
Practical Quantum
Computing for
Developers

Programming Quantum Rigs in the
Cloud using Python, Quantum Assembly
Language and IBM QExperience
—
Vladimir Silva

Practical Quantum
Computing for Developers

Programming Quantum Rigs in the
Cloud using Python, Quantum
Assembly Language and IBM

QExperience

Vladimir Silva

Practical Quantum Computing for Developers: Programming Quantum Rigs in the
Cloud using Python, Quantum Assembly Language and IBM QExperience

ISBN-13 (pbk): 978-1-4842-4217-9			 ISBN-13 (electronic): 978-1-4842-4218-6
https://doi.org/10.1007/978-1-4842-4218-6

Library of Congress Control Number: 2018966346

Copyright © 2018 by Vladimir Silva

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484242179. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Vladimir Silva
CARY, NC, USA

https://doi.org/10.1007/978-1-4842-4218-6

iii

About the Author�� ix

About the Technical Reviewer�� xi

Introduction�� xiii

Table of Contents

Chapter 1: �The Bizarre and Awesome World of Quantum Mechanics����������������������� 1

The Golden Age of Physics in the Twentieth Century��� 2

Max Planck and the Ultraviolet Catastrophe Started It All��� 2

Bohr’s Quantum Jump��� 4

Clash of Titans: Quantum Cats and the Uncertainty Principle�� 5

Enter the Almighty Wave Function�� 7

Probabilistic Interpretation of ψ: The Wave Function Was Meant to Defeat Quantum
Mechanics Not Become Its Foundation�� 8

The Quantum Cat Attempts to Crash Born’s Probabilistic Party��� 9

Uncertainty Principle�� 10

Interference and the Double Slit Experiment�� 11

Einstein to Bohr: God Does Not Throw Dice��� 13

Bohr to Einstein: You Should Not Tell God What to Do�� 14

Entanglement and the EPR Paradox: Spooky Action at a Distance�� 15

Bell’s Inequality: A Test for Entanglement�� 16

EPR Paradox Defeated: Bohr Has the Last Laugh�� 18

Reality Playing Tricks on Us: Is Everything Interconnected?�� 21

iv

Chapter 2: �Quantum Computing: Bending the Fabric of Reality Itself��������������������� 23

The Transistor Is in a Collision Course with the Laws of Physics��� 24

Five-Nanometer Transistor: Big Problem��� 26

Quantum Scale and the Demise of the Transistor�� 29

Electron Tunnelling��� 29

Slit Experiments��� 37

Possible Futures for the Transistor�� 38

Enter Richard Feynman and the Quantum Computer��� 38

The Qubit Is Weird and Awesome at the Same Time�� 40

Superposition of States�� 41

Entanglement: Observing a Qubit Reveals the State of Its Partner�� 42

Qubit Manipulation with Quantum Gates�� 43

Qubit Design��� 49

Quantum Computers vs. Traditional Hardware��� 57

Complex Simulations�� 58

Molecular Modelling and New Materials�� 58

Sophisticated Deep Learning��� 59

Quantum Neural Networks (QNN) and Artificial Intelligence (AI)�� 61

Pitfalls of Quantum Computers: Decoherence and Interference�� 62

Decoherence (Longevity)�� 62

Quantum Error Correction (QEC)��� 64

The 50-Qubit Processor and the Quest for Quantum Supremacy�� 66

Quantum Annealing (QA) and Energy Minimization Controversy�� 68

2000 ��Qubits: Things Are Not As They Seem�� 69

Quantum Annealing: A Subset of Quantum Computing�� 70

Universal Quantum Computation and the Future��� 73

Google and Quantum Artificial Intelligence�� 73

Quantum Machines in the Data Center��� 74

The Race Is Going Global�� 75

Future Applications��� 76

Table of Contents

v

Chapter 3: Enter the IBM Q Experience: A One-of-a-Kind Platform for
Quantum Computing in the Cloud�� 77

Getting Your Feet Wet with IBM Q Experience�� 78

Quantum Composer�� 79

Quantum Gates��� 79

Quantum Backends Available for Use��� 82

Opus 1: Variations on Bell and GHZ States��� 89

Bell States and Spooky Action at a Distance�� 89

Even Spookier: GHZ States Tests�� 94

Super Determinism: A Way Out of the Spookiness. Was Einstein Right All Along?����������������� 98

Remote Access via the REST API��� 101

Authentication�� 102

List Available Backends�� 103

Get Calibration Information for a Given Processor��� 106

Get Backend Parameters�� 108

Get the Status of a Processor’s Queue��� 111

List Jobs in the Execution Queue��� 112

Get Account Credit Information�� 114

List User’s Experiments�� 115

Run Experiment�� 117

Run a Job��� 123

Get the API Version��� 126

A Node JS Client for the IBMQuantumExperience�� 127

Build a Node Module for IBMQuantumExperience�� 128

Export API Methods�� 129

Authenticate with a Token�� 130

List Backends��� 133

List Calibration Parameters�� 134

Run the Experiment�� 136

Debugging and Testing��� 138

Share with the World: Publish Your Module�� 140

Table of Contents

vi

Chapter 4: �QISKit, Awesome SDK for Quantum Programming in Python��������������� 143

Installing the QISKit�� 143

Setting Up in Windows��� 144

Setting Up in Linux CentOS��� 145

Qubit 101: It’s Just Basic Algebra�� 149

Algebraic Representation of a Quantum Bit��� 151

Changing the State of a Qubit with Quantum Gates��� 153

Universal Quantum Computation Delivers Shortcuts over Classical Computation��������������� 160

Your First Quantum Program�� 161

SDK Internals: Circuit Compilation and QASM�� 166

Running in a Real Quantum Device�� 175

Quantum Assembly: The Power Behind the Scenes��� 188

Chapter 5: Start Your Engines: From Quantum Random Numbers to
Teleportation, Pit Stop at Super Dense Coding�� 193

Quantum Random Number Generation�� 193

Random Bit Generation Using the Hadamard Gate��� 194

Putting Randomness Results to the Test�� 200

Super Dense Coding��� 201

Circuit for Composer��� 204

Running Remotely Using Python�� 205

Looking at the Results�� 208

Quantum Teleportation��� 210

Circuit for Composer��� 212

Running Remotely Using Python�� 213

Looking at the Results�� 219

Chapter 6: �Fun with Quantum Games�� 223

Quantum Battleship with a Twist��� 224

Setup Instructions�� 225

Initialization�� 225

Set Ships in the Board�� 227

Main Loop and Results��� 229

Table of Contents

vii

Cloud Battleship: Modifying for Remote Access�� 236

Exercise 1: Decouple the User Interface from the Game Logic�� 237

Exercise 2: Build a Web Interface for the Ship-Bomb Boards��� 238

Exercise 3: Deploy and Troubleshoot in Apache HTTPD�� 241

Solution 1: A Reusable Python Program��� 241

Solution 2: User Interface��� 248

Solution 3: Deploy and Test�� 262

Troubleshooting�� 265

Further Improvements�� 267

Chapter 7: Game Theory: With Quantum Mechanics, Odds Are Always in
Your Favor��� 283

Counterfeit Coin Puzzle�� 284

Counterfeit Coin, the Quantum Way�� 286

Step 1: Query the Quantum Beam Balance�� 287

Step 2: Construct the Quantum Balance��� 289

Step 3: Identify the False Coin�� 290

Generalization for Any Number of False Coins��� 292

Mermin-Peres Magic Square��� 293

Mermin-Peres Magic Square Exercise��� 295

Quantum Winning Strategy��� 296

Shared Entangled State�� 296

Unitary Transformations��� 298

Measure in the Computational Basis�� 305

Answers for the Mermin-Peres Magic Square Exercise��� 310

Chapter 8: Faster Search plus Threatening the Foundation of Asymmetric
Cryptography with Grover and Shor�� 313

Quantum Unstructured Search��� 314

Phase Inversion�� 315

Inversion About the Mean��� 316

Practical Implementation��� 318

Generalized Circuit��� 321

Table of Contents

viii

Integer Factorization with Shor’s Algorithm��� 325

Challenging Asymmetric Cryptography with Quantum Factorization����������������������������������� 325

Period Finding�� 327

Shor’s Algorithm by ProjectQ�� 331

Index�� 339

Table of Contents

ix

About the Author

Vladimir Silva holds a Master’s degree in Computer science from Middle TN State

University. He worked for 5 years for IBM as a Research Engineer where he acquired

extensive experience in distributed and Grid computing.

He holds numerous IT certifications, including OCP, MCSD, and MCP, and has

written many technical articles for IBM developerWorks. His previous books include Grid

Computing for Developers (Charles River Media), Practical Eclipse Rich Client Platform

(Apress), Pro Android Games (Apress), and Advanced Android 4 Games (Apress).

An avid marathon runner, with over 16 races completed all over the state of NC

(by the time of this writing), when not coding, writing or running he enjoys playing his

classic guitar and pondering about awesome things like Quantum Mechanics.  

xi

About the Technical Reviewer

Jason Whitehorn is an experienced entrepreneur and

software developer and has helped many oil and gas

companies automate and enhance their oilfield solutions

through field data capture, SCADA, and machine learning.

Jason obtained his Bachelor of Science in Computer Science

from Arkansas State University, but he traces his passion

for development back many years before then, having first

taught himself to program BASIC on his family’s computer

while still in middle school.

When he’s not mentoring and helping his team at work,

writing, or pursuing one of his many side projects, Jason enjoys spending time with his

wife and four children and living in the Tulsa, Oklahoma region. More information about

Jason can be found on his website: https://jason.whitehorn.us

https://jason.whitehorn.us/

xiii

Introduction

I wrote this book to be the ultimate guide for programming a quantum computer in the

cloud. Thanks to the good folks at IBM Research, this is now possible. IBM has made

their prototype quantum rig (known as the IBM Q Experience) available not only for

research but for individuals in general interested in this field of computing.

Quantum computing is gaining traction, and now is the time to learn to program

these machines. In years to come, the first commercial quantum computers should be

available, and they promise significant computational speedups compared to classical

computers. Consider the following graph showing the time complexities for two large

integer factorization algorithms: the best classical algorithm, the Number Field Sieve, vs.

the quantum factorization algorithm developed by Peter Shor.

xiv

Shor’s algorithm provides a significant speedup over the Number Field Sieve for a

problem, that is, the foundation of current cryptography. A practical implementation of

this algorithm will render current asymmetric encryption useless!

All in all, this book is a journey of understanding. If you find the concepts explained

throughout the chapters difficult to grasp, then you are not alone. The great physicist

Richard Feynman once said: If somebody tells you he understands quantum mechanics, it

means he doesn’t understand quantum mechanics. Even the titans of this bizarre theory

have struggled to understand what it all means.

I have tried to explore quantum computation to the best of my abilities by using real-

world algorithms, circuits, code, and graphical results. Some of the algorithms included

in this manuscript defy logic and seem more voodoo magic than a computational

description of a physical system. This is the main reason I decided to tackle this subject.

Even though I find it hard to understand the mind-bending principles of quantum

mechanics, I’ve always been fascinated by this awesome theory. Thus when IBM came

up with its one-of-a-kind quantum computing platform for the cloud, and opened it up

for the rest of us, I jumped to the opportunity to learn and create this manuscript.

Ultimately, this is my take on quantum computing in the cloud, and I hope you find

as much enjoyment reading it as I got writing it. My humble advice: Learn to program

quantum computers; soon they will be ever present in the data center, doing everything

from search and simulations to medicine and artificial intelligence. You name it. In

general terms, the manuscript is divided into the following chapters:

�Chapter 1: The Bizarre and Awesome World
of Quantum Mechanics
It all began in the 1930s with Max Planck, the reluctant genius. He came up with a

new interpretation for the energy distribution of the light spectrum. He started it all by

unwillingly postulating that the energy of the photon was not described by a continuous

function, as believed by classical physicists, but by tiny chucks he called quanta. He was

about to start the greatest revolution in science in this century: quantum mechanics. This

chapter is an appetizer to the main course and explores the clash of two titans of physics:

Albert Einstein and Niels Bohr. Quantum mechanics was a revolutionary theory in the

1930s, and most of the scientific establishment was reluctant to accept it, including the

colossus of the century: Albert Einstein. Fresh from winning the Nobel Prize, Einstein

never accepted the probabilistic nature of quantum mechanics. This caused a rift with

Introduction

xv

its biggest champion: Niels Bohr. The two greats debated it out for decades and never

resolved their differences. Ultimately, quantum mechanics has withstood 70 years

of theoretical and experimental challenges, to emerge always triumphant. Read this

chapter and explore the theory, experiments, and results, all under the cover of the

incredible story of these two extraordinary individuals.

�Chapter 2: Quantum Computing: Bending the Fabric
of Reality Itself
In the 1980s, another great physicist – Richard Feynman – proposes a quantum

computer, that is, a computer that can take advantage of the principles of quantum

mechanics to solve problems faster. The race is on to construct such a machine. This

chapter explores, in general terms, the basic architecture of a quantum computer:

qubits, the basic blocks of quantum computation. They may not seem like much, but

they have almost magical properties: superposition; believe it or not, a qubit can be

in two states at the same time: 0 and 1. This concept is hard to grasp at the macroscale

where we live. Nevertheless, at the atomic scale, all bets are off. This fact has been proven

experimentally for over 70 years. Thus superposition allows a quantum computer to

outmuscle a classical computer by performing large amounts of computation with

relatively small numbers of qubits. Another mind bender is qubit entanglement:

something that, when explored, seems more like voodoo magic than a physical

principle. Entangled qubits transfer states, when observed, faster than the speed of light

across time or space! Wrap your head around that. All in all, this chapter explores all

the physical components of a quantum computer: quantum gates, types of qubits such

as superconducting loops, ion traps, topological braids, and more. Furthermore, the

current efforts of all major technology players in the subject are described, as well as

other types of quantum computation such as quantum annealing.

�Chapter 3: Enter the IBM Q Experience: A One-of-a-
Kind Platform for Quantum Computing in the Cloud
In this chapter, you will get your feet wet with the IBM Q Experience. This is the first

quantum computing platform in the cloud that provides real or simulated quantum

devices for the rest of us. Traditionally, a real quantum device will be available only for

Introduction

xvi

research purposes. Not anymore, thanks to the folks at IBM who have been building this

stuff for decades and graciously decided to open it up for public use.

Learn how to create a quantum circuit using the visual Composer or write it down

using the excellent Python SDK for the programmer within you. Then execute your

circuit in the real thing, explore the results, and take the first step in your new career as a

quantum programmer. IBM may have created the first quantum computing platform in

the cloud, but its competitors are close behind. Expect to see new cloud platforms in the

near future from other IT giants. Now is the time to learn.

�Chapter 4: QISKit, Awesome SDK for Quantum
Programming in Python
QISKit stands for Quantum Information Software Kit. It is a Python SDK to write

quantum programs in the cloud or a local simulator. In this chapter, you will learn how

to set up the Python SDK in your PC. Next, you will learn how the quantum gates are

described using linear algebra to gain a deeper understanding of what goes on behind

the scenes. This is the appetizer to your first quantum program, a very simple thing

to familiarize yourself with the syntax of the Python SDK. Finally you will run it in a

real quantum device. Of course, quantum programs can also be created visually in the

Composer. Gain a deeper understanding of quantum gates, the basic building blocks of a

quantum program. All this and more is covered in this chapter.

�Chapter 5: Start Your Engines: From Quantum
Random Numbers to Teleportation, Pit Stop at
Super Dense Coding
This chapter is a journey through three remarkable information processing capabilities

of quantum systems. Quantum random number generation explores the nature of

quantum mechanics as a source for true randomness. You will learn how this can be

achieved using very simple logic gates and the Python SDK. Next, this chapter explores

two related information processing protocols: super dense coding and quantum

teleportation. They have exuberant names and almost magical properties. Discover

their secrets, write circuits for the Composer, execute remotely using Python, and finally

interpret and verify their results.

Introduction

xvii

�Chapter 6: Fun with Quantum Games
In this chapter, you will learn how to implement a basic game in a quantum computer.

For this purpose, we use the quintessential Quantum Battleship distributed with the

QISKit Python tutorial. The first part looks at the mechanics of the game, yet we don’t

stop there. The second part of this chapter takes things to the next level by giving it a

major face-lift. In this part, you will put Quantum Battleship in the cloud by giving it a

browser-based user interface, an Apache CGI interface to consume events and dispatch

them to the quantum simulator, and more. Impress your friends and family by playing

Quantum Battleship with your web browsers in the cloud.

�Chapter 7: Game Theory: With Quantum Mechanics,
Odds Are Always in Your Favor
This is a weird one, even for quantum mechanics standards. This chapter explores

two game puzzles that show the remarkable power of quantum algorithms over their

classical counterparts: the counterfeit coin puzzle and the Mermin-Peres Magic Square.

In the counterfeit coin puzzle, a quantum algorithm is used to reach quartic speedup

over the classical solution for finding a fake coin using balance scale a limited number of

times. The Mermin-Peres Magic Square is an example of quantum pseudo-telepathy or

the ability of players to almost read each other’s minds achieving outcomes only possible

if they communicate during the game.

�Chapter 8: Faster Search plus Threatening the
Foundation of Asymmetric Cryptography with
Grover and Shor
This chapter brings proceedings to a close with two algorithms that have generated

excitement about the possibilities of practical quantum computation: Grover’s search, an

unstructured quantum search algorithm capable of finding inputs at an average of square

root of N steps. This is much faster than the best classical solution at N/2 steps. It may not

seem that much, but, when talking about very large databases, this algorithm can crush it

in the data center. Expect all web searches to be performed by Grover’s in the future. Shor’s

integer factorization: The notorious quantum factorization that experts say could bring

current asymmetric cryptography to its knees. This is the best example of the power of

quantum computation by providing exponential speedups over the best classical solution.

Introduction

1
© Vladimir Silva 2018
V. Silva, Practical Quantum Computing for Developers, https://doi.org/10.1007/978-1-4842-4218-6_1

CHAPTER 1

The Bizarre and
Awesome World of
Quantum Mechanics
The story of quantum mechanics is a fable of wonder and bewilderment. It has elements

of science, philosophy, religion, and dare I say magic. It’ll turn your mind upside down,

and sometimes it’ll make you question the existence of an all-powerful creator out there.

Even though I find its concepts difficult to grasp, I’ve always been fascinated by it. Some

of the concepts presented in this chapter are hard to understand; however don’t be

troubled. Nobody has been able to fully describe what this all means, not even the titans

of physics fully understand quantum mechanics. However that doesn’t mean we can’t be

fascinated by it. The great physicist Richard Feynman once said: If somebody tells you he

understands quantum mechanics, it means he doesn’t understand quantum mechanics.

This chapter is my take on this fascinating fable and how the struggle of two titans of

science shaped its past, present, and future.

It all began in the 1930s, after Albert Einstein rose to world fame with the theory of

special relativity which built upon Newtonian physics to unify the heavens and the earth.

While Einstein was looking to the heavens, a new breed of scientists were looking at the

very small. Spearheaded by giants of physics such as Max Planck, Ernest Rutherford, and

Niels Bohr, it started a clash of titans and one of the greatest debates of physics in the

twentieth century – on one side, Albert Einstein, fresh from winning the Nobel Prize for

his groundbreaking discoveries on the nature of light and special relativity and, on the

other side, Niels Bohr, whose contributions to the field of quantum mechanics would

earn him a Nobel Prize in 1922 and the prestigious Order of the Elephant, a Danish

distinction normally reserved for royalty. Let’s take a look how the struggle between

these two greats shaped the science masterpiece, that is, quantum mechanics.

2

�The Golden Age of Physics in the Twentieth Century
At the beginning of the twentieth century, British scientist Ernest Rutherford made a

startling discovery about the nature of the atom. He postulated that atoms look like

tiny solar systems, made of a tiny nucleus with positive charge and electrons negatively

charged rotating like tiny planes around it. This was a remarkable insight as it was

previously believed that the atom was a simple spherical blob of mass with positive and

negative charges.

Bohr arrived at Rutherford’s lab in Cambridge in 1920 and fell in love with

Rutherford’s model of the atom, but there was a problem, and a big one. If classical

Newtonian physics are applied to Rutherford’s model where negatively charged

electrons rotate around a positively charged nucleus, the electron will eventually fall

inside and crash against the nucleus creating a catastrophic paradox. Nothing should

exist, as electrons will crash in a matter of seconds. Bohr saw this, and with undeterred

excitement, he delayed his marriage and canceled his honeymoon in an effort to save

Rutherford’s model. Bohr postulates in a paper that electrons move in fixed orbits that

cannot change. This goes against the basis of Newtonian physics but draws upon new

ideas from the father of quantum mechanics, Max Planck.

�Max Planck and the Ultraviolet Catastrophe
Started It All
Planck suggested that heat and light come in units that cannot be divided, which he

called “energy quanta.” Planck’s idea came from his efforts to solve the black-body

radiation experiments where a body that completely absorbs all radiation (heat) inside

it has a cavity that allows some radiation to escape (see Figure 1-1). As the heat increases

inside the box, the frequency of the radiation reaches ranges visible to the human eye,

glowing at different colors. It was well known by porcelain makers at the time that all

bodies produce fixed colors at given temperatures (see Table 1-1).

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

3

Figure 1-1.  Black-body radiation experiment results

Table 1-1.  Light Colorization at

Different Temperatures

Temperature (°C) Color

500 Dark red

800 Cherry red

900 Orange

1000 Yellow

1200 White

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

4

Figure 1-1 shows the black-body radiation experiment along with the results

provided by the classical theory of radiation curves collected from experiments in the

1890s. Classical physicist’s experiments predicted infinite intensities for the ultraviolet

spectrum. This became known as the ultraviolet catastrophe and was the product of

dubious theoretical arguments and experimental results. If true, this would mean, for

example, that it will be dangerous to seat anywhere close to a fireplace! Planck sought to

find a solution to the ultraviolet catastrophe.

Planck used the second law of thermodynamics also known as entropy to derive a

formula for the experimental results derived from the black-body radiation problem.

S = k log W

This is Boltzmann’s entropy (S), where k is known as the Boltzmann’s constant and

W is the probability that a particular arrangement of atoms will occur for an element be

that a solid, liquid, or gas.

Using Boltzmann’s statistical method to calculate entropy, Planck sought a formula

to match the results of the black-body experiment. By dividing the total energy (e) in

chunks proportional to the frequency (f), he came up with the equation:

e = hf

where e is a chunk of energy, h is known as the Planck constant, and f is the frequency.

Yet, he faced an obstacle; Boltzmann’s statistical method demanded the chunks

decrease to zero over time. This will nullify his equation and thus defeat its validity. After

much struggle, Planck was forced reluctantly to postulate that the energy quantity must

be finite. And here comes Planck’s incredible insight; if this is correct, it meant that is not

possible for an oscillator to absorb or emit energy in a continuous range. It must absorb

or emit energy in small indivisible chunks of e = hf which he called “energy quanta,”

hence the term quantum mechanics.

�Bohr’s Quantum Jump
Bohr applied Plank’s groundbreaking idea of energy quanta to the atom, the smallest

unit of matter. He provided a bold description of the relationship of the atom and light

where the electron which rotates around the nucleus will emit or absorb light causing a

quantum jump. A quantum jump was therefore a transition between two states; however

Bohr was incapable of fully describing it.

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

5

This idea was met with skepticism by other scientists who labelled his theory as

nonsense, a cheap excuse for not knowing, or too bold, too fantastic to be true. The

result was a rift in the physics community with one camp around Bohr believing in the

quantum nature of matter and those supporting the classical view. Einstein will soon

join the fight in the classical side of the struggle.

�Clash of Titans: Quantum Cats and the Uncertainty
Principle
By the mid-1920s the new theory about the quantum nature of matter is in shaky

ground facing the real prospect of an early demise. It will take two new groundbreaking

discoveries to solidify its foundation.

The first came around 1926 when German physicist Werner Heisenberg sought

to legitimize Bohr’s view by creating a mathematical description of the atom for

what is now known as matrix mechanics. This idea was considered too complex

to imagine even for the seasoned physicist. Nevertheless, Heisenberg’s greatest

contribution to the field is his famous uncertainty principle, which we will explore

next. A second discovery came from Austrian physicist Erwin Schrödinger who came

up with a new description of the atom not as a particle but as a wave. This idea built

upon arguments of Louis de Broglie, a French prince who postulated that particles

may exhibit wave properties and that duality may be necessary to understand the

nature of light (see Figure 1-2).

Figure 1-2.  Duality of the nature of the photon. It behaves as both a particle and
wave.

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

6

de Broglie used both Einstein’s famous equation for energy E = mc2 and

Planck’s energy quanta e = hf to find a relation between the wavelength (λ) and the

momentum (P) of a photon:

E = mc2 = (m c) * c

Given that (mc) is the momentum (P) of the photon and c (speed) = f

(frequency) * λ (wavelength), the equation becomes:

E = (P) (f λ)

But wait, Planck’s relation states that energy E = (h)(f); thus using basic algebra,

de Broglie concluded:

h * f = P * (f λ)

h = P * λ
λ = h / P

de Broglie showed that the wavelength of a photon decreases as the momentum

increases (see Figure 1-3). By analogy, he proposed that this relation was true not only

for photons but for all particles. Given that at the time, the momentum of the electron

P = (mass)*(velocity) could be easily determined via experiment; this meant that

the wavelength could be calculated from de Broglie’s equation! The idea seemed

preposterous at the time, as classical physicists knew that the electron was a particle, a

discovery made long ago by J. J. Thomson in 1897.

Figure 1-3.  de Broglie relation between the wavelength and the momentum of a photon

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

7

Schrödinger used de Broglie’s ideas to find an approach that was more acceptable

to the status quo, marking a return to the continuous, visualizable world of classical

physics. He was right about his wave function but dead wrong about appeasing the

status quo.

�Enter the Almighty Wave Function
Schrödinger sought to find a function that could be applied to any physical system

for which a mathematical form of energy is known, thus creating his notorious wave

function denoted by the Greek symbol ψ (pronounced Psi - see Figure 1-4). The wave

function uses Fourier’s method of solving equations by expressing any mathematical

function as the sum of an infinite series of other periodic functions. This technique is

called the method of eigenvalues (eigen being the German word for “certain” – a term

that is commonplace in quantum physics). Schrödinger wave function was immediately

accepted as a mathematical tool of exceptional power for solving problems related to the

atomic structure of matter and is considered to be one of the greatest achievements of

the twentieth century.

Figure 1-4.  Schrödinger famous wave function sought to describe any physical
system with known energy

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

8

Bohr and Heisenberg joined forces with Schrödinger given the incredible power

of his wave function, but they needed to work out their differences first. It all took

place in 1926 at a newly formed institute in Copenhagen where the three giants met to

discuss.

Schrödinger rejected the Bohr/Heisenberg concept of discontinuous quantum

jumps in the atom structure. He wanted to use his new discovery as a pathway back to

the continuous process of physics undisturbed by sudden transitions. He was in fact

proposing a classical theory of matter based entirely on waves, even to the point of

doubting the existence of particles. Schrödinger proposed that particles are in fact a

superposition of waves, a claim that was later proved wrong by Hendrik Lorentz who

brought him to his senses, proving that you can’t win them all after all. Schrödinger

will later waver in his conviction on the importance of wave motion as the source of all

physical reality.

Bohr, Heisenberg, and Schrödinger argued relentlessly until the point of exhaustion.

Bohr demanded absolute clarity in all arguments, trying to force Schrödinger to admit

that his interpretation was incomplete, Schrödinger clinging to his classical view,

sometimes bemoaning his work on atomic theory and quantum jumps (something that

he probably didn’t mean).

Schrödinger loathed Bohr interpretation of the atomic structure. A final piece was

required before these two could come to terms on a solid quantum theory.

�Probabilistic Interpretation of ψ: The Wave Function
Was Meant to Defeat Quantum Mechanics Not Become Its
Foundation
Just like when the great rock guitarist Jimi Hendrix heard the tune Hey Joe, released a

cover, and made it his own, thus creating arguably one of the greatest tune covers, so

did the fathers of quantum mechanics. They realized the tremendous power of the

wave function and made it their own. A little factoid about this story is that Schrödinger

detested Planck’s noncontinuous interpretation of energy and heat. He wanted to use

his smooth and continuous wave function to defeat Planck’s energy quanta. It is hard to

believe, but in the 1930s, Planck’s discovery was so revolutionary that most physicists

thought he was nuts. Nevertheless, just as Hendrix did with that tune, the founders of

quantum mechanics will make the wave function theirs.

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

9

A breakthrough came from German physicist Max Born, who developed the idea of

the wave function as the probability of an electron for a given state to scatter in some

direction. Born stated that the probability (P) of the existence of a state is given by the

square of the normalized amplitude of the wave function, that is, P = |ψ|2. This was

groundbreaking at the time as Born claimed no more exact answers; all we get in atomic

theory are probabilities. This brand new idea took Bohr interpretation of the atom in an

entirely new direction (see Figure 1-5).

�The Quantum Cat Attempts to Crash Born’s
Probabilistic Party
As Born’s idea about the probabilistic nature of ψ gained traction, Schrödinger

through his wave function was being misused, and that originated the famous thought

experiment that will be later known as the quantum cat, a story that you probably heard

of. In the experiment, Schrödinger sought to rebuff Born’s probabilistic interpretation

of ψ. It goes like this: a live cat is placed in a box with a radioactive source that triggers

the release of a hammer that breaks a flask with poison that will kill the cat. Assuming

a 50% probability of radioactive decay per hour, after one hour the mechanism

will be triggered, thus killing the cat. Schrödinger claimed that according to Born’s

interpretation, quantum theory will predict that after one hour, the box would contain

Figure 1-5.  Bohr vs. Max Born probabilistic view of the wave function

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

10

a cat that is neither dead nor alive but a mixture of both states, a superposition of both

wave functions. Schrödinger thought this was ridiculous and would create a paradox.

Yet today, this so-called paradox is used to teach about quantum probabilities and

superposition of states.

This is the genius of superposition; as soon as the box is opened, the superimposed

wave functions collapse into a single one making the cat dead or alive – thus the act

of observation resolves the impasse. Yet another incredible insight will come from

Heisenberg pondering about a certain amount of uncertainty about the position of a

particle in the atomic structure championed by Bohr.

�Uncertainty Principle
Heisenberg pondered about how the position of a particle cannot be known in

Bohr’s atom. After much reflection, in a moment of clarity, he realized that to know

where a particle is, you have to look at it, and to look at it, you have to shine a photon

of light on it. However, when you do this, it disturbs the particle position; thus the

act of observing a particle changes its location. Heisenberg called this idea the

uncertainty principle.

To study the problem, Heisenberg devised a hypothetical experiment using a

microscope firing gamma rays, which carry high momentum and low frequency,

toward a passing electron to be observed. With Bohr’s help, the goal was to describe a

quantitative relationship by estimating the imprecision on a simultaneous measurement

of the position and momentum. The imprecision of the position was found to be close to

the wavelength of the radiation being used, ΔX ~ λ.

Similarly, the imprecision of the momentum of the electron is close to the

momentum of the photon used to illuminate the particle, ΔP ~ h/ λ. Note that from

the de Broglie equation it is known that the momentum of the photon (P) = h (Planck

constant)/ λ (wavelength). Heisenberg showed that multiplying both inequalities, the

product will always be greater or equal to h.

Δ X * Δ P ≥ λ * h/ λ
Δ X * Δ P ≥ h

This is Heisenberg uncertainty principle (HUP) which formally states: “The

uncertainty of a simultaneous measurement of the momentum and position is always

greater than a fixed amount and close to Planck’s constant h.”

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

11

There is a simple experiment physicists commonly use to show the uncertainty

principle in action. It’s called the single slit experiment, and it goes as follows: A laser

beam is fired through a single vertical wide slit and is reflected in a projection screen.

What we see with the wide slit is exactly what we suspect, a dot projected on the screen.

Now, if we make the width of the slit narrower and narrower, the sides of the dot start

to get narrower too. Nevertheless, at around 1/100 of an inch, the uncertainty principle

kicks in, and the direction of the beam becomes uncertain, according to Heisenberg.

Thus now we observe the light to spread becoming wider and wider! Sounds crazy,

how can the light become wider if we are making the slit narrower! It is extremely

nonintuitive, but that’s how things work.

The uncertainty principle is extremely important because it unifies the rift between

Schrödinger and Bohr laying down the foundation of the modern quantum theory. That

is, the electron is a particle, as Bohr postulated, but we don’t know exactly where it is,

as the uncertainty principle states (Heisenberg). Lastly, the probability of finding it is

given by the wave function (Schrödinger/Born). Thus there is a duality in the nature

of the electron, both as a particle and wave. With all this, a rock-solid view of quantum

mechanics emerges that will later be known as the Copenhagen interpretation.

�Interference and the Double Slit Experiment
Interference is another incredible property of quantum mechanics, one that makes you

think what in the world is going on behind the scenes of our reality. The great physicist

Richard Feynman once said about interference: The essentials of quantum mechanics

could be grasped from an exploration of interference and the double slit experiment.

Figure 1-6.  Single slit experiment used to show the uncertainty principle in
action

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

12

It is well known that at the beginning of the nineteenth century, there was a debate

raging about the nature of light. Some like Newton claimed it was made of particles;

others postulated that it behaved like waves. Thus in 1801, Thomas Young came up

with the double slit experiment in an attempt to settle things up: In the experiment,

a beam of light is aimed at a barrier with two vertical slits. After the light passes

through the slits, the resulting pattern is recorded on a photographic plate. When one

slit is covered, a single line of light is displayed, aligned with whichever slit is open.

Common sense and intuition tells us that when both slits are open, the resulting

pattern would display as two lines of light, aligned with the slits. Incredibly this is not

the case. What occurs in practice is that light passing through the slits and displayed

on the photographic plate is separated into multiple lines of brightness and darkness

in varying degrees (see Figure 1-7).

This mind-bending result perplexed physicists who hypothesized that interference

is taking place between the waves and particles going through the slits. If the beam of

photons is slowed enough to ensure that individual photons are hitting the plate, one

might expect there to see two lines of light (a single photon going through one slit or the

other and ending up in one of two possible light lines). However that is not true. What

happens is that somehow the light is doing the impossible: each photon not only goes

through both slits but also simultaneously traverses every possible trajectory en route to

the target (a principle called interference).

The fact that events like interference, which seem impossible, can occur at the

atomic scale baffled the greatest minds at the time. Yet soon, this new theory will face its

biggest challenge from the titan of physics, Albert Einstein.

Figure 1-7.  Double slit experiment by Thomas Young

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

13

�Einstein to Bohr: God Does Not Throw Dice
If you are involved in science, or even if you aren’t, you probably heard the famous

phrase by Einstein “God does not throw dice.” It was coined during a series of letters

exchanged with Bohr about the nature of quantum mechanics. Bohr believed the

concepts of space-time do not apply at the atomic level. Einstein, on the other

hand, was a firm believer in the fabric of space-time and thought this idea could

be extended to the atomic scale. This was essentially the root of the disagreement

between the two.

Einstein postulated that the properties of an atomic particle could be measured

without disturbing it, an idea that goes against the Bohr/Heisenberg interpretation.

The two giants faced in a gathering of the greatest physicists of the time in Brussels

in 1927 where Einstein sought to prove once and for all that uncertainty does not

rule reality.

Einstein challenged Bohr to a series of thought experiments to disprove the

uncertainty principle. In round one, Einstein devised a box that he thought will be able

to register the precise moment a particle of light was emitted from a small opening in the

side of the box and at the same time measure its weight (see Figure 1-7).

Figure 1-8.  Einstein’s experimental box to disprove the uncertainty principle

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

14

In the thought experiment in Figure 1-7, the box has a light source with a clock

designed to measure the precise time a photon is emitted. At the same time, the box

hangs from a spring with a weight at the bottom and corresponding measuring device.

The idea was simple: weight the box before and after the photon is emitted and at

the same time register the precise time using the clock. The energy levels could be

easily calculated using Einstein’s own equation E = mc2. Things didn’t look good for

the uncertainty principle at that point. If the experiment was correct, the uncertainty

principle will be disproven and quantum theory defeated.

Bohr got to work immediately trying to persuade Einstein that if his box works it

would mean the end of physics. Bohr prevailed at the end by stating that Einstein forgot

to take his own theory into account, as clocks are affected by gravity yielding uncertainty

at the time of measurement. He proved the following uncertainty calculation ΔE Δt ≥ h

using Einstein’s equation and the red shift formula. Given (Δp) uncertainty of the

momentum and (Δq) uncertainty of the position:

	 Δp Δq ≥ h	 (1-1)

The uncertainty of the momentum (Δp) is given by Δp ≤ t g Δm; then we have:

	 t g Δm Δq ≥ h	 (1-2)

From the redshift formula and principle of time dilation:

	 Δt = c-2 g t Δq	 (1-3)

	 ΔE = c2 Δm	 (1-4)

Now, multiply (1-3) and (1-4) to obtain (1-5):

	 ΔE Δt = g t Δm Δq	 (1-5)

Finally, comparing (1-5) and (1-2), we obtain an inequality for the uncertainty

principle ΔE Δt ≥ h. With this result, round one goes to Bohr; however this will not

be the end of it. Einstein believed in a complete picture of physical reality, and the

uncertainty principle stood in his way. He will come back with a bigger challenge.

�Bohr to Einstein: You Should Not Tell God What to Do
God does not throw dice was Einstein unshakable principle. The firm belief that

reality exists independent of one’s self. When Einstein wrote to Bohr that god does

not throw dice, he replied that he should not tell god what to do. This set the stage

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

15

for a second struggle between the two while trying to figure out what holds the

nucleus together. By the mid-1930s, the time around which this took place, both

general relativity and quantum theory are widely accepted as the strongest ideas to

explain how the world works. Round two focuses in the most paradoxical aspect of

quantum theory – the idea that atomic particles remain connected to one another

even at great distances.

�Entanglement and the EPR Paradox: Spooky Action
at a Distance
In the beginning, light was thought to behave as a wave, but Einstein proved that it also

showed particle behavior also known as photons. The same was true about atoms. They

behaved both as particles and waves depending on the measuring instrument being

used. Furthermore, both conditions were necessary to obtain a complete picture, an idea

that Bohr called complementarity.

So how is matter to be understood in the face of these two contradictions? Bohr

believed that the atom, as it is, existed outside our perception. This was more than

Einstein could accept as he believed on the idea of space-time at the foundation of all

physical reality and wanted to extend this concept to the atomic level. Bohr, on the other

hand, thought space and time were meaningless and reality was unknowable, and all

that we had were phenomena.

It is around this time that Einstein issues a second and final challenge to Bohr.

In a paper written with colleagues Podolsky and Rosen, Einstein postulates the

question: Does quantum mechanics provide a complete view of physical reality?

He proposes a thought experiment where two particles emitted from the same

source have common properties and become separated. It should be possible then

to measure the first particle and obtain information about the second one without

disturbing it. The purpose of the experiment was to demonstrate absurdities in

Bohr’s view of particles behaving differently based on measuring device. According

to quantum mechanics, a measurement on the first particle will influence the other

across time and space.

Now, imagine if the particles were to be separated across very large distances (e.g.,

from one side of the universe to the other). This will create a paradox by violating a

fundamental principle of science: the principle of cause and effect. The idea that all

events in reality have a cause and effect, and events cannot be transmitted faster than

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

16

the speed of light, the ultimate speed limit in the universe. Einstein called this principle

local causality or locality for short. This paradox will be known as the Einstein-Podolsky-

Rosen or EPR paradox.

As soon as Bohr got news of the paper, all work was abandoned immediately. The

challenge had to be answered. Bohr was reluctant at first in his reply, but finally did

so by claiming that both particles ought to be considered as a single system. In other

words both particles become entangled, with space and time being meaningless in such

system. Therefore a picture of the atomic world was unknowable.

Einstein called the effects of entangled particles over large distances “Spooky action

at a distance.” The disagreement between the two was never resolved. Nevertheless, a

breakthrough to settle things up came in 1965 by physicist John Bell.

�Bell’s Inequality: A Test for Entanglement
Bell proposed a set of inequalities to provide experimental proof of the existence of

local hidden variables. Formally, Bell’s inequality theorem states: No physical theory of

local hidden variables can ever reproduce all of the predictions of quantum mechanics.1

Mathematically, it is given by the formula:

Ch (a,c) – Ch (b,a) – Ch (b,c) ≤ 1,

	
C a b E A a B b A a B b p dh , , , , , ,() = () ()() = () () ()

D
òl l l l l l

	

There is an easy way to understand this very important theorem using simple

statistical averages. Consider photon polarization (the oscillation of light in a

specific plane) at three different angles A = 0, B = 120, and C = 240 degrees (see

Figure 1-8).

1�John Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press,
1987, p. 65.

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

17

According to Bell’s theorem, if reality is independent of observation, then a photon

has definite simultaneous values for these three polarization settings, and they must

correspond to the eight cases shown in Table 1-2.

Table 1-2.  Permutation Table for Photon Polarization at Three Angles

Count A(0) B(120) C(240) [AB] [BC] [AC] Sum Average

1 A+ B+ C+ 1(++) 1(++) 1(++) 3 1

2 A+ B+ C– 1(++) 0 0 1 1/3

3 A+ B– C+ 0 0 1(++) 1 1/3

4 A+ B– C− 0 1(−−) 0 1 1/3

5 A− B+ C+ 0 1(++) 0 1 1/3

6 A− B+ C− 0 0 1(−−) 1 1/3

7 A− B− C+ 1(−−) 0 0 1 1/3

8 A− B− C− 1(−−) 1(−−) 1(−−) 3 1

Figure 1-9.  Polarization of light at three angles

Now ask the simple question: If we measure the polarization at any angle, what
is the probability that the polarization at any neighbor will be the same as the
first? Also calculate the sum and average of the polarizations. In Table 1-2, neighbor

polarization is represented by the columns AB, BC, and AC. The + and – signs in

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

18

columns A, B, and C indicate either positive or negative polarizations at the given angles.

Note that there are eight possible permutations, described by the column count. Thus if

we find the same polarization (the same sign) for two neighbors, then we record a 1 as

well as the sign in columns AB, BC, or AC. This is required to calculate the sum and the

average for the respective row in the permutation table.

Now, if a polarization exists independent of measurement (local causality), as

Einstein advocates, then the probability of that polarization must be ≥ 1/3. On the

other hand, if Bohr is correct, and reality is defined by the act of observation, then the

probability of polarization will be < 1/3. This is at the heart of Bell’s inequality. Bell does

not take sides; it does not say that either is correct but provides the means of finding

the truth by experimentation. As a matter of fact, in 1982, French physicist Alain Aspect

created an experiment that proved once and for all that Bohr was right all along.

�EPR Paradox Defeated: Bohr Has the Last Laugh
In Aspect’s experiment, a laser beam irradiates a calcium source producing a pair of

photons traveling in opposite directions simultaneously. The photons pass through a

polarization filter which only allows a photon polarized in the same plane to pass. It

the photon passes, the result is recorded in a measuring device in both sides. Finally,

the measuring devices are attached to a counter that registers the results of many

interactions (see Figure 1-9).

Figure 1-10.  Aspect’s experiment to test Bell’s inequalities - stage 1

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

19

If both polarization filters are calibrated in the same direction, Aspect observed

a correlation between the pairs of photons. They would either pass or be blocked at

the same time. This correlation agreed with Einstein’s view of the photon having its

polarization property predefined at the moment of emission from the source, not at the

moment of measurement as quantum mechanics predicted.

On the other hand, if the polarization settings of the filters are different, then we

should expect a certain minimum percentage of photons to either pass or be blocked.

Here is where Bell’s inequality comes into play (as shown in Table 1-2 of the previous

section):

•	 If the percentage of photons passing through or being blocked is

greater than or equal to the expected minimum, then Bell’s inequality

is preserved and the photon polarization is defined at the moment

of emission (the victory goes to Einstein and quantum mechanics is

defeated).

•	 On the other hand, if the percentage is less than the expected

minimum, Bell’s inequality is violated and quantum physics is

correct. The polarization is defined at the moment of measurement

(Bohr wins and quantum mechanics is saved).

Aspect performed measurements of many pairs of photons at different polarization

settings. The results were astounding: the measurements violated Bell’s inequality;

thus it was impossible for the polarization to be predefined at the moment of emission.

Quantum mechanics was correct! The photons appeared to have chosen a common

polarization at the moment of measurement. Could there be some sort of unknown

signal between the photons telling them to pick a common value at the moment of

measurement?

Einstein’s theory of relativity says that no signal can travel faster than the speed of

light, the ultimate speed limit in the universe. He called this apparent simultaneous

signal spooky action at a distance. Aspect wanted to put this assertion to the test in a

second stage of his experiment.

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

20

In a second stage to his experiment, Aspect uses two optical switches that fork into

two separate polarization filters attached to a measuring device each (see Figure 1-10).

As before, all measuring devices are attached to a counter to gather results:

•	 The optical switch is designed to send the photon in one of two

directions at an extremely fast rate: 2 nanoseconds or 2 ns.

•	 The distance between both ends of the experiment was 12 m. It takes the

speed of light (traveling at 3*108 meters/second) 40 nanoseconds (ns)

to go from one end of the experiment to the other.

Now, if no signal can travel faster than the speed of light, as Einstein’s relativity

postulates, it should take more than 40 ns from one photon to tell the other what

polarization value to choose. Because the optical switch changes at a faster rate (2 ns),

the correlation between the photons should not hold. That is, the photons should not be

able to choose the same polarization at the moment of measurement (no spooky action

at a distance). On the other hand, if the correlation holds, things get extremely weird as

some sort of signal is being transmitted to both photons faster than the speed of light.

Figure 1-11.  Aspect’s experiment to put spooky action at a distance to the test

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

21

Incredibly, the correlation held in perfect agreement with quantum mechanics, thus

proving once and for all that the polarization value was chosen simultaneously by both

photons at the moment of measurement faster than the speed of light. The implications

were mind blowing as the distance between the photons could have been infinitely

grater (e.g., for one end of the universe to the other) or even scarier, across time: from the

present into the past or vice versa!

�Reality Playing Tricks on Us: Is Everything
Interconnected?
Aspect’s experiment proves that quantum correlations exist and that if we are to explain

them, not just accept them, then we must be bound to admit that some actions occur

faster than the speed of light. If that is hard to digest for some, things get even weirder.

In a TV interview for the BBC, physicist John Bell said: “There is nothing we can do with

this, for example, we cannot send messages or information faster than the speed of light,

a fact that is also predicted by quantum mechanics. It seems as nature is playing a trick

on us: extraordinary things happen behind the scenes which we cannot use.”

At the end, Bohr and Einstein never resolved their differences. They both passed

away but their legacy endures. Reading through their fascinating lives, one can’t

help but wonder: How would have Bohr felt by looking at the results of Alain Aspect

experiment proving that he was right all along? Would he have felt happy at his

triumph over Einstein? Was all this about the struggle of two egocentric geniuses

trying to prove who the better man is? What do you think? I choose to believe that

this was a struggle for the advancement of science. All in all, the ultimate winner

over the clash of these two titans was humanity.

Chapter 1 The Bizarre and Awesome World of Quantum Mechanics

23
© Vladimir Silva 2018
V. Silva, Practical Quantum Computing for Developers, https://doi.org/10.1007/978-1-4842-4218-6_2

CHAPTER 2

Quantum Computing:
Bending the Fabric
of Reality Itself
Semiconductors have come a long way since the days of the vacuum tube. It is hard

to believe that the transistor today is around 14 nanometers in size (i.e., close to a

molecule). In this chapter you will learn about the origins of quantum computing

starting with the fate of the transistor. It seems that the semiconductor process and the

transistor are in a collision course with the laws of physics. Next, an in-depth look at

the basic component of a quantum computer: the qubit including the strange effects of

superposition, entanglement, and qubit manipulation using logic gates. Furthermore,

qubit design is an important topic, and this chapter describes the leading prototypes by

major IT companies including pros and cons of each.

You will also learn about how quantum computers stack against traditional ones at

this point. Things are a little rough for quantum right now, but that is about to change

in the next few years. Still, quantum computers face a few pitfalls inherit to the theory

of quantum mechanics: they are fragile and error prone; find out why. This chapter also

discusses the very interesting quest toward the so-called quantum supremacy. The battle

is fierce between IT giants with no winner in sight. Another topic of discussion is the

controversial field of quantum annealing and the difference with the standard quantum

gate approach used all over this book.

The chapter ends with the path toward universal quantum computation including

efforts by all major vendors: in the short term, expect to see quantum computers in the

data center. In the long term, the future looks bright with significant resources being

poured into fields such as aerospace, medicine, artificial intelligence, and others. The

race is getting global. Let’s get started.

24

�The Transistor Is in a Collision Course with the Laws
of Physics
Out of curiosity, have you ever looked inside your home PC to see what it is made of?

It is basically a silicon motherboard full of all kinds of electronic gizmos, and in the

center rests the big black square that is the CPU. Depending on what kind of PC you

have, there may be multiple CPUs, graphics processing units (GPUs), audio, network

cards, and all sorts of modularized components. All these components are made of

millions of transistors, the fundamental building block of many electronics. A transistor

is essentially tiny switch with an on/off position allowing electrons to either pass or not.

This property is in turn used to encode a 0 or 1, the basis of the binary language used by

all electronics.

Transistors are combined to create logic gates (see Table 2-1). These gates, in turn,

produce the fundamental arithmetic functions: addition, subtraction, multiplication,

and division. These simple operations provide all the power we need to run powerful

scientific simulations, play games, encrypt data, browse the Web, email friends, you

name it.

Table 2-1.  Basic Logic Gates

Type Symbol Description Truth table

NOT Negates the input.
A ~A

0 1

1 0

AND Logical product.
A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

(continued)

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

25

Type Symbol Description Truth table

OR Logical addition.
A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

NAND Negates the logical

product. A B A NAND B

0 0 1

0 1 1

1 0 1

1 1 0

NOR Negates the logical

addition. A B A NOR B

0 0 1

0 1 0

1 0 0

1 1 0

Table 2-1.  (continued)

(continued)

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

26

Type Symbol Description Truth table

XOR Exclusive OR: The

output of a two-input

XOR is 1 only, when

the two input values

are different, and 0 if

they are equal.

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

Table 2-1.  (continued)

Transistors have given our society tremendous technological advances. They are

everywhere: computers, communication devices, medicine equipment, aerospace

hardware, and others. Whatever machine you can think of is probably made of

transistors, yet the transistor is about to face an impassable barrier: the laws of physics,

specifically quantum mechanics.

�Five-Nanometer Transistor: Big Problem
Since the 1960s traditional computers have grown exponentially in power, at the

same time becoming smaller and smaller. Today, computers are made of millions of

transistors, but once a transistor starts to get close to the size of an atom, the bizarre

world of quantum mechanics kicks in and all bets are off.

Consider Figures 2-1 and 2-2, showing the semiconductor manufacturing process

sizes from 1970 to 2020. From a size of around 10 micrometers in the 1970s, sizes become

smaller and smaller (at around 1 micrometer) by the late 1980s. Even scarier, there is

a huge dip into the nanometer scale (1 nanometer = 10-9 m) from the 1990s until the

present and beyond (see Figure 2-2). We are talking about transistors approaching the

size of molecules. By 2020 the size of a transistor will be around 5 nanometers. At this

scale, the bizarre properties of quantum mechanics may start to wreak havoc in the

classical computer.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

27

Figure 2-1.  Semiconductor sizes from the 1970s through the 1980s

Table 2-2.  Semiconductor Size Data for Figure 2-1

Year Size in micrometers

1971 10

1974 6

1977 3

1982 1.5

1985 1

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

28

Figure 2-3 shows the size of a transistor by 2020 (around 5 nm) vs. a water molecule

(0.275 nm). Unfortunately sizes can’t keep getting smaller forever. There is a threshold

that will render classical computers useless, and it is called the quantum scale.

Figure 2-2.  Semiconductor sizes from the 1990s and beyond

Table 2-3.  Semiconductor Size Data for Figure 2-2

Year Size in nanometers

1995 600

2001 130

2010 32

2014 14

2019 7

2021 5

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

29

�Quantum Scale and the Demise of the Transistor
Perhaps the demise of the transistor will be an exaggeration. Nevertheless, what is not

is the term quantum scale and its effects on it. In physics, quantum scale is the distance

where quantum mechanical effects become apparent in an isolated system. This strange

boundary lives at scales of 100 nm or less or at a very low temperature. Formally, the

quantum scale is the distance at which the action or angular momentum is quantized.

Quantum effects can cascade into the microscale realm causing problems for current

microelectronics. The most typical effects are electron tunnelling and interference as

shown by the single-double slit experiment.

�Electron Tunnelling
Electron tunnelling, also known as quantum tunnelling, is the phenomenon where a

particle passes through a barrier that otherwise could not be surmounted at a classic

scale. This spells trouble for the transistor and here is why.

Assume that we have a particle with energy E trying to surmount a barrier with

potential energy V at the top. According to the classical law of the conservation of energy,

the particle needs its energy E > V to pass through, that is, the kinetic energy of the

particle must be greater than the potential energy V (see Figure 2-4).

Figure 2-3.  Transistor size against a water molecule

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

30

Note E lectron tunnelling may spell doom for the transistor, yet one’s loss is
someone else’s gain. This important property led to the development of the
scanning tunnelling microscope (STM) which had a profound impact on chemical,
biological, and materials science research.

Figure 4 shows the effects of classical mechanics as well as quantum tunnelling.

According to quantum mechanics, there is a probability that the electron will pass

through the barrier even if its kinetic energy is less than the potential energy of the

barrier (E < V). This is due to Heisenberg uncertainty principle (HUP). In the previous

Figure 2-4.  Quantum tunnelling in action

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

31

chapter, you learned about the duality behavior of photons and other particles: both as

waves and particles. For waves, Schrödinger’s wave function rules, for particles, Niels

Bohr described changes in the state of an atom when it gains or losses energy (quantum

jumps). The uncertainty principle bridges the gap by introducing the probability of the

position and momentum of a particle at a given time.

When a particle such as an electron or photon approaches a barrier (such as a transistor),

there is a probability it will go straight through it. This is because its wave function diminishes

from sinusoidal to an exponential form,1 and its solution becomes Equation 2.1.

	 Y = -Ne xb 	 (2.1)

	
P

a
m V E= - -()æ

è
ç

ö
ø
÷exp

4
2

P
h 	

(2.2)

where

•	 ψ is Schrödinger’s diminished wave function.

•	 N is a normalization constant.

•	 b = -()2 2m V E h/

•	 m is the mass of the particle.

•	 V is the potential energy and E is the kinetic energy.

•	 h is the Planck constant 6.626x10−34 m2kg/s.

•	 a is the thickness of the barrier.

According to Engel1, the probability P that the particle will pass through the barrier

can be calculated by formula 2.2. Furthermore for quantum tunnelling to occur, the

following conditions must be met:

•	 The height of the barrier must be finite and the thickness of the

barrier should be thin.

•	 The potential energy of the barrier exceeds its kinetic energy (E<V).

•	 The particle has wave properties suggesting that quantum tunnelling

only applies to nanoscale objects such as electrons, photons, etc.

1�Engel, Thomas. Quantum Chemistry and Spectroscopy. Upper Saddle River, NJ. Pearson, 2006.
Print.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

32

Let’s have some fun by calculating quantum tunnelling probabilities for various

barrier sizes of the current semiconductor manufacturing process. The next sections

present a series of exercises to visualize this process in detail.

�Exercise 1

Calculate the quantum tunnelling probability for the electron using your favorite tool

(e.g., an Excel spreadsheet) for formula 2.2 assuming the following values:

•	 Kinetic energy of the electron E = 4.5 eV.

•	 Rectangular barrier with potential energy V = 5 eV. Remember that,

for quantum tunnelling to occur, E < V.

•	 Use the size of the barrier provided by the semiconductor

manufacturing process in the previous section at the quantum scale;

thus size < 100 nm for years 2000 and beyond (use Tables 2-2 and 2-3

from the previous section).

•	 Don’t forget the Planck constant h = 6.626x10−34 and the mass of the

electron m = 9.1x10−31 kg.

Tip  eV is the electron volt, the basic unit of energy in quantum mechanics.
1 eV = 1.6X10-19 joules (J). This value is required for unit conversion in the
probability calculation.

�Solution 1

I have used an Excel spreadsheet to easily calculate values from a table and formula

which is included in the source code of this manuscript. Thus pick a cell in your Excel

and type formula 2.2. Remember that the part (V-E) must be reduced by multiplication

by 1.6X10−19 J/eV. Thus formula 2.2 in Excel becomes

EXP(((−4*D5*3.14)/(6.626E−34)) * SQRT(2 * (9.1E−31) * (5 − 4.5) * (1.6E−19)))

In the formula above, cell D5 contains the barrier size, and the rest are the constants

π = 3.14, h = 6.626e−34, m = 9.1e−31, and 1 eV =1.6x1019 J. With the formula in place, create a

new table with the manufacturing year and barrier sizes in nanometers (from Tables 2-2

and 2-3). Finally, make a logic copy of the formula across the cell data for all years and

barrier sizes (see Table 2-4).

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

33

What conclusions can be drawn from this data?

•	 The probability appears to be low, even for the 5 nm manufacturing

process coming up in 2021 (1.9e−16). Remember that this value must

be multiplied by 100 to obtain a percentage.

•	 At a barrier size of around 500 picometers (pm), things start to get

a little scary. The probability is 0.0268; thus there is 2.68% chance

that an electron will pass through the barrier. This means that, for

example, if you send some encoded message, 2.68% of the bits will be

lost! Not good.

Tip  A picometer (pm) is 1/1000 of a nanometer or 10e−12 meters.

�Exercise 2

Write a tiny program, in your favorite programming language, to calculate the probability

as shown in the previous exercise. Verify that the results are the same. Dump the results

to standard output as shown in the paragraph below.

Table 2-4.  Electron Tunnelling Probabilities for the Semiconductor Process

Year Barrier size (m) Probability

1989 0.0000008 0

2001 1.30E−07 0

2006 0.000000065 6.5829E−205

2010 0.000000032 3.0188E−101

2014 0.000000014 1.053E−44

2017 1.00E−08 3.86767E−32

2019 7.00E−09 1.02616E−22

2021 5.00E−09 1.96664E−16

Beyond 5E−10 0.026876484

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

34

Quantum tunnelling probabilities for current semiconductor processes.

2001 1.30e-07 0.000e+00

2010 3.20e-08 2.684e-101

2014 1.40e-08 1.000e-44

2019 7.00e-09 1.000e-22

2021 5.00e-09 1.931e-16

Beyond 5.00e-10 2.683e-02

�Solution 2

Listing 2-1 shows a small Java program to calculate the probability for the years and sizes

of the current manufacturing process as done in the previous exercise.

Listing 2-1.  Java Program to Calculate the Quantum Tunnelling Probability for

the Semiconductor Manufacturing Process 2000 and Beyond

public class Quantum Tunnelling {

 /** Planck's constant */

 static final double K_PLANK = 6.626e-34;

 /** Mass of the electron (kg) */

 static final double K_ELECTRON_MASS = 9.1e-31;

 /** Electron volt */

 static final double K_EV = 1.6e-19;

 /**

 * Engel's Quantum Tunnelling Probability

 *

 * @param size

 * Size of the barrier in meters.

 * @param E

 * Kinetic energy in electron volts (eV).

 * @param V

 * Potential energy in eV.

 * @return Quantum Tunnelling Probability

 */

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

35

 static double EngelProbability(double size, double E, double V) {

 if (E > V) {

 throw new IllegalArgumentException

 ("Potential energy (V) must be > Kinetic Energy (E)");

 }

 double delta = V - E;

 double p1 = ((-4 * size * Math.PI) / K_PLANK);

 double p2 = Math.sqrt(2 * K_ELECTRON_MASS * delta * K_EV);

 return Math.exp(p1 * p2);

 }

 /** A simple test for current semiconductor processes */

 public static void main(String[] args) {

 try {

 // Barrier sizes for current semiconductor processes (m)

 �final double[] SIZES = { 130e-9, 32e-9, 14e-9, 7e-9, 5e-9,

500e-12 };

 // Dates for display purposes

 �final String[] DATES = { "2001", "2010", "2014", "2019",

"2021", "Beyond" };

 final double E = 4.5; // Kinetic energy of the electron (eV)

 final double V = 5.0; // Potential energy (eV)

 // Display them...

 for (int i = 0; i < DATES.length; i++) {

 double p = EngelProbability(SIZES[i], E, V);

 �System.out.println(String.format("%s\t%2.2e\t%2.3e",

DATES[i], SIZES[i], p));

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

36

Listing 2-1 defines a function, EngelProbability, that takes three arguments:

the size of the barrier in meters, the kinetic energy of the particle (E) in eV, and the

potential energy (V) in eV. It applies formula 2.1 and returns the probability. The main

program then simply loops through an array for the years of the manufacturing process,

String[] DATES = { "2001", "2010", "2014", "2019", "2021", "Beyond"}, and

corresponding sizes: double[] SIZES = { 130e-9, 32e-9, 14e-9, 7e-9, 5e-9,

500e-12}. The data is formatted as a table to standard output.

�Exercise 3

Plot the data obtained in exercise 1 or 2 into a graph to better visualize the situation.

Finally, bravely postulate the year of the demise of the transistor for the current

semiconductor manufacturing process!

�Solution 3

Spreadsheets are such great tools to manipulate statistical values. The previous data can

be plotted in a snap into a cool line graph as shown in Figure 2-5.

Figure 2-5.  Quantum tunnelling probabilities for the semiconductor
manufacturing process

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

37

Now for the grand finale, the demise of the transistor should come around year…

I feel skeptical about estimating such year. Something I have learned about quantum

mechanics is that everything is ruled by uncertainty. If we assume that a 1% probability

for quantum tunnelling is unacceptable for the current manufacturing process, then

the data above shows that around 2025, at a barrier size between 1 nanometer and 500

picometers, transistors and therefore all computers may become unusable, although my

guess is that transistors will evolve into something else, perhaps something organic or

weirder. Nevertheless, it is time to start learning to program a quantum computer just in

case.

Now let’s look at the next quantum effect causing trouble for the transistor: the

uncertainty of the position or momentum shown by basic slit experiments.

�Slit Experiments
These experiments were performed many decades ago and are designed as a basic

demonstration of the bizarre world of quantum mechanics. They come in many flavors:

single slit, double slit, and others. In the single slit experiment, a laser passes through a

vertical slit a few inches in width, and it is projected into a surface. The width of the slit

can be decreased as desired. As expected we see a dot projected in the surface. Now, if

the width of the slit is decreased, the projected dot becomes narrower and narrower;

again this is the expected result. But wait, when the width of the slit decreases at about

1/100 of an inch, things get crazy. The dot doesn’t become narrower but explodes into a

wide horizontal line-like shape. Extremely counterintuitive.

Tip  A more detailed and graphical description of this experiment can be seen in
Chapter 1.

Slit experiments are important when talking about transistors because they show the

strange effects of quantum mechanics at tiny scales. All in all, Newtonian and relativistic

laws of time and space don’t make sense at this scale and will create trouble for the

transistor.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

38

�Possible Futures for the Transistor
Perhaps I am speaking too soon about the demise of the transistor. As a matter of fact,

science is already looking ahead at possible alternatives (besides quantum computing).

There are some intriguing projects out there to deal with this issue:

•	 Molecular electronics: A field that generates much excitement. It

promises to extend the limit of small-scale silicon-based integrated

circuits by using molecular building blocks for the fabrication of

electronic components. This is an interdisciplinary field that spans

physics, chemistry, and materials science.

•	 Organic electronics: A term that sounds fascinating and out of a

science fiction movie at the same time. This is a field of materials

science concerning the design and application of organic molecules

or polymers that show desirable electronic properties such as

conductivity. Imagine transistors made of organic materials such as

carbon. Not exactly living machines but getting close.

�Enter Richard Feynman and the Quantum Computer
The idea of a computational system based on quantum properties comes from Nobel

Prize winner physicist Richard Feynman. In 1982 he proposes a “quantum computer”

capable of using the effects of quantum mechanics to its advantage.2 For most of the time

since then, interest in quantum computing was mostly theoretical, but things were about

to change. In 1995, Peter Shor in his notorious paper “Polynomial-Time Algorithms for

Prime Factorization and Discrete Logarithms on a Quantum Computer”3 proposes a

large prime factorization algorithm to run on a quantum computer. This starts a race

to create a practical quantum computer when it is proven mathematically that the time

complexity (big “O” or execution time) of his algorithm is significantly faster than the

current champ of classical computing: the Number Field Sieve.

2�Quantum computation. David Deutsch, Physics World, 1/6/92. A comprehensive and inspiring
guide to quantum computing.

3�Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on
a Quantum Computer. https://arxiv.org/abs/quant-ph/9508027

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

https://arxiv.org/abs/quant-ph/9508027

39

The significance of Shor’s algorithm is profound in its own right. Consider Figure 2-6

showing the time complexities of the Number Field Sieve against Shor’s algorithm.

It has been estimated mathematically that Shor’s algorithm could be able to factor

a 232-digit integer (RSA-232), one of the current largest integers, in a matter of seconds.

Thus a practical quantum computer that can execute Shor’s algorithm will render

current asymmetric cryptography useless. Keep in mind that asymmetric cryptography is

used all over society: at the bank, for example, to encrypt data and accounts, at the Web

to browse, communicate, you name it.

But don’t rush to the bank, get all your money and put it under the mattress just yet.

A practical implementation of this algorithm is decades away right now. This fascinating

algorithm is discussed in more detail in a later chapter of this book.

Figure 2-6.  Number Field Sieve vs. Shor’s algorithm time complexity

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

40

Now back to Feynman and his quantum computer. In a classical computer, the basic

unit is the bit (a 0 or 1). In Feynman’s computer, the basic unit is the qubit or quantum

bit. A unit that is as bizarre as the theory is built upon.

�The Qubit Is Weird and Awesome at the Same Time
Just like its classical cousin, the qubit can take a value of either 0 or 1. Physically, qubits

can be represented as any two-level quantum systems such as

•	 The spin of a particle in a magnetic field where up means 0 and down

means 1 or

•	 The polarization of a single photon where horizontal polarization

means 1 and vertical polarization means 0. You can make a quantum

computer out of light. How weird is that.

In both cases 0 and 1 are the only possible states. Geometrically, qubits can be

visualized using a shape called the Bloch sphere, an instrument named after Swiss

physicist Felix Bloch (see Figure 2-7).

Formally, the Bloch sphere is the geometrical representation in three-dimensional

Hilbert space of the pure state of a two-level quantum system or qubit. The north and

south poles of the sphere represent the standard basis vectors |0> and |1>, respectively;

Figure 2-7.  Geometrical representation of a quantum state using the Bloch sphere

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

41

these in turn correspond to the spin-up and spin-down of the electron. Besides the basic

vectors, the sphere can have something in between; this is called a superposition and it

is essentially the probability for 0 or 1. The trick is that we can’t predict which it will be

except at the instant of observation when the probability collapses into a definitive state.

�Superposition of States
Imagine if you could flip a coin that could fall not only in a heads or tails position, but

in both positions at the same time. Such a coin would be more powerful. Nevertheless

there is a catch; the moment you observe this quantum coin, it is forced to take either

heads or tails never knowing what position it was in before. This is one reason one needs

to be careful when measuring qubits, because they change as soon as observed. All in all,

superposition is a game changer. Let’s see why:

•	 A 1-bit classical computer can be (or store) in 1 of 2 states at a time:

0 or 1. A 1-qubit quantum computer can be (or store) in 2 states at a

time. That is 21 = 2.

•	 A 2-bit classical computer can store only 1 out of 22 = 4 possible

combinations. A 2-qubit quantum computer can store 22 = 4 possible

values simultaneously.

Assuming that a byte (8 bits) is the basic unit used to store information in either

system, then the number of values that can be stored simultaneously in a quantum

computer would be 2n where n is the number of qubits. Compare this against the storage

capacity of a classic computer (shown in Table 2-5) and you realize why qubits are

powerful indeed.

Table 2-5.  Qubit Simultaneous Storage Capacity

Bits/qubits Classic storage (bytes) Quantum storage (bits) Quantum storage (bytes)

4 1 16 2

8 1 256 32

32 4 4294967296 536870912

64 8 1.84467E+19 2.30584E+18

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

42

Thus the amount of data that can be stored simultaneously in a quantum computer

is astounding, so much so that a new term has popped up out there: quantum

supremacy. This is the point at which a quantum computer will be able to solve all

problems a classical computer cannot. More about this subject will be discussed in a

further section of this chapter. But, for now, let’s look at the next strange property of the

qubit: entanglement.

�Entanglement: Observing a Qubit Reveals the State
of Its Partner
Long ago, Albert Einstein called quantum entanglement Spooky action at a distance.

Believe it or not, entanglement has been proved experimentally by French physicist

Alain Aspect in 1982. He demonstrated how an effect in one of two correlated particles

travels faster than the speed of light!

Tip I ronically and in a sad twist of faith, humans cannot use entanglement to
send messages faster than the speed of light as information cannot travel at such
speed. This dichotomy, as well as Aspect’s experiment, is explained in more detail
in Chapter 1.

If a set of qubits are entangled, then each will react to a change in the other

instantaneously, no matter how far apart they are (in opposite sides of the galaxy, e.g.,

which sounds really unbelievable). This is useful in that, if we measure the properties

in 1 qubit, then we can deduce the properties of its partner without having to look.

Furthermore, entanglement can be measured without looking through a process called

quantum tomography. Quantum tomography seeks to determine the state(s) of an

entangled set prior to measurement by measurements of the systems coming from the

source. In other words, it calculates the probability of measuring every possible state of

the system.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

43

Note M ultiqubit entanglement represents a step forward in realizing large-scale
quantum computing. This is an area of active research. Currently, physicists in
China have experimentally demonstrated quantum entanglement with 10 qubits on
a superconducting circuit.4

Entanglement is one aspect of qubit manipulation; another mind-bending feature is

manipulation via quantum gates.

�Qubit Manipulation with Quantum Gates
Gates are the basic building blocks in a quantum computer. Just like their classic

counterparts, they operate on a set of inputs to produce another set of outputs. Unlike

their cousins however, they operate simultaneously in all possible states of the qubit

which makes them really cool and weird at the same time. The basic gates of a quantum

computer are:

�Measurement Gate

We know that the act of measuring or observing a qubit alters its state. This process is

also considered a gate. The measurement gate takes a qubit in a superposition of states

as input and spits either a 0 or 1. Furthermore, the output is not random. There is a

probability of a 0 or 1 as output which depends on the state the qubit is originally in (see

Figure 2-8).

4�Chao Song et al. “10-Qubit Entanglement and Parallel Logic Operations with a Superconducting
Circuit.” Physical Review Letters. DOI: 10.1103/PhysRevLett.119.180511.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

44

Note that the measurement gate should be the final act on a quantum circuit as

quantum mechanics tells us that observing a qubit in the middle of a calculation will

collapse its wave function and defeat the parallelism achieved by the superposition of

states.

�Swap Gate

The swap gate takes 2 qubits and swaps its states as shown in Figure 2-9.

Figure 2-8.  Measurement gate and its output probability

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

45

Figure 2-9.  Swap gate in action

�Pauli or X Gate

The Pauli gate is the quantum analog of the classic NOT gate. Formally, it rotates the

qubit 180 degrees in the X-axis. Note that the X-axis points outside of the screen as

shown in the Bloch sphere in Figure 2-7.

Figure 2-10.  Pauli X gate

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

46

Tip  The Pauli gate is named after one of the fathers of quantum physics:
Austrian-born Wolfgang Ernst Pauli. In 1945 he won the Nobel Prize in Physics for
developing the exclusion principle or Pauli principle which essentially says that
no two electrons can exist in the same quantum state.5 He was highly admired
by Albert Einstein and was close friends with giants of quantum mechanics: Niels
Bohr and Bernard Heisenberg.

�Rotation Gates: Y, Z

Rotation gates over the Y- and Z-axis are known as the Pauli Y and Pauli Z gates,

respectively.

•	 The Pauli Y gate acts on a single qubit. It rotates around the Y-axis of

the Bloch sphere by π radians (180 degrees). It maps |0> to i|1> and

|1> to –i|0>.

•	 The Pauli Z gate acts on a single qubit. It rotates around the Z-axis of

the Bloch sphere by π radians. It leaves the basis state |0> unchanged

and maps |1> to –|1>.

�Hadamard Gate (H)

The Hadamard gate acts on a single qubit. It is the combination of two rotations:

	 1.	 π over the X-axis

	 2.	 π/2 over the Y-axis

The Hadamard gate is the quantum equivalent of the Hadamard matrix, a square

matrix whose entries are either +1 or −1 and whose rows are mutually orthogonal.

	
H =

-
é

ë
ê

ù

û
ú

1

2

1 1

1 1 	

5�Nobel Lecture: Exclusion Principle and Quantum Mechanics Pauli’s own account of the
development of the Exclusion Principle. www.nobelprize.org/nobel_prizes/physics/
laureates/1945/pauli-lecture.html

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

http://www.nobelprize.org/nobel_prizes/physics/laureates/1945/pauli-lecture.html
http://www.nobelprize.org/nobel_prizes/physics/laureates/1945/pauli-lecture.html

47

Table 2-6.  Basic Quantum Gates

Gate name Symbol Details

Measurement It takes a qubit in a superposition of states as input and

spits either a 0 or 1.

X (NOT) It rotates the qubit 180 degrees in the X-axis. Maps |0>

to |1> and |1> to |0>.

Y It rotates around the Y-axis of the Bloch sphere by π

radians. It is represented by the Pauli matrix:

Y =
0 i

i 0

-
-
é

ë
ê

ù

û
ú

where i = -1 is known as the imaginary unit.

(continued)

Tip  The Hadamard transform is useful in data encryption, as well as many signal
processing and data compression algorithms.

�Controlled (cX cY cZ) Gates

Controlled gates act on 2 or more qubits, where 1 or more qubits act as a control for

some operation. For example, the controlled NOT gate (CNOT or cX) acts on 2 qubits

and performs the NOT operation on the second qubit only when the first qubit is |1> and

otherwise leaves it unchanged.

�Toffoli (CCNOT) Gate

This is a controlled gate that operates in 3 qubits. If the first 2 qubits are in the state |1>, it

applies a Pauli X (or NOT) on the third qubit; else it does nothing. This gate maps |a,b,c>

to |a,b,c + ab>.

The quantum gates shown in Table 2-6 are the basic building blocks of quantum

circuits, like the classical logic gates in Table 2-1 are for conventional digital circuits.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

48

(continued)

Gate name Symbol Details

Z It rotates around the Z-axis of the Bloch sphere by π

radians. It is represented by the Pauli matrix:

Y=
1 0

0 1-
é

ë
ê

ù

û
ú

Hadamard
It represents a rotation of π on the axis X Z+ / 2() .

In other words it maps the states:

|0> to |0>+|1> / 2()

|1> to |0> |1> / 2-()

Swap (S) It swaps 2 qubits with respect to the basis |00>, |01>,

|10>, |11>. It is represented by the matrix:

S=

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Controlled (cX

cY cZ)

It acts on 2 or more qubits, where 1 or more qubits act

as a control for some operation. Its generalized form is

described by the matrix:

C U
u u

u u

()

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

1 0 0 0

0 1 0 0

0 0

0 0
00 01

10 11

where U is one of the Pauli matrices σx, σy, or σz.

Table 2-6.  (continued)

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

49

Table 2-6.  (continued)

Gate name Symbol Details

Toffoli (CCNOT) This is a reversible gate, which means that its output

can be reconstructed from its input (the states are

moved around with no increase in physical entropy). It

has 3-bit inputs and outputs; if the first 2 bits are both

set to 1, it inverts the third bit; otherwise all bits stay the

same.

Reversible gates are important because they dissipate

less heat. When a logic gate consumes its input,

information is lost since less information is present

in the output than the input. This loss of information

dissipates energy to the surrounding area as heat.

In quantum computing Toffoli gates are important

because quantum mechanics requires transformations

to be reversible and allows more general states

(superpositions) of a computation than classical

computers.

So a quantum gate manipulates the input of superpositions, rotates probabilities,

and produces another superposition as its output. Physically, qubits can be constructed

in many ways, with technology companies currently getting into the action in different

directions, each design with its own strengths and weaknesses. Let’s take a look.

�Qubit Design
When it comes to qubit design, only companies with big pockets can get into the race

of constructing a practical quantum computer. Due to the weirdness and complexity

of quantum mechanics, this is no easy task. In an article for Science Magazine6, writer

Gabriel Popkin outlines these efforts from the titans of technology. It seems that all

6�“Scientists are close to building a quantum computer that can beat a conventional one.”
http://www.sciencemag.org/news/2016/12/scientists-are-close-building-quantum-
computer-can-beat-conventional-one

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

http://www.sciencemag.org/news/2016/12/scientists-are-close-building-quantum-computer-can-beat-conventional-one
http://www.sciencemag.org/news/2016/12/scientists-are-close-building-quantum-computer-can-beat-conventional-one

50

of them want in the action with different designs. Currently, there is no clear winner;

nevertheless the race is on. According to Popkin, these are the most common types of

qubits:

�Superconducting Loops

When an electric current passes through a conductor, some of the energy is lost in the

form of heat and light. This is called resistance, and it depends on the type of material;

some metals like copper or gold are great conductors of electricity and thus have low

resistance. Scientists discovered that the colder the material is, the better conductor of

electricity it becomes. Thus the lower the temperature gets, the lower the resistance.

Nevertheless, no matter how cold gold or copper gets, it will always show a level of

resistance.

Mercury is different however. In 1911, scientists discovered that when cooling

down mercury to 4.2 degrees Kelvin (above absolute zero), its resistance becomes zero.

This experiment leads to the discovery of the superconductor, a material that has zero

electrical resistance at very low temperatures. Since then many other superconducting

materials have been found: aluminum, gallium, niobium, and others which show zero

resistance at a critical temperature. The great thing about superconductors is that

electricity flows without any loss, so a current in a close loop can theoretically flow

forever.

Tip  This principle has been proved experimentally when scientists were able to
maintain electricity flowing over superconducting rings for years.

In a qubit made of a superconductor loop, a current oscillates back and forth around

a loop. A microwave is injected which excites the current into a superposition of states

(see Figure 2-11). Let’s look at the advantages and disadvantages of such design.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

51

Pros:

•	 Low error levels (around 99.4% logic success rates)

•	 Fast, built on existing materials

•	 Decent number of entangled qubits (9) capable of performing a

2-qubit operation

Cons:

•	 Low longevity: 0.00005 s. That is, the minimum amount of time a

superposition of states can be kept

•	 Must be kept very cold, at a super frosty –271 °C

This design is used by IBM’s cloud platform Q Experience which is the basis for the

code used in this book. It is also used by Google and a private venture called Quantum

Circuits, Inc. (QCI) which seeks to manufacture a practical quantum computer based on

superconductors.

Figure 2-11.  Superconductor loop qubit

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

52

�Trapped Ions

An ion trap is a technique for controlling quantum states in a qubit. It uses a

combination of electric or magnetic fields to capture charged particles (ions) in a system

isolated from the external environment. Lasers are applied to couple qubit states for

single operations or coupling between the internal states and the external motional

states for entanglement.

Ion traps seek to realize the dream of large-scale universal quantum computing

by scaling with arrays of ion traps. This technique is also capable of building large

entangled states via photonically connected networks of remotely entangled ion chains

or combinations of these two ideas (see Figure 2-12).

Figure 2-12.  Ion traps and chains for large-scale quantum computing

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

53

Let’s look at the pros and cons of trapped ions:

Pros:

•	 High longevity: Experts claim that trapped ions can hold

entanglement for up to 1000 s which is huge compared to

superconductor loops (0.00005 s).

•	 Better success rates (99.9%) than superconductors (99.4%). Not

much, but still.

•	 Highest number so far (14) of entangled qubits capable of performing

a 2-qubit operation.

Cons:

•	 Slow operation. Requires lots of lasers.

The top company developing this technology is IonQ located in Maryland, USA.

�Silicon Quantum Dots

Intel, the juggernaut of the PC CPU, is spearheading this design. In a silicon quantum

dot, electrons are confined vertically to the ground state of a quantum gallium arsenide

(GaAs) well, forming a two-dimensional electron gas (2DEG). A 2DEG electron gas is free

to move in two dimensions, but tightly confined in the third (see Figure 2-13). This tight

confinement leads to quantized energy levels for motion in the third direction which

may be of high interest in quantum-based structures.

Tip  2DEG are currently found on transistors made from semiconductors. They
also exhibit quantum effects such as the Hall effect, in which a two-dimensional
electron conductance becomes quantized at low temperatures and strong
magnetic fields.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

54

The pros and cons of silicon quantum dots are

Pros:

•	 Stable, built on existing semiconductor materials

•	 Better longevity than superconductor loops, at 0.03 s

Cons:

•	 Low number of entangled qubits (2) capable of performing a 2-qubit

operation

•	 Lower success rate than superconductor loops or trapped ions, but

still high at 99%

�Topological Qubits

Topological qubits seek to eliminate error levels characteristic of quantum computers.

Errors are due to the probabilistic nature of quantum mechanics and are described

by the longevity or the duration of qubit entanglement. A topological qubit uses two-

dimensional quasiparticles called anyons whose paths pass around one another to form

braids in a three-dimensional space-time. These braids form the logic gates that make

up the computer.

Figure 2-13.  Quantum dot made of gallium arsenide

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

55

Pros:

•	 Stable, error-free (longevity doesn’t apply)

Cons:

•	 Purely theoretical at this point, although recent experiments

indicate these elements may be created in the real world using

semiconductors made of gallium arsenide at a temperature near

absolute zero and subject to strong magnetic fields

Microsoft and Bell Labs are some of the companies that support this design.

�Diamond Vacancies

Diamond vacancies are locations in the diamond’s crystal lattice where there should

be a carbon atom but there isn’t one. Diamond vacancies seek to harness nanometer-

scale atomic defects in diamond materials to function as qubits. It has been observed

using atomic force microscopy that the surface of natural diamonds reveals several

types of defects. This defect, or vacancy, along with a Nitrogen atom adds an electron

to a diamond lattice. The electron quantum spin can then be controlled with a laser as

shown in Figure 2-15.

Figure 2-14.  Topological qubit with braids acting as logical gates

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

56

According to Dirk Englund and colleagues at the MIT School of Electrical

Engineering and Computer Science, diamond vacancies solve the perennial problem

of reading information out of qubits in a simple way. Diamonds are natural light

emitters, and as so, the light particles emitted by diamond vacancies preserve

the superposition of states, so they could move information between quantum

computing devices. Best of all, they work at room temperatures. No need to cool

things down to –272 degrees!

One pitfall of diamond vacancies, says Englund, is that only about 2% of the surface

of the diamond has them. Nevertheless researchers are developing processes for blasting

the diamond with beams of electrons to produce more vacancies.

Pros:

•	 High longevity: 10 s.

•	 High success rate: 99.2%.

•	 Decent number of entangled qubits (6) capable of performing a

2-qubit operation.

•	 Qubits operate at room temperature. How incredible is that.

Cons:

•	 Small number of vacancies in surface materials: about 2%

•	 Difficult to entangle

Figure 2-15.  Diamond vacancy qubit

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

57

All in all, quantum computers have come a long way since the days of Richard

Feynman with some of the world’s biggest companies looking to cash in. Right now

superconductor loops are leading the pack. However there are amazing new designs,

such as diamond vacancies, that seek to realize the dream of large-scale quantum

computing.

�Quantum Computers vs. Traditional Hardware
Quantum computers outmuscle classical hardware for certain tasks. Consider

Table 2-7 showing the time complexities for two specific tasks of a quantum vs. a

classical computer.

Table 2-7.  Quantum vs. Classical Time Complexities for Certain Tasks

Task Quantum Time
complexity

Classical Time complexity

Search Grover’s

algorithm
n

Quick search n/2

Large integer

factorization

Shor’s

algorithm

log(n3) Number Field

Sieve
exp 1.9log *log log

1
3

2
3n n

æ

è
ç

ö

ø
÷ ()()

æ

è
çç

ö

ø
÷÷

For search, Grover’s algorithm provides better performance than traditional search.

This can have a profound impact in the data center for companies like Google, MS, and

Yahoo. Imagine your web search powered by quantum processors in the cloud. We are

long ways from that right now, but still. This is one of the reasons big tech companies are

investing heavily in developing their quantum platforms.

Another task, and perhaps the main reason why quantum is picking up such steam,

is large integer factorization. When Peter Shor came up with his quantum factorization

algorithm, he punched a serious crack at the cryptographic security that is at the

foundation of our society. Shor’s algorithm threatens current encryption systems by

factorizing large integers quickly. These integers are used to create the cryptographic

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

58

keys to encode all data in the Web: bank accounts, business transactions, chats, cat

videos, you name it. Shor’s algorithm is so fast that, in fact, it could factorize the largest

integers of todays in a matter of minutes. Compare that with the current classical champ,

the Number Field Sieve, which may take billions of years to factorize such numbers.

Besides search and cryptography, quantum computers can be invaluable tools for

simulations, molecular modelling, artificial intelligence, neural networks, and more.

Let’s see how.

�Complex Simulations
Physicists agree that simulations at the atomic level are the field where quantum

machines excel. It is the perfect fit after all; a machine built around atoms would be able

to simulate quantum mechanical systems with a much greater accuracy than a classical

computer. It has been estimated that a quantum computer with a few tens of quantum

bits could perform simulations that would take an unfeasible amount of time on a

classical computer. For example, the Hubbard model, named after British physicist John

Hubbard, which describes the movement of electrons within a crystal, can be simulated

by a quantum computer.7 According to Hubbard, this is a task that is beyond the powers

of a classical computer.

�Molecular Modelling and New Materials
According to an article in Science Magazine, theoretical chemists at the Italian Institute

of Technology in Genoa have modelled a molecule of beryllium hydride,8 a small

compound made of two hydrogen and one beryllium atom, in a quantum computer. Not

a big deal by today’s classical standards but nevertheless a stepping-stone in a future full

of hope for new drug discoveries.

Molecular modelling is a virgin new field for quantum machines as physicists

and chemists routinely use computers to simulate how atoms and molecules behave.

Mathematicians claim that most simulations require massive amounts of computing

7�Hubbard, J. (1963). “Electron Correlations in Narrow Energy Bands”. Proceedings of the
Royal Society of London. 276 (1365): 238–257. Bibcode:1963RSPSA.276..238H. doi:10.1098/
rspa.1963.0204. JSTOR 2414761

8�“Quantum computer simulates largest molecule yet” By Gabriel Popkin Sep. 13, 2017 available
at http://www.sciencemag.org/news/2017/09/quantum-computer-simulates-largest-
molecule-yet-sparking-hope-future-drug-discoveries

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

http://www.sciencemag.org/news/2017/09/quantum-computer-simulates-largest-molecule-yet-sparking-hope-future-drug-discoveries
http://www.sciencemag.org/news/2017/09/quantum-computer-simulates-largest-molecule-yet-sparking-hope-future-drug-discoveries

59

power. This is especially true for molecular simulations due to the interactions of

particles that become exponentially more complex as their numbers increase. Plus

the weird laws of quantum mechanics make it hard to calculate the distribution of

these electrons within a molecule. Table 2-8 shows some of the current experiments

in this field.

Table 2-8.  Quantum Experiments in Molecular Modelling

Year Company Experiment

2016 Google Researchers at the quantum computing lab in Venice, California, used

3 qubits to calculate the lowest energy electron arrangement of a

molecule of hydrogen.

2017 IBM IBM develops an interactive algorithm to calculate the ground state of

specific molecules. Scientists used up to 6 superconductor qubits to

analyze hydrogen, lithium hydride, and beryllium hydride by encoding

each molecule’s electron arrangement into the quantum computer and

nudge the molecule into its ground state which they measured and

encoded onto a conventional computer.

All in all, molecular modelling has a modest start, but still the future looks bright for

chemistry and drug companies. Molecular simulation looks to be a killer application for

quantum computing.

�Sophisticated Deep Learning
When it comes to deep learning traditional problems fall into three categories:

simulation, optimization, and sampling. We have seen in previous sections how a

quantum computer excels at simulations, especially at the molecular and atomic levels,

but what about optimization? Some optimization problems are not feasible in traditional

hardware due to the extreme numbers of interacting variables required to solve them.

Examples of these problems include protein folding, space craft flight simulations, and

others. Quantum computers can tackle optimization efficiently using a technique called

stochastic gradient descent. This is a technique for searching for the best solution among

a large set of possible solutions, comparable to finding the lowest point on a landscape of

hills and valleys.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

60

Tip  As a matter of fact, a Canadian company called D-Wave already sells
commercial quantum computers specifically designed to tackle optimization
problems using stochastic gradient descent and other techniques. Some of
their customers include defense contractor Lockheed Martin and Google.

Quantum sampling problems fall under the set of computational problems that

produce samples from probability distributions. Two classes of sampling problems that

demonstrate the power of quantum algorithms are Boson sampling and instantaneous

quantum polynomial time sampling. Several small-scale implementations of these two

techniques have been performed with quantum optics.

Figure 2-16 shows a schematic of the Boson sampling problem for a 32 mode instance.

Five photons (left) are injected into a linear network that has a scattering matrix (bottom),

and all outputs are detected in the Fock basis (right). According to an article in the

“Quantum Information” section of Nature by A. P. Lund, Michael J. Bremner, and

T. C. Ralph, this problem is intractable for classical computers, even for medium-scale

systems, such as 50 bosons in 2500 paths. Not even for smaller systems (20 bosons and

400 paths) a feasible classical algorithm is known which can perform this simulation.9

9�A. P. Lund, Michael J. Bremner and T. C. Ralph. Quantum sampling problems, BosonSampling
and quantum supremacy. Available at www.nature.com/articles/s41534-017-0018-2

Figure 2-16.  Schematic of the Boson sampling problem

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

http://www.nature.com/articles/s41534-017-0018-2

61

Not so much for quantum sampling problems though, which provide a path toward

experimental demonstration of the supremacy of quantum algorithms in this field. Deep

learning and artificial intelligence are two disciplines that go hand in hand in advanced

computation with neural nets being the crown jewel of current research.

�Quantum Neural Networks (QNN) and Artificial
Intelligence (AI)
Quantum neural networks are the stuff of science fiction more than science fact right

now. Nevertheless, the theoretical foundation has been there since the 1990s, and there

is wide spread research being done in many directions including

•	 The use of quantum information processing to improve existing

neural network models10: It is all about boosting existing models with

faster and more efficient algorithms. This is a field where quantum

computation shines. The motivation for this research is the difficulty

to train classical neural networks, especially for big data applications.

The hope is that features of quantum computing such as parallelism

or the effects of interference and entanglement can be used as

resources.

•	 Potential quantum effects in the brain11: This path merges quantum

physics and neuroscience with a vibrant debate beyond the borders

of science. There are pioneers hard at work in the mostly theoretical

field of quantum biology which has been gaining momentum by

discoveries such as

•	 Signs of efficient energy transport in photosynthesis due to

quantum effects

•	 Reports of “Mag-Lag” effects in MRI scanner patients

suggesting that delicate interactions in the brain may be

quantum in nature

10�M. Schuld, I. Sinayskiy, F. Petruccione: The quest for a Quantum Neural Network, Quantum
Information Processing 13, 11, pp. 2567-2586 (2014).

11�W. Loewenstein: Physics in mind. A quantum view of the brain, Basic Books (2013).

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

62

•	 Quantum associative memory: This is a new algorithm introduced

by Dan Ventura and Tony Martinez in 1999.12 They propose a circuit-

based quantum computer that simulates associative memory. The

algorithm writes memory states into superpositions, and then it uses

a Grover-like quantum search to retrieve the memory state closest to

a given input with the ultimate goal being to simulate features of the

human brain.

•	 Black holes: Believe it or not, ideas have been proposed about

modelling black holes as QNNs and that black holes and brains may

store memories in similar ways.13

All in all, if a SkyNet-like AI quantum computer is to enslave humanity in the future,

chances are that it will be made of some sort of a QNN. It may sound like a joke right

now, but giants of science such as Stephen Hawking have warned about this. We should

be wise to listen. In the next section we look at the pitfalls that make quantum computers

hard to build.

�Pitfalls of Quantum Computers: Decoherence
and Interference
Decoherence and interference are basic principles in quantum mechanics that cause

trouble for large-scale quantum computing.

�Decoherence (Longevity)
In quantum mechanics, particles are described by the wave function. A fundamental

property of quantum mechanics is called coherence or the definite phase relation

between states. This coherence is necessary for the functioning of quantum computers.

However, when a quantum system is in contact with its surroundings, coherence decays

with time, a process called quantum decoherence. Formally, decoherence is the time

12�D. Ventura, T. Martinez: A quantum associative memory based on Grover’s algorithm,
Proceedings of the International Conference on Artificial Neural Networks and Genetics
Algorithms, pp. 22-27 (1999).

13�Black Holes as Brains: Neural Networks with Area Law Entropy. Gia Dvali and colleagues.
Available at https://arxiv.org/pdf/1801.03918.pdf.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

https://arxiv.org/pdf/1801.03918.pdf

63

that takes for the superposition of states to disappear and is due to the probabilistic

nature of the wave function. It can be viewed as the loss of information from a system

into the environment.

Tip  Decoherence was introduced to understand the collapse of the wave function
by German physicist H. Dieter Zeh in 1970.14

Decoherence can be tested experimentally: quantum mechanics says that particles

can be in multiple states (not excited vs. excited or in two different locations) at the

same time. Only the act of observation gives a random value for a particular state. If the

excitation is measured by the energy levels of the particle (where low energy level means

not excited and high energy means excited), when an electromagnetic wave is sent to the

particle at a proper frequency, the particle will alternate between high and low energy

levels. The state of the particle can then be measured and averaged producing what is

called Rabi oscillations. Because the particle is never completely isolated due to atom

collisions, electromagnetic fields, or thermal baths, for example, the superposition will

stop and the oscillations will disappear.

Thus decoherence gives information about the interaction of a quantum object

and its environment and it is crucial for quantum computing. That is, the higher the

decoherence (the time it stays in superposition), the higher the quality of the qubit will

be. Some qubit designs like superconductor loops have very low longevity and need

to be kept at extremely low temperatures (-271 °C) to counter this effect. Others like

trapped ions and diamond vacancies have very high longevity and can be kept at room

temperatures. Technology companies working in quantum designs face a daunting

challenge trying to wrestle with qubit longevity. For a more detailed description of these

efforts, see the section under “Qubit Design.”

14�Schlosshauer, Maximilian (2005). “Decoherence, the measurement problem, and
interpretations of quantum mechanics”. Reviews of Modern Physics. 76 (4): 1267–1305.
arXiv:quant-ph/0312059 Freely accessible. Bibcode:2004RvMP...76.1267S. doi:10.1103/
RevModPhys.76.1267.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

64

�Quantum Error Correction (QEC)
Quantum error correction seeks to achieve fault-tolerant quantum computation by

protecting information from errors due to decoherence and other environmental noise.

When a quantum computer sets up some qubits, it applies quantum gates to entangle

them and manipulate probabilities and then finally measures the output collapsing

superpositions to a final sequence of 0s or 1s. This means that you get the entire lot of

calculations with your circuits done at the same time. Ultimately, you can only measure

one output from the entire range of possible solutions. Every possible solution has a

probability to be correct so it may have to be rechecked and tried again. This process is

called quantum error correction.

In the classical world, error correction is done with redundancy, that is, by creating

copies of the data and then assigning probabilities to the possible error conditions

and finally comparing the highest probable condition with the original message to

determine if an error has occurred. To illustrate this process, consider the following table

representing one bit of information:

Message Redundant copies Error (1) Error (1,2)

0 0 1 1

0 0 1

0 0 0

Probability (1/3) = 0.33 (1/3)*(1/3) = 0.11

Let’s say that we have a 1 bit message (0) and we create three redundant copies

for error correction. Assuming that noisy errors are independent and occur with some

probability, it is more likely that the error occurs in a single bit and the transmitted

message is three 0s. It is also possible that a double-bit error occurs and the transmitted

message is equal to three 1s, but this outcome is less likely. Thus we can use this method

to correct the message in case of errors in a classical system. Unfortunately, this is not

possible at quantum scales due to the no-cloning theorem.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

65

Note  The no-cloning theorem states that it is impossible to create an identical
copy of an arbitrary unknown quantum state. It was postulated and proved by
Physicist James L. Park in 1970.15

The no-cloning theorem creates trouble for quantum computing as redundant

copies of qubits cannot be created for error correction. Nevertheless it is possible to

spread the information of 1 qubit onto a highly entangled state of several physical qubits.

This technique was discovered by Peter Shor with a method of error correcting code by

storing the information of 1 qubit onto 9 entangled qubits. However, this scheme only

protects against errors of a limited form. Over time several schemes of quantum error

correction codes have been developed. The most important are:

�The 3-Qubit Code

This is the most basic and the starting point for quantum error correction. This method

encodes a single logical qubit into three physical ones with the property that it can

correct a single bit-flip error in the Pauli X matrix (σx). This code is able to correct errors

without measuring the state of the original qubit by using 2 extra qubits to extract what is

called syndrome information (information regarding possible errors) from the data block

without disturbing the original state.

The caveat of this code is that it cannot correct for both bit and phase (sign) flips

simultaneously, only a single bit flip. Peter Shor used this method to develop a 9-qubit

error correction code.

�Shor’s Code

This error correction code is based on the 3-qubit code, and it is capable of correcting bit

flips, sign flips, or both simultaneously. Shor’s code works by encoding 1 single logical

qubit into 9 physical qubits using this extra real state to store syndrome information

about the possible errors. Note that this code can correct errors in a single qubit

only. This code tends to be simpler, allowing for more cooperative circuit structures

to the physical restrictions of computer architecture. Furthermore, other modern

developments in quantum error correction include

15�Wootters, William; Zurek, Wojciech (1982). “A Single Quantum Cannot be Cloned”. Nature. 299:
802–803. Bibcode:1982Natur.299..802W. doi:10.1038/299802a0.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

66

•	 Bosonic codes: These try to store error correction information in

bosonic modes using the advantage that oscillators have infinitely

many energy levels in a single physical system.16

•	 Topological codes: These were introduced by physicist Alexei

Kitaev with the development of his toric code for topological error

correction. Its structure is defined on a two-dimensional lattice using

error chains which define nontrivial topological paths over the code

surface.17

All in all, decoherence and quantum error correction are not making things easy

for IT companies seeking to realize the dream of large-scale fault-tolerant quantum

computing. Nevertheless progress continues at a rapid pace thanks to new qubit designs

with high levels of longevity and improved quantum error correction codes. In fact, the

pace is so quick that experts in the field have coined a new catchy term for large-scale

quantum computing: quantum supremacy.

�The 50-Qubit Processor and the Quest for Quantum
Supremacy
Quantum supremacy is a catchy term indeed. It was coined by physicist John Preskill

to describe the point at which a quantum computer could solve problems that classical

computers cannot. This is a very potent claim as it requires proof of super-polynomial

speedups over their best classic counter parts.

Tip  A super-polynomial speedup is an improvement in the execution of an
algorithm above the bounds of a polynomial. For example, an algorithm that runs
at k1nc1 + k2nc2 +… where k and c are arbitrary constants and n is the size of the
input is said to be of polynomial time. An algorithm that runs at 2n where n is the
size of the input is said to be of super-polynomial time.

16�Cochrane, P. T.; Milburn, G. J.; Munro, W. J. (1999-04-01). “Macroscopically distinct quantum-
superposition states as a bosonic code for amplitude damping”. Physical Review A. 59 (4):
2631–2634. doi:10.1103/PhysRevA.59.2631.

17�A.Y. Kitaev. Quantum Computations: algorithms and error correction. 52:1191, 1997.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

67

Researchers are hard at work on proving quantum supremacy with a few algorithms

already in place that provide super-polynomial speedup over the classic champs. The

following paragraphs detail a timeline of these efforts.

•	 1982: Richard Feynman, the titan of quantum mechanics, proposes a

quantum computer that can take advantage of the atomic principles

of superposition, interference, and entanglement. Such a machine

will be a game changer.

•	 1994: Mathematician Peter Shor comes up with his notorious

factorization algorithm for a quantum computer. The algorithm

becomes a sensation when it is estimated that its time complexity

crushes the classical super champ (the Number Field Sieve - NFS)

by super-polynomial speedups. The algorithm has neither been

implemented nor proved experimentally; nevertheless, the genie is

out the bottle as excitement grows almost as fast as Shor’s algorithm

speedup over NFS.

•	 2012: Physicist John Preskill coins the term quantum supremacy in

the paper “Quantum Computing and the Entanglement Frontier”

to formally describe the point in time at which quantum computers

will take over. The race is on among the giants of information

technology.

•	 2016: Google, the search giant, decides to take on the challenge of

proving quantum supremacy by the end of 2017 by constructing a

49-qubit chip that will be able to sample distributions inaccessible to

any current classical computers in a reasonable amount of time. The

effort fails.

•	 2017: Researchers at IBM T. J. Watson lab perform a simulation of 49-

and 56-qubit circuits on a conventional Blue Gene/Q supercomputer

at the Lawrence Livermore National Laboratory, increasing the

number of qubits needed for quantum supremacy.18

18�Edwin Pednault and colleagues. Breaking the 49-Qubit Barrier in the Simulation of Quantum
Circuits available online at https://arxiv.org/pdf/1710.05867.pdf.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

https://arxiv.org/pdf/1710.05867.pdf

68

•	 2018: Skepticism grows on proving quantum supremacy as the pitfalls

of quantum computing become more apparent: quantum error

correction estimates get as high as 3% of the input on each cycle.

Quantum computers are much noisier and error prone compared to

their classical counter parts. The Holy Grail becomes a fault-tolerant

quantum computer.

Although quantum supremacy is still a long way before a definitive proof, IT insiders

predict companies will start seeing returns on their investment into quantum within

a few years. Whenever or under which qubit count this so-called quantum supremacy

arrives, not even supercomputers will be able to keep up. Believe it or not, there is a

company in Canada called D-Wave Systems selling 2000-qubit computers commercially.

Although their work remains controversial due to the use of a process called quantum

annealing. The next section shows why.

�Quantum Annealing (QA) and Energy Minimization
Controversy
Quantum annealing sometimes called adiabatic quantum computation (AQC)

is a form of quantum computing that relies in the adiabatic theorem to perform

calculations. Without getting too technical, here is a list of concepts to better

understand this process:

•	 Adiabatic theorem: It was postulated by Max Born and Vladimir

Fock in 1928 and states: A quantum mechanical system subjected to

gradually changing external conditions adapts its functional form,

but when subjected to rapidly varying conditions there is insufficient

time for the functional form to adapt, so the spatial probability

density remains unchanged.

•	 Hamiltonian (H): An important concept in quantum mechanics

especially so for quantum annealing. In quantum mechanics, a

Hamiltonian is an operator corresponding to the total energy of the

system in most of the cases. In other words, it is the sum of the kinetic

energies of all the particles, plus the potential energy of the particles

associated with the system.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

69

Tip  The adiabatic theorem is better understood by a simple example of a
pendulum oscillating in a vertical plane. If the support of the pendulum is moved
abruptly, the mode of oscillation of the pendulum will change. On the other hand,
if the support is moved very slowly, the motion of the pendulum relative to the
support will remain unchanged. This is the essence of the adiabatic process: A
gradual change in external conditions allows the system to adapt, such that it
retains its initial character.

In general terms, quantum annealing can be described by the following steps:

	 1.	 Find a potentially complicated Hamiltonian whose ground state

describes the solution to the problem of interest.

	 2.	 Prepare a system with a simple Hamiltonian and initialize to the

ground state.

	 3.	 Use an adiabatic process to evolve the simple Hamiltonian into to

the desired complicated Hamiltonian. By the adiabatic theorem,

the system remains in the ground state, so at the end the state of

the system describes the solution to the problem.

The pioneer in this form of quantum computing is a company called D-Wave

Systems which has sold commercially several quantum computers with fairly large

numbers of qubits.

�2000 Qubits: Things Are Not As They Seem
Consider the following timeline for a series of quantum systems commercially sold by

D-Wave.

•	 2007: D-Wave demonstrates their first 16-qubit hardware.

•	 2011: D-Wave One, a 128-qubit computer sold to Lockheed Martin

for 10 million USD.

•	 2013: D-Wave Two, a 512-qubit computer sold to Google for their

Quantum Artificial Intelligence Lab seeking to prove quantum

supremacy.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

70

•	 2015: D-Wave 2X, breaks the 1000-qubit barrier when sold to an

unknown partner.

•	 2017: D-Wave 2000Q, their latest 2000-qubit computer sold to

a cybersecurity firm called Temporal Defense Systems for

15 million USD.

It may seem hard to believe that a 2000-qubit quantum computer has already been

sold when giants like IBM and Google are just beginning to build 16-qubit systems.

Considering that IBM is a company that specializes in large-scale hardware and has the

deepest pockets of anybody out there. They would not simply let this happen. Well, the

truth is that, in spite of the large number of qubits of the D-Wave 2000Q, it cannot tackle

most of the problems that the IBM Q system can.

As a matter of fact, a D-Wave computer can only solve quantum annealing problems,

that is, problems solvable by the adiabatic theorem.

�Quantum Annealing: A Subset of Quantum Computing
Quantum annealing has been called restrictive by experts in the field generating some

controversy due to the following facts:

•	 Platform like IBM Q use logic gates to control the qubits, while

quantum annealing computers don’t have logic gates and therefore

cannot fully control the state of the qubits.

•	 D-Wave Systems leverage the fact that their qubits tend to a

minimum energy state. They cannot be controlled via quantum

gates but their behavior can be predicted by the adiabatic

theorem. This makes them good tools for solving energy

minimization problems.

•	 Quantum annealing is used mainly for combinatorial optimization

problems where the search space is discrete with a local minimum

(e.g., finding the ground state of a disordered magnet/spin glass).19

QA takes advantage of the notion that all physical systems tend

19�P Ray, BK Chakrabarti, A Chakrabarti “Sherrington-Kirkpatrick model in a transverse field:
Absence of replica symmetry breaking due to quantum fluctuations” Phys. Rev. B 39, 11828
(1989).

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

71

toward a minimum energy state. To illustrate this, take a hot cup

of coffee; when left over the counter for some time, it will start to

cool down until it reaches a temperature equal to the surrounding

environment. Thus, it tends toward a minimum energy state.

Tip M athematical optimization is a technique from the family of local search. It
is an iterative method that starts with an arbitrary solution to a problem and then
attempts to find a better solution by incrementally changing a single element of the
solution. If the change produces a better solution, an incremental change is made
to the new solution, repeating until no further improvements can be found.

The question of whether or not the D-Wave QA machine can outmuscle classical

computers remains unanswered with several studies going either way: in January 2016,

scientists at Google used a D-Wave system to perform a series of tests on finite-range

tunnelling of a QA solver against simulated annealing (SA) and simulated quantum

Monte Carlo (QMC) on a single-core classical processor.20 Their results: The QA solver

outperformed SA and QMC by a factor of 108.

Pretty impressive, however others have said not so fast: Researchers from the Swiss

Federal Institute of Technology claimed no quantum speedup for the D-Wave chip but

didn’t rule out that there could be one in the future.

Figure 2-17 shows the basic inner workings of QA processor such as D-Wave’s. It

consists of a 2D array of qubits made of superconducting loops which carry an electric

current. The qubits act like magnets that can point up, down, or by the properties of

quantum mechanics up and down at the same time. Each qubit in the array can interact

with others through linkers that can be programmed so that they can lower their energy

by either pointing in the same or opposite direction. The idea is to encode a problem by

specifying all possible interactions in the chip and solve it by finding the qubit’s lowest

energy or ground state.

20�What is the Computational Value of Finite Range Tunneling? Vasil S. Denchev and colleagues.
Google Labs, Jan 2016. Available online at https://arxiv.org/pdf/1512.02206.pdf.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

https://arxiv.org/pdf/1512.02206.pdf

72

To find the ground state, the machine starts the array in an entangled state and

slowly turns on the interactions. The system then seeks the lowest energy state like

a ball rolling thru a valley of peaks to find the deepest point. In classical physics

the jiggling of thermal energy drives the ball through the valley to a low point; this

is called thermal annealing. In quantum mechanics however, the ball can tunnel

through low spots to find the lowest even faster. This is the reason why quantum

annealing is believed to be faster for problems such as pattern recognition or

machine learning.

Thus D-Wave’s architecture differs from traditional quantum computers in that it

can only solve energy minimization problems. This has created a level of controversy

with some at IBM calling it “a dead end.” Even the scientists at Google that performed

the QA experiment in the D-Wave 2X for instances of Kth order binary optimization quip

in their summary that simulated annealing is for the “ignorant or desperate.” Adding

to the controversy is the fact that D-Wave cannot execute Shor’s algorithm because it is

not an energy minimization process. Shor’s requires what is called a universal quantum

computer, a computer that can execute any quantum algorithm.

Figure 2-17.  Schematic of a quantum annealing processor

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

73

�Universal Quantum Computation and the Future
A universal quantum computer also known as a quantum Turing machine (QTM) is

the ultimate quantum machine. It has been defined as an abstract machine capable

of seizing all the power of quantum computation. That is, capable of executing any

quantum algorithm. Although we are decades away from realizing this dream, a new

global race has begun with both major IT industry players and governments pouring

significant resources into R&D for these machines.

�Google and Quantum Artificial Intelligence
Google has been an early customer of D-Wave and used their machines on a series

of optimization experiments whose results showed that quantum annealing can be

significantly faster than simulated annealing on a single-core processor. Furthermore,

Google has announced that it is developing its own quantum computing technology,

a move that makes perfect sense given the amount of resources at their command.

Although nothing is available for demonstration at this time, it appears to be a hybrid

between IBM’s gate-based approach and D-Wave’s quantum annealing.

As a matter of fact, Google announced in June 2017 that they are testing a 20-qubit

quantum computer with hopes of building a 49-qubit machine by 2018. It seems

that they want to give IBM a run for its money in the quest for quantum supremacy.

Google has made their quantum wishes clear: artificial intelligence. In the paper

“Commercialize Early Quantum Technologies” for Springer Nature, they present the

Quantum AI Laboratory with the purpose of building a fault-tolerant quantum machine

that can tackle any problem. Google’s efforts focus in three key areas of machine learning

and artificial intelligence:

•	 Simulation: One of the most anticipated applications is modelling

of chemical reactions and materials: stronger polymers for aircraft,

improved catalytic converters for cars, more efficient materials

for solar, new pharmaceuticals, and breathable fabrics. Quantum

computing promises to save untold amounts of money by taking

the computer power required to create these materials to the next

level. Computational materials are a large industry with a variety of

business models built for quantum simulation: pay a subscription for

access, consulting, equity exchange in return for quantum-assisted

innovations, and others.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

74

•	 Optimization: Optimization problems are difficult to solve with

conventional computers. The best classical methods use statistical

methods such as energy minimization (thermal annealing).

Quantum principles can provide significant speedups by tunnelling

thru the thermal barriers in order to find the lowest possible point

or best solution. Online recommendations and bidding strategies

for advertisements are some of the tasks that require powerful

optimization algorithms. In general most machine learning problems

can benefit from quantum optimization. Logistics companies, patient

diagnosis in health care, and web search companies could achieve

tremendous innovation.

•	 Sampling: Mostly related to machine learning tasks such as inference

and pattern recognition. Quantum sampling can provide superior

performance in probability distribution queries. Not only that, but

the massive parallelism achieved by quantum computers can use

sampling to provide definitive proof of quantum supremacy.

Google is betting heavily in the future of quantum optimization and risk

management, but for now IBM has the advantage with their 20-qubit platform for

commercial customers and a 16-qubit free for all cloud platform – the Q Experience.

One thing is for sure; expect to see cloud-based quantum platforms from every major

vendor soon.

�Quantum Machines in the Data Center
Qubit design and construction is based on extreme engineering. Because of the

bizarre nature of quantum mechanics, qubits are highly susceptible to noise from

the environment, error prone due to the principle of decoherence, and in general

hard to control and build at a large scale. Thus don’t expect quantum computers at

the counter of the local Best Buy any time soon. Don’t expect either that in the next

decades your grandson will be able to buy a quantum computer and plug it in the

middle of the family room. Unless a quantum leap in technology is achieved, this

is unlikely to happen at all. This is in part because current qubits must be kept at

ultrafrosty 0.015 K or around –273 °C to avoid noise from the environment. To have

some perspective of this temperature, consider the following table showing average

temperatures for different regions of the universe.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

75

Location Temperature Kelvin Temperature Celsius

Qubit 0.015 –273

Vacuum of space (the temperature produced

by the uniform background radiation or

afterglow from the Big Bang)

2.7 –270

Average temperature of earth 331 58

Temperatures of the moon at daytime and night 373/100 100/–173

Tip  Kelvin is the primary unit of temperature in physics. Zero Kelvin is defined
as the absolute zero or the temperature at which all thermal motion ceases in the
classical description of thermodynamics.

What is very likely to happen in the short term is that quantum computers will take

over the data center. This means quantum computers will not replace the desktop,

but instead perform most of the heavy-duty tasks in the data center such as search,

simulations, modelling, and others. Furthermore insiders expect that quantum

computers will complement traditional computers offering new types of services such as

encryption, scientific intelligence, and artificial intelligence.

So, in a few years, expect the digital assistant in your phone or at home to be powered

by a quantum computer. Here is some food for thought: In a decade or so, we will spend

most of our time talking to quantum computers.

�The Race Is Going Global
Things reach a new level when entire governments get into the action with heavy

investments in the field. According to a press release by Digital Single Market, the

European Commission is planning to launch a €1 billion flagship initiative starting in

2018 with substantial funding for the next 20 years.21 This is a follow-up investment in

21�“European Commission will launch €1 billion quantum technologies flagship”. Digital
Single Market available at https://ec.europa.eu/digital-single-market/en/news/
european-commission-will-launch-eu1-billion-quantum-technologies-flagship

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

https://ec.europa.eu/digital-single-market/en/news/european-commission-will-launch-eu1-billion-quantum-technologies-flagship
https://ec.europa.eu/digital-single-market/en/news/european-commission-will-launch-eu1-billion-quantum-technologies-flagship

76

addition to the €550 million spent on individual initiatives in order to put Europe at the

forefront of what they consider the second quantum revolution.

Furthermore, according to a press release by Alibaba Cloud in July 2015, the Chinese

Academy of Sciences (CAS) is teaming up with Alibaba, the largest e-commerce player

in China to create the CAS Quantum Computing Laboratory. Quantum computing has

turned into a global race and the implications will be profound.

�Future Applications
There is no limit to the things that can be achieved by the tremendous potential of

quantum computing. Here is a list of possible future applications and their impact in our

society.

•	 Aircraft industry: Aircraft companies are working in developing

and using quantum algorithms for airflow simulations shaving

years over their classical counterparts. This will result in more

robust and efficient aircraft with low noise and emissions in a

fraction of the time.

•	 Space applications: NASA has been toying with the D-Wave system

for tasks ranging from optimal structures to optimal packing of

payload in a space craft. Other applications include quantum

artificial intelligence algorithms and quantum-classical hybrid

algorithms.

•	 Medicine: Quantum computing can provide superior molecular

simulations resulting in new medicines, lightning fast protein

modelling, and faster drug testing. This will reduce the life cycle used

to bring medicine to the patient. Next-generation drugs and cancer

cures are at our grasp.

These are just some of the future applications of quantum computing. Note that we

do not include current breakthroughs such as data encryption and security: quantum

factorization and the possibility of defeating asymmetric cryptography are arguably

the main reasons quantum computing has picked up so much steam lately. In the next

chapter you will get your feet wet with the IBM Q Experience. This is the first quantum

computing platform in the cloud that provides real quantum devices for use at our

hearts’ desire.

Chapter 2 Quantum Computing: Bending the Fabric of Reality Itself

77
© Vladimir Silva 2018
V. Silva, Practical Quantum Computing for Developers, https://doi.org/10.1007/978-1-4842-4218-6_3

CHAPTER 3

Enter the IBM Q
Experience: A One-
of-a-Kind Platform for
Quantum Computing
in the Cloud
In this chapter we take a look at quantum computing in the cloud with IBM Q

Experience: the first platform of its kind. The chapter starts with an overview of the

Composer, the web console used to visually create circuits, submit experiments, explore

hardware devices, and more. Next, you will learn how to create your first experiment

and submit it to the simulator or real quantum device. IBM Q Experience features a

powerful REST API to control the life cycle of the experiment, and this chapter will show

you how with detailed descriptions of the end points and request parameters. Finally,

the chapter ends with a practical implementation of the official Python library (dubbed

IBMQuantumExperience) for Node JS. This custom Node JS library will put your

asynchronous Javascript and REST API skills to the test. Let’s get started.

IBM has certainly taken an early lead in the race for quantum computing in the

cloud. They came up with a really cool platform to run experiments remotely called

the Q Experience. But is it just me or the names of these tools make a lot of analogies

to music theory? Check this out: the visual editor used to create quantum circuits is

called the Composer. Not weird enough? The quantum circuits built with the editor

are called scores (as in a music score), not to mention that visually the editor looks a lot

78

like the written score of a musical composition. I say this because I’ve been playing the

classical guitar for a long time and had an eerie familiarity with a guitar score the first

time I looked at the Composer (with the gates looking a lot like music notes). Still think

I am crazy? The platform is called the Q Experience; have you ever heard about the Jimi

Hendrix Experience? Perhaps the Composer is the score workbook where you will create

a great masterpiece for the rest of us to enjoy. Quantum computing does have the power

to transform the status quo.

�Getting Your Feet Wet with IBM Q Experience
Q Experience is IBM’s platform for quantum computing in the cloud, and it is really cool.

Let’s take a look (All Reprints Courtesy of International Business Machines Corporation,

© International Business Machines Corporation):

•	 Create an account in https://quantumexperience.ng.bluemix.net/

qx/experience. You will need an email, wait for the approval, and

confirm.

•	 Log in to the web console and navigate to the Composer tab on the

top (see Figure 3-1).

Figure 3-1.  IBM Q Experience main window

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/qx/experience
https://quantumexperience.ng.bluemix.net/qx/experience

79

�Quantum Composer
The Composer is the visual tool used to create your quantum circuits or scores. At the

top it shows the experiment histogram with the qubits available for use (see Figure 3-2).

•	 On the left side of the histogram, we see 5 qubits available from

processor ibmqx4. They are all initialized to the ground state |0>.

The line at the bottom is the measurement line where the results of

the circuit will be collected. Remember that measurement should

be the last thing done in the circuit as all gate operations execute in

parallel and in superimposed states.

•	 On the right side, we have the quantum gates. Drag gates into the

histogram location of a specific qubit to start building a circuit.

Let’s look at the gates and their meaning.

�Quantum Gates
The quantum gates supported by IBM Q Experience are described in Table 3-1.

Figure 3-2.  Experiment Composer

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

80

Table 3-1.  Quantum Gates for IBM Q Experience

Gate Description

Pauli X It rotates the qubit 180 degrees in the X-axis. Maps |0> to |1>

and |1> to |0>. Also it is known as the bit flip or NOT gate. It is

represented by the matrix:

X =
0 1

1 0

é

ë
ê

ù

û
ú

Pauli Y It rotates around the Y-axis of the Bloch sphere by π radians.

It is represented by the Pauli matrix:

Y
i

i
=

0

0

-
-
é

ë
ê

ù

û
ú

where i= 1- is known as the imaginary unit.

Pauli Z It rotates around the Z-axis of the Bloch sphere by π radians.

It is represented by the Pauli matrix:

Z=
1 0

0 1-
é

ë
ê

ù

û
ú

Hadamard
It represents a rotation of π on the axis X Z+ / 2() .

In other words, it maps the states:

  • |0> to | |0 1 2> + >() /

  • |1> to | |0 1 2> - >() /
This gate is required to make superpositions.

Phase Z
It has the property that it maps X→Y and Z→Z. This gate

extends H to make complex superpositions.

Transposed conjugate of S It maps X→-Y and Z→Z.

Controlled NOT (CNOT) This is a 2-qubit gate that flips the target qubit (applies

Pauli X) if the control is in state 1. This gate is required to

generate entanglement.

(continued)

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

81

Table 3-1.  (continued)

Gate Description

Phase S The S gate performs halfway of a 2-qubit swap. It is

universal such that any quantum multi-qubit gate can be

constructed from only sqrt(swap) and single-qubit gates. It is

represented by the matrix:

S
i i

i i
=

1 0 0 0

0 1/2 1+ 1/2 1 0

0 1/2 1 1/2 1+ 0

0 0 0 1

() -()
-() ()

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Transposed conjugate of T or

T-dagger

Represented by the matrix:

S
i i

i i
=

1 0 0 0

0 1/2 1 1/2 1+ 0

0 1/2 1+ 1/2 1 0

0 0 0 1

-() ()
() -()

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Barrier It prevents transformations across its source line.

Measurement The measurement gate takes a qubit in a superposition of

states as input and spits either a 0 or 1. Furthermore, the

output is not random. There is a probability of a 0 or 1 as

output which depends on the original state of the qubit.

Conditional Conditionally apply a quantum operation.

Physical partial rotation (U gates) U1: It is a one parameter single-qubit phase gate with zero duration.

U2: It is a two-parameter single-qubit gate with duration of one

unit of gate time.

U3: It is a three-parameter single-qubit gate with duration of

two units of gate time.

Identity The identity gate performs an idle operation on the qubit for a

time equal to one unit of time.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

82

You can drag gates from the right side of the Composer to create a circuit, or if you

prefer to write assembly code, you can switch to the QASM editor mode as shown in

Figure 3-3.

Tip  QASM is the quantum assembly language, built on top of the OPENQASM
platform, and it is used to implement experiments with low-depth quantum circuits.
Even though assembler has become something of a lost art, some people may find
its raw power more appealing than the Python SDK or even the visual editor.

Now let’s take a look at the various quantum processors available for use.

�Quantum Backends Available for Use
There are a few quantum processors to choose from for experimentation. Table 3-2

shows the official list ranked by the number of qubits according to the IBM Q Experience

backend information site.1

Figure 3-3.  Experiment editor in QASM editor mode

1�IBM Q Experience backend information available at https://github.com/QISKit/
ibmqx-backend-information

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://github.com/QISKit/ibmqx-backend-information
https://github.com/QISKit/ibmqx-backend-information

83

Table 3-2 shows the official list of processors available for use at the time of this

writing, but there is a much interesting way to get an updated list of available machines

in real time using the excellent REST API. This API is described in more detail on the

“Remote Access via the REST API” section in this chapter, but for now let’s demonstrate

how to obtain an always up-to-date list of backends using the Available Backend List

REST end point:

https://quantumexperience.ng.bluemix.net/api/Backends?access_

token=ACCESS-TOKEN

Tip  To obtain an access token, see the section “Authentication via API
Token” under “Remote Access via the REST API” of this chapter. Note that an
API token is not the same as an access token. API tokens are used to execute
quantum programs via the Python SDK. Access tokens are used to invoke the
REST API.

Table 3-2.  Official List of Quantum Backends Available

for IBM Q Experience Users

Name Details

Ibmqx2 Code Name: Sparrow

Qubits: 5

Online since January 24, 2017

Ibmqx4 Code Name: Raven

Qubits: 5

Online since September 25, 2017

Ibmqx3 Code Name: Albatross

Qubits: 16

Online since June 2017

Ibmqx5 Code Name: Albatross

Qubits: 16

Online since online September 28, 2017

This device is reconfigured version of ibmqx3.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/api/Backends?access_token=ACCESS-TOKEN
https://quantumexperience.ng.bluemix.net/api/Backends?access_token=ACCESS-TOKEN

84

The URL in the previous paragraph returns a list of quantum processors in JSON

format. This is what it looks like by the time of this writing. Note that your results may be

different:

Listing 3-1.  HTTP Response from the Backend Information REST API Call

[{

 "name": "ibmqx2",

 "version": "1",

 "status": "on",

 "serialNumber": "Real5Qv2",

 "description": "5 transmon bowtie",

 "basisGates": "u1,u2,u3,cx,id",

 "onlineDate": "2017-01-10T12:00:00.000Z",

 "chipName": "Sparrow",

 "id": "28147a578bdc88ec8087af46ede526e1",

 "topologyId": "250e969c6b9e68aa2a045ffbceb3ac33",

 "url": "https://ibm.biz/qiskit-ibmqx2",

 "simulator": false,

 "nQubits": 5,

 "couplingMap": [

 [0, 1],

 [0, 2],

 [1, 2],

 [3, 2],

 [3, 4],

 [4, 2]

]

}, {

 "name": "ibmqx5",

 "version": "1",

 "status": "on",

 "serialNumber": "ibmqx5",

 "description": "16 transmon 2x8 ladder",

 "basisGates": "u1,u2,u3,cx,id",

 "onlineDate": "2017-09-21T11:00:00.000Z",

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

85

 "chipName": "Albatross",

 "id": "f451527ae7b9c9998e7addf1067c0df4",

 "topologyId": "ad8b182a0653f51dfbd5d66c33fd08c7",

 "url": "https://ibm.biz/qiskit-ibmqx5",

 "simulator": false,

 "nQubits": 16,

 "couplingMap": [

 [1, 0],

 ...

 [15, 14]

]

}, {

 "name": "Device Real5Qv1",

 "status": "off",

 "serialNumber": "Real5Qv1",

 "description": "Device Real5Qv1",

 "id": "cc7f910ff2e6860e0d4918e9ee0ebae0",

 "topologyId": "250e969c6b9e68aa2a045ffbceb3ac33",

 "simulator": false,

 "nQubits": 5,

 "couplingMap": [

 [0, 1],

 [0, 2],

 [1, 2],

 [3, 2],

 [3, 4],

 [4, 2]

]

}, {

 "name": "ibmqx_hpc_qasm_simulator",

 "status": "on",

 "serialNumber": "hpc-simulator",

 "basisGates": "u1,u2,u3,cx,id",

 "onlineDate": "2017-12-09T12:00:00.000Z",

 "id": "084e8de73c4d16330550c34cf97de3f2",

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

86

 "topologyId": "7ca1eda6c4bff274c38d1fe66c449dff",

 "simulator": true,

 "nQubits": 32,

 "couplingMap": "all-to-all"

}, {

 "name": "ibmqx4",

 "version": "1",

 "status": "on",

 "serialNumber": "ibmqx4",

 "description": "5 qubits transmon bowtie chip 3",

 "basisGates": "u1,u2,u3,cx,id",

 "onlineDate": "2017-09-18T11:00:00.000Z",

 "chipName": "Raven",

 "id": "c16c5ddebbf8922a7e2a0f5a89cac478",

 "topologyId": "3b8e671a5a3b56899e6e601e6a3816a1",

 "url": "https://ibm.biz/qiskit-ibmqx4",

 "simulator": false,

 "nQubits": 5,

 "couplingMap": [

 [1, 0],

 [2, 0],

 [2, 1],

 [2, 4],

 [3, 2],

 [3, 4]

]

}, {

 "name": "ibmqx3",

 "version": "1",

 "status": "off",

 "serialNumber": "ibmqx3",

 "description": "16 transmon 2x8 ladder",

 "basisGates": "u1,u2,u3,cx,id",

 "onlineDate": "2017-06-06T11:00:00.000Z",

 "chipName": "Albatross",

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

87

 "id": "2bcc3cdb587d1bef305ac14447b9b0a6",

 "topologyId": "db99eef232f426b45d2d147359580bc6",

 "url": "https://ibm.biz/qiskit-ibmqx3",

 "simulator": false,

 "nQubits": 16,

 "couplingMap": [

 ...

]

}, {

 "name": "QS1_1",

 "version": "1",

 "status": "standby",

 "serialNumber": "QS1_1",

 "description": "20 qubit device v1",

 "basisGates": "SU2+CNOT",

 "onlineDate": "2017-10-20T11:00:00.000Z",

 "chipName": "Qubert",

 "id": "cb141f7bb641b8a10487a6fab8483b86",

 "topologyId": "25197b9b73c4b52ca713ca4d126417b5",

 "simulator": false,

 "nQubits": 20,

 "couplingMap": [

 ...

]

}, {

 "name": "ibmqx_qasm_simulator",

 "status": "on",

 "description": "online qasm simulator",

 "basisGates": "u1,u2,u3,cx,id",

 "id": "18da019106bf6b5a55e0ef932763a670",

 "topologyId": "250e969c6b9e68aa2a045ffbceb3ac33",

 "simulator": true,

 "nQubits": 24,

 "couplingMap": "all-to-all"

}]

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

88

Listing 3-1 shows the current list of available processors which mostly matches

the official list from the IBM Q Experience web site. However, there is a lot of extra

interesting information about the structural layout of these machines:

•	 Extra processors and simulators:

•	 It looks like there are two remote simulators available for

use (ibmqx_qasm_simulator, ibmqx_hpc_qasm_simulator)

even though the official documentation mentions only one:

ibmqx_qasm_simulator. This information can come in handy

when testing complex circuits: more simulators are always a

good thing.

•	 Rumors of a 20-qubit processor have been swirling around for

some time. There is even talk of an upcoming 50-qubit monster

processor by the end of 2018. This list seems to confirm the

20-qubit machine at least. But don’t get excited just yet; this

machine is only available for corporate customers.

•	 Besides the usual information such as machine name, version, status,

number of qubits, and others, there are some terms we should be

familiarized with:

•	 basisGates: These are the physical qubit gates of the processor.

They are the foundation under which more complex logical

gates can be constructed. Most of the processors in the list use

u1, u2, u3, cx, id.

•	 Gates u1, u2, u3 are called partial NOT gates and perform

rotations on axes X, Y, Z by theta, phi, or lambda radians of

a qubit.

•	 Cx is called the controlled NOT gate (CNOT or CX). It

acts on 2 qubits and performs the NOT operation on the

second qubit only when the first qubit is |1> and otherwise

leaves it unchanged.

•	 Id is the identity gate which performs an idle operation on a

qubit for one unit of time.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

89

•	 couplingMap: The coupling map defines interactions between

individual qubits while retaining quantum coherence (or a pure

state – imagine a peloton of soldiers breaking step when crossing

an old bridge so that the amplitude of their feet hitting the ground

does not add up and destroy the bridge). Qubit coupling is used

to simplify quantum circuitry and allow the system to be broken

up into smaller units.

Now back to the Composer for our first quantum composition.

�Opus 1: Variations on Bell and GHZ States
This composition is a weird one. Here we look at two mind-bending quantum

experiments used to demonstrate the weirdness of quantum mechanics:

•	 Bell states: They demonstrate that physics are not described by local

reality. This is what Einstein called spooky action at a distance.

•	 GHZ states: Even stranger than Bell states, GHZ states (named

after their creators: Greenberger-Horne-Zeilinger) are the 3-qubit

generalization of the Bell states.

Let’s look at them in more detail.

�Bell States and Spooky Action at a Distance
Bell states are the experimental test of the famous Bell inequalities. In 1964 Irish

physicist John Bell proposed a way to put quantum entanglement (spooky action at a

distance) to the test. He came up with a set of inequalities which have become incredibly

important in the physics community. This set of inequalities is known as Bell’s theorem,

and it goes something like this.

Consider photon polarization (when light oscillates in a specific plane) at three

different angles A = 0, B = 120, and C = 240. Realism says that a photon has definite

simultaneous values for these three polarization settings, and they must correspond to

the eight cases shown in Table 3-3.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

90

Now Bell’s theorem asks: what is the probability that the polarization at any

neighbor will be the same as the first? We also calculate the sum and average of the

polarizations. Assuming realism is true, then by looking at Table 3-3, the answer to the

question is the probability must be >= 1/3. This is what Bell’s inequality gives: a means

to put this assertion to the test. Here is the incredible part: believe it or not, quantum

mechanics violates Bell’s inequality giving probabilities less than 1/3. This was proven

experimentally for the first time in 1982 French physicist Alain Aspect.

Tip  A more detailed description of Aspect’s experiment and Bell’s inequality is
described in Chapter 1, EPR Paradox Defeated: Bohr Has the Last Laugh.

So now let’s translate the photon polarization from the preceding text into an

experiment that can be run in a quantum computer. In 1969 John Clauser, Michael

Horne, Abner Shimony, and Richard Holt came up with a proof for Bell’s theorem: the

CHSH inequality which formally states

S A B A B A B A B= - + +¢ ¢ ¢ ¢, , , ,

S £ 2

Table 3-3.  Permutations for Photon Polarizations at Three Angles

Count A(0) B(120) C(240) [AB] [BC] [AC] Sum Average

1 A+ B+ C+ 1(++) 1(++) 1(++) 3 1

2 A+ B+ C– 1(++) 0 0 1 1/3

3 A+ B– C+ 0 0 1(++) 1 1/3

4 A+ B– C– 0 1(−−) 0 1 1/3

5 A− B+ C+ 0 1(++) 0 1 1/3

6 A− B+ C− 0 0 1(−−) 1 1/3

7 A− B− C+ 1(−−) 0 0 1 1/3

8 A− B− C− 1(−−) 1(−−) 1(−−) 3 1

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

91

To illustrate this, we have two detectors: Alice and Bob. Given A and A′ are detector

settings on side Alice, B and B′ on side Bob, with the four combinations being tested in

separate experiments. Realism says that for a pair of entangled particles, the parity table

showing all possible permutations looks as shown in the following table:

A B 1

A B' 0

A' B 0

A' B' 1

In classical realism, the CHSH inequality becomes |S| = 2. However, the mathematical

formalism of quantum mechanics predicts a maximum value for S of |S|= 2 2 , thus

violating this inequality. This can be put to the test using four separate quantum circuits

(one per measurement) with 2 qubits each. To simplify things, let measurements on

Alice detector be A = Z and Aʹ = X, and Bob’s detector B = W and Bʹ = V (see Table 3-4). To

begin the experiment, a basis Bell state must be constructed which matches the identity

(see Figure 3-4):

	 1 2 00 11/ | |+() 	

The preceding expression essentially means the qubit held by Alice can be 0 or 1.

If Alice measured her qubit in the standard basis, the outcome would be perfectly

random, either possibility having probability 1/2. But if Bob then measured his

qubit, the outcome would be the same as the one Alice got. So, if Bob measured, he

would also get a random outcome on first sight, but if Alice and Bob communicated,

they would find out that, although the outcomes seemed random, they are

correlated.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

92

Figure 3-4.  Basis Bell state

In Figure 3-4, 2 qubits are prepared in the ground state |0>. The H gate creates a

superposition of the first qubit to the state 1 2 00 10/ | |+() . Next the CNOT gate flips the

second qubit if the first is excited, making the state 1 2 00 11/ | |+(). This is the initial

entangled state required for the four measurements in Table 3-4 (All reprints courtesy

of International Business Machines Corporation, © International Business Machines

Corporation).

•	 To rotate the measurement basis to the ZW axis, use the sequence of

gates S-H-T-H.

•	 To rotate the measurement basis to the ZV axis, use the sequence of

gates S-H-T’-H.

•	 The XW and XV measurement is performed the same way as in the

preceding text and the X via a Hadamard gate before a standard

measurement.

Tip  Before performing the experiment in the Composer, make sure its topology
(the number of qubits and target device) in the score is set to 2 over a simulator.
Some topologies (like the 5 qubits in a real quantum device) do not support
entanglement for qubits 0 and 1 giving errors at design. Note that the target device
can be a real quantum processor or a simulator. All in all, as long as you use a
simulator, you should be fine.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

93

Table 3-4.  Quantum Circuits for Bell States

Bell state measurement Result for
100 shots

AB (ZW)
c[2] Probability

11 0.39

10 0.06

00 0.46

01 0.09

AB′ (ZV)
c[2] Probability

11 0.49

10 0.07

00 0.36

01 0.08

A′B (XW)
c[2] Probability

11 0.42

10 0.05

00 0.49

01 0.04

A′B′ (XV)
c[2] Probability

11 0.05

10 0.52

00 0.03

01 0.40

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

94

Table 3-5.  Compiled Results from the Bell Experiment

P(00) P(11) P(01) P(10) <AB>

AB (ZW) 0.46 0.39 0.09 0.06 0.68

AB′ (ZV) 0.36 0.49 0.08 0.07 0.73

A′B (XW) 0.49 0.42 0.04 0.05 0.47

A′B′(XV) 0.03 0.05 0.4 0.52 −0.32

2�IBM Q Experience Bell Tests Results available online at https://quantumexperience.
ng.bluemix.net/proxy/tutorial/full-user-guide/003-Multiple_Qubits_Gates_and_
Entangled_States/002-Entanglement_and_Bell_Tests.html

Now we need to construct a table with the results of each measurement plus the

correlation probability between A and B <AB>. The sum of the probabilities for the parity

of the entangled particles is given by

	 AB P P P P= () + () - () - ()11 0 0 1 0 01, , , , 	

Remember that the ultimate goal is to determine if S ≤ 2 or |S| = 2; thus by compiling

the results of all measurements, we obtain Table 3-5.

Add the absolute values of column <AB> and we obtain |S| = 2.2. These results

violate Bell’s inequality (as predicted by quantum mechanics) and are pretty close to

the official tests performed on May 2, 2017, by IBM scientists over 8192 shots.2 How

about yours?

�Even Spookier: GHZ States Tests
These are named after physicists Greenberger-Horne-Zeilinger who came up with

a generalization test for N entangled qubits with the simplest being a 3-qubit GHZ

state:

	
GHZ = -()1 2 000 111/ 	

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/proxy/tutorial/full-user-guide/003-Multiple_Qubits_Gates_and_Entangled_States/002-Entanglement_and_Bell_Tests.html
https://quantumexperience.ng.bluemix.net/proxy/tutorial/full-user-guide/003-Multiple_Qubits_Gates_and_Entangled_States/002-Entanglement_and_Bell_Tests.html
https://quantumexperience.ng.bluemix.net/proxy/tutorial/full-user-guide/003-Multiple_Qubits_Gates_and_Entangled_States/002-Entanglement_and_Bell_Tests.html

95

Note  The importance of the GHZ states is that they show that the entanglement
of more than two particles is in conflict with local realism not only for statistical
(probabilistic) but also nonstatistical (deterministic) predictions.

In simple terms GHZ states show a stronger violation of Bell’s inequality. Let’s

see how with a simple puzzle: imagine three independent boxes each containing two

variables X and Y. Each variable has two possible outcomes: 1 and –1. The question is to

find a set of values for X and Y that solves the following set of identities:

(1) XYY = 1

(2) YXY = 1

(3) YYX = 1

(4) XXX = –1

For the impatient out there, there is no solution for this. For example, replace

Y = 1 in (1), (2), and (3), and then multiply them, that is, (5) = (1) * (2) * (3). The set

then becomes

(1) X11 = 1

(2) 1X1 = 1

(3) 11X = 1

(4) XXX = –1

(5) Multiply (1) (2) (3) and we get XXX = 1

There is no solution because identity (4) XXX = –1 contradicts identity (5) XXX = 1.

The scary part is that a GHZ state can indeed provide a solution to this problem, which

seems impossible in the deterministic view of classical reality, but nothing is impossible

in the world of quantum mechanics, just improbable.

Incredibly, GHZ tests can rule out the local reality description with certainty after a

single run of the experiment, but first we must construct a GHZ basis state.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

96

To kick-start the experiment, the basis GHZ state (as well as probability results which

should be around half) is shown in Table 3-6:

	 1.	 In the basis circuit, Hadamard gates in qubits 1 and 2 put them in

superposition |00,01,01,11>. At the same time, the X gate negates qubit

3; thus we end up with the states 1 2 001 101 011 111/ + + +() .

	 2.	 The two CNOT gates entangle all qubits into the state

1 2 001 010 100 111/ + + +() .

	 3.	 Finally the three Hadamard gates map step 2 to the

state ½(| 000⟩ − | 111⟩).

Now, create the quantum circuits for identities XYY, YXY, XYY, and XXX from the

previous section as shown in Table 3-7 (All reprints courtesy of International Business

Machines Corporation, © International Business Machines Corporation).

Table 3-6.  Basis GHZ State

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

97

Table 3-7.  Quantum Circuits for GHZ States

Measurement Results for
100 shots

YYX
c[3] Probability

011 0.34

101 0.23

110 0.23

000 0.20

YXY
c[3] Probability

011 0.23

101 0.28

110 0.25

000 0.24

XYY
c[3] Probability

011 0.23

101 0.26

110 0.35

000 0.16

XXX
c[3] Probability

010 0.25

100 0.32

111 0.22

001 0.21

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

98

•	 For the measurement of X, apply the H gate to the corresponding

qubit.

•	 For each instance of Y, apply the S† (S-dagger), and H gates to the

corresponding qubit.

Finally compare the results of the preceding experiment against the official data from

IBM Q Experience.3 How do your results stack up? All in all, the principles of quantum

mechanics shown in this section have been challenged by a theory called super

determinism which gives a way out.

�Super Determinism: A Way Out of the Spookiness.
Was Einstein Right All Along?
In an interview for BBC in 1969, physicist John Bell talked about his work on quantum

mechanics. He said that we must accept the predictions that actions are transferred

faster than the speed of light between entangled particles but at the same time we

cannot do anything with it. Information cannot travel faster than the speed of light, a

fact that is also predicted by quantum mechanics. As if nature is playing a trick on us.

He also mentioned that there is a way out of this riddle through a principle called super

determinism.

Particle entanglement implies that measurements performed in one particle

affect the other instantaneously, even across large distances (think opposite sides of

the galaxy or the universe), even across time. Einstein was an ardent opponent of this

theory famously writing to Niels Bohr God does not throw dice. He could not accept the

probabilistic nature of quantum mechanics, so in 1935, along with colleagues Podolsky

and Rosen, they came up with the infamous EPR paradox to challenge its foundation.

In the EPR paradox, if two entangled particles are separated by a tremendous distance,

a measurement in one could not affect the other instantaneously as the event will have

to travel faster than the speed of light (the ultimate speed limit in the universe). This will

violate general relativity, thus creating a paradox: Nothing travels faster than the speed of

light, that is, the absolute rule of relativity.

3�GHZ States Experiment available online at https://quantumexperience.ng.bluemix.net/
proxy/tutorial/full-user-guide/003-Multiple_Qubits_Gates_and_Entangled_States/003-
GHZ_States.html

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/proxy/tutorial/full-user-guide/003-Multiple_Qubits_Gates_and_Entangled_States/003-GHZ_States.html
https://quantumexperience.ng.bluemix.net/proxy/tutorial/full-user-guide/003-Multiple_Qubits_Gates_and_Entangled_States/003-GHZ_States.html
https://quantumexperience.ng.bluemix.net/proxy/tutorial/full-user-guide/003-Multiple_Qubits_Gates_and_Entangled_States/003-GHZ_States.html

99

Nevertheless, in 1982 the predictions of quantum mechanics were confirmed by

French physicist Alain Aspect. He devised an experiment that showed Bell’s inequality

is violated by entangled photons. He also proved that a measurement in one of the

entangled photons travels faster than the speed of light to signal its state to the other.

Since then, Aspect’s results have been proven correct time and again (details on his

experiment is shown in Chapter 1). The irony is that there is a chance that Einstein

was right all along and entanglement is just an illusion. It is the principle of super

determinism.

Tip  In simple terms super determinism says that freedom of choice has
been removed since the beginning of the universe. All particle correlations and
entanglements were established at the moment of the Big Bang. Thus there
is no need for a faster-than-light signal to tell particle B what the outcome of
particle A is.

If true, this loophole will prove that Einstein was right when postulating the EPR

paradox and all our hard work in quantum programing is just an illusion. But this

principle sounds more like religious dogma (all outcomes determined by fate) than

science as Bell argued that super determinism was implausible. His reasoning being

that freedom of choice is effectively free for the purpose at hand due to alterations

introduced by a large number of very small effects. Super determinism has been

called untestable as experimenters would never be able to eliminate correlations

that were created at the beginning of the universe. Nevertheless this hasn’t stopped

scientists on trying to prove Einstein right and particle entanglement an illusion. As

a matter of fact, there is an experiment hard at work to settle things up and is really

inventive. Let’s see how.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

100

Figure 3-5 shows the standard Bell’s inequality test experiment (at the bottom) and a

variation of the experiment using cosmic photons (at the top) by Andrew Friedman and

colleagues at MIT.4

Figure 3-5.  Bell’s inequality experiment using cosmic photons vs. the
standard test

4�Jason Gallicchio, Andrew S. Friedman, and David I. Kaiser. Testing Bell’s Inequality with Cosmic
Photons: Closing the Setting-Independence Loophole. Available online at http://web.mit.edu/
asf/www/Papers/Gallicchio_Friedman_Kaiser_2014.pdf

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

http://web.mit.edu/asf/www/Papers/Gallicchio_Friedman_Kaiser_2014.pdf
http://web.mit.edu/asf/www/Papers/Gallicchio_Friedman_Kaiser_2014.pdf

101

Tip  For a full description of the standard Bell’s inequality test, see Chapter 1, EPR
Paradox Defeated: Bohr Has the Last Laugh.

Friedman and colleagues came up with a novel variation of the standard Bell

experiment using cosmic rays. The idea is to use real-time astronomical observations

of distant stars in our own galaxy, distant quasars, or patches of the cosmic microwave

background, to essentially let the universe decide how to set up the experiment instead

of using a standard quantum random number generator. That is, photons from the

distant galaxies are used to control the orientation of the polarization filters just prior to

the arrival of entangled photons.

If successful, the implications would be groundbreaking. If the results from such

experiment do not violate Bell’s inequality, it would mean that super determinism could

be true after all. Particle entanglement will be an illusion, and signal transfer between

entangled particles could not travel faster than light as predicted by relativity. Einstein

will be right and there is no spooky action at a distance.

Luckily for us, fans of quantum mechanics, no such thing has happened so far. Keep

in mind that Friedman and colleagues are not the only team getting it on the action.

There are multiple teams trying to crack this riddle. As a matter of fact, most of their

results agree with quantum mechanics. That is, their results violate Bell’s inequality. So

it seems that the rift created by Einstein and Bohr in their struggle between relativity

and quantum mechanics long ago is alive and well. My money is in quantum mechanics

though. Moving on, the next section shows how IBM Q Experience can be accessed

remotely via its slick REST API.

�Remote Access via the REST API
Q Experience features a relatively unknown REST API that handles all remote

communications behind the scenes. It is used by the current Python SDKs:

•	 QISKit: The Quantum Information Software Kit is the de facto access

tool for quantum programming in Python.

•	 IBMQExperience: A lesser known library bundled with QISKit that

wraps the REST API in a Python client.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

102

In this section we peek inside IBMQExperience and look at the different REST end

points for remote access. But first, authentication is required.

�Authentication
To invoke any REST API call, we must first obtain an access token. This will be the access

key to invoke any of the calls in this section. Note that the access token is not the same as

the API token (the API token is used to execute quantum programs in Python). There are

two ways of obtaining an access token:

•	 Using your API token: To obtain the API token, log in to the IBM

Q Experience console and follow the instructions in the following

section.

•	 Using your account username and password: Let’s see how this is

done using REST.

Tip  To obtain your API token, log in to the IBM Q Experience console, click your
username ➤ My Account, and then click the Advanced tab on the upper right.
Finally click Generate and then Copy API Token (see Figure 3-6). Always keep your
token secure.

Figure 3-6.  Obtain your API token from the console

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

103

�Authentication via API Token

•	 HTTP Method: POST

•	 URL: https://quantumexperience.ng.bluemix.net/api/users/
loginWithToken

•	 Payload: {“apiToken”: “YOUR_API_TOKEN”}

�Authentication via User-Password

•	 HTTP Method: POST

•	 URL: https://quantumexperience.ng.bluemix.net/api/users/
login

•	 Payload: {“email”: “USER-NAME”, “password”: “YOUR-PASSWORD”}

The response for both methods is

{

 "id": "ACCESS_TOKEN",

 "ttl": 1209600,

 "created": "2018-04-15T20:21:03.204Z",

 "userId": "USER-ID"

}

Where id is your access token, ttl is the time to live (or expiration time) in

milliseconds, and userId is your user id. Save the access token and the user id for use

in this section. Note that when your session expires, a new access token needs to be

generated.

�List Available Backends
This call returns a JSON list of all available backends and simulators in IBM Q

Experience:

•	 HTTP Method: GET

•	 URL: https://quantumexperience.ng.bluemix.net/api/
Backends?access_token=ACESS-TOKEN

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/api/users/loginWithToken
https://quantumexperience.ng.bluemix.net/api/users/loginWithToken
https://quantumexperience.ng.bluemix.net/api/users/login
https://quantumexperience.ng.bluemix.net/api/users/login
https://quantumexperience.ng.bluemix.net/api/Backends?access_token=ACESS-TOKEN
https://quantumexperience.ng.bluemix.net/api/Backends?access_token=ACESS-TOKEN

104

�Request Parameters

Name Value

access_token Your account access token

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py

�Response Sample

The response content type for all API calls is application/json. The next paragraph shows

the partial result of a call to this end point. Note that this end point will return both real

processors and simulators.

[{

 "name": "ibmqx2",

 "version": "1",

 "status": "on",

 "serialNumber": "Real5Qv2",

 "description": "5 transmon bowtie",

 "basisGates": "u1,u2,u3,cx,id",

 "onlineDate": "2017-01-10T12:00:00.000Z",

 "chipName": "Sparrow",

 "id": "28147a578bdc88ec8087af46ede526e1",

 "topologyId": "250e969c6b9e68aa2a045ffbceb3ac33",

 "url": "https://ibm.biz/qiskit-ibmqx2",

 "simulator": false,

 "nQubits": 5,

 "couplingMap": [

 [0, 1],

 [0, 2],

 [1, 2],

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

105

 [3, 2],

 [3, 4],

 [4, 2]

]

},..]

The most important keys from the preceding response are described in Table 3-8.

Table 3-8.  Available Backend Response Keys

Key Description

Name The name id of the processor to be used when executing code against it.

Version A string or positive integer probably used to track changes to the processor.

Description This is probably a description of the hardware used to build the chip. You may see

things like:

  • 5 transmon bowtie

  • 16 transmon 2x8 ladder

Note: a transmon is defined as a type of noise-resistant superconducting charge

qubit. It was developed by Robert J. Schoelkopf, Michel Devoret, Steven M. Girvin,

and their colleagues at Yale University in 2007.5

basisGates These are the physical qubit gates of the processor. They are the foundation under

which more complex logical gates can be constructed.

nQubits The number of qubits used by the processor.

couplingMap The coupling map defines interactions between individual qubits while retaining

quantum coherence. It is used to simplify quantum circuitry and allow the system to

be broken up into smaller units.

5�J. Koch et al., “Charge-insensitive qubit design derived from the Cooper pair box,” Phys. Rev.
A 76, 04319 (2007), doi:10.1103/PhysRevA.76.042319, arXiv:0703002

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

106

�Get Calibration Information for a Given Processor
This call returns a JSON list of the calibration parameters for a given processor in

Q Experience. These parameters are documented in detail in the IBMQX backend

information site.6

•	 HTTP Method: GET

•	 URL: https://quantumexperience.ng.bluemix.net/api/Backends/
NAME/calibration?access_token=ACCESS-TOKEN

�Request Parameters

Name Value

access_token Your account access token.

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py (a default value for the official client although I

suspect it can be anything).

�Response Sample

Qubits are highly sensitive to error and environmental noise. Calibration information

gives an overview of the quality of the qubits inside the processor. Listing 3-2 shows

a simplified response of the calibration parameters for ibmqx4. Some of the most

remarkable parameters are

•	 gateError: This is the error rate of a qubit gate operation at a given

time.

•	 readoutError: This is the error rate of a qubit readout operation at a

given time.

6�ibmqx-backend-information available online at https://github.com/QISKit/
ibmqx-backend-information/tree/master/backends.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/api/Backends/NAME/calibration?access_token=ACCESS-TOKEN
https://quantumexperience.ng.bluemix.net/api/Backends/NAME/calibration?access_token=ACCESS-TOKEN
https://github.com/QISKit/ibmqx-backend-information/tree/master/backends
https://github.com/QISKit/ibmqx-backend-information/tree/master/backends

107

Tip  Qubit quality evaluation involves four stages (operations): preparation,
memory, gates, and readout. Error rates are calculated at the gate and readout
stages to track the quality of the qubit. This is the information returned by this API
call. Note that after usage qubits must be reset (cooled down) to a basis state.

Listing 3-2.  Simplified Response for the Calibration Parameters If ibmqx4

{

 "lastUpdateDate": "2018-04-15T10:47:03.000Z",

 "qubits": [{

 "gateError": {

 "date": "2018-04-15T10:47:03Z",

 "value": 0.0012019552727863259

 },

 "name": "Q0",

 "readoutError": {

 "date": "2018-04-15T10:47:03Z",

 "value": 0.049

 }

 }, ...

],

 "multiQubitGates": [{

 "qubits": [1, 0],

 "type": "CX",

 "gateError": {

 "date": "2018-04-15T10:47:03Z",

 "value": 0.03024023736391171

 },

 "name": "CX1_0"

 },...

]}

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

108

The information in Listing 3-2 can be seen under the IBM Q Experience console

Devices tab on the main menu (see Figure 3-7). Get the calibration information via REST,

and compare it against the web console (Reprint courtesy of International Business

Machines Corporation, © International Business Machines Corporation).

Figure 3-7.  Calibration information reported by the web console

�Get Backend Parameters
This call returns a JSON list of the backend parameters for a given processor in Q

Experience. Some of these parameters include

•	 Qubit cooldown temperature in Kelvin degrees: For example, I got

0.021 K for ibmqx4 – that is, a super frosty –459.6 °F or –273.1 °C.

•	 Buffer times in ns.

•	 Gate times in ns.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

109

•	 Other quantum specs documented in more detail at the backend

information site.7

The request type and end point URL are

•	 HTTP Method: GET

•	 URL: https://quantumexperience.ng.bluemix.net/api/Backends/
NAME/parameters?access_token=ACCESS-TOKEN

�Request Parameters

Name Value

access_token Your account access token

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py

�Response Sample

Listing 3-3 shows a simplified response for ibmqx4 parameters in JSON.

Listing 3-3.  Simplified Response for ibmqx4 Parameters

{

 "lastUpdateDate": "2018-04-15T10:47:03.000Z",

 "fridgeParameters": {

 "cooldownDate": "2017-09-07",

 "Temperature": {

 "date": "2018-04-15T10:47:03Z",

7�IBM Q Experience backend information available online at https://github.com/QISKit/
ibmqx-backend-information.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/api/Backends/NAME/parameters?access_token=ACCESS-TOKEN
https://quantumexperience.ng.bluemix.net/api/Backends/NAME/parameters?access_token=ACCESS-TOKEN
https://github.com/QISKit/ibmqx-backend-information
https://github.com/QISKit/ibmqx-backend-information

110

 "value": 0.021,

 "unit": "K"

 }

 },

 "qubits": [{

 "name": "Q0",

 "buffer": {

 "date": "2018-04-15T10:47:03Z",

 "value": 10,

 "unit": "ns"

 },

 "gateTime": {

 "date": "2018-04-15T10:47:03Z",

 "value": 50,

 "unit": "ns"

 },

 "T2": {

 "date": "2018-04-15T10:47:03Z",

 "value": 16.5,

 "unit": "μs"
 },

 "T1": {

 "date": "2018-04-15T10:47:03Z",

 "value": 45.2,

 "unit": "μs"
 },

 "frequency": {

 "date": "2018-04-15T10:47:03Z",

 "value": 5.24208,

 "unit": "GHz"

 }

 },..]

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

111

�Get the Status of a Processor’s Queue
This call returns the status of a specific quantum processor event queue.

•	 HTTP Method: GET

•	 URL: https://quantumexperience.ng.bluemix.net/api/Backends/
NAME/queue/status

�Request Parameters

It seems strange but this API call appears not to ask for an access token.

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py

�Response Sample

For example, to get the event queue for ibmqx4, paste the following URL in your browser:

https://quantumexperience.ng.bluemix.net/api/Backends/ibmqx4/queue/status

The response looks like {"state":true,"status":"active","lengthQueue":0}

where

•	 state: It is the status of the processor. If alive, true else false.

•	 status: It is the status of the execution queue – active or busy.

•	 lengthQueue: It is the size of the execution queue or the number of

simulations waiting to be executed.

Tip  When you submit an experiment to IBM Q Experience, it will enter an
execution queue. This API call is useful to monitor how busy the processor is at a
given time.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/api/Backends/NAME/queue/status
https://quantumexperience.ng.bluemix.net/api/Backends/NAME/queue/status
https://quantumexperience.ng.bluemix.net/api/Backends/ibmqx4/queue/status

112

�List Jobs in the Execution Queue
This call returns a list of jobs in the processor execution queue.

•	 HTTP Method: GET

•	 URL: https://quantumexperience.ng.bluemix.net/api/
Jobs?access_token=ACCESS-TOKEN&filter=FILTER

�Request Parameters

Name Value

access_token Your account access token.

filter A result size hint in JSON. For example, {“limit”:2} returns a maximum of two entries.

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py

�Response Sample

Listing 3-4 shows the response format for this call. The information appears to be a

historical record of experiment executions containing information such as status, dates,

results, code, calibration, and more.

Listing 3-4.  Simplified Response for the Get Jobs API Call

[{

 "qasms": [{

 "qasm": "...",

 "status": "DONE",

 "executionId": "331f15a5eed1a4f72aa2fb4d96c75380",

 "result": {

 "date": "2018-04-05T14:25:37.948Z",

 "data": {

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/api/Jobs?access_token=ACCESS-TOKEN&filter=FILTER
https://quantumexperience.ng.bluemix.net/api/Jobs?access_token=ACCESS-TOKEN&filter=FILTER

113

 "creg_labels": "c[5]",

 "additionalData": {

 "seed": 348582688

 },

 "time": 0.0166247,

 "counts": {

 "11100": 754,

 "01100": 270

 }

 }

 }

 }],

 "shots": 1024,

 "backend": {

 "name": "ibmqx_qasm_simulator"

 },

 "status": "COMPLETED",

 "maxCredits": 3,

 "usedCredits": 0,

 "creationDate": "2018-04-05T14:25:37.597Z",

 "deleted": false,

 "id": "d405c5829274d0ee49b190205796df87",

 "userId": "ef072577bd26831c59ddb212467821db",

 "calibration": {}

}, ...]

Note  Depending on the size of the execution queue, you may get an empty
result ([ ]) if there are no jobs in queue or a formal result as shown in Listing 3-4.
Whatever the case make sure the HTTP response code is 200 (OK).

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

114

�Get Account Credit Information
When an account is created, each user is assigned a number of default execution credits (15)

which are spent when running experiments. This call lists your credit information.

•	 HTTP Method: GET

•	 URL: https://quantumexperience.ng.bluemix.net/api/users/
USER-ID?access_token=ACCESS-TOKEN

Tip  The user id can be obtained from the authentication response via API token
or user-password. See the “Authentication” section for details.

�Request Parameters

Name Value

access_token Your account access token.

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py

�Response Sample

Listing 3-5 shows a sample response for this call.

Listing 3-5.  Credit Information Sample Response

{

 "institution": "Private Research",

 "status": "Registered",

 "blocked": "None",

 "dpl": {

 "blocked": false,

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/api/users/USER-ID?access_token=ACCESS-TOKEN
https://quantumexperience.ng.bluemix.net/api/users/USER-ID?access_token=ACCESS-TOKEN

115

 "checked": false,

 "wordsFound": {},

 "results": {}

 },

 "credit": {

 "promotional": 0,

 "remaining": 150,

 "promotionalCodesUsed": [],

 "lastRefill": "2018-04-12T14:05:09.136Z",

 "maxUserType": 150

 },

 "additionalData": {

 },

 "creationDate": "2018-04-01T15:36:16.344Z",

 "username": "",

 "email": "",

 "emailVerified": true,

 "id": "",

 "userTypeId": "...",

 "firstName": "...",

 "lastName": "..."

}

�List User’s Experiments
This call lists all experiments for a given user id.

•	 HTTP Method: GET

•	 URL: https://quantumexperience.ng.bluemix.net/api/users/
USER-ID/codes/lastest?access_token=ACCESS-TOKEN&includeExe

cutions=true

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/api/users/USER-ID/codes/lastest?access_token=ACCESS-TOKEN&includeExecutions=true
https://quantumexperience.ng.bluemix.net/api/users/USER-ID/codes/lastest?access_token=ACCESS-TOKEN&includeExecutions=true
https://quantumexperience.ng.bluemix.net/api/users/USER-ID/codes/lastest?access_token=ACCESS-TOKEN&includeExecutions=true

116

�Request Parameters

Name Value

USER-ID Your user id obtained from the authentication step.

access_token Your account access token.

includeExecutions If true, include executions in the result.

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py

�Response Sample

Listing 3-6 shows a sample response from this call.

Listing 3-6.  Experiment List Response

{

 "total": 17,

 "count": 17,

 "codes": [{

 "type": "Algorithm",

 "active": true,

 "versionId": 1,

 "idCode": "...",

 "name": "3Q GHZ State YXY-Measurement 1",

 "jsonQASM": {

 ...

 },

 "qasm": "",

 "codeType": "QASM2",

 "creationDate": "2018-04-14T19:09:51.382Z",

 "deleted": false,

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

117

 "orderDate": 1523733740504,

 "userDeleted": false,

 "displayUrls": {

 "png": "URL"

 },

 "isPublic": false,

 "id": "...",

 "userId": "..."

 }]}

�Run Experiment
This call runs an experiment remotely in IBM Q Experience.

•	 HTTP Method: POST

•	 URL: https://quantumexperience.ng.bluemix.net/api/codes/
execute?access_token=ACCESS-TOKEN&shots=SHOTS&deviceRun

Type=RUN-TYPE

�Request Parameters

Name Value

shots The number of shots to perform. The higher the number, the better the accuracy

of your results will be. Note that this number depletes your credits at a rate of 3

credits per 1024 shots. Space is at a premium in the quantum world.

access_token Your account access token.

deviceRunType The device where to run the experiment. This could be

  •  A real device name such as ibmqx2 and ibmqx3 for real processors.

  •  For simulators: simulator or sim_trivial_2.

seed (optional) An optional random number required only for simulators.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/api/codes/execute?access_token=ACCESS-TOKEN&shots=SHOTS&deviceRunType=RUN-TYPE
https://quantumexperience.ng.bluemix.net/api/codes/execute?access_token=ACCESS-TOKEN&shots=SHOTS&deviceRunType=RUN-TYPE
https://quantumexperience.ng.bluemix.net/api/codes/execute?access_token=ACCESS-TOKEN&shots=SHOTS&deviceRunType=RUN-TYPE

118

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py

Content-Type application/json

�Payload Format

The request body is a JSON document that describes the experiment as shown in the

following snippet:

{

 "name": "Experiment NAME",

 "codeType": "QASM2",

 "qasm": "CODE"

}

�Response Sample

This is arguably the most important call of the API. As an exercise, let’s take one of the

Bell states from the previous section and run it in both the simulator and real device

using the REST API.

Listing 3-7.  Bell State XW Measurement

IBMQASM 2.0;

include "qelib1.inc";

qreg q[2];

creg c[2];

h q[0];

cx q[0],q[1];

h q[0];

s q[1];

h q[1];

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

119

t q[1];

h q[1];

measure q[0] -> c[0];

measure q[1] -> c[1];

Listing 3-7 shows the assembly code from one of the Bell state (XW) experiments

performed with the web console in the previous section. Take this code and create a

JSON payload of the form: {"name": "NAME", "codeType": "QASM2", "qasm": "ONE-

LINE-QASM"}. Note that we must give it an experiment name and the QASM code must

be formatted in a single line including line feeds (\n); thus the final payload becomes

{"name": "REST Bell State XW", "codeType": "QASM2", "qasm": "IBMQASM 2.0;\

ninclude \"qelib1.inc\";\nqreg q[2];\ncreg c[2];\nh q[0];\ncx q[0],q[1];\nh

q[0];\ns q[1];\nh q[1];\nt q[1];\nh q[1];\nmeasure q[0] -> c[0];\nmeasure

q[1] -> c[1];"}.

Now we are ready to submit our experiment via REST. Don’t forget that you must

authenticate first to obtain an access token.

Tip  REST clients are available for most if not all current browsers. Install your
favorite browser REST client, and create an authentication request as described in
the “Authentication” section. Save it and keep it handy to obtain your access token.

I will use Chrome’s YARC (Yet Another REST Client) to submit the payload to the

simulator first and then to the real device (see Figure 3-8).

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

120

Submit to the Simulator

To submit to the simulator, use the following request parameters:

access_token=ACESS_TOKEN&shots=1&deviceRunType=simulator

Verify that the response code is 200 (OK) and look at the response output. Verify that

the experiment has been recorded in the Q Experience console (see Figure 3-9).

Figure 3-8.  Chrome’s YARC REST client with payload for Bell state XW
experiment

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

121

Submit to a Real Device

To submit to the real device (ibmqx4 in this case), change the request parameters to

access_token=ACESS_TOKEN &shots=1&deviceRunType=ibmqx4

Note  Real quantum devices may be offline for maintenance or whatever reason.
If that is the case, the submission will fail with a 400 (bad request) HTTP response.
Make sure the device is online before submitting to a real quantum device!

If all goes well, the job should be put in the execution queue and recorded in the web

console. Listing 3-8 shows the result from a submission to a real device with a status of

PENDING_IN_QUEUE.

Listing 3-8.  Simplified HTTP Response from the Bell State XW Experiment

Submitted via REST

{

 "startDate": "2018-04-16T13:05:43.440Z",

 "modificationDate": 1523883943441,

 "typeCredits": "plan",

Figure 3-9.  Web console showing the Bell state XW experiment submitted via REST

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

122

 "status": {

 "id": "WORKING_IN_PROGRESS"

 },

 "deviceRunType": "real",

 "ip": {

 "ip": "...",

 "city": "Raleigh",

 "country": "United States",

 "continent": "North America"

 },

 "shots": 1,

 "paramsCustomize": {},

 "deleted": false,

 "userDeleted": false,

 "id": "...",

 "codeId": "...",

 "userId": "...",

 "infoQueue": {

 "status": "PENDING_IN_QUEUE",

 "position": 21,

 "estimatedTimeInQueue": 735

 },

 "code": {

 "type": "Algorithm",

 "active": true,

 "versionId": 1,

 "idCode": "...",

 "name": "REST Bell State XW #1",

 "jsonQASM": {

 ...

 "numberGates": 7,

 "hasMeasures": true,

 "numberColumns": 11,

 "include": "include \"qelib1.inc\";"

 },

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

123

 "qasm": "...",

 "codeType": "QASM2",

 "creationDate": "2018-04-16T13:05:42.547Z",

 "deleted": false,

 "orderDate": 1523883943351,

 "userDeleted": false,

 "isPublic": false,

 "id": "...",

 "userId": "..."

 }

}

At this point, you have succeeded submitting your first experiment via REST. Try

playing by increasing the number of shots of your experiment to achieve greater

accuracy.

�Run a Job
This call is very similar to the previous Run Experiment; however it features two end

points:

•	 End point 1: For regular users of the IBM Q Experience.

•	 End point 2: For corporate customers. It requires a hub, group, and

project ids.

Corporate customers have premium access as well as access to the powerful 20-qubit

processors and perhaps the rumored 50-qubit chip coming by the end of 2018.

•	 HTTP Method: POST

•	 URL 1: (5, 16 qubits) https://quantumexperience.ng.bluemix.net/

api/Jobs?access_token=ACCESS-TOKEN

•	 URL 2: (20+ qubits corporate) https://quantumexperience.

ng.bluemix.net/api/Network/HUB/Groups/GROUP/Projects/

PROJECT/jobs?access_token=ACCESS-TOKEN

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/api/Jobs?access_token=ACCESS-TOKEN
https://quantumexperience.ng.bluemix.net/api/Jobs?access_token=ACCESS-TOKEN
https://quantumexperience.ng.bluemix.net/api/Network/HUB/Groups/GROUP/Projects/PROJECT/jobs?access_token=ACCESS-TOKEN
https://quantumexperience.ng.bluemix.net/api/Network/HUB/Groups/GROUP/Projects/PROJECT/jobs?access_token=ACCESS-TOKEN
https://quantumexperience.ng.bluemix.net/api/Network/HUB/Groups/GROUP/Projects/PROJECT/jobs?access_token=ACCESS-TOKEN

124

�Request Parameters

Name Value

access_token Your account access token

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py

Content-Type application/json

�Payload Format

The format of the payload embeds all execution parameters: backend name, shots, and

code in a single JSON document as shown in the following snippet:

{

 "backend": {

 "name": "simulator"

 },

 "shots": 1,

 "qasms": [{

 "qasm": "qams"

 }, ...]

}

Tip  Experiments submitted through the Run Job end point are not recorded in
the Scores section of the Composer but put in an execution queue for processing.

On the other hand, a submission via the Run Experiment end point will record an

entry in the Composer. Also, note that any experiment submitted to the simulator will

return results immediately. Experiments submitted to a real quantum device will always

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

125

enter the execution queue in a PENDING state. On completion, a notification email will

be sent to the user. Let’s send a quick job to the real device ibmqx4. Paste the following

end point into your REST client:

https://quantumexperience.ng.bluemix.net/api/Jobs?access_token=access_token

Set the HTTP Method to POST, access token, and the headers as described in the

previous section. Use the following JSON payload:

{

"qasms": [{

 �"qasm": "\n\ninclude \"qelib1.inc\";\nqreg q[5];\ncreg c[5];\nu2(-4*pi/

3,2*pi) q[0];\nu2(-3*pi/2,2*pi) q[0];\nu3(-pi,0,-pi) q[0];\nu3(-pi,0,

-pi/2) q[0];\nu2(pi,-pi/2) q[0];\nu3(-pi,0,-pi/2) q[0];\nmeasure q -> c;\n" }],

 "shots": 1024,

 "backend": {

 "name": "ibmqx4"

 },

 "maxCredits": 3

}

The preceding payload submits a random experiment to the real device ibmqx4.

Make sure it is online before submission (or use simulator instead). Also make sure the

QASM code is in a single line including line feeds (\n). Note that double quotes must

be escaped. If the submission fails, it probably means that the device is offline or your

QASM payload is invalid. Double- and triple-check to make sure they are correct. The

response I got tells me that my job is RUNNING:

{

 "qasms": [

 {

 "qasm": "...",

 "status": "WORKING_IN_PROGRESS",

 "executionId": "5ba6955fd867ef0046615172"

 }

],

 "shots": 1024,

 "backend": {

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/api/Jobs?access_token=access_token

126

 "id": "5ae875670f020500393162b3",

 "name": "ibmqx4"

 },

 "status": "RUNNING",

 "maxCredits": 3,

 "usedCredits": 3,

 "creationDate": "2018-09-22T19:17:51.448Z",

 "id": "5ba6955fd867ef0046615171",

 "userId": "5ae875060f0205003931559a",

 "infoQueue": {

 "status": "PENDING_IN_QUEUE",

 "position": 11

 }

}

Note that my job won’t show up in the Composer; however I will get an email with a

link to the results.

�Get the API Version
It returns the version of the Q Experience REST API.

•	 HTTP Method: GET

•	 URL: https://quantumexperience.ng.bluemix.net/api/
version?access_token=ACCESS-TOKEN

�Request Parameters

Name Value

access_token Your account access token

�HTTP Headers

Name Value

x-qx-client-application Defaults to qiskit-api-py

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/api/version?access_token=ACCESS-TOKEN
https://quantumexperience.ng.bluemix.net/api/version?access_token=ACCESS-TOKEN

127

�Response Format

It returns a string with the version of the API, by the time of this writing 6.4.8.

We have peaked inside the Python IBMQuantumExperience REST API to see what goes

on behind the scenes. As an exercise let’s build a custom client for Node JS. Here is how.

�A Node JS Client for the IBMQuantumExperience
This section presents a simple exercise to mimic one of the components of the Python

SDK also known as the QISKit (Quantum Information Software Kit). In the next chapter,

we will dive into the Python SDK in more detail, but we’ll start by saying that the SDK is

built on top of two basic libraries:

•	 IBMQuantumExperience: This is a REST client implementation

in Python which I peeked into to present the REST API from the

previous section. This library is not well documented. It makes sense

as it is meant to be a modularized library that may change in the

future.

•	 QISKit SDK: This is the main entry point to all your quantum

programs. It packs gate logic; assembly translation; simulators, a local

python simulator and a fast C++ simulator; and much more. This

library also invokes IBMQuantumExperience for all interactions via

REST to the IBM Q Experience platform.

Python is a great language, but Node JS is all the craze right now in the data center;

thus this section presents a simple implementation of the REST API for Node JS. Here are

some reasons why this would be a useful library:

•	 Node JS is a powerhouse for network I/O asynchronous calls. It is

fast, and it is the perfect platform for REST clients.

•	 Python is a good language, with a plethora of amazing numerical,

math, chart libraries, but has some idiosyncrasies that some may

find unattractive. For example, indentation is relevant in Python (you

cannot mix TABS and spaces – there are no braces to differentiate

blocks). This drove me crazy at the beginning and took me a

while to figure out as almost all computer languages use braces to

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

128

differentiate logic blocks. No such thing in Python, you must use

spaces or TABS and you cannot mix them. I don’t like this. I think it

is bad design because if you make a mistake, you don’t know where a

logic block ends. That’s what braces are for.

•	 Variety is always good: after all my troubles with Python, I thought

this library could be the foundation for a QISKit clone for Node JS.

So let’s get started.

�Build a Node Module for IBMQuantumExperience
I have tried to keep names as close as possible to the Python version. To create a Node

JS module, create a folder named IBMQuantumExperience, and initialize Node JS as

shown in the following set of commands:

$ mkdir IBMQuantumExperience

$ cd IBMQuantumExperience

$ npm init

Tip  Linux users: I have used Windows to write this section; furthermore I assume
that you have installed Node JS, are familiar with Node modules, and can code
in Javascript. All in all, you can get Node installers for all platforms at https://
nodejs.org/en/. Also note that Linux complains about uppercase names for
package names. Save yourself a headache and use Windows to go thru this
section.

Node provides a package manager called npm (which is pretty much the same thing

as Python’s pip) which can be used to initialize your module. The third command will

create two files in the current folder:

•	 index.js: This is your module code. Note for Linux users, this file may

not be created. If so create it manually.

•	 Package.json: This is the module descriptor with information such

as name, version, author, dependencies, and more.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://nodejs.org/en/
https://nodejs.org/en/

129

Create a folder test in the same location to contain unit tests and install the powerful

Node rest client request:

$mkdir test

$ npm install request

The second command installs the popular HTTP request package and all its

dependencies in the current folder. Now we are ready to start implementing the REST

API from the previous section. Open index.js in your favorite editor and let’s get started.

�Export API Methods
To expose an API via Node, use the module.exports library as shown in Listing 3-9.

Note that this is a partial implementation of the library, as the pieces are assembled

throughout the following sections. Nevertheless, a full implementation is available from

the book source under Workspace\Ch03\IBMQuantumExperience. That being said, you

should be able to paste all these listings into index.js. Again, I am assuming here that you

are familiar on how modules are written in Node JS.

Listing 3-9.  Expose Public API Methods via Node

const log = require('./log'); // A simple custom log library (see the debug

section)

const request = require('request');

//...

module.exports = {

 init: function (cfg) {

 _config = cfg;

 var debug = _config.debug ? _config.debug : false;

 log.init (debug);

 return loginWithToken ();

 },

 getCalibration : calibration,

 getBackends : backends,

 getParameters : parameters,

 runExperiment : experiment

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

130

 // Left as exercise getJobs : jobs,

 // Left as exercise getMyCredits : credits

}

In Listing 3-9 we import an external library using the require keyword:

•	 Line 2 imports the request HTTP client library to interact with Q

Experience.

•	 Line 5 declares the public methods to be exposed by this module:

•	 init: This method authenticates against the Q Experience

platform as described in the previous section “Remote Access via

the REST API.”

•	 getCalibration: It returns the platform’s calibration parameters

for a given device.

•	 getBackends: It returns a list of quantum devices (and

simulators) available for use.

•	 getParameters: It returns the device parameters as described

under the Devices section of the Composer web console.

•	 runExperiment: It runs an experiment remotely in the simulator

or real quantum device.

•	 getJobs: It returns a list of current jobs in the experiment

execution queue.

•	 getMyCredits: It returns the user’s execution credit and other

useful information.

�Authenticate with a Token
Before authentication, the library is initialized the same way as in Python, with a

configuration JSON object containing the Platform URL, API token, and more. For

example, this is how we would test the get backend information REST API call (taken

from test.js):

// require the `index.js` file from the same directory.

const qx = require('index.js');

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

131

// Put your API token here

var config = { APItoken: 'YOUR_API_TOKEN'

 , debug : true

 , 'url' : 'https://quantumexperience.ng.bluemix.net/api'

 , 'hub' : 'MY_HUB'

 , 'group' : 'MY_GROUP'

 , 'project' : 'MY_PROJECT'

}

// Get backend information

async function testBackends() {

 await qx.init(config);

 var result = await qx.getBackends();

 console.log("---- BACKENDS ----\n" + JSON.stringify(result) + "\n-----");

}

Remember that hub, group, and project are parameters for corporate customers

only; thus they are not used in this implementation; however support for them can

be easily added. Once initialized, simply submit a POST request to log in with a token

as described by the REST API (see Listing 3-10). Note that this code, as well as all the

listings throughout these sections, goes in index.js.

Listing 3-10.  Token Authentication via REST

function loginWithToken () {

 let options = {

 url: _config.url + '/users/loginWithToken',

 form: {'apiToken': _config.APItoken}

 };

 return new Promise(function(resolve, reject) {

 // Do async job

 // �{"id":"Access tok","ttl":1209600,"created":"2018-04-

17T23:30:21.089Z","userId":"userid"}

 request.post(options, function(err, res, body) {

 if (err) {

 reject(err);

 }

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

132

 else {

 var json = JSON.parse(body);

 _accessToken = json.id;

 _userId = json.userId;

 log.debug("Got User:" + _userId + " Tok:" + _accessToken);

 resolve(JSON.parse(body));

 }

 });

 })

}

In Listing 3-10

•	 The request.post system call is used to send an HTTP POST to

the end point https://quantumexperience.ng.bluemix.net/api/

users/loginWithToken using the JSON payload {'apiToken':

'YOUR_TOKEN'}. As described by the REST API, this call returns a new

JSON document: {"id":"TOKEN","ttl":1209600,"created":

"DATE","userId":"USERID"}. This document is parsed and the

access token (id) and user id (userId) saved for later use.

•	 Note that because all network I/O in Node is asynchronous, all

methods return a Promise. This is basically an asynchronous task that

encapsulates the difficulty of having to wait for the task to complete

before reading results. Thus if the HTTP request call succeeds, the

resolve callback from the Promise will fire with the HTTP response

data; else the Promise reject callback will be invoked.

Tip  Promises are a compelling alternative to callbacks for asynchronous code.
Nevertheless they can be confusing some times. All in all, Promises are becoming
the de facto standard for asynchronous programming in Javascript.

Nevertheless if you find the Promise handling code convoluted, there is an even

easier way to deal with this, and it is shown in the next section where we implement a

method to fetch the list of backends.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/api/users/loginWithToken
https://quantumexperience.ng.bluemix.net/api/users/loginWithToken

133

�List Backends
Listing 3-11 shows a Node request to fetch backends from Q Experience.

•	 It sends an HTTP GET request to https://quantumexperience.

ng.bluemix.net/api/Backends?access_token=TOKEN.

•	 It returns a Promise which can be called within any asynchronous

function by using the new async/await feature in Javascript.

Listing 3-11.  Get Backend List via Node

const _defaultHdrs = {

 'x-qx-client-application': _userAgent

};

function backends () {

 let options = {

 url: _config.url + '/Backends?access_token=' + _accessToken,

 headers: _defaultHdrs

 };

 return new Promise(function(resolve, reject) {

 // Do async job

 request.get(options, function(err, res, body) {

 if (err) {

 reject(err);

 }

 else {

 resolve(JSON.parse(body));

 }

 });

 })

}

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/api/Backends?access_token=TOKEN
https://quantumexperience.ng.bluemix.net/api/Backends?access_token=TOKEN

134

To test the preceding method, we can use the async/await feature from

Node.js >=7.6 as shown in the following snippet:

async function testBackends() {

 await qx.init(config);

 var result = await qx.getBackends();

 console.log("---- BACKENDS ----\n" + JSON.stringify(result) + "\n-----");

}

Tip  An async function can contain an await expression that pauses the execution
of the async function and waits for the passed Promise’s resolution and then
resumes the async function’s execution and returns the resolved value.

�List Calibration Parameters
Listing 3-12 shows how to get calibration and hardware parameters for a specific

backend in IBM Q Experience:

•	 Fetch calibration information by sending a GET request to https://

quantumexperience.ng.bluemix.net/api/Backends/NAME/

calibration?access_token=TOKEN where NAME is the backend

you wish to query and TOKEN is the access token obtained from the

authentication step.

•	 Fetch backend parameters by sending a similar GET request to

https://quantumexperience.ng.bluemix.net/api/Backends/

NAME/parameters?access_token=TOKEN.

•	 The response format for both requests is described in the Remote

Access via the REST API section of this chapter.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

https://quantumexperience.ng.bluemix.net/api/Backends/NAME/calibration?access_token=TOKEN
https://quantumexperience.ng.bluemix.net/api/Backends/NAME/calibration?access_token=TOKEN
https://quantumexperience.ng.bluemix.net/api/Backends/NAME/calibration?access_token=TOKEN
https://quantumexperience.ng.bluemix.net/api/Backends/NAME/parameters?access_token=TOKEN
https://quantumexperience.ng.bluemix.net/api/Backends/NAME/parameters?access_token=TOKEN

135

Listing 3-12.  Get Device Calibration and Parameter Data

function calibration (name) {

 let options = {

 �url: _config.url + '/Backends/' + name +'/calibration?access_token=' +

_accessToken,

 headers: _defaultHdrs

 };

 return new Promise(function(resolve, reject) {

 request.get(options, function(err, res, body) {

 if (err) {

 reject(err);

 }

 else {

 resolve(JSON.parse(body));

 }

 });

 })

}

function parameters (name) {

 let options = {

 �url: _config.url + '/Backends/' + name +'/parameters?access_token=' +

_accessToken,

 headers: _defaultHdrs

 };

 return new Promise(function(resolve, reject) {

 request.get(options, function(err, res, body) {

 if (err) {

 reject(err);

 }

 else {

 resolve(JSON.parse(body));

 }

 });

 })

}

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

136

To test the code, create an async function and use the await keyword to get the

response from the asynchronous task as shown in the following snippet:

async function testCalibration() {

 await qx.init(config);

 var result1 = await qx.getCalibration('ibmqx4');

 var result2 = await qx.getParameters('ibmqx4');

 console.log(JSON.stringify(result1));

 console.log(JSON.stringify(result1));

}

For the final step, let’s see how an experiment can be run.

�Run the Experiment
This is the most important call of the API, and once executed, the experiment should be

recorded under the scores section of your IBM Q Experience web console (see Listing 3-13).

To submit an experiment programmatically, send an HTTP POST to the /codes/execute

end point with the JSON payload:

{'name': name, "codeType": "QASM2", "qasm": "YOUR_QASM_CODE"}

•	 Remember that the assembly code must be formatted in a single

line with line feeds (\n) to separate instructions. For example, the

following code declares 5 qubits and 5 classical registers: "\n\

ninclude \"qelib1.inc\";\nqreg q[5];\ncreg c[5];\n".

•	 The name parameter defines the experiment name to be recorded in

the web console.

•	 The shots parameter is the number of shots executed by the quantum

processor.

•	 The device parameter can be simulator (for the remote simulator) or

a real quantum device name such as ibmqx4.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

137

Tip  If you run an experiment in a real device, it will enter an execution queue
for future processing. You will receive an email on completion. On the other hand,
if you run the experiment in the remote simulator, the results will be returned
synchronously.

Listing 3-13.  Run an Experiment

const _userAgent = 'qiskit-api-py'; // A global

function experiment (name, qasm, shots, device) {

 let options = {

 url: _config.url + '/codes/execute?access_token=' + _accessToken

 + '&shots=' + shots + '&deviceRunType=' + device,

 �headers: {'Content-Type': 'application/json', 'x-qx-client-

application': _userAgent} ,

 form: {'name': name, "codeType": "QASM2", "qasm": qasm}

 };

 return new Promise(function(resolve, reject) {

 request.post(options, function(err, res, body) {

 if (err) {

 reject(err);

 }

 else {

 resolve(JSON.parse(body));

 }

 });

 })

}

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

138

Paste Listing 3-13 into index.js, use the following snippet to run an experiment in the

real quantum device ibmqx4, then verify the experiment has been recorded in the web

console, and finally wait for a notification email.

async function testExperiment () {

 await qx.init(config);

 var name = "REST Experiment from Node JS #1"

 �var qasm = "\n\ninclude \"qelib1.inc\";\nqreg q[5];\ncreg c[5];\nu2(-

4*pi/3,2*pi) q[0];\nu2(-3*pi/2,2*pi) q[0];\nu3(-pi,0,-pi) q[0];\nu3(-pi,0,-

pi/2) q[0];\nu2(pi,-pi/2) q[0];\nu3(-pi,0,-pi/2) q[0];\nmeasure q -> c;\n";

 var shots = 1;

 var device = "ibmqx4";

 var result = await qx.runExperiment(name, qasm, shots, device);

 console.log("---- EXPERIMENT " + name + " ----\n" + JSON.

stringify(result) + "\n-----")

}

Tip  The code for the IBMQuantumExperience Node module is included in the
book source under Workspace\Ch03\IBMQuantumExperience. The project has a
test script under test/tests.js. Edit this file, add your API token, and execute it from
IBMQuantumExperience with the command: node test/tests.js.

�Debugging and Testing
For simple debugging I have created the submodule log.js (at the same level as index.js)

and used the quintessential console object to display information into the console as

shown in the following snippet:

var _debug = false;

function LOGD(tag, txt) {

 if (_debug) {

 console.log('[DBG-QX] ' + tag + ' ' + (txt ? txt : "));

 }

}

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

139

function LOGE(tag, txt) {

 �console.error('[ERR-QX] ' + tag + ' ' + (txt ? txt : "));

}

function init (debug) {

 _debug = debug;

}

exports.init = init;

exports.debug = LOGD;

exports.error = LOGE;

The main module (index.js) uses this submodule to display debug messages in the

console. Finally, to test the package, edit test/tests.js and paste the test snippets described

throughout these sections as shown in the following partial listing from tests.js:

// test/tests.js require the `index.js` file from the same directory.

const qx = require('../');

// Put your API token here

var config = { APItoken: 'API-TOKEN'

 , debug: true

 , 'url': 'https://quantumexperience.ng.bluemix.net/api'

 , 'hub': 'MY_HUB'

 , 'group': 'MY_GROUP'

 , 'project': 'MY_PROJECT'

};

async function testBackends() {

 await qx.init(config);

 var result = await qx.getBackends();

 console.log("---- BACKENDS ----\n" + JSON.stringify(result) + "\n-----");

}

async function testJobs () {

 await qx.init(config);

 var filter = '{"limit":2}';

 var jobs = await qx.getJobs(filter);

 console.log ("---- JOBS----\n" + JSON.stringify(jobs) + "\n----");

}

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

140

// Paste all test snippets here...

//

try {

 testBackends();

 testJobs ();

 // more tests here...

}

catch (e){

 console.error(e);

}

To run the test, execute node test\tests.js within the IBMQuantumExperience

folder. Note that I have left out two methods: getJobs and getMycredits as an exercise.

With this foundation, you should be able to easily implement and test them.

�Share with the World: Publish Your Module
If you wish to share your work with the world, you can publish your module to the npm

registry. For this you must create a user account at www.npmjs.com/ or manually using

the commands

npm adduser

npm publish

Make sure you document your code by adding a markdown document (readme.md)

to the root folder. After publishing, navigate to https://npmjs.com/package/<package>

and check out your live module. Now others should be able to install it with

npm install IBMQuantumExperience

Node JS developers can now submit experiments to the Q Experience with code like

this:

const qx = require('IBMQuantumExperience');

...

async function sendExperiment () {

 var config = { APItoken: 'API-TOKEN'

 , 'url': 'https://quantumexperience.ng.bluemix.net/api', 'debug': false};

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

http://www.npmjs.com/
https://npmjs.com/package/<package>

141

 await qx.init(config);

 var name = "REST Experiment from Node JS #1"

 var qasm = "MY_QASM";

 var device = "ibmqx4";

 var result = await qx.runExperiment(name, qasm, 1024, device);

}

In this chapter you have taken the first step in your new career as a quantum

programmer. IBM has created an amazing cloud platform to learn about these incredible

machines. We should thank the good folks at IBM for making this platform freely

accessible to the masses. For now, quantum computers are experimental machines, so

don’t expect to get one at the local hardware store. Nevertheless soon they will take over

the data center, so now is the time to learn how to program them.

CHAPTER 3 � ENTER THE IBM Q EXPERIENCE: A ONE-OF-A-KIND PLATFORM FOR QUANTUM
COMPUTING IN THE CLOUD

143
© Vladimir Silva 2018
V. Silva, Practical Quantum Computing for Developers, https://doi.org/10.1007/978-1-4842-4218-6_4

CHAPTER 4

QISKit, Awesome
SDK for Quantum
Programming in Python
In this chapter you will get started with the QISKit, the best SDK out there for quantum

programming. You will learn how easy it is to install the SDK in your local system. But

before writing your first quantum program, it is always helpful to understand what

quantum computation is and how it differs from classical computation. For this purpose,

a very basic explanation of qubit states and quantum gates is presented using linear

algebra. This section also shows how quantum computation can mirror its classical

counterpart and furthermore find shortcuts to get results faster. Next, the chapter walks

through the anatomy of a quantum program including system calls, circuit compilation

formats, quantum assembly, and more.

QISKit packs a set of helpful simulators to execute your programs locally or remotely,

but it also allows you to run in the real thing. Step by step, you will learn how to run your

quantum programs in a real device provided by the awesome IBM Q Experience cloud

platform. So start your desktop and let’s get to it.

�Installing the QISKit
QISKit is the Quantum Information Software Kit, the de facto SDK for quantum

programming in the cloud. It is written in Python, a powerful scripting language for

scientific computing. My background has been mostly in business so I haven’t written

much Python code over the years, so let’s see how the SDK can be installed both in Linux

CentOS 6–7 and in Windows 64. We’ll begin with the easiest (Windows) and then jump

to the trickiest (CentOS).

144

�Setting Up in Windows
QISKit requires Python 3.5 or later. If you have a Windows system, chances are that you

don’t have Python installed. If so, you can get the installers from the Python.org web site.

Download the installer, run it, and verify your installation by running the following from

the command window:

C:\>Python -V

Python 2.7.6

I have good old Python 2.7, yet you can have multiple versions of Python installed

at the same time. In my case I downloaded the embeddable zip file and deployed to

C:\Python36-64 so in my case:

C:\>C:\Python36-64\Python.exe -V

Python 3.6.4

Python features an amazing package manager called pip (preferred installer

program) which makes installing modules very easy. Thus, to install QISKit, simply type

at the console:

C:\>pip install qiskit

Your screen output should look similar to Listing 4-1. Make sure there are no error

messages.

Listing 4-1.  QISKit Installation in Windows 64 Bit

Collecting qiskit

 Using cached qiskit-0.4.11.tar.gz

Collecting IBMQuantumExperience>=1.8.28 (from qiskit)

 Using cached IBMQuantumExperience-1.9.0-py3-none-any.whl

Collecting matplotlib<2.2,>=2.1 (from qiskit)

 Using cached matplotlib-2.1.2.tar.gz

Collecting networkx<2.1,>=2.0 (from qiskit)

 Downloading networkx-2.0.zip (1.5MB)

 �100% |████████████████████| 1.6MB 400kB/s

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

145

Collecting numpy<1.15,>=1.13 (from qiskit)

 Downloading numpy-1.14.2-cp36-cp36m-manylinux1_i686.whl (8.7MB)

 �100% |████████████████████| 8.7MB 105kB/s

...

 Running setup.py install for pycparser ... done

 Running setup.py install for matplotlib ... done

 Running setup.py install for networkx ... done

 Running setup.py install for ply ... done

 Running setup.py install for mpmath ... done

 Running setup.py install for sympy ... done

 Running setup.py install for qiskit ... done

Successfully installed IBMQuantumExperience-1.9.0 qiskit-0.4.11

requests-2.18.4 ...

This is it; you have taken the first step in this journey as a quantum programmer. For

the Linux user, let’s set things up in CentOS 6 or 7.

�Setting Up in Linux CentOS
Things are a bit trickier to set up in CentOS 6 or 7. This is due to the fact that CentOS

focuses mainly in stability than bleeding edge software. Thus CentOS comes with

Python 2.7 out of the box; furthermore the official distribution does not provide

packages for Python 3.5. This doesn’t mean however that Python 3.5 cannot be

installed. Let’s see how.

Tip T he instructions in this section should work for any Linux flavor based on the
Red Hat base such as RHEL 6–7, CentOS 6–7, and Fedora Core.

�Step 1: Prepare Your System

First make sure that yum (the Linux Update Manager) is up to date by running the

command:

$ sudo yum -y update

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

146

Next, install yum-utils, a collection of utilities and plugins that extend and

supplement yum:

$ sudo yum -y install yum-utils

Install the CentOS development tools. These include compilers and libraries to allow

for building and compiling many types of software:

$ sudo yum -y groupinstall development

Now, let’s install Python 3. Note that we’ll run multiple versions of Python: the

official, 2.7, and 3.6 for development.

�Step 2: Install Python 3

To break out of the chains of the default CentOS distribution, we can use a community

project called Inline with Upstream Stable (IUS). This is a set of the latest development

libraries for OSes that don’t provide them such as CentOS. Let’s install IUS in it

through yum:

$ sudo yum -y install https://centos7.iuscommunity.org/ius-release.rpm

(CentOS7)

$ sudo yum -y install https://centos6.iuscommunity.org/ius-release.rpm

(CentOS6)

Once IUS is finished installing, we can install the most recent version of Python (3.6):

$ sudo yum -y install python36u

Check to make sure that the installation is correct:

$ python3.6 -V

Python 3.6.4

Now, let’s install pip and verify:

$ sudo yum -y install python36u-pip

$ pip3.6 -V

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

147

Finally, we will need to install the IUS package python36u-devel, which provides

useful Python development libraries:

$ sudo yum -y install python36u-devel

�Step 3: Don’t Disturb Others – Set Up a Virtual Environment

This step is useful only if you have a multiuser system running multiple versions

of Python and don’t want to disturb other users. For example, to create a virtual

environment in your home folder:

$ mkdir $HOME/qiskit

$ cd $HOME/qiskit

$ python3.6 -m venv qiskit

The preceding command sequence creates a folder called qiskit in the user’s home to

contain all your quantum programs. Inside this folder, a virtual Python 3.6 environment

called qiskit is also created. To activate the environment, run the command:

$ source qiskit/bin/activate

(qiskit) [centos@localhost qiskit]$

Within the virtual environment, you can use the command python instead of

python3.6 and pip instead of pip3.6 if you prefer:

$ python -V

Python 3.6.4

Tip  If you don’t activate your virtual environment, then you must use python3.6
and pip3.6 instead of python and pip.

�Step 4: Install QISKit

Activate your virtual environment and install QISKit with the command:

$ pip install qiskit

Listing 4-2 shows the standard output of the preceding command.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

148

Listing 4-2.  QISKit Installation in CentOS 6

Collecting qiskit

 Downloading qiskit-0.5.7.tar.gz (4.5MB)

 �100% |████████████████████| 4.5MB 183kB/s

Collecting IBMQuantumExperience>=1.8.28 (from qiskit)

 Downloading IBMQuantumExperience-1.9.0-py3-none-any.whl

Collecting matplotlib<2.2,>=2.1 (from qiskit)

 Downloading matplotlib-2.1.2.tar.gz (36.2MB)

 �100% |████████████████████| 36.2MB 18kB/s

 Complete output from command python setup.py egg_info:

 ===

 Edit setup.cfg to change the build options

 BUILDING MATPLOTLIB

 matplotlib: yes [2.1.2]

 python: yes [3.6.4 (default, Dec 19 2017, 14:48:15) [GCC

 4.4.7 20120313 (Red Hat 4.4.7-18)]]

 platform: yes [linux]

...

Installing collected packages: IBMQuantumExperience,

numpy, python-dateutil, pytz, cycler, pyparsing, matplotlib,

decorator, networkx, ply, scipy, mpmath, sympy, pillow, qiskit

 Running setup.py install for pycparser ... done

 Running setup.py install for matplotlib ... done

 Running setup.py install for networkx ... done

 Running setup.py install for ply ... done

 Running setup.py install for mpmath ... done

 Running setup.py install for sympy ... done

 Running setup.py install for qiskit ... done

Successfully installed IBMQuantumExperience-1.9.0 qiskit-0.4.11

requests-2.18.4 requests-ntlm-1.1.0 scipy-1.0.1 six-1.11.0 sympy-1.1.1 urllib3-1.22

(qiskit) [centos@localhost qiskit]$

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

149

Tip U nder a virtual environment, Python packages will be installed in the
environment’s home lib/python3.6/site-packages instead of the system’s path as
shown in Figure 4-1.

We are now ready to start writing quantum code. Let’s see how.

�Qubit 101: It’s Just Basic Algebra
Before we start writing quantum programs, we need to refresh some fundamental

mathematics to understand what goes on behind the scenes. In the previous chapter, you

learned how a qubit is represented by the Bloch sphere: a geometrical representation of

the pure state of a two-level quantum mechanical system (qubit). But perhaps a better

Figure 4-1.  Python virtual environment folder layout

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

150

way of understanding the basic model of the qubit and the effects of quantum gates is to

use its algebraic representation. For this purpose you need to dust up some basic linear

algebra concepts including

•	 Linear vectors: Simple vectors such as
1

0

é

ë
ê
ù

û
ú which will be used to

represent the basis states of the qubit.

•	 Complex number: A complex number is a number composed of

a real and imaginary parts denoted by a + bi where i = -1 . Note

that complex numbers cannot exist in our physical reality. The

coefficients α, β of the super imposed state of a qubit ψ = α ∣ 0⟩+β ∣ 1⟩

are complex numbers.

•	 Complex conjugate: A term that you will often hear when talking

about quantum gates. To obtain a complex conjugate, simply flip

the sign of the imaginary part; thus a + bi becomes a – bi and

vice versa.

•	 Matrix multiplication: If A is an n × m matrix and B is an m × p

matrix, their product AB is an n × p matrix, in which the m entries

across a row of A are multiplied with the m entries down a column

of B and summed to produce an entry of AB. Take the first row

from the first matrix and multiply each element for the first

column of the second matrix, which becomes the first element

in the result matrix (see Figure 4-2); but don’t panic, most of the

matrices that we will be looking at are 2x2 consisting of 0 or 1

elements.

Figure 4-2.  Basic matrix multiplication operation

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

151

�Algebraic Representation of a Quantum Bit
In the classical model, the fundamental unit of information is the bit which is

represented by a 0 or 1. The bit physically translates to the voltage flow through

a transistor. In quantum computation, the fundamental unit is the quantum bit

(qubit) which physically translates to manipulations on photons, electrons, or atoms.

Algebraically, the qubit is represented by the ket notation.

Tip  Ket notation was introduced in 1939 by physicist Paul Dirac and is also
known as the Dirac notation. The ket is typically represented as a column vector
and written as ∣φ⟩.

�Dirac’s Ket Notation

Using Dirac’s notation, the basic quantum states of the qubit are represented by the

vectors |0> and |1>. These are called the computational basis states.

Tip T he quantum state of a qubit is a vector in a two-dimensional complex vector
space. Let’s illustrate this with a simple graph.

Figure 4-3.  Quantum states of the qubit

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

152

Figure 4-3 shows the complex vector space used to represent the state of a qubit. On

the left side, the so-called basis state is made up of two unit vectors in the Dirac notation

for the states |0> and |1>. On the right side, a general quantum state is made up of a

linear combination of the two. Thus, the basis states and general quantum states can be

written as vectors:

0
1

0
1

0

1
=
é

ë
ê
ù

û
ú =

é

ë
ê
ù

û
ú,

a b0 1+

where α and β are amplitude coefficients of the unit vector. Note that a unit vector’s

amplitude must be 1; therefore α and β must obey the constraint |α|2 + |β|2 = 1. This

algebraic representation is the key to understanding the effect of a logic gate in the qubit

as you will see later on.

So why is the state of a qubit represented as a vector in a seemly more complicated

representation than its classical counterpart? Why vectors at all? The reason comes to

that it allows for building a better model of computation as will be shown once we look

at quantum gates and superposition of states. All in all, quantum mechanics is a theory

that has evolved over many decades, and at the end of the day, a vector is a very simple

mathematical object, easy to understand and manipulate. Probably the best tool for

the job.

�Superposition Is Just a Fancy Word

Superposition is defined by physicists as the property of atomic particles to exist in

multiple states at the same time. If you find this concept difficult to grasp, then linear

algebra can help.

Tip  Superposition is simply the linear combination of the |0> and |1> states. That
is, α| 0⟩+β ∣ 1⟩ where the length of the state vector is 1 as shown in Figure 4-3.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

153

�Ket Notation Too Weird? Use Vectors Instead

If you like algebra and find the ket notation confusing, just use the familiar vector

representation instead. Thus the superposition from the previous section can be

written as

	
Y = + =

é

ë
ê
ù

û
ú +

é

ë
ê
ù

û
ú =

é

ë
ê

ù

û
úa b a b

a
b

0 1
1

0

0

1 	

Note that, because kets are vectors, they obey the same rules as vectors do, for

example, multiplication by a scalar:

	
2 0 1 2

2

2
a b

a
b

a
b

+() = é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú 	

�Changing the State of a Qubit with Quantum Gates
The purpose of quantum gates is to manipulate the state of a qubit to achieve a desired

result. They are the basic building blocks of quantum computation just as classic logic

gates are for the classical world. Some the quantum gates are the equivalent of their

classical counter parts. Let’s take a look.

�NOT Gate (Pauli X)

This is the simplest gate and it acts in a single qubit. It is the quantum equivalent of the

classical NOT gate, and just like its counterpart, it flips the state of the qubit. Thus

|0⟩ → |1⟩, |1⟩ → |0⟩

For a superposition, the X gate acts linearly, meaning it flips the corresponding state;

thus |0> becomes |1> and |1> becomes |0>:

	 a b a b0 1 1 0+ ® + 	

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

154

In a quantum circuit, the NOT gate is represented by the X also known as Pauli X,

named after Austrian physicist Wolfgang Pauli, one of the fathers of quantum mechanics.

The circuit starts with the basis state |0> for qubit 0, the state

flows through the quantum wire until a manipulation is done in

the state, and then the output continues through the wire.

There is another way of looking at the X gate in action; by using its matrix

representation, we can see exactly how the state is flipped by using the Pauli matrix

	
X =

é

ë
ê

ù

û
ú

0 1

1 0 	

The state of the qubit is flipped by using the matrix representation of X and the

vectors for 0
1

0
=
é

ë
ê
ù

û
ú and 1

0

1
=
é

ë
ê
ù

û
ú ; thus

	

X 0
0 1

1 0

1

0

0 0

1 0

0

1
1=

é

ë
ê

ù

û
ú
é

ë
ê
ù

û
ú =

+
+

é

ë
ê

ù

û
ú =

é

ë
ê
ù

û
ú =

	

	

X 1
0 1

1 0

0

1

0 1

0 0

1

0
0=

é

ë
ê

ù

û
ú
é

ë
ê
ù

û
ú =

+
+

é

ë
ê

ù

û
ú =

é

ë
ê
ù

û
ú =

	

There is an even simpler quantum circuit, the simplest of them all, and it is the

quantum wire denoted by the Greek symbol (Psi) ∣ψ⟩ _ _ _ _ _ _ _ _ _ ∣ ψ⟩ which

describes the computational state over time. It may seem trivial, but physically this is

the hardest thing to implement. Because of the atomic scale of the quantum wire (think

photons, electrons, or single atoms), it is very fragile and prone to errors introduced by

the environment.

Another interesting property of the X gate is that two NOT gates in a row give the

identity matrix (I), a very important tool in linear transformations. Let’s do the math:

∣ψ⟩ → XX ∣ ψ⟩

To understand the effects of the circuit, let’s see what

happens when we multiply two X matrices:

XX I=
é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú =

+ +
+ +

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú =

0 1

1 0

0 1

1 0

0 1 0 0

0 0 1 0

1 0

0 1

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

155

The X gate is the simplest example of a quantum logic gate, circuit, and computation.

In the next section, we look at a truly quantum gate, Hadamard, and how it can trigger

superpositions using circuits and algebra.

�Truly Quantum: Superpositions with the Hadamard Gate

The effects of the Hadamard gate in the basis states are formally defined as

	
0

0 1

2
1

0 1

2
®

+
®

-
,

	

Furthermore, for a superposition state α|0⟩+β|1⟩, the Hadamard maps to

	
a b a b a b a b

0 1
0 1

2

0 1

2 2
0

2
1+ ®

+æ

è
ç

ö

ø
÷ +

-æ

è
ç

ö

ø
÷ =

+
+

-
	

For the circuit and matrix presentation, the Hadamard acts on a single qubit.

H =
-

é

ë
ê

ù

û
ú

1

2

1 1

1 1

Applying H to the basis states 0
1

0
=
é

ë
ê
ù

û
ú and 1

0

1
=
é

ë
ê
ù

û
ú :

H 0
1

2

1 1

1 1

1

0
1

2

1

1
1

2

1

0

0

1
=

-
é

ë
ê

ù

û
ú
é

ë
ê
ù

û
ú =

é

ë
ê
ù

û
ú =

é

ë
ê
ù

û
ú +

é

ë
ê
ù

û
ú

æ

è
ç

öö

ø
÷ =

+0 1

2

H 1
1

2

1 1

1 1

0

1
1

2

1

1
1

2

1

0

0

1
=

-
é

ë
ê

ù

û
ú
é

ë
ê
ù

û
ú = -

é

ë
ê

ù

û
ú =

é

ë
ê
ù

û
ú -

é

ë
ê
ù

û
ú

æ

è
çç

ö

ø
÷ =

-0 1

2

So what is the computational reason for the Hadamard gate? What does this buy us?

Without getting too technical, the answer is that the Hadamard gate expands the range

of states that are possible for a quantum circuit. This is important because the expansion

of states creates the possibility of finding shortcuts and therefore doing computations

faster. An analogy would be to a game of chess. For example, if your knight was allowed

to move like a queen and knight at the same time (an expansion of states), this will tilt

the game in your favor and allow you to checkmate faster. This is what Hadamard gives:

more horsepower to your quantum machine.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

156

�Measurement of a Quantum State Is Trickier Than You Think

Imagine you have a lab in the basement of your home. You are given a qubit in state

|ψ⟩ = α|0⟩+β ∣ 1⟩ and a measurement apparatus and asked to calculate the α and β

coefficients. That is, compute the quantum state. It may seem like a trivial task;

however this is not possible. The principles of quantum mechanics state that the

quantum state of a system is not directly observable. The best we can do is guess

approximate information about α and β. This process is called measurement in the

computational basis.

The outcome of a measurement on the quantum state

|ψ⟩ = α|0⟩+β ∣ 1⟩ gives the classical bits:

α ∣ 0⟩+β ∣ 1⟩ → 0 with probality |∝2|

α ∣ 0⟩+β ∣ 1⟩ → 1 with probality |β2|

Thus the measurement process spits the probabilities of the classical bits 0 and 1

equal to the absolute values of the coefficients α and β squared. Physically, the way to

imagine this process taking place is by observing a physical photon, atom, or electron

with a measurement apparatus. This is the reason why measurement is often regarded as

a quantum gate.

Measurement disturbs the state of the quantum system giving a classical bit

outcome. The important thing to remember is that, after the process, the coefficients

α and β are destroyed. This means that we cannot store large amounts of information

in a qubit. Imagine if we could measure the exact values for α and β, then by using

complex numbers it would be possible in theory to store infinite amounts of

classical information in the qubit state. By calculating the exact values of α and β, we

could extract all that classical information. However this is not possible. Quantum

mechanics forbids it.

One final point on measurement is the normalization of the quantum state: given a

measurement in the computational basis α ∣ 0⟩+β ∣ 1⟩, the probability of the classical bit 0

and 1 must add to 1. That is,

	
Probality Probality0 1 12 2() + () = µ + =b 	

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

157

This means that the length of the quantum state vector must be 1 (normalized). This

comes from the fact that measurement probabilities add to 1. In the next section, we’ll

talk about how single-qubit gates are generalized, what they are, and how they are used

to build more complex circuits.

�Generalized Single-Qubit Gates

So far we have seen two simple gates: X and H represented by the matrices:

	
X H=

é

ë
ê

ù

û
ú =

-
é

ë
ê

ù

û
ú

0 1

1 0
1

2

1 1

1 1
,

	

Remember also that the superposition of the quantum state is expressed as the

vector Y =
é

ë
ê

ù

û
ú

a
b

. Then applying both gates to the quantum state can be generalized for

any unitary matrix:

	
H X U whereU H X

a
b

a
b

a
b

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú =, , ,

	

U is called the generalized single-qubit gate given the constraint that U must be

unitary.

Tip A matrix U is unitary if multiplied by its Hermitian transpose U † it gives
the identity matrix: U †U = I. The Hermitian transpose or conjugate transpose is
denoted by a dagger (†) symbol U †=(UT )∗, that is, the complex conjugate of the
transposed.

The transpose of a matrix is a new matrix whose rows are the columns of the original.

For example, if A
a b

c d
then A

a c

b d
T=

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú . Then, to obtain the Hermitian transpose

A† =
é

ë
ê

ù

û
ú

*
a c

b d
, take the complex conjugate of each entry. (The complex conjugate of a + bi,

where a and b are real, is a – bi, that is, switch the sign of the imaginary part if any.)

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

https://en.wikipedia.org/wiki/†
https://en.wikipedia.org/wiki/†
https://en.wikipedia.org/wiki/Hermitian_conjugate
https://en.wikipedia.org/wiki/Dagger
https://en.wikipedia.org/wiki/†
https://en.wikipedia.org/wiki/†
https://en.wikipedia.org/wiki/†

158

Note that both gates H and X must be unitary. This can be easily verified by

calculating X†X = I and H†H = I:

X =
é

ë
ê

ù

û
ú

0 1

1 0
 X † =

0 1

1 0

é

ë
ê

ù

û
ú ® X †X = XX = I

H =
-

é

ë
ê

ù

û
ú

1

2

1 1

1 1
 H† =

1

2

1 1

1 1-
é

ë
ê

ù

û
ú ® H†H = HH = I

�Unitary Matrices Are Good for Quantum Gates

A question that arises from the previous section: Why go through all the trouble? Why

do X and H need to be unitary? The answer is that unitary matrices preserve vector

length. This is useful for quantum gates because these require input and output states

to be normalized (have a vector length of 1). In fact unitary matrices are the only type of

matrices that preserve length and therefore the only type of matrix that can be used for

quantum gates. All in all, a deeper question arises: why should quantum gates be linear

in the first place and why use a matrix representation at all? We’ll try to answer this in a

later section, but for now, we’ll just have to accept it.

�Other Single-Qubit Gates

In the previous section, we saw the single-qubit gates X and H. At the same time, there

are other single-qubit gates that are useful in quantum computation.

The X gate has two partners Y, Z. These form the

trio known as the Pauli Sigma (σ) gates.

X Y
i

i
Z=

é

ë
ê

ù

û
ú =

-é

ë
ê

ù

û
ú =

-
é

ë
ê

ù

û
ú

0 1

0 1

0

1

1 0

0 1
, ,

These three matrices are useful for information

processing tasks such as super dense

coding (SDC), a process that seeks to store

classical information efficiently in a qubit. They

also come up when analyzing atomic properties

such as electron spin. Plus they are closely

related to the three dimensions of space XYZ.

The rotation gate

cos sin

sin cos

q q
q q

-é

ë
ê

ù

û
ú

It is the familiar rotation on real space by

an angle θ. This is a unitary matrix, and in

this particular case, the T gate performs a

Π/4 rotation around the Z-axis. This gate is

required for universal control.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

https://en.wikipedia.org/wiki/†
https://en.wikipedia.org/wiki/†
https://en.wikipedia.org/wiki/†
https://en.wikipedia.org/wiki/†
https://en.wikipedia.org/wiki/†
https://en.wikipedia.org/wiki/†

159

Gates can also manipulate many qubits as we’ll see in the next section.

�Qubit Entanglement with the Controlled NOT Gate

This gate completes the arsenal of quantum gates required for quantum computation.

The controlled NOT (CNOT) is a 2-qubit gate with four computational basis states.

For a superposition, the four basis states

CNOT gives

α ∣ 00⟩+β ∣ 01⟩+δ ∣ 10⟩+γ ∣ 11⟩

where α (alpha), β (beta), δ (delta), and γ

(gamma) are the superposition coefficients.

The quantum circuit is shown as follows:

The matrix representation of CNOT for the
basis states is given by

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

∣00⟩
∣01⟩
∣10⟩
∣11⟩

The plus (+) symbol is called the target qubit, and

the blue dot (below it) is the control qubit. What it

does is simple:

• � If the control qubit is set to 1, then it flips the

target qubit.

• O therwise it does nothing.

To be more precise, if the first bit is the control, then

∣00⟩ → ∣ 00⟩ contol 0 do nothing
∣01⟩ → ∣ 01⟩ contol 0 do nothing
∣10⟩ → ∣ 11⟩ control 1 flip 2nd
∣11⟩ → ∣ 10⟩ control 1 flip 2nd

An easy representation of the preceding states is

∣xy⟩ → ∣ x y ⊕ x⟩

Tip T he CNOT gate is required to generate entanglement, and it is critical in all
kinds of tasks including quantum teleportation, super dense coding, and almost
any quantum algorithm out there.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

160

For example, to entangle 2 qubits, apply the Hadamard gate (H) to the first qubit and

then apply the CNOT to the second qubit as shown in the following:

For the basis state in qubit (2), the Hadamard gives

00
00 10

2
®

+

After applying the CNOT, we flip the second qubit if

the control is 1, thus

00
00 11

2
®

+

This effectively creates an entangled state between

qubits 1 and 2.

All in all, CNOT and single-qubit gates are a powerful arsenal for quantum

computation. Because they build up unitary operations on any number of qubits, they

are said to be universal for quantum computation. This means that to build a quantum

computer that can solve any quantum task, it is enough to use single-qubit gates along

with CNOT and measurement gates.

�Universal Quantum Computation Delivers Shortcuts over
Classical Computation
You may wonder how all the circuits and algebra in the preceding section can help in

solving computation tasks that can be easily performed, and probably cheaper, in a

classical system. If you consider the so-called bit strength of a classical system

	 x f x® () 	

where, given some input x, the goal is to compute a function f(x) with at least 2k-1

elementary operations (where k is the bit strength), then the universal quantum

computation can provide an equivalent circuit of roughly the same size that contains the

same classical model:

	 x x f x, ,0® () 	

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

161

What is exciting about the preceding circuit is that there are sometimes shortcuts

provided by the greater power of quantum computation to get results faster. This

means that you can compute f(x) in fewer than 2k-1 operations. For some quantum

algorithms such as factorization, the speedups are exponential! This is the true

power of quantum systems. So now that you have explored the basic mathematical

model of a quantum circuit, it is time to switch into programmatic mode and see

how all this can be turned into an actual computer program to be executed on a real

quantum device.

�Your First Quantum Program
Let’s look at the anatomy of a quantum program with a bare-bones example. In this

example, we create a single qubit, one classic register to measure the qubit, and then

we apply the Pauli X gate (bit flip) on the qubit and finally measure its value. The basic

pseudocode of the program can be resumed as follows:

	 1.	 Create a quantum program.

	 2.	 Create one or more qubits and classical registers to measure the

qubits.

	 3.	 Create a circuit which groups the qubits in a logical execution

unit.

	 4.	 Apply quantum gates on the qubits to achieve a desired result.

	 5.	 Measure the qubits into the classical register to collect a final

result.

	 6.	 Compile the program. This step creates a JSON representation of

the program in a specific format that will be described later on in

this section.

	 7.	 Run in the simulator or real quantum device.

	 8.	 Fetch the results.

Now let’s look at the Python code as well as the Composer circuit in detail.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

162

Listing 4-3.  Anatomy of a Quantum Program

#############################

import sys

import qiskit

import logging

from qiskit import QuantumProgram

Main sub

def main():

 # create a program

 qp = QuantumProgram()

 # create 1 qubit

 quantum_r = qp.create_quantum_register("qr", 1)

 # create 1 classical register

 classical_r = qp.create_classical_register("cr", 1)

 # create a circuit

 qp.create_circuit("Circuit", [quantum_r], [classical_r])

 # get the circuit by name

 circuit = qp.get_circuit('Circuit')

 # enable logging

 qp.enable_logs(logging.DEBUG);

 # Pauli X gate to qubit 1 in the Quantum Register "qr"

 circuit.x(quantum_r[0])

 # measure gate from qubit 0 to classical bit 0

 circuit.measure(quantum_r[0], classical_r[0])

 # backend simulator

 backend = 'local_qasm_simulator'

 # Group of circuits to execute

 circuits = ['Circuit']

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

163

 # Compile your program

 qobj = qp.compile(circuits, backend)

 # run in simulator

 result = qp.run(qobj, timeout=240)

 # Show result counts

 print (str(result.get_counts('Circuit')))

###

Linux :main()

windows

if __name__ == '__main__':

 main()

Let’s see what is going on in Listing 4-3:

•	 Lines 2–5 import the required libraries: sys (system), qiskit (quantum

classes), logging (for debugging), and QuantumProgram: the

foundation class for all programs.

•	 Next, line 11 creates a QuantumProgram. This is the access point to all

operations.

•	 To create a qubit list, use the quantum program create_quantum_

register(NAME, SIZE) system call where NAME is the name of the

register list and SIZE is the number of qubits. In this case 1 (line 14).

•	 For each qubit, create a classical register to perform a measurement

using the system call create_classical_register(NAME, SIZE).

•	 Next, create a circuit with the system call create_circuit(NAME,

QUANTUM_SET,CLASSIC_SET) where NAME is the name of the circuit,

QUANTUM_SET is a list of qubits, and CLASSIC_SET is the list of

classic registers. A circuit is the logical unit that holds all qubits and

classical registers (line 20).

•	 Optionally, enable debugging with the system call enable_

logs(LEVEL) where LEVEL can be one of logging.DEBUG, logging.

INFO, etc. (just the usual logging stuff).

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

164

•	 Next, run the qubit(s) through quantum gates and perform

measurements on the qubit(s) to collect results. In this case we apply

the Pauli X gate which flips the qubit from its ground state |0> to |1>

(lines 25–29).

•	 Finally, compile the program and run the simulator or real device.

In this case we run in the local Python simulator (local_qasm_

simulator) (lines 37–41).

Windows developers watch out! You must wrap your program in a main function and

then call it with

if __name__ == '__main__':

 main()

This is required in Windows because QISKit executes the program using

asynchronous tasks (executors), and when the task fires, the subprocess will execute

the main module at startup. Thus you need to protect the main code to avoid creating

subprocesses recursively. I found this out the hard way when my programs run properly

in CentOS but failed in Windows with

RuntimeError:

 An attempt has been made to start a new process before the

 current process has finished its bootstrapping phase.

 This probably means that you are not using fork to start your

 child processes and you have forgotten to use the proper idiom

 in the main module:

 if __name__ == '__main__':

 freeze_support()

 ...

 The "freeze_support()" line can be omitted if the program

 is not going to be frozen to produce an executable.

This can be a source of grief for the newcomer to Python. Now, run the program to

see the output:

INFO:qiskit._jobprocessor:<qiskit._result.Result object at

0x000000000D99F470>

{'1': 1024}

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

165

The result is the JSON document {'1': 1024} where 1 is the measurement of the qubit

(remember that we used an X gate to flip the bit) and 1024 is the number of iterations of

that result. The probability of this result is calculated by dividing the number of the result

iterations (1024) by the total number of iterations of the program (1024). In this case

P = 1024/1024 = 1.

Tip  Quantum computers are probabilistic machines. Thus all measurements
come attached with a probability for that specific result.

Listing 4-3 can also be described with an equivalent quantum circuit quickly

constructed and executed in the IBM Q Experience Composer as shown in Figure 4-4.

Figure 4-4.  Composer experiment for Listing 4-3

Figure 4-4 shows the quantum circuit for Listing 4-3 including the result of the

experiment as well as the attached probability. The circuit is very simple as you can see:

in the Composer, drag an X gate over qubit 0, then perform a measurement on the same

qubit. You will find the Composer a wonderful tool to construct relatively simple circuits,

execute them, and visualize their results! Now let’s peek into the SDK internals to see

how this code gets massaged behind the scenes.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

166

�SDK Internals: Circuit Compilation and QASM
Figure 4-5 shows what goes on behind the scenes when your program is run:

•	 QISKit compiles your program’s circuit(s) into a JSON document to

be submitted to the local simulator.

•	 The simulator parses the document, runs the circuit, and returns an

opaque JSON document (hidden from the developer).

•	 QISKit wraps the results JSON document in an object available

to the main program. For example, a call to result.get_

counts('Circuit') extracts the count information from this

document.

Figure 4-5.  Sequence diagram between the program, QISKit, and local simulator

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

167

�Circuit Compilation

Listing 4-4 shows the format of the compiled program before submission to the

simulator. The document is made up of

•	 An execution id

•	 A header with information about the simulator including name,

number of credits used in the execution, plus number of run

interactions (shots)

•	 The circuit section contains an array of circuit objects. Each circuit is

made of

•	 A circuit name

•	 A header (config) with information such as qubit coupling map,

basis (physical) gates, runtime seed, and more

•	 A compiled circuit section with a header containing information

about the qubits and classical registers, as well as an array of

operation (or gates) applied to the circuit and their parameters

Listing 4-4.  Compilation Format for Listing 4-3

{

 "id": "aA46vJHgnKQko3u5L1QqbUDk31sY2m",

 "config": {

 "max_credits": 10,

 "backend": "local_qasm_simulator",

 "shots": 1024

 },

 "circuits": [{

 "name": "Circuit",

 "config": {

 "coupling_map": "None",

 "layout": "None",

 "basis_gates": "u1,u2,u3,cx,id",

 "seed": "None"

 },

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

168

 "compiled_circuit": {

 "operations": [{

 "name": "u3",

 "params": [3.141592653589793, 0.0, 3.141592653589793],

 "texparams": ["\\pi", "0", "\\pi"],

 "qubits": [0]

 }, {

 "name": "measure",

 "qubits": [0],

 "clbits": [0]

 }],

 "header": {

 "number_of_qubits": 1,

 "qubit_labels": [

 ["qr", 0]

],

 "number_of_clbits": 1,

 "clbit_labels": [

 ["cr", 1]

]

 }

 },

 �"compiled_circuit_qasm": "OPENQASM 2.0;\ninclude \"qelib1.inc \";\nqreg

qr[1];\ncreg cr[1];\nu3(3.14159265358979,0,3.14159265358979) qr[0];\

nmeasure qr[0] -> cr[0];\n"

 }]

}

To display the compiled circuit within your program, print the result of the

compilation step as shown in the following command:

qobj = qp.compile(circuits, backend)

print(str(qobj))

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

169

Note T he compilation format is opaque to the programmer and not meant to be
accessed directly, but via the SDK API. The reason is that its format may change
from version to version. However it is always good to understand what occurs
behind the scenes.

�Execution Results

This is the response document from the local simulator to the QISKit. The format of this

document is shown in Listing 4-5. Remarkable information includes

•	 Status of the run, execution time, simulator name, and more.

•	 Result data. This is the information available within your program

with the call: print (str(result.get_counts('Circuit'))).

Listing 4-5.  Results Document from Local Simulator

{

 "backend": "local_qiskit_simulator",

 "id": "aA46vJHgnKQko3u5L1QqbUDk31sY2m",

 "result": [{

 "data": {

 "counts": {

 "1": 1024

 },

 "time_taken": 0.0780002

 },

 "name": "Circuit",

 "seed": 123,

 "shots": 1024,

 "status": "DONE",

 "success": true,

 "threads_shot": 4

 }],

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

170

 "simulator": "qubit",

 "status": "COMPLETED",

 "success": true,

 "time_taken": 0.0780002

}

Obtaining the results document is a bit trickier because it is an opaque object not

exposed to the user’s program. Nevertheless you could save the compiled circuit from

the previous section and feed it to the simulator manually to obtain the result shown in

Listing 4-5. This task is left to you however. The important thing to remember is that the

results document (as well as the compilation format) is opaque to the programmer. The

reason is that their formats may change over time; nonetheless it is always helpful to

understand how things work behind the scenes.

Tip T he compilation and results formats are useful for simulator developers.
For example, you could save compilation and results formats for a sample
circuit, fix a bug in the C++ simulator, feed it, and compare its results. In this
way, your simulator could be easily integrated with the SDK for the rest of us
to play with.

�Assembly Code

The compiled circuit in Listing 4-4 includes a section that contains a translation of the

program into quantum assembly (QASM) as shown in the next paragraph.

OPENQASM 2.0;

include "qelib1.inc";

qreg qr[1];

creg cr[1];

x qr[0];

measure qr[0] -> cr[0];

Tip  QASM is useful only if running in the remote simulator provided by IBM Q
Experience.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

171

�QISKit Local Simulators

Access to real quantum devices in IBM Q Experience is restricted by a credit system that

diminishes with use; thus we shouldn’t run trivial programs such as Listing 4-3. For this

purpose QISKit packs a plethora of simulators to satisfy all your testing needs. Table 4-1

provides a list of local and remote simulators available via QISKit and IBM Q Experience

by the time of this writing.

Table 4-1.  List of Local and Remote Simulators for IBM Q Experience

Name Description

local_qasm_simulator This is the default Python simulator bundled with

QISKit. It is very slow but does the job.

local_clifford_simulator also

known as local_qiskit_simulator

A high-performance simulator written in C++ with

realistic noise and error simulation.

ibmqx_qasm_simulator A 24-qubit high-performance remote QASM

simulator provided by Q Experience. This is the

default remote simulator.

ibmqx_hpc_qasm_simulator A 32-qubit mega powerful parallel simulator

provided by Q Experience. This is a backup to the

default remote simulator.

As a simple exercise, obtain a list of IBM Q Experience simulators and real devices by

pasting the following REST API URL into your browser:

https://quantumexperience.ng.bluemix.net/api/Backends?access_token=ACCESS_

TOKEN.

Of course you need an access token which can be easily obtained using the Remote

Access API from Chapter 3. Next, let’s run our program in other local simulators

including the IBM Q Experience remote simulator. Finally let’s time our runs to see

which simulator is the fastest.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

172

�Running in the Local C++ simulator

QISKit uses the pure Python simulator as default (local_qasm_simulator). However you

can also use a fast C++ simulator with realistic noise and error rates by changing the

backend name of your program to local_clifford_simulator or local_qiskit_simulator

(line 35 in Listing 4-3). However there are some caveats you should keep in mind before

using it:

•	 Linux users: This simulator uses the C++11 standard which requires

gcc 5.3 or later. As a matter of fact the simulator was not built in

my CentOS 6 and 7 systems. (you may want to use Windows in

this instance).

•	 Windows users: Python uses the CMake utility to build the simulator

on the fly. All in all, the default source does not provide a Visual

Studio solution to build in Windows. Nevertheless I have taken the

time to provide one and fix a couple of crashes I encountered in

Windows 7.

Tip A Windows 64-bit binary for the C++ simulator can be found in the book
source under Ch04\qiskit-simulator\qiskit-simulator\x64\Debug. A Visual Studio
2017 solution is also provided if you wish to build it yourself. Make sure you
copy all the files in this folder to PYTHON-HOME\Lib\site-packages\qiskit\
backends if missing.

�Running in a Remote Simulator

To run in the remote simulator provided by IBM Q Experience, Listing 4-3 needs to

change a little bit. Let’s see how:

The first thing we need is an IBM Q Experience configuration descriptor with the

execution parameters as shown in the next paragraph:

APItoken = 'YOU-API-TOKEN'

config = {

 'url': 'https://quantumexperience.ng.bluemix.net/api',

 # The following should only be needed for IBM Q users.

 'hub': 'MY_HUB',

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

173

 'group': 'MY_GROUP',

 'project': 'MY_PROJECT'

}

Tip T he preceding code should be kept in a separate file (Qconfig.py) in the same
folder as the main program. Get your API token from the IBM Q Experience web
console (as shown in Chapter 3) and paste it in the code. Note that hub, group, and
project are required for corporate customers only.

Next import the preceding descriptor into the main program:

Q Experience config

import Qconfig

Main sub

def main():

Finally switch the execution backend to the remote simulator:

	 1.	 Change the backend name to ibmq_qasm_simulator.

	 2.	 Tell the quantum program to use IBM Q Experience by setting

the API parameters with the system call: qp.set_api(Qconfig.

APItoken, Qconfig.config['url']) where APItoken and URL are

the values from the configuration descriptor.

	 3.	 Execute in IBM Q Experience with the system call: result

= qp.execute(circuits, backend, shots=512, max_

credits=3). Note that we do not compile and run the circuit

as before. Therefore you must remove the calls to qobj =

qp.compile(circuits, backend) and result = qp.run(qobj,

wait=2, timeout=240).

The changes are shown in the following command. Make sure you remove the old

compilation and run calls or the program will fail:

 backend = 'ibmqx_qasm_simulator'

 # Group of circuits to execute

 circuits = ['Circuit']

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

174

 # set the APIToken and Q Experience API url

 qp.set_api(Qconfig.APItoken, Qconfig.config['url'])

 �result = qp.execute(circuits, backend, shots=512, max_credits=3, wait=10,

timeout=240)

Finally, execute and test. The output should look something like

DEBUG:qiskit.backends._qeremote:Running on remote backend ibmq_qasm_

simulator with job id: 3677ff592e5e5a6fd31a569b0b4faf92

INFO:qiskit._jobprocessor:<qiskit._result.Result object at

0x0000000004A35160>

{'1': 512}

Now let’s put all this together and see who the fastest simulator is. My money is

in C++.

�And the Fastest Simulator Is Comparing Execution Times

I have gathered execution times for all simulators in an x64 machine running Windows 7.

Incredibly, the fastest simulator turned out to be the IBM Q Experience remote, followed

closely by the pure Python, and lastly my personal favorite: C++ (see Figure 4-6).

Figure 4-6.  Execution times for QISKit simulators

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

175

Even though the call goes through the network, the IBM Q Experience remote

simulator manages to outperform the others. What I found perplexing is how an

interpreted Python simulator can be faster than a native code implementation. This is

probably due to the fact that the native invocation uses asynchronous tasks to spawn

the C++ simulator process, thus slowing things down enough for the Python code to

outperform it. Now that you have learned how to run a program in the simulator, let’s do

it in the real thing.

�Running in a Real Quantum Device
Let’s modify the program from the previous section to make a more complex circuit

instead. Listing 4-6 shows a sample circuit that performs a series of rotations on the

first qubit of a quantum computer. The rotations demonstrate the use of the physical

gates of the real quantum processor ibmqx4: u1, u2, and u3 to rotate a single qubit over

the X-, Y-, and Z-axis of the Bloch sphere by theta, phi, or lambda degrees.

Tip T he Bloch sphere is the geometrical representation of a single qubit where
the top of the Z-axis represents the basis state |0> and the bottom |1>. A rotation
over a given axis represents the probability that the qubit will collapse in certain
direction when a measurement is performed (see Figure 4-7).

Figure 4-7.  Bloch sphere representation of a qubit

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

176

Physical gates (also known as basis gates) are important because they constitute the

foundation under which more complex logical gates are constructed. Hence Listing 4-6

performs the following steps:

•	 It allocates 5 qubits and five classical measurement registers

corresponding to the 5 qubits available from the ibmqx4 processor in

Q Experience (lines 17–20).

•	 Next, a sequence of rotations on the first qubit are performed using

the basis gates u1, u2, and u3 (lines 29–34).

•	 Finally, a measurement is performed in the qubit and the result

stored in the classical register.

•	 Before execution the backend is set to ibmqx4 (a 5-qubit processor –

line 42), and the authentication token and API URL are set via set_

api(Qconfig.APItoken, Qconfig.config['url']).

•	 To execute in the real quantum device, use the QuantumProgram

execute system call execute(NAMES, BACKEND, shots=SHOTS, max_

credits=CREDITS, timeout=TIMEOUT) where

•	 NAMES is a list of circuit names.

•	 SHOTS is the number of iterations performed in the circuit. The

higher the number, the greater the accuracy.

•	 CREDITS is the maximum number of points that you wish to be

deducted from your execution bank (15 is the default startup

number). Note that the more shots are performed, the more

credits will be deducted from your bank. Keep this in mind before

you run out of credits.

•	 TIMEOUT is the read timeout from the remote end point.

Note P ython quantum programs/experiments executed against a real device are
not recorded in the Composer-Scores section of IBM Q Experience. This is because
Python uses the Jobs REST API behind the scenes which puts the experiment in an
execution queue instead. If you wish to record your executions in the Composer,
you could use the web console or REST APIs as shown in the next section.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

177

Listing 4-6.  Sample Circuit #2

import sys,time,math

import qiskit

import logging

from qiskit import QuantumProgram

Q Experience config

import Qconfig

Main sub

def main():

 # create a program

 qp = QuantumProgram()

 # create 1 qubit

 quantum_r = qp.create_quantum_register("qr", 5)

 # create 1 classical register

 classical_r = qp.create_classical_register("cr", 5)

 # create a circuit

 circuit = qp.create_circuit("Circuit", [quantum_r], [classical_r])

 # enable logging

 qp.enable_logs(logging.DEBUG);

 # first physical gate: u1(lambda) to qubit 0

 circuit.u2(-4 *math.pi/3, 2 * math.pi, quantum_r[0])

 circuit.u2(-3 *math.pi/2, 2 * math.pi, quantum_r[0])

 circuit.u3(-math.pi, 0, -math.pi, quantum_r[0])

 circuit.u3(-math.pi, 0, -math.pi/2, quantum_r[0])

 circuit.u2(math.pi, -math.pi/2, quantum_r[0])

 circuit.u3(-math.pi, 0, -math.pi/2, quantum_r[0])

 # measure gate from qubit 0 to classical bit 0

 circuit.measure(quantum_r[0], classical_r[0])

 circuit.measure(quantum_r[1], classical_r[1])

 circuit.measure(quantum_r[2], classical_r[2])

 # backend

 backend = 'ibmqx4'

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

178

 # Group of circuits to execute

 circuits = ['Circuit']

 # set the APIToken and Q Experience API url

 qp.set_api(Qconfig.APItoken, Qconfig.config['url'])

 �result = qp.execute(circuits, backend, shots=512, max_credits=3,

timeout=240)

 # Show result counts

 �print ("Job id=" + str(result.get_job_id()) + " Status:" + result.get_status())

###

if __name__ == '__main__':

 start_time = time.time()

 main()

 print("--- %s seconds ---" % (time.time() - start_time))

�Quantum Circuit for the Composer

The program in Listing 4-6 can also be created in the IBM Q Experience Composer using

their slick drag and drop user interface. Simply drag the gates into the qubit histogram

as shown in Figure 4-8, set the parameters for the gate(s), and finally save and run in the

simulator or real device.

Figure 4-8.  Q Experience Composer circuit for Listing 4-6

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

179

For those of you who prefer the raw power of assembly, the Composer allows to

copy-paste code directly into the console in assembly mode as shown in Figure 4-9. It

will even parse any syntax errors in your code and show you the offending line(s).

There are multiple ways of executing your experiment in IBM Q Experience; one of

the most interesting is using their awesome REST API.

�Execution via Your Favorite REST Client

This is one of the most exciting ways to interact with Q Experience. By using simple REST

requests, you can do pretty much anything you do in Python or the Composer:

•	 List backend devices.

•	 List hardware or calibration parameters for the real devices.

•	 Get information about the job execution queue.

•	 Get the status of a job or experiment.

•	 Push or cancel jobs.

•	 Execute an experiment and record it in the Scores section of the

Composer.

Figure 4-9.  Composer in assembly mode for circuit in Figure 4-8

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

180

Tip T he REST API allows you to use any language to create your own interface to
Q Experience (even a web browser). This API is described in full detail in Chapter 3.

There are two ways of submitting experiments using REST: via the jobs and the

execute APIs. Let’s see how.

Run via the Jobs API

You can use your favorite browser REST client to submit the experiment in Listing 4-6.

For example, using Chrome’s YARC (Yet Another REST Client) create an HTTP POST

request to the end point:

https://quantumexperience.ng.bluemix.net/api/Jobs?access_token=ACCESS_TOKEN

The tricky part is getting your access token or access key. For this part you must

authenticate using your API token or username and password. Note that the API token

is not to be confused with the access token. To obtain an access token, you must do an

authentication request. (Take a look at Chapter 3 under “Remote Access via the REST API.”)

Tip  Chrome’s YARC allows you to construct REST requests and save them as
favorites. Create an authentication request to IBM Q Experience as described in
Chapter 3, save it as a favorite, and use it every time to obtain an access token to
test other REST API calls.

The request payload is a JSON document shown in Listing 4-7. The format is

described in Table 4-2.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

181

Listing 4-7.  HTTP Request for the Jobs API

{

 "qasms": [{

 �"qasm": "\n\ninclude \"qelib1.inc\";\nqreg q[5];\ncreg c[5];\nu2

(-4*pi/3,2*pi) q[0];\nu2(-3*pi/2,2*pi) q[0];\nu3(-pi,0,-pi) q[0];\nu3

(-pi,0,-pi/2) q[0];\nu2(pi,-pi/2) q[0];\nu3(-pi,0,-pi/2) q[0];\nmeasure

q -> c;\n"

 }],

 "shots": 1024,

 "backend": {

 "name": "ibmqx4"

 },

 "maxCredits": 3

}

Once you have obtained an access token, copy-paste the payload from Listing 4-7

into your REST client, submit, and wait for a response. If all goes well, you should see a

response similar to Listing 4-8.

Table 4-2.  Request Format for the Jobs API

Key Description

qasms This is an array of assembly code programs all in

one line separated by the line feed character (\n).

Shots The number of iterations you code will go through.

backend This is an object that describes the backend. In this

case ibmqx4.

maxCredits This is a hint of the number of credits to be

deducted from your account balance.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

182

Listing 4-8.  HTTP Response from Q Experience

{

 "qasms": [

 {

 �"qasm": "\n\ninclude \"qelib1.inc\";\nqreg q[5];\ncreg c[5];\nu2

(-4*pi/3,2*pi) q[0];\nu2(-3*pi/2,2*pi) q[0];\nu3(-pi,0,-pi) q[0];\

nu3(-pi,0,-pi/2) q[0];\nu2(pi,-pi/2) q[0];\nu3(-pi,0,-pi/2) q[0];\

nmeasure q -> c;\n",

 "status": "WORKING_IN_PROGRESS",

 "executionId": "e9d758c3480a54a6455f72c84c5cc2a6"

 }

],

 "shots": 1024,

 "backend": {

 "id": "c16c5ddebbf8922a7e2a0f5a89cac478",

 "name": "ibmqx4"

 },

 "status": "RUNNING",

 "maxCredits": 3,

 "usedCredits": 3,

 "creationDate": "2018-04-24T00:12:07.847Z",

 "deleted": false,

 "id": "33d58594fcb7204e4d2ccdb65cd3c88c",

 "userId": "ef072577bd26831c59ddb212467821db"

}

A partial response format is described in Table 4-3.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

183

Tip T he jobs (as well as the execute) APIs are undocumented and not meant to
be accessed directly at this point. Thus the response format may vary over time.
Perhaps this will change in the future and the REST API will be part of the official
SDK. In the meantime however your results may be different from mine.

Run via the Execute API

The main difference between this and the jobs APIs is that the execute API registers the

experiment in the Composer. To see how this is done, create an HTTP POST request to

the end point:

https://quantumexperience.ng.bluemix.net/api/codes/execute?access_token=TOK

EN&shots=1&seed=SEED&deviceRunType=ibmqx4

Table 4-3.  Response Format for the Jobs API

Key Description

qasms An array of objects that includes

The submitted code.

The runtime status: WORKING_IN_PROGRESS, COMPLETED, or FAILED.

An execution id for the code.

shots The number of iterations of the experiment.

backend An object with information about the backend such as name and id.

status The overall status of the job: RUNNING, COMPLETED, or FAILED.

maxCredits The maximum number of credits used for this run.

usedCredits The actual number of credits spent in this run.

creationDate Date the job was created.

deleted True if a request to delete the job has been submitted, else false. Note: Canceled

or deleted jobs will linger for a while before being purged from the queue.

id Id of this job.

userId User id of the owner.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

184

The arguments to the request are

•	 access_token: Your access token

•	 shots: The number of iterations of the experiment

•	 seed: A random execution seed required only if running in the

simulator

•	 deviceRunType: The name of the device where the experiment will

be run

The request payload is shown in Listing 4-9. Every experiment must include a

name. The code type is QASM2, and the assembly code must be written in a single line

separated by a line feed (\n).

Listing 4-9.  HTTP Request Payload for the Execution API

{

 "name": "Experiment #20180410193125",

 "codeType": "QASM2",

 �"qasm": "\n\ninclude \"qelib1.inc\";\nqreg q[5];\ncreg c[5];\nu2

(-4*pi/3,2*pi) q[0];\nu2(-3*pi/2,2*pi) q[0];\nu3(-pi,0,-pi) q[0];\nu3

(-pi,0,-pi/2) q[0];\nu2(pi,-pi/2) q[0];\nu3(-pi,0,-pi/2) q[0];\nmeasure

q -> c;\n"

}

Submit the request using your REST client and wait for a result. Listing 4-10 shows a

reduced response format for the experiment.

Tip  Save yourself a lot of headaches. Always make sure the device is online and
the qasm is written in a single line including line feeds (\n) before submission or
you will have a lot of trouble. Double- and triple-check this or your request will fail
most of the time.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

185

Listing 4-10.  Response Format for the Execute API

{

 "startDate": "2018-04-24T22:31:23.555Z",

 "modificationDate": 1524609083555,

 "typeCredits": "plan",

 "status": {

 "id": "WORKING_IN_PROGRESS"

 },

 "deviceRunType": "real",

 "ip": {

 "ip": "172.58.152.206",

 "country": "United States",

 "continent": "North America"

 },

 "shots": 1,

 "paramsCustomize": {},

 "deleted": false,

 "userDeleted": false,

 "id": "1203b1158e6ae537e8b770cb8049a6ae",

 "codeId": "e0f5c573eef75581cf16bce4187ecab8",

 "userId": "ef072577bd26831c59ddb212467821db",

 "infoQueue": {

 "status": "PENDING_IN_QUEUE",

 "position": 108

 },

 "code": {

 "type": "Algorithm",

 "active": true,

 "versionId": 1,

 "idCode": "e86d38c389f4449e62756922a1aa5729",

 "name": "Experiment #201",

 "jsonQASM": {

 "gateDefinitions": [],

 "topology": "3b8e671a5a3b56899e6e601e6a3816a1",

 "playground": [

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

186

 {

 "name": "q",

 "line": 0,

 "gates": [

 ...

]

 },

 {

 "name": "q",

 "line": 4,

 "gates": [

 {

 "name": "measure",

 "qasm": "measure",

 "position": 10,

 "measureCreg": {

 "line": 5,

 "bit": 4

 }

 }

]

 },

 {

 "name": "c",

 "line": 0

 }

],

 "numberGates": 7,

 "hasMeasures": true,

 "numberColumns": 11,

 "include": "include \"qelib1.inc\";"

 },

 �"qasm": "\n\ninclude \"qelib1.inc\";\nqreg q[5];\ncreg c[5];\nu2

(-4*pi/3,2*pi) q[0];\nu2(-3*pi/2,2*pi) q[0];\nu3(-pi,0,-pi) q[0];\nu3

(-pi,0,-pi/2) q[0];\nu2(pi,-pi/2) q[0];\nu3(-pi,0,-pi/2) q[0];\nmeasure

q -> c;\n",

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

187

 "codeType": "QASM2",

 "creationDate": "2018-04-24T22:31:22.561Z",

 "deleted": false,

 "orderDate": 1524609083391,

 "userDeleted": false,

 "isPublic": false,

 "id": "e0f5c573eef75581cf16bce4187ecab8",

 "userId": "ef072577bd26831c59ddb212467821db"

 }

}

There is a lot of information returned by this response, and most of the data is

straightforward. Nevertheless Table 4-4 describes the most important values.

Table 4-4.  Miscellaneous Information Returned by the Execute API

Key Description

status The status of the execution. It can be one of the following: WORKING_IN_

PROGRESS, COMPLETED, or FAILED.

deviceRunType The device where the experiment has been run: real (for real devices) or simulator.

infoQueue Information about the execution queue including

• T he status: PENDING_IN_QUEUE.

• P osition in the queue.

code A very detailed description of the experiment including

•  Quantum gates, parameters, position, and more.

• A ssembly code.

• M iscellaneous information such as name, type, status, version, and others.

Tip A fter receiving a response, log in to the IBM Q Experience console. The
experiment name should be displayed in the Quantum Scores section of the
Composer.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

188

�Quantum Assembly: The Power Behind the Scenes
You have probably realized what goes behind the scenes when an experiment is

executed within the Composer or a REST client. The circuit gets translated into quantum

assembly (QASM) and then executed in the real device or simulator. Quantum assembly

is an intermediate representation of the high-level Python code and is the result of the

collaboration between IBM Q Experience and the open source community.

Tip  QASM is based on its classical cousin which has become sort of a lost art.
It is not as scary as its cousin though. As a matter of fact, it is really based on a
subset of the classical assembly grammar.

Formally, the life cycle of your Python program or Q Experience circuit can be

described as a cross between quantum and classical parts of a computation with the

following steps:

•	 Compilation: This is an offline step that takes place in a classical

computer. When a Python or Composer circuit runs, the classical

compiler translates a high-level representation (e.g., Python) into

the QASM intermediate representation. This step has the following

characteristics:

•	 Specific problem parameters are not yet known.

•	 No interaction with the quantum computer is required.

•	 It is possible to compile classical procedures into object code and

make initial optimizations. For example, the Python program in

Listing 4-6 and corresponding Composer circuit are translated

into the assembly shown in Listing 4-11.

Listing 4-11.  QASM Code for Python in Listing 4-6

include "qelib1.inc";

qreg qr[5];

creg cr[5];

u2(-4.18879020478639,6.28318530717959) qr[0];

u2(-4.71238898038469,6.28318530717959) qr[0];

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

189

u3(-3.14159265358979,0,-3.14159265358979) qr[0];

u3(-3.14159265358979,0,-1.57079632679490) qr[0];

u2(3.14159265358979,-1.57079632679490) qr[0];

u3(-3.14159265358979,0,-1.57079632679490) qr[0];

measure qr[0] -> cr[0];

measure qr[1] -> cr[1];

measure qr[2] -> cr[2];

•	 Circuit generation: The QASM from the previous step gets fed to

the circuit generation phase. This step takes place on a classical

computer where the specific problem parameters are known, and

some interaction with the quantum computer may occur. This step

has the following characteristics:

•	 This is an online phase (occurs in a quantum computer).

•	 The output is a collection of quantum circuits, or quantum basic

blocks, together with associated classical control instructions and

classical object code needed at runtime.

•	 Execution: This step takes place on a physical quantum computer.

The input is a collection of quantum circuits expressed using a

quantum circuit intermediate representation. These are executed on

a low-level controller, and the output is a collection of measurement

results returned from the high-level controller.

•	 Postprocessing: This step takes place on a classical computer

and receives a collection of processed measurement results.

The output is the final result of the quantum computation (see

Figure 4-10).

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

190

All in all, quantum assembly syntax is not as scary as its classical counterpart; as a

matter of fact, programming in quantum assembly directly turns out to be simpler and

faster than using Python. The next section presents a set of simple tricks to use if you

decide to code directly in QASM:

•	 Always begin by including the header include "qelib1.inc". It

contains Q Experience hardware primitives (quantum gates). The

gates provided in this library are described in Table 4-5 for single-

qubit gates and Table 4-6 for multiqubit gates.

Figure 4-10.  Postprocessing result from the circuit life cycle for Listing 4-6

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

191

Table 4-5.  Single-Qubit Gates Provided by Quantum Assembly

Name Description

u3(theta,phi,lambda) 3-parameter 2-pulse single qubit.

u2(phi,lambda) 2-parameter 1-pulse single qubit.

u1(lambda) 1-parameter 1-pulse single qubit.

Id Equivalent to the identity matrix or u(0,0,0).

X Pauli X or σx (sigma-x) or bit flip.

Y Pauli Y or σy (sigma-y).

Z Pauli Z or σz (sigma-y).

rx(theta) Rotation around X-axis by theta degrees.

ry(theta) Rotation around Y-axis by theta degrees.

rz(Phi) Rotation around Z-axis by theta degrees.

H Hadamard: Puts a single qubit in superposition of states.

S Square root of Z: sqrt(Z) phase gate.

Sdg S-dagger: The complex conjugate of S. Algebraically it is

defined as the complex conjugate of the transpose matrix

of sqrt(z).

T The sqrt(S) phase gate.

Tdg T-dagger or the complex conjugate of sqrt(S).

Table 4-6.  Multiqubit Gates Provided by Quantum Assembly

Name Description

cx c,t Controlled NOT (CNOT): It flips the second qubit (t) only if the control qubit (c) is 1.

It is used to entangle 2 qubits.

cz a,b Controlled phase: Applies a phase rotation only if the control qubit (a) is 1.

cy a,b Controlled Y: Applies a Pauli Y rotation only if the control qubit (a) is 1.

ch a,b Controlled H: Puts qubit (b) in superposition only if control qubit (a) is 1.

ccx a,b,c 3-qubit Toffoli gate: It flips qubit c only if qubits a and b are 1.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

192

•	 Declaring qubit registers (arrays) is simple. For example, to declare a

register consisting of 5 qubits: qreg qr[5]; Note: All instructions are

separated by semicolon.

•	 To declare a register consisting of 5 classical bits, use creg cr[5];

•	 To apply a gate to a specific qubit, simply type the gate name and the

target qubit. For example, to put the first qubit in superposition (for a

quantum number generator), use h q[0];

•	 The final step of your program should always be to perform

a measurement on the qubit. For example, to measure our

superimposed qubit and store it in the first classical register, use

measure qr[0] -> cr[0];

Note that quantum computers are probabilistic machines; therefore the definite

state of the qubit cannot be known (it is forbidden by quantum mechanics). Thus all we

get is the probability that the qubit is in state 0 or 1. For the simple quantum number

generator on qubit zero h q[0] in the preceding paragraph, we can use the probability

of state 1 as our random number. This can be seen as a neat graph shown by the IBM Q

Experience Composer when the results are collected after the assembly code executes as

shown in Figure 4-9.

You have taken the first step in this new career as a quantum programmer in the

cloud. By using the high-level Python SDK and powerful quantum assembly engine,

experiments can be run in the awesome IBM Q Experience platform. These skills will

be valuable in a few years when quantum computers start to join the data center. In

the next chapter, we take things to the next level with a set of algorithms that show

the almost magical powers of quantum mechanics when applied to computation.

So read on.

Chapter 4 QISKit, Awesome SDK for Quantum Programming in Python

193
© Vladimir Silva 2018
V. Silva, Practical Quantum Computing for Developers, https://doi.org/10.1007/978-1-4842-4218-6_5

CHAPTER 5

Start Your Engines:
From Quantum Random
Numbers to Teleportation,
Pit Stop at Super Dense
Coding
This chapter takes you through a journey about three remarkable information processing

capabilities of quantum systems. We start with one of the simplest procedures by

exploring the fundamentally random nature of quantum mechanics as a source of true

randomness. Next, the chapter looks at perhaps two exuberant but related procedures

called super dense coding and quantum teleportation. In super dense coding, you will

learn how it is possible to send 2 classical bits of information using a single qubit. In

quantum teleportation, you will learn how the quantum state of a qubit can be recreated

by a hybrid classical-quantum information transfer procedure. All algorithms include

circuit design for the IBM Q Experience Composer as well as Python and QASM code.

Results will be gathered for display and analysis, so let’s get started.

�Quantum Random Number Generation
In this section you will learn how the probabilistic nature of a quantum computer can be

exploited to generate random bits or numbers using the Hadamard gate.

194

�Random Bit Generation Using the Hadamard Gate
Hadamard is one of the fundamental gates in any quantum information system. It is

used to put a qubit in a superposition of states. Algebraically, it is described by the matrix

	
H =

-
é

ë
ê

ù

û
ú

1

2

1 1

1 1 	

To understand better how this matrix puts a qubit in superposition, consider the

geometrical representation of a single qubit:

In Figure 5-1 the basis states of the qubit are described using ket notation where

0
1

0
=
é

ë
ê
ù

û
ú and 1

0

1
=
é

ë
ê
ù

û
ú . Remember from the previous chapter that a ket is simply a

unitary vector (a vector of length 1). Thus the general (or superposition) state is then

defined by the unitary vector ψ = α|0⟩+β|1⟩ where α and β are complex coefficients.

Applying H to the basis states gives

H 0
1

2

1 1

1 1

1

0
1

2

1

1
1

2

1

0

0

1
=

-
é

ë
ê

ù

û
ú
é

ë
ê
ù

û
ú =

é

ë
ê
ù

û
ú =

é

ë
ê
ù

û
ú +

é

ë
ê
ù

û
ú

æ

è
ç

öö

ø
÷ =

+0 1

2

H 1
1

2

1 1

1 1

0

1
1

2

1

1
1

2

1

0

0

1
=

-
é

ë
ê

ù

û
ú
é

ë
ê
ù

û
ú = -

é

ë
ê

ù

û
ú =

é

ë
ê
ù

û
ú -

é

ë
ê
ù

û
ú

æ

è
çç

ö

ø
÷ =

-0 1

2

And for the superimposed state ψ

	
Y = + ®

+æ

è
ç

ö

ø
÷+

-æ

è
ç

ö

ø
÷ =

+
+

-a b a b a b a b
0 1

0 1

2

0 1

2 2
0

2
1

	

All in all, the Hadamard gate expands the range of states that are possible for a

quantum circuit. This is important because the expansion of states creates the possibility

of finding shortcuts resulting in faster computation.

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

195

Tip  Quantum mechanics says that we can’t predict with certainty the values of
coefficients α and β in the preceding basis states, even given complete knowledge
of the laws of physics or a particle’s initial conditions. The best we can do is to
calculate a probability.

With this in mind, a random bit generator circuit implementation is as simple as it

gets. In the IBM Q Experience Composer, create a circuit with a Hadamard gate for the

first qubit, and then perform a measurement in the basis state as shown in Figure 5-2.

Figure 5-1.  Geometrical representation of the general (superimposed) state ψ of
a qubit

Figure 5-2.  Circuit for a random bit generation

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

196

It is probably not a good idea to run this in the real device as it may take a while

(remember that executions are scheduled and may take time depending on the number

of jobs in the run queue). Plus each execution in a real device depletes your credits. Run

the circuit in the simulator to obtain an immediate result (see Figure 5-3). Note that each

outcome (0 or 1) has an equal probability of ½, thus we can create random bits given:

probability for outcome 1 > ½ (got 1) else (got 0).

Of course this is a very inefficient way of generating random bits. A better way would

be to write a QISKit Python script to programmatically create a circuit to do the job.

Listing 5-1 shows a simple script to generate n random numbers using x qubits where

the number of bits is 2x. By default, the script generates 10 8-bit random numbers using 3

qubits, that is, n = 10 and x = 3, given 23 = 8. Let’s take a closer look:

•	 Line 12 defines the function qrng to create a circuit using n qubits.

•	 Using the QISKitAPI, lines 15-21 create a QuantumProgram with n

qubits and n classical registers to store the measurements.

•	 A Hadamard gate is applied to all qubits, then a measurement is

performed on each, and finally the result is stored in classical register

n (lines 30-35).

Figure 5-3.  Execution results for circuit in Figure 5-2

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

197

•	 The circuit is compiled to run in the Q Experience remote simulator

by using the system call set_api(API-TOKEN, URL). Note that you

will need your configuration descriptor with the API token and

end point URL. The circuit gets executed and the result counts are

collected (lines 40-51).

•	 Finally to generate random bits, look at the outcome counts. For

example, given the results {'100': 133, '101': 134, '011': 131,

'110': 125, '001': 109, '111': 128, '010': 138, '000': 126}.

For each outcome, if the count is greater than the average

probability, then you get a 1, else you get a 0. The average probability

is calculated by dividing the number of shots (1024 in this case) by

the number of outcomes (2x where x is the number of qubits (default

is 3) – 1024/8 = 128). Thus, for the preceding results

133 1

134 1 11100010 = 226

131 1

125 0

109 0

128 0

138 1

126 0

Listing 5-1.  Quantum Program to Generate n Random Numbers of 2x Bits

#############################

import sys,time

import qiskit

import logging

from qiskit import QuantumProgram

Q Experience config

sys.path.append('../Config/')

import Qconfig

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

198

Generate an 2**n bit random number where n = # of qubits

def qrng(n):

 # create a program

 qp = QuantumProgram()

 # create n qubit(s)

 quantum_r = qp.create_quantum_register("qr", n)

 # create n classical registers

 classical_r = qp.create_classical_register("cr", n)

 # create a circuit

 circuit = qp.create_circuit("QRNG", [quantum_r], [classical_r])

 # enable logging

 #qp.enable_logs(logging.DEBUG);

 # Hadamard gate to all qubits

 for i in range(n):

 circuit.h(quantum_r[i])

 # measure qubit n and store in classical n

 for i in range(n):

 circuit.measure(quantum_r[i], classical_r[i])

 # backend simulator

 backend = 'ibmq_qasm_simulator'

 # Group of circuits to execute

 circuits = ['QRNG']

 �# Compile your program: ASM print(qp.get_qasm('Circuit')), JSON:

print(str(qobj))

 # set the APIToken and Q Experience API url

 qp.set_api(Qconfig.APItoken, Qconfig.config['url'])

 shots=1024

 �result = qp.execute(circuits, backend, shots=shots, max_credits=3,

timeout=240)

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

199

 # Show result counts

 �# counts={'100': 133, '101': 134, '011': 131, '110': 125, '001': 109,

'111': 128, '010': 138, '000': 126}

 counts = result.get_counts('QRNG')

 bits = ""

 for v in counts.values():

 if v > shots/(2**n) :

 bits += "1"

 else:

 bits += "0"

 return int(bits, 2)

###

if __name__ == '__main__':

 start_time = time.time()

 numbers = []

 # generate 100 8 bit rands

 size = 10

 qubits = 3 # bits = 2**qubits

 for i in range(size):

 n = qrng(qubits)

 numbers.append(n)

 print ("list=" + str(numbers))

 print("--- %s seconds ---" % (time.time() - start_time))

Caution  Before executing any program, always make sure your configuration
is correct including a valid API token and end point URL. This is a major source of
headaches. Remember that your program will fail if you miss this crucial step.

A quantum circuit for Listing 5-1 is shown in Figure 5-4. The circuit uses 3 qubits to

generate an 8-bit random number between 0 and 255.

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

200

Let’s gather some data from multiple runs and put the results to the test.

�Putting Randomness Results to the Test
Linux provides a neat program called ent (short for entropy) which is called a

pseudorandom number sequence test program.1 We can use this command to test the

numbers generated in the previous section.

Tip  Windows users – a Windows 32 binary is available for download from
the project site. A binary is also included in the source for this chapter under
Workspace\Ch05\ent.exe.

Thus I have gathered around 200 random 8-bit numbers generated using Listing 5-1.

Using ent, this sequence can be put to the test with the command ent [infile] as shown in

the next paragraph.

C:\Workspace\Ch05>ent qrnd-stdout.txt

Entropy = 3.122803 bits per byte.

Optimum compression would reduce the size of this 805 byte file by 60 percent.

Chi square distribution for 805 samples is 29149.54, and randomly would

exceed this value less than 99.9 percent of the times.

1�ENT – A Pseudorandom Number Sequence Test Program available at http://fourmilab.ch/random/

Figure 5-4.  Q Experience circuit for Listing 5-1

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

http://fourmilab.ch/random/

201

Arithmetic mean value of data bytes is 46.1503 (127.5 = random).

Monte Carlo value for Pi is 4.000000000 (error 27.32 percent).

Serial correlation coefficient is -0.356331 (totally uncorrelated = 0.0).

According to the authors, the Chi-square test determines the quality of the random

sequence. If the Chi-square percent distribution is less than 1% or greater than 99%,

then the sequence is no good. My output shows a percentage of 99.9% which indicates

the randomness of the numbers is low. This is probably due to the fact that I used the

remote simulator. This simulator is probably based on the default UNIX random number

generator (a poor-quality generator). See if your sequence does any better. The next

table shows the results from various deterministic and quantum sources head to head

provided by the developers of ENT.2

The preceding table clearly shows that UNIX rand() shouldn’t be trusted for

random number generation. If you need lots of truly random numbers (e.g., to generate

encryption keys), use a quantum source such as HotBits. All in all, the purpose of this

section has been to get your feet wet with a simple quantum circuit for random number

generation. The next section takes things to the next level with the bizarre quantum data

transfer protocol dubbed super dense coding.

�Super Dense Coding
Super dense coding (SDC) is a data transfer protocol that demonstrates the remarkable

information processing capabilities of a quantum system. Formally, SDC is a simple

procedure that allows for transferring 2 classical bits of information to another party

using a single qubit. The protocol is illustrated in Figure 5-5.

2�HotBits: Genuine random numbers, generated by radioactive decay available online at http://
fourmilab.ch/hotbits/.

Table 5-1.  Randomness Test Results from Various Sources Gathered by ENT1

Source Chi-square percentage

UNIX rand() 99.9% for 500,000 samples (bad)

Improved UNIX generator by Park & Miller 97.53% for 500,000 samples (better)

HotBits: random numbers, generated by radioactive decay 40.98% for 500,000 samples (the best)

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

http://fourmilab.ch/hotbits/
http://fourmilab.ch/hotbits/

202

	 1.	 The process starts with a third party (Eve) generating what is

called a Bell Pair. Eve starts with 2 qubits in the basis state |0>. She

applies a Hadamard gate to the first qubit to create superposition.

It then applies a CNOT gate using the first qubit as the control

(dot) and the second as the target (+). This results in the states

shown in Table 5-2.

Figure 5-5.  Super dense coding protocol

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

203

	 2.	 In the second step of the process, the first qubit is sent to Alice

and the second to Bob. Note that Alice and Bob may be in remote

places. The goal of the protocol is for Alice to send 2 classical

bits of information to Bob using her qubit. But before she does,

she needs to apply a set of quantum rules (or gates) to her qubit

depending on the 2 bits of information she wants to send. (See

Table 5-3.)

Table 5-2.  Bell Pair States

Gate Outcome states Details

H ∣00⟩ → ∣ 00⟩+ ∣ 10⟩ When the H gate is applied to the first qubit, it enters

superposition; thus we get the states 00 + 10 where the

second qubit remains as 0. Note that the square root (2)

from the Hadamard matrix has been omitted for simplicity.

CNOT ∣00⟩+ ∣ 10⟩ → ∣ 00⟩+ ∣ 11⟩ The CNOT gate entangles both qubits. In particular, it flips

the target (+) if the control (.) is 1, else it leaves intact. Thus

we flip the second qubit if the first is 1 resulting in 00 + 11.

Table 5-3.  Encoding Rules for Super Dense Coding

Rules Outcome States

00: I (identity gate)

01: X

10: Z

11: ZX

I(00+11) = 00 + 11

X(00+11) = 10 + 01

Z(00+11) = 00 – 11

ZX(00+11) = 10 – 11

	 3.	 Thus if she sends a 00, she does nothing to her qubit (applies

the identity gate). If she sends a 01, then she applies the X

gate (or bit flip). For a 10 she applies the Z gate. Note that the

Z gate flips the sign (phase) of the qubit if the qubit is 1. Thus

Z ∣ 0⟩ = |0⟩, Z| 1⟩ = − ∣ 1⟩. Finally, if she sends 11, then she applies

gates XZ to her qubit. Alice then sends her qubit to Bob for the

final step in the process.

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

204

	 4.	 Bob receives Alice’s qubit (qubit 0) and uses his qubit to reverse

the process of the Bell state created by Eve. That is, he applies the

CNOT gate to the first qubit followed by the Hadamard gate (H)

and finally performs a measurement in both qubits to extract the 2

classical bits encoded in Alice’s qubit (see Table 5-4).

Table 5-4.  Qubit States After Recovery

Gate Outcome States Details

CNOT 00 +10

11 + 01

00 – 10

11 – 10

We start with Alice’s states from step 2:

00 + 11

10 + 01

00 – 11

10 – 11

The CNOT gate flips the second qubit if the first is 1 resulting in the

states in column #2.

H 00

01

10

–11

Applying the Hadamard to the first qubit in the last row results in the

outcomes in column #2. When Bob performs measurements in the

computational basis states, he ends up with four possible outcomes

with probability 1 each. These outcomes match what Alice meant to

send in step 2 column #1. Note that the last outcome has a negative

sign. Nevertheless, because the probability is calculated as the

amplitude squared, the –1 becomes 1 which is correct.

Let’s put all this together in a circuit within the IBM Q Experience Composer.

�Circuit for Composer
Figure 5-6 shows the super dense coding circuit as well as the quantum assembly code

within the Composer:

•	 The circuit begins by creating a Bell Pair; that is, it puts qubit[0] in

superposition (using the Hadamard gate) and then entangles it with

qubit[1] via the CNOT gate.

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

205

•	 The next two gates represent Alice’s encoding rules. Remember that

she applies the identity (nothing) to encode bits 00, X to encode

01, Z to encode 10, and ZX to encode 11. In this particular case,

the encoded bits are 11. This is shown left of the barrier symbol in

Figure 5-6. Note that the barrier will block execution until all gates

are consumed by both qubits.

•	 To the right side of the barrier symbol, there is Bob’s protocol. He

basically does the reverse operation as Alice’s. He applies the CNOT

gate and then a Hadamard gate on the qubits. Finally a measurement

is performed on both qubits to extract the 2 encoded classical bits.

Figure 5-6.  Superdense circuit for Q Experience

Run the preceding circuit in the simulator, and the result should be a bar graph with

the probability for outcome 11 very close or equal to 1. This result should match the

result obtained in the next section using a Python script.

�Running Remotely Using Python
Listing 5-2 shows the equivalent Python script for the circuit in Figure 5-6:

•	 Lines 17–19 create 2 qubits and two classical registers to hold the

outcomes.

•	 Next the superdense circuit is created with the entangled Bell Pair

(lines 22–14).

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

206

•	 Alice encodes 11 by applying the ZX gates. Optionally, comment any

of these statements to encode a different pair, and then make sure the

result matches Alice’s encoding scheme (lines 32–35).

•	 Bob reverses Alice’s operation and measures the qubits (lines 38–41).

•	 Finally, the circuit gets executed in the remote simulator (ibmq_

qasm_simulator) and the results displayed using Python’s excellent

plotting support.

Listing 5-2.  Super Dense Coding Python Script

import sys,time,math

Importing QISKit

from qiskit import QuantumCircuit, QuantumProgram

sys.path.append('../Config/')

import Qconfig

Import basic plotting tools

from qiskit.tools.visualization import plot_histogram

def main():

 # Quantum program setup

 Q_program = QuantumProgram()

 Q_program.register (Qconfig.APItoken, Qconfig.config["url"])

 # Creating registers

 q = Q_program.create_quantum_register("q", 2)

 c = Q_program.create_classical_register("c", 2)

 # Quantum circuit to make the shared entangled state

 superdense = Q_program.create_circuit("superdense", [q], [c])

 superdense.h(q[0])

 superdense.cx(q[0], q[1])

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

207

 # For 00, do nothing

 # For 10, apply X

 # superdense.x(q[0])

 # For 01, apply Z

 # superdense.z(q[0])

 # Alice: For 11, apply ZX

 superdense.z(q[0])

 superdense.x(q[0])

 superdense.barrier()

 # Bob

 superdense.cx(q[0], q[1])

 superdense.h(q[0])

 superdense.measure(q[0], c[0])

 superdense.measure(q[1], c[1])

 circuits = ["superdense"]

 print(Q_program.get_qasms(circuits)[0])

 backend = "ibmq_qasm_simulator" #ibmqx2 quantum device

 shots = 1024 # the number of shots in the experiment

 �result = Q_program.execute(circuits, backend=backend, shots=shots, max_

credits=3, timeout=240)

 print("Counts:" + str(result.get_counts("superdense")))

 plot_histogram(result.get_counts("superdense"))

###

main

if __name__ == '__main__':

 start_time = time.time()

 main()

 print("--- %s seconds ---" % (time.time() - start_time))

Let’s look at the results of a single run of Listing 5-2 in the next section.

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

208

�Looking at the Results
The standard output of a run of Listing 5-2 is shown in the next paragraph:

C:\python36-64\python.exe p05-superdensecoding.py

OPENQASM 2.0;

include "qelib1.inc";

qreg q[2];

creg c[2];

h q[0];

cx q[0],q[1];

z q[0];

x q[0];

barrier q[0],q[1];

cx q[0],q[1];

h q[0];

measure q[0] -> c[0];

measure q[1] -> c[1];

Counts:{'11': 1024}

--- 167.52969431877136 seconds ---

The script dumps the assembly code of the circuit as well as the counts for the

outcome: {'11': 1024} plus the execution time. The result count is used to calculate the

probability of the outcome by dividing the number of shots (1024) by the outcome count

(1024). Thus the probability is 1 for outcome 11, as shown in the plot run as the final step

in Listing 5-2 (see Figure 5-7). Note that when executed in the simulator, the probability

will always be 1, that is, counts = shots. However if you run in a real quantum device,

because of noise and environmental error, the number of counts should be less the 1024

resulting in a probability less than 1.

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

209

Thus super dense coding provides the means to encode 2 classical bits in a single

qubit. Note that it is worth mentioning that quantum computation states that it is not

possible to store more than a single classical bit per qubit which seems to contradict

what has been shown in this protocol. As a matter of fact, there is no contradiction.

The protocol works because Alice’s and Bob’s qubits are entangled via a Bell Pair.

This allows for sending 2 classical bits in Alice’s entangled qubit. All in all, you

can store at most 2 classical bits per qubit provided that your qubit is entangled to

another via a Bell Pair.

In general terms, this protocol could be interpreted as a set of modularized

abstractions: a Bell Pair generator module to create 2 entangled qubits, followed by

an information encoder module which applies Alice’s rules to encode the 2 classical

bits of information. Finally, a decoder module extracts the classical bits from the

Figure 5-7.  Super dense coding plot result

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

210

qubits provided by the Bell Pair as well as the encoder module (sort of a quantum zip/

unzip tool if you will). Super dense coding provides a high-level picture for quantum

information processing and will help you understand the next item in this chapter:

quantum teleportation.

Tip  This simple protocol was developed in 1992 by physicist Charles Bennett
almost 70 years after the discovery of quantum mechanics. Despite its relative
simplicity, it is not an obvious procedure, and remarkable things can be learned by
studying it in depth.

�Quantum Teleportation
Quantum teleportation is a procedure closely related to super dense coding. Perhaps

the term teleportation is a little extravagant, as we are not really teleporting anything, at

least not in the sci-fi/Star Trek sense. Formally quantum teleportation is the process by

which the state of a qubit (ψ) can be transmitted from one location to another, with the

help of classical communication and a Bell Pair discussed in the previous section. The

procedure is summarized in Figure 5-8.

Figure 5-8.  Quantum teleportation workflow

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

211

	 1.	 Alice and Bob start by sharing a Bell Pair of entangled qubits. One

goes to Alice and the other goes to Bob at separate remote locations.

Imagine that the Bell Pair is prepared by a third party (Eve).

	 2.	 Alice prepares her qubit to be teleported in state |ψ⟩ = α|0⟩+β ∣ 1⟩.

She then performs a Bell basis measurement of her qubit and the

entangled qubit from the Bell Pair provided by Eve. Alice then

sends the measurement result by classical means to Bob.

	 3.	 At this point there is a posterior state for Bob’s qubit as a

function of the measurement performed by Alice. This is the

key to understanding the procedure; remember that both share

an entangled qubit. Thus we’ll see how Bob, by applying the

appropriate quantum gate, can recover the original state ψ created

by Alice.

Let’s figure this out by looking at Bob’s posterior state at the moment of Alice’s

measurement before the recovery operation. To do this, we write the joined states of

the 3 qubits involved in the process. Note that the ket notation is ignored for simplicity.

Thus given Alice’s state |ψ⟩ = α| 0⟩+β ∣ 1⟩, if we combine it with the shared entangled

qubit from the Bell Pair provided by Eve, we get

(α0 + β1) (00 + 11) = α000 + α011 + β100 +β111 (1)

Now we need to write the state of the first 2 qubits using the Bell basis states

B0 = 00 + 11

B1 = 10 + 01

B2 = 00 – 11

B3 = 10 – 01

00 = B0 – B1

01 = B1 – B3

10 = B1 – B3

11 = B0 – B2

Expression (1) becomes

(α0 + β1) (00 + 11) = B0 (α0 + β1) + B1 (α1 + β0) + B2 (α0 – β1) + B3
(-α1 + β0) (2)

Expression (2) shows the states for the 3 qubits after Alice performs her

measurement. Bob knows how to recover Alice’s ψ by looking at the posterior state of the

qubits in expression 2 (the states within the parenthesis). This is shown more clearly in

Table 5-5.

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

212

All in all, the quantum teleportation protocol provides the means to recover the state

ψ of any qubit by sharing an entangled Bell Pair between two remote parties, hence the

name teleportation. Now let’s build a circuit for this protocol, run it in the simulator, and

finally look at the results.

�Circuit for Composer
Figure 5-9 shows the Composer circuit as well as the execution results (simulator only –

no real device at this time) for the quantum teleportation protocol:

•	 The gates left of the barrier symbol (the dotted line) represent the

Bell Pair prepared by the third party (Eve): qubits 1 and 2.

•	 Alice prepares her qubit (0) to a given state ψ. The actual value of

ψ is irrelevant as it will be recovered by Bob at the final stage of the

process. Alice receives qubit[1] from Eve, and qubit[2] goes to Bob.

•	 Alice performs a measurement on her qubits [0,1] (shown to the right

of the dotted line) and sends the results by classical means to Bob.

•	 Bob applies the recovery rules to his qubit (2) mentioned in the

previous section depending on the outcomes sent by Alice. Finally,

after a measurement of qubit[2], Bob recovers the state ψ originally

created by Alice. All this is made possible by the fact that Alice and

Bob share an entangled pair of qubits which makes the whole thing

work.

Table 5-5.  Quantum Teleportation Recovery

Bell State Posterior State Bob’s Recovery
Operation

B0 α0 + β1 ψ

B1 α1 + β0 Xψ

B2 α0 – β1 Zψ

B3 –α1+ β0 ZXψ

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

213

Of course, the execution results in Figure 5-9 need to be massaged to verify that Bob’s

ψ matches Alice’s. The best way to do this is to use a Python script. In the next section,

we’ll run the same circuit remotely and look at the results to verify the protocol works.

�Running Remotely Using Python
In this section we use Python to run the quantum teleportation protocol remotely in

the simulator. Note that, at this time, quantum teleportation cannot be run in a real
quantum device on IBM Q Experience. This is due to the fact the hardware does not

Figure 5-9.  Quantum teleportation circuit for the Composer

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

214

support the rotation gate required by Alice to create her state ψ. Thus we’ll use the

remote simulator instead – a local Python simulator will be fine too. Listing 5-3 shows

the protocol in action. In particular:

•	 Three qubits are created to be shared by both parties: Alice and Bob,

plus three classical registers (c0, c1, c2) to store Alice’s results

(lines 20–23).

•	 The Bell Pair is prepared by Eve by applying a Hadamard gate (H)

followed by a controlled NOT (CNOT) gate in qubits 1 and 2

(lines 35–37).

•	 Alice prepares her state ψ on qubit 0 by rotating on the Y-axis by π/4

radians (line 32).

•	 Alice now entangles her qubit[0] with the Bell Pair qubit given to her,

qubit[1], to entangle them. She then performs a measurement in both

and stores the outcomes in classical registers 0, 1 (lines 35–41).

•	 Now its Bob’s turn: He applies a Z or X gate on his qubit (2)

depending on the outcomes sent by Alice – if classical register 0 is

1, then he applies a Z gate. If classical register 1 is 1, then he applies

an X gate. Then he measures his qubit and stores the outcome in

classical register 2 (lines 47–50).

•	 The program is executed in the remote simulator (ibmq_qasm_

simulator) and the results collected for display and verification

(lines 58–79).

Tip  The source for this program is included in the book source under
Workspace\Ch05\p05-teleport.py.

Listing 5-3.  Python Script for Quantum Teleportation

import sys,time,math

import numpy as np

Importing QISKit

from qiskit import QuantumCircuit, QuantumProgram

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

215

Q Experience config

sys.path.append('../Config/')

import Qconfig

Import basic plotting tools

from qiskit.tools.visualization import plot_histogram

def main():

 # Quantum program setup

 Q_program = QuantumProgram()

 Q_program. register(Qconfig.APItoken, Qconfig.config["url"])

 # Creating registers

 q = Q_program.create_quantum_register('q', 3)

 c0 = Q_program.create_classical_register('c0', 1)

 c1 = Q_program.create_classical_register('c1', 1)

 c2 = Q_program.create_classical_register('c2', 1)

 # Quantum circuit to make the shared entangled state (Bell Pair)

 teleport = Q_program.create_circuit('teleport', [q], [c0,c1,c2])

 teleport.h(q[1])

 teleport.cx(q[1], q[2])

 # Alice prepares her quantum state to be teleported,

 # psi = a|0> + b|1> where a = cos(theta/2), b = sin (theta/2), theta = pi/4

 teleport.ry(np.pi/4,q[0])

 �# Alice applies CNOT to her two quantum states followed by H, to entangle

them

 teleport.cx(q[0], q[1])

 teleport.h(q[0])

 teleport.barrier()

 # Alice measures her two quantum states:

 teleport.measure(q[0], c0[0])

 teleport.measure(q[1], c1[0])

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

216

 circuits = ['teleport']

 print(Q_program.get_qasms(circuits)[0])

 ##### BOB Depending on the results applies X or Z, or both, to his state

 teleport.z(q[2]).c_if(c0, 1)

 teleport.x(q[2]).c_if(c1, 1)

 teleport.measure(q[2], c2[0])

 # dump asm

 circuits = ['teleport']

 print(Q_program.get_qasms(circuits)[0])

 # Execute inthe simulator (the real device does not support it yet)

 #backend = "local_qasm_simulator"

 backend = "ibmq_qasm_simulator"

 shots = 1024 # the number of shots in the experiment

 result = Q_program.execute(circuits, backend=backend, shots=shots

 , max_credits=3, timeout=240)

 print("Counts:" + str(result.get_counts("teleport")))

 # RESULTS

 # Alice's measurement:

 data = result.get_counts('teleport')

 alice = {}

 alice['00'] = data['0 0 0'] + data['1 0 0']

 alice['10'] = data['0 1 0'] + data['1 1 0']

 alice['01'] = data['0 0 1'] + data['1 0 1']

 alice['11'] = data['0 1 1'] + data['1 1 1']

 plot_histogram(alice)

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

217

 #BOB

 bob = {}

 bob['0'] = data['0 0 0'] + data['0 1 0'] + data['0 0 1'] + data['0 1 1']

 bob['1'] = data['1 0 0'] + data['1 1 0'] + data['1 0 1'] + data['1 1 1']

 plot_histogram(bob)

###

main

if __name__ == '__main__':

 start_time = time.time()

 main()

 print("--- %s seconds ---" % (time.time() - start_time))

To verify the results, the outcome counts returned by the simulator must be gathered

for Alice and Bob. A plot of the results is the best way to verify that Alice’s state ψ has

been recovered by Bob. Here is a sample of what the simulator returns:

{'1 0 0': 37, '1 0 1': 45, '1 1 1': 43, '0 1 1': 215, '0 0 1': 200, '0 0

0': 206, '0 1 0': 230, '1 1 0': 48}

In this JSON string, the left side is the outcome(s) of the 3 qubits in reverse order.

For example, in the first outcome 1 0 0: B(1) A(0) A(0) for Alice = A and Bob = B. To the

right is the count obtained for that specific outcome. Remember that the probability of

this outcome (used for graphing purposes) is calculated by dividing the outcome by the

total number of shots (1024); thus

P(1 0 0) = 37/1024 = 0.036

The histogram plots for the results for Alice and Bob from the execution of Listing 5-3

are shown in Figure 5-10.

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

218

Figure 5-10.  Probability results for Alice and Bob measurements

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

219

So what does this all mean? And how do we know that the state ψ has been recovered

by Bob? Let’s look at these results in more detail.

�Looking at the Results
To interpret these results, first let’s see how the probabilities are calculated from the

counts retuned from Listing 5-3:

{'1 0 0': 37, '1 0 1': 45, '1 1 1': 43, '0 1 1': 215, '0 0 1': 200, '0 0

0': 206, '0 1 0': 230, '1 1 0': 48}

Using these counts we can calculate the probabilities for Alice’s and Bob’s outcomes

shown in Figure 5-10 (see Table 5-6).

Table 5-6.  Probability Results for the Quantum Teleportation Experiment

Row Outcome Count Probability Alice Probability Sum

0 Alice(00) Bob(0) 0 0 0 206 0.201171875 0 0 0.237304688

1 Alice(01) Bob(0) 0 0 1 200 0.1953125 1 0 0.239257813

2 Alice(10) Bob(0) 0 1 0 230 0.224609375 0 1 0.271484375

3 Alice(11) Bob(0) 0 1 1 215 0.209960938 1 1 0.251953125

4 Alice(00) Bob(1) 1 0 0 37 0.036132813

5 Alice(01) Bob(1) 1 0 1 45 0.043945313 Bob

6 Alice(10) Bob(1) 1 1 0 48 0.046875 0 0.831054688

7 Alice(11) Bob(1) 1 1 1 43 0.041992188 1 0.168945313

As shown in Table 5-6, to calculate the total probability of Alice’s outcome 00, we

need to sum the probability columns for rows 0 and 4. That is, P(A00) = 0.201 + 0.036 =

0.237. The same rules apply to Bob. For example, P(B0) = 0.20 + 0.19 + 0.22 + 0.20 = 0.83

(add probability columns for rows 0-3). This is shown on the right side for all outcomes

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

220

of Alice and Bob. This is how the script in Listing 5-3 massages the data before plotting

the results shown in Figure 5-10. But what does this mean, and how do we know that Bob

has recovered Alice’s ψ? Let’s look at Bob’s total probability for his qubit:

Bob

0 0.20 + 0.19 + 0.22 + 0.20 = 0.83

1 0.036 + 0.043 + 0.046 + 0.041 = 0.168

Quantum mechanics says that the probability of ψ is given by P(ψ) = |ψ|2. That is, the

probability density is the modulus squared of ψ. Now remember that Alice prepared ψ as

	
Y = () =RY Whereq q p

4 	

That is, Alice applied a π/4 rotation over the Y-axis on her qubit. To see this more

clearly, let’s visualize the state ψ using geometry (see Figure 5-11):

Figure 5-11.  Superimposed state for Alice’s ψ

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

221

Remember that the superimposed state ψ is described in terms of the complex

coefficients α and β as

	 Y = +a b0 1 	

	
Probability Probability0 1

2 2= =a b, 	

But from Figure 5-11, we can represent the coefficients as α = cos(θ/2) and

β = sin(θ/2). Thus, finally, if θ= π/4, then

Probability (α) = |cos(π/8)|2 = 0.85

Probability (β) = |sin(π/8)|2 = 0.14

This matches Bob’s results from the plot created by the teleportation Listing 5-3 (see

Figure 5-12). Great success!

Figure 5-12.  Teleportation results for Bob

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

222

You have taken the first step to understand the remarkable information processing

capabilities of quantum systems. We started with a simple procedure to exploit the

source of true randomness intrinsic to quantum mechanics to generate random

numbers. We also explored two bizarre protocols: super dense coding to encode

classical information and quantum teleportation to recover the state of a qubit by

a remote party. These protocols have been described using circuits for the IBM Q

Experience as well as Python scripts for remote execution in a simulator or real

quantum device. Results have been collected and explained to understand what

goes on behind the scenes. The next chapter explores the lighter side of quantum

computing, by having fun creating a simple game using quantum gates: a needed

break before we get to heavy stuff in later chapters.

CHAPTER 5 � START YOUR ENGINES: FROM QUANTUM RANDOM NUMBERS TO TELEPORTATION,
PIT STOP AT SUPER DENSE CODING

223
© Vladimir Silva 2018
V. Silva, Practical Quantum Computing for Developers, https://doi.org/10.1007/978-1-4842-4218-6_6

CHAPTER 6

Fun with Quantum Games
In this chapter you will learn how to implement a basic game in a quantum computer.

For this purpose we use the quintessential Quantum Battleship distributed with the

QISKit Python tutorial. The first part looks at the mechanics of the game including

•	 Using qubits to represent ship positions in the board

•	 How to calculate damage percentages using a quantum program to

be run in the local, remote simulator or real quantum device

•	 How to perform rotations on the X-axis of a single qubit using a

partial NOT quantum gate

Yet we don’t stop there. The second part of this chapter takes things to the next level.

The game is given a major face lift by showing you how to implement a cloud-based

Quantum Battleship with the following features:

•	 A browser-based user interface with interactive boards to place ship

or bombs. The game mechanics remain the same nonetheless.

•	 A CGI-based script using the Apache Web Server to consume game

events and dispatch them to the quantum program.

•	 A modified version of the original quantum program to perform

partial NOT rotations on the qubits to calculate ship damage. Most of

the original code remains intact.

You will learn how the original code can be modularized and reused for a different

take of Quantum Battleship in the cloud. Let’s get started.

224

�Quantum Battleship with a Twist
In this section we look at a game distributed with the QISKit tutorial called Quantum

Battleship. The program uses 5 qubits to represent a board where each player places

three ships. It then asks each player to place a bomb in a position 0-5. Finally, damage

for each ship is calculated by a quantum program that uses a two-pulse single-qubit

gate: U3(theta, phi, lambda). This gate is called a partial NOT gate and performs rotation

on axes X, Y, Z by theta, phi, or lambda radians.

 4 0

 |\ /|

 | \ / |

 | \ / |

 | 2 |

 | / \ |

 | / \ |

 |/ \|

 3 1

In this particular case, ship damage is calculated by doing a series of partial rotations

on the X-axis (theta) using the number of bombs for that position. If the damage for a

position (or ship) exceeds 95%, the ship is destroyed, and once the entire player’s fleet is

smashed, a winner is declared and the game is over. This is just the standard battleship

game we all played as children but using a quantum computer or simulator in the

background.

Note  The game was written by James Wootton from the University of
Basel and contributed to the QISKit Python tutorial. A modified version
of the original code by Wootton is available from the source of this book
at Workspace\Ch06\battleship\BattleShip.py (minus some
unnecessary fancy text).

Let’s run the program and take a look at the game mechanics.

Chapter 6 Fun with Quantum Games

225

�Setup Instructions
From the book source, execute the program BattleShip.py as described in the following

paragraphs:

•	 For CentOS 6 or 7 or any Fedora-like OS, activate your Python virtual

environment. This is required only if you have multiple versions of

Python, for example, 2.7 and 3.6. Remember that you must use 3.5

or later. Instructions on how to set up a virtual Python environment

were covered in Chapter 3.

•	 Copy the script Workspace/Ch06/battleship/BattleShip.py

and the configuration file Qconfig.py from the book source to your

workspace and execute it (as shown in the next fragment).

Activate Python3 virtual environment at $HOME/qiskit/qiskit

$ source $HOME/qiskit/qiskit/bin/activate

$ python BattleShip.py

############### Quantum Battle Ship ##################

Do you want to play on the real device? (y/n) n

Let’s look at how the program works.

�Initialization
Listing 6-1 shows the script initialization. It starts by doing basic Python tasks:

•	 It loads system libraries: sys and QuantumProgram required for all

QISKit operations.

•	 It makes sure you are using Python 3.5 or later.

•	 It asks if you wish to use a simulator or a real quantum computer. It

then sets the number of shots for the execution to the default 1024.

Chapter 6 Fun with Quantum Games

226

Listing 6-1.  Script Initialization

#################################

Quantum Battleship from tutorial @

https://github.com/QISKit/qiskit-tutorial

##################################

import sys

Checking the version of PYTHON; we only support > 3.5

if sys.version_info < (3,5):

 raise Exception('Please use Python version 3.5 or greater.')

from qiskit import QuantumProgram

import Qconfig

import getpass, random, numpy, math

1. Select a backend: IBM simulator (ibmqx_qasm_simulator) or real chip

ibmqx2

d = input("Do you want to play on the real device? (y/n)\n").upper()

if (d=="Y"):

 device = 'ibmqx2'

else:

 device = 'ibmqx_qasm_simulator'

note that device should be 'ibmqx_qasm_simulator', 'ibmqx2' or 'local_

qasm_simulator'

while we are at it, let's set the number of shots

shots = 1024

Tip  To run a quantum program on a real device, you must place the configuration
file (Qconfig.py) in the same location as the main script. The configuration contains
your required API token and IBM Q Experience end point.

Chapter 6 Fun with Quantum Games

227

APItoken = 'YOUR API TOKEN'

config = {

 'url': 'https://quantumexperience.ng.bluemix.net/api',

}

Now let’s place some ships in the board.

�Set Ships in the Board
The program uses a rudimentary text-based interface for all user input. Listing 6-2 shows

the logic to enter ships for each player. Press ENTER to start, and type the position for up

to three ships per player (the positions are zero based).

•	 The script can bypass user choice and select random positions, or

else the player must enter positions for three ships.

•	 Positions are stored in the two-dimensional list shipPos where

shipPos[0] contains the positions for player 1 and shipPos[1]

contains positions for player 2. Remember that only three ships are

allowed per player.

Listing 6-2.  Setting Ships on the Board

####### 2. players to set up their boards.

randPlace = input("> Press Enter to start placing ships...\n").upper()

The variable ship[X][Y] will hold the position of the Yth ship of player

X+1

shipPos = [[-1]*3 for _ in range(2)]

loop over both players and all three ships for each

for player in [0,1]:

 # if we chose to bypass player choice and do random, we do that

 if ((randPlace=="r")|(randPlace=="R")):

 randPos = random.sample(range(5), 3)

 for ship in [0,1,2]:

 shipPos[player][ship] = randPos[ship]

Chapter 6 Fun with Quantum Games

228

 else:

 for ship in [0,1,2]:

 # ask for a position for each ship,

 choosing = True

 while (choosing):

 # get player input

 position = getpass.getpass("Player " + str(player+1)

 �+ ", choose a position for ship " + str(ship+1) +

" (0-4)\n")

 # see if the valid input and ask for another if not

 if position.isdigit(): # valid answers have to be integers

 position = int(position)

 # they need to be between 0 and 5

 �if (position in [0,1,2,3,4]) and (not position in

shipPos[player]):

 shipPos[player][ship] = position

 choosing = False

 print ("\n")

 elif position in shipPos[player]:

 �print("\nYou already have a ship there. Try

again.\n")

 else:

 print("\nThat's not a valid position. Try again.\n")

 else:

 print("\nThat's not a valid position. Try again.\n")

The following section shows the standard output, very rudimentary but so far so

good.

Do you want to play on the real device? (y/n)

n

Player 1, choose a position for ship 1 (0, 1, 2, 3 or 4)

0

Player 1, choose a position for ship 2 (0, 1, 2, 3 or 4)

1

Chapter 6 Fun with Quantum Games

229

Player 1, choose a position for ship 3 (0, 1, 2, 3 or 4)

2

Player 2, choose a position for ship 1 (0, 1, 2, 3 or 4)

0

Player 2, choose a position for ship 2 (0, 1, 2, 3 or 4)

1

Player 2, choose a position for ship 3 (0, 1, 2, 3 or 4)

2

The interesting stuff occurs in the main loop. Let’s take a look.

�Main Loop and Results
The main loop performs the following tasks:

•	 It asks both players to place one bomb in position [0-4]. A count of

the bomb is stored in a two-dimensional list of five elements (two

players, five bomb counts). Note that the player can bomb the same

position multiple times; thus if player 1 bombs position 0 twice, then

bombs = [[2,0,0,0,0],[0,0,0,0,0]].

•	 It creates a QuantumProgram to hold 5 qubits (1 per position in the

board) and five classical registers to hold the measurement results.

•	 If a bomb position matches the opposing player’s ship position

(from the shipPos list), the damage is calculated by performing one

rotation over the X-axis per bomb count using a single-qubit partial

NOT gate: gridScript.u3(1/(ship +1) * math.pi, 0.0, 0.0,

q[position]). Note that the effectiveness of the bomb also depends

on which ship is bombed (0, 1, 2).

•	 To complete the circuit, a measurement is performed in the qubit for

the position and the result stored in the respective classical register:

gridScript.measure(q[position], c[position]).

Chapter 6 Fun with Quantum Games

230

•	 Next, the program is executed in the target device, and the results

stored in the two-dimensional list grid. For example, if position 0 for

player 1 is bombed, then grid = [[1,0,0,0,0],[0,0,0,0,0]]. The

following paragraph shows how this is done:

results = Q_program.execute(["gridScript"], backend=device,

shots=shots)

grid[player] = results.get_counts("gridScript")

•	 The results are checked for errors. If no errors, then a damage

percentage between [0, 1] is calculated if the grid list contains a 1 for

that position. The percentages are kept in the two-dimensional list

damage. Thus damage [[0.95, 0, 0, 0, 0], [0, 0, 0, 0, 0]]

indicates that player 1 ship in position 0 has been destroyed.

•	 It finally presents the results to the players in a simple text-based

interface. The process repeats itself until all ships are destroyed and a

winner is declared (see Listing 6-3).

Listing 6-3.  Battleship Main Loop

? 100%

|\ /|

| \ / |

| \ / |

| ? |

| / \ |

| / \ |

|/ \|

? ?

########### 3. Main loop.

Each iteration starts by asking players where on the opposing grid they

want a bomb.

The quantum computer calculates the effects of the bombing, and the

results are presented.

The game continues until all the ships of one player are destroyed.

game = True

Chapter 6 Fun with Quantum Games

231

the variable bombs[X][Y] holds the number of times position Y has been

bombed by player X+1

bomb = [[0]*5 for _ in range(2)] # all values are initialized to zero

the variable grid[player] will hold the results for the grid of each

player

grid = [{},{}]

while (game):

 input("> Press Enter to place some bombs...\n")

 # ask both players where they want to bomb

 for player in range(2):

 print("\n\nIt's now Player " + str(player+1) + "'s turn.\n")

 # keep asking until a valid answer is given

 choosing = True

 while (choosing):

 # get player input

 �position = input("Choose a position to bomb (0, 1, 2, 3

or 4)\n")

 # see if this is a valid input. ask for another if not

 if position.isdigit(): # valid answers have to be integers

 position = int(position)

 if position in range(5):

 bomb[player][position] = bomb[player][position] + 1

 choosing = False

 print ("\n")

 else:

 print("\nThat's not a valid position. Try again.\n")

 else:

 print("\nThat's not a valid position. Try again.\n")

 # now we create and run the quantum program for each player

 for player in range(2):

Chapter 6 Fun with Quantum Games

232

 if device=='ibmqx2':

 �print("\nUsing a quantum computer for Player " + str(player+1)

+ "'s ships.\n")

 else:

 �print("\nUsing the simulator for Player " + str(player+1) + "'s

ships.\n")

 �# now to set up the quantum program (QASM) to simulate the grid for

this player

 Q_program = QuantumProgram()

 # set the APIToken and API url

 Q_program.set_api(Qconfig.APItoken, Qconfig.config["url"])

 # declare register of 5 qubits

 q = Q_program.create_quantum_register("q", 5)

 # declare register of 5 classical bits to hold measurement results

 c = Q_program.create_classical_register("c", 5)

 # create circuit

 gridScript = Q_program.create_circuit("gridScript", [q], [c])

 # add the bombs (of the opposing player)

 for position in range(5):

 # add as many bombs as have been placed at this position

 for n in range(bomb[(player+1)%2][position]):

 # the effectiveness of the bomb

 # (which means the quantum operation we apply)

 # depends on which ship it is

 for ship in [0,1,2]:

 if (position == shipPos[player][ship]):

 frac = 1/(ship+1)

 # add this fraction of a NOT to the QASM

 �gridScript.u3(frac * math.pi, 0.0, 0.0,

q[position])

 #finally, measure them

 for position in range(5):

 gridScript.measure(q[position], c[position])

Chapter 6 Fun with Quantum Games

233

 �# to see what the quantum computer is asked to do, we can print the

QASM file

 # this lines is typically commented out

 #print(Q_program.get_qasm("gridScript"))

 # compile and run the QASM

 �results = Q_program.execute(["gridScript"], backend=device,

shots=shots)

 # extract data

 grid[player] = results.get_counts("gridScript")

 # we can check up on the data if we want

 # these lines are typically commented out

 #print(grid[0])

 #print(grid[1])

 # if one of the runs failed, tell the players and start the round again

 �if (('Error' in grid[0].values()) or ('Error' in grid[1].

values())):

 print("\nThe process timed out. Try this round again.\n")

 else:

 �# look at the damage on all qubits (we'll even do ones with no

ships)

 # # this will hold the prob of a 1 for each qubit for each player

 damage = [[0]*5 for _ in range(2)]

 # for this we loop over all 5 bit strings for each player

 for player in range(2):

 for bitString in grid[player].keys():

 # and then over all positions

 for position in range(5):

 �# if the string has a 1 at that position, we add a

contribution to the damage

 �# remember that the bit for position 0 is the rightmost

one, and so at bitString[4]

Chapter 6 Fun with Quantum Games

234

 if (bitString[4-position]=="1"):

 �damage[player][position] += grid[player]

[bitString]/shots

 # give results to players

 for player in [0,1]:

 �input("\nPress Enter to see the results for Player

" + str(player+1) + "'s ships...\n")

 �# report damage for qubits that are ships, with significant

damage

 # ideally this would be non-zero damage,

 # so we choose 5% as the threshold

 display = [" ? "]*5

 # loop over all qubits that are ships

 for position in shipPos[player]:

 # if the damage is high enough, display the damage

 if (damage[player][position] > 0.1):

 if (damage[player][position]>0.9):

 display[position] = "100%"

 else:

 �display[position] = str(int(100*damage[player]

[position])) + "% "

 �print("Here is the percentage damage for ships that have been

bombed.\n")

 print(display[4] + " " + display[0])

 print(" |\ /|")

 print(" | \ / |")

 print(" | \ / |")

 print(" | " + display[2] + " |")

 print(" | / \ |")

 print(" | / \ |")

 print(" |/ \|")

 print(display[3] + " " + display[1])

 print("\n")

Chapter 6 Fun with Quantum Games

235

 print("Ships with 95% damage or more have been destroyed\n")

 print("\n")

 # if a player has all their ships destroyed, the game is over

 �# ideally this would mean 100% damage, but we go for 90%

because of noise again

 �if (damage[player][shipPos[player][0]]>.9) and

(damage[player][shipPos[player][1]]>.9)

 and (damage[player][shipPos[player][2]]>.9):

 �print ("***All Player " + str(player+1) + "'s ships have

been destroyed!***\n\n")

 game = False

 if (game is False):

 print("")

 print("=======GAME OVER=======")

 print("")

Note that if the damage exceeds 90%, the ship is marked as destroyed. Listing 6-4

shows the results of one game interaction.

Listing 6-4.  Game Standard Output for One Game Interaction

> Press Enter to place some bombs...

It's now Player 1's turn.

Choose a position to bomb (0, 1, 2, 3 or 4)

0

It's now Player 2's turn.

Choose a position to bomb (0, 1, 2, 3 or 4)

0

We'll now get the simulator to see what happens to Player 1's ships.

We'll now get the simulator to see what happens to Player 2's ships.

Press Enter to see the results for Player 1's ships...

Here is the percentage damage for ships that have been bombed.

Chapter 6 Fun with Quantum Games

236

 ? 100%

 |\ /|

 | \ / |

 | \ / |

 | ? |

 | / \ |

 | / \ |

 |/ \|

 ? ?

Ships with 95% damage or more have been destroyed

Press Enter to see the results for Player 2's ships...

Here is the percentage damage for ships that have been bombed.

 ? 100%

 |\ /|

 | \ / |

 | \ / |

 | ? |

 | / \ |

 | / \ |

 |/ \|

 ? ?

Ships with 95% damage or more have been destroyed

Thus the main loop continues until a winner is declared. All in all you have learned

how a simple game can be implemented to make use of a quantum computer to

perform simple damage calculations via rotations in the X-axis of a qubit. This version is

rudimentary but interesting nonetheless. However we can do better; in the next section,

we give this game an improved look and feel.

�Cloud Battleship: Modifying for Remote Access
It is really cool being able to play Battleship in quantum computer via a simple text

interface, but it is much cooler playing the same game on a web browser in the cloud. In

this section we modify the Quantum Battleship and give it a much-needed face lift (see

Figure 6-1).

Chapter 6 Fun with Quantum Games

237

The idea is to

•	 Ditch the boring text-based interface in favor of an HTML page that

can be deployed in the cloud.

•	 Use the Apache HTTP Server Common Gateway Interface (CGI) to

deploy the quantum logic in a script using Python’s excellent CGI

support.

•	 Let the player select the device where to run the calculations: local

simulator, remote simulator, or real quantum device.

Let’s do this in a series of exercises described in the next sections.

�Exercise 1: Decouple the User Interface from the Game
Logic
A basic principle of object-oriented design: Never mix the presentation (user interface)

with the business logic. This is so that modularized components can be built and reused

all over. It saves a ton of time and money. In the case of Battleship, we need to remove or

comment

Figure 6-1.  Layout for Quantum Battleship in the cloud

Chapter 6 Fun with Quantum Games

238

•	 The first section of the script which reads the position of the ships for

each player (a good chunk of code), being careful not to remove any

data structures or variables.

•	 All print statements and keyboard input statements.

•	 The main while loop of the game that keeps asking for a position

to bomb must be removed also. The script must terminate after it

consumes data from the HTTP request. It cannot have infinite loops

or else the request will hang.

•	 Add Python’s CGI support to the script so the data can be read from

the HTTP request including

•	 Ship positions for each player

•	 Bomb positions and count for each player

•	 Device where to run the quantum computations

•	 The script must return a damage report (preferably in JSON) via the

HTTP response for the browser to render in Javascript.

Note that most of the code will be reused: data structures, local variables, and

quantum logic; it is just a matter of commenting all input and print statements. The

solution to this (and each) exercise is shown at the end of this section.

�Exercise 2: Build a Web Interface for the Ship-Bomb
Boards
Build an HTML graphical user interface similar to the text-based UI, and use AJAX to

send requests asynchronously to the CGI script. Get the damage results back and finally

update the player boards. The improved looks are shown in Figure 6-2.

Chapter 6 Fun with Quantum Games

239

•	 The HTML file will have four 3x3 boards. The top boards will be used

to place three ships in five qubit locations. These will be implemented

as HTML checkboxes (<INPUT TYPE=“checkbox”>). We will use CSS

to replace the toggle button with an image, so when the player clicks

the box, the ship image will be toggled instead.

•	 The bottom boards will allow the players to place bombs in five

locations, using the same CSS in the preceding paragraph, but they

will be implemented as <INPUT TYPE=“radio”> so that multiple

bombs can be placed per location.

•	 Even though the boards are 3x3, only five locations are allowed for

user input corresponding to each qubit in the quantum program.

Figure 6-2.  User interface for the new Quantum Battleship

Chapter 6 Fun with Quantum Games

240

•	 Each ship location will display a qubit number and a colorized

damage percentage returned by the backend.

•	 The game mechanics are exactly the same as the text-based version.

Each player places three ships in the board, and then each takes a

turn placing a bomb and clicks Submit. The Python CGI script will

receive the request via AJAX, run the quantum program created in

exercise 1, and return a damage result to be rendered in Javascript.

•	 Note that all game state, arrays, variables, and other data, is kept in

the client HTML; therefore we must use AJAX to send the request

asynchronously, or else the data will be lost every time a player

submits. There will be no page refreshes.

Figure 6-3.  Quantum Battleship showing the bomb boards

Chapter 6 Fun with Quantum Games

241

Figure 6-3 shows the bottom 3x3 boards displaying a qubit number, a click count

per bomb, and the image radio buttons rendered using CSS. Once each player places

three ships and selects a location to bomb, the Submit button is clicked to send the AJAX

request to the server. A Reset button is also available to restart the game at any point.

Note that all state is kept in the client (browser). No data will be kept in the Python script

as HTTP is a stateless request-response protocol. This means that when a request is

received, the program is executed by the Web Server, a response is printed to the request

output buffer, and the program terminates. As with the previous exercise, the solution is

at the end of this section.

�Exercise 3: Deploy and Troubleshoot in Apache HTTPD
Once all the pieces are in place, it’s time to deploy to the Web Server. I will use Apache

HTTPD in CentOS 6, but this should work for any CentOS, Fedora, or Red Hat flavor

(probably for any current Linux distribution with Apache HTTPD). Note that each flavor

has its own idiosyncrasies when it comes to configuring system software. For example,

CentOS focuses in stability and security which gave me a lot of headaches configuring

HTTPD and Python.

�Solution 1: A Reusable Python Program
This section presents the Python CGI script that receives the HTTPD request from

the browser and replies with a JSON string containing the damage report and other

information as well. The first part of the program remains the same except that the input

now must be parsed from the HTTP request using Python’s cgi library (see Listing 6-5).

Listing 6-5.  Modularized Quantum Battleship Initialization

import sys

from qiskit import QuantumProgram

import Qconfig

import getpass, random, numpy, math

import cgi

import cgitb

Chapter 6 Fun with Quantum Games

242

solve the relative dependencies if you clone QISKit from the Git repo and

use like a global.

sys.path.append('../../qiskit-sdk-py/')

debug

cgitb.enable(display=0, logdir=".")

The variable ship[X][Y] will hold the position of the Yth ship of player

X+1

all values are initialized to the impossible position -1|

shipPos = [[-1]*3 for _ in range(2)]

the variable bombs[X][Y] will hold the number of times position Y has

been bombed by player X+1

bomb = [[0]*5 for _ in range(2)] # all values are initialized to zero

Listing 6-5 shows the first section of the script. Lines 6 and 7 import the Python

libraries: cgi and cgitb (CGI Toolbox) used to read from the HTTP request and debug

the CGI program, respectively.

Tip  The lines in the following paragraph activate a special exception handler that
will display detailed reports in the web browser if any error occurs.

import cgitb

cgitb.enable()

Keep in mind that, if an error occurs, we cannot show the guts of the program as the

client expects a response in JSON format, so we must save any error report to the current

working directory instead, with code like this:

cgitb.enable(display=0, logdir=".")

The preceding code will save a lot of headaches during development as any

exception will be dumped into a neat HTML document in the current working directory.

The format of this document is shown in the “Troubleshooting” section of this chapter.

Listing 6-5 also shows the data structures used to store the game state. These are the

same as the old version:

Chapter 6 Fun with Quantum Games

243

•	 shipPos: A two-dimensional list that stores the positions for three

ships per player initialized to -1; thus shipPos = [[-1, -1, -1],

[-1, -1, -1]].

•	 bomb: A two-dimensional list that stores bomb counts per position

per player initialized to 0: bomb = [[0,0,0,0,0], [0,0,0,0,0]].

Note that the same position can be bombed multiple times; therefore

the need to store counts. This list will be used to calculate ship

damage.

Next, the script reads the game data from the HTTP request (see Listing 6-6).

Listing 6-6.  Reading Data from the HTTP Request

CGI - parse HTTP request

form = cgi.FieldStorage()

ships1 = form["ships1"].value

ships2 = form["ships2"].value

bombs1 = form["bombs1"].value

bombs2 = form["bombs2"].value

'local_qasm_simulator', 'ibmqx_qasm_simulator'

device = str(form["device"].value)

shipPos[0] = list(map(int, ships1.split(","))) # [0,1,2]

shipPos[1] = list(map(int, ships2.split(","))) # [0,1,2]

bomb[0] = list(map(int, bombs1.split(",")))

bomb[1] = list(map(int, bombs2.split(",")))

stdout = "Ship Pos: " + str(shipPos) + " Bomb counts: " + str(bomb) + "
"

•	 To read data from the HTTP request, use form = cgi.

FieldStorage(). This CGI call returns a dictionary or hash map of

key-value pairs used to extract query string parameters from the

request. In this particular case, the values expected are

•	 ships1: A three-element JSON array of player 1 ship positions.

•	 ships2: A three-element JSON array of player 2 ship positions.

Chapter 6 Fun with Quantum Games

244

•	 bombs1: A five-element JSON array of bomb counts for player 1.

•	 bombs2: A five-element JSON array of bomb counts for player 2.

•	 device: The device where the quantum program will be executed.

This can be

•	 local_qasm_simulator: Local simulator packed with the QISKit

•	 ibmq_qasm_simulator: Remote simulator provided by IBM

•	 ibmqx2: 5-qubit quantum processor provided by IBM Q

Experience

•	 The great thing about Python is that the JSON provided by the HTTP

request can be mapped to its excellent collection support in a snap:

shipPos[0] = list(map(int, ships1.split(",")))

bomb[0] = list(map(int, bombs1.split(",")))

Tip  In Python, the split(SEPARATOR) system call is used to create a list of
elements of type String. But we need a list of integers instead. For that purpose we
use the map(DATA-TYPE, LIST) system call. Note that in Python 3, map returns
a hash map (dictionary); therefore we must use the list system call to convert to
a list of integers we need. This is great because it allows the script to reuse the old
data structures and keep most of the quantum logic intact.

The last line of Listing 6-6 is simply a string buffer of standard output that will be

returned to the browser for debugging purposes. Finally Listing 6-7 shows the guts of the

script which remain mostly intact.

Listing 6-7.  Quantum Script Main Section

the variable grid[player] will hold the results for the grid of each

player

grid = [{},{}]

now we create and run the quantum programs that implement this on the

grid for each player

Chapter 6 Fun with Quantum Games

245

for player in range(2):

 �# now to set up the quantum program (QASM) to simulate the grid for

this player

 Q_program = QuantumProgram()

 Q_program.set_api(Qconfig.APItoken, Qconfig.config["url"])

 # declare register of 5 qubits

 q = Q_program.create_quantum_register("q", 5)

 # declare register of 5 classical bits to hold measurement results

 c = Q_program.create_classical_register("c", 5)

 # create circuit

 gridScript = Q_program.create_circuit("gridScript", [q], [c])

 # add the bombs (of the opposing player)

 for position in range(5):

 # add as many bombs as have been placed at this position

 for n in range(bomb[(player+1)%2][position]):

 # the effectiveness of the bomb

 # (which means the quantum operation we apply)

 # depends on which ship it is

 for ship in [0,1,2]:

 if (position == shipPos[player][ship]):

 frac = 1/(ship+1)

 # add this fraction of a NOT to the QASM

 gridScript.u3(frac * math.pi, 0.0, 0.0, q[position])

 #finally, measure them

 for position in range(5):

 gridScript.measure(q[position], c[position])

 �# to see what the quantum computer is asked to do, we can print the

QASM file

 # this lines is typically commented out

 #print(Q_program.get_qasm("gridScript"))

 # compile and run the QASM

Chapter 6 Fun with Quantum Games

246

 �results = Q_program.execute(["gridScript"], backend=device,

shots=shots)

 # extract data

 grid[player] = results.get_counts("gridScript")

if one of the runs failed, tell the players and start the round again

if (('Error' in grid[0].values()) or ('Error' in grid[1].values())):

 stdout += "The process timed out. Try this round again.
"

else:

 # look at the damage on all qubits (we'll even do ones with no ships)

 damage = [[0]*5 for _ in range(2)]

 # for this we loop over all 5 bit strings for each player

 for player in range(2):

 for bitString in grid[player].keys():

 # and then over all positions

 for position in range(5):

 �# if the string has a 1 at that position, we add a

contribution to the damage

 �# remember that the bit for position 0 is the rightmost

one, and so at bitString[4]

 if (bitString[4-position]=="1"):

 �damage[player][position] += grid[player][bitString]/

shots

 stdout += "Damage: " + str(damage) + "
"

A few minor changes have been made to the main section of the original script:

•	 All print statements have been removed. Instead, a standard output

string buffer is used to return information back to the client. This is

done because Python’s print will dump information directly into the

HTTP response which will mess up the JSON format we must return

back (Javascript expects proper JSON from AJAX). Note that this is a

purely optional but helpful step meant to return debug information

Chapter 6 Fun with Quantum Games

247

back to the client. All in all, you can get away by simply commenting

all print statements (of course, if an error occurs, you’ll have a hard

time figuring out what went wrong).

•	 All user input statements (read bomb position, Press enter to

continue, and others) have been removed. Remember that ship

positions and bomb counts are mapped from the HTTP request.

•	 The original script uses an endless while loop to read bomb

positions. This loop has been removed, or else the script will run

forever and hang the HTTP request.

Finally, the script returns a JSON document back to the browser for UI updates as

shown in Listing 6-8.

Listing 6-8.  Sending the Response Back to the Browser

Response

print ("Content-type: application/json\n\n")

print ("{\"status\": 200, \"message\": \"" + stdout + "\", \"damage\":" +

str(damage) + "}")

To send a response back to the browser using Python CGI, simply print the standard

HTTP response to standard output. That is, one or more HTTP headers followed by

two line feeds and the response body. For example, to send a JSON document for the

damage, we use the fragment:

Content-type: application/json

{ "status" : 200, "message": "Device ibmqx_qasm_simulator", "damage":

[[0.5, 0, 0, 0, 0], [0, 0.9, 0, 0, 0]]}

The preceding JSON document indicates damage for player 1 qubit(0) and player

2 qubit(1). This document will be parsed by the browser AJAX code and the values

updated on screen.

Tip  The code for this exercise is available from the book source at Workspace\
Ch06\battleship\cgi-bin\qbattleship.py.

Chapter 6 Fun with Quantum Games

248

�Solution 2: User Interface
The web page uses a 2x2 HTML table to render four 3x3 inner tables representing the

ship and bomb boards for each player as shown in Figure 6-4 and Listing 6-9.

Figure 6-4.  Quantum Battleship user interface

Chapter 6 Fun with Quantum Games

249

Listing 6-9.  HTML Code for Figure 6-4

<form id="frm1">

Device

<select id="device" name="device">

 <option value="local_qasm_simulator">Local Simulator</option>

 <option value="ibmqx_qasm_simulator">IBM Simulator</option>

 <option value="ibmqx2">ibmqx2</option>

</select>

 Place 3 ships per player, place a bomb & click submit.

<table>

 <tr>

 <td>

 <div><h3>Player 1</h3></div>

 <script type="text/javascript"> table(1, 's')</script>

 </td>

 <td>

 <div><h3>Player 2</h3></div>

 <script type="text/javascript"> table(2, 's')</script>

 </td>

 </tr>

 <tr>

 <td>

 <div><h3>Player 1 Bombs</h3></div>

 <script type="text/javascript"> table(1, 'b')</script>

 </td>

 <td>

 <div><h3>Player 2 Bombs</h3></div>

 <script type="text/javascript"> table(2, 'b')</script>

 </td>

 </tr>

</table>

</form>

Chapter 6 Fun with Quantum Games

250

The 3x3 boards are rendered dynamically using the document.write() system call as

shown in Listing 6-10.

Listing 6-10.  Dynamically Rendered Table Using document.write()

// type: 's' (ship) = checkbox, 'b' (bomb) = radio

function table (player, type) {

 var d = document;

 var html = '<table border="1">\n';

 var qubit = 0;

 for (var i = 0 ; i < 3 ; i ++) {

 html += '<tr>';

 for (var j = 0 ; j < 3 ; j ++) {

 if ((i + j) % 2 == 0) {

 var id = 'p' + player + type + qubit++;

 // checkbox = ship , radio = bomb

 var itype = type == 's' ? 'checkbox' : 'radio';

 var extra = type == 'b' ? ' onclick="cell_click_bomb(this)"'

 : ' onclick="return cell_click_ship(this)"';

 // <TD> SHIP-INDEX DAMAGE IMAGE </TD>

 html += '<td>' + (qubit - 1)

 + ' '

 �+ '<input id="' + id + '" name="' + id + '" type="' + itype

+ '"' + extra + '>'

 + '<label for="' + id + '" class="ship"> </label></td>'

 }

 else {

 html += '<td> </td>';

 }

 }

 html += '</tr>\n';

 }

 html += '</table>';

 d.write(html);

}

Chapter 6 Fun with Quantum Games

251

Table 6-1 shows the major highlights of the user interface.

Table 6-1.  Cloud Battleship User Interface Tips and Tricks

We hide the checkboxes and radio buttons

using stylesheets. The selectors in lines 1 and

2 use the negation pseudo-class to hide the

rule from older browsers. Lines 3 to 5 set the

width, margin, and padding, in order to be able

to position the alternative graphics accurately.

Line 6 sets the opacity to render the standard

user interface invisible.

input[type=checkbox]:not(old),

input[type=radio]:not(old){

width : 104px;

margin : 0;

padding : 0;

opacity : 0;

}

Each cell in the ships table displays

 •	 A qubit number

 •	� HTML span element to show damage

percentage

 •	� An <INPUT type=”checkbox”> modified

to use a 100x100 pixel image instead of

the usual control

input[type=checkbox]:not(old) + label

{

display : inline-block;

margin-left : -104px;

padding-left : 104px;

background : �url('img/ship.png')

no-repeat 0 0;

line-height : 100px;

}

We position the label and display the unchecked

image. Line 2 sets the label to display as an inline-

block element, allowing line 6 to set its height to

the height of the alternative graphics and center

the text vertically. Line 3 uses a negative margin to

cover the space where the standard user interface

would be displayed, and line 4 then uses padding

to restore the label text to the correct position. The

104-pixel value used here is equal to the width of

the image plus some additional padding so that

the label text is not too close to the image. Line 5

displays the unchecked image in the space before

the label text.

(continued)

Chapter 6 Fun with Quantum Games

252

Table 6-1.  (continued)

Each bomb cell contains

 •	 A qubit number

 •	� HTML span element to show bomb

counts for that position

 •	� An <INPUT type=”radio”> modified with

CSS to use a 100x100 pixel image

instead of the usual control

The style used to format the bomb is shown in the

following fragment:

input[type=radio]:not(old) + label{

display : inline-block;

margin-left : -104px;

padding-left : 104x;

background : �url('img/bomb.png')

no-repeat 0 0;

line-height : 100px;

}

Next, we display the selected images when the

checkboxes and radio buttons are selected:

input[type=checkbox]:not(old):checked

+ label{

background-position : 0 -100px;

}

input[type=radio]:not(old):checked +

label{

background-position : 0 -100px;

}

Because we have combined the images for the

various states into a single image, the preceding

rules modify the background position to show the

appropriate image.

(continued)

Chapter 6 Fun with Quantum Games

253

�Game Rules and Validation

Because HTTP is a stateless protocol, all data structures and validation logic must be

moved to the client. For example:

•	 Players cannot be allowed to place more than three ships on the

board.

•	 No ship changes must be allowed after a bomb is placed.

•	 Bombs cannot be placed before all players place their ships.

•	 A global array of bomb counts is used to track user clicks: var BOMBS

= [[0,0,0,0,0], [0,0,0,0,0]]. This array matches its Python

counterpart: bomb = [[0]*5 for _ in range(2)].

These rules can be enforced by adding a callback when a ship or bomb cell is clicked,

respectively, as shown in Listing 6-11.

Table 6-1.  (continued)

The slick jQuery, Bootstrap, and Bootstrap-

Growl libraries are used to render messages

and debug information into the JS console:

<script type="text/javascript"

src="js/log.js"></script>

<script type="text/javascript"

src="js/jquery.js"></script>

<script type="text/javascript"

src="js/bootstrap.js"></script>

<script type="text/javascript"

src="js/bootstrap-growl.js"></

script>

<script type="text/javascript"

src="js/notify.js"></script>

The HTML is beautified using the quintessential

Bootstrap library for GUI design. Messages are

displayed on screen using the great JS library

Bootstrap-Growl:

notify('Bomb ready. Click Submit',

info);

Chapter 6 Fun with Quantum Games

254

Listing 6-11.  Enforcing Game Rules Using Click Callbacks from Book Source

index.html

// Fires when a ship cell is clicked

function cell_click_ship (obj) {

 var id = obj.id;

 var player = parseInt(id.charAt(1));

 var qubit = parseInt(id.charAt(3));

 var json = countShipsBombs();

 LOGD('Cell Clicked ' + id + ' Counts:' + JSON.stringify(json));

 if (json.ships[0] > 3 || json.ships[1] > 3) {

 return error('All Players must place only 3 ships.');

 }

 // no ship changes after bombs are placed

 if (json.bombs[0] > 0 || json.bombs[1] > 0) {

 return error('No ship changes after bombs are placed.');

 }

 return true;

}

// Fires when a bomb cell is clicked

function cell_click_bomb (obj) {

 var id = obj.id; // For Bombs: p[PLAYER]b[QUBIT]

 var player = parseInt(id.charAt(1));

 var qubit = parseInt(id.charAt(3));

 // validate: { 'ships': [s1, s2], 'bombs': [b1, b2]}

 var json = countShipsBombs();

 LOGD('Bomb Clicked ' + id + ' Counts:' + JSON.stringify(json));

 if (json.ships[0] < 3 || json.ships[1] < 3) {

 $('#' + id).attr('checked', false);

 return error('All Players must place 3 ships first.');

 }

 if (mustSubmit) {

 return error('Bomb in place already. Click Submit.');

 }

Chapter 6 Fun with Quantum Games

255

 // check player turn. Buggy?

 var dif = (json.bombs[player - 1] + 1) - json.bombs[1 - (player - 1)];

 if (dif >= 2) {

 if (BOMBS[player - 1][qubit] < 1) {

 $('#' + id).attr('checked', false);

 }

 return error("Not your turn. It's player " + ((1-(player-1)) + 1));

 }

 // Count bomb

 BOMBS[player - 1][qubit]++;

 // Assign counts to: d[PLAYER][QUBIT]

 $('#b' + player + qubit).html("(" + BOMBS[player - 1][qubit] + ")");

 // bomb in place, click submit

 notify('Bomb ready. Click Submit', 'info');

 mustSubmit = true;

}

function error (msg) {

 notify(msg, 'danger');

 return false

}

Now the data can be sent to the backend for consumption.

�End Point and Response Format

Each request must be sent to the Web Server asynchronously using AJAX. Furthermore a

specific format must be used for the query string. Thus the request-response format is as

follows:

Given the end point http://localhost/~centos/battleship/cgi-bin/qiskit-

driver.sh, we assume that

•	 The username is centos.

•	 The code has been deployed into the user’s home folder: $HOME/

centos/public_html/battleship.

Chapter 6 Fun with Quantum Games

256

•	 Python 3 must be activated by using the wrapper script qiskit-driver.

sh. This is required only if multiple versions of Python are present in

the host (see “Running Multiple Versions of Python” section).

The following values are required in the request query string:

•	 ships1: comma-separated list of three positions for player 1 ships

•	 ships2: comma-separated list of three positions for player 2 ships

•	 bombs1: comma-separated list of five bomb counts for player 1

•	 bombs2: comma-separated list of five bomb counts for player 2

•	 device: quantum device. For example, local_qasm_simulator, ibmq_

qasm_simulator, or ibmqx2.

For example, here is a full AJAX request to be run in the IBM remote simulator:

http://localhost/~centos/battleship/cgi-bin/qiskit-driver.sh?ships1=0,1,2&s

hips2=0,1,2&bombs1=0,1,0,0,0&bombs2=0,0,0,0,0&device=ibmqx_qasm_simulator

When the player clicks Submit, the ship positions, ships1 and ships2, and bomb

counts, bombs1 and bombs2, are assembled from the DOM tree and the global BOMBS

array. The request end point and query string are defined, and the HTTP GET request is

sent via AJAX as shown in Listing 6-12.

Listing 6-12.  Submitting Data to the Backend from Book Source index.html

function submit() {

 var frm = $('#frm1');

 var url = "cgi-bin/qiskit-driver.sh";

 �// Data format: ships1=0,1,2&ships2=0,1,2&bombs1=0,1,0,0,0&bom

bs2=0,0,0,0,0

 �// ships has the positions per player, bombs has the bomb position counts

per player

 // ships: 3 ships per player, bombs: 5 position counts

 var data = ";

 var s1 = ";

 var s2 = ";

Chapter 6 Fun with Quantum Games

257

 for (var i = 0 ; i < 5 ; i++) {

 if ($('#p1s' + i).prop('checked')) s1 += ',' + i;

 if ($('#p2s' + i).prop('checked')) s2 += ',' + i;

 }

 // remove 1st comma

 if (s1.length > 0) s1 = s1.substring(1);

 if (s2.length > 0) s2 = s2.substring(1);

 // query string

 data = 'ships1=' + s1 + '&ships2=' + s2

 + '&bombs1=' + BOMBS[0].join(',') + '&bombs2=' + BOMBS[1].join(',')

 + '&device=' + $('#device').val();

 LOGD('Url:' + url + ' data=' + data);

 // https://api.jquery.com/jquery.get/

 $.get(url, data)

 .done(function (json) {

 handleResponse (json);

 })

 .fail(function() {

 LOGD("error");

 notify('Internal Server Error. Check logs.', 'danger');

 })

}

If something goes wrong, an error notification will be displayed on screen, else the

expected response JSON will be sent to a handler for consumption. Let’s see how.

�Response Handler

The job of the response handler is to consume the backend response and update

damage counts, display error messages if any, or repeat this process until a winner is

declared. Listing 6-13 shows this process, but before we do, let’s take a look at the critical

format of the response JSON:

{"status":200,"message":"OK","damage":[[0.475,0,0,0.70,0],[0.786,0.90,0,0,0.]]}

Chapter 6 Fun with Quantum Games

258

The most important key is damage. It contains a 2D array representing ship damage

positions for each player. The damage is a percentage between 0 and 1. This data is used

by the response handler to update the user interface.

Listing 6-13.  Response Handler from Book Source index.html

function handleResponse (json) {

 LOGD("Got: " + JSON.stringify(json))

 var damage = json.damage;

 var d1 = damage[0]; // damage P1

 var d2 = damage[1]; // damage P2

 for (var i = 0 ; i < 5 ; i++) {

 var pct1 = (d1[i] * 100).toFixed(1);

 var pct2 = (d2[i] * 100).toFixed(1);

 var s1, c1, s2, c2;

 if (pct1 < 90) {

 s1 = '[' + pct1 + '%]';

 c1 = 'cyan';

 }

 else {

 s1 = 'SUNK';

 c1 = 'red';

 notify('Player 1 Ship ' + i + ' sunk.', 'warning');

 }

 if (pct2 < 90) {

 s2 = '[' + pct2 + '%]';

 c2 = 'cyan';

 }

 else {

 s2 = 'SUNK';

 c2 = 'red';

 notify('Player 2 Ship ' + i + ' sunk.', 'warning');

 }

 �//LOGD(i + ' s1=' + s1 + ' s2=' + s2 + ' d1=' + d1[i] +

' d2=' + d2[i]);

Chapter 6 Fun with Quantum Games

259

 $('#s1' + i).html(s1).css('background-color', c1);

 $('#s2' + i).html(s2).css('background-color', c2);

 }

 // Game Result: damage sum > 2.85 (0.95 * 3) = loss

 // https://www.w3schools.com/jsref/jsref_reduce.asp

 �// array.reduce(function(total, currentValue, currentIndex, arr),

initialValue)

 var s1 = d1.reduce(function(total, currentValue, currentIndex, arr)

 { return total + currentValue}, 0);

 var s2 = d2.reduce(function(total, currentValue, currentIndex, arr)

 { return total + currentValue}, 0);

 var winner = 0;

 if (s1 > 2.85) winner = 2;

 if (s2 > 2.85) winner = 1;

 LOGD ("Results Damage sums s1:" + s1 + " s2:" + s2);

 if (winner != 0) {

 �notify ('** G.A.M.E O.V.E.R Player ' + winner + ' wins **',

'success');

 gameover = true;

 }

 // enable submit

 $("#btnSubmit").prop("disabled", false);

}

•	 The handler extracts the damage array and loops for each position

converting the damage for each player to a 1-100 percentage.

•	 Colorization is used to display the damage percentage for a dramatic

effect. Messages are displayed on screen for each ship sunk (see

Figure 6-5).

Chapter 6 Fun with Quantum Games

260

•	 If the damage sum exceeds a 90% threshold for all ships of a player,

a winner is declared and the game is over. Click the Reset button to

start a new game.

To reset the game, we just uncheck all checkboxes and radio buttons and reset the

global BOMBS array as shown in Listing 6-14.

Listing 6-14.  Game Reset from Book Source index.html

// Restart game: fires when the reset button is clicked

function reset_click () {

 if (! confirm("Are you sure?")) {

 return;

 }

 gameover = false;

 for (var i = 0 ; i < 5 ; i++) {

 $('#p1s' + i).attr('checked', false);

 $('#p2s' + i).attr('checked', false);

 $('#p1b' + i).attr('checked', false);

 $('#p2b' + i).attr('checked', false);

 // info spans

 $('#s1' + i).html(");

 $('#s2' + i).html(");

 $('#b1' + i).html(");

 $('#b2' + i).html(");

Figure 6-5.  Damage colorization

Chapter 6 Fun with Quantum Games

261

 BOMBS[0][i] = 0;

 BOMBS[1][i] = 0;

 }

}

Now it is time to run, deploy, test, and troubleshoot if necessary. I use CentOS 6

for development which bundles Python 2.7 as default. Remember that we must run in

Python 3.5 or later.

Tip  Listings 6-9 thru 6-12 can be found at the book source under Workspace\
Ch06\battleship\index.html as well as all resources required to deploy the
game on the cloud.

�Running Multiple Versions of Python

Chapter 3 explains how to install and run both Python 3.6 and Python 2.7 separately.

In this particular case, a wrapper script is used to activate Python 3 in the CGI backend

before invoking the quantum program.

#!/bin/sh

home dir

root=/home/centos

program=qbattleship.py

Activate python 3

source $root/qiskit/qiskit/bin/activate

execute python quantum program

python $program

The previous script simply activates Python 3 and invokes the real quantum

program qbattleship.py. It is required, or else the Web Server will use the default Python

installation (2.7) and the program will fail as the QISKit requires Python 3.5 or later.

Remember that a Python 3 environment was created in the user’s home as follows:

$ mkdir –p $HOME/qiskit

$ cd $HOME/qiskit

$ python3.6 -m venv qiskit

Chapter 6 Fun with Quantum Games

262

To activate the virtual environment:

$ source qiskit/bin/activate

Now finally deploy and test. Hopefully troubleshooting won’t be necessary.

�Solution 3: Deploy and Test
In this section we deploy the game in the Apache HTTPD server and look at the game

in action. The full source for the game including all support files, styles, images, CGI

wrapper, and quantum program, can be found in the book source under Workspace\

Ch06\battleship. The folder layout is shown in Figure 6-6.

Note  This section assumes that you already have installed Apache HTTPD in your
system and that the default service has been configured and it is running properly.
If this is not the case, there are plenty of tutorials up there. For example, for CentOS 7
I like www.liquidweb.com/kb/how-to-install-apache-on-centos-7/.

Figure 6-6.  Folder layout for the Cloud Quantum Battleship

Chapter 6 Fun with Quantum Games

http://www.liquidweb.com/kb/how-to-install-apache-on-centos-7/

263

	 1.	 Create a folder called public_html in your user’s home.

$ mkdir $HOME/public_html

	 2.	 Create the cgi-bin folder under public_html to contain the CGI

Python scripts.

$ mkdir $HOME/public_html/cgi-bin

	 3.	 Configure the HTTPD server to enable access from the user’s

public_html as well as public_html/cgi-bin folders (see

Listing 6-15). Note that cgi-bin needs a special permission to

allow for CGI script execution.

	 4.	 If you wish to use the book source, copy all files from Workspace\

Ch06\battleship to public_html/battleship.

	 5.	 Make sure the file permissions are correct for the public_html

folder and all subfolders and files. This is very important; if the

permissions are incorrect, the browser will give a “500 – Internal

Server Error” response. This was a major source of headaches

when I was testing in my CentOS 6 desktop: $ chmod -R 755

public_html.

Listing 6-15.  Configuration to Enable HTTP Requests from the User’s public_

html Directory (CentOS 6/Apache HTTPD 2.2)

<IfModule mod_userdir.c>

 #UserDir disabled

 #

 # To enable requests to /~user/ to serve the user's public_html

 # directory, remove the "UserDir disabled" line above, and uncomment

 # the following line instead:

 #

 UserDir public_html

</IfModule>

<Directory /home/*/public_html>

 AllowOverride FileInfo AuthConfig Limit

 Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec +ExecCGI

Chapter 6 Fun with Quantum Games

264

 AddHandler cgi-script .cgi

 <Limit GET POST OPTIONS>

 Order allow,deny

 Allow from all

 </Limit>

</Directory>

<Directory "/home/*/public_html/cgi-bin">

 AllowOverride None

 Options ExecCGI

 SetHandler cgi-script

</Directory>

Tip E nabling requests from public_html (Listing 6-15) requires the Apache
module userdir to be enabled in httpd.conf (uncomment LoadModule
userdir_module modules/mod_userdir.so). This module may not be
enabled by default.

Copy the script in Listing 6-15 to the system folder /etc/httpd/conf.d. This folder

contains configuration files loaded automatically by Apache HTTPD at startup. Now

start the HTTPD server, in CentOS (note that this assumes that you already have Apache

HTTPD installed in your system):

$ sudo service httpd start (CentOS 6)

$ sudo systemctl start httpd (CentOS 7)

Finally, for the grand finale, start your browser and open the URL http://

localhost/~centos/battleship/ (assuming the username is centos). Hopefully

there will be no issues and you can start playing Quantum Battleship in the cloud;

however if something goes wrong, here is a list of issues that I came across setting

things up.

Chapter 6 Fun with Quantum Games

265

�Troubleshooting
Most of the issues I faced were related to file permissions due to my rustiness using the

good old Apache HTTPD:

•	 Apache HTTPD idiosyncrasies: Enabling requests from the user’s

home (Listing 6-15) requires the module userdir to be enabled in

the daemon configuration httpd.conf. Depending on your OS, this

module may not be enabled by default. Also HTTPD 2.4 users:

Listing 6-15 is for Apache v2.2; v2.4 may require a different syntax.

•	 HTTP status 500 - Internal Server Error in the Browser: Make sure the

file permissions for public_html and all files and subfolders are set to

755. You can diagnose this by looking at the HTTPD log files located at

/var/log/httpd/error_log

/var/log/httpd/suexec.log

For example, here is a snippet from suexec.log telling me my permissions were

messed up:

$ tail -f /var/log/httpd/suexec.log

[2018-04-02 17:03:45]: cannot get docroot information (/home/centos)

[2018-04-02 17:10:13]: uid: (500/centos) gid: (500/centos) cmd: first.cgi

[2018-04-02 17:10:13]: directory is writable by others: (/home/centos/

public_html)

Tip  Apache suEXEC is a feature of the Apache Web Server. It allows users to run
CGI and SSI applications as a different user. In CentOS suEXEC writes a log to /var/
log/httpd/suexec.log.

•	 SELinux headaches: This is a Linux kernel security module that

provides a mechanism for supporting access control security policies.

In CentOS this feature is enabled by default. It can be disabled

temporarily from the command line using the command:

$ sudo setenforce 0

Chapter 6 Fun with Quantum Games

266

or permanently by editing the file /etc/sysconfig/selinux and setting the value of the

SELINUX key to disabled.

$ sudo vi /etc/sysconfig/selinux

SELINUX=disabled

SELINUXTYPE=targeted

Note that SELinux can cause trouble when invoking the CGI scripts or when the

quantum program attempts to execute remote code against the IBM simulator or real

device.

•	 Python bugs: If any error occurs in the Python script, the CGI exception

handler will catch it and dump a nice HTML page in the current

working directory (cgi-bin). Figure 6-7 shows the output from a timeout

error occurred when executing in the real quantum device ibmqx2.

Figure 6-7.  Python error dump created by the cgi package

Chapter 6 Fun with Quantum Games

267

•	 API configuration issues: Finally if running in a real quantum device,

make sure the configuration is correct in Qconfig.py (including

the API token for your Q Experience account) as shown in the next

fragment:

APItoken = 'YOUR-API-TOKEN'

config = {

 'url': 'https://quantumexperience.ng.bluemix.net/api',

}

Note that Qconfig.py must live in the same location as the quantum program

qbattleship.py, that is, the cgi-bin folder. Still, further improvements can be made to the

game; let’s discuss them in the next section.

�Further Improvements
Cloud Battleship from the previous section can use some improvements which you

could probably notice after playing the game for a while. Here is a list of my ideas:

•	 The user interface shows the ship and bomb boards for both players.

In a real battleship game each player should open its own browser

window, set his ships, and start bombing the opponent.

•	 Gate state: ship, bomb positions, and quantum device are all kept

in the client due to the fact that HTTP is a stateless protocol. That is,

a request comes, the python program runs, and a response is sent

back. After that, all memory disappears. A real game should use a

server-based player lobby to host all the game state (e.g., using an

application server) and coordinate communication between browser

windows.

�A Better Cloud Battleship

The ultimate Cloud Quantum Battleship game should use two browser windows for each

player with ship and bomb boards each. Furthermore the Apache HTTPD should be

replaced with an application server (such as Apache Tomcat) which is capable of storing

game state in the server. The layout for this is shown in Figure 6-8.

Chapter 6 Fun with Quantum Games

268

•	 A rudimentary game lobby can be implemented as a Tomcat web

application to store ship, bomb positions, and quantum device.

•	 The web application can use the host OS runtime facilities (in this

case Java’s runtime API) to invoke the quantum Python script, get

damage results back, and dispatch them to each player.

•	 To avoid the always-annoying browser page refreshes, each browser

can connect via WebSocket to the application server. This will keep a

permanent connection open where JSON text messages can be sent

quickly between clients.

�Connecting via WebSocket

The UI web page needs to be modified slightly to connect via WebSocket instead of AJAX

as shown in Listing 6-16.

Figure 6-8.  Improved Cloud Quantum Battleship

Chapter 6 Fun with Quantum Games

269

Tip  An Eclipse project for this section is provided in the book source under
Workspace\Ch06_BattleShip. Given all the complex parts of this web app,
I recommend that you open the workspace in your IDE and read along. Note that
I assume that you have a good level of proficiency on writing apps with the
Eclipse/Tomcat combo.

Listing 6-16.  WebSocket Javascript Client Code Under WebContent/js/

websocket.js

// Server WS endpoint (file: websocket.js)

var END_POINT = "ws://localhost:8080/BattleShip/WSBattleship";

// Random ID used to track a client

var CLIENT_ID = Math.floor(Math.random() * 10000);

function WS_connect(host) {

 LOGD("WS Connect " + host);

 if ('WebSocket' in window) {

 this.socket = new WebSocket(host);

 } else if ('MozWebSocket' in window) {

 this.socket = new MozWebSocket(host);

 } else {

 LOGE('Error: WebSocket is not supported by this browser.');

 return;

 }

 this.socket.onopen = function() {

 LOGD('WS Opened ' + host);

 };

 this.socket.onclose = function() {

 LOGD('WS Closed ' + host);

 };

 this.socket.onmessage = function(message) {

 // { status: 200 , message :'...'}

Chapter 6 Fun with Quantum Games

270

 LOGD('OnMessage: ' + message.data);

 var json = JSON.parse(message.data);

 if (json.status >= 300 && json.status < 400) {

 // warning

 notify(json.message, 'warning');

 }

 if (json.status >= 400) {

 // error

 notify(json.message, 'danger');

 return;

 }

 handleResponse (json);

 };

}

function WS_initialize () {

 var clientId = CLIENT_ID;

 var host = END_POINT;

 this.url = host + '?clientId=' + clientId;

 WS_connect(this.url);

};

function WS_send (text) {

 this.socket.send(text);

};

In the client:

•	 All major browsers implement the WebSocket standard used to

keep a persistent connection against a capable server. For this, an

end point URL of the form ws://localhost:8080/BattleShip/

WSBattleship is created in line 2. Note that parameters can

be sent in WebSocket end points just like regular URLs. Thus

the final WS URL is ws://localhost:8080/BattleShip/

WSBattleship?clientId=RANDOM-ID where a random ID is used to

track each player.

Chapter 6 Fun with Quantum Games

271

•	 WebSocket in Javascript uses a callback system to receive events

such as

•	 socket.onopen: It fires when the socket is opened. Line 23 shows

the callback used to handle this event.

•	 socket.onclose: It fires when the connection is broken: when the

browser is closed or refreshed or the server dies for example.

•	 socket.onmessage: This is the most important callback. It fires

when a message is received, and it is used to consume the

JSON message sent by Python, just as AJAX does in the previous

version.

When the player browser page loads, the client connects using the DOM window.

onload callback:

function win_onload () {

 WS_initialize ();

}

window.onload = win_onload;

In the server we need a WebSocket-capable application server. Luckily for us, Tomcat

fully implements the WebSocket standard in all operating systems. Listing 6-17 shows a

basic implementation of a WebSocket handler in Java.

Listing 6-17.  WebSocket Server Handler Skeleton (WSConnector.java)

@ServerEndpoint(value = "/WSBattleship")

public class WSConnector {

 // connections

 private static final List<WSConnectionDescriptor> connections =

 new CopyOnWriteArrayList<WSConnectionDescriptor>();

 �// Game data Player-ID => {name: 'Player-1', ships: "0,0,0:, bombs:

"0,0,0,0,0 }

 private static final Map<String, JSONObject> data =

 new HashMap<String, JSONObject>();

 /** The client id for this WS */

 String clientId;

Chapter 6 Fun with Quantum Games

272

 private String getSessionParameter (Session session, String key) {

 if (! session.getRequestParameterMap().containsKey(key)) {

 return null;

 }

 return session.getRequestParameterMap().get(key).get(0);

 }

 @OnOpen

 public void open(Session session) {

 clientId = getSessionParameter(session, "clientId");

 // no duplicates?

 WSConnectionDescriptor conn = findConnection(clientId);

 if (conn != null) {

 unicast(conn.session,

 WSMessages.createStatusMessage(400

 , "Rejected duplicate session.").toString());

 }

 else {

 connections.add(new WSConnectionDescriptor(clientId, session));

 }

 dumpConnections("ONOPEN " + clientId);

 }

 @OnClose

 public void end() {

 }

 @OnMessage

 public void incoming(String message) {

 WSConnectionDescriptor d = findConnection(clientId);

 try {

 JSONObject root = new JSONObject(message);

 String name = root.getString("name");

 String action = root.optString("action");

Chapter 6 Fun with Quantum Games

273

 . // reset game?

 if (action.equalsIgnoreCase("reset")) {

 multicat(WSMessages.createStatusMessage(300

 , "Game reset by " + name).toString());

 data.clear();

 return;

 }

 // Validate game rules...

 // Execute python script

 linuxExecPython(args);

 } catch (Exception e) {

 LOGE("OnMessage", e);

 }

 }

 @OnError

 public void onError(Throwable t) throws Throwable {

 LOGE("WSError: " + t.toString());

 }

}

In Java, WebSocket server handlers are implemented using the J2EE annotation

standard. This makes code reusable across all vendors.

•	 In Listing 6-17 line 1, the Java class WSConnector defines the

annotation @ServerEndpoint(value = "/WSBattleship"). This

powerful instruction is all we need to build a server handler. The

value WSBattleship is the name of the handler; thus the full server

end point will be ws://host:POT/Battleship/WSvattleship?QUERY-

STRING.

Chapter 6 Fun with Quantum Games

274

•	 Callbacks for open, close, and message events are declared using

the annotations: @OnOpen, @OnClose, and @OnMessage, respectively.

Note that the method names are irrelevant, what matters are the

parameters:

•	 OnOpen: Receives a Session object which contains information

about the connection.

•	 OnClose: No parameters in this one. It fires when the browser

connection dies.

•	 OnMessage: The most important of the lot. It fires when a text

message is sent by a client with the data as the argument.

•	 Keep in mind that a single instance of the WSConnector class will be

created for each client connection; thus in line 5, we use a thread safe

static list List<WSConnectionDescriptor> connections to track all

client connections. Line 8 declares a static hash map to track game

data with the key being a player id and the value, a JSON object sent

by the browser. For example, [Player-1 => {name: 'Player-1',

ships: "0,0,0:, bombs: "0,0,0,0,0”, device: "local_qasm_

simulator"}].

•	 When the message callback fires (file WSConnector.java lines

201-253), the text message is parsed as JSON, the data is stored in

memory, game rules applied, and if everything is correct, the Python

script is invoked with ship and bomb positions. Finally the results are

collected and sent back to each client for update.

To send a message back to the client, the Session object can be used:

session.getBasicRemote().sendText("Some Text")

To send a message to everybody (multicast), the connections list can be used:

static void multicast (String message) {

 for (WSConnectionDescriptor conn : connections) {

 conn.session.getBasicRemote().sendText(message)

 }

}

Chapter 6 Fun with Quantum Games

275

�Invoking Python and Setting File Permissions from Java

Even though the Java language is designed to be OS agnostic, invoking operating system

commands is possible via the Runtime.getRuntime().exec("command") system call.

Listing 6-18 shows a very simple class to execute a command and read its standard

output into a string buffer.

Listing 6-18.  Executing OS Commands and Extracting Results (SysRunner.java)

public class SysRunner {

 final String command;

 final StringBuffer stdout = new StringBuffer();

 final StringBuffer stderr = new StringBuffer();

 public SysRunner(String command) {

 this.command = command;

 }

 public void run () throws IOException, InterruptedException {

 final Process process = Runtime.getRuntime().exec(command);

 pipeStream(process.getInputStream(), stdout);

 pipeStream(process.getErrorStream(), stderr);

 process.waitFor();

 }

 �private void pipeStream (InputStream is, StringBuffer buf) throws

IOException {

 BufferedReader br = new BufferedReader(new InputStreamReader(is));

 String line;

 while ((line = br.readLine()) != null) {

 buf.append(line);

 }

 }

 public StringBuffer getStdOut () {

 return stdout;

 }

Chapter 6 Fun with Quantum Games

276

 public StringBuffer getStdErr () {

 return stderr;

 }

}

To get the output from a command, use the process input stream, read from it,

and store the data in a string buffer (lines 17-24 of Listing 6-18): pipeStream(process.

getInputStream(), stdout). Now we have the tool to execute the Python program but

still need to deal with the Linux file permissions. Remember that the Python script must

be included in the web application itself (see Figure 6-9). Therefore when the application

server extracts the Battleship web app in the file system along with the Python code, the

script will take the default file permission of 644 (not world executable). This will cause

the script to fail when run.

Figure 6-9.  Project layout of the Cloud Battleship J2EE project

Chapter 6 Fun with Quantum Games

277

To fix the file permissions for the Python code within a web app, execute a chmod OS

command with the file names as shown in the next paragraph:

// Get the base path for the python code

// ...webapps/BattleShip/python/

String root = IOTools.getResourceAbsolutePath("/") + "../../";

// Special *&$# chars don't work

String cmd = "/bin/chmod 755 " + base + "python" + File.separator;

String[] names = { "Qconfig.py", "qiskit-basic-test.py"

 , "qiskit-driver.sh", "qbattleship-sim.py", "qbattleship.py"};

for (int i = 0; i < names.length; i++) {

 SysRunner r = new SysRunner(cmd + names[i]);

 r.run();

}

The base path of the app installation can be obtained in Java using reflection as

shown in the following:

public static String getResourceAbsolutePath(String resourceName) throws

UnsupportedEncodingException {

 URL url = IOTools.class.getResource(resourceName);

 String path = URLDecoder.decode(url.getFile(), DEFAULT_ENCODING);

 // path -> Windows: /C:/.../Workspaces/.../

 // path-> Linux: /home/users/foo...

 if (path.startsWith("/") && OS_IS_WINDOWS) {

 // gotta remove the first / in Windows only!

 path = path.replaceFirst("/", "");

 }

 return path;

}

Finally the Python quantum program can be executed from the WebSocket message

callback as shown in Listing 6-19.

Chapter 6 Fun with Quantum Games

278

Listing 6-19.  Executing the Quantum Program and Sending Results Back

// Args: ships1=0,0,0 ships2=0,0,0 bombs1=0,0,0,0,0 bombs2=0,0,0,0,0

// device=local_qasm_simulator

private void linuxExecPython (String args) throws Exception {

 �// STDOUT {status: 200, message: 'Some text', damage:

[[0,0,0,0,0],[0,0,0,0,0]]}

 StringBuffer stdout = IOTools.executePython(SCRIPT_ROOT, args);

 JSONObject resp = new JSONObject(stdout.toString());

 // send back to clients in reverse order

 JSONArray damage = resp.getJSONArray("damage");

 resp.remove("damage");

 final int size = damage.length() - 1;

 for (int i = 0; i < connections.size(); i++) {

 resp.put("damage", damage.get(size - i));

 unicast(connections.get(i).session, resp.toString());

 resp.remove("damage");

 }

}

// base: WEPAPP_PATH/python/qiskit-driver.sh

// args: WEPAPP_PATH/python/qbattleship.py

// 0,0,0 0,0,0 0,0,0,0,0 0,0,0,0,0 device

public static StringBuffer executePython (String base, String args)

throws IOException, InterruptedException {

 �String driver = base + File.separator + "python" + File.separator +

"qiskit-driver.sh";

 �String program = base + File.separator + "python" + File.separator +

"qbattleship.py";

 String cmd = driver + " " + program + (args != null ? " " + args : "");

 SysRunner r = new SysRunner(cmd);

 r.run();

 return r.getStdOut();

}

Chapter 6 Fun with Quantum Games

279

To execute the Python quantum program, the code in Listing 6-19

•	 Obtains the LOCATION of the python folder within the web app. That

is TOMCAT-ROOT/webapps/Battleship/python

•	 Executes the driver script LOCATION/qiskit-driver.sh LOCATION/

qbattleship.py with the arguments:

•	 ships1: Ship locations for player 1

•	 ships2: Ship locations for player 2

•	 bombs1: Bomb counts for player 1

•	 bombs2: Bomb counts for player 2

•	 device: Quantum device

•	 Dispatches the results back to the clients

Finally, from your IDE, export the Cloud Quantum Battleship web archive (WAR),

deploy it in your Tomcat container, and game on with two web browsers at http://

localhost:8080/BattleShip/ (see Figure 6-10). I have assumed that you are proficient

in doing this but just in case:

	 1.	 Export the web app as a web archive WAR, and right-click the

Ch06_Battleship project in your IDE (see Figure 6-9). Click

Export > Web Archive, and select a name/destination (e.g., Ch06_

Battleship.war).

	 2.	 Make sure the Tomcat service is up and running. If not installed by

default in your system, here is some help:

yum -y install java (CentOS 6,7)

yum -y install tomcat7 tomcat7-webapps tomcat7-admin-webapps

(CentOS 6,7)

service tomcat7 start (CentOS 6)

systemctl start tomcat7 (CentOS 7)

Chapter 6 Fun with Quantum Games

280

	 3.	 Use the Tomcat manager UI at http://yourhost:8080/manager/

to upload and deploy the archive into your Linux Tomcat

container. (Tip: The manager will ask for a user/password; if you

don’t have them, edit the file /etc/tomcat7/tomcat-users.xml).

	 4.	 You should now be able to point two browsers to http://

localhost:8080/BattleShip/ (Tip: Tomcat web apps are deployed

into the folder /var/lib/tomcat7/webapps). Having trouble? Check

the container logs at /var/log/tomcat7/catalina.out.

Figure 6-10.  Improved Cloud Battleship with two browsers

This chapter has shown how the popular game Battleship can be run in a quantum

computer using a single-qubit partial NOT gate to compute ship damage. For this

purpose, the Quantum Battleship sample from the QISKit tutorial has been used.

Furthermore, the game has been taken to the next level by giving it a major face lift. You

have learned how this quantum code can be invoked in the cloud using CGI scripting

via the Apache HTTPD server. Further improvements have been made to play using two

browsers via the Tomcat J2EE container. The code for both projects is available as Eclipse

projects from the book source at Workspace\Ch06 and Workspace\Ch06_BattleShip,

respectively.

Chapter 6 Fun with Quantum Games

281

The next chapter explores two game puzzles that show the remarkable power of

quantum algorithms over their classical counterparts: the counterfeit coin puzzle and

the Mermin-Peres Magic Square. These are examples of quantum pseudo-telepathy or

the ability of players to achieve outcomes only possible if they were reading each other’s

minds during the game.

Chapter 6 Fun with Quantum Games

283
© Vladimir Silva 2018
V. Silva, Practical Quantum Computing for Developers, https://doi.org/10.1007/978-1-4842-4218-6_7

CHAPTER 7

Game Theory: With
Quantum Mechanics,
Odds Are Always in
Your Favor
This chapter explores two game puzzles that show the remarkable power of quantum

algorithms over their classical counterparts:

•	 The counterfeit coin puzzle: It is a classical balance puzzle proposed

by mathematician E. D. Schell in 1945. It is about balancing coins to

determine which holds a different value (counterfeit) using a balance

scale and a limited number of tries.

•	 The Mermin-Peres Magic Square game: This is an example of

quantum pseudo-telepathy or the ability of players to achieve

outcomes that would only be possible if they mysteriously

communicate during the game.

In both cases, quantum computation gives quasi-magical abilities to the players, just

as if they were cheating all along. Let’s see how.

284

�Counterfeit Coin Puzzle
In this puzzle, the player has eight coins and a beam balance. One of the coins is fake

and thus underweight. The goal of the game is to figure out which coin is fake by using

the balance only twice. Can you figure out how? Let’s run through the solution shown in

Figure 7-1.

	 1.	 Given eight coins, put coins 1-3 on the left side of the balance and

4-6 on the right side. Leave the last two coins 7 and 8 on the side

and weight.

	 2.	 If the balance leans right, the counterfeit is among 1-3 (left).

Remember that the fake coin is lighter. Thus take out the last coin

from the left (3) and weight again (for the second time).

•	 If the beam leans right, the counterfeit is 1. Stop.

•	 If the beam leans left, the counterfeit is 2. Stop.

•	 If the beam is balanced, the counterfeit is 3. Stop.

	 3.	 If the balance leans left, the counterfeit is among 4-6. Take out the

last coin (6) and weight again.

•	 If the beam leans right, the counterfeit is 4. Stop.

•	 If the beam leans left, the counterfeit is 5. Stop.

•	 If the beam is balanced, the counterfeit is 6. Stop.

	 4.	 If the beam is balanced, the counterfeit is either 7 or 8. Put 7 and

8 in the balance and weight again.

•	 If the beam leans right, the counterfeit is 7. Stop.

•	 If the beam leans left, the counterfeit is 8. Stop.

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

285

From the procedure in the previous section, a classical algorithm can be

implemented independent of the total number of coins N and the number of counterfeit

coins k. In general terms, the time complexity of the generalized counterfeit coin puzzle

is given by

	
O k N klog /()() 	

Tip I t has been proven that the minimal number of tries required to find a single
counterfeit coin using the balance beam in a classical computer is two.

Figure 7-1.  Counterfeit puzzle solution for eight coins

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

286

�Counterfeit Coin, the Quantum Way
Believe it or not, there is a quantum algorithm that can find the counterfeit using a

quantum balance only once, independent of the number of coins N! In general terms,

for any number of counterfeit coins k, independent of N, the time complexity of such

algorithm is given by

	
O k1 4/() 	

Figure 7-2.  Quantum vs. classical time complexities for the counterfeit coin puzzle

Tip T he quantum counterfeit coin algorithm is an example of quartic speedup
over its classical counterpart.

Thus Figure 7-2 shows the power of a quantum algorithm over its classical

counterpart for the counterfeit coin puzzle. Now, let’s dig deeper. A quantum

algorithm to find a single counterfeit coin (k = 1) can be summarized in three stages:

query the quantum beam balance, construct the quantum balance, and identify the

false coin.

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

287

�Step 1: Query the Quantum Beam Balance
A quantum algorithm will query the beam balance in superposition. To do this, we

use a binary query string to encode coins placed on the pans. For example, the query

string 11101111 means all coins are on the beam except coin with index 3. The beam is

balanced when no false coin is included and tilted otherwise. The next table illustrates

this.

N (# of coins) F (index of false coin) Query string Result

8 3 11101111 Balanced (0)

8 3 11111111 Tilted (1)

The procedure can be summarized as follows:

	 1.	 Use two quantum registers to query the quantum balance, where

the first register is for the query string and the second register for

the result.

	 2.	 Prepare the superposition of all binary query strings with even

number of 1s.

	 3.	 To obtain the superposition of states of even number of 1s,

perform a Hadamard transform on the basis state |0>, and check

if the Hamming weight of |x| is even. It can be shown that the

Hamming weight of |x| is even if and only if x1 ⊕ x2 ⊕ … ⊕ xN = 0.

Tip T he Hamming weight (hw) of a string is the number of symbols that are
different from the zero symbol of the alphabet used. For example, hw(11101) = 4,
hw(11101000) = 4, hw(000000) = 0.

	 4.	 Finally, measure the second register, and if |0> is observed,

then the first register is the superposition of all binary query

strings we want. If we get |1> then repeat the procedure until

|0> is observed.

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

288

Note that each repetition is guaranteed to succeed with probability exactly

half. Hence, after several repetitions, we should be able to obtain the desired

superposition state. Listing 7-1 shows an implementation of a quantum program

to query the beam balance with the corresponding graphical circuit shown in

Figure 7-3.

Note  For the sake of clarity, the full counterfeit coin program has been broken
in Listings 7-1 thru 7-3. Although you should be able to join the sections to run
the program, a full listing is available from the source at Workspace\Ch07\p_
counterfeitcoin.py.

Listing 7-1.  Script to Query the Quantum Beam Balance

------- Query the quantum beam balance

Q_program = QuantumProgram()

Q_program.set_api(Qconfig.APItoken, Qconfig.config["url"])

Create numberOfCoins +1 quantum/classic registers

1 extra qubit for recording the result of quantum balance

qr = Q_program.create_quantum_register("qr", numberOfCoins +1)

for recording the measurement on qr

cr = Q_program.create_classical_register("cr", numberOfCoins + 1)

circuitName = "QueryStateCircuit"

circuit = Q_program.create_circuit(circuitName, [qr], [cr])

N = numberOfCoins

#Create uniform superposition of all strings of length N

for i in range(N):

 circuit.h(qr[i])

#Perform XOR(x) by applying CNOT gates sequentially from qr[0] to qr[N-1]

and storing the result to qr[N]

for i in range(N):

 circuit.cx(qr[i], qr[N])

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

289

Measure qr[N] and store the result to cr[N].

continue if cr[N] is zero, or repeat otherwise

circuit.measure(qr[N], cr[N])

query the quantum beam balance if the value of cr[0]...cr[N] is all 0

by preparing the Hadamard state of |1>, i.e., |0> - |1> at qr[N]

circuit.x(qr[N]).c_if(cr, 0)

circuit.h(qr[N]).c_if(cr, 0)

rewind the computation when cr[N] is not zero

for i in range(N):

 circuit.h(qr[i]).c_if(cr, 2**N)

Figure 7-3 shows a complete circuit for counterfeit coin puzzle for eight coins, one

counterfeit at index 6. The circuit displays all the stages described here for the IBM

Q Experience platform. The second stage in the algorithm is to construct the beam

balance.

�Step 2: Construct the Quantum Balance
In the previous section, we constructed the superposition of all binary query strings

whose Hamming weights are even. In this step, we construct the quantum beam

by setting the position of the false coin. Thus given k is the position of the false

coin with regard to the binary string |x1, x2, …, xN>|0>, the quantum beam balance

returns

|x1, x2, … , xN> |0⊕xk>

Figure 7-3.  Quantum circuit for the counterfeit coin puzzle with N = 8, k = 1, and
fake at index 6 (Note: For full-size viewing, this graph is included in the source code
download)

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

290

This is implemented with a CNOT gate with xk as the control and the second register

as the target (see partial Listing 7-2).

Listing 7-2.  Construct the Quantum Beam Balance

#----- Construct the quantum beam balance

k = indexOfFalseCoin

Apply the quantum beam balance on the desired superposition state

#(marked by cr equal to zero)

circuit.cx(qr[k], qr[N]).c_if(cr, 0)

�Step 3: Identify the False Coin
To identify the false coin after querying the balance, apply a Hadamard transform

on the binary query string. Assuming that we query the quantum beam balance with

binary strings of even Hamming weight, then by performing the measurement in the

computational basis after the Hadamard transform, we can identify the false coin

because it is the one whose label is different from the majority (see Listing 7-3).

Listing 7-3.  Identify the False Coin

--- Identify the false coin

Apply Hadamard transform on qr[0] ... qr[N-1]

for i in range(N):

 circuit.h(qr[i]).c_if(cr, 0)

Measure qr[0] ... qr[N-1]

for i in range(N):

 circuit.measure(qr[i], cr[i])

results = Q_program.execute([circuitName], backend=backend, shots=shots)

answer = results.get_counts(circuitName)

print("Device " + backend + " counts " + str(answer))

Get most common label

for key in answer.keys():

 normalFlag, _ = Counter(key[1:]).most_common(1)[0]

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

291

 for i in range(2,len(key)):

 if key[i] != normalFlag:

 print("False coin index is: ", len(key) - i - 1)

When the leftmost bit is 0, the index of the false coin can be determined by finding

the one whose values are different from others. For example, for N = 8, false index = 6,

then the result should be 010111111 or 001000000. Note that because we use cr[N] to

control the operation prior to and after the query to the balance, then

•	 If the leftmost bit is 0, then we succeed in identifying the false coin.

•	 If the leftmost bit is 1, we failed to obtain the desired superposition

and must repeat the process from the beginning.

Running the program against the remote IBM Q Experience simulator gives the

result (under book source Workspace\Ch07\p_counterfeitcoin.py). Note that I am

using Windows in this instance:

c:\python36-64\python.exe p_counterfeitcoin.py

Device ibmq_qasm_simulator counts {'001000000': 1}

False coin index is: 6

If you don’t have access to the book source and still want to play with this script,

paste the snippets in the previous sections inside the container script in Listing 7-4

(watch out for Python’s indentation idiosyncrasies; they will drive you nuts).

Listing 7-4.  Counterfeit Coin Puzzle Main Container Script

import sys

import matplotlib.pyplot as plt

import numpy as np

from math import pi, cos, acos, sqrt

from collections import Counter

from qiskit import QuantumProgram

sys.path.append('../Config/')

import Qconfig

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

292

import basic plot tools

from qiskit.tools.visualization import plot_histogram

def main(M = 16, numberOfCoins = 8 , indexOfFalseCoin = 6

 , backend = "local_qasm_simulator" , shots = 1):

 if numberOfCoins < 4 or numberOfCoins >= M:

 raise Exception("Please use numberOfCoins between 4 and ", M-1)

 if indexOfFalseCoin < 0 or indexOfFalseCoin >= numberOfCoins:

 �raise Exception("indexOfFalseCoin must be between 0 and ",

numberOfCoins-1)

 // Paste listings 7-1 -> 7-3 here

###

main

###

if __name__ == '__main__':

 M = 8 #Maximum qubits available

 �numberOfCoins = 4 #Up to M-1, where M is the number of qubits

available

 indexOfFalseCoin = 2 #This should be 0, 1, ..., numberOfCoins - 1,

 backend = "ibmq_qasm_simulator"

 #backend = "ibmqx3"

 shots = 1 # We perform a one-shot experiment

 main(M, numberOfCoins, indexOfFalseCoin, backend, shots)

�Generalization for Any Number of False Coins
The counterfeit coin puzzle has been generalized by any number of fake coins (k>1) by

mathematicians Terhal and Smolin in 1998. Their implementation uses a Balance Oracle

model (B-Oracle) such that

•	 Given an input of N bits x = x1x2…xn Є {0, 1}N.

•	 Construct a query string of N tri-bits such that q = q1q2…

qn ∈ {0, 1, −1}N with the same number of 1s and -1s.

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

293

•	 The answer is 1 bit such that

c x q
if q x q x qnxn balanced

otherwise tilted
;() =

+ +¼ = ()
()

ì
í
ï0 1 1 2 2 0

1îîï
.

Tip A n Oracle is the portion of an algorithm regarded as a black box. It is
used to simplify circuits and provide complexity comparisons between quantum
and classical algorithms. A good Oracle should provide speed, generality, and
feasibility.

An example of the B-Oracle in action is shown in Figure 7-4 for two fake coins: k = 2

and N = 6.

Figure 7-4.  B-Oracle for N = 6 and k = 2)

All in all, the counterfeit puzzle is the quintessential example of quartic speedup of a

quantum algorithm over its classical counterpart. In the next section, we look at another

bizarre quasi-magical puzzle called the Mermin-Peres Magic Square.

�Mermin-Peres Magic Square
This is another classic puzzle first proposed by physicists David Mermin and A. Peres

as an example of quantum pseudo-telepathy or the ability of two players to have

some supernatural communication to outside observers. Thanks to the magic of

entanglement, this is possible. Let’s take a closer look.

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

294

The game starts with two players Alice and Bob against a referee. The magic square is

a 3x3 matrix with the following rules (see Figure 7-5):

•	 All entries are either 0 or 1 such that the sum of entries on each

row is even, and the sum of each column is odd. The game is called

the magic square because such square is impossible; as shown in

Figure 7-5, there is no valid combination where the sum of rows is

even and the sum of columns is odd (try it yourself with pen and

paper). This is due to the odd number of entries in the matrix.

•	 The referee sends an integer a Є {1,2,3} to Alice and another

b Є {1,2,3} to Bob. Alice must reply with the a-th row of the square.

Bob must reply with the b-th column.

•	 Alice and Bob win if the sum of Alice’s entries is even, the sum of

Bob’s is odd, and their intersecting answer is the same. Otherwise,

the referee wins.

•	 Prior to the start, Alice and Bob can strategize and share information.

For example, they could decide to answer using the matrix in

Figure 7-5. However they are not allowed to communicate during the

game.

Figure 7-5.  Mermin-Peres Magic Square

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

295

For example, in the preceding matrix, if the referee sends a = 1 to Alice and b = 2 to

Bob, Alice would reply with 110 (row 1) and Bob with 100 (column 2). The element in the

intersection of the answers (row 1-column 2) is the same (1) so they win the game. It can

be shown that in a classical setting, the winning probability for Alice and Bob is at most

8/9. That is, there are eight out of nine permutations in the square for victory. Therefore

Alice and Bob’s winning probability is at most 88.8%.

Let’s put this assertion to the test with a neat exercise to prove that indeed the

classical winning probability for the magic square is at most 8/9 (88.88%).

�Mermin-Peres Magic Square Exercise

	 1.	 Construct a magic square similar to Figure 7-5 using the binary

code (1, -1) instead of (1, 0) where the product of the row elements

is 1 (even), and the product of the column elements is -1 (odd).

Confirm that in fact this is not possible.

	 2.	 Create a permutation table for the referee values for a and b using

the square in step 1 including

•	 A permutation count number.

•	 The values for a, b.

•	 Alice and Bob’s response.

•	 The intersection of Alice and Bob’s response. Remember that it

must be equal for them to win.

•	 The result of the game iteration: Win = W, Loose = L.

	 3.	 Finally calculate the winning probability and prove that it is at

most 8/9. Note: Answers are at the end of the section.

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

296

�Quantum Winning Strategy
Thanks to the power of quantum mechanics and the magic of entanglement, Alice and

Bob can do much better. In fact they can win the game 100% of the time, as if they were

communicating telepathically, hence the term pseudo-telepathy. A quantum winning

strategy was first proposed by Brassard and colleagues1 and it is divided in three stages:

•	 Shared entangled state: This is the key for Alice and Bob to win 100%

of the time.

•	 Unitary transformations for Alice and Bob’s inputs: These provide the

responses to be sent back to the referee.

•	 Measure in the computational basis: The final stage to construct a

final response.

�Shared Entangled State
In the quantum winning strategy, Alice and Bob share the entangled state:

	
Y = - - +

1
2
0011

1
2
0110

1
2
1001

1
2
1100 	

A circuit implementation requires 2 qubits for Alice and 2 for Bob as shown in

Figure 7-6.

1�Brassard, Broadbent and Tapp. Quantum Pseudo-Telepathy. pp 22, available online at https://
arxiv.org/abs/quant-ph/0407221v3.

Figure 7-6.  Entangled state for the magic square

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

https://arxiv.org/abs/quant-ph/0407221v3
https://arxiv.org/abs/quant-ph/0407221v3

297

•	 We know that the Hadamard maps the basis state

H 0
1

2
0 1® +() . Thus applying for the first 2 qubits yields

Y = + + +
1
2
00

1
2
01

1
2
10

1
2
11 .

•	 Next apply a Z gate to the first 2 qubits. Remember that Z leaves

the 0 state unchanged and maps 1 to -1 (flipping the sign of

the preceding third term). At this stage the state becomes

Y = + - +
1
2
00

1
2
01

1
2
10

1
2
11 .

•	 Next apply the CNOT gate to entangle qubits 0-2 and 1-3:

Y = - - +
1
2
0000

1
2
0101

1
2
1010

1
2
1111 .

•	 Finally flip the last 2 qubits with the X gate for

Y = - - +
1
2
0011

1
2
0110

1
2
1001

1
2
1100 .

The Python script to construct the entangled state is given in Listing 7-5.

Listing 7-5.  Quantum Winning Strategy Entangled State

Create the entangle state

Q_program = QuantumProgram()

Q_program.set_api(Qconfig.APItoken, Qconfig.config["url"])

4 qubits (Alice = 2, Bob = 2)

N = 4

Creating registers

qr = Q_program.create_quantum_register("qr", N)

for recording the measurement on qr

cr = Q_program.create_classical_register("cr", N)

circuitName = "sharedEntangled"

sharedEntangled = Q_program.create_circuit(circuitName, [qr], [cr])

#Create uniform superposition of all strings of length 2

for i in range(2):

 sharedEntangled.h(qr[i])

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

298

#The amplitude is minus if there are odd number of 1s

for i in range(2):

 sharedEntangled.z(qr[i])

#Copy the content of the first two qubits to the last two qubits

for i in range(2):

 sharedEntangled.cx(qr[i], qr[i+2])

#Flip the last two qubits

for i in range(2,4):

 sharedEntangled.x(qr[i])

With the shared entangled state, Alice and Bob can now start the game and receive

their inputs from the referee.

�Unitary Transformations
Upon receiving their inputs a Є {1,2,3} and b Є {1,2,3}, Alice and Bob apply the following

unitary transformations: A1, A2, A3 for Alice and B1, B2, B3 for Bob to the shared

entangled states:

A

i

i

i

i

A

i i

i i

i i

i

1
1

2

0 0 1

0 1 0

0 1 0

1 0 0

2
1

2

1 1

1 1

1 1

1

=
-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=
- -

-
-

,

-- -

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

- - -
-

-
- - -

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú

1

3
1

2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1i

A,

úú

B

i i

i i

i i

i i

B

i i

i i

i
1

1

2

1 1

1 1

1 1

1 1

2
1

2

1 1

1 1

1
=

-
- - -

-
-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

-
-

-
,

11

1 1

3
1

2

1 0 0 1

1 0 0 1

0 1 1 0

0 1 1 0

i

i i

B

- - -

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=
-

-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

,

Note R emember that by applying the preceding transformations to their
entangled states, Alice and Bob are able to construct the first 2 bits of their
respective responses to the referee.

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

299

Listing 7-6 shows the unitary transformations for Alice and Bob with equivalent

graphical circuits in Table 7-1.

Listing 7-6.  Unitary Transformations for Alice and Bob

#------ circuits of Alice's and Bob's operations.

#we first define controlled-u gates required to assign phases

from math import pi

def ch(qProg, a, b):

 """ Controlled-Hadamard gate """

 qProg.h(b)

 qProg.sdg(b)

 qProg.cx(a, b)

 qProg.h(b)

 qProg.t(b)

 qProg.cx(a, b)

 qProg.t(b)

 qProg.h(b)

 qProg.s(b)

 qProg.x(b)

 qProg.s(a)

 return qProg

def cu1pi2(qProg, c, t):

 """ Controlled-u1(phi/2) gate """

 qProg.u1(pi/4.0, c)

 qProg.cx(c, t)

 qProg.u1(-pi/4.0, t)

 qProg.cx(c, t)

 qProg.u1(pi/4.0, t)

 return qProg

def cu3pi2(qProg, c, t):

 """ Controlled-u3(pi/2, -pi/2, pi/2) gate """

 qProg.u1(pi/2.0, t)

 qProg.cx(c, t)

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

300

 qProg.u3(-pi/4.0, 0, 0, t)

 qProg.cx(c, t)

 qProg.u3(pi/4.0, -pi/2.0, 0, t)

 return qProg

#--

Define circuits used by Alice and Bob for each of their inputs: 1,2,3

dictionary for Alice's operations/circuits

aliceCircuits = {}

Quantum circuits for Alice 1, 2, 3

for idx in range(1, 4):

 circuitName = "Alice"+str(idx)

 aliceCircuits[circuitName]

 = Q_program.create_circuit(circuitName, [qr], [cr])

 theCircuit = aliceCircuits[circuitName]

 if idx == 1:

 #the circuit of A_1

 theCircuit.x(qr[1])

 theCircuit.cx(qr[1], qr[0])

 theCircuit = cu1pi2(theCircuit, qr[1], qr[0])

 theCircuit.x(qr[0])

 theCircuit.x(qr[1])

 theCircuit = cu1pi2(theCircuit, qr[0], qr[1])

 theCircuit.x(qr[0])

 theCircuit = cu1pi2(theCircuit, qr[0], qr[1])

 theCircuit = cu3pi2(theCircuit, qr[0], qr[1])

 theCircuit.x(qr[0])

 theCircuit = ch(theCircuit, qr[0], qr[1])

 theCircuit.x(qr[0])

 theCircuit.x(qr[1])

 theCircuit.cx(qr[1], qr[0])

 theCircuit.x(qr[1])

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

301

 elif idx == 2:

 theCircuit.x(qr[0])

 theCircuit.x(qr[1])

 theCircuit = cu1pi2(theCircuit, qr[0], qr[1])

 theCircuit.x(qr[0])

 theCircuit.x(qr[1])

 theCircuit = cu1pi2(theCircuit, qr[0], qr[1])

 theCircuit.x(qr[0])

 theCircuit.h(qr[0])

 theCircuit.h(qr[1])

 elif idx == 3:

 theCircuit.cz(qr[0], qr[1])

 theCircuit.swap(qr[0], qr[1]) # not supported in composer

 theCircuit.h(qr[0])

 theCircuit.h(qr[1])

 theCircuit.x(qr[0])

 theCircuit.x(qr[1])

 theCircuit.cz(qr[0], qr[1])

 theCircuit.x(qr[0])

 theCircuit.x(qr[1])

 #measure the first two qubits in the computational basis

 theCircuit.measure(qr[0], cr[0])

 theCircuit.measure(qr[1], cr[1])

dictionary for Bob's operations/circuits

bobCircuits = {}

Quantum circuits for Bob when receiving 1, 2, 3

for idx in range(1,4):

 circuitName = "Bob"+str(idx)

 bobCircuits[circuitName]

 = Q_program.create_circuit(circuitName, [qr], [cr])

 theCircuit = bobCircuits[circuitName]

 if idx == 1:

 theCircuit.x(qr[2])

 theCircuit.x(qr[3])

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

302

 theCircuit.cz(qr[2], qr[3])

 theCircuit.x(qr[3])

 theCircuit.u1(pi/2.0, qr[2])

 theCircuit.x(qr[2])

 theCircuit.z(qr[2])

 theCircuit.cx(qr[2], qr[3])

 theCircuit.cx(qr[3], qr[2])

 theCircuit.h(qr[2])

 theCircuit.h(qr[3])

 theCircuit.x(qr[3])

 theCircuit = cu1pi2(theCircuit, qr[2], qr[3])

 theCircuit.x(qr[2])

 theCircuit.cz(qr[2], qr[3])

 theCircuit.x(qr[2])

 theCircuit.x(qr[3])

 elif idx == 2:

 theCircuit.x(qr[2])

 theCircuit.x(qr[3])

 theCircuit.cz(qr[2], qr[3])

 theCircuit.x(qr[3])

 theCircuit.u1(pi/2.0, qr[3])

 theCircuit.cx(qr[2], qr[3])

 theCircuit.h(qr[2])

 theCircuit.h(qr[3])

 elif idx == 3:

 theCircuit.cx(qr[3], qr[2])

 theCircuit.x(qr[3])

 theCircuit.h(qr[3])

 #measure the third and fourth qubits in the computational basis

 theCircuit.measure(qr[2], cr[2])

 theCircuit.measure(qr[3], cr[3])

Table 7-1 shows quantum circuits for the unitary transformations A1-3, B1-3 for IBM

Q Experience Composer.

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

303

Ta
bl

e
7-

1.
 Q

u
an

tu
m

 C
ir

cu
it

s
fo

r
th

e
U

n
it

ar
y

Tr
an

sf
or

m
at

io
n

s
in

 L
is

ti
n

g
7-

6

Tr
an

sf
or

m
at

io
n

Ci
rc

ui
t

A

i

i i

i

1
1 2

0
0

1

0
1

0

0
1

0

1
0

0

=
-

é ëê ê ê ê

ù ûú ú ú ú

A

i
i

i
i

i
i

i
i

2
1 2

1
1

1
1

1
1

1
1

=
-

-
-

-
-

-

é ëê ê ê ê

ù ûú ú ú ú

B

i
i

i
i

i
i

i
i

1
1 2

1
1

1
1

1
1

1
1

=

-
-

-
-

-
-é ëê ê ê ê

ù ûú ú ú ú

(c
on

ti
n

u
ed

)

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

304

Tr
an

sf
or

m
at

io
n

Ci
rc

ui
t

B

i
i

i
i

i
i

i
i

2
1 2

1
1

1
1

1
1

1
1

=

-
-

-
-

-
-

é ëê ê ê ê

ù ûú ú ú ú

B
3

1 2

1
0

0
1

1
0

0
1

0
1

1
0

0
1

1
0

=
-

-

é ëê ê ê ê

ù ûú ú ú ú

Ta
bl

e
7-

1.
 (

co
n

ti
n

u
ed

)
Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

305

In Table 7-1 note that A3 is not included due to the fact that the Composer does not

support the swap gate required by Listing 7-6. This does not mean the quantum program

can’t be run in the simulator or real device however. It simply means the circuit cannot

be created in the Composer. Thus for the final step, Alice and Bob measure their qubits

in the computational basis.

�Measure in the Computational Basis
After measurement, Alice and Bob end up with 2 bits each which represent their

respective outputs. To obtain the third bit, and thus a final answer, they apply their

parity rules. That is, Alice’s sum must be even, and Bob’s must be odd. For example, for

a = 2, b = 3 (see Table 7-2)

	

A B2 3
1

2 2
0000 0010 0101 0111 1001

1011 1100 1110

Ä y() = - - + +

- - -

[

	

Table 7-2.  Answer Permutations for a = 2, b =3 of the Magic Square

ψ Alice’s answer Bob’s answer Square

|0000> 000 001

0 0

0

0

1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

|0010> 000 100

0 0

1

0

0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

|0101> 011 010

0 1

1

1

0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(continued)

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

306

ψ Alice’s answer Bob’s answer Square

|0111> 011 111

0 1

1

1

1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

|1001> 101 010

1 0

0

1

0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

|1011> 101 111

1 0

1

1

1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

|1100> 110 001

1 1

0

0

1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

|1110> 110 101

1 1

1

0

1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Table 7-2.  (continued)

Listing 7-7 shows a section of the script to loop through all the rounds of the magic

square:

•	 It loops through a[1,3] and b[1,3] inclusive.

•	 For each (a, b), a circuit for Alice (Alice-a) and a circuit for Bob

(Bob-b) are retrieved from Listing 7-6.

•	 The shared entangled state ψ and Alice-a and Bob-b circuits are

submitted for execution to the simulator or real quantum device.

•	 Two bits are extracted for Alice and two for Bob from the answer such

as {‘0011’: 1}.

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

307

•	 The parity rules are applied: Alice’s sum must be even, and Bob’s sum

must be odd.

•	 Finally the answer is verified, and the winning probability is

displayed.

Listing 7-7.  Script for All Rounds of the Magic Square

def all_rounds(backend, real_dev, shots=10):

 nWins = 0

 nLost = 0

 for a in range(1,4):

 for b in range(1,4):

 print("Asking Alice and Bob with a and b are: ", a,b)

 rWins = 0

 rLost = 0

 aliceCircuit = aliceCircuits["Alice" + str(a)]

 bobCircuit = bobCircuits["Bob" + str(b)]

 circuitName = "Alice" + str(a) + "Bob"+str(b)

 �Q_program.add_circuit(circuitName, sharedEntangled+aliceCircuit+bobCi

rcuit)

 if real_dev:

 ibmqx2_backend = Q_program.get_backend_configuration(backend)

 ibmqx2_coupling = ibmqx2_backend['coupling_map']

 �results = Q_program.execute([circuitName], backend=backend,

shots=shots

 �, coupling_map=ibmqx2_coupling, max_credits=3, wait=10,

timeout=240)

 else:

 �results = Q_program.execute([circuitName], backend=backend,

shots=shots)

 answer = results.get_counts(circuitName)

 for key in answer.keys():

 kfreq = answer[key] #frequencies of keys obtained from measurements

 aliceAnswer = [int(key[-1]), int(key[-2])]

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

308

 bobAnswer = [int(key[-3]), int(key[-4])]

 if sum(aliceAnswer) % 2 == 0:

 aliceAnswer.append(0)

 else:

 aliceAnswer.append(1)

 if sum(bobAnswer) % 2 == 1:

 bobAnswer.append(0)

 else:

 bobAnswer.append(1)

 if(aliceAnswer[b-1] != bobAnswer[a-1]):

 #print(a, b, "Alice and Bob lost")

 nLost += kfreq

 rLost += kfreq

 else:

 #print(a, b, "Alice and Bob won")

 nWins += kfreq

 rWins += kfreq

 print("\t#wins = ", rWins, "out of ", shots, "shots")

 print("Number of Games = ", nWins+nLost)

 print("Number of Wins = ", nWins)

 print("Winning probabilities = ", (nWins*100.0)/(nWins+nLost))

###

main

###

if __name__ == '__main__':

 backend = "ibmq_qasm_simulator"

 #backend = "ibmqx2"

 real_dev = False

 all_rounds(backend, real_dev)

A run of Listing 7-7 against the IBM Q Experience remote simulator is shown in

Listing 7-8.

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

309

Listing 7-8.  Simplified Standard Output from a Run of All Rounds of the Magic

Square

c:\python36-64\python.exe p_magicsq.py

For a = 1 , b = 1

ibmq_qasm_simulator answer: 1000 Alice: [0, 0, 0] Bob:[0, 1, 0]

ibmq_qasm_simulator answer: 1010 Alice: [0, 1, 1] Bob:[0, 1, 0]

ibmq_qasm_simulator answer: 1111 Alice: [1, 1, 0] Bob:[1, 1, 1]

ibmq_qasm_simulator answer: 0111 Alice: [1, 1, 0] Bob:[1, 0, 0]

ibmq_qasm_simulator answer: 0000 Alice: [0, 0, 0] Bob:[0, 0, 1]

ibmq_qasm_simulator answer: 0101 Alice: [1, 0, 1] Bob:[1, 0, 0]

 #wins = 10 out of 10 shots

For a = 1 , b = 2

ibmq_qasm_simulator answer: 1000 Alice: [0, 0, 0] Bob:[0, 1, 0]

ibmq_qasm_simulator answer: 1001 Alice: [1, 0, 1] Bob:[0, 1, 0]

ibmq_qasm_simulator answer: 1111 Alice: [1, 1, 0] Bob:[1, 1, 1]

ibmq_qasm_simulator answer: 0110 Alice: [0, 1, 1] Bob:[1, 0, 0]

ibmq_qasm_simulator answer: 0000 Alice: [0, 0, 0] Bob:[0, 0, 1]

ibmq_qasm_simulator answer: 0001 Alice: [1, 0, 1] Bob:[0, 0, 1]

 #wins = 10 out of 10 shots

...

For a = 3 , b = 3

ibmq_qasm_simulator answer: 1000 Alice: [0, 0, 0] Bob:[0, 1, 0]

ibmq_qasm_simulator answer: 1011 Alice: [1, 1, 0] Bob:[0, 1, 0]

ibmq_qasm_simulator answer: 1101 Alice: [1, 0, 1] Bob:[1, 1, 1]

ibmq_qasm_simulator answer: 1110 Alice: [0, 1, 1] Bob:[1, 1, 1]

ibmq_qasm_simulator answer: 0111 Alice: [1, 1, 0] Bob:[1, 0, 0]

ibmq_qasm_simulator answer: 0010 Alice: [0, 1, 1] Bob:[0, 0, 1]

 #wins = 10 out of 10 shots

Number of Games = 90

Number of Wins = 90

Winning probability = 100.0

Note I f running in a real device, the winning probability will not be 100% due to
environmental noise and gate error.

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

310

�Answers for the Mermin-Peres Magic Square Exercise

	 1.	 A magic square whose row product is even and whose column

product is odd is given in the following presentation. Note that

such square is not possible due to the odd number of cells.

	 2.	 The permutation table for the square in answer 1 is

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

311

	 3.	 Note that, in the previous step rows 7-9, Alice’s answer must be

-1 so the product can be even (1). Plus, in columns 3, 6, and 9,

Bob’s answer must be 1 so his product can be odd (−1). Finally, the

probability is calculated by dividing the total number of wins by

the total number of permutations. Thus

	
P

W

N
=
å

= =
8

9
88 88. % 	

In this chapter you have learned how the power of quantum entanglement can

provide significant speedups over classical computation. With a quantum beam

balance, it is possible to achieve quartic speedups for classical puzzles like the

counterfeit coin problem. For others, such as the magic square, entanglement gives

a quasi-magical telepathy among players. Now, if only Brassard and colleagues

could come up with a quantum winning strategy for Black Jack or Poker, we will

all be making a killing in Vegas right now. All in all, this chapter has shown how

quantum mechanics is as confusing, bizarre, and fascinating as always. It never

fails to deliver.

In the next and final chapter, you will learn about arguably the most famous

quantum algorithm of them all: the notorious Shor’s integer factorization. An algorithm

that may crumble asymmetric cryptography!

Chapter 7 Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor

313
© Vladimir Silva 2018
V. Silva, Practical Quantum Computing for Developers, https://doi.org/10.1007/978-1-4842-4218-6_8

CHAPTER 8

Faster Search plus
Threatening the
Foundation of
Asymmetric Cryptography
with Grover and Shor
This chapter brings proceedings to a close with two algorithms that have generated

excitement about the possibilities of practical quantum computation:

•	 Grover’s search: This is an unstructured quantum search algorithm

created by Lov Grover which is capable of finding an input with high

probability using a black box function or Oracle. It can find an item in

O N() steps as opposed to a classical average of N/2 steps.

•	 Shor’s integer factorization: The notorious quantum factorization

that experts say could bring current asymmetric cryptography to its

knees. Shor can factorize integers in approximately log(n3) steps as

opposed to the fastest classical algorithm, the Number Field Sieve at

exp log log logk n n*
æ

è
ç

ö

ø
÷ ()

æ

è
çç

ö

ø
÷÷

1
3

2
3 .

Let’s get started.

314

�Quantum Unstructured Search
Grover’s algorithm is an unstructured search quantum procedure to find an entry of

n bits on a digital haystack of N elements. As shown in Figure 8-1, Grover’s quantum

algorithm provides significant speedup at O N() steps. It may not seem much

compared to the classical solution, but when we are talking about millions of entries,

then the square root of 106 is much faster than 106.

Figure 8-1.  Unstructured search time complexities

If x is the element we are looking for, then Grover’s algorithm can be described by the

following pseudocode:

	 1.	 Prepare the input given f: {0, 1, … , N-1} → {0,1}. Note that the

size of the input is 2n where n is the number of bits and N is the

number of steps or size of the haystack. The ultimate goal is to find

x such that f(x) = 1.

	 2.	 Apply a basis superposition to all qubits in the input.

	 3.	 Perform a phase inversion on the input qubits.

	 4.	 Perform an inversion about the mean on the input.

	 5.	 Repeat steps 3 and 4 at least N times. There is a high probability

that x will be found at this point.

Let’s take a closer look at the critical phase inversion and inversion about the mean

steps.

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

315

�Phase Inversion
This is the first step in the algorithm and must be performed in a superposition of all

states in the haystack. If the element we are looking for is xʹ where f(xʹ) = 1, then the

superposition can be expressed as ∑ α ∣ x⟩. Ultimately, what phase inversion does is

	
å

å ¹
-

¢
¢

a
a

a
x

x if x x

x Otherwi
Phase Inversion � �������������������

sse

ì
í
î 	

That is, if a given x is not the element we are looking for (x ≠xʹ), then it leaves the

superposition intact; otherwise it inverts the phase (the sign of the complex coefficient α

of the qubit – see Figure 8-2 for a pictorial representation).

Figure 8-2.  Pictorial representation of phase inversion

This is the first step in Grover’s algorithm; we’ll see how phase inversion helps on

finding the element we are looking for, but for now let’s look at the second step: inversion

about the mean.

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

316

�Inversion About the Mean
Given the previous superposition ∑ α ∣ x⟩, we define the mean μ, as the average value of

the amplitudes:

m =
µ

=

-å x

N

x

N
0

1

Now we must flip the amplitudes about this mean. That is,

a m ax x® -()2

å ®å -()a m ax xx x2

To better understand this, Figure 8-3 shows a pictorial representation of inversion

about the mean.

Figure 8-3 shows the superimposed state of the qubits as defined by the wave

function ψ. The mean or μ of this function is shown as the horizontal line in the chart.

What inversion about the mean does is it mirrors the wave function ψ over the mean μ

resulting in a mirror wave (shown with a dotted line). This is equivalent to rotating the

waves over the axis μ. Let’s make sense of all this by putting all steps together to see them

in action:

Figure 8-3.  Graphical representation of inversion about the mean

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

317

In Figure 8-4:

•	 The superposition of all qubits puts all amplitudes at
1

N
.

•	 Next, a phase inversion puts the amplitude for xʹ at -
1

N
. Note that

this has the effect of lowering slightly the value of the mean μ, as

shown by the dotted line in Figure 8-4 step 2.

•	 After the inversion about the mean, the mean amplitude drops a little

bit, but xʹ goes way high, as much as
2

N
 above the mean μ.

•	 If we repeat this sequence, the amplitude of x’ increases by about

2

N
 until that, in about N steps, the amplitude becomes

1

2
.

•	 At this point, if we measure our qubits, the probability of finding x’

(the element we are looking for), as defined by quantum mechanics,

is the square of the amplitude. That is, ½.

•	 Thus we are done. In roughly N steps, we have found the marked

element xʹ.

Figure 8-4.  Single Grover’s iteration

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

318

Now, let’s put all this together in a quantum circuit and corresponding code

implementation.

�Practical Implementation
We’ll take a look at a circuit for Grover’s algorithm in IBM Q Experience. The circuit

demonstrates a single iteration of the algorithm using 2 qubits as shown in Figure 8-5.

A Python script that creates the circuit in Figure 8-5 is shown in Listing 8-1.

Listing 8-1.  Python Script for Circuit in Figure 8-5

import sys,time,math

Importing QISKit

from qiskit import QuantumCircuit, QuantumProgram

Q Experience config

sys.path.append('../Config/')

import Qconfig

Import basic plotting tools

from qiskit.tools.visualization import plot_histogram

Set the input bits to search for

def input_phase (circuit, qubits):

 # Uncomment for A = 00

 # Comment for A = 11

Figure 8-5.  Quantum circuit for Grover’s algorithm with 2 qubits and A = 01

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

319

 circuit.s(qubits[0])

 #circuit.s(qubits[1])

 return

circuit: Grover 2-qubit circuit

qubits: Array of qubits (size 2)

def invert_over_the_mean (circuit, qubits):

 for i in range (2):

 circuit.h(qubits[i])

 circuit.x(qubits[i])

 circuit.h(qubits[1])

 circuit.cx(qubits[0], qubits[1])

 circuit.h(qubits[1])

 for i in range (2):

 circuit.x(qubits[i])

 circuit.h(qubits[i])

def invert_phase (circuit, qubits):

 # Oracle

 circuit.h(qubits[1])

 circuit.cx(qubits[0], qubits[1])

 circuit.h(qubits[1])

def main():

 # Quantum program setup

 qp = QuantumProgram()

 qp.set_api(Qconfig.APItoken, Qconfig.config["url"])

 # Create qubits/registers

 size = 2

 q = qp.create_quantum_register('q', size)

 c = qp.create_classical_register('c', size)

 # Quantum circuit

 grover = qp.create_circuit('grover', [q], [c])

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

320

 # 1. put all qubits in superposition

 for i in range (size):

 grover.h(q[i])

 # Set the input

 input_phase(grover, q)

 # 2. Phase inversion

 invert_phase(grover, q)

 input_phase(grover, q)

 # 3. Invert over the mean

 invert_over_the_mean (grover, q)

 # measure

 for i in range (size):

 grover.measure(q[i], c[i])

 circuits = ['grover']

 # Execute the quantum circuits on the simulator

 backend = "local_qasm_simulator"

 # the number of shots in the experiment

 shots = 1024

 result = qp.execute(circuits, backend=backend, shots=shots

 , max_credits=3, timeout=240)

 counts = result.get_counts("grover")

 print("Counts:" + str(counts))

 # Optional

 #plot_histogram(counts)

###

main

if __name__ == '__main__':

 start_time = time.time()

 main()

 print("--- %s seconds ---" % (time.time() - start_time))

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

321

•	 Listing 8-1 performs a single interaction of Grover’s algorithm for

a 2-bit input using 2 qubits. Even though the pseudocode in the

previous section states that the total number of iterations is given by

roughly N steps, the inversion about the mean requires this value

to be multiplied by π/4 and its floor extracted (see the proof next to

Figure 8-8). Therefore, we end up with IT floor N= *æ
è
ç

ö
ø
÷

p
4

 where

N = 2bits. Thus, for 2 bits we get IT floor floor= *æ
è
ç

ö
ø
÷ = () =4

4
1 57 1

p
. .

•	 The script begins by creating a quantum circuit with 2 qubits and two

classical registers to store their measurements.

•	 Next, all qubits are put in superposition using the Hadamard gate.

•	 Before the iteration, the input is prepared using the phase gate (S)

and the rules in Table 8-1.

Table 8-1.  Input Preparation

Rules for Listing 8-1

Input (A) Gates/qubits

00 S(01)

10 S(0)

01 S(1)

11 None

•	 Next, perform a phase inversion followed by an inversion about the

mean on the input qubits corresponding to a single iteration of the

algorithm.

•	 Finally, measure the results and execute the circuit in the local or

remote simulator. Print the result counts.

�Generalized Circuit
In broad terms, the circuit in Figure 8-5 can be generalized to any number of input qubits

as shown in Figure 8-6.

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

322

•	 The first box in Figure 8-6 puts all qubits in superposition by

applying the Hadamard gate to the input of size n. This is the

initialization step.

•	 Next, the phase inversion circuit (Uf) receives the superimposed

input ψ = ∑ α ∣ x⟩ and a phase input (minus state). This has the

desired effect of putting the phase exactly where we want it. Thus the

output becomes ∑ α (−1)f(x) ∣ x⟩. But how can this be achieved? The

answer is that, by applying an exclusive OR on the minus state input,

we obtain the desired effect ∣b⟩ → ∣ f(x) ⊕ b⟩ as shown in Figure 8-7.

The third row of the XOR truth table between f(x) and b (the right side

of Figure 8-7) shows the phase inversion effect.

Figure 8-6.  Generalization of Grover’s algorithm for an arbitrary number of
qubits

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

323

•	 Finally, as shown in Figure 8-3, inversion about the mean is the same

as doing the reflection about m = å1/ N x
x

. To better visualize

this, the superimposed state ψ and the mean μ can be represented as

vectors over a 2D space as shown in Figure 8-8. To reflect ψ, create an

orthogonal vector to μ, then project ψ over the new quadrant at the

same angle θ.

Figure 8-7.  Phase inversion circuit

Figure 8-8.  Inversion over the mean circuit

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

324

The proof that inversion over the mean transforms ∑ αx ∣ x⟩ → ∑ (2μ − αx) ∣ x⟩

involves three steps, as shown by the circuit in Figure 8-8.

	 1.	 Transform |μ> to the all zeros vector ∣0, …, 0⟩. This is achieved by

applying the Hadamard gate to the input.

	 2.	 Reflect about the all zeros vector ∣0, …, 0⟩. This can be done by

multiplying it by the sparse matrix

1 0

0 1

0 1

� �
�

� � � �
�

-

-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

	 3.	 Transform ∣0, …, 0⟩ back to |μ> by applying the Hadamard again.

Thus

H H Hn n nÄ Ä Ä-

-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú
-

1 0

0 1

0 1

2 0

0 0

� �
�

� � � �
�

�
� � �

�
II H H H H I Hn n n n n

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

-Ä Ä Ä Ä Ä

2 0

0 0

�
� � �

�

	

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú
- =

-

-

é

ë

ê
ê
ê
ê
ê

ù
2 2

2 2

2
1 2

2
2

1

/ /

/ /

/

/

N N

N N

I
N

N

N
N

�
� � �

�

�

� � �

�
ûû

ú
ú
ú
ú
ú

			

(1)

Note that H I H I and H
N

xn nÄ Ä = =
2

. Finally, applying matrix (1) to the state

ψ = αx ∣ x⟩ yields

	

2
1 2

2
2

1

0

1

N
N

N
N

x

N

-

-

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

-

�

� � �

�

�

�

/

/

a

a

a úú

® å -

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

= - å =
�

�
2 2 2 2/ /N where Ny x x ya a a a mm

	

So this is Grover’s algorithm for unstructured search. It is fast, powerful, and soon

to be hard at work on the data center cranking up all kinds of database searches. Given

its significant performance boost over its classical cousin, chances are that in a few

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

325

years, when quantum computers become more business friendly, most web searches

will be performed by this quantum powerhouse. Before we finish, it is worth noting

that, by the time of this writing, a useful implementation or experiment (one that can

find a real thing) does not exist for IBM Q Experience. Hopefully this will change in

the future, but for now Grover’s algorithm lives in the theoretical side of things. In the

next section, we close strong by looking at the famous Shor’s algorithm for integer

factorization.

�Integer Factorization with Shor’s Algorithm
The game of cat and mouse between cryptography and crypto analysis rages on: the first,

devising new ways to encrypt our everyday data, and the latter probing for weaknesses,

always looking for a crack to bring it down. Current asymmetric cryptography relies

on the well-known difficulty of factoring very large primes (in the hundreds of digits

range). This section looks at the inner workings of Shor’s algorithm, a method that

gives exponential speedup for integer factorization using a quantum computer. This is

followed by an implementation using a library called ProjectQ. Next, we simulate for

sample integers and evaluate the results. Finally we look at current and future directions

of integer factorization in quantum systems. Let’s get started.

�Challenging Asymmetric Cryptography with Quantum
Factorization
In the pivotal paper “Polynomial-Time Algorithms for Prime Factorization and Discrete

Logarithms on a Quantum Computer,”1 Peter Shor proposed a quantum factorization

method using a principle known to mathematicians for a long time: find the period (also

known as order) of an element a in the multiplicative group modulo N, that is, the least

positive integer such that

	 x Nr º ()1 mod 	

where N is the number to factor and r is the period of x modulo N.

1�Peter Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a
Quantum Computer.

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

326

Tip  Large integer factorization is a problem that has puzzled mathematicians for
millennia. In 1976, G. L. Miller postulated that using randomization, factorization
can be reduced to finding the period of an element a modulo N, thus greatly
simplifying this puzzle. This is the basic idea behind Shor’s algorithm.

Shor divided his algorithm in three stages, two of which are performed by a classical

computer in polynomial time:

	 1.	 Input preparation: Done in a classical computer in polynomial

time log (n).

	 2.	 Find the period r of the element a such that ar ≡ 1 (mod N) via a

quantum circuit. According to Shor, this takes O((log n)2(log

log n)(log log log n)) steps on a quantum computer.

	 3.	 Postprocessing: Done in a classical computer in polynomial time

log (n).

But why is there so much excitement about this method? Compare its time

complexity (big O) against the current classical champ: the Number Field Sieve as shown

in Table 8-2 (including another fan favorite, the venerable Quadratic Sieve).

Table 8-2.  Time Complexities for Common Factorization Algorithms

Algorithm Time complexity

Shor’s (logn)2(log log n) (log log log n)

Number Field Sieve exp log log log
/

c n n() ()æ
è
ç

ö
ø
÷

1 3
2
3

Quadratic Sieve exp ln ln lnn n()

Incredibly, Shor’s algorithm has a polynomial time complexity, far superior to the

exponential time by the Number Field Sieve, the fastest known method for factorization

in a classical computer. As a matter of fact, experts have estimated that Shor’s could

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

327

factor a 200+ digit integer in a matter of minutes. Such a feat would rock the foundation

of current asymmetric cryptography used to generate the encryption keys for all of our

web communications.

Tip  Symmetric cryptography is highly resistant to quantum computation and thus
to Shor’s algorithm.

But don’t panic yet; a practical implementation in a real quantum computer is still

a long way. Nevertheless, the algorithm can be simulated in a classical system using the

slick Python library: ProjectQ. We’ll run ProjectQ’s implementation in a further section,

but next let’s see how period finding can solve the factorization problem efficiently.

�Period Finding
Period finding is the basic building block of Shor’s algorithm. By using modular

arithmetic, the problem is reduced to finding the period (r) of the function

f(x) = ax mod N (see Figure 8-9).

Figure 8-9.  Periodic function f(x)

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

328

Figure 8-9 gives an example of a periodic function f(x) with period r = 4. For the

algorithm to work, f(x) must meet three conditions:

	 1.	 f(x) is one-to-one on each period; that is, the values of f(x) must

not repeat. In Figure 8-9 these values are represented by the

vertices of each line per period.

	 2.	 For any given M or the number of periods, r must divide M. For

example, given M = 100 and the period r = 4, M/r = 25.

	 3.	 M divided by r must be greater than r. That is, M > r2.

Shor’s algorithm transforms f(x) into a quantum circuit Uf where the inputs are

in superposition. If we measure the second register in Uf, we may see values for

the amplitudes
x

M

x x
=

-

å µ
0

1

 as shown in the amplitude chart of Figure 8-9. Here the

amplitudes are exactly four units apart which is the period we are looking for. In this

particular case, we get periodic superpositions with r = 4. But what do we do with this

periodic superposition? Shor’s relies on another trick: Fourier sampling or quantum

Fourier transform.

�Fourier Sampling

Fourier sampling is a data manipulation process that has the following properties:

•	 It allows for input shifting without changing the output distribution.

•	 This is good because now we have a periodic superposition where

the non-zero amplitudes are the multiples of the period (see

Figure 8-10).

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

329

But what is the output of Fourier sampling? And how does it help? The answer is

that its output is a random multiple of M/r. In this case given M = 100 and r = 4, we get a

random multiple of 100/4 = 25. This is advantageous for our goal. Let’s see how.

�Feed the Fourier Sampling Results to Euclid’s Greatest Common
Divisor

If we were to run Fourier sampling multiple times, we will get random multiples of M/r.

For example, we may get 50, 75, 25, etc. Now, if we apply Euclid’s greatest common

divisor (gcd) to our random outputs, then viola: By dividing M by the gcd, we get the

period r. Thus

r = M/gcd(50, 75, …) = 100 /25 = 4

Figure 8-10.  Fourier sampling showing periodic superposition

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

330

So this is the outline for period finding via a quantum circuit. To understand how

this method can find a factor efficiently, let’s run through an example by factoring the

number N = 21. Our task relies on two very efficient operations:

•	 Modular arithmetic: a = b (mod N). For example, 3 = 15 (mod 12).

•	 Greatest common divisor gcd(a, b). For example, gcd(15, 21) = 3.

Thus for N = 21, we need to solve the equation x2 ≡ 1 (mod 21). That is, find the

nontrivial square root x such that

•	 N divides (x +1) (x – 1).

•	 N does not divide (x ± 1).

•	 Finally, recover a prime factor by applying gcd(N, x+1).

To find the nontrivial factor for N = 21, pick a random x. For example, given N = 21,

choose x = 2; thus

20 ≡ 1 (mod 21)
21 ≡ 2 (mod 21)
22 ≡ 4 (mod 21)
23 ≡ 8 (mod 21)
24 ≡ 16 (mod 21)
25 ≡ 11 (mod 21)
26 ≡ 1 (mod 21). Got the period r = 6.

In this case, 26 = (23)2. Thus 23 = 8 is a nontrivial factor such that 21 divides (8 + 1)

(8 – 1). Finally we recover a factor with the greatest common divisor gcd (N, x+1) =

gcd(21, 9) = 3. In general terms, pick an x at random, and then loop through x0, x1,…, xr

≡ mod N. If we are lucky, then r is even, that is, (xr/2)2 ≡ 1 (mod N). And thus we have a

nontrivial square root of 1 mod N.

Tip  It has been proven that the probability that we get lucky, that is, r is even for
x2 ≡ 1 (mod N), is ½. If we are unlucky, on the other hand, then we must repeat the
procedure all over again. However given the high probability of success, this would
be insignificant in the great scheme of things.

Now, let’s run the algorithm using the slick Python library ProjectQ.

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

331

�Shor’s Algorithm by ProjectQ
ProjectQ is an open source platform for quantum computing that implements Shor’s

algorithm using the circuit proposed by Stéphane Beauregard2. This circuit uses 2n + 3

qubits where n is the number of bits of the number N to factor. Beauregard’s method is

divided into the following steps:

	 1.	 If N is even, return the factor 2.

	 2.	 Classically determine if N = pq for p ≥ 1 and q ≥ 2, and if so,

return the factor p (in a classical computer, this can be done in

polynomial time).

	 3.	 Choose a random number a, such that 1 < a ≤ N – 1. Using Euclid’s

greatest common divisor, determine if gcd (a, N) > 1. If so, return

the factor gcd(a, N).

	 4.	 Use the order-finding quantum circuit to find the order r of

a modulo N. In a quantum computer, this step is done in

polynomial time.

	 5.	 If r is odd or r is even but ar/2 = –1 (mod N), then go to step 3.

Otherwise compute gcd(ar/2 – 1, N) and gcd(ar/2 + 1, N). Test to

see if one of these is a nontrivial factor of N, and return the factor if

so (in a classical computer, this can be done in polynomial time).

2�Stéphane Beauregard, Circuit for Shor’s algorithm using 2n+3 qubits. Département de Physique
et, Université de Montréal.

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

332

Beauregard implements period finding by using a series of controlled additions

and multiplications in Fourier space to solve f(x) = ax(mod N) → ar ≡ 1 mod N (see

Figure 8-11):

•	 A controlled multiplier Ua maps ∣x⟩ → ∣ ax (mod N)⟩ where

•	 a is a classical relative prime to use as the base for ax (mod N).

•	 x is the quantum register.

•	 c is the register of control qubits such that Ua = ax (mod N) if c =1

and x otherwise.

•	 The controller multiplier Ua is in turn implemented as a series of

doubly controlled modular adder gates such that

•	 If both control qubits c1 = c2 = 1, the output is

f(x) = ∣ φ(a+b mod N)⟩. That is, a + b (mod N) in Fourier space.

Note that this gate adds two numbers: a relative prime (a) and a

quantum number (b).

•	 If either control qubit (c1, c2) is in state |0>, then f(x) = ∣ φ(b)⟩.

Figure 8-11.  Beauregard quantum circuit for period finding

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

333

•	 The doubly controlled modular adder gate is in turn built on top of

the quantum addition circuit by Draper3. This circuit implements

addition of a classical value (a) to the quantum value (b) in Fourier

space.

�Factorization with ProjectQ

Let’s install ProjectQ and put the algorithm to the test. The first thing to do is to use

the Python package manager to download and install ProjectQ (note that I am using

Windows for the sake of simplicity. Linux users should be able to follow the same

procedure):

C:\> pip install projectq

Next, grab the shor.py script from ProjectQ’s examples folder4 or the book source

under Workspace\Ch08\p08-shor.py. Now, run the script and enter a number to factor

(see Listing 8-2).

Listing 8-2.  Shor’s Algorithm by ProjectQ in Action

C:\>python shor.py

Number to factor: 21

Factoring N = 21:

Factors found : 7 * 3 = 21

Gate class counts:

 AllocateQubitGate : 166

 CCR : 1467

 CR : 7180

 CSwapGate : 50

 CXGate : 200

 DeallocateQubitGate : 166

 HGate : 2600

3�T. Draper (2000), Addition on a quantum computer, quant-ph/0008033. Available online at
https://arxiv.org/abs/quant-ph/0008033.

4�ProjectQ – an open source software framework for quantum computing. Available online at
https://github.com/ProjectQ-Framework/ProjectQ.

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

https://arxiv.org/abs/quant-ph/0008033
https://github.com/ProjectQ-Framework/ProjectQ

334

 MeasureGate : 11

 R : 608

 XGate : 206

Gate counts:

 Allocate : 166

 CCR(0.098174770425) : 18

 CCR(0.196349540849) : 30

 CCR(0.392699081699) : 70

 CCR(0.490873852124) : 18

 CCR(0.785398163397) : 80

 CCR(0.981747704246) : 38

 CCR(1.079922474671) : 20

 CCR(1.178097245096) : 16

 ...

 R(5.252350217719) : 1

 R(5.301437602932) : 1

 R(5.497787143782) : 1

 X : 206

Max. width (number of qubits) : 13.

--- 5.834410190582275 seconds ---

For N = 21, the script dumps a set of very helpful statistics such as

•	 The number of qubits used: Given N = 21 we need 5 bits; thus total-

qubits = 2 * 5 + 3 = 13.

•	 The total number of gates used by type: In this case, doubly controlled

CCR = 1467, CR = 7180, CSwap = 50, CX = 200, R = 608, X = 206, and

others, for a grand total of 12,646 quantum gates.

ProjectQ implements quantum period finding using Beauregard algorithm as shown

in Listing 8-3:

•	 The run_shor function takes three arguments:

•	 The quantum engine or simulator provided by ProjectQ plus

•	 N: The number to factor

•	 a: The relative prime to use as a base for ax mod N

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

335

•	 The function then loops from a = 0 to a = ln(N) with the quantum

input register x in superposition; it then performs the quantum

circuit for f(a) = ax mod N as shown in Figure 8-11.

•	 Next, it performs Fourier sampling on the x register conditioned on

previous outcomes and performs measurements.

•	 Finally it sums the measured values into a number in range [0,1]. It

then uses continued fraction expansion to return the denominator or

potential period (r).

Listing 8-3.  ProjectQ Period Finding Quantum Subroutine

def run_shor(eng, N, a):

 n = int(math.ceil(math.log(N, 2)))

 x = eng.allocate_qureg(n)

 X | x[0]

 measurements = [0] * (2 * n) # will hold the 2n measurement results

 ctrl_qubit = eng.allocate_qubit()

 for k in range(2 * n):

 current_a = pow(a, 1 << (2 * n - 1 - k), N)

 # one iteration of 1-qubit QPE

 H | ctrl_qubit

 with Control(eng, ctrl_qubit):

 MultiplyByConstantModN(current_a, N) | x

 # perform inverse QFT --> Rotations conditioned on previous outcomes

 for i in range(k):

 if measurements[i]:

 R(-math.pi/(1 << (k - i))) | ctrl_qubit

 H | ctrl_qubit

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

336

 # and measure

 Measure | ctrl_qubit

 eng.flush()

 measurements[k] = int(ctrl_qubit)

 if measurements[k]:

 X | ctrl_qubit

 Measure | x

 # turn the measured values into a number in [0,1)

 y = sum([(measurements[2 * n - 1 - i]*1. / (1 << (i + 1)))

 for i in range(2 * n)])

 # continued fraction expansion to get denominator (the period?)

 r = Fraction(y).limit_denominator(N-1).denominator

 # return the (potential) period

 return r

The next section compiles a set of factorization results for various values of N.

�Simulation Results

ProjectQ’s period finding subroutine is a simulation of a quantum circuit on a

classical computer so it is not practical to use it to factorize large numbers. As a

matter of fact, it is not capable to factor numbers larger than four digits in reasonable

time on a home PC. Table 8-3 shows a set of results for various values of N gathered

from my laptop up to 2491.

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

337

Table 8-3.  Factorization Results for Various Values of N

Number (N) Qubits Time (s) Memory (MB) Quantum gate counts

15 11 2.44 50 CCR = 792

CR = 3186

CSwap = 32

CX = 128

H = 1408

R = 320

X = 130

Measure = 9

105 17 27.74 200 CCR = 3735

CR = 25062

CSwap = 98

CX = 392

H = 6666

R = 1568

X = 393

Measure = 15

1150 25 17542.12 (4.8 h) 500 CCR = 15366

CR = 139382

CSwap = 242

CX = 968

H = 24222

R = 5829

X = 981

Measure = 23

2491 27 246164.74 (68.3 h) 2048 CCR = 20601

CR = 194670

CSwap = 288

CX = 1152

H = 31126

R = 7509

X = 1166

Measure = 25

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

338

Factorizing the four-digit number 2491 took more than 68 hours on a 64-bit

Windows 7 PC with an Intel Core i-5 CPU at 2.6 GHz with 16 GB of RAM. I tried to

go a bit higher by attempting to factorize N = 8122 but gave up after one week. All

in all, these results show that the algorithm can be simulated successfully for small

numbers of N; however it needs to be implemented in a real quantum computer to

test its real power.

This chapter brought proceedings to a close with two algorithms that have generated

excitement about the possibilities of practical quantum computation: Grover’s

algorithm, an unstructured quantum search method capable of finding inputs at an

average of square root of N steps. This is much faster than the best classical solution at

an average of N/2 steps. Expect all web searches to be performed by Grover’s algorithm

in the future.

Shor’s algorithm for factorization in a quantum computer which experts say could

bring current asymmetric cryptography to its knees. Shor’s, arguably the most famous

quantum algorithm out there, is a prime example of the power of quantum computation

by providing exponential speedups over the best classical solution.

Finally, I would like to close things up by saying that I have tried my best to

explain the difficult concepts of quantum computing by mixing math, software, and

as many figures I can muster. A lot of coffee cups and sleepless nights were spent

writing this manuscript, not to mention that I find most of the math as confusing as

you probably do. I hope you enjoy reading this book as much as I did writing it, and

remember: The great physicist Richard Feynman once said “If somebody tells you

that he understands Quantum Mechanics it means he doesn’t understand Quantum

Mechanics.”

CHAPTER 8 � FASTER SEARCH PLUS THREATENING THE FOUNDATION OF ASYMMETRIC CRYPTOGRAPHY
WITH GROVER AND SHOR

339
© Vladimir Silva 2018
V. Silva, Practical Quantum Computing for Developers, https://doi.org/10.1007/978-1-4842-4218-6

Index

A
Adiabatic quantum

computation (AQC), 68
Adiabatic theorem, 68–69
Aircraft industry, 76
Alain Aspect experiment, 21
Algorithm by projectQ

in action, 333–334
Beauregard quantum circuit, 332–333
factorization, 333
simulation results, 337–338
subroutine, 335–336

Almighty wave function, 7–8
API token, 102
Atomic theory, 8
Authentication, 102–103

B
basisGates, 88
Bell’s

inequality, 18–19
experiment, 100

theorem, 17
Bell states

CHSH inequality, 91
compiled results, 94
correlation probability, 94
inequality, 90
measurements, 92

permutations, 91
photon polarization, 89–90
quantum circuits, 91, 93
qubits, 91, 92

Black-body radiation experiment, 3–4
Black holes, 62
Bloch sphere, 40
Bohr/Heisenberg interpretation, 13
Bohr’s

atom, 10
quantum jump, 4

Boltzmann’s entropy, 4
Born’s probabilistic party, 9–10
Bosonic codes, 66
Boson sampling problem, 60

C
Calibration parameters, 106–108
Catastrophic paradox, 2
CentOS, 145, 264
cgi package, 266–267
Chinese academy of sciences (CAS), 76
chmod OS command, 277
Cloud quantum battleship, 267–268

decouple, user interface, 237–238
features, 223
HTTP request, 243–244
J2EE project, 276
JSON document, 247

https://doi.org/10.1007/978-1-4842-4218-6

340

quantum script, 244, 246–247
reusable Python Program, 241
user interface (see User interface)
web interface, 238–241
web server, deployment, 241

Common gateway interface (CGI), 237
Complementarity, 15
Complex conjugate, 150
Complex number, 150
Controlled gates, 47
Controlled NOT (CNOT) gate, 159–160
Copenhagen interpretation, 11
Counterfeit coin puzzle

construct, quantum balance, 290
false coin

cr[N], 291
generalization, 292–293
identification, 290
main container script, 291–292
values, 291

goal, 284
quantum

beam balance, 287–289
vs. classical time complexities, 286

solution, 284–285
Coupling map, 89

D
Damage colorization, 260
Data submit, 256
de Broglie’s equation, 6, 10
Decoherence (longevity), 62–63
Decouple, user interface, 237–238
Deep learning

and artificial intelligence, 61
traditional problems, 59

Deploy and test, 262–264
Diamond vacancies, 55–57
document.write() system, 250–251
Double slit experiment, 11–12
D-Wave systems, 69–70

E
eigenvalues, 7
Einstein-Podolsky-Rosen or EPR

paradox, 16
Einstein

experimental box, 13
theory of relativity, 19
unshakable principle, 14

Electron tunnelling
in action, 30
classical mechanics, effects, 30
photon approaches, 31
probability, 31, 32
semiconductor manufacturing process

Java program, 34, 36
probabilities, 33, 36

spreadsheets, statistical values, 36
Energy minimization

problems, 70, 72
Energy quanta, 2
Entanglement test, 16–18
Entropy (ent), 4, 200–201
EPR paradox, 15–16, 18–21
Euclid’s Greatest Common

Divisor, 329–331
Exploration of interference, 11

F
Five-nanometer

transistor, 26, 28–29

Cloud quantum battleship (cont.)

Index

341

G
Game puzzles

algorithms, 283
counterfeit coin (see Counterfeit coin

puzzle)
Mermin-Peres magic square, 293–298,

300, 302–303, 305–306, 308–311
Gate state, 267
GHZ states tests, 94–96, 98
Google, 73–74
Graphical representation, 316
Graphical user interface, 238
Graphics processing units (GPUs), 24
Grover’s

algorithm
preparation rules, 321
Python script, 318–321
quantum circuit, 318

iteration, 317
unstructured quantum search

(see Unstructured quantum
search)

H
Hadamard gate (H), 46, 155, 193
Heisenberg uncertainty principle

(HUP), 10, 30
HTTPD server, 262
HTTP request, 243, 263

I
IBM Q experience, 101

Bell states (see Bell states)
composer, 79
GHZ states tests, 94–96, 98

main window, 78
quantum backends, 83
quantum gates, 79–82
remote access, REST API

account credit information, 114–115
API version, 126–127
authentication, 102–103
backend parameters, 108–109, 111
backends and simulators, 103–105
calibration parameters, 106–108
jobs in processor execution

queue, 112–113
list user’s experiments, 115–116
run a Job, 123–126
runs experiment, 117–123
status of quantum processor

event queue, 111
IBMQuantumExperience, 127
Inline with upstream

stable (IUS), 146
Installation, QISKit

Linux CentOS, 145
folder layout, 149
IUS, 146–147
preparing system, 145

virtual environment, 147
windows, 144–145

Interference, 12
Ion trap, 52–53

J
JSON string, 217

K
Kelvin, 75
Ket notation, 153

Index

342

L
Light colorization, 3
Linear vectors, 150
Logic gates, 24–25

M
Machine learning, 72

artificial intelligence, 73–74
Mathematical optimization, 71
Matrix multiplication, 150
Measurement gate, 43–44
Medicine, 76
Mermin-Peres magic square

answers, 310–311
exercise, 295
3x3 matrix with rules, 294–295
measures

loops, 306
permutations, 305–306
script for All Rounds, 307–308
simplified standard output, 309

quantum pseudo-telepathy, 293
quantum winning strategy, 296
shared entangled state, 296–298
unitary transformations, 298, 300–305

Molecular electronics, 38
Molecular modelling, 58
Moment of measurement, 19–20
Momentum of a photon, 6
Multiple versions, Python, 261–262
Multiqubit entanglement, 43

N
no-cloning theorem, 65
Node JS client, IBMQuantumExperience

calibration and hardware
parameters, 134–135

debugging and testing, 138, 140
get backend list, 133
module.exports library, 129
node module, build, 128
public API Methods, 129
publish your module, 140
run experiment, 136–138
token authentication, 130–132

Normalization, 156
NOT gate (Pauli X), 153–154
Number field sieve vs. Shor’s algorithm

time complexity, 39

O
Organic electronics, 38
OS commands and extraction, 275–276

P
Paradox, 10
Pattern recognition, 72
Pauli X gate, 45
Permutation table, 17
Photographic plate, 12
Photon polarization, 90
Photons, 15, 101
Pictorial representation, phase

inversion, 315
Polarization

filter, 18–19
of light, 17
property, 19

Potential quantum effects, 61
Probabilistic interpretation, 8–9
ProjectQ, 325, 327

Index

343

Python
CGI script, 241
error, 266
quantum program, 277, 279–280

Q
Quantum

artificial intelligence, 73–74
associative memory, 62
backends, 83
battleship

bomb boards, 240
instructions, 225
layout, 237
main loop performs, 229–233,

235–236
modularized initialization,

241–242
script initialization, 225–227
ships on the board,

setting, 227–229
user interface, 239, 248

composer, 79
computation, 209
entanglement, 42–43
factorization method, 325
gates, 47–49, 79–82
information system, 194
jump, 4
mechanics, 1, 16, 74–75, 89–91,

95, 98, 101
processor event queue, 111
sampling problems, 60–61
scale, 28–29
state, 40
supremacy, 42, 66–68
tomography, 42

Quantum annealing (QA)
Adiabatic theorem, 68
combinatorial optimization

problems, 70
D-Wave systems, 69
energy minimization

problems, 70, 72
finite-range tunnelling, 71
Hamiltonian (H), 68
pattern recognition, 72
processor, 72
qubits, 69–71
restrictive by experts, 70–71

Quantum assembly (QASM), 82, 170, 193
Quantum cat, 9
Quantum Circuits, Inc. (QCI), 51
Quantum computers, 38, 40

AI, 62
vs. classical time complexities, 57
complex simulations, 58
molecular modelling, 58
pitfalls

decoherence (longevity), 62–63
QEC, 64–66
3-qubit code, 65
Shor’s code, 65

stochastic gradient descent, 59
Quantum error correction (QEC), 64–65

3-qubit code, 65
Shor’s code, 65–66

Quantum gallium
arsenide (GaAs), 53–54

Quantum information software
kit (QISKit), 101, 127, 143

installation, (see Installation, QISKit)
Python, 223
SDK, 127

Quantum Monte Carlo (QMC), 71

Index

344

Quantum neural networks (QNN), 61
black holes, 62
potential quantum effects, 61
quantum associative memory, 62
quantum information

processing, 61
Quantum program

anatomy, 162
composer experiment, 165
execution, 278–279
pseudocode, 161
SDK internals (see SDK internals)

Quantum teleportation
composer, circuit, 212–213
probability results, 218–220, 222
Python script, 213–215, 217
recovery, 212
superimposed state, 221
workflow, 210–211

Quantum tunnelling (see Electron
tunnelling)

Quantum turing machine (QTM)
applications, 76
Google and quantum artificial

intelligence, 73–74
quantum mechanics, 74–75

Qubits 101
algebraic concepts, 150–151

Dirac’s notation, 151–152
ket notation, 153

design
diamond vacancies, 55–57
ion trap, 52–53
silicon quantum dots, 53–54
superconductor loop, 50–51
topological qubits, 54–55

entanglement, 42–43

quantum gates, 153
controlled gates, 47
controlled NOT gate, 159–160
Hadamard gate, 46, 155
measurement

gate, 43–44, 156
NOT gate (Pauli X), 153–154
Pauli gate, 45
rotation gates, 46
single-qubit gate, 157–159
swap gate, 44–45
Toffoli (CCNOT) gate, 47
unitary matrices, 158
universal quantum

computation, 160–161
simultaneous storage capacity, 41
superposition of states, 41

3-qubit code, 65
9-qubit error correction code, 65

R
Random bit generation

circuit, 195
circuit experience, 200
execution results, 196
geometrical representation, 195
Hadamard gate, 194
quantum program, 197–199

Randomness test results, 200–201
Redshift formula, 14
Remote access

modification, 236–237
Request query string, 256
Rotation gates, 46
run_shor function, 334–335
Rutherford’s model, 2

Index

345

S
Scanning tunnelling

microscope (STM), 30
sci-fi/Star Trek sense, 210
SDK internals

circuit compilation, 167–168
local C++ simulator, 172
local simulator, 166, 171
QASM, 170
remote simulator, 172–173
result document, 169–170
simulator execution, 174

Semiconductors, 23, 55
Shor’s

algorithm, 39, 57
code, 65
transforms, 328

integer factorization
algorithm by ProjectQ, 331
Fourier sampling, 328
period finding, 328
periodic superposition, 329
polynomial time, 326
quantum factorization, 325
time complexities, 326

Single slit experiment, 11
Slick Python library, 327, 331
Slit experiments, 37
Solid quantum theory, 8
Space applications, 76
Spooky action, 19–20
Stochastic gradient descent, 59
Superconductor loop qubit, 50–51
Super dense coding (SDC), 158

Bell pair states, 203
composer, circuit, 204–205
encoding rules, 203–204

modularized abstractions, 209
output, 208
plot result, 209
protocol, 202
Python script, 205–207
qubit states, 204

Super determinism, 98–99, 101
Superposition, 41
Simulated annealing (SA), 71
Syndrome information, 65
Swap gate, 44–45

T
Thermal annealing, 72
Topological codes, 66
Topological qubits, 54–55
Traditional quantum computers, 72
Transistors

barrier, 26
logic gates, 24–26
molecular electronics, 38
nanometer, 26, 28–29
organic electronics, 38
quantum scale, 29
slit experiments, 37
technological advances, 26
water molecule, 29

Troubleshooting, 242, 265–267
Apache HTTPD, 241

Two-dimensional electron gas (2DEG), 53

U, V
Ultraviolet catastrophe, 4
Uncertainty principle, 10–11

duality of nature, 5
matrix mechanics, 5

Index

346

Universal quantum computer (see
Quantum Turing machine (QTM))

UNIX rand(), 201
Unstructured quantum search

generalized circuit, 321–325
Grover’s algorithm, 318
inversion about the mean, 316–318
phase inversion, 315
time complexities, 314

User interface
Cloud battleship, tips and

tricks, 251–253
global BOMBS array, 260–261

HTML Code, 249–250
response format, 255–257
response handler, 257–260
rules and validation, 253, 255

W, X, Y, Z
Wave function, 316
WebSocket connection

callback system, 271
Javascript client code, 269–270
server handler, 271–273
vendors, 273–274

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: The Bizarre and Awesome World of Quantum Mechanics
	The Golden Age of Physics in the Twentieth Century
	Max Planck and the Ultraviolet Catastrophe Started It All
	Bohr’s Quantum Jump
	Clash of Titans: Quantum Cats and the Uncertainty Principle
	Enter the Almighty Wave Function
	Probabilistic Interpretation of ψ: The Wave Function Was Meant to Defeat Quantum Mechanics Not Become Its Foundation
	The Quantum Cat Attempts to Crash Born’s Probabilistic Party
	Uncertainty Principle
	Interference and the Double Slit Experiment

	Einstein to Bohr: God Does Not Throw Dice
	Bohr to Einstein: You Should Not Tell God What to Do
	Entanglement and the EPR Paradox: Spooky Action at a Distance
	Bell’s Inequality: A Test for Entanglement
	EPR Paradox Defeated: Bohr Has the Last Laugh
	Reality Playing Tricks on Us: Is Everything Interconnected?

	Chapter 2: Quantum Computing: Bending the Fabric of Reality Itself
	The Transistor Is in a Collision Course with the Laws of Physics
	Five-Nanometer Transistor: Big Problem
	Quantum Scale and the Demise of the Transistor
	Electron Tunnelling
	Exercise 1
	Solution 1
	Exercise 2
	Solution 2
	Exercise 3
	Solution 3

	Slit Experiments

	Possible Futures for the Transistor
	Enter Richard Feynman and the Quantum Computer
	The Qubit Is Weird and Awesome at the Same Time
	Superposition of States
	Entanglement: Observing a Qubit Reveals the State of Its Partner
	Qubit Manipulation with Quantum Gates
	Measurement Gate
	Swap Gate
	Pauli or X Gate
	Rotation Gates: Y, Z
	Hadamard Gate (H)
	Controlled (cX cY cZ) Gates
	Toffoli (CCNOT) Gate

	Qubit Design
	Superconducting Loops
	Trapped Ions
	Silicon Quantum Dots
	Topological Qubits
	Diamond Vacancies

	Quantum Computers vs. Traditional Hardware
	Complex Simulations
	Molecular Modelling and New Materials
	Sophisticated Deep Learning
	Quantum Neural Networks (QNN) and Artificial Intelligence (AI)

	Pitfalls of Quantum Computers: Decoherence and Interference
	Decoherence (Longevity)
	Quantum Error Correction (QEC)
	The 3-Qubit Code
	Shor’s Code

	The 50-Qubit Processor and the Quest for Quantum Supremacy
	Quantum Annealing (QA) and Energy Minimization Controversy
	2000 Qubits: Things Are Not As They Seem
	Quantum Annealing: A Subset of Quantum Computing

	Universal Quantum Computation and the Future
	Google and Quantum Artificial Intelligence
	Quantum Machines in the Data Center
	The Race Is Going Global
	Future Applications

	Chapter 3: Enter the IBM Q Experience: A One- of-a-Kind Platform for Quantum Computing in the Cloud
	Getting Your Feet Wet with IBM Q Experience
	Quantum Composer
	Quantum Gates
	Quantum Backends Available for Use

	Opus 1: Variations on Bell and GHZ States
	Bell States and Spooky Action at a Distance
	Even Spookier: GHZ States Tests
	Super Determinism: A Way Out of the Spookiness. Was Einstein Right All Along?

	Remote Access via the REST API
	Authentication
	Authentication via API Token
	Authentication via User-Password

	List Available Backends
	Request Parameters
	HTTP Headers
	Response Sample

	Get Calibration Information for a Given Processor
	Request Parameters
	HTTP Headers
	Response Sample

	Get Backend Parameters
	Request Parameters
	HTTP Headers
	Response Sample

	Get the Status of a Processor’s Queue
	Request Parameters
	HTTP Headers
	Response Sample

	List Jobs in the Execution Queue
	Request Parameters
	HTTP Headers
	Response Sample

	Get Account Credit Information
	Request Parameters
	HTTP Headers
	Response Sample

	List User’s Experiments
	Request Parameters
	HTTP Headers
	Response Sample

	Run Experiment
	Request Parameters
	HTTP Headers
	Payload Format
	Response Sample
	Submit to the Simulator
	Submit to a Real Device

	Run a Job
	Request Parameters
	HTTP Headers
	Payload Format

	Get the API Version
	Request Parameters
	HTTP Headers
	Response Format

	A Node JS Client for the IBMQuantumExperience
	Build a Node Module for IBMQuantumExperience
	Export API Methods
	Authenticate with a Token
	List Backends
	List Calibration Parameters
	Run the Experiment
	Debugging and Testing
	Share with the World: Publish Your Module

	Chapter 4: QISKit, Awesome SDK for Quantum Programming in Python
	Installing the QISKit
	Setting Up in Windows
	Setting Up in Linux CentOS
	Step 1: Prepare Your System
	Step 2: Install Python 3
	Step 3: Don’t Disturb Others – Set Up a Virtual Environment
	Step 4: Install QISKit

	Qubit 101: It’s Just Basic Algebra
	Algebraic Representation of a Quantum Bit
	Dirac’s Ket Notation
	Superposition Is Just a Fancy Word
	Ket Notation Too Weird? Use Vectors Instead

	Changing the State of a Qubit with Quantum Gates
	NOT Gate (Pauli X)
	Truly Quantum: Superpositions with the Hadamard Gate
	Measurement of a Quantum State Is Trickier Than You Think
	Generalized Single-Qubit Gates
	Unitary Matrices Are Good for Quantum Gates
	Other Single-Qubit Gates
	Qubit Entanglement with the Controlled NOT Gate

	Universal Quantum Computation Delivers Shortcuts over Classical Computation

	Your First Quantum Program
	SDK Internals: Circuit Compilation and QASM
	Circuit Compilation
	Execution Results
	Assembly Code
	QISKit Local Simulators
	Running in the Local C++ simulator
	Running in a Remote Simulator
	And the Fastest Simulator Is Comparing Execution Times

	Running in a Real Quantum Device
	Quantum Circuit for the Composer
	Execution via Your Favorite REST Client
	Run via the Jobs API
	Run via the Execute API

	Quantum Assembly: The Power Behind the Scenes

	Chapter 5: Start Your Engines: From Quantum Random Numbers to Teleportation, Pit Stop at Super Dense Coding
	Quantum Random Number Generation
	Random Bit Generation Using the Hadamard Gate
	Putting Randomness Results to the Test

	Super Dense Coding
	Circuit for Composer
	Running Remotely Using Python
	Looking at the Results

	Quantum Teleportation
	Circuit for Composer
	Running Remotely Using Python
	Looking at the Results

	Chapter 6: Fun with Quantum Games
	Quantum Battleship with a Twist
	Setup Instructions
	Initialization
	Set Ships in the Board
	Main Loop and Results

	Cloud Battleship: Modifying for Remote Access
	Exercise 1: Decouple the User Interface from the Game Logic
	Exercise 2: Build a Web Interface for the Ship-Bomb Boards
	Exercise 3: Deploy and Troubleshoot in Apache HTTPD
	Solution 1: A Reusable Python Program
	Solution 2: User Interface
	Game Rules and Validation
	End Point and Response Format
	Response Handler
	Running Multiple Versions of Python

	Solution 3: Deploy and Test
	Troubleshooting
	Further Improvements
	A Better Cloud Battleship
	Connecting via WebSocket
	Invoking Python and Setting File Permissions from Java

	Chapter 7: Game Theory: With Quantum Mechanics, Odds Are Always in Your Favor
	Counterfeit Coin Puzzle
	Counterfeit Coin, the Quantum Way
	Step 1: Query the Quantum Beam Balance
	Step 2: Construct the Quantum Balance
	Step 3: Identify the False Coin
	Generalization for Any Number of False Coins

	Mermin-Peres Magic Square
	Mermin-Peres Magic Square Exercise
	Quantum Winning Strategy
	Shared Entangled State
	Unitary Transformations
	Measure in the Computational Basis
	Answers for the Mermin-Peres Magic Square Exercise

	Chapter 8: Faster Search plus Threatening the Foundation of Asymmetric Cryptography with Grover and Shor
	Quantum Unstructured Search
	Phase Inversion
	Inversion About the Mean
	Practical Implementation
	Generalized Circuit

	Integer Factorization with Shor’s Algorithm
	Challenging Asymmetric Cryptography with Quantum Factorization
	Period Finding
	Fourier Sampling
	Feed the Fourier Sampling Results to Euclid’s Greatest Common Divisor

	Shor’s Algorithm by ProjectQ
	Factorization with ProjectQ
	Simulation Results

	Index

