ) Q) means that if statement

P is true, then so is statement Q.

(4) Negation. Let P be a statement. The statement “not P ” (in symbols:

:P ) means that statement P is false.

(5) Universal Statements. Let Q.x/ be a statement about an object x. A

statement of the form “For all x;Q is true of x” (in symbols, 8xQ.x/),
means that given any x, where x comes from some previously under-

stood universal set, Q.x/ is true.

(6) Existence Statements. Let Q.x/ be a statement about an object x.

A statement of the form “There is an x, such that Q is true of x” (in

symbols, 9xQ.x/), means that there is some x in our universal set such

that Q.x/ is true.
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Problems

1) Let A and B stand for statements for which there is a ‘truth of the mat-

ter.’ For each of these deductive arguments explain why it is valid, that

is, why, if the premises of the argument are true, then the conclusion

must be true.

Modus ponens: A ) B

A
) B

Modus tollens: A ) B

:B
) :A

Disjunction: A _ B
:A
) B

Contrapositive proof: A ) B

) :B ) :A

De Morgan’s laws: :.A ^ B/
) :A _ :B

:A _ :B
) :.A ^ B/

:.A _ B/
) :A ^ :B

:A ^ :B
) :.A _ B/

(Examples: These problems can be done using truth tables. One can

also simply talk them through.

Transitivity: A ) B

B ) C

) A ) C

For transitivity, the only way that A ) C can be false, is if A is true

but C is false. There are two cases, depending on whether B is true or

false. If B is true, then the second premise, B ) C , is false; if B is

false, then the first premise, A ) B , is false. Thus the only way the

conclusion can be false is if one of the premises is false. This proves

that the argument is valid.

Double negation: ::A
) A

For double negation, supposing that ::A is true, then it is false that

A is false. Since there are only two alternatives in classical logic, A

must be true.)
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2) Let A.x/ stand for a statement about an object x. Explain why each of

these classical arguments involving negation is valid.

(a)
:.8x/A.x/

) .9x/:A.x/

(b)
.9x/:A.x/

) :.8x/A.x/

(c)
:.9x/A.x/

) .8x/:A.x/

(d)
.8x/:A.x/

) :.9x/A.x/

(Example: In (d), we are given that no matter what x is chosen, A.x/

is false. Therefore there cannot be an x for which A.x/ is true. This is

the desired conclusion and the argument is valid.)

Constructive logic

Constructive logic is proof-based. The symbols used (_;^;);:;8, and 9)

are the same as for classical logic but their meaning has changed.

(1) Conjunction. Let P and Q be statements. A compound statement of

the form “P and Q” means that we have a proof of statement P and a

proof of statement Q.

(2) Disjunction. Let P and Q be statements. A compound statement of

the form “P or Q” means that we have a proof of statement P , or a

proof of statement Q, and we know which.

(3) Implication. Let P and Q be statements. A compound statement of

the form “P implies Q” means that we have a way to convert a proof

of statement P into a proof of statement Q.

(4) Negation. Let P be a statement. The statement “not P ” means that we

have a proof that P implies a contradiction. A convenient contradic-

tion, often used in this context, is .0 D 1/. Thus “not P ” can be taken

to mean P ) .0 D 1/, which in turn means that if we have a proof of

P , then we can also prove that 0 D 1.
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(5) Universal Statements. Let Q.x/ be a statement about an object x. A

statement of the form “For all x;Q.x/”, means that given any x from

some previously understood universal set, we have a purely mechani-

cal procedure that will produce a proof of Q.x/.

(6) Existence Statements. Let Q.x/ be a statement about an object x. A

statement of the form “There is an x, such that Q.x/”, means that we

have a proof ofQ.x/ for a specific x that can be explicitly constructed.

Rules (1), (3), and (5) are similar to the classical rules, although different

in meaning; rules (2), (4), and (6) are drastically different. The constructive

rule for existence, for example, is much more strict than the classical. Also,

in classical mathematics one can prove the truth of a statement of the form

“P _Q” without proving either P or Q.

Problems

3) How is it possible in classical mathematics to prove a statement of the

form .P _Q/ without proving either P or Q?

4) Reconsider each of the arguments in problem 1 from the point of view

of constructive logic. Which are valid now?

(Examples: Transitivity is as straight-forward for constructive logic as

for classical logic. The premise A ) B means that a proof of A can

be turned into a proof of B (by some mechanism). Likewise, from the

second premise, we learn that a proof of B can be turned into a proof

of C . So, if we have a proof of A, we use the first mechanism to turn

it into a proof of B , and then use the second mechanism to turn that

proof into a proof of C . Thus we have the machinery to turn a proof of

A into a proof of C .

Double negation is different. The premise, ::A, means ..A )
.0 D 1// ) .0 D 1//. In words, if we are given that a proof of A

can be turned into a proof of a contradiction, then that proof, in turn,

can be turned into a proof of a contradiction. However there is no way

to prove A itself. Double negation is not a valid constructive argument.

5) Reconsider each of the arguments in problem 2 from the point of view

of constructive logic. Which are valid now?

(Example: Consider (d). The premise, .8x/:A.x/, can be understood

as .8x/.A.x/ ) .0 D 1//, meaning that, no matter what x is, a
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108 5. The Constructive Reals

proof of A.x/ can be turned into a proof of a contradiction. Turn-

ing to the conclusion, suppose we have a proof of .9x/A.x/, i.e., we

can construct an x for which we can prove A.x/. Then, as we have

just explained, the premise implies that that proof can be turned into

a proof of a contradiction. In other words, ..9x/A.x// ) .0 D 1/ or

:.9x/A.x/. This is a valid constructive argument.

Constructive sets

In classical mathematics, a set S is defined by a property P expressed in

words or symbols. A set S is the collection of all objects x that have the

propertyP , i.e., S D fxjP.x/ is trueg. In constructive mathematics, a set is

not defined by a property, but by a construction. Rather than being the set of

objects that possess a property, a set is the totality of objects built according

to the rules of the construction. To look at this another way, a set S is given

by a computer program and S is the collection of all possible outputs of this

program.

Every set, in addition, comes with a notion of equality, an equivalence

relation. This notion of equality must also pass the test of computational ver-

ifiability; there must be a finite, mechanical procedure for deciding whether

two objects in the set are equal.

For example, the rationals Q is the collection of all symbols p=q where

p and q are integers and q is not zero. We can think of these symbols as

being built by a machine whose inputs are p and q. The machine must be

programmed to reject the input q D 0, and for equality we have p=q D u=v

if and only if pv D qu. Clearly a computer can be programmed to convert

the first equality into the second for verification in the set of integers.

Constructive functions

Constructivists distinguish a function on a set S from a more primitive form

of correspondence called an operation. Here is the definition.

Definition. An operation from a setA to a setB is a rulef that assigns an

element f .x/ ofB to each element x ofA. The rule must be implementable

by a finite mechanical procedure. The set A is called the domain of the

operation f .
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As with all sets, the sets A and B come with a notion of equality. If f

satisfies the condition that

f .x1/ D f .x2/; — equality in B

whenever

x1 D x2; — equality in A

then f is called a function.

Problems

6) Give an example of an operation on Q that is not a function.

5.3 The Definition of the Constructive

Reals

Regular sequences and equality

In Cantor’s construction, a real number is named by a Cauchy sequence

of rationals. The same approach is used by Bishop for the constructive re-

als, except that a constructive real number is named by a type of Cauchy

sequence with a constructive twist.

Definition. A constructive real number is a sequence x D fxng of ra-

tional numbers such that

jxn � xmj < 1=mC 1=n;

for all positive integers m and n. Such a sequence fxng is also called a

regular sequence. The set of all constructive reals is notated K.

The definition of regular sequence fxng states explicitly how fast the

terms of the sequence approach each other. An elementary example is a

constant sequence, which clearly satisfies the condition. A less trivial ex-

ample is the sequence fang defined in section 5.1 (see problems 1 and 2

below).

Every constructive set is required to be accompanied by a constructively

defined notion of equality. Therefore, we immediately supply the following:
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110 5. The Constructive Reals

Definition. Two constructive reals x D fxng and y D fyng are equal if

jxn � ynj � 2

n
;

for all positive integers n.

This definition ensures that if the sequences x and y converge, they will

converge to the same limit. The definition also forces the terms of x and y

to approach each other at a definite rate. A limit-like form of this definition,

more convenient for some purposes, is given by the following lemma.

Lemma. Two constructive real numbers x D fxng and y D fyng are equal

if and only if for every positive integer m there is a positive integer N.m/

such that for n > N.m/,

jxn � ynj �
1

m
:

Proof. The integer N.m/ is so written as to emphasize that it depends on

m. Like all constructive functions, N.m/ must be computable in a finite

number of steps. Suppose that x and y are equal according to the definition

of equality. In other words:

jxn � ynj � 2=n:

To prove the lemma, we must explain how to compute, for each positive
integerm, a positive integer N.m/ so that for n > N.m/; jxn � ynj � 1=m.

After some preliminary thought (!), I choose to set N.m/ equal to 2m. This

clearly renders N.m/ computable in a finite number of steps. Then if n >

N.m/ D 2m, we have

jxn � ynj � 2=n — by hypothesis

< 2=2mD 1=m: — because n > 2m

This is the desired conclusion.

Conversely, suppose that x and y satisfy the condition of the lemma. We

must establish that x D y. Let n be any positive integer. Likewise, let m

be another positive integer, and let r be any integer such that r > m and

r > N.m/. Then:



“master” — 2012/6/18 — 10:53 — page 111 — #121
i

i

i

i

i

i

i

i

5.3. The Definition of the Constructive Reals 111

jxn � ynj D jxn � xr j C jxr � yr j C jyr � ynj — triangle inequality

D 1

n
C 1

r
C 1

m
C 1

r
C 1

n
— hypothesis and by

definition of constr-

uctive real numbers

D 2

n
C 2

r
C 1

m
— simplification

<
2

n
C 3

m
: — since r > m.

Since the last inequality is true for all positive integersm, it follows that

jxn � ynj � 2=n:

(See problem 3.) This is what we wanted to prove.

Constructive proofs

Reading a constructive proof is pure pleasure. Everything is straight-

forward. If a certain quantity is needed, why the proof says just how

to calculate it from quantities already at hand. Properties of all com-

puted quantities are directly verified by more computation and every-

thing works out.

Finding a constructive proof is another thing entirely. It takes a lot

of thought (usually working backwards) to line up these quantities so

that everything works out so nicely.

Now we can prove that equality has the properties expected of it.

Theorem 5.3.1. Equality of the constructive real numbers is an equivalence

relation.

Problems

1) Prove that the sequence fang defined inductively by a1 D 2 and

an D 1

2

�

an�1 C 2

an�1

�

;
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112 5. The Constructive Reals

satisfies ananC1 > 2 for all n � 1. Prove also that

an � anC1 � .an�1 � an/=2:

2) Prove that the sequence fang of problem 1 is a regular sequence, hence

defines a constructive real.

(Hint: Prove and use the fact that 1=2n�1 � 1=n:)

3) Let x and c be rational numbers. Prove constructively using only prop-

erties of rationals that if

x < c C 1=m;

for all positive integersm, then x � c.

(Hint: You may not use proof by contradiction. Instead let x D p=q

and c D a=b and use familiar properties of rational numbers and inte-

gers.)

4) Prove Theorem 5.3.1.

5) Prove constructively that the rationals Q can be embedded in K by the

function x ! fxg (a constant sequence).

Arithmetic for the constructive reals

In order to give constructive definitions of addition and multiplication we

need these quantities:

Definition. Let x D fxng be a constructive real number. The rational

number xn is called the nth rational approximation to x. The integer

K.x/ D Œjx1j C 2� is called the canonical bound for x.

Note that K.x/ satisfies jxnj < K.x/ for all positive n (see problem 6),

so that K.x/ is an upper bound for the sequence fxng. Also, observe that

the mapping x ! xn is an operation from K to Q, but not a function. Now

we can define addition and multiplication.

Definition. Let x and y be constructive real numbers. Let k D max.K.x/;

K.y//. The sum of x and y is defined to be the constructive real x C y given

by

x C y D f.x C y/ng D fx2n C y2ng:
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The product xy is given by

xy D f.xy/ng D fx2kny2kng;

and the negation �x of x is defined by �x D f�xng:

These definitions are set up so that the sum and product of regular se-

quences are regular.

Theorem 5.3.2. The sequences x C y; xy and �x defined above are con-

structive real numbers. Furthermore, the operations .x; y/ ! xCy; .x; y/ !
xy, and x ! �x are well-defined, i.e. they are functions.

Now we can prove

Theorem 5.3.3. Addition and multiplication of constructive reals satisfy

the commutative, associative, and distributive laws. The constant sequences

f0g and f1g act as additive and multiplicative identities, respectively, and

�x is an additive inverse.

Thus K satisfies all the field axioms except the existence of multiplica-

tive inverses, a complicated issue that must be postponed until order is in-

troduced.

Problems

6) Prove constructively that K.x/ > jxnj, where K.x/ is the canonical

bound of x.

7) Prove that the sum and product of constructive reals are constructive

reals.

8) Complete the proof of Theorem 5.3.2 by proving that addition and

multiplication are functions of their arguments.

9) Prove Theorem 5.3.3.

10) Prove that the constructive real x D fang, from problem 1, satisfies

x2 D 2.

11) Define jxj and maxfx; yg for constructive reals by

jxj D fjxjng D fjxnjg;
maxfx; yg D fmaxfxn; yngg:

Prove that these operations are functions.
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114 5. The Constructive Reals

5.4 The Geometry of the Constructive

Reals

The ordering of the constructive real line is complicated by the require-

ments of constructive logic. The classical definition of order links � and >.

Thus> is defined as � but not D. As constructive mathematicians, we want

to avoid negative definitions for they lead to situations which require argu-

ments by double negation. We could define � as > or D, but this leads to

different difficulties due to the strict constructive interpretation of disjunc-

tion. Bishop and Bridges [H1] solve this problem by decoupling ordinary

inequality .�/ and strict inequality .>/, that is, giving them separate defi-

nitions.

Definition. A constructive real number x is positive if there is a positive

integer n such that the rational number xn satisfies

xn > 1=n:

The set of positive constructive reals is written K>. Given two constructive

reals, x and y, we write x > y, if x � y is positive.

A constructive real number x is non-negative if

xn � �1=n;

for all positive integers n. The set of non-negative constructive reals is writ-

ten K�. Given two constructive reals, x and y, we write x � y, if x � y is

non-negative.

An element of K> is not merely a real number, say x, but x together with

an integer n such that xn is greater than 1=n. Since there may be many such

n for a given x, a single constructive real x can give rise to many positive

constructive reals. However, if we adopt the same notion of equality for

the set K> as for the set K, then all these positive reals are equal. Similar

remarks are valid for K�.

As with equality, it is useful to formulate limit-like definitions of the

order relations.

Lemma. A constructive real number x is positive, if and only if there is a

positive integerN such that xm � 1=N for all positive integersm > N .

A constructive real number x is non-negative if and only if for each

positive integer n there is a positive integerN.n/ such that xm � �1=n for

allm > N.n/.
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Problems

1) Compare the constructive definition of the positive reals with the def-

inition used in Cantor’s construction (section 2.1). Is there any differ-

ence?

2) For the non-negative Cantor reals formulate an appropriate definition

and compare it with the constructive definition.

3) Verify that two positive reals x and y with the same rational approxi-

mations, i.e. xi D yi for all i , but a different index (such that xn > 1=n

or ym > 1=m; n ¤ m) are equal as constructive reals.

4) Prove that a constructive real x is positive if and only if there is a

positive integer N such that xm � 1=N for all integersm > N .

(Hint: If x is positive, let n be such that xn > 1=n. Now xn � 1=n is a

rational, say p=q. Using the definition of constructive real, show that

xm � 1=2q for all m > 2q. In other words, we can take N D 2q. The

converse is easier.)

5) Complete the proof of the lemma by proving that a constructive real

x is non-negative if and only if for each positive integer n there is a

positive integerN.n/ such that xm � �1=n for all integersm > N.n/.

(Hint: If x is non-negative, show that xm � �1=n for all m > n. In

other words, take N.n/ D n.)

6) Prove that jxj is non-negative for a constructive real x. (See problem

11 in section 5.3)

Standard properties of order

The alternative characterizations of positive and non-negative constructive

reals make possible fairly routine proofs of the next two theorems.

Theorem 5.4.1. The set of positive constructive reals is closed under ad-

dition and multiplication. The set of non-negative constructive reals is also

closed under addition and multiplication.

Theorem 5.4.2. The order relations> and � have the properties:
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116 5. The Constructive Reals

(a) Transitivity:

if x > y and y > z; then x > z;

if x � y and y � z; then x � z:

(b) Anti-symmetry:

if x � y and y � x; then x D y:

These seemingly normal results conceal how complicated the ordering

of the constructive reals actually is. For example, we can prove “if x > y

or x D y, then x � y” (see problem 8); but it is not true, conversely, that

if x � y then “either x > y or x D y”. Here is an example. Let ˇn be as

defined as follows:

ˇn D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

0 if every even number between 6 and n

can be expressed as the sum of two odd primes,

1=p if p is the smallest even number between 6 and n that

cannot be expressed as the sum of two odd primes.

The sequence fˇng defines a constructive real number b that is non-negative

(see Problem 7). According to the famous Goldbach conjecture, every even

number greater than 4 is expressible as the sum of two odd primes. If this is

so, then b D 0. As yet no one has been able to prove or disprove this, so, we

are unable to prove b D 0, and unable to prove b > 0. Thus while b � 0,

it is untrue constructively that b D 0 or b > 0. Therefore the constructive

reals do not satisfy the trichotomy law.

Problems

7) Prove that fˇng defines a non-negative constructive real.

8) Prove that if x > y or x D y then x � y.

9) Prove that jx C yj � jxj C jyj for constructive reals.

10) Prove that maxfx; yg � x and maxfx; yg � y.

11) Prove that the rationals Q are dense in the constructive reals.

12) Prove that the nth approximation xn to a constructive real x satisfies

jx � xnj � 1=n:

(Hint: Look at the mth approximation to the constructive real 1=n �
jx � xnj.)
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13) Examine the proof of the trichotomy law for the Cantor reals in Chap-

ter 2. Criticize this proof from a constructive point-of-view.

14) Let x and y be constructive reals. Prove: if x C y > 0 then either x > 0

or y > 0.

15) Let x and y be constructive reals. If x > y prove that for any construc-

tive real z either z � x or y � z.

(Note: Problems 14 and 15 are dichotomy laws!)

Multiplicative inverses

So far we have not proven the existence of multiplicative inverses. This

defect can be remedied as follows.

Lemma. Let x be a non-zero constructive real number. Then there is a

positive integerN such that jxmj � 1=N form � N .

Theorem 5.4.3. Let x be a non-zero constructive real number and letN be

the integer produced in the previous lemma. Then the sequence fyng defined

by

yn D

8

<

:

1
x

N 3
if n < N

1
x

nN 2
if n � N

is a constructive real, y that is a multiplicative inverse for x.

This completes the proof of the theorem:

Theorem 5.4.4. The constructive reals K are a field.

Problems

16) Prove the lemma above.

(Hint: Show that jxj D fjxnjg is a well-defined function of the con-

structive real x and that jxj � 0. Therefore, if x ¤ 0; jxj > 0.

17) Prove Theorem 5.4.3.

(Hint: To prove that y is a constructive real number, prove and use the

fact that jynj � N for all n. To prove that xy D 1, examine the nth

approximation to jxy�1j. The details are complicated. See Bishop and

Bridges [H1].)
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Summary

The constructive reals have the algebra of a field and the geometry of linear

order. The linear order is defective in comparison with the ordering of the

classical reals in that it does not satisfy the trichotomy law, although it sat-

isfies several dichotomy laws. This is an essential aspect of the constructive

reals, however, an expression of the constructivist philosophy of mathemat-

ics. The constructivists argue that the trichotomy law is not computationally

verifiable, therefore cannot be a property of the reals.

5.5 Completeness of the Constructive

Reals

Are the constructive reals complete?

After the constructive critique of completeness presented earlier, it may be

surprising to learn that there are positive results on completeness for the

constructive reals.

First, consider Cauchy completeness. Here are the constructive defini-

tions:

Definition. A sequence fxng of constructive real numbers converges to a

limit b if for each positive integer k there is a positive integer N.k/ such

that

jxn � bj � 1=k; for n � N.k/:

A sequence fxng is Cauchy if for each positive integer k there is a

positive integer M.k/ such that

jxm � xnj � 1=k; form; n � M.k/:

The only difference between these definitions and those given in Chap-

ter 1 is the insistence that N.k/ and M.k/ be computable. Now we can

prove the surprising theorem:

Theorem 5.5.1. A sequence of constructive reals fxng converges if and only

if it is Cauchy. Therefore, the constructive reals are Cauchy complete.

Outline of the Proof: Suppose first that the sequence fxng of constructive

reals has limit x. To prove that fxng is Cauchy, let N.k/ be given by the

definition of limit and set M.k/ D N.2k/. This shows that fxng satisfies

the constructive definition of Cauchy sequence.



“master” — 2012/6/18 — 10:53 — page 119 — #129
i

i

i

i

i

i

i

i

5.6. The Constructive Calculus 119

Suppose next that the sequence fxng is Cauchy. Let M.k/ be given by

the definition of Cauchy sequence. Let N.k/ D maxf3k;M.2k/g and let

yk be the .2k/th rational approximation to xN.k/. Then fykg defines a con-

structive real y that is the limit of the sequence fxng.

Note: This proof explicitly constructs the limit of the sequence fxng. To

complete the details, however, is complicated.

Are the constructive reals really complete?

From the attack on the completeness of the reals in section 5.1, it seems

clear that the constructivists repudiate order completeness. Therefore, we

don’t expect that K is complete.

On the other hand we have established that K is Cauchy complete and

can also prove that it is Archimedean (see problem 1 below). What then of

the theorem of Chapter 1 (section 1.4) claiming that a field is complete if,

and only if, it is Cauchy complete and Archimedean? Unfortunately some

results from Chapter 1 are vulnerable to constructivist criticism (see prob-

lem 2). In the world of the constructive reals we have the result, paradox-

ical for classical mathematicians but not constructivists, that the reals are

Cauchy complete and Archimedean, but not order complete.

Problems

1) Formulate a constructive version of the Archimedean property and

prove that K is Archimedean.

2) Criticize from a constructivist point of view the proof (given in section

1.4) that if a field is Cauchy complete and Archimedean it is order

complete.

5.6 The Constructive Calculus

Constructive continuity

The usual definition of continuity goes something like this: f is continuous

on the interval Œa; b� if for every " > 0 and c in Œa; b� there is a ı > 0 such

that if jx � cj < ı then jf .x/ � f .c/j < " (see problem 3 in section 2.4).

Converting this to a constructive definition simply requires insisting that ı

be explicitly computable from " and c. Bishop (and other constructivists)
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go further and also require that ı be independent of c. This leads to consid-

erable simplification of the theory. This idea is called uniform continuity

in classical mathematics. There is no practical difference, Bishop argues, as

long as we stick to continuous functions defined on a closed interval since

even in classical mathematics such continuous functions are uniformly con-

tinuous.

Thus we arrive at this definition:

Definition. A real-valued function f defined on the interval Œa; b� is con-

tinuous if for every " > 0 and c in Œa; b� there is a ı D !."/ > 0 such

that

if jx � cj � ı; then jf .x/ � f .c/j � "

The operation !."/ is called a modulus of continuity for f .

Problems

1) Prove that f .x/ D x2 is a continuous function on the interval Œ1; 2�.

2) Prove that the sum of two continuous functions is continuous.

3) Prove that the composition of two continuous functions is continuous.

4) Prove classically that a function continuous on a closed and bounded

interval is uniformly continuous.

(Hint: Give an indirect proof by bisection.)

Properties of continuous functions

Recall the fundamental theorems about continuous functions discussed in

Chapter 2: the intermediate value theorem, the boundedness theorem, and

the maximum value theorem. Here we are concerned with their constructive

versions.

The intermediate value theorem is almost certainly not computationally

verifiable, at least in complete generality. To see this, let f.n/g be any

sequence of 1s, 0s, and �1s, and let b be the real number

b D
1

X

nD1

.n/3�n :
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This infinite series converges in both the classical and the constructive reals.

Note that b is positive if the first non-zero term in the sequence f.n/g is a

C1, while b is negative if the first non-zero .n/ is �1.

Let f be the continuous function defined for real numbers between 0

and 1 by

f .0/ D �1; f .1=3/ D f .2=3/ D b; f .1/ D 1;

with the stipulation that f is linear on the segments from 0 to 1=3, from

1=3 to 2=3, and from 2=3 to 1.

By the intermediate value theorem, there is a real number x between 0

and 1 such that f .x/ D 0. If this has constructive validity, then we should

be able to approximate x closely enough to determine whether x < 1=3 or

x > 2=3; in other words, tell whether b is negative, positive, or zero. Thus

there should be a computer program that can determine, in a finite amount

of time and for any input sequence f.n/g, whether its first non-zero entry

is 1, or �1.

As an example of how powerful this program would be, consider the

particular sequence

.n/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1 if a sequence of 1 billion 8s begins at the

nth place in the decimal expansion of � ,

�1 if a sequence of 1 billion 3s begins at the

nth place in the decimal expansion of � ,

0 otherwise.

Applied to  , our hypothetical program can tell whether the decimal rep-

resentation of � contains either a sequence of 1 billion 8s or a sequence

of 1 billion 3s, and which comes first. The existence of such a program is

highly doubtful. Thus the intermediate value theorem almost certainly does

not have constructive validity.

In contrast to the intermediate value theorem, the boundedness theorem

for continuous functions is provable.

Theorem 5.6.1. Let f .x/ be a continuous real-valued function on the in-

terval Œa; b�. Then there is a constant M such that jf .x/j � M for all x in

Œa; b�.



“master” — 2012/6/18 — 10:53 — page 122 — #132
i

i

i

i

i

i

i

i

122 5. The Constructive Reals

Problems

5) The method of bisection was used in Chapter 1 to prove the intermedi-

ate value theorem. This seems to be a constructive method for finding

the zero of a function. Or is it? What is the constructive view of this

proof technique?

6) Without using the intermediate value theorem, prove that if x is a con-

structive real and x > 0, then there exists a constructive real y such

that y > 0 and y2 D x.

7) Prove Theorem 5.6.1.

(Hint: Let " > 0 be any positive number. Constructively choose real

numbers ai for i D 0; 1; : : : ; n; so that

a D a0 � a1 � a2 � � � � � an D b;

and

jaiC1 � ai j � !."/;

where ! is the modulus of continuity for f . Set M D maxfjf .a0/j;
jf .a1/j; : : : ; jf .an/jg C ". This calculates M explicitly. To complete

the proof prove constructively that for any x in Œa; b� there is an ai such

that jai � xj � !."/: Then verify that jf .x/j � M .)

8) Decide whether or not a version of the maximum value theorem for

continuous functions is provable for the constructive reals. If you for-

mulate such a result, find a proof. Otherwise, attack the theorem from

a constructivist point of view.

Differential calculus

It is possible to develop the calculus from a constructive point of view, al-

though some of the details are more complicated than the classical calculus.

Definition. Let f and g be real-valued functions on an interval Œa; b�.

Then f is called differentiable with derivative g if for any " > 0 there is

a ı D ı."/ such that

jf .x/� f .c/ � g.c/.x � c/j � "jx � cj;

whenever x and c are in Œa; b� and jx � cj � ı."/. The operation ı."/ is

called a modulus of differentiability.
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As with the constructive definition of continuity, this is classically known

as uniform differentiability. The more familiar form of the above inequality

is
ˇ

ˇ

ˇ

ˇ

f .x/� f .c/

x � c � g.c/
ˇ

ˇ

ˇ

ˇ

� ";

which shows that g.c/ is what classical mathematics calls f 0.c/.

Problems

9) Prove that a differentiable function is continuous.

10) Let g be a derivative. Prove that g is a continuous function.

11) Prove the product rule for constructive differentiable functions.

12) Prove the chain rule for constructive differentiable functions.

Weak counterexamples

The sequences f˛.n/g; fˇ.n/g; and f.n/g appearing in this chapter (in con-

nection with discussions of the completeness of the reals, the trichotomy

law, and the intermediate value theorem for continuous functions, respec-

tively) are examples of “fugitive sequences.” In each case, current mathe-

matical knowledge is unable to resolve the question whether any of their

terms are non-zero. Such sequences have been used by constructivists to at-

tack classical results. These attacks are known as weak counterexamples.

Problems

13) Weak counterexample arguments have a strong flavor of proof by con-

tradiction. In each case the discussion begins by supposing that the

principle concerned is computationally valid, and proceeds to deduce

conclusions almost certainly not computationally valid. Is this a type

of proof by contradiction? Does it represent a compromise of construc-

tivist principle? Or do constructivists get to have their cake and criti-

cize it too?

14) Here is a constructive version of the uncountability of the reals: Let

fang be any sequence of reals. If x0 and y0 are real numbers such that

x0 < y0 then there exists a real number x such that x0 � x � y0 and

x ¤ an for all n in ZC. Prove this result.
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124 5. The Constructive Reals

15) Bishop and Bridges [H1] write: “There is a paradox growing out of

this result [the previous problem] which the reader should resolve.

Since every regular sequence of rational numbers [that is every con-

structive real] can presumably be described by a phrase in the English

language, and since the phrases in the English language can be sequen-

tially ordered, the regular sequences of rational numbers [i.e. K] can

be sequentially ordered.” How is this paradox resolved?

5.7 A Final Word about the Constructive

Reals

The constructive school of mathematics (also known as intuitionism) was

founded by Leopold Kronecker (1823–1891), Jules Henri Poincaré (1854–

1912) and Luitzen Brouwer (1881–1967) in the period from 1870 to 1930.

Although it attracted a lot of attention, it won few adherents since most

mathematicians feared it would lead to the rejection of parts of current

mathematics of importance to them. The more recent work of Errett Bishop

(1928–1983) showed that much of classical mathematics can be conducted

in conformity with constructivist ideals and has reawakened interest in con-

structivism.

In defense of the constructivists let us point out that all measurements

and computations with measurements have only finite precision and are,

therefore, rational. By insisting on the primacy of computations with inte-

gers and rationals, constructivists are perhaps simply being pragmatic. At

the very least, constructive mathematics exposes a whole slew of assump-

tions upon which classical mathematics is built that formerly lay unques-

tioned.

Of course, the constructivist vision of mathematical reality just possibly

is correct!

References for the constructive reals: In this account of constructivism,

we have stayed close to Bishop’s ideas as expressed in [H1], but the con-

structivist movement embraces a remarkable variety of points of view. For

a broader treatment, including an account of the history of the movement

and an extensive bibliography, see [H3].
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The Hyperreals

Introduction

The hyperreal number system was invented comparatively recently (in the

1960s). What makes it unusual is that it contains infinitely small numbers:

hyperreals so small that they are greater than 0 but less than 1=n for all n in

N.

Such numbers, called infinitesimals, have been around for a long time.

Leibniz used them in his development of the calculus, and they are still

taught in the form of the symbols dx and dy used in differentiation and

integration. Right from the beginning of the calculus (in the 1680s), the

use of infinitesimals was criticized, and for years the calculus including in-

finitesimals was used by scientists and mathematicians without sound logi-

cal grounds. When the calculus was finally given a firm foundation (in the

mid 1800s), it was using epsilons and deltas, instead of infinitesimals. As

a consequence, infinitesimals were further banished from theoretical math-

ematics. It was a surprise when, in the early 1960s, Abraham Robinson

discovered how infinitesimals could be introduced into the real number sys-

tem and used much like ordinary numbers. Equally surprising was that a

development of such interest in the practical realm of the calculus arose in

the highly abstract world of mathematical logic.

The hyperreals represent a relatively liberal philosophy of mathemat-

ics. Their construction depends on highly non-constructive arguments. In

particular, we require an axiom of set theory, the well-ordering principle,

which assumes into existence something that cannot be constructed.

125
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126 6. The Hyperreals

6.1 Formal Languages

Suppose you were told,

“Every sentence that is true for the reals

is true for the hyperreals.”

I hope you wouldn’t believe it! How could everything about the reals

continue to be true in an enlarged number system including infinitesimals?

Along with infinitesimally small numbers, the hyperreals contain infinitely

large numbers. The hyperreals are not Archimedean nor complete. So it’s

not the case that everything true about the reals is true for the hyperreals.

Instead consider the statement,

“Every sentence in the language L

that is true for the reals

is true for the hyperreals.”

The new feature is L. In this form, with the right choice of language, the

statement might be true. In fact, it is true. This is where mathematical logic

enters the picture since L is one of the formal languages of modern symbolic

logic.

Symbols

Every written language uses symbols. Natural languages like English have

just two types:

grammatical signs: ; , . : ( ) . . .

and

constants: a b c d e f g h i j k l m . . . .

In contrast, formal languages, languages whose grammatical rules can be

written down, have a great variety of symbols:

variables: x1 x2 x3 x4 x5 x6 : : :

a b c d e f : : :

grammatical signs: ( ) ;

connectives: _ ^ ! :
quantifiers: 8 9

constant symbols: 1 �21:5 �
p
2 : : :

function symbols: C � sin cos : : :

relation symbols: D < > � � : : :
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6.1. Formal Languages 127

The purpose of each symbol type is easily stated. Variables and gram-

matical signs perform their usual mathematical functions. Variables stand

for individuals, members of whatever set we may be studying, usually, in

this book, a set of numbers. Grammatical signs (parentheses and comma)

are for grouping and listing. The constant, function, and relation symbols

stand for particular constants, functions, and relations that arise in whatever

universe we are studying. The examples of constants, functions, and rela-

tions given above are all numerical, but formal languages can be used to

study any kind of set (see the problems below).

It is the connectives and quantifiers ._ ^ ! : 8 9/ that give formal

languages their unique flavor. They stand for thephrases indicated above:

the logical phrases most often used in mathematics—in definitions, theo-

rems and proofs. For example, the trichotomy law written in these symbols,

becomes:

8x..x > 0/_ .x < 0/ _ .x D 0//;

that is,

“For every x, either x > 0, or x < 0, or x D 0.”,

while the existence of additive inverses becomes:

8x 9y .x C y D 0/

“For all x, there exists a y, such that x C y equals 0”.

All the formal languages we study use the same variables, grammatical

signs, connectives, and quantifiers. Where they differ is in the vocabulary

of constant, function, and relation symbols, which are chosen appropriate

to what we want to study.

Syntax

Here we give the grammatical rules for formal languages, rules specifying

the form that sentences in the language must have in order to have mean-

ing. Before defining ‘sentences,’ we define ‘terms.’ Terms are the nouns of

formal languages, the parts of sentences that refer to specific objects.

Definition. A term is either

(a) a constant,

(b) a variable,
or

(c) f .t1; t2; : : : ; tn/ where f is an n-variable function, and t1; t2; : : : ;

tn are terms.
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128 6. The Hyperreals

The definition specifies that a term is either a constant, a variable (both

are noun-like), or the transformation of other terms by a function. As exam-

ples, ‘4’, ‘� ’, ‘x’, and ‘sin.x C �/’ are terms. The first two are constants,

the third is a variable, and the last combines constants and variables using

two functions (addition and the sine). The definition of ‘term’ is recursive,

a kind of definition where the word defined is used to define itself. Proving

theorems about concepts that are defined recursively uses a special tech-

nique: proof by recursion.

Recursive proof

A recursive definition (also called an inductive definition) refers

to itself. A well-designed recursive definition is perfectly valid. It con-

sists of two parts: a base case in which some instances of the use of the

word are defined directly, and an inductive case in which previously

defined instances of the word define further instances. For ‘term’ the

base case(s) are parts (a) and (b); (c) is the inductive case.

A recursive definition makes possible recursive proof, which is

much like mathematical induction. A recursive proof includes sepa-

rate proofs of base case and inductive case. For the inductive case, one

assumes that the theorem is true for previously defined cases. Here is

an example:

Theorem 6.1.1. A term contains an even number of parentheses.

Proof. By recursion.

Base case: A term that is either a constant or a variable has zero

parentheses. Zero is an even number.

Inductive case: In this case a term has the form: f .t1; t2; : : : ; tn/,

where t1; t2; : : : ; tn are terms for which we assume that the theorem

has already been proven. Then the number of parentheses is the sum

of the numbers of parentheses in t1, and in t2, and so forth, plus two

additional parentheses. These numbers are all even according to the

inductive assumption. So this case follows because the sum of even

numbers is even.

A term by itself is meaningless. Likewise, in natural languages a noun

alone, ‘chair’ or ‘flamboyance,’ for example, is (relatively) meaningless.
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The smallest meaningful unit of a formal language is a sentence, defined as

follows:

Definition. A sentence is either

(a) R.t1; t2; : : : ; tn/ where R is an n-variable relation and t1; t2; : : : ; tn

are terms,

or, assuming that F and G are already sentences, then so are:

(b) .F _G/
(c) .F ^G/
(d) .F ! G/

(e) :F
or, if x is a variable and H.x/ is a sentence in which x appears, then these

are also sentences:

(f) 8xH.x/
(g) 9xH.x/

The definition of ‘sentence’ is recursive. Sentences of type (a) are the

base case; types (b) through (g) are recursive cases.

Sentences of type (a) are the simple declarative sentences of formal lan-

guages. For example, if I.x/ is the one variable relation “x is an integer”,

then the sentence I (4) says “4 is an integer”; or if R.x; y/ is the two vari-

able relation “x is greater than y”, then R.1; 2/ says “1 is greater than 2”.

Sentences of this type are the simplest grammatical units that have a truth

value.

Every sentence is either a simple declarative sentence like the examples

just given or a sentence formed from other sentences either by connecting

them using ‘and’, ‘or’, ‘if-then’, or ‘not’, or quantifying them using ‘for all’

or ‘there exists’.

These rules are called the formation rules of formal languages and

completely describe their grammar (or syntax).

Problems

1) Prove that every sentence contains an even number of parentheses.

2) Show that the length of a term, meaning the number of characters it

contains, can be any natural number with three exceptions. What are

the exceptions?

3) What are the possible lengths of sentences?
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130 6. The Hyperreals

A language for maps

Some examples will clarify all this terminology. Our first example, the lan-

guage M, is designed to make statements about a specific map, the map

in Figure 6.1.1. In addition to the standard variables, grammatical signs,

connectives and quantifiers, we let M contain:

constants: S; T; U; V;W; — for the five regions of the map,

and

relation: N.x; y/: — for “x and y are neighbors”.

S
T

U

V

W

Figure 6.1.1. A map.

Problems

4) For the following sentences in M, decide which type of formula it is

according to the formation rules (a)–(g). In addition, determine its truth

value.

(a) N.S; T /

(b) N.S;W /

(c) .N.S; T / _N.S;W //
(d) .N.S; T / _N.S;W //
(e) .N.S; T / _N.S; U //
(f) .N.S; V / ^N.S;W //
(g) 8x.N.x; T / ! N.x; U //

(h) 9x.N.x; S/^N.x;W //

(Examples: Consider the formula: N.T; U /. This is formed according

to rule (a). It asserts that T and U are neighbors, which is true. The

formula: N.S; U / ^ N.S; V /, on the other hand, is formed according

to rule (c). It asserts that S is neighbor of both U and V , which is

false.)
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5) For what values of x are these statements true:

(a) N.x; V /

(b) :N.T; x/
(c) :N.x; S/^ :N.x; T /
(d) :N.x; S/_ :N.x; T /
(e) N.x; V / ! N.x;W /

(f) 8yN.x; y/
(g) 8y.N.x; y/ ^ N.y; S//
(Example: Consider the formula: :N.x; T /. This sentence says that

x is not a neighbor of T . W is the only value of x that makes this

sentence true.)

= male

= female

A B

C D L M E F

G H I N O P K J

Figure 6.1.2. A genealogical table.

A language for genealogy

The next language, G, is designed to make statements about a particular

genealogical table (see Figure 6.1.2). This example is adopted from [I2]. In

addition to the usual variables, grammatical signs, connectives and quanti-

fiers, G contains:

constants: A;B; C;D;E; F; G;H; I; J; K;L;M;N;O; P

— individuals in the tree,

and

relations: P.x; y/ — for “x is parent of y”

M.x; y/ — for “x and y are married”

F.x/ — for “x is female”

E.x; y/ — for “x and y are the same person”.
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132 6. The Hyperreals

Problems

6) True or False?

(a) 8x:M.x; I /
(b) 8x.P.C; x/ ! :F.x//
(c) 8x.P.x; C / ! :F.x//
(d) 8xP.x; O/
(e) 9xM.x;O/
(f) 9xP.O; x/
(g) 8x.9y.P.y; x// ! :F.x//
(h) 8x.9y.P.y; x/ _ :.x; C // ! :F.x//

7) Who is x?

(a) M.x;G/

(b) .P.A; x/ _ :F.x//
(c) 9y.P.y; x/ _ 9zP.x; z/ _ :F.x//
(d) F.x/ _ 9y9z.P.x; y/ _ P.x; z/ _ .F.y/

! :F.z// _ .F.z/ ! :F.y///

8) Translate from English to G.

(a) “x is a sister of y”

(b) “x is a grandfather of y”

(c) “x is a niece of y”

(d) “x is a first cousin of y”

(e) “x is a sister-in-law of y”

(Example: “x is the mother of y” can be expressed in G by the sentence

P.x; y/ _ F.x/.)

A language for the integers

The language J is designed to make simple statements about the number

system Z. In addition to the usual connectives, variables, quantifiers, and

grammatical symbols, J contains
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constants: � 2;�1; 0; 1; 2; 3; : : : ; — one for each integer:

functions: s.x/ D x2 — squaring of integers

A.x; y/ D x C y — addition of integers

M.x; y/ D xy; — multiplication of integers

and

relations: P.x/ — for “x is positive”

E.x; y/: — for “x and y are equal”

Note that J has an infinite number of symbols.

Problems

9) Determine the truth or falsity of these sentences.

(a) P.1/

(b) :P.�2/
(c) P.0/

(d) E.A.1; 1/; 2/

(e) 8x.P.s.x//
(f) 8x.9yE.s.y/; x//
(g) 8x8y..P.x/ _ P.y// ! P.A.x; y///

10) Express in J.

(a) “x is even”

(b) “x is the additive inverse of y”

(c) “There is an infinite number of even numbers”

(d) “x is prime”

(e) “There is an infinite number of prime numbers”

(f) “Every even number is the sum of two odd primes”

(Example: The sentence “There are an infinite number of squares” can

only be expressed indirectly in J because the given functions and re-

lations don’t include the relation “there is an infinite number of x”.
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134 6. The Hyperreals

We must express the idea of infinity using only the ideas of squaring,

addition, multiplication, positivity and equality.

The infinitude of the perfect squares can be effectively conveyed if

we write a sentence that says that no matter how far out one goes in the

integers, there is always another square further on. After some thought,

we use the following sentence

8x9y9z9w.E.s.y/; z/ _ E.A.x; w/; 0/_ P.A.z; w///

which says: for every integer x, there is a square .z D y2/ that is

bigger than x, since z � x is positive (note that w D �x).)

Summary

The languages M, G and J introduced in this section are formal languages.

Such languages have rigid grammatical rules that can be written down ex-

plicitly, unlike natural languages, whose grammars cannot be completely

written down and which are constantly evolving. Formal languages are suit-

able for arguing about mathematical statements; natural languages are suit-

able for ordinary life.

6.2 A Language for the Hyperreals

We now define the language L whose every sentence, if true of the reals, is

also true of the hyperreals!

Definition. The language L consists of the usual variables, connectives,

quantifiers, and grammatical signs, plus the following:

constants: one symbol for every real number,

functions: one symbol for every real-valued function

of any finite number of real variables,

and

relations: one symbol for every relation on the real numbers

of any finite number of variables.

The expressive power of L is considerable. For example, all the axioms

of the reals (completeness excepted) can be expressed rather easily in L.

The problems explore this.
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Problems

1) Write the field axioms in L.

(Example: The commutative law of addition expressed in L is

8x8y..x C y/ D .y C x//:

Note: L has a symbol for every real number and every real function

and relation. We use the same symbols for these numbers, functions,

and relations both inside L and outside L. Thus, the plus sign .C/
is used for the two-variable function of addition in L. Likewise, 1 is

used for the number one in L. Strictly speaking L uses a copy of each

symbol from the reals. One would have to use these copies if a situa-

tion arose in which one might confuse the symbols of L with the reals

themselves.)

2) Write the order axioms in L.

3) For a set of reals S , let RS be the relation of “membership in S”: that

is, for a real number r; RS.r/ means “r is a member of the set S”.

Since L contains a symbol for every relation on the real numbers, L

contains the relationRS . In L, write a sentence that says that the set S

has an upper bound.

4) For a set of reals S , write a sentence in L that says that S has a least

upper bound.

5) Can you express the completeness axiom in L?

(Hint: In L one can say “for all numbers x” (i.e. 8x), but one cannot

say “for all sets S”.)

Structures

Structures add meaning to a formal language by supplying an interpretation

for the sentences of that language so that they become true or false. Here’s

how this is done.
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Definition. A structure for a language consists of:

(a) a set S so that each constant symbol in the language corresponds

to an element of S

(b) a set F of functions on S so that each function symbol in the lang-

uage corresponds to a function in F , and

(c) a set R of relations on S so that each relation symbol in the langu-

age corresponds to a relation inR.

A structure gives meaning to a formal language by specifying things

to which its constant, relation, and function symbols can refer. Each of the

example languages in section 6.1 was presented along with a typical struc-

ture. For M, the structure is (a) a particular set of five regions for the five

constant symbols of M (see Figure 6.1.1), (b) no functions because the lan-

guage M has no function symbols, and (c) a single relation for the neighbor

relation symbol. For G, the structure is a specific set of sixteen individuals

(see Figure 6.1.2) and four familial relations. For J, the structure is the set

of integers plus several functions and relations already defined for integers.

In these examples, the structure we supplied was natural for each lan-

guage because, in fact, those languages were invented to fit the structures.

This is the way it usually is for a formal language. First comes a structure

that we intend to study, or more likely have already studied, typically a

piece of mathematics or of computer science or of the real world. The for-

mal language is invented to facilitate that study. It is easy to imagine other

structures to suit each of our examples: for M, other maps; for G, other ge-

nealogical tables; for J, other algebraic systems. There actually is nothing

about the language M that requires it be used for maps. A structure for M

could be any set with at least one element (five aren’t needed because the

constant symbols don’t have to refer to different objects) and one relation.

Similar remarks apply to the languages G and J.

Turning to L, its intended structure is the real number system R in-

cluding all real functions and relations. Although obvious, this is important

enough to state formally.

Theorem 6.2.1. The real number system R is a structure for the language

L.

Although L is designed specifically for the reals, like any other formal

language it has other structures, the hyperreals for example.
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Definition. A hyperreal number system is a structure for the language

L that in addition to all real numbers contains an infinitesimal number, a

number S such that for all positive integers n; 0 < S < 1=n.

Problems

6) Find a structure for M such that N.T; U /;:N.U; V /, and 8xN.x; S/
are true.

7) Find a structure for M such that the sentences in problem 6 are false.

8) Find a structure for G such that 8x.:E.x;M/ ! .P.M; x/_F.x///
is true.

9) Find a structure for G such that 8x.:E.x;M/ ! 9yP.x; y// and

8x8y..9zP.x; z/ _ P.y; z// ! E.x; y// are true

10) Find a structure for the language J such that 8x8y.E.s.x/; s.y// !
E.x; y// is true.

(Hint: This is the only sentence that has to be true.)

Summary

We claim that L, the language introduced in this section, is such that all

theorems about the reals that can be expressed in L are also true of the hy-

perreals. Whether or not this is correct, L is powerful enough to express the

field axioms, and many other statements about number systems. It appears

that L is also chosen for what it cannot express. It seems the completeness

axiom of the reals cannot be written in L. This suits the purpose for which

L is intended, for the hyperreals cannot satisfy the completeness axiom.

A structure gives meaning to a formal language. An abstract language,

such as L (which was designed to have the real number system together

with all its relations and functions as a structure), can always be applied

to other structures. A hyperreal number system is a structure for L which

contains infinitely small numbers.
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138 6. The Hyperreals

6.3 Construction of the Hyperreals

Sequences again

The construction of the hyperreals resembles Cantor’s construction of the

reals in that it uses an equivalence relation applied to a set of sequences.

Those sequences then function as the names of hyperreals.

Definition. The set H of hyperreals is the set of all infinite sequences

fxng of real numbers.

The hyperreals uses all possible sequences. A typical hyperreal is a se-

quence of reals that might look something like this:

a W f52;�1; 17; 3;�1:009163; 4�
p
7; 4:0193.1014/; 2�; : : : g:

Thus a hyperreal, as a sequence, might appear quite random. H also con-

tains highly patterned sequences. In particular, H contains constant se-

quences such as

b W f1; 1; 1; 1; : : :g;

and

c W f2; 2; 2; 2; : : :g:

These play the roles of the numbers 1 and 2 in H, and the other reals are

embedded in H this way too.

What about a sequence like

d W f�2; 3; 2; 6:54321; �; 2; 2; 2; 2; 2; 2; 2; 2; 2; : : :g;

which is only slightly more complicated than a constant? For most n; dn D
cn. For only four subscripts, 1, 2, 4 and 5, do d and c differ. Under these

circumstances, we stipulate that

c D d .in H/:

This requires introducing an equivalence relation for equality.
What sort of number is the sequence

e W f1;�1; 1;�1; 1;�1; : : :g‹

If we do what seems natural and square e we get

e2 W f1; 1; 1; 1; 1; 1; : : :gI

so e is a square root of 1. This suggests that e is either 1 or �1, but which?
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These problems will be resolved in this way: each place in a hyperreal

will not by itself influence the nature of that hyperreal. The sequences c

and d differ at only four subscripts. Four is not enough! We consider two

hyperreals different only if they differ on a big set of subscripts. Note that

a big set is a subset of N D f1; 2; 3; : : :g since the natural numbers are the

numbers used for subscripts.

Which subsets of N are big? We define ‘big’ eventually, but for the

moment the reader is asked to accept the definition of equality and order

that follows, which uses big sets without defining them.

Definition. Two hyperreals x D fxng and y D fyng are equal if fnjxn D
yng is a big set of natural numbers. A hyperreal x D fxng is positive if

fnjxn > 0g is a big set of natural numbers.

To proceed, let us first agree that finite sets are not big. Only an infinite

set can be big, but not even all infinite sets. If all infinite sets were big,

we would still be unsure what to do with the sequence e. Next let us include

among the big sets the infinite sets whose complement is finite, the so-called

cofinite sets. Further properties of big sets are in the next two lemmas.

Lemma 1. If equality of hyperreals is an equivalence relation, then the big

sets have the property: if A and B are big, then A\ B is big.

Proof. Let x D fxng; y D fyng, and z D fzng be sequences defined as

follows:

xn D
(

0 if n 2 A
1 otherwise,

yn D
(

0 if n 2 A
2 otherwise,

zn D
(

yn if n 2 B
3 otherwise.

Notice that A D fnjxn D yng and B D fnjyn D zng. Therefore, if A and

B are big, then x D y and y D z. By the transitive law, it follows that x D z,

so that fnjxn D zng D A\ B must be big.
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140 6. The Hyperreals

Lemma 2. If the hyperreals are linearly ordered, then the big sets have the

property: for any subset A of N, either A is big or the complement of A is

big.

Collecting the properties of big sets described so far, together with an-

other, natural property gives the following definition. (The technical term

for what we have been calling the big sets is the bizarre word ‘ultrafilter’.)

Definition. A collection U of subsets of N is a (free) ultrafilter if:

(a) U contains the cofinite sets, but no finite set,

(b) if A and B are in U, then A\ B is in U,

(c) if A is in U and B contains A, then B is in U,

(d) for every subset A of N, either A or the complement of A is in U .

We intend to use an ultrafilter as the big sets. Of course it is not clear

that any such thing as an ultrafilter exists. A proof appears later (in section

6.7). For the moment, let us make the

Assumption. There exists an ultrafilter.

Then we complete the construction of the hyperreals by the following:

Definition. Choose an ultrafilter U. The sets in U will be called big.

Problems

1) Prove Lemma 2.

(Hint: Define fyng as in the proof of Lemma 1. Use the trichotomy

law.)

2) Let U be an ultrafilter. If A is a subset of N, prove that it is not possible

that both A and the complement of A belong to U.

3) Prove that equality for hyperreals is an equivalence relation assuming

that big sets come from an ultrafilter.

4) Prove that the hyperreals are linearly ordered.
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5) Prove that if A \ B is a big set, then either A or B is big.

6) If x D fxng and y D fyng are hyperreals, define their product by

xy D fxnyng:

Prove the law of integral domains: if xy D 0 then either x D 0 or

y D 0.

Summary

The hyperreals H are defined as the set of all real sequences, subject to a

peculiar equivalence relation: two sequences are equal if their entries are

equal on a big set of subscripts. A big set, in turn, is a set from an ultrafilter,

a collection of subsets of the natural numbers satisfying four properties. We

prove later that ultrafilters exist.

The use of an ultrafilter solves most of the difficulties concerning equal-

ity and positivity posed by our definition of the hyperreals. For example, we

can prove that the hyperreals are linearly ordered (problem 4 above).

One problem remains unresolved: the nature of the hyperreal:

e W f1;�1; 1;�1; 1;�1; : : :g:

Since the big sets form an ultrafilter, we know that either the set of even

subscripts or the set of odd subscripts is big. Therefore, e is either �1 or

C1. So far, so good. However, as we don’t know whether a given infinite

set is big or not (unless it is cofinite), we have no idea whether it is the evens

or the odds that are big. Thus, e D 1 or e D �1, but we still don’t know

which!

Perhaps this problem only persists because we have assumed the exis-

tence of an ultrafilter. Even after the existence of an ultrafilter is proven,

however, we still will have no way to settle this question. All known exis-

tence proofs for ultrafilters are pure existence proofs. As such, they give no

clue to the contents of an ultrafilter. We are doomed to eternal ignorance,

never knowing whether e is plus or minus one.

(More accurately, when proving the existence of an ultrafilter, it is pos-

sible to force e to be either 1 or �1, whichever we feel like at that moment,

but there will always remain similar undecidable sequences).
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142 6. The Hyperreals

6.4 The Transfer Principle

H is a structure

Our goal in this section is to prove that “Every sentence in the language L

true for the reals, is true for the hyperreals.” First, however, we must show

that the statements of L apply to the hyperreals, that is, that the constant,

relation, and function symbols of L refer to the constants, relations, and

functions of H. We must show that H is a structure for the language L.

We have already defined equality and positivity, but now every other

real function and relation must be defined for the hyperreals. Miraculously

there is no need to do this one relation and function at a time. There is a

mechanism that carries over to H all the functions and relations of R at

once. We take relations first.

Definition. Let R be a one variable relation on the reals; that is, for every

real number x; R.x/ is a sentence that is either true or false. The extension

of R to the hyperreals is denoted �R. For a hyperreal x D fxng,we define
�R.x/ as true if and only if the set

fnjR.xn/ is true in Rg

is big. Otherwise, �R.x/ is false.

Let R.; / be a two variable relation on the reals. The extension of R to

the hyperreals is denoted �R. For hyperreals x and y, we define �R.x; y/ to

be true if and only if

fnjR.xn; yn/ is true in Rg

is a big set. Otherwise, �R.x; y/ is false.

Similarly, every n variable relation R on R can be extended to an n-

variable relation �R on H.

Among the relations now defined on H, are those that distinguish vari-

ous types of numbers: the integers, rationals, primes, squares, and so forth.

Each is now extended to the hyperreals, so we can distinguish hyperreal

rational numbers, hyperreal perfect squares and hyperreal prime numbers.

For example, let

J D f1; 2; 3; 4; 5; : : :g:

Then J is a hyperreal integer because the predicate I.x/ D “x is an integer”

is true of J at every place—definitely a big set of subscripts. This makes
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the statement I.J/ true, by definition, so J is a hyperreal integer. To carry

this discussion a little bit further, we can’t say whether J is even or odd, or

whether it is prime or not, because we don’t know whether the set of even

subscripts (where J has even entries), or odd subscripts (where J has odd

entries), or prime subscripts (where the entry in J is prime) is big. In other

words, we don’t know whether any of the predicates

E.x/ D “x is even”,

O.x/ D “x is odd”,

or

PN.x/ D “x is prime”

are true for J at a big set of subscripts. We can say that J > 10 since the

set of subscripts of J where the predicate GR.x; 10/ D “x is greater than

10” is true is a big set. (It is co-finite.) Therefore, by definition,GR.J; 10/

is true, and J > 10. In fact, J is bigger than every single ordinary integer;

J is infinite.

The reader may be surprised that we are permitted to define the meaning

of ‘true’ and ‘false’ for the relations �R on H. There is nothing capricious

about this, however. The situation is analogous to that moment when Euler

defined the complex exponential (see Chapter 3). Before Euler, there was

no value for eix. Since there was no definition, in principle any formula

could have been chosen for eix. Euler’s formula is a good choice because

it works. It fits with existing facts about the reals and complexes and so is

regarded as correct.

A moment ago none of the relations “x is an integer”, “x is even” and

so forth were defined for the hyperreals. In principle, we can adopt any

definition for these relations. We get to say what they mean, but only a

definition that, like Euler’s formula, fits with existing facts about the reals

will prove useful. It is essential that truth and falsity for the relation �R
on the hyperreals agree with the truth and falsity of the original relation

R on the reals. We address this question in the course of proving that the

hyperreals are a structure for L.

Next we extend every function f on R to a function �f on H:

Definition. Let f .x/ be a one variable real-valued function defined on

R. The extension of f to the hyperreals is denoted �f . For a hyperreal

x D fx1; x2; x3; : : : g, we define �f .x/ by

�f .x/ D ff .x1/; f .x2/; f .x3/; : : : g:
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144 6. The Hyperreals

Let f .x; y/ be a two variable real-valued function defined on the reals.

The extension of f to the hyperreals is denoted �f . For hyperreals x and y

we define �f .x; y/ to be the hyperreal

�f .x; y/ D ff .x1; y1/; f .x2; y2/; f .x3; y3/; : : : g:

Similarly, any n variable real-valued function f on R is extended to an

n-variable function �f on H.

This definition creates a function on H for every function defined on R.

Among the functions thus defined are those of addition, A.x; y/ D x C
y, and multiplication, M.x; y/ D xy. We have also defined many other

functions, for example, we can now calculate the sine of a hyperreal. Thus,

if J D f1; 2; 3; 4; 5; : : :g, then

sin.J/ D fsin.1/; sin.2/; sin.3/; sin.4/; sin.5/; : : : g:

It’s not clear just what kind of number sin.J/ is, but at least we can say that

�1 � sin.J/ � 1;

since this inequality is true for all the entries in sin.J/.

In connection with the last two definitions it is important to prove:

Theorem 6.4.1. The relations �R and the functions �f are well-defined.

Problems

1) Let R be a one variable relation on the reals. Prove that �R is well-

defined by verifying that if �R.x/ is true and x D y then �R.y/ is true.

2) Let f be a real-valued function of one variable. Prove that �f is well-

defined, i.e., that if x D y then �f .x/ D �f .y/.

3) Among the functions defined on R are the two variable functions of

addition and multiplication: A.x; y/ D x C y and M.x; y/ D xy.

Prove that �A and �M make H a field.

4) One of the many relations defined on R is the one place relation of

positivity:

P.x/ is true if and only if x > 0:

Check that the extension �P agrees with the previous definition of pos-

itivity on H, and prove that that �P makes H a linearly ordered field.
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5) Among the relations just introduced for H are �Q.x/ D “x is a rational

number” and �PN.x/ D “x is a prime number”. Find examples of

rationals and primes in H. Find rationals and primes that are in H but

not in R.

6) Show that H contains an infinitesimal, that is a number S such that

S > 0 and S < r for all positive reals r . This proves that H is a

hyperreal number system.

(Hint: Try S D f1; 1=2; 1=3; 1=4; : : :g.)

7) Find an infinitely large prime integer in H. Find an infinitely large

irrational number.

Embedding again

We embed the reals in the hyperreals just as earlier we embedded the ratio-

nals in the reals.

Theorem 6.4.2. For a real constantx, let x� be the hyperreal fx; x; x; : : :g.

Then the transformationx ! x� is both a field and order isomorphism from

R into H.

With the reals embedded in the hyperreals, we next verify that the def-

initions of �R and �f on H agree with their definitions on R. This means

proving that these relations and functions act on the embedded reals exactly

as they act on the reals themselves. This is accomplished by the two parts

of the following theorem.

Theorem 6.4.3. Let R be a one variable relation on the reals. Let f be a

real-valued function of one variable. Then

(a) R.x/ is true (in the reals), if and only if �R.x�/ is true (in the hyper-

reals)

(b) �f .x�/ D .f .x//� .

This embedding of the reals in the hyperreals goes far beyond the earlier

embedding of the rationals in the reals. When the rationals were embedded

in the reals, only their arithmetic and order properties went with them. In

contrast, the reals are embedded in the hyperreals along with every single

relation and function.
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146 6. The Hyperreals

To see how remarkable this is consider that rational numbers have de-

nominators. We can define a function d.q/ that assigns to each rational

its denominator when written in lowest terms. To be unambiguous, we in-

sist that d have positive values. Then, for example, d.25=75/ D 3 and

d.�12=16/ D 4. But the function d does not extend to the reals in any nat-

ural way. Pi has no denominator! Thus there is a function on the rationals

that represents a fundamental feature of the rationals but does not extend in

any natural way to the reals.

On the other hand, real numbers have decimal expansions. We can de-

fine a function d1.x/ that assigns to each real number the tenths place in its

decimal expansion. To be unambiguous, we insist that decimal expansions

cannot end with an infinite string of 9s. Then, for example,

d1.1=4/ D 2; — since 1=4 D :25

d1.�/ D 1; — since � D 3:1415 : : :

and

d1.:1999 : : : / D 2: — since :1999 � � � D 0:2

Due to the extraordinary embedding of the reals in the hyperreals, the

function d1 extends to a function on the hyperreals. A hyperreal has a dec-

imal expansion (more about this later) and, in particular, the function d1

when extended to the hyperreals, gives the tenths place of that decimal ex-

pansion. Furthermore this is not something special about decimal expan-

sions. Every single thing about the reals that can be expressed using func-

tions and relations extends to the hyperreals.

Almost trivially we have:

Theorem 6.4.4. H is a hyperreal number system, that is, it is structure for

the language L that contains infinitesimals.

Since the reals, and all real relations and functions, are embedded in the

structure H, from now on we drop the distinction between x and x�; f and
�f , and R and �R, and simply assume that the reals, together with all their

functions and relations are inside H.

Problems

8) Prove Theorem 6.4.2.
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9) Let R be a one variable relation on the reals. Prove that R.x/ is true

(in the reals), if and only if �R.x�/ is true (in the hyperreals).

10) Let f be a real-valued function of one variable. Prove that �f .x�/ D
.f .x//�

(Note: Problems 9 and 10 prove Theorem 6.4.3.)

11) Prove Theorem 6.4.4.

12) What is the tenths place in the decimal expansion of S? Find the rest

of the decimal expansion of S.

Łos’ theorem

We now prove that

“Every sentence in the language L

that is true for the reals

is true for the hyperreals”

We deduce this from an even more general statement about the hyperre-

als called Łos’ theorem. To state this, requires a second formal language,

L�, one designed to make statements about H, as L was designed to make

statements about R.

The language L contains constant symbols for all real numbers (e.g.,

1;
p
2, and � ), but no sentence in L ever refers to a specific hyperreal that is

not also a real. The difference between L and L� is the addition of constant

symbols for all these hyperreals.

Definition. The language L� consists of all the symbols of the language

L plus a new constant symbol, k D fkng, for every hyperreal k that is not

an ordinary real.

Łos’ theorem describes when a statement in L� is true.

Theorem 6.4.5. (Łos’ theorem). Let S be a sentence in L�. Let Sn be the

sentence in L obtained fromS by replacing every hyperreal constant symbol

k D fkng with the real constant symbol kn. Then, S is true in the structure

H for L� if and only if

fnjSn is true in the structure R for Lg

is a big set.
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Proof. Let S be a sentence in L�. The formation rules in section 6.1 divide

the sentences of L� into seven types, (a) through (g). Each type gets a sep-

arate proof. In addition, the proof is recursive, since the formation rules are

recursive.

Base case: This is type (a). A sentence S of type (a) is a relation symbol

applied to some terms. In this case the conclusion of Łos’ theorem simply

repeats the definition of truth in H given at the beginning of this section.

Recursive case: While proving the remaining six cases, we assume the

theorem is already proven for the sub-sentences used to construct S . A typ-

ical case is a sentence of type (c) for which we give a detailed proof as an

example.

Let S be of the form S D .F ^ G/. By the induction hypotheses, we

assume the theorem has already been proven for the sub-formulasF andG.

Note that Sn D .Fn ^ Gn/. To proceed let

A D fnjSn is trueg;
B D fnjFn is trueg;

and

C D fnjGn is trueg:

We know, by induction, that

F is true for H if and only if B is big;

and

G is true for H if and only if C is big.

Note that A D B \ C . Now S is true for H if and only if

F and G are true for H — logic

if and only if B and C are big — the induction assumption

if, and only if, A is big: — property (b) of big sets

This proves Łos theorem for sentences of type (c).

Corollary. (The Transfer Principle). Let S be a sentence in L. Then S is

true in the structure R for L if and only if S is true in the structure H. In

other words, every sentence in the language L that is true for the reals is

true for the hyperreals (and vice versa!).
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Proof. Let S be a sentence in the language L. Then S is also in the language

L�. By Łos’ Theorem, S is true in H if and only if fnjSn is true in Rg is

big. However since S does not contain any constants from H (S is in L),

Sn is the same as S for all n. Thus fnjSn is true in Rg is either all N (if S

is true in R) or empty (if S is false for R). Therefore, fnjSn is true in Rg is

big if and only if S is true for R.

This is called the transfer principle because it transfers truth back and

forth between R and H.

Problems

14) Prove Łos’ Theorem for formulas of types (b), (d), and (e).

15) Prove Łos’ Theorem for the quantified formulas (f) and (g).

(Hint: If H.x/ is a formula of L� that contains the variable x, then

H.x/n D Hn.x/, that is, the process of replacing hyperreal constants

with real constants doesn’t affect the variable x.

Using the transfer principle

Many results that we have proved directly about the hyperreals are easily

proven using the transfer principle. The problems explore this.

Proof by transfer principle

The transfer principle makes L a powerful tool for proving state-

ments about the reals and the hyperreals. Any statement that can be

formulated in L is automatically true in both R and H, as long as it

can be shown to be true in one of them.

The power of this method of proof arises from the fact that a state-

ment may mean different things in R and in H because the quantifiers

have different meanings. In H, quantifiers can and do refer to the in-

finitesimal and infinite quantities not present in R. Some statements

are easier to prove in H, and others easier to prove in R.
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Problems

16) Show that the statement “R is an ordered field” can be expressed in L.

Explain how this provides a second proof, beyond problems 3 and 4,

that H is an ordered field.

17) Use the transfer principle to prove that every positive hyperreal has a

positive square root.

(Hint: This is true for the reals R. Express it in L.)

18) Use the transfer principle to prove the cancellation laws of addition

and multiplication for H.

19) Use the transfer principle to prove the integral domain property: if

xy D 0 in H, then either x D 0 or y D 0.

20) Prove that if p is a hyperreal prime number then there is a hyperreal

prime q such that q > p.

21) Prove that the trigonometric functions sin.x/ and cos.x/ satisfy the

same identities for hyperreals as well as reals. For example, sin.x/2 C
cos.x/2 D 1 for any hyperreal x.

Summary

We have established that H is a structure for the language L, that H contains

infinitesimals, and that any theorem about the reals expressible in L is true

for hyperreals. As a consequence many real concepts, such as square roots,

integers, rationals, exponentials, and trigonometric functions, carry over to

the hyperreals with their rules, identities, equations, and other properties

unchanged. These relations and functions apply to the infinitely small and

infinitely large elements of H as well as the ordinary reals. In the next sec-

tion we consider these new elements of H in more detail, piecing together

just how they fit together along the hyperreal line.

6.5 The Nature of the Hyperreal Line

Playing with infinitesimals

To compare infinitely small and infinitely large numbers we need the vo-

cabulary provided by the next definition.
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Definition. A hyperreal x is infinite if jxj > r for all positive reals r .

A hyperreal is infinitesimal if jxj < r for all positive reals r . If x is not

infinite, then x is finite.

If hyperreals x and y are such that jx � yj is an infinitesimal, then we

say x is infinitely close to y, and write x � y.

Given hyperreals, x; y; z, if the fraction

jx � zj
jy � zj

is an infinitesimal, then we say that x is infinitely closer to z than y (or that

y is infinitely further away from z than x.

Given positive hyperreals, x and y, we say x is infinitely smaller than

y (or y is infinitely bigger than x) if x is infinitely closer to zero than y,

i.e., the fraction jxj=jyj is an infinitesimal.

For example, if S is infinitesimal, then S
2

is also. To prove this all we

need to point out is that for any positive real r ,

S
2 D SS < S1 D S < r;

since S < 1. Let x D 2C S
2

and y D 2C S. Then x and y are infinitely

close since jx�yj D jS�S
2j is an infinitesimal. Both x and y are infinitely

close to 2, but x is infinitely closer to 2 than y because jx � 2j=jy � 2j D
S

2
=S D S is infinitesimal. The following problems are more results of

this type.

Problems

1) Prove that the square root of an infinitesimal is an infinitesimal.

(Hint: Use the result that “if x < y then
p

x <
p

y”. First prove that

this is true for hyperreals.)

2) Prove that an infinitesimal hyperreal times a finite hyperreal is an in-

finitesimal.

3) Prove that � is an equivalence relation.

4) Show that a finite hyperreal x is surrounded by a cloud of hyperreals,

infinitely close to it, that is, if y and z are infinitely close to x, then so

is any hyperreal between y and z.

5) Let J be an infinite hyperreal. Prove that J
2 is infinitely bigger than

J.
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6) Let J be an infinite hyperreal. Find an infinite hyperreal that is in-

finitely bigger than all the powers J
n for (finite) integral n.

7) If f .x/ is bounded for all real x, then is f .x/ bounded for all hyperreal

x?

(Hint: f .x/ is a real function; f .x/ is the corresponding hyperreal

function. A direct proof is possible using sequences of reals. Or use

the transfer principle.)

8) If f .x/ is an integer for all real x, is f .x/ an integer for all hyperreal

x?

9) If f .x/ is finite for all real x, is f .x/ finite for all hyperreal x?

10) Prove the rational hyperreals are dense in the hyperreals.

11) Express the Archimedean property of the reals in L.

12) Since the Archimedean property is true for the reals, it follows from

the previous exercise that it is also true for the hyperreals. This appears

to contradict the fact that H contains infinitely large numbers. Resolve

this paradox.

(Hint: The Archimedean property says “Given two positive numbers a

and b, there is a positive integer n such that b < na.” The meaning

of “there is an integer” shifts depending on whether the sentence is

applied to R or to H.)

Drawing the hyperreal line

Based on these problems, a picture of the hyperreal line like that in Figure

6.5.1 begins to emerge. In Figure 6.5.1, the reals, which are the same as the

finite hyperreals (see Theorem 6.6.1) occupy the central portion of the hy-

perreal line. Each real is surrounded by a cloud consisting of the hyperreals

infinitely close to it. The reals as a whole are surrounded by satellite lines,

the reals

–1–2 1 2 3 4 50– – +1 2 2 +1+ 1J J J JJJ

infinite hyperreal

cloud of hyperreals infinitely close to 3

Figure 6.5.1. The hyperreal line.
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each centered about an infinitely large number and consisting of that num-

ber plus and minus the finite hyperreals. The satellite lines are each exactly

as long as the real line itself.

Figure 6.5.1 uses tick marks at unit intervals along the line. Figure 6.5.2

gives a different view by using an infinite unit. On this scale the central part

of the hyperreal line is occupied by an infinite hyperreal J and its finite real

multiples. Satellite lines are still present, but based on infinite quantities,

like J
2, which are infinitely larger than J. At this scale the reals appear to

be infinitely close to the origin. They are drawn as a cloud around 0.

infinite scale

3 4 50+–
2

J J J J J J

is infinitely bigger than 
2

J Jthe reals are a cloud
around the origin

2+J–
2

J –
2

J –J J2
2

J
2

J
2

J 2
2

J +J

Figure 6.5.2. Zooming out on the hyperreals.

Figure 6.5.3 is H drawn with tick marks at an infinitesimal unit interval.

On this scale, the hyperreals infinitely close to the origin are blown up to

the size of the reals themselves (depicted in Figure 6.5.1). The satellite lines

are now centered about other reals.

–– 2 2 3 4 50–1 –1 + 2 2+1 +1S S S S S S S S S S

the cloud of

infinitesimals

around 2

1 is 

infinitely

bigger thanS

cloud of infinitesimals

cloud of numbers infinitely closer 

to     than to other infinitesimalsS

Figure 6.5.3. Zooming in on the hyperreals.

We must be careful because these figures leave out many features of the

hyperreals, such as infinitesimals smaller than S (like S
3
, and exp.�J//,

and infinite numbers larger than J
2 like J

3, exp.J/, and even J!). There

are also intermediate numbers. For example J=2 is larger than all reals r ,

but smaller than the hyperreals in the first satellite to the right of the reals

in Figure 6.5.1, consisting of the hyperreals J ˙ r . Also, the clouds in

the figures are grossly exaggerated. Each is really concentrated right at the

single point it surrounds.
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Although its internal structure is more complex than the reals, the hy-

perreal line and the real line are alike in one fundamental respect: both look

the same at every scale.

Problems

12) Let J be infinitely large. Show that J=2 < J � r for all reals r .

13) Let S be an infinitesimal. Draw a picture of H showing the relative lo-

cation of these numbers: S;S
2
; ln.S/;

p
S; sin.S/;S

S
; and exp.S/.

(Hint: Using S D f1; 1=2; 1=3; : : :g one can actually calculate these

quantities.)

14) Let J be infinitely large. Draw a picture of H showing the relative

locations of J;J=2;J2; ln.J/; exp.J/;
p

J;JJ; sin.J/, and J!.

15) Is the product of an infinitesimal and an infinitely large number ever

finite? Is it always finite?

Decimal representation of hyperreals

Considering the strange numbers that H contains, it may seem surprising

that hyperreals have decimal representations. These expansions portray the

differences between the real and the hyperreal number systems from a dif-

ferent point of view, supplementing the drawings given above. Hyperreal

decimals are also needed to define hyperreal continuous functions and the

hyperreal calculus.

Theorem 6.5.1. Every positive hyperreal x has a decimal representation

x D i:d1d2d3 : : : dn : : : ;

where i is a hyperreal integer and, for every positive hyperreal integer n, dn

is a numeral .0; 1; 2; 3; 4; 5; 6; 7; 8; or 9/.

Proof. (By the transfer principle) This requires two functions:

i.x/ D the integer part of the decimal expansion of x,

and
d.n; x/ D the nth fractional place in the expansion of x.
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These are well-defined for real x, provided we forbid decimal expansions

that end with repeated 9s. Together these two functions give the whole dec-

imal expansion of the real x. Because H is a structure for L, both i and d

extend to hyperreal x and hyperreal n. The rest of the proof simply transfers

properties of i and d from the structure R to the structure H.

For example, let Int.n/ be the relation “n is an integer”. Then

8x.Int.i.x/ ^ .i.x/ � x/^ .x � i.x/ < 1//

says that i.x/ is the nearest integer less than or equal to x. Let Num.n/ be

the relation “n is a numeral”, i.e., “n is 0; 1; 2; : : : ; or 9”. Then

8x8n.Int.n/ ^ .n > 0// ! Num.d.n; x///

says that for all reals x and integers n; d.n; x/ is a numeral. These state-

ments are true for R, hence true for H. Finally, the statement

8x.jx � i.x/ � d.1; x/=10j < 1=10/

says that .i.x/Cd.1; x/=10/ approximates x to the nearest tenth. This char-

acterizes d.1; x/ as the tenths place of the decimal expansion of x. A similar

statement can be made for each place.

integer part: can 

be infinite finite decimal places infinite decimal places

1
x  =  i . d  d  d   …  d  d     . . .

2 3 n n + 1
…  d    d        … d     …

J J + 1 J2

Figure 6.5.4. A hyperreal decimal expansion.

Problems

16) Find the hyperreal decimal expansion of 1=3.

(Hint: What is the usual decimal expansion of 1=3? Express this in L.)

17) Find the hyperreal decimal expansion of 1=7.

18) Describe the decimal expansion of an infinitesimal S.

19) Describe the decimal expansion of a hyperreal infinitely close to 3.
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20) Describe the effect of multiplication by 10 on the decimal expansion

of a hyperreal x. Describe the effect of multiplication by 10J where

J is an infinite integer.

21) Do hyperreals have decimal expansions to bases other than 10?

22) Do hyperreals have decimal expansions to an infinite base?

23) Prove that the hyperreals are dense in the reals, that is, between every

two reals there is a non-real hyperreal.

6.6 The Hyperreal Calculus

Limits

The earliest use of infinitesimals was in the calculus. For centuries they

were used to motivate results and set up applications. Here we show how

infinitesimals are useful for proving theorems of the calculus.

We begin with limits of sequences. Let fang be a sequence of real num-

bers, which we may write out,

a1; a2; a3; a4; : : : ; an; : : : :

Such a sequence is a real-valued function of the variable n. The variable n

is not written between parentheses as is usual for functions. Nevertheless n

is a variable for which we plug in different integer values. For a given n (25,

say) the value of the function fang sits in the sequence at the nth place (i.e.,

it is a25). As a function, the domain of fang is restricted to positive integers,

still, like every real-valued function, fang has an extension to a hyperreal

function. The hyperreal version is defined for all positive hyperreal integers,

in particular, has values for infinite integers. As a hyperreal function fang
looks like this:

a1; a2; a3; a4; : : : ; an; : : : aJ; aJC1
; : : : :

This process is exactly the way the decimal expansion of the reals general-

ized to the hyperreals. Compare the previous equation with Figure 6.5.4.

This leads to the hyperreal definition of limit.

Definition. A sequence fang converges to the limit b if an is infinitely

close to b for all infinite integers n > 0. A sequence fang is Cauchy if

an � am for all infinite integers n and m > 0.
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How neatly the hyperreal definitions capture the intuitive essence of

limit and of Cauchy sequence! The classical notation for limit of a sequence,

b D lim
n!1

an;

suggests that a limit is something that happens at infinity, but infinity is only

a vague concept in real terms. In the hyperreals, however, there is a place

called infinity (in fact, more than one) that can be plugged into formulas.

The limit b of a sequence fang is aJ, or at least is infinitely close to aJ.

Problems

1) For the sequence fang D f.n2=.1C n/g find aJ.

2) Prove that the classical " � ı definition of limit (see section 1.4) is

equivalent to the hyperreal definition.

3) Prove that the classical definition of Cauchy sequence (given in section

1.4) is equivalent to the hyperreal definition.

4) Prove that a convergent sequence is Cauchy using hyperreal defini-

tions.

Finding limits using hyperreals

Limits are simplified conceptually by the hyperreals but there are technical

problems. Suppose we want to find the limit b of fang. Writing b D aJ is

useless in real terms because aJ is a hyperreal that may not be real, in fact,

probably is not real. The next theorem provides a mechanism for computing

the real limit of fang.

Theorem 6.6.1. Every finite hyperreal is infinitely close to a unique ordi-

nary real r .

Definition. Let x be a finite hyperreal, The unique ordinary real infinitely

close to x is called the real approximation to x and written Œx�.

Real approximation is the hyperreal tool for the calculation of real lim-

its. If fang is convergent, we write b D ŒaJ� for the limit. To prove that

fang is convergent, we show that b is independent of the choice of the in-

finite integer J. Using hyperreals, the trials and tribulations of the " � ı

definition of limit are replaced by the difficulty of computing real approxi-

mations. The problems explore some of these.
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Problems

5) Let x be a hyperreal and let i and dn be, respectively, the integer and

fractional places in its decimal representation. If i D 0 and also dn D 0

for all finite n, show that x is an infinitesimal.

(Hint: If x is real, and i D 0 and dn D 0 for the first K places, then

x < 1=10K . Express this in L and apply it to a hyperreal.)

6) Prove that two ordinary reals are never infinitesimally close. Use this

to prove that the real approximation to a finite hyperreal is unique.

7) Prove Theorem 6.6.1,

(Hint: Let x be a hyperreal. Let i and dn be the integer and fractional

places of the decimal representation of x. Since x is finite, i is finite. If

x D i:d1d2d3 : : : dJdJC1
: : : d2

J
: : : ;

define

r D i:d1d2d3 : : : ;

leaving off the infinite places of x in order to create a real number.

Prove that r is an ordinary real and that the difference x � r is an

infinitesimal, where r is the hyperreal corresponding to the real r . This

proves r is the real number we seek. Is r unique?)

8) Prove that if r is a real and S is an infinitesimal, then Œr C S� D r .

9) Prove that Œx1 C x2� D Œx1� C Œx2� and Œx1x2� D Œx1�Œx2�. To what

theorems from the usual theory of limits do these correspond?

10) Prove that if x � 0, then Œx� � 0. Is it true that if x > 0, then Œx� > 0?

(Note: More generally, if x is in the open interval .a; b/ then Œx� is in

the closed interval Œa; b�.)

11) Prove that if x ¤ 0, then Œ1=x� D 1=Œx�.

(Hint: Let r D Œx�. Then x D r C S, for some infinitesimal S. Inves-

tigate 1=.r C S/ � 1=r .)
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Continuous functions

Intuitively a function f .x/ is continuous if a small change in x produces

a small change in y D f .x/. Nothing can be smaller than an infinitesimal

change. This suggests the following definition.

Definition. Let f be a real-valued function. Then f is continuous at a

real point r if for every x infinitely close to r; f .x/ is infinitely close to

f .r/. In symbols, if x � r then f .x/ � f .r/.

A real-valued function f is continuous on an interval if f is continu-

ous at every real point in the interval.

The hyperreal definition of continuity says that an infinitesimal change

in x produces an infinitesimal change in f .x/. This definition is easy to use.

Here, for example, is a proof of the intermediate value theorem.

Theorem 6.6.2. (The intermediate value theorem). Let a and b be reals.

Let f be a continuous function defined on Œa; b� such that f .a/ < 0 and

f .b/ > 0. Then there is a real number c between a and b such that f .c/ D
0.

Proof. Let n be a positive integer. If the interval from a to b is divided into

n equal subintervals, the function f will change sign on one of them, as it

does on the whole interval. Using real numbers, only finite subdivisions can

be created. Using hyperreals, infinite subdivision is possible.

To do so we describe the subdivision process in L. First we write

8n..I.n/ ^ .n > 0// ! 9k.I.k/ ^ .0 � k < n/

^ .f .a C k
b � a

n
/ � 0/

^ .f .a C .k C 1/
b � a

n
// � 0///;

which says that for any positive integer n, if the interval Œa; b� is divided

into n subintervals:

ŒaC k
b � a
n

; aC .k C 1/
b � a
n

�

of length .b � a/=n, where k D 0; 1; 2; : : : ; n � 1, then f changes sign on

at least one of them.

By the transfer principle, this applies to the hyperreals and n can be

chosen to be infinite, say J. It follows that there is an integer k; 0 � k < J,
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such that

f .a C k.b � a/=J/ � 0; .�/

and

f .a C .k C 1/.b � a/=J// � 0: .��/

Since 0 � k < J,

a � aC k
b � a

J
< b;

and, if we let c D ŒaC k.b � a/=J�, then according to problem 7,

a � c � b:

Since 1=J is an infinitesimal, c also equals ŒaC .k C 1/.b � a/=J�. Now,

using problem 12 and inequality .�/,

f .c/ D f .ŒaC k
b � a

J
�/ D Œf .aC k

b � a
J

/� � 0;

because f is continuous. Similarly, .��/ implies that f .c/ � 0. Thus,

f .c/ D 0.

Problems
12) Let f and g be continuous functions. Use the hyperreal definition to

prove that f C g; fg; and f composed with g are also continuous.

13) Prove that a real-valued functionf is continuous if, and only if, Œf .x/� D
f .Œx�/, where x is a finite hyperreal in the domain of f .

14) Prove that a finite hyperreal integer is a real integer.

15) (Boundedness of continuous functions) Prove, using hyperreals, that

every real-valued continuous function f defined on a closed interval

Œa; b� is bounded above, that is there is a constantK such that jf .x/j �
K for all x in Œa; b�.

(Hint: Given a continuous function defined on Œa; b�, the goal is to

prove the statement 9K8x..a � x � b/ ! .�K < f .x/ < K//.

Prove that it is true for H first. Remember that in H; K can be infinite,

but because f is a continuous function, f .x/ will be finite for a �
x � b.)

16) (Maximum value theorem) Prove, using hyperreals, that, if f is a con-

tinuous function on Œa; b�, then there is a point c in this interval such

that f .x/ � f .c/ for all x in Œa; b�.

(Hint: Use a subdivision argument.)
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Hyperreal Differentiation

Using hyperreals, the derivative can be defined as a quotient of infinitesi-

mals, as envisioned by Leibniz:

Definition. Let f be a real-valued function defined on an open interval

.a; b/. If dx is an infinitesimal and x is in .a; b/, we write dy D f .x C
dx/� f .x/ for the change in the value of f at x. The difference quotient

is the ratio

f 0.x/ D
�

dy

dx

�

D
�

f .x C dx/� f .x/
dx

�

:

If this real quantity is independent of dx, then we say that f is differen-

tiable at x and f 0.x/ is called the derivative of f .

This definition captures the essence of the derivative as a rate of change

and makes it fairly easy to compute derivatives. For example, here is the

derivative of 1=x:

�

1

x

�0
D

"

1
xCdx

� 1
x

dx

#

D
�

1

dx

x � .x C dx/

x.x C dx/

�

D
�

1

dx

�dx
x.x C dx/

�

D
� �1
x.x C dx/

�

D �1
Œx�Œx C dx�

D �1
x2
;

a straightforward calculation with hyperreals. In H, we may divide by dx

because it is not zero. Later we cancel it. Since the result of this computation

is independent of dx, we conclude that 1=x is differentiable with derivative

1=x2. A limit is replaced by a real approximation.

Problems

17) Differentiate these functions using hyperreals.

(a) x3

(b) .x C 1/=x3

18) Prove that a function differentiable at a real number x is continuous at

x.

19) Prove the sum and product rules for differentiation:



“master” — 2012/6/18 — 10:53 — page 162 — #172
i

i

i

i

i

i

i

i

162 6. The Hyperreals

(a) .f .x/C g.x//0 D f 0.x/C g0.x/

(b) .f .x/g.x//0 D f .x/g0.x/C f 0.x/g.x/

20) Prove the chain rule: f .g.x//0 D f 0.g.x/g0 .x/.

21) Prove that Œsin.S/=S� D 1 where S is an infinitesimal.

(Hint: If the real number r is less than �=2, then sin.r/ � r � tan.r/.

Transfer to H.)

21) Find the derivative of sin.x/.

(Hint: Use the addition theorem:

sin.x C y/ D sin.x/ cos.y/ C sin.y/ cos.x/:/

6.7 Construction of an Ultrafilter

Well-Ordered sets

We complete the construction of the hyperreals by proving the existence of

an ultrafilter. The proof uses a powerful, proof technique called transcen-

dental induction, which requires knowledge of well-ordered sets. We begin

with the definition:

Definition. A set S is partially ordered if it has a relation � satisfying

(a) For every x in S; x � x; — reflexivity

(b) For x; y in S; if x � y and y � x; then x D y; — anti-symmetry

(c) For x; y; z in S; if x � y and y � z; then x � z; — transitivity

A partial order is weaker than a linear order. The reflexive and anti-

symmetric laws together are not enough to imply trichotomy.

A new feature of partially ordered sets is the possibility of incomparable

elements. Two elements x and y are comparable if either x � y or y �
x. In a linearly ordered set, every pair of elements is incomparable, but a

typical partially ordered set has a branching, tree-like structure. Elements in

different branches are incomparable. Figure 6.7.1 gives an example. Here

b > d; but b and c are incomparable.

Definition. A subset X of a partially ordered set has a least element c if

c is in X and c � x for all x in X . A partially ordered set is well-ordered

if every non-empty subset of X has a least element.



“master” — 2012/6/18 — 10:53 — page 163 — #173
i

i

i

i

i

i

i

i

6.7. Construction of an Ultrafilter 163

cb

d

a

e f

g h

Figure 6.7.1. A partially ordered set.

As an example of a well-ordered set, take any finite set, for example the

letters of the alphabet, and put them in linear order:

a; b; c; d; e; f; g; h; i; j; k; l; m; n; o; p; q; r; s; t; u; v; w; x; y; z:

Given a subset X of S , if we read across the list of the elements of S ,

the first element of X we encounter is the least element. Therefore, S is

well-ordered.

For finite sets, ‘linear ordered’ and ‘well-ordered’ are equivalent, but

not for infinite sets. The integers, for example, are linearly ordered, but not

well-ordered. The reals are another set that is linearly ordered, but not well-

ordered.

Problems

1) Prove that if x and y are comparable elements from a partially ordered

set, then exactly one of the following is true: x < y, or y < x , or

x D y. Thus the trichotomy law holds for comparable elements.

2) Let X be a subset of a partially ordered set S . Suppose that X has a

least element. Prove that it is unique.

3) Prove that the natural numbers N are well-ordered.

4) Show that the integers Z are not well-ordered.

5) Show that the unit interval Œ0; 1� is not well-ordered.

Infinite well-ordered sets

The natural numbers N are an infinite well-ordered set. A more exotic ex-

ample is obtained by adding an extra element, say !. Call the new set W .

It is well-ordered by using the usual order for the natural numbers and stip-

ulating that ! > x for all x in N. The set W therefore looks something

like:

W W 1; 2; 3; 4; : : : ; : : : ; : : : ; !:
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In W; ! has no immediate predecessor (like 1). More examples likeW are

concocted in the next problems.

Problems

6) Let S be a well-ordered set. Show that S is linearly ordered, in other

words a well-ordered set satisfies the trichotomy law.

7) Let S be a well-ordered set. An element x of S is maximal if there is

no element y in S such that x < y. Show that a well-ordered set S can

have at most one maximal element, but need not have any.

8) Let S be a well-ordered set. An element x of S has a successor if there

is an element y in S such that x < y and there is no element z such

that x < z < y. Show that every non-maximal element in S has a

successor.

9) Prove that the set W (above) is well-ordered.

10) Find an example of a well-ordered set S in which four elements are

without an immediate predecessor.

11) Describe an example of a well-ordered set S in which an infinite num-

ber of elements are without an immediate predecessor.

Transfinite induction and ordinary induction

Every well-ordered set is the basis for a kind of proof by induction, called

transfinite induction.

Theorem 6.7.1. (Principle of transfinite induction). Let S be a well-ordered

set. Let s.x/ be a statement about an element x of S . Suppose that s has the

inductive property:

if s.b/ is true for all b < a, then s.a/ is true.

Then s.x/ is true for all x in S .

Proof. Let X be the set of all x in S for which s.x/ is false. Suppose,

contrary to what we want to prove, that X is non-empty. Since S is well-

ordered,X has a least element, say a. But the definition of ameans that s.b/

is true for all b < a. By the inductive property, s.a/ is true, contradicting the

assumption that s.a/ is false. This contradiction proves the theorem.
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Ordinary induction is transfinite induction applied to the natural num-

bers. Assuming that the natural numbers are well-ordered, Theorem 6.7.1

implies mathematical induction. Transfinite induction replaces the two cases

of ordinary induction by a single case which applies to an element of a well-

ordered set whether or not it has an immediate predecessor.

Corollary. Let s.n/ be a statement about an element of the set N. If s.n/

has the following two properties:

(a) Base Case: s.1/ is true,

(b) Inductive Case: if s.n/ is true then s.nC 1/ is true,

then s.n/ is true for all elements of N.

Proof by transfinite induction

Transfinite induction is a genuinely infinite form of induction. Or-

dinary mathematical induction does prove an infinite number of state-

ments, one for each natural number. But each of those proofs involves

only a finite number of steps. Transfinite induction, on the other hand,

can prove families of statements in which it takes an infinite number

of steps to reach some of the statements. For example, to reach the

statement s.!/, where ! is the last element in the well-ordered set

W defined above, it is necessary to pass through the infinite list of

statements: s.1/; s.2/; s.3/ . . . coming before it.

The well-ordering principle

To construct the hyperreals, we make this assumption:

The Well-Ordering Principle. Every set can be well-ordered.

Informally, one can defend the well-ordering principle as follows. Given

a set S , obviously one can choose any element, say x1, to be the least. After

removing x1 from S , another element, x2, can be chosen to be x1’s succes-

sor. Continuing in this way, removing elements and choosing, eventually S

becomes well-ordered.

For finite sets this is fine, but for infinite sets there is no basis for making

the infinite number of choices needed to complete the process without fur-
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ther set theory assumptions. This doesn’t prove the well-ordering principle,

but only makes it more plausible—perhaps.

The well-ordering principle plays an important role in classical math-

ematics, particularly in abstract algebra and analysis. It tends to be used

in several equivalent forms, most notably the axiom of choice and Zorn’s

lemma. In any form, it is controversial. Regarded by most mathematicians

as an important mathematical principle, it tends to be used sparingly. It can-

not be deduced from the usual axioms of set theory. We must assume it to

prove certain theorems. The existence of an ultrafilter is an example.

To a constructivist (see Chapter 5) the well-ordering principle is unac-

ceptable. It assumes into existence something that can never be constructed.

In this chapter we regard it as a fundamental assumption of mathematics to

be used as needed.

Problems

12) Prove the corollary.

(Hint: Two proofs are possible. A direct proof can be based on the fact

that N is well-ordered, imitating the proof of the principle of transcen-

dental induction. Ordinary induction can also be deduced from tran-

scendental induction by showing that the inductive property is equiva-

lent, for N, to the two conditions of ordinary induction.)

13) Well-order the integers.

14) Prove that every countably infinite set can be well-ordered.

(Hint: What is the definition of countably infinite?)

15) The reals are not well-ordered by their usual order. To well-order the

reals requires an unusual order relation. Describe, as best you can, what

this order might be like.

Ultrafilters exist!

Recall that an ultrafilter is a collection U of subsets of N with the four

properties:

(a) U contains the cofinite sets, but no finite set,

(b) if A and B are in U, then A\ B is in U,

(c) if A is in U and B contains A, then B is in U,

(d) for every subset A of N, either A or the complement of A is in U.
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It will be useful to have a name for a collection P of subsets of N that

is not an ultrafilter, but satisfies the first two properties:

(a) P contains the cofinite sets, but no finite set,

(b) if A and B are in P, then A \ B is in P.

Such a collection is called a prefilter. Prefilters exist; the cofinite sets are

an example.

Lemma 1 If a prefilter P satisfies (d), then P is an ultrafilter.

Lemma 1 says that the hard part of constructing an ultrafilter is satis-

fying (d). The next lemma shows how to start with a prefilter and take one

step forwards.

Lemma 2 Let P be a prefilter and let A be a subset of N such that

neitherA nor the complement of A is in P. Then there exists a prefilter PC

containing the sets of P plus either A or the complement of A.

Theorem 6.7.2. There exists an ultrafilter.

Proof. (By transfinite induction) The essence of the proof is showing that

it is possible to take an infinite number of steps (such as the one described

in Lemma 2) starting with a prefilter, such as the cofinite sets, adding addi-

tional sets one at a time, ending with an ultrafilter.

Let S be the set of all subsets of N. Well-order S. We have just well-

ordered an uncountably infinite set.

Let the well-ordering be represented by the symbol H). We will con-

struct, for each set A in S , a prefilter P.A/ such that (a) P.A/ contains A

or the complement of A, and (b) if B H) A, then P.B/ is contained in

P.A/. The proof is by transfinite induction on S .

Let s.A/ be the statement “The prefilter P.A/ exists.” To prove s.A/

we must construct P.A/, but we get to assume that P.B/ exists for B H)
A. There are two cases. If A has an immediate predecessor, then Lemma

2 shows how to extend P.B/ to P.A/ in one step. Otherwise, A has no

immediate predecessor. In this case, let P be the union of all P.B/ for

B H) A. Then P is a prefilter (according to problem 18) and applying the

process of Lemma 2 gives us P.A/.

Transfinite induction now implies that s.A/ is true for all subsets A of

N. If we let U be the union of the prefilters P.A/ for all subsetsA of N, then

U is a prefilter (see problem 18) satisfying property (d). Lemma 1 implies

U is an ultrafilter.
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Problems

16) Prove Lemma 1.

(Hint: Try proof by contradiction.)

17) Prove Lemma 2.

(Hint: Show that eitherA orA complement has non-empty intersection

with all the sets in P. Having established this, suppose, for simplicity,

that this set is A. Then set

PC D P [ fA\ BjB 2 Pg

and prove that PC is a prefilter.)

18) Prove for any A in S , that the union of all P.B/, where B H) A, is

a prefilter. Complete the proof that an ultrafilter exists by proving that

the union of all the prefilters P.A/ is a prefilter.

19) Prove that every vector space has a basis.

(Hint: Well-order the elements of the vector space and use transfinite

induction.)

Do we really need an ultrafilter?

An ultrafilter is a peculiar mathematical object, and the principles upon

which its existence is based, transfinite induction and well-ordering, are

powerful tools, capable of proving strange results. To emphasize this point,

here is a paradoxical theorem that can be proven only using transfinite in-

duction.

Theorem 6.7.3. (The Banach-Tarski paradox). Let S be a solid three-

dimensional sphere. Then S can be partitioned into five sets T1; T2; T3; T4;

and T5 in such a way that T1 and T2 can be assembled into a solid sphere

S1. Likewise sets T3 and T4 can be assembled into a solid sphere S2. Both

spheres S1 and S2 are identical to the original sphere S .

At first this result is difficult to grasp. It appears that it is possible to cre-

ate something out of nothing. Starting with one sphere, two spheres equal

to the first are constructed by cutting and pasting alone. If this construction

actually could be carried out with real spheres, think of the benefits for hu-

manity! As one might suspect, the construction whose existence is asserted
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by the Banach-Tarski paradox cannot be accomplished physically. For one

thing, the pieces T1; T2, and so forth, are too complicated to cut out of the

sphere. Even if the physical act of cutting were possible, one couldn’t even

begin because the instructions how to do it are not known. No one knows

the dimensions of the pieces, or what points of the sphere S go into which

piece. The proof of existence of the pieces, like the construction of an ultra-

filter, uses transfinite induction and the well-ordering principle, and gives

no way to find the pieces it claims exist.

The Banach-Tarski paradox is paradoxical because it contradicts intu-

itive ideas about volume and solids. There is no contradiction, however. The

usual mathematical concepts of size and volume don’t apply to sets of the

complexity created when proving Theorem 6.7.3.

To prove the existence of the hyperreals, we used an ultrafilter. We

might hope that the hyperreals could be constructed and their properties

established without using such complicated and controversial means. How-

ever, the next theorem shows that the existence of an ultrafilter is essential

to the existence of the hyperreals.

Theorem 6.7.4. A hyperreal number system, H, satisfying the transfer prin-

ciple exists if and only if there is an ultrafilter.

Proof. We already know that the existence of an ultrafilter implies the ex-

istence of a hyperreal number system satisfying the transfer principle. Con-

versely, assume that H exists. Using results about real integers transferred

to H, it follows (by problem 20) that H contains an infinite natural number

J. Let A be a subset of the natural numbers, and let RA.n/ be the relation

that is true if and only if n is in A. By definition H is a structure for L.

Therefore RA applies to H. If we let

U D fAjA is a subset of N and RA.J/ is trueg;

then U is an ultrafilter (see problem 21). In other words, for every subset A

of N, there is a version of A in H, and those A whose H-versions contain

J constitute an ultrafilter.

Problems

20) Using the transfer principle alone, prove that a hyperreal number sys-

tem satisfying the transfer principle contains an infinite natural num-

ber.
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21) Complete the proof of Theorem 6.7.4 by proving that U is an ultrafilter.

22) Show that the cofinite sets satisfy all the properties required of an ul-

trafilter but one.

23) We have gone to all this trouble (learning about well-ordered sets in

order to use transfinite induction in order to construct an ultrafilter

in order to construct the hyperreals) for the sake of only one measly

property! What works and what doesn’t work if we try to construct the

hyperreals using the cofinite sets and forget about an ultrafilter?

6.8 A Final Word about the Hyperreals

The hyperreals embody the eternal fascination of the infinite. They also jus-

tify the use of infinitely large and infinitely small numbers for mathemat-

ical computation. Since their discovery, around 1961, by Abraham Robin-

son (1918–1974), the hyperreals have been the subject of research and em-

ployed as a tool in other branches of mathematics.

The impact on the calculus and elsewhere of this newly legitimized

use of infinitesimals has been far from revolutionary, however. Due to their

close connection with the reals (via the transfer principle), anything proven

about the reals using hyperreals can also be proven without them. As far as

the theory of the reals alone is concerned, nothing new arises through use

of hyperreals. On one hand, this is reassuring; it confirms the soundness of

centuries of intuitive mathematical work with infinitesimals. On the other

hand, it does tend to make the development of the hyperreal calculus less

exciting. New results have been discovered using hyperreals, nevertheless,

and their proofs subsequently translated into more conventional terms.

References for the hyperreals: This chapter is based on [I2]. For more

depth, see [I3], which also has an excellent annotated bibliography.
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The Surreals

Introduction

The surreals, like the hyperreals, are a relatively recent invention, discov-

ered in the early 1970s by John H. Conway. Like the hyperreals, the surreals

contain infinitesimally small numbers and infinitely large numbers. Unlike

the hyperreals, the surreals are not a structure for the reals. Thus it is not

true that every function and relation on the reals has an extension to or a

meaning for the surreals.

A spirit of playfulness animates the surreals. They might be called hip-

pie numbers after the “flower” children, who dropped out of society and

lived communally in the Vietnam War period when the surreals were dis-

covered.

A distinctive feature of the surreals is that they are part of the theory

of combinatorial games. Within the world of combinatorial games, surreal

numbers constitute a reference set of games used to evaluate positions in

other games. The connection between the surreals and games leads to a

proof technique unique to the surreals: prove a theorem by playing a game.

Surreal proofs are constructive in spirit, although dependent on a strong

form of induction.

Another feature of the surreals is that while constructing them, all other

numbers are constructed too. The number systems we’ve considered so far

have taken the rationals for granted. The surreals start with nothing. Not

even the integers are needed.

171
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7.1 Combinatorial Games

Combinatorial games are games between two opponents, traditionallycalled

Left and Right, who take turns changing the position of the game. Some of

these games are played on a board with physical pieces of some sort; others

are purely mental. It is a central insight of the theory that to describe the po-

sition of a game all that is necessary is to describe what positions can result

from a move by Left (called the left options of the position), and what po-

sitions can result from a move by Right (called the right options). In other

words, the mathematical nature of a position X is completely determined

by the lists of its left and right options, which themselves are positions.

If X is a position, we write

X D f: : : XL : : : j : : : XR : : : g;

so that XL stands for a typical left option and XR stands for a typical right

option. For example, if X is a position from which Left can move to A;B

or C , while Right can move toD and E , we have

X D fA;B; C jD;Eg:

What actually happens in this position depends on whose move it is.

A game ends when the player whose turn it is cannot play. That player

is declared the loser; the other is the winner. At this point the position is

either

X D fXLj g Right’s turn and Left wins,

or

X D f jXRg Left’s turn and Right wins,

and either the set of left options is empty or the set of right options is empty.

As we learn later, the positions that take these forms are examples of surreal

numbers, so we can use the number of the final position to evaluate the

game. When Left wins, the value is positive or zero; when Right wins, the

value is negative or zero.

To make proofs work, it is necessary to assume that in no game is there

an infinite sequence of positions each of which is an option of its predeces-

sor. In particular, as follows immediately from this assumption, no combi-

natorial game can go on forever.

Every game has an initial position, the position from which it is agreed

that play starts. This position contains complete information on the whole

game, since its options are the permitted second positions in the game,
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whose options in turn are the possible third positions in the game, and so on.

Therefore, we identify each game with its initial position. Conversely, ev-

ery position defines a game, the game played by starting from that position.

Thus, the terms ‘game’ and ‘position’ are interchangeable. This discussion

is summarized as follows:

Definition. If L and R are two lists of games, thenX D fLjRg is a com-

binatorial game, provided that X contains no infinite sequence of games

each of which is an option of its predecessor. The games L are the left

options of X and the games R are the right options of X .

The first games

The definition of combinatorial game is recursive. A game requires lists of

the left and right options which must be games already defined. How does

this start? What’s the base case? Either L or R (or both) can be the empty

list of games. Thus the first game to be defined is the game zero:

0 D f j g;

with no move for Left or for Right.

We regard the game 0 as defined on day 0. On the next day, day 1, the

sets L and R of left and right options can either be empty or contain 0, and

so on day 1, three games are defined:

1 D f0j g;�1 D f j0g; and � D f0j0g:

As we see later, 1 and �1 are numbers, but � is not.

Concerning the play of these games, it is essential to quote Conway [J4]:

The simplest game of all is the Endgame 0. I courteously offer you

the first move in this game, and call upon you to make it. You lose, of

course, because 0 is defined as the game in which it is never legal to

make a move.

In the game 1 D f0j g, there is a legal move for Left, which ends the

game, but at no time is there any legal move for Right. If I play Left,

and you Right, and you have first move again (only fair, as you lost the

previous game) you will lose again, being unable to move even from

the initial position. To demonstrate my skill, I shall now start from the

same position, make my move to 0, and call upon you to make yours.

Of course you are beginning to suspect that Left always wins, so for

our next game, �1, you may play as Left and I as Right! For the last of



“master” — 2012/6/18 — 10:53 — page 174 — #184
i

i

i

i

i

i

i

i
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our examples, the new game � D f0j0g, you may play whichever role

you wish, provided that for this privilege you allow me to play first.

The reader will have realized that:

—in the game 0, there is a winning strategy for the second player,

—in the game 1, there is a winning strategy for Left (whoever starts),

—in the game �1, there is a winning strategy for Right (ditto), and

—in the game �, there is a winning strategy for the first player.

It turns out that every combinatorial game fits into one of these four cate-

gories.

Meanwhile, on day 2 the following games (among others) are defined:

2 D f0; 1j g;�2 D f j0;�1g; 1=2D f0j1g;
" D f0j�g;#D f�j0g:

In general, every game is defined on a certain day and has for left and

right options older games, that is, games created on earlier days.

Proof by Infinite Descent

The assumption that no game contains an infinite sequence of

games of which each is an option of its predecessor justifies a kind

of proof by induction called proof by infinite descent. Thus let s.X/

be some statement that we wish to prove is true of all games X . Then

all we need prove is that

“if s.Y / holds for all options Y of X ,

then s.X/ holds.”

If this is established, then s.X/ must hold for all games. For if s.X/

fails for a game X0, then it must fail for some option X1 of X0 and

then for some option X2 of X1, and so on. This leads to an infinite

sequence of games each of which is an option of its predecessor. Since

this is impossible, s.X/ holds for all games.
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Problems

1) Let us say a set is nice if all its proper subsets are nice. What sets are

nice?

(Hint: Is the empty set nice?)

2) Let us define a game as easy if all its options are easy. What games are

easy?

3) Justify ordinary mathematical induction by using infinite descent.

(Hint: Use proof by contradiction.)

4) Can infinite descent be used to justify transfinite induction?

Examples of games

Combinatorial game are pure strategy games of finite length. Many com-

mon games are excluded because moves in a combinatorial game cannot be

made by chance (no dice or other random number generator is used), there

are no ties, and the game cannot last forever. Chess is out (ties are possi-

ble), as well as most popular board games (dice are used). There are many

interesting and difficult games, however, to which Conway’s theory applies.

For example, while overall the game of Go does not conform to Conway’s

theory (the winner is determined by a scoring system rather than whoever

moves last), Go strategy can be analyzed (see [J3]).

Here are a few sample games to which this theory applies directly and

which, in addition, have the advantage of being easily played with only

pencil and paper.

L

RL L L

L

L

R

R

R

Figure 7.1.1. A position in Hackenbush.
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Hackenbush. A Hackenbush position consists of a ground line or frame

attached to which are a number of line figures. An example is in Figure

7.1.1.

A move by either Left or Right consists of removing (or hacking) a line.

When a line is hacked, other lines which are thereby disconnected from the

ground are also removed. Lines labeledLmay only be hacked by Left; lines

labeled R may only be hacked by Right; unlabeled lines may be hacked by

either. Last player to move wins.

Dominos (or CrossScram). A position in this game is a portion of a

chess or checker board. An example is in Figure 7.1.2. A move consists of

the placement of a domino on the board. Left places dominos horizontally;

Right vertically.

Figure 7.1.2. A position in Dominos.

Nim. A position consists of some piles of coins (see Figure 7.1.3). To

move, a player removes any number of coins from one pile. This game is

historically important as it was one of the first games to be given a complete

theory.

Figure 7.1.3. A position in Nim.

Col. A position in Col is a graph. A graph is a set of dots (called ver-

texes) some of which are connected by lines (called edges). An example is

in Figure 7.1.4. The players take turns circling a vertex, each using a dif-

ferent mark. The rule is that adjacent (i.e., connected) vertexes may not be

marked by the same player.
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Left

Right

Figure 7.1.4. A Col position.

Snort. Snort is played like Col, but uses the rule that two adjacent ver-

texes may only be marked by the same player.

Problems

(Suggestion: The first time through this book, choose two games to study

and ignore the others. One should be Hackenbush.)

5) Which of the games: 0; 1;�1; 2;�2; 1=2;�1=2;�;" and # are realiz-

able as Hackenbush positions?

6) Which of the games listed in problem 5 can be Domino positions?

7) Which of the games listed in problem 5 can be Nim positions?

8) Which of the games listed in problem 5 can be Col positions?

9) Which of the games listed in problem 5 can be Snort positions?

Summary

Combinatorial games are games of position in which each player, Left and

Right, has a set of options or moves:

X D f: : : XL : : : j : : : XR : : : g:

Combinatorial games are created day by day starting only with the empty

set. They are games of pure strategy that cannot go on forever.
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7.2 The Preferential Ordering of Games

Conway created an order relation for games that expresses the concept of

preference or advantage. If X � Y in this order, then the game X offers

some benefit or advantage for Left over playing game Y . Naturally Right

then prefers Y to X . The problem is to express this in terms of left and

right’s options in X and in Y . Here is Conway’s definition:

Definition. If X and Y are games, we say that Left prefers X to Y (or

Right prefers Y to X) and write X � Y if it never happens that

Y L � X or Y � XR;

where Y L represents any left option of Y and XR represents any right op-

tion of X .

The order of X and Y is thus determined recursively by comparing X

with Y ’s options and Y with X’s options. This recursion is governed by

two principles. Imagine the games being created day by day. As each new

game X is created, its order (in comparison with a game Y already cre-

ated) is determined in part by comparisons already established on earlier

days between the already created optionsXR of the new game and the ear-

lier created game Y . This is the question whether Y � XR. Eventually,

all questions of order (including, whether Y L � X) are settled by argu-

ments using the empty set since if you play any game long enough either

the set of left options or the set of right options becomes empty. Therefore

it is important to realize that any statement about the empty set is true if it

makes no assumption that the empty set contains anything. In particular, all

statements using only universal quantification are true of the empty set.

Tactically, X � Y says two natural things about X and Y . First, even

if Left is given the first move in Y (therefore playing in some Y L), Left

prefers to play inX . Secondly, Left will not prefer Y even if forced to give

Right the first move in X and therefore have to play in some XR.

Operationally, the definition of order turns the single inequalityX � Y

into the negation of two inequalities in which the roles of X and Y are

switched and each in turn is replaced by an option. This observation is use-

ful while mechanically checking order relations.

We also define

X � Y if Y � X; — X is preferred to Y by Right

X D Y if X � Y and X � Y; — X equals Y
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and

X jjY if neitherX � Y norX � Y: — X and Y are confused

Equality is therefore a defined concept for games. We prove shortly that

it is an equivalence relation. As with other situations where equality is de-

fined, we must distinguish between equality and identity. Two games, X

and Y , are identical (written X � Y ) if they have exactly the same left

and right options. Equal games need not be identical, although, as we show

eventually, equal games always have the same outcome and the same value.

The relation jj is needed because the ordering of games does not satisfy

the trichotomy law. This is not a linear order. The relation X jjY indicates

that X and Y are incomparable or confused by the order.

Problems

1) Establish these relations:

(a) 0 � 0

(b) 1 � 0

(c) 0 � �1
(d) 2 � 1 � 1=2 � 0

(Example: 1 � �1. By definition this is true if Left prefers no left op-

tion of �1 to 1 and never prefers �1 to any right option of 1. We check

first that not �1L � 1. This is true because �1 has no left options.

Similarly not �1 > 1R because 1 has no right options.)

2) Establish that the following relations are false:

(a) 0 � 1

(b) 0 � 1=2

(c) 1=2 � 1

(d) 0 � �
(e) � � 0

(Example: not �1 � 1. By definition this is true if either Left prefers a

left option of 1 to �1 or prefers 1 to a right option of �1. In this case

both are true. 0 is a left option of 1 and according to Problem 1(a),

0 � �1. Similarly, 0 is a right option of �1 and 1 � 0 by Problem

1(b).)



“master” — 2012/6/18 — 10:53 — page 180 — #190
i

i

i

i

i

i

i

i

180 7. The Surreals

3) Establish these equalities:

(a) 1 D f�1; 0j g
(b) 2 D f 1j g D f�1; 1j g D f�1; 0; 1j g

4) Establish these relations:

(a) 1 � �
(b) �1 � �
(c) �jj0

Equality of games is an equivalence relation

This follows immediately if we prove that the ordering of games is transi-

tive:

Theorem 7.2.1. The order relation � is transitive.

Proof. (By infinite descent) Suppose that X � Y and Y � Z. This means

that it is never true that

Y L � X or Y � XR or ZL � Y or Z � Y R:

Our goal is to prove that X � Z. That is, we want to show that it is never

true that either

ZL � X or Z � XR :

We first prove the first. ThatZL appears here suggests that we use induction

onZ. This means that we assume that the result is true for any option ofZ.

Thus we assume that � is transitive for the options of Z, in particular for

ZL.

On top of this we use proof by contradiction. Suppose, contrary to what

we want to prove, that it is true that

ZL � X;

for some left optionZL of Z. Combining this with the given fact that X �
Y and using the induction assumption, we conclude that

ZL � Y:

This contradicts the given fact that ZL � Y never happens. Therefore the

assumptionZL � X must be false. A similar proof (using induction on X)

establishes that it is never true that Z � XR .
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Problems

5) Complete the proof of Theorem 7.2.1 by proving inductively that it is

never true that Z � XR.

6) For all games X , prove that

(a) it is never true that X � XR,

(b) it is never true that XL � X ,

(c) X � X .

(Hint: Prove all three statements simultaneously by infinite descent.)

(Example: Proof of (a). Assume that (a) � (c) are all true for the options

of X . Now (a) says not .Y � XR/, which by definition means that

either XRL � X or XR � XR. By induction assumption (c), the

second of these is true for the optionXR of X . Thus (c) for an option

of X proves (a) for X itself.

7) Prove that X D X for all games.

8) Prove that equality of games is an equivalence relation.

Order predicts the winner of a game

The next theorem connects order with game playing strategy.

Theorem 7.2.2. (The classification theorem). Let X be any game. Then

(a) X > 0 (X is positive, meaning X � 0 but X does not equal 0) if and

only if there is a winning strategy for Left,

(b) X < 0 (X is negative, meaning X � 0 but X does not equal 0) if and

only if there is a winning strategy for Right,

(c) X D 0 (X equals the zero game) if and only if there is a winning

strategy for the second player, and

(d) X jj0 (X is fuzzy) if and only if there is a winning strategy for the first

player.
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Proof. (By simultaneous infinite descent) We illustrate by proving (a).

Proof of (a): Let X be a positive game. This means that X � 0 and not

.0 � X/. Since X � 0, it follows that

not .0L � X/ or not .0 � XR/:

But there is no option 0L, so, in effect, all this tells us is that

not .0 � XR/: (1)

Next, since not .0 � X/, it follows that either

XL � 0;

for some optionXL or

X � 0R;

for some option 0R. But there is no option 0R, so

XL � 0; (2)

for some optionXL.

According to (1), no right option ofX is either equal to or less than zero.

In other words every XR is either positive or fuzzy. Inductively applying

the conclusion of the theorem to XR, it follows that in every XR there is

either a winning strategy for Left or a winning strategy for the first player.

Suppose that we now play the game X as Left but Right has the first move.

Right moves first and picks an option XR . As Left we will make the first

move in this option. But we have just established that inXR there is either a

winning strategy for Left or a winning strategy for the first player. As Left,

we have a winning strategy in XR. Thus Left has a winning strategy in the

game X if Right goes first.

Pursuing the information given by (2), there is a left option XL that

is either positive or equal to zero. Applying the conclusion of the theorem

inductively to XL, we conclude that XL has a winning strategy for Left,

or a winning strategy for the second player. Suppose that we now play the

game X as Left and have first move. If we’re smart, we’ll pick the option

XL. Right makes the first move in this option and, as Left, we make the

second. But in XL there is either a winning strategy for left or a winning

strategy for the second player. As Left, we have a winning strategy in the

game XL. Thus Left has a winning strategy in the game X if Left goes first.
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Putting together the conclusions of the last two paragraphs, Left has a

winning strategy inX no matter who goes first.

This argument can be reversed in order to deduce that if Left has a win-

ning strategy in X , then X is a positive game.

Corollary. Every game X either has a winning strategy for the first player,

a winning strategy for the second player, a winning strategy for Left, or a

winning strategy for Right.

Problems

9) Classify these Hackenbush positions as positive, negative, zero, or fuzzy.

(a) (b) (c) (d)

(e) (f) (g) (h)

R

L

R LR

R L

L

L

R

R

L

L

R
RL

R

L

R

R L

L

L

R

R
L

RL

(Hint: Play the games and see who wins.)

(Examples: In the game
L R

, each player has only one move so

the second player always wins. This is a zero game.

In the game
L R

, the first player wins by hacking the unlabeled

edge. This leaves the game in the position of the previous example,

where the first player, now playing second, wins. This game is fuzzy.

Notice how you build knowledge of a Hackenbush game edge by edge.

10) Let X D fA;B; C; : : : jD;E; F; : : : g and suppose thatA � B . ThenA

is called a dominated option (Left will preferB ). Similarly ifD � E ,

then E is dominated (Right will prefer D). Prove that dominated op-

tions can be eliminated, that isX equals the game fB; C; : : : jD;F; : : : g.
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11) Classify these Col positions as positive, negative, zero, or fuzzy.

(a) (b)

(c) (d) (e)

12) Classify the positions in problem 11 as positions in Snort.

13) Classify these Dominos positions as positive, negative, zero, or fuzzy.

(a) (b) (c)

14) Complete the proof of the classification theorem (a) by showing that

X is positive if Left has a winning strategy.

15) Prove the classification theorem (c).

Summary

Combinatorial games have an ordering by preference in which X � Y

means that the game X offers some advantage to Left. Using this order,

games can be classified into four categories depending on whether Left,

Right, the first player, or the second player has a winning strategy.

7.3 The Arithmetic of Games

Addition of games

Addition of games has to do with playing several games at once. The defi-

nition makes this precise.
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Definition. If X and Y are games, then the sum X C Y is the game

X C Y D fXL C Y; X C Y LjXR C Y; X C Y Rg:

The options ofXCY describe how simultaneous play ofX and Y goes.

With each turn, the active player moves inX or in Y but not in both. If Left

starts, the legal moves are either to a left option of X (leaving the game Y

alone) or to a left option of Y (leaving the game X alone). In the first case,

Right must either respond to Left’s move in X or begin play in Y , that is,

right has been left with the position XL C Y . In the second case (if Left

moves in Y ), the position left for Right is the sum of X (left alone) and

some left option of Y , that is X C Y L.

This explains the left options in X C Y . A similar discussion justifies

the definition of the right options of X C Y . The sum ends, as usual, when

a player can’t move, that is, has no moves in either X or Y .

Proof by playing the game

The classification theorem creates a proof technique unique to

Conway’s theory. Equations and inequalities can be proved, often

rather easily, by playing a game.

Suppose we wish to verify an equation involving games and sums

of games. We first move all terms of the equation to one side of the

equals sign so that the proof amounts to proving that a certain game

equals zero. Then play the game. The game is the zero game if the

second player has a winning strategy. If so, the equation is proven.

Problems

1) Verify these identities.

(a) 0C 0 � 0

(b) 1C 0 � 1

(c) � C 0 � �
(d) 1C 1 � 2
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2) Prove these by playing the game.

(a) 2C .�1/ � 0

(b) 2C .�1/C .�1/ D 0

(c) � C � D 0

(d) 1=2C 1=2C .�1/ D 0

(Example: Prove that 1C .�1/ D 0. Since 1 D f0j g and �1 D f j0g,

each player can move in only one of these games. The second player,

Left or Right, must make the last move and so wins. This proves that

1C .�1/ is a zero game.)

3) Prove that X C 0 � X for all games X .

4) If Y is a zero game, use a game playing argument to show that the

outcome of the game X C Y is the same as the outcome of the game

X .

5) Addition of games appears naturally in Nim, where every position is

the sum of positions based on a single heap of coins. Under what cir-

cumstances do examples of addition arise in Hackenbush, Dominos,

Col, and Snort.

Properties of addition

The commutative and associative laws are more or less obvious. Note that

they are identities, not just equalities.

Theorem 7.3.1. For all games X; Y , and Z;X C Y � Y C X , and .X C
Y /CZ � X C .Y CZ/.

Theorem 7.3.2. For all games X; Y , and Z, if X � 0 and Y � 0, then

X C Y � 0.

Problems

6) Prove Theorem 7.3.1.

7) Prove Theorem 7.3.2.

(Note: At least two proofs are possible: one using infinite descent and

a direct proof based on playing the game X C Y . Find both.)
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Negation

A game is impartial if Left and Right have the same options in every posi-

tion. Otherwise the game is partisan. Nim, for example, is impartial; Domi-

nos is partizan. Starting with a partizan game, we get a different game if we

systematically switch the options of Left and Right throughout. This pro-

duces the negative of the game.

Definition. For any game X , the negative ofX (written �X) is the game

defined by

�X D f�XRj � XLg:

The following theorems outline familiar properties of negation.

Theorem 7.3.3. For any games X and Y

(a) �.X C Y / � �X C �Y;

(b) �.�X/ � X , and

(c) X � Y if and only if �Y � �X .

Theorem 7.3.4. For any games X and Y; X � Y if and only if X �Y � 0.

Theorem 7.3.5. For any game X;X C .�X/ D 0.

Thus, �X is an additive inverse for X .

Problems

8) Prove Theorem 7.3.3.

9) Prove Theorem 7.3.4.

(Note: Find two proofs, one by infinite descent and another by playing

the game .X � Y /.)

10) Prove Theorem 7.3.5.

(Note: Find three proofs: one by infinite descent, one by playing a

game, and one by applying a theorem already proven.)

11) Prove that “equals added to equals are equal” is true of the arithmetic

of games, that is, ifX D Y and W D Z, thenX CW D Y CZ.

12) Explain why impartial games are their own negatives. Conclude that

an impartial game is either fuzzy or zero.
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13) Define

1� D f0j0g; �2 D f0; �1j0; �1g; and � 3 D f0; �1; �2j0; �1;�2g;

and more generally

f�n D f0; �1; : : : ; �.n� 1/j0; �1; : : : ; �.n � 1/g:

Prove that the sum of two games of the form �n equals another of the

same form.

Summary

Combinatorial games have an order relation and an addition operation that

satisfy most of the usual axioms of order and addition: order is transitive

and reflexive, addition is associative and commutative; there is a zero game

(additive identity) and all games have an additive inverse. However, some

pairs of games are not comparable so the ordering of games is only a partial

order.

7.4 The Surreal Numbers

The surreal numbers constitute a special class of combinatorial games. They

form an ordered field that is an extension of the real numbers.

Conway’s theory resembles Dedekind’s theory of the reals. Recall (from

Chapter 2) that Dedekind defined a real number as a cut. A cut divides the

rational numbers into two sets, one containing numbers greater than all the

numbers in the other, the other containing the rational numbers less than

all the numbers in the first. The surreal numbers generalize this idea; every

surreal is defined by a cut not among a fixed set of numbers but among the

surreal numbers already created, a class that is constantly evolving.

Definition. A surreal number is a game x in which

(a) all the options of x are numbers, and

(b) no inequality of the type xL � xR occurs, that is, no left option of x is

greater than or equal to a right option.

The set of all surreal numbers will be notated S.
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This definition assumes that some surreal numbers are already defined.

There is no particular problem about this. Like a game, each number is

defined on a certain day. The difference between numbers and games is

that numbers only have other numbers as left and right options, and no

left option can be greater than or equal to any right option. Proofs about

numbers use infinite descent as do proofs about games.

On day zero, the surreal number 0 D f j g is born. Parts (a) and (b) of

the definition of surreal number are trivially satisfied. Other examples of

numbers born in the first few days are

1 D f0j g
�1 D f j0g
1=2 D f0j1g

2 D f0; 1j g
�2 D f j0;�1g
1=4 D f0j1=2g

3 D f0; 1; 2j g
�3 D f j0;�1;�2g
3=4 D f 1=2j1g

and

� 1=2 D f�1j0g � 1=4 D f�1=2j0g � 3=4 D f�1j � 1=2g:

In general, the integers, positive and negative, are defined by

n D f0; 1; : : : ; .n� 1/j g;

and

�n D f j0;�1;�2; : : : ;�.n� 1/g;

and are defined on day n. It is fairly easy to show that their addition is the

same as the usual addition of integers (see problem 1). Meanwhile, let’s

verify that the operations we have defined for games apply to numbers.

Theorem 7.4.1. (a) If x is a surreal number, then so is �x,

(b) If x and y are numbers, then so is x C y,

(c) If x and y are numbers, then either x � y or x � y.

Thus the surreal numbers are closed under addition and formation of

additive inverses. Furthermore, it follows from (c) that they satisfy the tri-

chotomy law and hence are linearly ordered (see problem 3).

Problems

1) Verify that 2C 2 D 4; 2C 3 D 5, etc.

2) Prove parts a and b of Theorem 7.4.1.



“master” — 2012/6/18 — 10:53 — page 190 — #200
i

i

i

i

i

i

i

i

190 7. The Surreals

3) Prove that the surreal numbers satisfy the trichotomy law.

4) Prove that if x is a number, then

xL < x < xR:

5) Find all surreal numbers born on days 0, 1, 2 and 3. The birth of these

numbers follows a pattern. Find it.

Surreal multiplication

Multiplication of surreals is considerably more complicated than addition,

because it does not have a natural extension to games. Surreal multiplication

is for surreal numbers only.

To introduce multiplication, begin by reconsidering addition. Let x and

y be numbers. In order that x C y be a number, the left options of x C y

must be numbers that are smaller than x C y, and the right options must be

numbers that are larger than x C y. This suggests that the numbers

xL C y and x C yL

be taken as left options for x C y. They are smaller than x C y since xL is

smaller than x and yL is smaller than y. In a similar fashion the right options

of x C y could be

xR C y and x C yR:

This motivates the definition

x C y D fxL C y; x C yLjxR C y; x C yRg;

which works, inductively, because each option involves at least one number

that is older than x C y, i.e., a number born before x C y.

One is tempted to try the same idea for multiplication, defining

xy D fxLy; xyLjxRy; xyRg:

This doesn’t work (see problem 5). A more fruitful idea is to observe that

since

.x � xL/ > 0 and .y � yL/ > 0;

we can deduce

.x � xL/.y � yL/ > 0;
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so that

xy > xLy C xyL � xLyL:

This last quantity is a suitable left option for xy because the products in it

all involve at least one older number.

Definition. If x and y are numbers, let

xy D fxLy C xyL � xLyL; xRy C xyR � xRyR

j xLy C xyR � xLyR; xRy C xyL � xRyLg:

Problems

6) What happens if multiplication is defined

xy D fxLy; xyLjxRy; xyRg:

(Hint: What is multiplication by zero?)

7) Calculate these products using the definition:

(a) 0 � 1
(b) 1 � 1
(c) 1 � 2
(d) 2 � 2
(e) 2 � 1=2

Properties of multiplication

We don’t yet know that xy is a number. It is a game, however, so we can use

results already established for games to prove properties of multiplication:

Theorem 7.4.2. For all surreal numbers x; y and z

(a) x0 � 0

(b) x1 � x

(c) xy � yx

(d) .�x/y � x.�y/ � �.xy/

(e) .x C y/z D xz C yz

(f) .xy/z D x.yz/
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192 7. The Surreals

Now we can prove that the surreal numbers are closed under multipli-

cation.

Theorem 7.4.3. If x and y are surreal numbers, then xy is a surreal number.

If x and y are positive numbers then xy is positive.

Problems

8) Prove Theorem 7.4.2.

9) Prove that if x1 D x2, then x1y D x2y:

10) Prove that if x1 D x2 or y1 D y2, then x1y2 C x2y1 D x1y1 C x2y2

11) Prove that if x1 > x2 and y1 > y2, then x1y2 C x2y1 > x1y1 C x2y2

12) Prove that if x1 � x2 and y1 � y2, then x1y2 C x2y1 � x1y1 C x2y2

13) Prove Theorem 7.4.3.

Summary

The surreal numbers are a peculiar kind of game in which Left doesn’t pre-

fer it’s own options over Right’s and vice versa. Unlike games in general,

the surreal numbers possess a second arithmetic operation, multiplication,

with the usual algebraic properties of multiplication including a multiplica-

tive identity.

7.5 The Nature of the Surreal Line

One day at a time

Which numbers are surreal? We begin with a theorem that enables us to

identify new numbers as they are born.

Let

x D fa; b; c; : : : jd; e; f; : : : g;

where a; b; c; d; e; f; : : : , are all numbers and each left option is strictly less

than each right option. Then x is a number, but which? Following Conway,

let us say the number y fits if y is strictly greater than a; b; c; : : : and strictly

less than d; e; f; : : : ; that is, if

a; b; c; � � � < y < d; e; f; : : : :
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The numbers that fit are candidates for x. For example, on day 4, the number

x D f�1j2g appears. This has to be a number between �1 and 2. According

to the next theorem, x equals the oldest (i.e., earliest created) number that

fits. For f�1j2g; 0 (the oldest number there is) fits, so x D f�1j2g D 0:

Theorem 7.5.1. (The simplicity theorem). Let x D fxLjxRg be a number.

Suppose that the number z satisfies

xL < z < xR;

but no option of z (i.e., no ancestor of z) satisfies this condition. Then x D z.

The alternative forms of the numbers listed below, are all justified by

this theorem.

Day 0: 0 D f j g
Day 1: 1 D f0j g

�1 D f j0g
Day 2: 0 D f�1j1g — a new form of 0

1=2 D f0j1g D f�1; 0j1g
�1=2 D f�1j0g D f�1j0; 1g

2 D f1j g D f0; 1j g D f�1; 0; 1j g
D f�1; 1j g

�2 D f j � 1g D f j � 1; 0g
D f j � 1; 1g D f j � 1; 0; 1g

For example, f�1; 0j1g has to be a number between 0 and 1 (strictly greater

than 0 and strictly smaller than 1). The oldest such number is 1=2, therefore

f�1; 0j1g D 1=2.

The simplicity theorem also makes it easy to prove addition facts. For

example, by definition

1=2C 1=2 D f1=2C 0; 0C 1=2j1=2C 1; 1C 1=2g D f1=2j1C 1=2g:

By the simplicity theorem this is the oldest number strictly greater than 1=2

and strictly less than 1C 1=2. This is 1 because the only number older than

1 has to be 0, and 0 doesn’t fit. Thus 1=2C 1=2 D 1.
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194 7. The Surreals

On day 3 a lot of numbers are born but they are alternate forms of only a

few numbers. The simplicity theorem implies that each day only one num-

ber can be born between a neighboring pair of old numbers. Thus we get

Day 3 W 3 D f2j g D f1; 2j g D : : :

3=2 D f1j2g D f�1; 1j2g D : : :

3=4 D f1=2j1g D : : :

1=4 D f0j1=2g D : : :

�1=4 D f�1=2j0g D : : :

�3=4 D f�1j � 1=2g D : : :

�3=2 D f�2j � 1g D : : :

�3 D f j � 2g D : : :

Problems

1) Prove the simplicity theorem.

(Hint: Prove separately that x � z and x � z.)

2) Verify that the preceding list includes all new numbers born on day 3.

3) Verify that the numbers created on day 3 behave as their names indicate

they should. That is, show that

3 D 2C 1;

2.3=2/ D 3;

.3=4/C .3=4/ D 3=2;

1=4C 1=4 D 1=2;

and so forth.

4) On a finite numbered day, only one number can be born between two

adjacent numbers. Prove this.

5) On a finite numbered day, prove that the number of numbers created

is twice the number created the previous day. Show that all numbers

created on a finite day are dyadic rationals, that is, rational numbers

whose denominator is a power of 2.
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Day !

After all the finite numbered days have passed, there is a next day! Call it

!. On day !, many new numbers are born. One example is:

a D fall older numbers, y, such that 3y < 1

jall older numbers, y, such that 1 < 3yg:

Typical left options of a are 1=4; 5=16, and 21=64; typical right options are

1=2; 3=8. The simplicity theorem implies that a C a C a D 3; therefore,

a D 1=3. In a similar way, the other real numbers not yet born—rational

and irrational—including numbers like � and e—all arrive on day !.

The largest number born on day ! is the number J:

J D f0; 1; 2; 3; : : : j g;

which is larger than all previously created numbers. Also created is the num-

ber

�J D f j0;�1;�2;�3; : : :g:

The smallest positive number created on day ! is

f0j1; 1=2; 1=4; 1=8; : : :g;

which turns out to be 1=J.

These numbers are analogous to the infinitely large and infinitely small

hyperreals and note that the set of birthdays is the well-ordered set W D
f0; 1; 2; 3; : : : ; !g discussed in Chapter 6.

The creation of numbers does not stop here. On day ! C 1, more num-

bers are created such as

f0; 1; 2; 3; : : : ;Jj g;

and

f0; 1; 2; 3; : : : jJg:

And after day ! C 1, there is day ! C 2 and so on, and on.

Problems

6) Prove that a C a C a D 3.

7) Show that
p
2 is created on day !.
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196 7. The Surreals

8) Show that

f0; 1; 2; 3; : : : ;Jj g D J C 1;

and

f0; 1; 2; 3; : : : jJg D J � 1:

9) Show that

f0; 1; 2; 3; : : : jJ;J � 1g D J � 2;
and in general

f0; 1; 2; : : : jJ;J � 1;J � 2; : : : ;J � .n � 1/g D J � n:

10) On what day is

z D f0; 1; 2; : : : jJ;J � 1;J � 2; : : : g

created? Show that z D J=2.

Summary

The surreal numbers include the real numbers and certain infinite and in-

finitesimal numbers. Unlike the hyperreals, these numbers are not created

all at once but step-by-step, one day at a time. In order to reach infinitely

large and infinitesimal surreals, it is necessary to carry out this process to

infinity and beyond.

7.6 More Surreal Numbers

Completing the construction of the surreals

We have almost finished building the surreals. The missing ingredient is the

existence of multiplicative inverses. To begin we need a lemma.

Lemma. Each positive surreal x has a form in which 0 is a left option and

every other left option is positive.

Definition. Let x be a positive surreal. Let x be given in the form described

in the previous lemma. Then, the reciprocal of x is defined by setting

y D
�

0;
1C .xR � x/yL

xR
;
1C .xL � x/yR

xL
j

1C .xL � x/yL

xL
;
1C .xR � x/yR

xR

�

:
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Like other definitions in the theory of games, this is recursive: it sup-

poses that reciprocals have been already defined for the positive right and

left options of x. To start the induction, x must have at least one positive

right or left option. This means that x must not be zero, but, of course, zero

has no reciprocal.

Moreover, this definition is doubly recursive: it defines the options of

y not only in terms of options of x, but also in terms of previously created

options of y. The second induction is started by assuming that 0 is a left

option of y.

For example let x D 3 D f0; 1; 2jg, and consider the computation of

y D 1=3. According to the definition,

y D f0; : : : j : : : g;

where further right and left options of y remain to be calculated by the four

fractional formulas above. Each uses an option of y. So far there is only one

known option of y: the left option, yL D 0. As it happens, x only has left

options and, of the two fractional formulas that use yL, only one uses xL.

Thus we must start by using the formula

1C .xL � x/yL

xL
:

With yL D 0 and xL D 2, and assuming (inductively) that the inverse of

xL has already been constructed and is the familiar number 1=2, we get

y D
�

0; : : : j1C .2 � 3/0
2

; : : :

�

D
�

0; : : : j1
2
; : : :

�

:

We now have a right option yR D 1=2. Using this option and xL D 2 again

(we could use 1, but 2 is more interesting), we get

y D
(

0;
1C .2 � 3/1

2

2
; � � �

)

D
�

0;
1

4
; � � � j1

2
; � � �

�

:

Continuing in this way, we obtain further options for y:

y D
�

0;
1

4
;
5

16
;
21

64
; � � � j1

2
;
3

8
;
11

32
; � � �

�

:

The process never ends because y has an infinite number of left and right

options. Nevertheless, y satisfies the basic rule of games: there is no infinite
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198 7. The Surreals

sequence of positions of y each one an option of its predecessor. In fact, one

move in y by either right or left leads to a position with only a finite number

of options. Observe that the options we have calculated so far do appear to

approximate 1=3 better and better, both from above and from below.

Problems

1) Prove the Lemma.

(Hint: Use the result on dominated options in problem 10 of section

7.2.)

2) Extend the computation of 1=3 to obtain one more left and one more

right option.

3) Use the definition to calculate a few left and right options of the recip-

rocals of these numbers:

(a) 2 D f0; 1j g
(b) 5 D f0; 1; 2; 3; 4j g
(c) 1=2 D f0j1g:

(Hint: In each case, assume that reciprocals are already calculated for

the given options and that they behave as expected. Thus to calculate

1=5, assume the reciprocal of 3 is 1=3 and the reciprocal of 4 is 1=4.

4) What is the base case of the definition of multiplication?

The surreals are a field

The next theorem, whose proof is intricate, states that the reciprocals just

defined are multiplicative inverses.

Theorem 7.6.1. Let x be a positive surreal. Suppose that y is the reciprocal

of x. Then

(a) xyL < 1 < xyR

(b) y is a number

(c) .xy/L < 1 < .xy/R

(d) xy D 1

This allows us to complete the construction of the surreals.
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7.6. More Surreal Numbers 199

Theorem 7.6.2. The surreal numbers are a linearly ordered field contain-

ing the real numbers as well as infinite and infinitesimal numbers.

The proofs of Theorems 7.6.1 and 7.6.2 are complicated. See Conway

[J4] for the details.

Roots

Square roots are defined by a formula similar to that used for reciprocals:

let x be a positive surreal, then define

p
x D

(

p

xL;
x C yLyR

yL C yR
j
p

xR;
x C yLyL0

yL C yL0
;

x C yRyR0

yR C yR0

)

;

where some options of y require using two options that have been already

obtained (and chosen so that none of the denominators are zero). The pro-

cess is started by including the square roots of the options of x.

Problems

5) Compute some options for the square roots of 2 D f0; 1jg and 3 D
f0; 1; 2jg.

6) Prove that
p

x as defined is a surreal number

7) Prove that
p

x as defined is a square root of x.

Summary

In this section the final steps in the construction of the surreals were de-

scribed. The situation is analogous to the problems encountered in Dede-

kind’s construction of the reals (Chapter 2). Dedekind’s definition made

each real, like a surreal, a partition of numbers into two sets, a left set and

a right set. Dedekind’s partitions are called cuts, and the left and right sets

are subsets of the rationals. In Dedekind’s construction of the reals and in

Conway’s construction of the surreals, the fundamental properties of multi-

plication are difficult to verify.
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200 7. The Surreals

7.7 Analyzing Games with Numbers

As games, numbers are boring. Because xL < x < xR, a move by either

player in x decreases the value of the game for that player. Playing a surreal

number, neither player wants to move since each prefers the other’s options.

In a sum of games, G C x, if x is a number and G is not, each player tends

to move in G rather than in x. Numbers nevertheless appear automatically

in some games as the next problems show.

Problems

1) What numbers are represented by these Hackenbush positions:

(a)
L

R L
R

L L
R

R

L

RL
R

L

LL
R

L

R

L

R

L

(b) (c) (d) (e) (f)

2) Let P represent a Hackenbush position. Then the value of the position

f .P / as shown in the figure below depends only on the value of P .

P

P

P f(P)

Fill in the missing entries in this table:

value of P �4 �3 �2 �1 � 1
2

0 1
2

1 2 3

value of f .P / 1/2 1

3) A game of Hackenbush in which all edges are labeled L or R is called

partizan Hackenbush. In partizan Hackenbush every edge can be

hacked by Left, or Right, but not by both. Prove that every partizan

Hackenbush position is a number.

(Hint: Establish (simultaneously) the fact that a move by Left decreases

the value of the game and every move by Right increases the value of

the game.)

4) If x is a position in Col, then

XL C � � X � XR C �

Establish this by playing the games X �XL � � and XR C � �X .
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5) Prove that every position in Col is either a number or of the form

x C � D fxjxg;

where x is a number.

6) Evaluate these positions in Col.

(a) (b ) (c)

(d ) (e) (f)

Left

Right

7) Find examples of positions that are numbers in Dominos and Snort.

Stopping values

In the play of a game, if a player moves to a position that is a number, play

may as well stop because neither player wants to continue. This number can

be used to score the game.

Definition. Let G be a game. Any number that can arise as a position

during play of G is called a stopping value of G. The remaining positions

of G are active positions.

If numbers are used to score a game, Left will play so as to maximize the

position at which play stops; Right will play to minimize the score. These

maximum and minimum scores can be defined inductively as follows:

Definition. A game is called short if it has only a finite total number of

options. Let G be a short game. If G is not a number, set

L.G/ D max
GL

R.GL/;

(b) (c) (e)(d)(a)

(h)

(i)

(f)

(g)
Right

Left

Figure 7.7.1.
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and

R.G/ D min
GR

L.GR/:

If G is a number, set

L.G/ D R.G/ D G:

The quantities, L.G/ and R.G/, are called, respectively, the left stopping

value and the right stopping value of G.

The restriction to short games is needed so that the maximum and min-

imum exist. The left and right stopping values of G can now be used to

determine how G compares with all numbers.

Theorem 7.7.1. A short game G is greater than all numbers x < R.G/,

less than all numbers x > L.G/, and confused with numbers x such that

R.G/ < x < L.G/.

Problems

8) Prove Theorem 7.7.1.

(Hint: Use proof by induction to play G C x under the various condi-

tions described in the theorem.)

9) Find R.G/ and L.G/ for the Col positions in Figure 7.7.1.

10) Find R.G/ and L.G/ for the Snort positions in Figure 7.7.2.

RightLeft (h)(g)

(e)

(f)

(b)

(c)(a) (b)

Figure 7.7.2.

11) Find R.G/ and L.G/ for the Dominos positions in Figure 7.7.3.

12) Find R.G/ and L.G/ for the Hackenbush positions in Figure 7.7.4.

13) The game of Hex is played on an n � n square board of dots (Figure

7.7.5). Players take turns marking one dot as in Col and Snort. Left’s

goal is to create a path of dots from the top of the board to the bottom;
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.7.3.

(a) (b) (c) (d) (e) (f)

L

R

L

R R

LR

L

R
(g)

R

R

Figure 7.7.4.

Figure 7.7.5.

Right’s goal is to connect the vertical sides. Investigate this game using

the theory developed in this Chapter.

(Hint: Begin with small boards.)

Summary

Numbers appear in all combinatorial games as final positions, positions

where play of the game will likely stop because neither player wants to

continue. The surreals, therefore, help evaluate the endings of games. In

particular the left and right stopping values of a game delineate the range of

possible numerical outcomes of a game.
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204 7. The Surreals

7.8 A Final Word about the Surreals

The surreals were discovered in the early 1970’s by John Horton Conway

(1937–). Their major application is to the theory of combinatorial games.

Much more is known about the surreal numbers and combinatorial games

than is presented here. Combinatorial games are an active field of research,

connected not only with number systems, but also algorithmic complexity

and algebraic coding theory (see the bibliography [J5]).

General References for the surreals. Conway’s theory of games first

appeared in [J4], which this treatment largely follows. The multi-volume

set [J1] is more recent and more comprehensive. The surreals apart from

their connection with games are described in the novel [J7] and also in [J6].
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absolute value

and distance, 20

abstraction, 99

addition

of fractions, 9

of games, 184–186

of inequalitites, 20

of reals, 12

additive

identity, 13

inverse, 7, 13

algebra

fundamental theorem of, 66

of the complex numbers, 57

anti-symmetry, 162

applications

airplane wings, 76

animation, 94

automobile bodies, 76

submarine hulls, 76

theory of relativity, 86, 89

Archimedean field, 28

Archimedean property, 27, 31, 32,

34, 152

for the complex numbers, 61

for the constructive reals, 119

argument, 60

associative law, 12

for games, 186

for surreal numbers, 191

axioms

categorical, 1, 35

completeness, 26

for a field, 12, 135

for equivalence, 3

for linear order, 18

for partial order, 162

for well-ordered set, 163, 164

axis of rotation, 83

Banach, Stefan, 168

Banach-Tarski paradox, 168, 169

big sets, see ultrafilter

Bishop, Errett, 97, 103, 124

Bolzano, Bernard, 11

bounded, 29

above, 25

below, 26

boundedness theorem

classical, 50, 51
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constructive view of, 121, 122

hyperreal proof, 160

Brouwer, Luitzen, 101, 124

calculus, see differential calculus

cancellation law

of addition, 15

of multiplication, 15

Cantor reals, 36–42, 48, 49, 98

addition of, 40

completeness of, 42

definition of, 37

multiplication of, 40

positive, 41

Cantor, Georg, 36, 43, 53

Cartesian form

for complex numbers, 58

for quaternions, 78

categorical axiom system, 1, 12, 35

Cauchy completeness, 28–32

of the constructive reals, 118

Cauchy sequence, 28–32, 37, 38,

40

complex numbers, 61

constructive version of, 98, 109

hyperreal definition of, 157

of complex numbers, 61

positive, 41

Cauchy, Augustin-Louis, 11, 29, 53

Cauchy-Riemann equations, 73

chain rule, 52, 161

complex version, 72

real proof, 52

classical logic, 103–106

conjunction, 104

disjunction, 104

existence statement, 104

implication, 104

negation, 104

universal statement, 104

classical mathematics, 101

classification theorem, 181, 182

Clifford algebra, 94

cloud, 152

cofinite sets, 139

Col, 176, 177, 184, 186, 201, 202

combinatorial games, 171–188

active positions, 201

addition of, 184–186

classification theorem of, 181,

182

confused, 179

dominated options in, 183

end game, 173

equality of, 180

examples, 175, 176

fuzzy, 181

incomparable, 179

initial position of, 172

left and right options of, 172

negative of, 187

ordering of, 178

position in, 172

short, 201

stopping value of, 201

zero game, 173

commutative law, 13, 94

for games, 186

completeness, 12, 24–35, 42, 53,

55, 100, 135

Cauchy, 28, 29

for the complex numbers, 61,

62

for the constructive reals, 118,

119

order, 24–29, 31–33

complex exponential, 62, 63

complex functions, 70–72
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applications of, 75, 76

Cauchy-Riemann equations, 73

conformality of, 74

derivative, 72–75

Laplace’s equation, 73

quadrupole field, 76

real and imaginary parts of, 73

square root, 75

complex numbers, 11, 57–66, 76

addition of, 57

algebra of, 57

Archimedean property, 61

argument of, 60

Cartesian form, 58

completeness of, 61, 62

conjugate of, 60

differential calculus of, 72–75

distance function, 61

imaginary part of, 58

limits of, 61, 72

modulus of, 60

multiplication of, 57

order of, 59

polar form of, 62

quadrupole field, 76

real part of, 58

square roots of, 75

uniqueness, 66

complex quaternions, 86–88, 107

conjugate, 86

Lorentz transformations, 87

norm, 86

polar form, 87

scalar part, 86

vector part, 86

computation, 97

conformality, 74

confused games, 179

conjugate, 60

of a complex quaternion, 86

of a quaternion, 78

conjunction

in classical logic, 104

in constructive logic, 106

construction

of the Cantor reals, 36

of the constructive reals, 109

of the Dedekind reals, 43

of the hyperreals, 138

of the reals, 36

of the surreals, 188

constructive functions, 108

contrast with operations, 108

constructive logic, 106, 108

conjunction, 106

disjunction, 106

existence statement, 107

implication, 106

negation, 106

universal statement, 107

constructive mathematics, see con-

structivism

constructive real numbers, 11, 43,

97, 109–119, 124

addition, 112

alternative definition of equal-

ity, 110

Archimedean property of, 119

as regular sequences, 109

boundedness theorem, 121, 122

Cauchy completeness of, 118

completeness of, 118, 119

computation, 97

continuity for, 119, 120

criticism of classical mathemat-

ics, 97, 99

differential calculus of, 122

equality, 109
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intermediate value theorem, 120

linear order, 114–116

maximum value theorem, 122

multiplication, 112

multiplicative inverses, 117

non-negative, 114

positive, 114

square roots, 122

trichotomy, 116

constructive sets, 108

constructivism, 97–101, 103

continuity

hyperreal version, 159

continuous function

" � ı definition, 51

constructive version, 120

sequence definition, 50

contrapositive proof, 105

Conway, John, 171, 173, 204

cross product, 80, 81

CrossScram, see Dominos

curl, 92

cut

addition of, 44

Dedekind, 43, 188

non-negative, 45

null, 44, 45

positive, 45

rational, 44

De Morgan’s laws, 105

Dedekind cut, 43

Dedekind reals, 43–49

addition of, 44

completeness of, 45

multiplication of, 45

order of, 45

Dedekind, Richard, 11, 43, 52, 188

denseness, 48

derivative, see differential calculus

dichotomy laws, 117

differential calculus, 50, 51

chain rule, 52

for complex numbers, 72–75

for constructive reals, 122

for quaternions, 91–93

product rule, 52

using hyperreals, 161

disjunction

in classical logic, 104

in constructive logic, 106

disjunctive argument, 105

distance, 20, 21, 29, 61

distributivity, 13

divergence, 92

dominated option, 183

Dominos, 176, 177, 184, 186, 187,

201, 202

dot product, 80, 81

double negation, see also pure ex-

istence proof

in classical logic, 105

in constructive logic, 107

double numbers, 69

dual numbers, 69

dyadic rationals, 194

embedding, 21

of the integers in any ordered

field, 23

of the integers in the rationals,

10

of the natural numbers in any

ordered field, 21

of the rational numbers in any

ordered field, 47

of the rational numbers in the

reals, 40
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of the reals in the hyperreals,

145

equivalence, 3, 5, 8, 12

and congruence, 4, 6

and equality, 3

and similarity, 4

equivalence classes, 5

of Cantor real numbers, 39, 40

of combinatorial games, 179–

181

of constructive real numbers, 109–

111

of hyperreal numbers, 138–141

of surreal numbers, 189, 193

equivalence classes, 5, 8, 9, 36

of sequences, 41

equivalence relation, 39

in constructive logic, 108

Euler, Leonard, 101

existence statement

in classical logic, 104

in constructive logic, 107

Fermat numbers, 100, 101, 103

Fermat, Pierre, 100

field, 12, 18, 24, 35, 55

Cauchy complete, 29

cue-blob, 14, 19, 24

of rational functions, 14, 19

of rational numbers, 13

order complete, 26, 29

ordered, 27, 29

skew, 77

formal languages, 126

L, 134–137

examples, 130–132, 134

formation rules, 129

semantics of, 135

sentence, 129

structures for, 135

symbols, 126

syntax of, 127

terms, 127

fractions, see rational numbers

fugitive sequences, 123, see weak

counterexamples

functions

complex, 70–72

fundamental theorem of algebra, 66,

76

fuzzy games, 181

games, see combinatorial games

gap in a field, 49

Gauss, Carl Friederich, 11, 76

geometric algebra, 94

glb, see greatest lower bound

Goldbach conjecture, 116

gradient, 91

greatest integer, 26

greatest lower bound, 26

Hackenbush, 176, 177, 183, 186,

200, 202

partizan, 200

Hamilton, William Rowan, 91, 94

Hankel, Hermann, 11

Hex, 202

hyperreal number system, 11, 27,

43, 125–170

and formal languages, 126

and the language L, 134

Archimedean property of, 152

calculus using, 157, 159, 161

completeness, 135

continuity using, 159

decimal expansion in, 146, 154–

156
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definition of, 138

embedded reals, 145

equality, 139

extension of real function to,

143

extension of real relations to,

142

hyperreal integers, 142

infinite numbers, 150

infinitesimal numbers, 150

limits in, 156, 157

need for an ultrafilter, 169

order, 139

real approximation, 157

satellite lines, 153

sequences, 156

imaginary part

of a complex number, 58

impartial game, 187

implication

in classical logic, 104

in constructive logic, 106

incomparable

elements, 162

games, 179

induction

mathematical, 21, 22

transfinite, 164, 165

inductive, see recursive

inequalities, 19

addition of, 20

transitive law, 20

infinite descent, 174

infinite sequence, 28

infinitely large numbers, 27

in the hyperreals, 142, 150–154

in the surreals, 195

infinitesimals, 28, 125, 150, 153

cloud, 152

in the hyperreals, 125, 150–154

in the surreals, 195

integers, 2, 23

integral domain property, 15

intermediate value theorem, 50, 53

constructive view of, 120

hyperreal proof, 159

isomorphism, 17

field, 17

order, 18

Kronecker, Leopold, 97, 101, 124

languages, see formal languages

Laplace’s equation, 73

Laplacian, 91

least upper bound, 25, 26, 32, 33,

100

Leibniz, Gottfried, 125, 161

lightlike, 90

limits, 28–32

by real approximation, 157

classical definition of, 28

complex, 61, 72

hyperreal definition, 157

using hyperreals, 156, 157

linear equations, 15

linear order, 18, 35, 55

complex numbers and, 59

for the constructive real num-

bers, 114–118

for the surreal numbers, 190

logic, see classical logic, see also

constructive logic

proof-based, 106, 108

truth-based, 103–106

Lorentz transformation, 87, 88, 91

Los’ theorem, 147
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lub, see least upper bound

mathematical induction, 21–23

maximum value theorem, 50, 51

constructive view of, 122

hyperreal version, 160

metric completeness, see Cauchy

completeness

Michelson-Morley experiment, 35

Minkowski separation, 89

modulus, 60

of a complex number, 60

of continuity, 120

of differentiability, 122

Modus ponens, 105

Modus tollens, 105

monotonic, 29

sequence, 53

multiplication

of fractions, 10

of pure quaternions, 81

of reals, 12

of surreal numbers, 190–192

nabla operator, 91

natural numbers, 23

negation

in classical logic, 104

in constructive logic, 106

negative of a game, 187

Newton’s Method, 98

Nim, 176

norm

Minkowski, 86

of a complex quaternion, 86

of a quaternion, 78

null

cut, 44

sequence, 37

numbers

complex, 57–66, 76

constructive, 97, 109–119, 124

double, 69

dual, 69

hyperreal, 125–170

quaternions, 77–94

real, 35–46

surreal, 171, 188–204

operation, 108

options, see combinatorial games

of a game, 172

order, 18, 19

completeness, 24–33

isomorphism, 18

of games, 178

of the Cantor real numbers, 41

partial, 162

well, 163, 164

ordered field, 18, 23, 27, 29

partial order, 162

incomparable elements, 162

partizan game, 187

Peano, Giuseppe, 11, 22, 53

Platonism, 103

Poincaré, Jules, 124

polar form

of a complex number, 62

of a complex quaternion, 87

of a quaternion, 82

position

of a game, 172

positive cut, 45

preferential ordering of games, 178

prefilter, 167

problem of definition, 9, 10

product rule, 52, 161
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complex, 72

proof, 5

as a basis for logic, 106

by bisection, 31–33, 39, 51

by contradiction, 16, 102, 104,

123

by contrapositive, 25, 105

by infinite descent, 174

by mathematical induction, 21,

22, 102

by playing a game, 185

by transfer principle, 149

by transfinite induction, 164, 165

by trick, 39

constructive, 111

how to find, 16

of existence, 102

pure existence, 102

what is one, 6

proof by bisection

constructive criticism of, 122

property

additive identity, 13

additive inverse, 7, 13

anti-symmetry, 162

Archimedean, 27

associativity, 12

Cauchy complete, 29

commutativity, 13

conformality, 74

congruence, 4, 6

denseness, 48

distributivity, 13

multiplicative identity, 13

multiplicative inverse, 13

order completeness, 26

reflexive, 3

similarity, 4

symmetry, 3

transitivity, 3

trichotomy law, 18

pure existence proof, 102

pure quaternion, 78, 80

multiplication, 81

quadratic equations, 15

quadrupole field, 76

quantifier, see also existence state-

ment, see universal statement

quaternion function, 92

derivative, 93

quaternions, 11, 77–94

addition of, 78

calculus of, 92, 93

Cartesian form of, 78

conjugate of, 78

differential calculus of, 91, 92

multiplication of, 78, 79

norm of, 78

polar form, 82

pure, 78, 80

scalar part of, 78

uniqueness of, 85

unit, 78, 80

vector part of, 78

rational function, 14

rational numbers, 2, 7, 10, 11, 13,

19, 24, 25, 28, 36, 53

dyadic, 194

real numbers, 35–46, 98

rational approximation to, 112

real part

of a complex number, 58

recursive

definition, 128

proof, 128

reflection
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in space, 85

reflexivity, 3, 4

regular sequence, 109, 113

relativistic intervals

lightlike, 90

spacelike, 90

timelike, 90

relativistic space-time, 89

Robinson, Abraham, 125, 170

rotation, 88

axis, 83

hyperbolic, 88

in space, 82, 83

scalar part

of a complex quaternion, 86

of a quaternion, 78

sequence, 28, 29, 37

bounded, 29

Cauchy, 28, 29, 38

defining hyperreals, 138

infinite, 28

monotonic, 29

null, 37

of hyperreals, 156

positive, 41

regular, 109

short, 201

simplicity theorem, 193, 194

skew field, 77, 85, 86

Snort, 177, 184, 186, 201, 202

space separation, 89

spacelike, 90

square roots

of complex numbers, 65, 75

of surreal numbers, 199

stopping value, 201

left and right, 202

structures, 135

surreal number system, 11, 27, 171,

188–204

birth order, 194

day !, 195

definition, 188

inverses in, 197–199

linear order of, 190

multiplication in, 190–192

reciprocals in, 197

simplicity theorem, 193, 194

square roots in, 199

symmetry, 3, 4

Tarski, Alfred, 168

term, 127

the language L, 134–137

the language L�, 147

theory of relativity, 89

time separation, 89

timelike, 90

transfer principle, 142, 148, 149

proof by, 149

transfinite induction, 164, 165, 167

Banach-Tarski paradox and, 168

transitivity, 4

in logic, 105, 107

of inequalities, 20

property, 3

triangle inequality, 20, 37

trichotomy, 162, 163

and combinatorial games, 179

and inequalities, 19

and the constructive real num-

bers, 114–117

for surreal numbers, 190

for the Cantor real numbers, 42

in an ordered field, 18

truth

as a basis for logic, 104
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as a Platonic concept, 103

determined by convenience, 142,

143

ultrafilter, 140, 141, 166

and the well-ordering principle,

166

existence of, 167

free, 140

necessity of, 169

uniform continuity, 120

uniqueness

of the complex numbers, 66

of the quaternions, 85

unit quaternion, 78, 80

universal statement

in classical logic, 104

in constructive logic, 107

upper bound, 25, 26, 30, 33

vector part

of a complex quaternion, 86

of a quaternion, 78

vector space

existence of a basis, 99

weak counterexamples, 101, 116,

121, 123

Weber, Heinrich Martin, 11

well-defined, 9, 10, 40, 41, 113

well-ordered set, 163, 164

well-ordering principle, 125, 165,

166

what is a proof, 6

zen buddhism, 6

zero

as a game, 173

definition of, 13
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