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Preface 

It is a pleasure to accept the invitation of Harcourt/Academic Press to publish 
a second edition. The first edition has been used mainly in graduate courses in 
measure and probability, offered by departments of mathematics and statistics 
and frequently taken by engineers. We have prepared the present text with 
this audience in mind, and the title has been changed from Real Analysis ana 
Probability to Probability and Measure Theory to reflect the revisions we have 
made. 

Chapters 1 and 2 develop the fundamentals of measure and integration the
ory. Included are several results that are crucial in constructing the foundations 
of probability: the Radon-Nikodym theorem, the product measure theorem, 
the Kolmogorov extension theorem and the theory of weak convergence of 
measures. We remain convinced that it is best to assemble a complete set of 
measure-theoretic tools before going into probability, rather than try to de
velop both areas simultaneously. The gain in efficiency far outweighs any 
temporary loss in motivation. Those who wish to reach probability as quickly 
as possible may omit Chapter 3, which gives a brief introduction to functional 
analysis, and Section 2.3, which gives some applications to real analysis. In 
addition, instructors may wish to summarize or sketch some of the intricate 
constructions in Sections 1.3, 1.4, and 2.7. 

The study of probability begins with Chapter 4, which offers a summary of 
an undergraduate probability course from a measure-theoretic point of view. 
Chapter 5 is concerned with the general concept of conditional probability 
and expectation. The approach to problems that involve conditioning, given 
events of probability zero, is the gateway to many areas of probability theory. 
Chapter 6 deals with strong laws of large numbers, first from the classical 
viewpoint, and then via martingale theory. Basic properties and applications 
of martingale sequences are developed systematically. Chapter 7 considers 
the central limit problem, emphasizing the fundamental role of Prokhorov's 
weak compactness theorem. The last two sections of this chapter cover some 
material (not in the first edition) of special interest to statisticians: Slutsky's 
theorem, the Skorokhod construction, convergence of transformed sequences 
and a k-dimensional central limit theorem. 

vii 



viii PREFACE 

Chapters 8 and 9 have been added in the second edition, and should be of 
interest to the entire prospective audience: mathematicians, statisticians, and 
engineers. Chapter 8 covers ergodic theory, which is developed far enough 
so that connections with information theory are clearly visible. The Shan
non-McMillan theorem is proved and the isomorphism problem for Bernoulli 
shifts is discussed. Chapter 9 treats the one-dimensional Brownian motion 
in detail, and then introduces stochastic integrals and the Ito differentiation 
formula. 

To make room for the new material, the appendix on general topology 
and the old Chapter 4 on the interplay between measure theory and topology 
have been removed, along with the section on topological vector spaces in 
Chapter 3. We assume that the reader has had a course in basic analysis and is 
familiar with metric spaces, but not with general topology. All the necessary 
background appears in Real Variables With Basic Metric Space Topology by 
Robert B. Ash, IEEE Press, 1993. (The few exercises that require additional 
background are marked with an asterisk.) 

It is theoretically possible to read the text without any prior exposure to 
probability, picking up the necessary equipment in Chapter 4. But we expect 
that in practice, almost all readers will have taken a standard undergradu
ate probability course. We believe that discrete time, discrete state Markov 
chains, and random walks are best covered in a second undergraduate prob
ability course, without measure theory. But instructors and students usually 
find this area appealing, and we discuss the symmetric random walk on ~k in 
Appendix 1. 

Problems are given at the end of each section. Fairly detailed solutions are 
given to many problems, and instructors may obtain solutions to those prob
lems in Chapters 1-8 not worked out in the text by writing to the publisher. 

Catherine Doleans-Dade wrote Chapter 9, and offered valuable advice and 
criticism for the other chapters. Mel Gardner kindly allowed some material 
from Topics in Stochastic Processes by Ash and Gardner to be used in Chap
ter 8. We appreciate the encouragement and support provided by the staff at 
Harcourt/Academic Press. 

Robert B. Ash 
Catherine Doleans-Dade 

Urbana, Illinois, 1999 



Summary of Notation 

We indicate here the notational conventions to be used throughout the book. 
The numbering system is standard; for example, 2.7.4 means Chapter 2, 
Section 7, Part 4. In the appendices, the letter A is used; thus A2.3 means 
Part 3 of Appendix 2. 

The symbol D is used to mark the end of a proof. 

1 SETS 

If A and B are subsets of a set Q, A U B will denote the union of A and B, 
and An B the intersection of A and B. The union and intersection of a family 
of sets A; are denoted by U; Ai and n Ai. The complement of A (relative to 
Q) is denoted by N. 

The statement "B is a subset of A" is denoted by B c A; the inclusion need 
not be proper, that is, we have A c A for any set A. We also write B c A as 
A ::) B, to be read "A is an overset (or superset) of B." 

The notation A - B will always mean, unless otherwise specified, the set of 
points that belong to A but not to B. It is referred to as the difference between 
A and B; a proper difference is a set A - B, where B CA. 

The symmetric difference between A and B is by definition the union of 
A-Band B- A; it is denoted by ALl B. 

If AI c A2 c ... and u~=l An =A, we say that the An form an increasing 
sequence of sets (increasing to A) and write An t A. Similarly, if A 1 ::) A2 

::) · · · and n~=l An = A, we say that the An form a decreasing sequence of 
sets (decreasing to A) and write An -.1- A. 

The word "includes" will always imply a subset relation, and the word 
"contains" a membership relation. Thus if 2f and !!iJ are collections of sets, 
"W includes !fii'' means that !!iJ c W. Equivalently, we may say that 2f contains 
all sets in !!iJ, in other words, each A E !!if is also a member of 'if?. 

A countable set is one that is either finite or countably infinite. 
The empty set 0 is the set with no members. The sets Ai, i E /, are disjoint 

if A; n A i = 0 for all i =1 j. 

ix 



X SUMMARY OF NOTATION 

2 REAL NuMBERS 

The set of real numbers will be denoted by ~. and ~n will denote n
dimensional Euclidean space. In ~. the interval (a, b] is defined as {x E ~: 

a< x::; b}, and (a, oo) as {x E ~: x >a}; other types of intervals are defined 
similarly. If a= (a 1 , ... , an) and b = (b1, •.. , bn) are points in ~n, a::; b 
will mean a; ::; b; for all i. The interval (a, b] is defined as {x E Rn: a; < X; 

::; b;, i = 1, ... , n}, and other types of intervals are defined similarly. 
The set of extended real numbers is the two-point compactification 

~ U {oo} U {-oo}, denoted by "i; the set of n-tuples (x1, ... , Xn), with each 
X; E "i, is denoted by "in. We adopt the following rules of arithmetic in "i: 

a + oo = oo + a = oo, a - oo = -oo +a = -oo, a E ~. 

00 + 00 = 00, -00-00 = -00 (oo- oo is not defined), 

b·OO=OO·b= 00 

{ 
if 

-00 if 
bE "i 
bE "i, 

b > 0, 
b < 0, 

~- ~- 0 a E ~ (
00

00 
is not defined), 

00- -00- ' 

0 . 00 = 00 . 0 = 0. 

The rules are convenient when developing the properties of the abstract 
Lebesgue integral, but it should be emphasized that "i is not a field under 
these operations. 

Unless otherwise specified, positive means (strictly) greater than zero, and 
nonnegative means greater than or equal to zero. 

The set of complex numbers is denoted by <C, and the set of n-tuples of 
complex numbers by cn. 

3 FUNCTIONS 

If f is a function from Q to Q' (written as f: Q---+ Q') and B c Q', 
the preimage of B under f is given by f- 1(B) ={wE Q: f(w) E B}. 
It follows from the definition that f- 1(U;B;) = UJ-1(B;), f- 1(n;B;) 
= n f- 1(B;), f- 1(A- B)= f- 1(A)- f- 1(B); hence f- 1(A") = [f- 1(AW. 
If fP is a class of sets, f- 1(fP) means the collection of sets f- 1(B), BE W. 

Iff: ~---+ ~. f is increasing iff x < y implies f(x) :S f(y); decreasing iff 
x < y implies f(x) ::=: f(y). Thus, "increasing" and "decreasing" do not have 
the strict connotation. If fn: Q---+ "i, n = 1, 2, ... , the fn are said to form 
an increasing sequence iff fn(w) :S fn+l(w) for all nand w; a decreasing 
sequence is defined similarly. 
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If f and g are functions from Q to i:, statements such as f ::; g are always 
interpreted as holding pointwise, that is, f(w) :S g(w) for all w E Q. Similarly, 
if f;: Q ---+ i: for each i E /, sup1 ft is the function whose value at w is 
sup{ft(w): i E!}. 

If f 1, /2 .... form an increasing sequence of functions with limit f [that 
is, limn--HXJ fn(w) = f(w) for all w], we write fn t f. (Similarly, fn-.(, f is 
used for a decreasing sequence.) 

Sometimes, a set such as {wE Q: f(w)::; g(w)} is abbreviated as {f::; g}; 
similarly, the preimage {wE Q: f(w) E B} is written as {fEB}. 

If A C Q, the indicator of A is the function defined by IA(w) = 1 if wE A 
and by I A ( w) = 0 if w ¢ A. The phrasP. "characteristic function" is often used 
in the literature, but we shall not adopt this term here. 

If f is a function of two variables x and y, the symbol f (x, ·) is used for 
the mapping y---+ f(x, y) with x fixed. 

The composition of two functions X: Q ---+ Q' and f: Q' ---+ Q" is denoted 
by foX or f(X). 

If f: Q ---+ i:, the positive and negative parts of f are defined by j+ 
=max(/, 0) and f- =max(- f, 0), that is, 

f+(w) = { 0 f(w) if f(w) 2: 0, 
if f(w) < 0, 

f--(w)- {- f(w) if f(w) :S 0, 
- 0 if f(w) > 0. 

4 TOPOLOGY 

A metric space is a set Q with a function d (called a metric) from Q x Q 

to the nonnegative reals, satisfying d(x, y) 2: 0, d(x, y) = 0 iff x = y, d(x, y) 
= d(y, x), and d(x, z) ::; d(x, y) + d(y, z). If d(x, y) can be 0 for x =I y, but 
d satisfies the remaining properties, d is called a pseudometric (the term 
semimetric is also used in the literature). 

A ball (or open ball) in a metric or pseudometric space is a set of the form 
B(x, r) = {y E Q: d(x, y) < r} where x, the center of the ball, is a point of 
Q, and r, the radius, is a positive real number. A closed ball is a set of the 
form B(x, r) = {y E n: d(x, y) :s r}. 

Sequences in Q are denoted by {xn, n = 1, 2, ... }. The term "lower semi
continuous" is abbreviated LSC, and "upper semicontinuous" is abbreviated 
USC. 

No knowledge of general topology (beyond metric spaces) is assumed, 
and the few comments that refer to general topological spaces can safely 
be ignored. 
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5 VECTOR SPACES 

The terms "vector space" and "linear space" are synonymous. All vector 
spaces are over the real or complex field, and the complex field is assumed 
unless the term "real vector space" is used. 

A Hamel basis for a vector space L is a maximal linearly independent subset 
B of L. (Linear independence means that if x1, .•• , Xn E B, n = 1, 2, ... , and 
c1, ... , Cn are scalars, then 2.::7=1 c;x1 = 0 iff all c; = 0.) Alternatively, a Hamel 
basis is a linearly independent subset B with the property that each x E L is a 
finite linear combination of elements in B. [An orthononnal basis for a Hilbert 
space (Chapter 3) is a different concept.] 

The terms "subspace" and "linear manifold" are synonymous, each referring 
to a subset M of a vector space L that is itself a vector space under the 
operations of addition and scalar multiplication in L. If there is a metric on L 
and M is a closed subset of L, then M is called a closed subspace. 

If B is an arbitrary subset of L, the linear manifold generated by B, denoted 
by L(B), is the smallest linear manifold containing all elements of B, that 
is, the collection of finite linear combinations of elements of B. Assuming a 
metric on L, the space spanned by B, denoted by S(B), is the smallest closed 
subspace containing all elements of B. Explicitly, S(B) is the closure of L(B). 

6 ZORN'S LEMMA 

A partial ordering on a set S is a relation "::;" that is 

(1) reflexive: a ::; a; 
(2) antisymmetric: if a ::; b and b ::; a, then a = b; and 
(3) transitive: if a ::; b and b ::; c, then a ::; c. 

(All elements a, b, c belong to S.) 

If C C S, Cis said to be totally ordered iff for all a, b E C, either a ::; b or 
b ::; a. A totally ordered subset of S is also called a chain inS. 

The form of Zorn's lemma that will be used in the text is as follows. 
LetS be a set with a partial ordering "::;."Assume that every chain C inS 

has an upper bound; in other words, there is an element x E S such that x ::=: a 
for all a E C. Then S has a maximal element, that is, an element m such that 
for each a E S it is not possible to have m ::; a and m =/; a. 

Zorn's lemma is actually an axiom of set theory, equivalent to the axiom 
of choice. 





CHAPTER 

1 
FUNDAMENTALS OF MEASURE AND 
INTEGRATION THEORY 

In this chapter we give a self-contained presentation of the basic concepts of 
the theory of measure and integration. The principles discussed here and in 
Chapter 2 will serve as background for the study of probability as well as 
harmonic analysis, linear space theory, and other areas of mathematics. 

1.1 INTRODUCTION 

It will be convenient to start with a little practice in the algebra of sets. 
This will serve as a refresher and also as a way of collecting a few results 
that will often be useful. 

Let A1, A2, ... be subsets of a set Q. If A1 C A2 C · · · and U~=l An =A, 
we say that the An form an increasing sequence of sets with limit A, or that 
the An increase to A; we write An t A. If A1 :> A2 :> · · · and n~1 An =A, 
we say that the An form a decreasing sequence of sets with limit A, or that 
the An decrease to A; we write An -.1- A. 

The De Morgan laws, namely, (UnAnr = nnA~, (nnAnr =UnA~, im
ply that 

(1) if An t A, then A~ -.1- N; if An -.1- A, then A~ t A c. 

It is sometimes useful to write a union of sets as a disjoint union. This may 
be done as follows: 

Let A1, A2 , .•• be subsets of n. For each n we have 

(2) U7=1 A; = A1 u (A~ n A2) u (A~ n A~ n A3) 

u · · · u (A~ n · · ·A~_ 1 nAn). 
Furthermore, 

(3) U~=1 An = U~= 1 (Af n ·· · nA~_ 1 nAn). 
In (2) and (3), the sets on the right are disjoint. If the An form an increasing 

sequence, the formulas become 
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(4) U7=1 A;= A1 U (A2- A1) U · · · U (An- An-I) 

and 
(5) U~=IAn = U~=l(An -An-I) 

(take Ao as the empty set). 
The results (1)-(5) are proved using only the definitions of union, intersec

tion, and complementation; see Problem 1. 
The following set operation will be of particular interest. If A1, A2, •.• are 

subsets of n, we define 

(6) limsupnAn = n~=l U~nAk. 
Thus w E lim supn An iff for every n, w E Ak for some k 2: n, in other 

words, 
(7) w E lim supn An iff w E An for infinitely many n. 

Also define 
(8) liminfnAn = U~=I n~nAk. 

Thus wE liminfn An iff for some n, wEAk for all k 2: n, in other words, 
(9) w E lim infn An iff w E An eventually, that is, for all but finitely 

many n. 
We shall call lim supn An the upper limit of the sequence of sets An, and 

lim infn An the lower limit. The terminology is, of course, suggested by the 
analogous concepts for sequences of real numbers 

lim supxn = inf supxb 
n n k?:_n 

lim inf Xn = sup inf Xk. 
n n k?:_n 

See Problem 4 for a further development of the analogy. 
The following facts may be verified (Problem 5): 
(1 0) (lim supn An )c = lim infn A~ 

(11) (lim infn An )c = lim supn A~ 

(12) liminfnAn C limsupnAn 

(13) If An t A or An -.(,A, then lim infn An =lim supn An =A. 

In general, if lim infn An = lim supn An = A, then A is said to be the limit 
of the sequence A 1, A2, .. . ; we write A= limn An. 

Problems 

1. Establish formulas (1)-(5). 

2. Define sets of real numbers as follows. Let An = ( -1/n, 1] if n is odd, 
and An= (-1, 1/n] if n is even. Find limsupnAn and liminfnAn. 

3. Let Q = ~2 , An the interior of the circle with center at (( -l)n /n, 0) and 
radius 1. Find lim supn An and lim infn An. 
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4. Let {xn} be a sequence of real numbers, and let An = ( -00, Xn ). What 
is the connection between lim supn-+oo Xn and lim supn An (similarly for 
liminf)? 

5. Establish formulas (10)-(13). 

6. Let A= (a, b) and B = (c, d) be disjoint open intervals of ~. and let 
Cn =A if n is odd, Cn = B if n is even. Find limsupn Cn and liminfn Cn· 

1.2 FIELDS, u-FIELDS, AND MEASURES 

Length, area, and volume, as well as probability, are instances of the mea
sure concept that we are going to discuss. A measure is a set function, that 
is, an assignment of a number tt(A) to each set A in a certain class. Some 
structure must be imposed on the class of sets on which JL is defined, and 
probability considerations provide a good motivation for the type of structure 
required. If Q is a set whose points correspond to the possible outcomes of a 
random experiment, certain subsets of Q will be called "events" and assigned 
a probability. Intuitively, A is an event if the question "Does w belong to A?" 
has a definite yes or no answer after the experiment is performed (and the 
outcome corresponds to the point w E Q). Now if we can answer the question 
"Is wE A?'' we can certainly answer the question "Is wE Ac?," and if, for 
each i = 1, ... , n, we can decide whether or not w belongs to A;, then we can 
determine whether or not w belongs to U7=1 A; (and similarly for n7=1 A;). 
Thus it is natural to require that the class of events be closed under comple
mentation, finite union, and finite intersection; furthermore, as the answer to 
the question "Is w E Q?" is always "yes," the entire space Q should be an 
event. Closure under countable union and intersection is difficult to justify 
physically, and perhaps the most convincing reason for requiring it is that a 
richer mathematical theory is obtained. Specifically, we are able to assert that 
the limit of a sequence of events is an event; see 1.2.1. 

1.2.1 Definitions. Let !JT be a collection of subsets of a set n. Then !JT is 
called afield (the term algebra is also used) iff Q E !JT and !JT is closed under 
complementation and finite union, that is, 

(a) Q E !fT. 
(b) If A E !JT, then N E !fT. 
(c) If A1, A2, ... , An E !JT, then U7=1 A; E !fT. 

It follows that !JT is closed under finite intersection. For if A 1, .•• , An E !JT, 
then 

1 QA,~ (~AJ er. 

lf (c) is replaced by closure under countable union, that is, 
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(d) If A1, A2, ... E .7, then U~1 A; E .7, 

.9' is called a a-field (the term a-algebra is also used). Just as above, Y is 
also closed under countable intersection. 

If Y is a field, a countable union of sets in :Y can be expressed as the limit 
of an increasing sequence of sets in .7, and conversely. To see this, note that 
if A= U~= 1 An, then U7=1 A; t A; conversely, if An t A, then A= U~=I An. 
This shows that a a-field is a field that is closed under limits of increasing 
sequences. 

1.2.2 Examples. The largest a-field of subsets of a fixed set Q is the col
lection of all subsets of Q. The smallest a-field consists of the two sets 0 
and n. 

Let A be a nonempty proper subset of Q, and let Y = {0, Q, A, N}. Then 
Y is the smallest a-field containing A. For if~ is a a-field and A E :9', then 
by definition of a a-field, Q, 0, and Ar belong to ~. hence Y c ~. But Y is 
a a-field, for if we form complements or unions of sets in Y, we invariably 
obtain sets in.'#'. Thus .9' is a a-field that is included in any a-field containing 
A, and the result follows. 

If A1, ... , An are arbitrary subsets of Q, the smallest a-field containing 
A 1, ••• , An may be described explicitly; see Problem 8. 

If.'? is a class of sets, the smallest a -field containing the sets of.'? will be 
written as a(Y), and sometimes called the minimal a-field over .'?. We also 
call a(Y) the a-field generated by Y, and currently this is probably the most 
common terminology. 

Let Q be the set ~ of real numbers. Let Y consist of all finite disjoint 
unions of right-semiclosed intervals. (A right-semiclosed interval is a set 
of the form (a, b] = {x: a< x::; b}, -oo::; a< b < oo; by convention we 
also count (a, oo) as right-semiclosed for -oo::; a< oo. The convention is 
necessary because ( -oo, a] belongs to .'Y, and if .'7' is to be a field, the com
plement (a, oo) must also belong to .'#'.) It may be verified that conditions 
(a)-(c) of 1.2.1 hold; and thus .'7' is a field. But .'T is not a a-field; for 
example, An = (0, 1- (1/n)] E .7, n = 1, 2, ... , and U~1 An = (0, 1) ¢ .'Y. 

If Q is the set "i = [ -oo, oo] of extended real numbers, then just as above, 
the collection of finite disjoint unions of right-semiclosed intervals forms a 
field but not a a-field. Here, the right-semiclosed intervals are sets of the 
form (a, b] = {x: a < x::; b}, -oo ::; a < b::; oo, and, by convention, the sets 
[- oo, b] = {x: -oo ::; x ::; b}, -oo ::; b ::; oo. (In this case the convention is 
necessary because (b, oo] must belong to Y, and therefore the complement 
[ -oo, b] also belongs to .7.) 

There is a type of reasoning that occurs so often in problems involving 
a-fields that it deserves to be displayed explicitly, as in the following typical 
illustration. 



1.2 FIELDS, a-FIELDS, AND MEASURES 5 

If :5' is a class of subsets of Q and A c Q, we denote by l:f' n A the class 
{B n A: BE 23}. If the minimal er-field over If. is er(Ci') = Y, let us show 
that 

erA(if' nA) =.rnA, 

where erA (11' n A) is the minimal er-field of subsets of A over g-:· n A. (In other 
words, A rather than Q is regarded as the entire space.) 

Now it' c .7, hence ~· n A c .Y n A, and it is not hard to verify that .!JT n A 
is a er-field of subsets of A. Therefore erA (:5' n A) c Y n A. 

To establish the reverse inclusion we must show that B n A E erA (23 n A) for 
all B E .rJT. This is not obvious, so we resort to the following basic reasoning 
process, which might be called the good sets principle. Let c'l" be the class of 
good sets, that is, let Y consist of those sets B E Y such that 

B nA E erA(~' nA). 

Since Y and erA (15 n A) are er-fields, it follows quickly that .7 is a er-field. 
But g-· c .7, so that er(W) c .7, hence .7 = .7 and the result follows. Briefly, 
every set in W is good and the class of good sets forms a er-field; consequently, 
every set in er(/3) is good. 

One other comment: If 15' is closed under finite intersection and A E If', 
then If' nA = {C E 25: C c A}. (Observe that if C C A, then C = C nA.) 

1.2.3 Definitions and Comments. A measure on a er-field Y is a nonneg
ative, extended real-valued function JL on Y such that whenever A 1, A2, ... 
form a finite or countably infinite collection of disjoint sets in .7, we have 

JL (VAn) = ~ jt(An ). 

If JL(Q) = 1, JL is called a probability measure. 
A measure space is a triple (Q, .7, JL) where Q is a set, Y is a er-field 

of subsets of Q, and JL is a measure on .7. If JL is a probability measure, 
(Q, .'7, JL) is called a probability space. 

It will be convenient to have a slight generalization of the notion of a 
measure on a er-field. Let Y be a field, JL a set function on .!JT (a map from 
Y to llf ). We say that JL is countably additive on .!JT iff whenever A1, A2, ... 
form a finite or countably infinite collection of disjoint sets in c!JT whose union 
also belongs toY (this will always be the case if Y is a er-field) we have 

JL (VAn) = ~jt(An)· 
If this requirement holds only for finite collections of disjoint sets in Y, JL is 
said to be finitely additive on !7. To avoid the appearance of terms of the form 
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+oo -oo in the summation, we always assume that +oo and -oo cannot both 
belong to the range of JL. 

If JL is countably additive and tt(A) 2: 0 for all A E.¥, JL is called a measure 
on .¥, a probability measure if tt(Q) = I. 

Note that countable additivity actually implies finite additivity. For if tt(A) 
= +oo for all A E .¥, or if tt(A) = -oo for all A E .¥, the result is immediate; 
therefore assume tt(A) finite for some A E.¥. By considering the sequence 
A, 0, 0, ... , we find that tt(0) = 0, and finite additivity is now established by 
considering the sequence At, ... , An, 0, 0, ... , where At, ... , An are disjoint 
sets in.¥. 

Although the set function given by tt(A) = +oo for all A E .9' satisfies the 
definition of a measure, and similarly tt(A) = -oo for all A E .¥ defines a 
countably additive set function, we shall from now on exclude these cases. 
Thus by the above discussion, we always have tt(0) = 0. 

If A E .9' and tt(Ac) = 0, we can frequently ignore Ac; we say that JL is 
concentrated on A. 

1.2.4 Examples. Let Q be any set, and let §T consist of all subsets of 
Q. Define tt(A) as the number of points of A. Thus if A has n members, 
n = 0, I, 2, ... , then tt(A) = n; if A is an infinite set, tt(A) = oo. The set 
function JL is a measure on .¥, called counting measure on Q. 

A closely related measure is defined as follows. Let Q = {xt, x2, ... } be 
a finite or countably infinite set, and let Pt, p2, ... be nonnegative numbers. 
Take .¥ as all subsets of Q, and define 

Thus if A = {x;l' x;2, •• • }, then tt(A) = p;1 + p;2 + · · ·. The set function JL is 
a measure on.¥ and tt{x;} = p;, i = 1, 2, .... A probability measure will be 
obtained iff L; p; = I; if all p; = 1, then JL is counting measure. 

Now if A is a subset of~. we try to arrive at a definition of the length of A. 
If A is an interval (open, closed, or semiclosed) with endpoints a and b, it is 
reasonable to take the length of A to be tt(A) = b- a. If A is a complicated set, 
we may not have any intuition about its length, but we shall see in Section 1.4 
that the requirements that tt(a, b] = b - a for all a, b E ~. a < b, and that JL 
be a measure, determine JL on a large class of sets. 

Specifically, JL is determined on the collection of Borel sets of ~' denoted 
by .513'(~) and defined as the smallest cr-field of subsets of ~ containing all 
intervals (a, b], a, b E ~. 

Note that .13'(~) is guaranteed to exist; it may be described (admittedly in a 
rather ethereal way) as the intersection of all cr-fields containing the intervals 
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(a, b]. Also, if a cr-field contains, say, all open intervals, it must contain all 
intervals (a, b], and conversely. For 

(a, b] = n (a. b + ~) 
n=l 

and (a, b)= lJ (a, b- ~]. 
n=l 

Thus .J5'(~) is the smallest cr-field containing all open intervals. Similarly we 
may replace the intervals (a, b] by other classes of intervals, for instance, 

all closed intervals, 
all intervals [a, b), a, b E ~. 

all intervals (a, oo ), a E ~. 

all intervals [a, oo ), a E ~. 

all intervals ( -oo, b), b E ~. 

all intervals ( -oo, b], bE ~-

Since a cr-field that contains all intervals of a given type contains all inter
vals of any other type, ._%'(~) may be described as the smallest cr-field that 
contains the class of all intervals of~- Similarly, 35'(~) is the smallest cr-field 
containing all open sets of ~- (To see this, recall that an open set is a count
able union of open intervals.) Since a set is open iff its complement is closed, 
c~(~) is the smallest cr-field containing all closed sets of ~- Finally, if .97Q is 
the field of finite disjoint unions of right-semiclosed intervals (see 1.2.2), then 
._%'(~) is the smallest cr-field containing the sets of §0. 

Intuitively, we may think of generating the Borel sets by starting with the 
intervals and forming complements and countable unions and intersections in 
all possible ways. This idea is made precise in Problem 11. 

The class of Borel sets of i:, denoted by .%'(i:), is defined as the smallest 
cr-field of subsets of i: containing all intervals (a, b], a, bE i:. The above 
discussion concerning the replacement of the right-semiclosed intervals by 
other classes of sets applies equally well to i:. 

If E E ._%'(~). JJ(E) will denote {B E ._%'(~): B C E}; this coincides with 
{An E: A E ._%'(~)} (see 1.2.2). 

We now begin to develop some properties of set functions. 

1.2.5 Theorem. Let JL be a finitely additive set function on the field .¥. 

(a) JL(0) = 0. 
(b) JL(A U B)+ JL(A n B) = JL(A) + JL(B) for all A, BE .'Y. 
(c) If A, BE.¥ and B c A, then JL(A) = JL(B) + JL(A- B) 

(hepce JL(A -B) = JL(A) - JL(B) if JL(B) is finite, and JL(B) ::=. JL(A) if 
JL(A- B) 2: 0). 
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(d) If JL is nonnegative, 

for all At, ... ,An E.¥. 

If JL is a measure, 

for all At, A2, ... E !T such that U~=t An E .'Y. 

PROOF. (a) Pick A E !T such that JL(A) is finite; then 

JL(A) = JL(A U 0) = JL(A) + JL(0). 

(b) By finite additivity, 

JL(A) = JL(A n B)+ JL(A -B), 

JL(B) = JL(A n B)+ JL(B- A). 

Add the above equations to obtain 

JL(A) + JL(B) = JL(A n B)+ [JL(A -B)+ JL(B- A)+ JL(A n B)] 

= JL(A n B) + JL(A U B). 

(c) We may write A = B U (A- B), hence JL(A) = JL(B) + JL(A- B). 
(d) We have 

n 

UA; =At u (A~ nA2) u (A~ nA2 nA3) u · · · u (A~ n · · · nA~_ 1 nAn) 
i=t 

[see Section 1.1, formula (2)]. The sets on the right are disjoint and 

by (c). 

The case in which JL is a measure is handled using identity (3) of Sec
tion 1.1. D 

1.2.6 Definitions. A set function JL defined on !T is said to be finite iff 
JL(A) is finite, that is, not ±oo, for each A E .¥. If JL is finitely additive, it is 
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sufficient to require that tt(Q) be finite; for Q =AU Ac, and if tt(A) is, say, 
+oo, so is tt(D.). 

A nonnegative, finitely additive set function JL on the field .¥is said to be 
a-finite on.¥ iff Q can be written as U::0= 1 An where the An belong to.¥ and 
tt(An) < oo for all n. [By formula (3) of Section 1.1, the An may be assumed 
disjoint.] We shall see that many properties of finite measures can be extended 
quickly to a-finite measures. 

It follows from 1.2.5(c) that a nonnegative, finitely additive set function JL 
on a field.¥ is finite iff it is bounded; that is, sup{ ltt(A)I: A E .¥} < oo. This 
no longer holds if the nonnegativity assumption is dropped (see Problem 4). 
It is true, however, that a countably additive set function on a a-field is finite 
iff it is bounded; this will be proved in 2.1.3. 

Countably additive set functions have a basic continuity property, which we 
now describe. 

1.2. 7 Theorem. Let JL be a countably additive set function on the a-field Y. 

(a) If A1, A2, ... E.¥ and An t A, then tt(An)--+ tt(A) as n --+ 00. 

(b) If A1,A2,··· E!T,An ..j,A, and tt(AI) is finite [hence tt(An) is fi
nite for all n since tt(AI) = tt(An) + tt(AI -An)], then tt(An)--+ tt(A) as 
n--+ oo. 

The same results hold if .9' is only assumed to be a field, if we add the 
hypothesis that the limit sets A belong to.¥. [If A ¢.¥and JL 2: 0, 1.2.5(c) 
implies that tt(An) increases to a limit in part (a), and decreases to a limit in 
part (b), but we cannot identify the limit with tt(A).] 

PRooF. (a) If tt(An) = oo for some n, then tt(A) = tt(An) + tt(A -An) 
= oo + tt(A -An) = oo. Replacing A by Ak we find that tt(Ak) = oo for all 
k 2: n, and we are finished. In the same way we eliminate the case in which 
tt(An) = -oo for some n. Thus we may assume that all tt(An) are finite. 

Since the An form an increasing sequence, we may use identity (5) of 
Section 1.1: 

A= A1 U (A2- A1) U "• U (An- An-I) U • · ·. 

Therefore, by 1.2.5(c), 

tt(A) = tt(AI) + tt(A2)- tt(AI) + · · · + tt(An)- tt(An-1) + · · · 
= lim tt(An ). 

n->oo 

fb) If An ..j, A, then A1 -An t A1- A, hence tt(AI -An)--+ tt(AI- A) 
by (a). The result now follows from 1.2.5(c). D 
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We shall frequently encounter situations in which finite additivity of a partic
ular set function is easily established, but countable additivity is more difficult. 
It is useful to have the result that finite additivity plus continuity implies 
countable additivity. 

1.2.8 Theorem. Let IL be a finitely additive set function on the field .¥. 

(a) Assume that IL is continuous from below at each A E.¥, that is, if 
At.A2, ... E .'Y, A= U~ 1 An E.¥, and Ant A, then ~L(An)---+ ~L(A). It fol
lows that IL is countably additive on .¥. 

(b) Assume that IL is continuous from above at the empty set, that is, if 
A 1, A2, ... , E .¥ and An ..j, 0, then ~L(An) ---+ 0. It follows that IL is countably 
additive on .¥. 

PRooF. (a) Let A 1,A2, ... be disjoint sets in.¥ whose union A belongs to 
.¥. If Bn = U?=l A; then Bn t A, hence ~L(Bn)---+ ~L(A) by hypothesis. But 
~L(Bn) = 2.::?= 1 ~L(A;) by finite additivity, hence ~L(A) = limn--->oo 2.::?= 1 ~L(A;), 
the desired result. 

(b) Let A 1, A2, ... be disjoint sets in .¥whose union A belongs to .¥, and 
let Bn = U?=l A;. By 1.2.5(c), ~L(A) = ~L(Bn) + ~L(A- Bn); but A- Bn ..j, 0, 
so by hypothesis, ~L(A - Bn) ---+ 0. Thus ~L(Bn) ---+ ~L(A), and the result follows 
as in (a). D 

If ILl and IL2 are measures on the cr-field .¥, then IL = ILl - IL2 is countably 
additive on.¥, assuming either ILl or 1L2 is finite-valued. We shall see later (in 
2.1.3) that any countably additive set function on a cr-field can be expressed 
as the difference of two measures. 

For examples of finitely additive set functions that are not countably addi
tive, see Problems 1, 3, and 4. 

Problems 

1. Let Q be a countably infinite set, and let .¥consist of all subsets of Q. 

Define ~L(A) = 0 if A is finite, ~L(A) = oo if A is infinite. 

(a) Show that IL is finitely additive but not countably additive. 
(b) Show that Q is the limit of an increasing sequence of sets An with 

~L(An) = 0 for all n, but ~L(Q) = 00. 

2. Let IL be counting measure on Q, where Q is an infinite set. Show that 
there is a sequence of sets An ..j, 0 with limn--.oo ~L(An) =I 0. 

3. Let Q be a countably infinite set, and let.¥ be the field consisting of all 
finite subsets of Q and their complements. If A is finite, set ~L(A) = 0, 
and if Ac is finite, set ~L(A) = 1. 

(a) Show that IL is finitely additive but not countably additive on .¥. 
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(b) Show that Q is the limit of an increasing sequence of sets An E !7 
with tt(An) = 0 for all n, but jt(Q) = 1. 

4. Let .r be the field of finite disjoint unions of right-semiclosed intervals 
of ~. and define the set function JL on .r as follows. 

JL( -oo, a]= a, 

JL(a, b] = b- a, 

jt(b, 00) = -b, 

jt(~) = 0, 

n 

= LJL(I;) 
i=l 

a E ~. 

a,b E ~. 

bE~. 

a< b, 

if It. ... , In are disjoint right -semiclosed intervals. 

(a) Show that JL is finitely additive but not countably additive on .r. 
(b) Show that JL is finite but unbounded on .r. 

5. Let JL be a nonnegative, finitely additive set function on the field .r. If 
At, A2, ... are disjoint sets in .'T and U::1 An E Y, show that 

6. Let f: Q--+ Q', and let fP be a class of subsets of Q'. Show that 

cr(f- 1(fP)) = f- 1(cr(fP)), 

where f- 1 (fP) = {f- 1 (A): A E fP}. (Use the good sets principle.) 

7. If A is a Borel subset of~. show that the smallest cr-field of subsets of 
A containing the sets open in A (in the relative topology inherited from 
~) is {B E ._%'(~): B C A}. 

8. LetA 1, •• • ,An be arbitrary subsets of a set Q. Describe (explicitly) the 
smallest cr-field Y containing A 1, ••• , An. How many sets are there in 
Y? (Give an upper bound that is attainable under certain conditions.) 
List all the sets in .r when n = 2. 

9. (a) Let tf be an arbitrary class of subsets of Q, and let ~ be the col
lf!ction of all finite unions U?=t A;, n = 1, 2, ... , where each A; is a 
~ite intersection nJ=l Bij, with Bij or its complement a set in ?P. 
Show that ~ is the minimal field (not cr-field) over tf. 

(b) Show that the minimal field can also be described as the collection 
!!lJ of all finite disjoint unions U?= 1 A;, where the A; are as above. 
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(c) If 9!, ... , .¥, are fields of subsets of Q, show that the smallest field 
including ,9')' ... 'c'F;, consists of all finite (disjoint) unions of sets 
At n ···nAn with A; E .97;, i = 1, ... , n. 

10. Let JL be a finite measure on the cr-field .'#'. If An E .r, n = 1, 2, ... and 
A = limn An (see Section 1.1 ), show that JL(A) = limn--+oc jt(An ). 

11.* Let 'if? be any class of subsets of Q, with 0, Q E '6'. Define 'if?o = 'if?, 
and for any ordinal a > 0 write, inductively, 

where!!!);' denotes the class of all countable unions of differences of sets 
in !!2J. 

Let Y = U{ Wa: a < ,Bt}, where .Bt is the first uncountable ordinal, 
and let Y be the minimal cr-field over If'. Since each if'a C.'#', we have 
.'? C Y. Also, the Wa increase with a, and W C Wa for all a. 

(a) Show that Y is a cr-field (hence Y = Y by minimality of .7). 

(b) If the cardinality of W is at most c, the cardinality of the reals, 
show that card Y ::: c also. 

12. Show that if JL is a finite measure, there cannot be uncountably many 
disjoint sets A such that JL(A) > 0. 

1.3 EXTENSION OF MEASURES 

In 1.2.4, we discussed the concept of length of a subset of IRL The problem 
was to extend the set function given on intervals by JL(a, b] = b - a to a larger 
class of sets. If 90 is the field of finite disjoint unions of right-semiclosed 
intervals, there is no problem extending JL to .9'0: if A 1, •.• , An are disjoint 
right-semiclosed intervals, we set JL(U7= 1 A;) = 2.::7= 1 JL(A;). The resulting set 
function on 90 is finitely additive, but countable additivity is not clear at this 
point. Even if we can prove countable additivity on 9Q, we still have the 
problem of extending JL to the minimal cr-field over 9"0, namely, the Borel sets. 

We are going to consider a generalization of the above problem. Instead of 
working only with length, we shall examine set functions given by JL(a, b] 
= F(b)- F(a) where F is an increasing right-continuous function from ~ 
to ~. The extension technique to be developed is not restricted to set func
tions defined on subsets of ~; we shall prove a general result concerning the 
extension of a measure from a field Yo to the minimal cr-field over §0. 

It will be convenient to consider finite measures at first, and nothing is lost 
if we normalize and work with probability measures. 

1.3.1 Lemma. Let Yo be a field of subsets of a set Q, and let P be a 
probability measure on §0. Suppose that the sets A 1, A2, ••• belong to Yo and 
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increase to a limit A, and that the sets A1', A2', ... belong to .9'0 and increase 
to A'. (A and A' need not belong to 9().) If A c A', then 

lim P(Am) :S. lim P(An'). 
m----+oo n----+00 

Thus if An and An' both increase to the same limit A, then 

lim P(An) = lim P(An'). 
n----+00 n----+00 

PROOF. If m is fixed, Am nAn' t Am n A' =Am as n ---+ 00, hence 

P(Am nAn')---+ P(Am) 

by 1.2.7(a). But P(Am nAn') :S P(An') by 1.2.5(c), hence 

P(Am) = lim P(Am nAn') :S lim P(An'). 
n----+00 n----*00 

Let m ---+ oo to finish the proof. D 

We are now ready for the first extension of P to a larger class of sets. 

1.3.2 Lemma. Let P be a probability measure on the field §'o. Let ::9' be the 
collection of all limits of increasing sequences of sets in 9Q, that is, A E :?? 
iff there are sets An E §'o, n = 1, 2, ... , such that An t A. (Note that ::9' can 
also be described as the collection of all countable unions of sets in .9'Q; see 
1.2.1.) 

Define JL on :7' as follows. If An E §'o, n = 1, 2, ... , An t A ( E ::9'), set 
JL(A) = limn--.ooP(An); JL is well defined by 1.3.1, and JL = P on §'o. Then: 

(a) 0 E ;?? and JL(0) = 0; Q E ;?? and JL(Q) = 1; 0::: JL(A)::: 1 for all 
A E :??. 

(b) If G~o G2 E .o/, then Gt U G 2, Gt n G 2 E :?? and 

JL(Gt U G2) + JL(Gt n G2) = JL(Gt) + JL(G2). 

(c) If Gt. G2 E .o/ and G 1 c G2, then JL(Gt) :S JL(G2). 

(d) If Gn E ~. n = 1, 2, ... , and Gn t G, 

then G E :?? and jt(Gn)---+ jt(G). 

PRooF. (a) This is clear since JL = P on .9'Q and Pis a probability measure. 

(b) Let AntE §'o, Ant t Gt; An2 E 7Q, An2 t G2. We have P(Ant UAn2) 
+ P(Ant n An2) = P(Ant) + P(An2) by 1.2.5(b); let n ---+ oo to complete the 
argument. 

(c) This follows from 1.3.1. 
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(d) Since G is a countable union of sets in §?0, G E ~. Now for each 
n we can find sets Anm E §?0, m = 1, 2, ... , with Anm t Gn as m---+ 00. The 
situation may be represented schematically as follows: 

Let Dm =Atm UA2m U · · · UAmm (the Dm form an increasing sequence). 
The key step in the proof is the observation that 

for (1) 

and, therefore, 

for n ::: m. (2) 

Let m---+ oo in (1) to obtain Gn c U~=l Dm c G; then let n ---+ oo to conclude 
that Dm t G, hence P(Dm)---+ tt(G) by definition of f.L· Now let m ---+ oo in 
(2) to obtain tt(Gn) :S Iimm--->ooP(Dm) :S limm--+oott(Gm); then let n---+ 00 to 
conclude that limn--+oo tt(Gn) = limm--.oo P(Dm) = tt(G). D 

We now extend JL to the class of all subsets of Q; however, the extension 
will not be countably additive on all subsets, but only on a smaller cr-field. 
The construction depends on properties (a)-(d) of 1.3.2, and not on the fact 
that JL was derived from a probability measure on a field. We express this 
explicitly as follows: 

1.3.3 Lemma. Let ~ be a class of subsets of a set Q, JL a nonnegative 
real-valued set function on ~ such that ~ and JL satisfy the four conditions 
(a)-( d) of 1.3.2. Define, for each A c Q, 

tt*(A) = inf{tt(G): G E ~. G :>A}. 

Then: 

(a) tt* = JL on ~. 0::::; tt*(A)::: 1 for all A C Q. 

(b) tt*(A U B)+ tt*(A n B)::: tt*(A) + tt*(B); in particular, tt*(A) 
+ tt*(Ac) 2: f.L*(Q) + tt*(0) = jt(Q) + tt(0) = 1 by 1.3.2(a). 
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(c) If A c B, then tt*(A).::; tt*(B). 

(d) If An t A, then tt*(An)--+ tt*(A). 

PROOF. (a) This is clear from the definition of tt* and from 1.3.2(c). 

15 

(b) If e > 0, choose Gt. G2 E.'??, G1 :>A, G2 :> B, such that tt(Gt) 
.::; tt*(A) + e/2, tt(G2) .:S tt*(B) + e/2. By 1.3.2(b), 

tt*(A) + tt*(B) + e 2: tt(Gt) + tt(G2) = tt(Gt U G2) + tt(Gt n G2) 

2: tt*(A U B)+ tt*(A n B). 

Since e is arbitrary, the result follows. 
(c) This follows from the definition of JL *. 
(d) By (c), tt*(A) 2: limn-->oo tt*(An). If£> 0, for each n we may choose 

Gn E ~. Gn :>An, such that 

Now A = U~ 1 An C U~ 1 Gn E ~; hence 

Jk'(A),; ,.. (Q G,) by (c) 

=Jk(Qc.) by(a) 

= n~JL (u Gk) by 1.3.2(d). 
k=l 

The proof will be accomplished if we prove that 

n = 1, 2, .... 

This is true for n = 1, by choice of G 1• If it holds for a given n, we apply 
1.3.2(b) to the sets U~=l G; and Gn+l to obtain 
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Now (U7= 1 G;) n Gn+t :> Gn n Gn+l :>An nAn+! =An, so that the induc
tion hypothesis yields 

(

n+l ) 
JL ~G; 

n 

.::; tt*(An) + e L 2-i + tt*(An+l) + £2-(n+l) - tt*(An) 
i=l 

n+l 
.:S tt*(An+l) + £ L 2-i. D 

i=l 

Our aim in this section is to prove that a cr-finite measure on a field Yo has a 
unique extension to the minimal cr-field over §i(i. In fact an arbitrary measure JL 
on Yo can be extended to cr(§'o ), but the extension is not necessarily unique. 
In proving this more general result (see Problem 3), the following concept 
plays a key role. 

1.3.4 Definition. An outer measure on Q is a nonnegative, extended real
valued set function A on the class of all subsets of Q, satisfying 

(a) A(0) = 0, 
(b) A c B implies A(A) ::::; A(B) (monotonicity), and 
(c) A (U~ 1 An) .:S 2.::~ 1 A(An) (countable subadditivity). 

The set function tt* of 1.3.3 is an outer measure on Q. Parts 1.3.4(a) and (b) 
follow from 1.3.3(a), 1.3.2(a), and 1.3.3(c), and 1.3.4(c) is proved as follows: 

as desired. 

n 

.::; lim '""'JL *(A;) 
n---*OC L......J 

i=l 

by 1.3.3(d). 

by 1.3.3(b), 

We now identify a cr-field on which tt* is countably additive: 

1.3.5 Theorem. Under the hypothesis of 1.3.2, with tt* defined as in 1.3.3, 
let .Jg = {H c Q: tt*(H) + tt*(Hc) = 1} 
[.Jg = {H C Q: tt*(H) + tt*(Hc) .:S 1 by 1.3.3(b).] 
Then Ji.' is a cr-field and tt* is a probability measure on~ 

PROOF. First note that ~C.~ For if An E Yo and An t G E ~. then 
Gc C A~, so P(An) + tt*(Gc) .:S P(An) +P(A~) = 1. By 1.3.3(d), tt*(G) 
+ tt*(Gc) :S 1. 
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Clearly ~ is closed under complementation, and Q E ~ by 1.3.3(a) and 
1.3.2(a). If H t. H 2 C Q, then by 1.3.3(b), 

tt*(HtUH2)+tt*(HtnH2).:Stt*(Ht)+tt*(H2) (1) 

and since 

we have 

tt*(Ht UH2)c +tt*(Ht nHd.::: tt*(HD+tt*(H}). (2) 

If H t. H 2 E ~ add (1) and (2); the sum of the left sides is at least 
2 by 1.3.3(b), and the sum of the right sides is 2. Thus the sum of the left 
sides is 2 as well. If a=tt*(Ht UH2)+tt*(Ht UH2)c, h=tt*(Ht nH2) 
+ JL * (H 1 n H 2 )c, then a + b = 2, hence a _::: 1 or b _::: 1. If a _::: 1, then a = 1, 
so b = 1 also. Consequently H 1 U H 2 E ~ and H 1 n H 2 E % We have 
therefore shown that ~ is a field. Now equality holds in (1), for if not, 
the sum of the left sides of (1) and (2) would be less than the sum of the right 
sides, a contradiction. Thus tt* is finitely additive on % 

To show that~ is a cr-field, let H n E ~ n = 1, 2, ... , H n t H; tt*(H) 
+ tt*(Hc) 2: 1 by 1.3.3(b). But tt*(H) = limn--->oo tt*(Hn) by 1.3.3(d), hence 
for any£> 0, tt*(H) _::: tt*(Hn) +£for large n. Since tt*(Hc) _::: tt*(H~) for 
all n by 1.3.3(c), and Hn E ~we have tt*(H) + tt*(Hc) _::: 1 +£.Since£ is 
arbitrary, H E ~ making ~ a cr-field. 

Since tt*(Hn)---+ tt*(H), tt* is countably additive by 1.2.8(a). D 

We now have our first extension theorem. 

1.3.6 Theorem. A finite measure on a field Yo can be extended to a measure 
on cr(§i(i). 

PROOF. Nothing is lost by considering a probability measure. (Replace JL by 
ttl tt(Q) if necessary.) The result then follows from 1.3.1-1.3.5 if we observe 
that Yo C ~ C ~ hence cr(§i(i) C % Thus JL * restricted to cr(§'o) is the 
desired extension. D 

In fact there is very little difference between cr(§i(i) and ~; if B E ~ 

then B can be expressed as AU N, where A E cr(§i(i) and N is a subset of a 
set M E cr(§i(i) with tt*(M) = 0. To establish this, we introduce the idea of 
completion of a measure space. 

1.3. 7 Definitions. A measure JL on a cr-field .¥ is said to be complete iff 
whenever A E ,9' and tt(A) = 0 we have B E .¥for all B cA. 
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In 1.3.5, tt* on .)i' is complete, for if B CAE Si/5; tt*(A) = 0, then tt*(B) + 
tt*(Bc) :S tt*(A) + tt*(Bc) = tt*(B') :S 1; thus BE .5'6: 

The completion of a measure space (Q, §:-, JL) is defined as follows. Let 
~ be the class of sets AU N, where A ranges over.¥ and N over all subsets 
of sets of measure 0 in .':7. 

Now ~ is a cr-field including .¥, for it is clearly closed under countable 
union, and if A UN E .¥, N C M E .¥, tt(M) = 0, then (A U N)c = Ac n Nc 
= (Ac nMc) U (Ac n (Nc- Me)) andN' n (Nc- Me)= Ac n (M- N) C M, 
so (A UN)c E ~-

We extend JL to !TIL by setting tt(A UN)= tt(A). This is a valid definition, 
for if A1 UN1 =A2 UN2 E ~.we have 

since At -A2 C N2. Thus tt(At) :S tt(A2), and by symmetry, tt(At) = tt(A2). 
The measure space (Q, ~. tt) is called the completion of (Q, .¥, JL), and~ 
the completion of .¥relative to JL. 

Note that the completion is in fact complete, for if M c A UN E ~ where 
A E .':7, tt(A) = 0, N C B E .¥, tt(B) = 0, then M C AU B E .97, tt(A U B) 
= 0; hence M E ~. 

1.3.8 Theorem. In 1.3.6, (Q, Jii?, tt*) is the completion of (Q, cr(§?Q), tt*). 

PROOF. We must show that.% = ~· where.¥= cr(§?Q). If A E ~ by defi
nition of tt*(A) and tt*(Ac) we can find sets Gn, Gn' E cr(§?Q), 
n = 1, 2, ... , with Gn c A c Gn' and tt*(Gn)--+ tt*(A), tt*(Gn')--+ tt*(A). 
Let G = U::O=t Gn, G' = n::O=t Gn'. Then A= G U (A- G), G E cr(9'Q), 
A- G c G'- G E cr(§'O), tt*(G'- G) :S tt*(Gn'- Gn)--+ 0, so that tt*(G' 
-G)=O. ThusA E~·· 

Conversely if BE~·, then B =AU N, A E .'7, N C ME .':7, tt*(M) = 0. 
Since .¥ C 5t:· we have A E Si/5; and since (Q, Si/5; JL *) is complete we have 
N E .Jii?. Thu;; B E:: ~~*~'( 0 

To prove the uniqueness of the extension from Yo to .¥, we need the 
following basic result. 

1.3.9 Monotone Class Theorem. Let .976 be a field of subsets of Q, and W 
a class of subsets of Q that is monotone (if An E gc·· and An t A or An ..j.. A, 
then A E ~). If 17' :> §?0, then f5 :> cr(.9'Q), the minimal cr-field over §?0. 

PROOF. The technique of the proof might be called "boot strapping." Let 
.97 = cr(§?Q) and let .J& be the smallest monotone class containing all sets of 
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§i(i. We show that A = !7, in other words, the smallest monotone class and 
the smallest cr -field over a field coincide. The proof is completed by observing 
that .At: C W. 

Fix AEA and let .. t%A={BE.Af%: AnB,AnBcandAenBE~ft}; 
then A A is a monotone class. In fact .A% A = .Aft; for if A E §i(i, then Yo C 
AA since Yo is a field, hence A C AA by minimality of .. 4'6"; consequent
ly AA =A. But this shows that for any BE A we have An B, An Be, 
Ae n B E A for any A E §i(i, so that A 8 :> §i(i. Again by minimality of .~6, 
As=A. 

Now A is a field (for if A, BE A = AA, then An B, An Be, N n B 
E A) and a monotone class that is also afield is a cr-field (see 1.2.1), hence 
.Aft is a cr-field. Thus !7 c A by minimality of !7, and in fact .'Y =vii§ 
because !7 is a monotone class including §i(i. D 

We now prove the fundamental extension theorem. 

1.3.10 Caratheodory Extension Theorem. Let JL be a measure on the field 
Yo of subsets of Q, and assume that JL is cr-finite on §i(i, so that Q can be 
decomposed as U~ 1 An, where An E Yo and jt(An) < oo for all n. Then JL 
has a unique extension to a measure on the minimal cr-field !7 over §i(i. 

PRooF. Since Yo is a field, the An may be taken as disjoint [replace An 
by A~ n · · · nA~_ 1 nAn, as in formula (3) of 1.1]. Let Jtn(A) = JL(A nAn), 
A E .9?(i; then f.Ln is a finite measure on §i(i, hence by 1.3.6 it has an extension 
JL~ to !7. As JL = Ln f.Ln, the set function JL* = Ln JL~ is an extension of JL, 
and it is a measure on !7 since the order of summation of any double series 
of nonnegative terms can be reversed. 

Now suppose that A is a measure on !7 and A = JL on §i(i. Define An (A) 
= A(A nAn), A E !7. Then An is a finite measure on !7 and An = f.Ln = JL~ 

on §i(i, and it follows that An = JL~ on !7. For W= {A E !7: An (A)= JL~ (A)} 
is a monotone class (by 1.2.7) that contains all sets of §'o, hence W = !7 by 
1.3.9. But then A= Ln An= Ln JL~ = JL*, proving uniqueness. D 

The intuitive idea of constructing a minimal cr-field by forming complements 
and countable unions and intersections in all possible ways suggests that if 
Yo is a field and !7 = cr(§i(i), sets in !7 can be approximated in some sense 
by sets in §i(i. The following result formalizes this notion. 

1.3.11 Approximation Theorem. Let (Q, !7, JL) be a measure space, and let 
Yo be a field of subsets of Q such that cr(§i(i) = .'Y. Assume that JL is cr-finite 
on §i(i, and let£ > 0 be given. If A E .'Y and JL(A) < oo, there is a set B E Yo 
such that JL(A ~B) < e. 
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PROOF. Let ~ be the class of all countable unions of sets of Yo. The con
clusion of 1.3.11 holds for any A E .'§', by 1.2.7(a). By 1.3.3, if JL is finite and 
A E Y, A can be approximated arbitrarily closely (in the sense of 1.3.11) by 
a set in :7', and therefore 1.3.11 is proved for finite JL. In general, let Q be the 
disjoint union of sets A, E .9#0 with JL(A,) < oo, and let f.Ln (C) = JL( C n A,), 
C EY. 

Then f.Ln is a finite measure on .27, hence if A E c'Y, there is a set B, E 90 
such that f.Ln (A ~ B,) < t:2-n. Since 

fL,(A ~B,) = JL((A ~B,) nA,) 

= JL[(A ~ (B, nA,)) nA,] = JL,(A ~ (B, nA,)), 

and B, n A, E .:?Q, we may assume that B, c A,. (The observation that B, n 
A, E 90 is the point where we use the hypothesis that JL is cr-finite on c9#Q, 
not merely on c¥".) If C = U:;"'=1 B,, then C nA, = B,, so that 

hence 

oo N 

JL(A ~C)= LJLn(A ~C)< t:. But U Bk -At C -A as N---+ 00, 

n=l k=l 

and A- U~=l Bk ..j.. A- C. If A E .'7 and JL(A) < oo, it follows from 1.2.7 
that JL(A ~ U~=l Bk)---+ JL(A ~C) as N---+ oo, hence is less than t: for large 
enough N. Set B = U~=l Bk E .97(). D 

1.3.12 Example. Let Q be the rationals, c97ii the field of finite disjoint unions 
of right-semiclosed intervals (a, b] ={wE Q: a< w _::: b}, a, b rational 
[counting (a, oo) and Q itself as right-semiclosed; see 1.2.2]. Let j7 = cr(co/o). 
Then: 

(a) .'7 consists of all subsets of Q. 

(b) If JL(A) is the number of points in A (JL is counting measure), then JL 
is cr-finite on Y but not on .9?(). 

(c) There are sets A E .Y7 of finite measure that cannot be approximated 
by sets in Yo. that is, there is no sequence A, E .97() with JL(A ~A,) ---+ 0. 

(d) If A= 2JL, then A= JL on Yo but not on Y. 

Thus both the approximation theorem and the Caratheodory extension theorem 
fail in this case. 
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PROOF. (a) We have {x} = n::o=l(x- (1/n),x], and therefore all singletons 
are in .r. But then all sets are in /JT since Q is countable. 

(b) Since Q is a countable union of singletons, JL is cr-finite on Y. But 
every nonempty set in c90 has infinite measure, so JL is not cr-finite on §i(i. 

(c) If A is any finite nonempty subset of Q, then JL(A ~B)= oo for all 
nonempty B E .9(), because any nonempty set in .9'<J must contain infinitely 
many points not in A. 

(d) Since A{x} = 2 and JL{x} = 1, A# JL on .9'. But A(A) = JL(A) 
= oo, A E .9'<J (except for A = 0). D 

Problems 

1. Let (Q, .'7, JL) be a measure space, and let ~ be the completion of .r 
relative to JL· If A c Q, define: 

Jto(A) = sup{JL(B): BE .9', B C A}, JL0 (A) = inf{JL(B): BE .9', B :>A}. 

If A E .9'/L, show that Jto(A) = JL0 (A) = JL(A). Conversely, if Jto(A) 

= JL0 (A) < oo, show that A E ~· 

2. Show that the monotone class theorem (1.3.9) fails if Yo is not assumed 
to be a field. 

3. This problem deals with the extension of an arbitrary (not necessarily 
cr-finite) measure on a field. 

(a) Let A be an outer measure on the set Q (see 1.3.4). We say that the 
set E is A-measurable iff 

A(A) = A(A n E)+ A(A n Ec) for all A c n. 
(The equals sign may be replaced by "2:," by subadditivity of A.) If 
v-/,J is the class of all A-measurable sets, show that ~i? is a cr-field, 
and that if E 1, E2 •... are disjoint sets in v#t whose union is E, and 
A c Q, we have 

(1) 
n 

In particular, A is a measuro:: on ./.C. [Use the definition of A-mea
surability to show that .A~t: i:> u ildd and that (1) holds for finite 
sequences. If E 1, E2, ... are disjoint sets in ult and F n = U7=l E; t 
E, show that 

\A(A) 2: A(A n Fn) + A(A n g)= t A(A n E;) + A(A n Ec), 
i=l 

and then let n ---+ oo.] 
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(b) Let JL be a measure on a field Yo of subsets of Q. If A C Q, define 

Show that JL* is an outer measure on Q and that JL* = JL on §0. 

(c) In (b), if A is the class of JL *-measurable sets, show that Yo C A. 
Thus by (a) and (b), JL may be extended to the minimal cr-field over 
§0. 

(d) In (b), if JL is cr-finite on §0, show that (Q, A, JL*) is the completion 
of [Q, cr(§'o ), JL *]. 

1.4 LEBESGUE-STIELTJES MEASURES AND DISTRIBUTION FUNCTIONS 

We are now in a position to construct a large class of measures on the Borel 
sets of IRL IfF is an increasing, right-continuous function from ~to ~.we set 
JL(a, b] = F(b)- F(a); we then extend JL to a finitely additive set function 
on the field §0(~) of finite disjoint unions of right-semiclosed intervals. If we 
can show that JL is countably additive on §0(~), the Caratheodory extension 
theorem extends JL to .513'(~). 

1.4.1 Definitions. A Lebesgue-Stieltjes measure on ~ is a measure JL on 
.513'(~) such that JL(l) < oo for each bounded interval I. A distribution function 
on ~ is a map F: ~---+ ~ that is increasing [a < b implies F(a) _::: F(b)] 

and right-continuous [limx--->x+ F(x) = F(xo)]. We are going to show that the 
0 

formula JL(a, b] = F(b)- F(a) sets up a one-to-one correspondence between 
Lebesgue-Stieltjes measures and distribution functions, where two distribution 
functions that differ by a constant are identified. 

1.4.2 Theorem. Let JL be a Lebesgue-Stieltjes measure on ~. Let 
F: ~---+ ~be defined, up to an additive constant, by F(b)- F(a) = JL(a, b]. 
[For example, fix F(O) arbitrarily and set F(x)- F(O) = JL(O, x], x > 0; 
F(O)- F(x) = JL(X, 0], x < 0.] Then F is a distribution function. 

PRooF. If a< b, then F(b)- F(a) = JL(a, b].:;: 0. If {xn} is a sequence of 
points such that x 1 > x2 > · · ·---+ x, then F(xn)- F(x) = JL(X,Xn]---+ 0 by 
1.2.7(b). D 

Now let F be a distribution function on ~. It will be convenient to 
work in the compact space "i, so we extend F to a map of "i into 
"i by defining F(oo) = limx-+oo F(x), F(-oo) = limx-+-oo F(x); the limits 
exist by monotonicity. Define JL(a, b] = F(b)- F(a), a, bE "i, a< b, and 
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let JL[ -oo, b] = F(b)- F( -oo) = tt( -oo, b]; then JL is defined on all right
semiclosed intervals of "i (counting [-oo, b] as right-semiclosed; see 1.2.2). 

If I 1, .•. , I k are disjoint right-semiclosed intervals of "i, we define 
JL{U~=l Ij) = I::~=l ttUj). Thus JL is extended to the field ._90("1) of finite 
disjoint unions of right-semiclosed intervals of "i, and JL is finitely additive 
on .9'Q("i). To show that JL is in fact countably additive on .9{i("i), we make 
use of 1.2.8(b), as follows. 

1.4.3 Lemma. The set function JL is countably additive on .9()("1). 

PRooF. First assume that F ( oo) - F ( -oo) < oo, so that JL is finite. Let 
A 1,A2, ... be a sequence of sets in .9{i("i) decreasing to 0. If (a, b] is one 
of the intervals of An, then by right continuity ofF, JL(a', b] = F(b)- F(a') 
--+ F(b)- F(a) = tt(a, b] as a'--+ a from above. 

Thus we can find sets Bn E .90("1) whose closures Bn (in "i) are included 
in An, with tt(Bn) approximating tt(An ). If£ > 0 is given, the finiteness of JL 
allows us to choose the Bn so that tt(An) - tt(Bn) < e2-n. Now n~1 Bn = 0, 
and it follows that n~=t Bk = 0 for sufficiently large n. (Perhaps the easiest 
way to see this is to note that the sets "i - Bn form an open covering of the 
compact set "i~ hence there is a finite subcovering, so that U~=t (R.- Bd = "i 
for some n. Therefore n~=t Bk = 0.) Now 

An C An-t c · · · c A 1 

n 

::: L tt(Ak- Bk) by 1.2.5(d) 
k=l 

< £. 

Thus tt(A,)--+ 0. 
Nowifli;(oo)- F(-oo) = oo, defineFn(x) = F(x), lxl _::: n; Fn(x) = F(n), 

x 2: n; Fn()c) = F(-n), x _::: -n. If Jtn is the set function corresponding to 
F n, then Jtn :S JL and Jtn --+ JL on .9{i("i). Let A 1, A2, ... be disjoint sets in 
.9{i("i) such that A = u~l An E §?O("i). Then tt(A) .2: L~l tt(An) 
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(Problem 5, Section 1.2) soifl.::::O=l tt(An) = oo, we are finished. Ifl.::::O=l tt(An) 
< oo, then 

jt(A) = lim Jtn(A) 
n-->oo 

since the Jtn are finite. Now as 2.::~ 1 tt(Ak) < oo, we may write 

00 

0.::: tt(A)- L tt(Ak) 
k=l 

00 

= lim ""[ttn(Ak)- tt(Ak)] 
n---;..oo L.....J 

k=! 

since 

We now complete the construction of Lebesgue-Stieltjes measures. 

1.4.4 Theorem. Let F be a distribution function on ~' and let JL(a, b] 
= F(b)- F(a), a < b. There is a unique extension of JL to a Lebesgue-Stieltjes 
measure on ~-

PROOF. Extend JL to a countably additive set function on 9Q(i) as above. 
Let .976(~) be the field of all finite disjoint unions of right-semiclosed inter
vals of~ [counting (a, oo) as right-semiclosed; see 1.2.2], and extend JL to 
9"0(~) as in the discussion that follows 1.4.2. [Take tt(a, oo) = F(oo)- F(a); 
tt(-oo, b] = F(b)- F(-oo), a, bE~; JL(~) = F(oo)- F(-oo); note that 
there is no other possible choice for JL on these sets, by 1.2.7(a).] Now the map 

(a,b]---+(a,b]. if a,bE~ orif bE~, a=-oo, 

(a,oo]---+(a,oo) if aE~ or if a= -oo 

sets up a one-to-one, JL-preserving correspondence between a subset of .97Q(i) 
(everything in .97Q(i) except sets including intervals of the form [ -oo, b]) 
and .976(~). It follows that JL is countably additive on .976(~). Furthermore, 
JL is cr-finite on .976(~) since JL(-n, n] < oo; note that JL need not be cr
finite on .97Q(i) since the sets (-n, n] do not cover "i. By the Caratheodory 
extension theorem, JL has a unique extension to 17'(~). The extension is 
a Lebesgue-Stieltjes measure because tt(a, b] = F(b)- F(a) < oo for a, b 
E ~.a< b. 0 
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1.4.5 Comments and Examples. IfF is a distribution function and JL the cor
responding Lebesgue-Stieltjes measure, we have seen that JL(a, b] 
= F(b)- F(a), a < b. The measure of any interval, right-serniclosed or not, 
may be expressed in terms of F. For if F(x-) denotes limy--.x F(y), then 

(1) JL(a, b] = F(b)- F(a), 

(2) JL(a, b)= F(b-)- F(a), 

(3) JL[a, b] = F(b)- F(a-), 

(4) JL[a, b)= F(b-)- F(a-). 

(Thus if F is continuous at a and b, all four expressions are equal.) For 
example, to prove (2), observe that 

JL(a,b)= lim JL(a,b-.!_] =lim [F(b-.!_) -F(a)] =F(b-)-F(a). 
n---+00 n n---+00 n 

Statement (3) follows because 

JL[a, b] = lim JL(a- .!_, b] = lim [F(b)- F(a- .!_)] = F(b)- F(a-); 
n---+00 n n---+00 n 

(4) is proved similarly. The proof of (3) works even if a= b, so that 
JL{x} = F(x)- F(x-). Thus 

(5) F is continuous at x iff JL{X} = 0; the magnitude of a discontinuity of 
F at x coincides with the measure of {x}. 

The following formulas are obtained from (1)-(3) by allowing a to approach 
-oo orb to approach +oo. 

(6) JL(-oo,x] = F(x)- F(-oo), 

(7) JL(-oo,x) = F(x-)- F(-oo), 

(8) JL(X, oo) = F(oo)- F(x), 

(9) JL[X, oo) = F(oo)- F(x-), 

(10) JL(IR) = F(oo)- F(-oo). 

(The formulas (6), (8), and (10) have already been observed in the proof of 
1.4.4.) 

If JL is finite, then F is bounded; since F may always be adjusted by an 
additive constant, nothing is lost in this case if we set F ( -oo) = 0. 

We may now generate a large number of measures on .%'(1R). For example, 
if f: IR ---+ IR, f :::::. 0, and f is integrable (Riemann for now) on any finite 
interval, then if we fix F(O) arbitrarily and define 

\ F(x)- F(O) = lx f(t)dt, 

F(O)- F(x) = 1° f(t)dt, 

X> 0; 

X< 0, 
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then F is a (continuous) distribution function and thus gives rise to a 
Lebesgue-Stieltjes measure; specifically, 

b 

tt(a, b] = 1 f(x)dx. 

In particular, we may take f(x) = 1 for all x, and F(x) = x; then JL(a, b] 
= b- a. The set function JL is called the Lebesgue measure on .j)'(~). The 
completion of ._%'(~) relative to Lebesgue measure is called the class of 
Lebesgue measurable sets, written J!J (~). Thus a Lebesgue measurable set 
is the union of a Borel set and a subset of a Borel set of Lebesgue measure 
0. The extension of Lebesgue measure to J!J (~) is also called "Lebesgue 
measure." 

Now let JL be a Lebesgue-Stieltjes measure that is concentrated on a 
countable sets= {Xt. X2, .• . }, that is, jt(~- S) = 0. [In general if en, !7, jt) 
is a measure space and B E .r, we say that JL is concentrated on B iff 
tt(O- B)= 0.] In the present case, such a measure is easily constructed: 
If a 1, a2, ... are nonnegative numbers and A C ~.set tt(A) = l.::{a;: x; E A}; 
JL is a measure on all subsets of~. not merely on the Borel sets (see 1.2.4). If 
ttU) < oo for each bounded interval I, JL will be a Lebesgue-Stieltjes mea
sure on ._%'(~); if L; a; < oo, JL will be a finite measure. The distribution 
function F corresponding to JL is continuous on ~- S; if JL{Xn} =an > 0, F 
has a jump at Xn of magnitude an. If x, y E S and no point of S lies between 
x and y, then F is constant on [x, y). For if x::; b < y, then F(b)- F(x) = 
JL(X, b] = 0. 

Now if we take S to be the rational numbers, the above discussion yields a 
monotone function F from ~ to ~ that is continuous at each irrational point 
and discontinuous at each rational point. 

If F is an increasing, right-continuous, real-valued function defined on a 
closed bounded interval [a, b ], there is a corresponding finite measure JL on 
the Borel subsets of [a, b]; explicitly, JL is determined by the requirement 
that tt(a', b'] = F(b')- F(a'), a::; a'< b'::; b. The easiest way to estab
lish the correspondence is to extend F by defining F(x) = F(b), x 2: b; F(x) 
= F(a), x ::; a; then take JL as the Lebesgue-Stieltjes measure corresponding 
to F, restricted to 11[a, b]. 

We are going to consider Lebesgue-Stiel1jes measures and distribution 
functions in Euclidean n-space. First, some terminology is required. 

1.4.6 Definitions and Comments. If a = (a 1, ... , an), b = (ht, ... , bn) 
E ~n, the interval (a, b] is defined as {x = (x 1, .. • ,Xn) E ~n: a;< X; 
::; b; for all i = 1, ... , n }; (a, oo) is defined as {x E ~n: X; > a; for all 
i = 1, ... , n}, (-oo, b] as {x E ~n: X;::; b; for all i = 1, ... , n}; other types 
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of intervals are defined similarly. The smallest cr-field containing all inter
vals (a, b], a, bE ~n, is called the class of Borel sets of ~n, written ._%'(~n ). 
The Borel sets form the minimal cr-field over many other classes of sets, for 
example, the open sets, the intervals [a, b), and so on, exactly as in the dis
cussion of the one-dimensional case in 1.2.4. The class of Borel sets of "in, 
written .%'(in), is defined similarly. 

A Lebesgue-Stieltjes measure on ~ n is a measure JL on ._%' (~ n) such that 
JL(l) < oo for each bounded interval I. 

The notion of a distribution function on ~n, n ::=: 2, is more complicated than 
in the one-dimensional case. To see why, assume for simplicity that n = 3, 
and let JL be a finite measure on ._%' (~ 3 ). Define 

By analogy with the one-dimensional case, we expect that F is a distribution 
function corresponding to f.L [see formula (6) of 1.4.5]. This will tum out 
to be correct, but the correspondence is no longer by means of the formula 
JL(a, b] = F(b)- F(a). To see this, we compute JL(a, b] in terms of F. 

Introduce the difference operator 6_ as follows: 
If G: ~ n --+ ~. 6. b,a, G(xl' ... ' Xn) is defined as 

G(xl, ... , Xi-h b,., Xi+l• ... , Xn)- G(xl, ... , Xi- I> a,.,xi+h ... , Xn)· 

1.4.7 Lemma. If a::; b, that is, a; :S b1, i = 1, 2, 3, then 

(a) JL(a, b] = Ab Ab Ab F(xh x2, x3), where D 1a 1 D zazD 3a3 

(b) 

= F(b~> b2, b3)- F(a1, b2, b3)- F(b~> a2, b3)- F(b1, b2, a3) 

+ F(a~> a2, b3) + F(a1, b2, a3) + F(b1, a2, a3)- F(a1, a2, a3) 

Thus JL(a, b] is not simply F(b)- F(a). 

PROOF. 

(a) 

\ - JL{W: W1 :S X1, W2 :S X2, W3 :S a3} 

= JL{W: W1 :S X1, W2 :S X2, a3 < W3 :S b3} 

since a3 :S b3. 
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Similarly, 

and 

Ab Ab Ab F(Xt, X2, X3) = jt{w: a1 < Wt :S ht, a2 < W2 :S b2, D ra1D 2a2D 3a3 

a3 < w3 :S b3}. 

(b) 

The extension of 1.4.7 ton dimensions is clear. 

1.4.8 Theorem. Let JL be a finite measure on ..%'(~n) and define 

F(x) = tt(-oo, x] = JL{W: W; :S x;, i = 1, ... , n}. 

If a .:S b, then 

(a) tt(a,b]= Ab ··· Ab F(xt.····Xn),where 
i...j. rar i...j. nan 

(b) Ab ··· Ab F(xJ, ... ,Xn) = Fo-Ft+F2-···+(-1tFn; D ]Gl D nan 

F; is the sum of all (7) terms of the form F(c1, •.. , Cn) with ck = ak for 
exactly i integers in { 1, 2, ... , n }, and ck = bk for the remaining n - i integers. 

PRooF. Apply the computations of 1.4.7. D 

We know that a distribution function of ~ determines a corresponding 
Lebesgue-Stieltjes measure. This is true in n dimensions if we change the 
definition of increasing. 

Let F: ~n --+ ~. and, for a :S b, let F(a, b] denote 

The function F is said to be increasing iff F(a, b] ::=: 0 whenever a :S b; 
F is right-continuous iff it is right-continuous in all variables together, 
in other words, for any sequence x 1 :::: x2 :::: · · · :::: xk :::: · · · --+ x we have 
F(xk)--+ F(x). 
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An increasing right-continuous F: ~n ---+ ~ is said to be a distribution 
function on ~n. (Note that ifF arises from a measure JL as in 1.4.8, F is a 
distribution function.) 

IfF is a distribution function on ~n, we set JL(a, b] = F(a, b] [this reduces 
to F(b)- F(a) if n = 1]. We are going to show that JL has a unique extension 
to a Lebesgue-Stieltjes measure on ~n. The technique of the proof is the 
same in any dimension, but to avoid cumbersome notation and to capture 
the essential ideas, we sometimes specialize to the case n = 2. We break the 
argument into several steps: 

(1) If a ~ a' :S b' :S b, I = (a, b] is the union of the nine disjoint inter
vals I 1 , ••. , I 9 formed by first constraining the first coordinate in one of the 
following three ways: 

and then constraining the second coordinate in one of the following three 
ways: 

For example, a typical set in the union is 

in n dimensions we would obtain 3n such sets. 
Result (1) may be verified by looking at Fig. 1.4.1. 

(2) In (1), F(l) = "Ej=l F(Ij), hence a~ a'~ b' ~ b implies F(a', b'] 
:S F(a, b]. 

This is verified by brute force, using 1.4. 8. 
Now a right-semiclosed interval (a, b] in "in is, by convention, a set of 

the form {(x1, ••• , Xn ): a; <X; :S b;, i = 1, ... , n }, a, bE "in, with the provi
so that a; < x; :S b; can be replaced by a; :S x; :S b; if a; = -oo. With this 
assumption, the set Yo("in) of finite disjoint unions of right-semiclosed in
tervals is a field. (The corresponding convention in ~ n is that a; < x; ~ b; 
can be replaced by a; < x; < b; if b; = +oo. Both conventions are dictated 
by considerations similar to those of the one-dimensional case; see 1.2.2.) 

(3) If a and b belong to "in but not to ~ n, we define F (a, b] as the limit 
of F(a', b'] where a', b' E ~n, a' decreases to a, and b' increases to b. [The 
definition is sensible because of the monotonicity property in (2).] Similarly 
if a E ~~,bE "in - ~n, we take F(a, b] = limb'tb F(a, b']; if a E "in - ~n, 
bE ~n, P{a, b] = Iima'ta F(a', b]. 

Thus we define JL on right-semiclosed intervals of "in; JL extends to a finitely 
additive set function on .:?Q("in ), as in the discussion after 1.4.2. [There is a 
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b2 ~--------,---------~--------~ 

b2'~--------~---------+---------1 

a2' ~--------4----------+--------~ 

a2 L---------~--------~----------L-~ 
a, 

I 

X 

Figure 1.4.1. 

b ' I 

slight problem here; a given interval I may be expressible as a finite disjoint 
union of intervals I 1, ..• , I" so that for the extension to be well defined we 
must have F(I) = LJ=! F(I j ); but this follows just as in (2).] 

(4) The set function JL is countably additive on 9Q(in). 
First assume thatJ.~,(llt) is finite. If a E ~n. F(a', b]--+ F(a, b] as a' decreas

es to a by the right-continuity ofF and 1.4.8(b); if a E "in - ~n, the same result 
holds by (3). The argument then proceeds word for word as in 1.4.3. 

Now assume J.~,("in) = oo. Then F, restricted to Ck = {x: -k <X;::; k, 
i = 1, ... , n}, induces a finite-valued set function f.Lk on jlQ("in) that is con
centrated on Ck. so that f.Lk(B) = f.Lk(B n Ck), BE .97Q("in). Since f.Lk::; JL and 
f.Lk --+ JL on jlQ("in ), the proof of 1.4.3 applies verbatim. 

1.4.9 Theorem. Let F be a distribution function on ~n, and let 
JL(a, b] = F(a, b], a, bERn, a::; b. There is a unique extension of JL to a 
Lebesgue-Stieltjes measure on ~n. 

PROOF. Repeat the proof of 1.4.4, with appropriate notational changes. For 
example, in extending JL to .976(~ n ), the field of finite disjoint unions of right
semiclosed intervals of ~n, we take (say for n = 3) 

f..l,{(x, y, z): a1 < x :S b1, a2 < y < oo, a3 < z < oo} = lim F(a, b]. 
b2,b3--+ 00 
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The one-to-one JL-preserving correspondence is given by 

(a, b]---+ (a, b] if a, bE ~n 

or if b E ~ n and at least one component of 

a is -oo; 

also, if the interval { (x1, ••• , Xn ): a; < x1 :S b1: i = 1, ... , n} has some 
b1 = oo, the corresponding interval in ~n has a1 < x1 < oo. The remainder 
of the proof is as before. D 

1.4.10 Examples. (a) Let F 1, F 2, ... , F n be distribution functions on ~. 
and define F(xt. ... ,Xn) = F 1(x 1)F2(x2)· · · Fn(Xn). Then F is a distribution 
function on ~ n since 

n 

F(a, b] = fi[F;(b1)- F;(a!)]. 
i=! 

In particular, if F;(x1) = x;, i = 1, ... , n, then each F1 corresponds to Lebes
gue measure on ~(~). In this case we have F(x 1, ••• , Xn) = x 1x2 • • • Xn and 
JL(a, b] = F (a, b] = IT7= 1 (b1 - a1 ). Thus the measure of any rectangular box is 
its volume; JL is called Lebesgue measure on ..5fJ (~ n ). Just as in one dimension, 
the completion of ..SfJ(~n) relative to Lebesgue measure is called the class of 
Lebesgue measurable sets in Rn, written ..SfJ(~n ). 

(b) Let f be a nonnegative function from ~n to ~such that 

1
00 

· • ·100 

f(x!, ... , Xn)dx! · · · dxn < 00. 
-oo -oo 

(For now, we assume the integration is in the Riemann sense.) Define 

F(x) = j f(t)dt, 
(-oo.x] 

that is, 
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and we find by repeating this computation that 

1bl 1bn 
F(a, b] = · · · f(tl, ... , tn)dt! · · · dtn. 

Ot On 

Thus F is a distribution function. If JL is the Lebesgue-Stieltjes measure 
determined by F, we have 

JL(a, b] = r f(x)dx. 
J(a,b] 

We have seen that ifF is a distribution function on ~n, there is a unique 
Lebesgue-Stieltjes measure determined by JL(a, b] = F(a, b], a::= b. Also, 
if JL is a finite measure on ._%'(~n) and F(x) = JL(-oo, x], x E ~n, then F 
is a distribution function on ~n and JL(a, b] = F(a, b], a :S b. It is possi
ble to associate a distribution function with an arbitrary Lebesgue-Stieltjes 
measure on ~n, and thus establish a one-to-one correspondence between 
Lebesgue-Stieltjes measures and distribution functions, provided distribution 
functions with the same increments F(a, b], a, bE ~n, a :S b, are identified. 
The result will not be needed, and the details are quite tedious and will be 
omitted. 

The following result shows that under appropriate conditions, a Borel set 
can be approximated from below by a compact set, and from above by an 
open set. 

1.4.11 Theorem. If JL is a cr-finite measure on ._%'(~n), then for each 
B E ._%'(~n ), 

(a) JL(B) = sup{JL(K): K c B, K compact}. 
If JL is in fact a Lebesgue- Stieltjes measure, then 
(b) JL(B) = inf{JL(V): V :> B, B open}. 
(c) There is an example of a cr-finite measure on ._%'(~n) that is not a 

Lebesgue-Stieltjes measure and for which (b) fails. 

PRooF. 
(a) First assume that JL is finite. Let W be the class of subsets of ~n having 

the desired property; we show that W is a monotone class. Indeed, 
let Bn E W, Bn t B. Let Kn be a compact subset of Bn with JL(Bn) 
:S JL(Kn) + t:, t: > 0 preassigned. By replacing Kn by U7== 1 K;, we may 
assume the Kn form an increasing sequence. Then JL(B) = limn-->oo JL(Bn) 
:S limn--+oo JL(Kn) + t:, so that 

JL(B) = sup{JL(K): K a compact subset of B}, 
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and B E W. If Bn E W, Bn ..j, B, let Kn be a compact subset of Bn such 
that JL(Bn) :S JL(Kn) + £2-n, and set K = n~ 1 Kn. Then 

I'(B)- I'(K)~I'(B- K) :"I' (9. (B" - K")) :" ~I'(B" - K") :" e; 

thus B E ?P. Therefore W is a monotone class containing all finite disjoint 
unions of right-semiclosed intervals (a right-semiclosed interval is the 
limit of an increasing sequence of compact intervals). Hence f? contains 
all Borel sets. 

If JL is cr-finite, each B E JW(~n) is the limit of an increasing sequence 
of sets B; of finite measure. Each B; can be approximated from within 
by compact sets [apply the previous argument to the measure given by 
JL;(A) = JL(A nB;),A E JW(~n)], and the preceding argument that fP is 
closed under limits of increasing sequences shows that B E ?P. 

(b) We have JL(B)::; inf{JL(V): V :> B, V open} 
::; inf{JL(W): W :> B, W = Kc, K compact}. 

If JL is finite, this equals JL(B) by (a) applied to Be, and the result follows. 

Now assume JL is an arbitrary Lebesgue-Stieltjes measure, and write 
~n = U~ 1 Bb where the Bk are disjoint bounded sets; then Bk c Ck 
for some bounded open set Ck· The measure f.Lk(A) = JL(A n Ck), 
A E JW(~n ), is finite; hence if B is a Borel subset of Bk and e > 0, 
there is an open set Wk :> B such that f.Lk(Wk)::; f.Lk(B) + &2-k. Now 
Wk n Ck is an open set Vk and B n Ck = B since B c Bk c Ck; hence 
JL{Vk) :S JL(B) + &2-k. For any A E JW(~n ), let Vk be an open set 
with Vk :>An Bk and JL(Vk) :S JL(A n Bk) + &2-k. Then V = U~1 Vk 
is open, V :>A, and JL(V) :S 2.::~ 1 JL{Vk) :S JL(A) + £. 

(c) Construct a measure JL on Jf3'(~) as follows. Let f.L be concentrated 
on S = {1/n: n = 1, 2, ... } and take JL{l/n} = 1/n for all n. Since 
~ = U~d1/n} Usc and JL(Sc) = 0, JL is cr-finite. Since 

00 1 
JL[O, 1] = L- = 00, 

n 
n=l 

JL is not a Lebesgue-Stieltjes measure. Now JL{O} = 0, but if V is an 
open set containing 0, we have 

JL(V) ::=: JL(-£, e) 

00 1 

::::2:k 
k=r 

=00. 

for some e 

for some r 
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Thus (b) fails. [Another example: Let tt(A) be the number of rational 
points in A.] 

Problems 

1. Let F be the distribution function on ~ given by F (x) = 0, x < -1; 
F(x) = 1 + x, -1 ::= x < 0; F(x) = 2 + x2

, 0 ::= x < 2; F(x) = 9, x:::: 
2. If JL is the Lebesgue-Stieltjes measure corresponding to F, compute 
the measure of each of the following sets: 

(a) {2}, (d) [o. ~) u (1, 21. 

(b) [-~. 3), (e) {x: lxl + 2x2 > 1}. 
(c) (-1,0]U(1,2), 

2. Let JL be a Lebesgue-Stieltjes measure on ~ corresponding to a con
tinuous distribution function. 

(a) If A is a countable subset of ~. show that tt(A) = 0. 
(b) If tt(A) > 0, must A include an open interval? 
(c) If tt(A) > 0 and JL(~- A)= 0, must A be dense in ~? 
(d) Do the answers to (b) or (c) change if JL is restricted to be Lebesgue 

measure? 

3. If B is a Borel set in ~nand a E ~n, show that a +B ={a +x: x E B} 
is a Borel set, and -B = {-x: x E B} is a Borel set. (Use the good sets 
principle.) 

4. Show that if B E YJ (~n ), a E ~n, then a+ B E YJ (~n) and JL(a +B) 
= tt(B), where JL is Lebesgue measure. Thus Lebesgue measure is 
translation-invariant. (The good sets principle works here also, in con
junction with the monotone class theorem.) 

5. Let JL be a Lebesgue-Stieltjes measure on ._%'(~n) such that JL(a +I) 
= tt(I) for all a E Rn and all (right-semiclosed) intervals I in Rn. In 
other words, JL is translation-invariant on intervals. Show that JL is a 
constant times Lebesgue measure. 

6. (A set that is not Lebesgue measurable) Call two real numbers x and 
y equivalent iff x - y is rational. Choose a member of each distinct 
equivalence class Bx = {y: y- x rational} to form a set A (this requires 
the axiom of choice). Assume that the representatives are chosen so that 
A c [0, 1]. Establish the following: 

(a) If r and s are distinct rational numbers, (r +A) n (s +A) = 0; 
also ~ = U{r +A: r rational}. 

(b) If A is Lebesgue measurable (so that r +A is Lebesgue measurable 
by Problem 4 ), then tt(r +A) = 0 for all rational r (tt is Lebesgue 
measure). Conclude that A cannot be Lebesgue measurable. 
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The only properties of Lebesgue measure needed in this problem are 
translation-invariance and finiteness on bounded intervals. Therefore, 
the result implies that there is no translation-invariant measure A (except 
A = 0) on the class of all subsets of ~ such that A(l) < oo for each 
bounded interval I. 

7. (The Cantor ternary set) Let E 1 be the middle third of the interval [0, 1], 
that is, E 1 = (~,%);thus x E [0, 1]- E 1 iff x can be written in ternary 
form using 0 or 2 in the first digit. Let E2 be the union of the middle 
thirds of the two intervals that remain after E 1 is removed, that is, E2 
= (!, ~) U G.~); thus x E [0, 1]- (E1 UE2) iff x can be written in 
ternary form using 0 or 2 in the first two digits. Continue the construc
tion; let En be the union of the middle thirds of the intervals that remain 
after E t. ... , En _1 are removed. The Cantor ternary set C is defined 
as [0, 1]- u~=l En; thus X E c iff X can be expressed in ternary form 
using only digits 0 and 2. Various topological properties of C follow 
from the definition: C is closed, perfect (every point of C is a limit 
point of C), and nowhere dense. 

Show that Cis uncountable and has Lebesgue measure 0. 

Comment. In the above construction, we have m(En) = 0) (%r-l, 
n = 1, 2, ... , where m is Lebesgue measure. If 0 <a < 1, the 
procedure may be altered slightly so that m(En) = a(~r. We then 
obtain a set C(a), homeomorphic to C, of measure 1 -a; such sets are 
called Cantor sets of positive measure. 

8. Give an example of a function F: ~2 -+ ~ such that F is right-conti
nuous and is increasing in each coordinate separately, but F is not a 
distribution function on ~ 2. 

9. A distribution function on ~ is monotone and thus has only countably 
many points of discontinuity. Is this also true for a distribution function 
on ~n, n > 1? 

10. (a) Let F and G be distribution functions on ~n. If F(a, b] = G(a, b] 
for all a, b E ~n, a::= b, does it follow that F and G differ by a 
constant? 

(b) Must a distribution function on ~n be increasing in each coordinate 
separately? 

* 11. If c is the cardinality of the reals, show that there are only c Borel 
subsets of ~n, but 2c Lebesgue measurable sets. 

1.5 M~sURABLE FuNcTioNs AND INTEGRATION 

Iff is a'real-valued function defined on a bounded interval [a, b] of reals, 
we can talk about the Riemann integral of f, at least if f is piecewise contin
uous. We are going to develop a much more general integration process, one 
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that applies to functions from an arbitrary set to the extended reals, provided 
that certain "measurability" conditions are satisfied. 

Probability considerations may again be used to motivate the concept of 
measurability. Suppose that (Q, Y, P) is a probability space, and that h is a 
function from n to "i. Thus if the outcome of the experiment corresponds 
to the point wE n, we may compute the number h(w). Suppose that we are 
interested in the probability that a ::= h(w) ::= b, in other words, we wish to 
compute P{w: h(w) E B} where B =[a, b]. For this to be possible, the set 
{w: h(w) E B} = h- 1(B) must belong to the cr-field .r. If h- 1(B) E .r for 
each interval B (and hence, as we shall see below, for each Borel set B), then 
h is a "measurable function," in other words, probabilities of events involving 
h can be computed. In the language of probability theory, h is a "random 
variable." 

1.5.1 Definitions and Comments. If h: 0 1 --+ 0 2, his measurable relative 
to the cr-fields §} of subsets of n j. j = 1, 2, iff h- 1 (A) E §il for each A E $12. 

It is sufficient that h -! (A) E §?i for each A E W, where 't? is a class of subsets 
of 0 2 such that the minimal cr-field over '15 is 92. For {A E $12: h- 1 (A) E §?i} 
is a cr-field that contains all sets of W, hence coincides with 92. This is another 
application of the good sets principle. 

The notation h: (Qt. §?i)--+ (02, §2) will mean that h: 0 1 --+ 0 2, mea
surable relative to J7i and .9?2. 

If .r is a cr-field of subsets of n, (Q, .97) is sometimes called a measurable 
space, and the sets in .rare sometimes called measurable sets. 

Notice that measurability of h does not imply that h(A) E .3#2 for each 
A E .9!. For example, if 92 = {0, 0 2}, then any h: 0 1 --+ 0 2 is measurable, 
regardless of .'V;, but if A E .9'1 and h(A) is a nonempty proper subset of 0 2, 

then h(A) ¢ $12. Actually, in measure theory, the inverse image is a much 
more desirable object than the direct image since the basic set operations are 
preserved by inverse images but not in general by direct images. Specifical
ly, we have h-l (U; B;) = U; h- 1(B;), h-l (n B;) = n h- 1(B;), and h- 1(Bc) 

= [h-l (BW. We also have h (U; B;) = U; h(A; ), but h (ni A;) c ni h(A; ), and 
the inclusion may be proper. Furthermore, h(A c) need not equal [ h(A) ]c, in fact 
when h is a constant function the two sets are disjoint. 

If (Q, .97) is a measurable space and h: n --+ ~n (or "in), h is said to be 
Borel measurable [on (Q, .97)] iff h is measurable relative to the cr-fields .r 
and .;il, the class of Borel sets. If n is a Borel subset of ~k (or "ik) and we 
use the term "Borel measurable," we always assume that .r =.:fl. 

A continuous map h from ~k to ~n is Borel measurable; for if '15' is the 
class of open subsets of ~n, then h- 1 (A) is open, hence belongs to .J6'(~k), 
for each A E '0'. 
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If A is a subset of ~ that is not a Borel set (Section 1.4, Problems 6 and 
11) and lA is the indicator of A, that is, IA (w) = 1 for wE A and 0 for w rt- A, 
then lA is not Borel measurable; for {w: IA(w) = 1} =Art-._%'(~). 

To show that a function h: n ---+ ~ (or "i) is Borel measurable, it is sufficient 
to show that {w: h(w) > c} E .r for each real c. For if W is the class of 
sets {x: x > c}, c E ~.then cr(gc") = ut5'(~). Similarly, {w: h(w) > c} can be 
replaced by {w: h(w) 2: c}, {w: h(w) < c} or {w: h(w) :S c}, or equally well 
by {w: a::; h(w) :S b} for all real a and b, and so on. 

If (Q, .r, JL) is a measure space the terminology "h is Borel measurable 
on (Q, .'7, JL)'' will mean that h is Borel measurable on (Q, Y) and JL is a 
measure on .r. 

1.5.2 Definition. Let (Q, .7) be a measurable space, fixed throughout the 
discussion. If h: n ---+ "i, h is said to be simple iff h is Borel measurable and 
takes on only finitely many distinct values. Equivalently, his simple iff it can 
be written as a finite sum I::~= I xJA, where the A; are disjoint sets in .rand 
IA

1 
is the indicator of A;; the x1 need not be distinct. 

We assume the standard arithmetic of "i; if a E ~. a+ oo = oo, a- oo 
= -oo, ajoo = aj-oo = 0, a· oo = oo if a> 0, a· oo = -oo if a< 0, 
0 · oo = 0 · (-oo) = 0, oo + oo = oo, -oo - oo = -oo, with commutativity 
of addition and multiplication. It is then easy to check that sums, differences, 
products, and quotients of simple functions are simple, as long as the 
operations are well-defined, in other words we do not try to add +oo and 
-oo, divide by 0, or divide oo by oo. 

Let JL be a measure on .¥, again fixed throughout the discussion. If h: 
n ---+ i: is Borel measurable we are going to define the abstract Lebesgue inte
gral of h with respect to JL, written as In hdjt, In h(w)tt(dw), or In h(w)dtt(w). 

1.5.3 Definition of the Integral. First let h be simple, say h = L~=l xJA, 
where the A; are disjoint sets in .7. We define 

as long as +oo and -oo do not both appear in the sum; if they do, we say 
that the integral does not exist. Strictly speaking, it must be verified that if h 
has a different representation, say LJ=I yjls

1
, then 

~ r s 

LX;jt(A;) = LYjtt(B;). 
i=l j=l 
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(For example, if A= B U C, where B n C = 0, then x!A =xis +xlc.) The 
proof is based on the observation that 

r 

h = L L ZijlA,nB1 , 

i=l j=! 

where Zij = x; = Yj· Thus 

LZijtt(A; n Bj) = 2:x; Ltt(A; n Bj) 
i,j 

by a symmetrical argument. 

If h is nonnegative Borel measurable, define 

simple, 

This agrees with the previous definition if h is simple. Furthermore, we may 
if we like restrict s to be finite-valued. 

Notice that according to the definition, the integral of a nonnegative Borel 
measurable function always exists; it may be +oo. 

Finally, if his an arbitrary Borel measurable function, let h+ = max(h, 0), 
h- = max(-h, 0), that is, 

h+(w) = h(w) 

h-(w) = -h(w) 

if h(w):::: 0; 

if h(w)::; 0; 

h+(w) = 0 

h-(w)=O 

if h(w) < 0; 

if h(w) > 0. 

The function h+ is called the positive part of h, h- the negative part. 
We have I hi = h+ + h-, h = h+ - h-, and h+ and h- are Borel measurable. 
For example, {w: h+(w) E B} = {w: h(w):::: 0, h(w) E B} U {w: h(w) < 0, 
OE B}. The first set is h- 1[0,oo] nh- 1(B) E.97; the second is h- 1[-oo,O) 
if OEB, and 0 if O¢B. Thus (h+)- 1(B)EY for each BE.%'(~), 
and similarly for h-. Alternatively, if h1 and h2 are Borel measurable, then 
max(h1, h2) and min(h1, h2) are Borel measurable; to see this, note that 

{w: max(h1 (w), h2(w))::; c} = {w: h 1 (w)::; c} n {w: h2(w) :S c} 

and {w: min(h1(w), h2(w)::; c} = {w: h1(w)::; c} U {w: h2(w)::; c}. It fol
lows that if h is Borel measurable, so are h+ and h-. 
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We define 

if this is not of the form +oo -oo; 

if it is, we say that the integral does not exist. The function h is said to be 
JL-integrable (or simply integrable if JL is understood) iff fn hdf.L is finite, 
that is, iff fn h+ df.L and fn h- df.L are both finite. 

If A E .r, we define 

(The proof that hi A is Borel measurable is similar to the first proof above that 
h+ is Borel measurable.) 

If h is a step function from ~ to ~ and JL is Lebesgue measure, fiR h df.L 
agrees with the Riemann integral. However, the integral of h with respect to 
Lebesgue measure exists for many functions that are not Riemann integrable, 
as we shall see in 1.7. 

Before examining the properties of the integral, we need to know more about 
Borel measurable functions. One of the basic reasons why such functions are 
useful in analysis is that a pointwise limit of Borel measurable functions is 
still Borel measurable. 

1.5.4 Theorem. If h1, h2, ••. are Borel measurable functions from n to ~ 
and hn (w) -+ h(w) for all w E n, then h is Borel measurable. 

PRooF. It is sufficient to show that {w: h(w) > c} E !7 for each real c. We 
have 

{w: h(w) > c} = {w: lim hn(w) > c} 
n-->00 

= { w: hn(w) is eventually> c +~for some r = 1, 2, .. ·} 

= Q { w: hn (w) > c + ~ for all but finitely many n} 

= lJ li~inf{w: hn(w) > c + ~} 
~ r=! 

. = Q nQ l5 { w: hk(w) > c + ~} E !7. D 
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To show that the class of Borel measurable functions is closed under alge
braic operations, we need the following basic approximation theorem. 

1.5.5 Theorem. (a) A nonnegative Borel measurable function his the limit 
of an increasing sequence of nonnegative, finite-valued, simple functions hn. 

(b) An arbitrary Borel measurable function f is the limit of a sequence 
of finite-valued simple functions fn, with Ifni :S 1/1 for all n. 

PRooF. (a) Define 

k-1 
h (w) = --n 2n if 

k-1 k 
-- <h(w) <-

2n - 2n' 
k = 1, 2, ... , n2n, 

and let hn(w) = n if h(w) 2: n. [Or equally well, hn(w) = (k- 1)/2n if 
(k- 1)/2n < h(w) :S kj2n, k = 1, 2, ... , n2n; hn(w) = n if h(w) > n; hn(w) 
= 0 if h(w) = 0.] The hn have the desired properties (Problem 1). 

(b) Let gn and hn be nonnegative, finite-valued, simple functions with 
gn t j+ and hn t /-;take In= gn- hn· D 

1.5.6 Theorem. If h 1 and h2 are Borel measurable functions from n to i", 
so are h 1 + h2, h1 - h2, h 1h2, and hl/h2 [assuming these are well-defined, in 
other words, ht (w) + h2(w) is never of the form +oo -oo and h 1 (w)jh2(w) 
is never of the form oo;oo or a/0]. 

PRooF. As in 1.5.5, let s1n, S2n be finite-valued simple functions with 
Stn --+ ht, S2n --+ h2. Then Stn + S2n --+ ht + h2, 

S!nS2nf(h1#0)f(hdo0J--+ h1h2, 

and 
Stn ht 

------- --+ -. 
S2n + (1 / n )I {sln"'O} h2 

Since 

Stn ± S2n, 

are simple, the result follows from 1.5.4. D 

We are going to extend 1.5.4 and part of 1.5.6 to Borel measurable functions 
from n to "in; to do this, we need the following useful result. 

1.5. 7 Lemma. A composition of measurable functions is measurable; spe
cifically, if g: (Qt.§!)--+ (S12, .972) and h: (S12, .9"2)--+ (S13, §3), then 
hog; (Qt>Jlli)--+ (Q3,§'3). 
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Since some books contain the statement "A composition of measurable 
functions need not be measurable," some explanation is called for. If h: 
~ --+ ~. some authors call h "measurable" iff the preimage of a Borel set 
is a Lebesgue measurable set. We shall call such a function Lebesgue measur
able. Note that every Borel measurable function is Lebesgue measurable, but 
not conversely. (Consider the indicator of a Lebesgue measurable set that is 
not a Borel set; see Section 1.4, Problem 11.) If g and h are Lebesgue mea
surable, the composition hog need not be Lebesgue measurable. Let .5fJ be the 
Borel sets, and .5fJ the Lebesgue measurable sets. If B E .5fJ then h- 1 (B) E ~ 
but g- 1 (h- 1 (B)) is known to belong to .5fJ only when h- 1 (B) E :l'J, so we 
cannot conclude that (hog )- 1 (B) E .!fJ. For an explicit example, see Royden 
(1968, p. 70). If g -l (A) E .5fJ for all A E .!fJ, not just for all A E ~ then we are 
in the situation described in Lemma 1.5.7, and hog is Lebesgue measurable; 
similarly, if his Borel measurable (and g is Lebesgue measurable), then hog 
is Lebesgue measurable. 

It is rarely necessary to replace Borel measurability of functions from ~ to ~ 
(or ~k to ~n) by the slightly more general concept of Lebesgue measurability; 
in this book, the only instance is in 1. 7. The integration theory that we are 
developing works for extended real-valued functions on an arbitrary measure 
space (Q, .r, JL). Thus there is no problem in integrating Lebesgue measurable 
functions; n = ~ • .r = ~ 

We may now assert that if ht. h2, ... are Borel measurable functions from 
n to "in and hn converges pointwise to h, then h is Borel measurable; fur
thermore, if h 1 and h2 are Borel measurable functions from n to "in, so 
are h1 + h2 and h 1 - h2, assuming these are well-defined. The reason is that if 
h(w) = (h 1 (w), ... , hn(w)) describes a map from n to "in, Borel measurability 
of h is equivalent to Borel measurability of all the component functions h;. 

1.5.8 Theorem. Let h: Q --+ "in; if Pi is the projection map of "in onto "i, 
taking (x 1, ••• , Xn) to x;, set h; = Pi o h, i = 1, ... , n. Then h is Borel mea-
surable iff h; is Borel measurable for all i = 1, ... , n. 

PRooF. Assume h Borel measurable. Since 

-00 <X·< 00 
- 1- ' j =J i}, 

which is ~nterval o~~n, p~~s Borel mea~~able:__~us _ , _ 

h: (Q, .97) --+ (~ , .!fJ(~ )), Pi: (~ , .5t5'(~ )) --+ (~ • .!fJ(~)). 

and therefore by 1.5.7, hi: (Q, 37)--+ (i, .!fJ(i)). 
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Conversely, assume each h; to be Borel measurable. Then 

h-1{x E "in: a; :S X; :S b;, i = 1, ... , n} 

n 

= n{w E 0: a; :S h;(w) :S b;} E !7, 
i=l 

and the result follows. D 
We now proceed to some properties of the integral. In the following result, 

all functions are assumed Borel measurable from n to "i. 

1.5.9 Theorem. (a) If fn hdtt exists and c E ~. then fn chdtt exists and 
equals c fn h dtt. 

(b) If g(w) ::=: h(w) for all w, then fn g dtt ::=: fn h dtt in the sense that 
if fn h dtt exists and is greater than -oo, then fn g dtt exists and fn g dtt 
:::: fn h dtt; if fn g dtt exists and is less than +oo, then fn h dtt exists and 
fn h dtt ::= fn g dtt. Thus if both integrals exist, fn g dtt :::: fn h dtt, whether or 
not the integrals are finite. 

(c) If fn h dtt exists, then I fn h dttl ::= fn I hi dtt. 
(d) If h :::: 0 and B E .r, then J8 h dtt = sup{j8 s dtt: 0 :S s :S h, s simple}. 
(e) If fn hdtt exists, so does fA hdtt for each A E .97; if fn hdtt is finite, 

then JA h dtt is also finite for each A E !7. 

PROOF. (a) It is immediate that this holds when h is simple. If h is nonneg
ative and c > 0, then 

in chdtt =sup {in sdtt; 

= csup {in~ dtL; 

0 ::= s ::= ch, s 

s 
0 ::: - ::: h, 

c 

simple} 

~ simple} = c in hdtt. 

In general, if h = h+- h- and c > 0, then (ch)+ = ch+, (ch)- = ch-; hence 
fn ch dtt = c fn h+ dtt - c fn h- dtt by what we have just proved, so that 
fn chdtt = c fn hdtt. If c < 0, then 

so 

(b) If g and h are nonnegative and 0 ::= s ::= h, s simple, then 0 ::= s ::= 
g; hence fnhdtt ::= fngdjt. In general, h ::= g implies h+ ::= g+, h-:::: g-. If 
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In h dtt > -oo, we have In g- dtt ::= In h- dtt < oo; hence In g dtt exists and 
equals 

The case in which In gdtt < oo is handled similarly. 
(c) We have -lhl ::= h ::= lhl so by (a) and (b), -In lhl dtt 

::= In h dtt ::= In I hi dtt and the result follows. (Note that I hi is Borel mea
surable by 1.5.6 since I hi = h+ +h-.) 

(d) If 0 ::= s ::= h, then Is s dtt :S Is h dtt by (b); hence 

is hdtt:::: sup {is sdw 0 ::= s ::= h}. 
If 0 ::= t ::= his, t simple, then t = tis ::= h so In t dtt ::= sup{jn sf s dtt: 

0 ::= s ::= h, s simple}. Take the sup over t to obtain Is hdtt ::= sup{js sdw 
0 ::= s ::= h, s simple}. 

(e) This follows from (b) and the fact that (h!A)+ = h+JA ::= h+, (hlA)
=h-IA:Sh-. D 

Problems 

1. Show that the functions proposed in the proof of 1.5.5(a) have the desired 
properties. Show also that if h is bounded, the approximating sequence 
converges to h uniformly on 0. 

2. Let f and g be extended real-valued Borel measurable functions on 
(0, .97), and define 

h(w) = f(w) 

= g(w) 

if 

if 

WEA, 

where A is a set in .97. Show that h is Borel measurable. 
3. If ft. /2, ... are extended real-valued Borel measurable functions on 

(0, .97), n = 1, 2, ... , show that supn fn and infn fn are Borel 
measurable (hence lim supn-+oo fn and liminfn-+oo fn are Borel 
measurable). 

4. Let (0, .97, JL) be a complete measure space. Iff: (0, .97) --+ (0', .97') 
and g: \o--+ 0', g = f except on a subset of a setA E .97with tt(A) = 0, 
show th\t g is measurable (relative to .97 and .97'). 

*5. (a) Let f be a function from ~k to ~m, not necessarily Borel measur
able. Show that {x: f is discontinuous at x} is an F u (a countable 
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union of closed subsets of ~k), and hence is a Borel set. Does this 
result hold in spaces more general than the Euclidean space ~ n? 

(b) Show that there is no function from ~to ~whose discontinuity set 
is the irrationals. (In 1.4.5 we constructed a distribution function 
whose discontinuity set was the rationals.) 

*6. How many Borel measurable functions are there from ~n to ~k? 

7. We have seen that a pointwise limit of measurable functions is measur
able. We may also show that under certain conditions, a pointwise limit 
of measures is a measure. The following result, known as Steinhaus' 
lemma, will be needed in the problem: If { ank} is a double sequence of 
real numbers satisfying 

(i) 2:::~ 1 ank = 1 for all n, 
(ii) 2:::~1 lank I :S c < oo for all n, and 
(iii) ank --+ 0 as n --+ oo for all k, 

there is a sequence {xn}, with Xn = 0 or 1 for all n, such that t n 
= 2:::~ 1 ankXk fails to converge to a finite or infinite limit. 

To prove this, choose positive integers n 1 and k1 arbitrarily; having cho
sennj, ... ,nr.k1, ... ,k"choosenr+! > n,suchthatl::k:Sk,lan,+1kl < %; 
this is possible by (iii). Then choose krt 1 > kr such that l:k>k,+ 

1 
lan,+1k I 

< ~; this is possible by (ii). Set Xk = 0, k2s-l < k :S k2." Xk = 1, k2s 
< k :S k2s+l• s = 1, 2, .... We may write tn,+

1 
as h 1 + h2 + h3, where 

ht is the sum of an,+
1
kXk fork :S kr, h2 corresponds to kr < k :S kr+t. and 

h3 to k > kr+l· If r is odd, then Xk = 0, kr < k :S kr+l; hence ltn,. 1 1 < ±· 
If r is even, then h2 = l:k,<k:<'k,+

1 
an,+ 1k; hence by (i), 

Thus tn,+ 1 > ~ - lhtl- lh3l > ~. so {tn} cannot converge. 

(a) Vitali-Hahn-Saks Theorem. Let (Q, .97) be a measurable space, and let 
Pn, n = 1, 2, ... , be probability measures on .97. If Pn(A)--+ P(A) for 
all A E .97, then P is a probability measure on .97; furthermore, if { B k} is a 
sequence of sets in §T decreasing to 0, then supn Pn (Bk) ..j, 0 ask--+ oo. 
[Let A be the disjoint union of sets Ak E !7; without loss of generality, 
assume A= n (otherwise add Ac to both sides). It is immediate that P 
is finitely additive, so by Problem 5, Section 1.2, a = l:k P(Ak) :S P(Q) 
= 1. If a< 1, setank = (1 -a)- 1 [Pn(Ak) -P(Ak)] and apply Steinhaus' 
lemma.] 



1.6 BASIC INTEGRATION THEOREMS 45 

(b) Extend the Vitali-Hahn-Saks theorem to the case where the Pn are 
not necessarily probability measures, but P n (Q) :S c < oo for all n. [For 
further extensions, see Dunford and Schwartz (1958).] 

1.6 BASIC INTEGRATION THEOREMS 

We are now ready to present the main properties of the integral. The results 
in this section will be used many times in the text. As above, (Q, .r, JL) is a 
fixed measure space, and all functions to be considered map n to i:. 

1.6.1 Theorem. Let h be a Borel measurable function such that In h dtt 
exists. Define ).(B)= Is hdtt, BE.?. Then ).. is countably additive on !7; 
thus if h 2: 0, ).. is a measure. 

PROOF. Let h be a nonnegative simple function '2:7=1 xJA;· Then ).(B) 
=Is hdtt = '2:7= 1 X;JL(B n A;); since JL is countably additive, so is A. 

Now let h be nonnegative Borel measurable, and let B = U::0= 1 Bn, the Bn 
disjoint sets in .r. If s is simple and 0 :S s :S h, then 

by what we have proved for nonnegative simple functions 

by 1.5.9(b) (or the definition of the integral). 

Take the sup overs to obtain, by 1.5.9(d), ).(B) :S '2:~ 1 )..(Bn). 
Now Bn C B, hence lsn :SIs, so by 1.5.9(b), )..(Bn) :S ).(B). If A(Bn) = 00 

for some n, we are finished, so assume all )..(Bn) finite. Fix n and let£> 0. 
It follows from 1.59(b), (d) and the fact that the maximum of a finite number 
of simple functions is simple that we can find a simple function s, 0 ::; s ::; h, 
such that 

1 sdtt 2: 1 hdtt- ~. 
S, S, n 

i = 1, 2, ... , n. 

Now 

\ r n 

)..(B1 U · · · UBn) = }( hdtt 2: ;;, sdtt = L1 sdtt 
uS; US, i=1 S, 

i=1 
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by what we have proved for nonnegative simple functions, hence 

A(Bt U · · · UBn) 2:: t 1 hdtt- e = tA(B;)- e. 
i=l S, i=! 

Since A(B)::: A (U7=t B;) and£ is arbitrary, we have 

00 
A(B)?: LA(B;). 

i=l 

Finally let h = h+ - h- be an arbitrary Borel measurable function. Then 
A(B) = Ish+ dtt - Ish- dtt. Since In h+ dtt < oo or In h- dtt < oo, the re
sult follows. D 

The proof of 1.6.1 shows that A is the difference of two measures A+ and 
A-, where A +(B)= Ish+ dtt, A- =Ish- dtt; at least one of the measures A+ 
and A- must be finite. 

1.6.2 Monotone Convergence Theorem. Let ht. h2, ... form an increasing 
sequence of nonnegative Borel measurable functions, and let h(w) 
= limn---+00 hn (w ), w E n. Then In hn dtt ---+ In h djt. [Note that In hn dtt 
increases with n by 1.5.9(b); for short, 0 :S hn t h implies In hn dtt 
tIn hdtt.] 

PROOF. By 1.5.9(b), In hn dtt :SIn hdtt for all n, hence k = limn---+oo In hn 
dtt :SIn hdjt. Let 0 < b < 1, and let s be a nonnegative, finite-valued, 
simple function with s :S h. Let B n = { w: hn ( w) 2:: bs( w)}. Then B n t n since 
hn t h and s is finite-valued. Now k 2:: In hn dtt 2:: Is" hn dtt by 1.5.9(b), 

and Is" hn dtt 2:: b Is" sdtt by 1.5.9(a) and (b). By 1.6.1 and 1.2.7, Is" sdtt 
---+ In sdtt, hence (let b---+ 1) k?: In sdJL. Take the sup over s to obtain 
k::: In hdtt. D 

1.6.3 Additivity Theorem. Let f and g be Borel measurable, and assume that 
f + g is well-defined. If In f dtt and In g dtt exist and In f dtt +In g dtt is 
well-defined (not of the form +oo -oo or -oo +oo ), then 

h (f + g) dtt = h f dtt + h g djt. 

In particular, iff and g are integrable, so is f +g. 



1.6 BASIC INTEGRATION THEOREMS 47 

PROOF. If f and g are nonnegative simple functions, this is immediate from 
the definition of the integral. Assume f and g are nonnegative Borel measur
able, and let tn, Un be nonnegative simple functions increasing to f and g, 
respectively. Then 0 :S Sn = tn + Un t f + g. Now In Sn dtt = In tn dtt 
+ In Un dtt by what we have proved for nonnegative simple functions; hence 
by 1.6.2, InU +g) dtt =In! dtt +In gdtt. 

Now if f 2: 0, g ::= 0, h = f + g 2: 0 (so g must be finite), we have 
f = h+ (-g); hence In f dtt = Inhdtt- IngdJL. If Ingdtt is finite, then 
In hdtt =In f dtt +In gdf.L, and if In gdJL = -oo, then since h 2: 0, 

contradicting the hypothesis that In f dtt +In gdtt is well-defined. Similarly, 
if f 2: 0, g ::= 0, h ::= 0, we obtain In h dtt = In f dtt +In g dtt by replac
ing all functions by their negatives. (Explicitly, -g 2: 0, - f ::= 0, -h = - f 
- g 2: 0, and the above argument applies.) 

Let 

E1 = {w: f(w)2:0, g(w) 2: 0}, 

E2 = {w: f(w) 2: 0, g(w) < 0, h(w)2:0}, 

E3 = {w: f(w) 2: 0, g(w) < 0, h(w) < 0}, 

E4 = {w: f(w) < 0, g(w) 2: 0, h(w) 2: 0}, 

Es = {w: f(w) < 0, g(w) 2: 0, h(w) < 0}, 

E6 = {w: f(w) < 0, g(w) < 0}. 

The above argument shows that IE hdtt =IE f dtt +IE. gdJL. Now In f dtt 
6 6 I i 1 

= l:i=l IE f dtt, In gdJL = l:i=l IE gdtt by 1.6.1, so that In f dtt +In gdJL 
6 ' ' 

= l:i=l IE; hdtt, and this equals In hdtt by 1.6.1, if we can show that In hdtt 
exists; that is, In h+ dtt and In h- dtt are not both infinite. 

If this is the case, IE h+ dtt = IE h- dtt = oo for some i, j (1.6.1 again), 
' 1 

so that IE hdtt = oo, IE hdtt = -oo. But then J:Ef dtt or JE gdJL = oo; 
I j l I 

hence In f dtt or In g dtt = oo. (Note that In j+ dtt 2: IE j+ dtt.) Similarly 
In f dt-t or In g dtt = -oo, and this is a contradiction. D ' 

\ 
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1.6.4 Corollaries. (a) If h 1, h2, ... are nonnegative Borel measurable, 

Thus any series of nonnegative Borel measurable functions may be integrated 
term by term. 

(b) If h is Borel measurable, h is integrable iff lhl is integrable. 
(c) If g and h are Borel measurable with lgl ::; h, h integrable, then g is 

integrable. 

PROOF. (a) l::Z= 1 hk t 2:::~ 1 hk. and the result follows from 1.6.2 and 1.6.3. 
(b) Since lhl = h+ + h-, this follows from the definition of the integral 

and 1.6.3. 
(c) By 1.5.9(b), lgl is integrable, and the result follows from (b) 

above. D. 

A condition is said to hold almost everywhere with respect to the measure 
JL (written a.e. [JL] or simply a.e. if JL is understood) iff there is a set B E .r 
of JL-measure 0 such that the condition holds outside of B. From the point of 
view of integration theory, functions that differ only on a set of measure 0 
may be identified. This is established by the following result. 

1.6.5 Theorem. Let f, g, and h be Borel measurable functions. 

(a) If f = 0 a.e. [JL], then In f djt = 0. 
(b) If g = h a.e. [JL] and In g djt exists, then so does In hdjt, and In g dJL 

=In hdJL. 

PRooF. 
(a) Iff= 2:::7= 1 xJA, is simple, then x; =I 0 implies JL(A;) = 0 by hypoth

esis, hence In f dJL = 0. If f 2: 0 and 0 :S s ::; f, s simple, then s = 0 a.e. 
[JL], hence In sdJL = 0; thus In f dJL = 0. Iff= j+- f-, then j+ and/-, 
being less than or equal to 1/1, are 0 a.e. [JL], and the result follows. 

(b) Let A= {w: g(w) = h(w)}, B =A c. Then g = giA + gis, h =hi A 
+his= giA +his. Since gis =his= 0 except on B, a set of measure 0, 
the result follows from part (a) and 1.6.3. D 

Thus in any integration theorem, we may freely use the phrase "almost 
everywhere." For example, if { hn} is an increasing sequence of nonnegative 
Borel measurable functions converging a.e. to the Borel measurable function 
h, then In hn djt--+ In h djt. 

Another example: If g and h are Borel measurable and g 2: h a.e., then 
IngdJL 2: Inhdjt [in the sense of 1.5.9(b)]. 
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1.6.6 Theorem. Let h be Borel measurable. 

(a) If h is integrable, then h is finite a.e. 
(b) If h ::=: 0 and fn hdtt = 0, then h = 0 a. e. 
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PROOF. (a) Let A= {w: lh(w)l = oo}. If tt(A) > 0, then fn lhl dtt ::=: 
fA lhl dtt = OOJL(A) = oo, a contradiction. 

(b) Let B = {w: h(w) > 0}, Bn = {w: h(w) ::=: 1/n} t B. We have 
0 :S his" :S his= h; hence by 1.5.9(b), j 8" hdtt = 0. But j 8 " hdtt 
::=: (1/n)tt(Bn), so that tt(Bn) = 0 for all n, and thus tt(B) = 0. D 

The monotone convergence theorem was proved under the hypothesis that 
all functions were nonnegative. This assumption can be relaxed considerably, 
as we now prove. 

1.6.7 Extended Monotone Convergence Theorem. Let g 1, g2 .... , g, h be 
Borel measurable. 

(a) If gn ::=: h for all n, where fn h dtt > -oo, and gn t g, then 

(b) If gn :S h for all n, where fn hdtt < oo, and gn ..j, g, then 

PRooF. (a) If fn hdtt = oo, then by 1.5.9(b), fn gn dtt = oo for all n, and 
fn g dtt = oo. Thus assume fn h dtt < oo, so that by 1.6.6(a), h is a. e. finite; 
change h to 0 on the set where it is infinite. Then 0::; gn - h t g- h a.e., 
hence by 1.6.2, fn (gn -h) dtt t fn (g- h) djt. The result follows from 1.6.3. 
(We must check that the additivity theorem actually applies. Since fn h dtt 
> -oo, fn gn dtt and fn g dtt exist and are greater than -oo by 1.5.9(b). 
Also, fn h dtt is finite, so that fn gn dtt - fn h dtt and fn g dtt - fn h dtt are 
well-defined.) 

(b) -gn ::=: -h, fn -hdtt > -00, and -gn t -g. By part (a),- fn gn dtt 
t- fn gdjt, so fn gn dtt ..j, fn gdjt. D 

The exten~ monotone convergence theorem asserts that under appropriate 
conditions, the limit of the integrals of a sequence of functions is the integral 
of the limit function. More general theorems of this type can be obtained if 
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we replace limits by upper or lower limits. If f 1 , /2, ... are functions from n 
to R, lim infn---+oo fn and lim supn---+oo fn are defined pointwise, that is, 

( liminf fn) (w) =sup inf fk(w), 
n---+00 n k?:n 

( limsupfn) (w) = infsupfk(w). 
n---+oo n k?:n 

1.6.8 Fatou's Lemma. Let f 1, /2, ... , f be Borel measurable. 

(a) If fn 2: f for all n, where In f dtt > -oo, then 

liminf f !n dtt 2: f (liminffn) dtt. 
n---+00 ln ln n---+00 

(b) If fn :S f for all n, where In f dtt < oo, then 

lim sup { !n dtt ::: { (lim sup !n) dtt. 
n---+00 ln ln n---+00 

PROOF. (a) Let gn = infk>n fk> g = lim inf fn. Then gn 2: f for all n, 
In f dtt > -00, and gn t g.-By 1.6.7, In gn dtt t In(liminfn---+oo fn)djt. But 
gn :S fn, SO 

lim r gndtt=liminf r gndtt:Sliminf r fndJL. 
n---+00 ln n---+00 ln n---+00 ln 

(b) We may write 

f (lim sup !n) dtt = - { lim inf(-!n) dtt ln n---+00 ln n---+00 

2: -liminf r (- fn)dtt 
n---+00 ln by (a) 

= lim sup r In djt. D 
n---+cx:J ln 

The following result is one of the "bread and butter" theorems of analysis; 
it will be used quite often in later chapters. 

1.6.9 Dominated Convergence Theorem. If /1, /2, ... , f, g are Borel mea
surable, lfn I :S g for all n, where g is tt-integrable, and fn --+ f a.e. [JL], then 
f is tt-integrable and In fn dtt--+ In f djt. 
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PROOF. We have 1/1 :S g a.e.; hence f is integrable by 1.6.4(c). By 1.6.8, 

1 (liminf fn) dtt :S liminf1 fn dtt :S limsup1 fn dtt 
n n---+00 n---+00 n n---+00 n 

:S 1 (lim sup fn) djt. 
n n---+00 

By hypothesis, liminfn---+oo fn = limsupn---+oo fn = f a.e., so all terms of the 
above inequality are equal to fn f dJL. D 

1.6.10 Corollary. If ft. f2, ... , f, g are Borel measurable, Ifni :S g for all 
n, where lgiP is tt-integrable (p > 0, fixed), and fn -+ f a.e. [JL], then lfiP 
is tt-integrable and fn lfn - fiP dtt-+ 0 as n -+ oo. 

PRooF. We have lfniP :S lgiP for all n; so lfiP :S lgiP, and therefore lfiP 
is integrable. Also lfn- fiP :S (Ifni+ 1/I)P :S (21gi)P, which is integrable, 
and the result follows from 1.6.9. D 

We have seen in 1.5.9(b) that g :S h implies fn gdjt :S fn hdtt, and in fact 
fA g dtt :S fA h dtt for all A E .r. There is a converse to this result. 

1.6.11 Theorem. If JL is a-finite on .r, g and hare Borel measurable, fn g dtt 

and J n h dtt exist, and JA g dtt :S JA h dtt for all A E .r, then g :S h a. e. [JL]. 

PRooF. It is sufficient to prove this when JL is finite. Let 

Then 

But 

1 
g(w) 2: h(w) + -, 

n 
lh(w)l :S n}. 

11. hdttl :S 1. lhl dtt :S ntt(An) < 00, 

and thus we~ay subtract fA. h dtt to obtain (1 /n )tt(An) :S 0, hence tt(An) 

= 0. Therefore tt(U~ 1 An)= 0; hence tt{w: g(w) > h(w), h(w) finite}= 0. 
Consequently g :S h a.e. on {w: h(w) finite}. Clearly, g::; h everywhere on 
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{w: h(w) = oo}, and by taking Cn = {w: h(w) = -oo, g(w) 2: -n} we obtain 

hence tt(Cn) = 0. Thus tt(U~=l Cn) = 0, so that 

tt{w: g(w) > h(w), h(w) = -oo} = 0. 

Therefore g :S h a.e. on {w: h(w) = -oo}. D 

If g and hare integrable, the proof is simpler. Let B = {w: g(w) > h(w)}. 
Then Is g dtt :S Is h dtt :S Is g d!..t; hence all three integrals are equal. Thus by 
1.6.3, 0 = Is(g- h)dtt = I 0Jg- h)ls dtt, with (g- h)ls 2: 0. By 1.6.6(b), 
(g- h)ls = 0 a.e., so that g = h a.e. on B. But g :S h on Be, and the result 
follows. Note that in this case, JL need not be a-finite. 

The reader may have noticed that several integration theorems in this section 
were proved by starting with nonnegative simple functions and working up 
to nonnegative measurable functions and finally to arbitrary measurable func
tions. This technique is quite basic and will often be useful. A good illustra
tion of the method is the following result, which introduces the notion of a 
measure-preserving transformation, a key concept in ergodic theory. In fact it 
is convenient here to start with indicators before proceeding to nonnegative 
simple functions. 

1.6.12 Theorem. LetT: (n, .97)---+ (n0 , Yo) be a measurable mapping, and 
let JL be a measure on Y. Define a measure Jto = ttT- 1 on Yo by 

If no = n, Yo = Y, and tto = JL, T is said to preserve the measure JL. 
Iff: (no, Yo)---+ (R, JI)'(R)) and A E .9"Q, then 

{ f(T(w))djt(w) = 1 f(w)dtto(w), 
lr- 1A A 

in the sense that if one of the integrals exists, so does the other, and the two 
integrals are equal. 

PROOF. If f is an indicator Is, the desired formula states that 
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which is true by definition of tto· If f is a nonnegative simple function 
2:::7= 1 xJsP then 

by 1.6.3 

by what we have proved for indicators 

= 1 f(w)dtto(w) by 1.6.3. 

Iff is a non-negative Borel measurable function, let f 1, /2, ... be nonnegative 
simple functions increasing to f. Then fr-'A fn (T(w )) dtt(w) =fA fn (w) dtto(w) 
by what we have proved for simple functions, and the monotone convergence 
theorem yields the desired result for f. 

Finally, iff = j+ - f- is an arbitrary Borel measurable function, we have 
proved that the result holds for j+ and f-. If, say, fA j+(w)d{lo(w) < oo, 
then fr-IA j+(T(w))dtt(w) < oo, and it follows that if one of the integrals 
exists, so does the other, and the two integrals are equal. D 

If one is having difficulty proving a theorem about measurable functions 
or integration, it is often helpful to start with indicators and work upward. In 
fact it is possible to suspect that almost anything can be proved this way, but 
of course there are exceptions. For example, you will run into trouble trying 
to prove the proposition "All functions are indicators." 

We shall adopt the following terminology: If JL is Lebesgue measure and A 
is an interval [a, b], JA f dtt, if it exists, will often be denoted by J: f(x) dx 

(or J.b' · · ·J.bn f(x!, · · ·, Xn)dx! · · · dxn if we are integrating functions on ~n). 
a1 an 

The endpoints may be deleted from the interval without changing the integral, 
since the Lebesgue measure of a single point is 0. If f is integrable with 
respect to JL, then we say that f is Lebesgue integrable. A different notation, 
such as rab(f), will be used for the Riemann integral off on [a, b]. 

Problems 
I 

The first three problems give conditions under which some of the most 
commonly ockrring operations in real analysis may be performed: taking a 
limit under the integral sign, integrating an infinite series term by term, and 
differentiating under the integral sign. 
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1. Let I = l(x, y) be a real-valued function of two real variables, defined 
for a < y < b, c < x <d. Assume that for each x, l(x, ·)is a Borel mea
surable function of y, and that there is a Borel measurable g: (a, b) ---+ ~ 

such that ll(x, y)l :S g(y) for all x, y, and I: g(y)dy < oo. If Xo E (c, d) 
and limx--+.xo l(x, y) exists for all y E (a, b), show that 

lim jb l(x, y)dy = jb [lim l(x, y)] dy. 
x~~ a a x~~ 

2. Let 11, /2, ... be Borel measurable functions on (Q, .¥, JL). If 

00 

L Jllnl djt < 00, 
n=l n 

show that '2:~ 1 In converges a.e. [JL] to a finite-valued function, and 

In ('l:~=l In) dtt = 'l:~=l In In djt. 

3. Let I = l(x, y) be a real-valued function of two real variables, defined 
for a < y < b, c < x < d, such that I is a Borel measurable function of 
y for each fixed x. Assume that for each x, l(x, ·) is integrable over (a, b) 
(with respect to Lebesgue measure). Suppose that the partial derivative 
11 (x, y) of I with respect to x exists for all (x, y), and suppose there is a 
Borel measurable h: (a, b) ---+ ~ such that 111 (x, y)l ::= h(y) for all x, y, 
where J: h(y)dy < oo. 

Show that d[j: l(x, y)dy]/dx exists for all x E (c, d), and equals 

J: 11 (x, y)dy. [It must be verified that 11 (x, ·) is Borel measurable for 
each x.] 

4. If JL is a measure on (Q, .¥) and At. A2 , ••• is a sequence of sets in.¥, 
use Fatou's lemma to show that 

tt(li~infAn) :S l~~~f jt(An). 

If JL is finite, show that 

tt(limsupAn) 2: limsupjt(An). 
n n---+oo 

Thus if JL is finite and A= limn An, then tt(A) = limn---+oo jt(An ). (For 
another proof of this, see Section 1.2, Problem 10.) 

5. Give an example of a sequence of Lebesgue integrable functions In 
converging everywhere to a Lebesgue integrable function 1. such that 

}~~1: ln(x)dx < 1: l(x)dx. 
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Thus the hypotheses of the dominated convergence theorem and Fatou's 
lemma cannot be dropped. 

6. (a) Show that Jt"'o e-1 ln tdt = limn---+oo j 1n[l- (t/nW ln tdt. 

(b) Show that J; e-t ln t dt = limn---+oo j 0
1
[1 - (t/n W ln t dt. 

7. If (Q, !T, tt) is the completion of (Q, .9{i, JL) and f is a Borel measurable 
function on (Q, .97), show that there is a Borel measurable function g on 
(Q, .90) such that f = g, except on a subset of a set in .90 of measure 
0. (Start with indicators.) 

8. If f is a Borel measurable function from ~ to ~ and a E ~. show that 

1: f(x) dx = 1: f(x -a) dx 

in the sense that if one integral exists, so does the other, and the two are 
equal. (Start with indicators.) 

1. 7 COMPARISON OF LEBESGUE AND RffiMANN INTEGRALS 

In this section we show that integration with respect to Lebesgue measure 
is more general than Riemann integration, and we obtain a precise criterion 
for Riemann integrability. 

Let [a, b] be a bounded closed interval of reals, and let f be a bounded 
real-valued function on [a, b ], assumed fixed throughout the discussion. If 
P: a= x0 < x1 < · · · < Xn = b is a partition of [a, b], we may construct the 
upper and lower sums of f relative to P as follows. 

Let 
M; = sup{f(y): Xi-! < y::: xd, 

m; = inf{f(y): Xi-! < y :S X;}, 

i=l, ... ,n, 

i=l, ... ,n, 

and define step functions a and {3, called the upper and lower functions 
corresponding to P, by 

a(x) = M; 

f3(x) = m; 

if 

if 

Xi-! <X :S X;, 

X;-1 <X :S X;, 

i=l, ... ,n, 

i=l, ... ,n 

[a(a) and f3(a) may be chosen arbitrarily]. The upper and lower sums are 
given by 

I 

n 

U(P) = LM;(X;- X;-l), 

i=l 

n 

L(P) = Lm;(X; -x;_ 1). 

i=l 
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Now we take as a measure space n =[a, b], .r = .5fJ [a, b], the Lebesgue 
measurable subsets of [a, b], JL = Lebesgue measure. Since a and f3 are simple 
functions, we have 

b 

U(P) = 1 adJL, L(P) = 1b f3 dJL. 

Now let P 1, P2, ... be a sequence of partitions of [a, b] such that Pk+ 1 is 
a refinement of Pk for each k, and such that IPkl (the length of the largest 
subinterval of Pk) approaches 0 as k ---+ oo. If ak and f3k are the upper and 
lower functions corresponding to Pb then 

Thus ak and f3k approach limit functions a and {3. If 1/1 is bounded by M, then 
all lakl and lf3kl are bounded by Mas well, and the function that is constant 
at M is integrable on [a, b] with respect to JL, since 

JL[a, b] = b- a < oo. 

By the dominated convergence theorem, 

b b 

lim U(Pk) = lim { ak dJL = { a df.L, 
k-+oo k-+oo Ja Ja 

and 
b b 

lim L(Pk) = lim { f3k dJL = 1 f3 dJL. 
k-+oo k-+oo}a a 

We shall need one other fact, namely that if x is not an endpoint of any of 
the subintervals of the Pb 

f is continuous at x iff a(x) = f(x) = f3(x). 

This follows by a standard t:-8 argument. 
If limk-+oo U(Pk) = limk-+oo L(Pk) =a finite number r, independent of the 

particular sequence of partitions, f is said to be Riemann integrable on [a, b ], 
and r = rab(f) is said to be the (value of the) Riemann integral off on [a, b]. 
The above argument shows that f is Riemann integrable iff 
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independent of the particular sequence of partitions. If f is Riemann inte
grable, 

b b 

Tab(/) = 1 a dtt = 1 f3 djt. 

We are now ready for the main results. 

1. 7.1 Theorem. Let f be a bounded real-valued function on [a, b]. 

(a) The function f is Riemann integrable on [a, b] iff f is continuous 
almost everywhere on [a, b] (with respect to Lebesgue measure). 

(b) Iff is Riemann integrable on [a, b], then f is integrable with respect 
to Lebesgue measure on [a, b ], and the two integrals are equal. 

PROOF. (a) Iff is Riemann integrable, 

As f3 ::; f ::; a, 1.6.6(b) applied to a- f3 yields a= f = f3 a.e.; hence f is 
continuous a.e. Conversely, assume f is continuous a.e.; then a= f = f3 a.e. 
Now a and f3 are limits of simple functions, and hence are Borel measurable. 
Thus f differs from a measurable function on a subset of a set of measure 
0, and therefore f is measurable because of the completeness of the measure 
space. (See Section 1.5, Problem 4.) Since f is bounded, it is integrable with 
respect to JL, and since a = f = f3 a.e., we have 

b b b 1 adtt = 1 f3dtt = 1 f dtt, (1) 

independent of the particular sequence of partitions. Therefore f is Riemann 
integrable. 

(b) If f is Riemann integrable, then f is continuous a.e. by part (a). But 

then Eq. (1) yields rab(f) = J: f dtt, as desired. D 

Theorem 1.7.1 holds equally well inn dimensions, with [a, b] replaced by 
a closed bounded interval of ~ n; the proof is essentially the same. 

A somewhat more complicated situation arises with improper integrals; here 
the interval of integration is infinite or the function f is unbounded. Some 
results are givep in Problem 3. 

We have seen that convenient conditions exist that allow the interchange 
of limit operations on Lebesgue integrable functions. (For example, see Prob
lems 1-3 of Section 1.6.) The corresponding results for Riemann integrable 
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functions are more complicated, basically because the limit of a sequence of 
Riemann integrable functions need not be Riemann integrable, even if the 
entire sequence is uniformly bounded (see Problem 4). Thus Riemann inte
grability of the limit function must be added as a hypothesis, and this is a 
serious limitation on the scope of the results. 

Problems 

1. The function defined on [0, 1] by f(x) = 1 if xis irrational, and f(x) = 0 
if x is rational, is the standard example of a function that is Lebesgue 
integrable (it is 1 a.e.) but not Riemann integrable. But what is wrong 
with the following reasoning? 

If we consider the behavior of f on the irrationals, f assumes the 
constant value 1 and is therefore continuous. Since the rationals have 
Lebesgue measure 0, f is therefore continuous almost everywhere and 
hence is Riemann integrable. 

2. Let f be a bounded real-valued function on the bounded closed interval 
[a, b]. Let F be an increasing right-continuous function on [a, b] with cor
responding Lebesgue-Stieltjes measure JL (defined on the Borel subsets 
of [a, b]). 

Define M;, m;, a, and f3 as in 1.7, and take 

n b 

U(P) = l:M;(F(x;)- F(xH)) = 1 adJL, 
i=l a 

n b 

L(P) = 2:: m;(F(x;)- F(x;_t)) = 1 f3dJL, 
~~ a 

where J: indicates that the integration is over (a, b]. If {Pd is a sequence 
of partitions with IPkl---+ 0 and Pk+l refining Pb with ak and f3k the upper 
and lower functions corresponding to Pb 

b 

lim U(Pk) = 1 adJL, 
k---+oo a 

b 

lim L(Pk) = 1 f3dJL, 
k---+oo a 

where a= limk---+oo ab f3 = limk---+oo f3k· If U(Pk) and L(Pk) approach the 
same limit TabU; F) (independent of the particular sequence of partitions), 
this number is called the Riemann-Stieltjes integral of f with respect to 
F on [a, b], and f is said to be Riemann-Stieltjes integrable with respect 
to F on [a, b]. 
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(a) Show that f is Riemann-Stieltjes integrable iff f is continuous a.e. 
[JL] on [a,b]. 

(b) Show that iff is Riemann-Stieltjes integrable, then f is integrable 
with respect to the completion of the measure JL, and the two integrals 
are equal. 

3. Iff: ~--+ ~. the improper Riemann integral off may be defined as 

r(f) = lim TabU) 

if the limit exists and is finite. 

a---+-oo 
b-+00 

(a) Show that if f has an improper Riemann integral, it is continuous 
a.e. [Lebesgue measure] on ~. but not conversely. 

(b) If f is nonnegative and has an improper Riemann integral, show that 
f is integrable with respect to the completion of Lebesgue measure, 
and the two integrals are equal. Give a counterexample to this result 
if the nonnegativity hypothesis is dropped. 

4. Give an example of a sequence of functions fn on [a, b] such that each 
fn is Riemann integrable, Ifni :S 1 for all n, fn--+ f everywhere, but f 
is not Riemann integrable. 

Note: References on measure and integration will be given at the end of 
Chapter 2. 



CHAPTER 

2 
FURTHER RESULTS IN MEASURE AND 
INTEGRATION THEORY 

2.1 INTRODUCTION 

This chapter consists of a variety of applications of the basic integra
tion theory developed in Chapter 1. Perhaps the most important result is the 
Radon-Nikodym theorem, which is fundamental in modem probability the
ory and other parts of analysis. It will be instructive to consider a special 
case of this result before proceeding to the general theory. Suppose that F 
is a distribution function on ~, and assume that F has a jump of magnitude 
ak at the point xb k = 1, 2, .... Let us subtract out the discontinuities of F; 
specifically let ILl be a measure concentrated on {x1, x2, .. . }, with ILl {xk} = ak 

for all k, and let F 1 be a distribution function corresponding to ILl. Then 
G = F - F 1 is a continuous distribution function, so that the correspond
ing Lebesgue-Stieltjes measure 'A satisfies 'A{x} = 0 for all x. Now in any 
"practical" case, we can write G(x) = roo f(t) dt, X E R, for some nonnega
tive Borel measurable function f (the way to find f is to differentiate G). It 
follows that 'A(B) =Is f(x)dx for all BE .5t5'(~). To see this, observe that if 
'A' (B) = Is f(x)dx, then 'A' is a measure on._%'(~) and 'A'(a, b] = G(b) - G(a); 
thus 'A' is the Lebesgue-Stieltjes measure determined by G; in other words, 
'A' ='A. 

It is natural to conjecture that if 'A is a measure on ._%' (~) and 'A{x} = 0 for 
all x, then we can write 'A(B) = Is f(x) dx, B E ._%' (~), for some nonnegative 
Borel measurable f. However, as found by Lebesgue, the conjecture is false 
unless the hypothesis is strengthened. Not only must we assume that 'A assigns 
measure 0 to singletons, but in fact we must assume that 'A is absolutely 
continuous with respect to Lebesgue measure IL, that is, if ~L(B) = 0, then 
'A(B) = 0. In general, 'A may be represented as the sum of two measures 'A 1 
and 'A2, where 'A 1 is absolutely continuous with respect toIL and 'A2 is singular 
with respect to IL, which means that 'A2 is concentrated on a set of Lebesgue 
measure 0. A simple example of a measure singular with respect to IL is 
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one that is concentrated on a countable set; however, as we shall see, more 
complicated examples exist. 

The first step in the development of the general Radon-Nikodym theorem 
is the Jordan-Hahn decomposition, which represents a countably additive set 
function as the difference of two measures. 

Let (Q, .r, tt) be a measure space, h a Borel measurable function such 
that fnhdtt exists. If A(A) = JAhdtt,A E.§?; then by 1.6.1, A is a countably 
additive set function on §'. We call A the indefinite integral of h (with respect 
to JL). If JL is Lebesgue measure and A = [a, x], then A(A) = J: h(y) dy, the 
familiar indefinite integral of calculus. As we noted after the proof of 1.6.1, 
A is the difference of two measures, at least one of which is finite. We are 
going to show that any countably additive set function can be represented in 
this way. First, a preliminary result. 

2.1.1 Theorem. Let A be a countably additive extended real-valued set func
tion on the a-field Y of subsets of n. Then A assumes a maximum and a 
minimum value, that is, there are sets, C, DEY such that 

A( C)= sup{A(A): A E .9"'} and A(D) = inf{A(A): A E .9"'}. 

Before giving the proof, let us look at some special cases. If A is a measure, 
the result is trivial: take C = n, D = 0. If A is the indefinite integral of h with 
respect to JL, we may write 

A(A) = 1 hdtt = 1 hdtt + 1 hdJL. 
A An{w: h(w):>:O) An{w: h(w)<O) 

Thus 

r hdtt :-::::. A(A):::. r hdjt. 
J{w:h(w)<O) J{w:h(w):>:O) 

Therefore we may take C = {w: h(w) 2: 0}, D = {w: h(w) < 0}. 

~ 
PRooF. First consider the sup. We may assume that A < oo, for if A(A0 ) = oo 
we take C = Ao. Let An E §"'with A (An) ---+ sup A, and let A = U~= 1 An E §'. 

For each n, we may partition A into 2n disjoint subsets Anm• where each 
Anm is of the form A 1 * n A2 * n · · · n An*, with A j * either A j or A - A j. For 
example, if n = 3, we have (with intersections written as products) 

A= A1A2A3 U A1A2A~ U A1A;A3 U A1A2'A3' U A'1A2A3 

where 

Let Bn = Um{Anm: A(Anm) 2: 0}; set Bn = 0 if A(Anm) < 0 for all m. Now 
each An is a finite union of some of the Anm. hence A(An) :-::::_ A(Bn) by 
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definition of Bn. Also, if n' > n, each An'm' is either a subset of a given 
Anm or disjoint from it (for example, A1A2'A3' C A1A2', and A1A2'A3' is dis
joint from A 1A2, A 1'A2, and A1'A2'). Thus U~=n Bk can be expressed as a 
union of Bn and sets E disjoint from Bn such that ).(E) 2: 0. [Note that, 
for example, if )..(A 1A2') = )..(A1A2'A3) + )..(AtA2'A3') 2: 0, it may happen that 
)..(A 1A2'A3) < 0, )..(AtA2'A3') > 0, so the sequence {Bn} need not be mono
tone.] Consequently, 

as r---+ oo by 1.2.7(a). 

Let c =limn supBn = n~l U~n Bk. Now U~n Bk ..j, C, and 0::: 
A(U~n Bk) < oo for all n. By 1.2.7(b), A(U~n Bk)---+ ).(C) as n ---+ 00. Thus 

sup).= lim ).(An)::: lim ).. (Uoo Bk) =).(C)::: sup).; 
n---+oo n---+00 

k=n 

hence ).(C)= sup).. The above argument applied to -).. yields DE.¥ with 
).(D) = inf A. D 

We now prove the main theorem of this section. 

2.1.2 Jordan-Hahn Decomposition Theorem. Let).. be a countably addi
tive extended real-valued set function on the a-field .¥. Define 

).. +(A)= sup{)..(B): BE !T. B C A}, 

).. -(A)=- inf{)..(B): BE !T. B C A}. 

Then ).. + and )..- are measures on .rJF and ).. = ).. + - ).. -. 

PRooF. We may assume ).. never takes on the value -oo. For if -oo be
longs to the range of A, +oo does not, by definition of a countably additive 
set function. Thus -A never takes on the value -oo. But (-A)+ =)..- and 
(-)..)-=)..+,so that if the theorem is proved for-).. it holds for).. as well. 

Let D be a set on which).. attains its minimum, as in 2.1.1. Since )..(0) = 0, 
we have -oo < ).(D) ::: 0. We claim that 

).(A n D) ::: 0, for all (1) 

For if ).(An D) > 0, then ).(D) =).(An D)+ )..(N n D). Since ).(D) is 
finite, so are ).(An D) and )..(Ac n D); hence )..(N n D)= ).(D)- ).(An D) 
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< ).(D), contradicting the fact that A(D) = inf A. If ).(An De) < 0, then 
A(D U (A n De)) = A(D) +).(An De) < A(D), a contradiction. 

We now show that 

;..+(A)= A(A nDc), ;..-(A) = -}..(An D). 

The theorem will follow from this. We have, for B E !JT, B c A, 

A(B) = A(B n D) + A(B n De) 

::; ;..(B n De) by (1) 

::; A(B n De)+ A((A -B) n De) 

= A(A n De). 

(2) 

Thus A+ (A) :s A(A n De). ButA(A n DC) :s A +(A) by definition ofA +'proving 
the first assertion. Similarly, 

A(B) = A(B n D) + A(B n De) 

?:. A(B n D) 

?:. A(B n D) + A((A -B) n D) 

= A(A nD). 

Hence -A-(A)?:. A(A n D). But A(A n D)?:. -;..-(A) by definition of ;..-, 
completing the proof. 0 

2.1.3 Corollaries. Let A be a countably additive extended real-valued set 
function on the a-field !fT. 

(a) The set function A is the difference of two measures, at least one of 
which is finite. 

(b) If A is finite (A(A) is never ±oo for any A E .97), then A is bounded. 
(c) There is a set DE .97 such that ).(An D) ::; 0 and A(A n De) ?:. 0 for 

all A E !fT. 
(d) If Dis any set in §'such that ).(An D)::; 0 and A(A n De):::. 0 for all 

A E.¥, then A +(A)= A(A n DC) and A -(A)= -A(A n D) for all A E JT. 
(e) If E is another set in §'such that ).(An E)::; 0 and A(A n Ec):::. 0 for 

all A E !JT, then IAI(D D.. E)= 0, where IAI = ;..+ + ;..-. 

PRooF. (a) If A> -oo, then in 2.1.2, A -I is finite; if A < +oo, A+ is finite 
[see Eq. (2)]. 

(b) In 2.1.2, A+ and ;..- are both finite; hence for any A E !JT, IA(A)I 
:s ;..+(Q) + ;..-(Q) < 00. 
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(c) This follows from (1) of 2.1.2. 
(d) Repeat the part of the proof of 2.1.2 after Eq. (2). 
(e) By (d), A+ (A) = A (A n DC)' A E .97; take A = D n Ec to obtain 

A+(D nEe)= 0. Also by (d), A+(A) = A(A n Ec), A E .97; take A= DC n E 
to obtain A+ (De n E) = 0. Therefore A+ (D ~ E) = 0. The same argument 
using A- (A)= -A(A n D)= -A(A n E) shows that A- (D ~E) = 0. The re
sult follows. D 

Corollary 2.1.3(d) is often useful in finding the Jordan-Hahn decomposition 
of a particular set function (see Problems I and 2). 

2.1.4 Terminology. We call A+ the upper variation or positive part of A, A
the lower variation or negative part, IAI =A++ A- the total variation. Since 
A =A+ -A-, it follows that IA(A)I ::; IAI (A), A E.¥. For a sharper result, see 
Problem 4. 

Note that if A E !JT, then IAI(A) = 0 iff A(B) = 0 for all BE !JT, B CA. 
The phrase signed measure is sometimes used for the difference of two mea

sures. By 2.1.3(a), this is synonymous (on a a-field) with countably additive 
set function. 

Problems 

1. Let P be an arbitrary probability measure on .;.?9 (~), and let Q be point 
mass at 0, that is, Q(B) = I if 0 E B, Q(B) = 0 if 0 ¢ B. Find the Jor
dan-Hahn decomposition of the signed measure A = P- Q. 

2. Let A(A) = fA f dtt, A in the a-field !JT, where fn f djL exists; thus A is a 
signed measure on .r. Show that 

IAI(A) = 1111 dtt. 

3. If a signed measure A on the a-field SF is the difference of two measures 
At and A2, show that At 2: A+, A2 2: A-. 

4. Let A be a signed measure on the a-field .¥. Show that IAI (A) = 
sup{l.::;=t IA(E;)I: Et, E2, ... , En disjoint measurable subsets of A, 
n = I, 2, ... }. Consequently, if At and A2 are signed measures on !JT, 
then IAt + A2l :s IAtl + IA2I. 

2.2 RAnoN-NIKODYM THEOREM AND RELATED REsuLTs 

If (Q, !JT, tt) is a measure space, then A(A) = JAg djt, A E !JT, defines a 
signed measure if fn g dtt exists. Furthermore, if A E SF and tt(A) = 0, then 
A(A) = 0. For g!A = 0 on Ac, so that g!A = 0 a.e. [JL], and the result follows 
from 1.6.5(a). 
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If JL is a measure on the a-field .r, and A is a signed measure on .r, we 
say that A is absolutely continuous with respect to JL (notation A « JL) iff 
JL(A) = 0 implies A(A) = 0 (A E .97). Thus if A is an indefinite integral with 
respect to JL, then A « JL. The Radon-Nikodym theorem is an assertion in the 
converse direction; if A « JL (and JL is a-finite on .97), then A is an indefinite 
integral with respect to JL. As we shall see, large areas of analysis are based 
on this theorem. 

2.2.1 Radon-Nikodym Theorem. Let JL be a a-finite measure and A a signed 
measure on the a-field .97 of subsets of n. Assume that A is absolutely contin
uous with respect to JL. Then there is a Borel measurable function g: Q -+ ~ 
such that 

for all A E .'7: 

If h is another such function, then g = h a.e. [JL]. 

PRooF. The uniqueness statement follows from 1.6.11. We break the exis
tence proof into several parts. 

(a) Assume A and JL are finite measures. 

Let .'?be the set of all nonnegative JL-integrable functions f such that 
JA f djt :::= A(A) for all A E .9: Partially order.'? by calling f :::= g iff f :::= g a.e. 
[Jtl Lets = sup{jn f djt: f E t, :::= A(Q) < oo. (.'?is a nonempty collection 
since it contains the zero functio . We are going to produce a maximal element 
of Y, and we first note that if and g belong to.'? and h =max(/, g) then 
hE 7. For if B is the set on which f 2: g and C the set on which f < g, 
then 

r h djt = r J djt + r g djt 
}A }AnB lAnG 

::: A(A n B) + A(A n C) = A(A). 

Now let /1, f2, ... be a sequence in .'?such that fn fn djt -+ s, and let gn 
= max(/1, ... , fn). Then gn E Y, gn increases to a limit g, and fn gdjt = s 
(use the monotone convergence theorem and the fact that gn 2: fn)- We claim 
that g E .7; since fn g djt = s, it will follow that g is a maximal element of 
7. To show that g belongs to Y, let A be any set in .9: Then 

so 1 gn djt = 1 gnlA djt t 1 g[A djt = 1 gdjt. 

But JA gn djt :::= A(A) for all n, and therefore JAg djt :::= A(A). 
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Now that we have our maximal element g, let )q (A)= A(A)- fA gdJL, 
g E §'.Then A1 is a measure, A1 « JL, and A1 (Q) < oo. If A1 is not identically 
0, then A1 (Q) > 0, hence 

JL(Q)- kA 1 (Q) < 0 for some k > 0. (1) 

Apply 2.1.3( c) to the signed measure JL - kA 1 to obtain D E .97 such that for 
all A E §?"; 

JL(A n D)- kA 1 (An D)::; 0, (2) 

and 
(3) 

We claim that jt(D) > 0. For if jt(D) = 0, then A(D) = 0 by absolute con
tinuity, and therefore A 1 (D) = 0 by definition of A 1• Take A = Q in (3) to 
obtain 

0 :S jt(Dc)- kAt (De) 

= JL(Q)- kA 1 (Q) since JL(D) =At (D)= 0 

< 0 by (1), 

a contradiction. Define h(w) = I/k, wED; h(w) = 0, w ¢D. If A E .97; 

1 hdJL = ~JL(A n D)::; A1 (An D) 

:S A1 (A)= A(A)-1 g dJL. 

by (2) 

Thus fA (h + g)dJL::; A(A). But h + g > g on the set D, with JL(D) > 0, con
tradicting the maximality of g. Thus A1 = 0, and the result follows. 

(b) Assume JL is a finite measure, A a a-finite measure. 

Let Q be the disjoint union of sets An with A(An) < oo, and let An (A) 
= A(A nAn), A E .97; n = I, 2, .... By part (a) we find a nonnegative Borel 
measurable gn with An (A) = fA gn djt, A E §'. Thus A(A) = fAg djt, where 
g = Ln gn. 

(c) Assume JL is a finite measure, A an arbitrary measure. 

Let fP be the class of sets C E .97 such that A on C (that is, A restricted to 
.§?;; = {An C: A E .97}) is a-finite; note that 0 E ?P, so fP is not empty. Let 
s = sup{JL(A): A E fP} and pick Cn E fP with JL(Cn)-+ s. If C = U~=l Cn, 
thenCE ?Pby definition of ?P, and s 2: JL(C) 2: jt(Cn)-+ s; hence jt(C) = s. 
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By part (b), there is a nonnegative g': C---+ i:, measurable relative to.§?;; and 
~i:), such that 

A(A n C) = 1 g' dtt 
Anc 

for all 

Now consider an arbitrary set A E §'. 

Case 1: Let tt(A n cc) > 0. Then A(A n CC) = oo, for if A(A n CC) < oo, 
then C U (An CC) E W; hence 

a contradiction. 

Case 2: Let tt(A n cc) = 0. Then A(A n cc) = 0 by absolute continuity. 
Thus in either case, A(A n Cc) = fAnG' 00 djt. It follows that 

A(A) = A(A n C)+ A(A n Cc) = 1 gdJL, 

wh~/= g' on C, g = oo on cc. 
(d) Assume JL is a a-finite measure, A an arbitrary measure. 

Let Q be the union of disjoint sets An with tt(An) < oo. By part (c), 
there is a nonnegative function gn: An ---+ i:, measurable with respect to §A" 

and 33'(i:), such that A(A nAn)= JAnAn gn djt, A E 7. We may write this 

as A(A nAn) = fA gn dtt where gn (w) is taken as 0 for w r:j An. Thus A(A) 

= L:n A.(A nAn)= Ln fA gn dtt =fA gdjt, where g = L:n gn. 

(e) Assume JL is a a-finite measure, A an arbitrary signed measure. 

Write A = A+ - A- where, say, A- is finite. By part (d), there are non
negative Borel measurable functions g 1 and g2 such that 

A +(A)= 1 g1 dtt, 

Since A- is finite, g2 is integrable; hence by 1.6.3 and 1.6.6(a), A(A) 
= fA (g! - g2) djt. D 

2.2.2 Corollaries. Under the hypothesis of 2.2.1, 

(a) If A is finite, then g is tt-integrable, hence finite a.e. [JL]. 
(b) If IAI is a-finite, so that Q can be expressed as a countable union of sets 

An such that IAI (An) is finite (equivalently A(An) is finite), then g is finite a.e. [JL]. 
(c) If A is a measure, then g 2: 0 a.e. [JL]. 
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PROOF. All results may be obtained by examining the proof of 2.2.1. Alter
natively, we may proceed as follows: 

(a) Observe that A(Q) = fn g d~L, finite by hypothesis. 
(b) By (a), g is finite a.e. [~L] on each An, hence finite a.e. [~L] on Q. 
(c) Let A= {w: g(w) < 0}; then 0 :S A(A) = JAg d~L :S 0. Thus - glA is a 

nonnegative function whose integral is 0, so that glA = 0 a.e. [~L] by 1.6.6(b). 
Since glA < 0 on A, we must have ~L(A) = 0. D 

If A(A) =JAg d~L for each A E.¥, g is called the Radon-Nikodym derivative 
or density of A with respect toIL, written d'A/d~L. If IL is Lebesgue measure, 
then g is often called simply the density of A.. 

There are converse assertions to 2.2.2(a) and (c). Suppose that 

where fn g djL is assumed to exist. If g is ~L-integrable, then A is finite; if 
g 2: 0 a.e. [~L], then A 2: 0, so that A is a measure. (Note that a-finiteness of IL 
is not assumed.) However, the converse to 2.2.2(b) is false; if g is finite a.e. 
[~L], IAI need not be a-finite (see Problem 1). 

We now consider a property that is in a sense opposite to absolute continuity. 

2.2.3 Definitions. Let ILl and JL2 be measures on the a-field§'. We say that 
ILl is singular with respect to ~L2 (written ILl ..l IL2) iff there is a set A E §T 

such that IL 1 (A) = 0 and IL2 (A c) = 0; note IL 1 is singular with respect to ~L2 iff 
1L2 is singular with respect to ILh so we may say that ILl and 1L2 are mutually 
singular. If AJ and A2 are signed measures on.¥, we say that A1 and A2 are 
mutually singular iff IAJI ..liA21· 

If IL 1 ..l f.L2, with ILl (A) = ~L2 (A c) = 0, then JL2 only assigns positive mea
sure to subsets of A. Thus ~L2 concentrates its total effect on a set of ~L 1 -measure 
0; on the other hand, if ~L2 «ILl, ~L2 can have no effect on sets of ILl
measure 0. 

If A is a signed measure with positive part A+ and negative part A-, we 
have A+ ..l A- by 2.1.3(c) and (d). 

Before establishing some facts about absolute continuity and singularity, 
we need the following lemma. Although the proof is quite simple, the result 
is applied very often in analysis, especially in probability theory. 

2.2.4 Borel-Cantelli Lemma. If A 1,A2, ... E Y and 2::~ 1 ~L(An) < oo, 
then ~L0im supn An) = 0. 
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for all n 

00 

as n--+ oo. D 

2.2.5 Lemma. Let JL be a measure, and )q and A2 signed measures, on the 
a-field .'7: 

(a) If A1 ..l JL and A2 ..l JL, then AJ + A2 ..l JL. 
(b) If A1 « JL, then IA 11 « JL, and conversely. 
(c) If .A1 « JL and A2 ..l JL, then A1 ..l A2. 
(d) J( A1 « JL and A1 ..l JL, then A1 = 0. 
(e) /If A1 is finite, then At « JL iff lim!L(A)---+0 AJ (A)= 0. 

PROOF. (a) Let jt(A) = jt(B) = 0, IAJI(Ae) = IA21 (Be)= 0. Then jt(A U B) 
= 0 and AJ (C) = A2 (C) = 0 for every C E 5Twith C C Ae n Be; hence 
IA1 + A2I[(A U B)e] = 0. 

(b) Let JL (A) = 0. If A{ (A) > 0, then (see 2.1.2) A1 (B) > 0 for some 
B c A; since jt(B) = 0, this is a contradiction. It follows that A{, and simi
larly A], are absolutely continuous with respect to JL; hence IA 11 « JL. (This 
may also be proved using Section 2.1, Problem 4.) The converse is clear. 

(c) Let JL(A) = 0, IA2I (A e) = 0. By (b), I All (A) = 0, so I All ..l IA21· 
(d) By (c), A1 ..l A1; hence for some A E !JT, IA 11(A) = IA 11(N) = 0. Thus 

IAJI(Q) = 0. 
(e) If jt(An)--+ 0 implies AJ (An)--+ 0, and jt(A) = 0, set An =A to con

clude that A1 (A)= 0, so A1 « JL. 

Conversely, let A1 « JL. 
If lim!L(A)---+O IAJI (A) =I 0 we can find, for some £ > 0, sets An E .9' 

with jt(An) < 2-n and I All (An) 2: £ for all n. Let A = limn sup An; by 2.2.4, 
JL (A)= O.ButiAJI (U~n Ak) 2: IAJI (An) 2: doralln;hencebyl.2.7(b), 
IA 11(A) 2: £, contradicting (b). Thus lim!L(A)---+O IA 11(A) = 0, and the result 
follows since IAJ (A)I :S IAJI (A). D 

If A1 is an indefinite integral with respect to JL (hence AJ « JL), then 2.2.5(e) 
has an easier proof. If A1 (A)= JA f djt, A E !JT, then 

{ 1/1 dJL = { 1/1 df.L + { 1/1 d{t :S nJL(A) + { 1/1 df.L. 
}A JAn{lfl-sn) JAn{lfl>n) }1\fl>n) 
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By 1.6.1 and 1.2.7(b), .f{lfl>n} 1/1 djL may be made less than e/2 for large n, 

say n 2: N. Fix n =Nand take tt(A) < e/2N, so that fA 1/1 dtt <e. 
If JL is a measure and A a signed measure on the a-field .qT, A may be 

neither absolutely continuous nor singular with respect to JL. However, if IAI 
is a-finite, the two concepts of absolute continuity and singularity are adequate 
to describe the relation between A and JL, in the sense that A can be written 
as the sum of two signed measures, one absolutely continuous and the other 
singular with respect to JL. 

2.2.6 Lebesgue Decomposition Theorem. Let JL be a measure on the a-field 
.§T, A a a-finite signed measure (that is, IAI is a-finite). Then A has a unique 
decomposition as A1 + A2, where A1 and A2 are signed measures such that 
AI « JL, A2 ..l JL. 

PRooF. 1 First assume that A is a finite measure, and let W = {A E .¥: tt(A) 
= 0} and s = sup{A(A): A E If'}:::= A(Q) < oo. If A 1, A2, ... is a sequence of 
sets in W such that A(An)-+ s, then A*= U~1 An E If' and A(A*) = s. We 
claim that A(B- A*)= 0 for every BE W. For if BE Wand A(B- A*)> 0, 
then 

A(A* U B)= A(A*) + A(B- A*) > s, 

a contradiction. Now define 

A1 (A)= A(A- A*), 

If tt(B) = 0 then BE W, so A1 (B)= A(B- A*)= 0, hence A1 « JL. Since 
tt(A*) = 0 and A2(A*c) = 0, we have A2 ..l JL. 

If A is a a-finite measure, let Q be the disjoint union of sets An such that 
A(An) < oo. If An(A) = A(A nAn), A E.¥, then by the above argument there 
are finite measures Ani « JL and An2 ..l JL such that An =Ani + An2· Sum on 
n to get A = A1 + A2 with A1 « JL, A2 ..l JL. 

Now if A is a a-finite signed measure, the above argument applied to A+ 
and A- proves the existence of the desired decomposition. 

To prove uniqueness, first assume A finite. If A= A1 + A2 = A1' + A2 1
, where 

A1, A1' « JL, A2, A2' ..l JL, then A1 - A1' = A2'- A2 is both absolutely contin
uous and singular with respect to jt; hence it is identically 0 by 2.2.5(d). If A 
is a-finite and Q is the disjoint union of sets An with IAI(An) < oo, apply the 
above argument to each An and put the results together to obtain uniqueness 
of A1 and A2· D 

1 J. K. Brooks, American Mathematical Monthly, June-July 1971. 
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Note that as a corollary of the proof, if 'A is a a-finite measure (as opposed 
to a a-finite signed measure), then 'A 1 and 'A2 are measures. If 'A is a probability 
measure, then 'A 1, 'A2 ::; 1. 

Problems 

1. Give an example of a measure JL and a nonnegative finite-valued Borel 
measurable function g such that the measure 'A defined by 'A(A) = fAg djt 
is not a-finite. 

2. If 'A(A) =fA gdJL, A E.'¥; and g is JL-integrable, we know that 'A is finite; 
in particular, A 7 {w: g(w) =I 0} has finite 'A-measure. Show that A has a
finite wmeasJrie, that is, it is a countable union of sets of finite JL-measure. 
Give an example to show that JL(A) need not be finite. 

3. Give an example in which the conclusion of the Radon-Nikodym theorem 
fails; in other words, 'A « JL but there is no Borel measurable g such that 
'A(A) =fA gdjt for all A E Y. Of course JL cannot be a-finite. 

4. (A chain rule) Let (Q, .¥, JL) be a measure space, and g a nonnegative 
Borel measurable function on n. Define a measure 'A on .97by 

'A(A) = 1 g dp,, 

Show that if f is a Borel measurable function on Q, 

in the sense that if one of the integrals exists, so does the other, and the 
two integrals are equal. (Intuitively, d'A/dJL = g, so that d'A = gdjt.) 

5. Show that Theorem 2.2.5(e) fails if 'A 1 is not finite. 

6. (Complex measures) If (Q, .97) is a measurable space, a complex measure 
'A on .97 is a countably additive complex-valued set function; that is, 'A 
= 'A 1 + i'A2, where 'A 1 and 'A2 are finite signed measures. 

(a) Define the total variation of 'A as 

I'AI(A) =sup { t I'A(E;)I: Et, ... , En 

disjoint measurable subsets of A, n = I, 2, ... } . 

Show that I'AI is a measure on .97. (The definition is consistent 
with the earlier notion of total variation of a signed measure; see 
Section 2.1, Problem 4.) 
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In the discussion below, .A's, with various subscripts, denote arbi
trary measures (real signed measures or complex measures), and IL 
denotes a nonnegative real measure. We define A « IL in the usu
al way; if A E.¥ and ~L(A) = 0, then .A(A) = 0. Define .A 1 ..l .A2 iff 
I.A1I ..li.A2I- Establish the following results. 

(b) I.A1 + .A2I :S I.A. !I+ I.A2I; la.AI = lal I.AI for any complex number a. In 
particular if .A = .A 1 + i.A2 is a complex measure, then 

hence l.t..I(Q) < oo 

(c) If AJ ..l IL and .A2 ..l IL· then AJ + .A2 ..l IL· 
(d) If A « IL• then I.AI « IL· and conversely. 
(e) If .A 1 « IL and .A2 ..l IL· then .A 1 ..l .A2. 
(f) If A « IL and A ..l IL· then A = 0. 
(g) If A is finite, then .A « IL iff lim!L(A)---+O .A(A) = 0. 

2.3 APPLICATIONS TO REAL ANALYSIS 

by 2.1.3(b). 

We are going to apply the concepts of the previous section to some problems 
involving functions of a real variable. If [a, b] is a closed bounded interval of 
reals and f: [a, b] -+ ~. f is said to be absolutely continuous iff for each 
e > 0 there is a 8 > 0 such that for all positive integers n and all families 
(at. h), ... , (an, bn) of disjoint open subintervals of [a, b] of total length at 
most 8, we have 

n 

L lf(b;)- f(a;)l :S £. 

i=l 

It is immediate that this property holds also for countably infinite families 
of disjoint open intervals of total length at most 8. It also follows from the 
definition that f is continuous. 

We can connect absolute continuity of functions with the earlier notion of 
absolute continuity of measures, as follows. 

2.3.1 Theorem. Suppose that F and G are distribution functions on [a, b], 
with corresponding (finite) Lebesgue-Stieltjes measures ILl and ~L2 . Let 
f = F- G, IL =ILl - JL2, so that IL is a finite signed measure on .%'[a, b], 
with ~L(X, y] = f(y)- f(x), x < y. If m is Lebesgue measure on .%'[a, b], then 
IL « m iff f is absolutely continuous. 

PROOF. Assume IL « m. If e > 0, by 2.2.5(b) and (e), there is a 8 > 0 such 
that m(A)::; 8 implies I~LI(A)::; £. Thus if (aJ, b1), ... , (an, bn) are disjoint 
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open intervals of total length at most 8, 

n n 

L lf(b;)- f(a;)l = L I~L(a;, b;]l 

/ i=l i=l 

n 

:S L I~LI(a;, b;] :S I~LI(A) :S £. 

i=l 

(Note that ~L{b;} = 0 since IL « m.) Therefore f is absolutely continuous. 
Now assume f absolutely continuous; if e > 0, choose 8 > 0 as in the def

inition of absolute continuity. If m(A) = 0, we must show that ~L(A) = 0. We 
use 1.4.11: 

m(A) = inf{m(V): V :>A, 

~L;(A) = inf{~L;(V): V :>A, 

V open}, 

V open}, i =I, 2. 

(This problem assumes that the measures are defined on .5f:J (~) rather than 
.5f:J [a, b]. The easiest way out is to extend all measures to .5f:J (~) by assigning 
measure 0 to ~-[a, b].) Since a finite intersection of open sets is open, we 
can find a decreasing sequence {Vn} of open sets such that ILCVn)-+ ~L(A) 
and m(V n) -+ m(A) = 0. 

Choose n large enough so that m(V n) < 8; if V n is the disjoint union of 
the open intervals (a;, b;), i =I, 2, ... , then IILCVn)l :S l.::.I~L(a;, b;)l. But f 

I 

is continuous, hence 

~L{h;} = lim ~L(b;- Ijn, b;] = lim [f(b;)- f(b;- Ijn)] = 0. 
n---+00 n---+00 

Therefore 

IILCVn)l :S L I~L(a;, b;]l = L lf(b;)- f(a;)l :S £. 

i 

Since £ is arbitrary and ILCV n) -+ ~L(A), we have ~L(A) = 0. 0 

If f: ~-+ ~' absolute continuity of f is defined exactly as above. If F 
and G are bounded distribution functions on ~with corresponding Lebesgue
Stieltjes measures ILl and J£2, and f = F- G, IL =ILl - JL2 [a finite signed 
measure on .5f:J (~)], then f is absolutely continuous iff IL is absolutely con
tinuous with respect to Lebesgue measure; the proof is the same as in 2.3.1. 

Any absolutely continuous function on [a, b] can be represented as the 
difference of two absolutely continuous increasing functions. We prove this 
in a sequence of steps. 
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Iff: [a, b]---+ ~and P: a= x0 < x1 < · · · < Xn = b is a partition of [a, b], 
define 

n 

V(P) = L lf(x;)- f(x;_J)I. 
i=l 

The sup of V (P) over all partitions of [a, b] is called the variation of f on 
[a, b], written V 1 (a, b), or simply V(a, b) iff is understood. We say that f is 
of bounded variation on [a, b] iff V (a, b) < oo. If a < c < b, a brief argument 
shows that V(a, b)= V(a, c)+ V(c, b). 

2.3.2 Lemma. If f: [a, b]---+ ~ and f is absolutely continuous on [a, b], 
then f is of bounded variation on [a, b]. 

PRooF. Pick any e > 0, and let 8 > 0 be chosen as in the definition of absolute 
continuity. If Pis any partition of [a, b ], there is a refinement Q of P consisting 
of subintervals of length less than 8/2. If Q: a= x0 < x1 < · · · < Xn = b, let 
i0 = 0, and let i 1 be the largest integer such that X; 1 - X;0 < 8; let i2 be the 
largest integer greater than i1 such that X;2 - x;

1 
< 8, and continue in this 

fashion until the process terminates, say with i, = n. Now X;k - X;k-t 2: 8/2, 
k = I, 2, ... , r- I, by construction of Q; hence 

8 
(r- 1)- < b- a 2- , so 

2(b- a) 
r <I+ =M. - 8 

By absolute continuity, V (Q) ::.; M £. But V (P) ::.; V (Q) since the refining pro
cess can never decrease V; the result follows. D 

It is immediate that a monotone function F on [a, b] is of bounded variation: 
V F(a, b) = lf(b)- f(a)l. Thus iff = F- G, where F and G are increasing, 
then f is of bounded variation. The converse is also true. 

2.3.3 Lemma. Iff: [a, b]---+ ~and f is of bounded variation on [a, b], then 
there are increasing functions F and G on [a, b] such that f = F- G. Iff is 
absolutely continuous, F and G may also be taken as absolutely continuous. 

PRooF. Let f(x) = V 1 (a, x), a::.; x::.; b; F is increasing, for if h 2: 0, 
V(a,x+h)-V(a,x)=V(x,x+h)2::0. If G(x)=F(x)-f(x), then G is 
also increasing. For if x1 < x2, then 

G(x2)- G(xJ) = F(x2)- F(xJ)- (f(x2)- f(xJ)) 

= V(xJ,X2)- (f(x2)- f(xJ)) 

2: V(x1,x2)- lf(x2)- f(xJ)I 

2:0 by definition of 
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Now assume f absolutely continuous. If£ > 0, choose 8 > 0 as in the defini
tion of absolute continuity. Let (a1, b 1 ), ••• , (an, bn) be disjoint open intervals 
with total length at most 8. If P; is a partition of [a;, b;l, i = I, 2, ... , n, then 

n 

by absolute continuity of f. 

Take the sup successively over Ph ... , Pn to obtain 

in other words, 

n 

n 

L V(a;, b;)::; e; 
i=l 

L [F(b;)- F(a;)] ::; e. 
i=l 

Therefore F is absolutely continuous. Since sums and differences of abso
lutely continuous functions are absolutely continuous, G is also absolutely 
continuous. D 

We have seen that there is a close connection between absolute continuity 
and indefinite integrals, via the Radon-Nikodym theorem. The connection 
carries over to real analysis, as follows. 

2.3.4 Theorem. Let f: [a, b]-+ IRL Thenfis absolutely continuous on [a, b] 
iff f is an indefinite integral, that is, iff 

f(x)- f(a) = 1x g(t)dt, a::; x::; b, 

where g: [a, b] -+ ~ is Borel measurable and integrable with respect to Lebes
gue measure. 

PRooF. First assume f absolutely continuous. By 2.3.3, it is sufficient to 
assume f increasing. If JL is the Lebesgue-Stieltjes measure correspond
ing to f, and m is Lebesgue measure, then JL « m by 2.3.1. By the Radon
Nikodym theorem, there is an m-integrable function g such that jt(A) 
= JAgdm for all Borel subsets A of [a,b]. Take A= [a,x] to obtain f(x) 
- f(a) = J: g(t)dt. 
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Conversely, assume f(x)- f(a) = J: g(t) dt. It is sufficient to assume g 
2: 0 (if not, consider g+ and g- separately). Define tt(A) = JA gdm, 
A E .%'[a, b]; then JL « m, and ifF is a distribution function corresponding 
to JL, F is absolutely continuous by 2.3.1. But 

F(x)- F(a) = tt(a, x] = 1x g(t) dt = f(x)- f(a). 

Therefore f is absolutely continuous. D 

If g is Lebesgue integrable on ~. the "if" part of the proof of 2.3.4 shows 
that the function defined by f~oo g(t) dt, x E R is absolutely continuous, hence 
continuous, on ~- Another way of proving continuity is to observe that 

l

x+h lx loo -oo g(t)dt- -oo g(t)dt = -oo g(t)l(x,x+h)(t)dt 

if h > 0, and this approaches 0 as h --+ 0, by the dominated convergence 
theorem. 

If f(x)- f(a) =fax g(t)dt, a::: x::: b, and g is continuous at x, then f 
is differentiable at x and f' (x) = g(x); the proof given in calculus carries 
over. If the continuity hypothesis is dropped, we can prove that f'(x) = g(x) 
for almost every x E [a, b]. One approach to this result is via the theory of 
differentiation of measures, which we now describe. 

2.3.5 Definition. For the remainder of this section, JL is a signed measure on 
the Borel sets of ~k, assumed finite on bounded sets; thus if JL is nonnegative, 
it is a Lebesgue-Stieltjes measure. If m is Lebesgue measure, we define, for 
each x E ~k, 

- . tt(C,) 
(Dtt)(x) = hm sup--, 

r---+0 c, m(C,) 
(Dtt)(x) = liminftt(C,)' 

r---+0 c, m(C,) 

where the C, range over all open cubes of diameter less than r that contain 
x. It will be convenient (although not essential) to assume that all cubes have 
edges parallel to the coordinate axes. 

We say that JL is differentiable at x iff Dtt and Dtt are equal and finite 
at x; we write (Dtt)(x) for the common value. Thus JL is differentiable at x 
iff for every sequence { C n} of open cubes containing x, with the diameter of 
c n approaching 0, jt( c n) /m( c n) approaches a finite limit, independent of the 
particular sequence. 

The following result will play an important role. 
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2.3.6 Lemma. If {C 1, ... , Cn} is a family of open cubes in ~k, there is a 
disjoint subfamily {C;I' ... , CJ such that m(Uj= 1 C1) :S 3k 2.:::~=! m(Cp). 

PRooF. Assume that the diameter of C decreases with i. Set i 1 = I, and 
take i2 to be the smallest index greater than i 1 such that C;2 is disjoint from 
C;,; let i3 be the smallest index greater than i2 such that C;3 is disjoint from 
C;, U C;2 • Continue in this fashion to obtain disjoint sets C;,, ... , C;,. Now 
for any j =I, ... , n, we have C1 n C,p #0 for some ip::; j, for if not, 
j is not one of the ip, hence ip < j < ip+l for some p (or is< j). But 
c1 n (C;, U · · · U C;P) is assumed empty, contradicting the definition of ip+l· 

If Bp is the open cube with the same center as C,p and diameter three times 
as large, then since C 1 n C; p =I 0 and diameter C 1 ::; diameter C p, we have 
c1 c Bp· Therefore, 

We now prove the first differentiation result. 

2.3.7 Lemma. Let JL be a Lebesgue-Stieltjes measure on the Borel sets of 
~k. If JL(A) = 0, then DJL = 0 a.e. [m] on A. 

PRooF. If a> 0, let B = {x E A: (DJL)(x) >a}. [Note that {x: supc, JL(C,)/ 
m( C,) > a} is open, and it follows that B is a Borel set.] Fix r > 0, and let K be 
a compact subset of B. If x E K, there is an open cube C, of diameter less than 
r with x E C, and JL(C,) > am(C,). By compactness, K is covered by finitely 
many of the cubes, say C 1, ... , Cn. If {C;I' ... , C;J is the subcollection of 
2.3.6, we have 

where K, = {x E ~k: dist(x, K) < r}. Since r is arbitrary, we have m(K) 
::; 3kjt(K)/a::; 3kjt(A)/a = 0. Take the sup over K to obtain, by 1.4.11, 
m(B) = 0, and since a is arbitrary, it follows that DJL::; 0 a.e. [m] on A. 
But JL 2: 0; hence 0 ::; DJL ::; DJL, so that DJL = 0 a.e. [m] on A. D 
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We are going to show that Dtt exists a.e. [m], and to do this the Lebesgue 
decomposition theorem is helpful. We write JL = tt 1 + f.L2, where tt 1 « m, 
JL2 ..l m. If ltt2I(A) = 0 and m(Ac) = 0, then by 2.3.7, Dtt2+ = Dtt2- = 0 
a.e. [m] on A; hence a.e. [m] on ~k. Thus DM = 0 a.e. [m] on ~k. 

By the Radon-Nikodym theorem, we have tt 1(E) = JEgdm, E E .%'(~k), 
for some Borel measurable function g. As might be expected intuitively, g is 
(a.e.) the derivative of f.Ll; hence Dtt = g a.e. [m]. 

2.3.8 Theorem. Let JL be a signed measure on ._%'(~k) that is finite on bound
ed sets, and let JL = tt 1 + f.L2, where f.Ll « m and JL2 ..l m. Then Dtt exists a.e. 
[m] and coincides a.e. [m] with the Radon-Nikodym derivative g = dtti/dm. 

PROOF. If a E Rand C is an open cube of diameter less than r, 

f.Ll(C)-am(C)= f(g-a)dm~ { (g-a)dm. 
Jc lcn{g~a) 

If)..(£)= JEn{g~a)(g- a)dm, E E .%'(~k), and A= {g <a}, then ).(A)= 0; 
so by 2.3.7, D).= 0 a.e. [m] on A. But 

hence Dtt 1 ~a a.e. [m] on A. Therefore, if Ea = {x E ~k: g(x) < a < (Dttd 
(x)}, then m(Ea) = 0. Since {Dttl > g} C U {Ea: a rational}, we have Dtt1 
~ g a.e. [m]. Replace tt 1 by -ttl and g by -g to obtain Dtt 1 2: g a.e. [m]. 
By 2.2.2(b), g is finite a.e. [m], and the result follows. D 

We now return to functions on the real line. 

2.3.9 Theorem. Letf: [a,b]---+ ~beanincreasingfunction.Thenthederiv
ative off exists at almost every point of [a, b] (with respect to Lebesgue 
measure). Thus by 2.3.3, a function of bounded variation is differentiable almost 
everywhere. 

PROOF. Since f has only countably many discontinuities, we may assume 
without loss of generality that f takes the upper value at a discontinuity and 
is therefore a distribution function. 

Let JL be the Lebesgue-Stieltjes measure corresponding to f; by 2.3.8, 
Dtt exists a.e. [m]; we show that Dtt = f' a.e. [m]. If a::; x::; b and JL is 
differentiable at x, then f is continuous at x by definition of JL. If limh---+O 
[f(x +h)- f(x)]/h =I (Dtt)(x) = c, there is an£ > 0 and a sequence hn ---+ 0 
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with all hn of the same sign and l[f(x + hn)- f(x)]/hn- cl 2: £ for all n. 
Assuming all hn > 0, we can find numbers kn > 0 such that 

I 
f(x + hn)- f(x- kn) _ cl > ~ 

hn + kn - 2 

for all n, and since f has only countably many discontinuities, it may be 
assumed that f is continuous at x + hn and x - kn. Thus we conclude that 
~L(X- kn, X+ hn)/(hn + kn)-t---+ c, a contradiction. D 

We now prove the main theorem on absolutely continuous functions. 

2.3.10 Theorem. Let f be absolutely continuous on [a, b], with f(x) 
- f(a) = J: g(t)dt, as in 2.3.4. Then f' = g almost everywhere on [a, b] 
(Lebesgue measure). Thus by 2.3.4, f is absolutely continuous iff f is the 
integral of its derivative, that is, 

f(x)- f(a) = lx f'(t)dt, a ::; x ::; b. 

PRooF. We may assume g 2: 0 (if not, consider g+ and g-). If ILl (A) 
= JAg dm, A E 39 (~k), then D~L 1 = g a. e. [m] by 2.3.8. But if a ::; x ::; y ::; b, 
then ILl (x, y] = f(y)- f(x), so that ILl is the Lebesgue-Stieltjes measure 
corresponding to f. Thus by the proof of 2.3.9, D~L 1 = f' a.e. [m]. D 

Problems 

1. Let F be a bounded distribution function on ~. Use the Lebesgue de
composition theorem to show that F may be represented uniquely (up 
to additive constants) as F 1 + F2 + F3, where the distribution functions 
Fj, j = I, 2, 3 (and the corresponding Lebesgue-Stieltjes measures ILj) 
have the following properties: 

(a) F 1 is discrete (that is, IL 1 is concentrated on a countable set of points). 
(b) F 2 is absolutely continuous (M is absolutely continuous with respect 

to Lebesgue measure; see 2.3.1). 
(c) F 3 is continuous and singular (that is, IL3 is singular with respect to 

Lebesgue measure). 

2. Iff is an increasing function from [a, b] to ~. show that J: f'(x)dx 
::; f(b)- f(a). The inequality may be strict, as Problem 3 shows. (Note 
that by 2.3.9, f' exists a.e.; for integration purposes, f' may be defined 
arbitrarily on the exceptional set of Lebesgue measure 0.) 

3. (The Cantor function) Let E 1, E2 , ... be the sets removed from [0, 1] to 
form the Cantor ternary set (see Problem 7, Section 1.4). Define functions 
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F n: [0, 1] ---+ [0, 1] as follows: Let At, A2, ... , A2"-l be the subintervals 
of U7= 1 E;, arranged in increasing order. For example, if n = 3, 

Define 

E 1 U E2 U E3 = ( -i7, -f?) U ( ~, ~) U ( i7, -!?) U 0, n 
u (~. ~) u G.~) u (~. ~) 

Fn(O) = 0, 

Fn(X) = kj2n 

Fn(l)=l. 

=At UA2 U · · · UA7. 

if k = 1, 2, ... , 2n - 1, 

Complete the specification of F n by interpolating linearly. For n = 2, see 
Fig. 2. 3 .1, in this case, 

E t U E2 = ( t, ~) U ( ~, ~) U ( ~, ~) 

=At UA2 UA3. 

Show that F n (x) ---+ F(x) for each x, where F, the Cantor function, has 
the following properties: 

(a) F is continuous and increasing. 
(b) F' = 0 almost everywhere (Lebesgue measure). 
(c) F is not absolutely continuous. 

3 
3 4 
k."' 1 

2 

QL-~~--~l---L--~4--~5---2L--47--~8--~~ 

99 99399 
X 

Figure 2.3.1. Approximation to the Cantor function. 



2.3 APPLICATIONS TO REAL ANALYSIS 81 

In fact 
(d) F is singular; that is, the corresponding Lebesgue-Stieltjes measure 

JL is singular with respect to Lebesgue measure. 

4. Let f be a Lebesgue integrable real-valued function on ~k (or on an open 
subset of ~k). If JL(E) = JE f(x)dx, E E 17'(~k), we know that DJL = f 
a.e. (Lebesgue measure). If DJL = f at xo, then if C is an open cube 
containing x0 and diam C --+ 0, we have JL(C)jm(C) --+ f(xo); that is, 

-
1

- r [f(x)- f(xo)]dx--+ 0 
m(C) Jc 

In fact, show that 

-
1

- r lf(x) - f(xo)l dx --+ 0 
m(C) Jc 

as diam C--+ 0. 

as diam C--+ 0 

for almost every x0 . The set of favorable x0 is called the Lebesgue set 
of f. 

5. This problem relates various concepts discussed in Section 2.3. In all 
cases, f is a real-valued function defined on the closed bounded interval 
[a, b]. Establish the following: 

(a) If f is continuous, f need not be of bounded variation. 
(b) If f is continuous and increasing (hence of bounded variation), f 

need not be absolutely continuous. 
(c) Iff satisfies a Lipschitz condition, that is, lf(x)- f(y)l ::: Llx- yl 

for some fixed positive number L and all x, y E [a, b ], then f is 
absolutely continuous. 

(d) Iff' exists everywhere and is bounded, f is absolutely continuous. 
(It can also be shown that iff' exists everywhere and is Lebesgue 
integrable on [a, b ], then f is absolutely continuous; see Titchmarsh, 
1939, p. 368.) 

(e) Iff is continuous and f' exists everywhere,/ need not be absolutely 
continuous [consider f(x) = x2 sin(1jx2 ), 0 < x ::: 1, f(O) = 0]. 

6. The following problem considers the change of variable formula in a mul
tiple integral. Throughout the problem, Twill be a map from V onto W, 
where V and W are open subsets of ~k. Tis assumed one-to-one, contin
uously differentiable, with a nonzero Jacobian. Thus T has a continuously 
differentiable inverse, by the inverse function theorem of advanced cal
culus [see, for example, Apostol (1957, p. 144)]. It also follows from 
standard advanced calculus results that for all x E V, 

1 
Thf[IT(x +h)- T(x)- A(x)hl]--+ 0 as h--+ 0, (1) 
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where A(x) is the linear transformation on ~k represented by the Jacobian 
matrix ofT, evaluated at x. [See Apostol (1957, p. 118).] 

(a) Let A be a nonsingular linear transformation on ~k. and define a 
measure A on J?J(~k) by A(E) = m(A(E)) where m is Lebesgue 
measure. Show that A = c(A)m for some constant c(A), and in fact 
c(A) is the absolute value of the determinant of A. [Use translation
invariance of Lebesgue measure (Problem 5, Section 1.4) and the 
fact that any matrix can be represented as a product of matrices 
corresponding to elementary row operations.] 

Now define a measure JL on.%' (V) by JL(E) = m(T(E)). By conti
nuity ofT, if e > 0, x E V, and C is a sufficiently small open cube 
containingx, then T(C) has diameterless thane, in particular, m(T(C)) 
< oo. It follows by a brief compactness argument that JL is a Lebesgue
Stieltjes measure on.%' (V). 

Our objective is to show that JL is differentiable and (Djt)(x) = 
ll(x)l for every x E V, where J(x) = det A(x), the Jacobian of the 
transformation T. 

(b) Show that it suffices to prove that if OE V and T(O) = 0, then (DJL)(O) 
= I detA(O)I. 

(c) Show that it may be assumed without loss of generality that A(O) is 
the identity transformation; hence det A(O) = 1. 

Now given e > 0, choose a E (0, i) such that 

1 - e < (1 - 2a)k < (1 + 2a/ < 1 +e. 

Under the assumptions of (b) and (c), by Eq. (1), there is a 8 > 0 

such that if lxl < 8, then IT(x)- xi ::: alxi/Jk. 
(d) If C is an open cube containing 0 with edge length f3 and diameter 

Jkf3 < 8, take C 1, C2 as open cubes concentric with C, with edge 
lengths {3 1 = (1 - 2a)f3 and {32 = (1 + 2a)f3. Establish the following: 

(i) If x E C, then T(x) E C2. 
(ii) If x belongs to the boundary of C, then T (x) ¢ C 1• 

(iii) If x is the center of C, then T(x) E C 1• 

(iv) C1 - T(C) = C 1 - T(C). 

Use a connectedness argument to conclude that C 1 C T(C) C C2, 

and complete the proof that (DJL)(O) = 1. 
(e) If A is any measure on J?J(V) and DA < oo on V, show that A is 

absolutely continuous with respect to Lebesgue measure. It therefore 
follows from Theorem 2.3.8 that 

m(T(E)) = 111(x)l dx, E E .1J'(V). 
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[If this is false, find a compact set K and positive integers n and 
j such that m(K) = 0, ).(K) > 0, and ).(C)< nm(C) for all open 
cubes C containing a point of K and having diameter less than 1/ j. 
Essentially, the idea is to cover K by such cubes and conclude that 
).(K) = 0, a contradiction.] 

(f) If f is a real-valued Borel measurable function on W, show that 

l f(y)dy = fv f(T(x))IJ(x)l dx 

in the sense that if one of the two integrals exists, so does the other, 
and the two integrals are equal. 

7. (Fubini's differentiation theorem) Let f 1, /2, ... be increasing functions 
from ~ to ~. and assume that for each x, 2.::~ 1 fn(x) converges to a 
finite number f(x). Show that I::~=l fn'(x) = f'(x) almost everywhere 
(Lebesgue measure). 

Outline: 
(a) It suffices to restrict the domain of all functions to [0, 1] and to as

sume all functions nonnegative. Use Fatou's lemma to show that 
2.::~ 1 fn'(x)::: f'(x) a.e.; hence fn'(x)--+ 0 a.e. 

(b) Choose nt. n2, .. . such that Lj>nk /j(l) :S 2-k, k = 1, 2, ... and ap
plypart (a)tothefunctionsgk(x) = f(x)- 2.::}~ 1 /j(x) = Lj>nk /j(x). 

2.4 LP SPACES 

If (Q, !JT, JL) is a measure space and p is a real number with p ::: 1, the 
set of all Borel measurable functions f such that lfiP is JL-integrable has 
many important properties. In order to fully develop these properties, it will 
be convenient to work with complex-valued functions. 

2.4.1 Definitions. Let (Q, JT) be a measurable space, and let f be a com
plex-valued function on Q, so that f = Re f + i Im f. We say that f is a 
complex-valued Borel measurable function on (Q, ST) if both Re f and Im f 
are real-valued Borel measurable functions. If JL is a measure on !JT, we define 

provided In Re f df.L and In 1m f df.L are both finite. In this case we say 
that f is JL-integrable. Thus in working with complex-valued functions, we 
do not consider any cases in which integrals exist but are not finite. 

The following result was established earlier for real-valued f [see 1.5.9(c)]; 
it is still valid in the complex case, but the proof must be modified. 
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2.4.2 Lemma. If f is tt-integrable, 

PROOF. If In f dtt = rei8, r 2: 0, then In e-iB f dtt = r = I In f dttl· But if 
f(w) = p(w)ei<P({J)) (taking p 2: 0), then 

l e-iB f dtt = l pei(cp-B) dtt 

= l P cos(q>- ()) dtt since r is real 

::: l pdjt = Llfl djt. D 

Many other standard properties of the integral carry over to the complex 
case, in particular 1.5.5(b), 1.5.9(a) and (e), 1.6.1, 1.6.3, 1.6.4(b) and (c), 
1.6.5, 1.6.9, 1.6.10, and 1.7.1. In almost all cases, the result is an immediate 
consequence of the fact that integrating a complex-valued function is equiva
lent to integrating the real and imaginary parts separately. Only two theorems 
require additional comment. To prove that h is integrable iff lhl is integrable 
[1.6.4(b)], use the fact that IRe hi, lim hi::: lhl :::IRe hi+ lim hi. Finally, to 
prove the dominated convergence theorem (1.6.9), apply the real version of 
the theorem to lfn- fl, and note that lfn- fl :S Ifni+ lfl :S 2g. 

If p > 0, we define the space LP = LP(Q, Y, JL) as the collection of all 
complex-valued Borel measurable functions f such that In lfiP dtt < oo. We 
set 

II flip= (fnlfiP dtt) l/p, fEU. 

It follows that for any complex number a, llafllp = lal II flip, f E LP. 
We are going to show that LP forms a linear space over the complex field. 

The key steps in the proof are the Holder and Minkowski inequalities, which 
we now develop. 

2.4.3 Lemma. If a, b, a, f3 > 0, a+ f3 = 1, then aabf3 ::: aa + f3b. 

PROOF. The statement to be proved is equivalent to -log(aa + f3b) 
::: a( -log a) + {3(- log b), which holds because -log is convex. [If g has 
a nonnegative second derivative on the interval I c R, then g is convex on 
I, that is g(ax + f3y) ::: ag(x) + f3g(y), x, y E I, a, f3 > 0, a+ f3 = 1. To see 
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this, assume x < y and write 

g(ax + f3y)- ag(x)- f3g(y) = a[g(ax + f3y)- g(x)] + f3[g(ax + f3y)- g(y)] 

= af3(y- x)[g' (u)- g' (v)] for some u,v 

with x::: u::: ax+ f3y, ax+ f3y :S v::: y. But g'(u)- g'(v)::: 0 since g' is 
increasing on I.] D 

2.4.4 Corollary. If c, d > 0, p, q > 1, (1/p) + (1/q) = 1, then cd::: (cPjp) 
+ (dq/q). 

PROOF. In 2.4.3, let a= 1/ p, {3 = 1jq, a= cP, b = dq. 0 

2.4.5 Holder Inequality. Let 1 < p < oo, 1 < q < oo, (1/p) + (ljq) = 1. If 
fEU and g E U, then fg E L 1 and 11/gllt::: 11/llpllgllq· 

PROOF. In 2.4.4, take c = lf(w)l/11/llp. d = lg(w)l/llgllq (the inequality is 
immediate if 11/llp or llgllq = 0). Then 

lf(w)g(w)l lf(w)IP lg(w)lq 
---<--+--· 

11/llpllgllq - Pll/11~ qllgll~ ' 

integrate to obtain 

When p = q = 2, we obtain 

and thus, using 2.4.2, we have the Cauchy-Schwarz inequality: Iff and g E L 2, 

then fg E V and 

where g is the complex conjugate of g. (The reason for replacing g by g is 
to make the inequality agree with the Hilbert space result to be discussed in 
Chapter 3.) 
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2.4.6 Lemma. If a, b 2:0, p 2: 1, then (a+ b)P::; 2P- 1(aP + bP). 

PRooF. Let h(x) = d[(a +x)P- 2P- 1(aP +xP)]/dx = p(a +x)P-l_ 2P-l 
pxP- 1; since p 2: 1, 

h(x) > 0 

h(x) = 0 

h(x) < 0 

for a +x > 2x, 

at x =a, 

for x >a. 

that is, x <a, 

The maximum therefore occurs at x = a; hence 

2.4.7 Minkowski Inequality. Iff, g E U(1 ::; p < oo), then f + g E U and 
II/+ gllp :s 11/llp + llgllp· 

PRooF. By 2.4.6, If+ giP :S (1/1 + lgi)P :S 2P-l (IJIP + lgiP), hence f, 
g E LP implies f + g E LP. Now the inequality is clear when p = 1, so as
sume p > 1 and choose q such that (1/p) + (1/q) = 1. Then 

If+ giP =If+ gil/+ glp-t :S 1/11/ + glp-t + lgl If+ giP-t. (1) 

Now If+ glp-l E U; for 

p-1 p-1 
(p- 1)q = 1jq = 1 - 1/ p = p; 

hence 

Since f and g belong to U and If+ glp-l E U, Holder's inequality implies 
that 1/1 If+ glp-l and lgl If+ glp-l E L 1, and 

1111 If+ glp-t dtt :s 11/llp [1 (If+ glp-t)q dtt] t!q 

= 11/llp II/+ gll~1q, (2) 

11gl If+ glp-l dtt :s llgllp II/+ giWq· (3) 

By Eq. (1), II/+ gil~ :S (II/IlP + llgllp)(ll/ + gll~ 1q). Since p- (p/q) = 1, 
the result follows. D 
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By Minkowski's inequality and the fact that llafllp = lal II/IlP for f ELP, 
LP (1 ::; p < oo) is a vector space over the complex field. Furthermore, there is 
a natural notion of distance in LP, by virtue of the fact that II II P is a seminorm. 

2.4.8 Definitions and Comments. A seminorm on a vector space L (over 
the real or complex field) is a real-valued function II II on L, with the following 
properties: 

11/11 2:0, 

lla/11 = lal 11/11 for each scalar a; 

consequently, if f = 0, then II f II = 0. 

II/+ gil :s 11/11 + llgll 

(f and g are arbitrary elements of L). If II II is a seminorm with the additional 
property that 11/11 = 0 implies f = 0, II II is said to be a norm. 

Now II liP is a seminorm on LP; the first two properties follow from the 
definition of II lip, and the last property is a consequence of Minkowski's 
inequality. 

We can, in effect, change II liP into a norm by passing to equivalence classes 
as follows. 

Iff, g E U(Q, .r, JL), define f ""'g iff f = g a.e. [ttl Then 11/llp is the 
same for all f in a given equivalence class, by 1.6.5(b). Thus if LP is the 
collection of equivalence classes, LP becomes a linear space, and II lip is a 
seminorm on LP. In fact II lip is a norm, since 11/llp = 0 implies f = 0 a.e. 
[jt], by 1.6.6(b). 

If II II is a seminorm on a vector space, we have a natural notion of distance: 
d(f, g)= II/- gil. By definition of seminorm we have 

d(f, g) 2: 0, 

d(f,g)=O if 

d(f, g)= d(g, f), 

f =g, 

d(f, h) :s d(f, g)+ d (g, h). 

Thus d has all the properties of a metric, except that d (f, g) = 0 does not nec
essarily imply f = g; we call d a pseudometric. If II II is a norm, d is actually 
a metric. (There is an asymmetry of terminology between seminorm and pseu
dometric, but these terms seem to be most popular, although "pseudonorm" 
is sometimes used, as is "semimetric.") 
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One of the first questions that arises in any metric space is the problem 
of completeness; we ask whether or not Cauchy sequences converge. We are 
going to show that the LP spaces are complete. The following result will be 
needed; students of probability are likely to recognize it immediately, but it 
appears in other parts of analysis as well. 

2.4.9 Chebyshev's Inequality. Let f be a nonnegative, extended real-valued, 
Borel measurable function on (Q, .'7, JL). If 0 < p < oo and 0 < e < oo, 

JL{W: j(w) 2: e} :S 
1
p r jP djt. 

£ Jn 
The following version is often applied in probability. If g is an extended real
valued Borel measurable function on (Q, .9') and P is a probability measure 
on .'7; define 

m = l g dP (assumed finite, so that g is finite a.e. [P]), 

a2 = l (g - m)2 dP. 

If 0 < k < 00, 
1 

P{w: lg(w)- ml 2: ka} :S k2 • 

This follows from the first version with f = lg- ml, e = ka, p = 2. 

PRooF. 

One more auxiliary result will be needed. 

2.4.10 Lemma. If gl, g2, ... E LP(p > 0) and llgk- gk+tilp < (~)k, k = 1, 
2, ... , then {gk} converges a. e. 

PROOF. Let Ak = {w: lgk(w)- gk+! (w)l 2: 2-k}. Then by 2.4.9, 

tt(Ak) :S 2kpllgk- gk+tll: < 2-kp. 

By 2.2.4, tt(IimsupnAn) = 0. But if w ¢ limsupn An, then lgk{w)- gk+l(w)l 
< 2-k for large k, so {gk(w)} is a Cauchy sequence of complex numbers, and 
therefore converges. D 

Now, the main result: 
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2.4.11 Completeness of If, 1 ~ p < oo. If /1, /2, ... form a Cauchy se
quence in LP, that is, 11/n - fmllp--+ 0 as n, m--+ oo, there is anf E LP such 
that 11/n - flip --+ 0. 

PRooF. Let n1 be such that 11/n- fmllp < i for n, m 2: n~o and let g, = fn,· 
In general, having chosen g1, .•• , gk and n 1, •.. , nk. let nk+ 1 > nk be such 

that 11/n- fmllp < (i/+ 1 
for n, m 2: nk+l• and let gk+l = fnk+l· By 2.4.10, 

gk converges a.e. to a limit function f. 
Given £ > 0, choose N such that 11/n- !mil~<£ for n, m 2: N. Fix 

n 2: N and let m --+ oo through values in the subsequence, that is, let 
m = nk, k --+ oo. Then 

by Fatou's lemma 

= 11/n- /11~. 

Thus 11/n- flip--+ 0. Since f = f- fn + fn, we have fEU. D 

2.4.12 Examples and Comments. Let Q be the positive integers; take .'7 
as all subsets of Q, and let JL be counting measure. A real-valued function 
on Q may be represented as a sequence of real numbers; we write f = {an, 
n =I, 2, ... }. An integral on this space is really a sum [see Problem l(a)]: 

where the series is interpreted as 2.::~= 1 an+- 2.::~= 1 an- if this is not of the 
form +oo -oo (if it is, the integral does not exist). Thus the following cases 
occur: 

(1) 2.::~= 1 an+= oo, 2.::~= 1 an- < oo. The series diverges to oo and the 
integral is oo. 

(2) 2.::~= 1 an+ < oo, I::~=l an- = oo. The series diverges to -oo and the 
integral is -oo. 

(3) 2.::~ 1 an+ < oo, 2.::~= 1 an- < oo. The series is absolutely convergent 
and the integral equals the sum of the series. 

(4) 2.::~= 1 an+ = oo, 2.::~= 1 an- = oo. The series is not absolutely conver
gent; it may or may not converge conditionally. Whether it does or not, the 
integral does not exist. Thus when summation is considered from the point 
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of view of Lebesgue integration theory, series that converge conditionally but 
not absolutely are ignored. 

If JL is changed so that JL{ n} is a nonnegative number Pn, not necessarily 
1 as in the case of counting measure, the same analysis shows that 

where the series is interpreted as L~= 1 Pnan + - L~= 1 Pnan-. 
If f = {an, n = I, 2, ... } is a sequence of complex numbers and JL is count

ing measure, 

l f djt = f: an = f: Re an + if: Im an; 
n=1 n=1 n=1 

the integral is defined provided L~=l I an I < oo. 
Now let Q be an arbitrary set, and take !JT as all subsets of Q and JL as 

counting measure. Iff = (f(a), a E Q) is a nonnegative real-valued function 
on Q, then [Problem 1(b)] 

r 1 djt = Lf(a), 
Jn a 

(1) 

where the series is defined as sup{LaEF f(a): F C Q, F finite}. If f(a) > 0 
for uncountably many a, then for some 8 > 0 we have f(a) 2: 8 for infinitely 
many a, so that La f(a) = oo. 

If the nonnegativity hypothesis is dropped, we apply the above results to 
j+ and f- to again obtain Eq. (1), where the series is interpreted as La j+ (a) 
-La f-(a). Iff is complex-valued, Eq. (1) still applies, with the series in
terpreted as La Re f(a) + i La 1m f(a). The integral is defined provided 
La lf(a)l < 00. 

The space LP(Q, Y, JL) will be denoted by [P(Q); it consists of all complex
valued functions (f(a), a E Q) such that f(a) = 0 for all but countably many 
a, and 

11111: = L lf(a)IP < oo. 
a 

If Q is the set of positive integers, the space [P (Q) will be denoted simply 
by l P; it consists of all sequences f = {an} of complex numbers such that 

00 

11/11~ = L lanlp < 00. 

n=] 
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It will be useful to state the Holder and Minkowski inequalities for sums. If 
f E [P(Q) and g E [P(Q), where 1 < p < oo, 1 < q < oo, (ljp) + (1/q) = 1, 
then fg E 11 (Q) and 

( )
l/p ( )l/q 

~ lf(a)g(a)l :S ~ lf(a)IP ~ lg(a)lq . 

Iff, g E [P(Q), 1 :S p < 00, then f +g E [P(Q) and 

( )
l/p ( )l/p ( )l/p 

~ lf(a) + g(a)IP ::: ~ lf(a)IP + ~ lg(a)IP . 

As in 2.4.5, we obtain the Cauchy-Schwarz inequality for sums from the 
Holder inequality. Iff, g E l 2(Q), then fg E 11 (Q) and 

I~ f(a)g(a)l ::: ( ~ lf(a)l
2

) 

112 

( ~ lg(a)l
2

) 

112 

If in the above discussion we replace Q by {1, 2, ... , n}, all convergence 
difficulties are eliminated, and all the spaces [P(Q) coincide withe. 

If 0 < p < 1, II liP is not a seminorm on LP(Q, !JT, JL). For let A and B 
be disjoint sets with a= tt(A) and b = tt(B) assumed finite and positive. If 
f = IA, g = IB, then 

11/+gllp= (Lif+g1Pdtty
1

p = (L(IA+IB)dtty
1

p =(a+b) 11P, 

But (a+ b) 11P > a 11P + b 11P if a, b > 0, 0 < p < 1, since (a +xY- a'
x' is strictly increasing for r > 1, and has the value 0 when x = 0. Thus 
the triangle inequality fails. We can, however, describe convergence in LP, 
0 < p < I, in the following way. We use the inequality 

a, b 2: 0, 0 < p < 1, 

which is proved by considering (a + x)P - aP - xP. It follows that 

f,g E LP, (2) 

and therefore d(f, g)= fa. If- giP dtt defines a pseudometric on LP. In fact 
the pseudometric is complete (every Cauchy sequence converges); for Eq. (2) 
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implies that if f, g E U, then f + g E U, so that the proof of 2.4.11 goes 
through. 

If Q is an interval of reals, Y is the class of Borel sets of Q, and JL is 
Lebesgue measure, the space U(Q, .7, JL) will be denoted by U(Q). Thus, for 
example, LP[a, b] is the set of all complex-valued Borel measurable functions 
f on [a, b] such that 

11/11~ = 1b lf(xW dx < oo. 

If f is a complex-valued Borel measurable function on (Q, .'#', JL) and 
!1, f2, ... E LP(Q,Y, JL), we say that the sequence Un} converges to fin 
U iff 11/n -flip-+ 0, that is, iff fn lfn - fiP djt-+ 0 as n-+ 00. We use 

LP 
the notation fn ~ f. In Section 2.5, we shall compare various types of 
convergence of sequences of measurable functions. We show now that any 
f E LP is an LP-limit of simple functions. 

2.4.13 Theorem. Let f E LP, 0 < p < oo. If e > 0, there is a simple func
tion g E LP such that II/- gllp < &; g can be chosen to be finite-valued and 
to satisfy lgl ::: 1/1. Thus the finite-valued simple functions are dense in LP. 

PROOF. This follows from 1.5.5(b) and 1.6.10. D 

If we specialize to functions on ~n and Lebesgue-Stieltjes measures, we 
may obtain another basic approximation theorem. 

2.4.14 Theorem. Let f E U(Q, §', JL), 0 < p < oo, where Q = ~n, Y 
= ~~n), and JL is a Lebesgue-Stieltjes measure. If e > 0, there is a con
tinuous function g E U(Q, §', JL) such that II/ - gllp < &; furthermore, g can 
be chosen so that sup lgl :::sup I fl. Thus the continuous functions are dense 
in LP. 

PROOF. By 2.4.13, it suffices to show that an indicator lA in LP can be 
approximated in the LP sense by a continuous function with absolute value 
at most 1. Now lA E LP means that JL(A) < oo; hence by 1.4.11, there is a 
closed set C c A and an open set V ~A such that JL(V- C) < &P2-P. Let g 
be a continuous map of Q into [0, 1] with g = 1 on C and g = 0 on yc (g 
exists by Urysohn's lemma). Then 
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But UA =I g} C V- C and IIA - gl ::: 2; hence 

Sinceg=g-IA+IA,wehavegELP. D 

If f 1, /2, . . . are continuous and fn converges to f in LP, it does not 
follow that f is continuous (see Problem 2). 

2.4.15 The Space L 00
• If we wish to define LP spaces for p = oo, we must 

proceed differently. We define the essential supremum of the real-valued Borel 
measurable function g on (Q, !JT, JL) as 

ess supg = inf{c E R: tt{w: g(w) > c} = 0}, 

that is, the smallest number c such that g::: c a.e. [JL]. 
Iff is a complex-valued Borel measurable function on (Q, !JT, JL), we define 

11/lloo = ess suplfl. 

The space L 00 (Q, !JT, JL) is the collection of all f such that 11/lloc < oo. Thus 
f E L 00 iff f is essentially bounded, that is, bounded outside a set of mea
sure 0. 

Now If+ gl :S 1/1 + lgl :S 11/lloo + llglloo a.e.; hence 

II/+ glloo :S 11/lloo + llglloo· 

In particular, f, g E L 00 implies f + g E L 00
• The other properties of a semi

norm are easily checked. Thus L 00 is a vector space over the complex field, 
II lloo is a seminorm on L 00

, and becomes a norm if we pass to equivalence 
classes as before. 

Loo 
Iff, /1, /2, ... E L00 and 11/n- /lloo---+ 0, we write fn ~ f; we claim 

that: 11/n - f lloo ---+ 0 iff there is a set A E §'with tt(A) = 0 such that fn ---+ f 
uniformly on A c. 

Assume llfn- /lloc---+ 0. Given a positive integer m, llfn- /lloo :S 1/m 
for sufficiently large n; hence lfn(w)- f(w)l :S 1/m for almost every w, say 
for w ¢Am, where tt(Am) = 0. If A = U~=l Am, then tt(A) = 0 and fn ---+ f 
uniformly onAc. Conversely, assume tt(A) = 0 and fn---+ f uniformly on A c. 
Given£ > 0, lfn- /I :S £on Ac for sufficiently large n, so that lfn -/I ::: £ 
a.e. Thus 11/n- flloo :S £for large enough n, and the result follows. 

An identical argument shows that Un} is a Cauchy sequence in 
L00 (llfn - fmlloo---+ 0 as n, m---+ oo) iff there is a set A E .97with tt(A) = 0 
and fn - f m ---+ 0 uniformly on A c. 
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It is immediate that the Holder inequality still holds when p = 1, q = oo, 
and we have shown above that the Minkowski inequality holds when p = oo. 

To show that L 00 is complete, let Un} be a Cauchy sequence in L 00
, and let A 

be a set of measure 0 such that In ( w) - I m ( w) ---+ 0 uniformly for w E A c. But 
then ln(w) converges to a limit l(w) for each wE Ac, and the convergence 
is uniform on A<. If we define I( w) = 0 for w E A, we have I E L 00 and 

Loo 
In ~J. 

Theorem 2.4.13 holds also when p = oo. For if I is a function in L 00 , the 
standard approximating sequence Un} of simple functions (see 1.5 .5) con
verges to I uniformly, outside a set of measure 0. However, Theorem 2.4.14 
fails when p = oo (see Problem 12). 

If Q is an arbitrary set, .r consists of all subsets of Q, and JL is counting 
measure, then L 00 (Q, .§?'; JL) is the set of all bounded complex-valued functions 
I= (f(a), a E Q), denoted by l 00 (Q). The essential supremum is simply 
the supremum; in other words, llllloo = sup{ll(a)l: a E Q}. If Q is the set 
of positive integers, [00 (Q) is the space of bounded sequences of complex 
numbers, denoted simply by zoo. 

Problems 

1. (a) If I= {an, n = 1, 2, ... }, the an are real or complex numbers, and 
JL is counting measure on subsets of the positive integers, show that 
In I djt = 2.::::0= 1 an, where the sum is interpreted as in 2.4.12. 

(b) If I = (f(a), a E Q) is a real- or complex-valued function on the 
arbitrary set Q, and JL is counting measure on subsets of Q, show 
that In I djt = La I( a), where the sum is interpreted as in 2.4.12. 

2. Give an example of functions I, 11, h .... from ~to [0, 1] such that 

(a) each In is continuous on ~. 
(b) In (x) converges to l(x) for all x, I~oo lin (x) - l(x)IP dx---+ 0 for 

every p E (0, oo ), and 
(c) I is discontinuous at some point of~. 

3. For each n = 1, 2, ... , let In = {a\n), a~n), .. . } be a sequence of complex 
numbers. 

(a) If the a~n) are real and 0::; a~n)::; ain+l) for all k and n, show that 

00 00 

lim '""'a(n) ='""' lim a(n). 
n--->00 L......t k L......t n--->00 k 

k=l k=l 

Show that the same conclusion holds if the a~n) are complex, 
Iimn---+oo a~n) exists for each k, and lain) I ::; bk for all k and n, where 
2.::~ 1 bk < oo. 
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(b) If the at) are real and nonnegative, show that 

00 00 00 00 

LLain) = LLain). 
k=l n=l n=l k=l 

() If h (n) 1 d "'00 
"'

00 I (n)l h h c t e ak are comp ex an Lm=l L..k=l ak < oo, s ow t at 
L~=l 2::~ 1 at) and 2::~ 1 2::~ 1 akn) both converge to the same 
finite number. 

4. Show that there is equality in the HOlder inequality iff lfiP and lglq are 
linearly dependent, that is, iff AlfiP = Blglq a.e. for some constants A 
and B, not both 0. 

5. If f is a complex-valued tt-integrable function, show that I fn f dttl 
= fn 1/1 dtt iff arg f is a.e. constant on {w: f(w) =1 0}. 

6. Show that equality holds in the Cauchy-Schwarz inequality iff f and g 
are linearly dependent. 

7. (a) If 1 < p < oo, show that equality holds in the Minkowski inequality 
iff Af = Bg a. e. for some nonnegative constants A and B, not both 0. 

(b) What are the conditions for equality if p = 1? 

8. IfO < r < s < 00, and f E U(Q, .¥, jt), JL finite, show that 11/llr :S kll/lls 
for some finite positive constant k. Thus U C L' and V convergence 
implies L' convergence. (We may take k = 1 if JL is a probability measure.) 
Note that finiteness of JL is essential here; if JL is Lebesgue measure on 
..%'(~)and f(x) = 1/x for x ::::_ 1, f(x) = 0 for x < 1, then f E L2 but 
f ¢ Ll. 

9. If JL is finite, show that 11/llp--+ 11/lloo as p--+ oo. Give an example to 
show that this fails if tt(D.) = oo. 

10. (Radon-Nikodym theorem, complex case) If JL is a nonnegative, real 
measure, A a complex measure on (Q, .¥), and A « JL, show that there 
is a complex-valued tt-integrable function g such that A(A) = fAg dtt 
for all A E .r. If h is another such function, g = h a.e. 

Show also that the Lebesgue decomposition theorem holds if A is a 
complex measure and JL is a a-finite measure. (See Problem 6, Section 2.2, 
for properties of complex measures.) 

11. (a) Let f be a complex-valued tt-integrable function, where JL is a 
nonnegative real measure. If S is a closed set of complex num
bers and [1 I tt(E)] JE f dtt E S for all measurable sets E such that 
tt(E) > 0, show that f(w) E S for almost every w. [If D is a closed 
disk with center at z and radius r, and D c sc, take E = f- 1(D). 
Show that I jE(f- z) dttl :S rtt(E), and conclude that tt(E) = 0.] 
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(b) If A is a complex measure, then A« IAI by definition of IAI; hence 
by the Radon-Nikodym theorem, there is a IAI-integrable complex
valued function h such that A(E) =IE hdiAI for all E E JT. Show 
that lhl = 1 a.e. [IAI]. [Let A, = {w: lh(w)l < r}, 0 < r < 1, and 
use the definition of IAI to show that lhl 2: 1 a.e. Use part (a) to 
show lhl .::; 1 a.e.] 

(c) Let JL be a nonnegative real measure, g a complex-valued JL-integrable 
function, and A(E) =IE gdJL, E E JT. If h = dA/diAI as in part (b), 
show that IAI(E) =IE hgdJL. (Intuitively, hgdJL = hdA = hhdiAI 
= lhl 2 diAl= diAl. Formally, show that In fhdiAI =In fgdJL iff 
is a bounded, complex-valued, Borel measurable function, and set 
f = hh.) 

(d) Under the hypothesis of (c), show that 

IAI (E) = 11gl dJL for all E E JT. 

12. Give an example of a bounded real-valued function f on~ such that there 
is no sequence of continuous functions fn such that II/ - fn lloo --+ 0. 
Thus the continuous functions are not dense in L 00 (R). 

2.5 CONVERGENCE OF SEQUENCES OF MEASURABLE FUNCTIONS 

In the previous section we introduced the notion of LP convergence; we are 
also familiar with convergence almost everywhere. We now consider other 
types of convergence and make comparisons. 

Let f, !1, /2, ... be complex-valued Borel measurable functions on 
(Q, !JT, JL). We say that fn --+ fin measure (or in JL-measure if we wish to em
phasize the dependence on JL) iff for every£> 0, JL{W: lfn(w)- f(w)l 2: e} 

--+ 0 as n --+ oo. (Notation: fn ~ f.) When JL is a probability measure, 
the convergence is called convergence in probability. 

The first result shows that LP convergence is stronger than convergence in 
measure. 

2.5.1 Theorem. Iff, / 1, /2, ... E U(O < p < oo), then, fn __!!..__,. f implies 
f.L 

fn ~J. 

PROOF. Apply Chebyshev's inequality (2.4.9) to lfn -fl. D 

The same argument shows that if Un} is a Cauchy sequence in LP, then Un} 
is Cauchy in measure, that is, given£> 0, JL{w: lfn(w)- fm(w)l 2: e}--+ 0 
as n, m --+ oo. 
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If f, ft. /2, ... are complex-valued Borel measurable functions on 
(Q, !JT, JL), we say that fn ---+ f almost uniformly iff, given £ > 0, there is 
a set A E §'such that tt(A) <£and fn---+ f uniformly on A c. 

Almost uniform convergence is stronger than both a.e. convergence and 
convergence in measure, as we now prove. 

2.5.2 Theorem. If fn ---+ f almost uniformly, then fn ---+ f in measure and 
almost everywhere. 

PRooF. If£> 0, let fn ---+ f uniformly on Ac, with tt(A) < £. If 8 > 0, then 
eventually lfn -/I < 8 on N, so {1/n -/I 2: 8} CA. Therefore 
tt{lfn - /1 2: 8} ::_: tt(A) < £, proving convergence in measure. 

To prove almost everywhere convergence, choose, for each positive integer 
k, a set Ak with tt(Ak) < 1/k and fn ---+ f uniformly on Ak. If B = U~1 Ak, 
then fn ---+ f on B and tt(Bc) = tt(n~ 1 Ak) ::: tt(Ak)---+ 0 as k---+ oo. Thus 
tt(Bc) = 0 and the result follows. D 

The converse to 2.5.2 does not hold in general, as we shall see in 2.5.6(c), 
but we do have the following result. 

2.5.3 Theorem. If Un} is convergent in measure, there is a subsequence 
converging almost uniformly (in particular, a.e. and (of course) in measure) 
to the same limit function. 

PRooF. First note that Un} is Cauchy in measure, because if lfn- fml 2: £, 
then either lfn- /12: e/2 or If- fml2: e/2. Thus 

tt{lfn- fml2: e}::: tt{l!n- /12: ~} 

as n, m---+ oo. 

Now for each positive integer k, choose a positive integer Nk such that 
Nk+! > Nk for all k and 

for 

Pick integers nk 2: Nk with nk < nk+t. k = 1, 2, ... ; then if gk = fnk' 

Let Ak = {lgk - gk+tl 2: 2-k}, A= lim supk Ak. Then tt(A) = 0 by 2.2.4; but 
if w ¢A, then wEAk for only finitely many k; hence lgk(w)- gk+l (w)l < 2-k 
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for large k, and it follows that gk(w) converges to a limit g(w). Since tt(A) = 0 
we have gk ---+ g a.e. 

If B, = u~, Ak, then tt(B,) ::: L~r tt(Ak) < e for large r. If w ¢ B, then 
lgk(w)- gk+! (w)l < 2-k, k = r, r + 1, r + 2, .... By the Weierstrass M-test, 
gk ---+ g uniformly on B,, which proves almost uniform convergence. 

Now by hypothesis, we have In~ I for some I, hence Ink~ f. 
f.L 

But by 2.5.2, Ink ~ g as well, hence I = g a.e. (see Problem 1). Thus Ink 
converges almost uniformly to I, completing the proof. D 

There is a partial converse to 2.5.2, but before discussing this it will be 
convenient to look at a condition equivalent to a.e. convergence. 

2.5.4 Lemma. If JL is finite, then In ---+ I a.e. iff for every 8 > 0, 

as n ---+ oo. 

PRooF. Let Bn8 = {w: lin (w) - l(w)l 2: 8}, B8 =lim supn Bn8 = n~l U~n Bk8· 
Now U~n Bk8 ..j, B8; hence tt(U~n Bk8)---+ tt(B8) as n ---+ oo by 1.2.7(b). 
Now 

{w: ln(w) -t--+ l(w)} = U B8 
8>0 

00 

= U Bt;m since B8 1 c B82 for 8! > 82 
m=l 

Therefore, 

In ---+ I a.e. iff tt(B8) = 0 for all 8>0 

iff tt (Q Bk8) ---+0 for all 8 > 0. D 

2.5.5 Egoroff's Theorem. If JL is finite and In ---+ I a.e., then In ---+ I 
almost uniformly. Hence by 2.5.2, if JL is finite, then almost everywhere 
convergence implies convergence in measure. 

PROOF. It follows from 2.5.4 that given e > 0 and a positive integer j, for 
sufficiently large n = n(j), the setAj = U~n(j){llk- II 2: 1/ j} has measure 

th . uoo 00 less an e/21 . If A= j=! Aj, then tt(A)::;: Lj=l tt(Aj) <e. Also, if 8 > 0 
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and j is chosen so that 1/ j < 8, we have, for any k 2: n(j) and wE Ac (hence 
w ¢ Aj), lfk(w)- l(w)l < 1/j < 8. Thus In --+ I uniformly on A c. D 

We now give some examples to illustrate the relations between the various 
types of convergence. In all cases, we assume that .97is the class of Borel sets 
and JL is Lebesgue measure. 

2.5.6 Examples. (a) Let Q = [0, 1] and define 

1 
ifO:Sx:S-, 

n 
elsewhere. 

Then In --+ 0 a.e., hence in measure by 2.5.5. But for each p E (0, oo], In 
fails to converge in LP. For if p < oo, 

1
! 1 

lllnllp = lln(x)IP dx = -enp--+ 00, 
P o n 

and 
lllnlloo =en --+ 00. 

(b) Let Q = ~. and define 

elsewhere. 

Loo 
Then In --+ 0 uniformly on ~. so that In ~ 0. It follows quickly that 
In --+ 0 a. e. and in measure. But for each p E (0, oo ), In fails to converge in 
U, since II In II~= n-pen --+ 00. 

(c) Let Q = [0, oo) and define 

. 1 
1f n ::: x ::: n + - , 

n 
elsewhere. 

Then In --+ 0 a.e. and in measure (as well as in LP, 0 < p < oo), but does 
not converge almost uniformly. For, if In --+ 0 uniformly on A and JL(N) < t:, 

then eventually In < 1 on A; hence if An = [n, n + (1/n)] we have 
A n Uk:::n Ak = 0 for sufficiently large n. Therefore, A c ~ uk> n Ab and con
sequently JL(Ac) 2: L~n JL(Ak) = oo, a contradiction. Note that if we change 
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fn (x) so that it is 1 for n ::: x ::: n + 1 and 0 elsewhere, then fn converges to 
0 almost everywhere but not in measure, hence not almost uniformly. 

(d) Let Q = [0, 1], and define 

{ 

m-1 m 

f ( ) _ } if-- <X :S -, 
nm X - n n 

0 elsewhere. 

m = 1, ... ,n, n = 1,2, ... , 

Then 11/nmll~= 1/n---+ 0, so for each p E (0, oo), the sequence fll, ht. /22, 
/3 1, /32 , /33 , ... converges to 0 in LP (hence converges in measure by 2.5.1). 
But the sequence does not converge a.e., hence by 2.5.2, does not con
verge almost uniformly. To see this, observe that for any x =I= 0, the sequence 
Unm(x)} has infinitely many zeros and infinitely many ones. Thus the set on 
which fnm converges has measure 0. Also, fnm does not converge in L 00

, 

Loo ~ 
for if fnm ~ f, then fnm ~ f, hence f = 0 a.e. (see Problem 1). But 
11/nmlloo = 1, a contradiction. 

Problems 

1. If fn converges to both f and gin measure, show that f = g a.e. 

2. Show that a sequence is Cauchy in measure iff it is convergent in measure. 

3. (a) If JL is finite, show that L 00 convergence implies LP convergence for 
all p E (0, oo). 

(b) Show that any real-valued function in LP[a, b], -oo <a< b < oo, 
0 < p < oo, can be approximated in LP by a polynomial, in fact by 
a polynomial with rational coefficients. 

4. If JL is finite, show that Un} is Cauchy a.e. (for almost every w, Un(w)} 
is a Cauchy sequence) iff for every 8 > 0, 

as n ---+ oo. 

5. (Extension of the dominated convergence theorem) If If n I ::: g for all 

n = 1, 2, ... , where g is JL-integrable, and fn ~ f, show that f is 
JL-integrable and In fn djt ---+ In f djt. 

6. A metric may be defined on the space of all measurable functions on 
(Q, !JT, JL) by d (f, g)= In 1 l\.{~~ 1 dJL. (Functions that agree almost every
where are identified.) 
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fL 
(a) If dUn, f) ---+ 0, show that fn ~ f. 
(b) If IL is finite, show that fn ~ f implies d(fn, f)---+ 0. 

(c) Give an example in which fn ~ f but d(fn, f) does not ap
proach 0. 

7. If IL is a finite measure and for every£> 0, I::~=l P{lfn - /1 ;::: e} < oo, 
show that fn ---+ f almost everywhere. Thus by Chebyshev's inequality, 
L~=l 11/n- /II~ < oo implies that fn ---+ f almost everywhere. 

2.6 PRODUCT MEASURES AND FUBINI'S THEOREM 

Lebesgue measure on ~n is in a sense the product of n copies of one
dimensional Lebesgue measure, because the volume of an n-dimensional 
rectangular box is the product of the lengths of the sides. In this section we 
develop this idea in a general setting. We shall be interested in two construc
tions. First, suppose that (Q1, .9), ILJ) is a measure space for j = 1, 2, ... , n. 
We wish to construct a measure on subsets of Q 1 x Q2 x · · · x Qn such that 
the measure of the "rectangle" A1 x A2 x · · · x An [with each A1 E .9}1 is 
ILl (At)IL2 (A2) · · · ILn (An). The second construction involves compound exper
iments in probability. Suppose that two observations are made, with the first 
observation resulting in a point w1 E flt. the second in a point w2 E Q2. The 
probability that the first observation falls into the set A is, say, ILl (A). Further
more, if the first observation is Wt. the probability that the second observation 
falls into B is, say, ~L(Wt. B), where IL(w1, ·) is a probability measure defined 
on .9'2 for each w1 E Q 1. The probability that the first observation will belong 
to A and the second will belong to B should be given by 

and we would like to construct a probability measure on subsets of Q 1 x n2 

such that ~L(A x B) is given by this formula for each A E §! and BE .9'2. [In
tuitively, the probability that the first observation will fall near w 1 is IL 1 (dwt); 
given that the first observation is Wt. the second observation will fall in B 
with probability IL(w1, B). Thus ~L(w 1 , B)~L 1 (dw1) represents the probability 
of one possible favorable outcome of the experiment. The total probability 
is found by adding the probabilities of favorable outcomes, in other words, 
by integrating over A. Reasoning of this type may not appear natural at this 
point, since we have not yet talked in detail about probability theory. How
ever, it may serve to indicate the motivation behind the theorems of this 
section.] 
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2.6.1 Definition. Let .9j be a cr-field of subsets of Qj, j = 1, 2, ... , n, 
and let Q = Q 1 x n2 x · · · x Qn· A measurable rectangle in Q is a set A 
= A 1 x A2 x · · · x An, where Aj E .9'] for each j = 1, 2, ... , n. The small
est cr-field containing the measurable rectangles is called the product cr-field, 
written .97! x $72 x · · · x §';,. If all j?j coincide with a fixed cr- field .¥, the 
product cr-field is denoted by _rn. Note that in spite of the notation,§! x .972 
x · · · x .9;, is not the Cartesian product of the j?j; the Cartesian product is the 
set of measurable rectangles, while the product cr-field is the minimal cr-field 
over the measurable rectangles. Note also that the collection of finite disjoint 
unions of measurable rectangles forms a field (see Problem 1). 

The next theorem is stated in such a way that both constructions described 
above become special cases. 

2.6.2 Product Measure Theorem. Let (Qt. .r~. ILt) be a measure space, with 
ILl cr-finite on §?j, and let Q2 be a set with cr-field $72. Assume that for each 
w 1 E Q 1 we are given a measure ~L(Wt. ·)on $72. Assume that ~L(Wt. B), be
sides being a measure in B for each fixed w 1 E Q 1, is Borel measurable in w 1 

for each fixed B E .972. Assume that the IL(w 1 ·) are uniformly cr-finite; that is, 
rl2 can be written as U~=l Bn, where for some positive (finite) constants kn we 
have ~L(Wt. Bn)::; kn for all w 1 E Q 1. [The case in which the ~L(w 1 , ·)are uni
formly bounded, that is, ~L(Wt. Q2 ) ::; k < oo for all Wt. is of course included.] 

Then there is a unique measure IL on .r = §! x $72 such that 

for all A E §!, BE $72, 

namely, 

FE.¥, 

where F(w1) denotes the section ofF at w 1: 

Furthermore, IL is cr-finite on .97; if ILl and all the IL(w1, ·) are probability 
measures, so is IL· 

PRooF. First assume that the ~L(w 1 , ·) are finite. 

(1) If C E.¥, then C(w1) E $72 for each w1 E Q 1• 

To prove this, let I'?= { C E.¥: C(wi) E $72}. Then W is a cr-field since 
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If A E .~, B E §2, then (A x B)(wt) = B if w1 E A and 0 if w1 ¢ A. Thus '15 
contains all measurable rectangles; hence '15 = §'. 

(2) If C E !JT, then JL(Wt. C(w1)) is Borel measurable in w1. 

To prove this, let '15 be the class of sets in .¥for which the conclusion of 
(2) holds. If C =A x B, A E .97;, BE §2, then 

if 

if 

Wt E A, 

Wt ¢A. 

Thus JL(Wt. C(wt)) = JL(w 1, B)IA(wt), and is Borel measurable by hypothe
sis. Therefore measurable rectangles belong to W. If C 1, •.• , C, are disjoint 
measurable rectangles, 

is a finite sum of Borel measurable functions, and hence is Borel measurable in 
w 1. Thus W contains the field of finite disjoint unions of measurable rectangles. 
But '15 is a monotone class, for if C, E '15, n = 1, 2, ... , and C n t C, then 
C,(wt) t C(w 1); hence JL(Wt, C,(wt)) ~ JL(Wt. C(wt)). Thus JL(Wt. C(w1)), 

a limit of measurable functions, is measurable in w 1. If C n ..j, C, the same 
conclusion holds since the JL(Wt. ·) are finite. Thus '15 = §'. 

(3) Define 

F E!T 

[the integral exists by (2)]. Then JL is a measure on !JT, and 

for all B E.9f2. 

To prove this, let F 1, F 2, ..• be disjoint sets in §'. Then 

JL(Q
1
Fn) = L

1
f.L(Wt,g

1
F,(wt))f.Ll(dwt) 

= l f:JL(Wt.F,(wt))Jtt(dwt) 
>lt n=l 

= f: l JL(Wt. F,(w1))Jtt(dw 1) = f:JL(F,), 
n=l >lt n=l 
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proving that JL is a measure. Now 

= r JL(Wt. B)! A (Wdf.LI (dwl) 
ln1 

= 1 JL(WI, B)JLI (dw1) 

[see (2)] 

as desired. 
Now assume the JL(Wt. ·)uniformly cr-finite. Let rl2 = U~=l Bn, where the 

Bn are disjoint sets in .92 and jt(w1, Bn) :S kn < oo for all w1 E Q 1. If we set 

BE §2, 

the f.Ln'(wt. ·) are finite, and the above construction gives a measure f.Ln' on 
.¥such that 

f.Ln 1 (A X B) = 1 Jtn' (Wt. B)JLI (dw1 ), A E §il, 

= 1 jt(WI' B n Bn )JLI (dwt), 

namely, 

Let JL = 2.:::~= 1 f.Ln '; JL has the desired properties. 
For the uniqueness proof, assume JL(Wt. ·)to be uniformly cr-finite. If A is 

a measure on !T such that A(A x B) = fA JL(w1, B)JL 1 (dwt) for all A E §?i, 
B E §2, then A = JL on the field Yo of finite disjoint unions of measur
able rectangles. Now JL is cr-finite on §'o, for if rl2 = U~=l Bn with Bn E §i2 
and jt(WI, Bn) :s kn < 00 for all Wt. and Ql = u~=l Am, where the Am belong 
to §il and ILl (Am) < 00, then Ql X Q2 = U~n=l (Am X Bn) and 

jt(Am X Bn) = r JL(Wt. Bn)f.LI (dwl) :s knf.LI (Am)< 00. 
}Am 

Thus A = JL on !Tby the Caratheodory extension theorem. 
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We have just seen that IL is cr-finite on §'o, hence on §'. If ILl and all the 
IL(w1, ·) are probability measures, it is immediate that IL is also. D 

2.6.3 Corollary: Classical Product Measure Theorem. Let (Q j• §?}, ILj) 
be a measure space for j = 1, 2, with Jlj cr-finite on §?j. If Q = Q 1 x Q2 , 

!T = §?i x §2, the set function given by 

is the unique measure on !T such that ~L(A x B) = ILl (A)IL2(B) for all A E §il, 
B E §2. Furthermore, IL is cr-finite on !JT, and is a probability measure if 
ILl and 1L2 are. The measure IL is called the product of ILl and IL2· written 
IL = ILl X IL2· 

PROOF. In 2.6.2, take IL(w1, ·) = JL2 for all w1• The second formula for ~L(F) 
is obtained by interchanging ILl and IL2· D 

As a special case, Let Q 1 = n2 = ~. §il = .9'2 = .513'(~), ILl = JL2 = Lebes
gue measure. Then §?i x .92 = .513'(~2 ) (Problem 2), and IL =ILl x JL2 agrees 
with Lebesgue measure on intervals (a, b] =(at. bt] x (a2, b2]. By the Cara
theodory extension theorem, IL is Lebesgue measure on .513'(~2 ), so we have 
another method of constructing two-dimensional Lebesgue measure. We shall 
generalize to n dimensions later in the section. 

The integration theory we have developed thus far includes the notion of a 
multiple integral on ~n; this is simply an integral with respect ton-dimensional 
Lebesgue measure. However, in calculus, integrals of this type are evaluated by 
computing iterated integrals. The general theorem which justifies this process 
is Fubini' s theorem, which is a direct consequence of the product measure 
theorem. 

2.6.4 Fubini's Theorem. Assume the hypothesis of the product measure 
theorem 2.6.2. Let f: (Q, j?)--+ (i, .513'(i)). 

(a) Iff is nonnegative, then fn
2 
f(w~. w2)IL(w1 , [1m2) exists and defines 

a Borel measurable function of w 1• Also 

(b) If fn f d~L exists (respectively, is finite), then fn
2 

f(w 1, w2)~L(Wt. dw2) 
exists (respectively, is finite) for ~L 1 -almost every Wt. and defines a Borel 
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measurable function of w 1 if it is taken as 0 (or as any Borel measurable 
function of w 1) on the exceptional set. Also, 

[The notation fn
2 

f (wi, w2)JL(w1, dw2) indicates that for a fixed w 1, the func
tion given by g(£02) = f (w 1, U>l) is to be integrated with respect to the measure 
JL(Wt. ·).] 

PRooF. (a) First note that: 

(1) For each fixed w1 we have f(wt. ·): (rl2,9"2)---+ (i:,..%'(~)). In 
other words, if f is jointly measurable, that is, measurable relative to the 
product cr-field J7i x 92. it is measurable in each variable separately. For if 
BE 33'(i:), {£02: f(wt. W2) E B} = {w2: (wt. U>l) E /-1(B)} = f- 1(B)(w 1) 
E 92 by part (1) of the proof of 2.6.2. Thus fn

2 
f(wt. U>l)JL(Wt. dU>l) exists. 

Now let I p, F E !JT, be an indicator. Then 

and this is Borel measurable in w 1 by part (2) of the proof of 2.6.2. Also 

by 2.6.2 

Now if f = L:;j= 1 xi Fj, the Fj disjoint sets in !JT, is a nonnegative simple 
function, then 

Borel measurable in Wt. 
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and 

by what we have proved for indicators 

Finally, if 1: (Q, .9} ~ (R, JiiJ(R)), I 2: 0, let 0 :SIn t 1. In simple. Then 

which is Borel measurable in u> 1, and 

This proves (a). 

by what we have proved for simple functions 

= r r l(wl, li.J'2)1L(Wl, dw2)1Ll (dwt) 
ln1 lnz 
using the monotone convergence theorem twice. 

(b) Suppose that In 1- d~L < oo. By (a), 

r r ~-(Wl, li.J'2)1L(Wl, dli.>'l)ILl (dwt) = r ~- diL < 00 
Jnl lnz Jn 

so that In
2 
1- (wt. w2)IL(w1, dw2) is ~L 1 -integrable, hence finite a.e. [~Ltl; thus: 

(2) For ~L 1 -almost every w 1 we may write: 

r l(wl, W2)IL(Wt. dw2) = r l+(wl, W2)IL(Wt. dli.>'l) 
lnz lnz 

- r ~- (wl, li.>'l)IL(Wl, dw2). 
lnz 

If In I diL is finite, both integrals on the right side of (2) are finite a.e. [~Ltl
In any event, we may define all integrals in (2) to be 0 (or any other Borel 
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measurable function of w 1) on the exceptional set, and (2) will then be valid for 
all Wt. and will define a Borel measurable function of w 1• If we integrate (2) 
with respect to J.l-t. we obtain, by (a) and the additivity theorem for integrals, 

r r j(Wt, W2)J.J-(Wt, dw2)J.l-! (dWt) = r j+ dJ.J-- r ~- dJ.J-
lnt ln2 Jn Jn 

= LfdJ.J-. D 

2.6.5 Corollary. If f: (Q, .9')---+ (R, 39 (R)) and the iterated integral 
In

1 
In

2
1f(wt.U>l)IJ.J-(Wt,dw2)J.J-t(dwt) < oo, then InfdJ.J- is finite, and thus 

Fubini' s theorem applies. 

PROOF. By 2.6.4(a), In 1/1 dtt < oo, and thus the hypothesis of 2.6.4(b) is 
satisfied. D 

As a special case, we obtain the following classical result. 

2.6.6 Classical Fubini Theorem. Let Q = Ql X n2 • .97 = .<Vi X $?2, 
JL = tt 1 x f.L2, where f.Lj is a cr-finite measure on j?j, j = 1, 2. If f is a 
Borel measurable function on (Q, .'7) such that In f dtt exists, then 

PROOF. Apply 2.6.4 with jt(Wt, ·) = JL2 for all w 1. 0 

Note that by 2.6.5, if In
1 

In
2 

1/1 df.L2 dttt < oo (or In
2 

In
1 

1/1 dttt dtt2 
< oo ), the iterated integration formula 2.6.6 holds. 

In 2.6.4(b), if we wish to define In
2 

f(wt. W2)JL(w1, dw2) in a completely 
arbitrary fashion on the exceptional set where the integral does not exist, 
and still produce a Borel measurable function of w 1, we should assume that 
(Qt..9"i, tt 1) is a complete measure space. The situation is as follows. We 
have h: (Qt. .9"i)---+ (R, .Y'i(R)), where his the above integral, taken as 0 on 
the exceptional set A. We set g(wt) = h(w1 ), w 1 ¢A; g(wt) = q(wt) arbitrary, 
w1 E A (q not necessarily Borel measurable). If B is a Borel subset of R, then 
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The first set of the union belongs to .971, and the second is a subset of A, 
with ILl (A)= 0, and hence belongs to §i'i by completeness. Thus g is Borel 
measurable. 

In the classica1 Fubini theorem, if we want to define fn
2 
f (w!, w2) d1L2 (w2) 

and fn
1 
f (w!, Wl) d~L 1 (w1) in a completely arbitrary fashion on the excep

tional sets, we should assume completeness of both spaces (Q 1, .971, IL 1) and 
(Q2, §2, IL2)-

The product measure theorem and Fubini' s theorem may be extended to n 
factors, as follows. 

2.6.7 Theorem. Let .9') be a cr-field of subsets of Qj, j = 1, ... , n. Let ILl 
be a cr-finite measure on .97;, and, for each (w1, .•. , wj) E Q 1 x · · · x Qj, 

let ~L(w 1 , ••• , Wj,B), BE 9J+~> be a measure on 9J+ 1 (j = 1, 2, ... , n- 1). 
Assume the IL(w1, ••• , Wj, ·)to be uniformly cr-finite, and assume that ~L(W~o 
... , Wj, C) is measurable: (Q 1 x · · · x Qj, .97i x · · · x .9})-+ (R, JiiJ(R)) for 
each fixed C E §'}+ l· 

Let Q = Q 1 X · · · X Qn, .97 = .Y"i X · · • X .rTn. 
(a) There is a unique measure IL on .97 such that for each measurable 

rectangle A 1 x · · · x An E .9', 

[Note that the last factor on the right is ~L(w 1 , ••• , Wn- t. An).] The measure IL 
is cr-finite on .9', and is probability measure if ILl and all the ~L(W~o ... , wj. ·) 
are probability measures. 

(b) Let f: (Q, .9"')-+ (R, JiiJ(R)). Iff 2: 0, then 

where, after the integration with respect to ~L(W~o ... , wi, ·) is performed 
(j = n- 1, n- 2, ... , 1), the result is a Borel measurable function of 
(wt, ... , wj)· 

If fn f d~L exists (respectively, is finite), then Eq. (1) holds in the sense that 
for each j = n - 1, n- 2, ... , 1, the integra] with respect to ~L(W~o ... , Wj, ·) 
exists (respectively, is finite) except for (w~o ... , wj) in a set of .Armeasure 
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0, where Aj is the measure determined [see (a)] by ILl and the measures 
~L(Wt. ·), ... , ~L(Wt. ... , Wj-t. ·). If the integral is defined on the exceptional 
set as 0 [or any Borel measurable function on the space (Q 1 x · · · x nj. 
L9?i x · · · x §ij)], it becomes Borel measurable in (wt. ... , wj). 

PRooF. By 2.6.2 and 2.6.4, the result holds for n = 2. Assuming that (a) and 
(b) hold up to n - I factors, we consider the n-dimensional case. 
By the induction hypothesis, there is a unique measure An _ 1 on §'i x .92 
x · · · x §?;,_ 1 such that for all A1 E .91, ... , An-! E Yn-t. 

An-! (A! X · · · X An-!)= 1 ILl (dwl) 1 ~L(Wt. dw2) 
At A2 

and An-l is cr-finite. By the n = 2 case, there is a unique measure IL on 
(§'i x · · · x §?;,_t) x .9', (which equals §'i x · · · x §?;,;see Problem 3) such 
that for each A E .9'i x · · · x Yn-t. An E §?;,, 

~L(A X An)= 1 ~L(Wt. ... , Wn-t.An)dAn-t(Wt. ... , Wn-l) 

= r IA(Wt.···Wn-!)~L(Wt.····Wn-t.An) 
JntX···XD.n-t 

(2) 

If A is a measurable rectangle A1 x · · · x An-t. then IA(Wt. ... , Wn-!) 
=lAJwt)--·IA.-t(wn-!); thus (2) becomes, with the aid of the induction 
hypothesis on (b), 

~L(At X · · • X An) = 1 ILl (dwl) 
At 

which proves the existence of the desired measure IL on !7. To show that 
IL is cr-finite on 90. the field of finite disjoint unions of measurable rect-
angles, and, consequently, 1L are unique, let Q j = U~1 A jr• j = 1, ... , n, 
where ~L(Wt.···•Wj-t.Ajr):Skjr<OO for all w 1, ••• ,Wj-t.j=2, ... ,n, 
and ILt (Atr) = ktr < oo. Then 

00 

Q = U (Aut x A2;2 x · · · x An;.), 
it, ... ,in=l 
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with 

This proves (a). 
To prove (b), note that the measure JL constructed in (a) is determined by 

An-I and the measures JL(Wt> ... , Wn-!> ·).Thus by then= 2 case, 

where the inner integral is Borel measurable in (w1, ... , Wn_ 1), or becomes so 
after adjustment on a set of An_ 1-measure 0. The desired result now follows 
by the induction hypothesis. D 

2.6.8 Comments. (a) If we take f = IF in formula (1) of 2.6.7(b ), we 
obtain an explicit formula for JL(F), F E !JT, namely, 

(b) We obtain the classical product measure and Fubini theorems by taking 
JL(W1, ••• , Wj, ·) = f.Lj+I. j = 1, 2, ... , n- 1 (with f.LHI cr-finite). We obtain 
a unique measure JL on .¥such that on measurable rectangles, 

jt(AI X ... xAn) = JLt(At)JL2(A2)···JLn(An). 

Iff: (Q, .¥)---+ (R, JiiJ(R)) and f:::: 0 or fn f djt exists, then 

and by symmetry, the integration may be performed in any order. The mea
sure JL is called the product of JL t> ••• , f.Ln, written JL = JL 1 x · · · x f.Ln. In 
particular, if each ILj is Lebesgue measure on Ji3'(~). then f.LI x · · · x f.Ln is 
Lebesgue measure on JiiJ(~n), just as in the discussion after 2.6.3. 

Problems 

1. Show that the collection of finite disjoint unions of measurable rectan
gles in Q 1 x · · · x Qn forms a field. 
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2. Show that 33'(1Rn = .35'(~) x · · · x .35'(~) (n times). 

3. If §"1, ••• , .qT, are arbitrary cr-fields, show that 

(.97i X · · · X Yn-1) X .97;, =.9ft X 92 X · · · X .qT,. 

4. Let IL be the product of the cr-finite measures ILl and IL2· If C E L97i x 
§?2, show that the following are equivalent: 

(a) ~L(C) = 0, 
(b) IL2(C(w 1)) = 0 for ~L 1 -almost all w1 E Qt. 
(c) ILl (C(w2)) = 0 for 1L2-almost all w2 E rl2. 

5. In Problem 4, let (Q', §"', IL') be the completion of (Q, .97; ~L), and 
assume ILl· 1L2 complete. If BE§"', show that B(wt) E .972 for ILl
almost all w1 E Q 1 [and B(w2) E L9"i for 1L2-almost all w2 E rl2]. Give 
an example in which B(w1) ¢ Y2 for some w1 E Q 1• 

6. (a) Let Q 1 = n2 =the set of positive integers, §"1 = §"2 =all sub
sets, ILl = 1L2 =counting measure, f(n, n) = n, f(n, n + 1) = -n, 
n = 1, 2, ... ,f(i, j) = 0 if j =I= i or i + 1. Show that fnJn

2 
f df.L2 

diLl = 0, fn
2 
fn

1 
f dt-tt df.L2 = oo. (Fubini's theorem fails since the 

integral off with respect to ILl x IL2 does not exist.) 
(b) Let Q 1 = n2 = ~. §"1 = .972 = L;tJ'(~), ILl =Lebesgue measure, JL2 

=counting measure. LetA = {(w1, U>2): w1 = U>2} E .9'i x sr2. 
Show that 

but 

[Fubini's theorem fails since ~L2 is not cr-finite; the product measure 
theorem fails also since fn

1 
JL2(F(wt))d~Lt(w 1 ) and 

*7.2 Let Q 1 = n2 =the first uncountable ordinal, §"1 = .972 =all subsets, 
Q = Ql X n2, §" = .97i X L972. Assume the continuum hypothesis, which 
identifies Q 1 and n2 with [0, 1]. 

2 Rao, B. V., Bull. Amer. Math. Soc. 75, 614 (1969). 



2. 7 MEASURES ON INFINITE PRODUCT SPACES 113 

(a) Iff is any function from Q 1 (or from a subset of Q 1) to [0, 1] 
and G = {(x, y): X En~. y = f(x)} is the graph off, show that 
G E .Y. 

(b) Let Ct = {(x, y) E Q: y :S x}, C2 = {(x, y) E Q: y > x}. If B C 
C 1 or B C C 2, show that B E .Y. (The relation y ::; x refers to the 
ordering of y and x as ordinals, not as real numbers.) 

(c) Show that .97 consists of all subsets of Q. 

8. Show that a measurable function of one variable is jointly measurable. 
Specifically, if g: (Q 1,.9't)--+ (Q',Y') and we define f: Q 1 x n2 

--+ Q' by f (w 1, w2) = g(w1 ), then f is measurable relative to .971 x .9?2 
and .97', regardless of the nature of $?2. 

*9. Give an example of a function f: [0.1] x [0, 1]--+ [0, 1] such that 

(a) f(x, y) is Borel measurable in y for each fixed x and Borel mea
surable in x for each fixed y, 

(b) f is notjoindy measurable, that is, f is not measurable relative to 
the product cr-field 33'[0, 1] x 33'[0, 1], and 

(c) f0
1 {j0

1 f(x, y) dy) dx and f0
1 {j0

1 f(x, y) dx) dy exist but are unequal. 
(One example is suggested by Problem 7 .) 

2. 7 MEASURES ON INFINITE PRODUCT SPACES 

The n-dimensional product measure theorem formalizes the notion of an 
n-stage random experiment, where the probability of an event associated with 
the nth stage depends on the result of the first n- 1 trials. It will be convenient 
later to have a single probability space which is adequate to handle n-stage 
experiments for n arbitrarily large (not fixed in advance). Such a space can be 
constructed if the product measure theorem can be extended to infinitely many 
dimensions. Our task is to construct the product of infinitely many cr-fields, 
and we first consider the countably infinite case. 

2.7.1 Definitions. For each j= 1, 2, ... , let (Qj, §?}) be a measurable 
space. Let Q = rr~l Q j. the set of all sequences (wl' W2, ... ) such that 
Wj E nj. j = I, 2, .... If Bn cIT}=! Qj, we define 

Bn ={wE Q: (Wt, ... ,Wn) E Bn}. 

The set B n is called the cylinder with base Bn; the cylinder is said to be 
measurable if Bn E f1}= 1.§?). If Bn = A1 x · · · x An, where A; C rl; for each 
i, Bn is called a rectangle, a measurable rectangle if A; E.¥; for each i. 

A cylinder with an n-dimensional base may always be regarded as having 
a higher dimensional base. For example, if 
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B ={wE Q: (Wt. W2, W3) E B3, W4 E f24} 

= {w E n: (wl' W2, W3, W4) E B 3 X Q4}. 

It follows that the measurable cylinders form a field. It is also true that finite 
disjoint unions of measurable rectangles form a field; the argument is the same 
as in Problem 1 of Section 2.6. 

The minimal cr-field over the measurable cylinders is called the product of 
the cr-fields .9), written IT~l .9}; IT~l .9} is also the minimal cr-field over 
the measurable rectangles (see Problem 1). If all .9} coincide with a fixed 
cr-field !JT, then IT~ 1 .9j is denoted by .¥00

, and if all Qj coincide with a 

fixed set S, IT~ 1 Q j is denoted by S00
• 

The infinite-dimensional version of the product measure theorem will be 
used only for probability measures, and is therefore stated in that context. (In 
fact the construction to be described below runs into trouble for nonprobability 
measures.) 

2.7.2 Theorem. Let (Qj, .9)), j = 1, 2, ... , be arbitrary measurable spaces; 
let Q = IT~ 1 Q j • .¥ = IT~ 1 .9). Suppose that we are given an arbitrary prob
ability measure P 1 on Yt. and for each j = 1, 2, ... and each (w1, ••• , Wj) 

E Q 1 x · · · x Qj we are given a probability measure P(w 1, .•. , Wj, ·) on 

.9?J+t· Assume that P(w~o ... , Wj, C) is measurable: (IT/=1 Q1, IT{=! j?j) 
---+ (R, ..%'(~))for each fixed C E .9J+l· 

If Bn E IT;=l .9), define 

Note that P n is a probability measure on IT;=l .9) by 2.6. 7 and 2.6.8(a). 
There is a unique probability measure P on .¥such that for all n, P agrees 

with Pn on n-dimensional cylinders, that is, P{w E Q: (Wt. ... , Wn) E Bn} 
= Pn(Bn) for all n = 1, 2, ... and all Bn E ITJ=l Yj. 

PROOF. Any measurable cylinder can be represented in the form Bn 
={wE Q: (Wt. ... 'Wn) E Bn} for some n and some Bn E IT;=l.9j; define 
P(Bn) = Pn(Bn). We must show that Pis well-defined on measurable cylin
ders. For suppose that Bn can also be expressed as {wE Q: (w1, ... , Wm) 
E em} where em E IT7= l !Yj; we must show that p n (Bn) = p m (em). Say 
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m < n; then (Wt. ... , Wm) E em iff (Wt. ... , Wn) E Bn, hence Bn =em 

X Qm+ 1 X · · • X Qn. It follows from the definition of p n that p n (Bn) 

= Pm(em). (The fact that the P(w 1, ••• , Wj, ·) are probability measures is 
used here.) 

Since P n is a measure on IJ;= 1 .9j, it is immediate that P is finitely additive 
on the field Yo of measurable cylinders. If we can show that P is continuous 
from above at the empty set, 1.2.8(b) implies that P is countably additive 
on §?0, and the Caratheodory extension theorem extends P to a probability 
measure on f1~ 1 .9'); by construction, P agrees with Pn on n-dimensional 
cylinders. 

Let {B n, n = n h n2, ... } be a sequence of measurable cylinders decreasing 
to 0 (we may assume n 1 < n2 < · · ·, and in fact nothing is lost if we take 
ni = i for all i). Assume limn-HX)P(Bn) > 0. Then for each n > 1, 

where 

Since Bn+! C Bn, it follows that Bn+! C Bn x Qn+l; hence 

Therefore g~ll(wt) decreases as n increases (w 1 fixed); say g~1 l(w 1 ) 
---+ h 1 (wt). By the extended monotone convergence theorem (or the dominated 
convergence theorem), P(Bn)---+ fn

1 
h 1 (wJ)P 1 (dwJ). If limn--.oo P(Bn) > 0, 

then h 1 (wD > 0 for some w 1' E Q 1• In fact w 1' E B1, for if not, 
IB" (wt', U>l, •.• , Wn) = 0 for all n; hence g~1 l(wJ') = 0 for all n, and h1 (w1') 

= 0, a contradiction. 
Now for each n > 2, 

where 

g~2l(w2) = { P(wt', U>l, dw3) 
ln3 

··· { [Bn(WJ 1,U>l, .•• ,Wn)P(Wt
1

, ••• ,Wn-bdWn). Jnn 
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Since g~1 l(w 1 ')---+ h 1 (w1') > 0, we have h2(w2') > 0 for some w2' E n2, and 
as above we have (w1', w2') E B2• 

The process may be repeated inductively to obtain points w 1', w2', ... such 
that for each n, (wt'· ... , wn') E Bn. But then (wt'. W2 1

, •• • ) E n::o=l Bn = 0, a 
contradiction. This proves the existence of the desired probability measure P. If 
Q is another such probability measure, then P = Q on measurable cylinders, 
hence P = Q on §' by the uniqueness part of the Caratheodory extension 
theorem. D 

The classical product measure theorem extends as follows: 

2. 7.3 Corollary. For each j = 1, 2, ... , let (Q1, Yi, P j) be an arbitrary 
probability space. Let Q = rr~l Qj, y = IT~t·97j. There is a unique prob
ability measure P on Y such that 

n 

P{w En: W] E A], ... , Wn E An}= II Pj(Aj) 
j=l 

for all n = 1, 2, ... and all A j E .rJ7j, j = 1, 2, .... We call P the product of 
the PJ, and write P = f1~ 1 Pi. 

PROOF. In 2.7.2, take P(w1, ••• , Wj, B)= Pj+! (B), BE .9J+I· Then Pn(A 1 

x · · · x An)= IT}=! Pj(Aj), and thus the probability measure P of 2.7.2 has 
the desired properties. If Q is another such probability measure, then P = Q 
on the field of finite disjoint unions of measurable rectangles; hence P = Q 
on .7by the Caratheodory extension theorem. D 

Thus far we have considered probability measures on countably infinite 
product spaces. The results may be extended to uncountable products if cer
tain assumptions are made about the individual factor spaces. We will be 
completely general at the beginning, but when we reach the main result, the 
Kolmogorov extension theorem, we will assume that all the factor spaces are 
the reals, with the cr-field of Borel sets. 

2.7.4 Definitions and Comments. For t in the arbitrary index set T, let 
(Q1 :7;) be a measurable space. Let ITrET Q 1 be the set of all functions 
w = (w(t), t E T) on T such that w(t) E Q1 for each t E T. If t 1, ... , t 11 E T and 
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Bn C IJ?=t Q 1i' we define the set Bn(tt, ... , tn) as {wE ITrET rlr: (w(tt), ... , 
w(tn)) E Bn }. We call Bn (t!> ... , tn) the cylinder with base Bn at (tl, ... , tn); 
the cylinder is said to be measurable iff Bn E IJ?=l .9";,. If Bn = B1 x · · · x Bn, 
the cylinder is called a rectangle, a measurable rectangle iff Bi E .9";,, 
i = 1' ... ' n. Note that if all Qt = n, then ITrET Qt = QT' the set of all functions 
from T to Q. 

For example, let T = [0, 1], Q 1 = ~ for all t E T, B2 = {(u, v): u > 3, 
1 < v < 2}. Then 

[see Fig. 2.7.1, wherex1 E B2 (~, D and x2 ¢ B2 (~, DJ. 
Exactly as in 2.7.1, the measurable cylinders form a field, as do the fi

nite disjoint unions of measurable rectangles. The minimal cr-field over the 
measurable cylinders is denoted by ITrET .9";, and called the product of the 
cr-fields .9";. If Q 1 = S and .97; = .9" for all t, ITrET .97; is denoted by 9T. 
Again as in 2.7.1, ITrET§?; is also the minimal cr-field over the measurable 
rectangles. 

We now consider the problem of constructing probability measures on 
ITrET§?;. The approach will be as follows: Let v = {tt> ... , tn} be a finite 
subset ofT, where t 1 < t2 < · · · < tn. (If Tis not a subset of~. some fixed 
total ordering is put on T.) Assume that for each such v we are given a 
probability measure Pv on IT?=l §?;,; Pv(B) is to represent P{w E ITrET Q 1 : 

(w(tt), ... , w(tn)) E B}. We shall require that the P v be "consistent"; to see 
what kind of consistency is needed, consider an example. 

Suppose T is the set of positive integers and Q 1 = ~. §?; = ._%'(~) 
for all t. Suppose we know P 12345(B5) = P{w: (w1, U>l, w3, w4, ws) E B 5} for 

0 1 
2 

Figure 2.7 .1. 

3 
4 
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all B 5 E .15'(~5 ). Then P{w: (Wz, W3) E B2 } = P{w: (Wt, W2, W3, W4, Ws) E ~ 
x B 2 x R2} = P 12345 (~ x B 2 x ~2 ), B 2 E .%'(~2 ). Thus once probabilities of 
sets involving the first five coordinates are specified, probabilities of sets in
volving (Wz, w3) [as well as (w1, w3, w4), and so on], are determined. Thus the 
original specification of P23 must agree with the measure induced from P 12345. 

We hope that a consistent family of probability measures P v will determine a 
unique probability measure on ITrET §?;. 

Now to formalize: If v = {t1, ... , tn}, tt < · · · < tn, the space (f17=1 f21., 

IT?=t §";.) is denoted by (Qv, §?,',). If u ={til, ... , t;k} is a nonempty subset 
of V andy= (y(tt), ... , y(tn)) E flv, the k-tuple (y(til), ... , y(t;k)) is denoted 
by Yu· Similarly if w = (w(t), t E T) belongs to ITtET nr, the notation Wv will 
be used for (w(t1 ), ••• , w(tn)). If BE§?,',, the measurable cylinder with base 
B will be written as B(v). 

If P v is a probability measure on .¥,,, the projection of P v on .¥, is the 
probability measure 1ru(Pv) on.¥, defined by 

BE.¥,. 

Similarly, if Q is a probability measure on ITrET§?;, the projection of Q on 
§?,', is defined by 

[nv(Q)](B) = Q {w E IT f21: w, E B} = Q(B(v)), 
tET 

BE§?,',. 

Our main result, the Kolmogorov extension theorem, can be proved when 
each Q 1 is a complete, separable metric space, with §?; the class of Borel sets 
(the cr-field generated by the open sets). However, to avoid serious technical 
complications, we will take all Q 1 to be ~ and §?; = .19 (~). 

2.7.5 Kolmogorov Extension Theorem. For each tin the arbitrary index set 
T, let Q 1 = ~ and §?; the Borel sets of ~. 

Assume that for each finite nonempty subset v ofT, we are given a proba
bility measure Pv on§?,',. Assume the Pv are consistent, that is, 1ru(Pv) = Pu 
for each nonempty u C v. 

Then there is a unique probability measure P on .¥ = ITrET §?; such that 
1rv(P) = Pv for all V. 

PRooF. We define the hoped-for measure on measurable cylinders by P(Bn(v)) 
= Pv(Bn), Bn E §?,',. 

We must show that this definition makes sense since a given measur
able cylinder can be represented in several ways. For example, suppose that 
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B2 = ( -oo, 3) x (4, 5). Then 

B2 (t 1, t2) = {w: w(t1) < 3, 4 < w(t2) < 5} 

= {w: w(ti) < 3, 4 < w(t2) < 5, w(t3) E ~} 

= B3 (t1, t2, t3) where B3 = ( -oo, 3) x (4, 5) x ~. 

It is sufficient to consider dual representation of the same measurable cylinder 
in the form Bn(v) = Bk(u) where k <nand u c v. But then 

Pu(Bk) = [n'u(Pv)](Bk) by the consistency hypothesis 

= Pv{Y E flv: Yu E Bk} by definition of projection. 

But the assumption Bn(v) = Bk(u) implies that if y E nv. then y E Bn iff 
Yu E Bk, hence Pu(Bk) = Pv(Bn), as desired. 

Thus, Pis well-defined on measurable cylinders; the class Yo of measurable 
cylinders forms a field, and cr(§i'O) = §'. 

Now if A 1, •.. , Am are disjoint sets in .9"0, we may write (by introducing extra 
factors as in the above example) A;= B/(v), i = 1, ... , m, where 
v = {t1, .•. , tn} is fixed and the Bj, i = 1, ... , m, are disjoint sets in Yv. Thus 

P (QA;) = P (QB~(v)) 

= P v (u B~) by definition of P 
Z=l 

m 

= LPv(Bf) since P v is a measure, and 
i=l 

m 

= LP(A;) again by definition of P. 
i=l 

Therefore P is finitely additive on §?0. To show that P is countably additive on 
§?0, we must verify that Pis continuous from above at 0 and invoke 1.2.8(b). 
The Caratheodory extension theorem (1.3 .10) then extends P to §'. 

Let Ak, k = 1, 2, ... be a sequence of measurable cylinders decreasing to 
0. If P(Ak) does not approach 0, we have, for some £ > 0, P(Ak) :::: £ > 0 for 
all k. Suppose Ak = Bnk(vk); by tacking on extra factors, we may assume that 
the numbers nk and the sets vk increase with k. 

It follows from 1.4.11 that we can find a compact set cnk c Bnk such 
that Pvk(Bnk- cnk) < e/2k+l. Define Ak' = cnk(vk) c Ak. Then P(Ak- Ak') 
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= PvJBnk- cnk) < e/2k+l. In this way we approximate the given cylinders 
by cylinders with compact bases. 

Now take 

Then 

k k 

::: L P(A; -A;') < L 2ei+l < ~. 
i=l i=l 

Since Dk C Ak' C Ak. P(Ak- Dk) = P(Ak)- P(Dk), consequently P(Dk) 
> P(Ak)- e/2. In particular, Dk is not empty. 

Now pick xkEDk. k=1,2, .... Let AI'=Cn 1 (ti, ... ,tn 1 )=Cn 1 (Vt) 

[note all Dk C A 1']. Consider the sequence 

(xi, ... , x/ ) , 
[ •t (x?, ... , x? ) , 

[ ., (xi , ... , xi ) , ... , 
[ "l 

th . l 2 3 at 1s, xv
1

, xv
1 

, xv,, . . . . 
Since the x~1 belong to Cn 1, a compact subset of Qvp we have a convergent 

subsequence x~:· approaching some Xvl E cnt. If A2' = cn2 (v2) (so Dk c A2' 
fork.:::: 2), consider the sequence x~;~,x~;2 ,x~;l, ... E cnz (eventually), and 
extract a convergent subsequence X~" ---+ Xv

2 
E cnz. 

Note that (x~~· )v1 = x~~·; as n ---+ oo, the left side approaches (xv2 )v1 , and 
as {r2n} is a subsequence of {rtn }, the right side approaches Xv1 • Hence (xv2 )v1 

=Xv,· 
Continue in this fashion; at step i we have a subsequence 

and for j < i. 

Pick any w E ITrET Q 1 such that Wv
1 

= xv
1 

for all j = 1, 2, ... (such a choice 
is possible since (Xv)v

1 
= Xv

1
, j < i). Then Wv

1 
E Cn1 for each j; hence 

00 00 

wE nA/ C nAj = 0, 
j=l j=l 

a contradiction. Thus P extends to a measure on !JT, and by construction, 
1rv(P) = Pv for all V. 
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Finally, if P and Q are two probability measures on .97 such that nv(P) 
= 1rv(Q) for all finite v C T, then for any Bn E .9;;, 

Thus P and Q agree on measurable cylinders, and hence on §'by the unique
ness part of the Caratheodory extension theorem. D 

Problems 

1. Show that TI~ 1 .9j is the minimal cr-field over the measurable rectangles. 

2. Let .97 = .513' (~); show that the following sets belong to .9'00
: 

(a) {x E ~00 : supn Xn <a}, 
(b) {xE~00 : 2.::~ 1 lxnl<a}, 
(c) {x E ~00 : limn---+ooXn exists and is finite}, 
(d) {x E ~00 : lim supn---+oo Xn :S a}, and 
(e) {x E ~00 : I::~=l Xk = 0 for at least one n > 0}. 

3. Let .97 be a cr-field of subsets of a set S, and assume .97 is countably 
generated, that is, there is a sequence of sets A 1, A2, ... in .97 such that the 
smallest cr-field containing the A j is !7. Show that .9'00 is also countably 
generated. In particular, .513' (~)00 is countably generated; take the A j as 
intervals with rational endpoints. 

*4. How many sets are there in .513' (~)00 ? 

5. Define f: ~oo ---+ "i as follows: 

{

the smallest positive integer n 
such thatx 1 + · · · +xn :=::: 1, 

f (x1' x2 ' • · ·) = if such an n exists, 

oo if Xt + · · · +xn < 1 for all n. 

Show that f: (~00 ,.513'(~)00 )---+ (i,.513'("i)). 

2.8 WEAK CONVERGENCE OF MEASURES 

In 2.5 we studied convergence of sequence of measurable functions. We 
now examine a somewhat different notion of convergence. The results form 
the starting point for the study of the central limit theorem of probability. 

We will need some properties of semicontinuous functions; proofs of all 
necessary results are given in Appendix 2. 

If Q is a metric space, the class of Borel sets of Q, denoted by .313'(Q), is 
defined as the cr-field generated by the open subsets of n. In our applications 
to probability, we will need only the case Q = ~k. 
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2.8.1 Theorem. Let JL, JL 1, f.L2, ... be finite measures on the Borel sets of a 
metric space Q. The following conditions are equivalent: 

(a) In f df.Ln ---+ In f djt for all bounded continuous f: Q ---+ IRL 
(b) liminfn---+oo In f df.Ln :::: In f djt for all bounded lower semicontinuous 

f: Q ---+ IRL 
(b') lim supn---+oo In f dJLn :S In f djt for all bounded upper semicontinu

ous f: Q ---+ IRL 
(c) Infdf.Ln---+ InfdJL for all bounded f: (Q,33'(Q))---+ (~,..%'(~)) 

such that f is continuous a.e. [JL]. 
(d) liminfn---+oof.Ln(A):::: JL(A) for every open set A C n, and f.Ln(Q) 

---+ jt(Q). 
(d') limsupn---+oof.Ln(A)::: JL(A) for every closed set A C Q, and f.Ln(Q) 

---+ jt(Q). 
(e) f.Ln (A) ---+ JL(A) for every A E 33' (Q) such that JL(aA) = 0 (aA denotes 

the boundary of A). 

PRooF. (a) implies (b): If g ::: f and g is bounded continuous, 

liminf r f djtn :::: liminf r gdjtn = r gdjt 
n---+00 ln n---+00 ln ln 

by (a). 

But since f is lower semicontinuous (LSC), it is the limit of a sequence of 
continuous functions, and if 1/1 ::: M, all functions in the sequence can also 
be taken less than or equal to M in absolute value. Thus if we take the sup 
over g in the above equation, we obtain (b). 

(b) is equivalent to (b'): Note that f is LSC iff - f is upper semicontin
uous (USC). 

(b) implies (c): Let[_ be the lower envelope off (the sup of all LSC func
tions g such that g ::: f) and 1 the upper envelope (the inf of all USC functions 
g such that g :::: f). Since[_ (x) = lim infy---+xf (y) and 1 (x) = lim supy---+x f (y), 

~ntinuity of f at x implies [_ (x) = f (x) = 7 (x). Furthermore, [_ is LSC and 
f is USC. Thus iff is bounded and continuous a.e. [JL], 

r f djt = r f djt ::: lim inf r f djtn by (b) 
ln ln- n---+OO ln-

::: lim inf r f dJLn since [_ ::: f 
n---+00 ln 

::: lim sup r f df.Ln ::: lim sup r 7 df.Ln since f ::: 7 
n---+00 ln n---+00 ln 

::: fn7 djt by (b') 

= l f dJL, proving (c). 
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(c) implies (d): Clearly (c) implies (a), which in tum implies (b). If A is 
open, then lA is LSC, so by (b), lim infn-+ex) Jtn (A) :::: tt(A). Now In = 1, so 
ILn (Q) ----+ jt(Q) by (c). 

(d) is equivalent to (d'): Take complements. 
(d) implies (e): Let A 0 be the interior of A, A the closure of A. Then 

by (d') 
n---+00 n---+00 

= tt(A) by hypothesis. 

Also, using (d), 

(e) implies (a): Let f be a bounded continuous function on Q. If 1/1 < M, 
let A= {c E R: JL{j- 1{c}) =1 O};A is countable since the f- 1{c} are dis
joint and JL is finite. Construct a partition of [ -M, M], say -M = to < t1 

< .. · < ti = M, with t; ¢A, i = 0, 1, ... , j (M may be increased if necessary). 
If Bi = {x: ti:::; f(x) < t;+t}, i = 0, 1, ... , j- I, it follows from (e) that 

j-1 j-1 

L t;Jtn (Bi) ----+ L t;jt(B; ). 
i=O i=O 

As f- 1(ti, t;+1) is open, aj- 1[t;, t;+t) c f- 1{t;, ti+1}, and ttf- 1{t;, ti+d = 0 
as t;, ti+I ¢A.] Now 

ll f '*" -l f '*Hl f '*"- ~'''""(B,)I 
+ ~~ t;Jtn(B;)-~ tiJL(Bi)l 

+I~ t;jt(Bi) -l f dttl· 

The first term on the right may be written as 
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and this is bounded by max;(t;+l - t;)Jtn (Q), which can be made arbitrar
ily small by choice of the partition since f.Ln(Q)---+ JL(Q) < oo by (e). 
The third term on the right is bounded by max;(t;+t- t;)JL(Q), which can 
also be made arbitrarily small. The second term approaches 0 as n ---+ oo, 
proving (a). D 

2.8.2 Comments. Another condition equivalent to those of 2.8.1 is that 
In f dttn ---+ In f dtt for all bounded uniformly continuous f: Q ---+ R (see 
Problem 1). 

The convergence described in 2.8.1 is sometimes called weak or vague 
convergence of measures. We shall write f.Ln ~ JL. 

If the measures f.Ln and JL are defined on .513' (~), there are corresponding 
distribution functions F n and F on ~. We may relate convergence of measures 
to convergence of distribution functions. 

2.8.3 Definition. A continuity point of a distribution function F on ~ is a 
point x E ~ such that F is continuous at x, or ±oo (thus by convention, oo 
and -oo are continuity points). 

2.8.4 Theorem. Let JL, tt1, f.L2, ••. be finite measures on .513'(~), with cor
responding distribution functions F, F 1, F 2, •••• The following are equiva
lent: 

w 
(a) f.Ln ~ JL. 
(b) Fn(a, b]---+ F(a, b] at all continuity points a, b ofF, where F(a, b] 

= F(b)- F(a), F(oo) = limx---+oo F(x), F(-oo) = limx---+-oo F(x). 

If all distribution functions are 0 at -oo, condition (b) is equivalent to the 
statement that Fn(x)---+ F(x) at all points x E R at which F is continuous, 
and F n(oo) ---+ F(oo). 

PRooF. (a) implies (b): If a and b are continuity points of F in ~. then 
(a, b] is a Borel set whose boundary has JL-measure 0. By 2.8.1 (e), f.Ln (a, b] 
---+ JL(a, b ], that is, F n(a, b] ---+ F(a, b]. If a= -oo, the argument is the same, 
and if b = oo, then (a, oo) is a Borel set whose boundary has tt-measure 0, 
and the proof proceeds as before. 

(b) implies (a): Let A be an open subset of~; write A as the disjoint union 
of open intervals It. h, .... Then 
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lim inf Jtn (A) = lim inf L Jtn (h) 
n---+00 n---+00 

k 

by Fatou's lemma. 

Let£> 0 be given. For each k, let h' be a right-semiclosed subinterval of h 
such that the endpoints of h' are continuity points of F, and tt(h') 2: tt(h) 
- &2-k; the h' can be chosen since F has only countably many discontinuities. 
Then 

lim inf Jtn (h) 2: lim inf Jtn (h') = tt(h') 
n---+00 n---+00 

by (b). 

Thus 
lim inf Jtn (A) 2: "'tt(h') 2: "'JL(l d - £ = tt(A) - £. 

n---+00 L.....J L.....J 
k k 

Since£ is arbitrary, we have Jtn ~ JL by 2.8.1(d). D 

Condition (b) of 2.8.4 is sometimes called weak convergence of the se-
. w 

quence {Fn} to F, wntten Fn ----+F. 

Problems 

1. (a) If F is a closed subset of the metric space n, show that IF is the 
limit of a decreasing sequence of uniformly continuous functions In, 
with 0 :S In :S 1 for all n. 

(b) Show that in 2.8.1, Jtn ~ JL iff In I dttn ---+ In I dtt for all 
bounded uniformly continuous I: Q ---+ IRL 

2. Show that in 2.8.1, Jtn ~ JL iff Jtn (A) ---+ tt(A) for all open sets A 
such that tt(aA) = 0. 

2.9 REFERENCES 

The presentation in Chapters 1 and 2 has been strongly influenced by sev
eral sources. The first systematic presentation of measure theory appeared in 
Halmos (1950). Halmos achieves slightly greater generality at the expense of 
technical complications by replacing cr-fields by cr-rings. (A er-ring is a class 
of sets closed under differences and countable unions.) However, cr-fields 
will be completely adequate for our purposes. The first account of measure 
theory specifically oriented toward probability was given by Loeve (1955). 
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Several useful refinements were made by Royden (1963), Neveu (1965), and 
Rudin (1966). Neveu's book emphasizes probability while Rudin's book is 
particularly helpful as a preparation for work in harmonic analysis. 

For further properties of finitely additive set functions, and a development 
of integration theory for functions with values in a Banach space, see Dunford 
and Schwartz (1958). 

A more recent treatment of measure and integration theory is that of Folland 
(1984), who discusses applications to Fourier analysis and probability. A de
velopment of measure theory that emphasizes the connection with probability 
is given by Doob (1994). 



CHAPTER 

3 
INTRODUCTION TO FUNCTIONAL 
ANALYSIS 

3.1 INTRODUCTION 

An important part of analysis consists of the study of vector spaces endowed 
with an additional structure of some kind. In Chapter 2, for example, we stud
ied the vector space U(Q, .¥, JL). If 1 ::: p::: oo, the seminorm II liP allowed 
us to talk about such notions as distance, convergence, and completeness. 

In this chapter, we look at various structures that can be defined on vector 
spaces. The most general concept, which we will not study in detail, is that of 
a topological vector space, which is a vector space endowed with a topology 
compatible with the algebraic operations, that is, the topology makes vector 
addition and scalar multiplication continuous. We will concentrate on two 
special cases, Banach and Hilbert spaces. In a Banach space there is a notion 
of length of a vector, and in a Hilbert space, length is in tum determined 
by a "dot product" of vectors. Hilbert spaces are a natural generalization of 
finite-dimensional Euclidean spaces. 

We now list the spaces we are going to study. The term "vector space" 
will always mean vector space over the complex field C; "real vector space" 
indicates that the scalar field is ~; no other fields will be considered. 

3.1.1 Definitions. Let L be a vector space. A seminorm on L is a function 
II II from L to the nonnegative reals satisfying 

llaxll = lal llxll for all a E C, x E L, 

llx + Yll ::: llxll + IIYII for all X, y E L. 

The first property is called absolute homogeneity, the second subadditivity. 
Note that absolute homogeneity implies that 11011 = 0. (We use the same symbol 
for the zero vector and the zero scalar.) If, in addition, llxll = 0 implies that 
x = 0, the seminorm is called a norm on L and L is said to be a normed linear 
space. 
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If II II is a seminorm on L, and d (x, y) = llx - yll, x, y E L, d is a pseu
dometric on L; a metric if II II is a norm. A Banach space is a complete 
normed linear space, that is, relative to the metric d induced by the norm, 
every Cauchy sequence converges. 

An inner product on L is a function from L x L to C, denoted by (x, y) 
-+ (x, y}, satisfying 

(ax+ by, z} = a(x, z} + b(y, z} for all a, b E C, x, y, z E L, 

(x, y} = (y, x} for all X, y E L 

for all X E L, (x, x} :::: 0 

(x,x} = 0 if and only if x=O 

(the over-bar indicates complex conjugation). A vector space endowed with 
an inner product is called an inner product space or pre-Hilbert space. If L 
is an inner product space, llxll = ((x,x})112 defines a norm on L; this is a 
consequence of the Cauchy-Schwarz inequality, to be proved in Section 3.2. 
If, with this norm, Lis complete, Lis said to be a Hilbert space. Thus a Hilbert 
space is a Banach space whose norm is determined by an inner product. 

Finally, a topological vector space is a vector space L with a topology 
such that addition and scalar multiplication are continuous, in other words, 
the mappings 

(x, y)-+ x + y of L x L into L 

and 
(a, x)-+ ax of C x L into L 

are continuous, with the product topology on L x L and C x L. 
A Banach space is a topological vector space with the topology induced by 

the metric d(x, y) = llx- yll. For if Xn -+ x and Yn -+ y, then 

llxn + Yn - (x + Y)ll :S IIXn- xll +llYn- Yll -+ 0; 

if an -+ a and Xn -+ X, then 

llanXn -axil :S llanXn- anxll + llanX- axil 

= I an I llxn -XII + I an - al llxll -+ 0. 

The above definitions remain unchanged if Lis a real vector space, except 
of course that C is replaced by IRL Also, we may drop the complex conju
gate in the symmetry requirement for inner product and simply write (x, y} 
= (y, x} for all x, y E L. 
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3.1.2 Examples. (a) If (Q, §"', tt) is a measure space and 1 ~ p .:S oo, II liP 
is a seminorm on the vector space LP (Q, §"', JL ). If we pass to equivalence 
classes by identifying functions that agree a.e. [JL], we obtain LP(Q, §"', JL), 
a Banach space (see 2.4). When p = 2, the norm II liP is determined by an 
inner product 

(f, g} = l fgdJL. 

Hence L2 (Q, §"', JL) is a Hilbert space. 
If §"' consists of all subsets of Q and JL is counting measure, then f = g 

a.e. [tt] implies f =g. Thus it is not necessary to pass to equivalence classes; 
LP(Q, .¥, tt) is a Banach space, denoted for simplicity by [P(Q). 

By 2.4.12, if 1 ~ p < oo, then [P(Q) consists of all functions f = (f(a), 
a E Q) from Q to C such that f(a) = 0 for all but countably many a, and 
11/11~ =La lf(a)IP < oo. When p = 2, the norm on l2 (Q) is induced by the 
inner product 

(f, g} = L f(a)g(a). 
a 

When p = 00, the situation is slightly different. The space [00 (Q) is the 
collection of all bounded complex-valued functions on Q, with the sup norm 

11/11 = sup{lf(x)J: x E Q}. 

Similarly, if Q is a metric space (or more generally, a topological space) 
and L is the class of all bounded continuous complex-valued functions on Q, 

then L is a Banach space under the sup norm, for we may verify directly that 
the sup norm is actually a norm, or equally well we may use the fact that 
L c l00 (Q). Thus we need only check completeness, and this follows because 
a uniform limit of continuous functions is continuous. 

(b) Let c be the set of all convergent sequences of complex numbers, and 
put the sup norm on c; iff = {an, n :::: 1} E c, then 

11/11 = sup{lanl: n = 1, 2, ... }. 

Again, to show that c is a Banach space we need only establish completeness. 
Let Un} be a Cauchy sequence in c; if fn = {ank. k:::: 1}, then limk ..... oo ank 
exists from each n since fn E c, and bk = limn-+oo ank exists, uniformly ink, 
since lank- amkl ~ 11/n -/mil ---+ 0 as n, m---+ 00. By the standard double 
limit theorem, 

lim lim ank = lim lim ank. 
n~ook~oo k~oon~oo 
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In particular, limk-+oo bk exists, so if f = {bk. k ::: 1}, then f E c. But 
11/n- /II = supk lank- bkl --+ 0 as n--+ oo since ank--+ bk uniformly ink. 
This proves completeness. 

(c) (If you are unfamiliar with general topology, you may skip this example.) 
Let L be the collection of all complex valued functions on S, where S is 

an arbitrary set. Put the topology of pointwise convergence on L, so that a 
sequence or net Un} of functions in L converges to the function f E L if and 
only if fn(x)--+ f(x) for each xES. With this topology, Lis a topological 
vector space. To show that addition is continuous, observe that if fn --+ f 
and gn --+ g pointwise, then In + gn --+ f + g pointwise. Similarly if an E c, 
n = 1, 2, ... , an --+a, and fn --+ f pointwise, then anfn --+ af pointwise. 

3.2 BASIC PROPERTIES OF HILBERT SPACES 

Hilbert spaces are a natural generalization of finite-dimensional Euclidean 
spaces in the sense that many of the familiar geometric results in ~ n carry 
over. First recall the definition of the inner product (or "dot product") on ~ n: If 
x = (Xt. ... , Xn) and y = (Yt, ... , Yn ), then (x, y} = 'L'j= 1 x j Yj- (This becomes 

LJ=l X/Yj in the space e of all n-tuples of complex numbers.) The length of 

a vector in ~n is given by llxll = ((x,x}) 112 = ('L'j== 1x]) 112 , and the distance 
between two points of ~n is d(x, y) = llx- Yll· In order to show that d is a 
metric, the triangle inequality must be established; this in turn follows from the 
Cauchy -Schwarz inequality I (x, y} I :S llx II II Yll· In fact the Cauchy -Schwarz 
inequality holds in any inner product space, as we now prove: 

3.2.1 Cauchy-Schwarz Inequality. If L is an inner product space, and llxll 
= ((x,x}) 112 ,x E L, then 

I (x, y} I :s llxll II Yll for all X, y E L. 

Equality holds iff x and y are linearly dependent. 

PRooF. For any a E C, 

0 ::; (x + ay, x + ay} = (x + ay, x} + (x + ay, ay} 

= (x, x} + a(y, x} + a(x, y} + lal 2 (y, y}. 

Set a = - (x, y} I (y, y} (if (y, y} = 0, then y = 0 and the result is trivial). Since 
(y, x} = (x, y}, we have 

0 :S (x, x} - 21 (x, y} 12 + I (x, y} 12' 
(y, y} (y, y} 

proving the inequality. 
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As (x + ay, x + ay} = 0 iff x + ay = 0, equality holds iff x and y are lin
early dependent. D 

3.2.2 Corollary. If L is an inner product space and llxll = ( (x, x} )112, x E L, 
then II II is a norm on L. 

PRooF. It is immediate that llxll :::: 0, llaxll = lal llxll, and llxll = 0 iff x = 0. 
Now 

llx + Yll 2 = (x + y, x + y} = llxll 2 + IIYII 2 + (x, y} + (y, x} 

= llxll 2 + IIYII 2 + 2 Re (x, y} 

~ llxll 2 + IIYII 2 + 211xll IIYII by 3.2.1. 

Therefore llx + Yll 2 ~ (llxll + IIYII)2
• D 

3.2.3 Corollary. An inner product is (jointly) continuous in both variables, 
that is, Xn ---+ X, Yn ---+ y implies (Xn, Yn} ---+ (x, y}. 

PRooF. 

I(Xn, Yn}- (x, y}l = I(Xn, Yn- y} + (Xn- X, Y}l 

~ llxnll llYn- Yll + llxn- xll IIYII by 3.2.1. 

However, by subadditivity of the norm, llxn II ~ llxn - xll + llxll and llxll 
~ llx- Xn II + llxn II, and, therefore, 

hence llxnll---+ llxll· It follows that (xn, Yn}---+ (x, y}. D 

The computation of 3.2.2 establishes the following result, which says ge
ometrically that the sum of the squares of the lengths of the diagonals of a 
parallelogram is twice the sum of the squares of the lengths of the sides. 

3.2.4 Parallelogram Law. In an inner product space, 

PROOF. 

llx + Yll 2 
= llxll 2 + IIYII 2 + 2 Re(x, y}, 
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and 
llx- Yll 2 = llxll 2 + IIYII 2

- 2 Re(x, y}. D 

Now suppose that x1, •.. , Xn are mutually perpendicular unit vectors in ~ k, 

k:::: n. If xis an arbitrary vector in ~k. we try to approximate x by a linear 
combination LJ=! a1x1. The reader may recall that LJ=! ajXj will be closest 
to x in the sense of Euclidean distance when a 1 = (x, x1}. This result holds in 
an arbitrary inner product space. 

3.2.5 Definition. Two elements x and y in an inner product space L are 
said to be orthogonal or perpendicular iff (x, y} = 0. If B C L, B is said to 
be orthogonal iff (x, y} = 0 for all x, y E B such that x =1 y; B is orthonormal 
iff it is orthogonal and llxll = 1 for all x E B. 

The computation of 3.2.2 shows that if x1, x2, ..• , Xn are orthogonal, the 
Pythagorean relation holds: II'L?=t xdl 2 = 'L?=t llxdl 2

. 

3.2.6 Theorem. If {x1, •.. , Xn} is an orthonormal set in the inner product 
space L, and x E L, 

is minimized when a1 = (x, x1}, j = 1, ... , n. 

PROOF. 

n n 

= llxll 2
- 2)ik(x, Xk}- 2:aj(Xj, x} 

k=! j=l 

+ (t,a1xJ. t,a,x,) 
The last term on the right is 'Lj= 1 Ia 1 1

2 since the x 1 are orthonormal. Further

more, -Zij (x, Xj} - aj(Xj. x} + la1l 2 = -I (x, Xj} 12 + lai - (x, Xj} 12 . Thus 

2 
n n n 

0 < x- ""a·x· - L...-11 (1) 
j=l J=l j=l 

so that we can do no better than to take a 1 = (x, x 1} . D 
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The above computation establishes the following important inequality. 

3.2. 7 Bessel's Inequality. If B is an arbitrary orthonormal subset of the inner 
product space L and x is an element of L, then 

llxll 2 :::: L l(x, y}l2. 
yEB 

In other words, (x, y} = 0 for all but countably many y E B, say y = x1, x2, ... , 
and 

llxll2 :::: L l(x, xj}l 2. 
j 

Equality holds iff LJ=l (x, Xj}Xj ---+ x as n---+ oo. 

PRooF. If x1, .. • ,Xn E B, set aj = (X,Xj} in Eq. (1) of 3.2.6 to obtain 

llx- LJ=! (x, Xj}Xjll
2 = llxll2 - LJ=! l(x, Xj}l 2 :::: 0. D 

We now consider another basic geometric idea, that of projection. If M is a 
subspace of ~n and xis any vector in ~n, x can be resolved into a component 
in M and a component perpendicular to M. In other words, x = y + z where 
y EM and z is orthogonal to every vector in M. Before generalizing to an 
arbitrary space, we indicate some terminology. 

3.2.8 Definitions. A subspace or linear manifold of a vector space L is a 
subset M of L that is also a vector space; that is, M is closed under addition 
and scalar multiplication. The subset M is said to be a closed subspace of L 
if M is a subspace and is also a closed set in the metric of L. 

A subset M of the vector space L is said to be convex iff for all x, y EM, 
we have ax+ (1 - a)y EM for all real a E [0, 1]. 

A key fact is required: If M is a closed convex subset of the Hilbert space 
H and xis an arbitrary point of H, there is a unique point of M closest to x. 

3.2.9 Theorem. Let M be a nonempty closed convex subset of the Hilbert 
space H. If x E H, there is a unique element y0 E M such that 

llx- Yo II= inf{llx- Yll: y EM}. 

PRooF. Let d = inf{llx- yll: y EM}, and pick points y1, Y2, ... EM with 
llx - Yn II ---+ d as n ---+ oo; we show that {Yn} is a Cauchy sequence. 

Since llu + vll 2 + llu- vll 2 = 211ull2 + 211vll 2 for all u, v E H by the paral
lelogram law 3.2.4, we may set u = Yn - x, v = Ym- x to obtain 

llYn+ Ym- 2xll
2 

+llYn- Ymll
2 

= 211Yn - xll 2 + 211Ym- xll 2 
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or 

Since ~ (Yn + Ym) E M by convexity, II~ (Yn + Ym)- xll 2 2: d2
, and it follows 

that llYn- Ymll---+ 0 as n, m---+ 00. 

By completeness of H, Yn approaches a limit Yo. hence llx - Yn II 
---+ llx- Yoll. But then llx - Yoll = d, and Yo EM since M is closed; this fin
ishes the existence part of the proof. 

To prove uniqueness, let yo, zo EM, with llx- Yo II = llx- zoll =d. In the 
parallelogram law, take u = Yo - x, v = zo - x, to obtain 

II Yo+ zo- 2xll
2 

+II Yo- zoll
2 

= 211Yo- xll
2 

+ 211zo- xll
2 

= 4d
2

• 

But II Yo+ zo- 2xll 2 = 411~(Yo + zo)- xll 2 2: 4d2
; hence II Yo- zoll = 0, so 

Yo= zo. D 

If M is a closed subspace of H, the element y0 found in 3.2.9 is called the 
projection of x on M. The following result helps to justify this terminology. 

3.2.10 Theorem. Let M be a closed subspace of the Hilbert space H, and 
Yo an element of M. Then 

llx- Yoll = inf{llx- yll: y EM} iff x- Yo ..l M, 

that is, (x- yo, y} = 0 for all y EM. 

PRooF. Assume x - Yo ..l M. If y E M, then 

llx- Yll 2 = llx- Yo- (y- Yo)ll 2 

= llx - Yoll
2 

+ IIY- Yoll 2
- 2 Re(x- Yo. y- Yo} 

= llx- Yoll
2 

+ IIY- Yoll
2 

smce y- Yo EM 

2: llx- Yoll
2

• 

Therefore, llx- Yoll = inf{llx- Yll: y EM}. 
Conversely, assume llx- Yo II = inf{llx- yll: y EM}. Let y EM and let c 

be an arbitrary complex number. Then y0 + cy EM since M is a subspace, 
hence llx- Yo- cyll 2: llx- Yoll. But 

llx- Yo- cyll 2 = llx- Yoll 2 + lci 2 IIYII 2
- 2 Re(x- Yo, cy}; 
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hence 

Take c = b(x- yo, y}, b real. Then (x- Yo, cy} = bi(x- Yo, y}l 2
• Thus 

l(x- yo, y}l 2[b2 11YII 2
- 2b] 2: 0. But the expression in square brackets is neg

ative if b is positive and sufficiently close to 0; hence (x- yo, y} = 0. D 

We may give still another way of characterizing the projection of x on M. 

3.2.11 Projection Theorem. Let M be a closed subspace of the Hilbert space 
H. If x E H, then x has a unique representation x = y + z where y E M and 
z ..l M. Furthermore, y is the projection of x on M. 

PRooF. Let yo be the projection of x on M, and take y =yo, z = x- Yo· 
By 3.2.1 0, z ..l M, proving the existence of the desired representation. To 
prove uniqueness, let x = y + z = y' + z' where y, y' E M, z, z' ..l M. Then 
y- y' EM since M is a subspace, and y- y' ..l M since y- y' = z'- z. 
Thus y- y' is orthogonal to itself, hence y = y'. But then z = z', proving 
uniqueness. D 

If M is any subset of H, the set M j_ = {x E H: x ..l M} is a closed subspace 
by definition of the inner product and 3.2.3. If M is a closed subspace, Mj_ 
is called the orthogonal complement of H, and the projection theorem is 
expressed by saying that H is the orthogonal direct sum of M and M j_, written 
H = M EBMj_. 

In ~n, it is possible to construct an orthonormal basis, that is, a set 
{x1, •.• , Xn} of n mutually perpendicular unit vectors. Any vector x in ~n 
may then be represented as x = 2.::?=1 (x, x;}x;, so that (x, x;} is the component 
of x in the direction of X;. We are now able to generalize this idea to an 
arbitrary Hilbert space. The following terminology will be used. 

3.2.12 Definitions. If B is a subset of the normed linear space (or more 
generally, the topological vector space) L, the space spanned by B, denoted 
by S(B), is the smallest closed subspace of L containing all elements of B. 
If L(B) is the linear manifold generated by B, that is, L(B) consists of 
all elements 2.::?= 1 a;x;, a; E C, x; E B, i = 1, ... , n, n = 1, 2, ... , then S(B) 
= L(B). 

If B is a subset of the Hilbert space H, B is said to be an orthonormal 
basis for H iff B is a maximal orthonormal subset of H, in other words, B 
is not a proper subset of any other orthonormal subset of H. An orthonormal 
set B C H is maximal iff S (B) = H, and there are several other conditions 
equivalent to this, as we now prove. 
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3.2.13 Theorem. Let B = {xa, a E I} be an orthonormal subset of the Hilbert 
space H. The following conditions are equivalent: 

(a) B is an orthonormal basis. 
(b) B is a "complete orthonormal set," that is, the only x E H such that 

x ..l B is x = 0. 
(c) B spans H, that is, S(B) =H. 
(d) For all x E H, x = La(x, Xa}Xa. (Let us explain this notation. By 3.2.7, 

(x, Xa} = 0 for all but countably many Xa, say for x1, x2, ... ; the assertion is 
that LJ=! (x, x1}xj ---+ x, and this holds regardless of the order in which the 
x1 are listed.) 

(e) For all x, y E H, (x, y} = La(x, Xa}(xa. y}. 
(f) For all x E H, llxll 2 =La l(x,xa}l 2

• 

Condition (f) [and sometimes (e) as well] is referred to as the Parseval 
relation. 

PRooF. (a) implies (b): If x ..l B, x =I 0, let y = x/llxll. Then B U {y} is an 
orthonormal set, contradicting the maximality of B. 

(b) implies (c): If x E H, write x = y + z where y E S(B) and z ..l S(B) 
(see 3.2.11). By (b), z = 0; hence x E S(B). 

(c) implies (d): Since S(B) = L(B), given x E Hand£> 0 there is a finite 
set F C I and complex numbers aa, a E F, such that 

By 3.2.6, if G is any finite subset of I such that F c G, 

llx- ~(x, Xa}Xall ~ llx- ~aaXall where aa = 0 for a¢ F 

= llx- ~aaXall ~ £. 

We may assume that (x, Xa} =I 0 for every a E F. 
Thus if x1, x2, ... is any ordering of the points Xa E B for which (x, Xa} =1 0, 

llx- LJ=l (x, Xf}XJII ~ e for sufficiently large n, as desired. 
(d) implies (e): This is immediate from 3.2.3. 
(e) implies (f): Set x = yin (e). 
(f) implies (a): Let C be an orthonormal set with B c C, B =1 C. If 

x E C, x ¢ B, we have llxll 2 =La l(x, Xa}l 2 = 0 since by orthonormality of 
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C, xis orthogonal to everything in B. This is a contradiction because llxll = 1 
for all x E C. D 

3.2.14 Corollary. Let B = {xa, a E I} be an orthonormal subset of H, not 
necessarily a basis. 

(a) B is an orthonormal basis for S(B). [Note that S(B) is a closed subspace 
of H, hence is itself a Hilbert space with the same inner product.] 

(b) If x E H and y is the projection of x on S(B), then 

[see 3.2.13(d) for the interpretation of the series]. 

PRooF. (a) Note that the space spanned by B in S(B) is S(B) itself. 
(b) By part (a) and 3.2.13(d), y = La(Y, Xa}Xa. But X- y ..l S(B) by 

3.2.11, hence (x, Xa} = (y, Xa} for all a. D 

A standard application of Zorn's lemma shows that every Hilbert space has 
an orthonormal basis; an additional argument shows that any two orthonormal 
bases have the same cardinality (see Problem 5). This fact may be used to 
classify all possible Hilbert spaces, as follows. 

3.2.15 Theorem. Let S be an arbitrary set, and let H be a Hilbert space 
with an orthonormal basis B having the same cardinality as S. Then there is 
an isometric isomorphism (a one-to-one-onto, linear, norm-preserving map) 
between H and l 2 (S). 

PRooF. We may write B = {xa, a E S}. If x E H, 3.2.13(d) then gives 
X= La(X,Xa}Xa, where Lai(X,Xa}l 2 = llxll 2 < 00 by 3.2.13(f). The map 
X---+ ((x, Xa}, a E S) of H into l2(S) is therefore norm-preserving; since it 
is also linear, it must be one-to-one. To show that the map is onto, consider 
any collection of complex numbers aa, a E S, with La laal 2 < oo. Say aa = 0 
except for a = a 1, a2, ... , and let x = La aa1Xar [The series converges to 
an element of H because of the following fact, which occurs often enough 
to be stated separately: If {y1, Y2, ... } is an orthonormal subset of H, these
ries LJ c1y1 converges to some element of H iff LJ lcJI 2 < oo. To see this, 

observe that II LJ=n CJYJI1 2 = LJ=n lcJI 2 11YJII2 
= LJ=n lcJI 2

; thus the partial 
sums form a Cauchy sequence iff LJ 1c11

2 < oo.] 
Since the Xa are orthonormal, it follows that (x, Xa} = aa for all a, so that 

x maps onto (aa, a E S). D 
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Theorem 3.2.15 is not as useful as it looks. For example, when working in 
L 2[0, 1], we usually take advantage of what we know about [0, 1]. 

We may also characterize Hilbert spaces that are separable, that is, have a 
countable dense set. 

3.2.16 Theorem. A Hilbert space H is separable iff it has a countable or
thonormal basis. If the orthonormal basis has n elements, H is isometrically 
isomorphic to e; if the orthonormal basis is infinite, H is isometrically iso
morphic to 12, that is, l2 (S) with S = {1, 2, ... }. 

PRooF. Let B be an orthonormal basis for H. Now llx- Yl1 2 = llxll 2 + IIY11 2 

= 2 for all x, y E B, x =I y, hence the balls Ax= {y: IIY- xll < 4L x E B, are 
disjoint. If D is dense in H, D must contain a point in each Ax, so that if B is 
uncountable, D must be also, and therefore H cannot be separable. 

Now assume B is a countable set {x1, x2, ... }. If U is a nonempty open 
subset of H[= S(B) = L(B)], U contains an element of the form LJ=l ajXj 
with the aj E C; in fact the aj may be assumed to be rational, in other words, 
to have rational numbers as real and imaginary parts. Thus 

D = {tajXj: n = 1, 2, ... , the aj rational} 
j=l 

is a countable dense set, so that H is separable. The remaining statements of 
the theorem follow from 3.2.15. D 

A linear norm-preserving map from one Hilbert space to another auto
matically preserves inner products; this is a consequence of the following 
proposition. 

3.2.17 Polarization Identity. In any inner product space, 

PRooF. 

4(x, y} = llx + Yll 2
- llx- Yll 2 + illx + iyll 2

- illx- iyll 2
. 

llx + Yll 2 
= llxll 2 + IIYII 2 + 2 Re(x, y} 

llx- Yll 2 
= llxll 2 + IIYII 2

- 2 Re(x, y} 

llx + iyll
2 = llxll 2 + IIYII 2 + 2 Re(x, iy} 

llx- iyll 2 = llxll 2 + IIYII 2
- 2 Re(x, iy} 

But Re(x, iy} = Re[-i(x, y}] = Im(x, y}, and the result follows. D 
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Problems 

1. In the Hilbert space 12(S), show that the elements ea, a E S, form an 
orthonormal basis, where 

ea(s) = {~: s =1 a, 
s=a. 

2. (a) If A is an arbitrary subset of the Hilbert space H, show that 
AH = S(A). 

(b) If M is a linear manifold of H, show that M is dense in H iff 
Mj_ = {0}. 

3. Let x1, .•. , Xn be elements of a Hilbert space. Show that the X; are 
linearly dependent iff the Grarnian (the determinant of the inner products 
(x;, x j}, i, j = 1, ... , n) is 0. 

4. (Gram-Schmidt process) Let B = {x1, x2, .. . } be a countable linearly 
independent subset of the Hilbert space H. Define e1 = xt!llxtll; having 
chosen orthonormal elements et. ... , en, let Yn+I be the projection of 
Xn+I on the space spanned by e 1, ••• , en: 

Define 

n 

Yn+l = L(Xn+l• e;}e;. 
i=l 

Xn+l- Yn+l 
en+l = · 

llxn+l - Yn+tll 

(a) Show that L{e1, ••• , en}= L{xt. ... , Xn} for all n, hence Xn+l =I 
Yn+I and the process is well defined. 

(b) Show that the en form an orthonormal basis for S(B). 

Comments. Consider the space H = L 2 
( -1, 1); if we take Xn (t) = tn, 

n = 0, 1, ... , the Gram-Schmidt process yields the Legendre polyno
mials en(t) = andn[(t2 - l)n]/dtn, where an is chosen so that lien II= 1. 
Similarly, if in L2(-oo, oo) we take Xn(t) = tne-1212, n = 0, 1, ... , we 
obtain the Hermite polynomials en (t) =an ( -1 )ne12 dn(e-12 )/dtn. 

5. (a) If you are familiar with Zorn's Lemma, show that every Hilbert 
space has an orthonormal basis. 

(b) If you are familiar with cardinal arithmetic, show that any two 
orthonormal bases have the same cardinality. 

6. Let U be an open subset of the complex plane, and let H(U) be the 
collection of all functions f analytic on U such that 
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11/112 = j j lf(x + iy)l 2 dxdy < oo. 
u 

(f, g} = j j f(x + iy)g(x + iy) dx dy, f, g E H(U), 

u 

H(U) becomes an inner product space. 

(a) If K is a compact subset of U and f E H(U), show that 

sup{l/(z)l: z E K}::: 11/11/-Jido 

where do is the Euclidean distance from K to the complement of 
U. Therefore convergence in H(U) implies uniform convergence 
on compact subsets of U. (If z E K, the Cauchy integral formula 
yields 

r <do. 

Integrate this equation with respect to r, 0 ::: r ::: d < d0 • Note also 
that if U is the entire plane, we may take do = oo, and it follows 
that H(C) = {0}.) 

(b) Show that H(U) is complete, and hence is a Hilbert space. 

7. (a) Iff is analytic on the unit disk D = {z: lzl < 1} with Taylor ex
pansion f(z) = L~=O anzn, show that 

It follows that if H 2 is the collection of all functions f analytic on 
D such that 

1 12Jf N 2(f) = sup - lf(rei11 )1 2 d() < oo, 
O.:or< 1 2n o 

then H 2, with norm N, is a pre-Hilbert space. 
(b) Iff E H 2, show that 

j j lf(x + iy)l 2 dxdy::: nN2(f); 

D 

hence H 2 C H(D) and convergence in H 2 implies convergence in 
H(D). 
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(c) If fn(Z) = zn, n = 0, 1, ... , show that fn---+ 0 in H(D) but not in 
H2. 

(d) Show that H 2 is complete, and hence is a Hilbert space. [By (a), 
H 2 is isometrically isomorphic to a subspace of 12.] 

(e) If en(Z) = zn, n = 0, 1, ... , show that the en form an orthonormal 
basis for H 2• 

(f) If en (z) = [ (2n + 2)/2n] 112zn, n = 0, 1, ... , show that the en form 
an orthonormal basis for H(D). 

8. Let M be a closed convex subset of the Hilbert space H, and Yo an 
element of M. If x E H, show that 

llx- Yoll = inf{llx- yll: Y EM} 

iff 
Re(x- Yo. y- Yo} :S 0 for all yEM. 

*9. (a) If g is a continuous complex-valued function on [0, 2n] with g(O) 
= g(2n), use the Stone-Weierstrass theorem to show that g 
can be uniformly approximated by trigonometric polynomials 
2.:::~=-n ck eikt. Conclude that the trigonometric polynomials are 
dense in L 2[0, 2n]. 

(b) Iff E L2[0, 2n], show that the Fourier series 2.:::::0=-ooaneint, an 

= (l/2n) J0
2
n f(t)e-int dt, converges to fin L 2, that is, 

r2n n 2 

Jo jf(t)- L ak eiktj dt---+ 0 
0 k=-n 

as n ---+ oo. 

(c) Show that {eint;.J21r, n = 0, ±1, ±2, ... } yields an orthonormal ba
sis for L2[0, 2n]. 

10. (a) Give an example to show that if M is a nonempty, closed, but not 
convex subset of a Hilbert space H, there need not be an element 
of minimum norm in M. Thus the convexity hypothesis cannot 
be dropped from Theorem 3.2.9, even if we restrict ourselves to 
existence and forget about uniqueness. 

(b) Show that convexity is not necessary in the existence part of 3.2.9 
if H is finite-dimensional. 

3.3 LINEAR OPERATORS ON NORMED LINEAR SPACES 

The idea of a linear transformation from one Euclidean space to another is 
familiar. If A is a linear map from ~n to ~m. then A is completely specified 
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by giving its values on a basis e1, ..• , en: A(2.::7= 1 c;ei) = 2.::7= 1 c;A(e;); fur
thermore, A is always continuous. If elements of ~n and ~m are represented 
by column vectors, A is represented by an m x n matrix. If n = m, so that 
A is a linear transformation on ~ n, A is one-to-one iff it is onto, and if A-! 
exists, it is always continuous (as well as linear). 

Linear transformations on infinite-dimensional spaces have many features 
not found on the finite-dimensional case, as we shall see. 

In this section, we study mappings A from one normed linear space L to 
another such space M. The mapping A will be a linear operator, that is, 
A(ax +by)= aA(x) + bA(y) for all x, y E L, a, bE C We use the symbol II II 
for the norm on both spaces; no confusion should result. Linear operators can 
of course be defined on arbitrary vector spaces, but in this section, it is always 
understood that the domain and range are normed. 

Linearity does not imply continuity; to study this idea, we introduce a new 
concept. 

3.3.1 Definitions and Comments. If A is a linear operator, the norm of A 
is defined by: 

(a) IIAII = sup{IIAxll: x E L, llxll::: 1}. We may express IIAII in two other 
ways. 

(b) IIAII = sup{IIAxll: x E L, llxll = 1}. 

(c) IIAII = sup{IIAxll/llxll: x E L, x =I 0}. 

To see this, note that (b)::: (a) is clear; if x =I 0, then IIAxll/llxll = IIA(x/llxll)ll, 
and x/llxll has norm 1; hence (c)::: (b). Finally if llxll :S 1, x =I 0, then IIAxll 
:S IIAxll/llxll, so (a)::: (c). 

It follows from (c) that IIAxll ::: IIAII llxll, and in fact IIAII is the smallest 
number k such that IIAxll ::: kllxll for all x E L. 

The linear operator A is said to be bounded iff IIAII < oo. Roundedness is 
often easy to check, a very fortunate circumstance because we can show that 
boundedness is equivalent to continuity. 

3.3.2 Theorem. A linear operator A is continuous iff it is bounded. 

PRooF. If A is bounded and {xn} is a sequence in L converging to 0, then 
IIAxn II :S I lA II llxn II ---+ 0. (We use here the fact that the mapping x---+ llxll of 
L into the nonnegative reals is continuous; this follows because lllxll - II yll I 
::: llx- yll.) Thus A is continuous at 0, and therefore, by linearity, is continuous 
everywhere. On the other hand, if A is unbounded, we can find elements 
Xn E L with llxn II :S 1 and IIAxn II ---+ 00. Let Yn = Xn/ IIAxn II; then Yn ---+ 0, but 
IIAYn II = 1 for all n, hence Ayn does not converge to 0. Consequently, A is 
discontinuous. 0 
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We are going to show that the set of all bounded linear operators from L 
to M is itself a normed linear space, but first we consider some examples. 

3.3.3 Examples. (a) Let L = C[a, b], the set of all continuous complex
valued functions on the closed bounded interval [a, b] of reals. Put the sup 
norm on L: 

llxll = sup{lx(t)l: a :S t :S b}, X E C[a, b]. 

With this norm, Lis a Banach space [see 3.1.2(a)]. Let K = K(s, t) be a con
tinuous complex-valued function on [a, b] x [a, b], and define a linear operator 
on L by 

(Ax)(s) = 1b K(s, t)x(t)dt, a::; s::; b. 

(By the dominated convergence theorem, Ax actually belongs to L.) We show 
that A is bounded: 

IIAxll = sup I rb K(s, t)x(t)dtl 
a~s~b Ja 

::; sup lx(t)l sup {b IK(s, t)l dt 
a-sts_b as_ss_b Ja 

(note that I: IK(s, t)l dt is a continuous function of s, by the dominated con
vergence theorem). Thus 

In fact IIAII = maxas_ss_b I: IK(s, t)l dt (see Problem 3). 
(b) Let L = lP(S), where S is the set of all integers and 1 ::; p < oo. 

Define a linear operator T on L by (Tf)n = fn+l, n E S; T is called the 
two-sided shift or the bilateral shift. It follows from the definition that T is one
to-one onto, and (T- 1 /)n = fn-!. n E S. Also, IlT/II = 11/11 for all f E L; 
hence IIT-1 /II= 11/11 for all f E L, so that Tis an isometric isomorphism of 
L with itself. (In particular, II Til = II T- 1 11 = 1.) 

If we replace S by the positive integers and define T as above, the resulting 
operator is called the one-sided or unilateral shift. The one-sided shift is onto 
with norm 1, but is not one-to-one; T(/1, /2, ... ) = (/2, /3, ... ). 
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The shift operators we have defined are shifts to the left. We may also define 
shifts to the right; in the two-sided case we take (Af)n = fn-l, n E S (so that 
A= T- 1). In the one-sided case, we set (Af)n = fn-!. n :=:: 2; (Afh = 0; thus 
A(/1, h .... )= (0, /1. h .... ). The operator A is one-to-one but not onto; 
A(L) is the closed subspace of L consisting of those sequences whose first 
coordinate is 0. 

(c) Assume that the Banach space L is the direct sum of the two closed 
subspaces M and N, in other words each x E L can be represented in a unique 
way as y + z for some y E M, z E N. (We have already encountered this 
situation with La Hilbert space, M a closed subspace, N = Mj_.) We define 
a linear operator P on L by 

Px= y. 

P is called a projection; specifically, P is the projection of L on M and it has 
the following properties: 

(1) P is idempotent; that is, P 2 = P, where P 2 is the composition of P 
with itself. 

(2) P is continuous. 

Property (1) follows from the definition of P; property (2) will be proved later, 
as a consequence of the closed graph theorem (see after 3.4.16). 

Conversely, let P be a continuous idempotent linear operator on L. Define 

M = {x E L: Px = x}, N = {x E L: Px = 0}. 

Then we can prove that M and N are closed subspaces, L is the direct sum of 
M and N, and Pis the projection of Lon M. 

By continuity of P, M and N are closed subspaces. If x E L, then 
x = Px + (/- P)x = y + z where y EM, z E N. Since M n N = {0}, L is 
the direct sum of M and N. Furthermore, Px = y by definition of y, so that 
Pis the projection of Lon M. 

If f is a linear operator from a vector space L to the scalar field, f is called 
a linear functional. (The norm of a scalar b is taken as lhl.) Considerable 
insight is gained about normed linear spaces by studying ways of representing 
continuous linear functionals on such spaces. We give some examples. 

3.3.4 Representations of Continuous Linear Functionals. (a) Let f be a 
continuous linear functional on the Hilbert space H. We show that there is a 
unique element y E H such that 

f(x) = (x, y} for all xEH. 

This is one of several results called the Riesz representation theorem. 



3.3 LINEAR OPERATORS ON NORMED LINEAR SPACES 145 

If the desired y exists, it must be unique, for if (x, y} = (x, z} for all x, then 
y - z is orthogonal to everything in H (including itself), so y = z. 

To prove existence, let N be the null space of f, that is, N = {x E 

H: f(x) = 0}. If Nj_ = {0}, then N = H by the projection theorem; hence 
f = 0, and we may take y = 0. Thus assume we have an element u E Nj_ 
with u =1 0. Then u ¢ N, and if we define z = u/f(u), we have z E Nj_ and 
f(z) = 1. 

If x E H and f(x) =a, then 

x = (x - az) + az, 

If y = z/llzll 2
, then 

with x- az EN, az ..lN. 

(x, y} = (x- az, y} + a(z, y} 

= a(z, y} since y..lN 

=a= f(x) 

as desired. 
The above argument shows that if f is not identically 0, then Nj_ is 

one-dimensional. For if x E Nj_ and f(x) =a, then x- az EN nNj_, hence 
x = az. Therefore Nj_ = {az: a E C}. 

Notice also that if 11/11 is the norm off, considered as a linear operator, 
then 

11/11 = llyll. 

For lf(x)l = l(x, y}l::: llxll IIYII for all x, hence 11/11::: IIYII; but lf(y)l 
= l(y, y}l = IIYII IIYII, so 11/11 2: llyll. 

Now consider the space H* of all continuous linear functionals on H; H* 
is a vector space under the usual operations of addition and scalar multipli
cation. If to each f E H* we associate the element of H given by the Riesz 
representation theorem, we obtain a map ljl: H* -+ H that is one-to-one onto, 
norm-preserving, and conjugate linear; that is, 

ljl(af + bg) = aljl(f) + bljl(g), f,gEH*, a,bEC. 

[Note that if f(x) = (x, y} for all x, then af(x) = (x, ay} .] Such a map is called 
a conjugate isometry. 

(b) Let f be a continuous linear functional on [P (= [P(S), where S is 
the set of positive integers), 1 < p < oo. We show that if q is defined by 
(1/p) + (1/q) = 1, there is a unique element y = (y1, Y2, ... ) E zq such that 

00 

f(x) = L::XkYk for all X E [P, 

k=l 
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Furthermore, 

( 

00 ) !(q 

11/11 = llyll = B IYklq 

To prove this, let en be the sequence in [P defined by en(j) = 0, j =In; 
en(n) = 1. If x E [P, then llx- I::Z=l XkekiiP = L~n+l lxkiP---+ 0; hence 
x = 2.::~ 1 xkeb where the series converges in zP. By continuity off, 

00 

f(x) = LXkYk, where Yk = f(ek). (1) 

k=l 

Now write Yk in polar form, that is, Yk = rkeilh, rk 2: 0. Let 

_ ( q-l -ilh q-! -i(}n 0 0 )· Zn - r 1 e , ... , rn e , , , ... , 

by (1), 
n n 

f(zn) = L rr 1e-i(ikrkei(}k = L IYklq. (2) 
k=! k=! 

But 

1/(Zn)l :S 11/11 llznll 

( 

n ) lfp 

= 11/11 {; IYdq-tJp 

( 

n ) l(p 

= 11/11 {; IYklq 

By Eq. (2), 

( 

n ) !(q 

{; IYklq ::: 11/11; 

hence y E zq and IIYII ::: 11/11. To prove that 11/11 ::: IIYII, observe that Eq. (1) is 
of the form f(x) = fn xy dtt where Q is the positive integers and JL is counting 
measure. By HOlder's inequality, 1/(x)l::: llxll IIYII, so that 11/11 ::: IIYII. 

Finally, we prove uniqueness. If y, z E zq and f(x) = 2.::~ 1 XkYk 
= 2.::~ 1 XkZk for all x E [P, then g(x) = 2.::~ 1 Xk(Yk- Zk) = 0 for all x E zP. 



3.3 LINEAR OPERATORS ON NORMED LINEAR SPACES 147 

The above argument with f replaced by g shows that llgll = IIY- zll; hence 
IIY- zll = 0, and thus y = z. 

(c) Let f be a continuous linear functional on Z1
• We show that there is a 

unique element y E zoo such that 

00 

f(x) = L::>kYk for all X E Z
1

. 

k=l 

Furthermore, 11/11 = IIYII = supk IYkl· 
The argument of (b) may be repeated up to Eq. (1). In this case, however, 

if Yk = rkeilh, k = 1, 2, ... , we take 

Zn = (0, ... , 0, e-i(}n, 0, ... ), with e-W" in position n. 

Thus by (1), 

But 
1/(Zn)l :S 11/11 llznll = 11/11. 

Therefore IYnl :S 11/11 for all n, so that y E zoo and IIYII :S 11/11. But by (1), 

hence 11/11 ::: IIYII. Uniqueness is proved as in (b). 
In 3.3.4(b) and (c), the map f---+ y of (ZP)* to zq[q = 00 in 3.3.4(c)] is linear 

and norm-preserving, hence one-to-one. To show that it is onto, observe that 
any linear functional of the form f(x) = 2.::~ 1 XkYko x E [P, y E zq, satisfies 
11/11 ::: IIYII by the analysis of 3.3.4(b) and (c). Therefore f is continuous, so 
that every y E zq is the image of some f E ([P)*. Since 11/11 = llyll. we have 
an isometric isomorphism of (ZP)* and zq. 

If we replace Yk by Yk• we obtain the result that there is a unique y E zq such 
that f(x) = 2.::~ 1 XkYk for all x E zP. This makes the map f---+ y a conjugate 
isometry rather than an isometric isomorphism. If p = 2, then q = 2 also, and 
thus we have another proof of the Riesz representation theorem for separable 
Hilbert spaces (see 3.2.16). In fact, essentially the same argument may be used 
in an arbitrary Hilbert space if the en are replaced by an arbitrary orthonormal 
basis. (Other examples of representation of continuous linear functionals are 
given in Problems 10 and 11.) 

We now show that the set of bounded linear operators from one normed 
linear space to another can be made into a normed linear space. 
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3.3.5 Theorem. Let Land M be normed linear spaces, and let [L, M] be the 
collection of all bounded linear operators from L to M. The operator norm 
defined by 3.3.1 is a norm on [L, M], and if M is complete, then [L, M] is 
complete. In particular, the set L * of all continuous linear functionals on L is 
a Banach space (whether or not L is complete). 

PRooF. It follows from 3.3.1 that IIAII:::: 0 and llaAII = lal IIAII for all 
A E [L, M] and a E C Also by 3.3.1, if IIAII = 0, then Ax= 0 for all x E L, 
hence A = 0. If A, B E [L, M], then again by 3.3.1, 

IIA + Bll = sup{II(A + B)xll: x E L, llxll :S 1}. 

Since II (A + B)xll :S IIAxll + IIBxll for all x, 

IIA + Bll :s IIAII + IIBII 

and it follows that [L, M] is a vector space and the operator norm is in fact a 
norm on [L, M]. 

Now let A 1, A2, ... be a Cauchy sequence in [L, M]. Then 

as n, m--+ oo. (1) 

Therefore {Anx} is a Cauchy sequence in M for each x E L, hence An converges 
pointwise on L to an operator A. Since the An are linear, so is A (observe that 
An(ax +by)= aAnx + bAny, and let n--+ oo). Now given e > 0, choose N 
such that IIAn -Amll :S £for n, m:::: N. Fix n:::: Nand let m--+ oo in Eq. (1) 
to conclude that II(An- A)xll :S ellxll for n :=::: N; therefore IIAn- All --+ 0 as 
n --+ oo. Since IIA II ::; I lA -An II + IIAn II, we have A E [L, M] and An --+ A in 
the operator norm. D 

In the above proof we have talked about two different types of convergence 
of sequences of operators. 

3.3.6 Definitions and Comments. Let A, A 1, A2, ... E [L, M]. We say that 
u 

An converges uniformly to A iff IIAn - A II --+ 0 (notation: An ----+ A). Since 
II(An -A)xll :S IIAn -All llxll, uniform operator convergence means that 
Anx--+ Ax, uniformly for llxll :S 1 (or equally well for llxll :S k, k any positive 
real number). 

We say that An converges pointwise to A iff Anx --+ Ax for each x E L. 
Thus, pointwise operator convergence is pointwise convergence on all of L. 

Uniform convergence implies strong convergence, but not conversely. For 
example, let {e~o e2, ... } be an orthonormal set in a Hilbert space, and let 
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Anx = (x, en}. n = 1, 2, .... Then An converges pointwise to 0 by Bessel's 
inequality, but An does not converge uniformly to 0. In fact IIAnen II = 1 for 
all n, hence IIAn II = 1. 

There is an important property of finite-dimensional spaces that we are 
now in a position to discuss. In the previous section, we regarded en as a 
Hilbert space, so that if X E en' the norm of X was taken as the Euclidean 
norm llxll = (2.::7=1 lx;1 2) 112 . The metric associated with this norm yields the 
standard topology on en. However, we may put various other norms on en, 
for example, the U norm llxllp = (2.::7= 1 lx;!P) 11

P, 1 :S p < oo, or the sup 
norm llxlloo = max(lx1l, ... , lxn I). Since the space is finite-dimensional, there 
are no convergence difficulties and all elements have finite norm. Fortunately, 
the proliferation of norms causes no confusion because all norms on a given 
finite-dimensional space induce the same topology. In other words, the open 
sets in en will be the same, regardless of which norm we use. The proof of 
this result is outlined in Problems 6 and 7. 

Problems 

1. Let f be a linear functional on the normed linear space L. If f is not 
identically 0, show that the following are equivalent: 

(a) f is continuous. 
(b) The null space N = f- 1{0} is closed. 
(c) N is not dense in L. 
(d) f is bounded on some neighborhood of 0. 

[To prove that (c) implies (d), show that if B(x, e) n N = ¢, and f 
is unbounded on B(O, e), then f (B(O, e)) = C In particular, there is 
a point z E B(O, e) such that f(z) =- f(x), and this leads to a contra
diction.] 

2. Show that any infinite-dimensional normed linear space had a discontin
uous linear functional. (Let e1, e2, ... be an infinite sequence of linearly 
independent elements such that lien II = 1 for all n. Define f appropri
ately on the en and extend f to the whole space using linearity.) 

3. In Example 3.3.3(a), show that IIAII = maxa:::s::=b J: IK(s, t)l dt. [If 
J: K(s, t)l dt assumes a maximum at the point u, and K(u, t) = r(t)ei(}(t), 
let z(t) = r(t)e-W(t). Let x1, x2, ••• be continuous functions such that 
lxn(t)l :S 1 for all nand t, and 1; lxn(t)- z(t)l dt---+ 0 as n---+ oo. Since 

IIAxnll :S IIAII and (Axn)(s)---+ fa K(s, t)z(t)dt as n---+ oo, it follows that J: IK(u, t)l dt :S IIAII.] 

The same argument, with integrals replaced by sums, shows that if A 
is a matrix operator on en, with sup norm, IIAII = max1:::i.-sn 2.::}=1 laiJI· 
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4. Let M be a linear manifold in the normed linear space L. Denote by [x] 
the coset of x modulo M, that is, {x + y: y E M}. Define 

ll[x]ll = inf{IIYII: Y E [x]}; 

note that ll[x]ll = inf{llx- zll: z EM}= dist(x, M). Show that the above 
formula defines a seminorm on the quotient space L/ M, a norm if M is 
closed. 

5. If L is a Banach space and M is a closed subspace, show that L/ M is a 
Banach space. 

6. (a) Let A be a linear operator from L toM. Show that A is one-to-one 
with A-t continuous on its domain A(L), iff there is a finite number 
m > 0 such that IIAxll 2: mllxll for all x E L. 

(b) Let II lit and II ll2 be norms on the linear space L. Show that the 
norms induce the same topology (in other words, the open sets are 
the same for each norm) iff there are finite numbers m, M > 0 such 
that 

mllxll 1 :S llxll2 :S Mllxllt for all X E L. 

[This may be done using part (a), or it may be shown directly 
that, for example, if llxllt ::: (l/m)llxll2 for all x, then the topology 
induced by II lit is weaker than (that is, included in) the topology 
induced by II 112.] 

7. Let L be a finite-dimensional normed linear space, with basis e t, ... , 
en. Let II lit be any norm on L, and define 

where 
n 

x= Lxiei. 
i=t 

(a) Show that for some positive real number k, llxllt ::: kllxll2 for 
allxEL. 

(b) Show that for some positive real number m, llxllt 2: m on 
{x: llxll2 = 1}. [By (a), the map x--+ llxllt is continuous in 
the topology induced by II 112.] 

(c) Show that llxllt 2: mllx2ll for all x E L, and conclude that all 
norms on a finite-dimensional space induce the same topology. 

(d) Let M be an arbitrary normed linear space, and let L be a 
finite-dimensional subspace of M. Show that L is closed in M. 

8. (Riesz lemma) Let M be a closed proper subspace of the normed 
linear space L. Show that if 0 < 8 < 1, there is an element x8 E L 
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such that llxoll = 1 and llx- Xoll 2: 8 for allx EM. [Choose x1 ¢ M, 
and let d = dist (x1, M) > 0 since M is closed. Choose x0 E M such 
that llxt- .xoll :S d/8, and set xs = (xJ- xo)/llxt- xoll.] 

9. Let L be a normed linear space. Show that the following are equiv
alent: 
(a) L is finite-dimensional. 

(b) Lis topologically isomorphic to a Euclidean space en (or ~n 
if L is a real vector space), that is, there is a one-to-one, onto, 
linear, bicontinuous map between the two spaces. 

(c) L is locally compact (every point of L has a neighborhood 
whose closure is compact). 

(d) Every closed bounded subset of L is compact. 

(e) The set {x E L: llxll = 1} is compact. 

(f) The set {x E L: llxll = 1} is totally bounded, that is, can be 
covered by a finite number of open balls of any preassigned 
radius. 

[Problem 7 shows that (a) implies (b), (b) implies (c), (d) implies 
(e), and (e) implies (f) are obvious, and (c) implies (d) is easy. To 
prove that (f) implies (a), use Problem 8.] 

10. Let c be the space of convergent sequences of complex numbers 
[see 3.1.2(b)]. If f is a continuous linear functional on c, show 
that there is a unique element y = (yo, Yt, ... ) E 11 such that for 
all X E C, 

Furthermore, 11/11 = I Yo- 2.::~ 1 Ykl + 2.::~ 1 IYkl· If co is the closed 
subspace of c consisting of those sequences converging to 0, the rep
resentation of a continuous linear functional on co is simpler: f(x) 
= 2.::~ 1 XkYb 11/11 = 2.::~ 1 IYkl· Thus c0 is isometrically isomor
phic to 11. 

11. Let (Q, .¥, tt) be a measure space. 

(a) Assume JL finite, 1 < p < oo, (1/p) + (1/q) = 1. If f is a 
continuous linear functional on LP = LP(Q, .¥, JL), show that 
there is an element y E U such that 

f(x) = l xydtt for all 
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Furthermore, 11/11 = IIYIIq· If Yt is another such function, show 
that y = y1 a.e. [JL]. [Define .A(A) = f(IA), A E .'Y, and apply 
the Radon-Nikodym theorem.] 

(b) Drop the finiteness assumption on JL. If A E §T and JL(A) < oo, 
part (a) applied to (A, ,'Y n A, JL) provides an essentially unique 
YA E U such that YA = 0 on Ac and 

f(x/A) = l XYA djL for all 

also, IIYAIIq is the LP norm of the restriction off to A, so 

(i) If JL(A) < oo and JL(B) < oo, show that YA = YB a.e. 
[JL] on An B. Thus YAuB may be obtained by piecing 
together YA and YB· 

(ii) Let An, n = 1, 2, ... , be sets with IIYA. llq---+ k 
= sup{IIYAIIq: A E !7, JL(A) < oo} ::: 11/11. Show that 
YA. converges in Lq to a limit function y, and y is 
essentially independent of the particular sequence {An}. 
Furthermore, IIYIIq::: 11/11. 

(iii) Show that f(x) = fnxydJ,l, for all x E U. Since IIYIIq 
::: 11/11 by (ii) and 11/11::: llyllq by HOlder's inequality, 
we have 11/11 = IIYIIq· Thus the result of (a) holds for 
arbitrary JL. 

(c) Prove (a) with JL finite, p = 1, q = oo. 
(d) Prove (a) with JL cr-finite, p = 1, q = oo. [For an extension of 

this result, see Kelley and Narnioka (1963, Problem 14M).] 

It follows that there is an isometric isomorphism of (LP)* 
and U if 1 < p < oo, 1 < q < oo, (1/p) + (1/q) = 1; if JL is 
cr-finite, this is true also for p = 1, q = oo. 

3.4 BASIC THEOREMS OF FUNCTIONAL ANALYSIS 

Almost every area of functional analysis leans heavily on at least one of 
the three basic results of this section: the Hahn-Banach theorem, the uni
form boundedness principle, and the open mapping theorem. We are going to 
establish these results and discuss applications. 

We first consider an extension problem. If f is a linear functional defined 
on a subspace M of a vector space L, there is no difficulty in extending f 
to a linear functional on all of L; simply extend a Hamel basis of M to a 
Hamel basis for L, define f arbitrarily on the basis vectors not belonging to 
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M, and extend by linearity. However, if L is normed and we require that the 
extension of f have the same norm as the original functional, the problem 
becomes more difficult. We first prove a preliminary result. 

3.4.1 Lemma. Let L be a real vector space, not necessarily normed, and let 
p be a map from L to ~ satisfying 

p(x + y) ::; p(x) + p(y) 

p(ax) = ap(x) 

for all x, y E L 

for all x E L and all a > 0. 

[The first property is called subadditivity, the second positive-homogeneity. 
Note that positive-homogeneity implies that p(O) = 0 [set x = 0 to obtain 
p(O) = ap(O) for all a> 0]. A subadditive, positive-homogeneous map is 
sometimes called a sub linear functional.] 

Let M be a subspace of L and g a linear functional defined on M such 
that g(x) ::; p(x) for all x E M. Let xo be a fixed element of L. For any real 
number c, the following are equivalent: 

(1) g(x) + ).c ::; p(x + Axo) for all x E Mand all).. E ~-
(2) - p( -x- xo)- g(x) ::; c ::; p(x + xo)- g(x) for all x EM. 

Furthermore, there is a real number c satisfying (2), and hence (1). 

PRooF. To prove that (1) implies (2), first set).. = 1, and then set)..= -1 and 
replace x by -x [note g(-x) = -g(x) by linearity]. Conversely, if (2) holds 
and).. > 0, replace x by x/).. in the right-hand inequality of (2); if).. < 0, replace 
x by xj). in the left-hand inequality. In either case, the positive homogeneity 
of p yields (1). If).. = 0, (1) is true by hypothesis. 

To produce the desired c, let x and y be arbitrary elements of M. Then 

g(x)- g(y) = g(x- y) ::; p(x- y) 

:S p(x + xo) + p( -y- xo) by subadditivity. 

It follows that 

sup[- p(-y - xo) - g(y)] ::; inf [p(x + xo) - g(x)]. 
yEM xEM 

Any c between the sup and the inf will work. D 

We may now prove the main extension theorem. 

3.4.2 Hahn-Banach Theorem. Let p be a subadditive, positive-homoge
neous functional on the real linear space L, and g a linear functional on the 
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subspace M, with g ::; p on M. There is a linear functional f on L such that 
f = g on M and f :S p on all of L. 

PRooF. If .xo ¢ M, consider the subspace M t = L(M U {xo}), consisting of all 
elements x + .t..x0 , x EM, 'A E IRL We may extend g to a linear functional on 
M t by defining gt (x + ho) = g(x) + 'Ac, where c is any real number. If we 
choose c to satisfy (1) of 3.4.1, then gt :S p on Mt. 

Now let §"be the collection of all pairs (h, H) where h is an extension of 
g to the subspace H :J M, and h ::; p on H. Partially order ~~ by (ht, H 1) 
::; (h2, H 2) iff H t C H 2 and ht = h2 on H t; then every chain in §" has an 
upper bound (consider the union of all subspaces in the chain). By Zorn's 
lemma, §"has a maximal element (f, F). IfF =1 L, the first part of the proof 
yields an extension of f to a larger subspace, contradicting maximality. D 

There is a version of the Hahn-Banach theorem for complex spaces. First, 
we observe that if L is a vector space over C, L is automatically a vec
tor space over ~. since we may restrict scalar multiplication to real scalars. 
For example, en is an n-dimensional space over C, with basis vectors 
(1, 0, ... , 0), ... , (0, ... , 0, 1). If P is regarded as a vector space over ~. 
it becomes 2n-dimensional, with basis vectors 

(1, 0, ... , 0), ... , (0, ... , 0, 1), (i, 0, ... , 0), ... , (0, ... , 0, i). 

Now if f is a linear functional on L, with ft = Ref, h = Imf, then ft 
and h are linear functionals on L', where L' is L regarded as a vector space 
over ~. Also, for all x E L, 

f(ix) = ft(ix) + ih(ix). 

But 
f(ix) = if(x) = - h(x) + ift(x). 

Thus ft(ix) = - h(x), h(ix) = ft (x); consequently 

f(x) = f1 (x)- ift (ix) = h(ix) + ih(x). 

Therefore f is determined by ft (or by /2). Conversely, let ft be a lin
ear functional on L'. Then ft is a map from L to ~ such that ft (ax+ by) 
=aft (x) + b ft (y) for all x, y E L and all a, b E ~. Define f(x) = ft (x) 
- ift (ix), x E L. It follows that f is a linear functional on L (and ft =Ref). 
For ft is additive, hence so is f, and if a, b E ~. we have 

f((a + ib)x) = ft (ax+ ibx)- ift (-bx + iax) 

=aft (x) + bf1 (ix) + ibft (x)- iaft (ix) 
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= (a+ ib)[ft (x)- ift (ix)] 

=(a+ ib)f(x). 
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Note that homogeneity of f 1 does not immediately imply homogeneity of f. 
For f 1 (A.x) = "Af1 (x) for real "A but not in general for complex A. [For example, 
let L = C, f(x) = x, f 1(x) =Rex.] 

We now prove the complex version of the Hahn- Banach theorem. 

3.4.3 Theorem. Let L be a vector space over C, and p a seminorm on L. 
If g is a linear functional on the subspace M, and lgl :::; p on M, there is a 
linear functional f on L such that f = g on M and If I :::; p on L. 

PRooF. Since p is a seminorm, it is subadditive and absolutely homogeneous, 
and hence positive-homogeneous. If g1 = Re g, then g1 :::; lgl :::; p; so by 3.4.2, 
there is an extension of g 1 to a linear map f1 of L toR such that f 1 = g 1 on 
M and f 1 :::; p on L. Define f(x) = f 1 (x) - ift(ix), x E L. Then f is a linear 
functional on Land f = g on M. Fix x E L, and let f(x) =rei(}, r 2: 0. Then 

lf(x)l = r = f(e-i(lx) 

= f 1(e-i(lx) 

:::; p(e-i(lx) 

= p(x) 

since r is real 

since f 1 :::; p on L 

by absolute homogeneity. D 

3.4.4 Corollary. Let g be a continuous linear functional on the subspace M 
of the normed linear space L. There is an extension of g to a continuous linear 
functional f on L such that llfll = llgll. 

PRooF. Let p(x) = llgll llxll; then pis a seminorm on L and lgl :S p on M 
by definition of llgll. The result follows from 3.4.3. D 

A direct application of the Hahn- Banach theorem is the result that in a 
normed linear space, there are enough continuous linear functionals to distin
guish points; in other words, if x =1 y, there is a continuous linear functional 
f such that f(x) =1 f(y). We now prove this, along with other related results. 

3.4.5 Theorem. Let M be a subspace of the normed linear space L, and let 
L * be the collection of all continuous linear functionals on L. 

(a) If xo ¢ M, there is an f E L * such that f = 0 on M, f(xo) = 1, and 
llfll = 1/d, where dis the distance from xo toM 

(b) Xo EM iff every f E L* that vanishes on M also vanishes at x0 • 
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(c) If xo =1 0, there is an f E L* such that 11/11 = 1 and f(xo) = llxoll; thus 
the maximum value of 1/(x)l/llxll, x =1 0, is achieved at xo. In particular, if 
x =1 y, there is an f E L* such that f(x) =I f(y). 

PRooF. (a) First note that L(M U {x0}) is the set of all elements y = x + ax0 , 

x EM, a E C, and since xo ¢ M, a is uniquely determined by y. Define f 
on N = L(M U {xo}) by f(x + axo) =a; f is linear, and furthermore, 11/11 
= 1/d, as we now prove. By 3.3.1 we have 

{ 
lf(y)l 

11/11 =sup II.Yf: y EN, 

{ 
lal 

= sup llx + axo II : x E M' a E C, or 

= sup { Ia I : x EM, a E C, a =I o} 
llx + axoll 

since f(y) = 0 when a= 0. Now 

lal 1 1 

llx + a.xoll = Jlxo + ~ J1 = llxo- zll 
for some z EM; 

hence 11/11 = (inf{llxo- zll: z E M})- 1 = 1/d < oo. The result now follows 
from 3.4.4. 

(b) This is immediate from (a). 
(c) Apply (a) with M = {0}, to obtain gEL* with g(xo) = 1 and llgll 

= 1/llxoll; set f = llxollg. D 

The Hahn-Banach theorem is basic in the study of the concept of reflexivity, 
which we now discuss. Let L be a normed linear space, and L * the set of 
continuous linear functior_als on L; L * is sometimes called the conjugate space 
of L. By 3.3.5, L* is a Banach space, so that we may talk about L**, the 
conjugate space of L *, or the second conjugate space of L. We may identify 
L with a subspace of L ** as follows: If x E L, we define x** E L ** by 

x**(f) = f(x), f E L*. 

If II fn - /II ---+ 0, then fn (x) ---+ f(x); hence x** is in fact a continuous linear 
functional on L *. Let us examine the map x ---+ x** of L into L **. 

3.4.6 Theorem. Define h: L---+ L** by h(x) = x**. Then h is an isometric 
isomorphism of Land the subspace h(L) of L**; therefore, if x E L, we have, 
by 3.3.1, llxll = llx**ll = sup{lf(x)l: f E L*, 11/11 :S 1}. 
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PRooF. To show that h is linear, we write 

[h(ax +by)] (f)= f(ax +by)= af(x) + bf(y) = [ah(x)](f) + [bh(y)](f). 

We now prove that h is norm-preserving (llh(x)ll = llxll for all x E L); conse
quently, his one-to-one. If x E L, l[h(x)](f)l = lf(x)l ::: llxll 11/11. and hence 
llh(x)ll ::: llxll. On the other hand, by 3.4.5(c), there is an f E L* such that 
11/11 = 1 and lf(x)l = llxll. Thus 

sup{l[h(x)](f)l: f E L*, 11/11 = 1} :=::: llxll, 

so that llh(x)ll :=::: llxll. and consequently llh(x)ll = llxll. D 

If h(L) = L**, Lis said to be reflexive. Note that L** is complete by 3.3.5 
and so, by 3.4.6, a reflexive normed linear space is necessarily complete. We 
shall now consider some examples. 

3.4.7 Examples. (a) Every Hilbert space is reflexive. For if 1jJ is the con
jugate isometry of 3.3.4(a), H* becomes a Hilbert space if we take (/, g} 
= (1/l(g), 1/1(/)}. Thus if q E H**, we have, for some g E H*, q(f) = (f, g} 
= (1/l(g), 1/1(/)} = f(x), where x = 1/l(g). Therefore q = h(x). 

(b) If 1 < p < oo, [P is reflexive. For by 3.3.4(b), ([P)* is isometrically 
isomorphic to zq, where (1/p) + (1/q) = 1. Thus if t E ([P)** we have t(y) 
= L~l YkZk, y E zq, where z is an element of (lq)* = [P, But then t = h(z). 

Essentially the same argument, with the aid of Problem 11 of Section 3.3, 
shows that if (Q, .r, tt) is an arbitrary measure space, LP(Q, .r, tt) is reflexive 
for 1 < p < oo. 

(c) The space 11 is not reflexive. This depends on the following result. 

3.4.8 Theorem. If L is a normed linear space and L * is separable, so is L. 
Thus if L is reflexive and separable (so that L ** is separable), then so is L *. 

PRooF. Let / 1, /2, ... form a countable dense subset of {f E L*: 11/11 = 1} 
(note that any subset of a separable metric space is separable). Since II fn II = 1, 
we can find points Xn E L with llxnll = 1 and lfn(Xn)l :=::: ~ for all n. Let M 
be the space spanned by the Xn; we claim that M = L. If not, 3.4.5(a) yields 
an f E L* with f = 0 on M and 11/11 = 1. But then ~ :S lfn(Xn)l = lfn(Xn) 
- f(xn)l :S 11/n- /II for all n, contradicting the assumption that {/1, /2, ... } 
is dense. D 

To return to 3.4.7(c), we note that 11 is separable since {x E 11: Xk = 0 for all 
but finitely many k} is dense. [If X E [ 1 and X(n) =(X], ... , Xn, 0, 0, ... ) then 
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x<n) ---+ X in Z1 .] But (Z 1 )* = zoo by 3.3.4(c), and this space is not separable. For 
if S = {x E zoo: xk = 0 or 1 for all k}, then Sis uncountable and llx- yll = 1 
for all x, y E S, x =I y. Thus the sets Bx = {y E zoo: lly- xll < 4 }, x E S, form 
an uncountable family of disjoint open sets. If there were a countable dense 
set D, there would be at least one point of Din each Bx, a contradiction. Thus 
Z1 is not reflexive. 

We now consider the second basic result of this section. Suppose that the 
A;, i belonging to the arbitrary index set I, are bounded linear operators from 
L toM, where Land Mare normed linear spaces. The uniform boundedness 
principle asserts that if L is complete and the A; are pointwise bounded, that 
is, sup{IIA;xll: i E I} < oo for each x E L, then the A; are uniformly bounded, 
that is, sup{ I lA; II: i E I} < oo. Completeness of L is essential; to see this, let 
L be the set of all sequences x = (x1, x2, ... ) of complex numbers such that 
Xk = 0 for all but finitely many k, with the Z P norm, 1 ::: p ::: oo. Take M = C, 
and Anx = nxn, n = 1, 2, .... For any x,Anx = 0 for sufficiently large n, so 
the An are pointwise bounded, although IIAn II = n ---+ oo. 

The proof that we shall give uses the Baire category theorem, which states 
that if a complete metric space is a countable union of closed sets, one of the 
sets must have a nonempty interior. 

3.4.9 Principle of Uniform Roundedness. Let A;, i E /,be bounded linear 
operators from the Banach space L to the normed linear space M. If the A; 
are pointwise bounded, they are uniformly bounded. 

PROOF. Let en= {x E L: SUP; IIA;xll::: n}, n = 1, 2, .... Since the A; are 
pointwise bounded, U~ 1 en = L, and since the A; are continuous, each en 
is closed. By the Baire category theorem, for some n there is a closed ball 
B = {x E L: llx-xoll::: r} c en. Now if llyll::: 1 and i E /,we have 

1 
IIA;yll = -IIA;zll 

r 
where z = ry 

1 1 
::: -IIA;(xo + z)ll + -IIA;xoll 

r r 

2n 
<

r 

Thus IIA;II ::: 2n/r. D 

since xo + z and x0 belong to B. 

The uniform boundedness principle is used in an important way in the study 
of weak convergence, a concept that we now describe. 
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3.4.10 Definitions and Comments. The sequence {xn} in the normed linear 
space Lis said to converge weakly to x E L iff f(xn) ---+ f(x) for every f E L * 

w 
(notation: Xn ----+ x). Convergence in the metric of L(llxn - xll ---+ 0) will be 
called strong convergence and will be written simply as Xn ---+ x. [In this 
terminology, pointwise convergence of the sequence of linear operators An to 
the linear operator A means strong convergence of Anx to Ax for each x (see 
3.3.6).] 

It follows from the definitions that strong convergence implies weak con
vergence. To see that the converse does not hold, let {e1, e2, .. . } be an infinite 
orthonormal sequence in a Hilbert space H. If x E H, then (en, x} ---+ 0 as 

w 
n---+ oo by Bessel's inequality, hence en ----+ 0. But llenll = 1, so en does 
not converge strongly to 0. 

In a finite-dimensional space, strong and weak convergence coincide. For if 
Xn = a1ne 1 + · · · + aknek converges weakly to x = a1e1 + · · · + akek (where 
the e; are basis vectors for Ck), let f be a continuous linear functional that 
is 1 ate; and 0 at ej, j =I i. Then f(xn)---+ f(x), so that a;n ---+a; as n---+ oo 
(i = 1, ... , k). Thus Xn ---+ x strongly. 

We give a few properties of weak convergence. 

3.4.11 Theorem. (a) A weakly convergent sequence {xn} is bounded, that 
w 

is, supn llxnll < 00. In fact if Xn----+ Xo, then llxoll :S liminfn--->oo llxnll. 

(b) If A is a bounded linear operator from L toM and the sequence {xn} 
converges weakly to x0 in L, then Axn converges weakly to Ax0 in M. 

(c) If the sequence {xn} converges weakly to x0 , then x0 belongs to the 
subspace spanned by the Xn. 

(d) Let M be a linear manifold of L. If x is the weak limit of some 
sequence in M, then x is the strong limit of some sequence in M. 

PRooF. (a) The Xn may be regarded as continuous linear functionals on L* 
with Xn(f) = f(xn) (see 3.4.6). The Xn are pointwise bounded on L* since 
f(xn)---+ f(xo); hence by the uniform boundedness principle, supn llxn II < oo. 
Also, iff E L*, 

Since llxoll = sup{lf(xo)l: f E L*, 11/11 :S 1}, we may conclude that llxoll 
:S lim infn--->oo llxn 11. 

(b) If gEM*, define f =goA; as A is continuous, we have f E L*, so 
that f(xn)---+ f(xo), that is, g(Axn)---+ g(Axo). But g is arbitrary; hence 

w 
Axn----+ Axo. 
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(c) If this is false, 3.4.5(a) yields an f E L* with f(xo) = 1 and f(xi) = 0, 
w 

contradicting Xi ----+ xo. 

(d) Let {xn} be a sequence in M converging weakly to x. By (c), x is a 
strong limit of a sequence of finite linear combinations of the Xn. However, 
these finite linear combinations belong to M since M is a subspace. Thus x is 
the strong limit of a sequence in M. D 

In order to characterize weak convergence in specific spaces, the following 
result is useful. 

3.4.12 Theorem. Let E be a subset of L* such that S(E) = L*, and let 
w 

{xn} be a sequence in L. If xo E L, then Xn ----+ Xo iff supn llxn II < oo and 
f(xn) ---+ f(xo) for all f E E. 

PRooF. The "only if" part follows from 3.4.11 (a) and the definition of weak 
convergence. For the "if" part, let f E L *, and choose elements fk E L(E) 
with II/- !kll ---+ 0. Then 

lf(xn)- f(xo)l .:S lf(xn)- fk(xn)l + lfk(xn)- fk(xo)l + lfk(xo)- f(xo)l 

.:S II/- !kll llxnll + lfk(xn)- fk(xo)l + 11/k- /II llxoll. 

Since the Xn are bounded in norm, given e > 0, we may choose k such that 
the right-hand side is at most lfk(xn)- fk(xo)l + e; but fk(Xn)---+ fk(xo) as 
n ---+ oo since fk E L(E), and since e is arbitrary, the result follows. D 

We now describe weak convergence in l P and LP. 

3.4.13 Theorem. Assume 1 < p < oo. 
w 

(a) Let Xn = (Xnt, Xn2, .. . ) E zP, n = 1, 2, .... If Z E zP, then Xn ----+ z 
w 

iff supn llxn II < oo and Xnk ----+ Zk as n ---+ oo for each k. 

(b) Let Xn E LP(Q, .r, JL), n = 1, 2, ... , where JL is assumed finite. If 

Z E LP(Q, $7, jt), then Xn ~ Z iff SUPn llxnll < 00 and fA Xn dtt---+ fA Z dtt 
for each A E .r. (It will often be convenient to blur the distinction between 
LP and LP, and treat the elements of LP as functions rather than equivalence 
classes.) 

PRooF. (a) Define !k E ([P)* by fk(x) = xk; then fk corresponds to the 
sequence in zq with a one in position k and zeros elsewhere [see 3.3.4(b)]. 
Take E = Ut> h .... } and apply 3.4.12. 

(b) For each A E .'Y, define fA E (LP )* by fA (x) = fA x dtt; fA corre
sponds to the indicator function !A E Lq (see Problem 11, Section 3.3). Take 
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E as the set of all fA, A E .97; E spans (LP )* because the simple functions 
are dense in Lq, and the result follows from 3.4.12. D 

Note that 3.4.13 (b) holds also when p = 1 since simple functions are dense 
in L00

• 

We now consider the third basic result, the open mapping theorem. This will 
allow us to conclude that under certain conditions, the inverse of a one-to-one 
continuous linear operator is continuous. We cannot make this assertion in 
general, as the following example shows: Let L be the set of all continuous 
complex-valued functions x on [0, 1] such that x(O) = 0, M = {x E L: x has 
a continuous derivative on [0, 1]}; put the sup norm on L and M. If A is 
defined by (Ax)(t) = J~ x(s) ds, 0 ::: t ::: 1, then A is a one-to-one, bounded, 
linear operator from L onto M. [The condition x(O) = 0 is used in showing 
that A is onto.] 

But A -I is discontinuous; for example, if Xn (t) = sin nt, then Yn (t) = 
(Axn)(t) = (1- cosnt)/n,sothatyn---+ OinM,butxnhasnolirnitinL.Ahypo
thesis under which continuity of the inverse holds is the completeness of both 
spaces Land M. In the above example, M is not complete; for example, a se
quence of polynomials may converge unifom1ly to a continuous function without 
a continuous derivative (in fact to a continuous nowhere differentiable function). 

We now state the third basic theorem. 

3.4.14 Open Mapping Theorem. Let A be a bounded linear operator from 
the Banach space L onto the Banach space M. Then A is an open map, that is, 
if Dis an open subset of L, then A(D) is an open subset of M. Consequently 
if A is also one-to-one, then A -I is bounded. 

PRooF. Let B, = B(O, r) be the open ball with center at 0 and radius r in L. If 
we can show that A (B,) contains a ball with center at 0 in M, we are finished, 
since neighborhoods of an arbitrary point are translations of neighborhoods of 
0. Now L = U~ 1 Bn and A maps onto M, so M = U::0=1 A(Bn). Since M is 
complete, we can conclude from the Baire category theorem that some A(Bn) is 
not nowhere dense. Since A(B t) and A(Bn) differ only by a scale factor, A(B t) 
is not nowhere dense. Thus for some y0 EM and r > 0, the ball B(y0 , 4r) is 
contained in the closure A(B1 ). It follows that we may select y1 = Ax1 in 
A(Bt) such that lly1 - Yoll < 2r. [If y1 unluckily ends up on the boundary of 
A(Bt), approximate y1 by a very close element in A(Bt); this element can be 
chosen so that its distance to y0 is still < 2r.] By the triangle inequality, 

B(y1, 2r) c B(yo, 4r) c A(Bt). (1) 

We claim that 

if IIYII < 2r then (2) 
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To see this, note that y = A.x1 + (y- A.x1), and since y1 = Axt. the second 
term belongs to A(Bt) by (1). Therefore y is A.x1 plus the limit of a sequence 
in A(Bt), so that y E A(x1 + Bt). But x1 E Bt. so llxtll < 1, and consequently 
x 1 + B 1 C B2, proving (2). 

Again because the B; differ only by a scale factor, we can repeat the above 
argument with B2 replaced by Bk for any k > 0; 2r becomes kr, and (2) 
becomes: 

if IIYII < kr then (3) 

We are going to show that if IIYII < r/2 then y E A(Bt). Thus A(Bt), and 
hence by scaling the image of any ball with center at 0 in L, contains a 
ball with center at 0 in M, completing the proof. We use (3) to generate an 
inductive procedure: 

Set k = 1/2; choose x1 E B1;2 such that IIY -Axtll < r/4. 
Now apply (3) with k = 1/4; choose x2 E B1;4 such that IIY- Ax1 - Ax2ll 

< r/8. 
Now apply (3) with k = 1/8; choose X3 E B1;s such that lly- A.x1 - Ax2 

- A.x3 11 < r/16, and continue in this fashion. In general, we select Xn E B 112n 
such that 

n 

lly- "'Ax II< _r_ L..t I 2n+1 • 
i=1 

(4) 

If Sn = 2.::7=1 X; then for n > m we have llsn - smll :S 2.::7=m+1 llx;ll --+ 0 as 
n, m--+ oo, since llx;ll < 2-i. The completeness of L implies that 2.::::0=1 Xn 

converges. If x is the sum of the series then llxll :S 2.::::0,.1 llxn II < 2.::::0=1 2-n 
= 1, and by (4), Ax= y. Therefore y E A(B 1). D 

The open mapping theorem allows us to prove the closed graph theorem, 
which is often useful in proving that a particular linear operator is bounded. 

First we observe that if L and M are normed linear spaces, we may define 
a norm on the product space L x M by ll(x, y)ll = (llxiiP + IIYIIP)liP, x E L, 
y EM, where pis any fixed real number in [1, oo). For if x, x' E L, y, y' EM, 

(llx + x'IIP + lly + y'IIP) 11P::: [(llxll + llx'II)P + (IIYII + lly'II)P] 11P 

:S (llxiiP + IIYIIP) 11P + (llx'IIP + lly'IIP) 11P 

by Minkowski's inequality applied to ~2 • 

Therefore the triangle inequality is satisfied and we have defined a norm 
on L x M (the other requirements for a norm are immediate). Furthermore, 
(xn, Yn) --+ (x, y) iff Xn --+ x and Yn --+ y; thus regardless of the value of p, the 
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norm on L x M induces the product topology; also, if L and M are complete, 
so is L x M. [The same result is obtained using the analog of the L 00 norm, 
that is, ll(x, y)ll = max(llxll, llyll).] 

3.4.15 Definition. Let A be a linear operator from L to M, where L and 
M are normed linear spaces. We say that A is closed iff the graph G(A) 
= { (x, Ax): x E L} is a closed subset of L x M. Equivalently, A is closed iff 
the following condition holds: 

If Xn E L, Xn ---+ x, and Axn ---+ y, then (x, y) E G(A); in other words, 
y =Ax. This formulation shows that every bounded linear operator is closed. 
The converse holds if Land M are Banach spaces. 

3.4.16 Closed Graph Theorem. If A is a closed linear operator from the 
Banach space L to the Banach space M, then A is bounded. 

PRooF. Since G(A) is a closed subspace of L x M, it is a Banach space. 
Define P: G(A) ---+ L by P(x, Ax) = x. Then Pis linear and maps onto L, and 
IIP(x, Ax)ll = llxll ::: II (x, Ax)ll; hence liP II ::: 1 so that Pis bounded. [Alterna
tively, if (Xn, Axn) ---+ (x, y), then Xn ---+ x, proving continuity of P.] Similarly, 
the linear operator Q: G(A) ---+ M given by Q(x, Ax)= Ax is bounded. If 
P(x, Ax) = 0, then x = Ax = 0, so P is one-to-one. By 3.4.14, p-l is bounded, 
and since A = Q o p-l, A is bounded. D 

As an application of the closed graph theorem, we show that if P is the pro
jection of a Banach space L on a closed subspace M, then P is continuous [see 
3.3.3(c)]. Let {xn} be a sequence of points in L with Xn ---+ x, and assume Pxn 
converges to the element y EM. Recall that in defining a projection operator 
it is assumed that L is the direct sum of closed subspaces M and N; thus 

Xn = Yn + Zn where Yn = Pxn EM, Zn EN. 

Since Xn ---+ x and Yn ---+ y, it follows that Zn ---+ z = x - y, necessarily in N. 
Therefore x = y + z, y EM, zEN, so that y = Px, proving P closed. By 
3.4.16, P is continuous. 

Problems 

1. Show that a subadditive, absolutely homogeneous functional on a vector 
space must be nonnegative, and hence a serninorm. Give an example of 
a subadditive, positive-homogeneous functional that fails to be nonneg
ative. 

2. Let (Q, .r, JL) be a measure space, and assume .r is countably generated, 
that is, there is a countable set fP c .r such that cr(fP) = .r. (Note that 
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the minimal field Yo over 'b' is also countable; see Problem 9, 1.2.) If JL 
is cr-finite on Yo and 1 ::: p < oo, show that LP(Q, Y, JL) is separable. 
If in addition there is an infinite collection of disjoint sets A E .'Y with 
JL(A) > 0, show that V(Q, Y, JL) is not reflexive. 

3. If L and M are normed linear spaces and [L, M] is complete, show that 
M must be complete. 

4. Let A E [L, M], where L and M are normed linear spaces. The adjoint of 
A is an operator A*: M* ---+ L *, defined as follows: If f E M* we take 
(A* f)(x) = f(Ax), x E L. Establish the following results: 

(a) IIA*II = IIAII. 
(b) (aA + bB)* = aA* + bB* for all a, bE C, A, BE [L, M]. 
(c) If A E [L, M], B E [M, N], then (BA)* =A* B*, where BA is the 

composition of A and B. 
(d) If A E [L, M],A maps ontoM, andA- 1 exists and belongs to [M, L], 

then (A- 1)* = (A*)- 1• 

5. Define the annihilator of the subset K of the normed linear space L 
as Kj_ = {f E L*: f(x) = 0 for all x E K}. Similarly, if J C L*, define 
Jj_ = {x E L: f(x) = 0 for all f E 1}. If A E [L, M], we denote by N(A) 
the null space {x E L: Ax= 0}, and by R(A) the closure of the range of 
A, that is, the closure of {Ax: x E L}. Establish the following: 

(a) For any K c L, KH = S(K), the space spanned by K. 
(b) R(A)j_ = N(A*) and R(A) = N(A*)j_. 
(c) R(A) =Miff A* is one-to-one. 
(d) R(A*)j_ = N(A). 
(e) For any J c L*, S(J) c JH; S(J) = JH if Lis reflexive. 
(f) R(A*) c N(A)j_; R(A*) = N(A)l_ if Lis reflexive. 
(g) If R(A*) = L*, then A is one-to-one; the converse holds if L is 

reflexive. 

6. Consider the Hahn-Banach theorem 3.4.2, with the additional assump
tion that L is a normed linear space (or more generally, a topological 
vector space) and pis continuous at 0; hence continuous on all of L since 
lp(x)- p(y)l ::: p(x- y). Show that if Lis separable, the theorem may 
be proved without Zorn's lemma. It follows that 3.4.3 and 3.4.4 do not 
require Zorn's lemma under the above hypothesis. 

7. If Jto is a finitely additive, nonnegative real-valued set function on a field 
.976 of subsets of a set Q, use the Hahn-Banach theorem to show that 
Jto has an extension to a finitely additive, nonnegative real-valued set 
function on the class of all subsets of n. Thus in one respect, at least, 
finite additivity is superior to countable additivity. 
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8. If the sequence of bounded linear operators An on a Banach space con
verges pointwise to the (necessarily linear) operator A, show that A is 
bounded; in fact 

I lA II :s lim inf IIAn II ::; sup IIAn II < oo. 
n---+00 n 

9. Let {A;, i E I} be a family of continuous linear operators from the Ba
nach space L to the normed linear space M. Assume the A; are weakly 
bounded, that is, sup; 1/(A;x)l < oo for all x ELand all f EM*. Show 
that the A; are uniformly bounded, that is, sup; I lA; II < oo. 

10. (a) If the elements x;, i E /, belong to the normed linear space L, and 
sup; lf(x;)l < oo for each f E L*, show that sup; llx;ll < oo. 

(b) If A is a linear operator from the normed linear space L to the 
normed linear space M, and faA is continuous for each f EM*, 
show that A is continuous. 

11. Let L, M, and N be normed linear spaces, with L or M complete, and let 
B: L x M ---+ N be a bilinear form, that is, B(x, y) is linear in x for each 
fixed y, and linear in y for each fixed x. If for each fEN*, f(B(x, y)) 
is continuous in x for each fixed y, and continuous in y for each fixed 
x, show that B is bounded, that is, 

sup{IB(x, y)l: llxll, llyll :S 1} < oo. 

Equivalently, for some positive constant k we have IB(x, y)l 
:S kllxllllyll for all x, y. 

12. Give an example of a closed unbounded operator from one normed linear 
space to another. 

13. Let A be a bounded linear operator from the Banach space L onto the 
Banach space M. Show that there is a positive number k such that for 
each y EM there is an x E L with y =Ax and llxll ::; kllyll. This result 
is sometimes called the solvability theorem. 

3.5 REFERENCES 

There is a vast literature on functional analysis, and we give only a few 
representative titles. Readable introductory treatments are given in Liustemik 
and Sobolev (1961), Taylor (1958), Bachman and Narici (1966), and Hal
mos (1951); the last deals exclusively with Hilbert spaces. Among the more 
advanced treatments, Dunford and Schwartz (1958, 1963, 1970) emphasize 
normed spaces, Kelley and Narnioka (1963) and Schaefer (1966) emphasize 
topological vector spaces. Yosida (1968) gives a broad survey of applications 
to differential equations, semigroup theory, and other areas of analysis. 

More recent works are by Conway (1990) and Wojtaszczyk (1991). 



CHAPTER 

4 
BASIC CONCEPTS OF PROBABILITY 

4.1 INTRODUCTION 

The starting point for probability theory is a set n called the sample space 
whose points are in one-to-one correspondence with the possible outcomes of 
a given performance of a random experiment. For example, if two dice are 
tossed, we may take n to have 36 points, one for each ordered pair (i, j), 
i, j = 1, ... , 6. The sample space for a given experiment is not unique. For 
example, if two dice are tossed and N is the sum of the faces, we may take 
n to consist of 11 points, corresponding to the outcomes N = 2, 3, ... , 12. 
The particular sample space to be used will be determined by the problem at 
hand. For example, in the dice-tossing example above, if we are interested in 
the result of the first toss, the sample space corresponding toN= 2, 3, ... , 12 
will not be of value. 

An "event" in a random experiment corresponds to a question that can be 
answered "yes" or "no." For example, in the dice-tossing example, let n be 
the set of ordered pairs (i, j), i, j = 1, ... , 6. We may ask the question "Is the 
maximum of the two coordinates i and j less than or equal to 2?'' The subset 
of n associated with a "yes" answer is A= {(1, 1), (1, 2), (2, 1), (2, 2)}; the 
subset associated with a "no" answer is A c. 

Thus it is reasonable to define an event as a subset of n. However, in some 
situations not all subsets may be regarded as events. As an example, admittedly 
somewhat artificial, suppose that a coin is tossed four times, and n consists 
of the 16 sequences of length 4 with components Hand T. Assume that only 
the results of the first two tosses are written down. If A is the set of points 
of n corresponding to at least three heads, then A is not "measurable," that 
is, the given information concerning w is not sufficient to determine whether 
or not w EA. More serious problems arise when n is ~n; in this case we are 
almost always forced by mathematical consistency requirements to take the 
event class to be the Borel sets rather than the collection of all subsets of n. 

The development of the mathematical theory will be facilitated if we require 
that the event class form a cr-field. Thus we may form countable unions, 
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countable intersections, and complements of events and be assured that the 
resulting sets are also events. 

Finally, we must talk about the probability P(A) assigned to an event A. The 
basic physical requirement is that P(A) correspond to the relative frequency of 
A in a very large number of independent repetitions of the random experiment. 
It follows that P should be a nonnegative, finitely additive set function, with 
P(Q) = 1. In order to be able to calculate the probability of a limit of events, 
we must require P to be countably additive. 

The above discussion may be summarized by saying that P is a probability 
measure on the cr-field .'Y. Thus the basic mathematical object we are to study 
is a probability space (Q, .rJT, P). 

4.2 DiscRETE PRoBABILITY SPAcEs 

If the sample space n is a finite or countably infinite set, measure-theoretic 
difficulties do not arise. We take .¥to consist of all subsets of n, and assign 
probabilities in the following canonical way. Let n = {wl. W2, •• . }, and let 
Pl, p2, ... be nonnegative numbers whose sum is 1. If A is any subset of n, 
we define 

In particular, 
P{wi} =PI· 

Then P is a probability measure, and the probability of the event A is computed 
simply by adding the probabilities of the individual points of A. 

If n is countable, .¥consists of all subsets of n, and P is defined as above, 
(Q, .¥, P) is called a discrete probability space. 

Classical probability theory was concerned with the special case 
n = {wl •... , Wn}, Pi= ljn, i = 1, ... , n. In this case, 

number of points in A 
P~)= . 

number of points in n 

Thus to find P(A) we count the number of favorable outcomes and divide 
by the total number of outcomes. 

Unless otherwise specified, if n is countable, we always take .¥to contain 
all subsets of n. Thus all subsets of n are events, all functions on n are 
measurable, and measure-theoretic machinery is not needed. 

4.3 INDEPENDENCE 

Intuitively, two events A and B are independent if a statement concerning 
the occurrence or nonoccurrence of one of the events does not change the 
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odds about the other event. Let us translate the physical requirement into 
mathematical terms. Suppose, for example, that P(A) = 0.4 and P(B) = 0.3. 
In a long sequence of repetitions of the random experiment, A will occur 
approximately 40% of the time. If B is to be independent of A, the occurrence 
of A will not influence the odds about B, so that if we examine only those trials 
on which A occurs, B will occur roughly 30% of the time; hence P(A n B) 
= (0.4 )(0.3) = P(A)P(B). Similarly, the nonoccurrence of A will not influence 
the odds about B; hence P(Ac n B)= (0.6)(0.3) = P(Ac)P(B). 

Conversely, if P(A n B)= P(A)P(B) and P(Ac n B)= P(Ac)P(B), B will 
be independent of A. If we examine only the trials on which A occurs, B must 
occur roughly 30% of the time in order to have P(A n B) = P(A)P(B). Thus 
the occurrence of A does not influence the odds about B, and similarly, the 
occurrence of Ac does not change the odds about B. 

The above discussion suggests that we call the event B independent of A if 
and only if P(A n B)= P(A)P(B) and P(Ac n B)= P(Ac)P(B). However, the 
first condition implies the second. Suppose P(A n B) = P(A)P(B). Then 

P(N n B) = P(B -A) = P(B - (An B)) 

= P(B) - P(A n B) 

= P(B) - P(A)P(B) 

= (1 - P(A))P(B) 

= P(Ac)P(B). 

since An B c B 

by hypothesis 

Therefore B is independent of A if and only if P(A n B)= P(A)P(B). But this 
condition is not altered if A and B are interchanged; hence B is independent 
of A if and only if A is independent of B. We may therefore formulate the 
definition of independence as follows. 

4.3.1 Definition. Two events A and B are independent iff P(A n B) 
= P(A)P(B). 

We now consider independence of more than two events. If the events 
A;, i E I, are to be independent, and i 1, .•• , h are distinct indices, a statement 
about one or more of the events A; 1 , ••• , A;k should not change the odds about 
any of the remaining events. The physical discussion at the beginning of the 
section leads to the following requirement. 

4.3.2 Definition. Let I be an arbitrary index set, and let A;, i E I, be events 
in a given probability space. The A; are independent iff for all finite collections 
{ i 1, ••• , h} of distinct indices in I, we have 

P(A; 
1 
n A;

2 
n ... n A;k) = P(A; 

1 
)P(A;

2
) ••• P(A;k). 
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4.3.3 Comments. (a) If the events A;, i E /, are independent and any event 
is replaced by its complement, independence is maintained, that is, 

P(B;, n · · · n B;k) = P(B;,) · · · P(B;k ), 

where i 1, ••• , ik are distinct indices and B;j is either A;j or Afj, j = 1, ... , k. 
We have essentially proved this in the discussion preceding the definition 

of independence by showing that P(A n B) = P(A)P(B) implies P(N n B) = 
P(Ac)P(B). 

(b) If A 1, ••• , An are events such that A; 1 , ••• , A;k are independent for all 
distinct indices i h ... , h, k = 2, ... , n - 1, it does not follow that A 1, ... , An 
are independent. For example, let a coin be tossed twice, and assign probabi
lity± to each of the outcomes HH, HT, TH, TT. LetA= {first toss is a head}, 
B= {second toss is a head}, C ={first toss = second toss} = {HH, TT}. Then 

But 

P(A n B)= ± = P(A)P(B), 

P(A n C)=±= P(A)P(C), 

P(B n C)= ± = P(B)P(C). 

P(A n B n C) = ± =J P(A)P(B)P(C). 

Thus A and B are independent, as are A and C, and also Band C, but A, B, 
and C are not independent. 

Conversely, if P(A 1 n · · · nAn) = P(A 1) • • • P(An ), it does not follow that 
P(A;, n · · · n A;k) = P(A;,) · · · P(A;k) when k < n. For example, suppose that 
two dice are tossed, and let n be all ordered pairs {i, j), i, j = 1, 2, ... , 6, 
with probability ~ assigned to each point. Let 

Then 

but 

A = {second die is 1, 2 or 5}, 

B = {second die is 4, 5 or 6}, 

C = {the sum of the faces is 9}. 

P(A n B)= t =J P(A)P(B) = ~. 

P(A n C)=~ =J P(A)P(C) = {g, 

P(B n C)= 12 =J P(B)P(C) = {g, 

P(A n B n C) = ~ = P(A)P(B)P(C). 
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4.4 BERNOULLI TRIALS 

A sequence of n Bernoulli trials consists of n independent observations, 
with the property that each observation has only two possible results, called 
"success" and "failure." The probability of success on a given trial is p and 
the probability of failure is q = 1 - p. 

To construct a probability space that meets the given physical requirements, 
we take n to be all 2n ordered sequences of length n with components 1 and 0, 
with 1 indicating success and 0 failure. Consider a typical sample point w with 
ones in positions i1, ... , hand zeros in positions ik+l, ... , in. If A; is the event 
of obtaining a success on trial i, so that A; = {w: the ith coordinate of w is 1}, 
we have 

{w} = A;
1 
n · · · nAh nAc,. n · .. nN, .. 

k+l n 

Since the trials are independent and P(A;) = p for all i, the probability as
signed to w is determined; it must be 

P{w} = P(A;1 ) • • • P(A;k )P(Afk+l) · · · P(Af.) = l qn-k. 

Now there are G)= n!/k!(n- k)! sequences inn having exactly k ones, 
because such a sequence is determined by selecting k positions out of n for 
the ones to occur. Thus the probability of obtaining exactly k successes is 

k = 0, 1, ... , n. (1) 

By the binomial theorem, L~=O p(k) = (p + qt = 1; therefore the sum of 
the probabilities assigned to all points is 1, and we have a legitimate proba
bility measure. 

A sequence of n generalized Bernoulli trials consists of n independent 
observations, such that each observation has k possible outcomes (k > 2). If 
the k outcomes are labeled b1, ... , bk. the probability that b; will occur on a 
given trial is p;, where the Pi are nonnegative and I::~=l p; = 1. 

To construct an appropriate probability space, we take n to be all kn ordered 
sequences of length n with components ht. ... , bk. If w is a sample point 
having n; occurrences of b;, i = 1, ... , k, the independence of the trials and 
the assumption that the probability of obtaining b; on a given trial is p; leads 
us to assign to w the probability P7 1 p~2 

• • • PZk. 
Now to find the number of sequences in n in which b; occurs exactly 

n; times, i = I, ... , k, we reason as follows. Such a sequence is determined 
by selecting n1 positions out of n to be occupied by b1 's, then n 2 positions 
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from the remaining n - n 1 for the b2' s, and so on. Thus the total number of 
sequences is 

( 
n ) ( n- n1 ) ( n - n1 - n2) ... ( n - n1 - · · ·- nk-2) ( nk) 

n1 n2 n3 nk-1 nk 

n! 

The total probability assigned to all points is 

where the sum is taken over all nonnegative integers n 1, ••• , nk whose sum 
is n. But this is (P1 + · · · + Pkt = 1, using the multinomial theorem. 

The probability that b1 will occur n 1 times, b2 will occur n2 times, ... , and 
bk will occur nk times, is 

(2) 

where n1, ... , nk = 0, 1, · · ·, n1 + · · · + nk = n. 

4.5 CONDITIONAL PROBABILITY 

If two events A and B are independent, a statement about the occurrence 
or nonoccurrence of one of the events does not change the odds about the 
other. In the absence of independence, the odds are altered, and the concept 
of conditional probability gives a quantitative measure of the change. 

For example, suppose that the probability of A is 0.4 and the probability 
of A n B is 0.1. If we repeat the experiment independently a large number 
of times and examine only the trials on which A has occurred, B will occur 
roughly 25% of the time. In general, the ratio P(A n B)/P(A) is a measure of 
the probability of B under the condition that A is known to have occurred. 

We therefore define the conditional probability of B given A, as 

provided P(A) > 0. 

P(B lA) = P(A n B) 
P(A) 

(1) 

In the next chapter, we shall discuss in detail the concept of conditional 
probability P(BIA) when the event A has probability 0. This is not a degenerate 
case; there are many natural and intuitive examples. Of course, the definition 
(1) no longer makes sense, and the approach will be somewhat indirect. At 
this point we shall only derive a few consequences of (1). 
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4.5.1 Theorem. (a) If P(A) > 0, A and B are independent iff P(B I A) 
= P(B). [Similarly, independence is equivalent to P(A I B)=P(A) if P(B) > 0.] 

(b) If P(A1 n · · · n An-1) > 0, then 

PROOF. Part (a) follows from the definitions of independence and conditional 
probability. To prove (b), observe that P(A1 n · · · nAn-1) > 0 implies that 
P(AJ), P(A 1 nA2), ... , P(A 1 n .. · nAn-2) > 0, so all conditional probabili
ties are well defined. Now by the definition of conditional probability, 

P(A1 n ···nAn)= P(A1 n · · · nAn-1)P(An IA1 n · · · nAn-1). 

An induction argument completes the proof. D 

The following result will be quite useful. 

4.5.2 Theorem of Total Probability. Let B1, B2, ... form a finite or countably 
infinite family of mutually exclusive and exhaustive events, that is, the B; are 
disjoint and their union is n. 

(a) If A is any event, then P(A) = L; P(A n B;). Thus P(A) is calculated 
by making a list of mutually exclusive exhaustive ways in which A can happen, 
and adding the individual probabilities. 

(b) P(A) = L; P(B;)P(A I B;), where the sum is taken over those i for 
which P(B;) > 0. Thus P(A) is a weighted average of the conditional proba
bilities P(A I B; ). 

PROOF. 

(a) P(A) = P(A n n) = P(A n U; B;) = P(U;(A n B;)) = L; P(A n B;). 
(b) This follows from (a) and the fact that P(A n B;) = 0 if P(B;) = 0, 

and equals P(B; )P(A I B;) if P(B;) > 0. D 

4.5.3 Example. A positive integer I is selected, with P{I = n} = G r ' 
n = 1, 2, .... If I takes the value n, a coin with probability e-n of heads is 
tossed once. Find the probability that the resulting toss is a head. 

Here we have specified P(Bn) = (& r, where Bn = {I= n}, n = 1, 2, .... 
If A is the event that the coin comes up heads, we have specified P(A IBn) 
=e-n. By the theorem of total probability, this is enough to determine P(A). 
Formally, we may take n to consist of all ordered pairs (n, m), n = 1, 2, ... , 
m = 0 (tail) or 1 (head). We assign to the point (n, 1) the probability G r e-n' 
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and to (n, 0) the probability Gro-e-n). We may then verify that P(Bn) 

=Gr. P(A IBn)= e-n. Hence 

oo ( 1) n n e-1 /2 
P(A) =?; 2 e- = 1- (e-1 /2). 

4.6 RANDOM VARIABLES 

Intuitively, a random variable is a quantity that is measured in connection 
with a random experiment. If (Q, .'#', P) is a probability space and the outcome 
of the experiment corresponds to the point w E n, a measuring process is car
ried out to obtain a number X(w). Thus X is a function from the sample space 
n to the reals (or the extended reals). For example, if (Q, .r, P) corresponds 
to a sequence of four Bernoulli trials (4.4) and X is the number of successes, 
then X(l 0 1 1) = 3, X(O 1 0 0) = 1, and so on. 

If we are interested in a random variable X defined on a given probability 
space, we generally want to know the probability of events involving X; for 
example, the probability that in a given performance of the experiment the 
value of X will belong to B, where B is a set of real numbers. In particular, 
we will be interested in P{w: a< X(w) ::: b} for all real a, b. Thus .9' must 
contain all sets of the form x- 1 (a, b], and therefore all sets x-1 (B), B a Borel 
set in IRL 

4.6.1 Definitions. A random variable X on a probability space (Q, .r, P) is 
a Borel measurable function from n to IRL In the terminology of 1.5, we have 
X: (Q, .97) ---+ (~ • .513'(~)). In many situations it is convenient to allow X to 
take on the values ±oo; X is said to be an extended random variable iff X is 
a Borel measurable function from n to "i, that is, X: (Q, .'#')---+ ("i, .513'("i)). 

If X is a random variable on (Q, .r, P) the probability measure induced by 
X is the probability measure Px on.%'(~) given by 

Px(B) = P{w:X(w) E B}, B E .513'(~). 

The numbers Px(B), B E .513'(~). completely characterize the random vari
able X in the sense that they provide the probabilities of all events involving 
X. It is useful to know that this information may be captured by a single 
function from ~ to ~. 

4.6.2 Definition. The distribution function of a random variable X is the 
function F = Fx from ~to [0, 1] given by 

F(x) = P{w:X(w)::: x}, x real. 
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Since, for a< b, F(b)- F(a) = P{w: a < X(w)::; b} = Px(a, b], F is a 
distribution function corresponding to the Lebesgue-Stieltjes measure Px 
(1.4). In particular, F is increasing and right-continuous. By 1.2.7, F (x) --+ 1 
as x--+ oo and F(x)--+ 0 as x--+ -oo. Thus among all distribution functions 
corresponding to Px, we choose the one with F(oo) = 1, F(-oo) = 0. 

Very often, the following statement is made: "Let X be a random variable 
with distribution function F," where F is a given function from~ to [0, 1] that 
is increasing and right-continuous, with F(oo) = 1, F(-oo) = 0. There is no 
reference to the underlying probability space (Q, .r, P), and actually the nature 
of the underlying space is not important. The distribution function F deter
mines the probability measure Px, which in tum determines the probability of 
all events involving X. The only thing we have to check is that there be at least 
one (Q, .r, P) on which a random variable X with distribution function F can 
be defined. In fact we can always supply the probability space in a canonical 
way; take n = ~ • .r = ._%'(~), with P the Lebesgue-Stieltjes measure cor
responding to F, and define X(w) = w, wE Q, that is, X is the identity map. 
Since Px(B) = P{w:X(w) E B} = P(B), X has induced probability measure P 
and therefore distribution function F. 

Thus ifF: ~--+ [0, 1] is increasing and right-continuous, with F(oo) = 1, 
F ( -oo) = 0, then F is the distribution function of some random variable. 

We isolate some particularly important classes of random variables. 

4.6.3 Definitions and Comments. Let X be a random variable on (Q, .r, P). 
We say that X is simple iff X can take on only finitely many possible values, 
discrete iff the set of values of X is finite or countably infinite. (Any random 
variable on a discrete probability space is discrete, since n is countable.) 

If X is discrete, and the values {xn} of X can be arranged so that Xn 
< Xn+l for all n, then the distribution function F is a step function with a 
discontinuity at each Xn, of magnitude Pn = P{X = Xn}; F is constant between 
the Xn and takes the upper value at each discontinuity. To see this, observe 
that if Xn-l <a< Xn :S b < Xn+l, then F(b)- F(a) = P{a <X :S b} = Pn; 
if Xn :S c < d < Xn+l, then F(d)- F(c) = 0. 

If X is an arbitrary discrete random variable, the properties of X are com
pletely determined by the probability function Px, defined by 

px(x) = P{X = x}, X E ~. 

Explicitly, 

Px(B) = L Px(x). 
xEB 

This is a countable sum since px is 0 except at the Xn . 
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Thus a discrete random variable may be specified by giving a countable set 
{xn, n = 1, 2, ... } of real numbers and a set of probabilities { Pn, n = 1, 2, ... } 
(Pn 2: 0, Ln Pn = 1), where Pn is to serve as P{X = Xn }. The probability that 
X belongs to B is found by summing the Pn for those Xn which belong to B. 

The random variable X is said to be absolutely continuous iff there is a 
nonnegative real-valued Borel measurable function f on ~ such that 

F(x) = [~ f(t)dt, X E ~. 

We call f the density or density function of X; because F(x)---+ 1 as x---+ oo, 
we have f~oo f(x) dx = 1. 

If X is absolutely continuous with density f, it follows that 

Px(B) = i f(x) dx for each B E ..%'(~). 

For the measure JL defined by JL(B) = JB f(x) dx, BE..%'(~), satisfies JL(a, b] 
= F(b)- F(a), a< b. Thus JL is the Lebesgue-Stieltjes measure correspond
ing to F; hence JL = Px. 

Thus absolute continuity of X means that Px « Lebesgue measure, or 
equivalently, by 2.3.1, F x is an absolutely continuous function. 

Any nonnegative Borel measurable function f on ~ with f~oo f(x) dx = 1 
is the density of some absolutely continuous random variable X. Let F(x) 
= f~oo f(t) dt; F is clearly increasing, and by 2.3.4, F is absolutely con
tinuous, hence continuous, on ~. Since F(oo) = 1, F(-oo) = 0, F is the 
distribution function of some random variable X, and X must have density f. 

The random variable X is said to be continuous iff its distribution function 
F is continuous on all of ~. Equivalently, X is continuous iff P{X = x} = 0 
for all x [see (5) of 1.4.5]. 

We have seen that absolute continuity implies continuity. If F is the Can
tor function (Problem 3, Section 2.3), extended so that F(x) = 1 for x 2: 1, 
and F(x) = 0 for x < 0, a random variable with distribution function F is 
continuous but not absolutely continuous. 

Some typical examples of density functions are: 

(1) Uniform density on [a, b]: 

f(x) = {(b- a)-l, 
0, 

(2) Exponential density: 

where 'A> 0. 

f(x) = {'Ae-A.x, 
0, 

a ::: x ::: b, 
elsewhere. 

X 2: 0, 
X< 0, 
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(3) Two-sided exponential density: 

"A> 0. 

(4) Normal density: 

1 [ (x- m)2] 
f(x) = vc exp -

2 
, cr > 0, 

v 2ncr 2cr 
m real. 

(5) Cauchy density: 

Finally, some remarks on terminology. We often abbreviate 
{w:X(w) E B} by {X E B}; note that this set is also x- 1(B), the preimage 
of B under the mapping X. Similarly, {w: a< X(w) ::; b} will be abbreviated 
by {a < X ::; b}. The letter .5f:J will always stand for the Borel sets of an appro
priate space. Thus f: (~ n, .5f:J ) ---+ (~, .5f:J ) means that f -!(B) E .5f:J (~ n) for 
each B E Jf:J(~). The phrase "almost surely," abbreviated a.s., is often used 
in the literature. It means "almost everywhere" with respect to a specified 
probability measure. 

4.7 RANDOM VECTORS 

We now consider situations involving more than one random variable asso
ciated with the same experiment. 

An n-dimensional random vector on a probability space (Q, .r, P) is a 
Borel measurable map from n to ~ n. 

If X: Q ---+ ~ n and X; = p; oX, where p; is the projection of ~ n onto the ith 
coordinate space, then X is Borel measurable iff each X; is Borel measurable 
(see 1.5.8). Thus a random vector may be regarded as ann-tuple (X t. ... , Xn) 
of random variables. 

Much of the development of the previous section carries over. As before, 
the probability measure induced by the random vector X is defined by 

Px(B) = P{w:X(w) E B}, 

The distribution function of X is the function F = F x from ~n to [0, 1] 
defined by 

F(x) = Px(-oo, x] = P{w:X;(w)::; x;, i=1, ... ,n}; 
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F is also called the joint distribution function of X 1, ••• , X n; F is increas
ing and right-continuous on ~n, and Px is the Lebesgue-Stieltjes measure 
determined by F (see 1.4). 

By 1.2.7, we have 

F(x, . . , x")-->{ ~ 
as X; t oo for all i; 
as x; ..j, - oo for any particular i (1) 

(with all other coordinates fixed). 

IfF is a distribution function on ~n that satisfies (1), then F is the distribu
tion function of some random vector X, and the underlying probability space 
can be constructed in a canonical way. Take n = ~n, .97 = .513'(~n ), with P 
the Lebesgue-Stieltjes measure determined by F, and X the identity func
tion on n. Since Px(B) = P{w:X(w) E B} = P(B), X has induced probability 
measure P. Furthermore, the distribution function of X is 

Fx(x) = Px(-oo,x] = P(-oo,x] 

= lim P(a, x] 
a-(,-oo 

= lim F(a, x] 
a-(,-oo 

= F(x) 

by 1.2.7 

since Pis the Lebesgue-Stieltjes 
measure determined by F 

by 1.4.8(b) and the hypothesis 
that F(x) ---+ 0 if any x; ..j, -oo. 

[The hypothesis that F(x)---+ 1 as x t oo implies that Pis actually a proba
bility measure.] 

The random vector X is said to be discrete iff the set of values of X is finite 
or countably infinite, or equivalently, iff the component random variables 
X 1, ••• , X n are all discrete. In this case, the properties of X are determined 
by the probability function p, given by p(x) = p{X = x}; explicitly, P{X E B} 
= LxEB p(x). 

The random vector X is said to be absolutely continuous iff there is a 
nonnegative Borel measurable function f on ~n, called the density or density 
function of X, such that 

It follows that 

F(x) = 1 f(t)dt, 
(-oo,x] 

Px(B) = 1 f(x) dx for all 

For the measure JL defined by JL(B) = JB f(x) dx, B E .513'(~n ), satisfies 
JL(a, b] = ha.b] f(x)dx = F(a, b] [see 1.4.10(b)]. Thus JL is the Lebesgue
Stieltjes measure determined by F; hence JL = Px. 
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Just as in the previous section, any nonnegative Borel measurable function 
f on ~n with JR" f(x) dx = 1 is the density of some absolutely continuous 
random vector X. 

4.8 INDEPENDENT RANDOM VARIABLES 

We have talked previously about independence of events; we now consider 
independent random variables. Intuitively, independence of X 1, ••. , Xn means 
that a statement about one or more of the X; does not affect the odds concerning 
the remaining X;. Now a statement about X; corresponds to an event of the 
form A; = {X; E B; }; thus the events A 1, ••• , An will be independent. The 
formal definition is as follows. 

4.8.1 Definition. Let X 1, ••• , Xn be random variables on (0, !Y, P). Then 
X 1, ••• , Xn are said to be independent iff for all sets B1, ••• , Bn E .11'(~), we 
have 

By 2.6.8(b), independence of X 1, ... ,Xn may be expressed by saying that if 
X= (X 1, ••• , Xn ), then Px is the product of the Px,, i = 1, ... , n. 

4.8.2 Comments. (a) If X 1, ••• , Xn are independent, so are X 1, ••• , Xk for 
k < n. To see this, let Bt. ... , Bk E .)3'(~). Then 

P{Xt E Bt, ... ,Xk E Bk} = P{Xt E Bt. ... ,Xk E Bk>Xk+l E ~ •.. . ,Xn E ~} 

= P{X1 E Bt} .. · P{Xk E Bk}. 

Thus it is not necessary to check all subfamilies of the collection of events 
{X; E B;}, i = 1, ... , n, as in the definition of independent events in 4.3. 

(b) Independence of extended random variables is defined exactly as above, 
with 5~'(i:) replacing .513'(~). In fact, suppose that each X; is a random object; 
that is, a map X;: ( 0, .r ) --+ ( 0;, 7; ), where 0; is an arbitrary set and .9'; is a 
cr-field of subsets of 0;. Then the X 1, ••• , Xn are said to be independent iff for 
all sets Bt E .9'1, ... , Bn E .'Yn we have 

(c) Let X;, i E I (an arbitrary index set) be an arbitrary family of random 
objects. The X; are said to be independent iff X;,, ... , X;" are independent for 
each finite set {it. ... , in} of distinct indices in I. 

(d) If the X;: (0, .7)--+ (0;, 7;) are independent random objects, and 
g1: (0;, .Y1)--+ (0/, Y;'), then the random objects g1 oX;, i E I, are independent. 
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("Functions of independent random objects are independent.") This follows from 
the definition of independence and the fact that 

Independence of random variables may be characterized in terms of distri
bution functions as follows. 

4.8.3 Theorem. Let X 1, ••• , Xn be random variables on (Q, .'Y, P). Let F; 
be the distribution function of X;, i = 1, ... , n, and F the distribution function 
of X = (X 1, ••• , Xn ). Then X 1, ••• , Xn are independent iff 

for all real x 1, ••• , Xn . 

PRooF. If X 1, ••• , Xn are independent, then 

n n 

i=l i=l 

Conversely, assume F(xt. ... , Xn) = TI7=l F 1(x;) for all x1, ••• , Xn· Then 

n n 

Px(a, b] = F(a, b] = IT[F1(b1)- F;(a;)] =IT Px,(a;, btl 
i=l i=l 

[see 1.4.10(a)]. Thus 

when the B; are right-semiclosed intervals of reals. Now fix the intervals 
B2, ... , Bn. The collection W of sets B1 E .513'(~) for which (1) holds is a 
monotone class including the field of finite disjoint unions of right-semiclosed 
intervals, and therefore W = .513'(~) by the monotone class theorem. Applying 
the same reasoning to each coordinate in tum, we obtain the independence 
of the X;. (Explicitly, we prove by induction that if B1, ••• , B; are arbitrary 
Borel sets and Bi+l, ... , Bn are right-semiclosed intervals, then (1) holds for 
Bt .... ,Bn.) D 

We may also characterize independence in terms of densities. 

4.8.4 Theorem. If X = (X 1 , ••• , X n) has a density f, then each X 1 has a den
sity /;. Furthermore, in this case X t. ... , X n are independent iff f (x t. ... , Xn ) 
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= / 1 (x 1) • • • fn (xn) for all (Xt. ... , Xn) except possibly for a Borel subset of 
~n with Lebesgue measure zero. 

PROOF. 

By definition of absolute continuity, X 1 has a density given by 

(in other words, we integrate out the unwanted variables). Borel measurability 
of / 1 follows from Fubini's theorem. Similarly, each X1 has a density / 1, 

obtained by integrating out all variables except x1• 

Now if f(x!, ... , Xn) = /1 (Xt) · · · fn (Xn) a. e., then 

so by 4.8.3, the X; are independent. Conversely, if the X; are independent, 
then 

(1) 

Thus (see the end of 4.7) if g(x1, ... , Xn) = / 1 (x1) • • · fn (Xn ), then 

Px(B) = i g(x)dx, 

But Px(B) = JB f(x)dx, and it follows that f = g a.e. (Lebesgue measure) 
by 1.6.11. D 

4.8.5 Corollary. If X 1, ••• , Xn are independent and X; has density f 1, 

i= 1, ... , n, then X has a density f given by f(x!, ... , Xn)=/J (Xt) · · · fn(Xn). 

PRooF. Equation (1) of 4.8.4 applies. D 
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If X 1, .•• , Xn each have a density, it does not follow that (X 1, ••• , Xn) 
has a density; thus 4.8.5 is false without the independence hypothesis (see 
Problem 1). 

Problems 

1. Give an example of random variables X and Y (on the same probability 
space) such that X and Y each have densities, but (X, Y) does not. 

2. Give an example to show that even if (X, Y) has a density, it is not 
determined by the individual densities of X and Y. 

3. Let X 1, ••• , Xn be discrete random variables. Show that the X; are inde
pendent iff 

n 

P{Xl =Xt, ... , Xn = Xn}= II P{X; =X;} 
i=l 

for all real 

4. Let (Q, .r, P) be a probability space. The classes ~. i E /, of sets 
in .r, are said to be independent iff given any choice of C; E /if;, i E /, 

the events C; are independent. (Thus the random objects X;: (Q, $7) 
---+ (0/, Y;') are independent iff the classes Xj 1 (Y;') are independent.) 

If the §'i, i E /, are independent, show that if the following sets are added 
to each ~, the enlarged classes still remain independent. 

(a) Proper differences A- B, A, B E /if;, B cA. 
(b) The sets 0, n. 
(c) Countable disjoint unions of sets in §'i. 
(d) Limits of monotone sequences in ~. 

Give an example to show that finite intersections cannot be added. 
If you are familiar with Zorn's lemma, show that if the §'i are indepen

dent classes, each closed under finite intersection, the minimal cr-fields 
over the §'i are also independent. 

4.9 SoME ExAMPLEs FROM BAsic PRoBABILITY 

In this section we give a few illustrations to show how some of the compu
tations done in elementary probability courses fit in with the present measure
theoretic framework. 

4.9.1 Example. Two numbers X and Y are picked at random between 0 
and 1. Assume that X and Y are independent and that each is uniformly distri
buted (that is, X andY have densities / 1 and h given by / 1 (x) = h(x) = 1, 
0.::: x .::: 1, and 0 elsewhere). Let Z be the product XY, and let us find the 
distribution function of Z. 
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We take Q = ~2 , j7 = .15'(~2 ), X(x, y) = x, Y(x, y) = y. By 4.8.5, (X, Y) 
must have density f(x, y) = / 1 (x)f2(y); hence 

P{(X, Y) E B} = !! f(x, y)dxdy. 

B 

Thus we take our probability measure to be 

Now 

P(B) = jj f 1(x)f2(y)dxdy, 

B 

F(z)=P{Z:Sz}=P{(x,y): xy:Sz}= jj ft(x)f2(y)dxdy. 

xy::sz 

Since X and Y are between 0 and 1 (with probability 1), F(z) = 1 for z 2: 1 
and F(z) = 0 for z::: 0. Since / 1 (x)f2(y) is 1 for 0::: x::: 1, 0::: y::: 1, and 
0 elsewhere, 

Z 1 X 

Figure 4.9.1. 

F(z)(O < z < 1) is the shaded area in Fig. 4.9.1; that is, z + fz1(z/x)dx 
= z- z lnz. Thus Z has a density 

f(z) = F'(z) = {~ln z, 0 < z < 1, 
elsewhere. 

Note that although f is unbounded, its integral, namely, F, is always finite. 

4.9.2 Example. Let X, Y, and Z be independent random variables, each 
normally distributed with m = 0, cr = 1; that is, X, Y, and Z each have the 
normal density 

1 [-(x- m)
2

] 
g(x) = ../2iicr exp 2cr2 with m = 0, cr = 1. 
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Let W = (X2 + Y 2 + Z2 ) 112 (take the positive square root so that W 2:: 0). 
Find the distribution function of W. 

We take n = ~3 • .r = 33'(~3 ), X(x, y, z) = x, Y(x, y, z) = y, Z(x, y, z) 
= z, and 

where 

Thus 

If w 2:: 0, 

P(B) = j j j f(x, y, z) dx dy dz, 

B 

f(x, y, z) = /1 (x)f2(y)/3(z) = g(x)g(y)g(z) 

= (2n)-312 exp [- ~ (x2 + l + z2
)] • 

F(w) = P{W :S w} = P{X2 + Y2 + Z 2
::: w2

} 

F(w) = jjj (2n)-312 exp [ -~(x2 + l + z2
)] dxdydz 

x2+y2+z2:sw2 

or in spherical coordinates, 

F(w) = l 2n d() ln d¢ lw(2n)- 312 exp [-~r2] r2 sin¢dr 

= (2n)-3
1

2 (2n)(2) lw r 2 exp [-~r2] dr. 

Thus W is absolutely continuous, with density 

{ 

2 2 [ 1 2] 
f(w) = J2iw exp - 2w , 

0, 

w 2::0, 

w <0. 

4.9.3 Example. Let X 1 , ••• , X n be independent random variables, each 
with density f and distribution function F; that is, n = ~n, Y = 33'(~n), 
X;(X], ... ,Xn) =X;, 1 :S i :S n, 

Let Tk be the kth smallest of the Xi; for example, if n = 4, X 1 (w) = 2, 
X2(w) = 1.4, X3(w) = -7, X4(w) = 8, then T1 (w) =min; X;(w) = X3(w) 
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= -7, T2(w) = X2(w) = 1.4, T3(w) =X 1 (w) = 2, T4(w) =max; X;(w) 
= X4(w) = 8. [Note that 

P{X; = Xj} = j j f(x;)f(xj)dx; dxj = 0 for i =I j, 
X(=Xj 

and therefore 

P{X; = Xj for at least one i # j}::: LP{X; = Xj} = 0. 
iij 

Thus ties occur with probability 0 and can be ignored.] 
Find the individual distribution functions of the T k, and the joint distribution 

function of (TJ, ... , Tn). 
Now 

n 

P{Tk::: x} = LP{Tk::: x, Tk =X;} by 4.5.2 
i=l 

and, for example, 

P{Tk ::: x, Tk = X 1} = P{X1 ::: x, exactly k- 1 of the random 
variables X2, ... , Xn are less than X 1 

and the remaining n - k random variables 

(1) 

are greater than X 1 } . (2) 

But, using Fubini's theorem, 

· · · L:x
1 

/(XJ ) · · · j(Xn) dx1 · · · dxn 

= 1~ /(X! )(F (XJ ))k-l (1 - F (XJ ))n -k dx1• (3) 

Now by symmetry, (2) is the sum of G=D terms, each of which has the 
same value as (3), since we may select the k- 1 random variables to be less 
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than X 1 in G=D ways. Also, each term in the summation (1) has the same 
value as (2). Thus 

P{Tk :S x} = 1~ n ( ~ = ~) /(XJ )(F(xJ ))k-l (1 - F(xJ ))n-k dx1 

so that T k is absolutely continuous, with density 

f Tk (x) = n ( ~ = ~) f(x)(F(x))k-l (1 - F(x))n-k. 

We now find the joint distribution function of T 1 , ••• , T n. Let b 1 < b2 
< · · · < bn- Then 

P{T1 :S b1, ... , Tn :S bn} 

where 

( ) _ {n!j(XJ) · · · f(xn), 
g X], •.. , Xn - O 

by symmetry 

X] < X2 < · · · < Xn, 

elsewhere. 

Thus (T 1, ••. , T n) is absolutely continuous with density g. (Note that f Tk can 
be found from g (see 4.8.4), but the calculation is not any simpler than the 
direct method we have used above.) 

4.9.4 Example. Let X be an absolutely continuous random variable with 
density f, assumed to be piecewise-continuous. Let D be a Borel subset of ~ 
such that D includes the range of X, and let g be a Borel measurable function 
from D to~-

If Y =go X, we wish to find the distribution of Y. [Distribution is a generic 
term; to say that we know the distribution of Y means that we know how to 
calculate P{Y E B} for all Borel sets B. Thus the distribution may be specified 
by giving the induced probability measure Py or the distribution function F y. 
If Y is absolutely continuous, its density is adequate, and if Y is discrete, the 
probability function suffices. If Y: (Q, .97)--+ (Q', .97') is an arbitrary random 
object, the distribution of Y means the probability measure Py, defined by 
Pr(B) = P{Y E B}, BE .97'.] 

Assume that D is an open interval I, and g is either strictly increasing 
or strictly decreasing, with inverse h. Assume also that g has a continuous 
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nonzero derivative (hence so does h). We show that Y is absolutely continuous 
with density 

hCy) = {({t (h(y)) I h'(y)l, y E g(J), 
elsewhere. 

We compute, for y E g(I), 

F2(y) = P{Y :S y} = P{w: g(X(w)) :S y} 

= P{X ::::: h(y)} if 

= P{X 2: h(y)} if 

g is increasing 

g is decreasing 

(see Fig. 4.9.2). 

Thus 

Therefore 

g(x) g(x) 

(a) (b) 

Figure 4.9.2. (a) g strictly increasing; (b) g strictly decreasing. 

F
2
(y) = -;: ft(x)dx {j

h(y) 

r ft(x)dx 
Jh(y) 

dF2(Y) {ft(h(y))h'(y) 
-d- = ft(h(y))(-h'(y)) 

y !t (h(y))lh' (y)l 

if g is increasing, 

if g is decreasing. 

if g is increasing, 
if g is decreasing, 
in either case. 

Now F2 is continuous everywhere, and has a piecewise-continuous derivative; 
it follows that F 2 is the integral of its derivative: 

j y dF2(z) 
F2(y) = --dz 

-oo dz 

(apply the fundamental theorem of calculus). Thus Y is absolutely continuous 
with density ft(h(y))lh'(y)l. 

Examples of this type in which g is more complicated will be considered 
in the problems. 
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Problems 

1. Consider Example 4.9.4, but weaken the hypothesis so that the domain 
of g is the union of closed intervals I 1 , ••• , In, such that on the interior 
of each I j. g has a continuous nonzero derivative and is either strictly 
increasing or strictly decreasing, with inverse hj. Show that Y is absolutely 
continuous with density 

n 

hey)= 2:!tchj(y))lh/cy)l, 
j=l 

where f 1(hj(y))lh/(y)l is interpreted as 0 if y does not belong to the 
domain of h j. 

2. Let X be an absolutely continuous random variable with density f 1 (x) 
= x 3 j64, 0 ::; x ::; 4; f 1 (x) = 0 elsewhere. Define a random variable Y by 
Y =min( ./X, 2- ./X). Find the density of Y. 

3. Let X, Y, and Z be independent random variables, each uniformly distrib
uted between 0 and 1. Find the probability that Z2 ::; XY. 

4. Let X be a random n-vector with density f 1, and let Y = goX, where 
g: ~n --+ ~n (or g: D--+ ~n, where Dis open in ~n and P{X ED}= 1). 
Assume g to be one-to-one and continuously differentiable with a nonzero 
Jacobian lg (hence g has a continuously differentiable inverse h). Show 
that Y is absolutely continuous with density 

- h J - /J (h(y)) 
f2(y)- /1 ( (y))l h(Y)I - ll ( )I 

g X x=h(y) 

5. Let X and Y be independent random variables, each normally distrib
uted with m = 0 and the same cr. Define random variables R and 8 by 
X = R cos 8, Y = R sin 8. Show that R and 8 are independent, and find 
their density functions (use Problem 4). 

6. Let X 1, ••. , Xn be independent random variables, each with density f. 
Let Xo be the number of random variables among X1, ••• , Xn that exceed 
the smallest of the X; by more than 2. Find J n Xo dP. (Leave the answer 
in the form of an integral on the real line.) Hint: Express Xo as a sum of 
indicators. 

7. Let n = [0, 1], .'Y = Borel sets, P = Lebesgue measure. Show that 
( n, Y, P) is a universal probability space in the sense that if F is any proper 
distribution function on ~ ["proper" means that F ( oo) = 1, F (-oo) = 0], 
there is a random variable X on (Q, .r, P) with distribution function F. 
(Define p-1(y) = sup{x: F(x) < y},O<y<1, and takeX(w) = p-1(w), 
with X(O) and X(l) arbitrary.) 
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4.10 EXPECTATION 

Let X be a simple random variable on (Q, .'Y, P), taking the values x 1, ••• , 

Xn with probabilities Pt. ... , Pn· If the random experiment is repeated inde
pendently N times, N very large, X will take the value x1 roughly N p; times, 
so the arithmetic average of the values of X in the N observations is roughly 

This is a reasonable figure for the average value of X. If X is represented 
as 2.::7= 1 x;I B;, where the B1 are disjoint sets in .r, the average value may be 
expressed as 2.::7= 1 x;P(Bi), which is Jrl X dP. Since arbitrary random variables 
are ultimately built up from simple ones, it is reasonable to take Jrl X dP as 
the definition of the average value (henceforth to be called the "expectation") 
of X. 

4.10.1 Definition. If X is a random variable on (Q, c'Y, P), the expectation 
of X is defined by 

E(X) = l XdP 

provided the integral exists. Thus E(X) is the integral of the Borel measurable 
function X with respect to the probability measure P, so that all the results 
of integration theory are applicable. The same definition is used if X is an 
extended random variable. 

In many situations it is inconvenient to compute E(X) by integrating over 
n; the following result expresses E(X) as an integral with respect to the 
induced probability measure Px, which in tum is determined by the distribution 
function F. 

First, a word about notation. IfF is a distribution function on ~n with cor
responding Lebesgue-Stieltjes measure f.L, and g: (~n, Ji3') --+ (~. Ji3'), then 
Jll!." g(x)dF(x) means Jll!." gdJL; it is not a Riemann-Stieltjes integral. 

4.10.2 Theorem. Let X be a random variable on (Q, .r, P), with distribution 
function F. Let g be a Borel measurable function from ~ to ~-

If Y = g oX, then 

in the sense that if either of the two sides exists, so does the other, and the 
two sides are equal. 
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PRooF. We use the basic technique of starting with indicators and proceeding 
to more complicated functions. 

Let g be an indicator 18 , BE JfJ'(~). Then 

E(Y) = E(IB oX)= E(l{XEBj) = Px(B) = l gdPx 

so that E(Y) and Ill!. g dPx exist and are equal. 
Now let g be a nonnegative simple function, say, g(x) = LJ=! xl8 j(x), the 

B1 disjoint sets in..%'(~). Then 

E(Y) = i:.x1E(IB1 oX)= txi 1 fBi dPx 
i=l j=l Ill. 

by what we have just proved 

since g 2: 0 

= lgdPx. 

Again, both integrals exist and are equal. 
If g is a nonnegative Borel measurable function, let g 1, g2, ... be nonnegative 

simple functions with gn t g. We have just proved that 

E(gn oX)= l gn dPx; 

hence by the monotone convergence theorem, 

E(goX) = l gdPx, 

and again both integrals exist and are equal. 
Finally, if g = g+ - g- is an arbitrary Borel measurable function and 

Y = goX, we have 

= l g+ dPx - l g- dPx 

= lgdPx. 

by what we have already proved 

If E(Y) exists and, say, E(Y-) is finite, then Ill!. g- dPx is finite, and hence 
Ill!. g dPx exists; by the same reasoning, the existence of Ill!. g dPx implies that 
of E(Y). 0 
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4.10.3 Corollaries and Extensions. (a) Let X be a random vector on 
(Q, !JT, P), and let g be a Borel measurable function from ~n to ~- Then 
E(goX) = Jll!." g(x)dF(x) in the sense that if either integral exists, so does the 
other, and the two are equal. 

The proof is exactly as in 4.10.2, with ~ replaced by ~n. 
(b) More generally, let X be a random object on (Q, !JT, P), that is, 

X: (0, .97)--+ (Q', .97'), where (Q', .9'') is an arbitrary measurable space. Let 
g be a Borel measurable real (or extended real) valued function on (Q', .97'). 
Let Px be the probability measure induced by X: 

Then 

Px(B) = P{w: X(w) E B}, 

E(goX) = { gdPx Jn, 

B E.'Y'. 

in the sense that if either integral exists, so does the other, and the two are 
equal. 

Again, the proof is just as in 4.10.2, with ~ replaced by Q' and .513'(~) 

by .'Y'. 
(c) If X is a random variable (or random vector) with density f, then 

j g(x)dF(x) = j g(x)f(x)dx 

(integration over ~in the case of a random variable, and over ~n in the case 
of a random vector) in the sense that if either integral exists, then so does the 
other, and the two are equal. 

When g is an indicator I B, this says that Px(B) = JB f(x) dx, which holds 
for any Borel set B. The proof is completed by passing in tum to nonnegative 
simple functions, nonnegative Borel measurable functions, and arbitrary Borel 
measurable functions. 

(d) If X is a discrete random variable with probability function p, then 

j g(x)dF(x) = Lg(x)p(x), 
X 

where the series is interpreted as Lxg+(x)p(x)- Lxg-(x)p(x), and again 
the interpretation is that the integral exists iff the sum exists (that is, 

or 

and in this case the two are equal. 
This is proved by starting with indicators as before. 

Expectations of certain functions of X are of special interest. 
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4.10.4 Definition. Let X be a random variable on (Q, .§T, P). If k > 0, 
the number E(Xk) is called the kth moment of X; E[iXik] is called the kth 
absolute moment of X. E[(X- E(X))k] is called the kth central moment; 
E[IX- E(X)Ik] the kth absolute central moment; central moments are defined 
only when E (X) is finite. 

The first moment (k = 1) is E(X), sometimes called the mean of X, and 
the first central moment (if it exists) is always 0. The second central moment 
cr2 = E[(X- E(X))2 ] is called the variance of X, sometimes written Var X, 
and the positive square root cr the standard deviation. 

Note that E(Xk) is finite iff E[IXIk] is finite, by 1.6.4(b). Also, finiteness of 
the kth moments implies finiteness of lower moments, as we now prove. 

4.10.5 Lemma. If k > 0 and E(Xk) is finite, then E(Xj) is finite for 
0 < j < k. 

FrRsT PRooF. 

E[IXIjl = { IXIjdP = { iXijdP + { iXijdP 
Jn j{IXIi<l) j{IXIJ~l} 

::: P{IXIj < 1} + liXIkdP < oo. D 

SECOND PRooF. We have IIXIIj ::: IIXIIk for 0 < j < k (8.2.4). D 

Central moments of integral order can be obtained from moments, as fol
lows. 

4.10.6 Lemma. If n is a positive integer greater than 1, E(Xn-l) is finite, 
and E (Xn) exists, then E[ (X - E (X))n] = L~=O GH-E cxw-k E (Xk ). In par
ticular, if E(X) is finite [E(X2 ) always exists since X 2 2: 0], then 

PRooF. Use the binomial theorem and the additivity theorem for integrals 
(1.6.3). D 

A similar formula expresses moments in terms of central moments. (Write 
xn = (X - E(X) + E(X))n and use the binomial theorem.) 

We now restate a result proved earlier in a measure-theoretic context. 
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4.10.7 Chebyshev's Inequality. (a) If X is a nonnegative random variable, 
0 < p < oo and 0 < e < oo, 

(b) If X is a random variable with finite mean m and variance cr2, and 
0 < k < 00, 

1 
P{IX- ml 2: kcr}::; k2 . 

This is a quantitative result to the effect that a random variable with small 
variance is likely to be close to its mean. 

PRooF. See 2.4.9. D 

A normally distributed random variable has the useful property that the 
distribution is completely determined by the mean and variance. Specifically, 
if X has the normal density, that is, 

1 [-(x- m)
2

] 
f(x) = ../2iicr exp 2cr2 ' 

then m = E(X) and cr2 = Var X; the computation is straightforward, using the 
standard integrals 

and 

The phrase "normal (m, cr2)" is used for a random variable that is normally 
distributed with mean m and variance cr2 . 

The following result on the expectation of a product of independent random 
variables is a direct consequence of Fubini's theorem. 

4.10.8 Theorem. Let X1, ... , Xn be independent random variables on 
(0,.9;' P). If all X; are nonnegative or if E(X;) is finite for all i, then E(X1 · · · Xn) 
exists and equals E(X 1 )E(X2) · · · E(Xn ). 

PROOF. If all X; 2: 0, then by 4.10.3(a), 

E(XJ···Xn)= 1xl···XndPx(XJ,···,Xn) where X=(XJ,···,Xn). 
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Since Px is the product of the Px, (see 4.8.1), Fubini's theorem yields 

E(XJ · · · Xn) = l x1d.Px1 (XJ) · · ·l Xnd.Px" (xn) = E(XJ) · · · E(Xn). 
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(This can also be proved without Fubini's theorem by starting with indi
cators and proceeding to nonnegative simple functions and then nonnegative 
measurable functions, but the present proof is faster. Note also that the result 
holds for extended random variables, with the same proof.) 

If all E(Xi) are finite, the above argument shows that 

n 

E(IXJ .. ·Xn I)= II E(IX;I) < 00, 

i=l 

and thus Fubini's theorem may be applied just as in the first part of the 
proof. D 

Theorem 4.10.8 can be extended to complex-valued random variables. Re
call from 2.4 that a complex-valued random variable X on (Q, .r, P) is given 
by X= X1 + iX2 where X1 =ReX and X2 = Im X are (real-valued) random 
variables. In view of the discussion at the beginning of 4. 7, we may regard X as 
simply a two-dimensional random vector. We define E(X) = E(X1) + iE(X2) 
provided E(X1) and E(X2) are both finite. 

4.10.9 Theorem. If X1, ... , Xn are independent complex-valued random 
variables and E(X;) is finite for all i, then E(X1 · · ·Xn) is finite and equals 
E(XJ)···E(Xn). 

PRooF. First, let n = 2, X1 = Y1 + iZ1, X2 = Y2 + iZ2. By 4.8.2(d), Y1 and 
Y2 are independent, as are Y1 and Z2, Z1 and Y2, and Z1 and Z2. By 4.10.8, 

E(X1X2) = E(YJ )E(Y2)- E(ZI)E(Z2) + iE(Y 1 )E(Z2) + iE(ZJ )E(Y2) 

= (E(YJ) + iE(ZJ ))(E(Y 2) + iE(Z2)) = E(XJ )E(X2). 

Now let n > 2, Xj = Y1 + iZ1, j = 1, ... , n, and assume the result has been 
established for n- 1 random variables. If V = (Y1, Z1, Y2, Z2, ... , 
Yn-1, Zn-J) and W = (Yn, Zn), we claim that V and Ware independent. By 
independence of X 1, ... , Xn, P{V E A, W E B} = P{V E A}P{W E B} when 
A and B are measurable rectangles. Pass from measurable rectangles to finite 
disjoint unions of measurable rectangles, and then, by means of the monotone 
class theorem, to arbitrary Borel sets. 

TheindependenceofVand W implies, by4.8.2(d), thatX1 · · · Xn-l andXn are 
independent, sothatE(XI · · · Xn)=E(XJ · · · Xn-1 )E(Xn)=E(XJ) · · · E(Xn) by 
the induction hypothesis. D 
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Theorem 4.10.8 implies that the variance of a sum of independent random 
variables is the sum of the variances. Actually, a somewhat more general result 
may be derived. We first introduce some new terminology. 

4.10.10 Definitions and Comments. Let X andY be random variables with 
finite expectation, and assume E(XY) is also finite. (In particular, if X and Y 
have finite second moments, E(XY) is finite by the Cauchy-Schwarz inequal
ity.) The covariance of X and Y is defined by 

Cov(X, Y) = E[(X- E(X))(Y- E(Y))] = E(XY)- E(X)E(Y). 

If X and Y are independent, then Cov (X, Y) = 0 by 4.10.8; however, the 
converse is not true (consider X= cos(), Y =sin(), where () is uniformly 
distributed between 0 and 2n). 

If the variances rrx2 and ay2 are finite and greater than 0, the correlation 
coefficient between X and Y is defined by 

p(X, Y) = (Cov(X, Y)/rrxay ). 

By the Cauchy-Schwarz inequality applied to X- E(X) and Y- E(Y), 
-1::: p(X, Y)::: 1. Furthermore (see Problem 6, Section 2.4), lp(X, Y)l = 1 
iff X'= X- E(X) and Y' = Y- E(Y) are linearly dependent, that is, 
P{aX' +bY' = 0} = 1 for some real numbers a and b, not both 0. 

We now look at the variance of a sum. 

4.10.11 Theorem. 
If X1, ... ,Xn are random variables with finite expectation, and E(X;Xj) is 

finite for all i, j with i =I j, 
n n 

i=l i,j=l 
i<j 

Thus if X1, ... , Xn are mutually uncorrelated, that is, Cov (X;, Xj) = 0 for 
i =I j; in particular, if X 1, ... , Xn are independent, then 

n 

Var(X1 + ·· · +Xn) = LVarX;. 
i=l 

PRooF. 

Var(XJ + · · · +Xn) 

=E[(XJ +· .. +Xn -E(XJ)- .. ·-E(Xn))2
] 

n n 

= LE[(X;- E(X;))2
] + 2 L E[(X;- E(X;))(Xj- E(Xj))]. D 

i=l i,j=l 
i<i 
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4.10.12 Corollary. Under the hypothesis of 4.10.11, if a1, ... , an, b are ar
bitrary real numbers, 

n n 

Var(a1X1 + · · · +anXn +b)= 2:a?VarX; + 2 L a1aj Cov(X;,Xj). 
i=l i,j=l 

l<j 

PROOF. This follows from 4.10.11, along with the observations, which may 
be verified from the definitions, that Var(aX +b) = a 2VarX and 
Cov(a;X;, ajXj) = a;aj Cov(X;, Xj). D 

Problems 

1. Let X be a discrete random variable, with P {X = n} = ( ~ )n, n = 1, 2, .... 
Let Y = g oX, whereg(n) = (-l)n+l2n /n. Show that E(Y) does not exist, 
although the series 2.::~ 1 g(n )P{X = n} is conditionally convergent. 

2. Let X be a random variable with the distribution function shown in 
Fig. 4.10.1. Compute E(X2

). 

;t=~~~~~~~ 
f I I I ~ 
0 1 2 3 X 

Figure 4.10.1. 

3. Suppose X is a random variable with distribution function F x, and 
Y = g oX, g: ~---+ ~. Borel measurable. It is desired to find the expecta
tion of Y. One student evaluates f~oo g(x) dF x(x); another first finds the 
distribution function of Y, that is, 

Fy(y) = P{Y :S y} = P{X E g~ 1 (-oo, y]} 

and then evaluates f~oo ydFy(y). Will the answers be the same? 

4. Show that the random variables X1, ... , Xn are independent iff for all 
Borel measurable g;: ~---+ ~ such that g; :::_ 0, we have 

n 

where g;(X;) = g; oX;. 

(1) 
Also show that X1, ... , Xn are independent iff (1) holds for all Borel 
measurable g;: ~---+ ~ such that E[g;(X;)] is finite for each i. 
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5. Let X be an extended random variable on ( n, .¥, P) and let g be a Borel mea
surable function from "i to IRL Define F(x) = P{-oo <X::; x}, 
x E ~;thus F(oo)- F( -oo )=P{X finite} :S 1. Show that if E[g oX] exists, 
E[g oX]= f~oo g(x) dF(x) + g(oo)P{X = oo} + g(-oo)P{X = -oo}. 

4.11 INFINITE SEQUENCES OF RANDOM vARIABLES 

Very often we shall be interested in a sequence of random variables X 1 , 

X2 , ••• , Xn, where n is arbitrarily large and not fixed in advance. Thus it is 
convenient to have a single probability space on which we can define an infinite 
sequence of random variables. The discussion of measures on infinite product 
spaces (2.7) provides the necessary machinery. In particular, we can require 
that X1, X2 , ••• be independent, with X; having a specified distribution. In fact 
the X; can be random objects with values in an arbitrary measurable space. 

4.11.1 Theorem. Let (Qj, jlj, Pj), j = 1, 2, ... be an arbitrary sequence of 
probability spaces. There exists a probability space (0, .r, P) and a sequence 
of independent random objects X j: (Q, j?) ---+ (Q j, j1j) such that 

for all BEjl"j,j=1,2, .... 

To obtain a sequence of independent random variables with specified dis
tribution functions F 1, F 2, ••• , we take Q j = ~. j1j = .9' (~). with Pj the 
Lebesgue-Stieltjes measure corresponding to Fj. 

PROOF. Let S1=IJ%1 nj • . 9'=IJ%1 jlj,P=IJ%1 Pj (see2.7.3). If 
w = (WJ' W2, . .. ) En, let Xj(W) = Wj, j = 1, 2,.... If BE jlj, then 
{w: Xj(w) E B} = {w: Wj E B}, a measurable rectangle. Thus {w: Xj(w) E B} 
E.¥, so that the Xj are random objects. By 2.7.3, 

n 

P{X1 EA1, ... ,Xn EAn} = IlPj(Aj) 
j=l 

if 

Take A;= s-2;, i =I j, to conclude that P{Xj E Aj} = Pj(Aj). Therefore 
P{XJ E A1, ... , Xn E An}= IJ}=l P{Xj E Aj}, proving independence. D 

The results of 2.7 may also be used to provide the underlying probability 
space for a Markov chain. Let S be a finite or countably infinite set, called the 
state space; for convenience we may take S to be a subset of the integers. Let 
n = [p;j], i, j E S, be a stochastic matrix, that is, Pij 2: 0 for all i, j E S, and 
Lj Pii = 1 for alliES. Let p;, i E S be a set of nonnegative numbers adding 
to 1 (the initial distribution). We envision a process that starts at time t = 0 
in an initial state X0 , where P{Xo = i} = p;, i E S, and makes transitions at 
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times t = 1, 2, ... in accordance with the following rule. If Xn denotes the 
state at time n, and we know that Xn = i, then regardless of the past history, 
in other words, regardless of how the process happened to arrive at state i, the 
probability of moving to state j at time n + 1 is Pii· We expect from 4.5.1(b) 
that for all io, i1, ... , in E S, n = 0, 1, 2, ... , 

P{Xo = io, X1 = i1 • · · ·, Xn =in}= PioPioit ···Pin-tin· 

We now show that it is possible to construct a sequence of random variables 
satisfying this requirement. 

4.11.2 Theorem. For a given state space S, stochastic matrix n = [pij], 
i, j E S, and initial distribution p;, i E S, there is a sequence of random vari
ables X0 , X 1, .•• , all defined on the same probability space and taking values 
in S, such that 

for all io, ... , in E S and all n = 0, 1, .... 

PRooF. Let .?consist of all subsets of S, and take Q = S00
, j7 = ..9"00

• Define 

Po(B) = LPi· 
iEB 

P(io, ... , in-1, B)= L Pi._ 1j• 

jEB 

BE.?, 

Since yn consists of all subsets of sn, the measurability requirements of 
Theorem 2.7.2 are automatically satisfied. If we define Xn(w0, w1, ••• ) = Wn, 
n = 0, 1, ... , we obtain 

P{Xo = io, . .. ,Xn =in}= 1 Po(dWo) 1 P(wo, dw1) 

· · ·1 IB(Wo, ... , Wn)P(wo, ... , Wn-1, dwn), 

where B = {(WQ, ... , Wn): Wo = io, ... , Wn =in}. Now if JL is a measure on.Y 
with JL{j} = qj, j E S, and f: S ---+ R, then fs f dJL = Lj qj/(j) (see 2.4.12). 
Thus 

1 IB(Wo, ... , Wn)P(wo, ... , Wn-1, dwn) 

= IB(Wo, ... , Wn-1, in )P(wo, ... , Wn-1, {in}) 
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We may continue this process to obtain 

A sequence of random variables {Xn} satisfying (1) of 4.11.2 is called a 
Markov chain corresponding to the matrix n and the initial distribution {p;}; 
n is called the transition matrix of the chain and the numbers p;j are called 
transition probabilities. 

The basic properties of Markov chains are discussed by Ash (1970, Chap
ters 6 and 7). The symmetric random walk in ~k, an important special case, 
is considered in Appendix 1. 

If X1, ... , Xn are random variables on (Q, .§T, P), the random vector 
X= (X1, ••• , Xn) is a Borel measurable map from n to ~n. The same inter
pretation is possible for an infinite sequence of random variables, as follows. 

4.11.3 Theorem. Let (Qi, §?}), j = 1, 2, ... , be arbitrary measurable 
spaces, and let Pi be the projection of IJ~ 1 n i onto the jth coordinate 
space. If en, .97) is a measurable space and X: n ---+ TI~l n i, let xi = pi 0 X, 

j = 1, 2, .... Then X is measurable (relative to .rand IJ~ 1 j?j) iff each X1 
is measurable (relative to .rand§?}). In particular, if X1,X2 , ... are random 
variables, then X= (X1, X2 , ... ) is measurable: (Q, 9"')---+ (~00 , .513")()), 
.5f:J = Jf:J(~). For this reason X is sometimes called a random sequence. The 
same result holds when n is an arbitrary (possibly uncountable) product space. 

PRooF. If X is measurable, each Xi is a composition of measurable maps 
and is therefore measurable. Conversely, assume each x1 to be measurable. 
Let B = {(w1, w2, .. . ): w1 E A1, j = 1, ... , n }, the Ai E j?j, be a measurable 
rectangle in IJ~1 j?j. Then 

n 

{wE 0: X(w) E B} = n{w E 0: Xj(W) E Aj} E J7. 
j=l 

The proof for uncountable product spaces is essentially the same, with B 
replaced by a measurable rectangle in n i.9J. D 

The proof of 4.11.3 shows also that if X: n ---+ IJj=1 n i, then X is mea
surable iff each Xi, 1 :S j ::; n, is measurable. 

We close the chapter with an introduction to one of the basic limit theorems 
of probability. 

4.11.4 Weak Law of Large Numbers. Let X 1, X2, ... be independent random 
variables (not necessarily with the same distribution), each with finite mean 
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and variance. Assume the variances to be uniformly bounded by M < oo. Let 
Sn = X1 + · · · + Xn. Then [Sn- E(Sn)]!n converges in probability to 0, that 
is, given e > 0, 

as n ---+ oo. 

PROOF. By Chebyshev's inequality, 

1 [(S -ES )
2

] P{I(Sn- ESn)/nl :::_ e} :S 
82

£ n n n 

1 
= 2'2'VarSn 

en 

1 n 

= 2'2' L Var xk 
£ n k=l 

There are two special cases of particular interest. 

by 4.10.11 

1. If E(X;) = m for all i, then [Sn- E(Sn)]/n = (Sn/n)- m; hence 
Sn/n ---+ m in probability. Thus for large n, the arithmetic average of n in
dependent random variables, each with finite expectation m (and with the 
variances uniformly bounded) is quite likely to be very close to m. 

2. If X 1, X 2, .•. are independent, and for each i, P{X; = 1} = p, 
P{X; = 0} = q = 1 - p (thus we have an infinite sequence of Bernoulli 
trials), then X1 + · · · +Xn is the number of successes inn trials, hence Sn/n 
is the relative frequency of successes. Since EX; = p, we have Sn jn ---+ p 
in probability. Thus for large n, the relative frequency of successes is quite 
likely to be very close to p. 

Intuitively, the weak law of large numbers says the following. If we regard 
observation of X1, ... , Xn as one performance of an experiment, where n 
is very large but fixed, then if we repeat the experiment independently, 
(Sn - ESn)/n will be close to 0 a very high percentage of the time. 

But physically we expect something more than this. If a coin with probabil
ity p of heads is tossed over and over again, we expect the relative frequency 
to approach p in the ordinary sense of convergence of a sequence of real num
bers; in other words, given e > 0, eventually the relative frequency Sn/n gets 
and remains within e of p. Here we are considering observation of the infinite 
sequence X 1 , X 2, ... as one performance of the experiment, and what we must 
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show is that limn--->oc Sn(w)/n = p for almost every w. A statement of this 
type is called a strong law of large numbers. This subject will be considered 
in detail later. 

Problems 

1. (a) If Y 1 , Y 2 , .•. are independent random objects, show that for each n, 
(Y I, •.• , y n) and (Y n+1, y n+2· ... ) are independent. 

(b) In part (a), if Y;: (Q, .9T) ---+ (S, Y) for all i, and all Y; have the 
same distribution, show that (Y1, Y2, .. . ) and (Yn, Yn+1, .. . ) have 
the same distribution for all n. 

2. Consider the gambler's ruin problem, that is, the simple random walk with 
absorbing barriers at 0 and b. In this problem, Y 1, Y 2, .•. are indepen
dent random variables, with P{Y; = 1} = p, P{Y; = -1} = q = 1- p. 
Let Xn = 2.:::~= 1 Yk, and let x be an arbitrary integer between 1 and b- 1. 
We wish to find the probability h(x) of eventual ruin starting from x, in 
other words, the probability that x + Xn will reach 0 before it reaches b. 
Intuitive reasoning based on the theorem of total probability leads to the 
result that 

h(x) = ph(x + 1) + qh(x- 1). 

Give a formal proof of this result. (For further details, see Ash, 1970, 
Chapter 6.) 

4.12 REFERENCES 

The general outline of this chapter is based on Ash (1970), which is a text 
for an undergraduate course in probability. Measure theory is not used in the 
book, although some of the underlying measure-theoretic ideas are sketched. 
Many additional examples and problems can be found in Feller (1950) and 
Parzen (1960). 

To develop intuitive skills, we recommend The Probability Tutoring Book 
by C. Ash (1993). Another useful reference is Ross (1993). 



CHAPTER 

5 
CONDITIONAL PROBABILITY 
AND EXPECTATION 

5.1 INTRODUCTION 

In Chapter 4, we defined the conditional probability P(BIA) only when 
P(A) > 0. However, conditional probabilities given events of probability 
zero are in no sense degenerate cases; they occur naturally in many problems. 
For example, consider the following two-stage random experiment. A random 
variable X is observed, where X has distribution function F. If X takes the 
value x, a random variable Y is observed, where the distribution of Y de
pends on x. (For example, if 0 _::: x ::: 1, a coin with probability of heads x 
might be tossed independently n times, withY the resulting number of heads.) 
Thus P(x, B)= P{Y E BIX = x} is prescribed in the statement of the problem, 
although the event {X= x} may have probability zero for all values of x. 

Let us try to construct a model for the above situation. Let n = ~ 2, 

.r = .5f9(~2 ), X(x, y) = x, Y(x, y) = y. Instead of specifying the joint distri
bution function of X and Y, we specify the distribution function of X, and 
thus the corresponding probability measure Px; also, for each x we are given a 
probability measure P(x, ·)defined on B(~); P(x, B) is interpreted (informally 
for now) as P{Y E BIX = x}. 

We claim that the probability of any event of the form {(X, Y) E C} 
is determined. Reasoning intuitively, the probability that X falls into 
(x, x + dx] is dF(x). Given that this occurs, in other words (roughly), given 
X= x, (X, Y) will lie inC iffY belongs to the section C(x) = {y: (x, y) E C}. 
The probability of this event is P(x, C(x)). The total probability that (X, Y) 
will belong to C is 

P(C) = 1: P(x, C(x))dF(x). (1) 
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In the special case C = {(x, y): x E A, y E B} =Ax B, C(x) = B if x E A and 
C(x) = 0 if x ¢A; therefore 

P(C) = P(A x B)= 1 P(x, B)dF(x). (2) 

Now if P(x, B) is Borel measurable in x for each fixed B E .513'(~), then 
by the product measure theorem, there is a unique (probability) measure on 
.%'(~2 ) satisfying (2) for all A, B E .513'(~), namely, the measure given by (1). 
Thus in the mathematical formulation of the problem, we take the probability 
measure P on .r = .513'(~2 ) to be the unique measure determined by Px and 
the measures P(x, · ), x E ~. 

5.2 APPLICATIONS 

We apply the results of 5.1 to some typical situations in probability. 

5.2.1 Example. Let X be uniformly distributed between 0 and 1. If X = x, 
a coin with probability x of heads is tossed independently n times. If Y is the 
resulting number of heads, find P{Y = k}, k = 0, 1, ... , n. 

Let us translate this into mathematical terms. Let S11 = [0, 1], j?j = .513'[0, 1]. 
We have specified Px(A) = fA dx = Lebesgue measure of A, A E j?j. 

For each x, we are given P(x, B), to be interpreted as the conditional proba
bility that Y E B, given X = x. We may take S12 = {0, 1, ... , n}, .972 the class 
of all subsets of 0 2; then P(x, {k}) = (Z)xk(l - x)n-k, k = 0, 1, ... , n (this is 
Borel measurable in x). We take n = n1 X n2, .r = j?j X .972, p the unique 
probability measure determined by Px and the P(x, · ), namely, 

P(C) = 11 

P(x, C(x))dPx(x) = 11 

P(x, C(x))dx. 

Now let X(x, y) = x, Y(x, y) = y. Then 

P{Y = k} = P(s-21 x {k}) = 11 

P(x, {k})dx 

= 11 

( ~) xk(l - x)n-k dx = ( ~) ,B(k + 1, n- k + 1), 

where ,B(r, s) = Jd x'- 1 (1 - x)'- 1 dx, r, s > 0, is the beta function. We can 
express ,B(r, s) as f'(r)f'(s)/f'(r + s), where f'(r) = J0

00 x'-1 e-xdx, r > 0, is 
the gamma function. Since f'(n + 1) = nl, n = 0, 1, ... , we have 

G)kl(n- k)! 1 
P{Y = k} = (n + 1)! = n + 1' k = 0, 1, ... , n. 

In solving a problem of this type, intuitive reasoning serves as a useful 
check on the formal development. Thus, the probability that X falls near 
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x is dx; given that X = x, the probability that k heads will be obtained is 
G)xk(l- x)n-k. Integrate this from 0 to 1 to obtain the total probability. 

The next example involves an n-stage random experiment. 

5.2.2 Example. Let X 1 be uniformly distributed between 0 and 1. If X 1 = x1, 
letX2 be uniformly distributed between 0 andxl. In general, if xl =X], ... , xk 
= Xk, let Xk+l be uniformly distributed between 0 and Xk(k = 1, ... , n- 1). 
Find the expectation of Xn. 

Here we have n1 =~, jlj=..%'(~), rl=Il'J= 1Q1, .97=Il'J=1.97j, 
Xj(XJ, ... ,Xn) = Xj, j = 1, ... , n. 

Set P 1 =Lebesgue measure on (0, 1), and for each x1 E (0, 1), 

that is, 

1 
P(x1, ·)=-[Lebesgue measure on (O,x1)], 

X] 

In general, for each x 1, ••• , Xk E (0, 1), k = 1, ... , n- 1, take 

1 
P(x1, ... ,xk. ·)=-[Lebesgue measure on (0, Xk)]. 

Xk 

(We use open intervals to avoid division by zero.) 
LetP be the unique measure on S'determined by P 1 and the P(x~> ... , xk. · ). 

We may find the expectation of a Borel measurable function g from ~n to ~ 
by Fubini's theorem: 

{ gdP= { P1(dx1) { P(x1,dx2)··· { g(x~>···,xn) ln ln. J~ k. 
X P(XJ, ... , Xn-1, dxn ). 

In the present case we have g(x 1, ••• , Xn) = Xn (x 1, ... , Xn) = Xn. Thus 

This example has an alternative interpretation. Let Y1, ... , Yn be indepen
dent random variables, each uniformly distributed between 0 and 1. Let Zk 
be the product Y 1 • • • Yk, 1::: k::: n. It turns out (see Problem 2, Section 5.6) 
that (Z ~> ... , Zn) has the same distribution as (X~> ... , Xn ); hence E(Xn) 
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= E (Zn ). Since the expectation of a product of independent nonnegative ran
dom variables is the product of the expectations, E(Zn) = IJ~=l E(Yk) = 2~n 
as before. 

5.2.3 Example. Let X be a discrete random variable, taking on the positive 
integer values 1, 2, ... with probabilities PI· p2, ... (p; :::: 0, 2.::~ 1 p; = 1). If 
X= n, a nonnegative number Y is selected according to the density fn· Find 
the probability that 1 ::: X + Y ::: 3. 

Here we have 

Ql = {1, 2, ... }, 

P1 {k} = Pko 

.9?; = the class of all subsets of Q, 

k = 1, 2, ... , 

P(n, B)= 1 fn(x)dx, 

Y(w 1, U>l) = w2. 

The measure determined by P 1 and the P(n, ·)is given by 

P(F) = { P(w!, F(w! ))Pl (dw1) Jn, 
00 

= ~P(n, F(n))Pn [see 4.10.3(d)]. 
n=l 

If F = {(w~o w2): 1::: w 1 + w2::: 3}, then F(n) = {U>2: 1- n::: w2::: 3-
n}; hence 

=Ptl
2

ft(x)dx+p21
1

f2(x)dx since fn(x)=O for X<O. 

Note that if Pn > 0, then P{Y E BIX = n} is defined and equals P{X = n, 
Y E B}/P{X = n}. But P{X = n, Y E B} = P{(w1, U>2): w1 = n, W2 E B} 
= P(n, B)Pn· Thus P{Y E BIX = n} = P(n, B), as we would expect intu
itively. 

For additional examples, see Ash (1970, Chapter 4). 

5.3 THE GENERAL CoNCEPT oF CoNDITIONAL PRoBABILITY AND 

EXPECTATION 

We have seen that specification of the distribution of a random variable X, 
together with P(x, B), x real, B E .513'(~). interpreted intuitively as the con
ditional probability that Y E B given X= x, determines a unique probability 
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measure on .5fJ (~ 2 ), so that there is only one reasonable joint distribution of 
X and Y consistent with the given data. However, this somewhat oblique 
approach has not resolved the difficulty of defining conditional probabili
ties given events with probability zero. For example, if X is a random ob
ject on (Q, .<?; P), that is, X: (Q, .97) ---+ (Q', .97'), and B E §T, we may ask 
whether it is possible to define in a meaningful way the conditional probability 
P(x, B)= P(BIX = x), even though the event {X= x} may have probability 
zero for some, in fact perhaps for all, x. 

By the discussion in 5.1, if we have a reasonable conditional probability 
P(x, B), it should satisfy 

P({X E A} n B)= 1 P(x, B)dPx(x), 

where Px is the probability measure induced by X, namely, 

Px(A) = P{w: X(w) E A}, A E .97'. 

In fact, this requirement determines P(x, B) in the following sense. 

5.3.1 Theorem. Let X: (Q,$7)---+ (Q',$7') be a random object on 
(Q, §T,P), and let B be a fixed set in .r. Then there is a real-valued Borel 
measurable function g on (Q', .97') such that for each A E .97', 

P({X E A} n B)= 1 g(x)dPx(x). 

Furthermore, if h is another such function then g = h a.e. [Px]. [We define 
P(BiX = x) as g(x); it is essentially unique for a given B.] 

PRooF. Let .A(A) = P({X E A} n B), A E .97'. Then .A is a finite measure on 
.97', absolutely continuous with respect to Px[Px(A) = 0 implies .A(A) = 0]. 
The result follows from the Radon-Nikodym theorem. D 

Let us verify that the conditional probability we have just introduced coin
cides with our intuition in simple cases. 

5.3.2 Examples. (a) Let X take on only countably many values x1, x2, ... , 
with 

00 

Pi = P{X = X;} > 0, l:Pi = 1. 
i=l 

We claim that 

P(B n {X= x;}) 
g(x;) = P(BIX = x;) = , 

P{X =X;} 
i = 1, 2, .... 



206 5 CONDffiONAL PROBABILITY AND EXPECTATION 

(Since Px is concentrated on the x;, we need not bother to specify g(x) for x 
unequal to any of the x;.) Thus the general definition reduces to the elementary 
definition in the discrete case. To prove this, let Q' = {x 1, x2, .. . }, with .97' 
the collection of all subsets of Q'. If A E .'Y' and g is defined as above, 
then 

1 g(x)dPx(x) = fn, g(x)IA(x)dPx(x) = ~g(x;)IA(x;)Px{x;} 
[see 4.10.3(d)] 

= l:g(x;)P{X = x;} = l:P(B n {X= x;}) 
X;EA x,EA 

= P({X E A} n B). 

Since there is essentially only one g satisfying 

1 gdPx = P({X E A} n B), A E $7', 

the g we proposed must be correct. 
(b) Let X and Y be random variables with joint density f 

[Q=R2
, .97=33'(~2 ), X(x,y)=x, Y(x, y) = y, 

P(A)= !! f(x,y)dxdy, AE$7]. 

A 

Now {X= x} has probability zero for each x, but there is a reasonable 
approach to the conditional probability P{Y E qx = x}, as follows: 

P{x- h < X < x + h, Y E C} 
P{ Y E Cjx - h < X < x + h} = ------,---------,-

P{x-h<X<x+h} 

1:::::-h jyEC j(U, y)dudy 

J:~: ft(u)du 

where f 1 (x) = f~oo f (x, y) dy is the density of X. 
For small h, this is (hopefully) approximately 

2h fc f(x, y)dy = r f(x, y) dy. 
2hft (x) Jc !t (x) 
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We are led to define 
h(ylx) = f(x, y) 

!t (x) 

207 

as the conditional density of Y, given X= x (or for short, the conditional 
density of Y given X). Note that h is defined only when f 1 (x) =/= 0; however, 
if S = { (x, y): / 1 (x) = 0}, then P{ (X, Y) E S} = 0, since 

P{(X, Y) E S} = !! f(x, y)dxdy = 1 [loo f(x, y)dy] dx 
S {x:ft(x)=O} y=-oo 

= 1 ft(x)dx = 0. 
{x:ft(x)=O} 

Thus we may essentially ignore those (x, y) for which the conditional density 
is not defined. 

We expect that P{Y E qx = x} = fc h(ylx)dy. More generally, if BE .r 
and X= x, then B will occur iff Y E B(x). To find P{Y E B(x)IX = x}, we 
integrate h(ylx) over y E B(x). Thus we propose 

g(x) = r h(ylx)dy, 
JB(x) 

X E ~. 

as the conditional probability of B given X = x. To prove this, first note that 

g(x) = 1: IB(x, y)h(ylx)dy; 

hence g is Borel measurable by Fubini's theorem. Also, if A E .513'(~), 

P({XEA}nB)= !! f(x,y)dxdy 
xEA 

(x,y}EB 

= 1 !t (x) r h(ylx)dydx 
xEA }yEB(x) 

= 1 g(x)ft(x)dx 

= 1 g(x)dPx(x) [see 4.10.3(c)]. 

Therefore g(x) = P(BIX = x). 
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In this example we may look at the formula f(x, y) = / 1 (x)h(ylx) in two 
ways. If (X, Y) has density f, we have a notion of conditional probability: 
P{YE CIX = x} = fch(ylx)dy. On the other hand, suppose that we specify 
that X has density /1 , and whenever X = x, we select Y according to the 
density h(·ix); in other words, we specify P(x,B) = JBh(ylx)dy,B E..%'(~). 
A unique measure P on .33'(~2 ) is determined, satisfying, for A, BE..%'(~), 

P{X E A, Y E B} = 1 P(x, B)f1 (x)dx 

= jj ft(x)h(ylx)dxdy. 
xeA 
yeB 

Therefore (X, Y) has density f(x, y) = / 1 (x)h(ylx). 
Thus we have two points of view. We may regard the conditional density of 

Y given X= x as ultimately derived from the joint density of X and Y. On the 
other hand, we may regard the observation of X and Y as a two-stage random 
experiment, where the distribution of Y at stage 2 depends on the value of X 
at stage 1. The above discussion shows that the assignment of probabilities to 
events involving (X, Y) is the same in either case. 

We may also define conditional densities in higher dimensions. For example, 
if X, Y, Z, W have joint density f, we define (say) the conditional density of 
(Z, W), given (X, Y), as 

h( I ) _ f (x, y, z, w) 
Z, W X, y - f ( ) , 

XY X, Y 

where fxr(x, y) = f~oo f~oo f(x, y, z, w)dzdw. If BE .33'(~4 ), then, exactly 
as before, 

P(BIX = x, Y = y) = j j h(z, wlx, y) dz dw. 

B(x,y) 

This is verified by proving that, for A E .33'(~2 ), 

P({(X, Y) EA} nB) = 1 P(BiX =x, Y = y)fxy(x, y)dxdy. 

(c) Let (Qt. §il) and (Q2, 92) be given, with no probability defined as 
yet. Take Q = Ql X n2, .97= .9?; X $72, X(wt. w2), Y(w!, W2) = W2. Assume 
that we are given Px, a probability measure on (Qt. §il ), and also that we 
are given P(x, B), x E Q 1, B E $72, a probability measure in B for each fixed 
x, and a Borel measurable function of x for each fixed B. (We are specifying 
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the distribution of X and the conditional distribution of Y, given X = x.) By 
the product measure theorem, there is a unique measure P on .r such that 

P{X E A, Y E B} = P(A x B) = 1 P(x, B) dPx(x). 

It follows that P(x, B) is in fact the conditional probability P{Y E BIX = x}. 
We now consider conditional expectation. Let X and Y be random variables 

on (Q, .r, P); we ask for a reasonable definition of the expectation of Y given 
that X= x, written E(YiX = x). Intuitively, E(YiX = x) should reflect the 
long-run average value of Y in a sequence of independent trials when we look 
only at those observations on which {X= x} has occurred. 

If X and Y are discrete and we are given that X = x, the conditional 
probability of an event involving Y is governed by the set of conditional prob
abilities p(ylx) = P{Y = yiX = x}. Thus a reasonable figure for E(YiX = x) 
is Ly yp(ylx). Similarly, if (X, Y) is absolutely continuous, and h = h(ylx) is 
the conditional density of Y given X= x, we expect that E(YiX = x) should 
be f~oo yh(ylx)dy. What we need is a general framework that includes these 
special cases. 

Let Y be a random variable (or an extended random variable) on (Q, !T, P), 
and let X: (Q, .97)-+ (Q', .97') be a random object. Our general definition of 
conditional probability hinges on a version of the theorem of total probability: 

P({X E A} n B)= 1 P(BIX = x)dPx(x), A E .97', 

There is a closely related "theorem of total expectation," which may be de
veloped intuitively as follows. The probability that X falls near x is dPx(x); 
given that X= x, the average value of Y is what we are looking for, namely, 
E(YiX = x). It is reasonable to hope that the total expectation may be found 
by adding all the contributions: 

E(Y) = { E(YiX = x)dPx(x). Jn, 
To develop this further, we replace Y by YI1xEAio where A E .97'. If x E A, 
we expect that E(YI1xEAJIX = x) = E(YiX = x) since X(w) = x E A implies 
IIXEAJ(w) = 1. If x ¢A, we expect that E(YI1xEAJIX = x) = 0. Replacing Y 
by YI1xEAI in the above version of the theorem of total expectation, we obtain 

or 

E(Yl{XEAJ) = { E(Yl{XEAJiX = x)dPx(x) Jn, 

1 Y dP = { E(YiX = x)dPx(x). 
{XEA} }A 

In fact, this requirement essentially determines E(YIX = x). 
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5.3.3 Theorem. Let Y be an extended random variable on (Q, .'#', P), and 
X: (Q,.97)---+ (Q',.97'), a random object. If E(Y) exists, there is a function 
g: (Q', .97')---+ (i, .513') such that for each A E !7', 

{ Y dP = { g(x)dPx(x). 
J{XEA} }A 

(As usual, .:fl denotes the class of Borel sets.) Furthermore, if his another such 
function, then g = h a.e. [Px]. [We define E(YiX = x) as g(x); it is essentially 
unique for a given Y.] 

PRooF. Let 

A(A) = { Y dP = { Y dP, 
j{XEA} lx- 1 (A) 

A E.97'. 

Then A is a countably additive set function on .97' by 1.6.1, and is absolutely 
continuous with respect to Px since Px(A) = P{X E A}. The result follows 
from the Radon- Nikodym theorem. D 

Conditional expectation includes conditional probability as a special case, 
as we now prove. 

5.3.4 Corollary. If X is a random object on (Q, !JT, P) and B E .rfr, then 

E(IBIX = x) = P(BiX = x) a.e. [Px ]. 

PRooF. In 5.3.3, set Y = I B; the defining equation for conditional expectation 
becomes 

P({X E A} n B)= 1 E(IBIX = x)dPx(x). 

The result now follows from 5.3.1. D 

Let us compare the general definition with the intuitive concept in special 
cases. 

5.3.5 Examples. (a) Let X take on only countably many values x1, x2, .•. 

(assume all P{X = xd > 0). We have seen that 
/ 

BE.'¥: 
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Thus we should expect that 

Proceeding from indicators to nonnegative simple functions to nonnegative 
measurable functions to arbitrary measurable functions, we should like to 
believe that if E (Y) exists, 

E(YiX =X;)= 
1 1 y dP, 

P{X = x;} {X=xd 
i = 1, 2, .... (1) 

[We are not proving anything here since we do not yet know, for example, 

that 

To establish (1), let 

1 1 g(x;) = Y dP, 
P{X =X;} {X=x,} 

i = 1, 2, .... 

(We may assume Q' = {x~o x2, •• • }, withY' the class of all subsets of Q'.) 
Then 

1 1 1 Y dP = :2: P{X = x;} _ Y dP 
{XEA} x,EA P{X - x;} {X=xd 

= l:P{X = X;}g(x;) = 1 g(x)dPx(x), 
x,EA A 

A E .97', 

as desired. 
In the special case when Y is discrete, (1) assumes a simpler form. If Y 

takes on the values y1, Y2 •... , we obtain (using countable additivity of the 
integral) 

E(YIX =X·)=""" . P{X =X;, y = Yj} 
I ~YJ P{X =X;} 

1 

= :2: YjP{Y = YjiX =X;}. 
j 

(2) 
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(b) Let B E !7, and assume P(B) > 0. If E(Y) exists, we define the con
ditional expectation of Y given B, as follows. Let X= IB, and set E(YIB) 
= E(YIX = 1). This is a special case of (a); we obtain [see (1)] 

in other words, 

E(YIB) = -
1
- { Y dP, 

P(B) }B 

E(YIB) = E(YIB). 
P(B) 

(3) 

(c) Let X and Y be random variables having a joint density f, and let 
h = h(ylx) be the conditional density of Y given X. We claim that if E(Y) 
exists, 

E(YIX = x) = 1: yh(ylx)dy. 

To prove this, note that 

1 Y dP = jj yf(x, y)dxdy 
{XEA} 

{(x,y): XEA} 

proving (4). 

=lEA !t (x) [J: yh(ylx)dy] dx 

= 1 [J: yh(ylx)dy] dPx(x), 

by Fubini's theorem 

(4) 

Notice also that if q is a Borel measurable function from~ to~ and E[q(Y)] 
exists, then 

E(q(Y)iX = x) = 1: q(y)h(ylx)dy (5) 

by the same argument as above. Similarly, if X and Y are discrete [see (a), 
(2)] and E[q(Y)] exists, then 

E(q(Y)IX = x;) = :2: q(yj)P{Y = YjiX = x;}. 
j 

(6) 
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(d) Let (Q 1,37i) and (rl2,.9"2) be given, with no probability defined as 
yet. Let Q = Q1 x n2, .r = §'! x .972, X (x, y) = x, Y (x, y) = y. Assume that 
a probability measure Px on§'! is given, and also that we are given P(x, B), 
x E Qt. B E .9'2, a probability measure in B for each fixed x, and a Borel 
measurable function of x for each fixed B. Let P be the unique measure on .r 
determined by Px and the P(x, · ). 

Iff: (Q2, .972)--+ (i, $! (i:)) and E[f(Y)] exists, we claim that 

E(f(Y)IX = x) = { f(y)P(x, dy). 
ln2 

To see this, we note, with the aid of Fubini's theorem, that 

Problems 

1 f(Y)dP= { f(Y)l{XEA)dP 
{XEA} ln 

= { { f(Y(x, y))IA(x)P(x, dy)dPx(x) 
Jn 1 ln2 

= 1 [1
2 

f(y)P(x, dy)] dPx(x). 

(7) 

1. Let X and Y be random variables with joint density f (x, y). Indicate how 
to compute the following quantities. 
(a) E(g(X)IY = y), where g is a Borel measurable function from R toR 

such that E[g(X)] exists; 
(b) E(YIA), where A= {X E B}, 35' E (~); 

(c) E(XIA), where A= {X+ Y E B}, 35' E (~2 ). 
2. Let X be a random variable with density fo("A). If X ="A, n indepen

dent observations X 1, ••• , Xn are taken, where each X; has density h. (x ). 
Indicate how to compute the conditional expectation of g(X), given 
X1 =X], ... ,Xn =Xn. 

3. Let X be a discrete random variable; if X = x, let Y have a conditional 
density h(ylx). Show that 

P{X _ xiY _ y} __ P_{X_-_-_x_}h----=(y---'-lx_)_ 
- - - 2.:: P{X = x'}h(ylx') 

x' 
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4. Let X be an absolutely continuous random variable. If X = x, let Y be 
discrete, with P{Y = yiX = x} = p(ylx) specified. Show that there is a 
conditional density of X given Y, namely, 

where 

h(xly) = f x(x)p(ylx), 
py(y) 

Py(Y) = P{Y = y} = 1: fx(x)p(ylx)dx· 

5. (a) Let X be a discrete random variable: If X = A, n independent ob
servations Xt> ... ,Xn are taken, where each Xi has density /i.(x). 
Indicate how to compute E(g(X)IX 1 = x 1, ••• , Xn = Xn ). 

(b) Let X be an absolutely continuous random variable. If X = A, n inde
pendent observations X 1, ..• , Xn are taken, where each Xi is discrete 
with probability function Pi.(x). Indicate how to compute E(g(X)iXl 
=X], ... ,Xn = Xn). 

6. If X is a random vector with density f, and A= {X E B0 }, Bo E .513'(~n), 

show that there is a conditional density for X given A, namely, 

{ 

f(x) 

f(xiA) = ~(A) 
if 

if 

x E B0 , 

x ¢ Bo. 

[The interpretation of the conditional density is that 

P{X E BIA} = 1 f(xiA)dx, 

7. Let B1, B2, ... be mutually exclusive and exhaustive events with strictly 
positive probability. Establish the following version of the theorem of 
total expectation: If E(X) exists, then 

00 

E(X) = l:P(Bn)E(XIBn). 
n=l 

8. Let X and Y be nonnegative random variables, such that (X, Y) has in
duced probability measure 
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where, forB E 33'([0, oo) x [0, oo)), P 1 = point mass at (1, 2), that is, 

and 

if 
if 

(1, 2) E B, 
(1, 2) ¢ B, 

P2 (B) = j j e-x e-Y dx dy. 

B 

Thus with probability ~, (X, Y) = (1, 2); with probability ~,X and 
Y are chosen independently, each with density e-x, x ::=: 0. Calculate 
P{Y E BIX = x}, x:::: 0, BE 33'[0, oo). (Hint: think like a statistician; if you 
observe that X = 1, it is a moral certainty that you are operating under P 1; if 
X =1= 1, it is an absolute certainty that you are operating under P 2.) 

5.4 CoNDITIONAL ExPECTATION GivEN A u-FIELD 

It will be very convenient to regard conditional expectations as functions 
defined on the sample space Q. Let us first recall the main result of the 
previous section. 

If Y is an extended random variable on (Q, !JT, P) whose expectation exists, 
and X: (Q, $f)--+ (Q', $f') is a random object, then g(x) = E(YjX = x) is 
characterized as the a. e. [Px] unique function: (Q', $f') --+ (R, ..%') satisfying 

{ Y dP = 1E(YIX = x)dPx(x), 
j{XEA} A 

A E$f'. (1) 

Now let h(w) = g(X(w)); then h: (Q, $f)--+ (R, ..%') [see Fig. 5.4.1]. 

(n, 7) ~ (n; :7') L (R, .;e) 

~ 
h 

Figure 5.4.1 

Thus h(w) is the conditional expectation of Y, given that X takes the value 
x = X(w); consequently, h measures the average value of Y given X, but his 
defined on Q rather than Q'. 

It will be useful to have an analog on (1) for h. We claim that 

{ hdP = { YdP 
J{XEA} J{XEA} 

for each A E .r'. (2) 
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To prove this, note that 

1 
hdP = { g(X(w))IA (X(w)) dP(w) 

{XEA} ln 

= { g(x)IA(x)dPx(x) 
ln· 

= 1 g(x) dPx(x) 

=1 YdP 
{XEA} 

[by (1)]. 

[by 4.10.3(b )] 

Since {X E A}= x~I (A)= {wE Q: X(w) E A}, we may express (2) as fol
lows: 

[ hdP= [ YdP for each C E x- 1 (.97'), (3) 

where x- 1(.9"'') = {X- 1(A): A E .9"''}. 
The cr-field x- 1 (.97') will be very important for us, and we shall look at 

some of its properties before proceeding. 

5.4.1 Definition. Let X: (Q, .97) ---+ (Q', .97') be a random object. The cr
field induced by X is given by 

cr(X) = x- 1 (.97'). 

Thus a set in cr(X) is of the form {X E A} for some A E .97'. In particu
lar, if X = (X 1, ... , Xn ), a random vector, cr(X) consists of all sets {X E B}, 
BE $/(Rn). 

The induced cr-field has the following properties. 

5.4.2 Theorem. Let X: (Q, .97)---+ (Q', 37'). 
(a) The induced cr-field cr(X) is the smallest cr-field ~ of subsets of Q 

making X measurable relative to ~ and .97'. 
(b) If Q'=njnj.Y'=lljjlj so that X=(X1,X2, ... ), where X/ 

(Q, .97) ---+ (Q j, .97}) is the jth coordinate of X, then cr(X) is the smallest 
cr-field .o/ of subsets of Q making each Xj measurable relative to ~and .9j. 

(c) If Z: (Q, cr(X))---+ (i~ ..%') (or (~ • ..%')), then Z =foX for some f: 
(Q',Y')---+ (i,.5t5'). Conversely, if Z=foX and f: (Q',Y')---+ (i,..%'), 
then Z: (Q, cr(X)) ---+ (i, ..%'). 
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PRooF. (a) If A E .97', then x-t (A) E cr(X) by definition of cr(X); hence 
cr(X) makes X measurable. If .o/ is any cr-field making X measurable, x- 1 (A) E 

~ for all A E .97'; hence cr(X) C ~-
(b) By 4.11.3, X is measurable relative to ~and .97' iff each X j is mea

surable relative to ~and jlj. The result follows from (a). 
(c) Assume Z: (Q, cr(X))-+ (i:, c%'). If Z is an indicator lc, C E cr(X), 

then C = x- 1(A) for some A E .r'. Iff= lA, then faX= IIXEAJ = Ic = Z. 
If Z = I::Z"" 1 Zkl ck is a finite-valued simple function and I ck = fk a X as above, 
then Z =faX, where f = I::Z=l Zdk· 

In general, let Z 1, Z2, ... be finite-valued simple functions such that 
Zn -+ Z. We can express Zn = fnaX as above; define f = limn--->oc fn where 
the limit exists, and 0 elsewhere. Then 

The converse holds because a composition of measurable functions is mea
surable. D 

Note that 5.4.2(b) holds equally well for uncountable product spaces, be
cause, as we observed at the time, 4.11.3 extends to arbitrary products. For 
an extension of 5.4.2(c), see Problem 1. 

Now let us return to Eq. (3) at the beginning of this section: 

[ hdP= [ YdP, C E cr(X), 

where h = g aX, g(x) = E(YIX = x). Since g: (Q', .97')-+ (i:, ._%>), we have 
h: (Q, cr(X)) -+ (i:, ._%') by 5.4.2(c). This fact, along with (3), characterizes 
h, and gives us the concept of conditional expectation given a cr-field. 

5.4.3 Theorem. Let Y be an extended random variable on (Q, .r, P), ~ a 
sub cr-field of .r. Assume that E(Y) exists. Then there is a function E(YI ~): 
(Q, ~) -+ (i:, ._%'), called the conditional expectation of Y given ~. such that 

[ Y dP = [ E(Yi~)dP for each C E ~-

Any two such functions must coincide a.e. [P]. [Note that we cannot simply 
set E(YI~) = Y, as E(YI.o/) is required to be measurable relative to :7'.] 
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PRooF. Let A.( C)= fc Y dP, C E Y?. Then).. is a countably additive set func
tion on ::9', absolutely continuous with respect to P; the result follows from 
the Radon-Nikodym theorem. D 

5.4.4 Comment. If g(x) = E(YIX = x) and h(w) = g(X(w)), then by 5.4.3, 
h = E(Yi.o/), where Yf' = cr(X); for convenience we shall usually write 

h = E(YIX). 

[For example, if E(YIX = x) = x2, then E(YIX) = X2
.] 

We have seen that the conditional expectation g(x) = E(YiX = x), x E Q', 
can be transferred to Q by forming h(w) = g(X(w)). Conversely, any condition 
expectational E(Yi YJ'), ::9' an arbitrary sub cr-field of .'Y, arises from a random 
object X in this way. Simply take X: (Q, .97) -+ (Q, .'7") to be the identity 
map: X(w) = w, wE Q. Then x~ 1 (Yf') = Y?, so if g(x) = E(YIX = x), then 
h = E(Yicr(X)) = E(Yi.o/). 

Now intuitively, E(YI ::9') = E(YiX) is the average value of Y, given that 
X is known. But what does it mean to "know" X: (Q, .97) -+ (Q, ~)? The 
events involving X are sets of the form {X E G}, G E Y?, and since X is the 
identity map, {X E G} =G. Since an event corresponds to a question that has 
a yes or no answer, E(YIYf') may be interpreted as the average value of Y(w), 
given that we know, for each G E Y?, whether or not wE G. Some examples 
may help to make this clear. 

5.4.5 Example. (a) Let X be discrete, with values x 1, x2, ••• ; take 
Q' = {x1,x2, ... }, with .97' the class of all subsets of Q', and assume 
P{X = x;} > 0 for all i. We have seen in 5.3.5(a) that 

g(x;) = E(YIX = x;) = 
1 1 Y dP. 

P{X =xi} {X=x,J 

Let h = E(YiX), that is, h(w) = g(X(w)). Then h has the constant value g(x;) 
on the set {X = x;}, and Yf' = x~ 1 (.97') consists of all unions of the sets 
{X= x;}. Knowledge of the value of X(w) is equivalent to knowledge, for 
each G E Y?, of the membership or nonmembership of wE G. 

(b) Let X and Y be random variables with a joint densi
ty f. Let Q = R2, .9' = Ji3'(R2

), P(B) = f fB f(x, y)dx dy, BE .g?',X(x, y) 
= x, Y(x, y) = y. Take Q' = ~ • . 'Y' = ._%'(~). We have seen in 5.3.5(c) that 
g(x) = E(YIX = x) = f~oo yho(ylx)dy, where ho is the conditional density 
of Y given X. Let h = E(YiX), that is, h(w) = g(X(w)) or h(x, y) = g(x). 
Thus E (Y IX) is constant on vertical strips; also, x~ 1 (.97') consists of all sets 
B x ~.BE.%'(~). Since x E B iff (x, y) E B x ~. information about X(w) 
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[obtained intuitively by asking questions of the form "does X(w) belong to 
B ?"] is equivalent to information about membership of w in sets of ~-

We also have a general concept of conditional probability given a cr-field. 

5.4.6 Theorem. Let (Q, !7, P) be a probability space, .~a sub cr-field of 
.r; fix B E JT. There is a function P(BI ~ ): (Q, ~) ---+ (R, ..%'), called the 
conditional probability of B given ~ such that 

P(C nB) = l P(Bi~)dP for each C E ~-

Any two such functions must coincide a.e. [P], and in fact 

a.e. [P]. 

PRooF. Let A( C)= P(C n B), C E ~- Then A is a countably additive finite
valued set function on ~. absolutely continuous with respect to P; the exis
tence and a.e. [P] uniqueness of P(BI~) follow from the Radon-Nikodym 
theorem. (Since A is finite, the range of P(Bi~) may be taken as ~rather 
than i:.) The connection between conditional probability and conditional ex
pectation follows from 5.4.3 withY= lB. D 

5.4.7 Comment. If g(x) = P(BiX = x), X a random object, then g(x) 
= E(IBIX = x) a.e. [Px] by 5.3.4. If h(w) = g(X(w)), then h = E(!Bicr(X)) 
by 5.4.4, hence h = P(Bicr(X)) by 5.4.6. To summarize: If g(x) = P(BIX = x) 
and h(w) = g(X(w)), then 

h = P(Bi~). ~= cr(X). 

For convenience we shall usually write 

h = P(BiX). 

Problems 

1. Let X: (Q, .97)---+ (Q', .97') and Z: (Q, .97(X))---+ (Q", .97"). We investi
gate conditions underwhichZ=f oX for some f: (Q', .97')---+ (Q", .97"). 
By 5.4.2(c), such an f can be found if Q" = R, .97" = 33'(R). 
(a) Assume that .97" separates points; in other words, if a, b E Q", 

a =I= b, there are disjoint sets A, B E .97" such that a E A, b E B (this 
will always hold if .97" contains all singletons). Show that there 
is a function f: Q' ---+ Q" (not necessarily measurable) such that 
Z = J oX. 

(b) Assume that Z =foX, where f: Q'---+ Q". If X(Q) E .97' and 
j(Q'- X(Q)) consists of a single point, show that f is measurable 
relative to .97' and .97". 
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Thus by (a) and (b), a measurable f such that Z =foX can be 
found if .97" separates points and X (Q) E .97'. 

5.5 PRoPERTIES oF CoNDITIONAL EXPECTATION 

The conditional expectation E(YiX = x) is a more intuitive object than 
the conditional expectation E (Y I·~); however, the intuition cannot easily be 
pushed beyond the case in which X is a finite-dimensional random vector. 
Thus in formal arguments in which ~is an arbitrary cr-field, we are forced to 
use E(Yi~). 

For convenience, we develop the basic properties of conditional expecta
tion in pairs, one argument for E(YI ~) and another (usually very similar) 
for E(YiX = x). Theorems about conditional probabilities are obtained by 
replacing Y by IB, and results concerning E(YIX) are obtained by setting 
~=.97(X). 

In the discussion to follow, Y, Y 1, Y 2, .•• are extended random variables 
on (Q, .§T, P), with all expectations assumed to exist; X: (Q, .97)--+ (Q', .97') 
is a random object, and .~is a sub cr-field of§'. The phrase "a.e." with no 
measure specified will always mean a.e. [P]. If Z: (Q, .'9") --+ (i, .513'), we 
say that Z is .~-measurable, and if g: (Q', .9'') --+ (i, .513'), we say that g is 
!Y' -measurable. 

5.5.1 Theorem. If Y is a constant k a.e., then 

(a) E(YI~) = k a.e. 

(a') E(YIX = x) = k a.e. [Px]. 

If Y 1 :S Y 2 a. e., then 

(b) E(YJI·~) :S E(Y2!~) a.e. 

(b') E(Y tiX = x) :S E(Y2IX = x) a.e. [Px]. 

[A statement such as E(Yti.'7")::; E(Y2I~) a.e. means that if Zj is a version 
of E(Yji~), in other words, Zj satisfies the defining requirement 5.4.3, then 
zl :s z2 a.e.] 

(c) IE(YI.'7')1 :S E(IYII·~) a.e. 

(c') IE(YIX = x)l :S E(IYIIX = x) a.e. [Px]. 

PRooF. (a) The function constant at k is .'7'-measurable and 

CE ~-
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(a') If g(x) = k, x E Q', then g is .97'-measurable and 

1 Y dP = { kdPx. 
{XEA} }A 

(b) fc YtdP ~ fc Y2dP; hence 

l E(Yti~)dP ~ l E(Y2i~)dP 

The result follows from 1.6.11. 
(b') f1xEA} Yt dP :S f1xEA} Y2dP; hence 

for each C E ~-

1 E(Yt/X = x)dPx ~ 1 E(Y2iX = x)dPx for each A E .97'. 

The result follows from 1.6.11. 
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Parts (c) and (c') follow from (b) and (b'), along with the observation that 
-IYI :s Y::; IYI. D 

We now prove an additivity theorem for conditional expectations. 

5.5.2 Theorem. (a) If a, b E ~. and aE(Y 1) + bE(Y 2) is well defined (not 
of the form oo- oo), then E(aY1 + bY2j.o/) = aE(Y tl~) + bE(Y 2!~) a.e. 

(a') If a, b E ~ and aE(Y t) + bE(Y 2) is well defined, then 

PRooF. (a) If C E ~. 

[(aY 1 +bY2)dP= [aY1dP+ lbY2dP 

by the additivity theorem for integrals 

= l aE(Yti~)dP + l bE(Y2i~)dP 
by definition of conditional expectation. 

Thus fcaE(Yti~)dP+ fcbE(Y2i~)dP is well defined, so again by the 
additivity theorem for integrals, 

as desired. 
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(a') This is done as in (a), with C replaced by {X E A} and 

by 

In the future, we shall dispose of proofs of this type with a phrase such as 
"same as (a)." D 

The monotone convergence theorem and the fact that a nonnegative series 
can be integrated term by term have exact analogs for conditional expectations. 

5.5.3 Theorem. If Yn :::: 0 for all n and Yn t Y a.e., then 

(a) E(Ynl~) t E(YI~) a.e. 

(a') E(Yn IX= x) t E(YIX = x) a.e. [Px]. 

If all Yn :::: 0, then 

(b) E (~Ynl~) = ~E(Ynl~) a.e. 

(b') E (~YniX=x) = ~E(YniX=x)a.e. [Px]. 

In particular, if B1, B2, ... are disjoint sets in .§T, 

(c) P (Ql Bnl~) = ~P(Bnl~) a.e. 

(c') P (Ql BniX =X) = ~P(Bn IX= x) a.e. [Px]. 

PRooF. (a) fc YndP = fcE(Yn l~)dP, C E ~; by 5.5.1(b), the E(Yn I~) 
increase to a ~-measurable function h. By the monotone convergence theorem, 
fc Y dP = fc hdP; hence h = E(YI~) a.e. 

(a') Same as (a). 
(b) By 5.5.2(a), E(l.::Z=t Ykl~) = I::Z=t E(Ykl~) a.e. Let n-+ oo and 

apply part (a) to obtain the desired result. 
(b') Same as (b). 
Finally, (c) is a special case of (b), and (c') of (b'). D 
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If we take the expectation of a conditional expectation, the result is the 
same as if we were to take the expectation directly. This is actually a special 
case of the defining equations of Theorems 5.4.3 and 5.3.3. 

5.5.4 Theorem. (a) E[E(YI.'Y')] = E(Y); hence if Y is integrable, so is 
E(YI~). 

(a') { E(YIX = x)dPx(x) = E(Y). 
ln· 

PRooF. (a) fn Y dP = fnE(YI.'Y')dP. 

(a') { E(YIX = x)dPx(x) = 1 Y dP = { Y dP. D 
Ja ~eat Jn 

We now prove the dominated convergence theorem for conditional expec
tations. 

5.5.5 Theorem. If IYn I :S Z for all n, with E(Z) finite, and Yn -+ Y a.e., then 

(a) E(Yni.'Y')-+ E(YI.'Y') a.e. 
(a') E(Yn IX= x)-+ E(YIX = x) a.e. [Px]. 

PRooF. (a) Let Zn = supk>n IYk- Yl; then Zn ..j, 0 a.e. Now E(Yni.'Y') and 
E(YI.'Y') are a.e. finite by 5.S.4(a), and IE(Ynl~)- E(YI.'Y')I :s E[IYn- Yl 
I.'Y'] by 5.5.1(c) and 5.5.2(a); this is less than or equal toE(Znl.o/) by 5.5.1(b). 
Thus it suffices to show thatE(Znlg:')-+ 0 a.e. By 5.5.1(b), E(Znlgc') ..j, h a.e. 
for some .'Y'-measurable function h. Since 0::; Zn ::; 2Z, which is integrable, 
we have 

0 :S 1 hdP :S 1 E(Znl~)dP = 1 Zn dP-+ 0 

by the dominated convergence theorem. Thus h = 0 a.e., as desired. 
(a') Same as (a). D 

The extended monotone convergence theorem and Fatou' s lemma may be 
proved for conditional expectations, as follows. 

5.5.6 Theorem. Assume Yn 2: Z for all n, where E(Z) > -oo. 

(a) If Yn t Y a.e., then E(Yni.'Y') t E(YI~) a.e. 
(a') If Yn t Y a.e., then E(YniX = x) t E(YIX = x) a.e. [Px]. 
(b) liminfn->eJoE(Yni.'Y') 2: E(liminfn--->oo Ynl.o/) a.e. 
(b') lim infn --->oo E (Yn IX = X) 2: E (lim infn--->oo Yn IX = X) a. e. [Px]. 

Now assume Yn :S Z for all n, where E(Z) < +oo. 
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(c) If Yn ..j, Y a.e., then E(Yni.'Y') ..j, E(YI:9') a.e. 
(c') If Yn ..j, Y a.e., then E(YniX = x) ..j, E(YIX = x)a.e. [Px]. 
(d) lim SUPn->eJo E(Yn 1.'9') :S E(lim supn--->oo Yn 1.'9') a.e. 
(d') lim supn--->oo supE(Yn IX= x) :S E(lim supn--->oo Yn IX= x) a.e. [Px]. 

PRooF. (a) If C E :7' then fc YndP = fcE(Yni.'Y')dP, and E(Ynl.'7") in
creases to a limit h a.e. By the extended monotone convergence theorem, 
fc Y dP = fc h dP, and therefore h = E(YI.'Y') a.e. 

(b) Let Yn' = infk;::n Yk; we then have Yn' t Y' = liminfn--->oo Yn. By (a), 
E(Yn'l~) t E(Y'I.'Y') a.e. But Yn' :S Yn, so 

E(Y'I.'Y') = lim E(Yn'l.o/) = liminfE(Yn'l:7') 
n----*00 n----*00 

:S lim inf E (Yn 1.'9' ) by 5.5.l(b). 
n--->oo 

(c) This follows from (a) upon replacing all extended random variables 
by their negatives. 

(d) E(lim sup Yn 1.'9') = -E (lim inf(- Yn )1.'9') 
n--->00 

2: - lim inf E (-Yn 1.'9') 
n--->oo 

by (b) 

=lim supE(Yn 1.'9'). 
n--->oo 

The proofs of (a') to (d') are the same as the proofs of (a) to (d). D 

Thus far we have examined E(YI.'Y') and E(YIX = x) under various hy
potheses on Y; now we impose conditions on .'9' and X. 

5.5.7 Theorem. (a) E(YI{0, Q}) = E(Y) a.e. 

(a') If X is a constant b a.e., then E(YIX = x) = E(Y) a.e. [Px]. 
(b) E(YI.97) = Y a.e. 
(b') If X: (Q, .97)-+ (Q, .97) is the identity map, then E(YIX = w) 

= Y(w) a.e. [P]. 

PRooF. (a) fc Y dP = fcE(Y)dP if C = 0 or Q. 
(a') If b E A, 

1 XdP= {YdP=E(Y)=lE(Y)dPx. 
~~} k A 

If b ¢A, 

1 YdP= { YdP=0=1E(Y)dPx. 
{X~} J0 A 
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(b) fc Y dP = fc Y dP, C E .§T, and Y is jl:.measurable. 
(b') f 1xEAJ Y dP =fAY dP, andY is $f'(= $f)-measurable. D 

The following result is preparatory to the next theorem. 

5.5.8 Lemma. Iff: (Q, .'Y')-+ (i, ..%'), JL is a measure on ;y: and B is an 
atom of .'Y' relative to JL; that is, B E ~. JL(B) > 0, and if A E .'Y', A c B, then 
JL(A) = 0 or JL(B -A) = 0, then f is a.e. constant on B. 

PRooF. If X E "i and jt{W E B: f(w) < x} = 0, then jt{W E B: f(w) < y} 
= 0 for ally::; x. Let k = sup{x E "i: JL{w E B: f(w) < x} = 0}. Then 

JL{W E B: f(w) < k} = f.L[ l) {wEB: f(w) < r}] = 0. 
r ratiOnal 

r<k 

If x > k, then JL{W E B: f(w) < x} > 0; hence JL{W E B: f(w) 2: x} = 0 
since B is an atom. Thus 

JL{W E B: f(w) > k} = JL [ l) {wEB: f(w) 2: r}] = 0. 
r ratiOnal 

r>k 

It follows that f = k a. e. on B. D 

We now show that conditional expectation is an "averaging" or "smoothing" 
operation; if B is an atom of ;y: E (Y I.'Y') = k a. e. on B, where k is the average 
value of Yon B. 

5.5.9 Theorem. (a) Let B be an atom of .'Y' relative toP. Then 

E(Yi~) = _1_ { y dP = E(YIB) 
P(B) }B P(B) 

a.e. on B. 

As a special case, let B 1, B2, ••• be disjoint sets in $fwhose union is Q, with 
P(Bn) > 0 for all n. Let .'Y' be the minimal cr-field over the Bn, so that .'Y' is 
the collection of all unions formed from the Bn. Then 

E(Yi.'Y') = -
1

- { Y dP 
P(Bn) }Bn 

a.e. on Bn, n = 1, 2, .... 

(a') If B = {X = x0 } and P(B) > 0, then 

E(YiX = Xo) = -
1
- r y dP. 

P(B) }B 
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PRooF. (a) By 5.5.8, E(Yi.o/) is a constant k a.e. on B. Since fAY dP 
=fA E(YI;yo)dP for all A E ;yo, in particular for A= B, we have fB Y dP 
= kP(B), as asserted. 

(a') We first show that B is an atom of .o/ = Y(X). For assume 
A E .'Y' and x~ 1 (A) C B = x-1{xo}. If xo E A, then x- 1{xo} C x- 1(A); hence 
x- 1 (A)= B. If Xo ¥A, then x- 1(A) n x- 1{xo} = 0; but x- 1(A) c x- 1{xo}, so 
x- 1(A) = 0. 

Now let g(x) = E(YiX = x), h(w) = g(X(w)) = E(Yi;yo)(w). By (a), 
h(w) = k = E(YIB)/P(B) a.e. on B. If w is any point of B such that h(w) = k, 
then g(X(w)) = g(x0 ) = k, the desired result. D 

We now consider successive conditioning relative to two cr-fields, one of 
which is coarser than (that is, a subset of) the other. The result is that no 
matter which conditioning operation is applied first, the result is the same as 
the conditioning with respect to the coarser cr-field alone. This is intuitively 
reasonable; for example, to find the average value of a real-valued function 
f defined on [0, 3], we may compute at. the average off on [0, 1], and a2, 
the average off on [1, 3]; the average off on [0, 3], namely, 1 f~ f(x)dx, 
. th 1 2 1s en 3a1 + 3a2. 

5.5.10 Theorem. (a) If ;yo1 C ;yo2, then E[E(YI;yo2)1;yotl = E(YI;yod a.e. 
(a') Iff: (Q', .97')-+ (Q", .97"), then E[E(YiX)if oX]= E(Yif oX) a.e. 
(b) If .'7"1 c .'7"2, then E[E(YI;yodl.'7"2] = E(Yi.'7"1) a.e. 
(b') Iff: (Q',.'Y')-+ (Q",.'Y"), then E[E(Yif oX)iX] = E(Yif oX) a.e. 

PRooF. (a) If C E ;yot. then fcE(YI;yo1)dP = fc Y dP = fcE(Yi;yo2)dP 
since C E ;yo2· Thus E[E(YI;yo2)l;yotl = E(YI;yo1) a.e. Alternatively, if C E ;yoh 
then fc E[E(Yi ;yo2)l ;yotl dP = fc E(Yi ;yo2) dP = fc Y dP since C E ;yo2; thus 
E(Yi.o/d = E[E(YI;yo2)l;yotl a.e. 

(a') Let :7'2 = X- 1(.97'), ;yo1 = [f oXr 1 (.9'") = X- 1(/-1(.9'")), and 
apply (a). 

(b) E (Y I ;yo1) is ;yo1-measurable, hence ;yo2-measurable, and 

[ E(Yi;yo1)dP = [ E(Yi;yoddP, C E ;yo2· 

(b') Take .o/1 and .o/2 as in (a'), and apply (b). D 

If we take the conditional expectation of a product of two random variables, 
under certain conditions one of the terms can be factored out, as follows. 

5.5.11 Theorem. (a) If Z is ;yo-measurable and both Y and YZ are inte
grable, then E(YZI;yo) = ZE(Yi;yo) a.e. In particular, E(ZI;yo) = Z a.e. 
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(a') Iff: (Q',.9'')--+ (R, .513') and both Y and Y(f aX) are integrable, 
then E(Y(f aX)iX = x) = f(x)E(YIX = x) a.e. [Px]. In particular, 

E(f aXiX = x) = f(x) a.e. [Px]. 

PRooF. (a) If Z is an indicator I B· B E ~. and C E .o/, we have 

{ YZ dP = { Y dP = { E(Yi~)dP = { IBE(Yi~)dP 
Jc JcnB JcnB Jc 

= 1 ZE(Yi~)dP, 
and ZE (Y 1 ~) is ~-measurable. Thus the result holds for indicators. 

Now let Z be simple, say 

n 

Z= ~ZlBJ with 
j=l 

By 5.5.2(a), 

n n 

E(YZI~) = ~ZjE(YIBji~) = ~Z/B1E(Yi~) = ZE(Yi~). 
j=l j=l 

If z is an arbitrary ~-measurable function, let z ], z2 .... be simple (and 
~-measurable) with IZnl :S IZI and Zn--+ Z. Now E(YZnl~) = ZnE(YI~) 
by what we have just proved, and E(YZnl~)--+ E(YZi.o/) by 5.5.5(a). (The 
integrability of YZ is used here.) Since Y is integrable, so is E(YI ~ ); hence 
E(YI~) is finite a.e., and consequently ZnE(Yi~)--+ ZE(Yi~) a.e. [Note 
that, for example, 1 /n --+ 0 but (ljn )( oo )--T-+ 0( oo) = 0; thus finiteness of 
E(Yi~) is important.] Therefore, E(YZi.o/) = ZE(Yi~). 

(a') Let f= IB, BE $7'. Then 

1 Y(f aX)dP = 1 Yl{XEBI dP = 1 Y dP 
{XEA} {XEA} {XEAnB} 

= { E(YIX = x)dPx(x) = { f(x)E(YiX = x)dPx(x). 
lAnB }A 

Thus the result holds when f is an indicator. Passage to simple functions and 
then to arbitrary measurable functions is carried out just as in (a). D 

5.5.12 Comments. (a) Theorem 5.5.11(a) holds under the weaker assump
tion that E (Y) and E (YZ) exist [and 5.5.11(b) under the assumption that E (Y) 
and E[Y(f aX)] exist]; see Problem 4. 
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(b) Intuitively, if it is known that X= x, then foX may be treated as 
a constant f(x), so that E(Y(f oX)IX = x) should be f(x)E(YIX = x) as 
in 5.5.1l(a'). A similar interpretation may be given to 5.5.11(a) as follows. 
We can express E(YZI.'Y') as E(YZI.9T(X)) = E(YZiX) for an appropriate 
random object X (see 5.4.4). Since Z is .9T(X)-measurable, Z = foX for some 
f: (Q', .97')--+ (i, ..%') by 5.4.2(c). Thus if X is given, Z may be treated as 
a constant and factored out. 

Problems 

1. (a) If X is a random object, Y a random variable such that E(Y) exists, 
and X and Y are independent, show that E(YiX) = E(Y) a.e. [P], 
and E(YIX = x) = E(Y) a.e. [Px]. 

(b) Give an example of integrable random variables X and Y such that 
E(YiX) = E(Y), but X and Y are not independent. 

2. If Y is an integrable random variable and X and Z are random objects, 
show that if (X, Y) and Z are independent, then E(YiX, Z) = E(YIX). 

3. This problem illustrates how to obtain a theorem about E(YiX = x) from 
a corresponding theorem about E(YiX) without writing a separate proof 
or saying "similarly." As a typical example, suppose we have proved that 
if Y1 .::; Y2 a.e., then E(YtiX).::; E(Y2IX) a.e. Show that 

P{E(Y tiX) > E(Y2IX)} = Px{E(Y tiX = x) > E(Y2IX = x)}. 

Conclude that if Y 1 .::; Y 2 a. e., then E (Y 11X = x) .::; E (Y 2IX = x) a. e. [Px ]. 

4. Extend Theorem 5.5 .11 to the case where E (Y) and E ( YZ) exist but are 
not necessarily finite. 

5. Let (Q, !JT, P) be a probability space, and .'Y' a sub cr-field of JT. If 
Y E L1(Q, !JT, P), then E(Yi.'Y') is also in L1(Q, §",' P), by 5.5.4(a). Thus 
A(Y) = E(YI.'Y') defines a linear operator on L1, and A may be transferred 
to the Banach space V (Q, !JT, P). 
(a) Show that IIAII = 1. 

(b) Define (X, Y} = fnXY dP, X E L 1, Y E u:o. Show that A has the 
"self-adjointness" property (AX, Y} = (X, AY}. [Note that u:o c V, 
and if Y E u:o, then AY E U 0

, so (X, AY} is well defined.] 

5.6 REGULAR CONDITIONAL PROBABILITIES 

We have seen that if B1, B2, ••• are disjoint sets in !JT, n = 1, 2, ... , then 
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This does not imply that we will be able to choose P(BI :7' )(w ), B E §; w E Q, 

so that it is a measure in B for all (or almost all) w E Q. To clarify the problem, 
suppose that for each B E .r, we choose a particular version of the conditional 
probability P(BI :9" )(w ), w E Q; we now have a number P(BI.'Y' )(w) for each 
B E .9"' and w E Q. The difficulty is that for a fixed w, P(·l :9" )(w) need not be 
countably additive on !Y. Suppose that B1, B2, •.. are disjoint sets in /JT. Then 

except for w belonging to a set N (B 1, B2, ... ) of probability 0. Thus the set 
of w's for which countable additivity fails is 

M = U{N(Bt, B2, .. . ): B1, B2, ... disjoint sets in Y}. 

In general, M is an uncountable union of sets of probability 0, and therefore M 
need not have probability 0 (or even be in.<?"'). Thus there is no guarantee that 
we can specify the P(Bi:Y') to be countably additive in B. [Similarly, there is 
no guarantee that P(BiX = x) will be countably additive in B for Px-almost 
all X E Q'.] 

We are going to establish conditions under which the countable additivity 
requirement can be met. 

5.6.1 Definition. Let Y be a random variable on (Q, §; P), .'Y'a sub cr-field 
of§'. The function F = F(w, y), w E Q, y E ~. is called a regular condi
tional distribution function for Y given .'Y' iff the following two conditions are 
satisfied. 

1. For each w, F (w, ·) is a proper distribution function on ~. that is, in
creasing and right-continuous, with F(w, oo) = 1, F(w, -oo) = 0. 

2. For each y, F(w, y) = P{Y::; yi.'Y'}(w) for almost every w. 

The key step in the development is the result that a regular conditional 
distribution function for a given random variable always exists. 

5.6.2 Theorem. If Y is a random variable on (Q, §; P), :9" a sub cr-field of 
§; there is always a regular conditional distribution function for Y given .'Y'. 

PRooF. Select a version of F,(w) = P{Y::; rl.o/}(w) for each fixed rational 
r. If r~o r2, ... is an enumeration of the rationals, let 
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Then P(A) = 0 since r; < rj implies P{Y :S r;I.'Y'} :S P{Y :S rji.'Y'} a.e. by 
5.5.1 (b). 

Now let 

00 

B; = { w: n~~ Fr;+(l/n)(w) =I F,,(w)}, 

Since 
as n--+ oo, 

5.5.5(a) yields 
F,1+(1/n)(w)--+ F,,(w) a.e.; 

hence P(B) = 0. 
If C = {w: limn--->oo Fn(w) =ftl}, then P(C) = 0 since {Y :S n} t Q, so that 

P{Y::; ni.'Y'}--+ 1 a.e. Similarly, D = {w: limn--->-oo Fn(w) =I 0} has proba
bility 0. 

Define 

{ 

lim F,(w) if w ¥AU B U CUD 
r--->y+ 

F(w, y) = any proper distribution function G(y) 
if w E A U B U C U D. 

Then F is well defined, for if w ¥A, then F,(w) is monotone in r, so that 
limr--->y+ F,(w) exists. Note also that if w ¥AU B, then limr--->y+ F,(w) 
= Fy(w) if y is rational, so that in this case, F(w, y) = Fy(w). Similarly, if 
w ¥AU CUD, then limr--->oo F,(w) = 1, limr--->-oo F,(w) = 0. 

We show that F is a regular conditional distribution function for Y given .'Y'. 
Fix w ¥AU B U CUD; then F(w, ·)is clearly increasing. If y < y' ::; r, then 
F(w, y)::; F(w, y')::; F(w, r) = F,(w)--+ F(w, y) as r--+ y. Thus F(w, ·)is 
right-continuous. If r::; y, then F(w, y) ::::_ F(w, r) = F,(w)--+ 1 as r--+ oo; 
hence F(w, y)--+ 1 as y--+ oo; similarly, F(w, y)--+ 0 as y--+ -oo. Thus 
the first requirement is satisfied. 

Now P{Y::; ri.'Y'}(w) = F,(w) = F(w, r) by construction of F. As r ..j, y, 
F(w, r)--+ F(w, y) for all w by right-continuity, and 

P{Y :S ri.'Y'}--+ P{Y::; yi.'Y'} a.e. 

by 5.5.5(a). Thus P{Y::; yl~}(w) = F(w, y) for almost every w (y fixed), 
establishing the second requirement. D 

We are going to show that if Y is a random variable, P { Y E B I.'Y'} can be 
chosen so as to be countably additive in B. This will follow from 5.6.2 and 
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the fact that a distribution function determines a unique Lebesgue-Stieltjes 
measure. 

5.6.3 Definition. Let Y: (Q, .97)---+ (Q', .97') be a random object, and ~ 
a sub cr-field of §'. The function Q: Q x .97' ---+ [0, 1] is called a regular 
conditional probability for Y given ~ iff 

(1) Q(w, B) is a probability measure in B for each fixed w E Q, and 
(2) for each fixed BE .97', Q(w, B)= P{Y E Bl.'7'}(w) a.e. 

If Y is a random variable, so that Q' = ~ •. '#'' = .513'(~), a regular conditional 
probability for Y given ~always exists. 

5.6.4 Theorem. Let Y be a random variable on (Q, !JT, P), ~a sub cr-field 
of .97. There exists a regular conditional probability for Y given ~. 

PROOF. Let F be a regular conditional distribution function for Y given ~. 
Define 

Q(w, B) = { dF(w, y). 
}yEB 

Thus for each w, Q(w, ·)is the Lebesgue-Stieltjes measure corresponding to 
F (w, · ); hence Q is a probability measure in B if w is fixed. 

Now let W= {BE .;fJ(~): Q(w, B)= P{Y E Bl~}(w) a.e.}. Then W con
tains all intervals (-oo, y] since F(w, y) = P{Y::; yl~}(w) a.e. If A, 
B E W, A c B, then B- A E W, and it follows that W contains all intervals 
(a, b ], hence all finite disjoint unions of right-semiclosed intervals. By the 
monotone class theorem, W = .;fJ(~). Thus Q is a regular conditional proba
bility for Y given ~. D 

We now extend this result to objects Y more general than random variables. 

5.6.5 Theorem. Let Y: (Q, .97---+ (Q', .97') be a random object, and ~a sub 
cr-field of§'. Suppose there is a map \11: (Q', .97') ---+ (~, .513'(~)) such that \II is 
one-to-one, E = \II(Q') is a Borel subset of~. and w- 1 is measurable, that is, 
w- 1: (E, .'15'(£)) ---+ (Q', .97' ). Then there is a regular conditional probability 
for Y given ~. 

PRooF. Let Qo = Q0 (w, B), B E .'15'(~), w E Q, be a regular conditional prob
ability for the random variable \II(Y) given~. Define Q(w, A) = Q0 (w, \II(A)), 
A E .97'; since w- 1 is measurable, \II(A) E .513'(£) c .513'(~), and Q is well de
fined. Now Q is a probability measure in A for w fixed, and if A is fixed, 
then 

Q(w,A) = P{\II(Y) E \II(A)I.'7"}(w) = P{Y E Al~}(w) a.e. D 
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A map \II of the type described in 5.6.5 is called a Borel equivalence of Q' 

and E. 

Problems 

1. Let X: (Q, jT)--+ (Q', JT') andY: (Q, JT)--+ (Q", JT") be random ob
jects on (Q, .¥, P), and assume that Px(B) = P{Y E BIX = x} can be cho
sen so as to be a probability measure in B for each fixed x. If g: (Q' x Q", 
jT' x jT")--+ (i, ..%') and E[g(X, Y)] exists, show that 

(a) E[g(X, Y)IX = x] = fn,g(x, y)dPx(Y) a.e. [Px]. 
In particular, if C E jT' x JT", then 

(b) P{(X, Y) E CIX = x} = Px(C(x)) a.e. [Px]. 
Conclude that 

(c) P{(X, Y) E C} = fn,Px(C(x))dPx(x). 

2. Let Y 1, ••• , Yn be independent random variables, each uniformly distrib
uted between 0 and 1. Let Zk be the product Y1 • • • Yk. 1::; k::; n. Show 
that, given Z 1 = Zl, ... , Zk = Zk. Zk+l is uniformly distributed between 0 
and Zk, that is, 

where gk(Z) = 1/Zk. 0 :S z::; Zk; gk(Z) = 0 elsewhere. (This is another way 
of looking at Example 5.2.2.) 

3. The following result is preparatory to the next problem; it is adapted from 
Halmos (1950). 

(a) Let E be a Lebesgue measurable subset of ~ with 0 < tt(E) < oo, 
where JL is Lebesgue measure. If 0 < 8 < 1, show that there is an 
open interval I such that tt(E n I) 2: 8tt(l). 

(b) WithE as in part (a), let D(E) = {x- y: x, y E E}. Show that D(E) 
includes a neighborhood of 0. [This holds also if tt(E) = oo since 
0 < tt(E n [-n, n]) < oo for some n.] 

(c) Let~ be an irrational number, and let A= {m + n~: m, n integers}. 
Show that A is dense in ~- Equivalently, the set of numbers n~, n 
an integer, reduced modulo 1, is dense in [0, 1). If [0, 1) is identified 
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with the unit circle under the correspondence () ---+ ei2rr8 , the problem 
is as follows. If a/2n is irrational, the set {eina: n an integer} is 
dense in the circle. In fact more can be proved. Let zo be any point 
on the circle and let Zn = einazo = zo rotated by na, n = 1, 2, ... 
If z is an arbitrary point on the circle and e > 0, lzn - zl < e for 
infinitely many values of n. 

(d) If~ is irrational, let B = {m + n~: n an integer, m an even integer}, 
C = {m + n~: n an integer, m an odd integer}. Show that B and C 
are dense in IRL 

(e) Define an equivalence relation on ~ by x ~ y iff x- yEA, where 
A is as defined in (c). Form a set Eo by selecting one point from 
each distinct equivalence class. Show that Eo is not a Lebesgue 
measurable set. [IfF is a Borel set with F c E0 , show that tt(F) = 
0. Then show that ~ is a disjoint union of the sets Eo + a, a E A. 
Use the translation-invariance of Lebesgue measure to show that Eo 
is not Lebesgue measurable.] 

(f) Let M = {x + y: x E Eo, y E B}, M' = {x + y: x E E0 , y E C}. 
Show that ~ = M U M', and any Borel subset of M or of M' has 
Lebesgue measure 0. 

(g) Let E be an arbitrary Lebesgue measurable subset of ~. Show that 
ifF is a Borel subset of En M, then tt(F) = 0, and if G is a Borel 
set such that En M c G c E, then tt(E- G)= 0. 

4. Let H be a subset of [0, 1] with inner Lebesgue measure 0 [sup{JL(B): 
B a Borel subset of H}=O, tt= Lebesgue measure] and outer Lebesgue 
measure 1 (inf{tt(B): B a Borel overset of H} = 1). To construct such a 
set, take E = [0, 1], H =En Min Problem 3(g). 

Let Q = [0, 1], and let .r consist of all sets (B 1 n H) U (B2 n He), 
where Bt. B2 are Borel subsets of [0, 1]. Define 

P[(Bt n H) U (B2 n He)]= ~(tt(Bt) + tt(B2)). 

Thus P = tt on 33'[0, 1] [if BE 33'[0, 1], B = (B n H) U (B n He)]. Take 
Y(w)=w, WE Q. 

(a) Show that P is well defined, that is, if (B 1 n H) U (B2 n He) 
= (B/ n H) U (B2' n He), then tt(BI) = tt(Bt'), tt(B2) = tt(B2'). 

(b) Suppose that Q is a regular conditional probability for Y given 
:7' = .5t5'[0, 1]. Show that Q(w, H)= Q(w, He)= ~ a.e. 

(c) If BE :7', show that Q(w, B)= IB(w) a.e. 
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(d) Show that Q(w, {w}) = 1 for almost every w, and thus arrive at a 
contradiction. 

Conclude that there is no regular conditional probability for Y given ~. 

Note: Books that discuss Martingale theory must also treat conditional prob
ability and expectation. Thus for a selected bibliography on the material in 
this chapter, see Section 6.10. 



CHAPTER 

6 
STRONG LAWS OF LARGE NUMBERS 
AND MARTINGALE THEORY 

6.1 INTRODUCTION 

At the end of Chapter 4, we indicated that the physical fact of convergence 
of the relative frequency of heads in coin tossing is best expressed as a state
ment about almost everywhere convergence of Sn/n, where Sn is a sum of 
independent random variables X 1, X2, ... , Xn; we attached the name "strong 
law of large numbers" to such a result. Now a "strong law of large numbers" in 
the most general sense is any statement about the almost everywhere conver
gence of a sequence of random variables, and this is the main subject matter 
of this chapter. A large class of convergence theorems will be developed with 
the aid of martingale theory, but before going into this it will be useful to 
consider the classical approach. 

First we prove some results from real analysis that will be needed. 

6.1.1 Lemma. Let A = [a;.i] be an infinite matrix of real numbers; assume 
that an.i --+ 0 as n --+ oo for each fixed j, and that for some nonnegative 
real number c, 2.::~ 1 1an.il ::= c for all n. If {xn} is a bounded sequence of real 
numbers, define 

Then: 

00 

Yn = 2::: anjXj, 
j=l 

(a) If Xn --+ 0, then Yn --+ 0. 

n = 1, 2, .... 

(b) If L~l anj --+ 1 and Xn --+X (x real), then Yn --+X. 

PRooF. (a) We may write 

N oc 

IYn I :S 2::: lan.il IX.il + 2::: lanjl lx.il· 
j=l j=N+l 

(1) 
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Given e > 0, choose N so that 1xj1 :::; e/c for j > N; the second term on the 
right-hand side of (1) is at most c(e/c) =e. Since the first term approaches 0 
as n --+ oo for any fixed N, it follows that Yn --+ 0. 

(b) By (a), 2.::~ 1 anj(Xj- x)--+ 0, and the result follows. D 

6.1.2 Toeplitz Lemma. Let {an} be a sequence of nonnegative real numbers, 
and let bn = LJ=! aj; assume bn > 0 for all n, and bn --+ oo as n --+ oo. If 
{xn} is a sequence of real numbers converging to the real number x, then 

PRooF. 

1 n 

- L ajXj --+ x. 
bn j=l 

Form an infinite matrix A whose nth row is 

( ~ a2 

bn bn 
0 0 ... ) 

and apply 6.l.l(b). D 

6.1.3 Kronecker Lemma. Let { bn} be an increasing sequence of positive 
real numbers with bn --+ oo, and let {xn} be a sequence of real numbers with 
2.::::0= 1 Xn = x (finite). Then 

1 n 

b LbjXj--+ 0 
n j=l 

as n --+ oo. 

n n 

LbjXj = Lbj(Sj- Sj-!) 
j=l j=l 

n 

= bnsn- boso- L:.:sj-t(bj- bj-l), 
j=l 

taking bo = 0. (This is the "summation by parts" formula; it is proved by brute 
force.) Thus 

where aj = bj- bj-l 2: 0. Since Sn --+ x as n--+ oo, and Sj-l --+ x as 
j--+ 00, 

1 n 

b LbjXj--+ 0 by 6.1.2. D 
n j=l 
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Now if Sn is a random variable with finite expectation, Chebyshev's in
equality implies that 

If in fact Sn is a sum of independent random variables, this result can be 
strengthened considerably, as follows. 

6.1.4 Kolmogorov's Inequality. Let X 1, ••• , Xn be independent random vari
ables with finite expectation, and let S J = X 1 + · · · + X J, j = 1, ... , n. Then 
for any e > 0, 

{ } 
VarSn 

P max ISJ- E(SJ)I 2: e :S --
2
-. 

l~j~n e 

PRooF. We may assume without loss of generality that E(X1) = 0, hence 
E(S1) = 0. Let 

Ak = {ISJI < e, i = 1, ... ,k-1, 1Skl2: e}, 

A= { m~ ISJI 2: e}; 
l~J~n 

A is the disjoint union of the Ak. k = 1, ... , n. Now 

The second term on the right-hand side of (2) is 2E[IAkSkYkl which is 0 since 
IAkSk and Yk are functions of independent random variables, and are therefore 
independent [see 4.8.2(d) and 4.10.8]. Since the third term of the right-hand 
side of (2) nonnegative, we have 

By (1), 

by definition of Ak. 

n 

Var Sn 2: £
2 :2: P(Ak) = e2P(A). D 

k=l 
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We shall use the Borel-Cantelli lemma (2.2.4) quite often: If A1, A2, ... are 
events such that Ln P(An) < oo, then lim supn An has probability 0. There is 
a partial converse which will also be needed [see (6.8.9)]. 

6.1.5 Second Borel-Cantelli Lemma. Let (Q, .r, P) be a probability space, 
and let A 1,A2, ... be independent events in .r. If I::~=l P(An) = oo, then P 
(lim supn An) = 1. 

PROOF. 

Now 

m 

=II P(AZ) by independence 
k=n 

m 

::: II exp[ -P(Ak)] since 
k=n 

--+0 as m--+ oo since 

Problems 

1. (Extension of the second Borel-Cantelli lemma) Let A1, A2, ... be events 
in a given probability space such that 2.::~= 1 P(An) = oo and 

"'~ P(A · n Ak) 
1. . f L...j,k=l 1 1 
~~ ( n )2 = · 

Lj=l P(Aj) 

(a) Show that the lim inf condition above is satisfied if the An are 
pairwise independent (A j and Ak are independent whenever j =I k) 

and L~=l P(An) = 00. 



6.2 CONVERGENCE THEOREMS 239 

(b) Use Chebyshev's inequality to show that if In= IA.• then 

l~~~fp{l~h- ~P(Ak)l >~~P(Ak)} =0. 

(c) Conclude from (b) that there is a sequence of integers n 1 < n2 < · · · 
such that with probability 1, 

for sufficiently large j. 

(d) Show that P(lim supn An)= 1. 

2. Let () be uniformly distributed on [0, 2n] and define Xk =sink() 
(k = 1, 2, ... ). Show that 

X1 +· ·· +Xn ----- ---+ 0 a.e. 
n 

6.2 CONVERGENCE THEOREMS 

We are now in a position to establish several basic results on convergence 
of sequences of random variables. We start with an example that motivated 
some of the early work in this subject, the problem of random signs. Let 
a 1, a2, ... be a fixed sequence of real numbers, and let an unbiased coin be 
tossed independently over and over again. If the nth toss results in heads, 
we write down the number +an, if tails, the number -an. In this way we 
generate a series such as a 1 - a2- a3 + a4 + · · ·, where the signs are chosen 
at random. Will the series converge? 

The general question suggested by the random signs problem involves the 
convergence of a series of independent random variables. The following result 
gives considerable information. 

6.2.1 Theorem. Let X 1, X2, ... be independent random variables with finite 
expectation. If 2.::::0= 1 Var Xn < oo, then 2.::::0= 1[Xn- E(Xn)] converges a.e. 
[All random variables are assumed to be defined on a fixed probability space 
(Q, §', P), and "almost everywhere" refers to the probability measure P. Also, 
throughout this chapter, convergence will always mean to a finite limit.] 

PRooF. We may assume that E(Xn) = 0. Let Sn = X1 + · · · +Xn. Then Sn 
converges iff S j - S k ---+ 0 as j, k ---+ oo, and this happens a.e. iff for each 
£ > 0, 

as n ---+ oo 
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(see Section 2.5, Problem 4). Equivalently, we must prove that for each e > 0, 

as m--+ oo. 

We have 

P [ Q {IS.+, - S.l o, e)] ~ "'i"b P [ Q {IS.,. - s. I o, e)] 

= limP {max iSm+k- Sml 2: e} 
n->00 l~k~n 

1 . 
::; 2 lim sup Var(Sm+n - Sm) by 6.1.4 

e n->00 

1 n 

= 2 lim sup L Var(Xm+ j) 
e n->00 j= l 

by 4.10.11 

00 

--+ 0 as m --+ oo since L Var Xn < oo. D 
n=l 

In the random signs problem we have Xn = an Yn, where the Yn are inde
pendent, taking values + 1 and -1 with equal probability. It follows that if 
I::~=l a~ < oo, the series I::~= I Xn converges a.e. After we prove Theorem 
6.8.7, we shall see that the condition I::~= I a~ < oo is necessary as well as 
sufficient for a.e. convergence of the series. 

If X" X2, ... are independent random variables, we proved in Chapter 4 
that under appropriate conditions, (Sn- E(Sn))/n converges to 0 in proba
bility (the weak law of large numbers). We now consider almost everywhere 
convergence. 

6.2.2 Kolmogorov Strong Law of Large Numbers. Let X 1, X2, ... be inde
pendent random variables, each with finite mean and variance, and let { bn} be 
an increasing sequence of positive real numbers with bn --+ oo. If 

~ VarXn 
L-.~<00, 
n=l n 

then (with Sn = X 1 + · · · +Xn) 
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PRooF. 

~ (Xn- E(Xn)) ~ VarXn L...- Var = L...- --2 - < oo 
bn b n=l n=l n 

by hypothesis. 

By 6.2.1, 2.::::0=! (Xn - E(Xn))/bn converges a.e. But 

and this approaches zero a.e. by 6.1.3. D 

In particular, if the Xn are independent random variables, each with finite 
mean m and finite variance cr2, then S n /n --+ m a. e. (take bn = n in 6.2.2). 

Another special case: If the Xn are independent and the fourth central 
moments are uniformly bounded, that is, for some finite M we have 
E[(Xn- E(Xn))4 ] :S M for all n, then (Sn- E(Sn))/n--+ 0 a.e. For by the 
Cauchy-Schwarz inequality, 

and therefore 6.2.2 applies with bn = n. This result, due to Cantelli, may in 
fact be proved without much machinery from measure theory; see Ash (1970, 
p. 206). 

If the Xn are independent and all have the same distribution, in other words, 
for each Borel set B C ~. P{Xn E B} is the same for all n, a version of the 
strong law of large numbers may be proved under a hypothesis on the mean 
of the Xn but no assumptions about higher moments. We first indicate some 
terminology that will be used in the remainder of the book. 

6.2.3 Definition. If the random variables Xn all have the same distribu
tion, they will be called identically distributed. The phrase "independent and 
identically distributed" will be abbreviated iid. 

We need one preliminary result. 

6.2.4 Lemma. If Y is a nonnegative random variable, 

00 00 

LP{Y 2: n}::; E(Y)::; 1 + LP{Y 2: n}. 
n=l n=l 
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PROOF. 

00 

l:P{Y :::_ n} 
n=l 

oooo ook 

= l:l:P{k :S Y < k+ 1} = l:l:P{k :S Y < k+ 1} 
n=l k=n k=l n=l 

= f kP{k :S Y < k + 1} = f { k dP 
k=l k=Oj{k::oY<k+!J 

::; f { YdP =E(Y)::; f(k+ l)P{k::; Y < k+ 1} 
k=O j{k::oY <k+l} k=O 

00 00 00 

=l:P{Y:::_n}+l:P{k:SY<k+l}=l:P{Y:::_n}+l. D 
n=l k=O n=l 

6.2.5 Strong Law of Large Numbers, iid Case. If X 1, X 2 , •.. are iid ran
dom variables with finite expectation m, and Sn =X 1 + · · · + Xn, then 
Sn /n --+ m a. e. 

PROOF. Since all Xn have the same distribution, 
00 00 

thus 
00 

l:P{IXnl :::_ n}::; E(IXti) < oo by 6.2.4. 
n=l 

By the Borel-Cantelli lemma, P{IXnl :::_ n for infinitely many n} = 0. Thus 
if we define Yn = Xn if IXn I < n; Yn = 0 if IXn I 2: n, then except on a set of 
probability 0, Yn = Xn for sufficiently large n. Thus assuming (without loss 
of generality) that m = 0, it suffices to show that 

Now 

1 n 

;; 2: Yj --+ 0 a.e. 
j=! 

E(Yn) = E(X,Juxnl<nJ) 

= E(Xtluxil<nJ) 

by the iid hypothesis 
--+ E(X1) = 0 as n--+ oo 

by the dominated convergence theorem. 
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Consequently, 
1 n 

- l:E(Yj)--+ 0, 
n j=l 

and therefore it is sufficient to show that 
1 n 

-;; l:[Yj- E(Yj)]--+ 0 a.e. 
j=! 

If we can show that 

f [Yn- :(Yn)] 

n=l 

converges a.e., then the Kronecker lemma 6.1.3 with bn = n and 

Yn- E(Yn) 
Xn = 

n 
yields 

1 n 

-;; l:[Yj- E(Y1)]--+ 0 a.e., 
j=l 

243 

as desired. Now the Yn are functions of the independent random vadables Xn, 
and hence are independent, so by 6.2.1, it suffices to show that 

V = ~ Var (: ) < oo. 

(Note that I Yn I < n, so Var Yn is finite, although nothing is known about 
Var Xn.) But 

since VarYn = E(Yn 2
)- [E(Yn)] 2 

00 1 
= 2: 2E(Xfl{IXJI<nJ) 

n 
n=l 

by the iid hypothesis 
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By comparing 2.::(1/n2) with j(ljx2 )dx, we find that L~=m(l/n2 ) :S K/m 
for some fixed positive constant K. Thus 

00 1 
V :S KL -E(XTl!m-1<1X!I<mJ). m -

m=1 

If m -1 :s IX11 < m, then xf = IX11IX11 :s miX11; hence 
00 

V :S KLE(IXtll{m-1-siXtl<mJ) = KE(iXti) < oo. D 
m=1 

If E(X;) exists but is not necessarily finite in Theorem 6.2.5, the result 
still holds. To see this, first assume that the X; are nonnegative, with infinite 
expectation. If M > 0 and Sn' = 2.::7= 1 XJ{x;-sMJ• then, almost everywhere, 

liminfSn 2: liminfSn' = E(X 1l{x 1<MJ)--+ E(X1) = oo as M--+ oo. 
n--->00 n n--->00 n -

Therefore n - 1 S n --+ oo a.e. The general case is handled by splitting the random 
variables X; into positive and negative parts. 

We conclude this section with a remarkable result about independent random 
variables. If X 1, X 2, ... are independent, this question might arise: What is the 
probability that 2.::::0=1 Xn converges? It might be expected that examples exist 
with any number between 0 and 1 as the probability of convergence, but in 
fact, the probability must be 0 or 1. Many other events defined in terms of 
independent random variables have this "zero-one" property, as we shall see. 

6.2.6 Definitions and Comments. Let X 1, X2, ... be a sequence of random 
variables, and let .97, = cr(X n, X n+ 1, ... ) , n = 1, 2, ... ; .97, may be thought of 
as the cr-field of events involving Xn, Xn+1, .... The cr-field SToo = n::0=1 .9;, 
is called the tail cr-field of the Xn, sets in ST00 are called tail events and ST00-
measurable functions, that is, functions f: (Q, .9'00 ) --+ (i, .%'(i)) are called 
tail functions (relative to theXn). Intuitively, a tail event is one whose occurrence 
or nonoccurrence is not affected by changing the values of finitely many of the 
X;, and a tail function is one whose value is not affected by such a change. Thus 
{limn--->oo Xn exists}, {2.::::0= 1 Xn converges}, and {Xn < 1 for infinitely many n} 
are tail events, and lim supn--->oo Xn and lim infn--->oo Xn are tail functions. [Exam
ple of a formal proof: {2.::::0=1 Xn converges} = {L~n Xk converges} E .97, for 
each n; hence the event belongs to .Y00 . Similarly, 

{ limsupXn < c} = {limsupXk < c} E .97, 
n--->oo k--->oo 

k~_tl 

for all n-, 

hence limsupn--->ooXn is ST00-measurable.] 
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6.2.7 Kolmogorov Zero-One Law. All tail events relative to a sequence of 
independent random variables have probability 0 or 1, and all tail functions 
are constant almost everywhere. 

PROOF. Fix A E .9700 ; the idea is to show that A is independent of itself, 
so that P(A n A) = P(A)P(A), and consequently P(A) = 0 or 1. Since 
.9700 C .97! , A is of the form {(X 1, X 2 , ... ) E A'} for some A' E .513' (IRqoo. Let 
W be the class of sets C' E .513'(~)00 such that A and C are independent, 
where C = {(Xt.X2, ... ) E C'}. If C' is a measurable cylinder, then Cis of 
the form {(X 1, .•• , Xn) E Bn }; since A E ,~+l, A can be written in the form 
{(Xn+l, Xn+2• .. . ) E An+d, and it follows that A and Care independent. Thus 
W contains all measurable cylinders. But if Cn' E W, Cn' t C' (or Cn' ..j, C'), 
and P(A n Cn) = P(A)P(Cn), n = 1, 2, ... , then Cn t C (or Cn ..j, C); hence 
P(A n C)= P(A)P(C). Therefore Wis a monotone class containing the mea
surable cylinders; hence W contains all sets in .513'(~)00 , in particular, A'. But 
then A is independent of itself. 

Finally, iff is a tail function, then for each c E i:, {w: f(w) < c} is a tail 
event, and hence has probability 0 or 1. If k = sup{c E R.: P{f < c} = 0}, 
then f = k a.e. D 

If the Xn are identically distributed as well as independent, a wider class 
of events will be shown to have probability 0 or 1. 

6.2.8 Definitions and Comments. Let X t. X2, ... be a sequence of ran
dom variables, and define the cr-fields .r, as in 6.2.6. Let A E .971, so that 
A = {(X 1, X 2, ... ) E A'}, A' E .513' (~ )00

• The event A is said to be symmetric 
iff the occurrence or nonoccurrence of A is not affected by a permutation of fi
nitely many of the X;. Formally, if T: { 1 , 2, ... } ---+ {1, 2, ... } is a permutation 
of finitely many coordinates, we require that A= {Xro)• Xr(2)• ... ) E A'}. 

Any tail event A is symmetric, for if T permutes the first n coordinates, we 
may write A in the form {(Xn+l• Xn+2• .. . ) E An+d since A E .r,+l· Thus 

since T(k) = k, k > n. 
There are, however, symmetric events that are not tail events, for example, 

{Xn = 0 for all n} and {limn--->oo(X 1 + ·· · +Xn) exists and is less than c}. 
If B = {(Xt.X2, ... ) E B'} E .971, not necessarily symmetric, and T per

mutes finitely many coordinates, we denote by X(T) the sequence (Xro), 
Xr(2)• ... ) and we denote by B(T) the event {X(T) E B'}. Thus B is symmetric 
iff B = B(T) for all T. 
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6.2.9 Hewitt-Savage Zero-One Law. Let X 1, X2, ..• be iid random vari
ables. If A is a symmetric set in cr(X 1, X2, ... ), then P(A) = 0 or 1. 

PRooF. Let A= {(X t. X2, ... ) E A'} so that P(A) = Px(A'), X= (X 1, 

X2, ... ). Find measurable cylinders Ck' such that Px(A' ~ Ck') --+ 0 as 
k--+ oo (see 1.3.11), and let Ck = {X E Ck'}; say Ck = {(X t. ... , Xnk) E Bk}. 
Let Tk interchange (1, ... , nk) and (nk + 1, ... , 2nk). 

Since the Xn are iid, X and X (T d have the same distribution; therefore 

P(A ~ Ck) = Px(A' ~ Ck') = Px(Tk)(A' ~ C/) 

= P[{X(Tk) E A'}~ {X(Tk) E Ck'}] 

= P[{X E A'}~ {X(Tk) E Ck'}] 

= P(A ~ Ck(Tk)). 

since A is symmetric 

Thus P(A ~ Ck) and P(A ~ Ck(Tk)) approach 0, and therefore so does 
P(A ~ [Ck n Ck(Tk)]). It follows that P(Ck), P(Ck(Tk)) and P[Ck n Ck(Tk)] 
all approach P(A). But 

P[Ck n Ck(Tk)] = P[{(Xt, ... , Xnk) E Bk. (Xnk+t. ... , X2nk) E Bk}] 

= P(Ck)P(Ck(Tk)). 

Let k --+ oo to obtain P(A) = P(A)P(A). D 

Problems 

1. Let X t. X2 , ••. be iid random variables. If 

converges a. e. to a finite limit, show that E (X 1) is finite and the limit 
equals E(Xt) a.e. 

2. The following result generalizes Lemma 6.2.4, which was used in the 
proof of the strong law of large numbers. 

Let F be an increasing, right-continuous function from the set of non
negative real numbers to itself, with F(O) = 0. If Y is an arbitrary non
negative random variable, show that 

E[F(Y)] = fooo P{Y 2:: A}dF(A). 
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In particular, ifF()..)=).. we obtain 

E(Y) = loo P{Y:::: ).}d)... 

We obtain 6.2.4 by expressing the integral from 0 to oo as a sum of 
integrals from n ton+ 1. [Let h(w, )..) = 1 if Y(w):::: ).., and 0 if Y(w) < 
A, and use Fubini's theorem. Note also that {Y:::: )..} can be replaced by 
{Y > )..} in the above formulas; the same proof applies.] 

3. Give an example to show that the Hewitt-Savage zero-one law may fail 
when the Xn are independent but not identically distributed. 

4. Let X t. X2,... be iid random variables, and let g: (~00 , .5t5'00
) 

--+ (~00 , .%'00
), where .519 = .%'(~). If g is symmetric, in other words, 

g(xro)• Xr(2), ..• ) = g(xt. x2, .. . ) whenever Tis a permutation of finitely 
many coordinates, show that g(X1, X2 , •.. ) is constant a.e. 

5. Let X 1, X2, ... be independent random variables, with P{Xn = 1} = Pn, 
P{Xn = 0} = 1 - Pn· Show that 

p 
X n -------+ 0 iff lim Pn = 0 

n-+oo 

and 
00 

a. e. 
iff :2: Pn < 00. X n -------+ 0 

n=l 

6. Let X 1, X 2 , ••• be nonnegative random variables, with X n having density 
An exp( -AnX), X 2: 0 (An > 0). 
(a) If 2.::::0=1 )..;;-

1 < oo, show that 2.::~ 1 Xn < oo a.e. 
(b) If the Xn are independent and 2.::~ 1 )..;;-

1 = oo, show that 

00 

l:Xn = oo a.e. 
n=1 

[In (b), consider exp(- I::;=l Xj).] 

7. Let X 1,X2, ... be iid random variables, with P{Xn = i} = 1/r, i = 
0, 1, ... , r- 1, and define X= 2.::~ 1 r-nxn. Thus X is the number in 
[0, 1] with r-adic expansion .X1X2 · · ·. 

(a) Show that X is uniformly distributed, in other words, Px is Lebesgue 
measure. 

(b) Show that for almost every x E [0, 1] (Lebesgue measure), the fol
lowing condition holds: 

For every r = 2, 3, ... and all i = 0, 1, ... , r- 1, the relative fre
quency of i in the first n digits of the r-adic expansion of x converges 
to llr as n --+ oo. 
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(c) If x E [0, 1], let Rn(X) = 2xn- 1, where Xn is the nth digit of the 
binary expansion of x (to avoid ambiguity, eliminate expansions with 
only a finite number of zeros). The Rn are called the Rademacher 

functions. Use part (a) to show that J0
1 

Rn (x) dx = 0, and 

t {0, Jo Rn(x)Rm(x)dx = l, 
n=ftm 
n =m. 

6.3 MARTINGALES 

Probability theory has its roots in games of chance, and it is often prof
itable to interpret results in terms of a gambling situation. For example, if 
X t. X2, ... is a sequence of random variables, we may think of Xn as our total 
winnings after n trials in a succession of games. Having survived the first 
n trials, our expected fortune after trial n + 1 is E(Xn+tiX t. ... , Xn). If this 
equals Xn, the game is "fair" since the expected gain on trial n + 1 is E(Xn+! 
-XniXt.····Xn)=Xn-Xn=O. If E(Xn+tiXt.···•Xn)2:Xn, the game is 
"favorable," and if E(Xn+tiX 1, ••. , Xn) :S Xn, the game is "unfavorable." 

We are going to study sequences of this type; the results to be obtained will 
have significance outside the casino as well as inside. 

6.3.1 Definitions. Let (Q, $7, P) be a probability space, {X t. X2, ... } a se
quence of integrable random variables on (Q, .97, P), and .97! c §2 C · · · an 
increasing sequence of sub cr-fields of.¥; Xn is assumed .97;,-measurable, that 
is, Xn: (Q, .97;,)--+ (~ • ._%'(~)). The sequence {Xn} is said to be a martingale 
relative to the .9', (alternatively, we say that {Xn, .97;,} is a martingale) iff for all 
n = 1, 2, ... , E(Xn+l 1.97;,) = Xn a.e., a submartingale iff E(Xn+ti-'Yn) 2: Xn 
a.e., a supermartingale iff E(Xn+ti.97;,) :S Xn a. e. (In statements involving 
conditional expectations, the "a.e." is always understood and will usually be 
omitted.) 

Let {.97;,} be a decreasing sequence of sub cr-fields of.¥, with Xn assumed 
.97;,-measurable. If E(Xnl.97;,+1) =Xn+h we say that {Xn,jl,;} is a reverse 
martingale. Similarly, E(Xn 1.9;;+1) 2: Xn+l defines a reverse submartingale, 
and E(Xnl.9;;+ 1) :S Xn+l defines a reverse supermartingale. 

6.3.2 Comments. (a) If {Xn, .9;;} is a martingale, then 

E(Xn+kl.9;;) = Xn, n, k = 1, 2, ... 

(with corresponding statements for sub- and supermartingales). For 

E(Xn+21.9;;) = E[E(Xn+2I·'Yn+t)l.9;;] by 5.5.10(a) 

= E(Xn+lljl,",) 



6.3 MARTINGALES 

The general statement follows by induction. 

(b) If {Xn, .97;,} is a martingale, then 

249 

n = 1,2, ... 

Thus {Xn} is automatically a martingale relative to the standard cr-fields 
cr(X 1, ... , Xn) (with corresponding statements for sub- and supermartingales). 

For §il C · · · C .9?;,, and thus X 1, ... , X n are all -~-measurable. Since 
cr(X t. ... , Xn) is the smallest cr-field making X 1, ••• , Xn measurable [see 
5.4.2(b)], we have cr(X t. ... , Xn) C .97;,. If, in the defining relation 

we take conditional expectations with respect to cr(X 1, .•• , Xn ), we obtain the 
desired result by 5.5.1 O(a) and 5.5.11 (a). 

If we say that {Xn} is a martingale (or sub-, supermartingale) without men
tioning the cr-fields .97;,, we shall always mean .97;, = cr(X 1, •.. , Xn ), so that 
E(Xn+liX 1 •••. , Xn) = Xn. 

(c) {Xn,.97;,} is a martingale iff 

1 Xn dP = 1 Xn+l dP for all A E .9;,, n = 1, 2, .... 

This follows since the condition E(Xn+tl.¥,) = Xn a.e. [P] is equivalent to 

1 E(Xn+ti.9l;;)dP = 1 Xn dP 

(see 1.6.11 ); also 

by definition of conditional expectation. 

for all 

Similarly, {Xn, .97;,} is a submartingale iff 

1 Xn dP :S 1 Xn+l dP for all 

and a supermartingale iff 

1 Xn dP 2: 1 Xn+l dP for all AE.~. 

In particular, E(Xn) is constant in a martingale, increases in a submartingale, 
and decreases in a supermartingale. 
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(d) The defining condition for a martingale relative to the cr-fields 
cr(X h ... , Xn) is equivalent to 

with similar statements for sub- and supermartingales. 
For if AEcr(Xt.····Xn), then A is of the form {(Xt.···,Xn)EB}, 

BE 33'(~n) (see 5.4.1). If X= (X 1, ••• ,Xn), then 

1 Xn+l dP = { Xn+l dP 
A J{XEB} 

= 1 E(Xn+tiXt = Xt, ... ,Xn = Xn)dPx by 5.3.3 

and 

1 Xn dP = 1 E(Xn IX1 =X!, ... , Xn = Xn)dPx 

= 1 XndPx by 5.5.11 (a'). 

The result now follows from (c). 

(e) A finite sequence {X k, $lk, k = 1 , ... , n} is called a martingale iff 
E(Xk+ti$lk) = Xk. k = 1, 2, ... , n- 1; finite sub- and supermartingale se
quences are defined similarly. 

(f) If {Xn, §';,}and {Yn, c~} are submartingales, so is {max(Xn, Yn), 37;,}. 

For E(max(Xn+h Yn+l)l.9?;.) 2: E(Xn+tiSl;,) 2:. Xn, and similarly 

The same approach shows that if {Xn,Sl;,} and {Yn,9;,} are supermartin
gales, so is {min(Xn, Yn),Sl;,}. 

6.3.3 Examples. If Xn =X, then {Xn} is a martingale; if X 1 ::; X2 ::; · · ·, 
then {Xn} is a submartingale; if X 1 2: X2 2: ···,then {Xn} is a supermartingale 
(assuming all random variables integrable). 

We give some more substantial examples. 

(a) Let Y1, Y2, ... be independent random variables with zero mean, and 
set Xn = L~=l yb 9;, = cr(Yt, ... ' Yn). Then {Xn, c~} is a martingale. For 
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E(Xn+ti.9;;) = E(Xn + Yn+t!Yt, ... , Yn) 

= Xn + E(Yn+t!Yt, ... , Yn) 
since Xn is .97,; -measurable 

= Xn + E(Yn+d 
by independence (Problem 1, Section 5.5) 

=Xn 
since E(Yj) = 0. 

(b) Let Y 1, Y2, ••• be independent random variables with E(Yj) = aj =I 0, 
and set Xn = I1~= 1 (Yj/aj),.97,; = cr(Yt, ... , Yn). Then {Xn,j?,;} is a martin
gale. For 

[(
XnYn+l)l ] E(Xn+ti.97,;) = E an+! Yt, ... , Yn 

= XnE (Yn+l) 
an+! 

by 5.5.11 (a) and Problem 1, Section 5.5 

(c) Let Y be an integrable random variable on (Q, .r, P). 
If {.97,;} is an increasing sequence of sub cr-fields of .r, and Xn = E(Y!.9;; ), 

then {Xn, .97,;} is a martingale. For 

E(Xn+ti.97,;) = E[E(Yi.9;;+t)l.9;;] 

= E (Y!.9;;) since 

=Xn. 

If {.97,;} is a decreasing sequence of sub cr-fields of .'Y, and Xn = E (Y!.9;; ), 
then {Xn, .97,;} is a reverse martingale. For 

smce 

Note that as in 6.3.2(a), E(Xn 1.9;;+k) = Xn+ko n, k = 1, 2, .... 

(d) (Branching Processes) We define a Markov chain (see 4.11) with state 
space S = {0, 1, 2, ... }. The state at time n, denoted by Xn, is to repre
sent the number of offspring after n generations. We take Xo = 1, and, if 
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Xn = k, Xn+l is the sum of k independent, identically distributed, nonnega
tive integer valued random variables, say Y1, .•• , Yk> where P{Y; = l} = pz, 
l = 0, 1, 2, .... Thus pz is the probability that a given being will produce 
exactly l offspring. (Formally, we take Pkj = P{Y 1 + · · · + Yk = j}, k = 1, 
2, ... , j = 0, 1, ... ; Poo = 1.) 

Let m = E(Y;) = 'L~o l pz. If m is finite and greater than 0, then {Xn/mn} 
is a martingale [relative to 

For 

E(~::~ Jxo=io, ... ,Xn =in)= fPinjmLl 
J=O 

(see 5.3.5(a), Eq. (2) and the 
definition of a Markov chain) 

1 00 

= - ""jP{Y 1 + · · · + Y; = j} mn+l ~ n 
j=O 

1 
= --E(Yt + .. · + Y;J 

mn+l 

inm in 
mn+l mn 

The result now follows from 6.3.2(d). 

(e) Consider the branching process of part (d). Let g(s) = Lj pjsj, s 2: 0. 
If for some r we have g(r) = r, then {rx"} is a martingale relative to the 
cr-fields .9'(Xo, ... , Xn ). For as in (d), 

00 

E (rXn+l IXo = io, · · · , Xn = in) = 2: Pinirj 
j=O 

00 

= l:rjP{Yt + · · · + Y;" = j} 
j=O 

= E[exp,(Yl + · · · + Y;J] 

= [E(rYt)]i" = [g(r)li" = ri". 

If {Xn,§i;,} is a martingale, what can we say about Xn +or IXnl? In order 
to answer this question, we need some basic convexity theorems. 
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6.3.4 Line of Support Theorem. Let g: I ---+ ~. where I is an open interval 
of reals, bounded or unbounded. Assume g is convex, that is, 

g(ax + (1 - a)y)::: ag(x) + (1 - a)g(y) 

for all x, y E I and all a E [0, 1]. Then there are sequences {an} and {bn} of 
real numbers such that for all y E I we have g(y) = supn (any+ bn ). 

PROOF. In the course of the proof, we develop many of the basic properties 
of convex functions of one variable. 

Let g be a convex function from I to ~. I an open interval of reals. If 
0 < h 1 < h2, then by convexity, 

hence 
1 1 

-[g(x + h1)- g(x)]::: -[g(x + h2)- g(x)] 
h, h2 

(1) 

and 
1 1 

-- [g(x - h2) - g(x)] ::: -- [g(x - ht) - g(x)]. (2) 
h2 ht 

Also, if h, h' > 0, 

h' h 
g(x) < --g(x - h) + --g(x + h'), 

- h+h' h+h' 

so 
g(x - h) - g(x) g(x + h') - g(x) 
~--~~-- < ~------~-

-h h' 
(3) 

By (1) and (2), the right and left derivatives g/ and g_' exist on I; by (3) they 
are finite. [Note that if x E I, we have x- h, x + h' E I for small h, h' > 0 
since I is open; thus, in fact, the difference quotients [g(x + h')- g(x)]/h', 
which decrease as h' ..j, 0 by (1), are bounded below by a finite constant.] 
Furthermore, by (1) and (2), 

'( ) . f g(y) - g(x) 
g+ X =Ill , 

y>x y- X 

'( ) g(x) - g(y) 
g_ x =sup 

y<.x X- y 
(4) 

and by (3), 
(5) 
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(6) 

hence g/ and g_' are increasing on I. The existence of right and left deriva
tives implies that g has right and left limits at each point; thus g is continuous; 
for if not, 8+' or g_' would be infinite at some point. If y 2: x, then g(y) 
2: g(x) + (y - x)g/ (x), and if y < x, then g(y) 2: g(x) + (y - x)g _, (x) [by 
(4)]. We conclude that if g_'(x) ::=::ax::=:: g/(x), then 

g(y) 2: g(x) + (y- x)ax for all y E I. (7) 

The function Lx given by Lx(y) = g(x) + (y- x)ax, y E I, is called a line of 
support for g at the point x. It is immediate that g(x) = sup{Ls(x): 
s E I} [since Lx(x) = g(x)], but we are trying to prove that g is the sup of 
countably many lines of support. If x E I, let r approach x through a sequence 
of rational numbers. Then 

L,(x) = g(r) + (x - r)a,. 

But g_'(r) ::=::a,::=:: g/(r), and the g', being increasing functions, are bounded 
on any finite closed subinterval of I, so that the a, form a bounded sequence. 
Consequently, L,(x) -+ g(x). By (7), L,(y) ::=:: g(y) for ally E I and all r; hence 
g(x) = sup{Ls(x): s E I, s rational}, that is, g(x) = sup{g(s) + (x- s)as: s E I, 
s rational}. The proof is complete. D 

If I is not open, the theorem is false: consider g(x) = 0, 0 ::=:: x < 1, g(l) = 1. 
Now if X is a random variable with finite mean, we have seen that 

E(X2 ) 2: [E(X)]2 (4.10.6). This is a special case of the following general 
convexity theorem. 

6.3.5 Jensen's Inequality. Let g be a convex function from I to IR, where 
I is an open interval of reals, bounded or unbounded. Let X be a random 
variable on (Q, .r, P), with X(w) E I for all w. Assume E(X) to be finite. If 
~ is a sub CY-field of 5?'; then E[g(X)I~] 2: g[E(XI~)] a.e. In particular, 
E[g(X)] 2: g[E(X)]. 

PRooF. First note that E(XI~) E I a.e. For if, say, a is real and X > a, then 
E(XI.~) > a a.e. because 

02: { E(X-al~)dP= { (X-a)dP2:0; 
j{E(XI JV):Sa) j{E(XI JI'):Sa} 
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hence X= a a.e. on {E(XI.;~) ::; a}, which implies that P{E(XI5iiif) ::; a} = 0. 
Thus g[E(XI~)] is well-defined. 

By 6.3.4 we may write g(y) = supn(any + bn), y E /,so g(X) 2: anX + bn 
for all n. Therefore E[g(X)I~ 2: anE(XI~) + bn a.e. Take the sup over n 
to finish the proof. D 

The proof of 6.3.5 shows that the hypothesis that E(X) is finite may be 
dropped if it is known that E(X) and E[g(X)] exist, and E(XI~) E I a.e. 

We are now able to answer the question raised earlier about Xn + and IXnl 
when {Xn, §";.} is a martingale. 

6.3.6 Theorem. (a) Let {Xn, §";.}be a submartingale, g a convex, increas
ing function from IR to IR. If g(Xn) is integrable for all n, then {g(Xn ), .97;,} is 
a submartingale. Thus, for example, if {Xn} is a submartingale, so is {Xn +}. 

(b) Let {Xn, .:V,} be a martingale, g a convex function from IR to IR. If 
g(Xn) is integrable for all n, then {g(Xn), .:V,} is a submartingale. Thus if 
r 2: 1, {Xn} is a martingale and IXnl' is integrable for all n, then {IXnl'} is a 
submartingale. 

PROOF. We have E[g(Xn+dl9';.] 2: g[E(Xn+ll§";.)] by Jensen's inequality. In 
(a), E(Xn+JIY;,) 2: Xn by the submartingale property; hence g[E(Xn+di.:V,] 
2: g(X n) since g is increasing. In (b), E (X n+ 11.37;.) = X n by the martingale 
property, so g[E(Xn+ll§";.)] = g(Xn). The result follows. D 

Problems 

1. Let Xn = l::Z= 1 Yk. where the Yk are independent, with P{Yk = 1} = p, 
P{Yk = -1} = q (p, q > 0, p + q = 1). Show that {(qjp)Xn} is a mar
tingale relative to the O"-fields O"(X 1, ... , Xn )[ = O"(Y 1, ... , Yn )]. 

2. Consider of Markov chain whose state space is the integers, and assume 
that Pij depends only on the difference between j and i: Pij = qj-i. 

where qk 2: 0, l:k qk = 1. 

(a) Show that if Xn is the state at time n, Xn may be written as X0 

+ Y, + · · · + Yn, where X0 , Y1, •.. , Yn are independent and theY; 
all have the same distribution, namely, P{Yi = k} = qk. k an integer. 

(b) If l::j qjr.i = 1 (where the series is assumed to converge absolutely), 
show that {~n} is a martingale relative to the O"-fields O"(Xo, ... , Xn ). 

3. Let J.... be a countably additive set function on the O"-field .r, and let §";, 
be generated by the sets An I, An2· ... , assumed to form a partition of n, 



256 6 STRONG LAWS OF LARGE NUMBERS AND MARTINGALE THEORY 

with P(Anj) > 0 for all j. Assume that the (n + 1)st partition refines the 
nth, so that .r, C .97;, + 1 . 

Define 

)..(A ·) 
Xn(w) = __ n_;_ 

P(Anj) 
if wE Anj• n, j = 1, 2, .... 

Show that {Xn, .97;,} is a martingale. 

4. Define a sequence of random variables as follows. Let X 1 be uniformly 
distributed between 0 and 1. Given that x, = x,, x2 = X2, ... , Xn-i = 
Xn-l, let Xn be uniformly distributed between 0 and Xn-i· Show that {Xn} 
is a supermartingale and E(Xn) = 2-n. Conclude that Xn --+ 0 a.e. 

5. Let X 1, X2, ... be real-valued Borel measurable functions on (Q, .97"). 
Assume that under the probability measure P on .97", (X1, ... , Xn) has 
density Pn, and under the probability measure Q on .97", (X" ... , Xn) has 
density qn. Define 

if the denominator is greater than 0, 

otherwise. 

Show that if .r, = §'(X 1, ... , X n ), { Yn, !T,} is a supermartingale on 
(Q, .97", P) and 0 ::=:: E(Yn) ::=:: 1 for all n. 

6. Let {Xn, .r,, n 2: 0} be a supermartingale, and define 

Yo= Xo, 

Y1 =Yo+ (X1 - E(XJ!.¥Q)), 

Also define 

Ao = 0, 

A,= Xo- E(X,I§'O), 

A2 = A1 +(X, - E(X2i§?i)), 

(a) Show that Xn = Yn- An. 
(b) Show that { Yn, .r,} is a martingale. 
(c) Show that for a.e. w, An ( w) increases with n. 
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Thus a supermartingale can be expressed as the difference between a 
martingale and an increasing sequence. (Similarly, a submartingale can 
be expressed as the sum of a martingale and an increasing sequence.) 

6.4 MARTINGALE CONVERGENCE THEOREMS 

Under rather mild conditions, sub- and supermartingales converge almost 
everywhere. This result has very many ramifications in probability theory. 

We first prove a theorem which has an interesting gambling interpretation. 

6.4.1 Optional Skipping Theorem (Halmos). Let {Xn, .97;,} be a submartin
gale. Let 81, 82, ... be random variables defined by 

if 
if 

(X,, ... ,Xk)EBb 
(X1, ... , Xk) €/ Bb 

where the Bk are arbitrary sets in .%'(1Rn ). Set 

Y1 =X1, 

Y2 =X, +8,(X2 -XJ) 

Then {Yn.97;,} is also a submartingale and E(Yn) _:::: E(Xn) for all n. If {Xn, .9;,} 
is a martingale, so is { Yn, .9;,} and E ( Yn) = E (X n) for all n. 

Interpretation. Let Xn be the gambler's fortune after n trials; then Yn 
is our fortune if we follow an optional skipping strategy. After observing 
X 1, ... , X k. we may choose to bet with the gambler at trial k + 1 [in this case 
8k = 8k(X 1 ... , Xk) = 1] or we may pass (8k = 0). Our gain on trial k + 1 
is 8k(Xk+l - Xk). The theorem states that whatever strategy we employ, if 
the game is initially "fair" (a martingale) or "favorable" (a submartingale), 
it remains fair (or favorable), and no strategy of this type can increase the 
expected winning. 

PRooF. 

E(Yn+il.97;.) = E(Yn + 8n(Xn+l- Xn)IY;,) 

= Yn + 8nE[(Xn+i- Xn)l.9';.] 

since 8n is a Borel measurable function of X 1, ... , Xn, and hence is 

O"(X,, ... , Xn) C .9?;,-measurable. 
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Therefore 

E(Yn+Ji.9';,) = Yn + t:n(Xn- Xn) = Yn 

2:: Yn + Bn(Xn- Xn) = Yn 

in the martingale case 

in the submartingale case. 

Since Y1 = X1, we have E(XJ) = E(YJ). Having shown E(Xk- Yk) 2:: 0 
( = 0 in the martingale case), 

Thus 

Xk+i- Yk+i = Xk+l- Yk- t:k(Xk+l- Xk) 

= (1 - t:k)(Xk+l - Xk) + Xk- Yk. 

E(Xk+i - Yk+Ji.9fk) = (1- ek)E(Xk+i - Xkl§k) + E(Xk- Ykl9k) 

2:: E(Xk- Yklc9k) = Xk- Yk. 

with equality in the martingale case. Take expectations and use E[E(XI~)] 
= E(X) to obtain 

with equality in the martingale case. D 

The key step in the development is the following result, due in its original 
form to Doob (1940). 

6.4.2 Upcrossing Theorem. Let {Xb §k, k = 1, 2, ... , n} be a submartin
gale. If a and b are real numbers, with a < b, let U ab be the number of 
upcrossings of (a, b) by X1, ... , Xn, defined as follows. 

Let T1 = T1(w) be the first integer in {1, 2, ... , n} such that XT 1 ::=::a, T2 
be the first integer greater than T 1 such that X T2 2:: b, T 3 be the first integer 
greater than T 2 such that X T 

3 
::=:: a, T 4 be the first integer greater than T 3 such 

that XT
4 

2:: b, and so on. (Set T; = oo if the condition cannot be satisfied.) If 
N is the number of finite, T;, define U ab = N /2 if N is even, and (N - 1) /2 
if N is odd. Then 

PRooF. First assume a= 0, and all Xj 2:: 0. Define the T; as above (XT; ::=::a 
is now equivalent to XT; = 0. Let Bj = 0 for j < T1; Bj = 1 for T1 ::=:: j < T2; 
Bj=O for T2::=::j<T3;ej=1 for T3::=::j<T4, and so on (see 
Fig. 6.4.1). 
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In Figure 6.4.1, we have (with n = 15) T 1 = 4, T2 = 8, T3 = 10, T4 = 11, 
Ts = 14, T~ = oo, n > 5, Uab = 2; 

e, = e2 = 83 = 0, 

8JO = 1, 

84 = es = e6 = 87 = 1, 

e11 = e12 = 813 = 0, 

X,+ e, (X2- XJ) + · · · + e,4(X,s- X14) 

es = e9 = 0, 

t'J4 = 1; 

= x, +Xs- x4 +Xll- XIO +Xis- xl4· 

Note that Yn, as defined in 6.4.1, is the total increase during upcrossings, 
plus possibly a "partial upcrossing" at the end, plus a contribution due to 
X 1 (necessarily nonnegative). Thus Yn 2: bU. But the Bj can be expressed in 
terms of X 1 , ... , Xj, so the optional skipping theorem applies; hence { Yk, §k, 
k = 1, 2, ... , n} is a submartingale, and E(Yn)::::: E(Xn). Thus 

1 1 
E(Uab)::::: bE(Yn)::::: bE(Xn), 

as asserted. 
In general, {(X k - a)+, §k, k = 1, 2, ... , n} is a submartingale by 6.3 .6( a), 

and the number of upcrossings of (a, b) by {Xj} is the same as the number 
of upcrossings of (0, b - a) by { (Xj - a)+} (note that Xj ::::: a, Xj - a ::::: 0, and 
(Xj -a)+ ::::: 0 are equivalent, as are Xj 2: b, Xj -a 2: b- a, and 
(Xj- a)+ 2: b- a. The result follows from the above argument. D 

We now prove the main convergence theorem. 

6.4.3 Submartingale Convergence Theorem. Let {Xn, .97,, n = 1, 2, ... } be 
a submartingale. If supn E(Xn +) < oo, there is an integrable random variable 
X00 such that Xn -+ X00 almost everywhere. 

PRooF. P{w: Xn (w) does not converge to a finite or infinite limit} 

P [ U {w: lim inf Xn (w) < a < b < lim sup Xn (w )}]· 
a<b n----*00 n----*OO 

a,b rational 
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If for some a< b, P{liminfn--->ooXn <a< b < limsupn--->ooXn} > 0, then 
{Xn} has an infinite number of upcrossings of (a, b) on a set of positive 
probability; hence E(Uab) = oo. But Uab is the limit of the monotone se
quence Uab:n =the number of upcrossings of (a, b) by X;, ... , Xn, so that 
E(Uab;n)-+ E(Uab). But by 6.4.2, 

E(Uab;n) S (b- a)- 1E[(Xn- a)+] S (b- a)- 1[supE(Xn +)+a-]< 00, 
n 

a contradiction. Thus Xn converges to a limit X00 a.e. Now IXn I = Xn + 
+ Xn- = 2Xn +- Xn, and E(Xn) 2: E(XJ) by the submartingale property. 

Therefore 
E(IXnl)::; 2supE(Xn +)- E(XJ) < oo. 

n 

By Fatou' s lemma, 

E(IXool)::; liminfE(IXnl) < oo; 
n--->00 

hence X00 is integrable, and therefore finite a.e. By changing X00 on a set of 
measure 0, if necessary, we may take X00 as a random variable (rather than 
an extended random variable). The theorem is proved. D 

6.4.4 Corollary. Let {Xn, .9?;,, n = 1, 2, ... } be a reverse submartingale [the 
.97, decrease as n increases, and E(Xni.97,+J) 2: Xn+l a.e.]. If infn E(Xn) 
> -oo, there is an integrable random variable X00 such that Xn -+ X00 a.e. 
[Note that the hypothesis is satisfied for any reverse martingale since E (X n) 
is constant.] 

PROOF. Proceed as in 6.4.3, but instead let U ab;n be the number of upcrossings 
of (a, b) by {X n, X n -I , ... , X J}, which is a submartingale because 

We obtain E(Uab;n)::; (b- a)-1E[(XI- a)+]< 00, and thus Xn-+ X00 a.e. 
as before. 

Now IXn I = 2Xn +- Xn and E(Xn) 2: infn E(Xn) > -00. Also {Xn +, ... , 
X1+} is a submartingale by 6.3.6(a), so E(Xn +)::; E(X1+). Thus E(IXnl) 
::; 2E(X 1 +)- infn E(Xn) < oo, so X00 is integrable by Fatou's lemma as be
fore. D 

6.4.5 Comments. (a) In 6.4.3 and 6.4.4, the proofs show that {Xn} must be 
L 1 bounded, that is, supn E(IXn I) < oo. Thus for a submartingale, supn E(Xn +) 
< oo is equivalent to L 1 boundedness, and implies convergence. However, 
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a submartingale may converge without being L 1 bounded (see Problems 1 
and 2). 

(b) Results analogous to 6.4.3 and 6.4.4 hold for supermartingales: If 
{Xn, .§',, n = 1, 2, ... } is a supermartingale and supn E(Xn -) < oo, then there 
is an integrable random variable X00 such that Xn -+ X00 a.e. In particular, 
a nonnegative supermartingale converges a. e. If {Xn, .§',, n = 1, 2, ... } is a 
reverse supermartingale and supn E(Xn) < oo, there is an integrable random 
variable X00 such that Xn -+ X00 a.e. The first statement follows from 6.4.3 
since {-Xn, .§',}is a submartingale and supn E[(-Xn)+] = supn E(Xn -).The 
second follows from 6.4.4 since {-X n, .§',} is a reverse submartingale and 
infn E(-Xn) =- supn E(Xn). 

Problems 

1. Consider the following Markov chain. Take X1 = 0. If Xn = 0 (regardless 
of xk, k < n ), then: 

=0 

with probability 

with probability 

with probability 

Pn+i 

Pn+i 

where 0 < Pn+i < ! and the an are distinct and greater than 0. If Xn =I= 0, 
take Xn+i = Xn (thus if Xn =/= 0, we have Xj = Xn for all j 2:: n). 

(a) Show that {Xn} is a martingale, and Xn converges everywhere. 
(b) If 2::~ 1 Pk < oo and 2::~ 1 akPk = oo, show that supnE(IXn I)= oo. 

2. (Problem hy W. F. Stout, personal communication.) Consider the follow
ing Markov chain. Take Xo = 0, and let 

P{Xn+l = n + 11Xn = n} = Pn+i• 

P{Xn+i = -(n + 1)1Xn = n} = 1- Pn+h 

P{Xn+i = -kiXn = -k} = 1, (n=0,1, ... , k=1,2, ... ). 

(a) Show that if Pn+i = (2n + 1)/(2n + 2) for all n, then {Xn} is a 
martingale. 

(b) If the Pn are chosen as in (a), show that the martingale converges 
a.e. to a finite limit, although E(IXnl)-+ oo. 

(Note: In Problems 1 and 2, the Markov chain has nonstationary transition 
probabilities, in other words, the probability of moving from state i at time 
n to state j at time n + 1 depends on n. However, the basic construction of 
4.11.2 carries over.) 
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3. (Kemeny, Snell, and Knapp, 1966) Let {Xn} be a Markov chain with 
state space S = the set of rationals in (0, 1 ), and the following transition 
probabilities: 

Let 0 < b .:Sa< 1, a, b rational. If xES and Xn = x, then Xn+l = bx 
with probability 1- x, and Xn+l = bx + 1- a with probability x. 

(a) If a= b, show that {Xn} is a martingale, and Xn -+ X 00 a.e., where 
X 00 = 0 or 1; also P{X00 = 1} = E(Xo). 

(b) If b <a, show that {Xn} is a supermartingale and Xn -+ 0 a.e. 

4 (Polya urn scheme) An urn contains white and black balls; one ball is 
drawn, and then replaced by two of the same color, and the process is 
repeated. Thus if the urn contains c white and r - c black balls, and a 
white ball is drawn, the fraction of white balls in the urn before the next 
drawing is (c + 1)/(r + 1). 

If X n is the fraction of white balls in the urn just before the nth drawing, 
show that {Xn} is a martingale, and Xn converges a. e. to a limit X 00 , where 
E(X00 ) = E(XJ ). 

5. Martingales may be defined on a measure space (Q, .r, J-t) if J-t is finite; 
simply replace J-t by the probability measure P = J-L/[J-L(Q)]. If J-L(Q) = oo 
we can use 6.3.2(c) in the definition: fA Xn dj.t = fA Xn+ 1 dj.t for all A E !T, 
(of course, the Xn are still required to be §;,-measurable and integrable). 
Sub- and supermartingales may be defined similarly. 

Show that an L 1 bounded submartingale converges a.e. [J-L] to an inte
grable limit. 

6.5 UNIFORM INTEGRABILITY 

We now introduce a concept that has important application to martingale 
theory, and in fact to integration theory in general. 

6.5.1 Definitions and Comments. Let f 1, f2, ... be real- or complex-valued 
Borel measurable functions on the measure space (Q, .r, J-t ), J-t finite. The fn 
are said to be uniformly integrable iff 

{ lfnldJ-t-+ 0 
}{lfnl~c) 

as c-+ 00 

uniformly inn. (The definition is the same for an uncountable family {f;}.) 
It is immediate that if the fn are uniformly integrable, each fn is integrable. 

Also, if lfn I .:=:: g for all n, where g is integrable, in particular, if the fn are 
uniformly bounded, then the fn are uniformly integrable. 
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Furthermore, if the fn are uniformly integrable, then supn fn lfn I dJ-t < oo, 
because if 8 > 0, 

for large n. 
One basic application of uniform integrability is the following extension of 

Fatou's lemma and the dominated convergence theorem. 

6.5.2 Theorem. Let f 1, f2, ... be real-valued and uniformly integrable. 

(a) {(lim inf fn) dj.t :S lim inf { fn dj.t Jn n n Jn 

:S lim sup { fn dj.t :::: {(lim sup fn) dj.t. 
n Jn Jn n 

(b) If fn -+ f a.e. or in measure, then f is integrable and 

PROOF. (a) We have 

c > 0. 

By uniform integrability, c may be chosen so large that I fu"~-cl fn dJ-tl 
< 8 for all n, where 8 > 0 is preassigned. Since fnl{fn"?.-c) 2:: -c, which is 
integrable since J-t is finite, Fatou's lemma yields 

liminfl fn dj.t 2:: { liminf(fnl{fn2:-c))dj.t. 
n {f.~-c) Jn n 

Since fniUn>c) 2:: fn, this integral is in tum greater than or equal to 
fn(limint;, fn)dJ-t. Thus 

proving the lim inf part. The lim sup part is done by a symmetrical argument. 
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(b) This is immediate from (a) if fn --+ f a.e., so assume fn --+ f in 
measure. By 2.5.3, there is a subsequence fnk --+ f a.e.; hence by (a) applied 
to the fnk, f is integrable and fn fnk dj.t --+ fn f dj.t. If fn fn dj.t does not 
converge to fn f dj.t, then for some 8 > 0 we have lfn fn dj.t- fn f dJ-ti ::: 8 
for infinitely many n, and for convenience in notation we may assume this 
holds for all n. But then we find a subsequence f m

1 
--+ f a.e., and as above, 

fn f mj dJ-t --+ fn f dJ-t, a contradiction. D 

We now establish a useful criterion for uniform integrability. 

6.5.3 Theorem. The complex-valued Borel measurable functions fn are uni
formly integrable iff the integrals fn lfn I dj.t are uniformly bounded and also 
uniformly continuous, that is, JA lfn I dj.t --+ 0 as J-L(A) --+ 0, uniformly in n. 

PROOF. Assume the integrals are uniformly bounded and uniformly continu
ous. Then 

by Chebyshev's inequality, and this approaches 0 as c--+ oo, uniformly inn, 
by the uniform boundedness. Thus J{lfnl:o:cl lfn I dJ-t--+ 0 as c--+ oo, uniformly 
in n, by the uniform continuity. 

Conversely, assume uniform integrability. We have 

11fn I dj.t = 1 lfn I dj.t + 1 lfn I dj.t 
A An{lfni:O:c} An{lfnl<c} 

:S { lfnldJ-t+CJ-t(A). (1) 
}{lfni:O:c} 

Choose c so that J{lfni:O:c} lfn I dj.t < 8/2 for all n; if J-t(A) < 8j2c, then by (1), 

fA lfn I dj.t < (8/2) + (8/2) = 8 for all n, proving uniform continuity. Uniform 
boundedness was verified in 6.5.1. D 

We have seen in 2.5.1 that LP convergence implies convergence in measure. 
The converse holds under an additional hypothesis of uniform integrability. 

6.5.4 Theorem. Let J-t be a finite measure on (Q, .:V), and let 0 < p < oo. 

f IL j . ., • LP 
I fn ~ and the lfn IP are un11ormly mtegrable, then fn, ~f. 

PROOF. First assume that the lfn - f IP are uniformly integrable. By 2.5.3, 
there is a subsequence Unk} converging to f a.e. and in measure. By 6.5.2(b), 
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fn link - fiP dJ-t-+ 0 ask-+ oo. The same argument shows that any subse-
LP 

quence of Un} has a subsequence converging to f in LP. Hence fn ----+ f, 
for if not, there would be an 8 > 0 and a subsequence Un,} such that 
fnlfn;- fiPdJ-t 2:8 for all i. 

Now assume the lfniP to be uniformly integrable. Then lfn- fiP::::: lfniP 
+ lfiP if p::::: 1, and lfn- fiP::::: 2P- 1(Ifn IP + lfiP) if P 2: 1. (See 2.4.6 
and the end of 2.4.12.) As above, we have a subsequence fnk -+ f a.e. By 
6.5 .2(b ), If I P is integrable, and it follows that the integrals J n If n - f I P dJ-t 
are uniformly bounded and uniformly continuous. [Note that fA lfiP dJ-t-+ 0 
as J-L(A)-+ 0 by 2.2.5(e).] By 6.5.3, the lfn- fiP are uniformly integrable, 
and the previous argument applies. D 

Ll 
6.5.5 Corollary. In 6.5.2(b), fn ----+ f, that is, fn lfn -!I dj.t-+ 0. 

PRooF. The Ifni are uniformly integrable by hypothesis, and fn ~ f 
either by hypothesis or by 2.5.5 D 

The following result will be needed in the next section. 

6.5.6 Lemma. Let f;, i E /, be integrable functions on (Q, .r, J-t). If 
h: [0, oo)-+ [0, oo) is Borel measurable, h(t)/t-+ oo as t-+ oo, and 
supiEI fn h(lf;l)dj.t < oo, then the f; are uniformly integrable. For example, 
take hltl = tP, p > 1; thus if fnlfniPdJ-t::::: M < oo for all n, then the fn are 
uniformly integrable. 

PRooF. Given 8 > 0, let M = supiEI fn h(lf;l)$ and set a= M/8. There is 
a positive number c such that h(t)jt 2: a for t 2: c. Thus 

Problems 
LP 

1. If 0 < p < oo, f, j,, f2, ... E U, and fn----+ f, show that the lfnlp 
are uniformly integrable. 

2. Give an example of a uniformly integrable sequence of functions fn on a 
measure space (Q, .r, J-t ), J-t finite, such that the lfn I cannot be bounded 
above by an integrable function. 
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6.6 UNIFORM INTEGRABILITY AND MARTINGALE THEORY 

The application of the uniform integrability concept yields many addi
tional facts about martingales. In particular, we shall find that a martingale 
is uniformly integrable iff it can be represented as Xn = E(YI§";.) for some 
integrable random variable Y. Thus Y can be considered a "last element" of 
the martingale {X n , .97;,}. 

6.6.1 Lemma. Let Y be an integrable random variable on (Q, .r, P) and 
let ~. i E /, arbitrary sub O"-fields of .r. Then the random variables 
X; = E ( Y 1 ~ ), i E I, are uniformly integrable, that is, 

uniformly in i. 

1 IX;IdP-+ 0 
{IXil:o>c} 

PROOF. As IE(YI~)I :S E(IYII~), 

as c-+ 00 

{ IX;I dP::: { E(IYII.~)dP = { IYI dP 
j{IX;I;o>c} j{IX,I:o>c} j{IX;I;o.c} 

since {IX;! 2: c} E :9"; (remember X; is :fr;-measurable). But by Chebyshev's 
inequality, 

as c-+ oo 

uniformly in i. D 

The following result, due to Levy (1937), was historically the first of the 
martingale convergence theorems. 

6.6.2 Theorem. Let {§";.} be an increasing sequence of sub O"-fields of .r, 
and let .roo be the O"-field generated by U~ 1 §";,. If Y is integrable and Xn 
= E(YI§";.), n = 1, 2, ... , then Xn -+ E(Yij:Too) a.e. and in L1. 

PRooF. {Xn, §";,} is a martingale by 6.3.3(c), and is uniformly integrable 
by 6.6.1. Since E(IXn I) :S E(IYI) < oo, Xn converges a.e. to an integrable ran
dom variable X00 , by 6.4.3; L1 convergence follows from 6.5.5. It remains to 
show that X00 = E(YIY00 ) a.e. 

If A E .97;, , then 

1 Y dP = 1 E(YI§";.)dP = 1 Xn dP-+ 1 X 00 dP 
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by L1 convergence. Thus fAY dP =fA X00 dP for all A in the field U::"=1 .97,, 
and hence for all A E !JT00 (monotone class theorem). Since Xn is .97, C !JT00 -

measurable, X00 is .9'00-measurable, and therefore X00 = E(YI!JT00 ) a.e. by 
definition of conditional expectation. D 

A result similar to 6.6.2 holds if the O"-fields form a decreasing sequence. 

6.6.3 Theorem. Let {.9;.} be a decreasing sequence of sub O"-fields of !JT, 
and let .roo = n:, I .97,. If y is integrable and Xn = E(Y1.97, ), n = 1, 2, ... , 
then Xn -+ E(YI!JT00 ) a.e. and in L1. 

PRooF. Just as in 6.6.2 (using 6.4.4 instead of 6.4.3), Xn -+ X00 a.e. and in 
L1, so we must show that Kxo = E(YIST00 ) a.e. If A E !JT00 C !T,, then 

Since Xn is !T, C §'k-measurable for n 2: k, X00 is §'k-measurable for all k; 
hence X00 is !JT00 - measurable. D 

6.6.4 Comments. Let Z;: (Q, Y)-+ (Q;', Y/) be a random object (i = 1, 
2, ... ). In 6.6.2, if .97, = CT(Z 1, ... , Zn), then !JT00 = CT(Z,, Z2, ... ) (see Prob
lem 1). Thus E(YIZ 1, .•• , Zn)-+ E(YIZ 1, Z2, ... ) a.e. and in L1• In 6.6.3, if 
Y, = CT(Zn, Zn+ 1, ... ), then !JT00 is the tail O"-field of the Zn (see 6.2.6). 

We now show that uniform integrability of a submartingale implies a.e. and 
L 1 convergence, and also implies that a last element can be attached. 

6.6.5 Theorem. Let {X n, .97,, n = 1, 2, ... } be a uniformly integrable sub
martingale. Then supn E(Xn +) < oo, and Xn converges to a limit X00 a.e. 
and in L1. Furthermore, if ST00 is the O"-field generated by U::"=l .97,, then 
{Xn, .97,, n = 1, 2, ... , oo} is a submartingale. If {Xn, .97,, n = 1, 2, ... } is a 
uniformly integrable martingale, so is {X n , .97,, n = 1, 2, ... , oo}. [If {X n, .§';;, 
n = 1, 2, ... , oo} is a (sub- or super-) martingale, where !JT00 is the O"-field 
generated by the .97,, X00 is said to be a last element.] 

PROOF. By 6.5.3, supn E(IXn I)< 00, so by 6.4.3, Xn -+ X00 a.e. By 6.5.5, 
LJ 

Xn ~xoo. 
Now if A E !T, and k 2: n, then by 6.3.2(c), fA Xn dP::::: fA Xk dP. 

Let k-+ oo; the L1-convergence yields fA Xn dP::::: fA X00 dP. Thus [6.3.2(c) 
again] Xn ::::: E(X00 IJ7;,); hence {Xn, .97,, n = 1, 2, ... , oo} is a submartingale. 
The last statement follows from the above argument with ":::::" replaced by 

D 
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Theorem 6.6.5 indicates that uniform integrability of a submartingale im
plies some rather strong conclusions. In fact, a uniformly integrable martingale 
must have a last element. 

6.6.6 Theorem. {Xn, .97,, n = 1, 2, ... } is a uniformly integrable martingale 
iff there is an integrable random variable Y such that Xn = E(Yi.97, ), 
n = 1, 2, ... ; in this case, Xn-+ E(YI.9?'00 ) a.e. and in L1, where .:?'00 is the 
0"-field generated by U~= 1 .97,. 

PROOF. The "if" part follows from 6.6.1 and 6.6.2. The "only if" part follows 
from 6.6.5 withY= X00 • D 

In 6.6.6, if we require that Y be .9'00 -measurable, then Y is unique (up 
to sets of measure 0). For if Xn = E(YIY,,), then E(YI.9?;.) = E(X00 1.9?;.), 
n = 1, 2, ... , so fAY dP =fA X00 dP for all A E U~=l .7,, and hence for all 
A E .§'00 (monotone class theorem). Thus Y = X 00 a.e. by 1.6.11. 

A sub- or supermartingale with a last element need not be uniformly inte
grable, but there are partial results in the direction. 

6.6.7 Theorem. Let {Xn, .97,, n = 1, 2, ... , oo} be a nonnegative submartin
gale with a last element. Then the Xn are uniformly integrable. 

PROOF. 

and 
P{Xn 2: c}::::: E(Xn) ::::: E(X00 ) -+ O as c-+ 00 

c c 

uniformly in n. D 

We now give an example of a supermartingale {Xn, .7,} with a last element 
that is not uniformly integrable. (Also, {-Xn, .7,} will be a submartingale with 
a last element that is not uniformly integrable.) The key feature of this example 
is that limn--->oo Xn will be a last element when the sequence is regarded as a 
supermartingale, but not when it is regarded as a martingale. 

6.6.8 Example. Let Y1, Y2, ••• be independent, with P{Yj = 1} = p, 
P{Yj = 0} = 1- p, 0 < p < 1. LetXn = p-n TIJ=i Yj, J?;; = 9(YJ, ... , Yn). 
Then {Xn, .7,, n = 1, 2, ... } is a martingale, and hence a supermartingale 
[see 6.3.3(b)]. Since all Xn 2: 0, we have E(Oi.7,) = 0 ::=:: Xn, so 0 is a last 
element when the sequence is regarded as a supermartingale, but not when 
it is regarded as a martingale. But the Xn are not uniformly integrable; 
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for P{Y; = 1 for allj} = limn--->0>0 pn = 0; hence (a.e.) Xn = 0 eventually, so 
. I 

~n --+ 0 a.e. If the Xn were uniformly integrable, then Xn ~ 0 by 6.5.5; 
1ence E(Xn)--+ 0. But E(Xn) = 1 for all n, a contradiction. If we regard the 
;equence as a martingale, there can be no last element. For if X00 is a last 
~lement, then Xn = E(X00 1.97;.) for all n; hence by 6.6.1, the Xn are uniformly 
.ntegrable. 

Since (a.e.) Xn = 0 eventually, we have an example of a "fair" game in 
which the gambler is almost certain to be wiped out. Thus the term "locally 
fair" is perhaps more appropriate than "fair." 

Note that a sub- or supermartingale with a last element converges a.e. [In 
:he submartingale case, for example, supnE(Xn +) :::; E(X00 +) < oo.] But the 
limit need not coincide with the last element. 

We now look at the problem of LP convergence. 

~.6.9 Theorem. Let {Xn, .?7;,, n = 1, 2, ... } be a martingale or a nonnega
:ive submartingale with E[IXn IP] :::; M < oo for all n, where p > 1. Then Xn 
;onverges to a limit X00 a.e. and in LP. 

PROOF. By 6.5.6, the Xn are uniformly integrable, so by 6.6.5, Xn converges 
1.e. to a limit X00 , and X00 is a last element. 

Now {IXniP, ..97;,, n = 1, 2, ... , oo} is a nonnegative submartingale. [In the 
;ase in which {Xn, §';.}is a martingale, use 6.3.6(b) with g(x) = lxiP; in the 
11onnegative submartingale case, use 6.3.6(a) with g(x) = xP, x 2: 0; 
f?(X) = 0, x < 0.] By 6.6.7, the IXn IP are uniformly integrable, and by 6.5.4, 
~n --+ X00 in LP. D 

Problems 

1. Let Zn: (Q, .9')--+ (Qn', .9'n'), n = 1, 2, ... , be random objects. If .9';, 
=O'(Z 1, ... ,Zn),n=1,2, ... , show that the 0'-field generated by 
U~1 .9';, is O"(Z~o Z2, ... ). 

2. Let {Xn, .97;,} be a nonnegative supermartingale, so that Xn converges a. e. 
to an integrable random variable X00 • 

(a) ShowthatE(Xn)--+ E(X00 ) ifftheXn are uniformly integrable. (This 
holds for any sequence of nonnegative integrable random variables 
converging a.e. to an integrable limit; the supermartingale property 
is not involved. Note also that we have E[IXn - X00 1] --+ 0 since we 
have a.e. convergence and uniform integrability.) 

(b) Show that X00 is a last element. 

(c) If E(Xn)--+ 0, show that Xn --+ 0 a.e. 
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3. Let {Xn, .97}, n = 1, 2, ... be a submartingale (respectively, a martingale), 
and let.'l700 be the 0'-field generated by the .97;,. If there is an .97-measurable, 
integrable random variable Y such that E(YI§?;.) 2: Xn a.e., [E(YIY;.) 
= Xn a.e. in the martingale case], then there is an .9700 -measurable, inte
grable random variable X00 such that E(X00 I§';.) 2: Xn a.e. [E(X00 1.97;.) 
= Xn a.e. in the martingale case.] 

6. 7 OPTIONAL SAMPLING THEOREMS 

Let {Xn, §';,, n = 1, 2, ... } be a martingale, with Xn interpreted as a gam
bler's total capital after n plays of a game of chance. Suppose that after each 
trial, the gambler decides either to quit or to keep playing. If T is the time of 
quitting, what can be said about the final capital X T? 

First of all, the random variable T must have the property that if we observe 
X" ... , Xn, we can come to a definite decision as to whether or not T = n. 
A nonnegative random variable of this type is called a stopping time. 

6.7.1 Definition. Let{§';., n = 0, 1, ... } be an increasing sequence of sub 
O"-fields of .rr. A stopping time for the§';, is a map T: n-+ {0, 1, ... , oo} 
such that {T .:=:: n} E 9';, for each nonnegative integer n. Since {T = n} 
= {T .:S n}- {T .:S n- 1} and {T .:S n} = U~=0{T = k}, the definition is equi
valent to the requirement that {T = n} E §';, for all n = 0, 1, .... If 
{Xn, n = 0, 1, ... } is a sequence of random variables, a stopping time for {Xn} 
is, by definition, a stopping time relative to the 0'-fields §';, = O"(X0 , ... , Xn ). 
(The above definitions are modified in the obvious way if the index n starts 
from 1 rather than 0). 

If S and T are stopping times, so are S v T = max(S, T) and S 1\ T 
= min(S, T). ({S v T .:S n} = {S.:::: n} n {T .:S n}, {S 1\ T .:S n} = {S.:::: n} U 
{T .:=:: n }. Also, if T = n then T is a stopping time. 

By far the most important example of a stopping time is the hitting time 
of a set. If {Xn} is a sequence of random variables and BE JlJ'(IR), let T(w) 
= min{n: Xn(w) E B} if Xn(w) E B for some n; T(w) = oo if Xn(w) is never 
in B. T is a stopping time since {T .:=:: n} = Uk:::n {Xk E B} E §{Xb k .:S n ). 

If T is a stopping time for {Xn}, an event A is said to be "prior to T" iff, 
whenever T = n, we can tell by examination of the Xk. k .:=:: n, whether or not 
A has occurred. The formal definition is as follows. 

6. 7.2 Definition. Let T be a stopping time for the 0'-fields .97;,, n = 0, 1, ... , 
and let A belong to .97. The set A is said to be prior to T iff A n {T .:=:: n} 
E.~ for all n = 0, 1, ... [Equivalently, as in 6.7.1, An {T = n} E.~ for all 
n = 0, 1, .... ] The collection of all sets prior to Twill be denoted by !Tr; it 
follows quickly that 9T is a 0'-field. Also, if T = n then 9T is simply .97;,. 
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If S and T are stopping times and S ~ T, then .§IS c §T. For if A E .§IS 
then 

k 

An {T::: k} = U[A n {S = i}] n {T::: k}. 
i=l 

But An {S = i} E jlj C .IJ7k, and {T :S k} E §k; hence A E .§?7.. 
If the stopping time T is constant at n, then XT is .§?7.-measurable. We 

would like this idea to carry over to a general stopping time. Formally, let 
T be a finite stopping time for the O"- fields .97,, and define X T in the natural 
way; if T(w) = n, let XT(w) = Xn(w). If BE .2(1R), then {XT E B} E .§?7., in 
other words, XT is Ji?T-measurable. (Since .fJ?T c .rJT by definition, if follows 
in particular that XT is a random variable.) To see this, write 

n 

{XT E B} n {T :S n} = U[{Xk E B} n {T = k}]. 
k=O 

Since {Xk E B} n {T = k} E .'/k fork ::: n, we have 

{XT E B} n {T :S n} E .97,. 

Also, as Tis finite, we have U~0{T :S n} = Q, so that {XT E B} E .r, as 
desired. 

If T is not necessarily finite, the same argument shows that I {T <oo}X T is 
S77-measurable. 

Now in the gambling situation described at the beginning of the section, a 
basic quantity of interest is E (X T ), the average accumulation at the quitting 
time. For example, if E (X T) turns out to be the same as E (X 1) [ = E (X n) for 
all n by the martingale property], the gambler's strategy does not offer any 
improvement over the procedure of stopping at a fixed time. Now in comparing 
X 1 and Xr we are considering two stopping times S and T (S = 1) with 
S::: T, and looking at Xs versus XT. More generally, if T1 ::: T2 ::: • • • form 
an increasing sequence of finite stopping times, we may examine the sequence 
X T I' X T 2 , •••• If the sequence forms a martingale, then E (X T J = E (X T 1 ) for 
all n, and if T 1 = 1, then E(XT

1
) = E(XJ). 

Thus if we sample the gambler's fortune at random times T1, T2, ••• , the 
basic question is whether the martingale (or submartingale) property is pre
served. This will always be the case when the sequence {Xn} is finite. 

6.7.3 Theorem. Let {Xn, .97,, n = 1, ... , m} be a submartingale, and let T1, 

T 2, ... be an increasing sequence of stopping times for the .97,. [In other 
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words, the Tn take values in {1, ... , m}, and {Tn ::=:: k} E §i, k = 1, ... , m.] 
The O"-fields !FT, are defined as before: 

.9T, ={A E §:An {T; ::::: k} E .!J7i, k = 1, ... , m}. 

Then the XTn form a submartingale relative to the O"-fields !FTP a martingale 
if {Xn} is a martingale. 

PROOF. We follow Breiman (1968). Define Yn = XTn' and note that each Yn 
is integrable: 

L IXTnldP = t jTn=i) IX;IdP::::: tE(IX;I) < 00. 

As the Tn increase with n, so do the !7T, (see the discussion after 6.7.2). 
Now if A E !FT", we must show that fA Yn+ 1 dP :=: fA Yn dP (with equality 

in the martingale case). Since A = U )An {Tn = j}], it suffices to replace A 
by Dj = A n { Tn = j}, which belongs to !7; now if k > j, we note that Tn = j 
implies Tn+i :=: j, so that 

k 1 Yn+i dP = L 1 Yn+l dP + 1 Yn+i dP. 
DJ i=j D1 n{Tn+t=i)) D1n{Tn+t>k) 

Thus 

- { (Xk- Yn+d dP. (1) 
Jv1n{Tn+t>k) 

Now combine the i = k term in (1) with the f Xk dP term to obtain 

{ ~~+{ ~~={ ~~ 
Jv1 n{Tn+t=k) Jv1n{Tn+t>k) Jv1n{Tn+t?:k) 

since {Tn+l :=: k} = {Tn+i ::=:: k- l}c E §i_, and Dj E §} C .Ji?k-i· But 

{ Xk-i dP = { Xk-J dP, 
Jv1n{Tn+t?:k) Jv1 n{Tn+t>k-i) 

so this term may be combined with the i = k - 1 term of ( 1) to obtain 

f xk-2dP. 
}Dp{Tn+t>k-2) 
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Proceeding inductively, we find 

Now {Tn+l > k} is empty fork 2:: m. Finally, Dj n {Tn+l 2:: j} = Dj since 
Dj c {Tn = j}, and Xj = Yn on Dj· Thus 

as desired. In the martingale case, all inequalities in the proof become equal
ities. 0 

Theorem 6. 7.3 extends immediately to the case of an infinite sequence if 
each Tn is bounded, that is, for each n there is a positive constant Kn such that 
Tn :::; Kn a.e. The same proof may be used; the key point is that {Tn+l > k} 
is still empty for sufficiently large k. 

When {Xn} is an infinite sequence, the martingale or submartingale property 
is not preserved in general, but the following result gives useful sufficient 
conditions. 

6. 7.4 Optional Sampling Theorem. Let {X 1, X 2 · · ·} be a submartingale, and 
let T 1, T 2 , ... be an increasing sequence of finite stopping times for {X n}, with 
Yn = X Tn, n = 1, 2, .... If 

(A) E(IYnl) < oo for all n, and 
(B) liminfk--->oc J{Tn>k) IXkl dP = 0 for all n, 

then {Yn} is a submartingale relative to the CY-fields §?T". If {Xn} is a martingale, 
so is {Yn}. 

PROOF. Since integrability of the Yn is now hypothesis (A), we can follow 
the proof of 6.7.3 to (2). The first integral on the right-hand side is fv Yn dP 
as before, but in the second integral, we no longer have {Tn+l > k}

1 
empty 

for large k. But by hypothesis (B), fvin{Tn+t>k) Xk dP -+ 0 ask -+ oo through 
an appropriate subsequence, and fv

1
n{T" t>k) Yn+l dP-+ 0 as k-+ oo since 

{Tn+l > k} decreases to the empty set. Thus 

as desired. As before, all inequalities become equalities m the martingale 
case. D 
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If {Xn} is a submartingale with a last element X00 , we can define the random 
variable XT for any stopping timeT. On the set {T = oo}, XT = X00 • In this 
case, the optional sampling theorem holds. 

6. 7.5 Theorem. If { Tn} is an increasing sequence of stopping times (not 
necessarily finite) for a submartingale {Xn} having a last element X00 , then 
{X T.,} is a submartingale relative to the o--fields /PY,.,; if {Xn} is a martingale, so 
is {XTJ· In particular, this holds if the Xn are uniformly integrable (see 6.6.5). 

PROOF. Case 1: Xn ::::: 0 for all n, and Xoo = 0. For any fixed n, let sk 
= Tn 1\ k = min(Tn, k), k = 1, 2, ... ; it is easily checked that Skis a stopping 
time for the Xn. Now, if Tn is finite, Xsk --+ Yn = XT., as k--+ oo; hence by 
Fatou's lemma, 

lim sup { Xsk dP :S { Yn dP:::; 0. 
k--+oo J rl J rl 

The same conclusion holds for arbitrary Tn, because on the set {Tn = oo} we 
have Xsk = xk ::::: 0 = XT.,. But by 6.7 .3, {Xsk} is a submartingale; hence 

which is finite. Therefore Yn is integrable. 
Again by 6.7.3, {XT.,Ak. .§!T"!\k. n = 1, 2, ... } is a submartingale (k fixed). 

Thus 

if A E .rT.,Ak· But if A E .JT.r., then An {Tn :S k} E .JT.r.,Ab for 

< < . _ {An {Tn :::; i} 
An{Tn_k}n{Tn/\k_z}- An{Tn:Sk} 

Thus 

for 
for 

i::::: k, 
i > k .. 

A E !Tr •. 

But on {Tn :S k}, Tn 1\ k = Tn; also, {Tn+i :S k} C {Tn :S k} and XT.+ 1!\k :S 0; 
hence 
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Let k -+ oo to obtain 

As XT. = 0 on {Tn = oo} and XT.+ 1 = 0 on {Tn+i = oo}, we get 

1 XTn dP :S 1 XTn+l dP, 

which is the desired submartingale property. 
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Case 2: Xn = E(X00 1.97;,), n = 1, 2,.. .. In this case, XT.Ak 
= E(Xk1.97T.Ak) = E(Xoo1.97Tnl\k) by 6.7.3 and 5.5.10(a). Therefore, the XTnl\k. 
k = 1, 2, ... are uniformly integrable by 6.6.1. 

Now if B E §T. then B n {Tn ::: k} E §T.I\k (see case 1). Thus 

{ XT, 1\k dP = { Xoo dP. 
JBn{Tn:Sk) n JBn{Tn-:Sk) 

Let k-+ oo and use the uniform integrability of the XT"I\k to obtain 

{ XT, dP = { X 00 dP. 
JBn{Tn<OO) " JBn{Tn<OO) 

But on {Tn = oo} we have XT" = X00 , so 

1 XTn dP = 1 XoodP for every BE §T". 

Therefore X Tn = E (X 00 I§T" ), so that X T 1 , X T 2 , ••. is a martingale. 
General Case: Write Xn = Xn' + Xn'', where Xn' = Xn- E(X00 1.97;,), Xn'' 

= E(X00 1§";,). The Xn' fall into case 1 and the Xn'' into case 2, and the result 
follows. Note that if {Xn} is a martingale with last element X 00 , we must have 
X n = E (X 00 1.97;,) so that { Yn} is a martingale by the analysis of case 2. D 

To conclude this section we give an example of a situation in which the 
optional sampling theorem does not apply. Consider the problem of fair coin 
tossing, that is, let Y 1, Y 2 •••• be independent random variables, each taking 
on values ±1 with equal probability. If Xn = Y1 + · · · + Yn, the Xn form a 
martingale by 6.3.3(a). Now with probability 1, Xn = 1 for some n. (This is 
a standard random walk result; for a proof, see Ash, 1970, p. 185.) If Tis the 
time that 1 is reached (the hitting time for {1}), and S = 1, then S and T are 
(a. e.) finite stopping times, but {Xs, X T} is not a martingale. For if this were 
the case, we would have E(XT) = E(Xs) = E(XJ) = 0. But XT = 1; hence 
E(XT) = 1, a contradiction. In addition, we obtain from 6.7.5 the result that 
the Xn are not uniformly integrable. 
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Problems 

1. Let {X 1, ... , Xn} be a submartingale, and let T be a stopping time for 
{Xi, 1 _:::: i _:::: n}. Show that 

The corresponding result for supermartingales, which may be obtained by 
replacing X; by -X;, is 

2. Let {X" X2, ... } be a submartingale, and T a finite stopping time for {Xn}
Show that 

E(IXTI).::: 2supE(Xn +)- E(XJ). 
n 

As in Problem 1, the analogous result for supermartingales is 

E(IXTI) _:::: 2 supE(Xn -) + E(XJ). 
n 

3. (Sub- and supermartingale inequalities) (a) Let {X 1, ••• , Xn} be a sub
martingale. If A :::: 0, show that 

(b) Let {X 1, ••• , X n} be a submartingale. If A :::: 0, show that 

(Apply 6.7.3, with T = min{i: X; :::: A}; T = n if all X; < A.) 

(c) If {X" X2, ... } is a submartingale and A :::: 0, show that 

AP{supXn >A}_:::: supE(Xn +); 
n n 

if {X" X 2, ... } is a supermartingale and A :::: 0, show that 

AP{supXn >A}_:::: E(XJ) + supE(Xn -). 
n n 

4. Use Problem 3 to give an alternative proof of Kolmogorov's inequal
ity 6.1.4. 
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5. (Wald 's theorem on the sum of a random number of random variables) Let 
Y 1, Y 2, ... be independent, identically distributed random variables with 
finite mean m, and let Xn = l::Z=I Y k· If T is a finite stopping time for 
{Xn}, establish the following: 

(a) If all Yj 2:0, then E(XT) = mE(T). 
(b) If E(T) < oo, then E(IXTI) < oo and E(XT) = mE(T). 

[Let Tn = T 1\ n and apply 6.7.3 to {Xn- nm} to prove (a); use (a) to 
prove (b).] 

(c) If Tis a positive integer-valued random variables that is independent 
of (Y 1, Y 2, ... ), but not necessarily a stopping time, show that the 
results (a) and (b) still hold. 

6. [Alternative proof of the upcrossing theorem (Meyer, 1966)] Let 

{Xk, §k, k = 1, ... , n} 

be a nonnegative submartingale, and U the number of upcrossings of 
(0, b) by X1, ... , Xn. Define the stopping times Ti as in 6.4.2, and for 
convenience set X00 = Xn. 

(a) Show that Xn = l::Z=I (XTk - XTk-t) (take X To = 0). 
(b) Show that E(Xn) 2: bE(U); the general upcrossing theorem is then 

obtainOO ju't"' in 6.4.2. [Since E(Xr,- Xr,_,) ": 0 for all k, ruill 

XTk- XTk-t 2:. b if k is even and Tk < oo, 

E(Xn) 2: ~ E(XTk- XTk-J 2: bE(U).] 

k even 

6.8 APPLICATIONS OF MARTINGALE THEORY 

Martingale ideas provide fresh insights and simplifications for many prob
lems in probability; in this section we consider some important examples. 
First, we use the martingale convergence theorem to provide a short proof of 
the strong law of large numbers for iid random variables (see 6.2.5). We need 
two preliminary facts. 

6.8.1 Lemma. If X 1, ••• , X n are independent, identically distributed random 
variables with finite expectation, and S n = l:Z= 1 X k. then 

a. e., k = 1, ... , n. 
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Intuitively, given Sn = X1 + · · · +Xn, the average contribution of each Xk is 
the same, and hence must be Snfn. 

PRooF. If B E .it(IR), then 

f xk dP = E[Xki1s.EBJ1 
}IS nEB) 

= 1: · · ·1: XklB(XJ + · · · +xu)dF(xJ) · · ·dF(xn), 

where F is the distribution function of the X;. By Fubini's theorem, this is 
independent of k; hence 

6.8.2 Lemma. If X1,X2, ... are random variables and Sn = l::Z=1 Xk. then 
CY(Sn, Sn+l• Sn+2• .. . ) = CY(Sn, Xn+l, Xn+2, .. . ). 

PRooF. SinceXn+k = Sn+k- Sn+k-!, Sn, Xn+i• Xn+2• .. . are eachCY(Sn, Sn+i• 
Sn+2• .. . )-measurable; therefore CY(Sn, Xn+l, Xn+2• .. . ) C CY(Sn, Sn+l, Sn+2• 
... ). Similarly, Sn, Sn+h Sn+2, ... are each CY(Sn, Xn+i, Xn+2, .. . )-measurable; 
hence CY(Sn, Sn+h Sn+2• .. . ) C CY(Sn, Xn+l• Xn+2• .. . ). D 

6.8.3 Strong lAw of lArge Numbers, iid Case. If X 1, X2, ... are iid random 
variables with finite expectation m, and Sn =X,+··· +Xn, then Snfn-+ m 
a.e. and in L1• 

PRooF. (X1, ••• ,Xn) and (Xn+l,Xn+2, .. . ) are independent [Problem l(a), 
Section 4.11]; hence (XJ.Sn) and (Xn+l,Xn+2• ... ),as functions of indepen
dent random objects, are independent by 4.8.2(d). Therefore 

E(X,ISn) = E(XdSn,Xn+l,Xn+2· .. . ) 

= E(X,ISn, Sn+" Sn+2· .. . ) 

Thus by 6.8.1, 

by Problem 2, Section 5.5 

by 6.8.2. 

But by 6.6.3 and 6.6.4, E(X,ISn, Sn+l• .. . ) -+ E(X 1 I~oo) a.e. and in L1
, where 

~00 is the tail CY-field of the Sn. Thus Snfn converges a.e. and in L1 to a finite 
limit. 
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Now to show that the limit is in fact m, we may proceed in two ways. 
One approach is to note that lim11_, 00 (S11 /n) is a tail function of the Xn, and 
hence is a.e. constant by the Kolmogorov zero-one law 6.2.7. Since Snfn is 
L1-convergent and E(S11 jn) = m, the constant must be m. 

Alternatively, we may use the Hewitt-Savage zero-one law 6.2.9 to show 
that each set in :9" 00 has probability 0 or 1. For if A E :9" 00 and T permutes n 
coordinates, then A E CY(S11 , Sn+i• .. . ); hence A is of the form {(S11 , Sn+i• .. . ) 
E A'} for some A' E [J13'(1R)] 00

• Since Sk =X, + · · · + Xk = XT(Il + · · · 
+ XT(k) = ST(k)• k 2: n, A is symmetric, and, therefore, the Hewitt-Savage 
zero-one law is applicable. Thus .'7' 00 is trivial, and it follows that E(X 1I.'V" 00 ) 

= E(XJ) a.e. by 5.5.7(a). D 
Notice that we have obtained L 1 convergence in the strong law of large num

bers; this would be more cumbersome to derive using the classical approach 
of Section 6.2. 

We now consider the general problem of convergence of series of indepen
dent random variables. The following variation of the martingale convergence 
theorem will be proved first. The technique of the proof rather than the result 
itself will be used in the development, but the theorem does have applications 
to series of dependent random variables. (For example, see Problem 5.) 

6.8.4 Theorem. Let {X11 , .r,, n = 1, 2, ... } be a submartingale, and let 
Z = sup11 (X11 - Xn-1) (define Xo = 0). If E(Z) < oo (for example, if 
Xn - Xn-i is less than a constant for all n 2:. 2), then Xn converges to a finite 
limit a.e. on the set {sup

11 
Xn < oo}. If {X11 ,.9';,} is a supermartingale and 

E[inf11 (X11 - X11 _J)] > -oo, then Xn converges to a finite limit a.e. on 
{infn Xn > -00 }. 

PRooF. Fix M > 0, and let T = inf{n: X 11 > M}; set T = oo if there is no 
such n. Define Tn = T 1\ n; if Yn = XT", n = 1, 2, ... , then {Yn} is a sub
martingale by 6.7.4(a). (This is sometimes called the optional stopping theorem 
since Yn = Xn if n < T, Yn = XT if n 2: T; thus {Y11 } is the original process 
stopped at time T.) 

Now if n < T, then Yn = Xn = Xn-i + (Xn - X11 _J) .::=:: M + Z, and if 
n 2: T, then Yn = XT-i + (XT- XT-i).::: M + Z. Thus Yn .::: M + Z in any 
case, so sup11 E(Yn +) .::=:: M + E(Z+) < oo by hypothesis. By 6.4.3, Yn con
verges a.e. to a finite limit. But if T = oo, then Yn = X11 ; hence Xn converges 
a.e. on {sup11 Xn .::=:: M}. Since M is arbitrary, Xn converges a.e. on {sup11 Xn < 
oo}. The last statement of the theorem is proved by applying the above argu
ment to -X11 • D 

We have seen in 6.2.1 that if Y1, Y 2, ••• are independent random variables 
with 0 mean, and 2::~ 1 E(Yk 2 ) < oo, then 2::~ 1 Yk converges a.e. There is 
a partial converse to this result, which we prove after one preliminary. 
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6.8.5 Theorem. If {X"X2, ... } is a martingale and E(Xn 2
) < oo for all 

n, then the martingale differences X" X 2 - X 1. ... , X n - X n _ 1 , • • • are 
orthogonal. 

PROOF. If j < k, and .r;?j = CY(X 1, ... , Xj ), 

E[(X1 - Xj_J)(Xk - Xk-1 )] = E[E((Xj - X;-1 )(Xk - Xk-dl.97j )] 

= E[(X1 - X1_J)E(Xk- Xk-d.97j)] 

since X1 - X1_1 is .97j-measurable. But E(Xk- Xk-d.r;?j) = X1 - X1 = 0 by 
the martingale property, and the result follows. D 

6.8.6 Theorem. Let Y 1, Y 2, ... be independent random variables with 0 
mean, and assume E[supk Y k 2] < oo. (For example, this holds if the Y k are 
uniformly bounded.) If 2::~ 1 Yk converges a.e., then 2::~ 1 E(Yk 2

) < oo. (As 
in Section 6.2, "convergence" of a series means covergence to a finite limit.) 

PRooF. The Xn = I:~= I Y k form a martingale. Choose M such that 

P { sup IX n I ::::: M} > 0; 
n 

this is possible since the series converges a.e. 
Let T = inf{ n: IX n I > M}; T = oo if there is no such n. If Tn = T 1\ n, then 

{X Tn} is a martingale, and just as in 6.8.4, IX T. I ::::: M + sup 1 
IX1 - x1_1 1 = M + Z, where E(Z2 ) < oo by hypothesis. It follows that the 
numbers E(X}) are uniformly bounded, so by 6.6.10, XT" coverages a.e. 

and in L 2
• But by 6.8.5, E(X}) = l:J=I E[(XT1 -XT1_ 1 )

2
] (take XTo = 0). 

Since XT" is L 2-convergent, E(X}) approaches a finite limit; hence 

2::~1 E[(XTn- XTn_y] < 00. 

ButXT. -XTn-t = Ynl{T:o:_n)• so 2:~1 E(Yn 2IIT:O:n)) < 00, and consequently 

00 

LE(Yn 2I{T:o:_n)IYI, ... ,Yn-d<oo a.e. 
n=l 

[To see this, note that if Zn :=: 0 and l:n E(Zn) < oo, and E (l:n Zn) < 00, 

so l:n Zn < oo a.e.; set Zn = E(Yn 211T:o:n!IY" ... , Yn-1).] 
Now IIT:O:n) = IIT::sn-qc, which is CY(YI, ... , Yn_J)-measurable; hence 

00 00 

LIIT:o:n)E(Yn
2
IY" ... , Yn-d = LIIT:O:n)E(Yn

2
) < 00 a.e. 

n=l n=l 
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Pick an w where the series converges and where supn IXn(w)l :::: M (see 
the beginning of the proof). The T(w) = oo::: n for all n; it follows that 
2:~= 1 E(Yn 2 )<oo. D 

We now have a partial solution to the general problems. 

6.8. 7 Theorem. Let Y 1, Y 2 •••• be independent random variable with 0 
mean; assume E[supk Yk 2] < oo. Then 2::~ 1 Yk converges a.e. if and only 
if 2::~ 1 E(Yk 2

) < oo. 

PRooF. Apply 6.2.1 and 6.8.6. D 

We can now complete the solution to the random signs problem (see the 
discussion after 6.2.1). If Xn = anYn, where the Yn are independent with 
P{Yn = 1} = P{Yn = -1} = 4, and l:n Xn converges a.e., then an --+ 0, so 
the Xn are uniformly bounded. By 6.8.7, l:n an 2 < 00. 

Incidentally, there is a martingale proof of 6.2.1. If Xn = l::Z=1 Yk. where 
the Yk are independent with 0 mean and 2::~ 1 E(Yk 2 ) < oo, then 

E(IXn I) :S [E(Xn 2 )]
112 

by the Cauchy-Schwarz inequality 

~ [t.E(Y,')] '!2 

since the Y k are independent with 0 mean; hence orthogonal. Thus supn E(IXn) 
< oo; hence Xn coverages a.e. 

The same argument also shows that if {Xn} is a martingale and 
l:n E(Xn - Xn-1 )2 < oo (so that the Xn - Xn-1 are orthogonal by 6.8.5, but 
not necessarily independent), then Xn coverages a.e. 

We now drop the hypothesis of zero mean. 

6.8.8 Theorem. Let Y 1, Y 2, be independent, uniformly bounded random vari
ables. Then 2::~1 Yk converges a.e. iff 2::~ 1 VarYk < oo and 2::~ 1 E(Yk) 
converges. 

PRooF. "If": By 6.8.7, 2::~ 1 (Yk- E(Yk)) converges a.e.; since 2::~ 1 E(Yk) 
converges, we have 2::~ 1 Y k convergent a. e. 

"Only if": by symmetrization. Let Y 1, Z 1, Y 2, Z2, ••• be independent, where 
for each j, Zj has the same distribution as Yj. Then E(Yj- Zj) = E(Yj) 

- E(Zj) = 0, E[(Yj- zy] = Var(Yj- Zj) = Var Yj + Var Zj = 2 Var Yj. 
Since 2: j Yj converges a. e., so does 2: j Z j. [To see this, note that 
P{(YI, ... ,Yn)EB}=P{(ZI, ... ,Zn)EB} for all nand all BE.2(1Rn); 
hence Py = Pz.] It follows that 2:/Yj- z1) converges a.e., so by 6.8.7, 
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2:; Var Y; < oo. Again by 6.8.7, 2:1(Y;- E(Y;)) converges a.e.; hence 
L; E(Y;) converges. D 

Finally, we obtain a general criterion for convergence of series of 
independent random variables. 

6.8.9 Kolmogorov Three Series Theorem. Let Y 1, Y 2, ... be independent 
random variables. If M > 0, define 

Yl _ {Y; 
] - 0 

if 
if 

IY;I.:::: M, 
IY;I >M. 

(a) If 2::; Y; converges a.e., then for any M < o, the three series 
2:1 P{Y; # Y/}, 2::; E(Y/), 2:; VarY/ all converge. 

(b) If for some M > 0, the three series converge, then 2:1 Y1 converges a. e. 

PROOF. (a) By hypothesis, Y; -+ 0 a.e., so eventually Y; = Y{ Thus (a.e.) 
Y; # Y/ for only finitely many j, that is, P(lim sup) Y; # Y/}) = 0. By the 
second Borel-Cantelli lemma, 2::; P{Y; # Y/} < oo. The other two series 
converge by 6.8.8. 

(b) By 6.8.8, 2:1 Y/ converges a.e. Since 2::; P{Y; # Y/} < oo, we have, 
almost surely, Y; = Y/ eventually; hence 2: Y; converges a.e. D 

6.8.10 Branching Processes. As a final example we analyze in detail the 
branching process of 6.3.3(d). Recall that Xo = 1, and if Xn = k, then 
Xn+i = 2::~=' Y;, where Yh ... , Yk are independent and P{Y; = p} =Pt. 
l = 0, 1, .... We assume that m = E(Y;) = 2:~ 1 lpt > 0. 

This excludes the degenerate case p0 = 1 (in this case Xn = 0 for all n 2: 1). 
We also assume that po +Pi < 1. (If Po+ Pi = 1, then Xn .::; 1 for all n. If 
Po > 0, then Xn is eventually 0 since P{Xn = 1 for all n} = limn-->oo Pin = 0, 
and if Po = 0, then Xn = 1.) 

Case 1: m < 1. In this case, almost surely, Xn is 0 eventually; thus the 
family name is extinguished with probability 1. 

For E(Xn+liXn = k) = kE(Y,) = km; henceE(Xn+liXn) = mXn.Itfollows 
that E(Xn+d = mE(Xn). It m < 1, then 

E (~Xn) = ~E(Xn) < oo, 

so Xn -+ 0 a.e. But the Xn are integer-valued, and thus with probability 1, Xn 
is ultimately 0. 

Case 2: m > 1. We show that with probability r, Xn is eventually 0, and 
with probability 1 - r, Xn -+ oo, where r is the unique root in [0, 1) of the 
equation l::_f=o p;s1 = s. 
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s 

Figure 6.8.1. 

Let g(s) = l::f=o PJSJ, 0::::: s::::: 1. Consider d[g(s)- s]jds = g'(s)- 1. We 
haveg'(0)-1 = p 1 -l <O,g'(l)-1 =m-1 >0,andsincep0 + p 1 < 1, 
g'(s)- 1 is strictly increasing. Since g(s)- s = p0 when s = 0 and 0 when 
s = 1, g(s)- s strictly decreases to a minimum occurring somewhere in 
(0, 1), and then strictly increases to 0 at s = 1. If follows that g(s) = s for 
exactly one s E [0, 1), say at s = r (Fig. 6.8.1). 

First assume 0 < r < 1 (hence po > 0). By 6.3.3(e), {,.X"} is a nonnegative 
martingale, and hence converges a.e. Since Xn is nonnegative integer-valued, 
this means that for almost every w, X n (w) becomes constant (the constant 
depending on w) or X n ( w) --+ oo. 

Now P{Xn eventually constant}= l:~o P{Xn = k for sufficiently large n }. 
If k ::: 1 and P{Xn = k eventually} > 0, then P{Xn =k for all n ::: N} > 0 
for some N. But by the Markov property, this probability must be 
P{XN =k}lim)-->ocqJ, where q=P{Xn+l =kiXn =k}. Now q < 1 since 
P{Xn+ 1 = OIXn = k} = pl > 0. Thus lim )-->oo qJ = 0, a contradiction. 

Therefore X n --+ X 00 a. e., where X 00 = 0 or oo. Since { ,.Xn , n = 0, 1, ... } is 
bounded, the dominated convergence theorem gives E(,.Xn) --+ E(,.Xoc) 
= 1P{X00 = 0} + OP{X00 = oo} = P{X00 = 0}. But by the martingale prop
erty, E(,.Xn) = E(,.X0 ) = r. Thus with probability r, Xn is eventually 0, and 
with probability 1 - r, Xn --+ 00. 

If r = 0, then p0 = 0; hence Xn+i ::: Xn ::: 1, so that Xn increases to a limit 
X. But since the Xn are positive integer-valued, 

P{X < oo} = P{Xn eventually constant} 

eventually} 

=0 by the same argument as in the case O<r<l. 

(In the current situation, q = P{Xn+i = kiXn = k} = P{Y 1 = · · · = Yk = 1} 
= p/ < 1.) Thus Xn --+ oo a.e., as desired. 
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Case 3: m = 1. Here, extinction occurs with probability 1. For by 6.3.3(d), 
{X n} is a nonnegative martingale, and hence converges a. e. to a finite limit. 
The analysis of case 2 shows that X n cannot approach a nonzero constant 
on a set of positive probability, and hence Xn -+ 0 a.e.; in other words, with 
probability 1, Xn is eventually 0. 

Problems 

1. Let X" X 2, ... be arbitrary random variables, with S n = X 1 + · · · + X n. 

What is the relation between the tail O"-field of the Xn and the tail O"-field 
of the Sn? 

2. What happens in the branching process (see 6.8.10) if instead of Xo 
= 1, X0 is an arbitrary, positive integer-valued random variable? 

3. (Breiman 's realistic gambling model) Let Xn be a gambler's capital after 
n plays of a game of chance. Assume that the gambler has the option of 
betting or passing at each trial. If he passes at trial n + 1, then Xn+l = Xn, 
and if he bets, then we assume that IXn+l - Xn I ::=:: b > 0; thus there is a 
minimum amount b that can be won or lost on a given trial. We do not spell 
out the gambler's strategy in detail; we simply assume that his strategy, 
together with the house rules, determine the distribution of (X0 ,X1, ••. ). 

It is reasonable to assume that the game is unfavorable or at best fair; 
thus we take {Xn} as a nonnegative supermartingale. 

Let T be the time of the last bet, that is, largest n such that IX n+ 1 - X n I 
:::: b (T = oo if there is no such n). Note that Tis not a stopping time. 
(a) Show that T is a.e. finite. 
(b) Show that E(Xr)::; E(Xo), so no system can increase the expected 

winning. 
(c) If the gambler's strategy is always to bet so long as his capital is at 

least b, show that (a.e.) Xn will eventually be less than b, in other 
words, the persistent gambler goes broke with probability 1. 

(d) If an unbiased coin is tossed independently over and over again, 
and we win a dollar for each head and lose a dollar for each tail, 
our accumulated capital must eventually reach + 1 (see the end of 
Section 6.7). Suppose our strategy is simply to wait until we reach 
1 and then quit, thus guaranteeing a profit. Why is this not realistic? 

Let Y 1, Y 2, ... be integrable random variables, and .971, .972, ... an increas
ing sequence of sub O"-fields of ST. Assume that Yk is .9'k-measurable for 
each k, and define 

n 

Xn = L[Yk- E(Ykl§k_J)] 
k=l 
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[take 90 = {0, Q}, so that E(Y11.97;;) = E(YJ)]. Show that {Xn, .97;,} is a 
martingale. 

5. (Levy's extension of the Borel-Cantelli lemma) Let{§?;,} be an increasing 
sequence of o--fields, and let An E .¥,, n = 1 , 2, .... Define 

j = 1, 2, .... 

[take .ro = {0, Q}, so that q1 = P(AJ)]. Show that (a.e.) infinitely many 
A i occur iff 2: i q; = oo, that is, P[(lim sup i A i) D. {2:: i q; = oo}] = 0. 
Equivalently, 2:1 h 1 and 2:1 q; have essentially the same convergence 

set. [Apply 6.8.4 to Xn = 2:)= 1(/Ai- qj).] 

6.9 APPLICATIONS TO MARKOV CHAINS 

In this section we apply martingale theory to the problem of classifying 
the states of a Markov chain. We must use a few basic properties of Markov 
chains: the reader who is unfamiliar with this subject may consult Ash (1970, 
Chapter 7). In particular, a state i is said to be recurrent iff starting at i there 
will be a return to i with probability 1; otherwise the state is transient. If C 
is a set of states such that every state in C can be reached (in a finite number 
of steps) from every other state, then all states in C are of the same type, 
recurrent or transient 

We have the following criterion. 

6.9.1 Theorem. Let [p;;] be the transition matrix of a Markov chain such 
that every state in the state space S is reachable from every other state 
(sometimes called an irreducible chain). Choose a fixed state, and label it 
0 for convenience. The states are transient iff there is a nonconstant bounded 
f: S--+ R such that l::;Es Pi;f(j) = f(i) for all i # 0. 

PRooF. Suppose such an f exists. By adding a constant to f we may assume 
that f ::: 0. Assume the initial state is i # 0, and let {Xn} be the corresponding 
sequence of random variables. Let T be the time at which 0 is reached, and 
let Yn = X T 1\n, n = 0, 1 ... ; { Yn} can be realized as a Markov chain with the 
same initial distribution and transition matrix as {Xn}, except that 0 is now an 
absorbing state. In other words, the transition matrix for { Yn} is 

Pii = PiJ 

Poo = 1. 

for all j if i # 0, 
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Thus l::jES p;d(j) = f(i) for alliES. In matrix form, flf = f; by induction 
h n 

TI f = f, that is, 

I: Pii) t<n = J(i), 
jES 

where P/_jl = P{Yn = jiYo = i}. But this says that E[f(Yn)IYo = i] = f(i). 
If the states of the original chain are recurrent, then 0 will be visited with 

probability 1; hence Yn --+ 0 a.e. By the dominated convergence theorem, 
E[f(Yn I Yo = i] --+ f(O). We conclude that f(i) = f(O) for all i, contradicting 
the hypothesis that f is nonconstant. 

Conversely, if the states are transient, we define f: S --+ R as follows. If 
i =P 0, let f(i) = fw, the probability that, starting from i, 0 will eventually be 
reached; take f(O) = 1. Now in order ultimately to reach 0 from i =P 0, we 
may either go directly to 0 at step 1, or go to a state j =P 0 and then reach 0 
at some time after the first step. It follows that 

J(i) = I: Pid<n. i =P 0. 
jES 

(This may be formalized using the Markov property.) 
Now f is clearly bounded, and fw < 1 for some i =P 0, otherwise 0 would 

be a recurrent state. Thus f is nonconstant. D 

Martingale theory is used in deriving the following sufficient condition for 
recurrence. 

6.9.2 Theorem. Let [JJij] be the transition matrix of an irreducible Markov 
chain whose state space S is the set of nonnegative integers. If there is a 
function f: S--+ R such that f(i)--+ oo as i--+ oo, and l::j PidU)::::: f(i) 
for all i =P 0, then the chain is recurrent. 

PRooF. As f(i) --+ oo as i --+ oo, f is bounded below, so without loss of 
generality we may assume f 2: 0. Let the initial state be i =P 0, and form the 
process {Yn} as in 6.9.1. The l::jES P.dU)::::: f(i) for all i, which implies that 
{f(Yn)} is a nonnegative supermartingale, and hence converges a.e. to a finite 
limit. For 

E[f(Yn)IYo = io, ... , Yn-i = in-d = E[f(Yn)IYn-i = in-d 

by the Markov property 

= L Pin-ld(j) 

::=: fUn-J). 
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Note also that 

E[f(Yn)IYo = i] = L p}jl f(j) :S f(i) < oo; 
jES 

hence {f(Yn)} is integrable. 
Assume the states transient. Then fw < 1 for some i > 0. Choose such 

an i as the initial state. Now Xn --+ oo a.e. since a finite set of transient 
states cannot be visited infinitely often (see Ash, 1970, p. 223). This mean 
that with probability 1, Yn --+ 0 or oo. But P{Yn --+ 0} = fw < 1, and hence 
P{Yn--+ oo} > 0; this implies that P{f(Yn)--+ oo} > 0, a contradiction. D 

The proof of 6.9.2 shows that if [pij] is the transition matrix of a Markov 
chain {X n}, f is a real-valued function on the state space, and 

L Pijf(j) ::: f(i) 
j 

for all i, 

where the series is assumed to converge absolutely, then, with a fixed initial 
state i, the sequence {f(Xn)} is a supermartingale. Similarly, replacement of 
":::" by "=" in this equation yields a martingale, and replacement by "2:" 
yields a submartingale. 

We now apply 6.9.1 and 6.9.2 to a queueing process. 

6.9.3 Example. Assume that customers are to be served at discrete times 
t = 0, 1, ... , and at most one customer can be served at a given time. Say there 
are X1 customers before the completion of service at timet, and in the interval 
[t, t + 1), Y 1 new customers arrive, where P{Y1 = k} = Pk. k = 0, 1, .... The 
number of customers before completion of service at time t + 1 is 

xl+i = <x~- o+ + Yl. 

The queueing process may be represented as a Markov chain whose state 
space is the set of nonnegative integers and whose transition matrix is 

0 1 2 3 
0 Po Pi P2 
1 Po Pi P2 

TI=2 0 Po Pi P2 
3 0 0 Po Pi P2 

We assume that Po > 0 and Po+ Pi < 1, so that the chain is irreducible. We 
analyze the behavior of the chain using 6.9.1 and 6.9.2. 
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The equations 2:}=0 PiJ f(j) = f(i), i > 0, are 

Pof(i- 1) + pJ!(i) + p2f(i + 1) + · · · + Pnf(i + n - 1) + · · · = f(i). 
(1) 

Let m = E(Y1 ) = 2::~ 1 kpk; we show that the states are transient if m > 1, 
recurrent if m :::; 1. 

or 

First assume m > 1; if f(i) = ri, then (1) becomes 

pori-!+ p,ri + P2ri+l + ... + Pnri+n-i + ... = ri 

00 

LPkrk = r. 
k=O 

But this can be satisfied for some r E (0, 1) (see case 2 of 6.8.10). Thus {r;} 
is bounded and nonconstant, so by 6.9.1, the states are transient. 

Now assume m :::; 1, and let f(i) = i. Then if i > 0, 
00 

L p;Jf(j) = Po(i- 1) + p,i + P2(i + 1) + · · · 
j=O 

00 

L kPk-i+i 
k=i-i 

00 

= L (k- i + 1)Pk-i+l + i- 1 
k=i-l 

00 

= LkPk + i- 1::::: 1 + i- 1 = i = f(i). 
k=O 

By 6.9.2, the states are recurrent. 
If i is a recurrent state and /1-; is the average length of time required to return 

to i when the initial state is i, then i is said to be recurrent null if t-t; = oo, 
recurrent positive if /1-i < oo. It can be shown that the states are recurrent null 
if m = 1, recurrent positive if m < 1 (see Karlin, 1966, pp. 74ff). 

Problems 

1. Consider the Markov chain in Section 6.3, Problem 2, and assume qo < 1. 
If r > 1 in (b), show that Xn --+ -oo a.e.; hence the states are transient. 
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CHAPTER 

7 

THE CENTRAL LIMIT THEOREM 

7.1 INTRODUCTION 

If X 1, X 2, ••• are independent, identically distributed random variables with 
zero mean, and Sn = X1 + · · · +Xn, the strong law of large numbers states 
that Sn/n converges a.e. to 0. Thus given 8 > 0, ISn/nl will be less than 8 

for large n; in other words, S n will eventually be small in comparison with n. 
The strong law of large numbers gives no information about the distribution 
of S n; the purpose of this chapter is to develop results (called versions of the 
central limit theorem) concerning the approximate distribution of Sn for large 
n. For example, if the Xn are iid with finite mean m and finite variance CY2 , 

then for large n, (Sn - nm)j .jii CY has, approximately, the normal distribution 
with mean 0 and variance 1. 

There are two basic techniques that will be used. First is the theory of 
weak convergence. If /1-, 1-th 11-2, ••• are finite measures on ..5B(!Rl.), weak con
vergence of 1-tn to 11- means that fiR f dt-tn -+ fiR f dt-t for every bounded 
continuous f: IRl. -+ !Rl.. If the corresponding (bounded) distribution functions 
are F, f" f2, ... , the equivalent condition is that F n (a, b] -+ F (a, b] at all 
continuity points of F. (See 2.8 for a discussion of weak convergence; in par
ticular, recall that +oo and -oo are, by definition, continuity points of F.) 

w w 
We shall denote weak convergence by 1-tn ----+ 11- or F n ----+ F. Also, if B 
is a Borel subset of !Rl., the terms F(B) and t-t(B) will be synonomous. 

Now assume that 1-tn is the probability measure induced by a random vari-
. w 

able Xn, n = 0, 1, ... (w1th t-to = t-t. Xo =X). If 1-tn ----+ t-t. we say that the 
d 

sequence {Xn} converges in distribution to X, and write Xn ----+X. Since 

fiR f dt-tn = E[f(Xn)], it follows that Xn ~X iff E[f(Xn)]-+ E[f(X)] 
for all bounded continuous f: IRl. -+ !Rl.. 
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d 
This in tum implies that if X n -----+ X and g is a continuous function from 

d d 
IR to IR, then g(Xn) -----+ g(X). In particular, if Xn -----+X, then Xn + c 

d 
-----+ X + c for each real number c. 

Notice that convergence in distribution is determined completely by the 
distribution functions, or equivalently by the induced probability measures, of 
the random variables. In particular, the random variables need not be defined 
on the same probability space. Note also that since the distribution function 
of a random variable always has the value 0 at -oo and the value 1 at +oo, 

d 
we have X n -----+ X iff F n (x) --+ F (x) at all continuity points of F in IR. 

w . 
Now by Theorem 2.8.1, 1-tn -----+ 11- 1ff t-tn(A)--+ t-t(A) for each Borel set 

d . 
A whose boundary CIA has t-t-measure 0. Thus Xn -----+X 1ff P{Xn E A} 
--+ P{X E A} for all Borel sets A such that P{X E CIA} = 0. This result justifies 

d 
the terminology "convergence in distribution,'; for it says that if Xn -----+ X, 
then X n and X have approximately the same distribution for large n. Of course 
it might seem more reasonable to require that P{Xn E A} --+ P{X E A} for all 
Borel sets A, but actually this is not so. For example, if Xn is uniformly dis
tributed between 0 and 1/n, that is, Xn has density fn(x) = n, 0::::: x::::: 1jn, 
f n (x) = 0 elsewhere, then for large n, X n approximates a random variable X 
that is identically 0. But P{Xn = 0} = 0 for all n, and P{X = 0} = 1. 

The second technique involves the use of characteristic functions, which we 
now define. 

7.1.1 Definition. Let 11- be a finite measure on ..5B(IR). The characteristic 
function of 11- is the mapping from IR to C given by 

u E IR. 

Thus his the Fourier transform of 11-· IfF is a distribution function correspond
ing to /1-, we shall also write h(u) =fiR eiux dF(x), and call h the characteristic 
function ofF (or of X if X is a random variable with distribution function F). 

Characteristic functions are uniquely appropriate in the study of sums of 
independent random variables, because of the following result. 

7.1.2 Theorem. Let X" X2 , •.. , Xn be independent random variables, and 
let Sn = X1 + · · · + Xn. Then the characteristic function of Sn is the product 
of the characteristic functions of the X;. 
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PRooF. 

E(eiuSn) = E ( TIJ=l eiuX1 ) 

= Il'J=iE(eiuXJ) 

7 THE CENTRAL LIMIT THEOREM 

by independence. D 

Theorem 7.1.2 allows us to compute the characteristic function of Sn, know
ing only the distribution of the individual Xj' s. In fact, once the characteristic 
function is known, the distribution function is determined. 

7.1.3 Inversion Formula. If h is the characteristic function of the bounded 
distribution function F, and F(a, b] = F(b)- F(a), then 

1 1c e-iua - e-iub 
F(a, b] = lim - . h(u)du 

c-+oo 2rr -c zu 

for all points a, b(a < b) at which F is continuous. If in addition, his Lebesgue 
integrable on ( -oo, oo ), then the function f given by 

1 100 . f(x) =- e-'uxh(u)du 
2rr _00 

is a density for F, that is, f is nonnegative and F(x) = f~oo f(t)dt for all 
x; furthermore, F' = f everywhere. Thus in this case, f and h are "Fourier 
transform pairs": 

h(u) = 1: eiux f(x)dx, 

1 100 . f(x) =- e-'uxh(u)du. 
2rr _00 

If we are trying to compute the distribution of a sum Sn of independent 
random variables X;, then Theorem 7.1.2 will be useful only if we can recover 
a distribution function from its characteristic function. In fact this is the case. 

PROOF. Intuitively, if h(u) = f~oo eiux dF(x), then h(u) = f~oo eiuxF'(x)dx, so 

F'(x) =- h(u)e-'uxdu. 1 100 . 
2rr _00 

Thus 

F(a, b] = {b F'(x)dx = __!:__ 100 
h(u) [ {b e-iux dx] du 

Ja 21T -oo Ja 
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and since 

1
b -iua _ -iub 

-iux e e e dx= , 
a iu 

this leads to the inversion formula. For a formal proof, let 

1 1c e-iua - e-iub 
lc =- . h(u)du, 

2rr -c zu 
a< b. 

Then 
1 1c e-iua _ e-iub [1oo . ] 

lc = - . e'ux dF(x) du. 
2rr -c lU -oo 

Now 

I 
(e-iua _ e-iub) . I I e-iua _ e-iub I llb _. I 
------e'ux = = e 'ux dx < b - a 

iu iu a -

and 

[~ [£: (b- a)dF(x)] du = 2c(b- a)[F(oo)- F(-oo)] < oo. 

By Fubini's theorem, the order of integration may be interchanged to obtain 

I c = - . eiux du dF(x) = 1 c(x) dF(x), 
1 1oo [1c (e-iua _ e-iub) ] 1oo 

2rr -oo -c lU -oo 
where 

1 1c sinu(x- a)- sinu(x- b) 
hW=- • 2rr -c u 

[Note that 

1

c cos u(x- a)~ cos u(x- b) du = 
0 

-c lU 

since the integrand is an odd function.] Let v = u(x- a) and w = u(x- b) to 
obtain 

Now 

1 1c(x-a) sin v 1 1c(x-b) sin w 
lc(x) =- -dv-- --dw. 

2rr -c(x-a) V 2JT -c(x-b) W 

i s sinv 
--dv-+ 1T 

r V 
as s-+ 00 and r-+ -oo, 
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and since the integral is continuous in r and s, it is bounded uniformly in r 
and s. Thus for some M < oo, llc(x)l .:=:: M for all c and x; furthermore, as 
c-+ oo, lc(x)-+ J(x), where 

J(x) = n if 

if 

if 

x <a or x > b, 

a< x < b, 

x =a or x =b. 

By the dominated convergence theorem, 

c~~ lc = 1: l(x)dF(x) 

= F(b-)- F(a) + HF(a)- F(a-) + F(b)- F(b-)] 

F(b) + F(b-) F(a) + F(a-) 
= 

2 
-

2 
=F(b)-F(a) 

if F is continuous at a and b. This proves the formula. 
Now assume h integrable on (-oo, oo). Let 

1 100 . f(x) =- e-lUxh(u)du, 
2rr _00 

-00 <X< 00. 

Since h is integrable, f is well-defined; furthermore, f is continuous by the 
dominated convergence theorem. Now by Fubini's theorem, 

{b f(x)dx = __!_ 100 
h(u) [ {b e-iux dx] du 

Ja 21T -oo Ja 

= lim __!_ 1c h(u) [ {b e-iux dx] du 
c--->oo 2rr -c Ja 

1 1c e-iua - e-iub 
= lim - . h(u)du 

c--->oo 2rr -c zu 

= F(b)- F(a) 

by the inversion formula if a and b are continuity points of F. Thus F(b) 

- F(a) =I: f(x)dx at continuity points of F. 
But every point is a limit from above of continuity points since F is mono

tone and thus has only countably many discontinuities. Since the integral is a 
continuous function of its limits, it follows that F (b) - F (a) = I: f(x) dx for 
all a and b. 
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Since f is continuous, it follows that F is differentiable everywhere and its 
derivative is f. Since F is increasing, f is everywhere nonnegative. Thus f 
is a density for F. D 

7.1.4 Corollary. Let P 1 and P2 be probability measures (or more generally, 
finite measures) on Jf.?(!Rl.). If fiR eiux dP 1 (x) =fiR eiux dP2(x) for all u E !Rl., then 
P, = P2. 

PRooF. By the inversion formula 7.1.3, h determines F at all continuity 
points. But as in the proof of 7.1.3, every point is a limit from above of 
continuity points, and it follows that h determines F everywhere. D 

Various procedures involving Fourier or Laplace transforms may be used in 
actually computing the distribution of a random variable from its characteristic 
function (see Ash, 1970, Chapter 5). 

Characteristic functions have the following basic properties. 

7.1.5 Theorem. Let h be the characteristic function of the bounded distri
bution function F. Then 

(a) lh(u)l:::: h(O) = F(oo)- F(-oo) for all u; 
(b) h is continuous on !Rl.; 
(c) h( -u) = h(u), the complex conjugate of h(u); 
(d) h(u) is real-valued for all u iff F is symmetric; that is, fB dF(x) 

= J_B dF(x) for all Borel sets B, where -B = { -x: x E B}. 
(e) If fiR lxl' dF(x) < oo for some positive integer r, then the rth derivative 

of h exists and is continuous on !Rl., and 

h(r)(u) = i (ix)'eiux dF(x). 

PRooF. Part (a) is clear since leiuxl = 1, and (b) follows from the dominated 
convergence theorem (see Problem 1, 1.6). Part (c) follows from the fact that 
the conjugate of eiux is e-iux. To prove (d), assume h to be real-valued and, 
for now, let F be the distribution function of the random variable X. Now 
E(e-iuX) = h( -u) = h(u) = h(u) as h(u) is real, so that -X has characteristic 
function h. By 7.1.4, X and -X have the same distribution; hence P{X E B} 
= P{X E -B}, and F is therefore symmetric. In general, we may multiply 
F by a positive constant c such that c(F(oo)- F( -oo)) = 1. [If F(oo) 
- F(-oo) = 0, then fB dF(x) = 0 for all BE Jf.?(!Rl.) and the result is triv
ial.] The above argument shows that fB cdF(x) = J_B cdF(x), and hence F is 
symmetric. 

Conversely, assume F symmetric, and let g: IRl. ~ IRl. be a bounded 
Borel measurable function. If g is odd [g( -x) = -g(x) for all x], then 
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fiR g(x) dF(x) = 0; to prove this, approximate g by odd simple functions. In 
particular, fiR sinuxdF(x) = 0, and his real-valued. 

Finally, we prove (e). Since l(ixYeiuxl = lxl' and fiR lxlr dF(x) < oo, we 
may differentiate h(u) =fiR eiuxdF(x) r times under the integral sign (see 1.6, 
Problem 3 and 2.4, Problem 8), and the result follows. D 

Now suppose that h is a given function from IRl. to ([, and we wish to 
determine whether or not h is the characteristic function of some bounded 
distribution function F. There are some practical approaches that often work. 
For example, if h fails to satisfy (a), (b), or (c) of 7.1.5, h cannot be a 
characteristic function. Also, suppose h is continuous and Lebesgue integrable 
on !Rl., and we compute 

1 1 . f(x) =- e-'uxh(u)du, 
2rr rR 

X E !Rl.. 

Iff is Lebesgue integrable, then 

h(u) = 1 eiux f(x) dx, u E !Rl.. 

(This is a standard Fourier transform result; see Rudin, 1966, p. 186.) Thus if 
f is everywhere nonnegative, then h is the characteristic function of a measure 
11- with density f, that is, 

t-t(B) = 1 f(x) dx, B E J13'(1Rl.). 

There is a general criterion for deciding whether or not h is a characteris
tic function. The result is of considerable importance in the development of 
second-order properties of stochastic processes. However, it is in general not 
useful when applied to explicit examples. 

7.1.6 Bochner's Theorem. If h: IRl. ~ C, then his a characteristic function 
iff h is continuous at the origin and is nonnegative definite, in other words, 
for all u~o ... , Un E R, n = 1, 2, ... , and all complex numbers a 1, •.. , an. 

is real and nonnegative. 

n 

L ajh(uj- uk)t:h 
j,k=i 
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PARTIAL PROOF. Assume h is a characteristic function; then h is continuous 
everywhere by 7.1.5(b). To prove nonnegative definiteness, write 

n 

= L aJh(u1 - uk)Zh. 
j,k=i 

The converse is considerably more difficult, and since the result will not be 
used in the text, the argument will be omitted. For a complete proof, see Loeve 
(1955) or Ash and Gardner (1975). D 

We shall need the result that if X is normally distributed with mean m and 
variance CY2 , the characteristic function of X is 

h(u) = exp(ium) exp( -~u2CY2 ). 

For the computation, see Ash, 1970, p. 163. 
Another basic result is the relation between convergence in distribution and 

convergence in probability. 

7.1.7 Theorem. (a) If Xn converges to X in probability, then Xn converges 
to X in distribution. (b) A partial converse: If X n converges in distribution 
to a constant c, then X n converges in probability to c. 

PRooF. (a) Let F n be the distribution function of Xn. and F the distribution 
function of X. Then 

F n(x) = P{Xn s x} = P{Xn s X, X> X+ e} + P{Xn s X, X s X+ e} 

S P{IXn- XI :=:: e} + P{X S x + e} 

= P{IXn -XI ::: e} + F(x +e), and 

F(x- e)= P{X S x- e} = P{X S x- e, Xn > x} 

+P{X :=:;x-e,Xn ::;x} 

::; P{IXn -XI ::: e} + P{Xn ::; x} 

= P{IXn- XI:=:: e} + F n(x). Thus 

F(x- e)- P{IXn- XI::: e}::; Fn(x)::; P{IXn- XI::: e} 

+ F(x +e) 

Since Xn ~X, we have P{IXn- XI :=:: e} ~ 0 as n ~ oo. IfF is con
tinuous at x then F(x- e) and F(x +e)~ F(x) as e ~ 0. Thus Fn(x) is 
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boxed between two quantities that can be made arbitrarily close to F(x), so 
F n (x) ~ F(x). 

(b) P{IXn- cl :=:: e} = P{X11 :=:: c + e} + P{Xn :::: c- e} 

= 1 - P{X, < c + e} + P{Xn :::: c- 8} 

Now P{Xn :::: c + ~}:::: P{Xn < c + e} so 

P{IXn -cl :=:: e}:::: 1-P{Xn:::: c+ ~} +P{Xn:::: c-e} 

= 1- Fn (c + ~) + Fn(c- e) 

But as long as x =P c, F n (x) converges to the distribution function of the con
stant c, that is, 

if X> C 

if X< C 

Thus Fn (c + ~) ~ 1 and F11 (c- e)~ 0 as n ~ oo and, therefore, 
P{IXn - cl :=:: 8} ~ 0 as n ~ oo. D 

Problems 

1. Give an example of a sequence of random variables Xn such that Xn 
converges in distribution to X, but Xn does not converge in probability 
to X. 

2. The following application of Theorem 7.1.4 is useful in computations 
involving characteristic functions. Let f and g be nonnegative Borel mea
surable functions from IR to IR, and assume that for some fixed real t, 
f~oo f(x)e-tx dx < 00 and JCX)oo g(x)e-tx dx < 00. If 

for all u E IR, 

show that f = g a.e. (Lebesgue measure). 

3. If h1 and h2 are characteristic functions, show that h1 + h2 andRe h1 are 
also characteristic functions. Is Im h1 a characteristic function? 

4. Let h be the characteristic function of the random variable X. 

(a) If lh(u)l = 1 for some u =P 0, show that X has a lattice distribution, 
that is, with probability 1, X belongs to the set {a+ nk: n an integer} 
for appropriate a and k (= 2rru-1 ). Conversely, if X has a lattice 
distribution, then lh(u)l = 1 for some u =P 0. 

(b) If lh(u)l = 1 at two distinct points u and au, where a is irrational, 
show that X is degenerate, that is, a.e. constant. 
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5. Let X be a random variable with E(IXIn) < oo for some positive integer 
n. If his the characteristic function of X, show that h(kl(O) = ikE(Xk), 
k = 0, ... , n, and 

n E(Xk) 
(a) h(u) = 2:: --(iu)k + o(un), 

k=O k! 

(b) 
I 

n- 1 E(Xk) . I lulnE(IXIn) 
h(u)- 2:: -

1
-(zu)k ::=:: 

1 
• 

k=D k. n. 

6.(a) If X is a random variable with E(IXn < oo for all r > 0, show that 
the characteristic function of X is given by 

oo E(Xn) 
h(u) = L --(iut 

n=D n! 

within the interval of convergence of the series. This is the moment
generating property of characteristic functions. 

(b) Give an example of a random variable X with E(IXIr) < oo for all 
r > 0, such that the series 

oo E(Xn) L --(iu)n 
n=D n! 

converges only at u = 0. 

7.(a) Let h be the characteristic function of the bounded distribution function 
F. Define 

Erh(u) = h(u + r), r real. 

Show that 

r -r h(O) =- -- x2 dF(x). ( 
E - E ) 

2 100 

(sin rx) 
2 

2r -oo rx 

[(Er- E_r)h(O) = h(r)- h(-r); (Er- E_r)2h(O) means 
(Er- E_r )(h(r) - h( -r)) = h(2r) - 2h(O) + h( -2r).] 

(b) If h" exists and is finite at the origin, show that JCX)
00 

x 2dF(x) < oo. 
(Use L'Hopital's rule and Fatou's lemma.) 

(c) If h(2nl(O) exists and is finite, show that J~00 x2ndF(x) < oo 
(n = 1, 2, ... ). 

[It is probably easier to use part (b) and an induction argument rather than 
to extend part (a).] 
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8. If X is a random variable, let N(s) = E(e-sx), s complex; when s = -iu, 
we obtain the characteristic function of X. If N is analytic at the origin, 
show that E(Xk) is finite for all k > 0, and 

oo (-1)kE(Xk) 
N(s)= L sk 

k=O k! 

within the circle of convergence of the series. In particular, N<k\0) 
= (-1lE(Xk). 

7.2 THE FUNDAMENTAL WEAK COMPACTNESS THEOREM 

The basic connection between weak convergence and characteristic func
tions is essentially this. Let {Fn} be a bounded sequence of distribution func
tions on IR ("bounded" means that for some positive M, Fn ( oo) - Fn ( -oo) 
:::: M for all n ). Let { hn} be the corresponding sequence of characteristic func
tions. If F is a bounded distribution function with characteristic function h, 
then weak convergence of Fn to F is equivalent to pointwise convergence of 
h, to h. In the course of developing this result, we must consider the following 
question. If {Fn} is a bounded sequence of distribution functions, when will 
there exist a weakly convergent subsequence? Now any bounded sequence 
of real numbers has a convergent subsequence, so one might conjecture that 
any bounded sequence of distribution functions has a weakly convergent sub
sequence. In fact this is not true, but the following result comes close, in a 
sense. 

7.2.1 Belly's Theorem. Let F 1, F2, ..• be distribution functions on IR. As
sume that Fn(-oo) = 0 for all n, and Fn(oo):::: M < oo for all n. Then there 
is a distribution function F and a subsequence { Fnk} such that Fnk (x) ~ F (x) 
for each x E IR at which F is continuous. 

PRooF. Let D = {x1, x2, •• • } be a countable dense subset of IR. Since the 
sequence { Fn (xd} is bounded, we can extract a subsequence { F ij} of { Fn} 
with F 1j(xJ) converging to a limit y1 as j ~ oo. Since {F 1j(x2)} is bounded, 
there is a subsequence { F 2j} of { F lj} such that F 2j (x2) approaches a lim
it Y2· Continuing inductively, we find subsequences {Fmj} of {Fm-J,j} with 
Fmj(Xm) ~ Ym. m = 1, 2, ... (of course alliYml are bounded by M). 

Define Fv: D ~ 1R by Fv(xj) = Yj• j = 1, 2, ... , and let Fnk = Fkko 
k = 1, 2, ... (the "diagonal sequence"). Then Fnk (x) ~ Fv(x), xED. Since 
Fnk is one of the original Fn, x < y implies Fnk (x) :::: Fnk (y); hence Fv(x) 
:::: Fv(y). Define 

F(x) = inf{Fv(y): y ED, y > x}. 

By definition, F is increasing. To prove that F is right-continuous, let Zn-!,. x; 

then F(zn) approaches a limit b :=:: F(x). If F(x) < b, let Yo ED, Yo> x, with 
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Fv(Yo) <b. For large n we have x < Zn <Yo, so F(zn) :S Fv(Yo) <b. Thus 
lim F(zn) < b, a contradiction, and therefore F(zn) ~ F(x). 

Now we show that Fnk(x) ~ F(x) at continuity points of F in IR. If 
x < y ED, we have lim supk->oo Fnk(x) :Slim supk->oo Fnk(y) = Fv(y); take 
the inf over y ED, y > x to obtain lim supk->oo Fnk(x) :S F(x). 

If x' < y<x, y ED, we have F(x') :S Fv(y)=limk->oo Fnk(y)=liminfk->oo 
Fnk(y) :S liminfk->oo Fnk(x). Let x' ~ x to obtain F(x-) :S liminfk->oo 
Fnk(x). Thus if F(x) = F(x-), we have Fnk(x) ~ F(x). D 

It must be emphasized that Helly' s Theorem does not say that Fnk ( oo) 
~ F(oo). [Recall that F(oo) is limx->oo F(x); see the discussion after 1.4.2.] If 
every Fn is the distribution function of a random variable, so that F n ( oo) = 1 
for all n, it is possible for F ( oo) to be stricti y less than 1. (See the example 
that follows in 7.2.2.) 

7.2.2 Comments. If instead of assuming that F n (-oo) = 0 and Fn ( oo) :::: M 
for all n, we assume that Fn(oo)- Fn(-oo):::: M < oo for all n, and 7.2.1 
implies that there is a distribution function F and a subsequence {Fnk} with 
Fnk (a, b] ~ F (a, b] for all a, b E IR at which F is continuous. [To see this, 
consider Gn(x) = Fn(x)- Fn(-oo).] 

If F 1, F 2, ... are distribution functions on IRk [assumed monotone in each 
coordinate and 0 at (-oo, ... , -oo)], and Fn(IRk):::: M < oo for all n, there is 
a distribution function F and a subsequence {Fn,} converging to Fat continuity 
points of F in IRk. The proof is essentially the same as above. 

There is no difficulty in constructing a bounded sequence of distribution 
functions with no weakly convergent subsequence. For example, let Fn be 
the distribution function of a random variable that is identically n(Fn(x) = 1, 
x 2: n; Fn(x) = 0, x < n). If Fnk converges weakly to F, then F(a, b] must be 
0 for all a, bE IR, a< b; hence F(oo)- F(-oo) = 0. But Fn(oo)- Fn(-oo) 
= 1, a contradiction. 

A bounded sequence of distribution functions will always have a weakly 
convergent subsequence unless, as in the above example, too much mass 
escapes to infinity. Weak convergence requires Fn(oo)- F(oo) ~ F(oo) 
- F( -oo) (see 2.8.3 and 2.8.4 ). We now introduce a condition that guarantees 
that mass does not escape. 

7.2.3 Definition. Let ""~'1 = {J.t;, i E /} be a family of finite measures on the 
Borel sets of a metric space n. We say that L./6 is tight iff for each 8 > 0, 
there is a compact set K c Q such that t.t;(Q- K) < 8 for all i. (If Q = IRk, 
the compact set can be replaced by an interval.) We say that ~M is relatively 
compact iff each sequence in .Aft has a subsequence converging weakly to a 
finite measure on Jl:i(Q). 
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If {F;, i E I} is a family of distribution functions, tightness of {F;} means 
tightness of the associated family of measures, and similarly for relative com
pactness. 

We may now prove the basic result. 

7.2.4 Prokhorov's Theorem. Let v!X = {F;, i E I} be a family of distribu
tion functions on IR, and assume that F; ( oo) - F; (- oo) :=: M < oo for all i. 
Then the family is tight iff it is relatively compact. 

PRooF. Assume .Aft is tight, and let Fh F 2, ••• be a sequence from .Aft. 
By 7.2.1 and 7.2.2, there is a distribution function F and a subsequence {Fnk} 
such that Fnk(a, b] ~ F(a, b] for all a, bE IR at which F is continuous. Given 
e > 0, let a and b be finite continuity points ofF such that Fn(IR- (a, b]) < e 
for all n, and F(IR - (a, b]) < e. If x E IR and xis a continuity point ofF, then 

But Fnk(b)-Fnk(x)~F(b)-F(x),Fn(OO)-Fn(b)<e for all n, and 
F(oo)- F(b) <e. It follows that for sufficiently large k, Fnk(oo)- Fnk(x) 
differs from F(oo)-F(x) by less than 28. Therefore Fnk(oo)-Fnk(x) 
~ F(oo)- F(x), and similarly Fnk(x)- Fnk(-oo) ~ F(x)- F(-oo). Thus 

w • • 
Fnk ----+ F, provmg relative compactness. 

Now if J!t is relatively compact but not tight, then for some e > 0 we have, 
for each positive integer n, an Fn E .Aft with Fn(IR- (-n, n)) 2: e. If {Fnk} 
is a subsequence converging weakly to F, then since IR - (-n, n) is closed, 

lim sup Fnk(IR- ( -n, n )) :S F(IR- ( -n, n )). 
k 

Thus F(IR- ( -n, n )) 2: e for all n, and if we let n ~ oo, we obtain 0 2: e, 
a contradiction. D 

Prokhorov's theorem yields the following result for sequences of random 
variables. If for each n = 1, 2, ... , Xn is a random variable with distribution 
function Fn, and the sequence {Fn} is tight, then there is a subsequence {Fnk} 
and a random variable X (possibly defined on a different probability space) 
with distribution function F, such that Fnk converges weakly to F. 

Prokhorov's theorem holds equally well for distribution functions on IRk 
(with F;(!Rk) ::: M < oo for all i); the proof is essentially the same as above. 

7.2.5 Corollary. Let {Fn} be a bounded sequence of distribution functions on 
IR. If {Fn} is tight and every weakly convergent subsequence of {Fn} converges 

w 
to the distribution function F, then Fn ----+ F. 
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PROOF. If Fn does not converge weakly to F, then fiR f(x) dFn (x) ~ fiR f(x) 
dF(x) for some bounded continuous f. Hence there is an 8 > 0 such that 

~~ f(x)dFn(x)- ~ f(x)dF(x)l2: 8 

for infinitely many n, say for n E T. By 7.2.4, {Fn, n E T} has a subsequence 
{Fnk} converging weakly to a distribution function G, and G = F by hypoth
esis. But then fiR f(x) dFn/x) ~ fiR f(x) dF(x), a contradiction. D 

7.2.6 Corollary. Let {Fn} be a bounded sequence of distribution functions 
on R. If {Fn} is tight, then {Fn} converges weakly iff fiR eiwc dFn(x) approaches 
a finite limit as n ~ oo for each u E IR. 

PROOF. Assume fiR eiwc dFn(x) has a finite limit for all u. By 7.2.4, there is a 
subsequence { Fnk} converging weakly to a distribution function F. If Fn does not 
converge weakly to F, by 7.2.5, there is a subsequence {Fmk} converging weakly 
to a distribution function G =P F. We know by hypothesis that fiR eiwc dFnk(x) 
and fiR eiwc dFm/x) have the same limit as k ~ oo. Therefore fiR eiwc dF(x) = 

fR eiwc dG(x) for all u E IR. By 7.1.4, F = G, a contradiction; thus Fn ~F. 
The converse follows from the definition of weak convergence. (In this proof, as 
in 7.2.5, distribution functions that differ by a constant have been identified.) D 

One more result is needed before we can relate weak convergence to con
vergence of characteristic functions. 

7.2.7 Truncation Inequality. Let F be a bounded distribution function on 
IR, with characteristic function h. If u > 0, then for some constant k > 0. 

1 dF(x) :::: ~ r [h(O)- Re h(v)] dv. 
lxl:>:l/u U Jo 

PROOF. 11u 11u lao - [h(O) - Re h(v)] dv = - (1 -cos vx) dF(x) dv 
U 0 U 0 -oo 

= 1: [~lou (1- cosvx) dv] dF(x) 

by Fubini's theorem 

= 1: ( 1- si::x) dF(x) 

( 
sint) 1 2: inf 1-- dF(x) 

It I:>: I t lwei:::: I 

11 =- dF(x). D 
k lxl:::: I /u 
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In fact, 

. f ( sint) 1ll 1---
ltl?:l t 

so we may take k = 7. 

. 1 
= 1- sm1 > -- 7' 

7.2.8 Levy's Theorem. Let {Fn} be a bounded sequence of distribution func
tions on IR, and let {hn} be the corresponding sequence of characteristic 

w 
functions. If Fn ----+ F, where F is a distribution function with characteristic 
function h, then hn(u) ~ h(u) for all u. Conversely, if hn converges point
wise to a complex-valued function h, where h is continuous at u = 0, then 
h is the characteristic function of some bounded distribution function F, and 

w 
Fn----+ F. 

PROOF. The first assertion follows from the definition of weak convergence, 
so assume hn (u) ~ h(u) for all u, with h continuous at the origin. We claim 
that { Fn} is tight. Using 7 .2. 7, 

1 dFn(x) _::: ~ r[hn(O)- Re hn(v)]dv, u > 0 
lxl?: ifu U Jo 

k 1u ~ - [h(O)- Re h(v)] dv 
u 0 

as n ~ oo, 

by the dominated convergence theorem. 

Since h is continuous at 0, 

k 1u - [h(O)- Re h(v)] dv ~ 0 
u 0 

as u~O; 

hence, given 8 > 0, we may choose u so small that 

{ dFn(x) < 8 
Jlxl?:iju 

for all n, 

proving tightness. By 7.2.6, Fn converges weakly to a distribution function F; 
hence hn converges pointwise to the characteristic function of F. But we know 
that hn ~ h, so that h is the characteristic function of F. D 

The following variation of Levy's theorem is often useful. 
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7.2.9 Theorem. Let {Fn} be a bounded sequence of distribution functions, 
and {hn} the corresponding sequence of characteristic functions. If F is a 

bounded distribution function with characteristic function h, then Fn ~ F 
iff hn (u) ~ h(u) for all u, and in this case, hn converges to h uniformly on 
bounded intervals. 

w 
PRooF. If Fn ----+ F, then hn (u) ~ h(u) for all u by definition of weak 
convergence. If hn (u) ~ h(u) for all u, then by 7 .2.8, Fn converges weakly 
to the distribution function whose characteristic function is h, namely, F. 

Now let I be a bounded interval of R. Then 

hence 

w 
Since F n ----+ F, { F n} is relatively compact, and therefore tight by 7 .2.4. 
Thus if 8 > 0 is given, we may choose I so that 2Fn(IR -I)< 8/2 for all n. 
If u E IR, and M is a bound on {Fn (IR), n = 1, 2, ... }, then 

lhn (u + 8)- hn (u)l ::::=: M sup lei8
x- 11 + :_ 

XEI 2 

< 8 for small enough 8 = 8(8). 

Thus the hn are equicontinuous on IR. But equicontinuity and pointwise con
vergence imply uniform convergence on compact sets (see Ash, 1993, 7.4, 
Problem 3); hence hn ~ h unifomtly on I. D 

Problems 

1. If X has density (1/rr)(1- cosx)jx2, the characteristic function of X is 
h(u) = 1- lui, lui::::=: 1;h(u) = 0, lui> 1. (See Ash, 1970, p. 166, Prob
lem 8.) It is possible to construct a different characteristic function f that 
agrees with h on [ -1, 1], as follows. 
Show that the Fourier series expansion on the interval [ -1, 1] of f(u) 
= 1 - lui (extended periodically) is 

1 00 2 
f(u) = 2 + L 1r2( 2n + 1)2 exp(i(2n + l)rru). 

n =-oc: 
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[Since f is continuous and of bounded variation, and f ( -1) = f (1 ), the 
Fourier series converges uniformly to f; see Titchmarsh (1939, p. 410).] 

Thus if X is a discrete random variable with P{X = 0] = 4, 
P{X = (2n + 1)rr} = 2rr-2 (2n + 1)-2, nan integer, then X has charac
teristic function f. Since f is periodic, we have f =P h, as desired. 

2. Using Problem 1, give examples to show that the following results are 
possible (the h's are characteristic functions of random variables). 

(a) h1h2 = h1h3 does not imply h2 = h3. 
(b) hn ~ h on [ -1, 1] does not imply hn ~ h everywhere. 

3. Give an example of a sequence of characteristic functions converging 
pointwise to a function that is not a characteristic function. 

4. (a) If {an} is a sequence of complex numbers and exp(iuan) converges 
to a (finite) limit g(u) for almost all u in the open interval I c IR, 
show that {an} converges. 

(b) If Xn = n, so that hn(u) = einu, n = 1, 2, ... , show that the sequence 
of characteristic functions hn has no pointwise convergent subse
quence. Thus the corresponding sequence of distribution functions 
has no weakly convergent subsequence, as was verified directly in 
7.2.2. 

5. Let F0 , F 1, F2, ... be distribution functions on IR, and assume Fn(-oo) 
= 0, n = 0, 1, ... , Fn(oo) = 1, n = 1, 2, .... Give examples to show that 
the following situations are possible. 

(a) Fn(x) ~ Fo(x) for all x E IR at which F is continuous, but Fn does 
not converge weakly to F o. 

(b) Fn (b)- Fn (a) ~ Fo(b)- Fo(a) for all a, b E IR at which F 0 is con
tinuous, but limn-->oo Fn (x) does not exist for any x E IR. In particular, 
F n does not converge weakly to F 0 . 

6. Let F 0 , F 1, F 2, . . . be distribution functions on IR, and assume that 
Fn(oo)- Fn(-oo) :S M < oo for all n, and Fn(a, b] ~ Fo(a, b] for all 
a, b E IR at which F 0 is continuous. Show that Fn converges weakly to 
F o iff { Fn } is tight. 

7. Let F 0 , F h F 2 , . . . be distribution functions on IR, and assume that 
Fn ( oo) - Fn (- oo) :S M < oo for all n. Show that Fn converges weakly 
to F o iff Fn (a, b] ~ F 0 (a, b] for all a, b E IR at which F o is continuous, 
and Fn(oo)- Fn(-oo) ~ Fo(oo)- Fo(-oo). 

8. Let Y 1, Y 2 , ... be independent random variables, and let .9;, be the O"-field 
Y(Y 1, .•. , Yn), n = 1, 2, ... If hk is the characteristic function of Yk and 
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u is a fixed real number such that hk(u) =P 0, k = 1, 2, ... , define 

n 1 
Xn = IT-- exp(iuYk)· 

k=i ~(u) 
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(a) Show that E(Xn+ll§;.) = Xn a.e., and hence {Xn, §';.}is a complex
valued martingale. (In other words, {Re Xn, §';,} and {Im Xn, §';,} are 
martingales.) 

(b) "'n d Sh . . Assume that L..k=i Yk ---+X. ow that there 1s an open mter-
val I C IR, with 0 E I, such that for each u E I, exp[iu 2:Z= 1 Yk(w)] 
converges for almost every w. 

(c) Under the hypothesis of part (b), show that for almost every w, 
exp[iu 2:Z=1 Yk(w)] converges for almost every u E I (Lebesgue 
measure). Thus by Problem 4, 2:~ 1 Yk(w) converges a.e. to a finite 
lilnit. 

(d) Conclude that for a series of independent random variables, conver
gence in distribution, convergence in probability, and convergence 
almost everywhere are equivalent. 

7.3 CONVERGENCE TO A NORMAL DISTRIBUTION 

Let X" X2 , •.• be independent random variables, with each Xk having fi
nite mean mk and finite variance CY'f. Let Sn = 2:Z= 1 Xk. n = 1, 2, ... ; then 
E(Sn) = 2:Z=1 mb VarSn = c~ = 2:Z=1 CY'f. We consider the normalized sum 
T n = c,;- 1 (S n - E (S n) ), which has mean 0 and variance 1. [To avoid degen
eracy, we assume that Cn > 0 for sufficiently large n. In fact the Lindeberg 
hypothesis (7.3.1) will force Cn to approach oo as n ~ oo.] 

If X* is a random variable having the normal distribution with mean 0 and 
variance 1, so that the distribution function of X* is 

F*(x) = ~ jx exp [- ~t2] dt, 
v 2rr -oo 2 

we ask for conditions under which T n converges in distribution to X*. 
A long series of prelilninary results were derived before a satisfactory solu

tion was obtained, giving conditions that are sufficient and "almost" necessary 
for convergence to X*. We consider sufficiency first. 

7.3.1 Lindeberg's Theorem. Let Sn = X 1 + · · · + Xn, n = 1, 2, ... , where 
the Xk are independent random variables with finite mean mk and finite 
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variance rYf. Let Tn = c;;- 1(Sn- E(Sn)), where c~ = VarSn = l::Z= 1 CYf, and 
let Fk be the distribution function of Xk. If for every e > 0, 

as n ~ oo, 

then Tn converges in distribution to a random variable X* that is normal with 
mean 0 and variance 1. 

Before proving the theorem, we examine some of its implications. 
d 

Lindeberg' s theorem implies that T n ---+ X* under any one of the following 
conditions. 

1. The uniformly bounded case. Assume IXkl :::=: M for all k, and Cn ~ oo. 
Then 

{ (x- mk)2 dFk(x) = E[(Xk- mk)2
1{1Xk-mki:O:ecnd 

J{x: lx-mki:O:ecn) 

:::: (2M)2P{1Xk- mkl::: ecn} 

(2M)2CYf 
<---:----:,-----:.:-

82~ 

by Chebyshev's inequality. Thus 

2. The identically distributed case. Assume that the Xk are iid, with finite 
mean m and finite variance CY2 > 0. If F is the distribution function of the Xb 
then 

1 n 1 = -
2 
L (x- m)2 dF(x) 

nCY k=i {x: lx-mi:O:£<Y,Jn) 

= ~ 1 (x - m )
2 

dF(x) 
CY {x: lx-mi:O:Ea,Jn) 

~ 0 since CY
2 is finite and {x: lx - ml :=:: BeY vfn} -!, 0 as n ~ oo 
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3. The Bernoulli case. Let Sn be the number of successes inn Bernoulli 
trials, with probability of success p on a given trial. We may write. 

where the Xk are independent and P{Xk = 1} = p, P{Xk = 0} = q = 1- p. 
(We may take Xk as the indicator of a success on trial k.) Thus case 2 
applies, with m = E(Xk) = p, CY2 = E(X~)- [E(Xk)]2 = p(1- p), E(Sn) = 
nm = np, c~ = nCY2 = np(1 - p ). Thus 

Sn- np 
Tn=--~ 

(npq)l/2 

d . 
and Tn---+ X*, that lS, P{Tn :::=: x} ~ F*(x) for all x. 

4. Lyapunov's condition. Assume that 

for some 8 > 0. 

Then 

E[IXk - mkl 2
+8] = 1: lx- mkl 2

+8 dFk(x) 

2: { lx- mki"lx- mkl 2 dFk(x) 
J{x: lx-mki2:£Cn) 

Thus 

"n _ EI-IX - m 1
2+8] L..k-1 - k k 

~o. 
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PRooF OF THEOREM 7.3.1. We may assume without loss of generality that all 
mk = 0. For if we have proved the theorem under this restriction, let 

Since 

n 

Sn' =LX/ 
k=i 

1 Sn'- ESn' 
Tn =---

Cn' 

(so that EX/ = 0) 

Sn- ESn 
----=Tn. 

Cn 

{ (x- mk)2 dFk(x) = E[(Xk- mk)2
1{1Xk-mki2:£cnd 

J{x: lx-mk I2:£Cn} 

= E[(Xk')
2

/{Xk'I2:£Cn'l] 

= { x2 dF/(x), 
J{x; lxi2:£Cn') 

the Lindeberg hypothesis applies to the random variables Xk'; hence 
d d 

T n' ----+ X*. But then T n ----+ X*, as desired. 
The following estimates will be needed. If y is any real number and z a 

complex number with lzl :::=: 4. 
()y2 

eiy = 1 +iy+ 2' 

Y
2 e IYI 3 

iy _ 1 + · + I e - zy-2 -6-, 

where() and ()1 depend on y, and 1()1 ::; 1, I()JI ::; 1; 

Log(1 +z) =z+()'ld. 

(1) 

(2) 

(3) 

where "Log" denotes the principal branch of the logarithm and WI ::; 1, ()' 
depending on z. (These formulas are exercises in calculus; for full details see 
Ash, 1970, p. 173.) 

Throughout the proof, hk will denote the characteristic function of xb and 
u will be a fixed real number. The characteristic function of T n = S n / c n is 
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By (1) and (2), 

hk(u) = 1: eiux dFk(x) 

IBI, 10,1 ::; 1, e, &1 depending on ux. Since 

we may drop the terms involving iux. Thus 

(5) 

Now 

hence 

where 

Similarly, 

(note that lxl < BCn implies Bcnflxl :::=: 1). Hence 
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Thus if we set 

(5) becomes 

(6) 

where 

(7) 

Now l::Z= 1 ank ~ 0 by hypothesis, and 

Thus by (7) and the fact that f3nk ::: e2
, we have 

and 

for sufficiently large n. By (3), 

2 n 2 n 

U '""" U '""" I 2 2 + L..,..Log(l + Ynk) = 2 + L..,..(Ynk + () IYnkl ), 
k=i k=i 

WI ::: 1. 

Now 

(8) 

and it follows from (8) that if 8 > 0 is given, and e is chosen sufficiently small 
(depending on 8 and u), then 
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will be less than 8 for sufficiently large n. Since the exponential function is 
continuous, we obtain from (6) that 

in other words [see (4)], hTn (u) ~ exp( -u2 /2), the characteristic function of 

X*. By 7.2.9, Tn __!___,.X*. D 

There is another proof of the Linde berg theorem that uses weak convergence 
directly, rather than via Levy's theorem; see Billingsley (1968, p. 42). 

We now show that the Lindeberg hypothesis is not necessary for conver
gence to X*. If the Lindeberg condition holds, we claim that for all 8 > 0, 

P ex k : mk I ::: 8 } ~ 0 as n ~ oo, 

uniformly ink. This is referred to as uniform asymptotic negligibility (uan) of 
the random variables (Xk- mk)fcn. For 

n 

:=:: 8
2 
LP{IXk- mkl :=:: 8Cn} 
k=i 

Thus, intuitively, the contribution of each (Xk- mk)/cn is small relative to 
the sum (Sn- ESn)fcn. 

If we can construct an example of a sequence that is not uan but for 
d 

which Tn ----+ X*, we then have convergence to X* without the Lindeberg 
condition; here is one possibility. Let X" X2 , .•• be independent, normally 
distributed random variables with zero mean. Let CYf = 2k-2, k :=:: 2; eYf = 1. 
Then c~ = l:Z=i CYf = 2n-i; hence Xn/Cn is normal with mean 0 and variance 
4. Therefore 

max p {IXk I:=:: 8} :=:: p {IXn I:=:: 8}, 
i:Sk:Sn Cn Cn 

which is a positive constant not depending on n. Thus the Xkfcn are not uan, 
d 

although Tn ----+X*. [In fact Tn is normal (0, 1) for all n.] 
If we impose the uan requirement, the Lindeberg condition becomes neces

sary and sufficient for convergence to X*. 
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7.3.2 Theorem. Let X 1, X2 , ••• be independent random variables, with each 
Xk having finite mean mk and finite variance eYf. Then the Lindeberg condition 

for all 8>0 

d 
holds if and only if Tn ---+X* and the (Xk- mk)/cn are uan. 

PRooF. The "only if" part follows from 7.3.1 and the above remarks. 
The "if" part, due to Feller (1950), is rather lengthy, and is proved in Ap
pendix 3. D 

In the Lindeberg theorem, we have normalized the sum Sn in a special way, 
that is, we have considered a sequence of random variables a;; 1 (S n - bn ), 
where bn is the mean and an the standard deviation of S n. We might ask 
whether a different choice of constants an and bn would produce different 
results, for example, convergence to a nonnormal random variable. Questions 
of this nature may be handled by the "theorem on convergence of types," 
which we now develop. 

7.3.3 Definition. Two random variables X andY (or their distribution func
tions G and F) are said to be of the same positive type iff X and a- 1 (Y
b) have the same distribution for some real a and b, a> 0, that is, G(x) 
= F(ax +b) for all x; X andY are of the same type iff X and a- 1(Y- b) 
have the same distribution for some real a, b with a =P 0, not necessarily pos-

itive. (The notation X d1. Y will indicate that X and Y have the same distribu
tion.) 

The notion of type is preserved under convergence in distribution, as the 
following basic theorem shows. 

d d 
7.3.4 Convergence of Types Theorem. (a) Let Xn ---+X, Yn ---+ Y, 

where for each n, Xn and Yn are of the same positive type, with Xn d1. a;;' 
(Yn - bn), an > 0. Assume X and Yare nondegenerate, that is, not a.e. con
stant. Then there are real numbers a and b, with a > 0, such that an ~ a, 

bn ~ b, and X d1. a- 1 (Y -b); thus X and Y are of the same positive type. 
d d 

(b) If Xn ---+X, Yn ---+ Y, where for each n, Xn and Yn are of the 

same type, with Xn d1. a;; 1 (Yn - bn ), an =P 0, and X and Y are nondegenerate, 
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then there are real numbers a and b, with a =P 0, such that I an I ~ lal and 

x=:!1. a- 1(Y- b); thus X andY are of the same type. 

The proof is an intricate exercise in real analysis, and is done in Appendix 4. 

We can now consider the question raised earlier about the normalizing 
I -i I d -i d constants. If (an) (Sn- bn)---+ Y, and an (Sn- bn)---+ X, where Y 

is normal and X is nondegenerate, then X must be normal. For 

hence by the convergence of types theorem, X and a- 1 (Y - b) have the same 
distribution for some a, b, with a =P 0. But a brief computation then shows 
that X is normal. (To do this, look at characteristic functions, or use the 
technique of 4.9.4.) Thus if one set of constants produces a normal limit, all 
nondegenerate limits are normal. 

The restriction that X be nondegenerate is necessary. For given any real 
number c, it is always possible to choose the constants an and bn so that 

d 
a;; 1(Sn- bn)---+ c (see Problem 1). 

There is a tricky aspect of Theorem 7.3.2 that is worth mentioning. Un
der the uan hypothesis, the Lindeberg condition is necessary and sufficient 

for Tn ~X*; thus if the c;; 1(Xk- mk) are uan and the Lindeberg condi
tion fails, c;; 1(Sn- E(Sn)) cannot converge in distribution to a normal (0, 1) 
random variable. However, it is possible for c;; 1(Sn- E(Sn)) to converge in 
distribution to a random variable X that is not degenerate and not normal (0, 
1). In Problem 4, an example is given in which X is normal with a variance 
unequal to 1. 

In fact there are examples of independent (but not identically distributed) 
random variables X" X2 , ... , each with finite mean and variance, such that 

d . 
for some constants an, bn we have a;; 1(Sn- bn)---+ X, where X 1s not de-
generate and not normal. The construction of such examples is quite elaborate, 
and we give the reference only: Gnedenko and Kolmogorov (1954, p. 152). 

Problems 

1. Let X1, X2, ... be an arbitrary sequence of random variables. Given any 
real number c, show that constants an and bn (an > 0) can always be 
chosen so that a;; 1 (X 1 + · · · +X n - bn) converges in distribution to a 
random variable X = c. 
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2. Give an example of sequences of random variables {X n} and { Y n} such 
d -i d 

that X n = an (Y n - bn) for real numbers an and bn (an # 0), X n ---+ X, 

Y n ~ Y (so that X and Y are of the same type), but Ibn I has no limit. 

3. Let {Xnb n = 1, 2, ... , k = 1, ... , n} be a double sequence of random 
variables, and let hnk be the characteristic function of X nk. Show that the 
Xnk are uan; (in other words, 

as n ~ oo for every e > 0) iff 

max lhnk(u)- 11 ~ 0 
i"Ok::::;n 

as n ~ oo, and in this case, the convergence is uniform on any bounded 
interval. (Use 7.2.7 in the "if" part.) 

4. Let X1 , X2, ... be independent random variables, defined as follows: 

xl = ±1 with equal probability. 
If k > 1, and c is a fixed real number greater than 1, 

Define 

1 
P{Xk = 1} = P{Xk = -1} = 

2
c, 

P{Xk = k} = P{Xk = -k} = 2~2 ( 1 - ~) , 

P{Xk = 0} = 1 - ~ - __!__ (1 - ~) . 
c k2 c 

x ,_ {xk 
nk - O 

if 
if 

IXkl :::: Jn, 
IXkl > Jn. 

Establish the following: 

(a) The Xdcn satisfy the uan condition. 
(b) The Lindeberg condition fails for the Xb but holds for the Xnk'· 

Furthermore, if Sn' = l::Z=l Xnk'· then Sn'fcn' ~ normal (0, 1), 
where (cn')2 = VarSn',...., njc. 
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If Sn = l::Z=, Xk. then P{Sn =P Sn'} ~ 0 as n ~ oo. (c) 

(d) 
d d 

.JCSn/Jn---+ normal (0, 1), but Sn/Jn -t---+ normal (0, 1). 

7.4 STABLE DISTRlliUTIONS 

If X 1, X2 , ... are independent, identically distributed random variables, with 
finite mean m and finite variance CY2, we know from the previous section 

d 
that (Sn- nm)/CYJn---+ X* normal (0, 1); hence any limiting distribution 
of a sequence a;; 1 (S n - bn) must be normal. If we drop the finite variance 
requirement, it is possible to obtain a nonnormal limit. For example, let 
the X; have the Cauchy density f(x) = ()jrr(x2 + ()2), x E IR, () a fixed posi
tive constant. The corresponding characteristic function is h(u) = e-elul (see 
Ash, 1970, p. 161, for the computation). Therefore Sn has characteristic func
tion [h(u)]n = e-nelul; hence n-'sn has characteristic function [h(ujn)]n = 

e-elul. Thus n- 1sn ~X, where X has the Cauchy density with parameter 
e. Since E(IXI) = oo, this does not contradict the previous results. 

The following investigation is suggested. Let X 1, X2, ... be iid random vari-
d 

abies. If a;; 1(Sn- bn)---+ X, what are the possible distributions of X? CWe 
may assume that an > 0; for if negative an are allowed, we consider the 
two subsequences corresponding to an > 0 and an < 0.) In fact the possible 
limiting distributions may be completely characterized, as follows: 

7.4.1 Definition. A random variable X (or its distribution function F, or its 
characteristic function h) is said to be stable iff, whenever X 1, ... , X n are iid 
random variables with distribution function F, then S n = X 1 + · · · + X n is of 

the same positive type as X; in other words, X -::!1. a;; 1 (S n - bn ), or equivalently 
[h(u)]n = exp[ibnu]h(anu), u E IR, for appropriate an > 0 and bn. 

A sequence {a;; 1(Sn- bn)L where an > 0 and Sn = l::Z=, Xk. the Xk iid, 
is called a sequence of normed sums. 

7.4.2 Theorem. The random variable X is stable iff there is a sequence of 
normed sums converging in distribution to X. 

PRooF. If X is stable, let X" ... ,Xn be iid with Xj-::!1. X. Then a;; 1(Sn
d 

bn) ---+X for appropriate an > 0 and bn; in particular, a;;' 
d 

(Sn- bn)---+ X. 
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d 
AssumeX1, X2 , ... iid, with V n = a;;- 1 (Sn- bn)---+ X. If X is degenerate, 

it is stable, so assume X nondegenerate. Fix the positive integer r, and define 

s~l) = X I + ... + X n' 

S~2l =Xn+l + · · · +X2n. 

Then let 

S(ll_b s<2l-b s<rl_b 
w<r) = n n + n n ... + n n = z(ll + ... + z<rl 

n n n ' an an an 

where z~O, ... , z~l are independent. Now z~l ;1_ z~ll for all i; hence 

Z ~l ~ X for each i. It follows from 7 .2.9 that W ~l __!___,. Z 1 + · · · + Z, 

where Z 1, ... , Z, are iid with Z; d1. X. But we may also write 

w<rl =X,+··· +Xm- rbn =am (X1 + · · · +Xm- bm) + bm- rbn 
n an an am an 

= a<rly + {3(r) 
n rn n ' 

where a~l = amfan > 0. To summarize: 

d 
Vm---+ X, 

By 7.3.4(a), a~l approaches a limit a, > 0, fJ~l approaches a limit {3,, and 

X d1. (a,)- 1(Z 1 + · · · + Z,- {3,). Thus X is stable. 0 
In the above proof, we must have a,5 = a,a5 for all positive integers r and 

s. For 

and we may let n -+ oo to obtain a,., = a,a5 • 
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7.4.3 Examples. It can be shown [see, for example, Breiman (1968, p. 204)] 
that X is stable iff its characteristic function h can be expressed as h = eg, 
where g has one of the following two forms: 

g(u) = iu/3- dlul"' (1 + i()_!!_ tan !!_a), 
lui 2 

0 < a < 1 or 1 < a ::::=: 2, f3 E !Rl., d ::=: 0, 1()1 ::::=: 1, ( 1) 

g(u) = iu/3- dlul (1 + i()_!!_ ~lnlul), 
lui 7r 

with /3, d, () as in (1). (Take uflul = 0 when u = 0.) 

(2) 

We shall prove only that a random variable with such a characteristic func
tion must be stable. If X" ... , X n are iid, with each Xi having characteristic 
function h = eg, with g of the form (1) or (2), let)..= lja in case (1), ).. = 1 
in case (2). Then in case (1), 

and in case (2), 

g(n).u) = g(nu) = iunf3- dnlul [1 + i()_!!_~(lnn + ln lui)] 
lui 7r 

Thus in either case, 

2 
= ng(u)- iud()-n Inn. 

7r 

[h(u)t = exp[ng(u)] = exp[g(n).u)] exp[ibnu] = h(n).u)exp[ibnu], 

where bn = f3(n- n).) in case (1), and bn = d()(2jrr)n ln n in case (2). There

fore Sn =:!1. anX + bn, with an = n). = n !fa; in particular, X is stable. 
Now X has a symmetric distribution (P{X E B} = P{ -X E B} for all 

BE ..5B(!Rl.)) iff h is real-valued [see 7.1.5(d)], so the general form of the 
symmetric stable characteristic function is 

h(u) = exp[ -dlul"'], d:::: 0, 0 <a::::=: 2. (3) 

When d = 0, we have X= 0. [Similarly, if d = 0 in (1) or (2), then X = f3.] 
Thus assumed> 0. When a= 2, X is normal (0, 2d); when a= 1, X has the 
Cauchy density with parameter d. 
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If X is stable (not necessarily symmetric) and 0 <a:::=: 1, then h is not 
differentiable at u = 0, so by 7.1.5(e), E(IXI) = oo. In the symmetric case, 

E (X) does not exist. For X =:/1. -X; hence x+ =:/1. (-X)+ = x-, and therefore 
E(X+) = E(X-), necessarily infinite. If 1 <a < 2, h can be differentiated 
once but not twice at u = 0, so that E(X2

) = oo. This is to be expected, for if 
X has finite mean and variance, the fact that X can be obtained as a limit of 
a sequence of normed sums implies that X must be normal (see the opening 
paragraph of this section). 

It can be shown (see Feller, 1966, p. 215) that if X is stable, X has a finite 
rth moment for all r E (0, a). 

Problem 

1. The following problem shows that the functions h(u) = exp[-dlul"'], 
d:::: 0, 0 <a:::=: 2, are characteristic functions (see 7.4.3). LetX1, ••• ,Xn 
be independent random variables, each uniformly distributed between -n 
and +n. Define 

L
n sgnX; 

y: -k --
n- IX·Ir ' 

i=l l 

If the X; are the positions of masses distributed at random on [ -n, n ], 
then Yn is the gravitational force at the origin, assuming an inverse rth 
power law. 
(a) Show that the characteristic function of Yn is 

hn(u) = (t- ~ [fo'Xl[l-cos(kux-r)]dx-g(n)Jr, 

where g(n) -+ 0 as n -+ oo. 
(b) Show that hn (u) -+ h(u)=exp(- J0

00 [l-cos(kux-r)] dx) as n-+ 00. 

(c) Make the change of variable y = lul'lrklfrx- 1 to show that h(u) 
is of the form exp[-dlul"'], d > 0, 0 <a< 2. (The case a= 2 
corresponds to a normal distribution, and d = 0 to a degenerate 
distribution, so these characteristic functions are automatically re
alizable.) 

7.5 INFINITELY DIVISlliLE DISTRIBUTIONS 

There are limit laws that do not fit into any of the categories we have con
sidered so far. For example, let T n be the number of successes in n Bernoulli 
trials, with probability Pn of success on a given trial. Then T n has the binomial 
distribution: 

P{Tn=k}= (~)p~(l-pnt-k, k=O,l, ... ,n. 
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If we let n -+ 00, Pn -+ 0, with npn -+ A, then 
e-).;,.k 

P{Tn = k}-+ ~· k = 0, 1, ... 

321 

(see Ash, 1970, p. 95, for details). A discrete random variable X with P{X = 
k} = e-).;,.k jk!, k = 0, 1, ... , is said to have the Poisson distribution. In this 
case, 

k k 

FT.(k) = P{Tn :S k} = LP{Tn = j}-+ LP{X = j} 
j=O 

= P{X :S k} = Fx(k); 

d 
hence Tn---+ X. 

j=O 

Now this can be regarded as a limit law for sums of independent ran
dom variables. We may represent Tn as Xnl +Xn2 + · · · +Xnn• where Xni• 
the number of successes on trial i, or equivalently, the indicator of the event 
{successes on trial i}, is 1 with probability Pn and 0 with probability 
1 - Pn, and the X ni are independent. The difference between this case and 
the previous ones is that we are no longer dealing with a single sequence 
of random variables; Tn is not simply X 1 + · · · +Xn, where X 1, X2, ... are 
independent. Instead, for each n we have a different sequence Xnh ... , Xnn· 

We may construct a model that includes this case as well as all previous 
results, as follows. Consider a triangular array: 

x" 
X21 X22 

X31 X32 X33 

We assume that for each n, X n 1, ••• , X n n are independent. (We say nothing 
as yet about any relation between rows.) We set Tn = Xn 1 + · · · + Xnn; we 
want to investigate convergence in distribution of the sequence {Tn}. 

Notice that if we are interested in sequences {a; 1(Sn- bn)}, where Sn is 
the sum of independent random variables X 1, ••• , X n, we may construct an 
appropriate triangular array; take 

Xni = X; - _!!_,:____ 

then 
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Thus the triangular array scheme includes the previous models we have con
sidered. 

Note also that the Lindeberg theorem holds for triangular arrays. If the Xnk 
have finite mean mnk and finite variance cr~k' 

and for every 8 > 0, 

as n-+ oo, 

then 

normal (0, 1 ). 

The proof is the same as in 7.3.1, with the distribution function Fk replaced 
by Fnk· 

A natural question is the characterization of the possible limiting distri
butions of a triangular array; this problem was solved for normed sums in 
Section 7.4. However, as it stands, the question is not sensible, even if we 
require that the triangular array come from a single sequence of random vari
ables. Let X be an arbitrary random variable, and take X 1 =X, Xn = 0 for 
n :::: 2, bn = 0, an = 1. Then a;.' (S n - bn) = X, so any limit distribution is 
possible. Thus some restriction must be imposed. 

One way to take care of this difficulty is to assume the hypothesis of uni
form asymptotic negligibility, as we did in considering the converse of the 
Lindeberg theorem: 

as n-+ oo for every 8 > 0. 

However, we will sacrifice generality for simplicity, and assume that for each 
n, Xnh Xn2• ... , Xnn are identically distributed. We may then characterize the 
possible limiting distributions. 

7.5.1 Definition. A random variable X (or its distribution function F, or 
its characteristic function h) is said to be infinitely divisible iff for each n, X 
has the same distribution as the sum of n independent, identically distributed 
random variables. In other words, for each n, we may write h = (hn )\ where 
hn is the characteristic function of a random variable. 
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7.5.2 Theorem. The random variable X is infinitely divisible iff there 
is a triangular array, with Xn 1, ••• , Xnn iid for each n, such that 

"'n d Tv= L..k=i Xnk---+ X. 

PRooF. Let X be infinitely divisible. For each n, we may write X d1. Xn 1 

+···+Xnn• where the Xn; are iid. Then Tn=2:~= 1 Xn;=X; hence Tn 
d 

--+X. 

The converse is another application of Prokhorov's weak compactness the
orem. Assume we have a triangular array with the Xnk iid for each n and 

Tn ~X. Fix the positive integer r; then 

T = zOl + ... + z(rl rn n n ' 

where 

Z (ll -X X n - rn,i+···+ rn,n• 

Z(2l -X X n - rn,n+l + · · · + rn,2n, 

z~l = Xrn,(r-lln+l + · · · +Xrn,rn· 

d 
Since T,n ---+ X as n -+ oo, it follows that {T,n, n = 1, 2, ... } is relatively 
compact. (This means that the associated sequence of distribution functions is 
relatively compact.) By 7.2.4, {Trn, n = 1, 2, ... } is tight. But 

and similarly, 

(P{Z~'l > z} )' = P{Z~'l > z, ... , z~l > z} 

by independence of the z~l 

::S P{Trn > rz} 

(P{Z~'l < -z})' ::::: P{T rn < -rz}. 

It follows that {Z~1 l, n = 1, 2, ... } is tight, and hence relatively compact by 
7.2.4. Thus we have a subsequence {Z~1 l, n = n 1, n 2, •• • } converging in 
distribution to a random variable Y. But the Z~l, i = 1, ... , r, are iid; hence 

(i) - d d {Zn , n- n,, n2, .. . } ---+ Y. By 7.2.9, Trn---+ Y1 + · · · + Y, where 

Y Y .. d 'th y d y T d d ,, ... , r are 11 Wl ;= . But rn---+ X; hence X= Y, + ... 
+ Y,. D 
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It can be shown (Gnedenko and Kolmogorov, 1954) that Theorem 7.5.1 
still holds if the condition that for each n, the Xni have the same distribution, 
is replaced by the uan condition. 

7.5.3 Examples of Infinitely Divisible Random Variables. (a) Every stable 
random variable is infinitely divisible. This may be seen from the fact that 
every stable X is a limit in distribution of a sequence of normed sums, hence 
a limit of row sums of a triangular array in which the Xni• i = 1, 2, ... , n, 

have the same distribution. Alternatively, if X 1 + · · · + Xn d1. anX + bn, then 

(b) A random variable of the Poisson type is infinitely divisible. Let Y 
have the Poisson distribution: P{Y = k} = e-).Ak jk!, k = 0, 1, .... The char
acteristic function of Y is 

oo (Aeiu)k . 
h(u) =e-). L -- = exp[A(e1u- 1)] 

k=O k! 

and it follows that if Y 1, ••• , Y n are independent, with Yi Poisson with param
eter A;, i = 1, ... , n, then Y1 + · · · + Yn is Poisson with parameter A1 + · · · 
+ An. In particular, if y is Poisson with parameter A, then y d1. y I + ... + y n' 
where the Yi are iid, each Poisson with parameter Ajn. Thus Y is infinitely 
divisible. Now if Y is infinitely divisible, so is aY + b (a similar statement 
holds for stable random variables); hence a random variable of the Poisson type 
(aY + b, Y Poisson, a =P 0) is infinitely divisible. The characteristic function 
of aY + b is exp[ibu + A(eiau- 1)]. 

(c) A random variable with the gamma distribution is infinitely divisible. 
Let X have density 

X:::: 0, 

X< 0, 

where a, {3 > 0. The characteristic function of X is 

h(u) = (1- if3u)-a = [(1- if3u)-afny; 
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hence X is the sum of n independent gamma-distributed random variables 
with parameters ajn and {3. 

We now develop some general properties of infinitely divisible distributions. 

7.5.4 Theorem. If h1 and h2 are infinitely divisible characteristic functions, 
so is h1h2. If h is infinitely divisible, then h, the complex conjugate of h, and 
lhl 2 are infinitely divisible. 

PROOF. If h; = (h;n)n, i = 1, 2, then h1h2 = (h,nh2n)n; since h1nh2n is the 
characteristic function of the sum of two independent random variables with 
characteristic functions h1n and h2n, the first assertion is proved. If X has 
characteristic function h, then -X has characteristic function h [see 7 .1.5( c)]; 
thus if h = (hn )n, then h = (hn )n; hence h is infinitely divisible. Since lhl 2 

= hh, lhl 2 is also infinitely divisible. 0 

If ?? is the entire class of characteristic functions of random variables, the 
proof of 7.5.4 shows that if h1, h2 E ??; then h1h2 E ??. 

Also, if hEW, then hE Iff' and lhl 2 E ??. Furthermore, 7.2.8 implies that if 
hn E ??, n = 1, 2, ... , and hn(u)-+ h(u) for all u, where his continuous at the 
origin, then h E ??. A similar result holds for infinitely divisible characteristic 
functions. 

7.5.5 Theorem. If hn is an infinitely divisible characteristic function for each 
n = 1, 2, ... , and hn(u)-+ h(u) for all u, where his a characteristic function, 
then h is infinitely divisible. 

PRooF. Let Zn be a random variable with characteristic function hn, 

n = 1, 2, .... If r is a fixed positive integer, then Zn =:/1. Z~1 l + · · · + z~l, where 
the z~l, i = 1, ... , r, are iid. If Z is a random variable with characteristic 

function h, then Zn ~ Z by 7.2.9, so that {Zn} is relatively compact, and 
hence tight by 7.2.4. Just as in the proof of 7.5.2, it follows that {Z~1 l} is 
tight. By 7.2.4, we have a subsequence {Z~1 l, n = n 1, n 2, •• • } converging in 

d 
distribution to a random variable Y; hence (again as in 7.5.2) Zn ---+ Y1 

+ · ·· + Y, where Y~o .. . , Y, are iid with Y;=:/1. Y. But Zn ~ Z; hence 

Z =:/1. Y 1 + · · · + Y,. In other words, h is infinitely divisible. 0 

Now if h is infinitely divisible, a uniqueness question arises; namely, can 
h be represented in two different ways as the nth power of a characteristic 
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function? This is actually an exercise in complex variables, as follows. Let 
f and g be continuous complex-valued functions on the connected set S, 
with f n = gn; assume that f( u) = g(u) for at least one u E S. [In our case 
S = IR and fn = g11 = h; since f and g are characteristic functions of random 
variables, f (0) = g(O) = 1.] Iff and g are never 0 on S, then f =g. Note that 
(fjg)11 = 1, and therefore Jjg is a continuous map of S into {exp(i2rrkjn), k 
= 0, 1, ... , n - 1}. Since the image of S under f / g is connected, it must 
consist of a single point; thus fjg is a constant, necessarily 1 because f and 
g agree at one point. Thus the representation of h as the nth power of a 
characteristic function is unique, provided we can establish that an infinitely 
divisible characteristic function never vanishes. 

7.5.6 Theorem. If h is an infinitely divisible characteristic function, then h 
is never 0. 

PRooF. If h = (hn)n, then lhl 2 = lhnl 2n. Since lhl 2 is infinitely divisible by 
7 .5.4, we may as well assume that h and the hn are real and nonnegative. Thus 
h11 = h 1fn(= exp[(1/n)lnh]), so if h(u) > 0, then hn(u)-+ 1, and if h(u) = 0, 
then h11 (u) = 0 for all n. But h(O) = 1; hence h(u) > 0 in some neighborhood 
of the origin. Thus hn converges to a function g that is 1 in a neighborhood 
of the origin. By 7 .2.8, g is a characteristic function, and hence continuous 
everywhere. But g takes on only the values 0 and 1, and hence g = 1. Thus 
for any u, hn(u)-+ 1, so that hn(u) =P 0 for sufficiently large n. Therefore 
h(u) = [hn(uW =P 0. D 

Example 7.5.3(b) is basic in the sense that random variables of the Poisson 
type can be used as building blocks for arbitrary infinitely divisible random 
variables. 

7.5.7 Theorem. The random variable X is infinitely divisible iff there is a 

sequence of sums 2::~~~ Xnk ~X, where for each n, the Xnk are indepen
dent (not necessarily identically distributed) and each Xnk is of the Poisson 
type. 

PRooF. The "if" part follows from 7.5.3(b), the first assertion of 7.5.4, and 
7 .5.5, so assume X infinitely divisible. Since h, the characteristic function of 
X, is continuous and never 0 (by 7.5.6), h has a continuous logarithm, to 
be denoted by log h. If we specify that log h(O) = log 1 = 0, the logarithm is 
determined uniquely. (See Ash, 1971, p. 49ff., for a discussion of continuous 
logarithms.) If h = (hn )n, where hn is a characteristic function, then 

(hn t = [ exp ( ~ log h)] n ; 
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hence as in the discussion before 7 .5.6, 

so for any fixed u E IR, 

n(hn(u)- 1) = n ( exp [~log h(u)] - 1) 
= n (~log h(u) + o ( ~)) since ez = 1 + z + o(z) 

-+ logh(u) as n-+ oo. 

Thus 

logh(u) = lim n(hn(u)- 1) = lim n 100 

(eiux- 1)dFn(x), 
n----7-oo n----7-oo _

00 

where Fn is the distribution function corresponding to hn. It follows from 
the dominated convergence theorem that for each n we may select a positive 
number m = m(n) such that m-+ oo as n -+ oo and 

11
00 

(eiux- 1)"dFn(x) -1m (eiux- 1)dFn(x)l :S ~ 
-oo -m n 

for all u, 

and we may then choose a positive integer r = r(n) such that 

for all u E (-m, m), where Xk = -m + 2mkjr, k = 0, 1, ... , r. 
It follows that we may obtain h(u) as a pointwise limit of terms of the form 

r(n) 

IT expP.·nk(exp(ianku)- 1)], 
k=l 

where Ank = n[Fn(Xk)- Fn(Xk_J)] and ank = Xk. D 
We conclude this section by mentioning the Uvy-Khintchine representa

tion: The characteristic function h is infinitely divisible iff 

u
2

CY
2 1 ( . iux ) 1 + x 2 

logh(u) = iu/3- -- + e1ux -1--- --dA(x), 
2 ~ 1 + x2 x2 

where {3 E IR, CY
2 

:::: 0, and ).. is a finite measure on ..5fl(IR) such that )..{0} = 0. 
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The result is basic for a deeper study of the central limit theorem, in 
particular for deriving conditions for convergence to a particular infinitely 
divisible distribution, analogous to the results on normal convergence in 8.3. 
Full details are given by Gnedenko and Kolmogorov (1954). Proofs of the 
Levy-Khintchine representation are also given by Chung (1968) and Tucker 
(1967). 

Problems 

1. The random variable X is said to have the geometric distribution iff 
P{X = k} = l-' p, k = 1, 2, ... , whereO < p < 1, q = 1- p.Showthat 
the associated characteristic function, given by 

is infinitely divisible (use 7 .5.7). 

2. Let g ( s) = 2:~= 1 n _,, Re s > 1, be the Riemann zeta function. The series 
converges uniformly for Re s 2: 1 + 8, any 8 > 0; also, 

00 1 
g(s) =IT 1 _,, 

k=l - Pk 

where Pn is the nth prime. (See Ash, 1971, Chapter 6 for details.) If cis 
a fixed real number greater than 1, show that h(u) = g(c + iu)jg(c) is an 
infinitely divisible characteristic function (use 7 .5.7). 

3. Give an example of an infinitely divisible characteristic function that is 
not stable. 

4. When characteristic functions are not easy to compute, the following tech
nique is sometimes useful for actually finding the distribution of a sum 
of independent random variables. 

Let X and Y be independent random variables, and let Z =X+ Y. If 
X, Y, and Z have distribution functions F 1, F 2, and F 3, show that F 3 is 
the convolution of F 1 and F 2 (notation: F 3 = F 1 * F 2), that is, 

F 3 is also the convolution of F 2 and F 1, that is, 
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If X [respectively, Y] has density f 1 [respectively, f2], show that Z has 
density h, where 

h(z) = £: f1(z- y)dFi_y) = £: h(z -x)dF1(x). 

[If both X and Y have densities, replace dF1(x) by !J(x)dx and dF2(y) 
by h(y)dy.] 

Intuitively, the probability that X falls in (x, x + dx) is dF1 (x); given 
that X = x, we have Z :::;:: z iff Y :::;:: z - x, and this happens with probabil
ity F2(z- x). Integrate over x to obtain the total probability that Z:::;:: z, 
namely, F 3 = F2 * F1. The other formulas have a similar interpretation. 

Note also that convolution is associative, that is, F 1 * (F2 * F3) 
= (F 1 * F 2) * F 3• This is somewhat messy to prove directly, but a prob
abilistic interpretation makes it transparent. For if X 1, X 2, and X 3 are 
independent random variables with distribution functions F 1, F 2, and F 3 , 

respectively, then F 1 * ( F 2 * F 3 ) is the distribution function of X 1 + (X 2 

+ X3), and (F 1 * F2) * F3 is the distribution function of (X 1 + X2) + X3. 
Finally, we note that if F is the distribution function of a random 

variable, then F is infinitely divisible iff for each n there is a distribution 
function Fn (of a random variable) such that F = Fn * Fn * · · · * Fn (n 
times). 

5. If).. 2: 0 and f is the characteristic function of a random variable, show 
that exp[)..(j - 1 )] is an infinitely divisible characteristic function. 

7.6 UNIFORM CONVERGENCE IN THE CENTRAL LIMIT THEOREM 

Let X 1, X 2 •••• be independent random variables with finite mean and vari-
d 

ance, and suppose that Tn = c;;- 1(Sn- E(Sn))---+ X* normal (0, 1). Very 
often the statement is made that "for large n, Sn is approximately normal with 
mean an = E(Sn) and variance c~," that is, 

jx 1 [-(t-a )2] 
Fsn(x)- .J2ii exp 

2 
n dt-+ 0 

-oo 2rr Cn 2cn 
as n-+ oo. 

Let us try to prove this. If X is normal (an, c~) and X* is normal (0, 1), 
then 

IP{Sn :;::x}-P{X :;::x}l = IP{Tn:::;:: x:nan} -P{X*:::;:: x:nan }I 
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and this will approach 0 as n --+ oo if F Tn --+ F* uniformly on IRl.. In fact this 
does happen; the proof rests on the following two results. 

7.6.1 Theorem. Let F, F 1, F2, ... be bounded distribution functions on !Rl., 
S a dense subset of IRl. containing all the discontinuity points of F. 

If 
Fn(oo)--+ F(oo), 

Fn ( -oo) --+ F( -oo ), 

Fn(x)--+ F(x) 

Fn(x-)--+ F(x-) 

then Fn --+ F uniformly on !Rl.. 

for all 

for all 

XES, 

XES, 

PRooF. Let e > 0 be given. We wish to obtain a partition -oo = y0 < y1 

< · · · < Ym = 00 with 

(take y;;; = oo ). 

Yj E S, 

8 
F(y"}+i) < F(yj) + 2' 

8 
F(yj+l):::: F(yj) + 3' 

1 :::=: j :::=: m - 1, 

Set Yo = -oo and define Z1 = sup{x > Yo: F(x)- F(yo) :::=: e/3}. If Z1 

<OO, then F(x)-F(yo) :::=: ej3 for Yo<x < z,; hence F(z!):SF(yo)+ (e/3) 
< F(yo) + (e/2). Also, F(zJ):::: F(yo) + (e/3); for if not, F(z,') < F(yo) 
+ (e/3) for some z1' > z1 (by right-continuity), contradicting the definition 
of ZJ. 

Now if F(z,-) < F(zJ), then Z1 E S by hypothesis, and we set y1 = z1• If 
F(z!) = F(z1), then since Sis dense and F is right-continuous, we can find 
y, E S such that y, > Z1 and F(yJ) < F(yo) + (e/2). Thus in either case we 
obtain y, E S such that F(y!) < F(yo) + (e/2) and F(yJ) :::: F(yo) + (e/3). 
Continue by defining z2 = sup{x > y1: F(x)- F(yJ) :::=: ej3} and proceed as 
above. Since F(yj+J):::: F(yj) + (e/3) and F is bounded, the process will 
terminate in a finite number of steps and produce the desired partition. 

Let x E !Rl.; say yj :::=: x < YHl· Then 

Fn(x)- F(x) :S Fn(Y)+,)- F(yj) 

8 
< F(yj+ 1) + 2- F(yj) 

for large n, since YHi E S 

<e. 

or YHl = oo 
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Also, 

8 
:S F(i}+l)- F(yj) + 2 

for large n since Yj E S 

<e. 

or Yj = -oo 

331 

The "large n" depends only on j and not on x, and it follows that Fn -+ F 
uniformly on !Rl.. 0 

7.6.2 Theorem. Let F, F 1, F 2, ••• be bounded distribution functions on !Rl.. 
Assume that Fn(-oo) = 0 for all n, F(-oo) = 0, F is continuous everywhere, 
and Fn converges weakly to F. Then Fn converges to F uniformly on !Rl.. 

PRooF. In 7.6.1, take S = !Rl.. Since Fn converges weakly to F and F is 
continuous everywhere, Fn(oo)-+ F(oo) and Fn(x)-+ F(x) for all x E !Rl.. 
Since Fn(-oo)-+ F(-oo) by assumption, it remains to show that Fn(x-) 
-+ F(x-) for all x. If y < x, 

F(y) = limFn(Y) :::=: liminfFn(x-) :::=: limsupFn(x-) :::=: limFn(x) = F(x). 
n n n n 

If y-+ x, then F(y)-+ F(x) by continuity of F; hence Fn(x-)-+ F(x) 
= F(x-). 0 

Problem 

1. ( Glivenko- Cantelli Theorem) Let X 1, X 2, ... be independent, identically 
distributed random variables with common distribution function F. Let 
Fn(X, w), X E R, (t) E n, be the empirical distribution function of the X;, 
based on n trials, that is, 

F (x w) = _!._ [the number of terms among X 1 (w ), ... , Xn (w)] 
n ' n that are :::=: x 

1 n 

=- L)lxk:::xJ(w). 
n k=l 

For example, if n = 3, X1 (w) = 2, X2(w) = ~. X3 (w) = 7, then 

0, x<.!. 
2 

.!. ~:Sx<2 
F3(x, w) = 3' 

2 2:Sx<7 3• 

1, X 2: 7. 
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Intuitively, for large n, Fn(x, w) should approximate F(x). Show that 
there is a set A of probability 0 such that for w f1 A, Fn (x, w) -+ F(x) 
uniformly for x E !Rl.. 

7. 7 THE SKOROKHOD CONSTRUCTION AND OTHER CONVERGENCE THEOREMS 

In this section we look at various results involving the interplay between 
convergence in distribution and other types of convergence. In particular, the 
Skorokhod construction frequently allows a very effective substitution of al
most everywhere convergence for the weaker convergence in distribution. We 
begin with a result about convergence in distribution of sums, products, and 
quotients. 

d d p 
7.7.1 Slutsky's Theorem. If Xn ---+X and Yn ---+ c (hence Yn ---+ c 
by 7.1.7) then, 

d 
(a) Xn + Yn---+ X +c 

d 
(b) XnYn ---+eX 

Xn d X 
1
.f 

(c) ----+ 
Yn C 

PROOF. (a) Let Fn be the distribution function of Xn, Gn the distribution 
function of Xn + Yn, F the distribution function of X, and H the distribu
tion function of X+ c. If Xn + Yn :::=: x and IYn - cl < e, then Xn :::=: x- Y n 
and Yn > c- e, so that Xn :S x- c +e. Similarly, if Xn :S x- c- 8 and 
IYn- cl < e then c > Yn- e, so that Xn :::=: x- Yn. Therefore 

and 

Let x be a continuity point of H, so that x- cis a continuity point of F. 
Choose e > 0 so that x - c + e and x - c - e are continuity points of F as 
well. Then 

F(x- c- e) :::=: liminfGn (x) :::=: lim sup Gn (x) :::=: F(x- c +e). 
n---+oo n---+oo 

Since e can be as small as we wish, it follows that G n (x) -+ F (x - c) = H (x ). 

(b) We use the same notation as in (a), with Xn + Yn replaced by XnYn 
and X + c replaced by eX. First assume that c # 0. Then we can take c > 0 
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without loss of generality, since -Yn ~ -c. The idea is essentially the 
same as in (a). 

If XnYn :::::X and IYn - cl < e then Xn ::::: x/Yn and Yn > c- e, so 
that Xn :S /_

8
• Similarly, if Xn :S c~s and IYn- cl < e then c + e > Yn and 

Xn :S x/Yn. Therefore, 

and 

Let x be a continuity point of H, so that xj c is a continuity point of F. 
Choose e > 0 so that xj c - e and xj c + e are continuity points of F as well. 
Then 

F (-x-)::; liminfGn(x)::; limsupGn(x)::; F (-x-), 
C + e n---+oo n---+oo C - e 

and since e can be taken as small as we wish, it follows that Gn (x) 
--+ F(xjc) = H(x). [We have assumed that Yn > 0 in the above manipula
tions, and this causes no difficulty because Yn ::=:: ~c > 0 except on a set of 
small probability. A similar comment applies to the proof of (c) below.] 

d 
If c = 0 we must show that X n Yn ---+ 0. This may be accomplished by 

observing that {X::; M} t n as M--+ oo, and given e > 0, we have P{IYnl 
< ejM}--+ 1 as n--+ oo. Thus for sufficiently large n, we have IXnYnl < e 
except on a set of small probability. 

(c) As in (b) we can assume without loss of generality that c > 0. We use 
the same notation as in (a) with X n + Yn replaced by X n / Yn and X + c replaced 
by Xjc. If Xn/Yn :S x and IYn- cl < e then Yn < c + e and Xn :S x(c +e). 
Similarly, if Xn :S x(c- e) and IYn- cl < e then c < Yn + e and Xn :S xYn. 
Therefore, 

and 

The argument is completed as in (b) with xjc replaced by ex, xj(c- e) by 
x(c +e) and xj(c +e) by x(c- e). 0 

We now give the Skorokhod construction. 
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d 
7.7.2 Skorokhod's Theorem. Assume that Xn ----+X, and let Fn be the 
distribution function of X n, with F the distribution function of X. Then there 
are random variables Yn(n = 1, 2, ... ) and Yon (0, 1) (with Borel sets and 
Lebesgue measure) such that Yn has the same distribution as Xn, Y has the 
same distribution as X, and Yn(w)-+ Y(w) for every wE (0, 1). 

PRooF. The idea is that since Fn converges pointwise to F except possibly at 
discontinuity points of F, the inverse of Fn should converge to the inverse of 
F. Now whereas the distribution function F is increasing and right-continuous, 
for each w E (0, 1) there will be a minimum value of x, say x = x0 , such that 
F(x) 2: w, and we have F(x) 2: w for all x 2: xo, and F(x) < w for all x < x0 • 

We define 

Y(w) = xo = min{x: F(x) 2: w}; see Fig. 7.7.1. 

From the definition we have 

F(A.) 

r-
(l) ---1f-----r-

Y(ro) = x0 X 

Figure 7.7.1. 

(1) Y (w) ::::=: x iff F has reached height w at x or earlier iff F(x) 2: w. Similarly, 
we define Yn(w) = min{x: Fn(w) 2: w}; then Yn(w) ::::=: x iff Fn(x) 2: w. 

If ).. is Lebesgue measure then )..{w: Yn(w) ::::=: x} = )..{w: w ::::=: Fn(x)} 

= Fn (x), so Yn d1. Xn, and similarly Y d1. X. We will prove that 

(2) liminfn---+oo Yn(w) 2: Y(w). 

Let wE (0, 1) and 8 > 0. Choose a continuity point x ofF such that Y(w) 
-8 < x < Y(w); see Fig. 7.7.2. By (1), Y(w) > x implies that F(x) < w, and 
since Fn (x) -+ F (x ), we have Fn (x) < w for all sufficiently large n. Again by 
(1), Yn (w) > x eventually. Thus lim infn---+oo Yn (w) 2: x, and since eis arbitrary, 
the result follows. 

Y(ro)- E X Y(ro) 

Figure 7.7.2. 
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The analogous result for limsupn---+oo Yn(w) is more delicate because 
w < F(x) is not equivalent to Y(w) < x. For example, see Fig. 7.7.1 with 
X =Xo. 

(3) If Y is continuous at w then limsupn---+oo Yn(w) _::: Y(w). 

Let w and w' be in (0, 1) with w < w', and let 8 > 0. Choose a continuity 
point y ofF such that Y(w') < y < Y(w') + 8 (Fig. 7.7.3). Now Y(w') < y 
implies that F(Y(w')) _::: F(y), and since Y(w') is the first point at which F 
reaches height w', we have F(Y(w')) 2: w'. Thus w < w' _::: F(Y(w')) _::: F(y) 
(Fig. 7.7.4). 

Y(ro') y Y(ro') + E 

Figure 7.7.3. 

ro ro' F(y) 

Figure 7. 7 .4. 

But Fn(Y)--+ F(y), so for all sufficiently large n, Fn(Y) 2: w. By (1), Yn(w) 
_::: y < Y(w') + 8 (again see Fig. 7.7.3). Consequently, 

lim sup Yn (w) _::: Y (w') --+ Y (w) as I 
(t) --+ w, 

n---+oo 

and the result follows. 
By definition, Y (w) increases with w and therefore has at most countably 

many discontinuities. Since a countable set has Lebesgue measure zero, we are 
free to change the definitions of Yn and Y at points w where Y is discontinuous. 
In particular, it is convenient to set Y(w) = Yn(w) = 0 for all n. Skorokhod's 
theorem now follows from (2) and (3). 0 

Part (c) of the next theorem gives a typical application of the Skorokhod 
construction [cf. 2.8.l(c)]. 

7.7.3 Convergence of Transformed Sequences. Let X,X1,X2, ... be ran
dom variables on (Q, .r, P) and let g: IRl. --+ IRl. be continuous a.e. [Px]. Then 

(a) Xn --+X a.e. implies g(Xn)--+ g(X) a.e. 

(b) Xn ~X implies g(Xn) ~ g(X) 

(c) Xn ~X implies g(Xn) ~ g(X). 
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PROOF. (a) Suppose that Xn (w) -+ X (w) for w E A, where P(A) = 1, and g 
is continuous on B, where Px(B) = 1. If wEAn x-1 (B) then Xn(w)-+ X(w) 
and g is continuous at X(w), so g(Xn(w))-+ g(X(w), Since P(A nX-1(B)) 
= 1, the result follows. 

(b) If g(Xn) fails to converge in probability to g(X), then there exist e > 0 
and 8 > 0, and a subsequence of { 1, 2, ... } such that on the entire subsequence, 

P{lg(Xn)- g(X)I 2: e} 2: 8. 

We can then extract a further subsequence on which Xn -+X a.e., and conse
quently g(Xn)-+ g(X) a.e. by (a). On the second subsequence we must have 

g(Xn) ~ g(X), contradicting our choice of the first subsequence. 

(c) By 7.7.2, there are random variables Yn;!, Xn andY;!, X with Yn -+ Y 
d d 

a.e., and by (a), g(Yn)-+ g(Y) a.e. By 7.1.7, g(Yn)---+ g(Y). But Xn = Yn 

implies g(X n);!, g(Y n ), and X;!, Y implies g(X);!, g(Y). Therefore g(X n) 
d 

---+ g(X). 0 

Problems 

d d 
1. If Xn ---+ X, an -+ a and bn -+ b, show that anXn + bn ---+ aX+ b. 

2. If Xn ~X, show that E(IXI) :S liminfn---+aoE(IXnl). 

3. If Xn ~X and the Xn are uniformly integrable, show that X is inte
grable and E(Xn)-+ E(X). 

7.8 THE k -DIMENSIONAL CENTRAL LIMIT THEOREM 

Just as the sum of a large number of independent random variables is, 
under wide conditions, approximately normal, the sum of a large number 
of independent random vectors has, approximately, a Gaussian (also called 
multivariate normal) distribution. In this section we give a version of the 
central limit theorem fork-dimensional random vectors. 

7.8.1 Definitions and Comments. First we recall some definitions and re
sults from 1.4 and 2.8. On !Rl.k we have a partial ordering: x ::; y iff Xi ::; Yi 

for every i = 1, ... , k, and x < y iff Xi < Yi for every i = 1, ... , k. 
IfF: IRk -+ IR, we say that F is right-continuous at x iff F(x) =limn F(un) 

for every sequence u1 :::: u2 :::: • • • -+ x. If F satisfies the property that x :::=: y 
implies F(x) ::; F(y), we may assume in the definition of right-continuity that 
the Un are all strictly greater than x. 
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If F: !Rl.k -+ !Rl., we say that F is increasing iff F(a, b] 2: 0 whenever 
a ::::=: b. This is not equivalent to saying that a::::=: b implies F(a) ::::=: F(b ); neither 
condition implies the other in general. 

An increasing, right-continuous function F: !Rl.k -+ IRl. is called a distribution 
function on IRl. k. If F is a distribution function, there is a Lebesgue- Stieltjes 
measure J-t on (!Rl.k, .;l9(1Rl.k)) such that J-t(a, b] = F(a, b] for all a, bE Rk. 
Conversely, if J-t is a Lebesgue-Stieltjes measure on (!Rl.k, ..5f1(1Rl.k)), there are 
several distribution functions F such that J-t(a, b] = F(a, b] for all a, bE !Rl.k. 
If J-t is a finite measure, it is easiest to use the distribution function G(x) 
= J-t( -00, x]. Let us spell out in some detail the relation between J-t and G. 

7.8.2 Theorem. (a) Let J-t be a finite measure on (!Rl.k, ..5f1(1Rl.k)), and let 
G(x) = J-t(-oo, x]. Then G is a distribution function such that a::::=: b implies 
that G(a) ::::=: G(b). Furthermore, for every e > 0 there is an A > 0 such that if 
Xj < -A for at least one coordinate Xj, then G(x) ::::=:e. 

(b) Conversely, suppose that G is a distribution function on !Rl.k with the 
property that for every e > 0 there is an A > 0 such that if Xj < -A for 
at least one j, then G(x) ::::=: e. Then there is a unique Lebesgue-Stieltjes 
measure J-t on (!Rl.k, ..5f1(1Rl.k)) such that G(x) = J-t(-oo, x] for all x. [By 
(a), we have G(a) ::::=: G(b) when a::::=: b. The measure J-t is finite iff supx G(x) 
< 00.] 

PRooF. (a) By 1.4.8 and the discussion following it, G is a distribution 
function, and since J-t is a (nonnegative) measure, a::::=: b implies G(a).::; G(b). 
Given e > 0, choose A > 0 such that J-L(!Rl.k - [-A, At) ::::=: e. If Xj < -A for 
at least one j, then ( -oo, x] c !Rl.k- [-A, At, so that G(x) ::::=: e. 

(b) By 1.4.9 there is a unique Lebesgue-Stieltjes measure J-t on 

(Rk, ..5f1(1Rl.k)) such that J-t(a, b] = G(a, b] when a::::=: b. If a-+ -oo E R", 
that is, each coordinate of a approaches -oo, then J-t(a, b]-+ J-t(-oo, b] by 
1.2.7(a). But G(a, b]-+ G(b), since every term in 1.4.8(b) goes to 0 except 
for G(b). Therefore G(b) = J-t(-oo, b]. 0 

In one dimension, G is continuous at x iff J-L{x} = 0. We can formulate this 
condition in such a way that it generalizes to the higher-dimensional case, as 
follows. 

7.8.3 Theorem. Let G(x) = J-t( -oo, x], where J-t is a finite measure on 
(!Rl.k, ..5f1(1Rl.k)). Then G is continuous at x iff J-L(o(-oo, x]) = 0 (where a stands 
for boundary). 
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Figure 7 .8.1. Proof of Theorem 7 .8.3. 

PROOF. If G is continuous at x then J-L(-oo, x)=lim{G(y): y t x, y < x} 
=G(x), and it follows that J-L(o(-oo, x])=O. Conversely, if J-L(o(-oo, x]) = 0, 
then 

lim{G(y): y t x, y < x} = lim{G(z): z-!, x, z > x} = G(x) 

(by right-continuity of G). 

Given 8 > 0, there exist x1 < x and x2 > x such that 0 _::: G(x)- G(xJ) 
_::: 8 and 0 _::: G(x2) - G(x) _::: 8 (see Fig. 7 .8.1). If y E [x1, x2], we have G(xJ) 
_::: G(y) _::: G(x2), and therefore G(y) _::: G(x2) _::: G(x) + 8 and G(y) :::: G(x1) 

:::: G(x)- e. Thus IG(y)- G(x)l _:::e. 0 

We now consider the hyperplanes that are perpendicular to one of the coordi
nate axes, that is, sets of the form {x = (x1, ••• , xk): x; =a}, where 1 ::: i _::: k 
and a E !Rl.. As the measure J-t is finite, only countably many of these hyper
planes can have strictly positive J-L-measure (see 1.2, Problem 12). If H ~-' is 
the set of these hyperplanes, we have the following result. 

7.8.4 Theorem. If x does not belong to any of the hyperplanes in H~-', then 
F is continuous at x. 

PRooF. This follows immediately from 7.8.3. 0 

Recall that a sequence of finite measures J-tn on !Rl.k converges weakly to a 
finite measure J-t iff JfdJ-tn -+ JfdJ-t for every bounded continuous f: !Rl.k-+ !Rl.. 

Theorem 2.8.1 gives several conditions equivalent to the definition of weak 
convergence, and as the theorem was proved for finite measures on the Borel 
sets of an arbitrary metric space, it remains valid in [Rl.k. We may also establish 
a k-dimensional analog of Theorem 2.8.4, as follows. 

7.8.5 Theorem. Let J-L, J-th J-t2, ... be finite measures on (!Rl.k, .19(1Rl.k)) with 
corresponding distribution functions F, F" F2, ... , where we take Fn(x) 
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=J-tn(-oo,x] and F(x)=J-t(-oo,x]. The following conditions are equiva
lent: 

(a) J-tn converges to J-t weakly. 
(b) J-tn(IRl.k)-+ ~-t(!Rl.k) as n-+ oo and Fn(x)-+ F(x) at each continuity 

point ofF in !Rl.k. 
(c) J-tn(!Rl.k)-+ ~-t(!Rl.k) as n-+ oo and Fn(x)-+ F(x) at each point x E !Rl.k 

that does not lie in any of the hyperplanes of H w 

PRooF. (a) implies (b): Take f = 1 to show that J-tn(!Rl.k)-+ J-t(!Rl.k). If xis 
a continuity point ofF, then J-t(o(-oo, x]) = 0 by 7.8.3, so Fn(x)-+ F(x) by 
2.8.1(e). 

(b) implies (c): This follows from 7.8.4. 

(c) implies (a): Given 8 > 0 we can find a positive number T such that 
none of the vertices of (-T, Tt lie in a hyperplane of HJL, and such that 
J-t(!Rl.k- (-T, Tt) < 8. Then J-tn((-T, Tt)-+ J-t((-T, Tt) and J-tn(!Rl.k) 
-+ ~-t(!Rl.k) by (c), and therefore J-tn(!Rl.k- (-T, Tt) < 28 for all sufficiently 
large n. 

If f is a bounded continuous function on !Rl.k, it is uniformly continuous 
on [-T, Tt, so using hyperplanes not in H JL we can cut (-T, Tt into a 
finite number of rectangles (u, v] such that if x and y belong to the same 
rectangle then If (x) - f (y) I < e. Thus we may approximate f on (-T, Tt 
by a function g such that g is constant on each (u, v] and If - gl < 8 on 
( -T, Tt. Then, noting that f = (f- g)+ g, we have 

Ilk f d~-tn - hk f d~-t/ 
::::: hk-(-T,T]k (If I dJ-tn + lfl dj.t) 

+ 1 (If- gl d~-tn +If- gl d~-t) 
(-T,T]k 

+ /1 gdJ-tn -1 gdj.t,. 
(-T,T]k (-T,T]k 

The right side of this inequality is less than some constant multiple of 8 for 
sufficiently large n, and the result follows. 0 

We now begin the study of weak compactness on [Rl.k. 

7.8.6 Helly's Theorem. Let J-LJ. ~-t2 , ••• be finite measures on !Rl.k with 
corresponding distribution functions F 1, F 2, .... As above, we take Fn (x) 
= J-tn(-oo, x]. If J-tn(!Rl.k) :::=: M < oo for all n, there is a distribution function 
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F on !Rl.k and a subsequence {Fn) such that Fn
1
(x)--+ F(x) at every continuity 

point x ofF in !Rl.k. 

PROOF. The procedure is essentially the same as in 7.2.1, but we must ex· 
ercise some care in choosing the dense set D. Let M be a dense subset of 
!Rl., and take D = Mk. Then construct Fv and F exactly as in 7.2.1. We must 
show that F is increasing, that is, F(a, b] :::: 0 when a:::=: b. To accomplish 
this we move the vertices of (a, b] slightly to produce a new rectangle (c, d] 
with c, dE D and c:::: a, d:::: b. All the vertices of (c, d] are now in D, and 
if lc- al and ld- bl are small enough, we have IF(a, b]- F(c, d]l < e. But 
F(c, d] = Fv(c, d] :::: 0, and it follows that F(a, b] :::: 0. The proof that F is 
right continuous and that Fn/x)--+ F(x) when x is a continuity point of F 
in !Rl.k is exactly the argument in 7.2.1. [As Fn(x) is defined as J-Ln(-oo, x], 
we have Fn (x) :::=: Fn (y) if x :::=: y; also, F (x) :::=: F (y) if x :::=: y, by con
struction.] 0 

In 7 .2.3, we gave the definitions of tightness and relative compactness of a 
family of finite measures on the Borel sets of an arbitrary metric space, and 
this definition applies in !Rl.k. Thus, tightness means that given 8 > 0, there is 
a rectangle whose complement has measure less than 8, uniformly throughout 
the fanrily. Relative compactness means that every sequence from the family 
has a subsequence that converges weakly to a finite measure. Prokhorov' s 
theorem also carries over. 

7.8.7 Prokhorov's Theorem. Let J-L~> J-L 2, ... be finite measures on (!Rl.k, 
..5f1(1Rl.k)) with corresponding distribution functions F 1, F 2, •• _ Again we 
assume that F n (x) = J-tn ( -oo, x]. Suppose that J-tn (!Rl.k) :::=: M for all n. Then 
the sequence {J-tn, n = 1, 2, ... } is tight iff it is relatively compact. 

PROOF. Relative compactness implies tightness just as in 7.2.4. To prove that 
tightness implies relative compactness, use Helly's theorem to get a subse
quence { n j} and a distribution function F such that Fn 

1 
(x) --+ F (x) at each 

continuity point x ofF in !Rl.k. Tightness implies that given 8 > 0, there exists 
A > 0 such that J-tn (!Rl.k - [-A, At) :::=: 8 for all n. Therefore, if Xj < -A for 
at least one j and xis a continuity point ofF, we have Fn(x) :::=: 8 for all 
n. Now the right-continuity ofF implies that if Xj < -A for at least one j, 
then F(x) :::=: 8. By 7.8.2(b), there is a measure J-t on (!Rl.k, ..5f1(1Rl.k)) such that 
F(x) = J-t( -oo, x] for all x, and J-t is finite because supx F(x) :::=: M. Tightness 
also implies that J-tn;C!Rl.k)--+ J-t(!Rl.k), and by 7.8.5, J-tn

1 
converges weakly to 

J-t. This proves relative compactness. 0 

7.8.8 Re11Ulrks. In Prokhorov's theorem, if the J-tn are probability measures, 
so is J-t (since J-tn; (!Rl.k) --+ J-L(!Rl.k)). 
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If the sequence of finite measures J-t 1, J-t2 , .•. is tight and there is a finite 
measure J-t such that any weakly convergent subsequence of {J-Ln} converges 
(weakly) to J-t, then the entire sequence J-tn converges weakly to J-t. For by 
Prokhorov's theorem there is at least one weakly convergent subsequence. 

Characteristic functions can be defined in a natural way in IRk. 

7.8.9 Definition. Let J-t be a finite measure on IRk. The characteristic 
function of J-t is the mapping from IRk to (( given by 

h(u) = { exp(i < u, x >) dJ-t(x), u E IRk, 
J[Rk 

where <u,x> = 2:~=! u1x1. 
If J-t = Px, where X is a random vector (X1, ... ,Xk), then h(u) = 

E[exp(i < u, X > )]. 
It follows that Theorem 7 .1.2 can be extended to independent random 

vectors, in other words, the characteristic function of a sum of independent 
random vectors is the product of the individual characteristic functions. 

As in one dimension, the characteristic function of a finite measure 
determines the measure uniquely, because of the following result. 

7.8.10 Inversion Formula. If h is the characteristic function of a finite 
measure J-t, and if A = (a, b] is a bounded rectangle in IRk such that J-t(oA) = 0, 
then 

. 1 1 ITk [exp(-iuja1)-exp(-iu1bj)]h )du J-t(A) = lim -- (u . 
c---+oo (2;rr)k [-c,c]k j=i iuj 

PRooF. 

h ]( b) - 1 1 1 1 1 1 du 1 ~c sin u · (x · - a ·) - sin u · (x · - b ) 
w ere c x j, a i, i - - i. 

2;rr -c Uj 
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As in 7.1.3 we have lim lc(Xj, aj, bj) = l(xj, aj, bj). where 1 is 0 for 
C---?-00 

Xj t;t [aj. bj]. 1 for x1 E (a1, bj) and ~for Xj = a1 or bj. Therefore, 

lim I c = { K (x, a, b) dJ-t, 
C-HlO J[Rk 

where K is 0 for x rf. [a, b] and 1 for x E (a, b). On the boundary of 
A = (a, b], K assumes values that are various powers of ~- It follows that 
lim Ic = J-t(A) if J-t(oA) = 0. D 

C-+00 

Here is the k-dimensional version of Levy's theorem 7.2.9. 

7.8.11 Theorem. Let {J-tn, n = 1, 2, ... } be a sequence of measures on IRk 
such that J-tn(IRk):::; M < oo for all n, and let hn be the characteristic function 
of J-tn. Let J-t be a finite measure on IRk with characteristic function h. Then 
J-tn--+ J-t weakly iff hn(u)--+ h(u) for every u E IRk. 

w 
PRooF. If f.-tu---+ J-t then hn(u)--+ h(u) by 2.8.1, so assume hn(u)--+ h(u) 
for all u E IRk. We consider vectors u = te 1, where t is real and the coordinate 
vector ej has a 1 in position j and O's elsewhere. Then 

is in fact the Fourier transform of the measure mT) on IR defined by 

a, bE IR, 

where Pj is the projection (x 1, •.• , xk)--+ x1 on the jth coordinate axis. (Use 
1.6.12 with T = P1, A= 1R and r-'A =IRk.) 

Since h;n)(t)--+ hj(t) = h(tej) as n--+ oo, it follows from 7.2.8 that the 

m)n), n 2: 1, are tight measures on IR, so we can find a positive number rj 

such that m)n)(R- [-rj, rj]):::; e for all n. Then J-tn(IRk- IT~= 1 [-r1 , rj]) 
:::; ke. Consequently, the J-tn, n 2: 1, are tight measures on IRk. The condition 
hn (u) --+ h(u) assures that every weakly convergent subsequence of {J-Ln} 

w 
converges weakly to J-t. By 7.8.8, J-tn ---+ J-t. D 

The following result, which characterizes weak convergence of k-dimen
sional random vectors in terms of weak convergence on IR, is a key step in 
the proof of the multivariate central limit theorem. 
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7.8.12 Cramer-Wold Device. Let {Xn = (Xni• ... , Xnk), n 2: 1} be a 
sequence of k-dimensional random vectors. Then the Xn converge weakly 
to the random vector Y = ( Y 1, ••. , Y k) if and only if 

k k 

:~:::>ixnj ~ L::UJYj for every 
j=i j=l 

PROOF. Let hn be the characteristic function of Xn, and h the characteristic 
function of Y. Then by 7.2.9, condition (1) is equivalent to 

for all t E IR and 

w 
But if (2) holds, then (take t = 1 and apply 7.8.11) Xn ---+ Y. Conversely, 

if Xn ~ Y then by 7.8.11, hn(v)-+ h(v) for every v E IRk, in particular for 
v = tu. D 

If X1, .•• , Xn are k-dimensional random vectors, with X, = (X,1, ... , X,k), 
the mean of X, is the vector (m,1, ..• , m,k), where m,1 = E(X,j). The covari
ance of X, is the k by k matrix 2:, whose ij entry is Cov(X,;,X,1). If the 
X1 are iid, we may speak of the common mean m = (m 1, ••• , mk) and covari
ance I:. The following result uses some basic properties of the k-dimensional 
Gaussian distribution, which is discussed in Appendix 5. 

7.8.13 A k-Dimensional Central Limit Theorem. Let X t, X2, ... be iid 
k-dimensional random vectors with finite mean m and covariance I:. If Sn 

S -nm 
= 2:'f=1 X 1 then n Jn converges weakly to Y, where Y has a Gaussian 

distribution with mean 0 and covariance I:. 

PROOF. Let Y have a Gaussian distribution with mean 0 and covariance I:. 
(There is such a random vector since I: is symmetric and nonnegative definite.) 
By the Cramer-Wold device, it is sufficient to show that for every u in IRk, 

But the random variables z1 = 2:~=! uhXih are iid with mean 2:~=I uh mh and 

variance 2:~=1 2:~'=luh 2:hh' Uh'· [Note that Var zj = Cov(Zj, Zj).] 
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Now, 

and the one-dimensional central limit theorem says that T n converges weakly 

to a normal distribution with mean 0 and variance 2:~=! 2:~'=! uh 2:hh' uh'· 
But this is precisely the distribution of 2:~=! uh Yh. D 
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extension of Lindeberg's theorem is given by Gikhman and Skorokhod (1969). 
Aspects of the central limit theorem for random variables with values in 
abstract spaces, for example, Hilbert spaces or locally compact groups, are 
discussed by Parthasarathy (1967). 

For further applications to statistics, see Ferguson (1996) and Serfling 
(1980). 



CHAPTER 

8 
ERGODIC THEORY 

8.1 INTRODUCTION 

In Chapter 6 we proved the strong law of large numbers: if X" X2, 
... , X n, ... is a sequence of independent, identically distributed random vari
ables with finite mean, then 

X,+···+Xn 
Sn = --+ E(XJ) a.e. 

n 

In this chapter we will generalize this result and prove the basic "pointwise 
ergodic theorem." 

The starting point for ergodic theory is the notion of a transformation that 
preserves the structure of the measure space, as defined below. 

8.1.1 Definition. Let (Q, ST, J-t) be a measurable space, and T a measurable 
transformation on (Q, .rJT, J-t), that is, T: (Q, .97')--+ (Q, ST). 

The transformation T is said to be measure-preserving (we also say that T 
is J-t-preserving or that T preserves J-t) iff J-L(T- 1A) = J-t(A) for all A E .97'. 

(This implies that J-t(T-kA) = J-t(A) for all A E §'and all k = 1, 2, ... , 
where r-k A = {w: Tkw E A} and Tk is the composition of T with itself k 
times.) 

The physical concept of a flow may be used to motivate the study of 
measure-preserving transformations. A flow may be regarded as a process 
in which a system of particles of a fluid (each point of the container corre
sponding to a particle) moves about under the action of an externally applied 
force. The force is assumed to be independent of time, so that, at least at 
discrete times t = 0, 1, 2, ... , the flow can be described by a single (measur
able) function T. If x is a point of the container, Tx is the position of the 
particle, originally at x, after one second has elapsed; thus T 2x = T(Tx) is the 
position after two seconds, and so on. If A is a (Borel) subset of the container, 



346 8 ERGODIC THEORY 

then T- 1 (A) corresponds to the set of particles that will be in A after one 
application ofT. If J-t is Lebesgue measure (volume in this case) and the fluid 
is incompressible, it is reasonable to expect that J-t(T- 1 A) = J-t(A). 

We consider some mathematical examples. 

8.1.2 Examples. 
1. Permutations. Let n be a finite set {x,' ... 'Xn}, n :::: 2, with jT consisting 

of all subsets of n. LetT be a cyclic permutation of n, say, T(x;) = X;+t. 
with indices reduced modulo n. Since T- 1 {x;} = {X;- t}' T preserves J-t 
iff J-L{x;} is constant for all i. Thus if J-t is a probability measure P, then 
P{x;} must be 1/n for all i. 

More generally, if T is any permutation of Q, T can be expressed as a 
product of disjoint cycles C1, ••• , Ck. Then T preserves J-t iff within each 
cycle J-t assigns equal weight to each point. 

2. Translations. Let Q = IR, .r = .1J'(IR), and let J-t be Lebesgue measure. 
If T(x) = x + c, c constant, then T preserves J-t because J-t is translation
invariant. 

3. Rotations of the circle. Let Q be the unit circle in the plane IR2 (Q can 
be identified with the interval [0, 2rr) under the correspondence e;e --+ B). 
Take Y as the Borel sets, and J-t = P = )..j2rr, where )... is arc length on 
the circle (or Lebesgue measure on [0, 2rr)). Thus if A is a Borel subset 
of [0, 2rr), J-t(A) = JA(2rr)- 1dB. 

Let a be fixed in [0, 2rr), and letT be rotation by a. Thus Tis defined on Q 
by T(e;13 ) = ei(l3+al, or equivalently, on [0, 2rr) by T(B) =()+a (modulo 
2rr). As in Example 2, T preserves J-t by the translation-invariance of 
Lebesgue measure. 

4. One-sided shifts. Let n = IR00
' the collection of all sequences 

s = (so, St, ... ) of real numbers; take .'JT = [.~(IR)]00 , and let J-t be any 
probability measure P on .r. Define T(so, s,, s2, ... ) = (s1, s2, ... ); Tis 
called the one-sided shift transformation. Measures preserved by T are 
stationary in the sense of Definition 8.1.3 below. 

5. Two-sided shifts. Let Q be the set of all doubly infinite sequences 
s = ( ... , s_ 1, so, s,, ... ) of real numbers, .r the o--field generated by the 
measurable cylinders 

n = 1, 2, ... , k = 0, ±1, ±2, ... , Bn E JB'(!Rn). Let J-t be any probability 
measure P on Y, and let T be the two-sided shift defined by 

T( ... , s_,;so, s,, ... ) = ( ... , so;s,, s2, ... ). 
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In other words, if the kth coordinate of sis sk. the kth coordinate of T(s) 
is s k+ 1• As in Example 4, measures preserved by T are stationary in the 
sense of Definition 8.1.3. 

In Example 4, the coordinate variables are defined as follows. If 
w = (so, s1, s2, ... ), then Xk(w) = Sk, k = 0, 1, .... (A similar definition 
is made in Example 5.) If T is the one-sided shift (or, in Example 5, the 
two-sided shift), we have 

8.1.3 Definition. Let P be a probability on II~.""; P is stationary iff 

P{s: (so, SJ, ... , Sn-1) E Bn} = P{s: (sk. Sk+l, ... , Sk+n-d E Bn} 

for all n, k = 1, 2, ... , and all n-dimensional Borel sets Bn. 
In the case of doubly infinite sequences, k = 1, 2, ... is replaced by 

k = ±1, ±2, .... 

We show that T preserves P iff P is stationary. 
First, note that 

r-k{s: (so, ... , Sn-d E Bn} = {s: (Sk, ... , Sk+n-d E Bn}. 

If T preserves P, then 

P(A) = P(T- 1A) = ... = P(T-kA), A E_r, 

and it follows that P is stationary. 
Conversely, if P is stationary and A = {s: (so, ... , Sn-l) E Bn} is a measur

able cylinder, then r- 1(A) = {s: (SJ, ... , Sn) E Bnl· The class of sets A E §T 

such that P(A) = P(T- 1A) is a monotone class containing the measurable 
cylinders, and hence coincides with .r. The result follows. 

8.1.4 Definition. Let (Q, .r, P) be a probability space and Xo, X 1, ••• , 

be a sequence of random variables. The sequence X0 , X 1, ••• is a station
ary sequence iff for any n = 0, 1, ... and any k = 1, 2 ... , (Xo, ... , Xn) and 
(Xb ... , Xn+d have the same distribution. 

In the case of doubly infinite sequences( ... , X_ 1, X0 , X" ... ), k = 1, 2, ... , 
is replaced by k = ±1, ±2, .... 

If Xo, X 1, ... is a sequence of random variables defined on a probability 
space (Q, .r, P) we can define on (IR00

, [.;l9(1R)]00
) a probability J-t as follows: 

if Bn is a n-dimensional Borel set, we take 

J-tn{s: (so, ... ,Sn-d E Bn} = P{w: (Xo(w), ... ,Xn-l(w)) E Bn}. 
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The probabilities J-tn are consistent in the sense of the Kolmogorov extension 
theorem 2.7.5, and define a probability J-t on (II~."", [J13'(1R)]00

) characterized by 

J-L{s: (so, ... , Sn-d E Bn} = P{w: (Xo(w), ... , Xn-1 (w)) E Bn}. 

It is easy to verify that the sequence X0 , X 1, ... is stationary iff the probability 
J-t is a stationary probability on IR"". 

Note that the transformations of Examples 1, 2, 3, and 5 are invertible 
(measurable, one-to-one, onto, with r~t measurable), while that of Example 4 
is not invertible (it is not one-to-one). 

We now consider a physical example to motivate the concept of an ergodic 
transformation. Suppose that rainfall data are collected at a very large number 
of observation points a0 , a1, •.• at times t = 0, 1, .... Assume that the stastis
tical character of the observations at a; is the same for all i. The observation 
at a; is represented by a stationary sequence of random variables X;0 , Xil, ... , 
with X;n the amount of rainfall at time n at a;. Assume also that the a; are 
"independent," in other words, the a; correspond to a sequence of indepen
dent performances of a random experiment, where a performance means an 
observation of the entire sequence (X;o, Xil, ... ). 

Suppose that the problem is to measure the average rainfall. Scientist A 
might take the following approach. He or she might take measurements at 
each observation point at a given time, say t = 0, and average the results. 
Scientist B might reason as follows. Since all observation points have the 
same stastistical character, we can simply go to one observation point, take 
a large number of observations, say at t = 0, 1, ... , n- 1, and average the 
results. Scientist A is using what might be called a vertical measuring scheme, 
and Scientist B a horizontal scheme, as illustrated in the table; A's observations 
correspond to the first column, B's to the first row. 

Measurements 

Observation point t = 0 1 2 ... 
ao Xoo Xm X02 ... 
a, Xw XII xl2 ... 
a2 X2o X21 X23 ... 

Now A and B will not necessarily obtain the same result (not even "essen
tially" the same). For example, suppose that "nature" flips an unbiased coin 
at each observation point. If the coin comes up heads, the rain is one inch at 
each observation time; if the coin comes up tails, there is no rain at any time. 
Roughly half of A's observers will measure one inch of rainfall, and half will 
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measure none. Thus A will arrive at an average rainfall of one-half inch. But 
B will either measure an average of one inch or no rain at all, and thus will 
not get the same answer. 

Mathematically, B is computing a time average, namely (if we denote X01c 
by Xk), 

for a particular w. 

(Note also that if Tis the one-sided shift, then Xk(w) = X 0 (Tkw).) 

But A is observing an ensemble average at a particular time, namely, 
(1/n) 2:7~d Y;, where the Y; = X;o are independent random variables, all hav
ing the same distribution as Yo= X0 . Thus A's result would approximate 
E(Xo) = fn Xo dP. For A and B to get the same answer, we must have 

More generally, we might ask when it will be true that, for each integrable 
function f on (Q, .r, P), we have 

(1) 

at least for almost every w. In particular, iff is an indicator h, the property 
to be verified is simply the convergence of the relative frequency of visits to 
A in the first n steps to the probability of A. 

Now suppose that A is an "almost invariant" set. In other words, A and 
r- 1 A differ only by a set of measure 0. (In the case where nature flips an 
unbiased coin to determine rainfall, we may take A= {w: Xo(w) = 1}, so that 
r- 1A = {w: X1(w) = 1}.) Then we have, almost everywhere, 

for all n. 

Thus the relative frequency of visits to A cannot converge to P(A), except 
when P(A) = 0 or 1. Conversely, the pointwise ergodic theorem, to be proved 
in 8.3, implies that if every almost invariant set has probability 0 or 1, the 
convergence result in (1) holds. In the next section we shall prepare for the 
proof of this basic result. 

One comment on terminology. In this chapter, we deal exclusively with real 
as opposed to complex-valued functions. 



350 8 ERGODIC THEORY 

8.2 ERGODICITY AND MIXING 

The following definitions are motivated by the analysis at the end of 8.1. 

8.2.1 Definition. Let T be a measure-preserving transformation on 
(Q, .r, J-t ). A set A E .r is said to be invariant (under T) iff A = r- 1 A, that is, 
w E A iff T w E A; almost invariant iff A and r-1 A differ by a set of measure 
0, in other words, J-t(A ~ r-1 A) = 0. 

It is easily checked that the invariant sets form a o--field, as do the almost 
invariant sets. 

If g: (Q, j:T)--+ (IR, ..5B(IR)), g is said to be invariant iff g(Tw) = g(w) for 
all w, almost invariant iff g(Tw) = g(w) for almost all w. Note that a set is 
invariant (respectively almost invariant) iff its indicator is invariant (almost 
invariant). 

The measure-preserving transformation T is said to be ergodic iff for every 
invariant set A, either J-t(A) = 0 or J-t(Q- A) = 0. In the case of a probability 
space, ergodicity means that each invariant set has probability 0 or 1. 

Invariance may be replaced by almost invariance in the definition of ergod
icity, as the following result shows. 

8.2.2 Lemma. Let T be a measure-preserving transformation. 

(a) If A is an almost invariant set, there is a (strictly) invariant set B such 
that J-t(A ~B) = 0. 

(b) A measure-preserving transformation T is ergodic iff for each almost 
invariant set A, either J-t(A) = 0 or J-t(Q -A) = 0. 

PRooF. Take B = limsupn r-nA. Then T- 1B = limsupn r-(n+ 1lA = B, 
hence B is invariant. 

Now A ~B c U~o(T-kA ~ r-(k+ 1lA); for if (J) E A- B then (J) Er-n A for 
only finitely many n, including n = 0. Thus (J) E r-kA- r-(k+ 1)A for some 
k. If wEB- A, then Tnw E A for infinitely many n, but w rj_ A. If k + 1 is 
the smallest integer such that Tk+ 1w E A, then (J) E r-(k+ 1lA- r-kA. 

Since J-t(T-k A~ r-(k+ 1l A) = J-t(A ~ r- 1 A) = 0, it follows that J-t(A ~B) = 
0, proving (a). 

To prove (b), let T be ergodic, and let A be almost invariant. If B is invari
ant and 11(A ~B)= 0, then J-t(A) = J-t(B) and J-L(Q- A) = J-t(Q- B); hence 
J-t(A) = 0 or J-t(Q- A) = 0. The converse is clear since every invariant set is 
almost invariant. D 

We give another way of expressing ergodicity. 
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8.2.3 Lemma. Let T be a measure-preserving transformation on (Q, JT, J-t). 
The following conditions are equivalent: 
(a) T is ergodic. 
(b) Every almost invariant function is a. e. constant. 
(c) Every invariant function is a.e. constant. 

PROOF. (a) implies (b): Let g be an almost invariant function. Then for each 
real A, AA = {w: g(w) ::=::A} is an almost invariant set since g(w) = g(Tw) a.e. 
By (a) and 8.2.2, J-L(AA) = 0 or J-t(Ai) = 0. Let c = sup{A: J-L(AA) = 0}; c is 
finite (ignoring the trivial case J-t = 0) since AA t Q as A t oo, and Ai_ t Q as 
A i -oo. Then 

and similarly J-L{w: g(w) > c} = 0. Thus g = c a.e. 
(b) implies (c): Every invariant function is almost invariant. 
(c) implies (a): If A is an invariant set, /A is an invariant function, hence 

/A is a.e. constant. If /A= 0 a.e. then J-t(A) = fn /A dJ-t = 0, and if /A= 1 a.e. 
then J-t(Ac) = fn(l- IA)dJ-t = 0. D 

Invariance and almost invariance can be defined in the same way for 
extended real-valued Borel measurable functions. Lemma 8.2.3 holds in this 
case also, with essentially the same proof. 

The following characterization of almost invariance is often useful. 

8.2.4 Lemma. Let T be a measure-preserving transformation. Assume J-t 
is finite. A set A E .r is almost invariant iff either J-t(T~ 1A- A)= 0 or 
J-t(A- T~ 1A) = 0, that is, Tw E A essentially implies wE A, or wE A 

essentially implies T w E A. 

PRooF. We may write 

J-t(A- T~ 1A) = J-t(A)- J-t(A n T~ 1A) = J-t(T~ 1A)- J-t(A n T~ 1A) 

= J-t(T~ 1A -A). 

Nonergodicity, that is, the existence of a nontrivial invariant set, indicates that 
T does not completely stir up the space. This concept of "stirring" may be 
developed as follows. 
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8.2.5 Definition. If T is a measure-preserving transformation on the 
probability space (Q, !JT, P), T is said to be mixing iff for all A, B E: !JT, 

lim P(A n T-n B) = P(A)P(B). 
n-+oo 

The restriction to a probability measure is essential here. If, for example, 
T has the mixing property with respect to the measure J-t, let A = B = Q to 
obtain J-L(Q) = [J-L(Q)]2 • Thus if J-L(Q) is finite it must be 1; if J-L(Q) = oo, 
and A is a set in .rJT with finite, strictly positive measure, take B = n. Then 
J-t(A n T-nB) = J-t(A) < oo, but J-t(A)J-t(B) = oo, a contradiction. 

The mixing property has the following intuitive interpretation [this example 
is due to Halmos (1956)]. Regard the transformation T as defining a flow, 
as in the discussion after 8.1.1. Suppose, for example, that initially the 
container is filled with a liquid that is 90% gin, 10% vermouth, the "vermouth 
particles" occupying the set A, the "gin particles" the set Q -A. The externally 
applied force is due to a swizzle stick. The condition of the container is 
observed at times t = 0, 1, 2, .... If B is any Borel subset of the container, 
let P(B) be the volume of B divided by the volume of the container (so that 
P(A) = 0.1). It is reasonable to expect that if the mixing process is continued 
long enough, the percentage of vermouth in B should be approximately the 
same as the percentage in the entire container, namely, 10%. To translate 
this into mathematical terms note that if w is a point of the container, and a 
particle is initially at w, then Tn (J) is the position of the particle n seconds 
later. Thus the set of vermouth particles that are in B at time t = n is 
{w E A: Tnw E B} =An T-n B. The fraction of vermouth in B at time t = n 
is P(A n T-nB)jP(B), and the mixing property is expressed by saying that 
P(A n T-nB)/P(B)-+ P(A) = 0.1. 

Mixing is a stronger property than ergodicity, as we now prove. 

8.2.6 Theorem. LetT be a mixing transformation on (Q, !JT, P). Then Tis 
ergodic. 

PRooF. Let B be an invariant set. If A E !JT, then since B = T-n B, we have 
P(A n B) = P(A n T-n B) for all n. If we let n -+ oo and invoke the mixing 
property, we obtain P(A n B) = P(A)P(B). But since A is an arbirary set E !JT, 
we may take A = B, and thus P(B) = [P(B)] 2 , hence P(B) = 0 or I. D 

It is useful to observe that it is not necessary to verify the mixing condition 
for all the sets A, B EST, but only for A, Bin a field §0 whose minimal 0'-field 
is !JT. 

8.2. 7 Theorem. Let T be a measure-preserving transformation on (Q, !T, P). 
Let 90 be a field of subsets of Q such that the O"-field generated by §0 is !JT. 
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If the mixing condition holds for all A, B E .9i'Q, it holds for all A, B E .rand 
hence T is mixing. 

PRooF. Let A, B E .r, and find sets Ak. Bk E §0 (k = 1, 2, ... ) such that 
P(A ~Ad and P(B ~Bk)--+ 0 ask--+ oo (see 1.3.11). Now 

so the probability of the set on the left is at most P(A ~Ak) + P(B ~Bk), 
which approaches 0 as k--+ oo, uniformly in n. Thus P(Ak n T~n Bk) 
--+ P(A n r~n B) ask--+ oo, uniformly inn. By the hypothesis, P(Ak ~ r~n Bk) 
--+ P(Ak)P(Bk) as n --+ oo. Therefore by the standard double limit theorem, 

lim P(A n T~n B) = lim lim P(Ak n T~n Bk) 
n----7-oo n----7-oo k---+oo 

= lim lim P(Ak n T~n Bk) = P(A)P(B), 
k--+ oo n--+ oo 

the desired result. D 

8.2.8 Examples. We consider again the examples of 8.1.2. 

1. Permutations. Let T be a permutation of n = {x,, ... , Xn }, n 2: 2, J-t any 
measure on all subsets of Q that assigns equal weight to each point within 
a given cycle ofT. (Assume that J-L{x;} > 0 for all i; when talking about 
the mixing property we also assume J-t is a probability measure.) 

We claim that T is ergodic iff T has only one cycle; this follows because 
the only invariant sets are unions of cycles ofT (and the empty set). 

But T is never mixing. Suppose that {x1, ... , xk} is a cycle of T and 
Tx; = x;+1, with indices reduced modulo k. Assume k 2: 2; if k = 1, {xd 
is a nontrivial invariant set. Let A = B = {x;}. Then A n r~n B coincides 
with A if n is a multiple of k, and is the empty set otherwise. Thus 
limn--+oo J-t(A n r~n B) does not exist. 

2. Translations. Let T(x) = x + c on IR, with Borel sets and Lebesgue 
measure. Then Tis not ergodic; A= U::"=~oo(nc, nc + c/2) is a nontrivial 
invariant set. 

3. Rotations of the circle. Let T be rotation by a on the unit circle (or 
T(B) =()+a (mod 2rr) on [0, 2rr)). We claim that T is ergodic iff aj2rr 
is irrational, that is, iff eia is not a root of unity. 

Assume aj2rr irrational, and let A be an invariant set in .r. Let an be the 
nth Fourier coefficient of the indicator function h, that is, 
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By 1.6.12, 

by invariance of A. Since aj2rr is irrational, e-ina =P 1 for n =P 0, and 
it follows that an = 0 for n =P 0. But /A E L 2 , so that the Fourier series 
2:::"=-oo aneinw converges in L2 to IA(w) (see 3.2, Problem 9). It follows 
that h = a0 a.e., and therefore P(A) = 0 or 1. Thus T is ergodic. 

Conversely, if eia is a root of unity, say, etna = 1, then a is an integral 
multiple of 2rrjn. Let A be the union of the sectors 0:::; ():::; rrjn, 
2rrjn:::; ():::; 3rrjn, 4rrjn:::; ():::; 5rrjn, ... , (2n- 2)rrjn:::; ():::; (2n- 1) 
rrjn. Then A is invariant, but P(A) = ~. so that Tis not ergodic. 

Now T is never mixing; to establish this we may assume that aj2rr 
is irrational. Let A = B = {(): 0:::; ():::; rr}, corresponding to the upper 
semicircle. Given e > 0, eina is within distance e of e;o = 1 for infinitely 
many n. (Extract a convergent subsequence {zd from {eina}, and select 
z1 and Zi+ j such that dist(z;, Zi+ j) < e; i can be chosen larger than any 
preassigned positive integer. Then it is possible to form a chain that 
eventually goes entirely around the circle, with the distance between 
successive points less than e.) It follows that A and rnA overlap except 
for a set of measure less than e. Thus 

P(A n r-nB) = P(A n r-nA)= P(TnA n A) 

since T is measure-preserving and invertible 

2: P(A)- e = ~ - e > ~ if I 
8 < 8· 

But P(A)P(B) = [P(A)f = ~. so the mixing property fails. 

4. One-sided and two-sided stationary processes. Let T be the one-sided 
(or two-sided) shift transformation on the space of all infinite (or doubly 
infinite) sequences of real numbers. We consider only the case in which 
the coordinate random variables Xk are independent, that is, the measure 
P has the property that 

n 

P{w: X;(w) E A;, i = 1, 2, ... , n} =IT P{w: X;(w) E A;} 
i=i 

for all real Borel sets A 1 ••• , An and all n = 1, 2, .... In this case, T is 
mixing (hence ergodic). Let 

A= {w: (Xo(w), ... ,Xk-i(w)) E Bk} 
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and 
B = {w: (Xo(w), ... , X,_ 1 (w)) E B/} 

be measurable cylinders. For sufficiently large n we haven > k- 1, and 
therefore the indices defining the sets A and r-n B are distinct. Thus by 
independence, 

P(A n r-nB) = P{w: (Wo, ... , Wk-d E Bk(Wn, ... , Wn+r-d E B/} 

= P(A)P(T-n B) = P(A)P(B). 

Thus the mixing condition holds for all measurable cylinders, and hence 
by 8.2.7, the mixing condition holds for all A, BE !T, so that Tis mixing. 

Problems 

1. If A is an almost invariant set, show that for almost every w, w E A iff 
Pw E A for all n = 1, 2, .... 

2. If J-t is counting measure on the integers, show that w -+ w + 1 is ergodic, 
but w -+ w + 2 is not. 

3. Let T be a measure-preserving transformation on (Q, .9', J-t ). Give 
examples to show that the following results are possible: 

(a) A E .9' does not imply T(A) E .r. 
(b) If A E !T and T(A) E !T, P(A) need not equal P(TA). 
(c) If Tis one-to-one onto, it need not be invertible (that is, r- 1 need 

not be measurable). 

4. (Jacobs, 1962) Let T be a measurable (but not necessarily measure
preserving) transformation on (Q, .r, J-t). We say that T is recurrent iff 
for every A E .r and almost every w E A, Tnw E A for some n 2:: 1; 
T is infinitely recurrent iff for every A E .r and almost every w E A, 
rn (t) E A for infinitely many n. (In these definitions, the exceptional sets 
of measure 0 are allowed to depend on A.) A set BE .r is wandering 
iff B, r- 1 B, r-2 B, ... are disjoint; T is said to be conservative iff all 
wandering sets have measure 0. Finally, T is incompressible iff A c r- 1 A 
implies J.-L(T- 1 A- A)= 0. (Show that equivalently, r-' A c A implies 
J-t(A- r- 1A) = 0.) 

(a) Show that the following are equivalent: 
1. T is incompressible; 

n. T is conservative; 
iii. T is recurrent; 
iv. T is infinitely recurrent. 

(One possible scheme is (i) => (ii) => (iii) => (i), (iv) => (iii), 
(i) => (iv).) 
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(b) Show that T(x) = x + 1 on IR (with Borel sets and Lebesgue 
measure) violates all four conditions of (a). 

(c) (Poincare) If Tis measure-preserving and J-t is finite, show that Tis 
(infinitely) recurrent. 

8.3 THE POINTWISE ERGODIC THEOREM 

We will prove the pointwise ergodic theorem, which states that if T is a 
measure-preserving transformation on (Q, ST, J-t) and f E L 1 (Q, .9', J-t), then 
n- 1(f(w) + f(Tw) + · · · + f(Tn- 1w)) converges to an integrable function 
](w), for almost all w. 

It is possible to prove this result in a somewhat more general form (see 
the comments at the end of the chapter). The generalization is based on the 
fact that associated with a measure-preserving transformation is a positive 
contraction operator, as follows. 

8.3.1 Theorem. If f is an extended real-valued Borel measurable function 
on (Q, .r, J-t), and Tis J-L-preserving, letT f denote the function JoT. Then for 
every p E (0, oo] we have liT flip= II! lip· Thus if we consider T as a linear 

operator on the Banach space LP(Q, .r, J-t), 1 :::; p:::; oo, then Tis an isometry 
(a one-to-one, linear, norm-preserving map), in particular, Tis a contraction, 
that is, II Til :::; 1 (in this case, II Til = 1). Furthermore, T is positive, that is, if 
f 2: 0 a.e., then T f 2: 0 a.e. 

PRooF. By 1.6.12, fnlf(Tw)IP dJ-t(w) = fnlf(w)IP dJ-t(w), hence liT flip 
= llfllp, 0 < p < oo. If p = oo, we have 

liT flloo = inf{c: J-L{IT fl > c} = 0} 

= inf{c: J-L{w: lf(Tw)l > c} = 0} 

= inf{c: J-LT- 1 {w: lf(w)l > c} = 0} 

= inf{c: J-L{Ifl > c} = 0} since T preserves J-t 

= llflloo· 

If J-t(N) = 0, and f 2:0 onNc, then J-t(T- 1N) = 0 and T f 2:0 on (T- 1N)C, 
proving positivity. D 

The sequence of averages J(n)(w) = n- 1 [f(w) + f(Tw) + · ·. + f(Tn-lw)] 
can now be expressed in terms of T as 

f(n) = n- 1(f + T f + .. · + tn-l f) 

where T0 f = f and f'k is the composition of T with itself k times, k 2: 1. 
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In the three results to follow, T is a measure-preserving transformation 
on (Q, §', J.J,), and j: (Q, .9')-+ (i, ..5l1(i). Inspection of the proofs will 
show, however, that the results hold if T is replaced by an arbitrary 
positive contraction on L 1, not necessarily arising from a measure-preserving 
transformation. 

8.3.2 Lemma. If f E L 1 (Q, §', {L ), let fo = f, and 

f n = max(f, f + T f, · · · , f + T f + · · · + fn f), n2:1. 

Then 
A + 

fn+l ::=: f + Tfn' n = 0, 1, .... 

PROOF. If 0 ::::: m ::::: n, then 2:~,!01 f'k f = f + T ( 2:~=0 f'k f). Since 

2:~=0 f'k f ::::: fn, and T is positive, we have 

A A + 
::=: T fn ::=: T fn · 

Thus 
m+l 

Ltk t::::: t + tt:. O:=::m:=::n. 
k=O 

Since f ::::: f + T J;t, we have fn+ 1 ::::: f + T J;t, as desired. D 

8.3.3 Lemma. Let fn be defined as in 8.3.2, and assume f E L 1 (Q, §', {L ). 

If An = Un > 0}, then JA f dtt 2: 0. 
n 

PRooF. By 8.3.2, 

since T is a contraction. D 

2: L t: dJJ,- L (T J;t)dtt 

= IIJ;tlll -IITJ;tlll 2: o 
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8.3.4 MaxiiTUll Ergodic Theorem. Iff E L 1(Q,§', J-t) and 

A= {w: ~~1 ~(Tk f)(w) > 0} 
n-1 

= {w: sup f(n)(w) > o}' where 
n:>:l 

f(n)=n-ILTkf 

k=O 

PRooF. The sets An of 8.3.3 increase to A. D 

It will be convenient to isolate some of the technical difficulties in the 
proof of the pointwise ergodic theorem. Let f E L 1 (Q, §', J-t), and let j(nl(w) 

= n- 1 2:Z:6 f(Tkw), n = 1, 2, ... , where Tis J-L-preserving. If a< b, define 

Cab= Cab (f)= {w: liminf f(n)(w) <a< b <lim sup f(n)(w)}, 
n----7-oo n----7-oo 

Nb = {w: sup f(n)(w) > b}; 
n:>: I 

note that Cab is a subset of N b· 
Just as in 6.4.3 we can establish a.e. convergence of the sequence j(n) if 

we show that J-t(Cab) is always 0. To do this, we may assume without loss of 
generality that b > 0. Note that 

Cab(f) = {w: liminf- f(n)(w) < -b <-a< lim sup-f(n)(w)} 

= C-b,-a(- f). 

If b ::=:: 0, then -a> 0, and the argument below will show that C -b,-a(- f) 
has measure 0, and thus J-t(Cab) = 0. 

8.3.5 Lemma. The set Cab has the following properties: 

(a) The set Cab is almost invariant. 
(b) J-t(Cab) < 00. 

(c) In fact J-t(Cab) = 0. 
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PROOF. (a) We may write 

= n + 1 [-1- t f(Tkw)] 
n n + 1 k=O 

= n + 1 f(n+l)(w)- f(w). 
n n 

Since f E L 1, f( w) is finite for almost all w, hence 

liminf f(n)(w) = liminf f(n)(Tw), 
n----?-oo n----7-oo 
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f(w) 

n 

and similarly for lim sup, except possibly on a set of measure 0. Thus, outside 
a set of measure 0, w E Cab iff Tw E Cab. and the result follows. 

(b) Let C be any set in .r such that C C Cab and J-L(C) < oo, and define 
Fb = {w: supn:>:l(f- blc)(nl(w) > 0}. Note that if wE Cab. then wE Nb. 
hence 

for some n 

1 
n-1 

2: - Lbfc(Tkw). 
n k=O 

Thus w E F b; in particular, C is a subset of F b· By the maximal ergodic 
theorem 8.3.4, 

Thus 

so that 

f (f- blc)dJ-t 2:0. 
}Fb 

J-L(C):::: b- 1 In lfldJ-t < oo. 

Now note that Cab is a subset of 

U{w: lf(Tnw)l > 0}; 
n=O 
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By Theorem 1.6.12, 

In lf(Tnw)l dj.t(w) =In lf(w)l dj.t(w) < 00, 

and it follows that {w: lf(Tnw)l > 0} is a countable union of sets of finite 
measure, and therefore so is Cab (see 2.2, Problem 2). Thus 

J-t(Cab) = sup{J-L(C): C E !T, C C Cab, J-t(C) < oo} 

::: b-l In 1!1 dj.t < 00. 

(c) Since Cab is almost invariant, Tis a well-defined measure-preserving 
transformation on (Cab, .Ji?;,b, f.-tab), where 

and f.-tab= J-t rest_ricted to Cab· (Strictly speaking, if D =Cab~ r- 1Cab. then 
T is well defined on Cab- D. Since J-L(D) = 0, this causes no difficulty. For 
example, we may redefine T as the identity on D, and then it will be well 
defined and measure-preserving on Cab·) 

The argument of part (b) may now be applied to T on Cab· In particular, 
the equation JFh (f - bl c) dJ-t 2:: 0 now becomes 

Since Cab has finite measure, we may set C =Cab, and since Cab C Fb, we 
obtain 

Now let 

{ (f- b)dj.t::: 0. 
leah 

Fab 1 
= {wE Cab: sup(a- f)(nl(w) > o}. 

n2: I 

If wE Cab. then f(nl(w) <a for at least one n, hence wE F~b; thus Cab 
= Fab'· Since Cab has finite measure, constant functions are integrable on 
Cabo and we may therefore apply the maximal ergodic theorem to obtain 

f (a- f)$ 2::0. 
leah 
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Thus we have, for a < b, 

a contradiction unless J-t(Cab) = 0. D 

We may now prove the main result. 

8.3.6 Pointwise Ergodic Theorem. Let T be a measure-preserving 
transformation on (Q, .97, J-t), and let f E L 1 (Q, .'7, J-t). Then there is 
a function j E L 1 such that we have n-1 2:Z:ci f(Tkw) -+ ](w) almost 
everywhere. 

PRooF. Let D = {w: j(nl(w) does not converge to a finite or infinite limit}. 
Then D = U{Cab(f): a< b, a, b rational}. By 8.3.5, J-L(D) = 0, and hence 
J(nl(w) converges for almost all w; we call the limit ](w). (Define j = 0 on 
the exceptional set.) By Fatou's lemma, 

But 

1 n-il =-I: ltldJ-L 
n k=O n 

by 1.6.12 

= L lfldtL < 00, 

and the theorem is proved. D 

We now look more closely at the convergence of the sequence {f(nl}. 

8.3.7 Theorem. If J-L(Q) < oo and f E LP(l :::; p < oo), then j E LP and 

J(n) ~ j. 
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PROOF. Since the finite-valued simple functions are dense in LP, for each 
e > 0 there is a bounded measurable function g such that II!- gllp <e. If 
fk(w) = f(Tkw), 8k(w) = g(Tkw), and lgl ~ M, then 

If'"'- ill,"~~~ ~u,- •klll, + W ~··)- •II, + 11"- Ju,. <O 

Since ln- 1 I:Z:ci 8kl .::::_ M (hence lgl ~ M a.e.), the second term on the right 
in (1) approaches zero as n approaches oo, by the dominated convergence 
theorem. (The hypothesis that J.J,(rl) < oo implies that the function constant at 
M is integrable.) By 1.6.12, llfk- 8kllp = II!- gllp < e, hence the first term 
is less than e. Now 

I 
n-1 IP ~ li~inf { _!_ L(fk- gk) dJJ, 

Jn n k=O 

Thus llf(n)- flip < 2e for large enough n, and the result follows. D 

If p = 1 in 8.3.7, the hypothesis that J.J,(rl) < oo cannot be dropped 
(Problem 1). Also, the result fails for p = oo, even if J.J,(rl) < oo (Problem 2). 

We can now identify the limit function j. Theorem 8.3.9 indicates that 
although the pointwise ergodic theorem can be presented without reference to 
probability, some insight is lost in doing so. 

8.3.8 Lemma. Iff E L1, then j is almost invariant. Thus if~ is the o--field 
of almost invariant sets, then ]: (Q, ~) --+ (i, ..5l1(i)). 

PRooF. If f(nl(w)--+ ](w) for w Iii N, where JJ,(N) = 0, then f(nl(Tw) 

--+ j(Tw) for w Iii r-' N, where J.J,(T- 1 N) = 0. But [see the proof of 8.3.5(a)] 

f(n)(Tw) = (n: 1) f(n+il(w)- f~w)' 

and f(w)jn--+ 0 a.e. since f E L1. Thus f(nl(Tw)--+ ](w) a.e. hence ](w) = 
j (T w) a. e., proving j almost invariant. 
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If BE ..5B(IR) and C = {w: j(w) E B}, then if ](w) = ](Tw) we have 
w E C iff T w E C. Thus C is almost invariant, and the proof is com
plete. D 

8. 3.9 Theorem. If f E L 1, and A is an almost invariant set of finite measure, 
then fA f dJ-t = fA J dJ-t. Thus in a probability space, j = E(f I;§'), where ~ 
is the O"-field of almost invariant sets. 

PROOF. Restrict T and J-t to the almost invariant set A. Since J-t(A) < oo, we 
have L1 convergence (on A) by 8.3.7, hence JA f(n) dj.t-+ fA j dj.t. But 

by 1.6.12. D 

In the ergodic case, j assumes a very special form. 

8.3.10 Theorem. If T is ergodic and f E L 1, then j is constant a. e. If 
J-L(Q) = oo, the constant is c = 0; if J-L(Q) < oo, we have 

c= -
1
- { fdJ-t. 

J-L(Q) Jn 

Thus on a probability space, j = E(f) a.e. 

PRooF. By 8.3.8, j is almost invariant, so by 8.2.3(b), j = c a.e. If 
J-L(Q) = oo, then c must be 0 because j E L1 by 8.3.6. If J-L(Q) < oo, then 
c = [J-L(n)r 1 In f dJ-t by 8.3.9 (with A= n). o 

If Tis ergodic and J-t is finite, consider the case f =/A. Then by 8.3.10, 
j = J-t(A)/J-t(Q) a.e., so that n-1 "5:.Z:ciiA(Tkw), the relative frequency of 
visits to A, converges a.e. to the relative mass of A (the probability of A 
if J-L(Q) = 1). Apparently we have a version of the strong law of large 
numbers, and in fact the pointwise ergodic theorem can be regarded as a 
generalization of this result. Let T be the one-sided shift transformation (see 
8.1.2 Example 4 and 8.2.8 Example 4), with coordinate random variables Xk. 
If Z is an integrable random variable on (Q, .¥, P), then 

in other words, 
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By 8.3.9, 

zCn) ~ E(Z I :9") 

where :9" is the O"-field of almost invariant sets; if T is ergodic, the limit is 
E (Z) by 8.3.10. In particular, let X0 , X 1, •.. be iid random variables with finite 
expectation. If Z(w) = wo, that is, Z = X 0 , we obtain 

n- 1 (Xo + · · · + Xn-d-+ E(Xo) a.e., 

the iid case of the strong law of large numbers (see 6.2.5). 
In the next section, it will be necessary to consider probability measures 

P 1 and P2 that are each preserved by a fixed measurable transformation T 
on (Q, .9'); P; is said to be ergodic (relative to T) iff T is ergodic on 
(Q, :Y, P;). If P 1 and P2 are both ergodic, they must be identical or mutually 
singular. 

8.3.11 Theorem. If P 1 and P2 are ergodic probability measures relative to 
T, then either P, = P2 or P1 l_ P2. 

PRooF. Suppose that P 1 (A) =P P2(A) for some A E .7, and let 

A; = {w: IC:\w) -+ P;(A)}, i = 1, 2. 

By 8.3.6 and 8.3.10, P 1(AJ) = P2(A2) = 1. But A1 and A2 are disjoint since 
P, (A)# P2(A), hence P 1 l_ P2. D 

Theorem 8.3.11 gives us a criterion for ergodicity (unfortunately Im
practical). 

8.3.12 Theorem. The probability measure P is ergodic relative to T iff 
there is no probability measure P 1 preserved by T such that P 1 is absolutely 
continuous with respect to P but not identical to P. 

PRooF. If P 1 << P, P 1 ¢ P and P is ergodic, then so is P 1. If A is an 
invariant set, then P(A) = 0 or P(Ac) = 0 by ergodicity, hence P 1 (A)= 0 or 
P 1 (Ac) = 0 by absolute continuity. By 8.3.11, P 1 l_ P. But then P 1 is both 
absolutely continuous and singular with respect to P, hence P 1 is the zero 
measure, a contradiction. 

Conversely, if Pis not ergodic, let A beaT-invariant set with 0 < P(A) < 1. 
Define P 1(B) = P(B I A)= P(A n B)jP(A), BE ,'7; then P 1 << P, and since 
P1 (A) = 1 # P(A), P 1 =/= P. Now 
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P(T- 1E nA) 
P (T- 1E) = ~~~~ 

I P(A) 
P(T- 1E n r- 1A) 

P(A) 
since A is invariant 

P(E nA) 

P(A) 
= P1 (E). 

since T preserves P 

Thus P 1 is preserved by T. D 

Problems 
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1. Let T(w) = w + 1 on IR (with Borel sets and Lebesgue measure). Iff is 
the indicator of (0, 1], show that JCnl does not converge in L1 to j. 

2. Let n = IR00
, jT = [..5f1(1R)] 00

, Xn(Wo, WI, ••. )= Wn, p the unique prob
ability measure making the Xn independent with P{Xn = 0} = P{Xn = 1} 
= 1· (In other words, consider an infinite sequence of Bernoulli trials 

with probability 4 of success on a given trial.) If T is the one-sided shift 

and f(w) = WQ, show that n- 1 I:~:ci f(Tkw) does not converge in L00 to 
A I 
f(w) = 2· 

3. Let T be a measure-preserving transformation on (Q, ST, J-t). If T is 
ergodic, we know that for every f E L1, JCn) converges a.e. to a constant. 
Conversely, if J-L(Q) < oo and if for every f E L1 there is a constant 
c = c(f) such that jCnl -+ c a.e., show that T is ergodic. Give a counter 
example to this statement if J-L(Q) = oo. 

4. Let T be an ergodic measure-preserving transformation on (Q, .¥, J-t) 
with J-L(Q) < oo. Let f be a real-valued Borel measurable function such 
that In f dj.t exists. If f E L1, we know that JCn) converges a.e. to 
[J-L(n)r 1 In f dJ-t. Conversely, if jCnl converges a.e. to a finite limit, 
show that f E L 1 . (A special case of this result was considered in 6.2, 
Problem 1. Note also that the result fails when J-L(Q) = oo; take f = c.) 

5. (Mean Ergodic Theorem in a Hilbert Space) Let U be a bounded linear 
operator on the Hilbert space H, and let U* be the adjoint of U, defined by 
the requirement that (U f, g) = (f, U*g) for all f, g E H. (f -+ (U f, g) 
is a continuous linear functional on H, so by 3.3.4(a) there is a unique 
element hE H such that (Uf, g)= (f, h) for every f E H; h depends 
on g and we may write h as U*g. It follows from the basic properties of 
the inner product that U* is a bounded linear operator on H.) 

Establish the following results. 
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(a) The following conditions are equivalent (and define a unitary 
operator, that is, an invertible isometry). 

1. UU* = U* U = /, the identity operator on H. 
ii. U is one-to-one onto, and (f, g) = ( U f, U g) for all f, g E H. 

iii. U is one-to-one onto, and II U fll = II f II for all f E H. 

(b) The following conditions are equivalent (and define an isometry). 

1. U*U =I. 
ii. (f, g)= (Uf, Ug) for all f, g E H. 

iii. IIUfll = llfll for all f E H. 

For the remainder of the problem, U is an isometry of H. 

(c) If f E H, then U f = f iff U* f = f. 

(d) Define An= n- 1(/ + U + U2 + · · · + un- 1); note that 

n-1 

IIAnll :S n-
1 L IIUIIk = 1. 

k=O 

If E = {f E H: limn --->oo An f exists (in H)}, E is a closed subspace 
of H. 

(e) Let M be the set of elements of H that are invariant under U, 
that is, M = {f E H: U f = f}; note that M is a closed subspace 
of H, by continuity of U. Let No= {g- Ug: g E H}. If we define 
j = limn--->ooAnf (where the limit exists) then: 

f EM 

f ENo 

implies 

implies 

fEE 

fEE 

and 

and 

f =f; 
f =0. 

(f) If N = No, the closure of No, then H is the orthogonal direct sum 
of M and N (see the discussion after 3.2.11). 

(g) (Mean Ergodic Theorem) Let U be an isometry of the Hilbert space 
H, and let P be the projection of H on the space M of all elements 
invariant under U. For every f E H, 

l n-1 

- L:ukf-+ Pf. 
n k=O 

If T is a measure-preserving transformation and U = T, we obtain 
L 2 convergence of f (n l to j. 

(h) If, in addition, T is invertible and S = r- 1, then U is a unitary 
operator and U* = u- 1 = S. 

6. Let T be a measurable transformation on (Q, .¥). Within the linear space 
of finite signed measures on .9', let K be the convex set of probability 
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measures preserved by T. Show that P is ergodic relative to T iff P is an 
extreme point of K, that is, P cannot be expressed as ).. 1P 1 + A2P2, with 

7. This problem gives many conditions equivalent to ergodicity; in particular, 
some of the conditions involve convergence in probability rather than 
almost everywhere convergence. 

Let T be a measure-preserving transformation on the probability space 
(Q, .r, P), and let §0 be a field of sets whose minimal o--field is !T. 
Show that the following conditions are equivalent: 

(a) T is ergodic. 
(b) l;l --+ P(A) a.e. for each A E .r, where 

n-i 

Ir;\w) = n- 1 L)A(Tkw). 
k=O 

(c) 1r;l --+ P(A) in probability for each A E .r. 
(d) 1r;l --+ P(A) in probability for each A E .9'0. 
(e) 1r;l --+ P(A) a.e. for each A E §0. 

(f) n- 1 l::Z,:6 P(A n r-kB)--+ P(A)P(B) for all A, BE §'o. 
(g) n- 1 l::Z::6 P(A n r-kB)--+ P(A)P(B) for all A, BE .r. 
If T is a one-sided shift transformation, we may take .970 to be the field 
of measurable cylinders. Furthermore, if the coordinate random variables 
take on only finitely many possible values, a measurable cylinder is a finite 
disjoint union of sets of the form {Xo = i0 , ••• , Xm = im}. Thus condition 
(d) is equivalent to the following statement: 

For each a= (i0 , ••. , im), m = 0, 1, ... , with the h belonging to the 
coordinate space, let N~ be the number of times that io, ... , im occur in 
sequence in the first n + m coordinates, that is, 

n-i 

N~(w) = L/A(Tkw), where A = {w: Wo = io, ... , Wm = im}; 
k=O 

then n- 1N~ converges in probability to p(a) = P(A). 

Note also that by the Kolmogorov extension theorem, given any one-sided 
shift with coordinate random variables Xn, there is a two-sided shift with 
coordinate random variables X n' such that (X n', n 2: 0) and (X n, n 2: 0) 
have the same distribution. [For example, specify that (X'_8 , X'_ 3, X6') 
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have the same distribution as (Xo, Xs, X 14).] Condition (d) shows that the 
one-sided shift is ergodic iff the corresponding two-sided shift is ergodic; 
by 8.2.7, the same is true if "ergodic" is replaced by "mixing." 

8.4 APPLICATIONS TO MARKOV CHAINS 

If T is a one-sided shift transformation and the coordinate random variables 
Xn are independent, we have seen that T is ergodic (we also say that the 
sequence {Xn} is ergodic). In this section we exhibit a large class of examples 
in which Tis ergodic, but the Xn are not independent. 

First, we must consider some general properties of shift transformations. 
If X0 , X 1, ••• are the coordinate random variables of a one-sided shift, recall 
(see 6.2.6) that the tail CY-field of the Xn is defined by .roo = n~=O .97,, where 
.9;, = j:T(Xn, Xn+l, ... ), the smallest CY-field that makes X; measurable for all 
i :=:: n. We prove that the CY-field of almost invariant sets is essentially included 
in .r00 • 

8.4.1 Theorem. If A is an almost invariant set, there is a set B E .roo such 
that P(A ~B) = 0. 

PRooF. By 8.2.2(a), there is a strictly invariant set B with P(A ~B) = 0. 
Now if C E .rthen r-nc E .97,; for if C = {(Xo, X 1, ... ) E C'}, then r-nc 
= {(Xn, Xn+l• .. . ) E C'}. (Actually, C = C' here since the Xn are coordi
nate random variables.) But B = r-n B, so that B E .97, for all n, hence 
BE .r00 • D 

The proof of 8.4.1 shows that all strictly invariant sets belong to ST00 ; 

however, an almost invariant set might not be in .r00 • For example, let 
A= {w: Xn(w) = X0 (w) for all n}; then A c r-'A, so that A is almost 
invariant by 8.2.4; but A f1 .r00 • 

The following fact about conditional probabilities will be used. 

8.4.2 Lem11UZ. If T is a measure-preserving transformation on (Q, .r, P), 
and ~ is a sub CY-field of.¥, then for any A E .r, 

P(A I ~)(Tw) = P(T- 1A I r-'~)(w) a.e. 

In particular, if T is a shift transformation, then 

P(A I Xn)(Tw) = P(T- 1A I Xn+J)(w) a.e. 

PROOF. If r- 1B E r-'~. then 

P(T- 1AnT- 1B)= { P(T- 1 AIT- 1 ~)dP. 
JT-IB 
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But since T is measure-preserving, 

P(T-'AnT- 1B)=P(AnB)= 1P(A 1 ':Y')dP 

= { P(A I ':Y')(Tw)dP(w) 
JT-IB 

by 1.6.12 

Since P(A I .o/ )(Tw) is r-' '5'-measurable, the result follows. D 
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We may give an intuitive interpretation of 8.4.2. If Tis a shift transformation 
and w* = (w0, wj, .. . ) E IR00

, then P(T- 1A I Xn+l )(w*) is the probability that 
wET- 1A, given that the (n+l)th coordinate of w is Xn+ 1 (w*)=w~+ 1 ; 
P(A I Xn)(Tw*) is the probability that Tw E A, given that the nth coordinate 
of Tw is Xn(Tw*) = w~+ 1 ; these two expressions agree. 

Our interest will be in sequences having the Markov property, defined as 
follows. 

8.4.3 Definition. A sequence of random variables {Xn, n 2: 0} is said to 
have the Markov property iff for each BE .97{Xn+l• Xn+2• .. . ), n = 0, 1, ... , 

P(B I Xo, ... , Xn) = P(B I Xn) a.e. 

If {Xn} is a Markov chain (see 4.11, and Ash, 1970, Chapter 7), then 

P{Xn+l = in+i• ... , Xn+k = in+k I Xo = io, ... , Xn =in} 

P{Xn+i = in+i, · · ·, Xn+k = in+k I Xn =in} 

for all io, ... , in+k in the state space. Thus the Markov property holds when 
B is a measurable cylinder, hence for all B E .97(Xn+l, Xn+2, ... ) by the 
monotone class theorem. 

In the Markov case, almost invariant sets assume a special form. 

8.4.4 Theorem. Let the coordinate random variables Xn of a one-sided shift 
have the Markov property. If A is an almost invariant set, there is a set B of 
the form {Xo E C}, C E ..5B(IR), such that A= B a.e., that is, P(A ~B)= 0. 

PRooF. By 8.4.1, there is a set Bin the tail 0'-field .9700 such that P(A ~B)= 
0. Since BE .97(Xn+h Xn+2, .. . ) for all n, P(B I Xo, ... , Xn) = P(B I Xn) a.e. 
Consequently, P(A I X 0 , ... , Xn) = P(A I Xn) a.e. Now 

P(A I Xo, ... , Xn)-+ P(A I Xo, X,, ... ) a.e. 
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(see 6.6.4); but 

P(A I Xo, X,, ... )= E(IA I Xo,X,, ... ) = h a.e. 

since A E §'(Xo, X1, ••. ) = :T. Therefore P(A I Xn)-+ /A a.e. 
Givene > 0, letHn = {w: IP(A I Xn)(w) -/A(w)l 2: e}. ThenP(Hn)-+ 0 

since P(A I Xn)-+ /A a.e., hence in probability. Now 

r-'(Hn) = {w: IP(A I Xn)(Tw)- h(Tw)l 2: e} 

= {w: IP(A I Xn+J)(w)- IA(w)l 2: e} a.e. 

by 8.4.2 and the almost invariance of A. Thus T- 1(Hn) = Hn+i a.e. Since 
T preserves P, P(Hn) = PT- 1(Hn) = P(Hn+d for all n. Since P(Hn)-+ 0, 
we must have P(H n) = 0, so P(A I Xn) = h a.e. for all n, in particular, 
/A = P(A I Xo) a.e. 

Now P(A I Xo) is §'(Xo)-measurable, hence can be expressed as f(Xo) for 
some Borel measurable f: IR-+ IR [see 5.4.2(c)]. Thus (a.e.) 

wE A iff /A(w) = 1 

iff f(Xo(w)) = 1 

iff Xo(w) E C, where 

8.4.5 Corollary. Under the hypothesis of 8.4.4, a set A E.¥ is almost 
invariant iff A is of the form {Xn E C for all n} for some C E ..5B(IR). 

PROOF. Let A be almost invariant. By 8.4.4, A is of the form {Xo E C}. But 
A= T- 1A a.e., so {Xo E C} ={X, E C} a.e. Inductively, A= {Xn E C for 
all n}. Conversely, every set A of this form has A c r- 1 A, hence is almost 
invariant by 8.2.4. D 

We therefore have the following criterion for ergodicity of a Markov 
sequence. 

8.4.6 Theorem. If Xn has the Markov property, then {Xn} is not ergodic iff 
there is a set C E ..5B(IR) such that 0 < P{Xn E C for all n} < 1. 

PROOF. Apply 8.4.5 and 8.2.2(b). D 

We now apply these results to Markov chains. Let {Xn} be a Markov chain; 
assume the initial distribution {v;} is a stationary distribution, so that {Xn} is 
a stationary sequence and the machinery of ergodic theory is applicable. (See 
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Ash, 1970, pp. 236-240, for the appropriate background material on Markov 
chains.) 

8.4. 7 Theorem. 
(a) If there is exactly one positive recurrent class C, then {Xn} is ergodic. 
(b) If there are at least two positive recurrent classes C 1 and C 2, and 

l::iECt v; > 0, l::iEC2 v; > 0, then {Xn} is not ergodic. 

PRooF. (a) Since the stationary distribution assigns probability 1 to C, we 
may as well assume that C is the entire space. Let D be a nonempty proper 
subset of C, and let i ED, j E C-D. By recurrence, if the initial state is i, 
then j must be visited; hence 

P{Xn ED for all n} = L v;P{Xn ED for all n I Xo = i} = 0. 

By 8.4.6, {Xn} is ergodic. 
(b) It is impossible to exit from a recurrent class, hence 

P{Xn E C 1 for all n} = P{Xo E Cd =LV; E (0, 1). 
iECt 

By 8.4.6, {Xn} is not ergodic. D 

The case in which there are no positive recurrent classes is not discussed in 
8.4.7 because in this case, there is no stationary distribution for the chain. Note 
that if there is exactly one positive recurrent class, the stationary distribution 
is unique. 

We now have many examples of ergodic sequences {Xn} where the Xn need 
not be independent. For example, consider a finite Markov chain such that 
every state is reachable from every other state. The state space then forms 
a single equivalence class, necessarily recurrent positive. Thus if the initial 
distribution is the unique stationary distribution, the sequence {X n} is ergodic. 

Now suppose {Xn} is an ergodic Markov chain, and assume that the entire 
space forms a positive recurrent class. Then by the pointwise ergodic theorem, 
iff EL1(Q,.JT,P), then 

l n-1 

- L f(Tkw)-+ E(f) a.e. 
n k=O 
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We have been assuming that the initial distribution {v;} is stationary, but this 
result holds regardless of the initial distribution. For 

Since v; > 0 for all i, we have P{n- 1 I:~:ci f(Tkw) +---+ E(f) I Xo = i} 
= 0 for all i, and the result follows. 

If a Markov chain has exactly one positive recurrent class, and therefore a 
unique stationary distribution { v;}, then the mean recurrence time of state j, 
that is, the average number of steps required to return to j when the initial 
state is j, is the reciprocal of the probability v j that the chain will be in state 
j at any particular time. This is intuitively reasonable; if, say, Vj = -,t, then in 
the long run, we are in state j on one out of four trials, so on the average it 
should take four steps to return to j. 

We are going to prove a more general result of this type. 

8.4.8 Theorem. Let T be a measure-preserving transformation on the 
probability space (Q, :T, P). If A E.¥, let 

Ak ={wE A: Tnw ~A, n = 1, ... , k- 1, Tkw E A}; 

thus Ak is the set of points w E A such that Tn w returns to A for the first time 
at n = k. 

Define the recurrence time of A by rA(w) = k if wE Ako k = 1, 2, ... ; 
rA(w) = oo if wE A- U~1 Ak (define rA arbitrarily on Ac). Then 

1 rA(w)dP(w) = P (Q r-nA). 

Before giving the proof, let us go into more detail on the meaning of the 
theorem. If Tis ergodic and P(A) > 0, let E = U~=o r-nA. Since r- 1E c E, 
E is almost invariant by 8.2.4, and since P(E) 2: P(A) > 0, P(E) must be 1. 
Thus if Q(B) = P(B I A) = P(B n A)/ P(A), BE.¥, we have 

1 rA(w)dQ(w) = P:A). 

If T is a one-sided shift and A = {X 0 E C}, then JA r A d Q is the average length 
of time required for Xn to return to the set C, given that the initial value Xo 
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belongs to C. Thus the mean recurrence time of C is the reciprocal of the 
probability that the process will be in C at any particular time. 

PROOF. Let ck = r-kA, Bk = q, k = 0, 1, ... (take Co= A). Then, with 
intersections written as products, 

P(Ak+J) = P(CoB, · · · BkCk+J), k 2: 1 

= P(CoB, · · · Bk)- P(CoB, · · · Bk+J) 

= P(B1 • • • Bk)- P(BoB1 • • • Bk)- P(B, · · · Bk+i) 

+ P(BoBl · · · Bk+i) 

= P(Bo · · · Bk-d- 2P(Bo · · · Bk) + P(Bo · · · Bk+J) 

since T preserves P 

= bk - 2bk+l + bk+2 

where bk = P(Bo · · · Bk-J), k 2: 1. When k = 0 we have 

P(AJ) = P(CoCJ) 

= P(Co)- P(CoBJ) 

= 1 - P(Bo)- P(BJ) + P(BoB,) 

= 1 - 2P(B0 ) + P(BoBJ), 

hence we have P(Ak+J) = bk - 2bk+l + bk+2 for all k 2: 0, if we take bo = 1. 
Now 

1 rA dP = ~(k + l)P(Ak+l) 

= n~~ [~(k + l)bk- 2 tkbk + ~(k- l)bkl 

= lim [1- n(bn- bn+d- bn]. 
n--->oo 

bn -+ p (!] Bk) = 1 - P< (Q ck) = 1 - p (Q r-nA) . 

Since 1- n(bn - bn+d- bn has a limit and bn approaches a finite limit, 
n(bn - bn+d must approach a finite limit. But the sets Bo .. · Bn-i Cn 
are disjoint, so that 'L.n (bn - bn+d < oo; this implies that n (bn - bn+d 
-+ 0. 0 
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Problems 

1. The one-sided shift transformation T is said to be a Kolmogorov shift (or to 
be tail trivial) iff the tail CY-field .'700 consists only of sets with probability 
0 or 1. It follows from 8.4.1 that a Kolmogorov shift is ergodic; show 
that, in fact, every Kolmogorov shift is mixing. 

2. Let T be the shift transformation associated with a finite Markov chain 
where the initial distribution is stationary. Assume that v; > 0 for all i. (If 
V; = 0, then P{Xn = i for some n} :::;: l:n P{Xn = i} = 0, so that i may 
as well be removed from the state space.) 

Show that T is mixing iff a steady-state distribution exists, that is, iff Pi}) 
--+ qj (independent of i) as n --+ oo, where l::j qj = 1. (Necessarily, 
q j = v j, and the stationary distribution is unique; see Ash, 1970, 
pp. 236-237.) 

3. Let X 1, X2, . . . be iid random variables, and let Sn = 2::~= 1 Xb 
n = 1, 2, .... 

(a) If Rn(w) is the number of distinct points in the set {S 1 (w), ... , 
Sn(w)}, and A is the event that Sn never returns to 0, that is, 
A= {S, # 0, S2 # 0, ... }, show that n- 1E(Rn)--+ P(A). (Hint: 

Express Rn as 1 + 2::~=2 I Bk, where 

(b) For a fixed positive integer N, let Zk(w) be the number of distinct 
points in {S(k-l)N+J(w), ... ,SkN(w)}, k = 1, 2, .... Use the strong 
law of large numbers to show that 

li 
RnN E(Z J) 

msup- < -- a.e. 
n--->oo nN - N 

(c) Show that 1imsupn--->oon- 1Rn:::;: P(A) a.e. 

(d) Let Vk be the indicator of the set {Sk+l # Sk. Sk+2 # Sk. .. . }; thus 
Vk = 1 iff Sk is never revisited. Use the pointwise ergodic theorem 
to show that n- 1(V1 + · · · + Vn)--+ E(VJ) a.e. 

(e) Show that liminfn--->oo n- 1Rn 2: E(VJ) a.e., and conclude that n- 1Rn 
--+ P(A) a.e. 

8.5 THE SHANNON-McMILLAN THEOREM 

We will apply the pointwise ergodic theorem to prove a basic result of 
information theory. Consider a shift transformation with coordinate random 
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variables Xn taking values in a countable set. We define a rather unusual 
sequence of random variables p(X0 , X1, ... , Xn-d as follows. 

If Xo(w) = io, ... , Xn-i (w) =in-!, let 

p(Xo(w), ... , Xn-i (w)) = P{w': Xo(w') = io, ... , Xn-i (w') = in-d· 

For example, if P{Xo = 1} = P{Xo = 2} = ~. P{Xo = 3} = i, then p(Xo) has 
the value ~ with probability ~. namely, when Xo = 1 or 2, and p(Xo) = ~ 
with probability ~, that is, when X0 = 3. 

Similarly, define the random variable p(Xn I Xn-1, Xn-2, ... , Xn-r) 
by specifying that if Xn =in, Xn-i = in-1, ... , Xn-r =in-n then p(Xn I 
Xn_ 1, ... , Xn-r) = P{Xn =in I Xn-1 =in-!, ... , Xn-r = in-r) assuming 
P(Xn-i = in-!, ... , Xn-r = in-r} > 0. 

The Shannon-McMillan theorem is an assertion about the convergence of 
-n-1log p(X0 , .•• , Xn_J); in particular, if Tis ergodic, we have convergence 
to a constant H, almost everywhere in L 1 • Before turning to the proof, let us 
look at the intuitive interpretation of the convergence statement. For this, we 
require only that -n -'log p(Xo, ... , Xn-d converge to H in probability. (It is 
traditional in information theory to use logs to the base 2, and we shall follow 
this practice here. Switching to natural logs involve only a multiplicative 
constant.) 

Given 8 > 0, 8 > 0, let 

thus if w E An, then p(Xo(w ), ... , Xn-i (w)) is between 2-n(H+8l and 2-n(H-8). 
If -n -'log p(Xo, ... , Xn-d -+ H in probability, then P(An) 2: 1 - 8 for 
sufficiently large n. 

Now let Sn be the set of all sequences of length n, with values 
in the coordinate space, coresponding to points in An, that is, S n is 
the set of all sequences (Xo(w), ... ,Xn-i(w)), wEAn. If (io, ... ,in-dE 
Sn, then 2-n(H+8l ::::: P{Xo = io, ... , Xn-i = in-d ::::: 2-n(H-8); furthermore, 
P{(Xo, ... ,Xn_J)ESn}=P(An), so that l-8:::P{(Xo, ... ,Xn_J)ESn} 
:::I. 

Thus each sequence in Sn has a probability between 2-n(H+8l and 2-n(H-8), 
and the total probability assigned to Sn is between 1 - 8 and 1. Consequently, 
the maximum number of sequences in Sn is 1j2-n(H+8l = 2n(H+8l, and the 
minimum number is (1- 8)/2-n(H-8) = (1- 8)2n(H-8)_ 

Thus, roughly, for large n there are approximatively 2nH sequences of length 
n, each with probability approximatively 2-nH; the remaining sequences are 
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negligible, that is, have total probability at most e. In information theory, this 
is referred to as the asymptotic equipartition property. If {Xn} represents the 
output of an "information source" (such as a language) with r symbols, then 
of all the rn = 2n logr possible sequences of length n, only 2nH can reasonably 
be expected to appear. 

The number H will tum out to be the entropy of the sequence {Xn}, and 
we must discuss this concept before going any further. 

8.5.1 Definition. If X is a discrete random variable (or random vector), 
define the entropy (also called the uncertainty) of X as 

H(X) =- LP(x)logp(x) 
X 

where p(x) = P{X = x}. If X andY are discrete, define the conditional entropy 
of Y given X = x as 

H(Y I X= x) =- L p(y I x)logp(y I x) 
y 

where p(y I x) = P{Y = y I X= x}; also define the conditional entropy of Y 
given X as a weighted average of the H(Y I X= x), namely, 

H(Y I X)= L p(x)H(Y I X= x) 
X 

= - L p(x, y) log p(y I x). 
x,y 

The joint entropy of X and Y is defined by 

H(X, Y) =- LP(x, y)logp(x, y); 
x,y 

since H (X, Y) is the entropy of the random vector (X, Y), nothing new is 
involved. 

Note that entropy is always nonnegative; if the random variables are allowed 
to have a countably infinite set of values, an entropy of +oo may be obtained. 
Difficulties with events of probability zero are avoided by defining 0 log 0 = 0, 
-logO= +oo. 



8.5 THE SHANNON-McMILLAN THEOREM 377 

It is often convenient to express entropy in terms of the random variables 
p(X) introduced at the beginning of the section; we have 

H (X) = E[ -log p(X)], H(X I Y) =E[-logp(Y I X)]. 

We now establish a few properties of entropy. 

8.5.2 Theorem. Let X, Y, and Z be discrete random vectors with finite 
entropy. 

(a) Ifp1, p2, ... , q1, q2, .. . arenonnegativenumberswithl::i Pi= l:i qi = 1, 
and either - l:i p; log Pi < oo or - l:i Pi log qi < oo, then 

- LP;logp;:::;- LPilogq;, 

with equality iff Pi = qi for all i. 

(b) H (X, Y) :::; H (X) + H ( Y), with equality iff X and Y are independent. 

(c) H(X,Y)=H(X)+H(Y IX)=H(Y)+H(X I Y). 

(d) H(Y I X):::; H(Y), with equality iff X andY are independent. 

(e) If X takes on r possible values x1, ·, x,, then H (X) :::; log r, with equality 
iff p(xi) = 1/r, i = 1, ... , r. 

(f) H(Y, Z I X):::; H(Y I X)+ H(Z I X), with equality iff Y and Z are 
conditionally independent given X, that is, 

p(y, z I x) = p(y I x)p(z I x) for all x, y,z. 

(g) H(Y,ZIX)=H(YIX)+H(ZIX,Y). 

(h) H (Z I X, Y) :::; H (Z I X), with equality iff Y and Z are conditionally 
independent given X. 

PRooF. (a) For convenience we switch to natural logs. Since x - 1 is the 
tangent to logx atx = 1, we have logx:::; x- 1, with equality iff x = 1. Thus 
log(q;/ Pi) :::; (q;/ Pi) - 1, with equality iff Pi = q;; hence, even if Pi or q; = 0, 

Pi log q; = P; log(q;/ Pi)+ p; log Pi :S qi - p; + Pi log Pi 

with equality iff Pi = q;. Sum over i to obtain the desired result. (Note that 
if 2::; Pi log qi = 2:; Pi log p;, then the sum is finite by hypothesis, so that 
Pi = q; for all i.) 

(b) By (a), - l:x,y p(x, y) log p(x, y) :S - l:x,y p(x, y) log p(x)p(y), with 
equality iff p(x, y) = p(x)p(y) for all x, y. 
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(c) This follows from the fact that p(x, y) = p(x)p(y I x) = p(y)p(x I y). 
(d) This is immediate from (b) and (c). 
(e) Apply (a) with p; = p(x;), and q; = ljr. 
(f) Since H(Y I X) < oo by (d), H(Y I X= x) < oo for each x (such that 

p(x) > 0), and similarly for H(Z I X= x). The proof of (b) shows that 

H(Y, Z I X= x) s_ H(Y I X= x) + H(Z I X= x), 

with equality iff p(y, z I x) = p(y I x)p(z I x) for all y, z. Multiply by p(x) 
and sum over x to complete the proof. 

(g) This follows from p(y, z I x) = p(y I x) p(z I x, y). 
(h) Apply (f) and (g). D 

We also need an entropy concept for stationary sequences. 

8.5.3 Definitions and Comments. Let X0 , X 1, ••• be a stationary sequence 
of discrete random variables, and assume that H(Xo) < oo. Define the entropy 
of the sequence as 

H{Xn} = lim H(Xn I Xo,X1, ... ,Xn-d· 
n---+oo 

Now 

H(Xn+liXo, ... ,Xn)S.H(Xn+iiX,, ... ,Xn) by 8.5.2(h) 

= H(Xn I Xo, . .. ,Xn-d by stationarity; 

also by 8.5.2(h), H(Xn I Xo, ... , Xn-i) s_ H(Xn) = H(Xo) < 00. Thus the 
limit defining H {X n} exists and is finite. 

(To apply 8.5.2(h), it must be verified that H (X 1, ••• , Xn) < oo, but the 
proof of 8.5.2(b) shows that if H(X;) < oo, i = 1, ... , n, then 

H(X,, ... , Xn) s_ H(XJ) + · · · + H(Xn), 

with equality iff X 1, ·, Xn are independent. In the present case, H(X;) 
= H (Xo) < oo for all i.) 

The entropy of {Xn} may also be expressed as 

. 1 
H{Xn} = hm -H(Xo, ... , Xn_J). 

n---+oo n 

To see this, observe that by induction using 8.5.2(c), 

H(Xo, ... , Xn-d = H(Xo) + H(X1 I Xo) + H(X2 I Xo, XJ) 

+ · · · + H(Xn-i I Xo, ... , Xn-2). 
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Thus n- 1H(X0 , ••• ,Xn-d is the arithmetic average of a sequence 
converging to H {X n}, and hence converges to H {X n}. 

We now begin the development of the Shannon-McMillan theorem. It will 
be convenient to consider a two-sided shift transformation T with coordinate 
random variables Xn, where the Xn take values in a countable set. It is assumed 
throughout that H(X0 ) < oo. 

Martingale theory will be significant, as the following result suggests. 

8.5.4 Theorem. Let Yo= -logp(Xo), Yk = -logp(Xo I X-1 .... ,X-k), 
k 2: 1. Then { Y 0 , Y 1, ... } is a nonnegative supermartingale, hence converges 
a.e. to an integrable limit function Y. 

PRooF. Since E(Yk) = H(Xo I X_l, ... , X_k) :S H(Xo) < oo, the Yk are 
integrable. Now since all random variables are discrete, we may write 

E(Yn+l I Xo = Xo, ... , X-n = X-n) 

=- L p(X-(n+l) I Xo, · .. ,X-n)logp(xo I X-1, ... ,X-(n+l)) 
X-(n+l) 

'"""' p(xo, · .. , L(n+l)) p(x_l, · · ·, L(n+IJ) 
= + L..,; log . 

X-(n+l) 
p(xo, ... ,X_n) p(xo, ... ,X-(n+l)) 

This is of the form 2::; a; logx;, where a; 2: 0, 2:; a; = 1, and hence is less 
than or equal to log (2::; a;x;) by convexity. Thus 

E(Yn+l I Xo = Xo, ... , X-n = X_n) 

[
'"""' p(x_l, · · · ,X-(n+l))l <log L..,; 

- p(xo, ... , X-n) 
X-(n+l) 

p(X-I,···•X-n) =log------
p(xo, ... , X-n) 

= -logp(xo I X-1, .. . ,X-n). 

Therefore E(Y n+l I Xo, ... , X-n) .:::: Y n• and since Yn is measurable relative 
to the O"-field .97(Xo, ... , X -n ), the result follows. 0 

We will show that the random variables Y n are uniformly integrable. It will 
be convenient to assume that the coordinate space is a subset of the positive 
integers; this amounts only to a relabeling, and can be done without changing 
the distribution of (Yo, Y 1, ... ). 
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8.5.5 Lemma. If r is any fixed positive integer, the random variables W n 

= Ynl{xosrl• n = 0, 1, ... , are uniformly integrable. 

PRooF. For any positive integer k, 

00 

::::: L)i + 1)P{Wn 2: i}. 
i=k 

But if Wn 2: i, then Yn 2: i, and it follows that p(Xo, ... ,X-n) :S 
2-i p(X_ 1, .•. , X_n). Thus 

P{Wn 2: i} = p(xo, ... , X-n) 
{XQ, ... ,Ln: Yn'O':i,xo:<:r) 

Consequently, 

as k -+ oo, uniformly in n. D 

8.5.6 Theorem. The random variables Y n. n = 0, 1, ... , are uniformly 
integrable; thus in 8.5.4 we also have Y n -+ Y in L 1• 

PRooF. For any positive integer k 
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By 8.5.5, the second integral on the right approaches 0 as k -+ oo, uniformly 
in n for a fixed r. Now 

1 y n dP = - L r L p(xo, ... 'X-n )] 
{Xo>r) .xo>r ~-l·····x_• 

x log p(xo I X-J, .. · X-n) 

L p(X-J, ... 'X-n) 
X-J, ••. ,X-n 

X LP(Xo IX-J, ... ,X-n)logp(xo IX-J, ... ,X-n)· 
X()>f 

Writelogp(xo I X-J, ... , X-n) =log p(xo) +log[p(xo I X-1, ... ,X-n)/p(xo)]; 
the contribution due to log p(xo) is 

-E l-J~-• p(xo, ... , X-n) log p(xo)] = - E p(xo) log p(xo) 

and the remaining contribution is 

An upper bound to this expression, obtained by switching to natural logs for 
convenience and using log x ::::: x - 1, is 

L p(xo) - L p(xo) = 0. 
Xo>r Xo>r 

Therefore, 

1 y n dP ::::: - L p(xo) log p(xo) -+ 0 
{Xo>r) Xo>r 

as r-+ oo, uniformly in n, since H(Xo) < oo. 

If 8 > 0 is given, we may choose a fixed r such that hxo>r) Y n dP < 8/2 

for all n; then for sufficiently large k, hw" ::o:k l W n dP < 8/2 for all n, hence 

hYn?:k) Y n dP < 8 for all n. D 
The other basic property of the Y n that we need is that supn Y n is integrable. 

We prove this after a preliminary lemma. 
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8.5.7 Lemma. If i is a positive integer, define y~l =-log p(Xo 
= i I X_,, ... , X_n). that is, if X_, = L,, ... , X_n =Ln. then 

YOl - 1 P{X - . I X - . X - . } n -- og 0- l -i- LJ, ... , -n- Ln 

(define ygl = -log P{Xo = i}). If)... 2: 0, let 

If A; = {Xo = i}, then 

P(E n ()...) n A;) = P(E~il()..) n A;) :S T;.. P(E~l ()... )). 

PRooF. On A; we have Yn = y~il, hence En(A) n A;= E~il()..) n A;. Now 
since E~l ()...) belongs to the O" -field .97(X _1, .•. , X -n ), 

by definition of E~il()..). D 

8.5.8 Theorem. The random variables Yn satisfy E[supk Yd < oo. 

PROOF. We may write 

E [s~p Yk] = 100 

P { s~p Yk >)...} d).. 

:S fp {sup Yk > r} 
r=O k 

00 00 

= LLP(En(r)) 
r=O n=O 

00 00 

= L L L P(E~;\r) n A;) 
r=O n=O i 

(see 6.2, Problem 2) 

by 8.5.7. 
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If the coordinate space is finite, there is no difficulty; by 8.5.7, 

E [s~pYk]::::: f rr'L,P(E~i\r)) < oo 
r,n=O z 

since the E~l(r), n = 0, 1, ... , are disjoint and the sum over i is finite. 
In the general case, assume without loss of generality that the numbers 

p; = P(A;) decrease as i increases (if necessary, relabel the elements of the 
coordinate space). We then have p; ::::: 1/i for all i, and if p; > 1/i, then 
p 1, ••• , p; are all greater than 1/i, a contradiction. Let f be a function, to be 
specified later, from the nonnegative integers to the nonnegative reals, such 
that {r: f(r) < i} is a finite set for each i. Then by 8.5.7, 

by disjointness of the E~\r), n = 0, 1, .... 

Also by disjointness, 

f [ L P(E~il(r) n A;)] ::::: L P(A;) = L p;. 
n=O i> f(r) i> f(r) i> j(r) 

Therefore, 

The second series is 2::~ 1 l:J(r)<i Pi= 2::~ 1 fo(i)p;, where fo(i) is the 
number of nonnegative integers r such that f(r) < i. If we set f(r) = 2r 

(r + 1)-2
, then the first series converges, and f(r) < i iff r < log i + 2log 

(r + 1). 
Choose a positive integer B such that 2x- 1 log(x + 1) < ~ for all 

x 2: B. Then: 

f(r) < i, r2:B implies r < log i + r /2, that is, r < 21ogi, 

and 

f(r) < i, r< B implies r <B. 
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Therefore, fo(i) ::=:: 2logi + B, i = 1, 2, ... , hence 

00 00 00 

Lfo(i)pi ::=:: 2Lpi1ogi+BLp; 
i=i i=i i=i 

1 
since P. <-l-. 

l 

= 2H(X0 ) + B < oo. D 

We may now give the main result. 

8.5.9 Shannon-McMillan Theorem. Let T be a two-sided shift transfor
mation with discrete coordinate random variables Xn. Assume that H(Xo) 
< oo, and let H be the entropy of the sequence {X n}. 

If Zn = -n-1log p(X0 , ..• , Xn-J), there is an invariant random variable Z 
such that E (Z) = H and Zn -+ Z, almost everywhere and in L 1. In particular, 
if Tis ergodic, Z = H a.e. 

PRooF. If the random variables Y n are defined as in 8.5.4, we have 

1 
n-1 

Zn = -- Llog p(Xk I Xk_,, ... , Xo) 
n k=O 

1 n-1 
=- LYk(Tk) 

n k=O 

1 n-1 1 n-1 
=- LY(Tk) +- L[Yk(Tk)- Y(Tk)]. 

n k=O n k=O 
(1) 

By 8.3.6, 8.3.7, and 8.3.8, the first series in (1) converges to an almost 
invariant function Y, a.e. and in L1. By 8.3.9, E(Y) = E(Y), and by 8.5.6, 
E(Y)=limn--->ooE(Yn)=H. The second series converges to 0 in L1 since 
Yk-+ Yin L1 by 8.5.6, and IIYk(Tk)- Y(Tk)ll' = IIYk- Yll1 by 1.6.12. 

Thus if we take Z = Y, all that remains is to show that Zn -+ Z a.e., and 
this will follow if we show that the second series in (1) converges to 0 a.e. 
But for any positive integer N, the series is bounded in absolute value by 
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The first series approaches 0 a.e. as n -+ oo since Yk(Tk)- Y(Tk) is 
integrable, hence finite a.e. If we define 

GN = sup{IYk- Yl: k 2: N}, 

then GN :::: 2 supk Y k. which is integrable by 8.5.8. Also, since Y k -+ Y a. e., 
we have GN -+ 0 a.e. as N-+ oo, hence E(GN)-+ 0 by the dominated 
convergence theorem. But the second series in (2) (call it hn) is bounded 
by n- 1 2::~~~ GN(Tk), which converges to GN a.e. and in L1, by 8.3.6 and 
8.3.7. 

Finally, given 8 > 0, 8 > 0, we have P{GN 2: 8}:::: 8- 1E(GN) by Cheby
shev's inequality, and by 8.3.9, E(GN) = E(GN)-+ 0. If we choose N such 
that 8- 1E(GN) < 8, then GN < 8 on a set of probability greater than 1-8, 
hence lim supn--->oo hn :::: 8 on this set. Since 8 and 8 are arbitrary, it follows 
that hn -+ 0 a.e. D 

Since the Shannon-McMillan theorem involves only the random variables 
Xn, n 2: 0, it holds equally well for a one-sided shift. For an indication of how 
to prove this formally, see the discussion at the end of Problem 7 in 8.3. 

Problems 

1. (a) In the Shannon-McMillan theorem, give an example in which the 
limit random variable Z is a.e. constant, but T is not ergodic. 

(b) In the Shannon-McMillan theorem, give an example in which Z is 
not a.e. constant (of course, T cannot be ergodic). 

2. If the coordinate space is finite and 1 :::: p < oo, show that the random 
variables z~ are uniformly integrable; thus Zn -+ z in LP. 

3. [A short proof of a special case of the Shannon-McMillan theorem 
(Gallager, 1968).] Let Xo, X 1, ... be a stationary sequence of discrete 
random variables, with H(Xo) < oo. (In this problem, entropy will be 
expressed using natural logarithms for convenience.) Define an mth-order 
approximation to p(Xo, ... , Xn-d by 

qm(Xo, ... ,Xn-1) = p(Xo , ... ,Xm_J)p(Xm I Xo, ... ,Xm-d··· 

p(Xn-i I Xn-m-i, ... , Xn-2), m = 1, 2, ... ; n > m 

Now note that lin Yl =In+ y +In- y = 2ln+ y -lny:::: 2e- 1y -In y, so 
that 

E [lin~ IJ :::: ~E ( ~) - E (In~) 
where qm = qm(Xo, ... , Xn-1 ), p = p(Xo, ... , Xn-1 ). 
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(a) Show that E(qm/ p) :::;: 1 and 

E (-In q;) = H(Xo, ... ,Xm_J) + (n- m)H(Xm I Xo, ... ,Xm-J) 

- H(Xo, ... ,Xn_J). 

Thus 

2 mH(Xo, ... ,Xm-d 
<-+-------
- ne n m 

( 
m) H(Xo, ... , Xn-d + 1--;; H(Xm I Xo, ... ,Xm-d- n 

(b) Assume {Xn} ergodic, that is, the associated shift transformation is 
ergodic. Show that as n -+ oo, -n- 1 1nqm converges a.e. and in L 1 

to H(Xm I Xo, ... , Xm-d· 

(c) Let H be the entropy of the ergodic sequence {Xn}. Given 8 > 0, 
choose m such that 

and 

I 
H(Xo, ... , Xm-d I 8 --------'--H<

m 2 

8 
IH(Xm I Xo, ... ,Xm-i- HI< 2· 

Show that E[l- n- 1 ln p(Xo, ... , Xn_J)- HI] < 8 for sufficiently 
large n, thus establishing L 1 convergence in the Shannon-McMillan 
theorem under the hypothesis of ergodicity. 

8.6 ENTROPY OF A TRANSFORMATION 

We define in this section the notion of entropy of a measure-preserving 
transformation, and show that two isomorphic transformations have the same 
entropy. For Bernoulli shifts the converse is true: two Bernoulli shifts with 
the same entropy are isomorphic. 

8.6.1 Definitions. 
(a) Let (Q, .r, P) be a probability space and A a finite subfield of !T (such 

an A is a o--field) with atoms A1, .•. , Ak. The entropy of A is by 
definition 

k 

H(A) =- LP(A;)logP(A;). 
i=i 
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(b) If .§1 is another finite subfield of .r, with atoms B1, ••• , Bh, the 
conditional entropy of .§1 given A is 

k h 

H(.§J 1-~) =- L LP(A1 n Bj)logP(Bj 1 A1). 

l=l j=l 

There is in fact nothing new in those definitions. If the discrete random 
variables X and Y are defined by X = i on A;, Y = j on B j, we have 
H(A) = H(X) and H(.§J I A)= H(Y I X). 

Since we consider only finite subfields of .r, H (A) and H (.XJ' I A) are 
always finite and the properties of entropy given in 8.5.2 can be rewritten in 
terms of finite subfields. 

8.6.2 Theorem. Let A , .§1 , If' be finite subfields of .¥. We have the 
following properties (where A v .§1 denotes the smallest (finite) field 
containing A and .§1). 

(a) H (A v .§1) ::::; H (A)+ H (.§1) with equality iff A and .§1 are inde-
pendent. 

(b) H(A v.§J)=H(A)+H(.§JIA)=H(.!lJ)+H(A 1.%'). 

(c) Consequently, H(.§J) 2: H(A) if .§1::) A. 

(d) H (.§1 I A) ::::; H (.§1) with equality iff A and .§1 are independent. 

(e) If A has k, atoms, H(A)::::; logk, with equality iff each atom of A 
has probability ljk. 

(f) H (.§1 v If' I A) ::::; H (.§1 I A) + H (If' I A), with equality iff .§1 and 
If' are conditionally independent given A. 

(g) H(~fl v If' I A)= H(.§J I A)+ H(W I A v .ffJ) = H(lf' I A)+ 
H(.§J I A v If'). 

(h) Consequently, H (If' I A) 2: H (.§1 I A) if W ::) .§1. 

(i) H(lf' I A v .§1)::::; H(lf' I A), with equality iff .§1 and If' are condi
tionally independent given A. 

G) Consequently, H(lf' 1.§1):::; H(lf' I A) if A c .§1. 

Entropy is often said to be a measure of uncertainty. We give a few examples 
to justify this statement. 

1. Consider two finite subfields A and .§1 of .rand assume that .§1 ::) A. 
(Therefore each atom of .§1 is a subset of an atom of A.) If we know that 
the outcome w is in the atom A; of A, we still do not know which atom 
of .!ll contains w; but knowing that w is in the atom Bj of .§J is enough 
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to tell us which atom of A contains w. This means that intuitively the 
uncertainty is greater for the subfield .§1 than for the subfield A. This 
agrees with the inequality H (.§1) 2: H (A). 

2. If we roll a die, the uncertainty of the outcome is intuitively greatest 
when the die is unbiased, that is, when the 6 atoms corresponding to the 
6 outcomes 1, 2, 3, 4, 5, 6 all have the same probability 1/6. This is 
exactly what 8.6.2(e) states. 

3. The inequality 8.6.2(j) states that the more we know the less the 
uncertainty. 

8.6.3 Remarks. Entropy is invariant under measure-preserving transforma
tions: if r is a measure-preserving transformation on (Q, .r, P), and if A 
and .§1 are two finite subfields of .r, r-nA = {r-nA: A E A} and r-n .§1 

are finite subfields of .r, n = 1, 2, .... The measure-preserving property of 
r implies that H (r-nA) = H (A) and H (r-nA I r-n .§1) = H (A I .§1), 

n = 1, 2, .... 
Because of the correspondence between measure-preserving transformations 

and stationary sequences, the entropy H {X n} of a stationary sequence can also 
be rewritten in terms of measure-preserving transformations. 

8.6.4 Definition. If A1, ... ,Ak are the atoms of A, and X is the ran
dom variable defined by X= i on A;, the sequence X0 =X, X1 =X or, ... , 
Xn = Xorn, ... is a stationary sequence and 

H (r-nA 12: r-iA) =H(Xn IXo,X,, ... ,Xn-1). 

By 8.5.3, limn->00 H (r-nA I v~:o' r-iA) = limn->oo H (Xn I Xo. X I, ... , 
Xn-i) = H{Xn} exists. 

The entropy of a measure-preserving transformation r with respect to a 
finite subfield A is defined as 

H(A,r)=}!_.~H (r-nA IY,r-iA). 
The identity H {Xn} = limn->oo !_H (Xo, ... , Xn_J), proved in 8.5.3, can be 

n 
written in terms of H (A, r). 

8.6.5 Theorem. 
(a) H(A, r) = limn->oo ~H (V7:0' r-iA). 

(b) H (A, r) = limn->oo H (A I V7=-/ r-i_A). 
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PROOF. (a) is a consequence of 8.5.3. 

(b) By 8.6.20) we have H (AI V?:/ r-iA) 2: H (AI V?=1 r-iA) 2: 0, 

and therefore limn ..... oo H (A I V?:o1 r-iA) exists. Since 

by 8.6.2(b) 

= H (A 121 

r-iA) + H (Y, r-iA) by 8.6.3 

= (A~~ r-iA) +H (A~~ r-iA)+ ... 

the argument in 8.5.3 shows that 

8.6.6 Corollary. If r is an invertible (measurable, one-to-one, onto, with 
r- 1 measurable) measure-preserving transformation, then 

Notice that we can rewrite this corollary in terms of stationary sequences. 
Since r is invertible, we can define the two-sided stationary sequence 
Xo =X, Xn =Xorn, n = ±1,±2, ... ,where X= ion the atom Ai of A. 
The corollary then becomes H{Xn} = limn ..... oo H(Xo I x_1, ... 'X_n) 
=lim(X-niXo, ... ,X_(n-1))· This means that in the definition of 

n ..... oo 
H{Xn} we can run the time backwards. 

PRooF. By 8.6.3, 

H (~ IY,r·~) ~H (r-"A j_,t~) 
=H(r-nA IYar-iA). 
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and 

H (rnA lv Ti,;rt;) = H (A . V T;A) 
!=1 <=-(n-1) 

= H (A IY. r-iA). o 

8.6.7 Remark. If A and $1 are two finite subfields of .r, we have 

(a) H(A, T) ~ H($1, T) if A c .JiJ. 

(b) H(A v $1, T) ~ H(A, T) + H($1). 
Here, (a) is an easy consequence of 8.6.2(c) and 8.6.5(a). 
For (b), notice that 

(

n-1 ) (n-1 n-1 ) 
H Yo r-i(A v $1) = H Yo r-iA v Yo r-i$1 

(

n-1 ) (n-1 ~n-1 ) 
=H vr-iA +H vr-i$1 vr-iA , 

!=0 !=0 !=0 

by 8.6.2(b). 
By 8.6.2(f), (j), and 8.6.3 we have 

(

n-1 ~n-1 ) 
H '! r-i $1 V r-i-~ 

!=0 !=0 

n-1 

~ LH(T-i$1 I r-iA)= nH($1 I A). 
i=O 

We are now ready to define the entropy of a measure-preserving 
transformation in such a way that it is invariant under isomorphism. We first 
specify what we mean by isomorphic transformations. 

8.6.8 Definition (Isomorphic Transformations). Let (Q 1,.r1,P1,T1) and 
(Q2, .r2. P2, T2) be two probability spaces with measure-preserving 
transformations T 1 and T2; (Q1,.r1,P1,T1) and (Q2,.r2,P2,T2) are 
isomorphic iff there exist Q1' E Y1 and Q/ E .r2, and a mapping ¢: Q1' 

-+ n2' such that: 
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(a) P1(Q1') = P2(Q/) = 1; 

(b) the mapping ¢ is one-to-one and onto; for any B1 c Q1', B2 = <ll(BJ) 
E .r2 iff B1 E Y1; 

(c) for any subset B1 E .r1 of Q1', P2(<1l(B1)) = P1(B1); 

(d) T1 (QI') c Q1' and T2(Q2') c n2'; 

(e) <ll(T1w) = T2(<llw), for each win Q1'. 

Properties (b) and (c) state that the probability spaces (Q 1',.¥1',P1) and 
n2', .r2' P2) are isomorphic [where .r1' (resp . .r2') denotes the O"-field 
consisting of the subsets of nl' (resp. n2'), which are in sri (resp. in 
.9'2)]. Property (d) is purely technical; it allows us to limit ourselves to what 
happens in Q1' and Q2'. Property (e) states that T1 and T2, considered as 
transformations on Q1' and n2', are compatible with the isomorphism ¢.We 
could have defined the isomorphism of (QI, c9'1, P1, T 1) and (Q2, Y2, P2, T 2) 
by imposing that nl' = nl and n2' = n2, but nothing is changed in the 
structure of a probability space if we add or remove a set of measure zero. It 
is therefore natural to add the property (a) to the definition. 

8.6.9 Definition. Let T be a measure-preserving transformation on a 
probability space (Q, .r, P); the entropy of T is 

H(T) = supH(A, T) where the sup is taken over 
4 

all finite subfields c;rt; of .r. 

8.6.10 Theorem. Let T1 and T2 be measure preserving transformations on 
(Q 1,.r1,P1) and (Q2,.r2,P2), respectively. Suppose that (Q 1,.r1,P1,TJ) 
and (Q2, /JT2, P2, T2) are isomorphic. Then H(T1) = H(T2). 

PRooF. The result is a consequence of the following remarks (we use the 
notations of 8.6.8). 

(a) The entropies of T1 in Q1 and Q1' are the same because P(Q1 - Q1') = 
0. The same is true for the entropies of T2 in n2 and n2'· 

(b) For any finite subfield A 1 of .r1', ¢./61 is a finite subfield of .r2', and 
any finite subfield of .r2' is of this form. 

(c) If c;rt;l is a finite subfield of Y 1' 

To conclude this section we give two results, which in certain cases allow 
us to compute H (T) easily. 
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8.6.11 Theorem. If T is a measure-preserving transformation on a 
probability space (Q, .r, P), and if the finite subfield A of .r is such that the 
subfields r-nA, n = 0, 1, ... are independent, then H (A, T) = H (A). (If 
T is invertible, the independence of the r-nA for n = 0, 1, ... is equivalent 
to the independence of the Tn A for n = 0, ±1, ±2, ... by the measure
preserving property of T.) 

PROOF. We have 

1 (n-1 ) H(A, T) = lim -H V r-iA 
n->00 n 

i=O 

by 8.6.5 

= lim .!_ [H(A) +H(T- 1A) + · · · +H(T-(n- 1lA)] 
n->oo n 

by 8.6.2(a) 

1 
= lim - [H(A) +H(A) + · · · + H(A)] by 8.6.3 

n->00 n 

=H(A) D 

We will now show that if U~=-oo Tn A generates .r, we have H (T) 
= H (A, T). We start by proving two lemmas. 

8.6.12 Lemma. Let T be an invertible, measure-preserving transformation 
on the probability space (Q, .rJT, P) and A be a finite subfield of .r. We have 
for every n = 0, 1, ... , 

PROOF. 

by 8.6.5(a) 

1 (2n+k-1 ) 
=lim -H V r-iA 

k->00 k 
i=O 

by 8.6.3 

N 1 (N-1 ) = lim -H V r-·iA 
N->oo N- 2n N 

i=O 

=H(A, T). D 



8.6 ENTROPY OF A TRANSFORMATION 393 

8.6.13 Lemma. Let A and .JiJ be two finite subfields of ST. Assume 
that both A and .9/l have k atoms, denoted by A 1, ... , Ak and 
B" ... , Bk. respectively. Then for any 8 > 0 there exists a 8 > 0 such that 
2::~=' P(A; 6 B;):::; 8 implies IH(A, T)- H(.'%1, T)l:::; 8. 

PROOF. Let Co= u~=l (A; n B;) and C; =A;- Co, i = 1, ... 'k. We have 
P(Co) 2: 1 - 8. If P(C0) = 1, then P(A; 6 B;) = 0 for all i. In this case 
H(A, T) = H(.'%1, T). Therefore we can assume that P(Co) < 1. If we apply 
8.6.2(e) to the probability P'(D) = P(D)j(l- P(C0 )) on Q- C0 , we see that 

k 

- LP'(C;)logP'(C;):::; logk. 
i=l 

Replacing P'(C;) by P(C;)/(1- P(C0 )) we get 

k 

- LP(C;)logP(C;):::; (1- P(Co))logk- (1- P(C0))log(l- P(Co)) 
i=l 

:::; 81ogk- 81og8 

if 8 < 1je. And, therefore, if Y5 is the finite subfield generated by the C;, 
i = 0, ... , k, we have 

H ('&') :::; -P(Co) log P(Co) + 8log k- 8log CS 

:::; -(1- 8)log(1- 8)- 81og8 + 81ogk 

if 8 < 1/2. We can choose 8 in such a way that H(W) < 8. We then have by 
8.6.7(a) 

H(.~. T):::; H(A v ..YJ, T) = H(.§J v W, 'r"') 

since A v .JjJ = .§J v ~'. By 8.6.7(b) we have H(.§J v §", T):::; H(..YJ, T) 
+ H ('15). Therefore H (.~, T) :::; H (.§J, T) + 8, for sufficier- ntly small 8. We 
can similarly prove that H (.JIJ, T) :::; H (A, T) + 8, if 8 is slllllall enough. D 

8.6.14 Theorem Kolmogorov-Sinai. If T is an invertible,", measure-preser
ving transformation on the probability space (Q, .r, P), and if the finite 
subfield .;rt; is such that the 0"-field generated by the fielOd U()Coo rnA is 
equal to .rJT, then H (T) = H (.;rt;, T). 

PROOF. Let .JiJ be a finite subfield of !fT with atoms B81, ... , Bk. Given 
any 8>0 we can find c, ... ,CkEU':"

00
TnA such tharat P(B;6C;)::;8, 
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i = 1, ... , k. Let N be such that all the C; are in U~N Tn A. Let C,' = C" 
C/ = C;- U~~\ Cj. and denote by ?f' the subfield of .r having the C/ as 

atoms. We have 2::~=! IP(B;)- P(C/)1 .::; k28. Given an 8 > 0, 8.6.13 allows 
us to choose 8 > 0 such that IH ( ..5f1, T) - H ('if', T) I .::; 8. And we have 

H(..5fl, T).::; H(lf', T) + 8 

.::; H (~N Ti A, T) + 8 

=H(A,T)+8 by 8.6.12. 

Since this is true for any finite subfield ..5(1 of .r, we have H (T) = H 
(A, T). D 

8.6.15 Corollary. If T is an invertible, measure-preserving transformation 
on a probability space (Q, ST, P), and A is a finite subfield of .r such that 
the subfields Tn A, n = 0, ± 1, ±2, ... are independent and the O"-field they 
generate is equal to .r, we have H (T) = H (./6 ). 

8. 7 BERNOULLI SHIFTS 

We can now apply the results of 8.6 to compute the entropy of a Bernoulli 
shift. 

8.7.1 Definition (Bernoulli Shift). Let S be the set {0, 1, ... , k- 1}, ~ 
be the O"-field of all the subsets of S, and 1r = (po, p 1, .•• , Pk-J) be the 
probability measure on (S, ~) such that rr(i) = p;, i = 0, 1, ... , k- 1. We 
consider the probability space (Qrr, .rrr. P rr) consisting of all doubly infinite 
sequences w = ( ... , w_ 1, wo, w1, ... ) of symbols 0, 1, ... , k- 1. The O"-field 
.rrr is generated by the cylinders C = {w: w1 = a1, -m.::; i.::; n}, where 
the a1 can be any elements of S. The probability of such a cylinder is 
Prr(C) = rr=-mJT(at). (In other words, the coordinate variables an(w) = Wn 
generate .rrr and are independent.) 

The Bernoulli shift with distribution 1r is the transformation T rr defined by 

(The transformation T rr shifts the coordinates of w to the left.) Here, T rr is mea
sure-preserving and invertible because if C is a cylinder, r-'c and TC are 
also cylinders and have the same Prr-probability as C. 

8. 7.2 Theorem (Entropy of a Bernoulli Shift). The Bernoulli shift T rr with 
distribution 1r = (po, ... , Pk-i ), has entropy H (T rr) = - 2::7,:-J Pt log Pt. 
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PROOF. Let A be the finite subfield generated by the projection ao. Thus 
A is generated by the cylinders {w: wo = i}, i = 0, ... , k- 1. The subfield 
T;n A is generated by the projection an. Therefore the subfields T~A, 
n = 0, ±1, ... , are independent and generate .rJTrr, and according to 8.6.15 

k-i 

H (T rr) = H (A) = - L Pi log Pi. 
i=O 

Except for the trivial cases where k = 1, or the distribution 1r gives measure 
one to one of the symbols, the probability spaces (Qrr, .rrr, P rr) are all 
isomorphic to the probability space ([0, 1 ]2, ..5B([O, 1 f), J-t) [J-L is Lebesgue 
measure] and therefore isomorphic to each other. D 

We recall that two probability spaces (n,,.r,,P,) and (Q2,.r2,P2) are 
isomorphic iff properties (a), (b), (c) of 8.6.0 are verified. 

8.7.3 Theorem. For any integer k > 1, and any distribution 1r on {0, 1, ... , 
k- 1} such that Pi =P 1, i = 0, 1, ... , k- 1, the probability space (Qrr, .rrr, P rr) 
is isomorphic to the probability space ([0, 1]2, ..5B([O, 1]2 , J-L) where J-t is 
Lebesgue measure. 

If k = 1 or if one of the p; is equal to 1, the probability space (Qrr, .rrr, Prr) 
is essentially composed of one element and cannot be isomorphic to the unit 
square. 

PROOF. If the distribution 1r gives the same probability 1/k to each of the k 
symbols, the proof is easy. For each point a of the unit square we write the 
expansion in base k of the x and y coordinates of a 

X = .WQW! · · • , y = .w_, w_2 · · ·, 

and we define <f>a as 

If one of the coordinates of a is of the form n / km it has two expansions in 
base k (since ljkm = l:~m+l (k- 1)/ki), and <J>a is not well defined. We have 
to first remove such points from the unit square, but we are still left with a 
Borel set E of measure 1. It is easy to check then that P rr (E) = 1, and that </> 
is an isomorphism from E to <f>E. 

If the Pi are not all equal, we have to modify the proof to make sure 
that Prr(</>A) = J-t(A) for all Borel subsets of E. We construct the image 
( ... , w_ 1, WQ, w,, ... ) = </>(a) of a point a of [0, 1]2 in the following way. We 
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cut the square [0, 1f in k vertical open bands Ao, A1, ... , Ak-h with widths 
proportional to Po, p 1 , ... , Pk _, so that 

Ao = {(x, y): 0 < x < Po}, 

(when the p; are all equal to ljk, finding the first term of the expansion of x 
in base k requires dividing [0, 1P in k equal vertical bands). If the point a is 
in A,, we impose w0 = i for the Oth coordinate of <f>a. If the point a is on the 
vertical boundaries of one of the A; we do not define WO· 

We then divide the band A; into k vertical open bands with widths 
proportional to po, p 1, ... , Pk-i; if the point a is in the jth band we impose 
w1 = j for the first coordinate of <f>a; again we do not try to define w1 when 
the point a falls on the vertical boundaries of one of those new bands. We 
iterate this procedure to define the values of Wn for n = 0, 1, .... To define 
the w_n for n = 1, 2, ... , we use the same procedure but we divide the square 
[0, If into horizontal open bands. 

Note that <f>a is not defined for the points a that fall on the boundary of 
one of the bands so defined. Since there are only a countable number of 
those bands, the function </> is defined on a set E of Lebesgue-measure 1. 
The function </> is not onto. The sequences that contain an infinite number of 
consecutive 0' s or an infinite number of consecutive k - 1 's, are never images 
of elements of E. Let An be the set {w: w; = 0 for all i 2: n}, and Bn be 
the set {w: w; = k- 1 for all i 2: n}, and define the sets A_n and B_n 
similarly by replacing the condition i 2: n by i:::; -n. The set of elements 
of Qrr that are not images under </> of elements of E is U~=-oo (An U Bn ). 
Each An and each Bn is in .rrr and has measure 0, therefore Q' = </>E is 
a measurable subset of P rr-measure one. Thus the restriction of </> to E is 
one-to-one. 

By construction, the image of an open rectangle delimited by a vertical 
and a horizontal band constructed above is of the form Q' n { w: w; = 
h;, -m:::; i:::; n}, and has as Prr-measure the Lebesgue measure of the 
rectangle. Since the bands generate the Borel O"-field on the unit square, and 
the cylinders generate .rrr, the probability space (Qrr, .rrr, Prr) is isomorphic 
to the unit square with Lebesgue measure. D 

Now that we know that essentially all the probability spaces (Srr, .rrr, Prr) 
are isomorphic, we can start wondering whether some of the Bernoulli shifts 
are themselves isomorphic. If two Bernoulli shifts have different entropy, they 
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cannot be isomorphic by 8.6.10. Thus the Bernoulli shift with distribution 
(113, 113, 1/3) is not isomorphic to the Bernoulli shift with distribution 
(114, 1/4, 114, 114). But what happens if two Bernoulli shifts have the same 
entropy? For example, the Bernoulli shifts with distributions (112, 118, 118, 
118, 1/8) and (1/4, 114, 114, 1/4) both have entropy 2; are they isomorphic? 
The answer is given in the following theorem which we state without 
proof. 

8. 7.4 Theorem. If two Bernoulli shifts have the same entropy, they are 
isomorphic in the sense of 8.6.8. 

8.8 REFERENCES 

The interested reader can find elementary proofs of 8.7 .4 (too long to include 
in this chapter) in Shields (1973) and in Cornfeld, Fomin, and Sinai (1982). 

Some standard references on ergodic theory are Billingsley ( 1965), 
Halmos (1956), and Jacobs (1962). The pointwise ergodic theorem can 
be generalized in several ways. If T is a positive contraction operator on 
L 1, not necessarily arising from a measure-preserving transformation, one 
can investigate convergence of the sequence of averages n -I (f + T f + · · · + 
rn-i f). In fact the arithmetic average can be replaced by a ratio of the form 

(f + T f + ... + rn-i f)j(g + Tg + ... + rn-lg), 

where f and g belong to L1• For results of this type (specifically, the 
Dunford-Schwartz ergodic theorem and the Chacon-Ornstein theorem), see 
Garsia (1970). 

A discussion of the Shannon-McMillan theorem for a finite coordinate 
space may be found in Billingsley (1965). McMillan (1953) proved L1 con
vergence and Breiman (1957) obtained a.e. convergence; Shannon's original 
paper (1948) considered convergence in probability for functions of a finite 
Markov chain. All these results were for finite coordinate spaces; the extension 
to the countable case is due to Chung (1961). For applications to information 
theory, see Ash (1965) and Gallager (1968). 

The Shannon-McMillan theorem has been generalized to a more abstract 
setting. For a survey of this area and a unified approach to the various results, 
see Kieffer (1970). 

The definition of the entropy of a transformation as an invariant by isomor
phism is due to Kolmogorov (1958; 1959). The notion of Bernoulli shift can 
be generalized by allowing the o--fields A to have a countable number of 
atoms. The entropy of such a shift can be infinite. The proof of the isomorphy 
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of Bernoulli shifts with same entropy is due to Ornstein (1970a) for shifts 
with finite entropy, and for generalized Bernoulli shifts with finite or infinite 
entropy (Ornstein, 1970b). 

The Ornstein isomorphism theorem for Bernoulli shifts has been applied by 
Gray (1975) to show the existence of a class of sliding-block noiseless source 
codes for a large class of ergodic sources. 



CHAPTER 

9 
BROWNIAN MOTION AND 
STOCHASTIC INTEGRALS 

9.1 STOCHASTIC PROCESSES 

A stochastic process on a probability space (Q, .r, P) is a family of random 
variables (X1 ) 1ET• where the index set T can be any set. If T = N, a stochas
tic process is simply a sequence of random variables Xn on the probability 
space (Q, .r, P), and the indices 0, 1, ... may represent successive times. For 
instance, a gambler plays at times 0, 1, 2, ... ; X0 is the initial fortune of the 
gambler and X n is the fortune at time n. In this chapter we will consider 
only the case T = jR+ = [0, oo ). The index t can again be thought as denot
ing time and, for each fixed w, the function t-+ X1 (w) is interpreted as the 
path of w. We will say that the paths are continuous, or that the process is 
continuous (resp. right-continuous) if the functions t-+ X1 (w) are continuous 
(resp. right-continuous) for each w. 

Stochastic processes are often constructed as mathematical models. For in
stance, we may try to build a mathematical model for the number N 1 (w) of 
phone calls arriving at a switchboard in the interval of time [0, t]. Assume that 
the data support the following assumptions about the random variables N 1 • 

1. No=Oa.s. 
2. If 0:::; t1 < t2 < · · · < t 11 , the increments N 12 - Nt,, ... , Ntn - Ntn-I are 

independent. 

3. For s < t the increment N 1 - N s has a Poisson distribution with parameter 
A(t- s), where )... is the average number of calls in one unit of time. 

One can construct the paths of the stochastic process (N1) 1Erw.+ (called the 
Poisson process) in the following way. Let T 1 :::; T 2 :::; · · · :::; T n :::; .•. be the 
successive arrival times of the calls, and W 1 = T 1 , W 2 = T 2 - T 1 , ... , W n 

= T n - T n -I, . . . the waiting times between calls. Assume that the W n are 
independent, identically distributed, each with exponentional distribution with 
mean 1/A. The process (N1 )r2:.0 defined by N 1 = l:n I!Tn:::tl satisfies conditions 
1-3. It follows from the construction that, for almost every w, the path t -+ 
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N 1 (w) is a right-continuous, nondecreasing function that increases only by 
jumps of size 1. These are properties that we expect for the number of calls 
arriving in the interval [0, t]. 

We can also use the Kolmogorov extension theorem to construct the Pois
son process. Let 0 = t 1 < t2 < ... < ti < t;+i < · · · < tn; denote by S the set 
{t 1, ... , tn} and by !J?S the O"-field of subsets of Q = IR~+ generated by the 
coordinates X11 , .•. , X1". Let rrs be the probability on (Q, 9S) which makes 
Xo = 0 a.s., and the X1k - X1k_, independent and Poisson distributed with pa
rameters )..(tk- tk-d, for k = 2, ... , n. If the rrs form a consistent system, 
then we can apply the Kolmogorov extension theorem 2.7.5 and construct a 
probability p on n for which the XI satisfy conditions 1-3. The problem is 
that we now have to study the paths t -+ X1 • Is it true that, outside of a set 
of P-probability 0, the functions t-+ X1 are right-continuous, nondecreasing 
and increase only by jumps of size 1? Unfortunately it is probably not true 
(see Problem 3); we have to modify each X 1 on a set of probability 0 in such 
a way that the new paths satisfy all these intuitive properties. This will be the 
subject of Problem 7 in 9.2. 

The above discussion leads to the notion of version of a process. Let 
(X1 ) 1;o.o and (Y1 ) 1~o be two stochastic processes on the same probability space 
(Q, .rJT, P). The process (Y1) 1;o.o is a version of the process (X1 )1~o iff, for 
each t E ~R+, we have P(X1 = Y 1) = 1. This does not imply the stronger con
dition P(X1 = Y 1 Vt E ~R+) = 1 (the set {X1 = Y 1 Vt E ~R+} is generally not 
even measurable), but it does imply that, for any countable subset 1 of IR +, 
P(X1 = Y 1 Vt E 1) = 1. In particular the processes (X1 )1~o and (Y1 ) 1~o have the 
same finite-dimensional distributions. The regularity of the paths of a process 
can always be destroyed by the wrong choice of version (see Problem 3). 

In the next section we construct another stochastic process, Brownian mo
tion (B1 )1 E~+. The random variables B1 will satisfy conditions 1 and 2 above, 
but, for s < t, the distribution of B1 - Bs will be normal with mean 0 and 
variance t - s. Since the process is constructed as a model for the movement 
of a particle, we would like its paths to be continuous. Unfortunately there is 
no intuitive construction of Brownian motion that gives us continuous paths; 
we will use the Kolmogorov extension theorem and then modify the process 
to obtain continuous paths. 

We conclude this section with a few easy consequences of path regularity. 
Let (X1 )1~o be a stochastic process; since X1 is a random variable, for each 
fixed t, the function w-+ X1 (w) is measurable from (Q, .97') to (IR, .2(1R)). 
The functions t-+ X1 (w) from (IR+, .%'(!R+)) to (IR, ..5B(IR)) are not necessarily 
measurable. But it is the case if the paths are all regular enough, for example 
if, for each w, the function t-+ X1 (w) is right-continuous. 

The stochastic process (X1) 1;o.o can be considered as a function X of the 
two variables t and w. The process (X1 ) 1;o.o is said to be measurable iff X is 
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measurable as a function from (Q x jR+, .97 x J&(IR+)) to (IR, J&(IR)); if the 
process (X1 ) 12::0 is measurable and lXI is not too large, we can consider integrals 
of the form E[f; X (t, w) dt] (Fubini' s theorem). Again, right-continuity of the 
paths is sufficient to assure the measurability of X (see Problem 1). 

Problems 

1. Let (X1 ) 12::o be a stochastic process. Show that, if the paths are right
continuous (or left-continuous), the process (X1 ) 12::o is measurable. [Hint: 
if the paths of the process are right-continuous, consider the processes 
Xn defined by Xn(t, w) = X((k + 1)/n, w) if kjn::::; t < (k + 1)/n, 
k = 0, 1, .... ] 

2. Let (X1 ) 12::o and (Y1 ) 12::o be two processes on (Q, .§?;P). Assume that (X1 ) 1;o.o 

and (Y1 ) 12::o are such that, for each t 2: 0, P(X1 = Y 1 ) = 1, and that they 
both have right-continuous paths. Show that the set {w: X1 (w) =P Y 1 (w) 
for at least one t} is measurable and has probability 0. (The same holds 
if both processes have left-continuous paths.) 

3. Let (X1 ) 1;o.o be a continuous process. Assume that the given probability 
space has a random variable Z defined on it such that P(Z =a) = 0 for 
every real number a. (If necessary enlarge the probability space.) Show 
that there exists a version (Y 1 ) 12::0 of (X1 ) 12::0 such that the paths of (Y 1 ) 12::0 

are nowhere continuous. [Hint: let f(t) be the function that is 1 on the 
rationals and 0 elsewhere. Consider the process Y1 = X1 + f (Z + t).] 

9.2 BROWNIAN MOTION 

9.2.1 Definition. A Brownian motion is a stochastic process (B1 ) 1EfR+ with 
the following properties. 

1. The increments on disjoint intervals are independent: if 0 ::::; t 1 < t2 

< · · · < tn, the random variables B12 - B1" ••• , B1n -B1n-t are independent. 

2. If s < t, the increment B1 - Bs of the process on the interval (s, t] is 
normally distributed with mean 0 and variance t- s. 

3. The process starts a.s. at 0: Bo = 0 with probability one. 

4. The paths of the process B1 are all continuous. 

9.2.2 Remarks. 1. The concept of Brownian motion goes back to the obser
vation by the botanist Brown of the random movement of particles of pollen in 
water. Einstein and Smoluchovski showed that a good approximation for the 
projection of such a random movement on a line was given by the conditions 
in Definition 9.2.1, where the variance of B1 - Bs is only assumed to be pro
portional to t - s. The coefficient of proportionality depends on the fluid. A 
rigorous proof of the existence of a continuous version was given by Wiener. 
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For this reason the Brownian motion is often called the Wiener process and 
denoted by W1 • 

2. The probability space (Q, !7, P) is not specified, and we are free to use 
whatever seems appropriate. 

3. Conditions 1, 2, and 3 involve only the finite-dimensional distributions 
of the process. Condition 3 is mild. [If (X1 ) 1;o.o is a process satisfying conditions 
1, 2, 4, the process Y, = X1 - Xo is a Brownian motion.] The existence of 
a process satisfying 1, 2, 3 will be an easy consequence of the Kolmogorov 
extension theorem. It will be much harder to construct a process satisfying 
condition 4 as well. 

4. Condition 4 is sometimes weakened to "outside of a set of probability 
0 the paths of (B1 ) 1;o.o are continuous." Probabilistically, it does not matter 
whether we work with the strong or the weak condition since we can always 
restrict ourselves to the set of probability 1 on which the paths are well 
behaved. 

9.2.3 Theorem. There exists a probability P on the measurable space 
(IR ~+, ..5f1(1R)~+) such that, for this probability, the coordinate functions X1 

satisfy properties 1, 2, 3 of Definition 9.2.1. 

PROOF. Let 0 = t 1 < t2 < · · · < t; < ti+l < · · · < tn; denote by S the set 
{t 1, ... , tn} and by 9S the O"-field of subsets of Q = IR~+ generated by 
the coordinates XI,, ... , X In. Let 7rs be the probability on (Q, .§IS) which 
makes Xo = 0 a.s. and the X1k - X1k_, independent and normally distributed 
with mean 0 and variances tk- tk-l· for k = 2, ... , n. If the rrs form a 
consistent system we can apply the Kolmogorov extension theorem 2.7.5, and 
the existence of probability P is proven. To verify the consistency of the rrs, 
we have to show that, if S; denotes the subset of S obtained by deleting 
the element t; for one i > 1, the restriction of Jrs to the O"-field §Si is rrsi' 
We know that for rrs the random variables X12 - X1,, ••• , X~; - X1i-l, 

xli+I - Xri, ... , X In - xln-1 are independent and normally distributed with 
mean 0 and variances t2- t1, ... , t;- ti-l• ti+l - t;, ... , tn - tn-l· We want 
to show that for Jrs the random variables x,2- XI,, ... , xli+l - xli-1' ... , 

X1" - X1"_, are independent and normally distributed with mean 0 and 
variances t2 - t1, ... , ti+l - t;-l, ... , tn - tn-1· This is true since the random 
variable xli+l - xli-[ is the sum of the two independent and normally 
distributed random variables X1, - X1,_ 1 and X1,+ 1 - X1,. D 

9.2.4 Remark. If P is the probability constructed in 9.2.3, then, by Cheby
shev's inequality, P(IX1 - Xsl >e) :S (t- s)je2. Therefore X1 converges in 
probability to Xs as t -+ s. But convergence in probability is not enough; we 
want pointwise convergence. Assume the existence of a continuous version 
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(Y1 ) 1:::o of the process (X1 ) 1:::o· Even if (X1 ) 1:::o has discontinuous paths, there 
will be traces of continuity left on the countable subsets of jR+. If 1 is such 
a countable subset, then the process (X1 ) 1:::o will be almost surely continuous 
on 1, since the set {X1 = Y 1 Vt E 1} has probability one. Therefore our first 
step is to study the continuity of (X1 ) 1:::o on a countable dense subset of jR+. 

We start with a lemma. 

9.2.5 Lemma. Let 0 = to < · · · < tn. If the process (X1 ) 1:::o satisfies proper
ties 1-3 of Definition 9 .2.1, we have, for a > 0, 

P c~~~n Xlk > a) :::; 2P(X1• >a) 

and 

PRooF. LetT be defined on {maxk=O, ... ,n X1k >a} as the first timet; such that 
X1; >a. On the set {maxk=O, ... ,n X 1k :::; a}, we take T = oo. We have, using the 
fact that for i = 0, ... ' n - 1, the xln -XI; have a symmetric distribution, 

n-i 
= 2 LP(T = ti)P(XIn -XI; > 0) + P(T = tn). 

i=O 

Since the increment X1" - X1, is independent of the O"-field O"(X10 , ... , X1), 

which contains the set {T = t;}, we obtain 

n-i 

Pc~~nXIk >a) =2LP(T=ti,XI" -XI; >0)+P(T=tn) 
i=O 

n-i 
::;2LP(T=t;,XI" >a)+P(T=tn,X1• >a) 

i=O 

:S 2P(XIn > a). 

For the second inequality it is sufficient to notice that the process (-X 1 ) 1:::o 
also satisfies conditions 1-3 of 9.2.1, and that 

P (k~.·-~.n X1k <-a) = P ( _:nax -X1k >a) :S 2P(-X1" >a) 
k-O, ... ,n 

= 2P(X1• < -a). D 
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9.2.6 Corollary. If the process (X1 ) 1:::o satisfies conditions 1-3 of 9.2.1, 
and 1 is a countable subset of [0, N], then, for a> 0, P(sup1E1 IX1 1 >a) 
:::: 2P(IXNI >a). 

9.2.7 Theorem. Let (X1 ) 1:::o be the process constructed in 9.2.3. For every 
N > 0 the restriction of the process (X1 ) 1:::o to the dyadic rationals k/2n is a.s. 
uniformly continuous on [0, N]. 

PRooF. By rescaling the real line we can always assume that N = 1. Let S 
be the set of all dyadic rationals in [0, 1]. We have to show that 

Yn(w) = sup IX1(w) -X5 (w)l-+ 0 a.s. 
t,sES,It-sl~ 1/2" 

and, since Y n 2: Y n+l, it is sufficient (by (2.5.3)) to show that, for all 
a> O,P(Yn >a)-+ 0. 

The random variables Y n are hard to work with and the trick is to bound 
Y n by 3 maxk Zn,k> where 

Zn,k = sup IX/- xkj2" I k = 0, ... , 2n- 1 
IESn(k/2", (k+1)/2"] 

and to use 9.2.6 to show that P(maxk Zn,k > a)-+ 0 as n -+ oo. As the ran
dom variables Zn,k. k = 0, ... , 2n - 1 are identically distributed, 

( ) 

2"-1 

P(m;-xzn,k > a) = p uk {Zn,k > a} :::: L P(Zn,k > a) = 2n P(Zn,O > a). 
k=O 

Now by 9.2.6, 

so that 

P(Zn,o >a)= P ( sup IXtl >a) :::: 2P(IX1/2"1 >a), 
tESn[O, 1/2"] 

This last quantity converges to 0 as n -+ oo since X1;2" has a normal distri
bution with mean 0 and variance 1/2n (see 9.2.8 below). D 

9.2.8 Lemma. Let a > 0, {3 > 0 and assume that X f3 is a normally distributed 
random variable with mean 0 and variance {3. Then 

1 
-P(1Xf31 >a)-+ 0 
{3 

as {3-+ 0. 
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PRooF . 

..!:_P(IX!ll >a)= ~ roo e -% dx = 2
r.;; roo e-l dy 

{3 {3 2rrf3 la f3v 7r la;~ 

< -- e-Ydy= --e ~ 
2 1oo 2 __ a_ 

- {3.j7i a;~ {3.j7i , 

if {3 is small enough to assure that aj J2ij > 1. D 

We are now ready to construct a continuous version of the process (X1 ) 1;o.o· 

9.2.9 Theorem. There exists a process satisfying the conditions of 9 .2.1. 

PROOF. With Y n defined as in the proof of 9.2.7, let A be the set {Y n -+ 0}. 
The set A is measurable and has probability 1. On A we define, for all t, 
B1 (w) as the limit of the random variables Xs(w) as s approaches t along 
the dyadic rationals. On the complement of A we take B1 (w) = 0 for all t. 
By 9.2.7, the process (B1 ) 1;o.o is continuous, and we just have to prove that 
(B1 ) 1;o.o is a version of (X1 ) 1;o.o. Lett 2: 0, and (sn) be a sequence of dyadic 
rationals converging tot. The random variables Xs" converge a.s. to Bt and in 
probability to X1 (9.2.4), which is enough to assure that B1 = X1 a.s. D 

9.2.10 Corollary. If (B1 ) 1;o.o is a Brownian motion, then the functions 
sup1< 1 B1 and sup1< 1 IB11 are measurable and satisfy, for a> 0, the following _Q _Q 

inequalities: 

P(supB1 >a)::=:: 2P(B10 >a) and 
t:'Oto 

P(sup IBtl >a)::::: 2P(IBtol >a). 
t:'Oto 

PRooF. The continuity of the paths of (B1 ) 1;o.o allows us to generalize 9.2.6 
to ~R+. D 

Problems 

1. Let (X1 ) 1;o.o be a continuous process. Show that (X1 ) 1;o.o is a Brownian 
motion iff, for any finite subset {t1, ... , tn} of ~R+, the random vector 
(X1l' ... , X1J is Gaussian with mean 0 and covariance a;.j = min(t;, tj). 
(See Appendix 5 for the definition and properties of a Gaussian random 
vector.) 

2. A stochastic process (X1 ) 1":o is continuous in probability iff, for each 
s E IR +, X 1 -+ X, in probability as t -+ s. Show that, if two processes 
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(X1 )1~o and (Y1 )1~o have the same finite-dimensional distributions, (Xr)1~o 
is continuous in probability iff (Y1 )1~o is. 

3. Let (B1 )1~o be a Brownian motion and c > 0. Show that the process 

is a Brownian motion. 
4. Let (B1 )1~o be a Brownian motion. Show that the process 

Xr = {tBi;1, 
0, 

if t > 0, 
if t = 0, 

satisfies conditions 1-3 of Definition 9.2.1, and is continuous outside of 
a set of probability 0. The process (X1 )1~0 is therefore a Brownian motion 
and the properties of the Brownian motion at 0 and oo are related. [Hint: 
use Problem 1 to show that the process (X1 ) 1~0 satisfies conditions 1-3 of 
Definition 9.2.1, and then Theorem 9.2.7 to show the a.s. continuity at 0.] 

5. Let (B1 )1~o be a Brownian motion and (X1 )1~o be the process defined as 

0 ::: t ::: 1. 

The process (X1 )1~o is called a Brownian Bridge. 
(a) Compute the means E(X1 ) and the covariances E(X,X1 ). What is the 

distribution of X1? 
(b) Show that the process 

0::: t ::: 1, 

has the same finite-dimensional distributions as the process (X1 )o9 ::: 1· 

(c) Let U 1 , ••• , U n be independent random variables with uniform dis
tributions on (0, 1) and let 

0 ::: t ::: 1. 

[F n (t, w) is an empirical distribution for the uniform distribution on 
(0, 1).] Show that the process 

X,Jt, w) = ..,fn(Fn(t, w)- t), 0:St:S1, 

has the same means and covariances as the Brownian Bridge. 
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(d) Show that, for each t, the random variables Xn(t) converge in dis
tribution to the random variable X1 • 

6. Let (B1 ) 1-;,o be a Brownian motion. Show that Btft-+ 0 a.s. as t-+ oo as 
follows. 
(a) LetX1, X2, ... be identically distributed random variables. Show that 

if EIX 1l < oo, then for all a > 0, P(IXn I > an infinitely often) = 0. 
(b) Show that Bn/n -+ 0 a.s. as the integer n -+ oo. 
(c) Let 

Xn = max IB1 - Bnl. 
n:'O/:'On+l 

show that EIX 11 < oo. 
(d) Conclude by noticing that for n _:::: t _:::: n + 1 

(e) Show that we could have used Problem 4 to prove directly that 
Btft -+ 0 a.s. as t -+ oo. 

[Hint: use the equality E(X) = J0
00 P(X > )...) d).. for nonnegative random 

variables X, the strong law of large numbers and 9.2.10.] 

7. The purpose of this exercise is to construct the Poisson process using the 
Kolmogorov extension theorem. 
(a) Use the Kolmogorov Extension Theorem to construct a probability 

P on the measurable space (IR~+, ..5f1(1R)~+ ), such that, for this prob
ability, the coordinate functions X1 satisfy properties i, ii, iii below: 

1. Xo = 0 a.s. 
11. If 0 .::: t, < t2 < ... < tn, the increments xl2 -X It, ... , X In -

xln-l are independent. 
iii. For s < t, the increment X1 - Xs has a Poisson distribution with 

parameter )..(t - s). 
(b) Let S be the set of dyadic rationals. Show that outside of a set of 

probability 0 we have 
i. Xo = 0. 

11. The restrictions to S of the paths t -+ X1(w) are nondecreasing, 
and take only nonnegative integer values. 

(c) Modify the process (X1 ) 1.,_0 to obtain a right-continuous, integer val
ued process (N 1 ) 1-;,_o satisfying the properties in question (a) and 
whose paths are nondecreasing. 

(d) Show that, outside of a set of probability 0, the paths of (N 1 ) 1-;,_o 

increase only by jumps of size 1. 
[Hint: Let T > 0 be fixed. To prove (d), examine the following limit: 
limn P(sup j:'0 2"T(IN U+llf2" - N jf2" I ::: 2).] 
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9.3 NowHERE DIFFERENTIABILITY AND QuADRATIC VARIATION OF PATHS 
The paths of the Brownian motion are continuous but they are nowhere 

differentiable. 

9.3.1 Theorem. Let (B1 ) 1""o be a Brownian motion on a probability space 
(Q, .r, P). Then the paths of (B1 ) 1""o are a.s. nowhere differentiable. 

As stated above, the theorem is slightly misleading. The set {w: t --+ B1 (w) 
is differentiable at least at one point} is not necessarily measurable, but we 
will show that it is included in a measurable set of probability 0. 

PROOF. 

We start by studying what differentiability at one point implies for a func
tion. Let f(t) be a real-valued function on [0, oo ); assume that it has a 
derivative f'(to) at a point t0 and choose a real number a> 0 such that 
lf'(to)l :::; a. Then there exists a positive integer no such that, for n 2: no, 

lf(t)- f(to)l :S 2alt- tol, if It- tol:::; 3jn. (1) 

For n 2: no let k be the integer such that (k- 1)/n :::; t0 < kjn. The points 
(k- 1)/n, kjn, (k + 1)/n, (k + 2)/n are within distance 3/n of to; applying 
(1) and the triangle inequality we obtain, for example, 

It ( k: 2) - f ( k: 1) I :::; It ( k: 2) - f(to)l + jt(to)- f ( k: 1) I 

lk+2 I lk+l I lOa ::;2a -n--to +2a -n--to :::;~. 

Using the same method, we obtain similar inequalities for lf(k + ljn) 
- f (k/n )I and If (kjn) - f (k- 1/n )I, which gives us 

max (jt ( k: 2) _ f ( k: 1) I , It ( k: 1) _ f (~)I , 
jt(~) -t(k:l)l):::; l~a· 

Now we apply all this to the Brownian motion. Denote by Xk the random 
variable 

Xk =max (IB ( k: 2) -B ( k: 1) I, IB ( k: 1) -B (~)I, 

IB(~) -B(k: 1)1). 
Let A be the set of w's such that, somewhere on [0, 1), the function 

t--+ B1 (w) has a derivative bounded in absolute value by a. According to the 
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preceding discussion, any w in A is, for n big enough, in An where An is the set 
of w's such that for at least one kin {1, 2 ... , n} we have Xk(w) ::=:: (10a)jn. 
If we show that P(lirn infn An) = 0, we will have proved that, on [0, 1 ), the 
paths have a.s. no derivative bounded by a in absolute value. 

Since the increments of the Brownian motion on the intervals (ijn, 
[(i + 1)/n] are independent and identically distributed, we have 

n ( 10 ) 
P(An) ::::: {; P Xk ::::: --!'-

=nP(max(jB(~) -B(~)j.jB(~) -B(~)j. 
IB (~)I) ::=:: 1~a) 

=n [p(IB(~)I::::: 1~a)r 
= n [ /nj!Oafn e-nx2f2dx]3 

V ~ -JOajn 

= n -- e-x f 2ndx -+ 0 . 
[ 

1 j'Oa 2 ] 

3 

..Jiim -lOa 

We have been studying differentiability on the interval [0, 1) with the bound 
a, but the same technique works on [0, N) with bounds b as large as desired. 
The theorem is proved. D 

9.3.2 Remark. Theorem 9.3.1 can be generalized to upper, lower, right, and 
left derivatives: its proof can be modified to show that, outside of a set of 
probability 0, liminft-->s,t<s(Bt- Bs)/(t- s), lim SUPt-H,t<s(Bt- Bs)/(t- s), 
liminft-+s,t>s(B1 -Bs)/(t- s) and limsupt-->s,t>s(B1 - Bs)/(t- s) are nowhere 
finite. 

9.3.3 Corollary. Almost every path of the Brownian motion has infinite vari
ation on every finite interval. 

PRooF. By 2.3.9, if a path has finite variation on an interval [a, b], then it is 
almost everywhere differentiable on the interval. D 

If [a, b] is an interval of jR+, and .9" = {to, ... , td is any partition of [a, b ], 
we have just shown that sup,., l::i IB(ti+d- B(ti)l = oo. What can we say 
about the quadratic variation lim.,., l::i IB(ti+J)- B(ti)l 2 when the partitions 
.9" get finer? 
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9.3.4 Theorem. If (B1 ) 1>o is a Brownian motion, [a, b] is an interval of jR+, 

and 9n = {t~nl, ... , ttl} is a sequence of partitions of [a, b], then 

"L::IB(tz:l1)-B(tjnl)l
2

--+ (b-a) inL2 as mFiti:l, -t[nll--+ 0. 

PRooF. 

Let Sn = 2:; IB(tz:l,)- B(tznlf; we have 

E(Sn- (b- a))2 = E( ~ [ (B(tj:l,)- B(tjnl))
2

- (tz:l, - tfnl)]) 
2 

I 

1,) 

[ ( B(tj")_,) - B(tt )) ) 
2 

- (tj")_, - tT )) ] 

= EL::[ (B(tz:l,)- B<tin)))
2

- (tz:)~- tzn))f, 
i 

since the (B(tz:l,) - B(tjnl) ) 2 
- (tz:l, - t[nl) are independent random variables 

with mean 0. The random variables B(tz:l,)- B(tjnl) are normally distributed 

with variance ti:l, - t[nl; therefore, if Z denotes a normally distributed random 
variable with mean 0 and variance 1, 

E(Sn - (b- a))2 = E(Z2
- 1)2 L(tj:l, - t[nl) 2 

i 

Problems 

1. Show that, if the Brownian motion has a chord of slope greater than a 
on the interval [0, 1], then the process (X1) 1>o defined in Problem 3 of 
9.2 has, on [0, 1jc2], a chord with slope g;eater than ca. This shows 
intuitively why the Brownian motion is a.s. nowhere differentiable. 

2. Let 9n and Sn be defined as in 9.3.4, and let ll9'nll =max; ltf:l,- t[nll· 

Show that, if for a sequence of partitions 9n, l:n ll9'n II < oo, then 
Sn --+ (b- a) a.s. 

9.4 LAW OF THE ITERATED LOGARITHM 

If (B1 ) 1:::.o is a Brownian motion, we know that Btft--+ 0 a.s. as t--+ oo 
(Problem 6 of 9.2). In 9.4.4, we show that, more precisely, B1 stays asymptot
ically in between -J2tlog(logt) and J2tlog(logt) as t--+ oo. According to 
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Problem 4 of 9.2, the behaviors of B1 at 0 and oo are related, and it is not sur
prising that a similar asymptotic property is satisfied at 0 (see Theorem 9.4.3). 

The following estimates will be useful in the proof of 9.4.3. 

9.4.1 LemiTUl. Let X 1 be a normally distributed random variable with mean 
0 and variance t, and let a be strictly positive. Then 

Jt 2!2 P(X >a)< --e-a 1
• 

I - a.Jiii 
PROOF. Just notice that 

P(XI >a)= _1_ {oo e-x2f21 dx 
.J2i(i Ja 

< -- xe-x f2t dx 1 100 

2 

- a.J2i(i a 

= Jt e-a2f2t. D 
a.Jiii 

9.4.2 Lemma. The ratio of fx
00 

e-s
2
f 2 ds and (e-x

2
f 2)jx converges to 1 as 

x converges to oo. (Thus the inequality of 9.4.1 is an asymptotic equality as 
a-+ oo.) 

PRooF. Apply L'Hopital's Rule. 0 

9.4.3 Theorem. If B1 is a Brownian motion, then we have 

. B1 
hm sup = 1 a.s. 

t-+O ,J2t log(log 1/t) 

and 

lim inf B1 = -1 a.s. 
~--+0 ,J2t log(log 1/t) 

PRooF. The second statement of the lemma is a consequence of the first 
because -B1 is also a Brownian motion. 

1. Let u(t) = ,J2t log(log 1/t). We first show that 

. Bl 
hm sup < 1 a.s. 

t-+O ,J2t log(log 1/t) -

This is equivalent to: for almost every w, and any 8 > 0, B1 ::: (1 + 8)u(t) 
when t is near enough to 0. 

Given 8 > 0, choose a E (0, 1) such that a(l + 8)2 > 1; consider the de
creasing sequence t n = an, and let An be the set 

An = {w: B1 (w) > (1 + 8)u(t) for at least one t E (tn+l, tn]}. 
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Using 9.2.10 and the fact that the function u(t) is increasing for sufficiently 
small t, we obtain 

Therefore, by 9.4.1, 

Substituting an for tn we obtain the inequality 

1 
P(An) :::: jg 1 

7r 2(1 +e)2alog[(n + l)log~] [ 
1] (i+s)2a 

(n + 1)log ~ 

1 
< K -;-~~----r.===7====;=~ 
- (n + 1)fl Jlog(n + 1)' 

where {3 = (1 + e )2 a > 1. Therefore l:n P(An) < oo and, by the first Borel 
Cantelli Lemma 2.2 .4, P(lim supn An) = 0. This assures that, for almost every 
w, B1 :::: (1 + e)u(t) when t is near enough to 0. 

2. We now show that lim supH0 (Btl J2t log (log 1/t)) 2: 1 a.s. by showing 
that, for any 8 > 0, there exists a sequence t 1 > t2 > ... decreasing to 0 such 
that P(B1" > (1- 8)u(tn) i.o.) = 1. (Recall that the abbreviation i.o. stands 
for infinitely often.) 

We now choose e > 0 and a E (0, 1) small enough to guarantee that 
(1 - e)2 < (1 -a), and (1 -e)- (1 + e)y'a > 1 - 8. Let tn =an and con
sider the independent random variables Xn = B1" - B1n+J. We want to estimate 
2: P(Xn > (1- e)u(tn)). 

( 
Xn (1- e)u(tn)) 

P(Xn > (1- e)u(tn)) = P > -r:====-
Jtn - ln+l Jtn - tn+l 

=P( Xn > (1-e) 2log(nlog~)l· 
Jtn -tn+l ~ 
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Therefore, applying Lemma 9.4.2, we get, since X 1./Jtn- tn-i has a normal 
distribution with mean 0 and variance 1, 

K 
P(Xn > (1- e)u(tn))"' ~' 

nY y•ogn 

where y = (1 - e)2 /(1 -a) < 1. This implies that l:n P(Xn > (1- e)u(tn)) 
= oo, and, by the second Borel Cantelli Lemma 6.1.5, we have 

P(Xn > (1- e)u(tn) i.o.) = 1. 

If we apply part 1 of the proof to the process -B1 , we see that 

P(B1•+' 2: -(1 + e)u(tn+d for n large enough)= 1, 

and, therefore, 

P(B1 > u(tn) [c1- e)- (1 +e) u(tn+d] 
n- u~) 

i.o.) = 1. 

Since u(tn+dfu(tn)-+ .fii we obtain 

P(B1• > (1- 8)u(tn) i.o.) = 1. D 

We give now the result at oo. We could prove the theorem directly, but it is 
easier to use Problem 4 of 9.2. If B1 is a Brownian motion, so is the process 
Y 1 = tB 111 , and the properties of the paths of the Brownian motion at 0 and 
oo are related. 

9.4.4 Theorem. If B1 is a Brownian motion, then we have 

. Bt 
lim sup = 1 a.s. 

1--+oo .J2t log (log t) 

and 
.. f Bt hmm = -1 a.s. 
~-+oo J2t log(log t) 

PRooF. Apply Theorem 9.4.3 to the process Yu = uB 11u, and take 
t = 1/u. D 

Problem 

1. Let S n = 2:~= 1 Y k. where the Y k are independent and each has a normal 
distribution with mean 0 and variance CY2• Show that 

1
. Sn 
1m sup = 1 a.s. 
n--+oo yi2CY2n log(log n) 
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and 
. . f Sn 1 hmm =- a.s. 
n-+oc .j2CY2n log(log n) 

9.5 THE MARKOV PROPERTY 

The Markov property discussed in Chapter 4 can be expressed as follows: 
a process (X1 )1~o satisfies the Markov property if the position of X1 , knowing 
what happened up to time s, s < t, depends on the value of Xs and not on 
the values of Xu, u < s. The Markov property of the Brownian motion is a 
corollary of the definition of the Brownian motion. 

9.5.1 Theorem(Markov Property). Let (B1 ) 1~0 be a Brownian motion. Then 
if s 2: 0, the process Y1 = B1+s - Bs is a Brownian motion independent of 
the CY-field Jf5 = CY(Bu, u ::S s). 

We would like to generalize this property by allowing s to be a stopping 
time. We give the definition of stopping times with respect to a general non
decreasing family of CY-fields since it will be needed in the problems, but, in 
this section, we are only interested in the family (J91 )1~o-

9.5.2 Definition. Let (Q, Y, P) be a probability space and Co/r)1~o be a non
decreasing family of sub-CY-fields of !JT. A nonnegative random variable T is 
a stopping time for the CY-fields (9;)1~o iff, for each t 2: 0, {T :::=: t} E .!Ji';. (The 
random variable T is allowed to take the value +oo.) 

The CY-field .fJ?T of events prior to T is 

§TT ={A E !JT: An {T ::S t} E .J7; Vt 2: 0}. 

It is also useful to consider the CY-field 

.§?T+ ={A E!JT: An {T < t} E.Ji; Vt 2: 0}. 

These definitions are consistent with the definitions given in Chapter 6, since 
for the index set N, the conditions { T = n} E .97n for any n, and { T :::=: n} E .J?;, 
for any n, are equivalent. When the index set is IR+, the two conditions are 
no longer equivalent, and the condition {T = t} E .J7; for any t is too weak to 
allow us to work with uncountable unions such as {T :::=: t} = Us<1{T = s}. 

Constant times T = t are stopping times. In that case, YT =}?; and Y.Y.+ 
= .J?;+ = ns>l .9;. 

The following theorem gives some intuitive properties of stopping times 
and their associated CY-fields. 

9.5.3 Theorem. Let (Q, !JT, P) be a probability space, (.J7;)1~o a nondecreas
ing family of sub-CY-fields of .rJT, and S and T be two stopping times for the 
family (.J?';)/~0· 
(a) We have the inclusion YT c !JTT+· 
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(b) The random variable T is c9'T-measurable. 
(c) If S ::=:: T, then §S c .§?7. and §S+ c .97+ 
(d) If S < T, then §S+ c §?T. 

415 

(e) If U is an .97rmeasurable random variable and T ::=:: U, then U is a 
stopping time. 

(f) If S and T are two stopping times, then S v T and S 1\ T are stopping 
times and ,§'si\T = .§'s n §?"T. 

(g) If S and T are two stopping times, then S + T is also a stopping time. 

PRooF. 
(a) Let A E §?T. Then for any t 2: 0 the set An {T < t} = 

Un (An {T ::::: t- (1/n)}) is in .J?;. 
(b) It is sufficient to show that, for any t 2: 0, the set {T ::=:: t} is in §?T. For 

any s 2: 0, we have 

{ T ::::: t} n { T ::::: s} = { T ::::: t 1\ s} E .rJ?';. 

(c) Assume that A E §S. Then An {T::::: t} =An {S ::::: t} n {T::::: t} E .J?;, 
and A E §?T. Similarly for the o--fields §S+ and .9]+ 

(d) Use the equality An {T::::: t} = Un (An {S < t- (Ijn)} n {T::::: t}) to 
conclude. 

(e) Use the equality {U ::=:: t} = {U ::=:: t} n {T ::=:: t} to conclude. 
(f) To show that S v T is a stopping time, use the equality {S v T ::=:: t} = 

{S::::: t} n {T::::: t}. Similarly {S 1\ T::::: t} = {S::::: t} U {T::::: t}. Using (b) 
we see that §SI\T c §S n §?T. Conversely, if A E §S n c9'T, we have 
An {S 1\ T ::::: t} = (An {S ::::: t}) U (An {T ::::: t}) E .J?;. 

(g) Since S is §S-measurable, the sets {S E A} n {S ::=:: t} and {S E A} 
n {S ::=:: t} n {T ::=:: t} are in .J7; for any set A E ..5B(IR); which means 
that the restriction of S to the set {S ::=:: t} n {T ::=:: t} is .J?;-measurable. A 
similar property holds for T. Therefore the restriction of S + T to the set 
{S ::=:: t} n {T ::=:: t} is .J?;-measurable, and the set {S + T ::=:: t} 
= {S + T::::: t} n {S ::::: t} n {T ::::: t} is in .J?;. D 

9.5.4 Remark. It is often assumed in the general theory of stochastic pro
cesses that the family of sub-o--fields is right-continuous (.J?; = ns>l Ys for 
any t 2: 0); in this case the property {T ::=:: t} E .J7; for any t is equivalent to 
{T < t} E .J7; for any t, and the o--fields 5?T and §?T+ are the same. The family 
of natural o--fields (..5B1 ) 1~0 of the Brownian motion is not right-continuous, 
but we will see in Problem 2 that ..5B1+ and ..5B1 differ only by measurable sets 
of probability 0. 

The following lemma is useful to verify that hitting times are stopping 
times. 
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9.5.5 Lemma. Let g(t) be a continuous function on [0, oo) such that g(O) = 
0. Let a > 0 and T = inf{t > 0: g(t) =a} = inf{t > 0: g(t) 2: a}, (we take 
T = oo if there is no such t). Then T :::; t iff supr:<:t.rEiQ g(r) 2: a. (A similar 
result holds for a < 0.) 

PRooF. As the function g is continuous, supr:<:t.rEiQ g(r) = sups:<:t g(s) and 
g(T) =a. If T:::; t, then sups<t g(s) 2: g(T) 2: a. Conversely if sups<t g(s) 2: a 
there exists a point to in [O~t] such that g(to) = sups<1 g(s) 2: a (since g is 
continuous), and therefore T :::; t. D -

9.5.6 Example. Let (B1 ) 10,'"0 be a Brownian motion and a =P 0; the first hit
ting time of a is defined as T = inf{t > 0: B1 =a}. The Law of the Iterated 
Logarithm assures that the time T is almost surely finite, and the continu
ity of the Brownian motion assures that BT =a on {T < oo}. If a> 0, then 
{T :::; t} = {supr:::;t,rEiQ B, 2: a} E .§Jt. which shows that T is a stopping time 
for the family (.§11 ) 1o.o· (A similar proof gives the result for a < 0.) 

We want to generalize the Markov property to stopping times, but we first 
give a result on the measurability of BT. 

9.5.7 Theorem. Let (B1 ) 1o.o be a Brownian motion and T be a finite stopping 
time for the O"-fields .§11 = O"(Bs, s :::; t), t 2: 0, then BT is $Jrmeasurable. 

PROOF. Define Xn = Bk;n on {kjn :::; T < (k + 1)/n }, k = 0, 1, 2, .... Then 
Xn is -~rmeasurable, and BT =limn Xn. D 

9.5.8 (Strong Markov Property). Let (B1 ) 1o.o be a Brownian motion and T be 
a finite stopping time for the family of O"-fields (.§11 ) 1o.o· Then X 1 = B1+T - BT 
is a Brownian motion independent of the O"-field .§JT· 

PRooF. Consider the times Tn defined as follows: 

k 
Tn =

n 
if 

k-1 k 
--:::; T < -, k = 1, 2, ... 

n n 

The Tn are stopping times (9.5.3(e)) and, if C E .§JT, the sets C n {Tn = kjn} 
are in Ji?"k;n. Applying 9.5.1, we get, for A E .§J(IR), 

00 

P({Bt+Tn- BT. E A} n C)= Lp ( {Bt+kfn- Bk;n E A,Tn = n n c) 
k=i 

00 

= LP(Bt+kfn -Bk;n EA)P({Tn = ~} nc) 
k=i 

= P(B1 E A)P(C). 
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We now restrict the sets A to be open intervals (a, b). When n -+ oo, 
the random variables Bt+Tn - BTn converge a.s. to B1+T- BT; there
fore P({a < B 1+T- BT < b} n C).::; liminfP({a < B1+Tn- BT. < b} n C) 
.:S lim sup P({a < B1+T. - BT" < b} n C) .:S P({a .:S B1+T- BT .:S b} n C). 
Letting n approach infinity, we get, for a and b such that P(B1+T - BT =a) 
= P(Bt+T- BT =b)= 0, 

P({a < Br+T- BT < b} n C)= P(a < Bt < b)P(C). (1) 

For any e > 0, we have, since we have already verified the Strong Markov 
Property for the stopping times T n, 

P(B1+T- BT =a) .:S liminf P(a- e < Bt+Tn - BT. <a+ e) 
n 

= P(a- e < B1 < a+ e). 

Let e-+ 0 to obtain P(B1+T- BT =a)= 0, for any a> 0. Therefore equality 
(1) is satisfied for all a and b E IR, and B1+T - BT is a Brownian motion 
independent of .§JT· D 

9.5.9 Remark. The same proof shows that, more generally, if T is a finite 
stopping time for the family of O"-fields .§11+, then Y1 = B1+T - BT is a Brow
nian motion independent of the O"-field .§JT+: the stopping times T n defined 
as above are still stopping times for the family ($J1 ) 1~o and, as T < Tn, we 
have .§] T + c .§] T n. Therefore the above proof is still valid if the set c is in 
.§JT+. 

In particular, if T is a finite stopping time for the family ($J1 ) 1~o. then 
Y 1 = Bt+T - BT is a Brownian motion independent of the O"-field .§JT+· 

We now apply the strong Markov property to the problem of finding the 
distribution of the random variable SUPs=ot Bs. The idea is the following: let 
a > 0, and let T denote the first hitting time of a by the Brownian mo
tion. Since the process Yu = Bu+T- BT is a Brownian motion, we have, for 
any u > 0, P(Yu 2: 0) = P(Yu.::; 0) = 1/2. This property should still hold if 
we replace u by a time independent of the process (Yu)u~O· for example 
t- T, and we should have P(sups:o~ Bs 2: a)= P(T .::; t) = 2P(T.::; t, 
Y 1-T 2: 0) = 2P(B1 2: a). We now give a detailed proof. 

9.5.10 Theorem. Let (B1 ) 1~o be a Brownian motion and a > 0. Then 

P(supBs 2: a)= 2P(B1 2: a). 
s<t 
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PRooF. LetT be the first hitting time of a and define the stopping times Tn 
as in 9.5.8. Since the time Tn is independent of Bu+Tn - BTn• we have 

P(Bt- BTn 2:0, Tn < t) = ~p (Bt- Bk;n 2:0, Tn = ~ < t) 

= LP(Bt -Bk;n 2: O)P (rn = ~ < t) 
k<tn 

= ~P(Tn < t). 

Since we let n approach oo; as P(B1 - BT = 0) = P(B1 =a) = 0 and 
P(T = t) :5 P(B1 =a), an argument similar to the one given in 9.5.8 
shows that 

P(B1 2: a)= P(B1 - BT 2: 0, T :5 t) = ~P(T :5 t) = ~P(supBs 2: a). D 
s-:s_t 

Problems 

1. Let (B1 )r:':_o be a Brownian motion,s < t, A E ..5f1(1R) and ..5f1s =o-(Bu,u :;:s). 
Show that 

P(Bt E A I ..5f1s) = P(Bt E A I Bs) = Pt-s(B,, A) a.s., 

where Pu(x, A)= JA (1/.J2mi)exp -(y- x)2 j2udy. 

(Hint: use the conditional density of B1 - Bs given Bs.) 
2. In this problem we will show that ..5f11 and ..5f11+ differ only by sets of 

probability 0. 
(a) If f is a measurable, bounded function from IR into IR define for 

u > 0, 

J 1 (y- x)2 

Pu(x, f)= f(y) ~exp- dy. 
v2rru 2u 

Show that the function (u, x)-+ Pu(x, f) is continuous. 
(b) Use Problem 1 to show that if s < t and f is a measurable, bounded 

function from IR into IR, then 

E[f(Bt) I ..5f1s] = Pt-s(Bs, f) a.s. 

(c) Show that if s < t and f is a measurable, bounded function from 1R 
into IR, then 
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(d) Show that if the functions f 1, h, ... , f mare measurable and bound
ed and if s < t, < t2 < · · · < tm, then 

(e) Show that the above equality is still true when the ti are not restricted 
to being larger than s. 

(f) Now show that, if the random variable Z is bounded and 
CY(Bu. u 2:: 0)-measurable, then 

E[Z l.15's+l = E[Z I ..5Bsl· 

This shows that a 2ls+ -measurable random variable is a.s. equal to 
a ..5B5 -measurable random variable. 

(g) Let 29 be the smallest complete CY-field generated by the random 
variables B1 , t 2:: 0. Define ./11~= {A E ..5B: P(A) = 0} and let .!ll/ be 
the CY-field generated by ..5f11 and JY Show that the family of CY-fields 
(27;)1~o is right-continuous. 

(Hint: use 6.4.4 for (c) and (g).) 

3. Let (Q, Y, P) be a probability space and (.9;)1~0 be a nondecreasing family 
of sub-CY-fields of Y.Let ~ = §';+. 
(a) Show that a nonnegative random variable T is a stopping time for 

the family (~)1~0 iff {T < t} E §';,for any t 2:: 0. 
(b) Show that, if T is a stopping time for the family (§';)1~o, we have 

.§"T+ = ~T-

4. Let (Q, Y, P) be a probability space and (§';)1~0 be a nondecreasing family 
of sub-CY-fields of Y. 
(a) Show that, if T and S are two stopping times for the family (§';)1~0 , 

the sets {S < T}, {S ::::: T}, {S = T}, {S > T}, and {S 2:: T} are all in 
.97s n §T. 

(b) Show that, if the set A is in .9S, then the set An {S ::=:: T} is in .§?T. 
(c) Show that, if the set A is in .97s+, then the set An {S < T} is in §T. 

(Hint: for (a) it suffices to prove that (S < T) and (S ::=:: T) are in .§?T. Use 
arguments similar to those of Theorem 9.5.3(f).) 

The above results generalize properties such as "if S is a stopping 
time, the sets {S < t}, {S = t}, {S ::=:: t} are all in §';," and "if A E Ys, 
then An {S ::=:: t} E §';" to the case of a nonconstant stopping time T. 

5. Let (Q, Y, P) be a probability space, (§';)1:o:o be a nondecreasing family 
of sub-CY-fields of Y, and (T n) be a sequence of stopping times. 
(a) Show that supn Tn is a stopping time. 
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(b) Show that, if the family Co/r)1~o is right-continuous, infn Tn is a 
stopping time and .§?T = nn .§?T". (Show first that .§?T+ = .§?T.) 

9.6 ~ARTINGALES 
In Chapter 6, we defined the martingale and submartingale properties for 

sequences (Xn )n~o of random variables; in this section we generalize these no
tions to the case of an uncountable index set jR+. Many results of Chapter 6 can 
be generalized to right-continuous submartingales, but we will give only there
sults needed in Section 9.7. Two martingales will be essential in the definition 
of stochastic integrals with respect to the Brownian motion, B1 and B?- t. 

9.6.1 Definition. Let (Q, .r;r, P) be a probability space, and (S¥;)1~0 be 
a nondecreasing family of sub-O"-fields of .rJ?: A family of random variables 
(X1 )1 ~o is a martingale with respect to (Si?;) 1~o iff 

(a) each X1 is J?;-measurable and integrable, and 
(b) E[X1 I§";] = Xs a.s. if 0:::::: s < t. 

The notions of sub- and supermartingale can be similarly generalized. 
If J?; = O"(Xs, s :::::: t), we will say that (X1 )1~o is a martingale without spec

ifying the family of O"-fields. 

9.6.2 Examples. 1. The Brownian motion (B1 )1~o is a martingale: if s < t, 
then, since the random variable B1 - Bs is independent of .§Js and has mean 0, 

E[B1 - Bs I .§Js] = E[B1 - Bs] = 0. 

2. The process Y 1 = B?- 1 is also a martingale: we start by noticing that, if 
s < t, 

and 

so that 

To work with the uncountable index set ~R+, we need some regularity con
ditions on martingales. This is why our first step is to show that, under mild 
conditions for the family of sub-O"-fields, we can find a right-continuous ver
sion of a martingale. The argument is similar to the proof of the existence of 
a continuous version of the Brownian motion: we first study the martingale on 
a countable dense subset S of IR +, and we then construct a right-continuous 
version by taking limits along S. 
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9.6.3 Theorem. Let (Q, .r, P) be a probability space, and Co/r)1:;:o a nonde
creasing right-continuous family of sub-O"-fields. We assume that the proba
bility space is complete in the sense of 1.3.7, and that each .J7; contains the set 
ff ={A E .§1: P(A) = 0}. Then any martingale (X1 ) 1:;:o with respect to (Yr)r:;:o 
admits a right-continuous version. 

PRooF. (a) LetS be a countable dense subset of ~R+, a and b be two real 
numbers such that a< b, and let Sn = S n [0, n]. For any finite subset I of 
Sn, it follows from Theorem 6.4.2 that the number Uab(I) of upcrossing of 
(a, b) by the process (X1 ) 1EI satisfies 

1 + 
E(UabU)):::; --E[(Xn-a) ], 

b-a 

and therefore, for any A > 0, 

(1) 

Let h, k = 1, 2, ... be an increasing sequence of finite subsets of Sn such 
that Ukh = Sn. The set {limk Uab(h) = oo} is measurable, has probability 
0 and contains the set An,ab = {w: 3t E [0, n) such that lim infs--+l,s>l,sES 
X,< a< b < limsups--+l,s>l,sESXsl· [lf P(limkUab(h) = oo) =a> 0, 
then, since the U ab (I k) increase with k, for any A > 0 there exists k such 
that P(Uab(h) 2:: A) > aj2. For A large, this is contradictory to inequality 
(1).] Since .r is complete for the probability P, An,ab is measurable and 
P(An,ab) = 0. 

(b) Let 

A= {w: 3t E [0, oo) such that liminf Xs < limsup Xs}, 
s---+t,s>t,sES s---+t,s>t,sES 

The set A is contained in the set <Un,a,b An,ab) where the union is taken for 
all integer values of n, and all rationals a < b; since <Un,a,b An,ab), = 0, A is 
measurable and has probability 0. Define the process 

y
1 

= {lims--+l,s>l,sES Xs, 
0, onA. 

on the complement of A, 

Since .J7; = .J?;+ contains all the sets in ff = {A E .r: P(A) = 0}, the random 
variable Y 1 is .J?;-measurable. 

In the equality Xs = E[Xn I ..97,], s :::; n, let s decrease to t; Xs converges 
a.s. to Y1, and E[Xn I Ys] converges to E[Xn I.J?;+] = E[Xn I .J?;] = X1 a.s. 
(6.4.4). Therefore (Y1 ) 1 :;:o is a right-continuous version of the martingale 
(X1 ) 1:;:o and is itself a martingale. D 
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We now give a couple of results necessary to prove 9.6.8, which will be 
essential in the construction of stochastic integrals. 

9.6.4 Lemma. Let (X1 ) 1o.o be a right-continuous submartingale with respect 
to a family (o/r)1o.o of sub-O"-fields. Then for any A > 0 we have 

AP{supX5 >A} :5 { X 1 dP. 
s:;SI J(sup,-o, X,>A} 

PRooF. We first give the proof when the index set is finite. We consider the 
submartingale on the index set t1 < t 2 < · · · < tk. Let T be the stopping time 
defined by 

T = {rnin{t;: X1, >A}, on the set {max;X1, >A} 
tk. on the set {max;X1,::; A}. 

We have 

k-i 

AP(maxXI, > A) :5 L E[XI,/[T=I,j] + E[XIJ[T=It.max1 x,, >A}] 
l 

i=l 

k-1 

:5 LE[XIJ[T=I;)] + E[XIJ[T=It,max1X,
1
>A)] 

i=i 

Consider an increasing sequence of finite set I k such that Uk I k = Q 1, where 
Q 1 = {all rationals smaller than t} U {t}. Since the random variable X1 is in
tegrable, and the sets {maxi,Eh XI, > A} increase to the set {supsEiQ, Xs > A}, 
we obtain 

AP{supXs>A}:S { X1 dP. 
sEiQ, J(sup,EQ, X,>A} 

(1) 

Since the submartingale (X1 ) 1o.o is right-continuous, we have 

supXs = supX5 , 

s:;SI sEiQ, 

and 

AP{supX, >A} ::; f X1 dP. D 
s:;SI J(sup,<, X,>A} 
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9.6.5 Lemma. If (X1 ) 1:;:o is a right-continuous martingale with respect to 
(o/r)r:,0 , and each X 1 is in L2, then we have 

II sup IXslll2:::: 211Xt112. 
S-:5:t 

PRooF. Let Y = sups<t IXsl· The process IX11 is a submartingale, and there
fore, by Lemma 9.6.4,-we have 

)..P(Y > A):::: 1 IXtl dP. 
(Y>A} 

Since we do not know yet that IIYII2 < oo, we have to work with the random 
variables Y n = Y 1\ n. The set { Y n > A} is empty if A 2: n, and coincides with 
{ Y > A} if A < n. Therefore Y n satisfies 

(1) 

Let F n be the distribution function of Y n. Since s2 = f0' 2).. d).., it follows that 

E[Y~] = 100 

s2 dFn(s) = 100 los 2)..d)..dFn(s) 

= fooc 2)..P(Yn >)..)d).. by Fubini's Theorem 

:S 21
00 

liXti/!Yn>A} dPd).. by (1) 

= 2l1Xtl1
00 

l[Yn>A) d)..dP 

= 2E[IXtiYn]:::: 211Xtii2IIYnll2, 

and 

We finish by letting n approach oo. D 

We now assume that the hypotheses of 9.6.3 are satisfied: (Q, .r, P) is 
a probability space, and (Si?;)1:;:o a nondecreasing right-continuous family of 
sub-o--fields. The probability space is complete in the sense of 1.3.7, and each 
c'Yt contains the set./V= {A E Y: P(A) = 0}. 
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9.6.6 Definition. We denote by ~a the vector space of all processes X 
= (X1 )ogsa such that (X1 )o9 sa is a Co/r)o9 sa right-continuous martingale 
and Xa is in L2. 

If two elements X and Y of .J6a are versions of each other, the set {w: 3t 
E [0, a] such that X 1(w) =I= Y1 (w)} is measurable and has probability 0 (see 
9.1). In this case, we will not distinguish between the processes X and Y. 

We consider on .~l!a the inner product (X, Y) = E(XaYa)· 

9.6.7 Theorem. 
(a) If (X, X) = 0, the martingale X is indistinguishable from the process 

identically equal to 0. Therefore IIXII dd = (X, X) defines a norm on 
JFOa 

~a-
(b) If a sequence Xn, n = 1, 2 ... , converges to X in .A~a. then sup19 

1Xn,1 - X 11 -+ 0 in L 2
. (In particular, for any 0 :S t:::: a, Xn, 1 -+ X1 

in L 2.) 

PRooF. This follows from Lemma 9.6.5. D 

9.6.8 Theorem. The space ~a is a Hilbert space for the inner product 
(X, Y) = E[XaYa], and the subspace of continuous martingales is closed in 
~a-

PRooF. Let Xn be a Cauchy sequence in ~a- The sequence of random 
variables Xn,a is a Cauchy sequence in L2; let Za be its L2-limit, and Z1 

= E(Za I .J?';), 0 :::: t :::: a. The martingale (Z1 )ogsa admits a right-continuous 
version Y = (Y1 )ogsa (9.6.3), and the Xn converge to Y in ~a-

Assume now that the martingales X n are continuous, and let X be their right
continuous limit in .,ffa. We can assume that l:n E[(Xn.a- Xa)2 ] < oo (if 
necessary use a subsequence). Applying successively 9.6.5 and Chebyshev's 
inequality, we have 

and 

for any e > 0. By the first Borel-Cantelli lemma we get 

P(lim sup{sup IXn,l- X1l 2: e}) = 0, 
n t<a 
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and, taking a sequence Bk -+ 0, we see that 

P({sup IXn,t- Xt 1-+-+ 0}) ::=:: L P(lim sup{sup IXn,t - Xt I 2:: ek}) = 0. 
/Sa k n /Sa 

For almost all w, the right-continuous path t-+ X1 (w), t E [0, a], is a uniform 
limit of the continuous paths t-+ Xn, 1(w) and the martingale X is indistin
guishable on [0, a] from a continuous martingale. D 

Problems 

1. Let (X1 )ro·O be a process with independent increments such that X1 E L 1 

for all t 2:: 0. Show that Y1 = X1 - E(X1 ) is a martingale. 

2. (a) Let (B1 )r:':o be a Brownian motion and .%J1 = CY(Bs, s ::=:: t). Show that, 
for any u E IR, the process 

y~u) = exp iuB1 + ~u2t 

is a martingale for the family (.15'1 ) 1;,.o. 
(b) Conversely, let (X1 )1 ~ 0 be a continuous stochastic process such that 

Xo = 0 and for any u E IR the process 

y~u) = expiuX1 + ~u2t 

is a martingale with respect to the family (Y'; = CY(X,, s ::=:: t))1 ~o
Show that (X1 )1 ~ 0 is a Brownian motion. 

3. Let (Q, Y, P) be a probability space, Co/r)1~o a nondecreasing 
right-continuous family of sub-CY-fields and (X1 ) 1;,. 0 a right-continuous 
martingale. 
(a) Show that, if T is a stopping time bounded by t0 , then XT is .§'T

measurable and XT = E[Xt0 I.§'T] a.s. 
(b) Show that, if T is a bounded stopping time, then the process Y 1 = 

Xti\T• t 2:: 0, is a martingale. 

(Hint: use the stopping times Tn = kjn if (k- l)jn ::=:: T < kjn, k = 1, 
2, ... , Corollary 6.4.4 and Problem 5 of 9.5.) 

4. Let (Q, Y, P) be a probability space, (Jl;)1~o a nondecreasing 
right-continuous family of sub-CY-fields and (X1 ) 1~0 a right-continuous 
martingale. We assume that the random variables X1, t 2:: 0, are uniformly 
integrable. 
(a) Show that X00 = limt->oo X1 exists a.s. and that (X1 )os1soc is a mar

tingale. 
(b) Show that, for any stopping time (finite or not), X T is .¥T-measurable, 

integrable and XT = E[Xoo I 7T] a.s. 

(Hint: the inequalities and methods of 6.4 extend easily to right-continuous 
martingales.) 
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9. 7 ITo INTEGRALS 

One possible mathematical model for the price of shares in the stock market 
is the Brownian motion: the price of one share of a particular stock is assumed 
to equal a+ AB1(w) at timet. At times 0 =to < t, < · · · < tn-1 < tn = t, an 
investor decides the amount f (t;, w) of shares of the stock to have during 
time (t;, ti+J). Then the gain in the time interval (0, t) is 

n--i 

A L f(t;, w)(Br,+ 1 (w)- B1,(w)). 
i=O 

At each time t;, the investor knows only what has happened up to time t;. 

Therefore each random variable f(t;, .) should be .91;,-measurable. What hap
pens when the time intervals between consecutive decisions become smaller? 
Does the above sum have a limit? That is, can we define integrals of the form 
J f(t, w)dB1(w)? If the paths of the Brownian motion had a.s. finite variations 
on finite intervals, we could use 2.3.3 and 1.4.4; for almost all w, the function 
t-+ B1(w) would be a difference of two continuous, nondecreasing functions 
and J f (t, w) dB1(w) could be defined, for each w, as a Lebesgue-Stieljes in
tegral. Unfortunately, this is not the case and we have to use martingale theory 
to get around the difficulty. The symbol J~ f(s, w)dB5 , t ::=::a will no longer 
be defined path by path, but as a limit in . /5a. 

Let (B1 ) 1~o be a Brownian motion on a probability space (Q, Y, P), and let 
.§J denote the smallest complete cr-field generated by all the random variables 
Bs, s 2: 0. We will work with the cr-fields .9/lt', where .§Jt' is the cr-field 
generated by .§11 and A/=· {A E .§1: P(A) = 0}. The family (.§1 /) 1~o is right
continuous (9.5 Problem 2); therefore the probability space (Q, JiJ, P) and the 
family (JiJ/)1~0 satisfy the hypotheses of Theorems 9.6.3 and 9.6.8. 

Which processes f(t, w) do we want to integrate? If we want J f(t, w)dB1 

to be a random variable, the process f should be measurable in both variables. 
We will also assume, as in the example of the investor, that, for each t, the 
random variable w-+ f(t, w) does not depend on the future. Therefore we 
consider only processes f (t, w) satisfying the following conditions: 

(a) the process f (t, w) is measurable, and 
(b) the process f(t, w) is non-anticipating (or adapted)-for each t the 

random variable w-+ f(t, w) is J1J/-measurable. 

For simple processes f(t, w) we know what the integral should be. 

(a) If f(t, w) = l(u,v](t), then J; f(t, w)dBr = Bvl\a- Bul\a· 

(b) If f(t, w) = l(u,vl(t)<J>(w), then J; f(t, w)dB, = </>(w)(Bvl\a- Bul\a). 

For the moment we choose a > 0 and we restrict ourselves to processes 
that vanish outside of [0, a] x n. 
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9. 7.1 Definition. 

(a) We denote by Ya the set of processes f(t,w)=l[OJ(t)</>o(w)+ 

"5:.7:/ I(t,.t;+J](t)</>;(w) such that 

(i) 0 = t 1 < t2, ... , tn =a is a finite partition of [0, a], 
(ii) </>o is .29 o'-measurable, 

(iii) for i 2:: 1, </>; is .291/ -measurable, and 
(iv) each</>; is in L2• 

For such a process we define, for 0 ::=:: t ::=:: a, 

t n-i 

Yr = 1 f(s, w)dBs(w) = ~</>;(w)(Br,+ 1 !\ 1 (w)- Br,M(w)). 

(b) We denote by Aa the set of measurable, nonanticipating processes 
g(t, w) which vanish outside the set [0, a] x n, and such that 
E[f; g2(s, w)ds] < oo. 

For processes in 7a we have the following straightforward lemma. 

9.7.2 Lemma. Iff and g are two processes in .?a, then the processes Y1 = 

J~ f(s)dB 5 and Z1 = J~g(s)dB5 , 0 ::=:: t ::=::a, satisfy the following properties. 

(a) (Y1)ogsa and (Z1)o:or:oa are continuous martingales for the family of 
O"-fields (.29/)o:<:rsa· 

(b) The martingales Y and Z are in A~a and, for t ::=::a, we have E[Y1Z 1] 

= E[j~ f(s)g(s)ds]. 

(c) In particular E[Y;] = E[j~ f 2(s)ds], t ::=::a, and, in ... 4~a. 

(Y, Z) = E [loa f(s)g(s)ds]. 

(d) Iff E Ya and 0 ::=:: t ::=::a we have J~ f(s)dBs = J; f(s)l[o.r](s)dB5 • 

PRooF. If the <J>/s are in L2 and are .291,' measurable, then we have 

E[</>;(Bri+1 - Br) I . .99r/l = </>;E[(Br,+1 - Br) I .29r/l = 0, 

E[<J>f(Bri+1 - Br,)2
] = E[<J>fE[(Br,+ 1 - Br)2 I . .%'r/l] = E[<J>f(ti+l- t;)] 

and fori< j, 

E[</>;(Br,+ 1 - Bt,)</>j(Br
1
+1 - Br1 )] 

= E[</>;(Br,+1 - B,)</>jE[(BrJ+1 - Br1 ) I .291/]] = 0. D 
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9.7.3 

(a) 

9 BROWNIAN MOTION AND STOCHASTIC INTEGRALS 

Theorem. 

The mapping f--+ (Y1 = J~ f(s)dB5 )o<er-sa is an isometry from ,7a to 
.Aa, where on 3;, we use the norm of the Hilbert space L2 ([0, a] x 
Q, $1 ([0, a]) x .¥, ds x dP); the mapping can therefore be extended to 
the closure of ,7a. 

(b) The closure of .7a in L 2([0, a] x Q, $1 ([0, a] x .r, ds x dP) contains 
,~a· 

(c) Iff E Aa the process Y1 = J~ f(s)dB5 , thus defined as a limit in .A/6~, 
is a continuous martingale, and, for each t::::: a, E[Y;] = E[j~ f 2(s)ds]. 

(d) Iff and g are two processes in Aa, the processes Y 1 = J~ f(s)dB5 and 

Z1 = J~ g(s)dB5 , 0 ::=:: t ::=::a, satisfy E[Y1Z 1] = E[j~ f(s)g(s)ds]. 

(e) Iff E Aa and t ::=::a we have J~ f(s)dBs = J; f(s)l[o, 1](s)dB5 a.s. 

PRooF. (a) is a consequence of 9.7.2, and (c) a consequence of 9.6.8. Prop
erties (d) and (e) extend from 3;, to its closure, so we just have to prove (b). 
We will follow the proof in Doob (1953). 

1. Let f (t) be a bounded Lebesgue-measurable function oft, which van
ishes outside a finite interval. Then, by 2.4.14, for every 8 > 0 there exists a 
continuous, bounded function fs which vanishes outside a finite interval and 
such that 

[By 2.4.14 there exists a continuous function ls such that f~oo lf(t) 

-Js(t)l 2 dt ::=:: 82• Assume that the function fvanishes outside a finite interval 
[a, b]. Let k be the continuous function which is 1 in [a, b], 0 outside of 
[a- 1, b + 1] and linear elsewhere. The function fs = k]s vanishes outside 
a finite interval and f~oo lf(t)- j 8 (t)l 2 dt ::=:: f~oo lf(t) -]s(t)l 2 dt ::=:: 8

2
.] 

Using Minkowsk:i's inequality and the dominated convergence theorem, we 
obtain 

[/

00 ] 1/2 
limsup lf(t+h)-f(t)1 2 dt 

h--->0 -00 

[/

00 ] 1/2 
::=::limsup lfs(t+h)-fs(t)l 2 dt +28=28 

h--->0 -00 

so that 

lim joo lf(t +h)- f(t)1 2 dt = 0. 
h--->0 -00 
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2. Assume now that g(t, w) is a bounded, measurable, nonanticipating 
process that vanishes for t ¢. [0, a]; we want to show that g is in the closure 
of 7a. 

We partition IR into intervals (j j2n, (j + 1) j2n] and consider the process 

8n, 5 (t, w) = g(an(t- s) + s, w) where ctn(u) = jj2" on (jj2n, (j + 1)/2n]. 

For fixed n and s the process 8n.s(t, w) is equal to g(s + j j2n, w) on the 
interval (s+jj2n,s+(j+l)j2"]. Therefore the restriction of 8n,s(t,w) to 
[0, a] x Q belongs to 7a. We now show that there exists an sand a sequence 
nj such that 

lirE [loa l8n
1
,s(t. w) - g(t, w )1 2 dt J 

:S lirE [l: l8ni,s(t, w)- g(t, w)l
2 

dt] --+ 0. 

This will show that the process g is in the closure of 7a. 
Part 1 assures that for each w 

lim Joo lg(s + h, w)- g(s, w)l 2 ds = 0. 
h--->0 _

00 

Since Lebesgue measure is translation-invariant we have, for each fixed t and 
w, 

lim Joo lg(s + t + h, w)- g(s + t, w)l 2 ds = 0. 
h--->0 -00 

We can replace h by an (t)- t, which approaches 0 as n --+ oo and obtain 

}~ 1: lg(an(t) + s, w)- g(t + s, w)l 2 ds = 0. 

Since all the processes considered are bounded and vanish outside a fixed 
finite interval, we have 

n~~l: E[l:lg(an(t)+s,w)-g(t+s,w)l
2

dt] ds 

= n~ E [l: 1: lg(an(t) + s, w)- g(t + s, w)l
2 

ds dt] = 0. 

Therefore there exists a subsequence n j such that 

limE [100 

lg(an.(t)+s,w)-g(t+s,w)l 2 dt] =0 
j--->00 • -00 1 

a.s. in s. 
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We have now shown that there exists a subsequence n j and at least one s such 
that 

lim E [foe lg(an .(t- s) + s, w)- g(t, w)l 2 dt] 
;-+oo -oo 1 

= lim E [/
00 

lg(an (t) + s, w)- g(t + s, w)l 2 dt] = 0, 
J-+00 -00 1 

and g is in the closure of 7a. 
3. If the process g on [0, a] is measurable, nonanticipating and satisfies 

we define the processes 

8n = {g, 
0, 

if lgl ::=:: n, 
otherwise. 

According to part 2, each 8n is in the closure of 7a. The dominated conver
gence theorem assures that 

and g is in the closure of 7a. D 

The stochastic integrals Y 1 = J~ g(s) dBs that we have thus defined are limits 
in L2, so the random variables Y 1 are only determined a.s. Theorem 9.7.3 
assures the existence of continuous versions of (Y 1 ) 0g 9 , and, when we talk 
about stochastic integrals, we always assume that we are working with a 
continuous version; it does not matter which, since two continuous versions 
are indistinguishable. 

We now generalize the definition of stochastic integrals to the interval 
[0, oo). 

9. 7.4 Theorem. Let A be the set of measurable, nonanticipating processes 
g(t, w) on [0, oo) x Q such that E [f; g(t)2 dt] < oo, for any a:::: 0. 

(a) There exists a continuous martingale (Yrk::o such that Yr = J~ g(s)dBs 
a.s. for any t :::: 0. 

(b) Iff and g are in c;rt;, then j~(af+f3g)(s)dBs=af~f(s)dBs 
+ f3 J~ g(s)dBs a.s. (a and f3 are constants). 
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(c) Iff E .ffi, then J~ f(s)dBs = J; f(s)l[O,t](s)dBs a.s. fort_::: a. 
(d) Iff and g are in ./t, then for any t, 

E [(lot f(s)dBs) (lot g(s)dBs)] = E [lot f(s)g(s)ds]. 
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PRooF. Property (a): For n 2: 0 and 0 _::: t _::: n, we define Y(n,t) = J~ 
f(s)l[O,nJ(s)dB 5 using the results in 9.7.3. This is possible since f/[0, n] is 
in An· Property (e) of Theorem 9.7.3 assures that, on [0, n], the processes 
Y(n+i,t) and Y(n,t) are indistinguishable, and we can define the stochastic 
integrals Yt = J~ f(s)dB 5 for any t 2: 0 by taking Yt = Y(n,t) on (n- 1, n]. 
The process Y t is then a martingale that is continuous except possibly for w in 
the set Un{Y(n,n-i) =P Y(n-i,n-1)}, which has probability 0. We can therefore 
change the values of the Yt's on this set (for example take Yt = 0) to get a 
continuous version of the stochastic integrals. 

The other properties are true for g E 3';;; they extend to g E Aa, and 
gEA. D 

Problems 

1. Let T be a stopping time for the family of o--fields (..5l1;k::o, and denote 
by [0, T] the stochastic interval {(t, w): 0 _::: t _::: T(w)}. 
(a) Show that the left-continuous process I[O,TJ is measurable and non

anticipating. Therefore if f E A we can consider the two processes 
Y, = f~ f dBs, and Z, = f~ fl[O,T] dBs. 

(b) Show that, if a 2:0 and f E fa, then the processes (YrAT)osr:o:a and 
(Z1 )o.::r:o:a are indistinguishable. (Show it first for a stopping time that 
takes only a finite number of values.) 

(c) Extend this property to the processes f E A a and then to the pro
cesses f EA. 

2. Let (Q, .r, P) be a probability space, and (.91;)1o::o a nondecreasing, right
continuous family of sub-o--fields of .7. A process f (s, w) defined on 
jR+ x Q is progressively measurable iff, for any t 2: 0, the restriction of 
f(s, w) to [0, t] x Q is ..5(1 ([0, t]) x .9; measurable. 
(a) Show that a progressively measurable process is measurable and 

non-anticipating. 
(b) Show that a right-continuous and nonanticipating process is progres

sively measurable. 

3. Let f(t, w) be a progressively measurable process such that, for each 
t 2: 0, J~ ! 2 (s, w) d s < oo a.s. We want to extend the notion of stochastic 
integral to the process f. 
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(a) For each integer n > 0, let Tn(w) = inf{t: J~ f 2(s, w)ds 2: n}. 
[Tn = oo if the set {t: J~ f 2(s, w)ds 2: n} is empty.] Show that the 
T n are stopping times for the family of O"-fields (JfJ,'),O':o, and that 
limn T n = oo a.s. 

(b) We denote by [0, Tn] the stochastic interval {(t, w): 0 :::=: t :::=: Tn(w)}. 
Show that f I[o.Tnl is in A. 

(c) Let Ycn.r) = J~ f I[o.Tnl dBs as defined in Theorem 9.7.4. Show that 
the processes Ycn,t!\Tn) and Ycn+l,rATn) are indistinguishable. 

(d) Show that there exists a continuous process (Y1 )rO':O such that, for 
each n, the processes (Yr!\TJrO':O and (Y (n,rATn J)tO':O are indistinguish
able. 

We now define J~f(s)dB, by J~f(s)dBs=Y1 • [The process 
(Y 1 ) 10':o is not necessarily a martingale, but it is a local martingale 
in the sense that there exists a nondecreasing sequence of stopping 
times T, :::=: T2 :::=: · · · :::=: Tn :::=: ... such that limn Tn = oo and each 
(Yr!\TJtO':O is a martingale.] 

(e) Let T be a stopping time such that flro.T] EA. Let Z1 = J~ 
f/LO,T] dB5 , as defined in 9.7.4. Use Problem 1 to show that the 
processes (Z1 ) 10':o and (Yt!\T )10':0 are indistinguishable. 

(f) Let Sn, n = 0, 1, ... , be a nondecreasing sequence of stopping times 
such that limn Sn = oo and each process fl[o,snl is in A. Just as 
in (d), we could use the stopping times Sn to define the integrals 
J~ f dB •. Show that the integrals do not depend on the sequence of 
stopping times used in the construction. 

4. Generalize Problem 3 to measurable, nonanticipating processes such that, 
for each t 2: 0, J~ f 2(s, w)ds < oo a.s. [Use an argument similar to the 
proof of 9.7.3 to show that the integral J~ f 2(s, w)ds is §';-measurable.] 

9.8 ITo•s DIFFERENTIATION FORMULA 

Assume that a function f (t), defined on IR, can be expanded in a Taylor 
series. We know that f (t) = J~ f 1 (s) d s. We can heuristically justify this state
ment; if 0 = t1 < t2 < · · · < tn = t is a partition of [0, t], then 

f(t)- f(O) = L[f(t;+J)- f(t;)] 

[ 

I oc J(nl(t;) nl =I: t (t;)(t;+'- t;) +I:--, -(t;+'- t;) . 
i n=2 n. 

The first term 2::; f'(t;)(ti+l- t;) converges to J~ f'(s)ds, and, for n 2:2, 
each term l::;(f(nl(t;)/n!)(t;+J- t;)n should go to 0, since 2::; lti+l- t;ln 
:::=:max; lti+l - t;ln-l 2:; lti+l - t;l --+ 0 when the partition of [0, t] gets finer. 
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Therefore, if everything goes well, the sum over n of those terms also goes 
to 0. This heuristic reasoning would still apply if we considered a continuous 
function G(s) having finite variation on any finite interval: 

f(G(t))- f(G(O)) = :~::)f(G(t;+,))- f(G(t;))] 

[ 

oo J(nl(G(t·)) l 
= ~ f'(G(t;))(G(t;+J)- G(t;)) + ~ n! ' (G(t;+J)- G(t;)t . 

The first term converges to the Lebesgue-Stieljes integral J~ f'(G(s))dG(s), 
and, for n ::=:: 2, 2::; f(nl(G(t;))(G(t;+J)- G(t;))n should go to 0, since 
2::; IG(t;+J)- G(t;W :::::max; IG(t;+J)- G(t;)ln-l 2::; IG(ti+J)- G(t;)l, and 
2::; IG(t;+J)- G(t;)l remains bounded when the partition becomes finer 
(G is continuous and has finite variation on [0, t]). 

What happens when we replace G(s) by the paths Bs of the Brow
nian motion? The first term 2::; f'(B 1,)(B(t;+J)- B(t;)) converges to J~ 
f'(B(s)) dB(s). The term l:J" (B1,)/2(B(t;+1)- B(t;))2 no longer converges 
to 0, since the variation of the paths is a.s. infinite. The sum l:;(B(t;+J)
B(t;))2 converges in L2 to t, so 2::; f"(B1,)/2(B(t;+J)- B(t;))2 probably 
converges tot J~ f"(Bs)ds. For n ::=:: 3, 2::; f(nl(Bt,)(B(t;+J)- B(t;))n should 

go to 0, since 2::; IB(t;+J)- B(t;W ::=::max; IB(t;+J)- B(t; )ln-2 l:i(B(ti+J)
B(t;))2• Now that we have intuitively derived Ito's formula, we are ready for 
the rigorous proof. 

9.8.1 (Ito's Differentiation Formula). Let f be a continuous function on 
IR. We assume that the first and second derivatives f' and f" exist and are 
continuous. Then, for any t ::=:: 0, 

f(Br)- f(Bo) = ( f'(B,)dBs +! ( f"(B5 )ds a.s. 
Jo 2 lo 

[Since the processes Y1 = f(Br)- f(Bo) and X1 = J~ f'(Bs)dBs + 
! J~ f"(B 5 )ds are continuous, they will be indistinguishable.] 

PRooF. 1. The first step is to make sure that the integrals used in the state
ment of Theorem 9.8.1 exist. The process f'(B 5 (w)) is nonanticipating and 
continuous; therefore it is progressively measurable (Problem 2 of 9.7). For 
fixed w, the function f'(Bs(w)) is continuous ins, therefore, on an interval 
[0, t], it is bounded by a constant C(w, t), and J~ f' (B5 (w ))2 ds is finite. Con
sequently, we can, by Problem 3 of 9.7, define a continuous version of the 
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stochastic integrals J~ f'(Bs)dB,. A similar (in fact easier) argument shows 

that the Lebesgue-Stieljes integrals J~ f" (B5 ) ds exist. 
2. Lett :;: 0 and to= 0 < t1 < · · · < tn = t be a partition 9 of [0, t]. We 

denote by 11.9'11 the quantity max; lti+i - t;l. Since the second derivative f" is 
continuous, there exists a value a;(w) in between B,, (w) and B1,+1 (w) such that 

There exists S;(w) E [t;, t;+d such that B5,(w) = a;(w) [this is due to the 
continuity of the functions-+ Bs(w); the random variableS; is not necessarily 
a stopping time], and we have 

= Lf'(Bt,)(Bt,+1 - Bt,) + L ~f"(Bs;)(Bt,+ 1 - Bt}. 
i 

We study separately the limit of each sum as the partition gets finer. 

3. We want to show that Zt = 2::; f'(B 1,)(B1,+ 1 - B1,) converges to U1 

= J~ f'(Bs)dB5 • The process 2::; f'(B 1,)l(t,,t,+1J(S) converges a.s. to the pro
cess f'(Bs)l(o,t](S), but, since supa>,s""f lf'(Bs)l is not necessarily finite, we are 
not sure that 

Consider the times T m, m::: 1, defined as follows: 

T m = {inf{s: .s > 0, IBsl:;: m}, if IBsl:;: m 
00, 1f {s: s > 0, IBsl ::: m} = 0. 

for some s > 0 

The set {T m ::=:: t} = {suprEIQ,rs IBrl:;: m} (9.5.5) is in .§Jt', and the T m form a 
nondecreasing sequence of stopping times that converges to oo. For each m, 
the function f'(x) is bounded on [-m, m], therefore 

when 11911 -+ 0; therefore ZrATm -+ Uti\Tm in L 2 and in probability [we used 
Problem 3(e) of 9.7]. The terms Z1 - Z 11\Tm and U 1 - Uti\Tm are zero except 
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on the set {T m < t}. By first choosing m such that P(T m < t) < e, and then 
11.9'11 small enough to have P(IZrATm- UrATml >e)< e, we obtain 

Therefore Z, converges in probability to U 1• 

4. We now study the term 2::; f"(Bs,)(B 1,+1 
- B1)

2• We want to show that 

if the sequence of partition is well chosen, it converges to J~ f" (B s) d s in 
probability. 

For partitions .9' of [0, t], let us consider the random variables 

X(.9') = L(f"(Bs,)- f"(Br,))(Br,+t - B,f, 
i 

Since l:i f"(B,,)(t;+l- t;) converges for each w to J~ f"(Bs)ds, 1t 1s 

enough to show that 2::; f"(Bs)(B 1,+ 1 - B,y- 2:; f"(B,)(ti+l- t;) = 

X(.9') + Y(.9') converges to 0 in probability. 
We first study the term X (.9'). 

IX(.9')1 .:=::max lf"(Bs,)- f"(Br,)l L(Br,+ 1 - Br,)
2

• 
I 

i 

According to 9.3.4, we can choose a sequence of partitions .9'n, n 2: 1, of 
[0, t] such that IIY'n II -+ 0, and l:i(B1'+ 1 - B1Y converges a.s. tot (L2 conver
gence implies the existence of a subsequence which converges a.s.). For each 
fixed w, the continuous functions-+ f"(Bs) is uniformly continuous on [0, t], 

and max; I!" (B s,) - !" (B1,) I -+ 0 when IIY'n II approaches 0. Therefore X (.9'n) 

-+ 0 a.s. and in probability. 
We now study the term Y(.9'). LetT m, m 2: 1, be the stopping times defined 

in part 3 of the proof. For each m, we have 

I supf"(Bs!\Tm)l _::: sup lf"(x)l = Km· 
s -m.s;x::sm 

We consider the random variables 

and denote by V; the random variable 
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We have 

Since the processes Bsi\Tm and Us = B;I\Tm - s 1\ T m• 0 :S s :S t, are mar
tingales for the family of o--fields .JIJ~I\Tm (apply Problem 3 of 9.6 to the 
martingales Bs, B; - s and the bounded stopping time T m 1\ t), we have 

E[ (Br ·+tAT - Br 1\T )2 I .J(Jtli\T ] 
J m J m 1 m 

Therefore, for i < j, 

and 

:S K~EL[(Br,+1 - Br,)2
- (ti+l- t;)]2 -+ 0 

i 

(see the proof of9.3.4). Hence Y(9, T m) converges to 0 in L2 and in probability 
when 119" II -+ 0. Since {Y(9") # Y(9, T m)} C {T m < t}, we can show, as in 
Part 3, that Y(9")-+ 0 in probability when 119" II -+ 0. D 

9.8.2 Corollary. In particular we have 

B; = lot 2Bs dBs + t. 

(We already knew that B;- tis a martingale, Ito's Formula gives us the exact 
form of the martingale.) 
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Problem 

1. Let a(t, w) and {3(t, w) be two continuous, nonanticipating processes. 

(a) Show that the process Xt = J~ a(s, w)dB5 + J~ {3(s, w)ds is contin
uous and nonanticipating. 

(b) Show that if the function f (x ), x E IR, has a continuous second 
derivative, then we have, for each t, 

f(Xt) = f(Xo) +lot f'(X5 )a(s)dB5 +lot f'(X,){3(s)ds 

+~lot j"(X5 )a2(s)ds a.s. 

(Hint: use an argument similar to the proof of 9.8.1.) 

9.9 REFERENCES 

We have proved Ito's formula in its simplest form; generalizations and ap
plications to stochastic differential equations can be found in Wong (1973), 
McKean (1969), Ito and McKean (1965) and the chapter on diffusion in 
Gildunan and Skorokhod (1969). A general treatment of martingales and 
stochastic integrals with respect to martingales is given in Dellacherie and 
Meyer (1980). 



APPENDICES 

Appendix 1 THE SYMMETRic RANDOM WALK IN ~K: A PREcisE 

ANALYSIS FOR K = 1 AND K = 2, AN INFORMAL APPROACH 

FORK> 3 
Consider a Markov ch~n with transition probabilities Pij, and let pfjl be 

the probability, starting from state i, that the process will be in state j at time 
n, that is, after n transitions. Let f;~n) be the probability, starting from i, that 
the first return to i will occur at time n. We then have 

n 

P
(n) = "'J(k)p(n-k) 
ll L...., ll ll • 

k=i 

Al.l Theorem. 

N N N 

(a) I: Pi;) :s I: t;~k) I: Pi;) 
n=i k=i r=O 

(b) State i is recurrent if and only if L pj;l = oo. 
n 

PROOF. 

N N n N N 

(a) I: Pi~) =I: I: t;~k) p;;-k) = I: t;~k) I: p;;-k) 

n=i n=i k=i 

N N 

< "' J(k) "' p(r) - L..., ll L..., 1l 

k=i r=O 

k=i n=k 

(b) If l:n pj;l < oo then by the Borel-Cantelli Lemma, i is visited only 
finitely many times and therefore must be transient. If the series diverges, let 
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Iii be the probability, starting from i, that there will ever be a return to i. 
Then 

oo N 

'""" (k) '""" (k) Iii = L..,; Iii 2: L..,; lu 2: 
k=i k=i 

N 

'""" (n) L..,; Pu 
n=i 

N 

'""" (r) L..,; Pu 
r=O 

by part (a), and the fraction approaches 1 as N --+ oo. Therefore i is recur
rent. D 

The symmetric random walk in IRk is a Markov chain whose state space con
sists of k-tuples of integers. At each transition, exactly one coordinate changes, 
by± 1 with equal probability. The probability of moving from (a1, ••• , a;, ... , 
ak) to (a 1, ••• , a; + 1, ... , ak ), as well as the probability of moving from 
(a1, ••• , a;, ... , ak) to (a,, ... , a;- 1, ... , ak), is !k fori= 1, ... , k. Thus 
in one dimension, we have a particle that moves right or left with equal prob
ability. In two dimensions, the particle moves right, left, up or down, with 
probability ± in each case. In three dimensions, a particle at (x, y, z) can 
move to (x + 1, y, z), (x- 1, y, z), (x, y + 1, z), (x, y- 1, z), (x, y, z + 1), or 
(x, y, z- 1), and each outcome has probability ~· 

A1.2 Theorem. 

(a) When k = 1 we have p~n) = e:) (!) 2
n, and the states are recurrent. 

(b) When k = 2 we have p)~n) = [ (~) 2n e:) r. and again the states are 
recurrent. 

(c) When k 2: 3, the states are transient. 

PROOF. (a) Starting from i, the particle will be at i after 2n steps iff it has 
taken exactly n steps to the right and n steps to the left. Since the n positions 

where a step to the right occurs can be chosen in ( 2: ) ways, the formula for 

pf~nl follows. Now e:) = ~,:2i, and by Stirling's formula, 

(2n)! ~ (2n)2ne-2n.J2rr2n and n! ~ nne-n~. Thus 

22n (2n) 1 '""" 1 
~ r.;:;; and therefore p ii ~ r.;:;; . As L..,; r.;; = oo, 

vn7r vn7r vn 

the states are recurrent. 
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(b) Starting from i, the particle will be at i after 2n steps iff for some t 
between 0 and n, it has taken exactly t steps right, t steps left, n - t steps up 
and n - t steps down. Therefore, 

(2n) ~ (2n)! 
Pii = £:o' tltl(n- t)l(n- t)l 

Multiply and divide by n ln! to obtain 

Now in selecting n objects out of 2n we can choose t from the first n and 
n - t from the second n, so the summation is simply ( 2: ) • This establishes 

the desired formula for p~nl. By part (a), pj?n) ~ ljnrr, and again the states 
are recurrent. 

We now argue intuitively to justify that for all k :=:: 3, pj?kn) = O(n -kf2), 
that is, for some constant C we have Pi?kn).::; Cjnk/2 for all sufficiently large 
n. In a sequence of 2kn steps, roughly 2n will involve a change in the first 
coordinate, and in the remaining 2(k - 1 )n steps, a coordinate other than the 
first will change. Thus we can think of decomposing the k-dimensional walk 
into two subwalks of dimensions 1 and k- 1, and both subwalks must be back 
in their initial state at the end. We can then complete the heuristic argument 
as follows to show that the states are transient for all k :=:: 3. [A formal proof 
by induction can be constructed by defining hi2n) as the probability that a 
symmetric k-dimensional random walk is back at its original state after 2n 
steps, and then showing that 

b(2n) = ~ (2n) (~)2s b(2s) (l- ~)
2

n-
2

s b(2n-2s) 
k L...t 2s k ' k k-i . 

s=O 

(There must be 2s steps in which the first coordinate changes and is back at 
its original value at time 2n.)] 

As we have seen in the proof of Theorem A 1.2, p i?n l ~ 1/ J1l1i for the 
!-dimensional walk, and for the (k- I)-dimensional walk we have (by induc
tion hypothesis): 

pj?Ck-i)n) = O([(k- l)nr(k-1)/2) = O(n-(k-1)/2). 

Thus for the k-dimensional walk, 

(2kn) _ 0( -ij2 -(k-1)/2) _ 0( -kf2) P;; - n n - n . 

Since 2: n -k/2 < oo for k :=:: 3, the states are transient. D 
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Appendix 2 SEMICONTINuous FuNcTIONs 

If f 1, f2, ... are continuous maps from the metric space n to the extended 
reals Tffi:, and fn(x) increases to a limit f(x) for each x, f need not be con
tinuous; however, f is lower semicontinuous. Functions of this type play an 
important role in many aspects of analysis and probability. 

A2.1 Definition. Let Q be a metric space. The function f: Q--+ Tffi: is said 
to be lower semicontinuous (LSC) on n iff {x E n: f(x) > a} is open in n for 
each a E Tffi:, upper semicontinuous (USC) on n iff {x E n: f(x) < a} is open 
in n for each a E Tffi:. Thus f is LSC iff- f is USC. Note that f is continuous 
iff it is both LSC and USC. 

We have the following criterion for semicontinuity. 

A2.2 Theorem. The function f is LSC on n iff, for each sequence {xn} con
verging to a point x E Q, we have liminfn j(xn) 2: f(x), where lim infn f(xn) 
means supn infk:o:n f(xk). Hence f is USC iff limsupn f(xn) _::: f(x) when 
Xn --+X. 

PRooF. Let f be LSC. If Xn --+ x and b < f(x), then x E f- 1 (b, oo], an open 
subset of Q, hence eventually Xn E ~-I (b, 00], that is j(xn) > b eventually. 
Thus liminfn f(xn) 2: f(x). Conversely if Xn--+ x implies 

liminf f(xn) =:::: f(x), 
n 

we show that V = {x: f(x) 2: a} is open. Let Xn --+ x, where f(x) > a. Then 
lim infn f (Xn) > a, hence f (xn) > a eventually, that is, Xn E V eventually. 
Thus V is open. D 

We now prove a few properties of semicontinuous functions. 

A2.3 Theorem. Let f be LSC on the compact metric space Q. Then f 
attains its infimum. (Hence if f is USC on the compact metric space Q, f 
attains its supremum.) 

PRooF. If b = inf f' there is a sequence of points Xn E n with f (xn) --+ b. By 
compactness, we have a subsequence Xnk converging to some x E n. Since f is 
LSC, lim infk f (Xnk) 2: f(x). But f (xnd ~ b, so that f(x) _::: b; consequently 
f(x) =b. D 

A2.4 Theorem. If j; is LSC on Q for e~ch i E I, then sup;!; is LSC; if I 
is finite, then min; f; is LSC. (Hence if Je is USC for each i, then inf; f; is 
USC, and if I is finite, then max; f; is USC.) 
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PRooF. Let f = SUP; fi; then {x: f(x) > a} = uiEl{x: J;(x) > a}; hence 
{x: f(x) >a} is open. If g = min(j,, f2, ... , fn), then 

is open. D 

n 

{x: g(x) > a} = nrx: J;(x) > a} 
i=i 

A2.5 Theorem. Let f: Q --+ R, Q any metric space, f arbitrary. Define 

f(x) = liminfj(y), X E Q; 
- y->X 

that is, 
f(x) =sup inf f(y), 
- V yEV 

where V ranges over all open balls with center at x and radius 1jn, 
n = 1, 2, .... Then f is LSC on Q and f :;:: f; furthermore, if g is LSC 
on n and g :;:: f, then g :;:: f. Thus f, called the lower envelope of f, is the 
sup of all LSC functions that are less than or equal to f (there is always at 
least one such function, namely the function constant at -oo). 

Similarly, if f(x) =lim supy->x f(y) = infv supyEV f(y), then f, the upper 

envelope of f, is USC and T 2: f; in fact Tis the inf of all USC functions 
that are greater than or equal to f. 

PROOF. It suffices to consider f. Let {Xn} be a sequence in n with Xn --+ X 
and liminfn f(xn) < b < f(x). If Vis a neighborhood of x, we can choose 
n such that x;; E V and ffXn) <b. Since Vis also a neighborhood of Xn, we 
have -

b > f(xn) 2: inf f(y), 
- yEV 

so 
f(x) =sup inf f(y) :5: b < f(x), 
- V yEV -

a contradiction. By A2.2, f is LSC, and f :;:: f by definition of f. Finally 
if g is LSC, g :5: f, then- f(x) = liminf; .... x f(y) 2: liminfy->x8CY) 2: g(x) 
since g is LSC. [If supv infy.; g(y) < b < g(x), then for each V pick xv E V 
with g(xv) <b. If we do this for V = Vn = B(x, 1/n), n = 1,2, ... , the 
Xn = xvn form a sequence converging to x, while lim infvg(xv) :5: b < g(x), 
contradicting A2.2.] D 
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A2.6 Theorem. Let Q be a metric space, f a LSC function on Q. There is a 
sequence of continuous functions fn: n--+ R. such that fn t f. (Thus iff is 
USC, there is a sequence of continuous functions fn -!,f.) If If I::=:: M < oo, 
the fn may be chosen so that IfnI ::=:: M for all n. 

PRooF. (Following Hausdorff, 1962). First assume f :::: 0 and finite-valued. 
If d is the metric on n, define g(x) = inf{f (z) + t d (x, z): z E Q}, where t > 0 
is fixed; then 0 ::=:: g ::=:: f since g(x) ::=:: f(x) + t d(x, x) = f(x). 

If X, y E n, then f (z) + t d (x, z) ::::: f (z) + t d (y, z) + t d (x, y). Take the inf 
over z to obtain g(x) ::=:: g(y) + t d(x, y). By symmetry, 

lg(x)- g(y)l ::=:: td(x, y), 

hence g is continuous on n. 
Now set t = n; in other words let fn(x) = inf{f(z) + nd(x, z): z E Q}. Then 

0 ::=:: fn t h ::=:: f. But given 8 > 0, for each n we can choose Zn E Q such that 

fn(x) + 8 > f(zn) + nd(x, Zn):::: nd(x, Zn). 

But fn(x) + 8 ::=:: f(x) + 8, and it follows that d(x, Zn)--+ 0. Since f is LSC, 
liminfn->oo f(zn):::: f(x); thus f(zn) > f(x)- 8 eventually. But now 

fn(x) > f(zn)- 8 + nd(x, Zn):::: f(zn)- 8 

> f(x)- 28 for large enough n. 

It follows that 0 ::=:: fn t f. If If I::=:: M < oo, then f + M is LSC and non
negative; if 0 ::=:: 8n t f + M, then fn = 8n- M t f and Ifni::=:: M. 

In general, let h(x) = ~;rr + arctan x, x E "i; then h is an order-preserving 

homeomorphism of "i and [0, rr]. If f is LSC, then h of is finite-valued, 
LSC, and nonnegative, so that we can find continuous functions 8n such that 
8n t hof. Let fn =h-i 0 gn; then fn t f. D 

Appendix 3 CoMPLETION oF THE PRooF oF THEOREM 7.3.2 
The "if" part of the theorem remains to be proved. We may assume with

out loss of generality that EXk = 0. The uan condition is equivalent to the 
statement that hk(ufcn)--+ 1 as n --+ oo uniformly ink= 1, ... , n, that is, 

max 11 - hk (..!!._) I-+ 0 
I -sk"Sn Cn 

as n --+ oo. 
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Furthermore, in this case 

uniformly for u in any bounded interval (see Problem 3, Section 7 .3). 

(a) We show first that 

as n-+ oo. 

Let hy denote the characteristic function of the random variable Y. By the 
normal convergence, 

and the convergence is uniform for u in any bounded interval (see 7.2.9). If 
"Log" denotes the principal branch of the logarithm, then 

is the (necessarily unique) continuous logarithm of hT"(u) having the value 0 
at u = 0. Thus 

-u2 
-+ --. 

2 

Therefore, 

where each llh I is at most 1. But if an + bn -+ 0, then lim supn--->oo I an I 
=lim supn--->oo Ibn I (eventually lan I < Ibn I + e, and thus lim supn--->oo I an I 
::=:: lim supn--->oo Ibn I); hence 
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Now 

and 

limnsup I ~ + ~ [ hk ( ~ ) - 1] I 

= limnsup ~~ Bk lhk ( ~) - 11
2

1 

:::: lim sup max lhk (_!!__) - 11tl hk (_!!_) - 11. 
n isksn Cn k=i Cn 

t lhk (~)- 11 = t 11: [exp C:)- 1] dFk(x)l 

= ~ 11: e (~~
2

) dFk(x)l 

u2 n u2 
< - '"""" (52 = - < 00. - 2c2 L... k 2 

n k=i 

This proves (a). 

(b) For any 8 > 0, 

lim sup [1 - ~ t 1 x
2 

dFk(x)] :::: 2

4 
2 • 

n--->00 en k=i lxl<£cn 8 u 

For by (a), 

that is, 

u2 n foo ( ux) - - L 1 - cos- dFk(x) -+ 0, 
2 k=i -oo Cn 

or equivalently, 

u2 n 1 ( ux) l - L 1 -cos- dFk(x) 
k=i lxl<£cn Cn 

-t 1 (1- cos ux) dFk(x)-+ 0. 
k=i lxl~£cn Cn 

445 
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Again, noting that an + bn --+ 0 implies lim supn--->oc I an I = lim supn--->oo Ibn I, 
we have 

lim sup I u
2 

- t { (1 -cos ux) dFk(x)l 
n--->00 2 k=i Jjxj<Un Cn 

=lim sup It { (1 -cos ux) dFk(x)l. 
n--->00 k=i Jlxl:;,oscn Cn 

(1) 

But 

2 n 2 

u '"' 2 u 
::::: 2c2 L... CYk = 2 

n k=i 

and thus the absolute values around the "lim sup" terms in ( 1) may be dropped. 
[This also shows that the quantity inside the brackets in (b) is nonnegative.] 
Consequently, 

limsup (u
2 [1- ~ t1 x

2
dFk(x)]) 

n--->00 2 en k=i jxj<£Cn 

:::::lim sup [u2

- t1 (1- cos ux) dFk(x)] 
n--->00 2 k=i lxl<scn Cn 

= lim sup t { (1 -cos ux) dFk(x) 
n--->oo k=i Jlxl:o-ecn Cn 

by (1). 

But 

t 1 (1 -cos ux) dFk(x) ::::: 2 t { dFk(x) 
k=i jxj:;,oun Cn k=i Jjxj??.£Cn 

n 

= 2 LP{IXkl :=:: 8Cn} 

k=i 

by Chebyshev's inequality 

proving (b). 

The proof of the theorem is completed by letting u --+ oo in (b). D 
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Appendix 4 PRooF oF THE CoNvERGENcE oF TYPEs THEOREM 7 .3.4 
(a) Let Gn, G, Fn, F be the distribution functions of Xn, X, Yn, Y, re

spectively. 
We may select convergent subsequences {ank}, {bnk} such that 

where 0 ::=::a::=:: oo, -oo ::=:: b::::: oo. 

We first show that a < oo. 
Suppose that a = oo. Let E = {x E R: lim supk--->oo (ankx + bnk) < oo} and 

let c =sup E. (Take c = -oo if E = 0.) 

(i) If X E IR, X < c, then ankX + bnk --+ -00. 

PRooF. Let x < u < c, with u E E (u exists since c =sup E). Then u E E, 
x < u implies x E E by definition of E. 

Now 

ankX + bnk = ank(X- U) + ankU + bnk; lim SUp(ankU + bnk) < 00 
k--->00 

since u E E, and ank (x-u) --+ -oo since ank --+ a= oo and x- u < 0. This 
proves (i). 

(ii) If x E IR, x < c, then G(x) = 0. 

PRooF. Let 8 > 0 be arbitrary. Choose z E IR such that F(z) < 8 and z is a 
continuity point of F. Then Fnk(z)--+ F(z), so eventually Fnk(z) < 8. By (i), 
eventually ankX + bnk < z, so 

for large enough k. Thus Gnk(x)--+ 0, x <c. Let x < x' < c, x' a continuity 
point of G. Then G(x') = limk--->oo Gnk(x') = 0, and since G(x) ::=:: G(x'), we 
have G(x) = 0, proving (ii). 

(iii) If x E IR, x > c, then G(x) = 1. 

PRooF. By definition of E, we find a subsequence {rj} such that a,
1
x 

+ b,1 --+ oo. Choose a continuity point w ofF such that F(w) > 1 - 8. Even
tually, a,j X+ b,j > w, so G,/x) = F r/ari X+ b,) 2: F r/W) > 1 - 8. Thus 
G,1(x)--+ 1 for x >c. If c < y < x, y a continuity point of G, we have 
G(x) 2: G(y) = limj--->oo Gr/Y) = 1, proving (iii). 
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It follows from (ii) and (iii) that G is degenerate, a contradiction. 

Next we show that b is finite. 
If bnk -+ oo, then ank x + bnk -+ oo for every x E IR, so the argument of 

(iii) may be repeated to show G(x) = 1, a contradiction. If bnk -+ -00, then 
an,x + bnk -+ -oo for each x E IR, so the argument of (ii) shows G(x) = 0, a 
contradiction. 

Now we show that a > 0. 
Let x be a continuity point of G, and let 8 1, 82 > 0 be such that ax + b + 8 1 

and ax+ b - 82 are continuity points of F. Then ankx + bnk -+ ax+ b, so 
eventually ax + b - 82 ~ ankx + bnk ~ ax + b + 8 1; hence 

Let k-+ oo to obtain F(ax + b- 82 ) ~ G(x) ~ F(ax + b + 8J). Since 8 1 and 
82 may be chosen arbitrarily small, F(ax +b)-~ G(x) ~ F(ax +b) for all 
continuity points x of G. 

If a= 0, then F(b-) ~ G(x) ~ F(b) for all continuity points, and hence for 
all x E IR. But then F(b) = 1, F(b-) = 0 because G(oo) = 1, G(-oo) = 0. 
Thus F is degenerate at b, a contradiction. 

Finally, if G is continuous at x and F is continuous at ax+ b, we have just 
seen that F(ax +b)- ~ G(x) ~ F(ax +b), so G(x) = F(ax +b). Since there 
are only countably many real numbers y such that G is discontinuous at y or 
F is discontinuous at ay + b, it follows that G(x) = F(ax +b) for all x E IR. 

Now if we have other convergent subsequences ami-+ a', bm; -+ b', 
the above argument shows that 0 <a' < oo, -oo < b' < oo, and G(x) = 
F(ax +b)= F(a'x + b') for all x E IR, so that a- 1(Y- b):!::_ (a')- 1(Y- b'). 
Random variables with the same distribution have the same characteristic 
function, therefore 

(
-iub) (u) (-iub') (u) exp -a- hy ~ = exp -----;;;- hy d for all u. 

Say a< a', and set k = aja'. Let v = uja to obtain 

lhy(v)l = lhy (:~)I= lhy(kv)l 

for all v. Thus 

lhy(v)l = lhy(kv)l = lhy(k2v)l = · · · = lhy(ev)l -+ lhy(O)I = 1. 

It follows that Y is degenerate, a contradiction (see Problem 4, Section 7.1). 
Thus a= a', so e-iub = e-iub' for all sufficiently small u; hence b = b'. There
fore, an -+ a, bn -+ b, proving 7.3.4(a). 
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Comment. If a- 1(Y- b):4 (a')- 1(Y- b'), where a and a' are nonzero 
but not necessarily positive, then if lal < la'l and we set k = aja', we obtain 
a contradiction as above. We can conclude that lal = la'l but not that a= a'. 

(b) If an > 0, Xn and Y n are of the same positive type, and if an < 0, 

Xn:4 -a,;- 1(-Yn + bn); hence Xn and -Yn are of the same positive type. 
Let S1 = {n: an > 0}, S2 = {n: an < 0}. If S1 is infinite, part (a) shows that 

X and a- 1(Y- b) have the same distribution for some real a, b, a> 0, and 

lim an= a, 
n--->oo 
nES1 

lim bn =b. 
n--->00 
nES 1 

d d 
Now suppose that S2 is infinite. Then Y n ---+ Y implies - Y n ---+ - Y 

(use 7.2.9), and it follows from part (a) that for some real a', b', with a' < 0, 
we have X :4 -(a')- 1(-Y + b'), and 

lim an= a', 
n--->00 
nES2 

Now there are three possibilities: 

lim bn = b'. 
n--->00 
nES2 

Case 1. s I and s2 are both infinite. Then since a- 1 (Y - b) d (a')- 1 

d 
(Y- b') = X, we have lal = la'l [see the comment after the proof of (a) 
here]. Thus lan I -+ Ia I and the result follows. 

Case 2. S1 is infinite, S2 finite. Then an -+ a, bn -+ b, and X !!:_ a- 1 

(Y- b), proving the result. 

Case 3. s I is finite, s 2 infinite. Then an -+ a', bn -+ b', and 

X :4 (a')- 1(Y- b'), and the result follows. D 

Appendix S THE MULTIVARIATE NoRMAL DISTRIBUTION 

In this appendix, u will denote a column vector with components u1, .•. , Un, 

x a column vector with components x,, ... , Xn, and X a random (column) vec
tor with components X 1, .•. , X n. The superscript t will indicate the transpose 
of a matrix. To avoid awkward special cases, we agree that normal with mean 
J-t and variance 0 will mean degenerate at f.-t· 

AS.l Definition. The random variables X1, ••• , Xn are said to be jointly 
Gaussian (or the random vector X = (X 1, ..• , X n) is said to be Gaussian) if 
the characteristic function of X is 

(1) 
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where the b; are arbitrary real numbers and K is a symmetric, nonnegative 
definite matrix (with real coefficients). 

A much more concrete interpretation is possible. 

A5.2 Theorem. The random vector X is Gaussian if and only if X can be 
expressed as AY + b where the Y; are independent normal random variables 
with 0 mean. 

PROOF. If X= AY +b, then E[exp(iu 1X)] = exp[iu 1b]E[exp(iu 1AY)]. But 

E[exp(iv1Y) = E [g exp(ivkYk)l = g E[exp(ivkYk)] 

= exp [- ~ ~ Ak vi] = exp [- ~ v1 D V] 

where D is a diagonal matrix whose entries are Ak = Var Yk. k = 1, ... , n. 
Set V = Nu; the characteristic function of X is then given by 

where K = ADN. Since the diagonal matrix Dis symmetric, so is K, and K 
is nonnegative definite as well since u 1 K u = v 1 Dv = l:Z=i Ak v~ 2: 0. 

Conversely, assume that X is Gaussian, with a characteristic function given 
by (1) above. Let A be an orthogonal matrix such that A1 KA = D, a diagonal 
matrix whose entries are the eigenvalues Ak of K. Let 

Then 

V =Au. 

Thus 

E[exp(iu 1Y)] = exp [ -~u 1A1KAu] = exp [ -~u 1Du] 

= exp [-~ tAkui]· 
k=i 
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The form of the characteristic function of Y shows that Y 1, ... , Y n are inde
pendent, and Yk is normal with mean 0 and variance Ak· Since A is orthogonal, 
we have N = A -i, so that X = AY +b. D 

A5.3 Corollary. For any column vector b and symmetric, nonnegative def
inite matrix K, there is always a Gaussian vector X whose characteristic 
function is given by A5.1 with the prescribed b and K. 

PROOF. Let A be an orthogonal matrix with A' KA = D, the diagonal matrix 
of eigenvalues of K; then K =ADA'. Let X= AY + b, where the Yk are 
independent and normal (0, Ad. The first part of the proof of Theorem A5.2 
shows that the characteristic function of X has the desired form. D 

We may give a probabilistic interpretation of the vector b and the matrix K. 

A5.4 Theorem. If X is Gaussian with characteristic function given by A5.1, 
then E(X) = b, in other words, b1 is the expectation of Xj, j = 1, ... , n. 
Furthermore, K is the covariance matrix of the X1, that is, K;k = Cov(X1, Xk) 
for all j, k. 

PRooF. Let X = AY + b as in Theorem A5.2. Since the Y1 have finite second 
moments (in fact finite moments of all orders), so do the X1. By linearity of 
the expectation we have E(X) =b. If A is any matrix, we denote by E(A) 
the matrix whose jk entry is E(a1k). Then the covariance matrix of the X1 
can be written as 

where Dis a diagonal matrix with entries Ak = Var Yk. But by the first part 
of the proof of the Theorem, ADN = K. D 

We now show that if the covariance matrix K is nonsingular, then X has a 
density. 

AS.S Theorem. Let X be Gaussian with mean vector b and covariance ma
trix K. If K is non singular, then the X 1 - b 1 are linearly independent, that is, 

n 

if L:c1(X;-bj)=Oa.e., then c1 =0 forall j . 
.i=l 

Furthermore, X has density f, where 

f(X) = (2rrrn12(detK)- 112 exp[ -!(x- bYK- 1(x- b)]. 
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PROOF. Let A be an orthogonal matrix such that NKA = D, and let 
X = AY + b as in Theorem A5.2. If K is nonsingular, then every eigenvalue 
Ak is strictly positive, so Y has density g, where 

Now the Jacobian of the transformation X= Ay + b is det A, which is ±1 
because A is orthogonal. Since y = N (x - b), X has density f, where 

But NKA = D, and it follows that D- 1 = NK- 1A, and therefore AD- 1N 
=K-'. 

Now if c 1(X- b)= 2::}=1 cj(Xj- bj) = 0 a.e., then 

0 = E[lc 1(X- b)l 2
] = E[c 1(X- b)(X- b)1c] 

=c 1E[(X -b)(X -b)1]c =c 1KC. 

But K is nonsingular, and therefore positive definite, so Cj must be 0 for 
all j. D 

If K is singular, the last part of the proof of Theorem A5.5 shows that 
the Xj- bj are linearly dependent. For c 1Kc = c 1ADNc = l::Z=1 Aka~ where 
a = Nc. Since at least one Ak must be 0, we can choose a nonzero a, 
and hence a nonzero c, such that c 1(X- b)= 0 a.e. If, say, X1 - b1, •.. , 

X r - b, form a maximal linearly independent subset of {X 1 - b1, ... , 

Xn - bn }, then (X1, •.. , X,) has a density of the form given in Theorem A5.5, 
with K replaced by the submatrix determined by the first r rows and the first 
r columns of K. The remaining random variables Xj- bj, j = r + 1, ... , n 
can be expressed (on a set of probability 1) as linear combinations of the 
xj- bj, 1 ::::: j::::: r. 

The result that nonsingularity of K is equivalent to linear independence of 
the Xj- bj holds for arbitrary random variables with finite second moments, 
as the above analysis shows. 

A5.6 Theorem. (a) If X is Gaussian and Z = CX where Cis any n by n 
matrix, then Z is Gaussian. 
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(b) If X1, ••• , Xn are jointly Gaussian, then so are X1, ••• , X, for any 
r:::; n. 

(c) If X1, ..• , Xn are jointly Gaussian, then for any constants c" ... , Cn, 
2:}= 1 c 1X 1 is a normally distributed random variable. 

PRooF. (a) Let X = AY + b where the Y1 are independent normal ran
dom variables with 0 mean. Then Z =CAY + Cb, which is Gaussian by 
Theorem A5.2. 

(b) In part (a) take C = [I 0] where I is an r by r identity matrix. 
(c) In part (a) take C = [c1 c2 ... en]. D 

A5.7 Example. Let X be normal (0, 1) and define Y as follows. Let Z take 
on the values 1 and 0 with equal probability, with X and Z independent. If 
Z = 1, set Y =X, and if Z = 0, take Y =-X. Then with probability ~ we 
have X+ Y = 0, so that X+ Y is certainly not Gaussian. By Theorem A5.6(c), 
X and Y are not jointly Gaussian. However, X is Gaussian by assumption, and 
Y is also Gaussian because -X is normal (0, 1) and therefore, 

P{Y:::; y} = ~P{X:::; y} + ~P{-X:::; y} = P{X:::; y}. 

Thus the converse assertion fails in both A5.6(b) and A5.6(c). 

A5.8 Theorem. If X1, ••. , Xn are jointly Gaussian and the Xj are uncorre
lated, that is, the covariance of X j and X k is 0 for every j =/= k, then X 1 , .•• , X n 
are independent. 

PRooF. The covariance matrix is diagonal with entries ).. j = Var X j. We may 
assume with loss of generality that all ).. j are strictly positive, because if some 
).. j = 0 then X j is constant a. e. and can be deleted. Then K is non singular 
and K- 1 is diagonal with entries 1 I).. j. By Theorem A5.5, the joint density of 
X 1, ... ,Xnis 

The form of the density shows that the X j are independent, with X j normal 
with mean bj and variance Aj· D 
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SOLUTIONS TO PROBLEMS 

CHAPTER 1 

Section 1.1 

2. We have lim supn An = ( -1, 1], liminfn An = {0}. 

3. Using limsupnAn = {w: wE An for infinitely many n}, liminfnAn 
= {w: w E An for all but finitely many n}, we obtain 

liminfAn = {(x, y): x2 + l < 1}, 
n 

limsupAn = {(x, y): x2 + l:::; 1}- {(0, 1), (0, -1)}. 
n 

4. If x = limsupn--->ooXn, then limsupnAn is either (-oo,x) or (-oo,x]. If 
yEAn for infinitely many n, then Xn > y for infinitely many n; hence 
x 2: y. Thus lim supn An C ( -oo, x]. But if y < x, then Xn > y for in
finitely many n, so yElimsupnAn. Thus (-oo,x)climsupnAn, and 
the result follows. The same result is valid for lim inf; the above analysis 
applies, with "eventually" replacing "for infinitely many n." 

Section 1.2 
4. (a) If -oo:::; a< b < c < oo, then J-t(a, c] = J-t(a, b] + J-t(b, c], and 

J-t(a, oo) = J-t(a, b] + J-t(b, oo); finite additivity follows quickly. If 
An= (-00, n], then Ant IR, but J-t(An) = n-+---+ (IR) = 0. Thus J-t 
is not continuous from below, hence not countably additive. 

(b) Finiteness of J-t follows from the definition; since J-t (-oo, n] --+ 

oo, J-t is unbounded. 

5. We have J-L(U~ 1 Ai) 2: J-L(U7= 1 Ai) = 2::7=1 J-t(Ai) for all n; let n --+ oo to 
obtain the desired result. 

8. The minimal o--field .r (which is also the minimal field) consists of the 
collection :Y'of all (finite) unions of sets of the form B1 n B2 n · · · n Bn, 
where B; is either Ai or Af. Any o-- field containing A 1, ... , A,. must contain 
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all sets in~; hence~ c /Y. But ~is a o--field; hence Y c ~.Since there 
are 2n disjoint sets of the form B1 n · · · n Bn, and each such set may or 
may not be included in a typical set in Y, .r has at most 22" members. 
The upper bound is attained if all sets B1 n · · · n Bn are nonempty. When 
n = 2, the sets are 0, n, A, n A2, A, n A~, Ai n A2, AI n A2, along with all 
sets that can be generated from these by taking unions 2 and 3 at a time. 

9. (a) As in Problem 8, any field over ??must contain all sets in~; hence 
~ c .r. But~ is a field; hence .r c ~.For if A;= nl=' B;J, then 
<U7=1 A;)c = n7=1 U)=l Bfj, which belongs to .'Y' because of the 
distributive law An (B U C) = (A n B) U (An C). 

(b) Note that the complement of a finite intersection n)= 1 B;J belongs 
to~; for example, if B1, B2 E W, then 

(B, n ~y = Bi U B2 

= (B~ n B2) U (Bi n B2) U (B2 n BJ) U (B2 n Bi) E ~. 

Now ~ is closed under finite intersection by the distributive law, 
and it follows from this and the above remark that ~ is closed 
under complementation and is therefore a field. Just as in the proof 
that .r = ~. we find that .r = ~. 

(c) This is immediate from (a) and (b). 

11. (a) Let An E 9, n = 1, 2, . . . . Then An belongs to some Wa., and we 
may assume a, :S a2 :S · · ·, so W'a1 C lf'a2 • • •• Let a = supn an < 
/3J. Then all ~~" C W'a, hence all An E lf'a. Thus Un An E Wa+l C 

9, so Un An E 9. If A E Y, then A belongs to some W'a; hence 
Ac E W'a+l c c'l"': 

(b) We have card ~ :s c for all a. This is true for a = 0, by hypoth
esis. If it is true for all {3 < a, then ufl<a 'lf/3 has cardinality at most 
(card a)c =c. Now if ~has cardinality c, then~~ has cardinality 
at most ct{o = (2t{o)t{o = 2~0 =c. Thus card ~ :S c. It follows that 
Ua<fl, ~ has cardinality at most c. 

Section 1.3 

3. (a) Since A.(0) = 0 we have Q E v#t, and v#t is clearly closed under 
complementation. If E, F E v#t and A C Q, then 

A.[A n (E U F)] = A.[A n (E U F) n E] 

+ A.[A n (E U F) n Ec] since 

= A.(A n E)+ A.(A n F n £"). 
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Thus 

A[A n (E U F)] + A[A n (E U Fn 

= A(A n E)+ A(A n Ec n F)+ A(A n Ec n r) 

= A(A n E)+ A(A n Ec) since 

= A(A) since E E ,A~. 

This proves that ~/) is a field. Also, if E and F are disjoint we have 

A[A n (E U F)] = A[A n (E U F) n E] + A[A n (E U F) n Ec] 

= A(A n E)+ A(A n F n Ec) 

= A(A n E) + A(A n F) since En F = 0. 

Now if the En are disjoint sets in '";ti'6 and F n = U7= 1 Ei t E, then 

A(A) = A(A n Fn) + A(A n F~) 

since F n belongs to the field .. /~ 

2:: A(A n Fn) + A(A n Ec) 

since Ec c F~ and A is monotone 

n 

= L>(A n E;) + A(A n Ec) 
i=l 

by what we have proved above. 

Since n is arbitrary, 

00 

A(A) 2:: :~:::>(An En)+ A(A n Ec) 
n=l 

by countable subadditivity of A. 

Thus E E ~, proving that .J) is a 0'-field. 
Now A(A n E)+ A(A n Ec) 2:: A(A) by subadditivity, hence 

00 

A(A) = L::><A n En)+ A(A n Ec). 
n=l 

Replace A by An E to obtain A(A n E)= 2::~= 1 A(A n En), as de
sired. 
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(b) All properties are immediate except for countable subadditivity. If 
A= U~ 1 An, we must show that ~-t*(A) ::S 2::~"'' ~-t*(An), and we 
may assume that J-t *(An) < oo for all n. Given 8 > 0, we may choose 
sets Enk E §0 with An C Uk Enk and l:k ~-t(Enk) ::S J-t *(An) + 82-n. 
Then A C Un,k Enk and l:n,k J-t(End ::S I:n J-t*(An) +e. Thus J-t*(A) 
::S l:n J-t *(An) + 8, 8 arbitrary. 

Now if A E .§'Q, then ~-t*(A)::::: ~-t(A) by definition of J-t*, and if 
A C Un En, En E §0, then ~-t(A) ::S l:n j.t(En) by 1.2.5 and 1.3.1. 
Take the infimum over all such coverings of A to obtain ~-t(A) ::::: 
~-t*(A); hence J-L* = J-t on §0. 

(c) If FE §0, A c n, we must show that ~-t*(A) 2:: ~-t*(A n F)+ ~-t* 
(An Fe); we may assume ~-t*(A) < oo. Given 8 > 0, there are sets 
En E .9?0 with A C Un En and 2::~ 1 ~-t(En) ::S J-t*(A) + 8. Now 

~-t*(A n F)::::: ~-t* ( y(En n F)) 

::::: L ~-t(En n F) 
n 

by monotonicity 

since J-t * is countably subadditive and J-t * = J-t on §0. 

Similarly, 

n 

Thus 

n 

and the result follows. 
(d) If A= BUN, where BE CY(§Q), N C ME CY(.9'Q), ~-t*(M) = 0, then 

B E v#t [note §0 c .Afb and v#t is a CY-field, so CY(§'Q) c . .<='5]. Also, 
any set C with ~-t*(C) = 0 belongs to .Afb by definition of J-L*
measurability; hence A E v#t. Therefore the completion of CY(§Q) 
is included in .Afb. 

Now assume J-t CY-finite on .9?6, and let A E v#t. If n is the disjoint 
union of sets An E §0 with ~-t(An) < oo, then by definition of J-t *,there 
isasetBn E CY(§Q)suchthatA nAn c Bn and~-t*(Bn- (A nAn))=O. 
[Note that if A f1 v#t we obtain only J-t * (Bn) = J-t *(A nAn); however, 
if A E v#t (so that An An also belongs to .Afb), we have 
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If B = Un Bn, then BE o-(§0), A C B, and J-t*(B- A)= 0. This ar
gument applied to Ac yields a set C E o-(§0) with C c A and 
J-t*(A- C)= 0. Therefore,A = C U (A- C)withC E o-(§Q),A- C 
c B- C E o-(§0), and J-t*(B- C)= J-t*(B- A)+ J-t*(A- C)= 0. 
Thus A belongs to the completion of o-(§0) relative to J-t*. 

Section 1.4 

1. Using the formulas of 1.4.5, the following results are obtained: 

(a) 3; (b) 8.5; (c) 5; 
(d) 7.25; (e) J-t G. oo) + J-t ( -oo, - D = 7.25. 

4. Let ck = {x E !Rl.n: - k <Xi::::: k, i = 1, ... ' n}. Then J-t is finite on Ck; 
hence the Borel subsets B of C k such that J-t(a +B) = J-t(B) form a mono
tone class including the field of finite disjoint unions of right-serniclosed 
intervals in Ck; hence all Borel subsets of Ck belong to the class (see 
1.2.2). If BE J?9(1Rl.n), then B n Ck t B; hence a+ (B n Ck) t a+ B, and 
it follows that J-t(a +B) = J-t(B). 

Now if BE J?9(1Rl.n), then B =AU C,A E J?9(1Rl.n), C c DE J?9(1Rl.n), 
with J-L(D) = 0. Thus a+ B = (a+ A) U (a+ C), and, by Problem 3, 
a+AEJ?9(1Rl.n),a+Cca+DEJ?9(1Rl.n). By what we have proved 
above, J-t(a +D) = J-t(D) = 0; hence a+ B E J?9(1Rl.n) and J-t(a +B) 
= J-t(B). 

5. Let A be the unit cube {x E !Rl.n: 0 < x; ::=:: 1, i = 1, ... , n}, and let 
c = J-t(A). For any positive integer, r, we may divide each edge of A 
into r equal parts, so that A is decomposed into rn subcubes A 1 , ••• , Ar", 
each with volume r-n. By translation-invariance, J-t(A;) is the same for 
all i, so if).. is Lebesgue measure, we have 

i = 1, ... , rn. 

Now any subinterval I of the unit cube can be expressed as the limit of 
an increasing sequence of sets Bb where each Bk is a finite disjoint union 
of subcubes of the above type. Thus J-t = c).. on subintervals of the unit 
cube, and hence on all Borel subsets of the unit cube by the Caratheodory 
extension theorem. Since !Rl.n is a countable disjoint union of cubes, it 
follows that J-t = c).. on .29 ( IRl. n ). 

6. (a) If r + x1 = s + x2, x1, x2 E A, then x1 is equivalent to x2, so that 
x1 = x2 since A was constructed by taking one member from each 
distinct Bx. Thus r = s, a contradiction. 

If x E !Rl., then x E Bx; if y is the member of Bx that belongs to A, 
then x- y is a rational number r, hence x E r +A. 
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(b) If 0 ::=:: r ::=:: 1, then r +A c [0, 2]; thus 

L{J.t(r+A): 0 ::=:: r ::=:: 1, r rational} 

= ~-t(U{r+A: 0 ::=:: r ::=:: 1, r rational}) by (a) 

::::: ~-t[O, 2] < oo. 
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But J-t(r +A)= ~-t(A) by Problem 4; hence J-t(r +A) must be 0 
for all r. Since IRl. is a countable union of sets r +A by (a), J-L(!Rl.) = 0, 
a contradiction. 

8. Let F(x, y) = 1 if x + y 2: 0; F(x, y) = 0 if x + y < 0. If a 1 = 0, 
b1 = 1, a2 = -1, b2 = 0, then 

~b1 a 1 ~~a2 F(x, y) = F(bJ, b2)- F(aJ, b2) 

- F(b 1, a2) + F(a1, a2) 

= 1- 1- 1 + 0 = -1; 

hence F is not a distribution function. Other examples: F(x, y) = max(x, y), 

F(x, y) = [x + y], the largest integer less than or equal to x + y. 

Section 1.5 

2. If B E ..5B(!Rl.), 

{w: h(w) E B} ={wE A: h(w) E B} U {wE Ac: h(w) E B} 

=[An f- 1 (B)] U [Ac n g- 1 (B)], 

which belongs to .r since f and g are Borel measurable. 

5. (a) {x: f is discontinuous at x} = U~1 Dn, where Dn = {x E [Rl.k: for 
all 8 > 0, there exist x1, x2 E [Rl.k such that lx1 - xl < 8 and lx2 -
xl < 8, but lf(x1)- j(x2)l 2: 1/n}. We show that the Dn are closed. 
Let {xa} be a sequence of points in Dn with Xa -+ x. If 8 > 0 
and N = {y: IY- xl < 8}, then Xa EN for large a, and since Xa E 

Dn, there are points Xa 1 and Xa2 EN such that lf(Xa1)- j(Xa2 )1 2: 
1jn. Thus lxa1 -xl < 8, lxa2 -xl < 8, but lf(Xa1)- f(Xa2 )1 2: 1/n, 
so that x E Dn. 

The result is true for a function from an arbitrary topological space 
S to a metric space (T, d). Take Dn = {x E S: for every neighbor
hood N of x, there exist x1, x2 EN such that d(f(x1 ), f (x2)) 2: 1/n }. 
(The above proof goes through with "sequence" replaced by "net.") 

The result is false if no assumptions are made about the topology 
of the range space. For example, let Q = {1, 2, 3}, with open sets 
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0, Q, and {1}. Define f: Q-+ Q by f(l) = f(3) = 1, f(2) = 2. 
Then the set of discontinuities is {3 }, which is not an Fa· 

(b) This follows from part (a) because the irrationals I cannot be ex
pressed as a countable union of closed sets C n. If this were possible, 
then each C n would have empty interior since every nonempty open 
set contains rational points. But then I is of category 1 in !Rl., and 
since Q = IRl. -I is of category 1 in !Rl., it follows that IRl. is of category 
1 in itself, contradicting the Baire category theorem. 

6. By Problem 11 in 1.4, there are c Borel subsets of IRl. n; hence there are only 
c simple functions on !Rl.n. Since a Borel measurable function is the limit 
of a sequence of simple functions, there are ct{o = c Borel measurable 
functions from !Rl.n to !Rl.. By 1.5.8, there are only c Borel measurable 
functions from IRl. n to IRl. k. 

7. (a) Since the P n are measures, l:k P n (Ak) = P n (Q) = 1, and it follows 
quickly that the ank satisfy the hypotheses of Steinhaus' lemma. If 
{xn} is the sequence given by the lemma, let S = { k: Xk = 1} and 
let B be the union of the sets Ak. k E S. Then 

and it follows that tn converges, a contradiction. Thus Pis a probabil
ity measure. If Bk E .r, Bk -!, 0, then given 8 > 0, we have P(Ak) < 8 

for large k, say, fork::: ko. Thus Pn(Ak{) < 8 for large n, say, for 
n :::no. Since the Ak decrease, we have supn::::no Pn(Ak):::; 8 fork::: 
ko, and since Ak -!, 0, there is a k1 such that for n = 1, 2, ... , no-
1, P n (Ak) < 8 fork ::: k1. Thus supn P n (Ak) :::; 8, k :=: max(ko, kJ). 

(b) Without loss of generality, assume Pn(Q):::; 1 for all n. Add a point 
(call it oo) to the space and set Pn{oo} = 1- Pn(Q)-+ 1- P(Q) = 
P{oo}. The Pn are now probability measures, and the result follows 
from part (a). 

Section 1.6 

2. In l::~=l lfn I dJ-t = 2::~ 1 In lfn I dJ-t < oo; hence l::~=l lfn I is integrable 
and therefore finite a.e. Thus l::~=l fn converges a.e. to a finite-valued 
function g. 

Let 8n = l::Z=I fk. Then l8nl _:::: 2::~ 1 lfkl, an integrable function. By 
the dominated convergence theorem, In 8n dj.t -+ In g dJ-t, that is, 
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3. Let xo E (c, d), and let Xn -+ xo, Xn =/= xo. Then 

(xn ~xo) [1b f(xn, y)dy -1b f(xo, y)dy] 

= {b [f(xn, y)- f(xo, y)] dy. 
la Xn-XO 

By the mean value theorem, 

f(xn, y)- f(xo, y) = !JO.·n, y) 
Xn -xo 
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for some An = An (y) between Xn and xo. By hypothesis, if1 (An, y)l ::::: 
h(y), where his integrable, and the result now follows from the dominated 
convergence theorem (since [f(xn, y)- f(xo, y)]j[xn- Xo]-+ f 1 (Xo, y), 
f 1 (x, ·) is Borel measurable for each x). 

8. Let J-t be Lebesgue measure. Iff is an indicator /B, BE .56'(1Rl.), the result 
to be proved states that J-t(B) = J-t(a +B), which holds by translation
invariance of J-t (Problem 4 in 1.4). The passage to nonnegative simple 
functions, nonnegative measurable functions, and arbitrary measurable 
functions is done as in 1.6.12. 

Section 1.7 

2. (a) IfjisRiemann-Stieltjesintegrable,a = f = f3a.e.[~-t]asinl.7.l(a). 
Thus the set of discontinuities off is a subset of a set of I-t-measure O, 
together with the endpoints of the subintervals of the Pk. Take a dif
ferent sequence of partitions having the original endpoints as interior 
points to conclude that f is continuous a.e. [J-L]. Conversely, iff is 
continuous a.e. [J-L], then a= f = f3 a.e. [J-L]. [The result that f is 
continuous at x implies a(x) = f(x) = f3(x) is true even if x is an 
endpoint.] As in 1.7.1(a), f is Riemann-Stieltjes integrable. 

(b) This is done exactly as in 1.7.1(b). 

3. (a) By definition of the improper Riemann integral, f must be Riemann 
integrable (hence continuous a.e.) on each bounded interval, and the 
result follows. For the counterexample to the converse, take f(x) = 
1, n ::::: x < n + 1, n an even integer; f(x) = -1, n :::=::x < n + 1, n 
an odd integer. Then the limit of rab(f) does not exist. (Alternatively, 
take f(x) identically 1; then TabU)-+ +oo as a-+ -oo, b-+ oo.) 

(b) Define 
if- n ::::: x::::: n, 
elsewhere. 
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Then fn t f; hence f is measurable relative to the completed CY

field; also In fn dj.t t In f dj.t by the monotone convergence theo
rem. But In fn dj.t = r-n,nU) by 1.7.1(b), and r-n,nU)-+ r(f) by 
hypothesis; the result follows. 

For the counterexample, take 

{ 

(-l)n 

f(x) = n + 1' 

0, 

n .:=:: x < n + 1, 

X< 0. 

We have r(f) = 1 - ~ + 1 - · · · , but 

n = 0, 1, ... , 

hI! I dj.t = 1 + ~ + t + ... = 00, 

so that f is not Lebesgue integrable on !Rl.. 

CHAPTER 2 

Section 2.1 

2. Let D = {w: f (w) < 0}; then A.(A n D) .:::: 0, A.(A n DC) ::: 0 for all A E .r. 
By 2.1.3(d), 

since j+ = f on De and j+ = 0 on D. Similarly, 

since f- =- f on D, and f- = 0 on De. The result follows. 

4. If E 1, ••• , En are disjoint sets in .r, with all E; C A, 

n n n 
L IA.(E;)I = L lA. +(E;)- A -(E;)I.:::: L[A +(E;) +A -(E;)] 
i=l i=l i=l 

Thus the sup of the terms 2::7=1 IA.(E;)I is at most IA.I(A). But 

IA.I(A) =A +(A)+ A -(A) 

= A.(A nDc)- A.(A nD) 
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= IA.(A n Dc)l + IA.(A n D)l 

since A.(A n DC) :::: 0 

= IA.(EJ )I + IA.(E2)1 

and the result follows. 

Section 2.2 
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and A.(A n D):::; 0 

2. Let An= {w: lg(w)l?: 1/n}, n = 1, 2, ... , so that A= U~=l An. Now 

00 > { lgl dj.t?: _!_j.t(An); JA,. n 

hence J-t(An) < oo. For the example, let J-t be Lebesgue measure on .JiJ (!Rl.), 
and let g(x) be any strictly positive integrable function, such as g(x) = 
e-lxl. In this case, A = !Rl., so that J-t(A) = oo. 

4. Iff is an indicator /A, the result is true by hypothesis. Iff is a nonnegative 
simple function ~J=l xjiA1, the Aj disjoint sets in Y, then 

1 fdA.= i>jA(Aj) = txj 1 gdJ-t = txj 1 IA1gdJ-t 
n j=l j=l AI j=l n 

= L fgdJ-t by the additivity theorem. 

If f is a nonnegative Borel measurable function, let f 1, f 2 •••• be non
negative simple functions increasing to f. By what we have just proved, 
In fndA =In fn g dj.t; hence In fdA. = In fg dj.t by the monotone con
vergence theorem. Finally, iff is an arbitrary Borel measurable function, 
write f = j+ - f-. By what we have just proved, 

and the result follows from the additivity theorem. 

6. (a) In the definition of lA. I, we may assume without loss of generality that 
theE; partition A. If A is thedisjointunionofsetsA1, A2, ... , E Y, then 

t.ll(E; ll = t.lt.l(E 1 n A;)l ,; t. t.ll(E J n A; ll 
oo n 00 

i=l j=l i=l 
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Thus IAI(A) ::; 2::~ 1 IAI(A;). Now to show the reverse inequality, we 
may assume IAI(A) < oo; hence IAI(A;)::; IAI(A) < oo. For each i, 
there is a partition {E;J, ... , E;n;} of A; such that 

n, 

L IA(E;j)l > IAI(A;)- ;i. 
j=l 

Then for any n, 

8>0 

n n1 n 

preassigned. 

IAI(A) 2: L L IA(E;j)l 2: L IAI(A;)- 8. 

i=l j=l i=l 

Since n and 8 are arbitrary, the result follows. 
(b) If E 1, ••• , En are disjoint measurable subsets of A, 

n n n 

L I(AJ + A2)(E;)I::; L IAJ (E;)I + L IA2(E;)I 
i=l i=l 

s IAJI(A) + IA2I(A), 

proving IAJ + A21 S IAJI + IA21; laAI = laiiAI is immediate from the 
definition of total variation. 

(c) If ~-t(A;) = 0 and IA;I(Aj')= 0, i = 1, 2, then ~-t(A 1 UA2) = 0 and by 
(b), lA] + A2l (A~ n A2) s IA1I (AD+ 1A2I (A2) = o. 

(d) This has been established when A is real (see 2.2.5), so assume A 
complex, say, A= AJ + iA2. If ~-t(A) = 0, then A1 (A)= A2(A) = 0; 
hence A << J-t implies AJ << J-t and A2 << J-t. By 2.2.5(b), IAJI << 
J-t, IA21 << J-t; hence by (b), IAI << J-t. The converse is clear since 
IA(A)I s IAI(A). 

(e) The proof is the same as in 2.2.5(c). 
(f) See 2.2.5(d). 
(g) The "if" part is done as in 2.2.5(e); for the "only if" part, let ~-t(An)-+ 

0. Since IAI << J-t by (d), IAI (An) -+ 0 by 2.2.5(e); hence A(An) -+ 0. 

Section 2.3 

2. We have 

{b f'(x)dx= {b lim [f(x+h)-f(x)] dx 
Ja Ja h-+0 h 

where we may assume h > 0 

< liminf {b [f(x +h)- f(x)] dx 
- h-+0 Ja h 
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= li~_}rf ~ [1b+h f(x) dx - 1a+h f(x) dx J 

[define f(x) = f(b), x > b; f(x) = f(a), x <a] 

1 
.::; liminf -[hf(b +h)- hf(a)] 

h-->-0 h 
= f(b)- f(a). 

since f is increasing 

Alternatively, let J-t be the Lebesgue-Stieltjes measure corresponding to 
f (adjusted so as to be right continuous), and let m be Lebesgue measure. 
Write J-t = f.-tl + f.-t2, where f.-tl << m and J-L2 l_m. By 2.3.8 and 2.3.9, 

1b f'(x)dx = 1b f' dm 

= 1b dJ-tdm 

1b df.-tl 
= -dm = f.-tl (a, b].::; J-t(a, b] = f(b)- f(a). 

a dm 

6. (a) Since A is linear and m is translation-invariant, so is A.; hence by 
Problem 5 in 1.4, A.= c(A)m for some constant c(A). Now if A1 and 
A2 are linear transformations on !Rl.k, then 

m(A 1A2E) = c(A 1 )m(A2E) = c(A 1 )c(A2)m(E) 

and 

hence 

Since det (A 1A2) = det A 1 det A2, it suffices to assume that A cor
responds to an elementary row operation. Now if Q is the unit 
cube {x: 0 < x; .::; 1, i = 1, ... , k}, then m(Q) = 1; hence c(A) = 
m(A(Q)). If eh ... , ek is the standard basis for !Rl.k, then A falls 
into one of the following three categories: 

(1) Ae; = ej, Aej = e;, Aek = eb k =!= i or j. Then c(A) = 1 
= ldet AI. 

(2) Ae; = ke;, Aej = ej, j =!= i. Then c(A) = lkl = ldet AI. 
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(3) Ae; = e; + e j,Aek = eb k =1= i. Thendet A = 1 andc(A) is 1 also, 
by the following argument. We may assume i = 1, j = 2. Then 

A(Q) ={A "t,a;e;: 0 <a;.::; 1, i = 1, ... , k} 

= {y = t b;e;: 0 < b; .::; 1, i =!= 2, b 1 < b2 .::; b1 + 1} 
1=1 

If B 1 = {y E A(Q): b2.::; 1}, B2 = {y E A(Q): b2 > 1}, and B2 
- e2 = {y- e2: y E B2}, then B1 n (B2 - e2) = 0; for if y E 
B 1, then b1 < b2 and if y + e2 E B2 c A(Q), then b2 + 1.::; 
b1 + 1. Therefore, 

c(A) = m(A(Q)) = m(B1) + m(B2) = m(B1) + m(B2- e2) 

= m(B1 U (B2- e2)) = m(Q) = 1. 

(b) Fix x E V and define S(y) = T(x + y)- T(x), y E {z- x: z E V}. 
Then if C is a cube containing 0, we have 

T(x +C)= {T(x + y): y E C} = T(x) + {S(y): y E C} 

= T(x) + S(C). 

Therefore, m(T(x +C)) = m(S(C)), so that differentiability ofT at 
x is equivalent to differentiability of S at 0, and the derivatives, if 
they exist, are equal. Also, the Jacobian matrix of S at 0 coincides 
with the Jacobian matrix ofT at x, and the result follows. 

(c) Let A = A(O), and define S(x) =A -I (T(x)), x E V; the Jacobian ma
trix of S at 0 is the identity matrix, and S(O) = A-1 (0) = 0. If we 
show that the measure given by m(S(E)), E E ..5B(V), is differentiable 
at 0 with derivative 1, then 

I 
m(S(C)) I 8 

m(C) -
1 

< ldet AI 

for sufficiently small cubes C containing 0. Thus by (a), m(T(C)) 
= m(AS(C)) = ldet Alm(S(C)); hence 

l
m(T(C)) -I detAil= lm(S(C)) -111detA1 < 8, 

m(C) m(C) 

so that J-t is differentiable at 0 with derivative ldet AI. 
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(d) (i) If x E C, then lxl ::=:: ./k{3 < 8; hence IT(x) -xl ::=:: af3 = 
!(/32- {3). Therefore T(x) E C2. 

(ii) If X E ac, then IT(x) -xl::::: a{3 as above, and a{3 = ~({3- /31). 
Therefore T (x) f1 C 1 • 

(iii) We have IT(x)- xl ::=:: a{3, and 

and the result follows. 
(iv) If y E C 1 - T(C) but y E T(C), then y E T(aC), contradicting (ii). 

Now C 1 is the disjoint union of the sets C 1 n T(C) and C 1 - T(C); 
the first set is open since T is an open map, and the second set is open 
by (iv). By (iii), C 1 n T(C) =!= 0, so by connectedness of C 1, we have 
C1 = C 1 n T(C), that is, C 1 c T(C). Also, T(C) c C2 by (i). 

Therefore m(C 1) ::=:: m(T(C)) ::=:: m(C2), that is, 

(1 - 2al {3k ::=:: m(T(C)) ::=:: (1 + 2al {3k. 

Thus 1 - 8 < (1 - 2a)k < m(T(C))/m(C) ::=:: (1 + 2a)k < 1 + 8 
as desired. 

(e) Assume m(E) = 0 and )..(E)> 0. By 1.4.11, and the fact that 

E = U En sup -- < n , 
00 

{ )..(Cr) } 

n,j=l C,,r<l/j m(Cr) 

we can find a compact set K and positive integers n and j such 
that m(K) = 0, )..(K) > 0, and A(C) < nm(C) for all open cubes C 
containing a point of K and having diameter less than 1 j j. If 8 > 0, 
choose an open set D ~ K such that m(D) < 8. 

Now partition IRk into disjoint (partially closed) cubes B of diame
ter less than 1/ j and small enough so that if B n K =!= 0, then B c D. 
If the cubes that meet K are B 1, ••• , B1, we may find open cubes 
Ci ~ B;, 1 ::=:: i ::=:: t, such that m(C;) < 2m(B;) and diam C; < 1/ j. 
Then 

t t t t 

A(K) ::=:: LA(B;) ::=:: LA(Ci) < n L:m(C;) < 2n 'L:m(B;) 
i=l i=l i=l i=l 

::=:: 2nm(D) < 2n8. 

Since 8 is arbitrary, A(K) = 0, a contradiction. 
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(f) Iff is an indicator /B, let E = r-1 (B), so that B = T(E). Then 

l f(y)dy = m(T(E)) and [ f(T(x))ll(x)l dx = 11l(x)l dx, 

and the result follows from part (e). The usual passage to simple 
functions, nonnegative measurable functions and arbitrary measur
able functions completes the proof. 

Section 2.4 

1. (a) Iff = {a1, ... , an, 0, 0, ... }, then In f dj.t = l::Z=I ak by definition 
of the integral of a simple function. Iff ={an, n = 1, 2, ... }, with 
all an :;:: 0, In f dj.t = I:~= I an by the result for simple functions and 
the monotone convergence theorem. If the an are real numbers, then 
In f dJ-t =In j+ dJ-t- In f- dJ-t = l::~=l a~ -I:~= I a;; if this 1s 
not of the form +oo- oo. Finally, if the an are complex, 

In f dj.t = f: Re an + i f: lm an 
n=l n=l 

provided Re f and lm f are integrable; since IRe an I, lim an I 
::::: lanl::::: IRe ani+ lim ani, this is equivalent to l::~=l lanl < oo. 

(b) If f(a) = 0 except for a E F, F finite, then In f dJ-t = l:a f(a) by 
definition of the integral of a simple function. Iff:;:: 0, then In! dJ-t 
:;:: IFf dj.t for all finite F; hence In f dj.t :;:: l:a f(a). If f(a) > 0 for 
uncountably many a, then l:a f(a) = oo; hence In f dj.t = oo also. 
If f(a) > 0 for only countably many a, then In f dj.t = l:a f(a) by 
the monotone convergence theorem. The remainder of the proof is 
as in part (a). 

8. Apply HOlder's inequality with g = 1, f replaced by lflr, p = sjr, 1/q 
= 1- rjs, to obtain 

Therefore llfllr::::: IIIIIs [J-L(Q)] 1
jrq, as desired. 

9. We have InlfiP dj.t::::: llfii~J-L(Q), so limsupp-+oo II! liP::::: llflloo· Now 
let e > 0, A= {w: lf(w)l::: llflloo- 8} (assuming llflloo < oo). Then 

In lfiP dj.t:;:: 11fiP dj.t:;:: (llflloo- e)Pj.t(A). 
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Since ~-t(A) > 0 by definition of llflloo, we have liminfp--+oo llfiiP 
2:: llflloo· If llflloo = oo, let A= {w: lf(w)l 2:: M} and show that 

liminfllfiiP 2:: M; 
p--+OC 

since M can be arbitrarily large, the result follows. 
If J-L(Q) = oo, it is still true that liminfp--+oo llfllp 2:: llflloo; if ~-t(A) 

= oo in the above argument, then II fliP= oo for all p < oo. However, if 
J-t is Lebesgue measure on .§1 (!Rl.) and f(x) = 1 for n.::; x.::; n + (1/n), 
n = 1, 2, ... , and f(x) = 0 elsewhere, then II fliP= oo for p < oo, but 
llflloo = 1. 

11. (a) We have I fEU- z)d~-tl.::; JE If- zl dJ-t. But wEE implies 
f(w) ED; hence lf(w)- zl.::; r; and thus JE If- zl d~-t.::; r~-t(E). 
If ~-t(E) > 0, then 

1-1 
f f d~-t- zl = 1-1 

{ (f- z)d~-tl.:s r; ~-t(E) } E ~-t(E) } E 

hence [1/~-t(E)] JE f d~-t ED c sc, a contradiction. Therefore ~-t(E) 
= 0, that is, J-L{w: f(w) ED}= 0. Since {w: f(w) Iii S} is a count
able union of sets f- 1 (D), the result follows. 

(b) Let J-t = lA. I; if E 1, ••• , En are disjoint measurable subsets of An 

n 

.:S r LJ-t(Ej).::; r~-t(Ar). 
j=l 

Thus ~-t(Ar).::; r~-t(Ar), and since 0 < r < 1, we have ~-t(Ar) = 0. If 
A= {w: lh(w)l < 1} = U{Ar: 0 < r < 1, r rational}, then ~-t(A) = 
0, so that lhl 2:: 1 a.e. 

Now if ~-t(E) > 0, then [lj ~-t(E)]jE h d~-t = A.(E)j ~-t(E) E S, where 
S = {z E C: lzl .::; 1}. By (a), h(w) E S for almost every w, so I hi .::; 1 
a.e. [IA.I]. 

(c) If E E .r, fn fehdiA.I = JE hdiA.I = A.(E) by (b); also, fn fegdJ-t 
= JE g d~-t = A.(E) by definition of A.. It follows immediately that 
fn fhdiA.I = fn fgdJ-t when f is a complex-valued simple func
tion. Iff is a bounded, complex-valued Borel measurable function, 
by 1.5.5(b) there are simple functions fn -+ f with lfn I .:S I fl. 
By the dominated convergence theorem, fn fhdiA.I = fn fgdJ-t. If 
f = h/e, we obtain IA.I(E) = JEhgdJ-t. 
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(d) In (c), IA.I(E)::: 0 for all E; hence hg::: 0 a.e. [J-L] by 1.6.11. But 
if g(w) = lg(w )leil!(w) and h(w) = eirp(w), then ei(l!-rp) = 1 a. e. on 
{g =!= 0}, so that hg = lgl a.e., as desired. 

12. If I(a,b) can be approximated in v~o by continuous functions, let 0 < 8 < 
~ and let f be a continuous function such that 

III (a, b) - f lloo .:::: 8; 

hence I/ (a, b) - f I .::; 8 a. e. For every 8 > 0, there are points x E (a, a + 
8) andy E (a- 8, a) such that 11- f(x)l.::; 8 and lf(y)l.::; 8. Conse
quently, lim supx--+a+ f(x) :=: 1 - 8 and lim infX--+a- f(x) .::; 8, contradict
ing continuity of f. 

Section 2.5 

00 

U Bjiw -1.- Ba, 
j,k=n 

and the proof proceeds just as in 2.5.4. 

5. Let Unk} be a subsequence converging a.e., necessarily to f by Problem 1. 
By 1.6.9, f is J-L-integrable. Now if fn fn d~-t -+--+ fn f dj.t, then for 
some 8 > 0, we have lfn fn d~-t- fn f d~-tl ::: 8 for n in some subsequence 
{md. But we may then extract a subsequence Ur) of {f mk} converging 
to f a.e., so that fn fr

1 
d~-t -+ fn f d~-t by 1.6.9, a contradiction. 

Section 2.6 

4. By Fubini's theorem, 

~-t(C) = JJ I c d~-t = L
1 

[L
2 

I c d~-t2] d~-t 1 = L, J-L2(C(w1)) d~-t 1 (wJ). 
n 

Similarly, ~-t(C) = fn
2 

~-t 1 (C(~)) d1-~dw2). The result follows since f ::: 
0, fn f = 0 implies f = 0 a.e. 

7. (a) Let 

Ank = {x E Ql: 
k-1 k} -- .:S f(x) < - , 

n n 

Bnk = {y E Q2: k-1 k} --.:Sy<-
n n 
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(n = 1, 2, ... , k = 1, 2, ... , n; when k = n, include the right end
point as well). Then 

oo n 

G = n U<Ank X Bnd E .r. 
n=l k=l 

Iff is only defined on a subset of nl> replace nl by the domain of 
f in the definition of Ank· 

(b) Assume B c c]. Each X E nl is countable and (x, y) E B implies 
y _:::: x; hence there are only countably many points Yx1, Yx2 • ... E n2 
such that (x, Yxn) E B. (If there are only finitely many points Yxl, ... , 
Yxn• take Yxk = Yxn fork 2: n.) 

Thus B = U~=l Gn, where Gn is the graph of the function fn 
defined by fn(x) = Yxn· By part (a), BE 7. (Note that Yxn E n2. 
which may be identified with [0, 1]; thus (a) applies.) If B c C2, 
each y E Q 2 is countable, and (x, y) E B implies x < y, so there are 
only countably many points Xyn E nl such that (Xyn. y) E B. The 
result follows as above. 

(c) IfF c Q, then F = (F n C 1) U (F n C2) and the result follows from 
part (b). 

9. Assuming the continuum hypothesis, we may replace [0, 1] by the first un
countable ordinal 131· Thus we may take nl = n2 = /3J' .9'j = .972 
= the image of the Borel sets under the correspondence of [0, 1] with 
{31, and J-LJ = J-t2 = Lebesgue measure. Let f = I c. where C = { (x, y) E 

nl X n2: y .::: x} and the ordering ".:::" is taken in /31' not [0, 1]. For 
each x, {y: f(x, y) = 1} is countable, and for each y, {x: f(x, y) = 0} is 
countable; it follows that f is measurable in each coordinate separately. 

Now Jd f(x, y)dy = 0 for all x; hence Jd [Jd f(x, y)dy] dx = 0. But 

Jd[l- f(x, y)]dx = 0 for all y; hence Jd fJd f(x, y)dx] dy = 1. It 
follows that f is not jointly measurable, for if so, the iterated integrals 
would be equal by Fubini' s theorem. 

Section 2.7 

1. Let ~be the smallest O"-field containing the measurable rectangles. Then 
?? c fl}= 1 !J?j since a measurable rectangle is a measurable cylinder. But 

the class of sets A c TI}=l n j such that {w E n: (wJ' ... 'Wn) E A} E ~ 
is aCT-field that contains the measurable rectangles of fl}= 1 Q j• and hence 
contains all sets in fl}= 1 !J?j. Thus all measurable cylinders belong to .'7'; 
so TI}= 19J c ~. 
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5. 

{x E 1Rl.
00

: f(x) = n} = {x: 'tx; < 1, 

SOLUTIONS TO PROBLEMS 

k = 1, 2, ... , n- 1, tx; 2:: 1} 
i=l 

if n = 1, 2, ... , 

{x E 1Rl00
: f(x) = oo} = { x: ~x; < 1, n = 1, 2, .. } 

In each case we have a finite or countable intersection of measurable 
cylinders. 

CHAPTER 3 

Section 3.2 

6. (a) Let z E K, a compact subset of U. If r < d0 , a standard application 
of the Cauchy integral formula yields 

1 r2rr 
f(z) = 

2
7r Jo f(z + re;

11
)d0. 

Thus if 0 < d < do, 

d2 1d 1 1d 12rr f(z)- = rf(z)dr = -
2 

rdr f(z + rei0 )d0, 
2 0 7T 0 0 

or 

1 12rr 1d f(z) = -
2 

f(z + rei0 )rdrd() 
Jrd 0=0 r=O 

= 7r~2 JJ f(x + iy)dxdy 

D 

where D is the disk with center at z and radius r. An application 
of the Cauchy-Schwarz inequality to the functions 1 and f shows 
that 

as desired. 
(b) If JI, h .... is a Cauchy sequence in H(U), part (a) shows that fn 

converges uniformly on compact subsets to a function f analytic 
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on U. But H(U) c L2(Q, .§', J-t) where Q = U, .§'is the class of 
Borel sets, and J-t is Lebesgue measure; hence fn converges in L2 

to a function g E H ( U). Since a subsequence of {f n} converges to 
g a.e., we have f = g a.e. Therefore f E H(U) and fn -+ fin L2, 
that is, in the H ( U) norm. 

7. (a) If 0.::; r < 1, 

since the Taylor series 

converges uniformly on compact 

subsets of D 

00 

= L I an 12r2n' 
n=O 

which increases to l:~=O I an 12 as r increases to 1. 

(b) JJ lf(x + iy)l 2 dx dy = 11 

rdr 12

rr lf(rei0 )1 2 d() 

D 

!! 1~11 ~ 
(c) lfn(x + iy)l 2 dx dy = r2nrdrdB = ) -+ 0, 

o o (2n + 2 
D 

but 

hence N(fn) = 1 for all n. 

(d) If Unl is a Cauchy sequence in H 2, part (b) shows that Unl is 
Cauchy in H(D). By Problem 6, fn converges uniformly on com
pact subsets and in H (D) to a function f analytic on D. Now if 
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0 < ro < 1, 8 > 0, the Cauchy property in H 2 gives 

for r .:=:: r0 and n, m exceeding some integer N(8). Let m-+ oo; 
since f m -+ f uniformly for lzl .:=:: ro, 

n 2:: N(8). 

Since ro may be chosen arbitrarily close to 1, N 2Un - f) .:=:: 8 for 
n 2:: N(8), proving completeness. 

(e) Since en corresponds to (0, ... , 0, 1, 0, ... ), with the 1 in position 
n, in the isometric isomorphism between H 2 and a subspace of 
12, the en are orthonormal. Now if f E H2, with Taylor coeffi
cients an, n = 0, 1, ... , then (f, en) = an, again by the isometric 
isomorphism. Thus 

00 00 

N 2(f) = L lanl2 
= L l(f, en)l 2 

n=O n=O 

and the result follows from 3.2.13(f). 

(f) (en, em)= J J en(x + iy)em(x + iy)dxdy 

D 

= J J en(rei0 )em(rei0 )rdrd() 

D 

= {0, 
1, 

n =/= m, 
n =m. 

Thus the en are orthonormal. Now if f E H (D) with 

00 

f (z) = L an zn. 
n=O 
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=fan {2rr ro rnein(J (2m+ 2) 1/2 rme-im(Jrdrd() 
n=O Jo Jo 2rr 

since the Taylor series converges uniformly on compact 
subsets of D 

=am --- --0--2JT =am --- r2m+2. (
lm+l)l/2 r2m+2 ( lrr )1/2 

2rr 2m+2 2m+2 ° 
Now fern is integrable on D (by the Cauchy-Schwarz inequali
ty), so we may let r0 -+ 1 and invoke the dominated convergence 
theorem to obtain 

But the same argument with em replaced by f shows that 

The result now follows from 3.2.13(f). 

9. (a) Let g be a continuous complex-valued function on [0, 2rr] with g(O) 
= g(2rr). Then g(t) = h(e;1

), where h(z) is continuous on {z E C: 
lzl = 1}. By the Stone-Weierstrass theorem, h can be uniformly 
approximated by functions of the form 2:~=-n ck i. For the algebra 
generated by zn, n = 0, ±1, ±2, ... , separates points, contains the 
constant functions, and contains the complex conjugate of each of 
its members since z = 1/z for lzl = 1. 

Thus g(t) can be uniformly approximated (hence approximated in 
L2) by trigonometric polynomials 2:~=-n Ck eikr. Since any continu
ous function on [0, 2rr] can be approximated in L2 by a continuous 
function with g(O) = g(2rr), and the continuous functions are dense 
in L 2 , the trigonometric polynomials are dense in L 2• 
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(b) By 3.2.6, J;" lf(t)- l:Z=-n Ck eiktl 2 dt is minimized when Ck = ak 
r~ b . = (1/2rr) Jo f(t)e-' dt. Furthermore, some sequence of trigono-

metric polynomials converges to f in L2 since the trigonometric 
polynomials are dense. The result follows. 

(c) This follows from part (a) and 3.2.13(c), or, equally well, from part 
(b) and 3.2.13(d). 

10. (a) Let{ en} beaninfiniteorthonormalsubsetofH. TakeM = {xh x2, •• • }, 

wherexn = (1 + 1/n )en, n = 1, 2, .... To show thatM is closed, we 
compute, for n =/= m, 

llxn - Xm 11
2 

= II ( 1 + ~) en - ( 1 + ~) em 11
2 

= ( 1 + ~ r + ( 1 + ~ r ~ 2. 

Thus if Yn EM, Yn -+ y, then Yn = y eventually, soy EM. Since 
llxn 11

2 = 1 + (ljn ), M has no element of minimum norm. 
(b) Let M be a nonempty closed subset of the finite-dimensional 

space H. If x E Hand N = M n {y: llx- Yll.::: n}, then N =!= 0 for 
some n. Since y-+ llx- Yll, yEN, is continuous andN is compact, 
inf{llx- yll: yEN}= llx- Yo II for some Yo EN c M. But the inf 
over N is the same as the inf over M; for if y E M, y t;t N, then 
llx- Yoll .::: n < llx- Yll· Note that Yo need not be unique; for ex
ample, letH = !Rl., M = {-1, 1}, x = 0. 

Section 3.3 

3. Since J: IK(s, t)l dt is continuous in s, it assumes a maximum at some 
point u E [a, b]. If K(u, t) = r(t)eil!(t), r(t) ~ 0, let z(t) = e-il!(t). Let X], 

x2, ... be a sequence in ([[a, b] such that J: lxn(t)- z(t)l dt-+ 0; we 
may assume that lxn(t)l _:::: 1 for all n and t (see 2.4.14). Since K is 
bounded, 

I 
{b K(s, t)z(t) dtl = lim I {b K(s, t)xn(t) dtl = lim I(A.xn)(s)l .::: IIAII· Ja n----':1-00 Ja n----':1-00 

Set s = u to obtain 

1b IK(u, t)l dt.::: IIAII, 

as desired. 
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7. (a) If x E L, then 

But 2::?=1 lx;l ::::: Jnllxll2. so we may take k = Jn max; lleilll· 
(b) Let S = {x: llxll2 = 1}. Since (L, II ll2) is isometrically isomorphic 

to en, S is compact in the norm II 112· Now the map x --+ llxll1 is 
a continuous real-valued function on (L, II III), and by part (a), the 
topology induced by II 11 1 is weaker than the topology induced by 
II 112· Thus the map is continuous on (L, II 112); hence it attains a 
minimum on S, necessarily positive since x E S implies x =!= 0. 

(c) If x E L, x =/= 0, let y = x/llxll2; then IIYih 2:: miiYII2 by (b); hence 
llxll1 2:: mllxll2· By (a) and Problem 6(b), II ll1 and II ll2 induce the 
same topology. 

(d) By the above results, the map T: 2::?=1 x;e;--+ (x1, ... , Xn) is a 
one-to-one onto, linear, bicontinuous map of L and en [note that 
Ill::?= I x;e; ll2 is the Euclidean norm of (x1, ... , Xn) in en]. If Yj E L, 
Yj--+ y EM, then Yj- Yk--+ 0 as j, k--+ oo; hence T(yj- yk) = 
Tyj- Tyk--+ 0. Thus {Tyj} is a Cauchy sequence in en. If Tyj --+ 

Z E en , then y j --+ T- 1 z E L. 

9. For (a) implies (b), see Problem 7; if (c) holds, then {x: llxll ::::: e} is 
compact for small enough e > 0; hence every closed ball is compact (note 
that the map x --+ kx is a homeomorphism). But any closed bounded set 
is a subset of a closed ball, and hence is compact. 

To prove that (f) implies (a), choose x1 E L such that llx111 = 1. Suppose 
we have chosen x1, ... , Xk E L such that llx;ll = 1 and llx; - x j II 2:: ~ for 
i, j = 1, ... , k, i =/= j. If Lis not finite-dimensional, then S{x1, ••• , xk} is a 
proper subspace of L, necessarily closed, by Problem 7(d). By Problem 8, 
we can find Xk+l E L with llxk+JII = 1 and llx;- Xk+JII 2:: ~. i = 1, ... , k. 
The sequence x~o x2, ... satisfies llxn II = 1 for all n, but llxn - Xm II 2:: ~ for 
n =/= m; hence the unit sphere cannot possibly be covered by a finite number 
of balls of radius less than ~. 

11. (a) Define A.(A) = f(IA), A E.r. If A~oA2 , ... are disjoint sets in .r 
whose union is A, then A.(A) = 2::~ 1 f(h) since f is continuous 

n LP 
and l::i=l h, ~ /A. [Note that 
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by finiteness of J-L.] Thus).. is a complex measure on .r. If ~-t(A) = 0, 
LP 

then /A = 0 a.e. [J-L], so we may write h ~ 0 and use the con-
tinuity off to obtain )..(A)= 0. By the Radon-Nikodym theorem, 
we have )..(A)= JA ydj.t for some J-L-integrable y. Thus f(x) = 
fn xy d~-t when x is an indicator; hence when x is a simple function. 
Since f is continuous, y is J-L-integrable, and the finite-valued sim
ple functions are dense in LP, the result holds when x is a bounded 
Borel measurable function. 

Now let y1, Y2, ... be nonnegative, finite-valued, simple functions 
increasing to 1 y 1. Then 

llYn II~= In Y% dj.t ~In Y%-11YI dj.t =In Y%-le-i arg Yydj.t 

since (q-l)p=q. 

Thus IIYnllq ~ 11!11; hence by the monotone convergence theorem, 
IIYIIq ~II! II; in particular, y E U. But now HOlder's inequality and 
the fact that finite-valued simple functions are dense in LP yield 
f(x) = fnxydJ-t for all x E U. Holder's inequality also gives 11/11 
~ IIYIIq; hence IIIII = IIYIIq· If Y1 is another such function, then g(x) 
= fn x(y - Y1) d~-t = 0 for all x E U. By the above argument, 
IIY- Y1llq = 0, so y = Y1 a.e. [J-L]. 

(b) (i) If, say, YA- YB > 0 on the set F cAn B, let x = lp; then x/A 
= x/B; hence fn x(yA - YB) d~-t = 0, that is, 

l (YA- YB)dj.t = 0. 

But then ~-t(F) = 0. 
(ii) Since YAn U Am = YAn a.e. on An we have 

IIYAnll~ ~ IIYAn UAmll~ = IIYAJ~+ 1m-An IYAmlqdj.t. 

Since IIYAnll~ approacheskq as n-+ oo, so does IIYAn LJAmll~, and 

it follows that JAm-An I YAm lq d~-t -+ 0 as n -+ 00. By symmetry, 
we may interchange m and n to obtain 

{ I YAm - YAn lq dj.t = 1 I YAm lq dj.t 
Jn Am-An 
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as n, m--+ oo. Thus YA. converges in Lq to a limit y, and since 
IIYA. llq ::=:: IIIII for all n, IIYIIq ::=:: IIIII- If {Bn} is another sequence 
of sets with IIYBJq--+ k, the above argument with Am replaced 
by Bn shows that IIYA. - YBJq--+ 0; hence YB. --+ y also. 

(iii) Let A E !T, ~-t(A) < oo. In (ii) we may take all An ~A, so that 
YA. = YA a.e. on A; hence y = YA a.e. on A. Thus if x =/A, 
then f(x) = f (xi A) = In XYA d~-t = In xy dJ-t. It follows that f(x) 
= In xy d~-t if x is simple. [If ~-t(B) = oo, then x must be 0 on 
B since x E LP.] Since y E Lq, the continuity off and HOlder's 
inequality extend this result to all x E LP. 

(c) The argument of (a) yields a J-L-integrable y such that f(x) = Inxy 
d~-t for all bounded Borel measurable x. Let B = {w: ly(w)l ::: k}; 
then 

k~-t(B) ::=:: 11 Yl dj.t = L I Be-i arg Y Y dj.t 

= f(!Be-i arg Y) ::=:: llfll II/BIII = llfll~-t(B). 

Thus if k > llfll, we have ~-t(B) = 0, proving that y E £0° and IIYIIoo 
::=:: 11111. As in (a), we obtain f(x) = Inxy d~-t for all x E L1, 11!11 
= IIYIIoo, and y is essentially unique. 

(d) Part (i) of (b) holds, with the same proof. Now if Q is the union 
of disjoint sets An, with ~-t(An) < oo, define y on Q by taking 
y = YA. on An. Since IIYA. lloo ::=:: IIIII for all n, we have y E L00 

LJ 
and IIYIIoo ::=:: 11111. If x E L1

, then 2::7= 1 xfA; ~ x; hence 

f(x) = 'f_t(x!AJ ='f. L XYA. d~-t 
n=l n=l 

='f. { xydj.t = { xydj.t. 
n=l JA. Jn 

Since 11!11 ::=:: IIYIIoo by HOlder's inequality (with p = 1, q = oo), 
the result follows. 

Section 3.4 

3. Let {yn} be a Cauchy sequence in M, and let x0 be any element of L 
with norm 1. By 3.4.5 (c), there is an f E L* with 11!11 = 1 and f(xo) 
= llxoll = 1; we define An E [L, M] by Anx = f(x)Yn· Then II(An- Am)xll 
= lf(x)IIIYn - Ymll ::=:: llYn - Ymll llxll, SO that IIAn -Am II ::=:: llYn - Ymll 
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--+ 0. By hypothesis, the An converge uniformly to some A E [L, M]; there
fore, llYn - Axoll = IIAn xo- Axoll :S IIAn- All --+ 0. 

7. Let L be the set of all bounded scalar-valued functions on Q, with sup 
norm, and let M be the subspace of L consisting of simple functions 

where the A j are disjoint sets in §G. Define 8 on M by 

Nowl8(x)l:::: max) lxjll::j J-to(Aj):::: maxj lxjiJ-Lo(Q) = J-Lo(Q)IIxll;hence 
11811 :::: J-Lo(Q) < oo. By the Hahn-Banach theorem, 8 has an extension 
to a continuous linear functional f on L, with II! II = 11811. Define ~-t(A) 
= f(IA), A C Q. Since f is linear, J-t is finitely additive, and since f is an 
extension of 8, J-t is an extension of J-to. Now if ~-t(A) < 0, then 

But IliAc II= 1, so that 11!11 > J-L(Q), a contradiction. 

8. Since Anx --+ Ax for each x, supn IIAnxll < oo. By the uniform bounded
ness principle, supn IIAn II = M < oo; hence 

IIAxll lim IIAnxll = liminfiiAnxll 
n----':1-00 n----':1-00 

:::: llx II lim inf II An II :::: M llx 11. 
n--+oo 

12. Let L be the set of all complex-valued functions x on [0, 1] with a continu
ous derivative x', M the set of all continuous complex-valued functions 
on [0, 1], with the sup norm on L and M. If Ax= x', x E L, then A 
is a linear map of L onto M, and A is closed. If Xn --+ x and xn'--+ y, 
then since convergence relative to the sup norm is uniform convergence, 
J~ xn'(s) ds--+ J~ y(s) ds = z(t). Thusxn (t)- Xn (0) --+ z(t); hencex(t)
x(O) = z(t). Therefore x' = z' = y. But A is unbounded, for if Xn (t) = 
sin nt, then llxn II = 1, IIAxn II --+ oo. 

13. By the open mapping theorem, A is open; hence A{x E L: llxll < 1} is a 
neighborhood of 0 in M; say, {y EM: IIYII < 8} C A{x E L: llxll < 1}. 
If y EM, y =P 0, then 8y/211 yll has norm less than 8, hence equals Az for 
some z E L, liz II < 1. If x = (2IIYII/8)z, then Ax= y and llxll < 21IYII/8. 
Thus we may take k = 2/8. 
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CHAPTER 4 

Section 4.8 

4. To prove (a), let A, B E ?fi 1 , B CA. If Ch E ?fik, k = 2, ... , n, then (us
ing a product notation for intersection) 

P[(A- B)C;2 · · · C;n] = P(AC2 · · · C;J- P(BC;2 · · · C;J 
n 

= [P(A)- P(B)] II P(Cik) 
k=2 

= P(A- B)P(C;2 ) • • ·P(C;J. 

Thus A- B can be added to C;, while preserving independence. Since 
i 1 is arbitrary, (a) follows. The proofs of (b) and (c) are quite similar, 
and (d) follows from (a), (b), and (c). 

Now let ??1 = {A, B}, ??2 = {C}, where A and C are independent, and 
B and C are independent. Since P[(A n B) n C] need not equal P(A n 
B)P(C) [see 4.3.3(b)], An B cannot be added to ??1. 

Finally, we show that the O"( ?fi) are independent iff each ?fi is closed 
under finite intersection. Fix i, and consider the collection of classes A; 
such that A; is closed under finite intersection, ?fi c A;, and A; and 
the ?f'j, j =!= i, are independent. Partially order the A; by inclusion. Each 
chain has an upper bound (the union of the chain) so there is a max
imal class !!i!;. Since !!i/; is closed under finite intersection, it is closed 
under arbitrary differences by (a) (A - B =A- (An B)); hence by (a), 
(b), and (c), !!i!; is a O"-field. Thus O"(?fi) c !!i!;, and consequently ?fi can 
be replaced by O"(?fi) while preserving independence. Since i is arbitrary, 
the result follows. 

Section 4.9 

4. P{Y E B} = P{X E g-1 (B)} = fr1(B) f 1 (x) dx. Under the transformation 

x = h(y), y = g(x), this becomes JB f 1 (h(y))ll h(Y)I dy (see Problem 6, 
Section 2.3). The result follows. 

6. Let Aj = {Xj > 2 + T1 }, T 1 =min; X;. Then Xo = l:J=l /Ai' where IA
1 

is the indicator of Aj. Therefore E(Xo) = 2::}= 1 E(!Ai) = 2::}= 1 P(Aj), 

where E(Xo) = fn Xo dP. By symmetry, 

E(Xo) = nP{X2 > 2 + T1} 
n 

= n LP{T1 =Xj,X2 > 2+Xj} 
j=l 
j# 
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= n(n -1)P{T1 =X1>X2 > 2+Xd 

= n(n -1)P{X2 > 2+X1,X3 >X], ... ,Xn > Xd 

= n(n -1)/00 

f(xJ)dxl roo f(x2)dx2 roo f(x;)dx3 -oo }2+xt Jx, 

... roo f(xn)dxn 
Jx, 

= n(n- 1) £: f(xJ)[1- F(xJ)t-2[1- F(2 + xJ)] dx1• 

7. Define p-I and X as suggested. Then if 0 < y < 1, p-I (y)::::: x iff 
y::::: F(x). For if p-I (y) > x, we can find x0 > x such that F(xo) < y, 
and thus F(x) ::::: F(xo) < y; if F(x) < y, by right continuity we can find 
xo > x such that F(xo) < y; therefore p-i (y) 2: xo > x. Now 

P{w: X(w)::::: x} = P{w: F-1(w)::::: x} = P{w: w::::: F(x)} = F(x). 

[This also shows that X is measurable, and that 

X(w) = min{x: F(x) 2: w}, 0 < (t) < 1.] 

Section 4.10 

2. Separate F into discrete and absolutely continuous parts: F = F 1 + F 2, 

where 

where 

{
0, 

h(x) = ~ 
3, 

Thus 

X< 2, 

X 2: 2, 

x < 2 or x > 3, 

2:::x:::3. 
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Section 4.11 

1. (a) Assume Y;: (Q,.97)--+ (Q;,Y;), i = 1,2, .... By hypothesis, 

P{(Y" ... , Yn) E A, (Yn+i• Yn+2, .. . ) E B} 

= P{(Y,, ... , Yn) E A}P{(Yn+i• Yn+2, .. . ) E B} 

if A is a measurable rectangle in TI7= 1 §'! and B is a measurable 
rectangle in TI~n+l Y;, the formula is still valid if A and Bare finite 
disjoint unions of measurable rectangles. Two applications of the 
monotone class theorem establish this result for all A E TI7= 1 §'!and 
B E fl~n+l §'!. 

(b) Let W be the class of sets B E .9'00 such that 

P{(Y1, Y2, .. . ) E B} = P{(Yn, Yn+l, .. . ) E B}. 

Since the Y; are independent and Py, is the same for all i, all mea
surable rectangles belong to W; hence W contains all finite disjoint 
unions of measurable rectangles. But W is a monotone class; hence 
W= .9'00

, and the result follows. 

CHAPTER 5 

Section 5.3 

1. (a) The conditional density of X given Y is h(xly) = f(x, y)j f2(y), 
where f2(y) = f~oo f(x, y)dx. Thus 

E(g(X)IY = y) = 1: g(x)h(xly) dx, 

assuming E[g(X)] exists [cf. 5.3.5(c), Eq. (5)]. 
(b) E(YIA) = E(YIA)/P(A) [see 5.3.5(b)]. Now 

and 

P(A) = 1EB 1~-oo f(x, y)dx dy 

E(YIA) = 1:1: y/A(x, y)f(x, y)dx dy 

= { roo yf(x, y)dx dy. 
lxEB }y=-00 
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(c) E(XIA) = E(XIA)/P(A), where 

P(A) = J J f(x, y)dx dy 

x+yEB 

and 

E(X/A) = J J xf (x, y) dx dy. 

x+yEB 

3. By5.3.1, P{XEA,YEB}=l:xEAP{X=x}jBh(ylx)dy. Thus (take A 
= IR) Y has density f(y) = l:x P{X = x}h(ylx). Now define 

P{X E AIY = y} = LP{X = xiY = y}, 
xEA 

where P{X = xiY = y} is as specified in the problem. Then 

1 P{X E AIY = y}dPy(y) ::;= 1 P{X E AIY = y}f(y)dy 

= { LP{X = x}h(ylx)dy 
JB XEA 

= LP{X = x} 1 h(ylx)dy 
xEA B 

=P{XEA,YEB}. 

The result follows from 5.3.1. 

Section 5.4 

1. (a) We show that {(X(w), Z(w)): wEn} is a function; f may then 
be defined arbitrarily off X(n). If we do not have a function, then 
there are points w,' W2 En withX(wJ) = X(w2) but Z(wJ) =P Z(w2). 
Let C" C2 E .r", C, n C2 = 0, withZ(w,) E C" Z(w2) E C2. Now 
z-l (CJ) n z-l (C2) = 0, and since c" c2 E .r", we have z-l (Cj) 
= x- 1(Bj) for some Bj E crJT', j = 1, 2. Now Z(wJ) E C 1; hence 
w1 E z-1(CJ) = x- 1(BJ); therefore X(wJ) E B1• But X(wJ) f1 B2, 
for if so, Z(w 1) E C2 as well as C 1• Similarly, X(W2) E B2, X(w2) 
f1 B1• ButX(wJ) = X(w2), and this contradicts the fact that (B1 - B2) 
n (B2 - B 1) is always empty. 

(b) Let no= X(n). If C E .r", then 

z-' (C)= x- 1 u-'(C)) = x-'u- 1 (C) n no). 
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But 
z-'(C) = x-'(B) = x-'(B n no) for some B E.r'. 

Since X maps onto n 0, X[X- 1 (A)] = A for any A c no; hence 
!-'(C) 
n no= B n no E .r'. But if j(n'- no)= {a}, then 

Section 5.5 

if a Iii C, 
if a E C. 

2. 1 Y dP = E[Y(/A oX)(IB oZ)] 
(XEA,ZEB} 

Thus 

= E[Y(/A oX)]E[IB oZ] by independence 

= E[E(Y(/A oX)IX)]E[IB oZ] 

= E[(IA oX)E(YIX)]E[IB oZ] 

= E[(IA oX)E(YIX)E(IB oZ)] 

= 1 E(YIX)dP. 
(XEA,ZEB} 

by independence 

{ Y dP = { E(YIX)dP 
J{(X,Z)EC} J((X,Z)EC} 

(1) 

for C a measurable rectangle Ax B, A E .r', BE .r" (where X: (n, .r) 
-+ (n',.r'), Z: (n,.r)-+ (n",.r")). By the monotone class theorem, 
(1) holds for all C E .r' x .r". [Integrability of Y is used in showing that 
if (1) holds for C1 , C2, ... and Cn -!, C, then (1) holds for C.] 

Section 5.6 

1. (a) Let g(x, y) = IA0 (x)IB0 (y) be the indicator of a measurable rectangle 
Ao x Bo E .r' x .r". Then 

1 g(X, Y) dP = P{X E An A0 , Y E Bo} 
{XEA} 

= { P{Y E BoiX = x} dPx(x) 
}AnA0 

= 1 IA0 (X)Px(Bo)dPx(x). 
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Thus 

E[g(X, Y)IX = x] = h 0 (x)Px(Bo) 

= { IA
0
(x)IB

0
(y)dPx(y) Jn, 

= { g(x, y)dPx(y) Jn, (a.e. [Px]). 

Thus the result holds for g of this type. We proceed to indicators of 
arbitrary sets in Y' x !JT" using the monotone class theorem, and 
then to arbitrary g in the usual way. 

(b) By (a), 

P{(X, Y) E CIX = x} = E[I c(X, Y)IX = x] 

.. = fn, I c(x, y) dPx(y) 

= Px(C(x)) (a.e. [Px]). 

(c) P{X E Q', (X, Y) E C}=fn,P{(X, Y) E CIX =x}dPx(x) by defini
tion of conditional probability. The result follows from (b). 

3. (a) Since J-t(E) > 0 and 8 < 1, there is an open set V ::J E such that 
J-t(V) _:::: 8- 1 J-t(E); V is a disjoint union of open intervals In. Then 

n n 

Therefore 8J-t (In) _:::: J-t (E n In) for some n. [Note that 

n 

so it is not possible to have both sums infinite in (1).] 
(b) By (a) there is an open interval I such that J-t(E n I) 2: ~J-L(/). We 

show that (- ~J-L(/), ~J-L(/)) c D(E). Let lxl < ~J-L(/). If En I and 
(En I)+ x are disjoint, the measure of their union is 2J-t(E n I) 2: 
~J-L(/). But (En I) U [(En I)+ x] c I U (I+ x), an open interval of 
length less than J-L(/) + ~J-L(/) = ~J-L(/), a contradiction. Thus there 
is an element y E (En I) n [(En I)+ x]. But then y E E and y = 
z + x for some z E E; hence x E D(E), as desired. 
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(c) Since the circle is compact, there is a subsequence converging 
to a point v on the circle. Given any positive integer N, choose Zn 

such that n 2: N and lzn -vi < t:/2; then pick Zn+k(k > 0) Sllch that 
lzn+k- vi < t:/2. Then 0 < lzn - Zn+kl < t:. (Note that Zn -:f. Zn+k 

since aj2rr is irrational.) Thus Zn, Zn+k. Zn+2k. ... form a chain that 
eventually goes entirely around the circle, with the distance between 
successive points less than e. Thus, given N, we can find z, r > N 
such that lz, - zl < t:. The result follows. - ' 

(d) Since C = {1 + x: x E B}, it suffices to consider B. But B is dense 
iff the set of numbers n~, n an integer, reduced modulo 2, is dense in 
[0,2).Equivalently(considere-+ eirr(J, 0::; e < 2),{eina: nan integer} 
is dense in the circle if ajrr is irrational. But in this case aj2rr is also 
irrational, and the result follows from (c). 

(e) Let F E ..5B(IR), F CEo. We claim that D(F) n A C {0}. For if x, y E 

F and x- yEA, then x ~ y; but x, y E Eo; hence x = y hy defi
nition of Eo. Now assume J-t(F) > 0. D(F) includes a neighbor
hood of 0 by (b), so that (0, a) c D(F) for some a > 0. Siuce A is 
dense by (c), we have (0, a) n A =P 0, contradicting D(F) n A c {0}. 
Thus J-t(F) must be 0, so that if Eo is Lebesgue measurable, then 
J-t(Eo) = 0. 

Now if x E IR, then x is equivalent to some y E Eo; hence x _ y 
EA. Therefore IR = U{Eo +a: a E A}. But if y +a, = z + a2, where 
y, z E Eo, a" a2 E A, then y- z = a2 - a 1 EA. (Note that A is a 
group under addition.) Thus y ~ z; but since y, z E Eo, y =::: z and 
therefore a 1 = a2. Thus the sets Eo +a, a E A, are disjoint. 

Finally, assume Eo Lebesgue measurable. Then J-t(Eo +a) =:: it(Eo) 
by translation-invariance of Lebesgue measure. Since A is COllntable 
the preceding paragraph implies that J-L(IR) = 0, a contradiction. ' 

(f) If x E IR, then x = y +a for some y E Eo, a E A [see the argument of 
(e)]. Since A= B U C, it follows that IR =MUM'. Let F be a Borel 
subset of M. We claim that D(F) n C c {0}. Let x, y E F witb.x _ y 
E C cA. Then x~ y, and x=z1 +b,, y=z2+b2, where 21 , 

Z2 E Eo, b,, b2 E B. It follows that Z1- Z2 = x- y + b2 -b1 E A; 
hence Zi = Z2· But then X- y = b, - b2 E B n C, so X= ). Since 
Cis dense by (d), the same argument as in (e) shows that J-t(F) = 0. 
Finally, since M' = {x + 1: x EM}, any Borel subset of M' has Le
besgue measure 0, by translation-invariance. 

(g) The first statement follows from (f). If En M c G c E, then I:;_ G 
c E-M c En M', so the second statement follows from (f) also. 

4. (a) If (B 1 n H) U (B2 n He)= (B 1' n H) U (B2' n He), then B1 r H = 
B1' n H, B2 n He= B2' n He. If, say, J-L(B 1 - B,') > 0, then B,
B 1' is not a subset of He since He has inner Lebesgue measure O, 



490 SOLUTIONS TO PROBLEMS 

so there is an X E (B, - B,') n H, contradicting B, n H = B,' n H. 
Thus J-L(B 1 - B1') = 0; a symmetrical argument shows that J-L(B 1' -

BJ) = 0. 
(b) If B E .'Y', 

1 1 { 1 
P(H n B)= lJ-t(B) = 2_P(B) = }B 2. dP. 

Thus P(H I '5') = ~ a. e. But P(H I '5') = Q( · , H) a. e.; hence Q(w, H) 

= ~ a.e. Similarly Q(w, He) = ~ a.e. 
(c) If B, B, E '5', P(B n B,) = JB, IB dP, so P(BI':Y') = IB a.e. 
(d) By (b) and (c), there is a set N E .r with P(N) = 0 such that for w fii 

N, Q(w, H) = Q(w, He) = ~ and Q(w, B) = I B(w) for all intervals 
B with rational endpoints. For any such w, Q(w, {w}) = 1. [Consider 
a sequence of rational intervals decreasing to { w} and use the fact 
that Q(w, ·)is a probability measure.] But if wE H, then Q(w, {w}) 

:::; Q(w, H)= ~. and if w ffH, then Q(w, {w}):::; Q(w, He)= ~. a 
contradiction. 

CHAPTER 6 

Section 6.1 

~J.k=i P(Aj n Ak) 
1. (a) 

[~Z=, P(Ak)]
2 

Now 

~j# P(Aj)P(Ak) + ~Z=, P(Ak) 

~J,k=i P(A j )P(Ak) 

~J,k=i P(Aj)P(Ak) + ~Z= 1 P(Ak)- ~Z= 1 (P(Ak))2 

~f,k=i P(Aj)P(Ak) 

hence the lim inf condition is satisfied. 
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Now 

V.r (t.lk) ~ E [ (t,lk )']- [t.E(l,)r 
~ it/(AJ nA,)- [t.P(A,)r 

The "lim inf'' hypothesis implies the desired result. 
(c) Let 

491 

Then lim infn---+oo dn = 0 by (b). Thus we can find integers n 1 < n2 

< ···such that 2::]=1 dn
1 

< oo. By the Borel-Cantelli lemma, with 
probability 1 we have 

for only finitely many j, that is, 

for large enough j. 
(d) By (c), 2::~ 1 h diverges a.e.; hence with probability 1, infinitely 

many An occur; thus P(lim supn An) = 1. 

Section 6.2 

1. Let Sn = l:Z=i xk. If Sn/n converges a.e. to a finite limit, then 

Sn- Sn-i 
-----+0 

n n 
a. e. 
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By the second Borel-Cantelli lemma, 2::~ 1 P{IXnl 2: n} < oo. Since 
all X n have the same distribution, 2::~ 1 P {IX 1 1 2: n} < oo, so by 6.2.4, 
E(XJ) is finite. But then Snfn-+ E(XJ) a.e. by 6.2.5. 

4. Let X= (X1, X2, ... ). Then g(X) = g(X(T)) whenever T permutes finite
ly many coordinates. Thus {g(X) :::; a} is symmetric, and hence by the 
Hewitt-Savage zero-one law has probability 0 or 1. If c = inf{a: P{g(X) 
:::; a}= 1}, then gQ() = c a.e. 

7. (a) Let x be an r-adic rational with r-adic expansion. i 1i 2 • • • inO 0 · · ·. 
Then P{x <X:::; x + r-n} = P{XJ = i,, ... ,Xn =in}= r-n. (Note 
that P{X = x} = fl~ 1 ak. with ak = r-n for all k; thus P{X = x} = 
0.) It follows that if )... is Lebesgue measure, P{X E I} = )...(/) for 
every r-adic interval I c [0, 1], and hence for every interval I c 
[0, 1] by continuity. Thus P{X :::; y} = y, 0:::; y :::; 1, as desired. 

(b) Fix r and i, and let A,; = {x E [0, 1]: the relative frequency of i in 
the first n digits of the r-adic expansion of x converges to 1/ r}. 
Then, if Yk is the indicator of {Xk = i}, 

by the strong law of large numbers. If 

oo r-1 

A= n nA,;. 
r=2 i=O 

it follows that Px(A) = P{X E A} = 1. But Px is Lebesgue measure 
by part (a), and the result follows. 

(c) We may write 

fo' Rn(x)dx = fo' Rn(x)dPx(x) 

= E[Rn (X)] = E[2Xn - 1] = 0, 

and similarly, 

Since Rn (X) and Rm (X) are independent for n =P m, and R~ (X) = 1, 
the result follows. 
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Section 6.3 

3. Each Anj is a countable union of sets An+i,k; hence 

{ Xn+i dP = L { Xn+l dP 
}Anj k }An+l,k 

= L A.(An+!,k) 
k 

by definition of Xn+i 

= A.(Anj) since A. is countably additive 

= { Xn dP by definition of Xn. 
}Anj 

5. E(Yn)=i qn(x)Pn(x)dx::=:: { qn(x)dx="l. 
{p.(x)>O} Pn(X) JIR" 
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Let A= {(X,, ... , Xn) E B}, BE .%'(1Rn). Then fA Yn+l dP = E(Yn+ih); 
hence 1y dp 1 qn+i(x') ( ')d, 

n+i = Pn+l X X, 
A (xEB,pn+I(x')>O} Pn+i (x') 

(1) 

where x' = (x1, •.• , Xn+i) E !Rn+l,x = (x1, .•• , xn), the first n coordi
nates of x'. Now Pn(x) = f~oo Pn- 1(x')dxn+i; thus if x E Band Pn(x) = 
0, then Pn+i (x') = 0 except for Xn+i in a set of Lebesgue measure 0, so 
the integration of qn+l (x') with respect to Xn+l in (1) will be 0. In other 
words, 

1 qn+i (x') dx' = 0. 
[xEB, Pn (x)=O, Pn+l (x')>O} 

Therefore the right side of (1) becomes 

1 qn+l (x') dx' 
(xEB, Pn (x)>O, Pn+l (x')>O} 

:::=:: 1 qn+ 1 (x') dx' 
(xEB, Pn (x)>O} 

= 1 qn(x)dx 
(xEB, Pn (>)>0} 

= 1 qn(x) Pn(x)dx 
(xEB,pn(>)>O} Pn(X) 

= E(Ynh) == 1 Yn dP, 

proving the supermartingale property. 
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n-i n 

6. (a) An= LX;- LE(X;j,9j_,) 
i=O i=l 

n n 

Yn =LX;- bE(X;j§'j_J), 
i=O i=l 

n-i n 

(b) E(Yni.97;,_J) =LX; +E(Xnl.9l';,_J)- LE[E(X;j§'j_J)Ic9';,-J] 
i=O i=l 

= Yn-i· 

(c) An+! -An = Xn - E(Xn+li.97;,) 2: 0 a.e. 

Section 6.4 

1. (a) E(Xn+iiXn = 0) = Pn+i (an+! - an+l) + (1 - 2Pn+i )0 = 0, 

proving the martingale property. Since for all w, either X n (w) = 0 for 
all n or for some j, X n ( w) = a j for n 2: j, X n converges everywhere. 

and so on. Thus 

lim E(IXkl) 2: [fto- 2pk}l2 f:pkak. 
k--+oo 

k=i k=2 

The infinite product is greater than 0 since "i:.Pk < oo; hence E(IXkl) 
--+ 00. 

4. By definition of the problem, E(Xn+11X,, ... ,Xn) = E(Xn+iiXn). If be
fore the nth drawing there are r balls in the urn, c of them white, 

E (xn+iiXn = ~) = (~) (~) + (1- ~) _c = ~. 
r r r+1 r r+1 r 
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Thus E(Xn+IIXn) = Xn. Since IXn I ::S 1 for all n, Xn --+ X00 a. e. By the 
dominated convergence theorem, E(X00 ) =limn E(Xn) = E(XJ). 

Section 6.5 

1. Since lfniP ::S 2P- 1(Ifn- fiP + lfiP), P 2: 1, and lfniP ::S lfn- fiP 
+ IJIP, p:::; 1, by 6.5.3 it suffices to show that the lfn- fiP are uni
formly integrable. Now 

llfn - JIP dJ-t--+ 0 as J-t(A) --+ 0 

for any fixed n, and 

as n --+ oo 

by the £P-convergence. It follows that the integrals of lfn - fiP are uni
formly continuous and uniformly bounded; the result follows from 6.5.3. 

Section 6.6 

2. (a) If the Xn are uniformly integrable, E(Xn)--+ E(X00 ) by 6.5.5. Con
versely assume E(Xn)--+ E(X00 ). If v stands for max and 1\ for 
min, we have IXn - Xool = (Xn V X00)- (Xn 1\ X00 ) and Xn + X00 

= (XnVX00 )+(Xn/\X00 ).Byhypothesis,E(Xn +Xoo)--+ 2E(X00 ), 

and by the dominated convergence theorem, E(Xn 1\ X00 ) --+ E(X00 ). 

HenceE(Xn v X00 )--+ E(X00 ), soE(IXn - X00 1)--+ E(X00 ) -E(X00 ) 

= 0. ThusXn--+ X00 inL 1, anditfollows thattheXn are uniformly inte
grable. (See Problem 1.6.5; in general, LP convergence of Un} implies 
uniform integrability of {lfniP}.) 

(b) If A E .97,, n ::S m, then fA Xn 2: fA Xm. Let m--+ oo; by Fatou's 
lemma, 

(c) By Fatou's lemma, E(X00 ) = E(limn Xn) ::S liminfn E(Xn) = 0. 

Section 6.7 

1. IXTI = Xj:+Xi = 2Xj:- XT;henceE(IXTI):::; 2E(Xj:) -E(XJ)by6.7.3. 
But{ Xi, ... , X~} is a submartingale by 6.3.6(a); henceE(Xj:) :::; E(X~) by 
6. 7.3, as desired. 
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3. (a) Define T as indicated. By 6.7.3, {XT,Xn} is a submartingale; hence 

E (X n) 2: E (X T) = { X T dP + { · X T dP 
J[maxX10?).) J(maxX1d.) 

2: A.P{maxX; 2: A.}+ { Xn dP 
J(maxX1d.) 

and the result follows. 
(b) By 6. 7 .3, {X 1. X T} is a supermartingale; hence 

E (X J) 2: E (X T) = { X T dP + { X T dP 
J(maxX1 ~)..} J(maxX1<A} 

2: A.P{maxX; 2: A.}+ { Xn dP. 
J(maxX1<)..} 

Since -Xn .:S ( -Xn )+ =X;;, the result follows. 
(c) Since 

{ m!lX X; 2: A.+~} t {supXn >A.} 
i~t~n k n 

as n, k-+ oo, 

the result follows from (a) and (b). Note also that the same inequal
ities hold with {supn Xn > A.} replaced by {supn Xn 2: A.}; this follows 
because 

{ s~pXn >A- ~} t { s~pXn 2: A}. 

5. (a) SinceXn- nm = l:Z=i (Yk- m), and E(Yk- m) = 0, {Xn- nm} is 
a martingale. By 6.7.3, E(X 1 - m) = E(XT. - Tnm); hence E(XTJ 
= mE(Tn). Since Yj 2: 0, XT. tXT as n-+ oo, so by the monotone 
convergence theorem, E (X T) = mE (T). 

(b) We write Xn = 2::}= 1 Yt- 2::}=1 Yj = Xn'- Xn''. By (a), E(X/) 
= E(Yi)E(T), E(X/') = E(Yi)E(T). Since E(T) is finite, so are 
E(X/) and E(X/'); hence E(IXTI) < oo and 

E(XT) = E(X/)- E(X/') = [E(Yi)- E(Yi)]E(T) = mE(T). 

(c) To prove (a), observe that if all Yi 2: 0, then 

00 

E(XT) = LE(Xnl[T=n)) 
n=i 
00 

= LE(Xn)P{T = n} by independence 
n=i 
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00 

= m LnP{T = n} 
n=i 

= mE(T). 

Part (b) is proved just as above. 

Section 6.8 

3. (a) {X n} converges a.e. to a finite limit; hence 

P{IXn+i-Xnl2:b forinfinitelymany n}=O, 

so, a.e., Xn+i = Xn eventually. 

497 

(b) Since Xn 2: 0, XTI[T~n) tXT; hence by the monotone convergence 
theorem, 

E(XT) = lim 1 XT = lim1 Xn 
n-+oo [T~n) n [T~n) 

since on {T = k}, k:::; n, we haveXT = Xk = Xk+i = · · · = Xn. But 

lim 1 Xn :::; lim sup { Xn :S E(Xo) 
n [T~n) n Jn 

by the supermartingale property. 
(c) T is the time at which the betting stops. In this case, T is also the 

time of going broke. By (a), T is a.e. finite, and the result follows. 
(d) Realistically, there is a limit on what we can lose. In practice, what 

we are doing is starting with a capital of x > 0, and stopping when 
we reach x + 1, provided we have not been wiped out (reduced 
to zero) beforehand. The probability of reaching x + 1 before 0 is 
xj(x + 1) < 1, and 

X 1 
E(XT) = --(x + 1) + --(0) = x = E(Xo) 

x+1 x+l 
(See Ash, 1970, 6.2 for details.) 

5. (i) If 2::]= 1 hi = oo and 2::]=1 qj < 00, then Xn -+ oo. 
(ii) If 2::]= 1 hi < oo and 2::]=1 qj = 00, then Xn -+ -oo. 

But {Xn} is a martingale by Problem 4; hence by 6.8.4, Xn converges a. e. to 
a finite limit on {sup Xn < oo or inf Xn > -oo}. In case (i), inf Xn > -oo 
and in case (ii), sup X n < oo, so we have a contradiction unless the sets 

and 

have probability 0. (Note that IIAi - qjl :::; 2 so 6.8.4 actually applies.) 
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CHAPTER 7 

Section 7.1 

4. (a) If lh(u)l = 1, then h(u) = eiua for some a; hence eiun = fiR eiux dF(x), 
or 1 =fiR eiu(x-a) dF(x). Take real parts to obtain f!R[1 -cos u(x
a)]dF(x) = 0. Since the integrand is nonnegative, we have cos u(x
a) = 1 a.e. [Px]- But cos u(x- a)= 1 iff x =a+ 2;rrnu- 1, n an 
integer, so X has a lattice distribution. The converse is proved by 
reversing the argument. 

(b) By part (a), 

P{X =a+ 2;rrnu- 1 for some integer n} 

='P{X = b + 2;rrm(au)- 1 for some integer m} = 1 

for appropriate real numbers a and b. If X is nondegenerate, the lat
tices {a+ 2;rrnu- 1: nan integer} and {b + 2;rrm(au)- 1: man integer} 
must have at least two points in common, and this implies that 2;rru- 1 

and 2;rr(au)- 1 are rationally related. Thus a is a rational number, a 
contradiction. 

5. (a) By7.1.5(e),hhasncontinuousderivativeson!Randh(kl(O) = ikE(Xk), 
k = 0, 1, ... , n. Now if h: I-+ C, where I is an interval of R con
taining 0, and h has n continuous derivatives on I, then for u E I, 

n-i h(k)(O) 1' (1 t)n-1 
h(u) = L --uk + un h(n)(ut) - dt. 

k=O k! o (n - 1)! 

(This is an exercise in calculus; see Ash, 1970, p. 172 for details.) 
Add and subtract 

from the above equation to obtain 

where 



CHAPTER 7 499 

Since Rn (u) / un --+ 0 as u --+ 0 by the dominated convergence theo
rem, the result follows. 

(b) By 7.1.5(e), h has n continuous derivatives, so as in part (a), 

7. (a) 

n-i h(k)(O) 1' (1 t)n-i 
h(u)- L --uk = un h(n)(ut) - dt. 

k=O k! o (n-1)! 

Now h(kl(u) =fiR (ix)keiux dF(x) by 7.1.5(e); hence lh(nl(ut)l 
::=:: E(IXIn); the result follows. 

(
E,- E_,) 2 1 

h(O) = -
2 

(h(2r) - 2h(O) + h( -2r)) 
2r 4r 

1oo ( eirx _ e-irx) 2 
= dF(x) 

_
00 

2r 

1
00 

(sin rx) 
2 

= - -- x2 dF(x). 
_

00 
rx 

(b) By L'Hospital's rule, 

Thus 

. 1 
~~ 

4
r2 [h(2r)- 2h(O) + h( -2r)] 

. 2h'(2r)- 2h'(-2r) 
=hm-------

r---+0 8r 

. h'(2r)-h'(O)+h'(O)-h'(-2r) 11 = hm = h (0) 
r---+0 2(2r) 

-h"(O) =lim -- x2 dF(x) 1
00 

(sin rx) 
2 

r---+0 -oo rx 

2: lim -- x2 dF(x) 1
00 

( sin rx ) 
2 

-oo r---+0 rx 
by Fatou's lemma 

= 1: x2 
dF(x). 

(c) Assume the result holds up to the integer n, and assume h(2n+2l(O) 
exists and is finite. Then J~00 x2n dF(x) < oo, so by 7.1.5(e), 

h(2nl(u) = 1: (ix)2neiux dF(x) 
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or 

where 

Since G is a bounded distribution function with characteristic func
tion (-l)nh(2nl, part (b) shows that J~00 x2 dG(x) < 00, that is, f~oo 
x 2n+2dF(x) < oo. The result follows by induction. 

Section 7.2 

4. (a) Choose a, bE I such that L = J: g(u) du =P 0. (If this is not possible, 
the integral of g is 0 on all subintervals of I; hence on all Borel 
subsets of I, and therefore g = 0 a.e., contradicting I exp(iuan)l = 1.) 
We may assume that exp(iuan) converges when u =a and u = b 

(since J: g(u) du is continuous in a and b). Now 

. . J: exp(iuan)du exp(iban) -exp(iaan) g(b) -g(a) 
Zan = Zan b = b -+ 

fa exp(iuan) du fa exp(iuan) du L 

(b) This is immediate from (a). 

5. (a) Let F n (x) = 1, x 2: n; F n (x) = 0, x < n (corresponding to a random 
variable Xn = n). Let Fo(x) = 0 for all x. Then Fn(x)-+ Fo(x) for 
all x E IRU {-oo}, but Fn(oo) --f-+ Fo(oo), so Fn does not con
verge weakly to F O· 

(b) If n is even, let Fn(x) = 1, x 2: n; Fn(x) = 0, x < n (corresponding 
to Xn = n). If n is odd, let Fn(x) = 1, x 2: -n; Fn(x) = 0, x < 
-n (Xn = -n). Let Fo(x) = 0. Then Fn(a, b]-+ F 0 (a, b] for all a, 
bE IR, but Fn(-oo, oo] --f-+ Fo(-oo, oo]. Furthermore, limn---+oo 
F n (x) does not exist for any x E IR. 

6. IfF n converges weakly to F 0 , then { F n} is relatively compact, and hence 
tight by 7.2.4. Thus assume {F n} tight. Given 8 > 0, let a and b be finite 
continuity points of F 0 such that F n (IR - (a, b]) < 8 for all n. Then 

limsupFn(IR)::; 8+limsupFn(a,b] 
n---+oo n---+oo 

= 8 + Fo(a, b] 

::; 8 + Fo(IR). 
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But Fn(IR) 2: Fn(a, b]; hence 

liminfFn(IR) 2: Fo(a, b]. 
n---+oo 

Since e is arbitrary and b may be taken arbitrarily large and a arbi
trarily small, we have Fn(IR)-+ Fo(IR). A similar argument shows that 
Fn(-oo, b]-+ Fo(-oo, b] and Fn(a, oo]-+ Fo(a, oo] if a and bare fi
nite continuity points ofF o. Therefore F n converges weakly to F 0· 

8. (a) E(Xn+JI·§';;) = E(Xnh;~ 1 (u)exp(iuYn+i)1.97;,) 

= Xnh;~, (u)E[exp(iuYn+d] 

since Xn is §;,-measurable and the Yk are 
independent 

=Xn. 

(b) By hypothesis, TIZ=l hk -+ hx uniformly on bounded intervals. Thus 
if I is a bounded open interval containing 0 on which lhxl 2: 8 > 0, 
then TIZ=1 hk is bounded away from 0 on/. Thus for any fixed u E /, 

{X n, .97;,} is a bounded martingale, and hence converges a. e. But 

and the result follows. 
(c) Let C be the set of pairs (u, w), u E /,wEn, such that 

fails to converge. By (b), {w: (u, w) E C} has probability 0 for each 
u E /, so by Problem 4, Section 2.6, {u: (u, w) E C} has Lebesgue 
measure 0 for almost every w. 

(d) Convergence a.e. implies convergence in probability since a prob
ability measure is finite, and convergence in probability implies 
convergence in distribution by 7.1.7. By parts (b) and (c), conver
gence in distribution implies convergence a.e. 
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Section 7.3 

3. Let the Xnk be uan. Then 

l~ka;, lhnk(u)- 11 = 1~t;, 11: (eiux- 1)dFnk(x)l 

:S max 1 leiux -11dFnk(X) 
I :Sk:Sn lxl <£ 

+ max 1 leiux- 11 dFnk(x). 
I :Sk:Sn lxl ~£ 

Now leiux- 11:::: luxl; hence 

max lhnk(u)- 11 :S max 1 luxl dFnk(x) 
I:Sk:Sn I:Sk:Sn lxl<£ 

:::: lule + 2 max P{IXnkl 2: e}. 
I:Sk:Sn 

The second term approaches 0 as n --+ oo for any e > 0 by the uan hy
pothesis, and thus 

max lhnk(u)- 11 --+ 0 
I:Sk:Sn 

uniformly for u in a bounded interval. 
Conversely, assume 

as 

max lhnk(u) -11--+ 0. 
I:Sk:Sn 

By the truncation inequality 7.2.7, 

n --+ oo 

max P{IXnkl 2: e} = max 1 dFnk(x) 
I:Sk:Sn I:Sk:Sn lxl~£ 

1
1/£ 

:::: max 7e [1- Re hnk(v)] dv 
I:Sk:Sn 0 

1
1/£ 

:::: 7e max 11 - hnk(v)l dv 
0 I:Sk:Sn 

since 11 - Re zl = IRe(l - z)l :::: 11 - zl. 
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The integral approaches 0 as n --+ oo by the hypothesis and the domi
nated convergence theorem, and the result follows. 

4. (a) Var xk = 1 for all n, so Cn = Jn. Now, for a given 8 > 0, if n is 
large enough so that eJii > 1, then 

if 

if 

Thus 

k < eJn, 

k?: eJii. 

max p {IXk I:::: e} :::; -1 (1- ~) --+ o. 
i:<:k:<:n Cn e2n C 

1 n 2 1 ( 1) 1 - L k P{IXkl = k} ~ -(n- e.Jn) 1-- --+ 1-- > 0. 
n n c c 

k=e.fii 

Thus the Lindeberg condition fails for the Xk. Now 

Thus 

Var Xnk' = E[Xii!IXkl:<:.fiiJ] 

= E(Xi) = 1 

1 
= P{IXkl = 1} =-

c 

if 

if k > .;n. 
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The Linde berg sum for the X nk' is 

1 ~ I 2 
-( 1)2 L..,.E[(Xnk) l(IXnk'l:::ecn'l] 

Cn k=i 

I I d al 0 By 7.3.1, Sn fen ----+ norm ( , 1). 

n n 

(c) P{Sn # S/} :S LP{Xk # Xnk 1
} :S LP{IXkl > Jfl} 

since 

k=i 
n 

::::: L P{IXkl = k} 
k=.fii 

k=i 

--+0 as n --+ oo 

and 
00 1 
I: k2 < oo. 
k=i 

d d • • 
(d) If Yn ----+ and an --+ 1, then an Yn ----+ Y; for 1f hn lS the charac-

teristic function of Yn and h is the characteristic function of Y, we 
have hn --+ h uniformly on bounded intervals; hence hn(anu) 
--+h(u). Now ../CSn 1/Jfl=an(Sn'fcn 1

), where an--+1, so that 
d d 

(.jCjy'n)Sn'----+ normal (0, 1) by (b). Also, if Yn----+ Y and 
d 

P{Yn # Yn'} --+ 0, then Yn' ----+ Y because 

P{Yn ::::: y} = P{Yn ::::: y, Yn' ::::: y} + P{Yn ::::: y, Yn' > y} 

::::: P{Yn' ::::: y} + P{Yn # Yn'}. 

d 
Thus by (c), ../CSnf.fii----+ normal (0, 1). But by (a) and (b), 

d 
Sn/Cn = Sn/Jn +---+ normal (0, 1). 
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Section 7.4 

l
n 1 

= - exp(iuk(sgn x)lxl-') dx 
-n 2n 

1 1n = - cos(ukx-') dx 
n o 

1 1n = 1 - - [1 - cos(ukx-')] dx 
n o 

= 1 - ~ [l"' [1 - cos(ukx-')] dx - g(n)] , 

where g(n) = fn00 [1- cos(ukx-')] dx--+ 0 as n --+ oo since 

2r > 1. 

The result follows from Theorem 7 .1.2. 
(b) Let I = J;"[1 - cos(kux-')] dx; then [see Eq. (3) of the proof of 

7.3.1], 

n ln ( 1- ~[/- g(n)]) = g(n)- I+ ~I/- g(n)l 2
--+ -/; 

hence hn(u)--+ e-1. 

(c) We have 

hence 

h(u) = exp ( -lul 1/'k1/r 100 

(1- cos y')y-2 dy). 

This is of the form exp[ -dlul"'], d > 0, 0 < a < 2. 

Section 7.5 

1. A logarithm of h(u) is given by 

00 k 
. "\:" q . k 

iu + Log(l - q) - Log(l - qe'u) = iu + L k(e'u - 1). 
k=i 
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Thus 

( 
n [iu l . ] ) h(u) = lim exp L - + -(e'uk- 1) . 

n--+oo n k 
k=i 

But 

exp [i: + r (eiuk- 1)] 
is of the Poisson type [see 7.5.3(b)] with ).. = l jk, a= k, b = 1/n, and 
the result follows from 7.5.7. 

4. F3(z) = PXY{(x, y) E 11~.2: x + y::::: z} 

= J J dPXY(X, y) 

x+y:Sz 

= 1:1: l[x+y:Sz) dPx(x)dPy(y) 

= 1: Px{x: x ::=:: z- y} dPy(y) 

= 1: F,(z- y)dF2(y) 

by a symmetrical argument. 

In the case where X has a density, 

F3(z)= 1:F1(z-y)dF2(y)= 1: (l:y f 1(x)dx) dF2(y). 

Let x = u- y to obtain 

F3(z) = 1: ([~ f 1 (u- y)du) dF2(y) 

= ~~ (l: f 1(u- y)dF2(y)) du, 

and the result follows. 

Section 7.6 

1. By the strong law of large numbers, F n (x, w) converges a. e. to 

1 n 

and Fn(x-, w) =- LllXk<x)(w)-+ F(x-) a.e. 
n k=i 
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(This holds for each fixed x E IR, and the exceptional set of measure 0 
depends on x.) 

Assume that Fn(x, w)--+ F(x) and Fn(x-, w)--+ F(x-) for w f1 Ax, 
where P(Ax) = 0. LetS be a countable dense subset of IR containing all 
discontinuity points of F. If A= U{Ax: x E S}, then P(A) = 0 since S 
is countable. If w f1 A, then Fn(x, w)--+ F(x) and Fn(x-, w)--+ F(x-) 
for all x E S. Furthermore, F n(oo, w) = 1, F(oo) = 1, F n( -oo, w) = 0, 
F(-oo) = 0. By 7.6.1, Fn(x, w)--+ F(x) uniformly for x E IR. 

CHAPTER 8 

Section 8.2 

4. If r- 1A c A, then Ac c r- 1Ac, and conversely; also, A- r-1A = r- 1 

Ac- A c. This shows that the two definitions of incompressibility are 
equivalent. 
(a) (i) implies (ii): Let A be wandering, and let B = U~o r-nA. Then 

r-1B = U~1 r-nA c B,soby(1),J-L(B- r- 1B) = O.ButB- r- 1B 
=A since the r-nA are disjoint; hence ~-t(A) = 0. 

(ii) implies (iii): Let A(r) =An U:=1 r-nA= {wE A: rnw E 

A for some n 2:: 1}. If C =A- A(rl, then r-nc = {w: Pw E 

A, but rkw t;t A, k > n}. Thus the r-n C are disjoint, so that C is 
wandering. By (2), ~-t(C) = 0, and therefore r is recurrent. 

(iii) implies (i): Let r- 1 A c A. Then (by induction) r-nA c r- 1 A, 
n 2:: 1. Thus r-1 A = U:=1 r-nA. Now 

00 

A- r-1A =A-U r-nA =A -A(rl, 
n=1 

which has measure 0 by (3). Thus ~-t(A- r- 1A) = 0, proving (1). 
(iv) implies (iii): Obvious. 
(i) implies (iv): Let 

A(i) =An limsupr-n A= {wE A: rnw E A 
n:C:1 

for infinitely many n 2:: 1}. 

If A E 5?; let B = U:=0 r-nA. Then r- 1B c B, hence by (1), 
~-t(B- r- 1B) = 0. Similarly, r-(k+l)B c r-kB, hence 
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But 

X 00 

= u r-nA - u r-" A 

n=k n=k+i 

= { w: Tn w enters A for the last time at n = k}. 

Since 
00 

A -A (i) =An U{w: Tnw E A for the last time at n = k}, 

k=O 

we have 
00 

~-t(A -A(i))::::: 'L,~-t<T-kB- r-(k+l)B) = o. 
k=O 

(b) Any interval of length less than 1 is a nontrivial wandering set. 
(c) Let A be a wandering set; since 

~-t(A) must be 0. Thus T is conservative, hence infinitely recurrent. 

Section 8.3 

5. (a) (i) implies (ii): By hypothesis, U has a left and a right inverse, hence 
U is one-to-one onto; also, (f, g)= (f, U*Ug) = (Uf, Ug). 

(ii) implies (iii): Take g = f. 
(iii) implies (ii): Use the polarization identity (3.2.17). 
(ii)implies(i):Write(U*Uf,g) = (Uf,U**g) = (Uf,Ug) = (f,g). 

Since f and g are arbitrary, U*U =I. But then (UU*)U = U; so if 
U is onto, then UU* =I. 

(b) This is done exactly as in (a). 
(c) If Uf = f, then U*Uf = U*f, hence by (b), f = U*f. Conversely, 

if U*f = f, then 

IIUf- !11 2 = IIUfll 2
- (f, Uf)- (Uf, f)+ 11!112 

= 211!11 2
- (U*f, f)- (f, U*f) 

= 211!11 2
- 2(!, f) by hypothesis 

=0. 
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(d) If fk E E, fk --+ f, then 

IIAmf -Anfll ~ IIAmf -Amfkll + IIAmfk -Anfkll + IIAn!k -Anfll 

~ 211!- hll + IIAmfk- Anfkll. 

and it follows that {An f} is a Cauchy sequence, so that f E E, 
proving E closed. It is immediate that E is a subspace. 

(e) Iff EM, then Anf = f, so J =f. Iff = g- Ug E No, then Anf 
= n-1(g- ung), hence IIAnfll ~ 2n-1 llgll--+ 0. 

(f) If hE H, then 

hl_N iff h l_ No 

iff (h, g- Ug) = 0 for all gEH 

iff (h - U* h, g) = 0 for all gEH 

iff U*h = h 

iff Uh=h by (c) 

iff hEM. 
_j_ 

Thus M = N, and the result follows. 
(g) Since E = H, An f converges to a limit J. Write f = f 1 + f 2. 

where f 1 EM, hEN. Now Anfi --+ j, by (e), and also Anh--+ 
0. Choose g E No such that llh- gil < e; then 

IIAnhll ~ IIAn(h- g) II+ liAng II ~ llh- gil+ liAng II < e + IIAngll. 

By (e), Ang--+ 0, so Anh--+ 0. Therefore Anf --+ !1 = Pf. 
(h) By definition of SandT, we have ST = TS =I. By 8.3.1, SandT 

are isometries, and they are invertible, they must be unitary operators. 
By (a), if U = T, then U* = S. 

6. If P is not an extreme point, so that a representation of the given form 
is possible, then P 1 is preserved by T, P 1 << P, and P 1 =j:. P (if P 1 = P, 
then (1 - )q)P1 = A2P2, so that P 1 and P2, being probability measures, 
must be identical). By 8.3.12, P is not ergodic. 

Conversely, assume that P is not ergodic. If A is an invariant set with 
0 < P(A) < 1, then for each B E .r, 

P(B) = P(A)P(B I A)+ P(Ac)P(B I A c) 

= )...,P, (B)+ A2P2(B). 

By the end of the proof of8.3.12, P 1 and P2 are preserved by T, hence 
P" P2 E K. If P 1 = P2, then P = P 1; but P1(A) = P(A lA) = 1 # P(A). 
Therefore P 1 =J:. P2, so that Pis not an extreme point. 
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7. (a) implies (b): Apply the pointwise ergodic theorem. 
(b) implies (c), (c) implies (d): Obvious. 
(d) implies (e): By the pointwise ergodic theorem, Iin) converges to JA 

almost everywhere, hence in probability. By (d), lA = P(A) a.e. 
(e) implies (f): Since l;l-+ JB a.e., we may multiply by fA and inte

grate to obtain, by the dominated convergence theorem, 

But if ~is the O"-field of almost invariant sets, 

E(IAIB) = E[E(IAIB)I~] 

= E[JBE(IAI~)] by 8.3.8 

by 8.3.9. 

Under the hypothesis (e), lA = P(A) a.e., JB = P(B) a.e., proving (f). 
(f) implies (g): If A, B E .rand 8 > 0, choose Ao, Bo E .r o such that 

P(A~A0 ), P(B~B0), and P[(AnT-kB)~(A0 nT-kB0 )] are less than 
8 for all k (see the proof of 8.2.7). Then 

1

1 n-1 I 

;; {;P(A n r-kB)- P(A)P(B) 

1

1 n-1 I 

:::: - 'L:)P(A n r-k B) - P(Ao n r-k Bo)] 
n k=O 

1

1 n-1 I + ;; {;[P(Ao n r-k Bo) - P(Ao)P(Bo) 

+ IP(Ao)P(Bo)- P(A)P(B)I. 

The first term is less than 8 for all n, and the second is less than t: for 
large n by (f). Since the third term is less than 28, the result follows. 

(g) implies (a): Let A be an invariant set, and set B =A; then n -I I:Z.:ci 
P(A n r-kB) = P(A). By (g), P(A) = [P(A)f, hence P(A) = 0 or 1; thus 
T is ergodic. 
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Section 8.4 

P(Bk) = P{Xk # O,Xk +Xk-i # 0, ... ,Xk + · · · +X2 # 0} 

= P{S, =1 o, s2 =1 o, ... , sk-i =1 O} 

since the xi are iid. 
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Thus n -i E (Rn) is the arithmetic average of a sequence converging 
to P(A), hence n- 1E(Rn)--+ P(A). 

(b) The zk are iid, with IZk I ::::: N. Since RnN ::::: z I + ... + Zn, the strong 
law of large numbers yields the desired result. 

(c) For any positive integer n, (k- l)N + 1 ::=:: n ::=:: kN for some k, 
hence IRn - RkN I ::=:: N; therefore 

Rn RkN kN N -<--+-. 
n - kN n n 

SincekNjn--+ 1asn--+ oo,limsupn---+oon-1Rn ::=::N-1E(ZJ)by(b). 
Now Z 1 = RN and N is arbitrary; thus the result follows from (a). 

(d) Since Vk = 1 if Xk+i # 0, Xk+i +Xk+2 # 0, ... , and Vk = 0 other
wise, V k can be expressed as g(X k. X k+" ... ) where g: R00 --+ R00

, 

measurable relative to [..5f1(R)] 00
• The pointwise ergodic theorem 

therefore applies. 
(e) The sum 2::?=1 V; is the number of states visited in the first n steps 

that are never revisited. If i < j, and S; and Sj are never revisit
ed, then S; =/;Sj; thus 2::7=1 V; ::=::Rn. By (d), liminfn---+oon-1Rn 2: 
E(V1) a.e. But since the X; are iid, 

Section 8.5 

1. Let {Xn} and {Xn'} be discrete ergodic sequences with entropies H and 
H'. Flip a coin; if the result is heads, let Xn'' = Xn for all n, and if tails, 
let Xn'' = Xn' for all n. If pis the probability of heads, the limit random 
variable is H with probability p, and H' with probability 1 - p, so that 
the entropy of {Xn''} is pH+ (1 - p)H'. In part (a), choose H = H', 
and in part (b), choose H # H'. There is no problem in realizing these 
choices; for example, if the Xn are independent and take on r values with 
equal probability, then H =log r. 
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measurable sets, 26, 31, 34 
measure, 26, 31 
set, 81 

Lebesgue-Stieltjes measure, 22, 24, 27, 30 
Legendre polynomials, 139 
length, 6 
Levy's extension of the Borel-Cantelli lemma, 

285 
Levy's theorem, 304, 305, 342 
Levy- Khintchine representation, 327 
lim inf, 2 
lim sup, 2 
limit of a sequence of sets, 2 
limit under the integral sign, 53-54 
Lindeberg's theorem, 307 
line of support theorem, 253 
linear 

functional, 144 
manifold, 133 
operator, 142 

Lipschitz condition, 81 
lower limit, 2 
lower semicontinuous (LSC) functions, 122, 441 
lower variation, 62 
Lyapunov's condition, 309 

wintegrable function, 39 
Markov chains, 196, 198, 251, 261, 262, 285, 

368-374 
Markov property, 369, 414 
martingale, 248ff., 420 

convergence theorems, 257ff. 
differences (orthogonality of), 280 

maximal ergodic theorem, 357 
mean, 191, 343 
mean ergodic theorem, 365-366 
measurable 

cylinder, 113, 117 
function, 36 
process, 400 
rectangle, 102, 113, 117 
set, 36 
space, 36 
transformation, 34 5 

measure, 5, 6 
concentrated on a set, 6, 26, 60 
space, 5 

measure-preserving transformation, 52, 345 
measures on infinite product spaces, 113ff. 
minimal a-field over a class of sets, 4 
Minkowski inequality, 86, 94 
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for sums, 91 
mixing transformation, 352 
moment-generating property of characteristic 

functions, 299 
moment~, 191 
monotone class theorem, 18, 21 
monotone convergence theorem, 46, 222 
multivariate normal distribution, 449 
mutually singular measures, 68 

negative part, 38, 62 
non-anticipating process, 426 
nondegenerate random variable, 314 
nonnegative definite funtion, 296 
norm, 87, 127 

of a linear operator, 142 
normal density, 176, 192, 297 
normed linear space, 127 
normed sums, 317 
nowhere differentiability of Brownian motion 

paths, 408 
null space, 145 

one-sided shifts, 143, 346, 353 
open mapping theorem, 161 
optional sampling theorem, 273 
optional skipping theorem, 257 
optional stopping theorem, 279 
Ornstein's theorem, 397-398 
orthogonal (perpendicular) 

elements, 132 
complement, 135 
direct sum, 135 

orthonormal 
basis, 135-137 
set, 132 

outer measure, 16, 21, 233 

parallelogram law, 131 
Parseval relation, 136 
path, 399 
permumtions, 346, 353 
pointwise converence of linear operators, 148 
pointwise ergodic theorem, 361 
Poisson 

distribution, 321 
process, 399 
type, 324 

Polya urn scheme, 262 
positive contraction operator, 356 
positive part, 38, 62 
positive-homogeneity, 153 
pre-Hilbert space, 128 
principle of uniform boundedness, 158 
probability 

function, 174, 177 
measure, 5,6 

induced by a random variable, 173 
induced by a random vector, 176 

space, 5 
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product measure theorem, 102, 105, 109, 111, 
112 

product 
of measures, 111, 116 
of a-fields, 114 
a-field, 102 

progressively measurable process, 431 
projection, 134, 144 

of a probability measure, 118 
theorem, 135 

Prokhorov's theorem, 302, 340 
pseudometric, 87 
Pythagorean relation, 132 

quadratic variation of Brownian motion paths, 
409-410 

queueing process, 287 

Rademacher functions, 248 
Radon-Nikodym 

derivative, 68 
theorem, 65, 95 

random 
object, 178 
signs problem, 239, 281 
variable, 173 
vector, 176 
walk, 200, 438 

rectangle, 113, 117 
recurrent states, 285, 288, 438-439 
recurrent transformation, 355 
reflexive space, 157 
regular 

conditional distribution function, 229 
conditional probability, 231 

relatively compact family of finite measures, 
301 

reverse martingales (submartingales, 
supermartingales), 248 

Riemann integral, 55-59 
Riemann zeta function, 328 
Riemann-Stieltjes integral, 58-59 
Riesz 

lemma, 150 
representation theorem, 144, 147 

right-continuous 
family of sigma-fields, 415 
function, 22, 336 

right-semiclosed intervals, 4, 29 
rotations of the circle, 346, 353 

a-algebra, 4 
a-field, 4 

generated by a class of sets, 4 
induced by a random object, 216 

a-finite set function, 9 
sample space, 166 
section, 102 
semicontinuous functions, 122, 441 
seminorm, 87, 127 
separable Hilbert spaces, 138 
set function, 3 

Shannon-McMillan theorem, 384 
shifts, 346 
signed measure, 62 
simple 

function, 3 7 
random variable, 174 

singular measure, 60, 68 
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Skorokhod's theorem (Skorokhod construction), 
334 

Slutsky's theorem, 332 
solvability theorem, 165 
space spanned by a subset of a normed linear 

space, 135 
stable distributions, 317-320 
standard deviation, 191 
state space, 196 
stationary 

probability measure, 347, 353 
sequence of random variables, 347, 353 

Steinhaus' lemma, 44 
stochastic matrix, 196 
stochastic process, 399 
stopping time, 270, 414 
strong convergence, 159 
strong law of large numbers, 200, 242, 278 
strong Markov property, 416 
subadditivity, 127, 153 
sublinear functional, 153 
submartingale and supermartingale inequalities, 

308 
submartingales, 248ff., 420 
subspace, 133 
summation by parts, 236 
sup norm, 129,143 
supermartingales, 248ff., 420 
symmetric events, 245 
symmetrization, 281 

tail 
events, 244 
functions 244 
a-field, 244 

theorem of total expectation, 209 
theorem of total probability, 172, 209 
tight family of finite measures, 301 
time average, 349 
Toeplitz lemma, 236 
topological vector space, 128 
total variation, 62 
transient states, 285, 438-440 
transition matrix, 198 
transition probabilities, 198 
translation-invariant measures, 34, 35 
translations, 346, 353 
triangular array, 321 
truncation inequality, 303 
two-sided exponential density, 176 
two-sided shifts, 143, 346, 353 
types, convergence of, 314 

uncertainty, 376 
uniform asymptotic neglibility (uan), 313 



516 

uniform convergence 
in the central limit theorem, 329 
of linear operators, 148 

uniform density, 175 
uniform integrability, 262, 266ff. 
uniformly bounded random variables, 308 
upcrossing theorem, 258, 277 
upper limit, 2 
upper semicontinuous (USC) functions, 122, 

441 
upper variation, 62 

vague convergence of measures, see weak 
convergence of measures 

variance, 191 
variation 
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of a function, 7 4 
of Brownian motion paths, 409 

version of a process, 400 
Vitali-Hahn-Saks theorem, 44 

Wald's theorem, 277 
wandering set, 355 
weak compactness theorem, 300ff. 
weak convergence 

in a normed linear space, 159 
of distribution functions, 125, 290 
of measures, 124, 290, 338, 339 

weak law of large numbers, 198 

zero-one laws, 244-246 
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