
Professional Scrum

Development with

Microsoft®
 Visual

Studio®
 2012

Richard Hundhausen

Praise for this book

“Richard provides real Scrum guidance for real teams. If you’re a Scrum team using Visual Studio, this
book is a great resource.”

—Aaron Bjork, Principal Group Program Manager, Team Foundation Server, Microsoft

“Richard successfully marries the best tools for .NET developers to the most effective practices
withoutsacrificingthepeople.”

—David Starr, Senior Program Manager, Visual Studio, Microsoft

“Finally, a book about Scrum from the Development Team’s point of view; Richard’s description of
thebestandworstwaystoimplementScrumispriceless.Thefirstchapteraloneisoneofthebest
descriptions of ‘Scrum done well’ that I’ve ever seen.”

—Charles Bradley, Scrum Coach & Professional Scrum Master

“TheveryfirstbookonTeamFoundationServerthatIreadwaswrittenbyRichard,andhe’sdoneit
again this time with another fantastic read.”

—Brian Keller, Principal Technical Evangelist for Microsoft Visual Studio

“Richard does a fantastic job of blending theory, practice, and tools in one easy to read book!
This book will surely be a staple for many of our Scrum coaching engagements.”

—Chad Albrecht, VP Centare, PST

“As an encore to helping introduce the industry shaking Professional Scrum Developer program,
 Richard reminds us in this book why he’s a leading voice in Scrum and Visual Studio ALM.”

—Ryan Cromwell, Professional Scrum Trainer, MVP

“I’ve known Richard a long time and it’s been great to follow his progression towards becoming a
Scrum ‘white robe.’ I’m so happy the community now has the ultimate resource on understanding the
marriage of Scrum and TFS.”

—Adam Cogan, Microsoft Regional Director, Visual Studio ALM MVP [of the year 2011]

“If you’re new to Scrum or even if you’ve been doing it for a while, this book will help you get the
big picture.”

—Benjamin Day, Professional Scrum Trainer, MVP

“If you’re using Scrum and TFS and you haven’t read this book, then you’re probably doing it wrong.”

—Brian Randell, MCW Technologies, Visual Studio ALM MVP

“In this book, Richard uses the core values of Scrum to describe how to get the best Scrum adoption
of Visual Studio 2012. This is a superb combination of principles and mechanics that should be on all
teams’ bookshelves.”

—Simon Reindl Professional Scrum Developer Trainer

“I don’t keep a lot of technology books on my bookshelf due to the pace at which developer tools
evolvebutthisbook,withitsfocusonpeopleandprocesses,isdefinitelyakeeper.Richard’sbookis
to Scrum development as Petzold’s was to Windows development.”

—Charles Sterling, Visual Studio Senior Program Manager, Microsoft

“Among the plethora of Scrum literature out there, Richard’s book makes a difference by bringing
Scrum closer to where it belongs: the day-to-day work in the context of a team, supported by suitable
practices,andthestate-of-the-artVisualStudiotoolset.You’llbenefitfrommostoftheadviceit
 contains, even if you don’t use Visual Studio!”

—Jose Luis Soria, Plain Concepts ALM Team Lead, PST

“Scrum, Visual Studio, and Team Foundation Server are just tools, and they will not make you better
by themselves. If you really want to improve you need to understand the tools and learn how to
improve,anddefinitively,Richard’sbookwillhelpyoutogetthere”

—Luis Fraile, Visual Studio ALM MVP, Globe ALM Division Manager

“A masterpiece which distills the world of Scrum in a Visual Studio environment; anyone who is using
Scrum will recognize many of the ‘smells’ and appreciate the sharing of real-world experience and
guidance.”

—Willy-Peter Schaub, Program Manager, Visual Studio ALM Rangers

“This book should be required reading for everyone on your team. It will help you bring people,
 processes, and technology together quickly with Scrum.”

—Mike Vincent, Professional Scrum Developer Trainer, Visual Studio ALM MVP

Professional Scrum

Development with

Microsoft®
 Visual

Studio®
 2012

Richard Hundhausen

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2012 by Richard Hundhausen. Appendix copyright Ken Schwaber
and Jeff Sutherland.

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the
publisher.

Library of Congress Control Number: 2012948863
ISBN: 978-0-7356-5798-4

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide.
If you need support related to this book, email Microsoft Press Book Support at
mspinput@microsoft.com. Please tell us what you think of this book at
http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/
IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the Microsoft group of
companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos,
people,places,andeventsdepictedhereinarefictitious.Noassociationwithanyreal
company, organization, product, domain name, email address, logo, person, place, or
event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in
this book is provided without any express, statutory, or implied warranties. Neither the
authors, Microsoft Corporation, nor its resellers, or distributors will be held liable for any
damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions and Developmental Editor: Devon Musgrave
Project Editor: Rosemary Caperton
Editorial Production: Christian Holdener, S4Carlisle Publishing Services
Copyeditor: Andrew Jones
Indexer: Jean Skipp
Cover: Twist Creative∙ Seattle

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

This book is dedicated to my Scrum Team: Esmay, Isla, Berlin,
Blaize, Sawyer, and Kristen.

Contents at a Glance

Foreword xv

Introduction xix

PART I FUNDAMENTALS

CHAPTER 1 Scrumdamentals 3

CHAPTER 2 Microsoft Visual Studio 2012 ALM 41

CHAPTER 3 Microsoft Visual Studio Scrum 2.0 57

PART II USING SCRUM

CHAPTER 4 The pre-game 93

CHAPTER 5 The Product Backlog 127

CHAPTER 6 The Sprint 169

CHAPTER 7 Acceptance test-driven development 197

CHAPTER 8 Effective collaboration 227

PART III IMPROVING

CHAPTER 9 Continuous improvement 275

Appendix: The Scrum Guide 327

Index 341

 ix

Contents

Foreword . xv
Introduction . xix

Who should read this book .xix

Who should not read this book . xx

Organization of this book . xx

Conventions and features in this book . xxi

Code samples . xxii

Acknowledgments . xxiii

Errata & book support . xxiii

We want to hear from you . xxiv

Stay in touch . xxiv

PART I FUNDAMENTALS

Chapter 1 Scrumdamentals 3
The Scrum Guide . 3

Scrum in action . 4

Scrum roles . 6

Scrum events .14

Scrum artifacts .27

Definitionof“Done” .36

The professional Scrum developer .37

Chapter burndown .39

x Contents

Chapter 2 Mircosoft Visual Studio 2012 ALM 41
Delivering continuous value .42

Visual Studio 2012. .44

Editions. .46

Team Foundation Server . 51

Team Foundation Service .52

Visual Studio Team Explorer Everywhere 201254

MSDN subscriptions. .54

Chapter burndown .55

Chapter 3 Microsoft Visual Studio Scrum 2.0 57
Dissecting the process template .57

MSF process templates .59

Exploring a process template .59

Visual Studio Scrum 2.0 .61

What’s new and different .62

Work item types .67

Work item queries .81

Reports .83

Common customizations .86

Chapter burndown .88

PART II USING SCRUM

Chapter 4 The pre-game 93
Setting up the development environment .94

Team Foundation Server: Buy vs. build .94

Create a team project collection .96

ConfigureTeamFoundationBuild .97

ConfigureLabManagement .100

Setting up product development. .103

Create a team project .103

Source control .108

 Contents xi

Automated builds .113

Project portal .115

Reports .118

Security groups .121

Teams .122

Chapter burndown .124

Chapter 5 The Product Backlog 127
Creating the Product Backlog .127

Team Web Access .128

Using the “quick add” experience .130

Handling epic PBIs .134

Importing existing PBIs .137

Reporting a bug .140

Effective Product Backlog creation .147

Grooming the Product Backlog .149

Specifying acceptance criteria .150

Estimating items in the Product Backlog .152

Tracking estimates in the Product Backlog .155

Ordering the Product Backlog .156

Planning a release .160

Time-driven vs. feature-driven releases .161

Controlling and prioritizing scope .161

Using Velocity to estimate .162

Release Burndown report .166

Chapter burndown .167

Chapter 6 The Sprint 169
Creating the Sprint Backlog .170

Forecasting the PBIs .170

Capturing the Sprint Goal .173

Creating the plan . 174

Daily Scrum activities .179

xii Contents

The Daily Scrum .180

Taking on work .183

The task board .185

Chapter burndown .196

Chapter 7 Acceptance test-driven development 197
Keep the conversation going .198

Collaborativespecifications .199

Executablespecifications .201

Acceptance test-driven development .202

Test-driven development .205

Automated acceptance testing. .206

Creating a test case .206

Associating an automated test .210

Executing automated acceptance tests .214

Reusing test cases .217

Other acceptance-testing frameworks .221

Acceptance .224

Chapter burndown .225

Chapter 8 Effective collaboration 227
Individuals and interactions over processes and tools227

Listen actively .229
Collocate .230

Set up a team room .232

Meet effectively .233

Collaborate productively .234

Achieve continuous feedback .236

Collaborative development practices .237

Collective code ownership .238

Commenting in code .240

Code reviews .241

 Contents xiii

Collaborative development tools .244

Team Foundation Server .244

Continuous integration .245

Gated check-in builds .249

Email alerts .250

Shelving .253

My Work .254

PowerPoint Storyboarding .257

Feedback client .261

Code reviews .267

Chapter burndown .271

PART III IMPROVING

Chapter 9 Continuous improvement 275
Common challenges .275

Bugs .276

Impediments .277
Estimation .279
Assessing progress .282
Renegotiating scope .286
Undone work .288
Spikes .293
Fixed-Price contracts and Scrum .294

Common dysfunctions .296

Not getting “done” .297
Flaccid Scrum .298
Not inspecting, not adapting .299

Development Team challenges .300

Working with a challenging Product Owner304

Working with challenging stakeholders .307
Working with a challenging Scrum Master .309
Changing Scrum .312

Improving .315
Get a coach .315
Build a cross-functional team .316
Achieve self-organization .317
Improve transparency .318
Swarm .319
Use a Kanban board to limit WIP .319
Professional Scrum Developer training .322
Assess your knowledge .322
Become a high-performance Scrum Development Team.323

Chapter burndown .324

Appendix: The Scrum Guide 325

Index 341

 xv

Foreword

By 2001, the software industry was in trouble—more projects were failing than
 succeeding. Customers began demanding contracts with penalties, and increasingly

sending work offshore. Some software developers, though, had increasing success with
a development process known as “lightweight.” Almost uniformly, these processes were
based on the well-known iterative, incremental process.

In February of 2001, these developers issued a manifesto—the Agile Manifesto.
The Manifesto called for Agile software development based on 4 principle values and
12 underlying principles. Two of the principles were 1.) to satisfy customers through
early and continuous delivery of working software, and 2). to deliver working software
frequently, from a couple of weeks to a couple of months, with a preference to the
shorter timescale.

By 2008, the Scrum Agile process was used predominantly. A simple framework, it
provided an easily adopted iterative incremental framework for software development.
It also incorporated the Agile Manifesto’s values and principles. The two authors of
Scrum, Jeff Sutherland and myself, also were among the authors of the Agile Manifesto.

Ihadanticipatedsomeofthedifficultiesorganizations(andeventeams)would
face when they adopted Scrum. However, I believed that developers would bloom in
aScrumenvironment.Stifledandchokedbywaterfall,developerswouldstandtall,
employing development practices, collaboration, and tooling that nobody had time to
use in waterfall projects.

Much to my surprise, this was only true for perhaps 20 percent of all software
 developers.

Note In 2007, Martin Fowler characterized most Agile software development
as“flaccid.”Hestated:There’samessI’veheardaboutwithquiteafew
 projects recently. It works out like this:

 ■ They want to use an Agile process, and pick Scrum.

 ■ They adopt the Scrum practices, and maybe even the principles.

 ■ After a while, progress is slow because the code base is a mess.

xvi Foreword

What’s happened is that they haven’t paid enough attention to the internal
qualityoftheirsoftware.Ifyoumakethatmistakeyou’llsoonfindyour
 productivity dragged down because it’s much harder to add new features
than you’d like. You’ve taken on a crippling Technical Debt and your Scrum
hasgoneweakattheknees.(Andifyou’vebeeninarealscrum,you’llknow
that’s a Bad Thing.) http://martinfowler.com/bliki/FlaccidScrum.html

Martin’sdescriptionofflaccidScrumresonatedwithourexperience.Mostdevelopers
were skilled, but not adequately skilled in the three dimensions required to rapidly
build complete increments of usable functionality. These dimensions are:

People The ability to work in a small, cross-functional, self-organizing team.

Practices The knowledge of and ability to apply modern engineering
 practices that short cycle development mandates.

Tooling Tools that integrated and automated these practices so that
 successive increments could be rapidly integrated without the drag of
 exponentially accruing artifacts that must be handled manually.

We put our business on hold while we worked through 2008 to create what has
become known as the Professional Scrum Developer program. Offered in both a
three-andfive-dayformat,weformulatedaworkshop.Theinputwasdevelopers
whoseknowledgeandcapabilitiesproducedflaccidincrements.Theoutputwereteams
of developers who had developed solid increments of software called for by the Agile
Manifesto and demanded by the modern, competitive organization.

Richard has been there since the beginning. His book, Professional Scrum
 Development with Microsoft® Visual Studio® 2012 continues his participation in the
movement started by us few in 2009.

When you read Richard’s book, you can learn the three dimensions needed for
Agile software development: people, process, and tools. Just like the course, Richard
 intertwines them into something you can absorb. If you are on a Scrum team, read
Richard’s book. List the called-for practices. Identify which practices pose challenges to
your team. Order them by their greatest impact. Then remediate them, one by one.

Many people spend money going to Agile conferences. Save the money and
more by buying this book, discussing it with others, and going to Code Camps, the
“ un- conference” for the serious.

 Foreword xvii

Richard and I look forward to your increased skill. Our industry and our society need
it. Software is the last great scalable resource needed by our increasingly complex
 society. The effective, productive teamwork of Agile teams is the basis of problem
 solving that our society also needs.

Scrum on!

Ken Schwaber
co-creator of Scrum

 September, 2012

In 2009, Richard took on a daunting task. Ken Schwaber and I came together because
we lamented the impediment facing software teams trying to improve their ability to
deliver customer value on frequent, short cadence. They could learn about practices,
they could learn about tools, or they could engage coaching, but putting it all together
was an exercise left to the readers.

That’s when Richard Hundhausen stepped into the breach. He put together
 Professional Scrum Developer in a whirlwind. Quite literally, he toured the world
 delivering beta courses, relentlessly receiving feedback, and inspecting and adapting.
Theresultwasthefirsthighlyscalabletrainingprogramthatcombinedmodern
 software engineering practices and readily available tooling at the global scale. Richard
has been improving the course for three years through a dedicated community of
certifiedtrainersandhasnowdistilledthebasicsintoaneasilyaccessiblebook.

If you’re new to Scrum and want to get better at delivering high-quality software
that your customers want quickly, Professional Scrum Developer is a great place to start.

Sam Guckenheimer
Product Owner, Visual Studio Product Line

Microsoft Corporation
September, 2012

 xix

Introduction

Scrum is a framework for developing and sustaining complex products, such
assoftware.Scrumisjustasetofrules,asdefinedintheScrum Guide (www.scrum

.org/Scrum-Guides), and it describes the roles, events, and artifacts, as well as the
rules that bind them together. When used correctly, this framework enables a team to
 address complex problems while productively and creatively delivering products of the
highest possible value. Scrum is an Agile method. In fact, it is the most popular Agile
method in use today.

Scrum employs an iterative and incremental approach to optimizing predictability
and controlling risk. This is due to the empirical process control nature of Scrum.
Through proper use of inspection, adaptation, and transparency, a Scrum Team can try
anewwayofdoingsomething(anexperiment)andgaugeitsusefulnessafterashort
iteration. They can then collectively decide to embrace, extend, or drop the practice.
This includes the tools a team uses and how they use them.

CombiningScrumwiththeapplicationlifecyclemanagement(ALM)toolsfoundin
Microsoft Visual Studio 2012 is a powerful combination. It is the purpose of this book
to establish a baseline understanding of Scrum, as well as how Scrum is supported
in Visual Studio 2012. I will also illustrate which practices provide more value when
 executed without the use of tools. In addition, I will point out those tools which have been
erroneously marketed as healthy when used by a collocated, collaborative Scrum Team.

In software development, anything and everything can change in a moment’s notice.
Healthy teams know this. They also know that continuously inspecting and adapting the
way things are done is a way of life. High-performance Scrum Development Teams take
itastepfurther.Theyknowthatwithineverydysfunctionorimpedimentidentifiedisan
opportunitytolearnandimprove.Readingthisbookisagreatfirststep.

Who should read this book

This book will be of value to any members of a software development team using
Scrum.Iprimarilyfocusontheresponsibilitiesandtasksofthedeveloper(whichin
Scrum includes designers, architects, coders, testers, technical writers, etc.). Product
Owners and Scrum Masters will also derive value from this book, as they will be using

xx Introduction

many of the same Visual Studio tools to plan and manage their work and assess
 progress. Stakeholders, including customers, users, and managers, will also gain value
from this book, especially when they learn what they can and cannot do according to
the rules of Scrum and which tools in Visual Studio support this.

Who should not read this book

This book is intended for teams using Scrum and Visual Studio 2012 together. It won’t
provide as muchvalueforteamsexecutingAgile(non-Scrum)softwaredevelopment
and won’t provide any value for teams running more formal “waterfall” software
 development projects, although Chapter 1 may hopefully change the minds of such
proponents. Likewise, if a team is using Scrum, but not yet using Visual Studio 2012,
the bulk of the book won’t be very interesting. This is also the case for teams using
Visual Studio 2012 Express or Professional editions, which don’t contain the high-value,
 team -based tools for planning and managing the backlogs and team collaboration.

Organization of this book

This book is divided into three sections, each of which focuses on a different aspect
of the marriage of Scrum and Visual Studio. Part I, “Fundamentals,” sets a baseline
 understanding of the Scrum framework, Visual Studio 2012 editions and their
 interesting ALM features, as well as the Visual Studio Scrum 2.0 process template.
Part II, “Using Scrum,” provides several chapters detailing the practical application
of how a Scrum Team would use the relevant features of Visual Studio 2012. Part III,
“ Improving,” includes a chapter on identifying common challenges and dysfunctions
in order to remove them, as well as techniques to continually improve your game of
Scrum. By reading all sections sequentially, you will see how Visual Studio and
Scrum can be used together in an effective way and how a team can become
high - performance in the way it develops software.

Finding your best starting point in this book
The different sections of Professional Scrum Development with Microsoft Visual
Studio 2012 cover a range of topics. Depending on your needs and your existing
 understanding of Scrum, Visual Studio, and the related development practices, you may
wishtofocusonspecificareasofthebook.Usethefollowingtabletodeterminehow
best to proceed through the book.

 Introduction xxi

If you are Follow these steps

New to Scrum or have never heard of it Read Chapter 1

New to Visual Studio 2012 or its ALM tools Read Chapter 2

New to the Visual Studio Scrum process template or want to
know what’s new in version 2.0

Read Chapter 3

Familiar with Scrum and Visual Studio and only want to learn how
to setup and manage a Product Backlog.

Read Chapters 4 and 5

Familiar with Scrum and Visual Studio and only want guidance
on overcoming common challenges and dysfunctions.

Read Chapter 9

Conventions and features in this book

This book presents information using conventions designed to make the information
readable and easy to follow.

 ■ Screenshots from relevant Visual Studio 2012 features are provided for your
reference.

 ■ Boxed elements with labels such as “Note” or “Tip” provide additional
 information and guidance related to the subject.

 ■ Some notes and tips are practical guidance provided by fellow Professional
Scrum Developers who have helped review this book.

In addition, I have included two additional boxed elements, one labeled “Smells” and the
other labeled “Tailspin Toys Case Study.”. These are discussed in the following sections.

Smells Throughoutthisbook,Ipointoutspecificsituationsandtrapsthat
a Scrum Team should avoid. I refer to these as smells. These smells typically
indicate an underlying dysfunction or other unhealthy behavior. For teams
new to Scrum, these smells may be hard to identify. Once they are brought
to light, however, they should be used as learning opportunities. As a team
improves, it should be able to recognize dysfunction on its own, as well
as remove it. High-performance Scrum Teams reach the ability to identify
potentialwaste,evaluatetherisks,andevendecidetoopt-intospecific
 behaviors, including those that may be a smell to the uneducated.

xxii Introduction

Tailspin Toys case study Asyouflipthroughthepages,youwillreadabout
TailspinToysasacasestudy.Thisisafictitiousorganizationandteamthatis
building an online retail website that sells model aircraft and accessories. The
team has been using Scrum for some time and is moving to Visual Studio 2012.
My opinions on healthy and unhealthy behaviors are made evident through the
choices made by the Tailspin Toys team.

Code samples

Although this book contains almost no code samples, I did build a utility application
to help create and manage the Product Backlog and Sprint Backlog. This helped me
 prepare the data seen in the various screen captures in this book. I affectionately
named this utility the Scrum Robot. The source code is yours if you think it can be
 helpful. If nothing else, it demonstrates how to connect to a Team Foundation Server
2012 instance and manipulate basic team project data. The Scrum Robot can be
 downloaded from the book’s companion content page:

http://go.microsoft.com/FWLink/?Linkid=267484

Note You will need to have Visual Studio 2012 with Team Explorer installed
in order to use the Scrum Robot.

Installing and using the Scrum Robot
Follow these steps to install the Scrum Robot on your computer so that you can
 programmatically access Team Foundation Server and manipulate a team project’s
areas, iterations, Product Backlog, and Sprint Backlog.

1. Unzip the ScrumRobot.zipfilethatyoudownloadedfromthebook’swebsite
(nameaspecificdirectoryalongwithdirectionstocreateit,ifnecessary).

2. If prompted, review the displayed end user license agreement. If you accept the
terms, select the accept option, and then click Next.

 Introduction xxiii

Note If the license agreement doesn’t appear, you can access
it from the same webpage from which you downloaded the
ScrumRobot.zipfile.

3. Once unzipped, you can open the ScrumRobot.sln solution and review the code.
Press F5 to run the utility after changing any variables or constants, such as the
name and address of your Team Foundation Server.

Acknowledgments

There are several people who helped me write this book: Christian Holdener, for his
infinitepatience.DevonMusgraveandRosemaryCaperton,foryetanotheropportunity
to write for Microsoft Press. Fellow Professional Scrum Developers: Mike Vincent, Simon
Reindl, Jose Luis Soria, David Starr, Jeroen van Menen, Chad Albrecht, Ryan Cromwell,
Luis Fraile, Rob Maher, and Peter Gfader for helping me sharpen the message. Fellow
Scrum and Visual Studio practitioners: Charles Bradley, Bob Hardister, Graham Barry,
Anna Russo, Christofer Löf, Willy-Peter Schaub, and Peter Provost for providing great
ideas and reviews. Thank you everyone.

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion
 content. Any errors that have been reported since this book was published are listed on
our Microsoft Press site at oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=267483

Ifyoufindanerrorthatisnotalreadylisted,youcanreportittousthroughthe
same page.

If you need additional support, email Microsoft Press Book Support at
 mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
 addresses above.

mailto:mspinput@microsoft.com

xxiv Introduction

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
 valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 1

P A R T I

Fundamentals

CHAPTER 1 Scrumdamentals. 3

CHAPTER 2 Microsoft Visual Studio 2012 ALM Tools41

CHAPTER 3 Microsoft Visual Studio Scrum 2.057

The chapters in this section will establish a baseline
 understanding of the three areas that every professional Scrum
developer using the Microsoft tools platform must know:

 ■ Scrum

 ■ The Microsoft Visual Studio 2012 Application Lifecycle
Management(ALM)tools

 ■ The Visual Studio Scrum process template

We will begin by looking at Scrum and the rules of Scrum
from the developer’s perspective. The focus will be on how and
when the Development Team interacts with the Product Owner
and Scrum Master, participates in the various Scrum events,
and uses the various Scrum artifacts. Remember that in Scrum,
the term developer equates to a Development Team member.
This does not necessarily equate to programmer or coder. In
fact, Scrum recognizes testers, coders, designers, architects,
analysts,anddatabaseadministrators(DBAs)asdevelopers.It’s
important for all developers to understand the rules of Scrum,
and what’s expected of them and their team, as well as when
and how they can interact with the Product Owner, the Scrum
Master, and the various artifacts.

P A R T I

C H A P T E R 1

Scrumdamentals

The Scrum Guide
Scrum in action

Scrum roles

Scrum events

Scrum artifacts

Definitionof“Done”

The professional Scrum developer

Chapter burndown

The remaining chapters will be more technical in nature
and cover the ALM tools found in Visual Studio 2012, including
Team Foundation Server and its Scrum process template. This
is Microsoft’s fourth release of these tools and a lot has been
added and improved from prior versions. With a full install of
Visual Studio and Team Foundation Server, there are many tools
available for a Development Team. I will endeavor to list and
discuss the relevant ALM tools, but I won’t explore the practice
of using each. In my opinion, some tools are better left in the
toolbox, allowing the team to exercise higher-valued collabora-
tive practices instead.

 3

C H A P T E R 1

Scrumdamentals

Scrum is a framework for developing and sustaining complex products. Software is a complex
 product. Scrum is ideal for managing the development of software. Scrum is not a methodology

or a process, although you can employ various processes within it. Software development doesn’t
generate the same output every time, given a certain input. Scrum embraces this fact and is empirical,
which means that it promotes the use of observation and experimentation in order to inspect and
adapt. This enables a team to regularly see the effectiveness of its development practices and make
changes accordingly.

Even today, more than 60 years into the evolution of software development, the chances are a
medium-sizedtolargesoftwareprojectwillfail.Fortunately,theindustryhasfinallynoticed,understands,
and has started to respond to this problem. Some organizations have turned this around. Things are
 improving. Evidence shows that Agile practices, such as Scrum, are leading these successes.

Tip Using a software development analogy, you can think of Agile as being an interface. Agile
defines4abstractvalues and 12 abstract principles(http://agilemanifesto.org). While there are
many ways to implement these values and principles, Agile does not describe them. Scrum
does. You can think of Scrum as a concrete class that implements Agile.

Agile teams know that they must continuously inspect and adapt—not just their product, but
theirpracticesaswell.Beingbook-smartonScrum,ApplicationLifecycleManagement(ALM),and
 Microsoft Visual Studio is a good start. Having experience using them together in practice is better.
Being able to identify and act on opportunities for improvement as you use them is awesome. That
should be your goal. Don’t just settle for a non-failed project. Strive for completing the project better,
faster, and cheaper than the stakeholders thought possible.

The Scrum Guide

Scrumhasbeenaroundsincetheearly1990s.Duringthattime,Scrum’sdefinitionandrelated
 practices have come from books, presentations, and professionals doing their best to explain it.
Unfortunately, those messages were not always accurate and almost never consistent. Scrum, as it has
emerged today, doesn’t look like it did 10 years ago.

http://agilemanifesto.org

4 PART I Fundamentals

In2010,Scrum.orgcodifiedScrumbycreatingandpublishingtheScrum Guide for free.
Thisroughly15-pageguiderepresentstheofficialrulesofScrumandismaintainedbyScrum’s
 creators, Ken Schwaber and Jeff Sutherland. It is available in 30 languages and downloadable at
http://www.scrum.org/scrumguides. It is a great reference that you can use even as you are reading
this book. As you read the guide, you will see that Scrum is lightweight and quite easy to understand.
Unfortunately,itisextremelydifficulttomaster.TheScrum Guide will continue to be updated and
may supersede the guidance you read in this chapter and the rest of the book.

Tip You can think of Scrum as being like the game of chess. Both have rules. For example,
Scrum doesn’t allow two Product Owners just as chess doesn’t allow two kings. When you
play chess, it is expected that you play by the rules. If you don’t, then you’re not playing
chess. This is the same with Scrum. Another way to think about it is that both Scrum and
chess do not fail or succeed. Only the players fail or succeed. Those who keep playing by
the rules will eventually improve, though it may take a long time to master the game.

The Scrum framework consists of the Scrum team and the associated roles, events, and artifacts. Each
oftheseitemsservesaspecificpurpose,asyouwillseeinthischapter.TherulesofScrum,asdefinedinthe
Scrum Guide, bind together the roles, events, and artifacts. Following these rules is essential to the success
of a team’s ability to use Scrum to develop a high-value, quality software product.

Scrum in action
If you study the Scrum Guide, you will understand the components and related rules. You won’t
necessarilyseehowtheyflowtogether.ThisrequiresyoutoactuallyexperienceScrumwhile
 developing software on a team. As a substitute for that experience, Figure 1-1 was created by a
fellow professional Scrum developer to illustrate the Scrum framework in action.

In Scrum, the Product Backlog is the single source of requirements for any changes to be made
tothesoftwareproduct.Thislistincludesfeaturestobeadded,aswellasbugstobefixed.Itis
the Product Owner’s responsibility to ensure that the Product Backlog is available, transparent,
understoodbytheDevelopmentTeam,andordered(prioritized).TheDevelopmentTeamcollaborates
with the Product Owner, and others as needed, during Sprint Planning and Product Backlog grooming to
 understand and estimate the effort required to deliver the items in the Product Backlog.

The Sprint is a time-boxed event that contains the other Scrum events. Sprints should be a month
orlessinduration.ThefirsteventwithinaSprintistheSprintPlanningmeeting.Inthistime-boxed
event, the Scrum team collaborates to plan the work of the upcoming Sprint. The Product Backlog
items(PBIs),orderedatthetopoftheProductBacklogbytheProductOwner,arediscussed.The
 Development Team forecasts those Product Backlog items that it believes it can complete by the end
of the Sprint. A Sprint Goal is crafted, and the Sprint Backlog emerges. The Sprint Backlog contains
those items selected by the Development Team plus a plan for delivering them. The Sprint Backlog
shows the work remaining in the Sprint at all times.

http://www.scrum.org/scrumguides

 CHAPTER 1 Scrumdamentals 5

Is everyone
following Scrum?

Scrum
Master

Sprint
Planning

Sprint
Retrospective

Sprint Review
Working
Software

(Increment)

Product
Owner

Stakeholders

Product Backlog
Grooming:

10% of Sprint

Daily Scrum:
Daily,

15 minutes

Testing:
Daily

Sprint
Backlog

Product
Backlog

Sprint:
1−4 weeks

Development
Team

Feedback

FIGURE 1-1 The Scrum framework in action.

The bulk of the Sprint’s time-box will be spent developing the items in the Sprint Backlog. The
rules of Scrum are fairly silent on what occurs each day during development. The Development
Team must meet regularly for the Daily Scrum. This short meeting is for the Development Team to
 synchronize on what work will be executed in the next 24 hours. The Development Team should also
meet with the Product Owner to groom the Product Backlog. During grooming, items in the Product
Backlog are given additional detail, and estimates are given by the Development Team. This keeps the
Product Backlog healthy so that the Product Owner can plan the software product’s release and make
better decisions on the items to develop next.

During the Sprint, the Development Team completes items in their Sprint Backlog according to
eachitem’sacceptancecriteriaandtheteam’sDefinitionof“Done”.Thisdefinitionliststhepractices
andstandardsthatmustbemetforeveryitembeforeitcanbeconsideredcomplete.Thedefinition
is created by the Development Team but must be understood by the Product Owner. Both parties
mustunderstandthatifworkdoesnotmeettheDefinitionof“Done,”itisnotdoneandcannotbe
 released. Ideally, the Development Team collaborates with the Product Owner throughout the Sprint
to ensure that all criteria are being met. If the Development Team completes their forecasted work
early,theyshouldcollaboratewiththeProductOwnertofindanothersuitableProductBacklogitem
toworkon.Conversely,atthefirstindicationthattheDevelopmentTeamknowsthattheywon’t be
able to complete their forecasted work, they should collaborate with the Product Owner to identify
anddiscusstrade-offsandmodifytheSprintBacklogtoreflecttherealityoftheSprintwithout
sacrificingquality.

6 PART I Fundamentals

SprintBacklogitemsdoneaccordingtheDevelopmentTeam’sdefinitionaredemonstratedduring
the Sprint Review meeting. The Product Owner may invite various stakeholders to this meeting for
their feedback on the Increment. This Product Owner and stakeholder feedback might be captured
and end up as new items in the Product Backlog. Existing items may also need to be updated or
 removed. The Product Owner may decide to release the Increment as soon as possible or delay it.
This should be a business decision. Regardless of when the Increment is released, the Development
Team should always develop the Increment as though it were going to be released as soon as possible.

The last event in the Sprint is the Sprint Retrospective meeting. This meeting provides an
 opportunity for the Scrum Team to inspect themselves and identify what went well and what needs
improving.Ifimprovementsareidentified,theteamshouldcreateanactionableplanforthenext
Sprint. Nothing is out of scope during this meeting—people, relationships, process, and tools can all
bediscussed.TheScrumTeammayalsodecidetoadjustitsDefinitionof“Done”toincreaseproduct
quality. After the meeting, the next Sprint begins.

Scrum roles
The group of individuals who are responsible for, and committed to, building the software product is
known as the Scrum Team. The Scrum Team is a superset of the Development Team. The Scrum Team
consists of the following Scrum roles:

 ■ Development Team

 ■ Product Owner

 ■ Scrum Master

Asyouwilllearn,thereisanimpliedequality(thatis,lackofrankorseniority)ofthedeveloperson
the Development Team since Scrum does not recognize titles. That is not the case with the Scrum Team
as a whole. The Product Owner is the visionary leader who chooses what is built, when it is ready to
release, and when to stop or cancel the project. If you think of the roles in terms of providing service, the
 Development Team serves the Product Owner, while the Scrum Master serves both the Development
TeamandtheProductOwner.Therefore,theDevelopmentTeamhasstronginfluencetoselect(thatis,
hireorfire)theScrumMaster.Correspondingly,theProductOwnerhasstronginfluencetoselectthe
Development Team he or she wants to turn the Product Backlog into done Increments. Because of this
separation of duties, the roles should be played by separate individuals. This mitigates any chance of a
conflictofinterest.Thatsaid,smallerteamsmayfinditnecessarytocombineroles.

Note Scrum Team != Development Team. The Scrum Team refers to the Development
Team plus the Product Owner and Scrum Master. The Development Team refers to the
subset of the Scrum Team that contains only the developers who will be developing the
Increment.Whensomeoneusestheunqualifiedterm“team”duringconversation,itcould
refer to either. You may want to ask the person using the term to provide additional
 context.

 CHAPTER 1 Scrumdamentals 7

The Development Team
The Development Team consists of between 3-9 professionals who are capable of building and
delivering a potentially-releasable Increment of software at the end of a Sprint. The size of 6 +/– 3
 developers allows the team to be small and nimble, while being large enough to complete increments
of complex development. A team with only 2 developers doesn’t need Scrum, as they can simply
communicate directly and be productive. Also, there is a greater chance that the 2 developers won’t
have the skills required to do the work. On the other hand, teams with more than 9 developers
require too much coordination. These larger teams tend to generate too much complexity to derive
value from Scrum’s empiricism.

Note The Product Owner and Scrum Master are not on the Development Team and are
not included in the 6 +/– 3 Development Team size count. However, if the Product Owner
or Scrum Master is also a developer who will be executing development tasks during the
Sprint, then you should count them.

In Scrum, Development Team members are called “developers,“ regardless of their background, job
title, or skill set. Development Team members may have experience in software engineering, testing,
architecture and design, graphic design, database administration, business analysis, technical writing,
or other similar specialties. Regardless of what their resume says, they are now “developers“ as far as
Scrum is concerned. They should burn their business cards and focus on delivering value in the form
of working software. Also, there are no subteams in Scrum, such as testing or QA. The Development
Team performs all of the work required to deliver the done increment of the software product.

It’s important to note that just because a team member is called a developer, this does not
necessarilymeanthattheywillbedeveloping(writing)code.Dependingonthetask,theymay
be developing architecture, developing user interface or design, developing test cases, developing
 database objects, developing installers, or developing documentation, etc. Everyone develops
 something. Table 1-1 lists the high-level activities that a Scrum Development Team will perform.

TABLE 1-1 Development team activities within Scrum.

Activity When

Collaborate with the Product Owner to forecast the Sprint’s
work and craft a Sprint Goal.

Sprint Planning.

Collaborate with fellow developers on a plan to implement
theforecastedwork(includingtaskestimation).

Sprint Planning, Daily Scrum.

Attend the Daily Scrum meeting. Daily Scrum.

Develop the Increment according the acceptance criteria
andtheDefinitionof“Done.”

After Sprint Planning and prior to Sprint Review.

Collaborate with the Product Owner to groom the Product
Backlog(includingPBIestimation).

During the Sprint. Product Backlog grooming makes
up to 10% of Development Team’s capacity during the
Sprint.

Collaboratively identify additional development when
 forecasted work is completed early.

During the Sprint as needed.

8 PART I Fundamentals

Activity When

Collaboratively discuss trade-offs and create a contingency
plan for when the forecasted work can’t be completed.

During the Sprint as needed.

Demonstrate each Increment allowing inspection by
 stakeholders and Product Backlog adaptation.

Sprint Review.

Reflectuponitselfanditspracticesmakingdelivery
 improvements.

Sprint Retrospective.

Continuously learn and improve. Always.

Don’t assume that a developer will execute only those types of tasks that he or she is good
at or familiar with. For example, just because Dieter has a background in Microsoft SQL Server
 programming, that doesn’t mean he’ll be the one executing those types of tasks. If, during the Sprint,
the team decides that the next logical task to execute requires SQL Server programming and Dieter
is busy or unavailable, another developer should jump in and take on that work if at all possible.
 During development, the person who is best suited to perform a given task will emerge based on
many factors, including expertise and availability. It is for this reason that estimates are made by the
 Development Team, not individuals—even if those individuals are experts in those domains. It’s also
why you should have more than one developer with a necessary skill set.

Tip Ifindveryfewteamswhosemembersrefertoeachotheras“developers.“Thereis
stillareflextoequate“developer”toprogrammerorcoder.Ourindustryreinforcesthis.
For these teams, and for the time being, using the term “Development Team member” or
“team member” is a suitable substitute in my opinion.

Development Teams are cross-functional. This means that there is at least one developer on the
team who has the necessary skill set to execute some type of work required for the Increment. Put a
 different way, it means that the Development Team has all the skills needed to complete its work. Being
a cross-functional Development Team doesn’t mean that each developer is cross-functional. Ideally, there
will be more than one developer who has a required skill set. If not, then the team should strive to improve
that by pairing and sharing, or by leveraging some other instructional techniques during development.
Having one single developer on a team with a key skill is a recipe for dysfunction.

The composition of the Development Team does not change during the Sprint. If it must change,
it may only change “in-between” Sprints. This is typically the result of a decision made collaboratively
during the Sprint Retrospective meeting. Changes may include adding a new team member, swapping
a member with another team, removing a team member, or changing a team member’s capacity. Any
change to the team composition is a disruption. Since Velocity is typically computed empirically, by
looking back at the Development Team’s accomplishments in prior Sprints, any change to the team
composition will most likely cause a variance. It will take time for the Velocity to normalize. In other
words,productivitywillinitiallydecreaseforatimeandthenshould(hopefully)increase.

 CHAPTER 1 Scrumdamentals 9

Note Velocity is a measure of Product Backlog items that a Development Team delivers in
a single Sprint. Velocity can be measured in the number, size, or business value of those
items. Velocity of a single Sprint is not useful, but trending this number of several Sprints
shows the general direction of productivity of a Development Team. Once Velocity has
normalized, it is useful in planning Sprints and releases. For example, if a Development
Team has an average Velocity of 20 points per Sprint and the Product Backlog shows
12 PBIs totaling 96 points yet to be developed in this release, you can expect the release to
be available in roughly 5 Sprints, or 2 1/2 months given a 2-week Sprint duration. The term
“Velocity”isrootedintheUserStorypractice,soitisnotanofficialScrumterm.Thatbeing
said, it can be adapted to other kinds of Product Backlog items, such as use cases, and
used in Scrum as a planning tool.

Tailspin Toys case study The Tailspin Toys Development Team consists of seven cross-functional
developers with varying backgrounds, skill sets, and skill levels. The team members are Anna, Art,
Dave, Dieter, Raj, Toni, and Wade. Art and Anna have architecture, design, and some C# experience.
Dave, Wade, and Raj have solid C# experience. Raj and Dieter have SQL Server and Windows Server
 experience, including Windows PowerShell. With the exception of Raj and Dieter, the Development
Team is co-located and spends the majority of their time on the Tailspin Toys development effort.
As a team, they all went through professional Scrum developer training and achieved passing
 assessment scores.

The Product Owner
The Product Owner represents the voice of the user. This means the Product Owner not only knows
the product, its domain, and its vision, but also the users. Good Product Owners are in touch with the
needs of the users. Great Product Owners will actually share in user’s passion. Either way, the Product
Owner should understand users’ requirements and expectations. Just knowing how the product
worksandwhattofixisnotenoughtobeacompetentProductOwner.

Note Over the years I’ve heard that the Product Owner is the voice of the customer. Lately,
however, I’ve been seeing that the Product Owner is the voice of the user. I tend to agree
with the latter, but what’s the difference? Fellow professional Scrum developer Jeroen
van Menen explains the subtle difference: the customer is the one who buys the software,
where the user is the one who uses it.

Therefore, the Product Owner must represent the needs of the user and drive value in his or her
direction, rather than just trying to satisfy the person writing the check. There is only one Product
Owner on a Scrum Team. This helps avoid confusion. When the developers have a question about

10 PART I Fundamentals

theproduct,theirfirstinstinctshouldbetoasktheProductOwner.TheProductOwnermayneedto
 consult other domain experts and stakeholders for the answer, especially for very large and complex
products. The Product Owner should be considered the go-to person for all questions about the
product’s vision, value, release goals, features, and bugs.

The Product Owner is responsible for maximizing the value of the product through the work
of the Development Team. The Product Owner’s primary communication tool for doing this is a
 well-groomed and -ordered Product Backlog. The Product Owner collaborates with the Development
Team on what and when to develop. A common misconception is that the Development Team
 develops the product. In fact, it’s done through the collaboration and cooperation of the
 Development Team and the Product Owner. Table 1-2 lists the Development Team’s interactions with
the Product Owner.

Tip The ideal Product Owner should know the product, know the product’s domain, know
the product’s customer, know the product’s users, know Scrum, have authority to make
 decisions related to the direction of the product, be highly available to the rest of the
Scrum Team, and have good people skills. Unfortunately, I’ve never met a Product Owner
who had all of these attributes, but I have met many Product Owners who desired to
 improve in all these areas and worked toward that goal.

TABLE 1-2 Development team interactions with the Product Owner.

Interaction When

Collaboratively plan the Sprint and forecast work. Sprint Planning meeting.

Answer product and product domain questions. During the Sprint as needed.

GroomtheProductBacklog(includingestimation). During the Sprint. Duration should be up to 10% of Sprint
length.

Take on additional work. During the Sprint as needed.

Collaboratively plan contingency work. During the Sprint as needed.

Demonstrate the Increment and adapt the Product
Backlog.

Sprint Review meeting.

Collaborate to inspect the Scrum Team’s practices and
plan for improvement.

Sprint Retrospective meeting.

High-performance Scrum Teams understand the separation of duties between the Product Owner
and Development Team and have come to rely on each team member doing his or her part. Although
the Scrum Guide doesn’t explicitly state that the Product Owner cannot be the Scrum Master or a
 Development Team member, I think those are good rules to set and follow. Keeping the Product Owner
focused on what to develop, the Development Team focused on how to develop it, and the Scrum Master
focused on ensuring that everyone understands and follows the rules of Scrum is a recipe for success.

SincetheorganizationmayholdtheProductOwneraccountablefortheprofitorlossofthe
 product, he or she should maintain a constant vigil for optimizing the product’s value. Passionate
Product Owners tend to be engaging Product Owners. They continuously want what is best for their
software product and, more importantly, the value provided to its users.

 CHAPTER 1 Scrumdamentals 11

Tailspin Toys case study Paula is the Product Owner of the Tailspin Toys web application. She
is the daughter of Buzz, the company’s founder, and shares his passion for aviation and model
aircraft. She cares deeply about Tailspin Toys’ customers and community. This inspires her to
constantly improve and evolve the capabilities of the website. She even likes to brag that she’s
thesite’smostprolificuser.HervisionistomakeTailspinToysthenumberonesiteforaircraft
models and hobbyists. Needless to say, Paula is an informed and engaging Product Owner
who is available when necessary and has the authority to make the necessary decisions. Paula
has been using Scrum for about three years. She has been through the Professional Scrum
Foundations and Professional Product Owner training.

The Scrum Master
The Scrum Master enacts the Scrum values, practices, and rules throughout the Scrum Team and even
the organization. He or she ensures that the Product Owner and Development Team are functional
and productive by providing necessary guidance and support. The Scrum Master is also responsible
for ensuring that Scrum is understood by all involved parties and that everyone plays by the rules.

Note The Scrum Master is not a project manager. He or she is considered a manager, but
of Scrum itself, not the project, the people, or the product.

The Scrum Master must be resolute in holding fast to the rules of Scrum, giving the organization
timetonormalizeandrealizethebenefits.Thismeanskeepinganyold“waterfall”habitsatbay.It
also means keeping any unenlightened managers at bay, while continually quashing the illusion
that command and control and opaqueness equates to better and faster software development.
 Sometimes the Scrum Master may become the de facto change agent, leading the effort for an
 organizational adoption of Scrum. If this is the case, then the Scrum Master’s steadfastness must be
able to scale!

The Scrum Master has a softer side too. He or she can be called upon to act as a coach, ensuring
thattheteamisself-organizing,functional,andproductiveandshieldingthemfromexternalconflicts
while removing any impediments to their progress. The ability of the Scrum Master to serve the team
by removing impediments to their success is a vital piece of Scrum. As a servant leader, the Scrum
Master achieves results by giving priority attention to the needs of the team. Scrum Masters may also
be of service to stakeholders and others in the organization, helping them understand the Scrum
framework and expectations from the various players. Servant leaders are often seen as humble
stewards of the people and processes in which they are involved. By having a “What can I do for you
today?” attitude, it fosters an environment of collaboration and respect, providing fertile soil for a
high-performance Scrum Team. Lao Tzu, the ancient Chinese philosopher, said it best:

12 PART I Fundamentals

When the master governs, the people are hardly aware that he exists. Next best is a
leader who is loved. Next, one who is feared. The worst is one who is despised. If you
don’t trust people, you make them untrustworthy. The master doesn’t talk, he acts.
When his work is done, the people say, “Amazing: we did it, all by ourselves!”

The Scrum Master is not a technical role. Having a strong background in software development is
not necessary, though it can be helpful at times. Scrum Masters must really know Scrum. That’s not
negotiable. A good Scrum Master will also have good communication and interpersonal skills. He or
she may have to facilitate interactions with other team members or enable cooperation across roles or
functions. It’s important to have those abilities. Keep this in mind when considering who might make
a good Scrum Master. Table 1-3 lists the ways in which the Scrum Master serves the Development
Team.

Tip In my opinion, traditional project managers don’t make good Scrum Masters.
Unfortunately,thisisacommonreflexforanorganizationadoptingScrum.Forexample,
thedecisionmakersdecidetosend“Roger,”theirPMI-certified,Henry Laurence Gantt
medalrecipient(lookitup),MicrosoftProjectMVPtoProfessionalScrumMastertraining.
The expectation is that Roger will lead the change. What I’ve seen happen is that either
Roger’s project management “muscle memory“ adversely affects the adoption of Scrum, or
his old colleagues and managers do.

TABLE 1-3 Ways the Scrum Master serves the Development Team.

Service When

Help facilitate Scrum events. During the Sprint as needed.

Identify, document, and remove impediments. During the Sprint as needed.

Provide training, coaching, and motivation. During the Sprint as needed.

Coach the Development Team on self-organization. During the Sprint as needed

Attend required meetings on the Development Team’s
 behalf.

During the Sprint as needed

Be the Development Team’s emissary to the
 organization.

During the Sprint as needed

Shield the Development Team from interruption and
noise.

During the Sprint as needed.

Be relied upon less and less. Over time as the team improves.

The duties of the Scrum Master may not require a full-time commitment. High-performance teams
recognize this and may select a Development Team member to play the part-time role of Scrum
Master. This role may rotate between developers over time. Full-time Scrum Masters may get folded
back into the Development Team, or part-time Scrum Masters may start getting busier as new Scrum
Teamsemergeintheorganization.TheScrumMasterroleismoreflexiblethantheotherrolesin
this regard. So long as a Scrum Team understands and follows the rules of Scrum and has access to
 someone who can perform the duties of a Scrum Master when needed, party on.

 CHAPTER 1 Scrumdamentals 13

Tip The skills of a Scrum Master are unique and important. Being a Scrum Master is
a career choice for some. In my experience, they tend to be high-performance and
 continuously improve their skills as they serve the team. These Scrum Masters should
 remain just that. If possible, they shouldn’t be dismissed or converted to another role. They
will bring more value to the team and the organization as a full-time Scrum Master.

Tailspin Toys case study Scott was hired by Tailspin Toys last year to serve as Scrum
Master. Initially, he only served the web application team, providing the necessary
 coaching in order to transform them into a high-performance Scrum Team. Upper
 management plans on using Scott to help other teams within the organization learn and
adopt Scrum. Scott is an expert in Scrum and has years of practical, hands-on experience
with various companies and teams. He has been through Professional Scrum Foundations
and Professional Scrum Master training and is active in the Scrum.org community.

Stakeholders
AlthoughnotanofficiallydefinedroleintheScrum Guide, stakeholders include everyone else
 involved or interested in the development of the software product. Stakeholders can consist of
 managers, executives, analysts, domain experts, members from other teams, customers, and users
of the software. Stakeholders are very important. They represent the necessity for the software.
TheyalsodrivethevisionandusabilityoftheproductbyinfluencingtheProductBacklog.Without
stakeholders,whowouldusethesoftware,payforitsdevelopment,orderivebenefitfromit?

In my experience, developers have a tendency to discount non-technical individuals. This is
 unfortunate. Stakeholders should not be ignored. That said, some stakeholders can take too much
interest in the development effort and its status, becoming a distraction. Scrum has clear delineations
of when stakeholders and the Development Team can interact, and it’s very limited, as you can see
in Table 1-4. Inspecting and providing feedback on the product, such as requesting a feature, should
be handled by the Product Owner. Inspecting and providing feedback on the development process,
such as inquiring about status, should be handled by the Scrum Master. In other words, stakeholders
should almost always be kept out of the development process.

Tip Burndown charts posted in a common area or on a web portal are a great way to
keep stakeholders informed, which This keeps the interruptions of the Scrum Team to a
 minimum. If anyone has questions about the charts, the Scrum Master can educate them.

The Scrum Master should strive to keep stakeholders out of the various Scrum events, with
the exception of the Sprint Review meeting. Stakeholders should not be involved in any planning
or estimation meetings unless their domain expertise is required. Attendance to any event is by

14 PART I Fundamentals

 invitation of the Scrum Team only. Stakeholders should also not attend the Daily Scrum, as its purpose
is to allow the Development Team to synchronize with each other on the upcoming work. Even the
Product Owner’s presence at this meeting is considered a distraction from its purpose.

TABLE 1-4 Development Team interactions with stakeholders.

Interaction When

Answer any questions the Development Team might have
aboutitemsintheProductBacklog(estimation,planning,etc.).

During the Sprint as needed.

Review the product Increment built during the Sprint and
 provide feedback to be captured in the Product Backlog.

Sprint Review.

Tailspin Toys case study The Tailspin Toys company has a rich history in aviation, both
 commercial and military. As founder of the company, Buzz brought with him many of his pilot
buddies to serve as advisors. While they are not technical when it comes to software, they do
have deep expertise in the domain of aviation, aircraft, models, and the community. In addition
to these experts, there are a number of other stakeholders who provide feedback on the web
application. Some of these are die-hard users of the software—affectionately called the Fans
of Tailspin. Having previously been an executive of an airline, Buzz understands the importance
of capturing user feedback. To that end, he insisted on setting up wish@tailspintoys.com email
address to receive email feedback. These emails are routed to a support person who triages the
content and works with Paula to add the item to the Product Backlog.

Scrum events
TheScrumframeworkuseseventstostructurethevariousworkflowsofincrementalsoftware
development.Eacheventistime-boxed,whichmeansthatthereisafixedperiodoftimetoexecute
the activities within each event. Time-boxing ensures that an appropriate amount of time is spent
 planning without allowing waste in the planning process. Figure 1-2 illustrates how the events and
relatedartifactsflowtogether.

Development

Increment
and

Feedback

Vision

Product
Backlog

Sprint Goal
and

Sprint Backlog

Sprint Planning

& Product Backlog Grooming

Daily Scrum(s)

Sprint 1 Sprint 2

Sprint Review

Sp
ri

nt
 R

et
ro

sp
ec

tiv
e

Updated
Product
Backlog

FIGURE 1-2 The sequence of Scrum events and related artifacts.

mailto:wish@tailspintoys.com

 CHAPTER 1 Scrumdamentals 15

These Scrum events are meant to establish regularity and a cadence. They are also meant to
 minimize the need for wasteful or impromptu meetings that are not part of Scrum. All events are a
formal opportunity to inspect and adapt something. Inspecting allows the team to assess progress
towardagoal,aswellasidentifyanyvarianceinthecurrentplan.Ifaninspectionidentifiesany
unacceptable deviation, an adjustment must be made to the product or process. These adjustments
should be made as soon as possible to minimize further deviation. Failure to include or attend any
of the Scrum events results in reduced transparency and is a lost opportunity to inspect and adapt.
TherearefiveprescribedeventsinScrum:

 ■ Sprint

 ■ Sprint Planning meeting

 ■ Daily Scrum

 ■ Sprint Review meeting

 ■ Sprint Retrospective meeting

Note The Sprint is not a meeting. It is a container for all of the other events. This means
that the Sprint has begun when the Sprint Planning meeting commences. A notion exists
that the Sprint is that time period after the Sprint Planning meeting and before the Sprint
Review in which the actual development occurs. This is incorrect. Unfortunately, this
“event” doesn’t have a name. I refer to it as “development.”

The Sprint
A Sprint is the set period of time in which an Increment of the software product is developed.
A SprintisScrum’stermforaniteration.Sprintsaretypicallyfixedattwotofourweeksinlengthand
run end to end, one after another. The frequency of feedback, experience of the team, and Product
 Owner’s need for agility are key factors in determining the length of a Sprint. For example, if the
softwareproductisanenterprisedesktopapplicationwithfairlywelldefinedreleasegoals,longer
sprintsarefine.Iftheapplicationissoftwareasaservice(SaaS),withdemandingcustomersand
several competitors, shorter sprints would be more desirable. Both the customer and the Scrum Team
need to collaborate to determine the ideal length of the Sprint.

InScrum,theSprintistheouter(container)eventfortheotherfourevents.Inotherwords,the
Sprint Planning, development, Sprint Review, and Sprint Retrospective meetings all take place within
the Sprint. This is a change from earlier Scrum guidance, which suggested that the Sprint began once
Sprint Planning completed. Once you start using Scrum, you are always in a Sprint—assuming the
software still requires development. When this Sprint’s Retrospective meeting ends, the next Sprint
begins and you repeat the inner events again. There should never be any breaks in between Sprints.

Sprint length I asked Ken Schwaber once how long a Sprint should be. His answer was, “As short
aspossibleandnoshorter.”Sprintsoflongerthanfourweeks(onemonth)haveasmell—thesmell
ofwaterfalling.WhenaSprint’slengthislongerthanamonth,thedefinitionofwhatisbeingbuilt

16 PART I Fundamentals

may change or complexity and risk may increase. By limiting the maximum length of a Sprint, at most
one month of development effort would be wasted, rather than several months in a classic waterfall
 project. Conversely, Sprints with a length of less than one week are possible, but should be executed
only by a high-performance Scrum Team. Even with very short Sprints, the overhead of the inner
events must be factored in, leaving even less time for actual software development. Teams working in
”micro sprints” like these need to be on their A-game every day.

Ideally, the length of the Sprint does not change. If it must, it can only change in between Sprints,
as a result of a decision made collaboratively during the prior Sprint’s retrospective meeting. Any
change to the length of a Sprint will cause disruption to the Development Team’s cadence. This will
correct over time, as will its Velocity.

EachSprintislikeamini-project.TheSprinthasadefinitionofwhat is to be developed. It also
includesaflexibleapproachonhow to develop it. During the Sprint, all aspects of the development
work are executed. This will typically be more than just designing, coding, and testing. The scope
ofworkmaybeclarifiedasmoreislearned,andtheProductOwnermaycollaboratewiththe
 Development Team to renegotiate adding new items or swapping different items in the Sprint
Backlog.TheDevelopmentTeammaynotdecreaseanyqualitygoalsinordertofinishitswork.The
resultingproductIncrementisproducedand(hopefully)acceptedbytheProductOwner,whomay
also decide to release the Increment to production.

Thechoiceofwhichdayoftheweektostart(andend)aSprintisentirelyuptotheScrumTeam.
Some practitioners prefer Mondays or Fridays. Most don’t. Fellow professional Scrum developer Jose
Luis Soria Teruel cautions against teams that try to always start a Sprint on a given day. The team
caninadvertentlygivethedaymoreimportancethanhavingafixedSprintlength.Forexample,if
a holiday falls in the middle of a Sprint, the team might shorten the Sprint so they can stick with it
beginning on a Monday. Changing the Sprint length, even by a day, can affect cadence, Velocity, and
the ability to achieve the Sprint Goal.

Canceling a Sprint Rarely does a Sprint need to be canceled, but it does happen. If a Sprint’s
forecasted work becomes irrelevant, then there is no reason to continue developing it. This can occur
if the product or organization needs to change direction immediately due to a technology or market
reason. Only the Product Owner has the authority to cancel a Sprint. He or she may do so under the
advisement of others, including stakeholders, the Development Team, or the Scrum Master. Canceled
Sprints require the Scrum Team to collaborate and decide if any done work is acceptable and
 potentially releasable. The Scrum Team should also re-estimate any undone work, returning it to the
Product Backlog. The work done on partially completed PBIs depreciates quickly and may not have
any value in the future. Needless to say, canceling a Sprint will generate waste.

Tailspin Toys case study Originally, the Scrum Team tried four-week Sprints. They felt that the
longer time-box would be closer to the quarterly delivery schedule they had been accustomed
to. Unfortunately, since the team was new to Agile, they continued to take a sequential
 approach to development. They spent a lot of time on analysis and design at the beginning

 CHAPTER 1 Scrumdamentals 17

of the Sprint and deferred QA until the end. The resulting high-intensity crunch in the last few
daysoftheSprintwasnotsustainableandwasreallyjustabackslideintowaterfallhabits(a.k.a.
“Scrummerfall”). The team did not experience the productivity gains everyone anticipated.
WhentheyhiredScott(theScrumMaster),herecommendedmovingtotwo-weekSprints.
This caused the developers to experience a sense of urgency, change the way they worked,
and maintain a comfortable level of intensity throughout the Sprint. Scott also recommended
 starting the Sprint on a Wednesday. This increased the chances of the whole team being in the
officeandoperatingatpeakcapacity.ItalsoallowedstakeholderstoflyinforaSprintReview
and the subsequent Sprint Planning meeting without having to stay over a weekend. The Scrum
Team has completed many successful Sprints while on this two-week cadence. Their average
Velocity over the last six Sprints is 22.

Sprint Planning meeting
The Sprint Planning meeting is for identifying and planning the development work that will be
performedduringtheSprint.ThisisthefirsteventthatoccurswithintheSprint,andthemost
 important. The entire Scrum Team attends this meeting. The Development Team collaborates with the
ProductOwneronthescopeofworkthatcanbeaccomplished.Agroomedandordered(prioritized)
Product Backlog is required as an input for Sprint Planning. This forecasted work, along with a Sprint
Goalandaplanfordoingthework(theSprintBacklog),aretheoutputs.

The Sprint Planning meeting is time-boxed, so everyone needs to be laser-focused. Distractions,
such as non-topical conversations, should be minimized. The length of the Sprint Planning meeting is
a function of the length of the Sprint, as you can see in Table 1-5.

TABLE 1-5 Length of the Sprint Planning meeting.

Sprint length Sprint Planning meeting length

4 weeks No longer than 8 hours

3 weeks No longer than 6 hours

2 weeks No longer than 4 hours

1 week No longer than 2 hours

Less than a week In proportion to the above lengths

The forecast During Sprint Planning, the Development Team considers the highest-ordered PBIs from
the Product Backlog one at a time. The order is decided by the Product Owner. Each item’s requirements
andacceptancecriteriaarediscussed.ClarificationisprovidedbytheProductOwneraswellasother
 domainexpertswhomightbeinvitedtothemeeting.Afterobtainingasufficientunderstandingofthe
PBI, the Development Team estimates the effort. If the consensus believes that they can deliver the item in
this Sprint, the item is added to the forecast. Lack of consensus may require the PBI to be split or deferred
until a later Sprint, when more is known. The Development Team moves to the next item in the Product
Backlog. This is repeated until the Development Team thinks that they have forecasted a comfortable
amount of work for the Sprint, given their capacity and past performance. These forecasted PBIs are
moved from the Product Backlog to the Sprint Backlog.

18 PART I Fundamentals

The Development Team may use their Velocity to make the determination of what is an acceptable
amount of work. New Development Teams, who don’t yet have a normalized Velocity, as well as
 high-performance teams, may just use their instinct to decide what feels like the right amount of
work. If the Development Team completes their forecasted work early, they can collaborate with the
Product Owner mid-Sprint to identify and develop an additional PBI. Because of this, their Velocity
may go up, and a larger forecast might occur at the next Sprint Planning meeting. The Development
Team should never forecast more work than they know they can complete.

Note In 2011, the Scrum Guide introduced a somewhat controversial change to Sprint
Planning. The word ”commit” was replaced with ”forecast”. Scrum practitioners had an
 issue with the word commit for some time. The problem was that ”commit” implied that
the Development Team was obligated to deliver the PBIs at the end of the Sprint. This
was especially true when stakeholders, who tend to not understand the complexities
ofdevelopingsoftware,heardtheword.Sincesoftwaredevelopmentisverydifficult
and full of risk, delivering all PBIs every Sprint is unrealistic. The Development Team
might have to cut quality in order to make good on their promise and this is essentially
 forbidden in Scrum. The term ”forecast” is more realistic and easier to understand by
 business stakeholders who have heard terms like “sales forecast.” It suggests that, while the
Development Team will do their best, given what they know, new information will emerge
during the Sprint that might impede their best-laid plans. It will take some time to get used
to the new term. It may sound like a weasel word to some, but in the long run, its usage
will be deemed more honest and transparent.

The Sprint Goal After the Development Team forecasts the PBIs that it thinks that it can develop in
the Sprint, they should collaborate with the Product Owner to craft a Sprint Goal. The Sprint Goal is an
objective, in narrative format, that guides the Development Team as they develop the Increment. The
Sprint Goal also provides stakeholders the ability to see a synopsis of what the Development Team is
working on. While the Development Team only forecasts the individual PBIs to be implemented, they
actually commit to achieving the Sprint Goal.

Note SometeamsliketocrafttheSprintGoalfirst,oratleastinparallelwiththe
 forecasting of work. This way, there is more cohesion with the goal and the PBIs that are
developed during the Sprint. This cohesion makes it easier to understand the value of the
Incrementandhowitfitsintothegoalsoftheproductorrelease.Thisapproachcanbe
difficultforteamswhoneedtodevelopdisparatefeaturesandbugfixesforagivenSprint.

It’s important that the Product Owner and Development Team craft the Sprint Goal together
and agree on its verbiage and meaning. Everyone on the team should then commit it to memory.
Stakeholdersshouldhaveaccesstoseeitaswell.Oncedevelopmenthasbegun(thatis,theSprint
 Planning meeting is over), the Sprint Goal should not be changed. It is the theme that the team has

 CHAPTER 1 Scrumdamentals 19

committed to, and the T-shirts have already been printed—so to speak. If the Development Team isn’t
able to achieve the Sprint Goal, or the goal becomes obsolete, the Product Owner might decide to
cancel the Sprint—another indication of the Sprint Goal’s importance.

TheSprintGoalgivestheDevelopmentTeamsomeflexibilityandguidanceregardingthe
 functionality implemented within the Sprint. Even if the Development Team delivers less PBIs than
were forecasted in Sprint Planning, they can still achieve their Sprint Goal. For example, let’s assume
the Development Team forecasts the following PBIs during Sprint Planning:

1. Add a Twitter feed to the homepage.

2. Create a Facebook page for the company.

3. Create and host a wiki page for product support.

Given this forecast, the Sprint Goal might read, “To increase community awareness of our company
anditsproducts.”Asthedeveloperswork,theykeepthisgoalinmind.Iftheteamisunabletofinish
the third PBI, they didn’t fail because they were still able to increase community awareness of our
company and its productsbysuccessfullycompletingthefirsttwoPBIs.IfitsoundslikeSprintGoals
give the Development Team “wiggle room,” you are correct. Remember that what developers do is
verydifficultandfullofrisk.That’swhytheyshouldforecast the individual items they think they can
deliver, but commit to the goal that embodies them.

The plan Sprint Planning is not complete until the Development Team has devised a plan for
how they will develop the forecasted PBIs. The plan must ensure that all PBI acceptance criteria are
satisfiedwhilemeetingtheteam’sDefinitionof“Done.”TheplangetsaddedtotheSprintBacklog.
On a whiteboard, this might be visualized as a collection of sticky notes in the same row as the
 associated PBI sticky note. In software, it might be several child records related to a parent record.
Regardless of the tool the team uses, the Sprint Backlog contains both the forecasted PBIs and the
plan(tasks)todevelopthem.

Tip Go lightweight during Sprint Planning. Whiteboards are a great medium for sketching
ideas and brainstorming tasks. Laptops aren’t. Whiteboards can be easily photographed
and wiped clean after the meeting. Files on laptops tend to linger and yearn to be
updated.Theyalsoindicateafinalitysetinstonethatisnotnecessarilythetruth.
Using sticky notes to brainstorm tasks in the plan is also good. They can be moved and
 removed easily from the board. A high-performance Scrum Team will avoid using any
 software during Sprint Planning unless its value outweighs its distraction. Sticky notes and
whiteboardsketchescanbetranslatedintodigitalfileslater,oncetheDevelopmentTeam
agrees on the plan.

Because of the meeting’s time-box, the Development Team probably won’t be able to identify
every task required to develop a particular PBI. For expediency, a minimum amount of information
should be recorded—perhaps just a title and estimate of effort. Sprint Planning is not the time for
 detailed design. The Development Team needs to focus on the high-level plan and its tasks.

20 PART I Fundamentals

For example, let’s assume that the team will have to create several database tables, stored procedures,
and related data access code. Rather than go down the design “rat hole” during the meeting, the
team should just identify a couple of high-level tasks: create database objects and create data-access
code. Each of these would include an aggregate estimate of effort to perform all the related activities.

ThetaskstobeperformedfirstintheSprintshouldbedecomposedasnecessarysothatno
 executable task is larger than can be achieved in one day. Estimates can be in whatever unit of
 measure the Development Team decides. For tasks, hours are the most common unit. I’ve seen teams
also use days or story points. Personally, I think using story points for estimating tasks can lead to
confusion. Rarely would you want to relatively compare the estimations of two tasks that could end
up being done by different team members. Regardless of the unit of measure, all of these numeric
values will enable a Sprint burndown chart, should the team choose to employ one.

It’s important for the Development Team to leave the Sprint Planning meeting with a plan to
 accomplish the Sprint Goal. This plan should be documented, in the Sprint Backlog, in a way that the
 Product Owner and Scrum Master can understand the approach. Task ownership is not a required
outcome of the Sprint Planning meeting. In fact, it’s important to leave “to do” tasks unassigned so that
teammemberswhohavecapacitycanpickarelevanttasktoworkonnext.Thatsaid,itisfineiftheteam
decides to assign one or a few tasks to individuals by the end of the meeting. The Development Team will
then self-organize to undertake the work in the Sprint Backlog as needed throughout the Sprint. Table 1-6
lists the activities expected of a Development Team during the Sprint Planning meeting.

TABLE 1-6 Development Team activities during Sprint Planning.

Activity Where is it captured?

Forecast PBIs to be delivered that Sprint. PBIs in the Sprint Backlog.

Collaborate with Product Owner to craft a Sprint Goal. Whiteboard, sticky notes, Microsoft SharePoint, etc.

Develop a plan for delivering the forecasted PBIs. Tasks in the Sprint Backlog.

Tailspin Toys case study ThefirstSprintPlanningsessionswerechaotic.TheDevelopmentTeam
wereintroducedtonewPBIsforthefirsttimeat the meeting.Paula(theProductOwner)wasn’t
 always prepared and the domain experts were sometimes unavailable. Most of the meeting was
spent understanding what was to be developed, and planning the howgotdeferreduntilthefirst
few days of the Sprint. This corrected itself over time, as the team members got used to Scrum.
SprintPlanningalsobecamemuchmoreefficientwhentheteamstartedmeetingregularlyto
groom the Product Backlog.

The Daily Scrum
The Daily Scrum is a 15-minute, time-boxed meeting for the Development Team to synchronize
their activities and create a plan for the next 24 hours. It allows developers to listen to what
other developers have done and are about to do. This leads to increased collaboration, as well as
 accountability. If one developer hears that another developer is about to work in a similar area of
the product, they may choose to pair up for the day. On the other hand, if the team hears that a

 CHAPTER 1 Scrumdamentals 21

 developer is on day 3 of a 4-hour task, it may be time to pair up or inquire about the root cause.
Team members need to understand that commitments are being made at this meeting and that these
commitments will be tested 24 hours from now.

Note I hear a lot of teams refer to this event as the “daily standup.” The event is called the
“Daily Scrum.” If the team decides to stand during the meeting, they may do so.

The most popular technique that Development Teams use during the Daily Scrum is to stand in a
circle facing each other. Each developer, in turn, answers the following three questions:

1. What have I done since the last Scrum?

2. What will I do between now and the next Scrum?

3. What impediments are in my way?

The Development Team can use the dialogue heard during the Scrum to assess their progress.
By hearing what is or isn’t being accomplished each day, the team can determine if they are on their
way to achieving the Sprint Goal. As teams improve in their collaboration, this vibe will become more
 noticeable—even outside the Daily Scrum. High-performance teams may even outgrow the need for
a formal assessment tool, such as a Sprint burndown chart. Stakeholders will only outgrow this need
once the Scrum Team has earned their trust, which takes time. The sustained increase of business
value being added to the software product should serve as its own assessment.

The meeting should be held in the same place and at the same time every day to reduce
 complexity and to maximize the likelihood of attendance. Ideally, the meeting is held in the morning
so that the Development Team is able to synchronize their work that day. The Daily Scrum is not
a status meeting. Problem solving can occur in the meeting, but it is usually deferred to just after
the Daily Scrum because the problem solving can often lead to the team violating the 15-minute
 time-box for the event, as well as conversations that are not relevant to all attendees.

The Daily Scrum is not meant to be attended by anyone other than the members of the
 Development Team. This includes the Product Owner. In fact, the Scrum Master is not even required
to attend. He or she just needs to ensure that the Scrum takes place and that the rules are followed.
Anyimpedimentscanbeidentified,tracked,andevenmitigatedbytheDevelopmentTeammembers.

Tip Keep laptops, burndown charts, and other artifacts and props out of the Daily Scrum.
These tend to distract from the purpose of the meeting. Each developer should know their
own information without having to look anything up. Observations and impediments can be
recorded on a whiteboard or using sticky notes. High-performance teams will use a “parking
lot” to track anything not relevant to the Scrum, and a follow-up meeting can support those
conversations. The Development Team is self-organizing and can decide to meet formally or
informally at any time during the day for any reason. The Scrum framework has no guidance on
what the Development Team does the other 7 hours and 45 minutes of the day, other than to
say that the Development Team should be maximizing their self-organization capability.

22 PART I Fundamentals

Tailspin Toys case study The Development Team has their Daily Scrum at 9 A.M. in
the hallway near their team’s area. Prior to the meeting, each developer updates their work
 remaining estimates on their tasks. By doing this, it gives them a fresh perspective on
theirremainingworkandenrichestheconversation.Asidebenefitisthatthiskeepstheburndown
reports accurate, which is good if they are consulted at any follow-up meeting. During the
Scrumitself,thedevelopershaveadoptedthepracticeoftossingasmallrugbyball(a“talking
stick”) to the next developer to speak. Sticky notes are created and placed in a parking lot
 section of a nearby whiteboard as needed. The Daily Scrum usually takes less than 10 minutes.

Sprint Review meeting
After the Sprint’s development time-box has expired, a Sprint Review meeting is held. The entire
Scrum Team attends, as well as any stakeholders the Product Owner invites. This informal meeting
is for inspecting the increment developed by the team. Stakeholders get to observe an informal
 demonstration of the working software. Their feedback is elicited and captured. This collaboration
can produce new, updated, or removed PBIs.

The Sprint Review meeting is time-boxed. Its length is half that of the Sprint Planning meeting, or
1 hour for every week in the Sprint, as you can see in Table 1-7.

TABLE 1-7 Length of the Sprint Review meeting.

Sprint length Sprint Review meeting length

4 weeks No longer than 4 hours

3 weeks No longer than 3 hours

2 weeks No longer than 2 hours

1 week No longer than 1 hour

Less than a week In proportion to the above lengths

During the Sprint Review, the Sprint Goal and forecasted PBIs should be restated. Keeping their
 audience in mind, the Development Team may give a short summary about what went well, what
didn’t, and how they overcame any problems. If applicable, completed PBIs are demonstrated by
running the working software, not by showing slides, mockups, or passing tests. Techniques can be
employed to provide context and value. For example, the demonstrators might role-play the personas
thatwouldbeusingandbenefitingfromaparticularfeaturebeingdemonstrated.TheDevelopment
Team describes what the attendees are seeing and, if necessary, how it works behind the scenes. They
will also answer any questions the stakeholders might have.

Tip The Development Team should never surprise their Product Owner at a Sprint
Reviewmeeting.Thisshouldnotbethefirsttimethatheorsheseesthecompletedwork.
 High-performance Scrum Teams know the value of continuous collaboration with the
Product Owner. At a minimum, the Development Team should ask the Product Owner’s

 CHAPTER 1 Scrumdamentals 23

opinion on individual PBIs as they approach completion. Product Owner acceptance
doesn’t have to wait until the Sprint Review meeting. In fact, you don’t want Sprint Reviews
to become “sign-off” meetings. They are more about improving the product through
 inspection of the Increment.

The Sprint Review meeting can generate one or more outcomes:

 ■ UnfinishedorunstartedPBIsaremovedbacktotheProductBacklog.

 ■ New feature ideas are added to the Product Backlog.

 ■ Unnecessary items are removed from the Product Backlog.

 ■ The Product Backlog is groomed.

 ■ TheIncrementisreleased(“Shipit!”).

 ■ Product development is canceled.

As previously mentioned, the Sprint Review is an informal meeting. The Development Team
should not spend much time preparing for it. Nobody should feel like they are attending a technical
 presentation at a conference. On the other hand, the team should be organized enough so it doesn’t
waste the stakeholders’ time. If necessary, the Scrum Master can intervene and make corrections
to maximize the meeting’s value for everyone. Any corrections can be discussed at the Sprint
 Retrospective meeting and implemented in the next Sprint.

There are many ways to run a Sprint Review. Some Scrum Teams like it to be structured. Others
don’t. Some like the Scrum Master to kick it off. Others like it to be the Product Owner. Some like to
rotate developers so everyone gets a chance to “drive” during the demonstration. Others like their
strongest communicator driving. Regardless, the Sprint Review should be down to earth and foster an
environment of collaboration and discussion. The Scrum Team should be inquisitive, and all feedback
should be welcomed and captured, preferably in the Product Backlog. Later, the Product Owner can
provide feedback on any of the captured PBIs regarding business value—or not. Inane ideas will
eventually sink to the depths of the Product Backlog.

Beingmindfulofthetime-box,unfinishedorunstartedPBIscanalsobediscussedwiththe
 stakeholders. If they have blocked time out of their busy day, don’t squander the opportunity to get
their feedback on any PBI that might be coming up in an approaching Sprint. These discussions can
create valuable input for the next Sprint Planning meeting.

Tailspin Toys case study Sprint Reviews have always been a big deal for the Scrum Team.
They meet every other Tuesday morning in the large conference room and invite all of the
stakeholdersandevenmembersfromotherteams.Paula(theProductOwner)kicksoffthe
meetingwithareviewoftheSprintGoalandforecastedwork.Scott(theScrumMaster)then
givesasummaryoftheSprint,includingtheteam’sprogress(usingtheSprintburndownchart),

24 PART I Fundamentals

any obstacles, and how the Development Team overcame them. The bulk of the two-hour
meeting is spent by the Development Team demonstrating the completed functionality.
They do so in a storytelling way, with the developers playing different personas as they act
out the user stories. This fun approach makes everyone in the room feel safe and comfortable
in sharing their opinions and ideas. Scott or another team member captures this feedback
in real time using Microsoft OneNote. Stakeholders also tend to send feedback in the form
of an email after the meeting. This is captured using the product TeamCompanion
(www.teamcompanion.com). Paula then wraps up the Sprint Review by discussing the forecasted
itemsthatdidn’tgetfinishedorstarted,aswellasherideasforthenextSprint.Paulamayalso
update everyone present on progress toward a goal via a release burndown chart or other tool.

Sprint Retrospective meeting
The last event in the Sprint is the Sprint Retrospective meeting. In this meeting, the Scrum Team will
inspect and adapt its own behaviors and practices, looking for opportunities to improve. The Sprint
Retrospective meeting occurs after the Sprint Review meeting and before the next Sprint Planning
meeting. The exact time and location are up to the Scrum Team. It’s important for the Product Owner,
Scrum Master, and the entire Development Team to attend. The Sprint Retrospective meeting is
 time-boxed, as you can see in Table 1-8.

TABLE 1-8 Length of the Sprint Retrospective meeting.

Sprint length Sprint Retrospective meeting length

4 weeks No longer than 3 hours

3 weeks No longer than 2 1/4 hours

2 weeks No longer than 1 1/2 hours

1 week No longer than 3/4 hour

Less than a week In proportion to the above lengths

The purpose of the Sprint Retrospective meeting is for everyone to share their observations,
thoughts, and ideas on what went well and what didn’t with regard to people, relationships, process,
and tools. These discussions can get heated, especially when you are talking about social interaction
problems with other people. The meeting should be constructive and it’s the Scrum Master’s
 responsibility to keep it that way.

Note Impediments and struggles with the development process and practices can be
 inspected and adapted at any time, such as during the Daily Scrum or throughout the
day or Sprint. The Sprint Retrospective meeting provides a formal opportunity for such
 inspection, as well as time for planning any adaptations.

The output of a Scrum Retrospective is a plan for implementing improvements. These
 improvements can target the development process as a whole or individual practices within it.

 CHAPTER 1 Scrumdamentals 25

Improvements might include changing the way the Development Team works, or where, or when.
Improvements might also include changing the way the developers use their tools, or what tools
they use. Improvements might be more aesthetic, such as ways to make the work more enjoyable
by making the work area more or less stimulating. Any potential improvement is really just an
 experiment, since the Scrum Team constantly inspects and adapts its practices. Table 1-9 lists some
other changes that the Scrum Team is allowed to make during the Sprint Retrospective or in between
Sprints. Some of these changes can be pretty major, so they should be executed only with the
consensusofthefullScrumTeamandacompleteunderstandingoftheramificationsofmakingthe
change. Any change made must still abide by the rules of Scrum.

TABLE 1-9 Changes that can be made at the Sprint Retrospective meeting or in between Sprints.

Change Examples

IncreaseproductqualitybyupdatingtheDefinitionof
“Done.”

Increase the minimum code coverage percentage.

Change the person playing the Scrum Master role. Relieve Scott of his duty while attributing the role to
Dave.

Change the team composition. Add another developer or drop Wade’s capacity to 50%.

Change the Sprint length. Change from two weeks to one week to increase agility.

Tip Don’tbeflaccid.Don’tjustholdtheSprintRetrospectivemeetingforthesakeofthemeeting.If
problemsareidentified,makesuresolutionsarealsoidentified.Ifsolutionsareidentified,makesure
they are actually implemented in the upcoming Sprints. Inspect and adapt!

There are many techniques that a Scrum Team can use during a Sprint Retrospective meeting. The
most common is to have each Scrum Team member answer three questions:

 ■ What did we do well this Sprint?

 ■ What could we have done better?

 ■ What will we try to do better next Sprint?

There are other approaches to start the conversation, elicit feedback, and brainstorm solutions.
Entire books and websites have been devoted to running successful retrospectives and related
 techniques. Table 1-10 lists some of the techniques that my fellow professional Scrum developers
have employed successfully. You will have to search the web for additional information, such as the
 instructions for using the technique.

TABLE 1-10 Sprint Retrospective meeting techniques and activities.

Technique Description

Timeline A timeline for the Sprint is marked on a wall, and team members add sticky notes to it
to indicate good and bad events that occurred at that point in time.

Emotional Seismograph Similar to the timeline, but team members mark their emotional level as a point on a
Y-axis throughout the Sprint.

26 PART I Fundamentals

Technique Description

Mad, Sad, Glad Team members brainstorm on the events that made them mad, sad, or glad during
the Sprint. Sticky notes are clustered together, normalized, discussed, and mitigated
as necessary.

The 4 L’s Create four posters or whiteboards, one for Liked, Learned, Lacked, and Long
For. Team members add sticky notes to the respective board. They are clustered,
 discussed, and mitigated as necessary.

The 5 Why’s A question-asking technique used to explore the cause-and-effect relationships
 underlying a particular problem.

Remember the Future Used to create a vision of what the team wants to achieve by inquiring about a future
point in time that follows another future point in time where the hypothetical change
was made.

Car Speeding Toward Abyss Draw a picture of a speeding car heading towards an abyss and use this analogy to
identify the engine, parachute, abyss, and bridge comparisons to the current Sprint’s
work. The Speedboat and Sailboat are variations on this technique.

Happiness Metric Similar to the emotional seismograph, but team members track their happiness levels
throughout the Sprint using a scale of 1–5 with comments. A chart is produced for the
Sprint Retrospective meeting and the peaks and valleys are discussed.

Perfection Game A technique used to maximize the value of ideas. Team members rate an idea from
1–10 and provide positive feedback on how to make it a 10. No feedback means
they’ve given it a 10.

Fishbowl Arranging chairs in an inner and outer circle in order to attract team members to an
emptychairintheinnercircle(thefishbowl)andparticipateintheconversation.

Starfish Usingastarfishdiagram,teammembersaddstickynotesinthesecategories:do
thesame(=),dolessof(<),stopdoing(-),startdoing(+),domoreof(>).Theyare
 normalized, discussed, and mitigated as necessary.

Problem Tree Diagram, or
Ishikawa (Fishbone) Diagram

A technique for visualizing the cause-and-effect relationships pertaining to a
 particular problem.

Team Radar Theteamdefinesthefactors(thatis,communication,feedback,collaboration,etc.)
and then each team member rates their interpretation of that factor on a scale
of 0–10, where 0 means not at all and 10 means as much as possible. The chart is
 discussed and saved for later comparison.

Circles and Soup A technique for helping identify what is and what is not the responsibility of the
Scrum Team. This is similar to the Circle of Concern and Circle of Influence technique.

It’s also important during the Sprint Retrospective to celebrate the team’s victories. The good
things that occurred should be encouraged to persist. Likewise, challenges in this Sprint should be
seen as opportunities for victory in the next. This continuous improvement mentality is foundational
in a high-performance Scrum Team. They live it every day. Since not every team member is wired this
way, encouragement and team building are important and should be part of the retrospective too, if
required. Everyone should see that the Development Team is more productive and happy.

Tailspin Toys case study In the early Sprints, the Retrospective meetings would not generate
much return on the time invested. The entire Scrum Team would return to the large conference
room after lunch and go through the basic questions. To them, it just felt like a longer version
of the Daily Scrum and a waste of time. Retrospective notes were captured and the plan for
 improving was sometimes executed. When Scott joined the Scrum Team as Scrum Master, this
changed. He introduced new techniques to get everyone involved. He focused on what went

 CHAPTER 1 Scrumdamentals 27

well and team building. He also ensured that any action items were implemented during the
next Sprint. He called it his Scrum Master backlog. More important, he convinced Paula and
Buzz to hold the Retrospective meeting in the back room at Fourth Coffee.

Product Backlog grooming
Maintaining a well-groomed Product Backlog helps the development of a successful product. Product
Backlog grooming is the periodic meeting of the Product Owner and the Development Team to add
detail to upcoming PBIs. This is the time when the requirements and acceptance criteria are explored
andrevised.WhentheDevelopmentTeamhassufficientunderstandingofthePBI,theywillestimate
the effort required to develop it. This estimate may change over time, as more is learned about the
item. In fact, the Development Team may re-groom and re-estimate the same PBI several times
 before it gets forecasted for development—usually as a result of new information.

Product Backlog grooming is a necessary and important part of Scrum. Although it is not a
formal event, the Scrum Guide says that it is an ongoing process taking no longer than 10 percent
of the capacity of the Development Team. The exact where and when of the Product Backlog
 grooming sessions are up to the Scrum Team. Some teams try to avoid doing a grooming near the
very beginning or very end of the Sprint so that it doesn’t collide with the other, more formal Scrum
events, and closing out the Sprint. It is important to have the entire Development Team involved
in grooming because the analysis and estimation will be more meaningful and accurate. Diligently
grooming the Product Backlog minimizes the risk of developing the wrong product.

Tailspin Toys case study With the adoption of two-week Sprints, the Development Team now
spends every Friday morning in a conference room with Paula for “story time”—a euphemism for
Product Backlog grooming. All developers attend the meeting because each has valuable input and
may be called on to collectively estimate the effort of the items being discussed. Because of these
regular grooming sessions, Sprint Planning meetings have become more productive. The Scrum
Team now spends less time forecasting because the most important PBIs and their estimates are
fresh in their minds.

Scrum artifacts
Scrum’s artifacts represent the work to be done in the product and Sprint, as well as the work that has
beendonewithintheproductitself.Eachartifacthasclearownershipbyaspecificrole.Eachartifactis
structured in a way that maximizes transparency of key information while providing opportunities for
inspection and adaptation. There are three artifacts in Scrum:

 ■ Product Backlog

 ■ Sprint Backlog

 ■ The Increment

28 PART I Fundamentals

Note Burndowns(product,release,andSprint)wereremovedfromtheScrum Guide in
2011. Their inclusion was considered too prescriptive. While it’s important for the Scrum
Team to monitor progress toward a goal, there are many practices that could support
this. Burndowns are certainly a popular option and are still acceptable and used by some
 high-performance Scrum Teams. No technique will replace the importance of empiricism.
In complex environments, such as software development, what will happen is unknown.
The Scrum Team can only use what has happenedtoinfluenceitsdecisionmaking.

Product Backlog
The Product Backlog is an ordered list of everything required of the software product. It is the single
source of requirements for any potential changes to be made. Each item in the Product Backlog is
called a “Product Backlog item (PBI).“ A PBI can be a happy thing that doesn’t yet exist in the software
product, like a feature or an enhancement. PBIs can also be sadthings,likeabugtobefixed.PBIscan
range from extremely important and urgent to silly and trivial. Because of this variety, I affectionately
refer to the Product Backlog as a list of desirements. At some point, somebody, somewhere, for some
reason desired each item in the Product Backlog.

Note The Product Backlog is a dynamic, living document. It is never complete and will
constantly change as requirements change. The Product Backlog will exist so long as the
software product exists.

These items are considered valid PBIs:

 ■ Feature

 ■ Enhancement

 ■ Behavior

 ■ User stories

 ■ Use case

 ■ Scenario

 ■ Bug/defect

These items should not be PBIs:

 ■ Task(thatis,refactorcode,writemoretests,meetinthelobbyfortheDailyScrum)

 ■ Acceptancecriterion(thatis,pagecontentinGermanandEnglish,reportexportableasPDF)

 ■ Non-functionalrequirements(whentheyareusedasacceptancecriteria)

 CHAPTER 1 Scrumdamentals 29

 ■ Definitionof“Done”(thatis,codeispeer-reviewed,codecoverage>50percent,alltestspass)

 ■ Impediment(thatis,mustresetmypasswordonSQLServer,activateWindows)

EachPBIshouldbeclearlyidentifiedbyatitle.Thisistheminimumamountofinformation
 required to add it to the Product Backlog. If the Product Owner decides it’s worth the time to
 describe it further, then a description should be added. This description should be written in a
 business language, perhaps as a user story description. The PBI should also be assigned a business
value and ordered with the other items in the backlog. The Development Team will need to eventually
look at it and provide an estimate. This can be done at a Product Backlog grooming session or during
Sprint Planning. Table 1-11 lists the ways in which the Development Team interacts with the Product
Backlog.

TABLE 1-11 Development Team interactions with the Product Backlog.

Activity When

Inspect it. Any time

Add a new PBI to it. Anytime(ifallowedbytheProductOwner)

Groom it. ProductBackloggrooming,SprintPlanning,orSprintReview(withProduct
Owner)

Forecast work from it. SprintPlanning(withProductOwner)

I’m often asked if being responsible for the Product Backlog means that the Product Owner has
tobethepersonwhoactuallycreatesthePBIs(thatis,writetheuserstories).Theanswerisno.The
 Product Owner can have the Development Team or stakeholders, including business analysts and
even the users themselves, create the PBIs. The Product Owner has the right to update any item, such
as making it more understandable or changing acceptance criteria, or to remove any item deemed
unnecessary. The Product Owner or Scrum Master may have to remind people that PBIs should only
definethewhat,andnotthehow.

User stories A PBI represents a software requirement. It can take any number of shapes or forms.
Of all that I have seen, the user story practice is generally the best choice for teams doing Agile
software development. This is primarily because user stories are lightweight and not technical. User
stories describe the requirement from the customer or user’s perspective. It is not a requirements
document, nor is it a communiqué between the requirements giver and the Development Team.
A user story represents a “what” that the software product should do. A well-written user story
descriptionwillexplainwhowantsorwouldbenefitfromthefeature,aswellashowandwhyitwillbe
useful. In a single sentence, the user story provides lots of context, as well as a value proposition.

The most popular format of a user story description looks like this: As a (role), I want (something),
so that (benefit). An example would be, “As a returning customer, I want to log in with my ID and
 password, so that I don’t have to enter my shipping and billing information each time I order a
 product.” Another example would be, “As a visitor to the Tailspin Toys website, I want to see a list
of recent tweets, so that I know that Tailspin and its products are alive and well.” Anyone looking at
either PBI instantly knows the context and value to the customer.

30 PART I Fundamentals

Having a title and the initial description in user story format is a good start. To properly complete
a user story, communication between the Scrum Team and knowledgeable stakeholders is required.
A complete user story includes the three C’s:Card,Conversation,andConfirmation.

The cardisalreadydoneatthispoint.Youhavewrittenatitleandthedescription(inuserstory
format) on a sticky note, an index card, or a software record. This allows somebody to reference the
user story during conversation, update it, estimate it, stack rank it, etc.

Next, the conversation takes place with the customers, users, or domain experts. This conversation
is meant to exchange thoughts and opinions. It can take place at any time with the Product Owner
and the stakeholders and the Development Team as needed. If the Development Team is to be
involved, it should take place at the Product Backlog grooming session, the Sprint Planning meeting,
or the Sprint Review meeting. Conversation that yields examples, especially executable and testable
examples, is preferred over formal documents and mockups.

Finally, the confirmation occurs. Here the user story’s acceptance criteria are agreed upon and
recorded. These criteria will help determine when the PBI is done. In other words, when all criteria are
metaccordingtotheteam’sDefinitionof“Done,”thePBIisdone.IfandwhenthePBIgetsforecasted
for a Sprint, the Development Team will create the appropriate manual or automated acceptance tests
to validate the acceptance criteria.

Tip Don’t create tasks, tests, or code for a PBI before the Sprint in which you have
 forecasted its development. Conditions can change rapidly, forcing a change to the PBI
or its acceptance criteria. Time spent creating these kinds of artifacts ahead of time will
often be wasted. The plan on how to develop a PBI, as well as any code or tests, just like
 requirements, should be created at the latest responsible moment. Even though you will
always know more tomorrow than today, you should avoid falling into the trap of doing
things at the last possible moment.

Whoever creates a user story should be sure to INVEST in it. The mnemonic INVEST is a reminder
of the characteristics of a good user story:

 ■ I–Independent As much as possible, the story should stand alone, without any dependency
on another story. Try to write stories such that they don’t have long “dependency chains.”

 ■ N–Negotiable The story can be changed and rewritten up until it gets forecasted, but
significantchangesafterbeingforecastedshouldbeavoidedandminimized.Minortweaks
are okay so long as they don’t greatly affect the original estimate for the story.

 ■ V–Valuable The story must deliver value to the customer or user. This value is often
deliveredinthegraphicaluserinterface(GUI),butnotalways.

 ■ E–Estimable The Development Team must be able to estimate the effort to develop
thestory.Iftoolittleisknownaboutthestory,itwillbedifficultfortheteamtocometo
 consensus on a story.

 CHAPTER 1 Scrumdamentals 31

 ■ S–Small The story must be small enough that the team can develop it in a single Sprint and
preferably within a few days. There are many suitable techniques for decomposing stories.

 ■ T–Testable The acceptance criteria is clearly understood and can be tested. This is probably
themostimportantcharacteristic.Itrelatestothethird“C”inthethree“C’s”:confirmation.

Product Backlog iceberg YoucanthinkoftheProductBacklogasaniceberg(seeFigure1-3).
PBIs on the top, above the surface, are what the Development Team has forecasted for the current
Sprint. These items should be crystal clear, estimated, and ready to be worked. Below the surface,
the Product Owner knows what other PBIs he or she would like in the release, but it won’t be clear
which ones surface until the next Sprint Planning meeting. These items are generally understood
and estimated so that a release plan can be devised. These are the items that will be in scope during
upcomingProductBackloggroomingsessions.Atthebottomoftheiceberg,youwillfindallofthe
other PBIs that may or may not make it into a future release. Some of these may only have a title or
a vague description of the desired functionality. Some PBIs will remain in these cold, chilly depths for
eternity, which is typical of most Product Backlogs.

Sprint

Release

O
rd

er

Future
Releases

FIGURE 1-3 The Product Backlog iceberg.

Sometimes it’s a chicken-and-egg problem when it comes to evolving a PBI. The Product Owner
might need an estimate on the level of effort required to develop a PBI before he or she can order
(prioritize)it.Ifit’sgoingtorequiretoomucheffort,theProductOwnermaypostponeitforthe
next release, or beyond. However, the Development Team’s time is valuable and they shouldn’t
waste their time estimating PBIs that may not be developed. A solution I’ve seen work well is for the
DevelopmentTeam(oraproxy)toprovidetheProductOwneraroughorderofmagnitudeestimate,
suchasaT-shirtsize(XS,S,M,L,XL).ThisshouldgivetheProductOwnerenoughinsighttobeableto
order(prioritize)thePBIeffectively.Amorethoroughestimate,providedbytheentireDevelopment
Team and using a more precise scale, will be performed at a future Product Backlog grooming
 session.

32 PART I Fundamentals

Note The Scrum Guide uses the term “order“ instead of “prioritize“. This subtle change has
led to some confusion, which is why I’ve been using both terms together. Fellow professional
Scrum developer Jose Luis Soria Teruel explains the difference eloquently. Assume that a
Product Owner wants to have some software features as soon as possible, like the ability to sell
productsandacceptpayments(priority).However,beforethosefeaturescanbedeveloped,
othercapabilitiesmustbedevelopedliketheshoppingcartfeature(order).

The Product Owner is responsible for the Product Backlog, including the clarity and precision of its
contents. He or she should also ensure that the Product Backlog is visible to all interested parties. The
ProductOwnerwillorder(prioritize)thePBIsaccordingtohisgoalsfortheproductorrelease.The
PBIs at the top of the ordered Product Backlog will, more than likely, be what the Development Team
works on next. The Product Owner’s vision should be discernible by studying the order and content of
the PBIs. If necessary, the Scrum Master should help the Product Owner manage the Product Backlog
more effectively.

CreatinganeffectiveProductBacklogcanbeverydifficult.Itcantakealongtime.Itcanbecome
political. However, once you’ve gone through the exercise of creating the Product Backlog, you’ll
wonder how you ever got along without one.

Tailspin Toys case study Creating the initial Product Backlog wasdifficult.Requirements,
 feature requests, and bugs were tracked by different people in different formats. Giving up
 control of those lists started a turf war—but in the end, it was best for the product. When
 possible, all “happy” PBIs were converted to a user story format. Today, the Scrum Team
 maintains its Product Backlog in Team Foundation Server. The server administrator gave
 permissions to anyone on the Scrum Team to manage the Product Backlog. Everyone else
canonlyviewit.Paula(theProductOwner)isconsideringgrantingaccesstosomeadditional
 stakeholders to help her create PBIs.

Sprint Backlog
The Sprint Backlog contains the Product Backlog items forecasted to be developed during the
Sprintandtheplan(tasks)fordevelopingthem.ThePBIswereagreeduponandselectedthrough
 collaboration of the Scrum Team. The plan for developing them was agreed upon and recorded
through collaboration of the Development Team. The Sprint Backlog is the output of the Sprint
 Planning meeting and represents the Development Team’s forecast of what functionality will be in
the next software product Increment, and how it will happen. Some teams refer to the tasks as Sprint
Backlogtasks(SBTs)orSprintBacklogitems(SBIs).Technically,theforecastedPBIsarealsoconsidered
SBIs, so additional context will need to be provided when using that term in a conversation.

The Development Team owns the Sprint Backlog. This is to say that the Development Team is
wholly responsible for how to implement the PBIs, so long as they do so according to the acceptance
criteriaandtheirDefinitionof“Done.”NobodycantelltheDevelopmentTeamhowtodevelopthe

 CHAPTER 1 Scrumdamentals 33

Increment. In other words, nobody except the members of the Development Team can add, edit,
or remove tasks from the Sprint Backlog. The Sprint Backlog should be kept up to date and visible
to the Scrum Team. It provides a real-time picture of the work that the Development Team plans to
 accomplish during the Sprint.

Tip Increasing the Sprint Backlog’s visibility beyond the Scrum Team is an invitation for
the three “M’s”: meddling, misunderstanding, and micromanaging. Remember that the
Sprint Backlog primarily contains the how and not the what. Allowing stakeholders, or
anyinterestedparties,toviewtheProductBacklogorburndowncharts(ifutilized)is
 preferable.

Table 1-12 lists the ways in which the Development Team interacts with the Sprint Backlog.

TABLE 1-12 Development Team interactions with the Sprint Backlog.

Activity When

Inspect it. Any time

Move a PBI from the Product Backlog into it. SprintPlanningoranytimeafterward(withProductOwner
 collaboration)

Add, update, split, or remove a task in it. Sprint Planning or any time afterward until Sprint Review

Take ownership of a new task in it. Anytime(asworkdemands)

Update status of a PBI or task in it. Anytime(asstatuschanges)

Estimate work remaining for your tasks in it. Daily

The entire Development Team should collaborate on the plan and create the tasks. Scrum
 Development Teams must be cross-functional for just this reason. Everyone can and should
 contribute. This will create a richer and more honest Sprint Backlog than if only one or two code
gurus created the plan. A good approach is to start with a conversation in order to understand the
PBI and discuss any potential plan. The plan can evolve onto sticky notes or a whiteboard, and then
finallytorecordsinasoftwareapplicationlikeTeamFoundationServer.There’szerotechnicaldebtin
a discussion, and close to zero in a set of sticky notes.

The Development Team must identify all tasks in the Sprint Backlog, not just the design, coding,
and testing ones. There may be learning, installing, deploying, data entry, design meetings, and
 documenting tasks. The team’s may indirectly require tasks to be created in the Sprint Backlog
too.Forexample,ateam’sDefinitionof“Done”mightrequirethateveryPBIimplementedinthe
 Increment has its own installer with notes and instructions in English and German. This self-imposed
requirement could drive the creation of several additional tasks for each PBI in the Sprint Backlog.

Tip Havetheteam’sDefinitionof“Done”nearbyduringSprintPlanning.Itwillhelpthe
 developers as they brainstorm tasks. Also, depending on how the last Sprint went, there
maybeadditionaltasksrelatedtoimprovementsidentifiedattheRetrospectivemeeting.

34 PART I Fundamentals

The developers should estimate their Sprint Backlog items at least daily. This can be done before
or after the Daily Scrum, but not during. Most teams I work with prefer to re-estimate their tasks prior
to the Daily Scrum, so that any follow-up meetings will have an accurate burndown chart to reference.
Some high-performance Scrum Teams won’t bother tracking hours or estimating remaining work on
tasks.TheyfocusontheSprintGoalanddeliveringthePBIs,notthetasks.Itismoredifficulttoassess
progress without this information.

Note Scrum does not consider the time spent working on a task. Tracking actual hours is
counterproductive to obtaining the Sprint Goal. I would even call it wasteful. If, however,
an organization requires its employees to track their time to get paid, that’s a separate
 discussion. The worry is that once such a metric is created, it would be used in a command
and controlway.Forexample,amanagermightseethatasetofUXdesigntaskstook28
hours and then use that as an estimate for future work, or as a stick to beat the designer
with if her next set of tasks goes beyond that number—which it could, because software
developmentisverydifficultandfullofrisk.

The Sprint Backlog will be empty at the start of a Sprint. It will begin to emerge during Sprint
Planning,and(ideally)befullypopulatedwithtasksbythefirstfewdaysoftheSprint.Forteams
newtoScrumortheproduct’sdomain,thiscanbeunachievable.Theseteamsmayfindthemselves
creatingnewtasksallthewaythroughtheSprint.Thismakesitdifficulttoassessprogress,ifyou
don’t know what the plan is or when you might achieve it. Even high-performance Scrum Teams need
to change their plan sometimes. Each PBI introduces new complexities that can derail an execution
plan. New tasks may have to be created mid-Sprint.

Tip In Scrum, work should never be directed or assigned. When creating a new Sprint
Backlog task, don’t assign it to anyone. For example, you should resist the urge to assign
the testingtaskstoToni(eventhoughshehasabackgroundintesting).Doingsowill
 decrease collaboration and the opportunity for other team members to learn. When the
time is right, the team should decide who will take on that task. The team will take many
factors into account, including the background, experience, availability, and capacity of the
developer.

As the Development Team improves, it will learn to manage risk better, by taking on riskier
work early. The team will also become better at identifying the full spectrum of tasks, at least at
ahighlevel,duringSprintPlanning.It’sokayforthemoredistanttaskstobecoarselydefined
and overestimated. As the time nears for that piece of work to begin, the eligible developer can
 decompose and re-estimate it. If Sprint burndown charts are being used, they will be more accurate,
earlier in the Sprint. The trend lines, which predict when the Development Team will be done with
their work, will also be more accurate. Observers of the burndown charts need to understand that
the Development Team will know more tomorrow than they did today—so expect change. The Scrum
Master should be able to provide this education.

 CHAPTER 1 Scrumdamentals 35

Tailspin Toys case study During Sprint Planning, the Development Team brainstorms the
plan for developing the Increment. When they were just starting out with Scrum, they would
only get one or two PBIs planned out and delay the planning of the rest of the PBIs until the
Sprint. They’ve improved in the way they decompose and plan their SBTs. They estimate the
tasks in hours, and they’ve improved the way they’ve done that. Originally, they would have
the “ experts” in the various task areas do the estimates. That made estimation go quicker, but
during development, they would usually blow their estimates because the expert didn’t always
dothework.Theynowestimatethetaskscollaborativelyandfindthattheyareunderasmany
times as they are over. They can live with that.

The Increment
Scrum is an iterative and incremental software development framework. The word “incremental“
means “occurring in especially small increments.” Each Sprint is an especially small period of time
 during which the team develops one of these small increments. As we’ve already discussed, the small
periodoftimes(theSprints)reduceriskbymaximizingcollaborationandfeedback.Incremental
 delivery of a done software product ensures that a useful version of the working product is always
available.

Tip If possible, make the Increment available to the Product Owner and stakeholders
throughout the Sprint. Think of it as a hands-on demo or lab environment. As the
DevelopmentTeamfinishesaPBI,thedemoenvironmentisupdatedforpeopleto
play with the software. This doesn’t have to be any kind of a formal testing area,
just something that can drive feedback during the Sprint, rather than waiting until
the Sprint Review meeting. For example, it would be very convenient to be able to
send an email to the stakeholders letting them know there’s a “beta” hosted on
http://demoserver1/sprint6/tailspin.

In Scrum, the Increment is the sum of all the PBIs completed during the Sprint plus all previous
Sprints. It’s the aggregate of what’s currently running in production plus the done PBIs from previous
Sprints that haven’t yet been released, plus the done PBIs from the current Sprint. Only PBIs done
accordingtotheiracceptancecriteriaandtheteam’sDefinitionof“Done”canbeaddedtothe
 Increment and become potentially releasable.

Note Potentially releasable means that the Increment couldbereleased(tothecustomeror
production) if the Product Owner chooses to do so. This is possible because the Increment
containsonlydonePBIs.PBIsaren’tdoneuntiltheymeetthelevelofqualitydefinedbythe
ProductOwnerandtheDevelopmentTeamaccordingtotheDefinitionof“Done“. The Product
OwnermaydecidetowaituntilseveralrelatedPBIsarecompleted(releasebyfeature),untila
certainpointintime(releasebydate),aseachPBIisdone(continuousdeployment).

http://demoserver1/sprint6/tailspin
http://demoserver1/sprint6/tailspin

36 PART I Fundamentals

Definition of “Done”
TheDefinitionof“Done”isnotaformalartifactinScrum,butitshouldbe.Doneisthestatewhena
PBIhasbeendevelopedaccordingtoitsacceptancecriteriaandteam’sDefinitionof“Done.”Scaling
that up, done is also the state when the Increment containing all the done PBIs becomes potentially
releasable.

TheDefinitionof“Done”isasimple,auditablechecklistcreatedbytheDevelopmentTeam.Itmust
be understandable by the Product Owner, the Scrum Master, and any stakeholders. This is why it must
besimpleandasfreeof“geekspeak”aspossible.Thedefinitioncanbeinfluencedbyorganizational,
product, and release standards and constraints. For example, C# may be a language standard in the
organization,butaspecificproductmustbewritteninC++forcompatibilityreasons.Hereisasimple
Definitionof“Done“:

 ■ All code compiles without errors or warnings.

 ■ No code analysis errors or warnings exist.

 ■ New code is covered by unit tests.

 ■ An automated build exists.

 ■ An .msi installer exists.

Definitionsof“Done“canbequitelongandcomplex.Everythinginthedefinitionshouldbe
 achievable, although some items may not be applicable. For example, if the Development Team is
working on a PBI that is mostly graphic-design-centric, there won’t be any code to unit-test. For all
PBIsthathavecode,however,theteammustcreateunittests.It’sinthedefinition.TheDevelopment
Teamshouldnevercutcornersbyignoringallorpartofthedefinitioninordertofinishtheforecast.
Theteamhasalreadyunanimouslydecidedthatquality,asdefinedbytheDefinitionof"Done",is
more important than all-out speed.

Note TheDefinitionof“Done”isaminimum standard. There may be times when the
Development Team will want to do more than the minimum. This is acceptable so long
astheextraeffortisjustifiedandnotconsidered“goldplating.“Goldplatingiswhena
developercontinuestoworkonaPBIbeyondwhatisfitforpurpose.Thisextraworkis
typically not worth the value that it adds to the software product.

Undone work
AnexplicitandconcreteDefinitionof“Done“ may seem small, but it can be the most critical
 checkpoint during a Sprint. Without a consistent meaning of “done,“ Velocity cannot be estimated.
HavingasharedDefinitionof“Done”ensuresthattheIncrementproducedattheendofSprintisof
highquality,withminimaldefects.High-performanceScrumTeamsconsidertheDefinitionof“Done“
to be sacrosanct. It is the soul of their entire development process. These teams will resist the urge to
 release undone work, or even demonstrate it at a Sprint Review meeting.

 CHAPTER 1 Scrumdamentals 37

The Development Team should not generate undone work. They should also make sure the “done“
meanscompletelydone.Inthelongrun,itwillbecheapertoholdfasttotheDefinitionof“Done“ by
improving development practices than to keep sprinting with an unknown amount of work still to be
done at the end of the release. If the Product Owner looks at an Increment and doesn’t know how
much work needs to be done, he or she won’t really know when the release will be ready. There may
be a need for one or more “stabilization” Sprints at the end of the release just to tackle all of the ac-
cumulated undone work.

What’s even worse is that the undone work from the Sprints accumulates exponentially, not
linearly. Subsequent Sprints will require even more work to reach done: 4 hours of undone work per
Sprint for 6 Sprints won’t be 24 hours of work, but more like 80 hours. This “undone work” uncertainty
has no place in a framework that is supposed to promote transparency and predictability, so every
effort should be given to eliminate undone work and “stabilization” Sprints.

AstheDevelopmentTeamimproves,itisexpectedthattheirDefinitionof“Done“ will improve too.
ThedefinitioncanbechangedonlyinbetweenSprints.TheSprintRetrospectivemeetingprovides
theopportunitytodiscussandchangeitifnecessary.Thedefinitionshouldonlyexpandtoinclude
more stringent criteria for higher quality. In other words, you should avoid removing items from the
definitioninordertogetmore“done”thenextSprint.

The professional Scrum developer

The Scrum Guide does not provide guidance on how to develop a software product. In fact,
 during the time between the Sprint Planning meeting and the Sprint Review meeting, the guide
is intentionally vague. Other than requiring a Daily Scrum meeting and regular Product Backlog
 grooming, not much guidance is provided. In fact, the rules state that a Daily Scrum should occur,
 taking no longer than 15 minutes.

So what about the other 7 hours and 45 minutes of the day? What should the Development Team,
and the individual developers, be doing during that time? That’s the million dollar question. The short
answer is: the developers should be doing the right thing—even when nobody is looking. There are
many longer answers. The contents of this book will hopefully reveal several answers to this question.

Remember that developing software is a risky endeavor for both the developer and the customer.
The process is a complex undertaking consisting of specifying, designing, coding, and testing. More
things can go wrong than right. Any small mistake or fault on either side can lead to wasted effort—
if you are lucky. Some mistakes can lead to outright damage. Professional Development Teams
 understand this, and they make sure their customer understands this. Ideally the customer will share
in these risks. This means that the customer and the developers understand that they are both equally
responsible for identifying and mitigating these risks, as well as sharing responsibility if a risk evolves
into a disaster of some sort.

Let’s drop the customer out of the discussion for a minute. Developers on a Scrum Team
 collectively own their successes and failures, just as they collectively own the code, bugs, technical
debt, and other issues. These developers have also learned to rely on their fellow team members and

38 PART I Fundamentals

to trust them. They know that they must be resolute, forthright, transparent, and able to compromise
in order to reach their goals. These qualities sound similar to those of the chivalrous knights from the
Middle Ages —except for the compromising part.

When I’m meeting with a new team, I will often ask what they think the developer’s job is. “To write
code,”isthealmostuniversalflipanswerthatIhear.Beingacareerdevelopermyself,Iusedtoagree
with that answer. As I’ve improved my understanding of the profession of software development,
this answer now irks me. I believe that a better answer would that a developer’s job is to provide
value in the form of working software. This answer encapsulates the attributes of a professional Scrum
 developer. Professional Scrum developers understand that:

 ■ They have the right and responsibility to maximize the self-organization capability of the team.

 ■ TheyshouldreflectScrum’svalues:commitment,focus,openness,respect,andcourage.

 ■ They should only do work that provides value to the software product.

 ■ They should plan realistic goals and then commit to achieving them.

 ■ They don’t know everything, and they should be always willing to learn.

 ■ They shouldn’t be afraid of working outside their comfort zone.

 ■ They should respect the Scrum Guide and its “rules.”

 ■ They shouldn’t be afraid of asking other team members for help.

 ■ They should be transparent in what they do and how they do it.

 ■ They are part of a team, and their voice is equivalent to others.

 ■ Theyhaveastakeinthesuccess(orfailure)oftheproduct.

 ■ They look for and minimize waste in their practices.

 ■ They are responsible for the quality of the product.

 ■ They should be honest in their estimates.

 ■ They should say “no” when appropriate.

 ■ They should collaborate when possible.

 ■ They are professionals, not hobbyists.

 ■ They shouldn’t release undone work.

 ■ They are more than just a coder.

 ■ They are part of a larger team.

 CHAPTER 1 Scrumdamentals 39

Chapter burndown

Here are the key concepts we covered in this chapter:

 ■ Scrum Guide The Scrum GuidecodifiestherulesofScrum.Youshoulddownloaditfrom
http://www.scrum.org/scrumguides and read it now. Its updates will supersede this chapter.

 ■ The Development Team The Development Team contains a cross-functional group of three
to nine professionals who develop the forecasted work during the Sprint.

 ■ Product Owner The Product Owner is the voice of the user and is responsible for
 maximizing the value of the product and work of the Development Team.

 ■ Scrum Master The Scrum Master is responsible for ensuring Scrum is understood and
 enacted.

 ■ Sprint A time-boxed event of one month or less that contains the other Scrum events.

 ■ Sprint Planning The meeting where the Scrum Team forecasts the work to be performed
during the Sprint, along with a plan for developing it.

 ■ Daily Scrum The daily meeting allowing the Development Team to synchronize activities
and create a plan for the next 24 hours.

 ■ Sprint Review The meeting where the Increment is demonstrated and feedback is captured.

 ■ Sprint Retrospective The meeting where the Scrum Team inspects its practices and creates
a plan to improve in the next Sprint.

 ■ Product Backlog An ordered list of everything that might be needed in the software
 product.

 ■ Sprint Backlog The forecasted Product Backlog items plus the plan for developing them.

 ■ The Increment ThesumofalldoneProductBacklogitems(PBIs)duringthisandprevious
Sprints.

 ■ Definition of “Done”(DoD) A shared understanding of what it means for the Development
Team to be done with the development of an individual Product Backlog item or the Incre-
ment itself.

http://www.scrum.org/scrumguides
http://www.scrum.org/scrumguides

 41

C H A P T E R 2

Microsoft Visual Studio 2012 ALM

S inceMicrosoftfirstintroducedwhatwouldbecomeVisualStudioTeamSystem(VSTS)backin
2004, .NET development teams have begun improving the way they plan, track, and manage their

software development projects. No longer are they tracking code changes in meaningfully-named
.zipfilesorMicrosoft Visual SourceSafe, bugs and requirements in Microsoft Excel, and performing
automatedbuildsusing.batfiles.VSTS2005(codenameBurton) integrated those pillars of software
development and even tossed in reporting so everyone could stay informed. The game of software
development had changed forever. It had gone professional.

Initsfirstiteration,thisstackoftoolswasmarketedasonlyprovidingsupportforthesystems
developmentlifecycle(SDLC).Thislifecycleincludedeverythingtodowithdevelopingasoftware
product,suchasrequirements,architecture,coding,testing,configurationmanagement,andproject
management.InthesubsequentreleaseofVSTS2008,Microsoft(andtherestofus)refactored
its thinking to regard these tools as having much broader capabilities for supporting application
lifecyclemanagement(ALM).ALMincludeseverythingthatispartoftheapplicationlifecycle,notjust
 development. ALM combines business management with software engineering. Scrum, or any other
framework, process, or methodology, is encompassed by ALM.

With the 2010 version of Microsoft Visual Studio, Microsoft really doubled down on their support
for ALM. They introduced Microsoft Test Manager to allow teams to create and manage their testing
effort. Hierarchical work items enabled a richer breakdown of the planned work. PBI work items could
nowbelinkedtomultiplechildTaskworkitems.ByusingLabManagement,teamscouldconfigure
environments of virtual machines and automate the build, deploy, test cycle against complex
 environments. It was during the 2010 product cycle that Microsoft gave us the Visual Studio Scrum
1.0 process template, thus acknowledging and formalizing their support for Scrum. Visual Studio
2012continuesthetraditionofprovidingstrongALMtooling,especiallyintheareaofAgile(Scrum)
 planning and management capabilities.

ALM is a proven set of tools and processes that help organizations manage the entire lifespan
of application development, reduce cycle times, and eliminate waste. It integrates different teams,
platforms,andactivitieswiththegoalofenablingacontinuousflowofbusinessvalue.ALMincludes
everyaspectoftheapplication’slifecycle,fromwhenitfirstbeginsasanideaorneed,allthewayto
itsretirement.Thislifecycleincludesinitiatingtheproject,definingandrefiningrequirements,design,
coding, testing, releasing, deploying, and even operating, including monitoring.

C H A P T E R 2

Microsoft Visual Studio 2012
ALM

Delivering continuous value

Visual Studio 2012

Editions

Team Foundation Server

Team Foundation Service

Visual Studio Team Explorer Everywhere 2012

MSDN subscriptions

Chapter burndown

42 PART I Fundamentals

Note Application retirement, otherwise known as sunsetting or decommissioning, is the
practice of ending the life of a software application when it no longer has value to the
customer. Just because the software is retired doesn’t mean that the need for the software
vanishes.Newer,rewrittenorcommercial,off-the-shelf(OTS)softwaretypicallyreplacesit,
along with a migration of the data.

Intoday’sfast-paced,startup,microindependentsoftwarevendor(ISV),opensource,appstore
 ecosystem, the lifecycle of a software idea can be quite short. Scrum can be used to deliver the
 vision incrementally, and Agile ALM tools can be used to safeguard that work and the quality of the
 product. Both can reduce risk and waste. On the other hand, some organizations and products have
averylonglifecycle,suchascustomline-of-business(LOB)systems.Thesemayneedmoreemphasis
on governance and operations and less on Velocity. Regardless, the ALM tools in Visual Studio 2012
 support both ends of this spectrum.

In this chapter, we will look at what’s new and interesting in Visual Studio 2012 with a focus on the
ALM tools that can be used to empower a Scrum Team to deliver value continuously.

Delivering continuous value

For the most part, our industry has emerged from building one-tier, two-tier, and n-tier applications
that are internally managed by an organization. On the whole, we now build richer, more immersive
applications powered by continuous services. These applications are delivered across a broad
 spectrum of connected systems—from mobile devices to traditional laptop and desktop computers.
In parallel with this trend, software development practices are continuing to emerge that seek to
 enable continuous delivery of value.

The world is demanding faster and faster cycle times, rapidly realizing the concept released to
market. This is putting dramatic pressure on organizations and teams to deliver value rapidly and
 continuously. If your organization and team are not experiencing this yet, then you will be soon or you
will be working for a competitor who is. In order to compete, companies must broaden their focus from
merely improving their development practices to improving the entire value stream. This reality has
been the impetus behind the main themes for the ALM tools in the latest release of Visual Studio 2012.

Smell It’sasmellwhenmanagementexpectsthatatool(byitself)willbeabletoradically
reduce cycle times or enable continuous delivery of value. It takes a combination of
 improving the existing process and practices as well as solid ALM tools. A few years ago,
one of my clients asked how Team Foundation Server 2010 would help them reduce their
cycle time from 47 days to 7 days. I told them it wouldn’t, and that they would have to
radicallyimprovetheirprocesses,practices,and(mostimportantly)theirculturetoachieve
that extreme level of improvement.

 CHAPTER 2 Microsoft Visual Studio 2012 ALM 43

Here are the main themes for the ALM tools in Visual Studio 2012:

 ■ Agile software development Agile techniques and methods, such as Scrum, have helped
software development teams improve dramatically in the past two decades. They have
 fundamentally transformed the industry consensus as to the right way to develop software.
 Visual Studio continues to add and improve its tooling to support Agile software development.

 ■ Quality enablement Ashiftawayfromtraditionalqualitycontrol(post-developmenttesting)
towardensuringthatqualityisdefinedanddeliveredasafirst-classrequirement.

 ■ DevOps An integration of development and IT operations to enable faster feedback cycles,
reductionsintimetofixproductionbugs,andafocusonpushingsmallerpackagesoffeatures
into production more frequently.

 ■ Continuous delivery (CD)Therapidflowofincrementalbusinessvaluethroughtheentire
end-to-end value chain. CD is made possible through Agile methods, quality enablement, and
other practices.

CD of value requires a tuned orchestration of practices and tool usage within ALM. This goes
beyond just managing changes to code using version control. As I’ve always said, the full value of the
ALMtoolsinVisualStudio,especiallyTeamFoundationServer(TFS),cannotberealizedunlesswork
items, version control, and automated builds are used correctly. This is certainly the case when a team
wants to achieve CD. This orchestration, resulting in a CD of value, can be seen in Figure 2-1.

Requirements

Working software
shared artifacts

MonitorImplement

Ideation

Idea to working
software

Define

Develop

Working software
in production

Value realization

Operate
OPS backlog

Product backlog

Team

FIGURE 2-1 Phases within ALM to achieve CD of value.

When people view a diagram like Figure 2-1, they don’t usually think about subsequent cycles.
They tend to step through a diagram like this once, understand each phase, and put it away. In reality,
teamsrarelybeginwithagreenfieldenvironment.Startupstendtobetheexception,andeventhen,

44 PART I Fundamentals

thatfieldturnsbrownveryquickly.Onceworkingsoftwareisdeployed,itaffectseverypartofthecycle.
Maintenance work becomes integrated into the Product Backlog alongside new features and ideas.
Needless to say, it can be challenging to build a modern application on top of existing technology,
 manage operations, and try to deliver value while keeping the existing application up and running.

Let’sbreakdownsoftwaredeliveryintothreephases:define,develop,anddeliver.TheScrum
frameworkhelpsusdefinebyinstructingushowtoplanandmanagework.Smartdevelopersusing
 modern tools and practices have no problem developing the Increment. It’s the delivery of that value
that has been the challenge—mostly because of impediments beyond the control of the Scrum Team.
For example, the Development Team delivers a potentially releasable Increment, but operations struggles
to get it deployed and running in as timely a fashion. This is just one of many potential impediments.
 Current Agile and lean concepts have helped to improve the way that teams deliver software. As an industry
we’re getting better, but improvement is still needed, and the ALM tools in Visual Studio 2012 close the gap.

Delivering the Increment is supported by a variety of different functions that need to be integrated
carefully in order to make delivery happen. For example, many organizations still consider quality an
afterthought—something tested into a product after the developers are done. This bolting-on of
last-minutefixescanproducetechnicaldebtthatmustberepaid(withinterest)atsomepointintime.

The list of impediments keeping a team from achieving CD can go on and on. The only solution is for
such a team to start inspecting those impediments and removing them, one at a time. Teams must take
every opportunity to improve their development practices in order to improve the entire value stream.
This includes impediments that exist beyond the Development Team. Organizations must give these
teams the freedom and authority to make these changes, and support the changes to make them persist.

The combination of Scrum and Visual Studio ALM tools is powerful. High-performance Scrum
Development Teams know how to apply Agile practices while using tools so that the net result is
effective.Throughconstantinspectionandadaptation,wasteisidentifiedandeliminated.Thismay
mean starting to use a new feature in the tool or stopping the use of a wasteful feature. Development
Teams that blindly use new, shiny tools without thinking are just asking for a drop in Velocity. On the
other hand, teams that think that all planning and management tools are wasteful are also missing
the boat. For teams that only use whiteboards and sticky notes to manage their work, I hope they
never have to “roll back” their task board or recover from a disaster, like a new janitor accidentally
cleaning that board. In addition, these teams cannot trace PBIs to source code and even struggle to
gather historical data, such as Velocity.

Visual Studio 2012

Visual Studio 2012 is an integrated ALM solution that enables software development teams of all sizes
to deliver continuous value with high velocity and high quality. It provides both individual developers
and entire Scrum Teams the ability to build business and consumer applications. Visual Studio 2012
includes a feature-rich, comprehensive, integrated environment and new tooling to support a range
of Agile practices and methods, such as Scrum.

 CHAPTER 2 Microsoft Visual Studio 2012 ALM 45

In June 2012, Gartner’s Magic Quadrant report for ALM positioned Microsoft in the Leaders
 Quadrant. Although this report was based on an evaluation of Visual Studio 2010, I feel that this
 leadership position will continue to grow when Gartner evaluates Visual Studio 2012. Gartner is one
of the world’s top IT research and advising companies. You can read more about this report at
http://www.gartner.com/technology/reprints.do?id=1-1ASCXON&ct=120606&st=sb.

Visual Studio assists everyone on the team in collaborating more effectively while building and
sharing institutional knowledge. Project artifacts and data from work item tracking, version control,
automated builds, and testing tools are stored in a centralized Microsoft SQL Server data warehouse.
Powerful reports and dashboards provide real-time transparency and traceability, as well as historical
trending of the progress and quality of both the product and process. Figure 2-2 shows all of the
features and major capabilities of these ALM tools.

Visual Studio

Version
Control

Build
Automation

Test Case
Management

End-to-End
Traceability

Lab Management

Customizable
Processes

Requirements
Management

Project
Management

Analytics

Office

EXTENSIBLE APIs

Project Server

System Center

Windows Azure

SQL Server

Web Access

SharePoint

Team Explorer
Everywhere

IN
TEGRATE

DEVELOP

AC
CE

SS

TEAM
FOUNDATION

SERVER

FIGURE 2-2 Visual Studio 2012 ALM features.

Software products are developed by people, not by processes or practices. Processes and practices
need to adapt and evolve to accommodate changes in scope and culture. Visual Studio 2012
 provides an environment that adapts to a Scrum Team’s uniqueness and enhances it with proven
Agile practices that can be adopted at any pace. Over time, the team, as well as the organization, will
become more productive by using these tools. This assumes that the culture allows this to happen.
“Organizational gravity,” as fellow Professional Scrum Developer Mike Vincent refers to it, can easily
pull the team back into dysfunctional, waterfall behaviors if overt effort is not made to improve.

Professional Scrum development involves more than just coding. It involves the whole range
of planning, testing, and management activities. Visual Studio 2012 enables a Scrum Team to
 incrementally adopt best practices with out-of-the-box support for lightweight requirements,
backlog management, task boards, code reviews, continuous integration and deployment,
continuous feedback, and more.

46 PART I Fundamentals

These tools also help connect the Scrum Team and stakeholders while optimizing the development
process and reducing risk. Integrated feedback tools allow the team to connect remote stakeholder’s
ideas to every member of the team in real time. This integration helps keep the Scrum Team and
stakeholderscooperatingefficientlyinordertokeepdevelopmentprojectsontrack,andthatassists
in ensuring that the delivered software is timely, functional, and cost-effective.

Note Visual Studio 2012 provides for full round-tripping project support with Visual
Studio 2010 SP1. This means that Visual Studio 2012 can be adopted gradually by a Scrum
Development Team that already uses Visual Studio 2010, with no friction and no need to
migrate any project.

Editions
There are many different audiences that use Visual Studio. They differ depending on the maturity of
the Development Team, the software products they are building, and the speed at which they deliver
and maintain the software product. To support various audiences, Visual Studio 2012 is available in
differenteditions.Theeditionsrangeinpricefromfree(Expresseditions)tothousandsofdollars.
Youcanthinkofeditionsasbeingmatryoshka-likeinnature,wherethenexthigher(moreexpensive)
edition contains all of the features in the editions below it plus other, exclusive features. Visual Studio
2012 Ultimate edition contains all possible features. You can see this in Figure 2-3.

Visual Studio
Ultimate

Visual Studio
Premium Visual Studio

Test Professional
Visual Studio
Professional

Mission-critical
scale and
complexity

Quality
enabled team
development

Continuous
quality
enablement

Development
productivity
everywhere

Team development
productivity

Broad support for
connected teams
with flexible roles

Measure and confirm
overall quality

Orchestrate and manage
test processes

Manage diverse
test environments

Comprehensive,
continuous test execution

Integrated reporting
and analytics

Rich, data-driven handoffs

Development across
Microsoft platforms
(Windows, web, cloud, phone)

Ensure high quality code

Foundational team
development and collaboration

Integration with business
platforms (SharePoint, Office)

Complex code
base productivity

Architectural integrity

Technical debt management

DevOps enablement

Prodution debugging
and diagnostics

Quality of service enablement

FIGURE 2-3 Visual Studio 2012 editions.

Note Don’t confuse edition with version. The version of Visual Studio is 2012. That
 version is available in many editions. For a more thorough comparison of the Visual
Studio editions, visit http://www.microsoft.com/visualstudio/11/en-us/products/compare.

 CHAPTER 2 Microsoft Visual Studio 2012 ALM 47

Inthissection,wewillbrieflydiscusseacheditionofVisualStudio2012anditsfeatures.

Professional edition
Visual Studio 2012 Professional edition is the baseline edition to be used in professional software
development. With it, a developer can develop Windows desktop and phone applications, including
Windows 8 themed applications. These applications can target the web or cloud sites and services
whileusingMicrosoftOfficeandMicrosoftSharePointintegration.

Here is a list of the more interesting features found in the Professional edition:

 ■ Unit testing Performance of unit testing execution has been improved. Extensibility allows
third-party unit testing frameworks, such as nUnit, xUnit.net, MbUnit, QUnit, and Jasmine
(apopularbehavior-drivendevelopmentframeworkfortestingJavaScriptcode)tobeused
within Visual Studio.

 ■ Task board Team Web Access enables visualization and management of the Sprint Backlog.
Taskworkitemscanbecreatedandmovedquickly(viadragging)acrosstheboardtoa
 different state.

 ■ Static code analysis Analyze and report information about the code, such as violations of
programming design rules. C++ code is also supported.

 ■ Advanced profiling Analyze performance issues in applications by using one of four
 approaches: CPU sampling, instrumentation, memory allocation, and thread contention. GPU
activityandSharePointapplicationexecutioncannowbeprofiled.

Test Professional edition
The Visual Studio 2012 Test Professional edition is not an edition of the Visual Studio integrated
developmentenvironment(IDE).Instead,itcontainsMicrosoftTestManager(MTM)anditsrelated
capability. It is intended for users who are more involved with test case management, such as creating and
runningmanualuserinterface(UI)tests.ItisidealforProductOwnersaswellasstakeholders,suchas
business analysts and product managers who want to collaborate more on the quality aspects of the
 Increment and less on the actual coding.

Here is a list of the more interesting features found in the Test Professional edition:

 ■ Microsoft Test Manager Manage test plans, test cases, and requirements while streamlining
the testing process through manual and exploratory tests. MTM allows test steps to be
recordedandplayedbackautomaticallyorfast-forwardedtoaspecificteststep.

 ■ Exploratory testing Provides a lightweight mechanism to test applications where developers
can explore the application to identify bugs or create test cases. All background information is
captured so that work items can be created at any point along the way.

 ■ Backlog management Team Web Access supports easy management of the Product Backlog
and Sprint Backlog.

48 PART I Fundamentals

 ■ Sprint Planning Team Web Access includes tooling for planning Sprints, such as dragging,
forecasting, and real-time Velocity and burndown reporting.

 ■ Microsoft Lab Management Manage virtual or standard environments of computers to
 enable developers to spin up complex environments easily in order to run acceptance tests.

 ■ PowerPoint storyboarding Use Microsoft PowerPoint to propose ideas and capture
 feedback and requirements from distributed stakeholders.

 ■ Request and manage feedback Use the feedback manager tool to loop distributed
 stakeholders continuously into the development process by capturing their comments, audio
notes, and desktop video.

Tailspin Toys case study BecausePaula(ProductOwner)andScott(ScrumMaster)aren’t
involved in the actual software development, they don’t need a proper edition of Visual
Studio. They do, however, want to be involved with managing the backlogs and planning
the Sprints. For this reason, they opted for the Test Professional edition, as it includes this
capability. A few other stakeholders have this edition as well.

Premium edition
Visual Studio 2012 Premium edition is a more comprehensive team collaboration suite than
 Professional edition. It threads quality through all tasks and activities performed by a Development
Team while providing multiple engineering tools to help with the development, testing, automation,
and diagnostics of the software being developed. Premium edition contains all of the features and
capabilities of Professional and Test Professional editions, plus more. This means that MTM and Lab
Management functionality is available to users of the Premium edition.

Tip I believe that the Premium edition should be the baseline edition for all members of a
high-performance Scrum Development Team.

Here is a list of the more interesting features found in the Premium edition:

 ■ Code metrics Code metric data can be generated in order to measure the complexity and
maintainability of the code. This can pinpoint where refactoring or increased testing is needed.

 ■ Code coverage This determines what proportion of code is actually being tested by tests,
such as unit tests. This data can help point out what code hasn’t been tested adequately.

 ■ Coded UI testing Automated tests that drive the application through its UI can verify that
the whole application, including its UI, is functioning correctly.

 ■ Code clone analysis This detects similar fragments of code in a solution. This makes
it possible to identify wasteful copy and paste problems and where refactoring may be
 necessary. This is especially useful when working on a legacy code base.

 CHAPTER 2 Microsoft Visual Studio 2012 ALM 49

 ■ Architectural validation Architectural integrity can be enforced automatically through layer
diagram validation. Layer diagrams must be created in Ultimate edition.

 ■ My Work This feature lists each developer’s pending tasks, displays the status of each task,
and provides information on each task in the context of the entire project.

 ■ Code reviewAsetoftoolsandworkflowsthatfacilitatecollaborationamongdistributed
developers to review the code and propose changes.

 ■ Task suspend and Resume This feature sllows developers to visualize their current task.
If the developer is interrupted and needs to switch context, Visual Studio can suspend the task,
saving all related context. Later, the suspended task can be resumed and the context restored.

 ■ Continuous testing Run unit tests automatically after every local build.

Tailspin Toys case study Most developers own a copy of Premium edition. It contains the
serious development and testing tools required by the software that they are developing.
The fact that Premium edition now includes the Test Professional edition, which includes
Microsoft Test Manager, is an absolute bonus. All developers can now be involved directly
with creating and managing tests cases and manual tests and executing tests. This is
importantastheypracticeacceptancetest-drivendevelopment(ATDD).

Ultimate edition
The Visual Studio 2012 Ultimate edition is the top-tier toolset that accommodates sophisticated teams
executing architectural design and performance testing activities. Ultimate edition contains all of the
features and capabilities of the other Visual Studio editions, plus more.

Here is a list of the more interesting features found in the Ultimate edition:

 ■ IntelliTrace This feature captures debug data in development and production servers.
Thisdataprovidesdeveloperswiththeinformationthattheyneedtofixdefectsmorerapidly.

 ■ Web performance and load testing This feature ensures a high quality of service while
detecting any scalability problems. Unlimited load testing is now available directly in Ultimate,
so there is no longer a need to obtain Virtual User packs.

 ■ Architecture Explorer You can understand the structure of an application with architectural
discovery tools. Architecture Explorer has been improved to work with big projects, as well as
C++ code.

 ■ Dependency graphs You can create dependency graphs in order to understand how your
code is organized and view its dependencies.

 ■ Layer diagram and dependency validation You can enforce architectural integrity and
 provide automated application validation. Layer diagrams are read-only in Premium edition.

50 PART I Fundamentals

 ■ UML diagramsThisfeatureallowsyoutogeneratecodefromUnifiedModelingLanguage
(UML)diagramstocreatescaffolding.Also,youcanreverse-engineercodetoUMLto
 understand the big picture faster and with greater comprehension. UML diagrams are
 read-only in Premium edition.

 ■ Microsoft fakes This feature is a unit test isolation framework used to create substitute
classes and methods for production and system code that create dependencies in the code
under test. This enables the automated testing of hard-to-test code.

Tailspin Toys case study A couple of the developers have a copy of Ultimate edition. They
needed some of its specialized features. If, in the future, the team is impeded by not having
more Ultimate editions, the impediment will be discussed during a Sprint Retrospective meeting.
Ultimate edition is also installed on the build and test agent machines so any developer can run
web and load tests as part of the automated Team Foundation Build process.

Express editions
Microsoft has also made several Express editions of Visual Studio 2012 available. These editions
areplatform-specificandincludemultiplelanguagesupport.Eacheditionprovidesspecialized
 capabilities and tools required to develop on its platform. Express editions are downloadable for free
from www.microsoft.com/downloads. Microsoft will also continue to make their Visual Studio 2010
Express edition available for download as well.

Here is a list of the Visual Studio 2012 Express editions:

 ■ Visual Studio Express 2012 for Windows 8 Developers can build and test applications and
then publish them to Windows Store to reach millions of customers.

 ■ Visual Studio Express 2012 for Web Developers can build and test HTML5, CSS3, ASP.NET,
and JavaScript applications, and deploy them on web servers or to the cloud using Windows
Azure.

 ■ Visual Studio Express 2012 for Windows Desktop Developers can build and test desktop
applications targeted to run on all versions of Windows supported by Visual Studio 2012.

 ■ Visual Studio 2012 Express for Windows Phone Developers can build and test applications
for the next Windows Phone release.

 ■ Team Foundation Server 2012 ExpressProvidessmallteamsofuptofivedeveloperswith
source code control, work item tracking, and build automation. The sixth and subsequent
 users each require a TFS CAL. The same CAL exclusions apply as with the full edition of TFS.

While the various Express editions are a frictionless way to get started writing simple applications,
they are not intended for professional software development. This type of development demands
tools that are able to enhance current applications, as well as be able to drive innovation for future
 applications. By using a more powerful edition, a developer is able to perform all development tasks

 CHAPTER 2 Microsoft Visual Studio 2012 ALM 51

in one integrated tool: modeling, designing, coding, testing, debugging, and deploying.
An organization’s return on investing in an edition above Express will be realized when their
 developers are able to stay focused on their work within a single tool.

Smell It’s a smell when I see members of a professional software development team using
any Express edition. These editions do not have professional-level code quality and testing
tools.Moreimportant,whilethepricemaybetemptingtomanagement,ittendstoreflect
their inability to value what the team does or how they do it. It could be that an Express
edition was temporarily installed for a team member or stakeholder to perform a spike or
another type of experiment.

Team Foundation Server
TFS is the collaboration platform at the core of Microsoft’s Visual Studio ALM solution. TFS automates the
software delivery process by providing the Scrum Team, as well as the stakeholders, with the applicable
tools they need to manage their software development projects effectively throughout the entire
 lifecycle.

TFS provides services for source control, work item tracking, and automated builds. The respective
data is stored in a SQL Server data warehouse and is used as the basis for many reports that provide
timely information about the quality of the product and process. TFS can be installed on-premises
usinganorganization’sinfrastructure.Itisalsoavailableasasoftwareasaservice(SaaS)offeringfrom
Microsoft, hosted on their infrastructure and managed by them. The hosted offering is referred to as
Team Foundation Service, which I will discuss shortly.

Here is a list of the high-level features and capabilities found in TFS:

 ■ Project management Create and manage team projects.

 ■ Work item tracking Create and manage PBI, Bug, Task, and other types of work items.

 ■ Version controlManagechangestothesourcecodeandotherfilesintheapplication.

 ■ Team Foundation Build Automate the building, deploying, and testing of the application.

 ■ Project portal Use the Windows SharePoint portal as a place for additional collaboration,
such as sharing documents. This feature is not available for the Express edition or for the
hosted Team Foundation Service.

 ■ Reporting Run management and quality reports derived from data in the data warehouse.
This feature is not available for the Express edition or for the hosted Team Foundation Service.

These are important features to teams of every size, especially Scrum Teams, and serve to unify
the entire team in various ways. Without TFS, each team member would be designing, developing,
and testing within his or her own silo. This is a problem that should be avoided by all teams, especially
high-performance Scrum Teams.

52 PART I Fundamentals

Team Foundation Service
The Team Foundation Service is a cloud-based, hosted ALM solution. Much like the on-premises
 version of TFS, the hosted service can be accessed by members of the Scrum Team as well as
 stakeholders, using the same client applications and tools. Software projects can be planned and
developed collaboratively from anywhere.

Workitems,sourcecode,builddefinitions,andotherartifactsarestoredonMicrosoft’s
 Azure-based servers. These assets can be accessed and managed online via a web browser, Visual
Studio, Eclipse, or other familiar client applications. This management can be seen in Figure 2-4.

eclipse c:\

COLLABORATION

SOURCE CONTROL

CONTINUOUS BUILDS

TEST EXECUTION

AGILE PLANNING

FIGURE 2-4 The hosted Team Foundation Service is a cloud-powered ALM solution.

Using the hosted Team Foundation Service is very much like using an on-premises TFS server.
ItlooksandfeelsthesamefromVisualStudio,Office,thecommand-lineutilities,orTeamExplorer
Everywhere in Eclipse. The only major difference is how a user authenticates. Rather than using a
 Windows logon, a Microsoft Live ID is used. This means that users will need a Live ID, if they don’t
already have one.

ThemainbenefitofTeamFoundationServiceisthatanorganizationorteamcangetstarted
quickly. There is no infrastructure to provision or manage. In fact, developers can go from zero to their
firstteamprojectinminutes,includingthesign-upprocess.Inaddition,Microsofthasathree-week
 cadence to release new capabilities to the service. This means that, internally, Microsoft has adopted a
CD approach of their own, releasing new capabilities to the service about every three weeks.

Note At the time of this writing, the hosted Team Foundation Service is still in preview,
andpricinghasyettobefinalized.However,full-featuredaccountsarefreeduringthis
time period, and there will continue to be a free level of the service as Microsoft transitions
out of preview. There will also be paid levels of the service for users who need more than
whatthefreelevelprovides.BenefitsforMSDNsubscribers,aswellasotherprogram
 membership, have yet to be announced. Microsoft will share more information about
 purchase options and integration with other programs at a later date.

 CHAPTER 2 Microsoft Visual Studio 2012 ALM 53

Microsoft hopes that those users who preview the hosted Team Foundation Service today will
remain once the service goes live and transitions over to the new licensing model. If a developer, or
team of developers, wishes to leave, however, Microsoft has promised that their code and project
data will be able to be exported prior to closing the account. For more information, take a look at the
service FAQ here: http://tfspreview.com/en-us/support/faq.

Youcanfindacomparisonofthebenefitsoftheon-premisesTeamFoundationServerwiththe
hosted Team Foundation Service in Chapter 4.

Hosted builds
SinceallofthenewAgile(Scrum)planningandmanagementtoolsareweb-based,usersofthe
hostedTeamFoundationServicegettoenjoythemaswell.Evencontinuousintegration(CI)builds,
hosted on Microsoft’s build servers, are available.

ThehostedbuildsareprovidedbyapoolofWindowsAzurevirtualmachine(VM)rolesthat
can expand and shrink as needed. This is why some refer to it as an elastic build service. When
a Development Team starts a build, a VM is allocated from the pool to run the build. The build
 executes, the output is copied off the build machine, and then the VM is restored and returned back
to the pool for someone else to use.

Onceconfigured,adevelopercancreateanewbuilddefinition,queuethebuild,monitorits
 progress, and view its results in the same manner as an on-premises build. The one difference is that,
whencreatingthebuilddefinition,thedevelopermustpickthe“HostedBuildController”ratherthan
a local build controller.

The hosted build service allows a team to skip the complexities of installing, managing, and
patchingtheirbuildservers.However,therearelimitationsinwhatcanbeinstalledandconfigured
withthehostedbuildservice,soiftheteamprefers,theycanconfigureandusetheirowndedicated
build servers to build, test, and deploy their apps locally.

Agents for Visual Studio 2012
Agents for Visual Studio 2012 include test controllers and test agents that can be used to scale
out load generation, support distributed data collection, and distribute test execution. A team can
alsouseagentstomanagetesting,workflow,andnetworkisolationforVMsthatareusedwithLab
 Management. Lab agents and test agents, from previous versions of Lab Management, are now
 combined into one type of agent—the test agent.

Agents for Visual Studio 2012 enable these types of activities:

 ■ Run automated tests remotely using Visual Studio

 ■ Distribute automated tests to multiple machines using Visual Studio

 ■ Run tests and collect test data remotely using Microsoft Test Manager

54 PART I Fundamentals

 ■ Use a lab environment

 ■ Deployanapplicationinalabenvironmentusingabuild-deploy-testworkflow

 ■ Run tests in lab environment

The agents are available to MSDN subscribers with Visual Studio 2012 Test Professional, Premium,
or Ultimate editions. Keep in mind that while the agents can run load tests, that feature remains
exclusive to licensees of the Ultimate edition. Load tests can now execute with an unlimited number
of virtual users.

Note Visual Studio Agents 2012 are no longer restricted from use in a production
 environment. This means that they may now be deployed and enabled for production
load testing.

Visual Studio Team Explorer Everywhere 2012
Although Visual Studio 2012 is the ideal client for TFS, it is not the only development environment
 being used in the world. Many organizations don’t use Visual Studio. They may not even run
 Windows. Eclipse is a popular, cross-platform IDE that is prevalent in the industry. It runs on Windows
aswellasseveralnon-Windowsplatforms,suchasLinuxandMacOSX.

An important feature of TFS is its ability to integrate with other operating systems and tools,
 enabling developers to continue to use a familiar environment while still being able to collaborate
as a team. Visual Studio Team Explorer Everywhere 2012 enables a Scrum Development Team to
 collaborate while using Eclipse or from the command line on certain non-Windows operating systems.

Team Explorer Everywhere includes both the TFS plug-in for Eclipse and the Cross-platform
 Command-Line Client for TFS. Team Explorer Everywhere provides similar capabilities as those that
are available in Visual Studio 2012. For example, you can view and edit your work items, employ
 version control over your application code, track bugs, generate reports, and get an up-to-date view
of the entire project. The Team Explorer pane integrates directly into the Eclipse IDE.

Note Team Explorer Everywhere enables popular Eclipse-based IDEs, such as IBM’s
Rational Application Developer, Adobe Flex Builder, and Aptana Studio, to connect to TFS.

MSDN subscriptions
ThepreferredwaytoobtainVisualStudio2012isthroughaMicrosoftDeveloperNetwork(MSDN)
subscription. MSDN subscriptions enhance an organization or team’s investments by providing
 comprehensive access to resources that help software development teams build high-quality
 applications for web, mobile, cloud, and Windows. Subscriptions also provide a cost-effective way for

 CHAPTER 2 Microsoft Visual Studio 2012 ALM 55

organizations to obtain software, services, training, and other resources for their development needs.
With a simple, per-user licensing model, MSDN subscriptions help enhance developer productivity via
access to past and prerelease software, professional and community support, e-learning, magazines
and online concierge, in addition to the software tools and services.

Visual Studio 2012 Ultimate, Premium, Professional, and Test Professional editions may be
 purchased through an MSDN subscription. In fact, only Visual Studio 2012 Professional edition, as
well as the Express editions, can be obtained without an MSDN subscription. When purchasing Visual
Studio through an MSDN subscription, you are licensed to install and connect to an on-premises TFS.
For more information, visit http://msdn.microsoft.com/subscriptions.

Note Understanding the licensing of Visual Studio 2012, especially when it comes to
accessingthesharedresourcesofTFS,canbedifficult.Thenuancesofwhenauserneeds
a license, and what kind, are very complex when you consider using features such as
Team Explorer, Team Foundation Build, Team Web Access, SharePoint project portal, and
SQL Server Reporting Services. Thankfully, Microsoft has published the Visual Studio 2012
and MSDN Licensing White Paper, which provides an overview of the Visual Studio 2012
product line, including MSDN subscriptions, and the licensing requirements for
those products in common deployment scenarios. For more information, visit
http://www.microsoft.com/visualstudio/licensing.

Chapter burndown

Here are the key concepts we covered in this chapter:

 ■ ALMApplicationlifecyclemanagement(ALM)isthefusionofbusinessandengineeringac-
tivities pertaining to the development of a software product.

 ■ Scrum and ALMScrumisaprocessframeworkandfitswithintheboundariesofALM.ALM
is process agnostic. High-performance Scrum Teams know that a balance of Scrum and ALM
practicesarerequiredtodevelopcomplexsoftwareproductsefficiently.

 ■ CDContinuousdelivery(CD)ispossiblethroughtheadoptionofAgilepracticesandtheef-
fective use of tooling. Scrum works well within an organization practicing CD.

 ■ Visual Studio 2012 Many editions are available to meet the varying needs of different types
of teams.

 ■ Professional edition This is the baseline edition for anyone developing professional applications.

 ■ Test Professional edition Includes Microsoft Test Manager for managing the testing effort.
This edition also allows the user to manage the Product Backlog and Sprint Backlog. visually
Product Owners and other stakeholders who are not directly helping with development
should obtain this edition.

http://www.microsoft.com/visualstudio/licensing

56 PART I Fundamentals

 ■ Premium edition This is the baseline edition for Professional Scrum Developers. The 2012
version now includes Test Professional edition, which includes Microsoft Test Manager.

 ■ Ultimate edition This edition contains advanced architecture and testing tools required to
buildmission-criticalapplications.Developerswithspecificrequirementsshouldobtainthis
edition.

 ■ Team Foundation Server Enables team collaboration through the management of work
items, version control, and automated builds. A number of client applications can be used to
communicatewithTFS,includingVisualStudio,Office,WindowsExplorer,Eclipse,andaweb
browser.

 ■ Team Foundation Service Microsoft also offers a hosted TFS SaaS. Users connect to it using
a Live ID credential, and users can also manage work items, version control, and automated
builds. These builds can even be hosted in Windows Azure.

 ■ MSDN An MSDN subscription is the preferred way of licensing Visual Studio 2012. In fact,
Test Professional, Premium, and Ultimate editions can be obtained only through an MSDN
 subscription.

 57

C H A P T E R 3

Microsoft Visual Studio Scrum 2.0

Shortly after Microsoft released Microsoft Visual Studio Team Foundation Server 2010, they made
the Microsoft Visual Studio Scrum version 1.0 process template available for download. This

 process template was different from the other, out-of-the-box MSF process templates. This new
 template was designed from the ground up to embrace the rules of Scrum. While the two MSF
 process templates were very mature and robust in terms of features, neither supported Scrum very
well. That said, teams were able to successfully implement Scrum using the MSF Agile Software
 Development process template, but only after a fair amount of customization and guidance.

The Visual Studio Scrum process template came into existence as a result of the collaboration
between Microsoft, Scrum.org, and the Professional Scrum Developer community. We all knew that
Scrum had become the dominant Agile framework in software development. Microsoft recognized
this as well. They also knew that teams using Team Foundation Server and Scrum together wanted
a more tightly coupled experience resulting in a lower drag coefficient. What resulted was a very
 minimalistic process template that followed the rules of Scrum.

It’s important to note that Visual Studio Scrum is a Scrum process template. Because of this, many
of the workbooks and reports that are found in the other templates are missing. I have heard some
teams complain about this missing functionality when migrating to the Scrum template, but overall,
not many teams saw this as an adoption blocker. One thing is certain: this Scrum process template is
verypopular.Therehavebeennearly100,000downloadsinthefirsttwoyears.

TeamFoundationServer2012shipswithversion2.0oftheprocesstemplate.Itincludesafewbugfixes
but also many improvements. Some of the changes relate directly to improvements in Team Foundation
Server 2012, such as being able to store start and end dates on the iteration path nodes themselves. The
introduction of the new web-based Agile planning tools drove a lot of changes to the template as well. In
this chapter, we will go over the basics, as well as highlight what’s new In Visual Studio Scrum 2.0.

Dissecting the process template

Prior to Team Foundation Server 2012, Visual Studio Scrum was available as a separate download and
requiredmanualinstallationandconfiguration.VisualStudioScrum2.0isnowoneofthebuilt-in
process templates. There’s nothing to install. What’s even better is that Microsoft made it the default
process template when creating a new team project, as you can see in Figure 3-1. This will further
drive awareness, if not the outright adoption, of Scrum among software development teams using
Team Foundation Server 2012.

C H A P T E R 3

Microsoft Visual Studio
Scrum 2.0

Dissecting the process template

MSF process templates

Exploring a process template

Visual Studio Scrum 2.0

What’s new and different

Work item types

Work item queries

Reports

Common customizations

Chapter burndown

58 PART I Fundamentals

FIGURE 3-1 Selecting the process template when creating a new team project.

Before we analyze the Visual Studio Scrum process template, we need to set a baseline
 understanding of what a process template is and what it’s not. Logically, you can think of a process
template as what gets “copied and pasted” into a new team project. All of the project’s initial settings
and behaviors come from the template. Physically,aprocesstemplateisacollectionofXMLandother
typesoffilesarrangedinspecificfoldersthatdefinethevariouselementsofateamprojectduring
creation.Theseelements,inturn,definethebehavioroftheprojectandhowtheteamcaninteract
with it. Here is an overview of the types of elements found in a process template:

 ■ Process template name, description, version, and plug-ins to execute

 ■ Workitemtypedefinitions

 ■ Work item type categories

 ■ Work item link types

 ■ Work items to create

 ■ Work item queries, folders, and permissions

 ■ Agileandplanningtoolsconfiguration

 ■ Areas and iterations

 ■ MicrosoftProjectfieldmapping

 ■ Default groups, teams, and permissions

 ■ Source control behavior, notes, and permissions

 ■ Build settings, templates, and permissions

 ■ Testmanagement,configuration,andothersettings

 ■ Lab Management settings and templates

 ■ Microsoft SharePoint portal folders, documents, and dashboards

 CHAPTER 3 Microsoft Visual Studio Scrum 2.0 59

 ■ Process guidance

 ■ Reports, folders, and data sources

Note Process templates are somewhat analogous to Microsoft Word templates. When
creating a new Word document, you can choose from several different templates. There
are Microsoft-provided templates, as well as those from third parties. The template only
affects the new document’s initial look and feel. As soon as you change something in the
document, like a style or margin setting, it deviates from the original template. It doesn’t
affecttheoriginaltemplateeither.Thisisthesamebehaviorthatyou’llfindinaprocess
template–team project relationship. You can customize a team project by adding a new
check-inpolicy,hidingafieldinaworkitemtype,orrenamingaquery.Changingtheteam
project after creation does not alter the template. The inverse is also true—changing the
template after creation does not alter the object created from it.

MSF process templates
You may be wondering about those other two process templates found in Team Foundation Server.
They both have MSF in their names. MSF used to stand for “Microsoft Solutions Framework.“ It
is Microsoft’s home-grown approach to planning and managing software projects based on the
experiencesanddocumentationofMicrosoftConsultingServices(MCS).MSFversion1.0was
 introduced in 1993 and was regularly updated through the 1990s and into the 2000s. The software
development framework was simply guidance, books, presentations, and training materials. At one
point,individualscouldbecomecertifiedMSFpractitionersandtrainers.

MSF saw a major refresh in 2005 when version 4.0 was released. This corresponded with the release of
Team Foundation Server 2005 and the concept of the process template. Through the use of MSF process
templates, Team Foundation Server was able to enact the MSF software development process.

Very few people refer to the MSF acronym when discussing the process templates. They refer to
them as the “Agile” or “CMMI” templates. CMMI stands for Capability Maturity Model Integration,
which is a software engineering process improvement approach created by Carnegie Mellon
 University. Even fewer people reference the full Microsoft Solutions Framework name. There is a
 desire inside and outside of Microsoft to drop the MSF acronym from the product alltogether. This
may become reality down the road.

Exploring a process template
Toexploreaprocesstemplate,youwillfirstneedtodownloaditfromTeamFoundationServer.You
can do this from Team Explorer inside Visual Studio. Once you have established a connection to a team
project collection, regardless of whether you are connected to a team project, you can click the Settings
 hyperlink and open the Process Template Manager, as shown in Figure 3-2. From this dialog box, you can
see all of the process templates uploaded to your team project collection. You can upload new templates,
 download existing ones, make a template the default template, or delete a process template. There is even
ahyperlinkthattakesyoutoasiteonMSDNwhereyoucanfindanddownloadnewprocesstemplates.

60 PART I Fundamentals

FIGURE 3-2 Viewing and managing process templates from the Process Template Manager.

Once downloaded, you can explore the template using traditional tools such as Windows Explorer,
MicrosoftInternetExplorer,andNotepadtoopenandexaminetheXMLandotherfiles.Anychanges
you make to the process template won’t have an impact until you upload the process template back
to Team Foundation Server. Any team projects already created using the process template won’t be
affected by those changes. As an alternative, you can use the Process Editor, installed by the Team
Foundation Server Power Tools and found on the Tools menu inside Visual Studio.

The Process Editor
The Process Editor is part of the Team Foundation Server Power Tools. It is installed when you install the
power tools and becomes available when you restart Visual Studio. The Process Editor provides a graphical user
interface(GUI)foreditingTeamFoundationServerprocesstemplates,workitemtypes,andgloballistsinside
theVisualStudiointegrateddevelopmentenvironment(IDE),asyoucanseeinFigure3-3.TheProcessEditor
 maintains its own connection to the Team Foundation Server, separate from Team Explorer, and can also be
used while disconnected. For example, you can download the process template as mentioned previously, and
then use the Process Editor while disconnected from Team Foundation Server.

FIGURE 3-3 The Visual Studio Scrum 2.0 process template as viewed in the Process Editor.

You can also use the Process Editor to customize a process template, work item type, or global
list. For example, you might want to reduce the number of default Release and Sprint iteration nodes

 CHAPTER 3 Microsoft Visual Studio Scrum 2.0 61

created when you create a new team, as you can see in Figure 3-4. You would do this by editing the
 process template and removing the Release and Sprint nodes that you don’t want. You would then
save your changes and upload the template back to Team Foundation Server. You might want to
rename the template and change its description to indicate the change you made.

FIGURE 3-4 Using the Process Editor to remove the number of initial Iteration nodes.

Tip If you plan on making any changes to the Scrum or other process templates down the
road, consider creating a separate team project in Team Foundation Server, uploading the
originaltemplate(s),andthenmanagingallchangestothetemplatesasyouwouldany
other coding project under source control. This way, you have a history of changes with
 explanations, allowing you to roll back if you want.

Visual Studio Scrum 2.0

After 100,000 downloads of Visual Studio Scrum 1.0, Microsoft has learned a thing or two about it
and the community using it. Primarily, they have learned that teams like it! These teams appreciate its
uncomplicated design and its straightforward support of Scrum. As you can see in Table 3-1, there are
notalotofextraneousfields,queries,orreportsbeyondwhatisneededtoplanandtrackaproject
using Scrum. Many teams evaluating Visual Studio Scrum are currently using whiteboards and sticky
notes to track their work. Since you can’t get any lighter weight than that, any prospective software
tool would need to be as lightweight as possible.

Note My company has seen and helped many teams migrate off of EMC’s Scrum for Team
System process template. This is the template that was originally created by Conchango
and, after EMC acquired Conchango, innovation and support for the template dropped off
until it was eventually released to the open-source community. For these reasons, many
corporate teams that we talk to want to move off of it and onto Microsoft’s template—
often simply for the perceived lack of support with an open-source project.

62 PART I Fundamentals

TABLE 3-1 Visual Studio Scrum work item types, queries, and reports.

Work item types Queries Reports

Bug Product Backlog Backlog Overview

Code Review Request Feedback Build Success Over Time

Code Review Response Current Sprint\Blocked Tasks Build Summary

Feedback Request Current Sprint\Open Impediments Release Burndown

Feedback Response Current Sprint\Sprint Backlog Sprint Burndown

Impediment Current Sprint\Test Cases Test Case Readiness

Product Backlog Item CurrentSprint\UnfinishedWork Test Plan Progress

Shared Step Current Sprint\Work in Progress Velocity

Task

Test Case

Microsoftstarteddefiningworkitemcategories in Team Foundation Server 2010. This enabled
 different process templates to identify what their “Bug” work item type was, as well as their
 requirement, Test Case, and Shared Steps work item types. This mapping enabled Microsoft to create
tools(likeMicrosoftTestManager)thatcanworkwithanyvendor’sprocesstemplate,solongasit
supports the requirement work item categories. Team Foundation Server 2012 adds more categories
to support their new code review, feedback, and task-board tools. Table 3-2 shows the work item
types and their corresponding categories in the Visual Studio Scrum process template.

TABLE 3-2 Visual Studio Scrum work item types mapped to categories.

Work item type Associated categories Hidden
category?

Bug Bug, Requirement

Code Review Request Code Review Request

Code Review Response Code Review Response

Feedback Request Feedback Request

Feedback Response Feedback Response

Impediment

Product Backlog Item Requirement

Shared Steps Shared Step

Task Task

Test Case Test Case

What’s new and different
There really hasn’t been much improvement to the core functionality of the Scrum process template
itself. The majority of the changes are to support the many new features and capabilities in Team
Foundation Server 2012, such as the Agile planning tools. There were some architectural changes
in Team Foundation Server as well, such as adding the ability to track start and end dates on the

 CHAPTER 3 Microsoft Visual Studio Scrum 2.0 63

 iteration path nodes directly. Some changes to the process template were made to support these as
well. The next few pages will list what’s been added, changed, and removed between the 1.0 and 2.0
versions of the Scrum process template.

If you are an alpha geek like me, you might want to see all of the differences between the 1.0 and
2.0 process templates, even the small ones. First, you’ll need to download the 1.0 and 2.0 templates
ontoyourharddriveintoseparatefolders(thatis,C:\VSScrum1andC:\VSScrum2).Next,runtheTf.exe
command-line utility, passing in the two folders as parameters, to show the folder differences. Here’s
the command: Tf.exe folderdiff C:\VSScrum1 C:\VSScrum2. You will then see a side-by-side comparison
of the two templates, as shown in Figure 3-5.

FIGURE 3-5 Using Visual Studio to compare the Visual Studio Scrum 1.0 and 2.0 process templates.

What’s new
Here are the artifacts and features that have been added to the Visual Studio Scrum 2.0 process
 template:

 ■ Added new Code Review Request and Code Review Response work item types These
new work item types work together to enable Development Team members to review and
comment on each other’s code from within Visual Studio.

 ■ Added new Feedback Request and Feedback Response work item types These new
work item types enable team members to request and receive feedback on their Increment
from stakeholders using the new feedback client.

64 PART I Fundamentals

 ■ Added new work item categories Microsofthasaddedfivenewworkitemcategories:
Code Review Request, Code Review Response, Feedback Request, Feedback Response, and
Task. They have also introduced a hidden types category, to hide certain work items from the
general-use user interfaces.

 ■ Added closed date field to Product Backlog Item, Bug, and Task work item types This
isaread-onlyfieldthatiscontrolledbyTeamFoundationServer.Settingaworkitem’sstateto
New, Approved, or Committed will clear the closed date. Setting the state to Done will assign
the current date and time.

 ■ Can now link Product Backlog items to storyboards You can now associate a Product
Backlog item to one or more storyboards. These storyboards can be created using Microsoft
PowerPoint and saved to a shared location.

 ■ New Product Backlog Item and Bug state transitions You can now transition from New
directly to Committed or Done.

 ■ New Bug state transition reasons You can now choose between New Defect Reported
or Build Failure when creating a bug. You can now select Not a Bug or Duplicate as a reason
when removing a bug.

 ■ New state transition actions for Tasks There are now StartWork, StopWork, and CheckIn
actionsthatcanbecalledtosetatasktoaspecificstate.TheStartWorkactionsetsthetaskto
In Progress. The StopWork action sets the task back to the To Do state. A CheckIn action can
be called to set a task to the Done state from either To Do or In Progress states. These actions
enable tools, such as the task board, to be able to programmatically set a task’s state.

 ■ Added new Feedback query This query enables a team member to see if anyone else has
asked him or her to provide feedback.

 ■ New Backlog Overview report Some teams that had previously used the MSF for Agile
Software Development process template discovered that they missed the User Stories
 Overview report. Microsoft ported the report over to work on the Visual Studio Scrum 2.0
template and named it the Backlog Overview report.

 ■ Added process template version to ProcessTemplate.xml Atypeidentifieraswellasa
major and minor version identify the version of the process template.

 ■ Added process template property to Classification.xml The process template name gets
uploadedtoTeamFoundationServerandispersistedtothecollection(operational)database
during team project creation.

 ■ More fields are reported in the data warehouse Work item title, area path, iteration path,
state, and reason fieldsarereportedasdimension. The backlog priorityfieldisreportedas
 detail for Product Backlog Item, Bug, and Task work item types. This means that you will be
abletomoreeasilyquery,filter,andpivotonthesevalueswhenanalyzingandreporting.

 CHAPTER 3 Microsoft Visual Studio Scrum 2.0 65

 ■ Added the HideReadOnlyEmptyFields attribute to a work item type definition’s Layout
element Thisattributeestablishesthebehaviorofwhetheranemptyread-onlyfieldis
visible on the form, such as the Remaining WorkfieldwhenaTaskisintheDonestate.The
default value is true,whichmeansthatthesefieldsarehidden.

What’s changed
Here are the artifacts and features that have been changed in the Visual Studio Scrum 2.0 process
template:

 ■ Changed queries to evaluate work item type categories In Visual Studio Scrum 1.0,
 queries would evaluate the work item types directly. For example, the Product Backlog
query would only include Product Backlog Item and Bug work item types. In Visual Studio
Scrum 2.0, the same query evaluates the work item type category to see if it’s a
Microsoft.RequirementCategory.Thisisabetterapproachofferingmoreflexibility.

 ■ Changed Product Backlog query to include all Sprints The Product Backlog query in
 Visual Studio Scrum 1.0 only returned Product Backlog items and bugs that hadn’t yet been
placed into a Sprint. In other words, it only returned items that were set to the root iteration
path. The 2.0 template now users the under keyword, so it’ll include more work items than
previously. If this sounds like a potential for a lot of noise, just remember that the query
 excludes Done and Removed work items.

 ■ Renamed Description HTML field to Description This is a fairly invisible change that
 applies to Product Backlog Items, Tasks, Impediments, Test Cases, and Shared Steps. It may
affectcustomqueries,reports,orsolutionsyouhavebuiltusingtheoldfield.Inaddition,
the refname has changed from Microsoft.VSTS.Common.DescriptionHtml to just
System.Description.ThefieldtypeisstillHTML.

 ■ Backlog priority field is hidden By default, you cannot see or change a Product Backlog
Item or Bug’s backlog priority value. This value is automatically set by using the drag-and-drop
capabilities of the web-based backlog tool. Also, this value no longer defaults to 1,000. A
Task’s backlog priorityfieldhasn’tchanged.

 ■ Link types are limited when associating a task to a bug When linking a bug to a task,
the types of link options are limited to child work item links only. Previously, you could link to
changesets, hyperlinks, and so on, which was confusing.

 ■ Renamed Builders group to Build Administrators For the last several versions, the Team
 Foundation Server group within a team project who was responsible for creating and managing
builddefinitionshasbeentheBuildersgroup.ThishasbeenrenamedtoBuildAdministrators.

 ■ Default permissions and settings for the default team A default team gets created
 automatically when a new team project is created. Its name is the project name followed by
“Team”(thatis,theTailspinTeam).SettingsintheGroupsAndPermissions.xmlfiledefinethe
initial security permissions, members, and area and iteration backlog scope for this team. The
default team is a member of the Contributors group by default.

66 PART I Fundamentals

 ■ Default build template renamed DefaultTemplate.xaml is now DefaultTemplate.11.1.xaml,
whichincludesamajorandminorversioninthefilename.ThemajorversionisthatofTeam
Foundation Server. Microsoft may release new build templates, incrementing the minor
 version, to take advantage of new features down the road.

 ■ Default Lab template renamed LabDefaultTemplate.xaml is now LabDefaultTemplate.11
.xaml,whichincludesamajorversioninthefilename.ThemajorversionisthatofTeam
 Foundation Server.

 ■ Test Management files TheTestconfiguration.xmlandTestvariables.xmlfileshavebeen
 updated to include entries for Microsoft Windows 8.

 ■ You can mark a task resolved (done) when checking in Previously, you could only
 associate your changes with a task when checking in. Now a developer can mark the task
resolved(Done) while checking in, saving an extra step. You will still need to edit the task work
item and set the Remaining Hours to zero.

 ■ Done and removed tasks can now be reactivated Previously, you could not transition
a task from Done to To Do or from Removed to To Do. These transitions are allowed now,
even using the default reasons of “Additional Work Found” and “Reconsidering the Task,”
 respectively.

 ■ Changed reports that depended on the Sprint work item Since the Sprint work item was
removed, some reports had to be updated to retrieve the start and end dates from the release
and Sprint iteration path nodes directly. Also, there were other, minor changes made to the
lookandfeelofreports,suchaschangingtitles,defaulttext,andthewidthofsomefields.

 ■ Microsoft Project FileMapping.xml renamed to FieldMapping.xml The purpose of the
fileremainsthesame—onlythenamehaschanged.

What’s removed
Here are the artifacts and features that have been removed from the Visual Studio Scrum 2.0 process
template:

 ■ Removed the Sprint work item type Microsoft dropped the Sprint work item type because
iterationsnowhavestartandenddatefields.Whilethisisawelcomeimprovement,itbrings
up the question of where to store the Sprint Goal and Retrospective notes. A document or
wiki entry on the SharePoint project portal would work. The All Sprints work item query and
 corresponding work item guidance on the portal are also gone.

 ■ Default check-in notes have been removed In Visual Studio Scrum 1.0, there were three
check-innotesdefinedinthetemplate:codereviewer,securityreviewer,andperformance
reviewer. These have been removed.

 ■ Removed the “As a <type of user> …” text from a Product Backlog Item
 description Since not everyone uses the user story description format, Microsoft removed
this to make the Product Backlog Item work item type even more generic.

 CHAPTER 3 Microsoft Visual Studio Scrum 2.0 67

 ■ Releases 2, 3, and 4 don’t have Sprint nodes Microsoftsimplifiedtheinitialsetofiteration
nodeswhenateamprojectiscreated.Fourreleasenodesarestillcreated,butonlythefirst
one contains lower-level Sprints.

 ■ Stack rank field removed from Shared Steps work item type Thisfieldwasneverused.

Work item types
Work items are the core elements of planning and tracking within Team Foundation Server. They
identify and describe requirements, tasks, bugs, and other concepts in the application development
lifecycle. Work items track what a team and team members have to do, as well as what they have
done. Work items, and the metrics derived from them, can be visible within various queries, reports,
anddashboards.Ateamproject’snumberandtypeofworkitemsaredefinedbytheprocess
 template that was used to create it.

Aspreviouslymentioned,theVisualStudioScrum2.0processtemplatedefines10workitemtypes.
In this section, we will go through the details of each one and discuss how, when, and why to use it.

Product Backlog Item
InScrum,theProductBacklogisanordered(prioritized)listoftheoutstandingworknecessaryto
realizethevisionoftheproduct.Thislistcancontainnewthingsthatdon’texistyet(features),as
wellasbrokenthingsthattheProductOwnerwouldlikefixed(bugs).InTeamFoundationServer,the
ProductBacklogItem(PBI)workitemtypeenablestheScrumTeamtocaptureallofthesevarious
requirements with as little documentation as possible. In fact, only the titlefieldisrequired.Later,as
more detail emerges, the PBI can be updated to include business value, acceptance criteria, and the
Development Team’s latest estimation of effort. Figure 3-6 shows you an example of a PBI work item.

FIGURE 3-6 An example PBI.

68 PART I Fundamentals

As you create or edit PBI work items, consider the following notes and guidance when entering
dataintothefields:

 ■ Title (required) EnterashortdescriptionthatidentifiesthePBI.

 ■ Iteration Select the Sprint in which your team forecasts that it will develop the
PBI.Ifyouhaveyettoforecastthework,leaveitsettothedefault(root)value.

 ■ Assigned To Select the Product Owner.

 ■ State Select the state of the PBI. States are covered in the paragraph after this list.

 ■ Reason SelectthereasonthatthePBIisinthisstate.Thisfieldmayberead-onlyforsome
states.

 ■ Effort Enter a number that indicates a relative rating for the amount of work that will be
 required to develop this PBI. Larger numbers indicate more effort than smaller numbers. Story
pointsworkwellhere.T-shirtsizesdon’t,becausethisisanumericfield.

 ■ Business Value EnteranumberthatindicatesafixedorrelativebusinessvalueofthePBI.
Businessvaluecanrepresentrevenuetoberealizedfromthisfeatureorbugfix.SomeProduct
Ownerswillestablishasubjectiverangeofintegers(thatis,1–5)toindicateaspecifictypeof
businessvalue(forexample,strategicalignment,reductionincosts,competitiveadvantage,
generates revenue, generates awareness, technical value, and learning value).
The larger the integer, the more business value.

 ■ Area Select the best area path for this PBI. Areas must be set up ahead of time and can
represent functional, logical, or physical areas or features of a software product. If the
PBIappliestoallareasyourteamcoversoryouaren’tsureofthespecificsubarea,thenleave
it set to its default value. Remember that each team within a team project can have its own
 corresponding areas as well as a default area. This comes into play when creating a PBI.

 ■ Backlog Priority Enter a number that indicates the relative priority of this item. A larger
number indicates a lower priority.

 ■ Description Provide as much detail as necessary so that another team member can
 understand the purpose of the PBI. The user storyformat(Asa<type of user> I want
<some goal> so that <some reason>) works well here to ensure that a business value
proposition(the“why”)iscaptured.Youshouldavoidusingthisfieldasarepositoryfor
 detailed requirements or designs, especially prior to the Sprint that you forecasted
developing the Product Backlog item.

Note Microsoft removed the “As a <type of user> … “ default text from the
Descriptionfield.Sincenoteveryoneusestheuserstorydescriptionformat,
Microsoft removed this to make the PBI work item type even more generic.

 CHAPTER 3 Microsoft Visual Studio Scrum 2.0 69

 ■ Storyboards Add a link to one or more storyboards created using PowerPoint, Microsoft
Visio,orathird-partytoollikeBalsamiq.YoucanenteraUniversalNamingConvention(UNC)
path or a URL to the storyboard/mockup document. You cannot create a storyboard from this
screen. Also, avoid creating storyboards too early. Ideally, you would create them only during
the Sprint that you forecasted developing the PBI.

 ■ Test Cases Add a link to one or more test case work items. You can link to an existing test
caseorcreateanewoneontheflyasshowninFigure3-7.Beforeyoucancreatealinktoa
newtask,youmusthavesavedyourPBIfirst.ThelinktypefromthePBItothetestcasewill
be tested by. The reverse will be a tests link type. Avoid creating test cases too early. Ideally,
you would create them only during the Sprint that you forecasted developing the PBI.

FIGURE 3-7 Creating and linking a child task to a PBI.

 ■ Tasks Add a link to one or more task work items. You can link to an existing task or create a
newoneonthefly—solongasyouhavesavedyourPBIfirst.ThelinktypefromthePBItothe
task will be child. The reverse will be a parent link type. Avoid creating tasks too early. Ideally,
you would create them only during the Sprint that you forecasted developing the PBI.

 ■ Acceptance Criteria Describe the conditions that will be used to verify whether the team
has developed the PBI according to the Product Owner’s vision. Acceptance criteria should
beclear,concise,andtestable.Youshouldavoidusingthisfieldasarepositoryfordetailed
requirements. Bulleted items work well.

 ■ History Every time a team member updates the work item, Team Foundation Server tracks
theteammemberwhomadethechangeandthefieldsthatwerechanged.Thistabdisplays
a history of all those changes. The contents are read-only, except you can add a comment to
add to the historical record. When viewing history, you can switch between Discussion Only
(showsonlyteammembercomments)orAll Changes(showsallchangesmade).

70 PART I Fundamentals

 ■ Links Addalinktooneormoreworkitemsorresources(changeset,hyperlink,model
link, result attachment, storyboard, test result, or an item in source control). Remember that
 storyboards, test cases, and tasks are better linked on their respective tabs. This tab can be
usedtolinkPBItootherPBI(thatis,torepresentanepicPBIdecomposedintoseveralchild
PBIs).YoumayalsowanttolinkaProductBacklogitemtoaUnifiedModelingLanguage
(UML)diagramortoanImpedimentworkitem.

 ■ Attachments AttachoneormorefilesthatprovidemoredetailsaboutthePBI.Some
teams like to attach notes, whiteboard photos, or even audio/video recordings of the Product
 Backlog grooming sessions and Sprint Planning meetings here.

AProductBacklogItemworkitemcanbeinoneoffivestates:New,Approved,Committed,Done,
orRemoved.ThetypicalworkflowprogressionwouldbeNew>Approved>Committed>Done.
When a PBI is created it is in the New state with the default reason, “New backlog item.” When the
Product Owner decides that the Product Backlog item is valid, its state should be changed from
New to Approved with the reason, “Approved by the Product Owner.” When the Development
Team forecasts to deliver the Product Backlog item in the current Sprint, its state should be
changed to Committed with the reason, “Commitment made by the team.” Finally, when the PBI is
doneaccordingtotheDevelopmentTeam’sdefinition,thestateshouldbechangedtoDonewith
thereason,“Workfinished.”TheRemovedstateisusedforsituationswheretheProductOwner
 determines that the PBI is invalid for whatever reason, such as it’s already in the Product Backlog, has
already been developed, or is an utterly ridiculous idea.

Note Down the road, Microsoft may change the Committed state to Planned. This will
 better align the Visual Studio Scrum template with the Scrum Guide.

Bug
A bug communicates that a problem or potential problem exists. A bug can be found in production,
in an Increment done in a previous Sprint, or in the Increment being developed in the current Sprint.
BydefiningandmanagingBugworkitems,theScrumTeamcantrackthesebugs,aswellasprioritize
andplantheeffortstofixthem.Abugcouldbeassmallasatypoinadataentryformoraslargeas
credit card data being exposed to the public. Figure 3-8 shows you an example of a Bug work item.

InScrum,abugisjustatypeofPBI;but,theVisualStudioScrumtemplatedefinesaseparate
work item type to track bugs. The reason behind this is that a Bug work item type tracks additional,
defect-specificinformation,suchasseverity,stepstoreproduce,andsysteminformation.Otherwise,
the Bug and Product Backlog Item work item types are nearly identical. Bug work items don’t have a
businessvaluefieldoratabtoexplicitlylinkstoryboards.TheProductBacklogqueryincludesboth
 PBIs and bugs.

 CHAPTER 3 Microsoft Visual Studio Scrum 2.0 71

FIGURE 3-8 An example Bug work item.

When you create a Bug work item, you want to accurately report the problem in a way that helps
the reader to understand the full impact of the problem. The steps to reproduce the bug should
also be listed so that other team members can reproduce the behavior. There may be additional
analysis(triage)requiredtoconfirmthatitisanactualbugratherthanabehaviorthatwasbydesign.
BydefiningandmanagingBugworkitems,yourteamcantrackdefectsintheproductinorderto
 estimate and prioritize their resolution. As a general rule, bugs should be removed, not managed.

As you create or edit Bug work items, consider the following notes and guidance when entering
dataintothefields:

 ■ Title (required) Enterashortdescriptionthatidentifiesthebugthatwasfound.

 ■ Iteration SelecttheSprintinwhichyourteamforecaststhatitwillfixthebug.Ifyouhave
yettoforecastthework,leaveitsettothedefault(root)value.

 ■ Assigned To Select the Product Owner.

 ■ State Select the state of the bug. States are covered in the paragraph after this list.

 ■ Reason Selectthereasonthatthebugisinthisstate.Thisfieldmayberead-onlyforsome
states.

 ■ Effort Enter a number that indicates a relative rating for the amount of work that will be
requiredtofixthisbug.Largernumbersindicatemoreeffortthansmallernumbers.Story
pointsworkwellhere.T-shirtsizesdon’t,becausethisisanumericfield.

72 PART I Fundamentals

 ■ Severity Select the value that indicates the impact that the bug has on the product. The
rangeisfrom1(critical)to4(low).Lowervaluesindicateahigherseverity.Thedefaultvalueof
thisfieldis3(medium).

 ■ Area Select the best area path for this bug. Areas must be set up ahead of time and can
represent functional, logical, or physical areas or features of a software product. If the bug
affectsallareasthatyourteamcoversoryouaren’tsureofthespecificsubarea,thenleave
it set to its default value. Remember that each team within a team project can have its own
 corresponding areas as well as a default area. This comes into play when creating a bug.

 ■ Backlog Priority Enter a number that indicates the relative priority of this bug. A larger
 number indicates a lower priority.

 ■ Steps to Reproduce Provide as much detail as necessary so that another team member can
reproducethebugandbetterunderstandtheproblemthatmustbefixed.IfyouuseTest
Manager to create a Bug work item, this information is provided automatically from your test
case or exploratory test session.

 ■ Found in Build (System tab) Select or type the name of the build in which the defect was
found.

 ■ Integrated in Build (System tab) Select or type the name of the build that incorporates the
bugfix.

 ■ System info (System tab) Describe the software environment in which the bug was found.
If you use Test Manager to create a Bug work item, this information is provided automatically
from your test case or exploratory test session.

 ■ Test Cases Add a link to one or more Test Case work items. You can link to an existing test
caseorcreateanewoneonthefly—solongasyouhavesavedyourbugfirst.Thelinktype
from the bug to the test case will be tested by. The reverse will be a tests link type. Avoid
creating test cases too early, unless the bug was created as the result of an existing test case.
Ideally,youwouldonlycreateatestcaseduringtheSprintthatyouforecastedfixingthebug.

 ■ Tasks Add a link to one or more Task work items. You can link to an existing task or create
anewoneonthefly—solongasyouhavesavedyourbugfirst.Thelinktypefromthebug
to the task will be child. The reverse will be a parent link type. Avoid creating tasks too early.
Ideally,youwouldcreatethemonlyduringtheSprintthatyouforecastedfixingthebug.

 ■ Acceptance Criteria Describe the conditions that will be used to verify whether the team
hasfixedthebugaccordingtotheProductOwner’svision.Acceptancecriteriashouldbeclear,
concise,andtestable.Considerusingthisfieldtodocumenttheexpectedresults,asopposed
to the actual results.

 ■ History Every time a team member updates the work item, Team Foundation Server tracks
theteammemberwhomadethechangeandthefieldsthatwerechanged.Thistabdisplays

 CHAPTER 3 Microsoft Visual Studio Scrum 2.0 73

a history of all those changes. The contents are read-only, except you can add a comment to
add to the historical record. When viewing history, you can switch between Discussion Only
(showsonlyteammembercomments)orAll Changes(showsallchangesmade).

 ■ Links Addalinktooneormoreworkitemsorresources(changeset,hyperlink,modellink,
result attachment, storyboard, test result, or an item in source control). Remember that test
cases and tasks are better linked on their respective tabs. This tab can be used to link to this
bug to a related bug, link to an article on MSDN or TechNet explaining the root cause, link to
the original PBI that failed, or even link to a parent PBI that serves to gather several bugs into
onecollective“fix”userstory.YoumayalsoneedtolinkabugtoanImpedimentworkitem.

 ■ Attachments Attachoneormorefilesthatprovidemoredetailsaboutthebug.Thiscould
include screenshots, action recordings, and video. If you use Test Manager to create a Bug
work item, then this type of information is provided automatically.

ABugworkitemcanbeinoneoffivestates:New,Approved,Committed,Done,orRemoved.These
arethesamestatesasaPBI.ThetypicalworkflowprogressionwouldbeNew>Approved>
Committed>Done.Whenabugisreportedanddeterminedtobegenuine(forexample,it’snot
a feature, duplicate, or training issue), a new Bug work item is created in the New state with the
 default reason, “New defect reported.” The reason could also be due to a Build failure if it was created
 automatically from a failed build. When the Product Owner decides that the bug is valid, its state should
be changed from New to Approved with the reason, “Approved by the Product Owner.” When the
DevelopmentTeamforecaststodeliverthebugfixinthecurrentSprint,itsstateshouldbechangedto
Committed with the reason, “Commitment made by the team.” Finally, when the bug is done according to
theDevelopmentTeam’sdefinition,thestateshouldbechangedtoDonewiththereason,“Workfinished.”
The Removed state is used for situations where the Product Owner determines that the bug is invalid for
whatever reason, such as it’s already in the Product Backlog, it’s actually a feature, it’s a training issue, or it
hadalreadybeenfixedinapreviousSprintbutnotyetreleased.

Task
A Task work item represents a piece of detailed work that a Development Team member must
accomplishwhendevelopingaPBIorfixingabug.Anotherwaytothinkofitisthatallofthetasks
form the Development Team’s plan for achieving their Sprint goal. These tasks, along with their asso-
ciated Product Backlog items and bugs, form the Sprint Backlog. A task can be design, development,
testing, documentation, requirements, or deployment in nature. For example, the team can identify
and create Task work items that are development-focused, such as implementing an interface or cre-
ating a database table. They can also create testing-focused tasks, such as creating
and running test cases. Figure 3-9 shows you an example of a Task work item.

Note Tasks are typically created during Sprint Planning. These tasks are decomposed and
additional tasks are added throughout the Sprint as work emerges.

74 PART I Fundamentals

FIGURE 3-9 An example Task work item.

As you create or edit Task work items, consider the following notes and guidance when entering
dataintothefields:

 ■ Title (required) Enter a short description that provides a concise overview of the area of
work in the task. The title should be descriptive enough to allow the team to understand what
area of the product is affected and how it is affected.

 ■ Iteration Select the Sprint in which your team will be working on this task. The Sprint should
be the same as the associated PBI or bug.

 ■ Assigned To Select the developer who is responsible for ensuring that this task is completed.
Leave it blank until someone starts working on it. A task can be assigned to only one
 developer. If two developers pair up on a task, one of them must become the owner. If mul-
tiple developers work on a task individually, consider decomposing it into subtasks and ensure
that a developer owns each one.

 ■ State Select the state of the task. States are covered in the paragraph after this list.

 ■ Reason Selectthereasonthatthetaskisinthisstate.Thisfieldmayberead-onlyforsomestates.

 ■ Blocked Select Yes if this task is blocked from being accomplished. The source of the
blockageshouldbeidentified,eitherasanoteinhistoryorbyaddinganAffected By link
to the related Impediment work item. A blocked task shows up on the Blocked Tasks query
(assumingthatitsstateisnotsettoRemoved).

 ■ Remaining Work Enter the number of hours that you estimate it will take to complete this
task. Ideally, this should be 8 hours or less. If a task is going to take longer than 8 hours, you

 CHAPTER 3 Microsoft Visual Studio Scrum 2.0 75

shouldconsiderdecomposingitintosubtasks.Besuretoupdatethisfieldasyouworkonand
complete your tasks. In fact, you should update your remaining work estimates daily for all of
yourtasks.Theburndownchartsandreportsdependonthisfield.

 ■ Backlog Priority Enter a number that indicates the priority of this task relative to other
tasks. Smaller numbers indicate higher priority than larger numbers. The backlog priority
reflectstheexecutionorderandanytechnicaldependencies.

 Smell It’s a smell when I see that a team is using the Backlog Priorityfieldon
tasks. It could be nothing more than a very tricky set of tasks to navigate a
complexsetofdependencies.Myfear,however,isthatthepriorityfieldisbeing
used instead of collaboration with the other developers. Maybe it’s just used
to document such collaboration, which is great. A greater fear is that a “lead”
 developer is setting the priority values as a way to command and control the
team.High-performanceDevelopmentTeamsmaynotneedthisfield,asthey
continuously synchronize and collaborate with each other.

 ■ Activity Select the type of activity that the task represents. The choices are Deployment,
Design,Development,Documentation,Requirements,andTesting.Thisfieldallowsforqueries
andcapacityplanningtoolstofilterbyactivity.

Smell It’s a smell when I see that a team is usnig the Activityfieldontasks.Scrum
developers know that everything they do is considered a development activity,
sousingthisfieldseemslikeawaste.Myfearisthatteammemberswillbecome
conditioned to looking for their favorite type of task. For example, someone
with a background in testing may just naturally look for unassigned testing tasks,
and that’s not necessarily what is best for the team’s productivity. A greater fear
is that others, not necessarily on the Development Team, will begin using the
 activity type for resource planning or assigning work!

 ■ Area Select the best area path for this task. Typically, the area will be the same as the
 associated PBI or bug.

 ■ Description Provide as much detail as necessary so that another team member can
understandthenatureofworktobeperformedinthistask.Thisfieldcanalsobeusedto
document task-level acceptance criteria. Some teams like to track this for particularly complex
tasks.

 ■ History Every time a team member updates the work item, Team Foundation Server tracks
theteammemberwhomadethechangeandthefieldsthatwerechanged.Thistabdisplays
a history of all those changes. The contents are read-only, except you can add a comment to
add to the historical record. When viewing history, you can switch between Discussion Only
(showsonlyteammembercomments)orAll Changes(showsallchangesmade).

76 PART I Fundamentals

 ■ Links Addalinktooneormoreworkitemsorresources(changeset,hyperlink,modellink,
result attachment, storyboard, test result, or an item in source control). You may want to link
larger tasks to smaller, child tasks as you decompose your work. You might also want to link
a blocked task to the impediment that describes the blockage using an Affected By link type.

 ■ Attachments Attachoneormorefilesthatprovidemoredetailsaboutthetask.

A Task work item can be in one of four states: To Do, In Progress, Done, or Removed. The typical
workflowprogressionwouldbeToDo>InProgress>Done.Whenataskiscreated,itisintheTo
Do state with the default reason, “New task.” When a developer begins working on a task, the state
shouldbesettoInProgresswiththereason,“Workstarted.”Whenthetaskisfinished,thestate
shouldbesettoDonewiththereason,“Workfinished.”TheRemovedstateisusedforsituations
where the Development Team determines that the task is invalid for whatever reason, such as it
doesn’t apply anymore or it was a duplicate.

Test Case
TheDevelopmentTeamusesTestCaseworkitemstodefinemanualandautomatedtests.Testcases
allowateamtofurtherdefinetheacceptancecriteriaofaPBIorbugintheformofexecutableand
verifiableacceptanceteststeps.Testcasesmaybedefinedatahighlevelinitiallyandwillemerge
throughout the Sprint as the test steps are added, test runs are executed, and recordings are
 associated.

Test Case work items can be created within Team Explorer, Team Web Access, and other client
 applications. Test Manager, however, is considered a better tool to use because it gives full access to
the test steps and allows you to create and associate Shared Step work items. Figure 3-10 shows you
an example of a Test Case work item.

FIGURE 3-10 An example Test Case work item.

 CHAPTER 3 Microsoft Visual Studio Scrum 2.0 77

As you create or edit Test Case work items, consider the following notes and guidance when
enteringdataintothefields:

 ■ Title (required) Enter a short phrase that describes the criteria to test. A naming convention
that you could consider using is Verify [{criteria/qualification} for] PBI ID and Title. The
 {qualification} is optional but can be used to distinguish multiple test cases on the same PBI.
For example, “Verify the Twitter feed includes #TailspinToys hashtag for 1: Add a Twitter
feed to the homepage.” Another example might be, “Verify Permissions for 42: User Obtains
 Ownership.”

 ■ Iteration SelecttheSprintinwhichthetestcasewillbedefinedandrun.TheSprintshould
be the same as the associated PBI or bug.

 ■ Assigned To Selectthedeveloperwhoisresponsiblefordefiningthetestandensuringthat
it is run. Leave it blank until someone starts working on it.

 ■ State Select the state of the test case. States are covered in the paragraph after this list.

 ■ Priority Selectthelevelofimportanceforthetestcaseonascaleof1(mostimportant)to4
(leastimportant).Thedefaultvalueis2.

 ■ Automation Status Leavethedefaultvalue(Not Automated) if this test case is a manual
test, or select Planned if you plan to automate this test case in the future. Later, when you add
anautomatedtesttoyourtestcase,thisfieldgetssettoAutomated.

 ■ Area Select the best area path for this test case. Typically, the area will be the same as the
 associated PBI or bug.

 ■ Steps UseTestManagertodefinetheindividualteststepactionsandexpectedresults.You
canaddteststepsbycopyingandpastingfromMicrosoftExcel,Word,orfromaplaintextfile
that has a tab-delimited list of actions and expected results. Each step can include an attached
filethatprovidesmoredetails,suchasascreenshot.YoucanalsouseaSharedStepsworkitem
to simplify the creation and management of test cases.

 ■ Description (Summary tab) Provide as much detail as necessary so that another team
 member can understand the purpose of the test case.

 ■ History (Summary tab) Every time a team member updates the work item, Team Foundation
Servertrackstheteammemberwhomadethechangeandthefieldsthatwerechanged.Thistab
displays a history of all those changes. The contents are read-only, except you can add a comment
to add to the historical record. When viewing history, you can switch between Discussion Only
(showsonlyteammembercomments)orAll Changes(showsallchangesmade).

 ■ Tested Backlog Items Add a link to one or more PBIs or bugs that this test case tests. You can
linktoanexistingworkitemorcreateanewoneonthefly,asshowninFigure3-11.Beforeyou
cancreatealinktoanewworkitem,youmustsaveyourtestcasefirst.Thelinktypefromthetest
case to the PBI or bug will be tests. The reverse will be a tested by link type. If you use Test Manager
to create a test case from a requirements-based test suite, the new test case will automatically be
linked to the requirement.

78 PART I Fundamentals

FIGURE 3-11 Linking a test case to an existing Product Backlog item PBI.

 ■ Links Addalinktooneormoreworkitemsorresources(changeset,hyperlink,result
 attachment, storyboard, test result, or an item in source control). Remember that Product
Backlog Item and Bug work items are better linked on the Tested Backlog Items tab. For
 example, you may want to link the test case to a bug discovered while running the test.

 ■ Attachments Attachoneormorefilesthatprovidemoreinformationaboutthetestcase.

 ■ Associated Automation Add an automated test that you wish to associate with this test
case.Tofindtheautomatedtestname,clicktheellipsis(…)button.Allthetestsinthecurrently
loaded test project or solution are shown in the list. If a test case already has an automated
test associated with it, you must remove this association before you can add a different test.
YoumustberunningVisualStudio(notTestManager)toassociateanautomatedtest.Also,
when a test case is automated, you can’t edit the steps. This is because the automated test
method will run instead.

ATestCaseworkitemcanbeinoneofthreestates:Design,Ready,orClosed.Thetypicalworkflow
progressionwouldbeDesign>Ready>Closed.WhenaTestCaseworkitemiscreated,itisinthe
Design state with a default reason, “New.” After the test case details have emerged, steps have been
added, and the test case is ready to be run, its state should be changed to Ready with the reason of
“Completed.” When a test case is no longer required, its state should be changed to Closed with an
applicable reason, such as testing has been deferred, the test case is duplicated, or the test case is
obsolete.

Impediment
The Impediment work item is a report of any situation that blocks the team or a team member from
completingworkefficiently.BydefiningandmanagingImpedimentworkitems,aScrumTeamcan
identifyandtrackproblemsthatareblockingit.Impedimentsaretypicallyidentifiedduringthe
Daily Scrum and recorded by the Developer who raised it or Scrum Master, but they can actually be

 CHAPTER 3 Microsoft Visual Studio Scrum 2.0 79

inspected and recorded at any time, by anyone. The Scrum Master is responsible for facilitating the
resolution of impediments, as well as improving team productivity. As a general rule, impediments
should be removed, not managed. Figure 3-12 shows you an example of an Impediment work item.

FIGURE 3-12 An example Impediment work item.

As you create or edit Impediment work items, consider the following notes and guidance when
enteringdataintothefields:

 ■ Title (required) Enter a short phrase that accurately and succinctly describes the issue.

 ■ Iteration Select the Sprint in which this impediment occurred.

 ■ Assigned To Select the user who will be responsible for resolving the impediment. If not
you, then typically this is the Scrum Master.

 ■ State Select the state of the impediment. States are covered in the paragraph after this list.

 ■ Reason Selectthereasonthattheimpedimentisinthisstate.Thisfieldmayberead-onlyfor
some states.

 ■ Priority Selectthelevelofimportancefortheimpedimentonascaleof1(mostimportant)
to4(leastimportant).Thedefaultvalueis2.

 ■ Area Select the best area path for this impediment. Typically, the area will be the same as
the associated Product Backlog item or bug. If the impediment applies to all areas your team
coversoryouaren’tsureofthespecificsubarea,thenleaveitsettoitsdefaultvalue.

 ■ Description Provide as much detail as necessary so that another user can understand the
impediment and its impact.

 ■ Resolution Provide as much detail as necessary to describe how the impediment was resolved.

80 PART I Fundamentals

 ■ History Every time a team member updates the work item, Team Foundation Server tracks
theteammemberwhomadethechangeandthefieldsthatwerechanged.Thistabdisplays
a history of all those changes. The contents are read-only, except you can add a comment to
add to the historical record. When viewing history, you can switch between Discussion Only
(showsonlyteammembercomments)orAll Changes(showsallchangesmade).

 ■ Links Addalinktooneormoreworkitemsorresources(changeset,hyperlink,modellink,
result attachment, storyboard, test result, or an item in source control). For example, you may
want to link this impediment to one or more blocked tasks .

 ■ Attachments Attachoneormorefilesthatprovidemoredetailsabouttheimpediment.

An Impediment work item can be either Open or Closed. When an impediment is created, it is
in the Open state with the reason, “New impediment.” When the impediment is removed, the state
should be set to Closed with the reason, “Impediment removed.”

Hidden work item types
Team Foundation Server 2012 introduces the concept of a hidden work item type. Work item types
that are in this category are not able to be created from the standard user interfaces, such as the New
Work Item drop-down list in Team Explorer or in Team Web Access. The reasoning behind this is that
there are specialized tools in Visual Studio for creating and managing these types of work items. The
hidden work item types are:

 ■ Code Review Request

 ■ Code Review Response

 ■ Feedback Request

 ■ Feedback Response

 ■ Shared Steps

CodeReviewworkitemtypesarecreatedandmanagedusingdedicatedpages(hubs)inTeam
Explorer. Feedback work item types are created and managed using the Feedback client. Shared Steps
are created and managed using Test Manager. Microsoft knew that we wouldn’t be creating these
work item types outside the context of these specialized tools, so they did us a favor and hid them
from the various menus where we create work items. You can see this behavior in Figure 3-13.

FIGURE 3-13 The Microsoft tools know not to show hidden work item types.

 CHAPTER 3 Microsoft Visual Studio Scrum 2.0 81

Note These hidden work item types will be discussed in the context of those tools in later
Chapter 7, ”Acceptance Test Driven Development”, and Chapter 8, ”Effective Collaboration”.

Work item queries
Work item queries allow you to view, understand, and manage your workload. By running the
 appropriate query, you can identify the Product Backlog Items, Bugs, Tasks, Impediments, and other
work items that pertain to you or your team. You can then decide on which of these work items to
take action. For example, the Product Owner can view and manage the PBIs and bugs in the Product
Backlog by running the Product Backlog query, and the Development Team can inspect the plan for
achieving the Sprint Goal by running the Sprint Backlog query.

You can run queries from within Visual Studio or Test Manager, which is convenient when you are
working on development tasks. Queries can also be run from Team Web Access, the project portal
(SharePoint),Excel,Project,andvariousotherMicrosoftandthird-partyapplications.

Team projects based on the Visual Studio Scrum process template contain several default queries.
These are available as shared queries, meaning that the whole team can access them. You can see
these shared queries listed in Team Explorer in Figure 3-14 and explained in Table 3-3. You can also
create additional queries, making them shared or private.

FIGURE 3-14 The default shared queries in a Visual Studio Scrum team project.

You can organize your queries by using folders and subfolders. For shared queries, you can
set permissions on those folders and queries to enable or restrict access. You can set permissions
for individual users, Windows groups, or Team Foundation Server groups. Only those users with
 appropriate permissions can view, edit, delete, copy, or manage the query folders and team queries.
By default, there is only one folder under Team Queries. It is the Current Sprint folder.

82 PART I Fundamentals

TABLE 3-3 Default shared queries in a Visual Studio Scrum.

Query Purpose

Product Backlog Lists PBIs and bugs that are not Done or Removed for any iteration
path(notjusttheroot).Workitemsaresortedbypriorityandeffort.

Feedback Lists active feedback responses.

Current Sprint\Blocked Tasks Lists tasks in the current Sprint that are blocked and not in the
Removed state.

Current Sprint\Open Impediments Lists impediments in the current Sprint that are in the Open state.

Current Sprint\Sprint Backlog Lists PBIs, bugs, and their linked tasks that your team has forecasted for
the current Sprint. Tasks in the Removed state are not included.

Current Sprint\Test Cases Lists test cases for the current Sprint.

CurrentSprint\UnfinishedWork Lists PBIs, bugs, and their linked tasks that your team has forecasted
for the current Sprint. Tasks in the Removed and Done state are not
included. This query is very similar to the Sprint Backlog query, except
that it omits tasks that are done.

Current Sprint\Work in Progress Lists tasks for the current Sprint that are in the In Progress state.

Unfortunately, Current Sprint is just a folder name. The queries inside don’t contain any magical
 automation to know what the current Sprint is. As a result, someone on the team will need to
 manually update each of the queries at the start of each Sprint, changing the Iteration Path value to
the next Sprint, as I’m doing in Figure 3-15. If you have created any other custom queries that run for
the current Sprint, they will need to be updated as well.

FIGURE 3-15 Manually changing the Iteration Path of a Current Sprint query.

 CHAPTER 3 Microsoft Visual Studio Scrum 2.0 83

Microsoft knows that this is a pain. They have a feature on their own backlog for something they
call “team-based macros.” These macros would be similar in functionality to the @Today and @Me
macrosavailableintheWorkItemQueryLanguage(WIQL).Theyareconsideringa
@Team.CurrentIteration, which would get substituted during query execution.

Tip Fellow Scrum Developer Mark Michaelis has come up with a good trick to reduce
theamountofeffortrequiredtofixthesequeries.Essentially,youwouldcreateafictitious
Iteration Path at the release level named “Current.” You would then edit each of the current
Sprint queries, changing their Iteration Path criteria to be Under that Current node you
just created. This would be the last time you had to edit these queries. At the start of
each new Sprint, you would return to the Iterations control panel page and drag the
new Sprint up under the Current node. You would then drag the old Sprint out. It’s a
pretty slick trick, although you may have to alter the way you run reports. You can read
Mark’s full blog post here: http://intellitechture.com/transitioning-between-sprintsiterations-
with-tfs.

Reports
Reports allow you to quickly assess the progress and quality of your software product being
 developed. The reports in Team Foundation Server summarize the metrics from work items, source
control, test results, and automated builds. Reports can tell you how fast your team is working from
Sprint-to-Sprint based on the burndown of actual tasks and PBIs.

Team projects based on the Visual Studio Scrum process template contain four Scrum reports: Backlog
Overview, Release Burndown, Sprint Burndown, and Velocity. They also include four engineering reports:
Build Success Over Time, Build Summary, Test Case Readiness, and Test Plan Progress.

Note As of this writing, the hosted Team Foundation Service does not support reports.
Although the service uses SQL Azure, it does not yet leverage SQL Azure Reporting.
Microsoft may add this support in the future.

Backlog Overview report
The Backlog Overview report is a new report added to the Visual Studio Scrum 2.0 template. This
 report is essentially a Scrum version of the popular User Stories Overview report from the MSF
for Agile Software Development process template. It has been tweaked, of course, to work with
 PBIS rather than user stories. Another difference is that this report doesn’t indicate any number or
 percentage of actual hours completed.

The Backlog Overview report helps you track the progress of each of your PBIs. In addition to
 listing the PBIs, it shows the number of related task hours in To Do and In Progress states as the
numberoftestpointsandresults(passed,failed,ornotrun).Thisreporthelpsateamassesstheir

http://intellitechture.com/transitioning-between-sprintsiterations-with-tfs

84 PART I Fundamentals

progress toward completing their Sprint Goal by summarizing how much work remains for each
 Backlog item, as well as its quality as determined by passing and failing test cases.

Release Burndown report
The Release Burndown report indicates how quickly the Development Team is completing work and
delivering PBIs. The primary use of this report is for planning when to schedule a release and to track
the team’s progress toward delivering on its goals. The graph in this report shows how much work
remained at the start of each Sprint in a release. The source of the raw data is your Product Backlog.
EachSprintappearsalongthehorizontalaxis,andtheverticalaxismeasurestheeffort(thatis,story
points) that remained when each Sprint started.

Sprint Burndown report
The Sprint Burndown report indicates the Development Team’s progress against the forecasted work
for the Sprint. By reviewing this report, you can track how much work remains in the Sprint Backlog,
seehowquicklytasksarebeingcompleted,andpredictwhentheteamshouldfinishitsforecasted
work.ThegraphshowshowmuchworkremainedattheendofspecifiedintervalsduringaSprint.
The source of the raw data is your Sprint Backlog. The horizontal axis shows days in a Sprint, and the
 vertical axis measures the amount of work that remains to complete the tasks in the Sprint. The work
that remains is shown in hours.

The ideal trend line indicates an ideal situation in which the Development Team burns down
all of the tasks that remain at a constant rate by the end of the Sprint. You can think of this line
representingthebest(steadyandsustainable)rateofprogress.Thebulkoftheburndownshows
tasks,eitherinprogress(lightercolored)ortodo(darkercolored).Bothtypesofdataarebasedon
the actual progress of your Development Team as it works on tasks in the Sprint Backlog.

Velocity report
The Velocity report shows a graph of the amount of effort that your team has completed in each
Sprint. The data comes from the PBIs and bugs completed in prior Sprints. The horizontal axis
representsSprints,andtheverticalaxismeasurestheeffort(thatis,storypoints)foreachworkitem
where the state was Done. In addition to showing how much effort the Development Team has
completed each Sprint, this report shows the team’s minimum, maximum, and average Velocity across
Sprints.

SomeDevelopmentTeamscanusethisaverageVelocitynumber(oraderivativeofit)when
 forecasting the amount of work they can complete in the next Sprint. Release planning can also make
useofthisvaluetomoreaccuratelyknowwhenthereleasewillbe,orwhatwillbeinitbyaspecific
date. Empirical data such as this provides the most accurate approach to estimation.

 CHAPTER 3 Microsoft Visual Studio Scrum 2.0 85

Build Success Over Time report
The Build Success Over Time report provides a graphical variation of the Build Summary report. The
Build Success Over Time report displays the status of the last build for each build category run for
each day. You can use this report to help track the quality of the code that the team is checking in. In
addition, for any day on which a build ran, you can drill down and view the Build Summary report.

The report data is derived from the build information in the data warehouse. The report
summarizesbuildandtestresultsforeachcombinationofbuilddefinition(buildname),platform
(x86,AnyCPU,andsoon),andconfiguration(debug,release,andsoon).Ataglance,youcansee
whichconfigurations:

 ■ Had a successful build

 ■ Had a successful build with passing tests

 ■ Had a successful build with failing tests

 ■ Had a successful build without any tests

 ■ Had low test coverage

 ■ Had a failed build

 ■ Had no build

Build Summary report
The Build Summary report lists builds and provides information about test results, test coverage, code
churn, and quality notes for each build. The report data is derived from the build information in the
data warehouse and presents a visual display of the percentage of tests that are passing, code that is
being tested, and code that is changing across several builds. The report lists the most recent builds
firstandcontainsbuildresultsthatwerecapturedduringtheprovideddaterangeforallbuildsthat
wererun.Ataglance,youcandeterminethesuccessorfailureofseveralbuilddefinitionsforthetime
period provided.

You can use this report to see the status of all builds over time, including which build succeeded,
failed,andpartiallysucceeded.Youcanalsoseewhichbuildsindicatedasignificantnumberof
changestothecode(codechurn).Ifthebuildwasconfiguredtotrackcodecoverage,thereportwill
show how much of the code was exercised by the tests. All of this information can help make the
decision of whether the build is ready to be promoted to another environment, such as production.

Test Case Readiness report
TheTestCaseReadinessreportcanbeusedtodeterminehowmanytestcaseshavebeendefined
and are ready to run. This report is useful to run during the Sprint, after the Development Team starts
creating test cases. The report helps you track how many test cases are ready to be run, showing the
number of test cases in the Design or Ready state.

86 PART I Fundamentals

When someone creates a test case, it is automatically set to the Design state. After it is determined
that the test case is valid and ready to be run, its state should be changed to Ready. By reviewing this
data, you can determine how quickly the team is designing test cases and making them ready for
testing.

Test Plan Progress report
The Test Plan Progress report tracks the team’s testing progress. This report is useful after the team
has created test cases and has started running tests using Test Manager. The report presents an area
graphshowingthemostrecentresultofrunninganytestinthespecifiedtestplanovertime.Ideally,
this report shows a steady progress in test plans running and passing. The number of test cases may
remain fairly static, but hopefully, the number of passing test cases increases and the numbers of test
casesinotherstates(Failed,Inconclusive,Blocked,NeverRun,orPending)shoulddecrease.

This report helps a team understand how much testing they have completed and still have to do.
It also shows them how many tests are passing, failing, or blocked. This aggregation of information
will help the team know if they are likely to achieve their goals before the end of the Sprint.

Common customizations
The Visual Studio Scrum process template is a basic process template. It is intended to support the
core rules of Scrum and does not contain many extras. For example, it does not contain as many
engineeringreportsandadditionalworkitemfieldsastheotherMicrosoftprocesstemplatesdo.This
minimalism was by design and has served Scrum Teams well thus far.

With that in mind, there are some instances where teams may want to customize the Visual Studio
Scrum process template. Most customizations apply to work item types. Here are some examples
 collected over the years from various teams and consultants:

 ■ Add a TeamfieldtotheProductBacklogItemandBugworkitemtypetoindicatewhich
 subteam owns it.

 ■ Add an EpicfieldtotheProductBacklogItemtypetoindicatethattheitemistoolargetobe
developed in one Sprint and needs to be decomposed.

 ■ Change the Assigned To label to read Owned By.

 ■ Add a new Ready for Estimation state to the Product Backlog Item type.

 ■ Add a new Groomed or Ready For Sprint state to the Product Backlog Item type.

 ■ Add a new state transition for the Impediment work item type to allow Closed impediments to
be reopened.

 ■ Add a Technical Value or Learning ValuefieldtotheProductBacklogItemworkitemtype.

 ■ Change the Committed state to Forecasted to more closely match the Scrum Guide.

 ■ Add more options to the state change Reason list for various work item types.

 CHAPTER 3 Microsoft Visual Studio Scrum 2.0 87

 ■ Add a Business ValuefieldtotheBugworkitemtype.

 ■ Add a Storyboards tab to the Bug work item type.

 ■ Remove the ActivityfieldfromtheTaskworkitemtype.

 ■ AddacustomizedDefinitionof“Done”(DoD)controltotheProductBacklogItemandBug
work item types.

 ■ Modify the Blocked Tasks query to include linked Impediment work items that describe the
blockage.

 ■ Create a Sprint work item type to track the Sprint Goal and Retrospective notes.

 ■ Add a Remaining WorkfieldtotheProductBacklogItemandBugworkitemtypestostorethe
manually rolled-up sum of any child task Remaining Work values.

 ■ AdddefaultuserstoryDescriptiontext(“Asa<type of user> I want <some goal> so that
<some reason>”) to the Product Backlog Item work item type. Microsoft removed this in Visual
Studio Scrum 2.0

 ■ Add default text to the Product Backlog Item and Bug work item type Acceptance
 Criteriafieldstosuggesta“given-when-then”Behavior-DrivenDevelopment(BDD)or
“ given-when-then-fail” format.

 ■ Add default text to the Bug work item type Systemfieldtoserveasatemplateforwhatshould
be entered.

 ■ Add an Expected ResultsfieldtotheBugworkitemtypetouseinsteadoftheAcceptance
Criteriafield.

 ■ Grant the Contributors group additional permissions so that anyone on the Development
Team can thoroughly manage the team project.

 ■ Add a custom report such as a Product Backlog Item Sprint Burndown report, Business Value
Burn-Up report, or Earned Value report.

 ■ Change the initial Release and Sprint(iterationpath)nodesautomaticallycreated.

Tip Use the process template the way that it was designed for a few Sprints before
 customizing anything. I’ve seen teams want to immediately make their new team project
look and behave like their last team project. For example, the Original Estimate and
Completed(hours)fieldsinanMSF/AgileteamprojectwereremovedfromtheScrum
 process template for a reason: tracking original estimates and actual hours are not of value
in Scrum development. Just know what you are doing and why you are doing it before making
any “improvements.” Don’t inadvertently change the rules of Scrum by customizing the tool.

88 PART I Fundamentals

Let’s focus for a minute on customizing work item types and related artifacts. If you are making
a change to a single team project, then go ahead and use the Process Editor tool found in the Team
FoundationServerPowerToolsormanuallyedittheXMLfiles.Ifyouplanonapplyingthosechanges
to multiple team projects, I’d consider using the witadmin.exe command-line utility to script the
importing of the customized work item type to the applicable team projects. If you plan on using the
customized work item type in all future team projects, you will need to update the process template
with the customized type. Remember that any changes you make to a process template after you
have created a team project won’t have an effect on the team project.

Here is a recap of this guidance:

 ■ To modify a single team project, use the Process Editor or witadmin.exe to export, edit, and
importtheworkitemtypedefinitions,linktypes,orcategories.

 ■ Tomodifymultipleteamprojects,firstmaketherespectivechangesperabove,andthenuse
witadmin.exe to script the importing of those changes to the other team projects.

 ■ TomodifytheVisualStudioScrumprocesstemplate,eithermodifytheXMLfilesmanuallyor
use the Process Editor, saving the changes back to Team Foundation Server.

Note As of this writing, the hosted Team Foundation Service does not allow process
templatestobecustomizedorateamproject’sworkitemtypedefinitionstobechanged.
Microsoft may add this support in the future.

Chapter burndown

Here are the key concepts we covered in this chapter:

 ■ Visual Studio Scrum 2.0 Microsoft has updated this very popular process template and
made it the default template for both the on-premises Team Foundation Server and hosted
Team Foundation Service.

 ■ What’s new in Visual Studio Scrum 2.0 There is support for the new features in Visual
 Studio 2012, such as code review, stakeholder feedback, and storyboarding.

 ■ What’s changed in Visual Studio Scrum 2.0 The Product Backlog query now returns all
Sprints.Youcanresolveataskduringcheck-in.Therearemorefieldsreportedtothedata
warehouse. Reports use iteration path dates rather than Sprint work items.

 ■ What’s removed in Visual Studio Scrum 2.0 The Sprint work item and default check-in
notes have been removed.

 ■ Work item types The Product Backlog Item and Bug work item types together make up the
Product Backlog. Tasks and Test Cases should be created and linked only during the Sprint in
which you are working on their parent PBIs or bugs.

 CHAPTER 3 Microsoft Visual Studio Scrum 2.0 89

 ■ Queries You will have to update your Current Sprint queries manually each Sprint.

 ■ Reports A new Backlog Overview report has been added. This report was based on the very
useful User Stories Overview report from the MSF/Agile process template.

 ■ Customizations There are many possible customizations you can make. Ensure that you are
doing so for a good reason and that it does not implement a dysfunction.

 91

PART II

Using Scrum

CHAPTER 4 The Pre-Game. .93

CHAPTER 5 The Backlog. .127

CHAPTER 6 The Sprint .169

CHAPTER 7 Acceptance Test-Driven Development.197

CHAPTER 8 Effective Collaboration .227

In this part of the book, I will begin demonstrating how to use Scrum
and Microsoft Visual Studio 2012 together effectively. The previous
part established a baseline understanding of the three areas of
knowledge required before proceeding: Scrum, Team Foundation
Server, and the Visual Studio Scrum process template. Over the next
severalchapters,youwillseehowthesethreefittogetherandhowa
team can optimize their use to deliver maximum business value in the
form of working software.

We will begin with the discussion and activities surrounding
product planning. This will take us up to the beginning of the
firstSprint.Irefertothiscollectionofactivitiesasthepre-game.
Everything from envisioning the product, provisioning the
Team Foundation Server environment, setting up the team
 project, organizing the team, building and grooming the
ProductBacklog,andpreparingforthefirstSprintfallsintothe
 pre-game. As you can imagine, there’s a lot in the pre-game.
We will stay focused on the intersection of Scrum and Visual

PART II

Using Scrum

C H A P T E R 4

The pre-game

Setting up the development environment

Team Foundation Server: Buy vs. buildCreate a team
project collection

ConfigureTeamFoundationBuild

ConfigureLabManagement

Setting up product developmentCreate a team project

Source controlAutomated builds

Project portal

Reports

Security groups

Teams

Chapter burndown

Studio 2012. There are other, more suitable books on the market
to explain the intricacies of establishing a new software project.

The remaining chapters will follow the rules of Scrum very
closely as I establish how a Scrum Team works within a Sprint
using the relevant tools found in Visual Studio 2012. At times,
I will focus on using Team Foundation Server to plan and track
a Sprint and the daily work. Other times, I will focus on the
 engineering tools found in Visual Studio 2012 to demonstrate
how developers can collaborate effectively to maximize the
quality of the code and the product. I will continue to use the
Tailspin Toys case study to give examples of how a team might
use the many options available.

Tip High-performance Scrum Teams take the “let the
team decide” mantra seriously, and they don’t abuse
it. These teams have learned to effectively live within
the balance of increasing value in the product with
 decreasing waste in the process.

 93

C H A P T E R 4

The pre-game

In the game of rugby, or any professional sport for that matter, there are many activities that must
be performed prior to kickoff: prior games are analyzed, sponsors are secured, stakeholder input is
provided,rulesgetre-explained,playingfieldsgetselected,calendardatesgetnegotiated,teamsget
selected, and player positions get designated. Scrum software development projects also have
a pre-game, where many of these same types of activities are performed. The Scrum pre-game is
thetimeperiodwhenthevisionisestablishedallthewayuptothebeginningofthefirstSprint.
The pre-game is not time-boxed, and not all projects make it out of the pre-game.

Therearemanyimportantactivitiesthatcanbeperformedduringthepre-game(inno
particular order):

 ■ Establish the vision, scope, and business goals of the product.

 ■ Identify product sponsors and stakeholders.

 ■ EstablishtheScrumTeam(ProductOwner,ScrumMaster,DevelopmentTeam).

 ■ Establishthesoftwaredevelopmentenvironment(thatis,installTeamFoundationServer).

 ■ Educate individuals on the rules of Scrum.

 ■ EducateindividualsontheApplicationLifecycleManagement(ALM)toolsinMicrosoftVisual
Studio.

 ■ Definethehigh-levelproductrequirements.

 ■ Create the initial Product Backlog.

I recognize that some of the activities I outline in this chapter are considered to be execution
in nature as opposed to preparation. An example of an execution activity would be installing and
configuringTeamFoundationServer.SomeScrumTeamsprefertodothesekindsofactivitiesduring
an actual Sprint, where a timebox and an engaged Product Owner help to prioritize and order the
work. Since many of the activities I outline in this chapter are executed one time only and must
be performed before development using Team Foundation Server can occur, I have lumped them
 together into the pre-game.

94 PART II Using Scrum

Smell It’s a smell when I see a team spending too much time setting up their environment.
Developersdonotneedthemostawesomeconfigurationoftoolseverconceivedprior
totheirfirstSprint.Justastheirsoftwareproductwillevolve,sowilltheirALMtools
and environment. If a team has historically procrastinated getting started on a new
 project, consider executing these activities in Sprint 1. This forces the team to produce an
 increment of working functionality in the same Sprint that they set up their environment.

Note Theconceptofthepre-game(or“Sprint0”assomecallit)doesnotexistinthe
Scrum Guide. Whatever the team wants to calls it, they are not yet using Scrum. Because of
this, most of the pre-game activities I listed above will be out of the scope of this chapter.
I will only focus on those activities directly related to provisioning the Team Foundation
Server development environment.

Setting up the development environment

It goes without saying that before a Scrum Team can begin using Team Foundation Server and
the Visual Studio Scrum process template to implement Scrum, someone will have to install and
configureit.Thissectionassumesthattheorganizationhasaproperlyinstalledandconfigured
Team Foundation Server available for the team to use. We’ll also assume that the organization
makes available a helpful Team Foundation Server administrator to serve the team as needed. In my
 experience, this is a recipe for success. If the administrator understands software development, that’s
good. If the administrator does not, that can be an impediment. If the administrator understands
Scrum, that’s a bonus.

Tip Having a Scrum Team member be the part-time Team Foundation Server administrator
is not ideal. A Scrum Team should be allowed to devote as much of their time as possible
on developing the software product. High-performance Scrum Teams are ones whose
team members can avoid being distracted by activities that don’t directly result in business
value in the form of working software.

Team Foundation Server: Buy vs. build
WhenitcomestoTeamFoundationServer,anorganizationcanpurchase,install,andconfigure
their own server, or contract with Microsoft to use their hosted Team Foundation Service. This
softwareasaservice(SaaS)modelishostedonMicrosoft’sAzureplatformandenjoysallofthe
samebenefitsasanyhostedapprunninginthecloud,includingavailability,scalability,and

 CHAPTER 4 The pre-game 95

 durability. The most appealing advantage to the hosted Team Foundation Service is that there
is minimal administration required to get started or keep it operating. If a Scrum Team doesn’t
have the necessary infrastructure or administrator, or needs to establish a hosted ALM solution
today, using the always-on Team Foundation Service is a no-brainer. Table 4-1 shows a feature
 comparison between the Team Foundation Service and Team Foundation Server.

TABLE 4-1 Comparing the hosted Team Foundation Service with an on-premises Team Foundation Server.

Hosted Team Foundation Service On-premises Team Foundation
Server

Who purchases hardware? Microsoft Your organization

Who deploys and maintains
 software?

Microsoft Your organization

Visual Studio Scrum 2.0 Yes Yes

Work item tracking Yes Yes

Web-based Agile management tools Yes Yes

Microsoft SharePoint integration
(projectportal)

No Yes(optional)

Reports No(onlyon-screencharts) Yes(optional)

Source control Yes Yes

Automated builds Yes Yes

Virtual Test Lab Management No Yes

Connectivity required Internet LAN, WAN, or Internet

Authentication method Windows Live ID Windows(NTLMorKerberos)

Customize process templates No Yes

Customize work item types No Yes

Licensing model N/A Server/ClientAccessLicense(CAL)

Frequency of updates Frequently Less frequent

Organizations with an existing infrastructure investment may not see the value in using the hosted
Team Foundation Service. Likewise, organizations that need to have full control over the software,
including the ability to customize and extend Team Foundation Server, should consider going with an
on-premises installation of Team Foundation Server. I don’t think I’ve ever run across an experienced
Team Foundation Server Development Team that didn’t want to tweak at least one work item type
definition.

Tip Refer to the Team Foundation Server Planning Guide on CodePlex for help in
 understanding the tradeoffs and planning your Team Foundation Server deployment.
It was written by the Visual Studio ALM Rangers and is full of good information. The
Visual Studio ALM Rangers are technical specialists that come from the Microsoft product
group, Microsoft services, the MVP community, as well as other communities around
the world. Their mission is to provide solutions for missing features and guidance.
Visit http://vsarplanningguide.codeplex.com for more information.

http://vsarplanningguide.codeplex.com

96 PART II Using Scrum

Tailspin Toys case study The Tailspin Toys organization has opted for an
on-premises installation of Team Foundation Server 2012. Andy, the Team Foundation
Serveradministratorhasinstalledandconfiguredasingle-tierTeamFoundationServer
on a dedicated Windows Server 2008 R2 server running four cores, 16 GB of RAM, and a
single 250 GB SSD. The server’s name is VSALM.

Create a team project collection
Oneofthefirstdecisionsanadministratorwillneedtomakeiswhethertousemultipleteamproject
collections. Team project collections allow you to organize and manage your team projects. You can
group similar projects together in a team project collection in order to assign and share common
resources. When you create a team project collection, you specify the logical and physical resources
thatteamprojectswithinthatcollectioncanuse.Allteamprojectartifacts(workitems,source
 control, automated builds, and tests) in the same collection are stored in a single Microsoft SQL
Server database. Team Foundation Server administrators or database administrators can back up and
restore a team project collection database independent of other collections. Table 4-2 discusses other
 advantages and disadvantages of using multiple team project collections.

TABLE 4-2 Characteristics of multiple team and single team project collections.

Multiple team project collections Single team project collection

Complexity Increased Decreased

Work items Increased security through isolation No security through increased isolation

Copying work items Not across collections Yes

Linking work items Not across collections Yes

Querying work items Within a single collection only Yes

Source control Increased security through isolation No security through increased isolation

Branching and merging Not across collections Yes

Automated builds Each collection requires its own
 controller

Only one controller required

Offlinemaintenance Only projects in collection are affected All projects are affected

Reporting across all projects No(justthoseinthecollectionby
default)

Yes

Supports hundreds of projects Yes Yes

Supports hundreds of developers Yes Yes

Security management More complex Less complex

Can scale out a single project Yes Yes(ifit’stheonlyteamprojectinthe
 collection)

Can isolate a project for legal or
regulatory reasons

Yes No

Can hand off the team project to
thecustomerwhenfinished

Yes Yes(ifit’stheonlyteamprojectinthe
 collection)

Process template customization Deployed to multiple collections Deployed to one collection

 CHAPTER 4 The pre-game 97

If an organization will have several team projects in progress at the same time and these projects
will have a need or even might have a need to copy, link, or query work items or branch/merge code
between their repositories, then create those team projects in the same team project collection.

Tip Unlessyourorganizationhasacompellingneedtoisolateitsprojects(thatis,legal
or regulatory governance), you should use a single team project collection. The default
collectioncreatedduringTeamFoundationServerconfigurationwillworkfine.Youmight
want to give it a more interesting name, however.

Tailspin Toys case study After discussing the pros and cons, the organization has decided to
createasingleteamprojectcollection.DuringtheconfigurationofTeamFoundationServer,
Andy deferred the creation of the default team project creation so that he could provide a
bettername.Whentheconfigurationwizardcompleted,AndylaunchedtheTeamFoundation
Server Administrative Console and manually created a team project collection named Scrum.
Andy named the collection “Scrum,” simply to illustrate that it will contain team projects
 created using the Visual Studio Scrum process template.

Configure Team Foundation Build
High-quality software development teams create high-quality software products. While they may
make it look easy, that level of quality doesn’t just happen on its own. These teams rely on proven
practices and tools to achieve it. One of the best ways to ensure that software reaches and remains at
ahighqualityisthroughverification.Thiscanbemanualorautomated.Manualtestsarejustthat—
teststhatadeveloperperformsmanually.Thesetestscanbeheavilyscripted,withspecificsteps,
inputs, and expected results. They can also be more exploratory in nature, with little or no script
provided, relying on the tester’s cognitive engagement with the software and ability to manage their
time.

Smell It’s a smell when I see that a team isn’t usingTeamFoundationBuild.IfIfindthat
they are using another automated build and test tool, then the smell dissipates. More times
thannot,Ifindthattheteamisnotusinganybuildandtestautomation.Typically,the
 reason is ignorance. They may not have a clue what Team Foundation Build does or how to
effectively use it. Fortunately, this is solved by education. When a team tells me that they
don’t see the value in running automated builds or that Team Foundation Build won’t “buy
them anything,” then that smell becomes a stench. Having Team Foundation Build perform
buildsandruntestsisquitevaluable—almostlikehavinganother(unpaid)teammember
continuously integrating and validating your work.

98 PART II Using Scrum

High-performance Scrum Teams have also learned how to work smarter, not harder. They do this
by continuously integrating their code changes and using automated tests. Automated tests are
moreinterestingthanmanualtestsbecause,oncecreatedandconfigured,thesetestscanberelied
upon to ensure that the product maintains a certain level of quality while also ensuring new features
work without human interaction. In Visual Studio, many types of tests can be “automated.” The best
candidatesareteststhatexercisecodedirectly(a.k.a.white box tests). Unit and integration tests lend
themselveswelltoautomation.Youcanautomateothertypesoftests,suchasconfigurationtests,
userinterface(UI)tests,scenariotests,andloadtests.Sincethesetypesofteststouchmorelayers,
such as the UI, they tend to be more brittle and typically require additional maintenance to keep
them accurate.

Automated tests can be executed from inside the Visual Studio integrated development
environment(IDE),insidetheEclipseIDE,insideMicrosoftTestManager,orfromthecommandline.
They can also be executed during an automated build using Team Foundation Build. The advantage
of having Team Foundation Build execute tests automatically is that it’s asynchronous to the
developer.Inacontinuousintegration(CI)environment,uponcodecheck-in,anautomatedbuild
launches, binaries are compiled, deployments are performed, automated tests are run, and feedback
is returned to the team. Since all of this work occurs on another machine, the developer is not blocked
and can continue working on his or her next task. Table 4-3 lists the various quality control activities,
such as testing, that are supported by Team Foundation Build.

Ultimately, CI is about reducing risk. When a developer defers integration until late in the day, the
week,ortheSprint,theriskoffailure(thatis,featuresnotworking,sideeffects,bugs,etc.)increases.
By integrating your code change with others regularly, throughout the day, you will identify these
problemsearlyandbeabletofixthemwhenthecodeisfreshineveryone’smind.ThepracticeofCIis
a must for a high-performance Scrum Team.

TABLE 4-3 The support for quality control activities in Team Foundation Build 2012.

Natively supports Additional software required

.NETUnitTests(MSTEST) ✓

.NETUnitTests(NUnit,xUnit,MBUnit,etc.) The respective testing framework

Code coverage Visual Studio 2012 Premium

Test impact analysis ✓

Coded UI tests Visual Studio 2012 Premium

Web performance tests Visual Studio 2012 Ultimate

Load tests Visual Studio 2012 Ultimate

Ordered tests ✓

Generic tests Visual Studio 2012 Premium

Architectural validation
(layerdiagrams) ✓

Code analysis ✓

Code metrics Visual Studio Code Metrics
PowerTool

Code clone analysis N/A

 CHAPTER 4 The pre-game 99

Team Foundation Build features
Team Foundation Build is installed when you install Team Foundation Server. Installation does nothing
more than copying the relevant binaries to the target computer. This computer can be running either
adesktoporaserveroperatingsystem.AconfigurationstepisrequiredbeforeTeamFoundation
Buildcanbeused.Duringthisconfiguration,theadministratorconfiguresthevariousfeatures:

 ■ Build machine The computer on which the Team Foundation Build service has been installed
andisbeingconfigured.Thismachinecanbephysicalorvirtual.Preferably,thisisastand-alone
machine, but it can also be co-located with Team Foundation Server.

 ■ Build controller The process that pools and manages the services of one or more build
agents.Thebuildcontrollerdelegatestheactualworktothebuildagent(s)withinitspool.
Each controller is dedicated to a single team project collection. By default, only one controller
can be hosted on a build machine.

 ■ Build agent The process that does the actual building. Agents perform the processor- and
I/O-intensive work, such as provisioning a workspace, getting the code, compiling to one or
moreconfigurations,performingcodeanalysis,runningautomatedtests,releasingbuildsto
asharedfolder,andpublishingresults.Anadministratorcanidentifythecapabilities(thatis,
what software is installed) of an agent by creating and associating one or more tags.

Tip Think of build agents like shared, network printers in a large enterprise. Each
printer can be assigned one or more tags, such as laser, ink, color, duplex, stapler,
etc. When a user wants to print a document, he or she can request duplex, laser,
color,andtheprintingsoftwarewillfindanavailableprinterthatmeetsthe
 criteria and send the job there. Likewise, each build agent can be assigned one
or more tags, such as .NET4.0, .NET4.5, SQL2012 BizTalk, JDK, Telerik, VB6, or
FoxPro. More than one agent can have the same tag. When it comes time for an
applicationtobebuilt,thebuildcontrollerwillfindanavailableagentthatmeets
the criteria and send the job there. The only difference is that there is no walking
uptwoflightsofstairstoretrieveyourbinaries.

ThespecificsofplanningandconfiguringTeamFoundationBuildarebeyondthescopeofthis
book. I recommend downloading and reading the Team Foundation Server Installation Guide as a
startingpoint.SufficeittosaythattherearenumerouswaysinwhichtodeployTeamFoundation
Build. The simplest topology being the build controller and agent collocated on the same hardware as
Team Foundation Server. This would adequately serve a small team working on smaller projects.

A more complex topology would include multiple machines running multiple agents. This would
shorten the time required to build and test, thus enabling more team members to build more
projects. An enterprise-scale build environment would have multiple controllers and agents running
on dedicated hardware available to serve any number of requests from any number of teams and
projects.

100 PART II Using Scrum

Tip When provisioning a build agent machine, you should opt for the fastest, most
dedicatedhardwareandI/Othatyoucanafford(multi-coreCPUs,solidstatedrives,
 adequate and fast RAM, etc.). The time required to compile the binaries is a pittance
 compared to what testing can demand. Testing can take a substantially greater amount of
time than building. Even tactically running tests using naming conventions, categories, or
test impact analysis can take time. Anything you can do to increase the speed of the build
and test process while reducing the feedback loop time will be greatly appreciated by the
team. Continuous integration will be more useful and yield more value to the team.

Tailspin Toys case study AndyhasinstalledandconfiguredTeamFoundationBuildona
 dedicated Windows Server 2008 R2 server running four cores, 16 GB RAM, and twin 250 GB
SolidStateDrives(SSDs).TheservernameisTFSBUILD1. There is a single build controller named
MatrixservingtheScrumTeamprojectcollectionandtwobuildagents(Smith1andSmith2).
Visual Studio 2012 Ultimate edition has been fully installed, as well as various third-party
 libraries, controls, and tools required by the Tailspin Toys application. Andy will monitor the
build server’s performance and feedback from the team. If and when an upgrade is needed, he
will probably scale out the build rig by adding new hardware.

Configure Lab Management
For more complicated testing environments, a team may want to use Visual Studio Lab Management.
LabManagementautomatesthebuild–deploy–testworkflowinatestlabenvironment.This
 automation results in a shorter feedback cycle, which is especially important when working with
complex deployments with multiple tiers supporting different operating systems and services, such as
MicrosoftInternetInformationServer(IIS),SharePoint,andSQLServer.LabManagementautomates
all of the building, deploying, and testing activities across a complex environment such as this.

Traditionally, test labs have used physical hardware. This hardware usually wasn’t the fastest
gear in the organization—most likely hand-me-down computers from the Development Team. This
infrastructure was usually maintained part-time by a developer or, worse, by someone from the
 organization’s central IT department. These departments usually don’t get software development or
have the skills or mandate to directly support the development effort.

Modern, progressive organizations use virtualization across the board. From servers to
desktops,theyunderstandthatencapsulatingtheirenvironmentintovirtualmachines(VMs)makes
 administrative as well as economic sense. It also helps reduce the amount of hardware in the data
center. Modern Development Teams also see the value of virtualization, especially for procuring a

 CHAPTER 4 The pre-game 101

testingenvironmentusingaself-servicemodel.Ateamcandefineseveraldifferentlabconfigurations
to be ready at a moment’s notice, ensuring that testing always begins in a clean, known state. This is
importantwhentryingtotrackdownabugorverifythatonehasbeenfixed.

Note In my travels, I see more and more developers working in VMs. The organization will
virtualize a standardized development environment, including the proper version, edition, and
service pack of Visual Studio, as well as any other utilities, controls, and libraries required. These
imagesaresnapshottedanddistributedasneeded.Furthermore,offsitedevelopers(workfrom
home, contractor, or overseas types) will be asked to “remote in” using a virtual private network
(VPN)sothatthereisnofootprintontheirpersonalhardware.Thisalsolessensthechancethat
the organization’s intellectual property might wander off.

InLabManagement,youdefineanenvironmentasacollectionofVMs.EachVMplaysarolein
that environment. For example, the Tailspin Toys application requires an infrastructure including
an IIS web server, a SQL Server machine, and a desktop client. Lab Management is aware of this
 environment and controls all of the individual VMs in order to test an n-tier application. In Team
Foundation Server 2010, this only worked so long as the organization was using Microsoft’s Hyper-V
Server or the Hyper-V role on Windows Server 2008 or Windows Server 2008 R2. There were
 workarounds for teams using physical environments or environments virtualized using the VMware
products,butthelackoffirst-classsupportfromMicrosoftwasanadoptionblockerfororganizations
looking at Lab Management.

Team Foundation Server 2012 provides support for standard environments. A standard
 environment is any existing environment of servers and machines, regardless of whether they are
physical or virtual, and regardless whether they are virtualized using Hyper-V or VMware. You
cannowmapaLabManagementenvironmenttoanexistingconfigurationofmachinesandthen
continuetoautomatethebuild–deploy–testworkflowlikebefore.ThereisnoneedtosetupHyper-V
serversorconfigureSystemCenterVirtualMachineManager(SCVMM)anymore.

Here are the high-level steps to follow in order to use a standard environment:

1. Know the environment, including each computer name and administrator credentials.

2. Configureatestcontrollerforyourteamprojectcollection.

3. From Test Manager, run a wizard to create a new standard environment.

4. Create a test plan with automated tests and settings to run tests on that environment.

5. CreateabuilddefinitionusingtheLabDefaultTemplate.11.xamltemplate,asshowninFigure4-1.

102 PART II Using Scrum

FIGURE 4-1 A section of the LabDefaultTemplate.11.xaml build process template.

Another nice feature of Team Foundation Server 2012 is that you do not have to worry about
manually installing test agents on any of the machines in the environment. That is done for you
 automatically. SCVMM environments are still supported in Team Foundation Server 2012. They
have been enhanced as well to support the auto-installation of these agents. Also, with an SCVMM
environment,yougettheadditionalbenefitofbeingabletousesnapshotsaspartofyourtesting
scenarios.SnapshotsallowyoutocapturethestateofaVMataspecificpointintime.Thissnapshot
can then be applied later to revert that machine to that known state. For example, you could snapshot
adatabaseservercontainingaspecificsetofdataandthenapplyitlaterinordertorunsomespecific
tests. Work items can reference snapshots too. Another example could be a developer wanting to
associateaspecificsnapshotofaserveratthetimeabugwasrecorded.

Note Thedetailsofinstalling,configuring,andusingLabManagementarebeyondthe
scope of this book. Please refer to the appropriate articles on MSDN for more information.

 CHAPTER 4 The pre-game 103

Tailspin Toys case study As the deployment environment is not very complex, the team
has decided not to use Lab Management for the initial release. If demand drives the need
for a more sophisticated environment, they will go back and revisit the need for Lab
Management. The fact that the organization has adopted VMware, and not Hyper-V, as a
standard is immaterial.

Setting up product development

This section explores those activities related to setting up software product development within Team
Foundation Server 2012. Some of these activities are one-time events, while others are ongoing, such
asconfiguringareasanditerations.Beforeproceeding,it’sassumedthatthefollowingactivitieshave
already been completed:

 ■ TeamFoundationServerisinstalled(orTeamFoundationServiceisbeingused).

 ■ Appropriate client software is installed.

 ■ A team project collection exists.

 ■ The Scrum Team has formed.

 ■ Windows user accounts are known.

 ■ TeamFoundationBuildisconfigured(optional).

 ■ LabManagementisconfigured(optional).

Create a team project
The team project is the container for the software product’s development lifecycle. All work items,
source-controlledartifacts,testcases,testresults,builddefinitions,andbuildrunsarestoredina
team project. Technically, they are stored in multiple tables associated with a team project in the
project collection’s SQL Server database. To look at it from a Scrum perspective, the team project
 represents the product being developed and is a container for the Product Backlog, the Sprint
 Backlog, and the source code and tests that form the Increment. The team project contains queries,
charts, and reports that allow a team to assess their progress and the quality of their work.

You can create a team project from the File menu or from within Team Explorer. This will launch
the New Team Project Wizard, where you will be asked to provide the name and description of
theteamproject,selecttheprocesstemplate(VisualStudioScrum2.0),andspecifyadditional
 information such as SharePoint and source control settings. Depending on the environment, it can up
toafewminutestocreateateamproject,afterwhichyoucanbeginconfiguringandusingit.

104 PART II Using Scrum

How many team projects will you need?
The scope of a team project is a function of the product being developed, its components, and
the number of developers and whether they are dedicated to that one product. Remember that a
 developer in Scrum is anyone contributing to the development of the Increment. This includes any
team member who performs design, coding, testing, or other activities. The ideal combination is a
team of 3–9 developers dedicated to working on a single product. This would yield a single team
 project containing both the Product Backlog and source code of the product being developed.
 Unfortunately, I don’t see this very often. More common are tiny teams, huge teams, or teams having
to split their Sprint across multiple products. Team Foundation Server can support these environments
as well.

With a micro-team of only one or two developers, they won’t necessarily be using Scrum, but
they’ll still need a team project. I would hope they would take advantage of the Product Backlog,
but as far as planning and tracking work within the Sprint, they may not need tooling for that. For
 medium-large teams with 10 or more developers, they would want to decompose into teams of
3–9toworkmoreefficientlywithintherulesofScrum.Theycanstillallworkwithinthesameteam
 project. Table 4-4 shows a summary of this discussion.

I’ve seen large products with 80+ developers working within the same team project off of a single
Product Backlog. This increased complexity demands using work item areas or a custom work item
fieldtodesignatetheresponsibleteam,nottomentionhavinganeffectivesourcecontrolbranching
strategy. Developers in the unfortunate situation of having to develop or support multiple products at
the same time may end up having multiple team projects and bouncing between them regularly.

TABLE 4-4 Creating team projects based on teams, sizes, and commitment.

of
 developers

Single
 product?

Team project(s) Notes

1–2 Yes Single Not using Scrum

No Multiple Not using Scrum; may want to use a common Product
Backlog

3–9 Yes Single This is ideal

No Multiple May want to use a common Product Backlog

10+ Yes Single(typically) Decompose into teams of 3–9 developers

No Varies Strive for development teams of 3–9 developers

Creating a !Backlog team project
It is common for an organization to have more products than teams. I’ve worked with several
organizationsthatfitthispattern.Theytendtohaveadozenormoresmalltomedium-sizedprojects
being maintained by a technical staff of 10 or more individuals. These developers tend to pull work
from a common queue. This centralized “enterprise” backlog approach can be implemented in Team
FoundationServerbycreatingmultipleteamprojects.Thefirstteamprojectonlycontainswork
items and the corresponding area and iteration nodes. The other team projects would contain the
sourcecode,tests,andautomatedbuilds.Irecommendpre-fixingthisteamproject’snamewithan
 exclamation point so that it appears at the top of sorted lists, as you can see in Figure 4-2.

 CHAPTER 4 The pre-game 105

FIGURE 4-2 The enterprise backlog and constituent team projects.

Settingupasinglebacklogprovidesthesebenefits:

 ■ All requirements from all products are visible and manageable in a single backlog.

 ■ Requirements can be prioritized with respect to each other.

 ■ Source control structure, branch, and build complexities are isolated.

This approach requires some additional processes to use effectively:

 ■ The !Backlog project’s areas must support all constituent projects, as shown in Figure 4-3.

 ■ All projects must share the same release/iteration schedule.

 ■ Check-ins will be associated with work items found in the !Backlog team project.

FIGURE 4-3 Setting up the area hierarchy in the !Backlog team project.

Tip Once you create the !Backlog project, you should remove access to the source control
folders and builds for all but the project administrator. This way, nobody accidentally
checksincodeorcreatesabuilddefinitioninthisproject.Also,youmaywanttodo
 something similar to the constituent team projects to disable the ability to create work
items. I’ve seen teams customize the Visual Studio Scrum process template and create a
subset of functionality. Be sure to do your development and testing of such customizations
on a test Team Foundation Server. If a separate Team Foundation Server is not available,
the next best choice would be to use a separate team project collection. Also, consider
 creating a separate team project for such work, and check in your changes.

106 PART II Using Scrum

Smell It’s a smell when a team is using an enterprise backlog team project. It seems weird
that I would suggest an approach, and then turn around and tell you that I consider it a
smell if I see it in use. Smells are just that. It may turn out that the underlying reasons for
this behavior are sound. My recommendation is that using an enterprise backlog approach
likethisshouldbetheexceptionandnottherule.IfIfindthatateamhasarrangedtheir
team projects this way, or have an environment that would support this, I will attempt
to have the hard conversation with the organization about improving their process. We
will dive deep into the discussion of waste when work is not being planned or prioritized
beyond the current iteration, not to mention when developers have to context-switch.
Establishing a single Product Owner usually goes a long way, so long as they focus more
on maximizing value in the product and less on making various managers happy.

One organization I worked with claimed to be using Scrum. It had multiple product managers,
each vying for the Development Team’s time. Needless to say, its queue of work was quite full. One
 product manager wanted a set of improvements on their system and asked the IT director when she
could have them. The IT director performed some high-level analysis and provided a rough estimate,
telling the manager that work could be started in about 9 months and, once started, shouldn’t take
longer than about a month. The manager was displeased. She asked if the developers could start
sooner and work on her features in between their other tasks. The IT director replied, “We can do
that, but then it will take us 12 months total, put other projects behind, and you probably won’t like
the quality of the work we did early in the year.” The IT director realized that the manager, as well
astheorganization,hadabeliefinmagic.Theythoughtthatdeveloperscouldworkefficientlyon
 multiple things at once, could work at an unsustainable pace when it suited the organization, and
could give accurate estimates for unknown, complex problems. Eventually, the IT director became
the Product Owner and was able to order the work in a way where the team spent an entire Sprint on
project A and then the next Sprint on project B, and so forth. The team was then able to concentrate
ononedomainatatimeandcollaborateaggressivelytotacklethosestoriesandbugfixes.

Tip Ifthecultureandprocessescan’tbefixed,restassuredthatTeamFoundationServer
can usually implement whatever dysfunctional software development processes an
 organization can throw at it. For a situation where a small number of developers must
 service a large number of products in a prioritized-just-in-time way, then I suggest they
take a look at Kanban. Kanban is a method for developing software with an emphasis on
just-in-time delivery. Kanban instructs developers to pull work from a queue using a visual
board that shows the work in progress by state.

Supporting the entire lifecycle of the product
Ateamprojectcanencapsulatetheentirelifecycleoftheproductbeingdeveloped—fromthefirst
releasetothelast,includingalloftheSprintsinbetween.ThisisdonebydefiningreleaseandSprint
iterations and dates as in Figure 4-4. Work items can then be assigned to those iterations. Backlogs,

 CHAPTER 4 The pre-game 107

queries,andreportscanalsobefilteredbytheseiterations.Inotherwords,youdonotneedtocreate
a new team project whenever you start a new release/version.

FIGURE 4-4 Managing multiple releases and Sprints.

What should you name your team project?
Let’stakeastepback.Creatingateamprojectistheeasypart;butplanningitcanbemoredifficult.
It’s imperative that you know what product or component of a larger product the team will be
 developing. If the product has a name, you should consider using that for the name of the team
 project. If the product doesn’t yet have a name, or the name is something like “The ASP.NET web app
thatconsumestheWCFwebservicefromourfinancialpartner,”you’llwanttogiveitanactualname
first.Thisisthefirststepinitbecomingaproduct.Itsoundstrivial,buthavingaclear,meaningful
name will begin the process of focusing less on how the software works and more on what it should
be doing.

Smell It’s a smell if the developers don’t know the name of the application they are
 developing. Maybe it doesn’t have a name, or maybe they just don’t care to know it. Either
way, this demonstrates a lack of product-minded thinking. For a successful adoption of
Scrum to occur, this will have to change.

When creating your team project, give special consideration to its name. The name should be
short, meaningful, and allow someone to quickly identify the product being developed within. The
name does not need to include the version, release, Sprint, subteam, feature crew, feature set, area, or
component. All of these items can be tracked within the team project using areas and iterations. For
example, if we were creating a team project to plan and track development of the Tailspin application,
we should consider naming it Tailspin rather than TailspinV1, TailspinRel1, TailspinSprint1, TailspinDev,
or TailspinWeb.

108 PART II Using Scrum

Tip Teamprojectscannotberenamed.Youwillneedtogetitrightthefirsttime.Thisis
the most requested Team Foundation Server feature on http://visualstudio.uservoice.com.
Until Microsoft gives us that functionality, our only recourse is to delete the team project
and create it again or use team project descriptions—which can be changed. Team projects
can be deleted from within the Team Foundation Server Administrative Console or from
the command line using TfsDeleteProject.exe. I prefer the latter. Deleting is a destructive
process. If you change your mind, you will have to restore from a team project collection
backup. Think twice before you delete a team project.

Tailspin Toys case study Andy created a team project named Tailspin based on the Visual
Studio Scrum 2.0 process template within the Scrum team project collection.

Source control
Software development activities break down into two broad categories: managing work and software
engineering.AProfessionalScrumDevelopermustalwaysattempttomaximizevalue(andminimize
waste) when performing both types of activities. A great way to see the two areas merged successfully
is to use Team Foundation Server for change management. Not only does Team Foundation Server
track who made what changes to the code and when, but also why. Historically, the question of why
a developer was making changes was a mystery, at least to everyone but the developer. If asked, they
wouldreplythattheywere“addingafeature”or“fixingabug.”Thatmayhavesufficedinthepast,
but it’s time to become more professional by becoming more traceable. Team Foundation Server lets
youproveitbyassociatingyourchecked-inchanges(calledachangeset) to a work item owned by
that developer.

Smell It’s a smell when I hear a team member refer to it as his or her code.
 High-performance Scrum Teams understand that the team owns the code collectively.
Individualteammembersdonotownspecificcomponents,namespaces,classes,or
 methods. This alleviates the blame game. An individual should not be blamed for breaking
the build, but rather the team should see it as an impediment and work to correct it both
in the short term and long term during the Sprint Retrospective. For larger, more complex
software projects, the team can use the traceability features in Team Foundation Server, as
well as collaboration to track and understand what other team members are doing.

Before we get to the process of checking in and associating work, we should spend some time
gettingTeamFoundationServerconfigured.Theintricaciesofsettingupthestructureandworkflows
foraparticularproductarebeyondthecapabilitiesofthisbook.Instead,Iwillfocusonconfiguring

http://visualstudio.uservoice.com
http://visualstudio.uservoice.com

 CHAPTER 4 The pre-game 109

Team Foundation Server to enable a Scrum Development Team to use its source control capabilities
effectively. Here are some of those activities:

 ■ Set up the initial folder structure.

 ■ Create any necessary branches.

 ■ Migrate existing codebase.

 ■ Secureanyfoldersorbranches(ifrequired).

 ■ Enable any check-in policies.

 ■ Enable any check-in notes.

 ■ Setup developer workspaces.

 ■ Fix bindings in any migrated solutions or projects.

Set up the folder structure
I differentiate the creating of static folders from that of branches. Both are important, but having an
initial folder structure is important regardless of if/when you create branches. For Scrum Development
Teams,Irecommendkeepingitsimple.Giveyourteamaconsistentfoldertoworkoutof(thatis,Dev)
andafoldertocreateandmanagebranchesforproductionhotfixes(thatis,Prod).UnderneathDev
is whatever folder structure you want. That said, I recommend a top-level set of folders to identify
the major components that go into the product. It would be in these folders that the Visual Studio
solution(.sln)fileswouldlive.UnderneaththisfolderwouldbethenaturalVisualStudioproject
 folders managed by the solution. You can see an example of this folder structure in Figure 4-5. This is
just one approach out of many that are valid.

FIGURE 4-5 SamplefolderstructurefortheTailspinToysproduct(initiallydevoidofanybranches).

110 PART II Using Scrum

Your folder structure should be simple to understand and use. Developers should be able
toquicklyknowwheretheyareworkingeachdayoftheSprint(thatis,underDev),aswellas
duringemergencyhotfixsituations(thatis,underProd).Theyshouldalsobeabletoquicklyfind
theapplication(thatis,Tailspin)andcomponent.Additionalsubfolderscanbecreatedtogroup
 components together further. Visual Studio solutions, projects, and their folders typically constitute
the lowest folder levels.

Tip You can create the folder structure manually in Source Control Explorer by using the
New Folder command repeatedly until the structure looks the way you want. I prefer to go
old school by dropping to the command prompt and quickly creating the folder structure
I want. MD and CD commands are my friends. I then return to Source Control Explorer and
usetheAddItemsToFoldercommandtoaddthefolders(andanyfilesIwant)andcheck
in the pending changes.

Tailspin Toys case study Thedevelopersdiscussedtheconfigurationandrelease
 management requirements of the product and decided to go with a simple Dev and Prod
 folder structure, with Dev containing folders for the single Tailspin Toys Visual Studio solution
and subprojects.

Choose a branching strategy
ScrumDevelopmentTeamsworkcollaborativelyontheProductBacklogItems(PBIs)andbugsinthe
Sprint Backlog until the Sprint’s development time-box expires. After this, the Product Owner may
decide to release the Increment to production. This pattern continues Sprint after Sprint. In other
words, the Development Team is always developing unless something exceptional comes up, such as
aproductionsupportissue.Theteam’sbranchingstrategyshouldreflectthisprocess.Withrespectto
sourcecontrol,whenitcomestoawork-in-progress,theteamshouldworkoutofacommon(thatis,
Dev) folder, integrating often.

Many Development Teams have complex to ridiculously-complex branching strategies. Some
require a dedicated merge guy to go heads-down for a couple of days at the end of every Sprint or
release to merge code manually into an integration branch. In situations like these when I’m asked
tohelpfindasolution,Ifocusontheprocess,notthetool.TeamFoundationServerhassomegreat,
shiny features when it comes to working with branches, but it does not have a magic merge button
that will do the merge guy’s job for him. If integration is delayed, then the team is not practicing
continuous integration, and there will be pain—even with Team Foundation Server. Branching is
 dead-easy. The complexity and cost comes with merging.

 CHAPTER 4 The pre-game 111

Tip I’m passionate about branches. I passionately despise them. Don’t get me wrong.
Ifusedcorrectly,theyprovideawaytosolvesomespecificproblems.Ilistsomeofthese
 situations in Table 4-5. However, I commonly see branches causing more problems than
they solve. By problems, I mean wasted time spent understanding and merging code
changes. Before establishing any branching strategy, make sure you fully understand the
impact of doing so. Don’t branch unless you have a good reason to do so. Don’t branch
untilthelatestresponsiblemoment.Perhapsalabelwillsufficeuntilthen.Saveyour
 creativity for your product, not your branching strategy.

TABLE 4-5 Situations that may require branching.

Situation Where

Productionmaintenance/hotfix Branchedfrom\Devtoafolderunder\Prod(thatis,
\Prod\Bug42)

Large, complex product requiring multiple teams If necessary, each team works in their own branch under
\Dev(thatis,\Dev\UX)andintegrationintothe\Devbranch
occurs regularly. If each team shares the same release
 cadence, they should strive to all work in the same branch.

Performing a spike Branchedfrom\Devtoafolderunder\Dev(thatis,
 Spike-HTML5) and if the spike produces useful code, it can
be merged back into \Dev at a later date. Consider creating
a shelveset instead.

Labels won’t work due to compliance In Team Foundation Server, labels are mutable, meaning that
someone(withadequatepermissions)canchangethefiles
orfilerevisionswithinalabelwithoutanaudittrail.

In Team Foundation Server 2010, Microsoft started differentiating folders from branches. They
represented them with different icons in Source Control Explorer. Folders are represented by the
 traditional manila folder and branches are represented as a small, parent-child link icon, as in
Figure 4-6. This differentiation was done so that additional actions, such as branch visualization, could
be performed on a branch but wouldn’t be supported on a folder. You can explicitly convert a folder
toabranch,whichwillchangetheicon.Youcanalsoimplicitlyconverttheparent(source)folderto
a branch when you execute the branch command. This is the default behavior.

FIGURE 4-6 Branches like Bug42 are represented with different icons than folders.

112 PART II Using Scrum

Working in a private branch throughout the Sprint is easy. It delays the pain of merging your code
with others. It also smells like a collaboration dysfunction: Why is this developer working by herself?
Table 4-6 lists this and other situations that may be hiding a dysfunction.

Regardless of the underlying reason, waiting to merge creates much more work because of the
amount of time that has elapsed. The developer will have to reread code, run diffs, and revisit her
tasks to understand the context of the change. If another team member merges the changes, this is
compounded because he won’t know the intent of the code and will have to do even more research.
High-performance Development Teams understand that if something hurts, such as integration and
merging, then it should be done more often, such as daily or during each check-in.

TABLE 4-6 Situations where branching may be hiding a dysfunction.

Situation Potential dysfunction

Each team member works in his own branch. The team members can’t collaborate effectively or are trying
to tackle an entire PBI on their own.

A main, trunk, or other integration branch exists. Unless the product is being worked on by multiple teams, or
the team is using \Main to represent \Dev as in my examples,
the mere presence of extra branches can cause confusion
and waste.

A QA branch exists. There is no concept of QA in Scrum. Testing tasks, just like
coding tasks, should be done collaboratively under \Dev.

Release branches exist. Unless the team is supporting multiple versions of the
 product or they cannot use labels, due to compliance
 reasons, the presence of release branches can cause
 confusion and waste.

Labels are cheaper and much more lightweight than branches. When a task or PBI is done,
accordingtotheteam’sdefinition,alabelcanbeappliedtotherespectivecode.WhentheIncrement
isfinished,anotherlabelcanbeapplied,andsoforth.Theselabelsserveascheckpoints,allowing
the team to return to points in time when the Increment was in a consistent, done state. The team
can delete the labels at the end of the Sprint. Ideally, a branch is created only for those exceptional
 situations, such as a production support issue. Table 4-7 lists a few approaches where a team can use
labels instead of branches.

TABLE 4-7 Approaches to using folders, labels, and branches.

Scope of work Where to find it

Current Sprint development Locatedunder\Dev(useGetLatest)

Current Sprint PBI is done Locatedunder\Devandidentifiedbyalabel(thatis,PBI42)

Current Sprint Increment is done Locatedunder\Devandidentifiedbyalabel(thatis,Sprint3)

Previous Sprint Increment not yet in production Locatedunder\Devandidentifiedbyalabel(thatis,Sprint2)

Previous Sprint Increment in production Locatedunder\Devandidentifiedbyalabel(thatis,Release1)

Productionhotfix Branchedfrom\Devtoafolderunder\Prod(thatis,\Prod\
Bug42)

 CHAPTER 4 The pre-game 113

Tailspin Toys case study The team has decided to use labels throughout the Sprint and create
abranchonlywhennecessary,suchastosupportaproductionhotfix.Iftheteammembers
want to experiment or perform spikes, they will do so locally or use shelvesets to collaborate
with other team members.

Local workspaces vs. Git (DVCS)
Distributedversioncontrolsystems(DVCSs)areverypopulartoday.TheyarepreferredbymanyAgile
softwaredevelopmentteamsbecausetheyenabledeveloperstotrackchangestofileslocally,without
being connected to a central server like Team Foundation Server. This allows developers to work quickly,
while still having revision control and history capabilities. The most popular DVCS implementation is
Git, which was initially designed and developed by Linus Torvalds.

Team Foundation Server 2012 introduces local workspaces, which enable you to perform the core
version control operations while disconnected. This results in a lightweight experience without the
need to be connected to Team Foundation Server all the time. That equals speed. While this is a step
in the right direction, there are still a number of advantages of using Git over Team Foundation Server
local workspaces:

 ■ Gitenableslocalcommits(check-ins).

 ■ Git lets you look at a history of these local commits.

 ■ Git allows local branching.

Local commits are very interesting. Think of them as being a way to establish “checkpoints” as you
finishsmalldevelopmenttasks,suchasduringtest-drivendevelopment(TDD)whenyoucompletea
cycle, all of your tests pass, and your method is implemented and refactored. You wouldn’t necessarily
want to check in to Team Foundation Server because the feature you’re working on isn’t code-complete.
Using a local commit here allows you to create a snapshot of your code in a good working state.
Later, you can refer to that history or even roll back if need be.

Tailspin Toys case study A few developers have opted to install and use git-tfs
(https://github.com/git-tfs)ontheirlocalmachinestoenjoythebenefitsoflocalcommitsandhistory
while still being able to integrate their code with other developers in Team Foundation Server.

Automated builds
AftertheTeamFoundationBuildisinstalledandconfigured,thenextstepistocreateoneormore
builddefinitions.Abuilddefinitioncontainsallofthesettingsandinstructionsaboutwhatcodeto
compile,whichtests(ifany)torun,andwhichadditionalactivitiestorun.Thebuilddefinitioncontrols

https://github.com/git-tfs
https://github.com/git-tfs

114 PART II Using Scrum

the scope of what is downloaded from Team Foundation Server and compiled. This is done by setting
theworkspacemappingstoincludetheappropriatefoldersandfiles.Thebuilddefinitioncanbuild
one or more Visual Studio solutions and projects. This gives the team very granular control over what
gets built and tested, from a build that compiles and tests everything in the product down to just
compiling a single component of the product. Any MSBuild-based project is fair game, so long as the
requiredbinaries(thatis,compilersandlibraries)areinstalledontheserver(s)thatareinvolvedwith
the building and testing.

There are many types of builds that a Development Team might run during the course of a day,
week, and Sprint. These can range from local builds all the way up to nightly builds deploying and
running exhaustive end-to-end tests on a complex test environment. With so many types of tests and
so many names for those types of tests, I thought it would be useful to standardize the terminology,
as you can see in Table 4-8.

TABLE 4-8 Typesofbuilds(innoparticularorder).

Build Type Definition

Local or F5 WhenadeveloperusesVisualStudioorascripttobuild(andpossiblytest)ontheirlocal
machine

Buddy When another developer integrates your code with hers and then runs a local build

Integration Abuildthatverifiesthechecked-incodecompilesandapplicabletestspass

Continuous integration An integration build that triggers automatically during a check-in

Check-in Another name for a continuous integration build

Partial An integration build that only compiles and tests a part of the whole product

Full or Complete or
System

An integration build that compiles everything and runs all tests

Nightly A full build that is scheduled to run at night

Private A buddy build where the buddy is Team Foundation Build and it uses a shelveset

Gated check-in A private build triggered by a check-in, but the check-in gets intercepted and becomes a
shelveset; and if it complies with what’s currently checked in and tests pass, the original
code is checked in

Incremental Abuildthatdoesn’tfirstcleantheworkspacesothatonlynew/changedfileswillbe
 compiled

Label A build that gets its source code based on a label, rather than latest

Branch Abuildthatgetsitssourcecodefromaspecificbranchorfolder

Main or Mainline or
Trunk

Abranchbuildfromaspecificbranch

Debug AbuildthatcompilestheVisualStudioprojectusingitsDebugconfiguration

Release AbuildthatcompilestheVisualStudioprojectusingitsReleaseconfiguration,orafull
build that also generates installers and other artifacts required to release to production

Queued A build submitted to Team Foundation Build awaiting a build agent to become available

Partially succeeded A build that has compiled successfully, but one or more tests have failed

Without knowing the details of your team’s product, such as the amount of code and tests, how
they are organized within Visual Studio solutions and projects, how long it takes to compile and run
tests, and your testing and quality goals, it is impossible to recommend an effective build strategy.

 CHAPTER 4 The pre-game 115

That said, there are some general guidelines that all Scrum Development Teams should follow when
 setting up their automated builds:

 ■ Haveatleastonecontinuousintegrationbuilddefinedfortheproduct.

 ■ If there are multiple teams, each working in a unique area of the product, then each should
have its own continuous integration build.

 ■ Continuous integration builds should run only fast, high-value tests, such as unit tests or
quick integration tests that apply only to the code being built. Ideally, only the tests that are
 affected by the code being checked in are run.

 ■ If it takes too long to build and test the entire application using continuous integration builds,
then create another build to run on-demand or to be scheduled nightly.

 ■ If you want to run builds that have longer-running integration tests, end-to-end system tests,
load/stress tests, or that create installers or rich documentation, you will want to run those on
a build agent separate from the one running your continuous integration builds. You could
also run those tests and activities as part of the nightly build.

 ■ Inspectyourbuilddefinitionsregularly,andadaptaccordinglytoensurethattheyarefastand
provide maximum value to the team.

Continuous integration builds are valuable only if the team actively responds to their outputs.
These types of builds are meant to give immediate feedback to the developer who checked in the
changeset. Ideally, this feedback is a green light to keep on working on the next task, but red lights
should not be ignored. Your code doesn’t agree with what’s been checked in. Keeping the scope of
what is built and tested to a minimum will shorten this feedback loop. Continuous integration without
inspection is just continuous compilation, and that’s waste!

Tailspin Toys case study The team will create several automated builds. They will create
 continuous integration builds to compile and run tests for each of the major components
(individualVisualStudioprojects).Theywillalsocreateanightlybuildoftheentireproduct(the
wholeVisualStudiosolution).Thenightlybuildwilloutputfourdifferentflavors:32-and64-bit
inbothdebugandreleaseconfiguration.Thisgivestheteamsomeoptionseachdayonwhich
one to deploy and test against. Continuous integration builds were selected over gated check-in
builds under the Dev folder, but gated check-in builds will be used under the Prod folder when
performingproductionhotfixes.

Project portal
As previously mentioned, the Visual Studio Scrum 2.0 process template no longer contains a Sprint
workitemtype.Therefore,theScrumTeamwillneedtofindanalternativelocationfordocumenting
andpublishingtheSprintGoalandSprintRetrospectivenotes.Stickynotesorwhiteboardsworkfine,

116 PART II Using Scrum

butthesecanmakeitchallengingforstakeholderstofindtheinformation.Also,ifyouwanttotrack
changes or control access of who can change these items, an electronic solution is preferred. The
obvious solution is to use a team project’s project portal, which is hosted on SharePoint by default.

On the project portal, you can easily create a wiki entry or upload a document to track these items.
You can also make visible other pieces of documentation on the portal if you wish, such as:

 ■ Product and Sprint Backlogs

 ■ Release and Sprint burndown charts

 ■ Velocity chart

 ■ Calendar showing releases and Sprints

 ■ DevelopmentTeam’sDefinitionof“Done”

 ■ Development Team’s standards and practices

 ■ Stakeholder contact list

 ■ Links to build reports and build drops

 ■ Additional documentation and notes

Havingaprojectportalisoptional,buthighlyrecommended.Ifyoudecidetoconfigureone,itcan
behostedeitheronSharePoint(WSS3/2007or2010)oronanotherwebsite.Theadvantagetousing
SharePointisthat,whenproperlyconfigured,itenablesyoutoviewandmanageyourdocuments
and document libraries from within Team Explorer. The project portal settings can be managed from
Team Explorer, as you can see in Figure 4-7.

FIGURE 4-7 Configuringprojectportalsettings.

 CHAPTER 4 The pre-game 117

Note The hosted Team Foundation Service, the Basic Team Foundation Server installation,
and Team Foundation Server Express don’t enable SharePoint integration. These
configurationswon’tshowaDocumentsfolderlistedinTeamExplorer.Youcan,however,
configureanalternativewebsiteasaprojectportal.ReferringtoFigure4-7,youwould
do this by enabling a team project portal, selecting Use A Web Site, and specifying the
UniformResourceLocator(URL).

Definition of “Done”
AteamshouldnothideitsSprintGoaloritsDefinitionof“Done.”Makethesebroadlyavailableso
thatallstakeholdersknowwhatyouareworkingonandwhatyourdefinitionofqualityis.Inaddition,
teams may want to increase transparency by publishing their burndown and Velocity reports. I’ve
evenseenteamsgosofarastopublishtheseinthebreakroomorcafeteria.Nowthat’sconfidence!

AgreatplacetostoretheDefinitionof“Done”inSharePointistousethewiki.Youcansee
an example of this in Figure 4-8. The wiki is a site that enables ideas to be captured, shared, and
collectivelyupdatedbyacommunityofauthors(theteam).Thiscommunityensurestheaccuracyand
relevance of the content.

FIGURE 4-8 UsetheSharePointwikitocaptureateam’sDefinitionof“Done.”

WhenusingSharePointtohosttheDefinitionof“Done,”securitypermissionsshouldbeconfiguredfor
individuals or groups of users. For example, you might want all members of the Scrum Team to be able
tochangetheDefinitionof“Done,”butnotthestakeholders.Abestpracticeistocreateandmanage
 membership in Windows groups and then assign those groups respective permissions in SharePoint.

Tailspin Toys case study AndyoptedtoinstallandconfigureSharePointFoundation2010at
the same time as Team Foundation Server 2012. When Andy created the Tailspin team project,
a corresponding Tailspin portal was also created. This project portal will be used for the Scrum
Team, stakeholders, and other interested parties to monitor the development progress. The
ScrumTeamhascreatedawikientrytotrackitsDefinitionof“Done”andplanstocreate
separate wiki entries for Sprint Goals and Sprint Retrospectives as well. Andy has given all of
the members of the Scrum Team Full Control permissions and a few stakeholders the Read
 permission. Andy will tighten the permissions if the team abuses them.

118 PART II Using Scrum

Reports
In the previous chapter, we looked at the reports available in the Visual Studio Scrum process
 template. These reports break down into two categories: tracking progress and tracking quality.
I sometimes refer to the two categories as process and product. You can see the full list of reports in
Figure 4-9.

FIGURE 4-9 Visual Studio Scrum reports listed in Team Explorer.

All of these reports were in the Visual Studio Scrum 1.0 process template, with the exception of
the Backlog Overview report. This new report is essentially the popular User Stories Overview report
from the MSF for the Agile Software Development process template. It has been tweaked, of course,
to work with the Visual Studio Scrum 2.0 template. For example, it reports on PBIs rather than user
stories. Table 4-9 lists each report and the reasons why a Scrum Team might want to run it.

TABLE 4-9 Reports in a Visual Studio Scrum team project.

Report Process Product Why run it?

Backlog Overview
✓

Helps you track progress for each of your PBIs. Shows the number
of hours remaining and the acceptance test results for each PBI.

Release Burndown
✓

Indicates how quickly the team is completing work and delivering
PBIs. Its primary use is for planning when to schedule a release
and to track the team’s progress toward delivering on its goals.

Sprint Burndown
✓

Indicates the team’s progress towards completing its work for a
Sprint.

Velocity
✓

Indicates the amount of effort the team is putting in to complete
each Sprint.

Build Success Over Time
✓

Helps you track changes in the quality of the code that the team
has checked in. Shows test results for the last build of each day.

Build Summary
✓

Helps you determine the status of each build. Shows a list of
builds with test results, test coverage, code churn, and quality
notes.

Test Case Readiness
✓

Helps you track how many test cases are ready to be run. Shows
the number of test cases in each state of preparation.

Test Plan Progress
✓

Helps you track the progress of your test plans. Shows the results
of running the tests over time.

 CHAPTER 4 The pre-game 119

With reports, you get out of them what you put into them. I have worked with a number of teams
over the years who ask me why their reports are empty. When I ask if they are using work items or
automated builds, their answer is “No.” I tell them that’s why their reports are empty. You can’t expect
Team Foundation Server to provide rich, meaningful reports if you don’t do the work. You need to
use all three pillars of Team Foundation Server for all of the reports to be populated: source control,
work items, and automated builds.

Even if you are using Team Foundation Server properly, you still need to make sure that you put
the data in correctly. This includes using the correct states, linking to the correct work item types, and
updatingtherightfields.I’veseenseveralScrumTeamsusingTeamFoundationServereffectively,
butwithoutknowingaboutakeystateorlinkage,onlytofindthattheirreportsdon’tworkandthey
aren’t able to assess progress easily. Here is some guidance on what actions to take to get more
meaningful data from your reports:

 ■ Backlog Overview report Link PBIs to tasks. If you divide a task into subtasks, specify hours
only for the subtasks because these hours are rolled up as summary values for the parent task.
Update hours remaining on the tasks each day. Link PBIs to test cases using tested by links.
Run your tests and mark them as pass or fail. Ensure that all work items are in the correct area,
iteration, and state.

 ■ Release Burndown report Provide an effort value for each Product Backlog Item and
Bug work item. Set the iteration of the Product Backlog Item or Bug work item when it
is forecasted to be done in that Sprint. Ensure that all work items are in the correct area,
 iteration, and state. Done and Removed work items are ignored.

 ■ Sprint Burndown Ensure the Sprintnodehasstartandenddatesdefined.LinkPBIstotasks.
If you divide a task into subtasks, specify hours only for the subtasks because these hours are
rolled up as summary values for the parent task. Update hours remaining on the tasks each
day. Ensure that all tasks are in the correct area, iteration, and state.

 ■ Velocity Provide an effort value for each Product Backlog Item and Bug work item. Set the iteration
of the Product Backlog Item or Bug work item to the Sprint that it was forecasted to be developed.
Ensure that all completed Product Backlog Item and Bug work items are in the Done state.

Tip What should you do with tasks that are not directly related to the PBIs and bugs that a
teamhasforecastedfortheSprint?Iencourageteamstorecordallsignificantactivitiesand
Ilettheteamdecidethedefinitionofsignificant.Iftheteamwantstocreate“stand-alone”
Task work items for activities such as setting up hardware, installing software, and attending
 meetings, then they can do this. Realize that any tasks, even those not related to PBIs or
bugs,willinfluencetheSprintBurndownreport.Rememberthatnearlyalloftheworka
Development Team does during the Sprint should originate from the Product Backlog, as this is
what has been negotiated between the Product Owner and the business, as well as the Product
Owner and the Development Team. If the team decides not to track these kinds of activities

120 PART II Using Scrum

asTaskworkitems,theycanstillrestassuredthattheireffortswillbereflectedinthemeasured
Velocity. Transparency and visibility really helps everyone keep their focus on the Sprint Goal. If
things get too far off, they should be visible by others and handled by the Scrum Master/coach
or in the Retrospective.

Smell It’sasmellwhenreportsareempty.Scrumdoesn’tofficiallyacknowledgereports
or any other artifacts as being required. The rules do say that a Scrum Team should assess
progress regularly. Team Foundation Server reports are a great way to do that, but if the
teamisabletoforecastprogressusingsomeothermethod,I’mfinewiththat.Also,I’ve
worked with high-performance Scrum Teams that choose not to create Task work items
during a Sprint and instead formulate the plan using sticky notes or through conversation.
In this case, the Sprint Burndown report would be empty because no Task work items exist.
Without tracking tasks, there would be no long-term transparency into what occurred
 during the Sprint either.

Reports can be opened from Team Explorer and displayed within Visual Studio. If you know the
URL of the SQL Server Reporting Services Report Manager site, you can go there directly to view and
manage the reports. Team Explorer makes this shortcut available, as do the SharePoint Project Portal
and Web Access sites.

Securitypermissionsshouldbeconfiguredonreportsforindividualsorgroupsofuserstoallowthem
to or deny them from running reports. Normally, I’m a fan of maximizing permissions for the Scrum Team,
but when it comes to reports, there’s really not a lot of interesting things you do with them on
a daily basis other than to run them. In other words, there’s not a lot of value in giving the Scrum Team
anything more than the Browser permission. You can see an example of setting permissions in Figure 4-10.

There are times when you may want to edit a report and tweak its caching options or add a
subscription.Youmayevenwanttouploadanentirelynewreport*.rdlfileinitsplace.Theuser
 making these types of changes will need the Team Foundation Content Manager permission. By
 default, only administrators have this permission.

FIGURE 4-10 Setting report security for the Scrum Team and stakeholders.

 CHAPTER 4 The pre-game 121

Tailspin Toys case study AndyconfiguredSQLServer2012ReportingServiceswhenhe
configuredTeamFoundationServer.Asaresult,eachprojectcreated,suchasTailspin,will
have all available reports. Since the team will be spending a lot of time in the Agile planning
tools, they will use those built-in burndown and Velocity charts, as they are updated more
 frequently than reports that depend on the data warehouse and cube. The team plans to follow
the practices outlined in this book to ensure that the reports contain meaningful data and can
be used to measure progress. During their regular Sprint Retrospective meetings, they will
reviewthecostsoftrackingcertaindataandcomparethatagainstthebenefitofproducing
 meaningful queries and reports for them and the stakeholders to determine if there is any
waste in their process.

Security groups
By default, team projects contain four project-level groups with a default set of permissions. These are
created at the time the team project is created, and they are all empty. The exception is the Project
Administrators group, which contains the user who created the team project. This group is populated
by the user who created the project, which is typically a Project Collection administrator. The project
administrator must decide who else needs access to the team project, and what level of permission
they need. Here are some details about the built-in groups:

 ■ Project Administrators Members of this group can administer all aspects of the team
project, although they cannot create new projects. A Team Foundation Server administrator is
required to create the team project.

 ■ Contributors Members of this group can contribute to the project in multiple ways, such as
adding, modifying, and deleting code and creating and modifying work items.

 ■ Build Administrators Members of this group are contributors with additional, build-related
permissions,suchasbeingabletocreateandmanagebuilddefinitions,deleteanddestroy
builds, and manage the build queue and qualities.

 ■ Readers Members of this group can view the project but not modify it.

TheobviouschoicehereistoaddallofthemembersoftheScrumTeam(includingtheProduct
Owner and Scrum Master) to the Contributors group, and stakeholders to the Readers group.
I think this is a valid choice, but it can lead to impediments during the Sprint. For example, if the
 project administrator is unavailable, the developers might be blocked from adding a new work item
Area node or creating a shared query. These sound like minor things, but they can add up during the
courseofadayoraweek.Ibelievethatifateamhasacertainlevelofproficiencyinthetool,and
the members trust one another, that they should all be project administrators. This epitomizes the
 self-organization and self-managing qualities of the Development Team. You can easily do this by
adding a Windows group, such as Scrum Team, to the Project Administrators security group, as I’ve
done in Figure 4-11.

122 PART II Using Scrum

FIGURE 4-11 AddingtheScrumTeam(Windows)grouptotheProjectAdministrators(TFS)group.

Tailspin Toys case study After Andy created the Tailspin team project, he added the Windows
group Scrum Team to the Project Administrators group. During Sprint Retrospectives, the
team will discuss and decide if this level of permission should be ratcheted down for any team
 members.

Teams
Teams are a new concept in Team Foundation Server 2012. They allow the grouping of collaborating
team members who will be working on similar areas and iterations of the product. They also
 enable access to the new Agile planning tools. Behind the scenes, teams are implemented as Team
 Foundation Server groups and have a similar set of permissions. In fact, a new team has the same
permissions as the Contributors group by default. Teams differ from groups in that they enable their
memberstoaccessandusetheAgileplanningtoolsinordertodefineandmanagetheirProduct
Backlog, Sprint Backlog, and task board.

When a team project is created, a default team is created with the same name as the project.
Developers can be added to this team and start using the Agile planning features right away, without
theneedforadditionalconfiguration.Theprojectadministratorcancreateadditionalteamsaswell.
Team members can be members of more than one group.

Note When you create a new team, Team Foundation Server will also create a similarly
named area path by default. This ensures a strong connection between teams and areas.
As you can see in Figure 4-12, you can skip this by clicking the Settings tab of the Create
New Team dialog box and clearing the Team area option. Also, keep in mind that if you
rename your team, it will not rename the area path. You will have to do that manually.

 CHAPTER 4 The pre-game 123

FIGURE 4-12 The option to create a matching area path when creating a new team.

The user who created the team becomes the team’s administrator. Team administrators can
edit the membership of the team, as well as delete the team. All team members, even non-team
 administrators, can edit the properties of the team, which include team areas, team iterations
(BacklogandSprints),andteamfavorites.

Aftercreatingateam,itsiterationsandareascanbespecified.Iterationsthattheteamselectswill
appear in the Backlog as Sprints on the left side. A user can drag Product Backlog Item and Bug work
itemtypestotheseSprintsforplanning.Theareasthatateamspecifiesdeterminewhatworkitems
show up in the team’s Backlog. Teams can also designate one of those areas as its default. This is
then suggested when creating work items from the Product Backlog and work items hub within Web
Access, as well as within Team Explorer and Team Explorer Everywhere. It does not get offered as a
default value in Microsoft Excel, Microsoft Project, Test Manager, or when running reports.

Note If you have only one team then it is considered the default team. You can think
of this team as the “root” team, which exists at the team project level. You can rename
this default team, but you can’t delete it. To delete it, you have to create a second team
andmakeitthedefaultfirst.Youmightjustaswellhaverenamedit.Also,ifyouwant
toconfigurethedefaultteam’sareasanditerations,youwilldoitontheteamproject’s
 control panel page, not the team’s.

Team Foundation Server allows a user to belong to more than one team. Before considering this,
make sure that it makes sense to do so. Rarely do developers belong to more than one Scrum Team
within the same product. If they are a shared resource between a few, but not all teams, then this
would make sense. You can see an example of this in Figure 4-13. If the goal is to add the Product
Owner or Scrum Master to each team, then they should be added to the default team instead. This
will have the same net effect with less overhead.

124 PART II Using Scrum

FIGURE 4-13 Selecting a team within Team Explorer.

Tailspin Toys case study Andy renamed the default team to Scrum, uploaded a team photo,
and added the Scrum Team group in Windows group to it. Knowing that the team members are
familiar with the tool and trustworthy, Andy also made them all team administrators. He did this
by again adding the Scrum Team Windows group as a Scrum team administrator. During Sprint
Retrospectives, the team will discuss and decide if this level of permission should be ratcheted
down for any team members.

Chapter burndown

Here are the key concepts we covered in this chapter:

 ■ Team Foundation Server You can either pay to play on the Microsoft-hosted Team
 Foundation Service or license, install, and use an on-premises Team Foundation Server.

 ■ Team Project Collections Team projects within the same collection enjoy the ability to copy,
link, and query work items, as well as branch and merge code across projects.

 ■ Team Foundation Build Use Team Foundation Build to automate the compiling and testing
of either your entire application or just components of it. Install build agents on dedicated
machines with fast hardware and I/O to shorten the build–test feedback loop.

 ■ Team Project The team project is the container for your product’s lifecycle management.
One team project can support the development of multiple areas, releases, Sprints, and teams.

 CHAPTER 4 The pre-game 125

 ■ Source Control Plan and create an initial folder structure to support the development of your
product and its components. Establish a branching strategy that reduces complexity and the
need to merge. Save your creativity for your product.

 ■ Project Portal and Reports Use SharePoint and SQL Server to increase transparency by
extending information to your stakeholders. Use the SharePoint wiki or document library to
manageyourdefinitionofdoneandSprintGoals.

 ■ Security Groups and Teams Add all Scrum Team members to the Project Administrators
group and Team Administrators group to avoid impediments. Ratchet this back as
 Retrospectives deem it necessary.

 127

C H A P T E R 5

The Product Backlog

The Product Backlog is an ordered list of everything that might be required of the software product. It
is the single source listing all requirements for any changes to be made to the product. It includes

featurestobeadded,changestobemade,andbugstobefixed.EachitemintheProductBacklogis
calledaProductBacklogitem(PBI).PBIscanrangefromextremelyimportantandurgenttotrivial.

While the Product Owner is responsible for the Product Backlog, he or she may have others create
and update its items. However, it is the Product Owner’s responsibility to ensure that the items in
theProductBacklogareclearlydefined,understoodbytheDevelopmentTeam,assignedabusiness
value,andordered(prioritized)correctly.TheDevelopmentTeamcollaborateswiththeProduct
 Owner—and other domain experts, as needed—during Product Backlog grooming sessions, Sprint
Planning meetings, and the Sprint Review to understand and estimate the items in the Product
 Backlog.

This chapter will focus on how to use Microsoft Visual Studio Team Web Access to create and
groom the Product Backlog. You will also see how a healthy Product Backlog can enable release
 planning, and how to do that using these tools. If you are more interested in the concept of the
 Product Backlog, and less on how to use tools to interact with it, you may wish to read Chapter 1,
“Scrumdamentals.”

Creating the Product Backlog

You create the Product Backlog one work item at a time. Both PBI and Bug work item types appear
in the backlog. By default, only a title is needed in order to save a new work item to the Product
Backlog. Yet the Product Owner will probably require more information in order to assign the item a
businessvalueandorderit.TheDevelopmentTeamwilldefinitelyneedmoreinformationthanjusta
title in order to estimate it. Having a title is a good start, though.

Note In Scrum, there is only the PBI. A PBI can be a bug. Microsoft Team Foundation
Server, however, differentiates between a PBI and a bug. This is because the Bug work item
typetracksdifferentinformation(reproductionsteps,systeminformation,etc.).Ifyoudon’t
care about tracking these additional details, then you can use a PBI work item type for a bug.

C H A P T E R 5

The Product Backlog

Creating the Product Backlog

Team Web Access

Using the “quick add” experience

Handling epic PBIs

Importing existing PBIs

Reporting a bug

Effective Product Backlog creation

Grooming the Product Backlog

Specifying acceptance criteria

Estimating items in the Product Backlog

Tracking estimates in the Product Backlog

Ordering the Product Backlog

Planning a release

Time-driven vs. feature-driven releases

Controlling and prioritizing scope

Using Velocity to estimate

Release Burndown report

Chapter burndown

128 PART II Using Scrum

According to the Scrum Guide, the Product Owner is responsible for the Product Backlog.
This doesn’t necessarily mean that he or she is the one doing the data entry. It just means that the
ProductOwnerisresponsibleforensuringthateachPBIisclearlydefinedandunderstandable.
In Team Foundation Server, anybody with the appropriate permission can create work items. A project
administrator can control this ability at a high level in the team project security settings, and at a more
detailed level at the area and iteration security settings. As stated previously, I feel that everyone
on the Scrum Team should be able to contribute to the Product Backlog—at a minimum. The
 Product Owner may also want other stakeholders, such as business analysts, customers, or the users
 themselves, to be able to create work items. If someone other than the Product Owner creates the
work item, a conversation should take place so that person can explain its context, purpose, and
business value.

WhensomeonecreatesaPBI,heorsheshouldfocusonitsvalue(thewhat), and avoid descriptions
of how the Development Team should develop the item. When it comes time, the Product Owner can
order the Product Backlog based on each item’s value, risk, priority, or necessity. The Product Backlog
can evolve quickly if the business requirements of your product and other conditions constantly
change. To minimize waste, detailed requirements should be avoided except for the highest-ordered
items. The teams that I have worked with preferred having two to three Sprints’ worth of groomed
PBIs at the tip of their iceberg.

Team Web Access
InVisualStudio2012,youuseTeamWebAccess(orWebAccessforshort)toconnecttoTeam
 Foundation Server and coordinate your development efforts with other team members. You can
use Web Access to manage your work and your team projects. Web Access is a customizable
web interface that provides most of the functionality that is available in Team Explorer, as well as
additionaltoolsformanagingworkitems.YoucanuseWebAccesstofindandupdateworkitems,
viewandcompareversion-controlledfiles,andqueueautomatedbuilds.WebAccessisautomatically
installedandconfiguredwithTeamFoundationServer.

The Scrum Team can manage the Product Backlog and Sprint Backlog by using the backlog page
of Web Access. The Development Team can manage its tasks within a Sprint by using the task board
page. From these two different pages, team members can perform the following activities:

 ■ Capture the work to be developed in the form of PBI and Bug work items.

 ■ Defineepic,theme,oruser-storyPBIstocapturethevisionofthesoftwareproductandits
roadmap.

 ■ Plan a Sprint by dragging work items from the Product Backlog to a Sprint.

 ■ SwitchviewsfromtheProductBacklogtoaSprintBacklog(past,present,orfuture).

 ■ Review burndown charts, update tasks, and track progress for the current Sprint.

 CHAPTER 5 The Product Backlog 129

Note You cannot manage your Product Backlog or Sprint Backlog visually using Visual
Studio Team Explorer. If you want to access the Agile management tools, including the
“quick add“ feature and drag-and-drop functionality, you have to use Team Web Access.

In Web Access, you will use the backlog page to capture the work to be developed in the form
of PBI and Bug work items. The PBI work items can be user stories, requirements, or features. The
ordered(prioritized)listofworkitemsintheProductBacklogcapturesthevisionandreleaseplan
(roadmap)forthesoftwareproduct.AlthoughyoucanuseTeamExplorer,MicrosoftExcel,orother
client applications to manage the Product Backlog, the backlog page in Web Access should be the
primaryuserinterface(UI).

Licensing and permissions
At the time of this writing, the Web Access licensing details are still being sorted out. There will be
three levels of licensing: limited, standard, and full. These can be viewed and managed on the Web
Access tab of the Control Panel root page, as you can see in Figure 5-1.

FIGURE 5-1 Assigning Web Access permissions.

Here is a short explanation of the different licensing levels:

 ■ Limited Users can create and view only their own work items, such as Bugs. This is similar
totheWorkItemOnlyView(WIOV)licensingfrompriorversions.Thislicensingleveldoesn’t
requireacopyofVisualStudiooraTeamFoundationServerClientAccessLicense(CAL).

 ■ Standard (default) Users can use the standard Web Access features, including the task
board. These users cannot use the backlog pages to view and manage the Product Backlog or
Sprint Backlog. They also cannot solicit stakeholder feedback using those tools. This licensing
level is intended for developers using the Visual Studio 2012 Professional edition or any
 stakeholder with a Team Foundation Server CAL.

130 PART II Using Scrum

 ■ Full Users can use all of the Web Access features. This is intended for developers using the
Test Professional, Premium, or Ultimate editions of Visual Studio 2012. I recommend that
 everyone on the Scrum Team is licensed at this level.

The edition of Visual Studio that you have installed has no effect on the access-level license.
License compliance is based completely on the honor system. By default, everyone is in the Standard
group, which is simply a convenience. An administrator will need to ensure that a new user is put into
the correct licensing group.

 Tailspin Toys case study Paula(theProductOwner)andScott(theScrumMaster)each
own a license of Visual Studio 2012 Test Professional edition. Each of the developers owns
a license of Visual Studio 2012 Premium or Ultimate edition. Therefore, everyone on the
Scrum Team is licensed to use the full set of Web Access features, including the backlog
 management features. There is discussion that some stakeholders might purchase a Team
Foundation Server CAL or use the limited, CAL-less licensing mode solely to create work
items for the team’s consideration.

Membership in one of the licensing groups is not enough to interact with a team project;
 however, an administrator must also add the user to one of the built-in permission groups: readers,
 contributors, or project administrators. To manage the Product Backlog or a Sprint Backlog, including
adding and editing work items, a user must at least be a member of the contributors group or have
the Edit Work Items In This Node permission set to Allow for the team project.

Tip My guidance for high-performance Scrum Teams is to make everyone, even the
 developers, a project administrator. This minimizes impediments caused by the tools,
such as not being able to create new areas and iterations, or manage many details around
source control and build features. Remember that members of a high-performance Scrum
Team trust one another and know how to use the tools too.

Using the “quick add” experience
The easiest way to create a new PBI or Bug is to use the “quick add” panel on the backlog page. As
you can see in Figure 5-2, you can use this panel to add a PBI or Bug work item quickly. It’s fast,
because you only have to provide a title. You can enter several items in rapid succession. This can be
helpfulduringtheSprintReviewmeeting,whenideasareflyingabouttheroom.

The “quick add” feature is on by default. If you want some more screen real estate, you can turn
it off. You can do this by either clicking the Close button in the upper-right corner of the panel or by
clicking the on hyperlink next to the “Add Items” label on the right side of the screen. To show the
panel again, click the off hyperlink in the same area.

 CHAPTER 5 The Product Backlog 131

FIGURE 5-2 Using the “quick add” panel to add a PBI.

Workitemsthatyouaddthiswaywillonlyhavethetitlespecified.Therestofthefieldswillbe
assignedtheirdefaultvalues,someofwhichmightneedtobechanged,suchastheAssignedTofield.
Most Scrum Teams I work with like to assign PBI and Bug work items to the Product Owner, since he
or she is the owner until the Sprint in which the team forecasts its development. It is blank by default.
Over time, as more is known, the work item will get updated. To open the work item, you can just
double-click it in the backlog page.

Note In a future version of Visual Studio, I’d like to be able to specify more information
about the Scrum Team. I’d like to be able to indicate the team’s Product Owner and Scrum
Master. By doing this, Team Foundation Server could auto-assign PBI and Bug work items
to the Product Owner. I hope this is on Microsoft’s backlog.

When you add a work item using the “quick add” feature, it will appear above whatever item you
have selected in the backlog. If you have the last item selected, then it will be added below that one.
Work items added through other applications, such as Team Explorer or Microsoft Test Manager, will
appear at the bottom of the list. This behavior is due to the fact that the Product Backlog is sorted
bytheBacklogPriorityfieldofaworkitem.WorkitemswithanullBacklogPriorityappearatthe
 bottom of the list. You will, more than likely, want to reorder these items by dragging them elsewhere
in the list.

There are many other ways to add work items to the Product Backlog. From the team project’s
home page, there are shortcuts for adding PBIs and Bugs, as you can see in Figure 5-3. You can also
add work items from the work items page. While there is no “quick add” experience on the work items
page, it does offer many time-saving features such as Bulk Edit, Clone, Copy, and Link shortcuts.

Tip After adding or editing a work item, you may have to refresh the screen manually.
Also, there is no button or link to click to refresh. You’ll have to refresh the browser
 manually by pressing F5.

132 PART II Using Scrum

FIGURE 5-3 Work item shortcuts found on the team project’s Home page.

Tailspin Toys case study During Sprint Review meetings, as the Increment is being
 demonstrated, the stakeholders in the room tend to get excited and start rapidly coming
up with new ideas and features. This “feature frenzy,” as the Development Team calls it,
willgenerallybeargoodfruit,whileothertimes,theseideasshouldbethrownintothefire.
Either way, the feedback should be captured, and the “quick add” panel makes this possible.

Removing an item from the Product Backlog
From time to time, you may want to remove a work item from the Product Backlog—or anywhere
else in Team Foundation Server, for that matter. The work item may have been entered in error or was
a duplicate. You cannot delete work items from Web Access, Team Explorer, Test Manager, or Excel.
This is by design. The recommended way of “deleting” a work item is to set its state to Removed, and
then add a comment to the discussion on the History tab. By default, PBI and Bug work items in this
state are not displayed in the Product Backlog or other views.

If you want to remove a work item permanently, you can use the Witadmin.exe command-line
 utility. Just pass it the destroywi command, along with the team project collection URL and work
item ID. These work items are removed from the Team Foundation Server database and cannot be
restored or reactivated.

Customizing the “quick add” panel
Youcancustomizethe“quickadd”panelandaddmorefields.Youmightwanttodothisfor
importantPBIandBugworkitemfieldsthatdon’thaveadefaultvalue,suchasDescription, Business
Value, or Effort. You can also add additional work items to the drop-down list by adding them to the
Requirements work item category, as discussed in Chapter 3, “Microsoft Visual Studio Scrum 2.0.”
You probably won’t be doing this if you are using the Scrum template though, because it already
maps perfectly to Scrum.

Here are the high-level steps to follow in order to customize the “quick add” panel:

1. UseWitadminexportagileprocess.configtoexporttheAgileProcess.xmlconfigurationfilefor
the team project.

 CHAPTER 5 The Product Backlog 133

Note You can also use the Process Editor found in the Team Foundation Server
Power Tools.

2. EdittheexportedconfigurationfileandlocatetheAddPanel element.

3. Add a Fieldelementthatspecifiesthereferencenameofthefieldthatyouwanttoaddtothe
panel. For example, you could add the Microsoft.VSTS.Common.BusinessValuefield,asshown
here(seebold):

<?xml version="1.0" encoding="utf-8"?>
<AgileProjectConfiguration>
 <IterationBacklog>
 <Columns>
 <Column width="50" refname="Microsoft.VSTS.Scheduling.Effort" />
 <Column width="400" refname="System.Title" />
 <Column width="100" refname="System.State" />
 <Column width="100" refname="System.AssignedTo" />
 <Column width="50" refname="Microsoft.VSTS.Scheduling.RemainingWork" />
 </Columns>
 </IterationBacklog>
 <ProductBacklog>
 <AddPanel>
 <Fields>
 <Field refname="System.Title" />
 <Field refname="Microsoft.VSTS.Common.BusinessValue" />
 </Fields>
 </AddPanel>
 <Columns>
 <Column width="400" refname="System.Title" />
 <Column width="100" refname="System.State" />
 <Column width="50" refname="Microsoft.VSTS.Scheduling.Effort" />
 <Column width="200" refname="System.IterationPath" />
 </Columns>
 </ProductBacklog>
</AgileProjectConfiguration>

4. Savethefile.

5. UseWitadminimportagileprocess.configtoimporttheupdatedconfigurationfilebacktothe
team project.

Note The “quick add” panel cannot be customized for the hosted Team Foundation
Service.

Afteryouhavere-importedtheconfigurationfile,youmustrefreshthebacklogpage.Afterthat,
youcanstartusingthenewfield(s)asyouadditemstotheProductBacklog.Figure5-4showsthe
customized “quick add” panel.

134 PART II Using Scrum

FIGURE 5-4 The customized “quick add”panelshowingtheadditionalfield.

Handling epic PBIs
An epic PBI is any PBI that is too large to be completed in a single Sprint or by a single team. For
 example, if the Development Team has a Velocity of 18 points, they should not forecast a PBI that is
21 points. Even if a team is not using Velocity as a forecasting tool, they should never take on more
work than they feel they can accomplish. In either case, the PBI must be decomposed. The intricacies
ofhowtosplitaPBIeffectivelyarebeyondthescopeofthischapter.Sufficeittosaythatit’sa
 combination of science, art, magic, and a bit of luck at times.

Smell It’s a smell when I see an epic PBI near the top of an ordered Product Backlog.
It should be decomposed well in advance of the Sprint in which it is forecast to be
 developed.

The relevant question then becomes, how do we track the original, as well as the decomposed PBIs
in Team Foundation Server? There are three approaches as I see it, and unfortunately, Web Access
doesn’t provide direct support for any of them.

Let’sassumethatyouhaveanepicPBIto“ImproveUXformobiledevices,”asseeninFigure5-5.
(UXstandsforuser experience.) Since this PBI’s effort is larger than our Velocity of 18, it must be
decomposed.

FIGURE 5-5 An epic PBI.

 CHAPTER 5 The Product Backlog 135

Thefirstapproachwouldbetocreateadditional,child-linkedPBIs.Eachofthesewouldhave
 smaller efforts, achievable in a single Sprint. The epic parent PBI would become a permanent
 placeholder. The team would never directly forecast or develop it. When all of the child PBIs were
developed, someone would have to set its state manually to Done. The advantage to this approach is
that it establishes a visual context.

To create the parent-child hierarchy, simply drag the child work item underneath the parent work
item.Iftheparentalreadyhaschildren,asinFigure5-6,youcandropitabovethefirstchildorin
between any of the children. If your intention is to make the work item the last child in the hierarchy,
then you will need to drop the work item on the parent’s Orderfield(whichyoucanseeasthedarker
square on the left side of Figure 5-6). Dropping it on the parent’s title, or anywhere else in the row,
will just order the work item above the parent. To break an existing parent-child relationship, just drag
the child out from under the parent to somewhere else in the Product Backlog.

Note You can also establish the parent-child relationship manually by creating the
respectivelinkstotheparentfromthechild(orviceversa).Whileyouarecreatingthelinks,
youmayalsowanttotweaktheBacklogPriorityvalue,asitinfluencestheorderthatthe
children are listed under the parent.

FIGURE 5-6 Establishing a parent-child relationship in the Product Backlog.

A disadvantage to using this parent-child approach is that you cannot order the child PBIs
individually.Theymuststaytogetherasanatomicunit.AssoonasyoudragthefirstchildPBIabove
(orbelow)theparentPBI,thehierarchyisdestroyed.Anotherdisadvantageisthatyounowhave
something in your backlog which isn’t really a PBI. Some of my fellow Professional Scrum Developers
wouldconsiderthisnoise,orevenwaste.Also,ifyouaccidentally(oronpurpose)lefttheparentPBI’s
effort value, it could mess up any forecasting or release planning. The forecasting tool in the Product
Backlog list is smart enough, however, to not double-count the effort of the parent and its children.
Other queries, reports, or manual processes may not be that smart. To be safe, you should set the
epic parent PBI’s Effort to zero after the children are linked. Figure 5-7 shows a completed parent-child
relationship of an epic PBI with the parent’s Effort removed.

136 PART II Using Scrum

FIGURE 5-7 Decomposing an epic PBI into child PBIs.

Tip From the work items page, you can right-click the epic PBI and Select Link Selected
Item(s)ToANewWorkItem.Youcanthenchooseachild to link to a PBI. At the time of
this writing, this capability is not supported on the backlog page.

The second approach would be to edit and rename the original PBI, making it one of the eventual
children.ThenyouwouldaddtwomorePBIsassiblingsofthefirstone,asshowninFigure5-8.
You will lose the “big picture” of the epic, as well as the context that they were once related under
a common epic PBI, but you won’t have any dummy items in your Product Backlog. If you can’t
live without this information, you can keep them associated by using a title naming convention,
description,orhistorynote.YoucanalwaysreviewthechangehistoryofthefirstPBItoseethatit
used to be an epic PBI.

FIGURE 5-8 Decomposing an epic PBI into sibling PBIs.

 CHAPTER 5 The Product Backlog 137

The third approach is really just a variation of the second. Rather than have a naming convention in
thetitleorsomecommontextinthedescription,youaddacustomfieldtothePBIworkitemtypeto
register the original epic PBI’s title. This can be done manually using Notepad, or by using the Process
EditorintheTeamFoundationServerPowerTools.Onceyouhavecreatedanewfield,youcan
customizetheProductBackloglistinthebacklogpagetoincludethenewfieldasacolumn.

So which approach is best? This is a classic “let the team decide” moment. For teams new to Scrum,
IrecommendstartingwiththefirstapproachandcreatingthechildPBIs.Thishelpseveryonevisualize
and understand the breakdown of work. It also helps the Scrum Team explain to stakeholders that,
“We had to do it this way because we couldn’t physically build the whole feature in one Sprint.” As
the organization starts to grow Scrum, they can move to the second or third approach to keep the
Product Backlog lean.

Tailspin Toys case study The Scrum Team is currently using the second approach. They
ensurethateachoftherelatedsiblingPBIshaveasimilarprefixorpreambleintheirtitles.
To date, nobody in the organization has requested a list of all epic PBIs. The search tool, or
customqueries,havesatisfiedtheiradhocqueryneedsthusfar.Ifareportwasrequested,
Scott(theScrumMaster)putonetogethermanually.

Importing existing PBIs
Prior to the adoption of Team Foundation Server or Scrum, it’s likely that an organization will
 maintain several lists of work. One might track high-level requirements of the software. Another list
tracks the feature requests from the users. Yet another list tracks the bugs. These lists can range from
a beautiful arrangement of sticky notes, to an Excel spreadsheet, to a Microsoft SharePoint list, even
toadedicated,third-partyapplicationlifecyclemanagement(ALM)tool.Mergingallofthisdatainto
acommonProductBacklogcanbedifficult,andI’mnotjusttalkingaboutnavigatingthepolitics.
Meaningful data must be extracted, transformed, and loaded.

Exceltotherescue!Excelisextremelyeasytouse,andeveryoneintheofficehasit.I’vepersonally
used it to create dozens of Product Backlogs over the years. Most people don’t know that it can be
usedasanextract,transform,andload(ETL)tool.Okay,maybeit’snotadvertisedassuch,butwith
regards to Team Foundation Server, it’s true. Using Excel, you can extract the data from your existing
list(usingcopy/paste,oneoftheGet External Data functions, or some form of automation). The data
canbetransformed(normalized)andthenloaded(published)toTeamFoundationServer.

There are a number of ways to import existing backlog items using Excel. Here is a basic
step-by-step approach that I recommend:

1. Open Excel.

2. Rename the Sheet1 worksheet to Source and Sheet2 to Target.

3. In the Source worksheet, load your data using a Get External Data function or the Clipboard.

138 PART II Using Scrum

4. Select the Target sheet.

5. From the Team ribbon, select New List and then Input list.

6. From the Team ribbon, select Choose Columns.

7. Select Product Backlog Item, and select the additional columns you’ll want. As you can see in
Figure 5-9, Description, Acceptance Criteria, Area Path, Business Value, and Effort are good
columns to start with.

8. From the Source sheet, copy the respective columns and paste them into the Target sheet. Set
the Work Item Type, Product Owner,andotherfieldsmanually.

9. Clean up the data, especially if you are importing Area Path, State, or any numeric data.

10. FromtheTeamribbon,selectPublish.Ifanerroroccurs,readthemessage,correcttheerror(s),
and then publish again.

FIGURE 5-9 Selecting additional PBI columns to import.

Tip Fellow Professional Scrum Developer, Simon Reindl, prefers to start with a custom
query that already has the interesting columns selected. These queries are especially useful
if he has to run a similar migration again in the future.

ThenormalstatetransitionworkflowofaPBIorBugworkitemisNew>Approved>Committed
>Done.Whenimportinghistoricalitems,itcanbetedioustochangethestateseveraltimes,saving
in between. Microsoft made a nice improvement in the Visual Studio Scrum 2 process template that

 CHAPTER 5 The Product Backlog 139

helpsinthissituation.Whenyoufirstcreateaworkitem,thestateisNew.Youcannowchangeit
directly to Committed or Done. This saves a couple of steps and save operations.

Once you’ve published the work items, you can continue to use the Excel spreadsheet to make
bulkeditstothatsetofdata.Youshouldsavethefileifyouplanondoingthis.Ifthiswasaone-time
import and you are happy with the results, then you can discard the document.

You can also use Web Access to make bulk edits to work items. You will need to be on the work
items page. The backlog page doesn’t support bulk editing. After running the query you want on the
work items page, use the Ctrl and Alt key combinations to select the work items you want to bulk-edit.
With the rows selected, click the small drop-down arrow, and then from the pop-up context menu,
selectEditSelectedWorkItem(s).Youcanalsoquicklyassigntheworkitemstoanewteammember,
move them to a different Sprint, or link them to a work item.

Editing a work item is different than opening it. When opening, it opens the Work Item form,
allowingyoutoseeandchangeallthefieldsasnormal.Editingaworkitem(oritems)allowsyouto
specifyavalueforoneormorefields.AsyoucanseeinFigure5-10,allselectedworkitemswillbe
updated. You can also set a note for the history, which I recommend, to increase traceability.

FIGURE 5-10 Using Web Access to bulk-edit work items.

Smell It’s a smell when I see tasks, impediments, statements, goals, gripes, or guidance
in the Product Backlog. What I’m talking about is a PBI titled, “We should back up the
 database each night” or “Let’s stop meeting in the hallway for our Daily Scrum.” The
Product Backlog should only contain items that represent a potential change in the
 software product being developed. This is not to say that a valid PBI couldn’t have some
goals or guidance attached to it—you just don’t document them in the Product Backlog.

140 PART II Using Scrum

If you plan on importing items regularly or have a lot of complex data scrubbing to perform,
you might consider building a custom import tool. You can use the Microsoft .NET Framework to
read the source data and perform any transformations that are required. You can then use the Team
Foundation Server object model to connect to the team project and create the work items. The Team
FoundationServerSoftwareDevelopmentKit(SDK)containssamplecode,asdoanumberofprojects
on CodePlex.

Tip TheTFSIntegrationPlatformonCodePlex(http://tfsintegration.codeplex.com) is a
framework that helps other tools integrate with Team Foundation Server. It contains good
sample code and approaches to creating work items and dependencies. You can also
checkouttheTestCaseMigratorPlusproject(http://tcmimport.codeplex.com). Although it
is more focused on importing test cases, it contains some great sample code that you can
repurpose for a custom tool.

Reporting a bug
Bugs are backlog items too. In Scrum, there is no differentiation between a feature and a bug. Both
represent something that must be developed in the software product. Team Foundation Server does
differentiate. In Team Foundation Server, the Bug work item type tracks additional information over a
PBI work item, such as the steps to reproduce the bug, the severity, the system information, and the
buildnumberthatthebugwasfoundandfixedin.BugsaretreatedjustlikeotherPBIs,insofarasthey
are groomed, estimated, forecast, and decomposed into tasks during Sprint Planning.

OnefieldthataBugworkitemdoesn’thaveisBusiness Value. PBI work items have a Business
Value, but Bug work items do not. Instead, the Bug work item has a Severityfield.It’snotquitethe
same as a business value, but it does let the Product Owner or a domain expert set the criticality of
thebugonascaleof1(critical)to4(low).

Note Having bugs in the Product Backlog is a fundamental difference between the Visual
Studio Scrum process template and the other MSF Agile and CMMI templates. Both of the
MSF templates dissuade teams from tracking bugs in their Product Backlog. In fact, they
treat bugs as completely separate items.

Eachteammayhandlethediscoveryandclassificationofbugsintheirownway.Beforereporting
a bug, someone should ensure that it is a valid bug. It could be that the odd behavior that someone
 experienced was by design, or a training issue, or something that had already been reported. This
identifying and sorting process is known as bug triage. Triage also includes identifying the severity,
frequency, risk, and other related factors. Triaging bugs can sometimes be a collaboration of the
Development Team and the Product Owner. Sometimes stakeholders, such as business analysts and
experts,shouldbeconsultedtoelaborateonspecificdomainissuesandrisks.

http://tfsintegration.codeplex.com
http://tcmimport.codeplex.com
http://tcmimport.codeplex.com

 CHAPTER 5 The Product Backlog 141

Smell It’s a smell when I don’t see bugs in a Product Backlog. One concern is that the
Development Team isn’t testing the product. It could also be that the users aren’t reporting
bugs. From a planning perspective, I’m more worried that bugs are being reported in
 another system. Many large organizations have centralized trouble-ticket or issue-tracking
systems. Software bugs found in production typically start here. They shouldn’t end
up here though. Those bugs should be triaged and, if applicable, added to the Product
Backlog. Without having bugs in the Product Backlog alongside feature requests, the
Product Owner won’t be able to order the items effectively to maximize the work of the
Development Team and the value of the product.

Anyone should be able to report a bug. Bugs, just like everything else in the Product Backlog,
arevalidated,estimated,ordered,and(hopefully)forecasttobefixed.It’stheProductOwner’s
prerogativetoapprovethereportedbug,leaveitinitscurrentstate(New),orremoveitfromthe
Product Backlog.

Tailspin Toys case study Currently, anybody internal or external to the organization can
email Paula or the public alias about an issue or bug in the software. Paula will see that
these emails are triaged and, if prudent, that a Bug work item is created.

What makes a bug report good?
A bug report is just that—it’s the reporting of a bug or other unwanted behavior in the software
product. In order to write a good bug report, and thus create a good Bug work item in Team
 Foundation Server, it must contain enough information for the Scrum Team to understand it and
gauge its impact on the business.

A good, clear title is a must. A developer should be able to grasp the essence of the bug from the
title alone. If there are many work items, having a clear title will help the team as they work with the
bug through grooming, forecasting, and development. It saves a user from having to read the whole
work item to get its context.

Tip At the time of this writing, the backlog page doesn’t differentiate between PBI and
Bug work items. There are no icon or coloration differences. The work item is not listed
either. Needless to say, it will be hard to tell which items are the bugs. You could consider
prefixingbugtitleswith“Bug:”sothattheystandoutintheProductBacklog,asshown
in Figure 5-11. Another option would be to customize the backlog columns and add the
System.WorkItemTypefield.You’lllearnhowtodothatlaterinthischapter.

142 PART II Using Scrum

FIGURE 5-11 PrefixingBugworkitemswith“Bug:”todistinguishthemfromPBIworkitems.

You should report only one bug per work item. If you document more than one bug, some
of them may be overlooked. Atomic bug tracking helps in the same way atomic testing does—it
 provides a very precise understanding of what’s working and what isn’t.

A picture is worth a thousand words. Sometimes words just can’t demonstrate the issue as a screen
shotormockupcan.Developerswillappreciatetheseextraeffortsbecausetheyneedtofindthe
problem in the shortest amount of time. Any helpful documentation can be attached to the Bug work
item or stored in SharePoint or another website, and then linked to the work item.

It is also a good idea to specify system information, including the build number that produced the
failure. This build number can either be the one generated by Team Foundation Build or an assembly
or product version number. This number will provide more information and help the developers
identify the exact problematic build. Otherwise, if the team uses a more current version, they might
searchforaproblemthatwasalreadyfixed.Iftheyuseanolderbuild,theproblemcodemaynotyet
have been integrated.

TheBugworkitemhastwofieldstotrackthebuildnumber.TheFound in Buildfieldtracksthe
build that produced the failure, while Integrated in Buildtracksthebuildwherethebugwasfixed.
WhenaddingoreditingaBugworkitem,thedrop-downcontrolforthesefieldsallowsyoutopick
a build number from a list of unique build names that was generated by Team Foundation Build
 automatically. Fortunately, the drop-down control only suggests these values. You can type whatever
youwantintheseoptionalfields,suchasanassemblyorproductversion.

Bug work items should always contain the observed as well as the expected results. This is a good
practice because sometimes developers don’t think that the bug is a real bug. The variance between
expected and observed should prove the case. Generic descriptions like “This is a bug” are not helpful
because the bug in question is not immediately obvious to the other developers.

 CHAPTER 5 The Product Backlog 143

Note You can use the Steps to Reproducefieldtotracktheobservedresults,but
unfortunately,theBugworkitemtypedoesnothaveafieldexplicitlydesignatedtotrack
the expected results. Rather than customize the work item type and add one, you should
consider using Acceptance Criteria, as shown in Figure 5-12. Either way, knowing the
 expected results can help the Development Team create better tests. If there are additional
acceptance criteria to list, you can do that below the expected results. Be careful though;
youshouldavoidaddingnew“features”toabugfix.Ifthereareotherimprovementsto
make, you should create a separate PBI work item. Gold plating should be avoided, even
whenfixingbugs.

FIGURE 5-12 Specify both the observed and expected results when reporting a bug.

Be professional. Don’t write titles like: “Help!”; “It’s broken”; “Got an error”; “What happened?“; or
“Dude!“ These kinds of titles are devoid of content at best and irritating at worst. Titles should be
shortandconcise.Savetheexplanationsfortheotherfieldsontheworkitem.Yourfellowdevelopers
don’t have telepathy. Don’t include notes like, “Do you get what I mean?“ Try your best to explain
yourself. Don’t assume the developers will just follow things that are written on the bug report. Also,
don’t play politics. Using a bug report to score political points is detrimental to the health of the team
and the product.

You’veprobablyexperiencedfirsthandthatifyoudon’tdocumenttheexactstepstoreproducean
issue,you’llforgetthemveryquickly.Bespecific.Proofreadthefieldsbeforesaving.Aproofreadwork
itemhasamuchhigherchanceofbeingunderstoodbyothersandthusofbeingfixed.Table5-1lists
a summary of the preferred practices when reporting bugs.

144 PART II Using Scrum

Note If you are creating the bug from Test Manager, you can take advantage of the action
recording, system information, IntelliTrace, and video recording features. Test Manager
 automatically creates and attaches these to the Bug work item.

TABLE 5-1 Preferred practices when reporting bugs.

Practice Reason

Triage the bug To determine if it is a valid bug and not a feature, training issue, or by
design.

Keep titles concise but descriptive To save the user from having to read the entire work item to get the
 context.

One bug per work item To estimate, order, and forecast each bug independently.

Considerprefixingbugtitleswith“Bug:” The Product Backlog list doesn’t differentiate between PBI and Bug work
items.

Include screenshots An annotated screenshot is an effective way to report a bug.

Include system information, the build
number, and/or the version number

To provide as much context to the Development Team as possible to help
themidentifyandfixthesourceofthefailure.UsetheSystem Infofield.

List repeatable steps to reproduce the
bug

To provide as much context to the Development Team as possible to help
themidentifyandfixthesourceofthefailure.UsetheSteps to Reproduce
field.

Provide expected results, as well as
 observed results

Knowing how to make it fail is one thing, but also knowing what success
lookslikewhentheDevelopmentTeamfixesthebugisveryimportant.
Use the Acceptance Criteriafieldtotrackexpectedresults.

Proper grammar, spelling, and tone Don’t play politics. Be professional.

Where do bugs come from?
Bugs can be introduced in a software system any number of ways. There is little point in attempting
to place blame for any particular bug because there are so many sources. Besides, blame has no place
in Scrum. Determining why something failed can sometimes take two or three times the amount of
effortoverjustfixingit.Makesurethetimespentanalyzingtherootcauseaddsvaluetotheproduct
ortheprocess.TheSprintRetrospectivemeetingisagoodplacetodiscussanyfindingsandcorrect
forthefuture.Whateverthefinding,rememberthattheDevelopmentTeamcollectivelyownsthe
quality(goodorbad)ofthesoftwareproduct.

Here are a few reasons that bugs occur in software:

 ■ Poorly understood requirements

 ■ Poor coding

 ■ Inadequate tooling

 ■ Poor test coverage

 ■ Inadequate process

 ■ Inexperienced developers

 CHAPTER 5 The Product Backlog 145

Realbugs,asinthetinycrawlycreatures,alsohaveawell-definedlifecycle,accordingtotheir
 species. Their metamorphosis is a good metaphor for software bugs. It often starts with a simple
observationofaprobablesourceofcustomerdissatisfaction(theegg);proceedstoawell-defined
reportoftheobservedsymptoms,stepstoreproduce,andatechnicalinvestigation(thelarva);toa
fixfortheproblem(thechrysalis);andfinallytoaworkingbuildwiththeverifiedfix(theadult).Like
real bugs, not all software bugs survive to adulthood. Of course, unlike real bugs, software bugs can
retreatbacktotheirlarvalstatewhenthefixesareunsuccessful.Thosearecalledreactivations.

Tip I often meet developers who feel the need to trace a newly discovered bug back to
the original PBI. While this linking can be done easily in Team Foundation Server, I always
ask, “Why?” If they want to see what the original acceptance criteria were, that’s valid. They
should consider copying and pasting the applicable criteria into the new work item. If,
 instead, they are looking for a reason why it broke, that can be better answered by looking
atthecodeortests.IftheywanttofindouthowmanystorypointsthatPBIwasworthso
they can deduct it from their velocity—that’s a dysfunction. Cycles spent dwelling on past
mistakesarecyclesthatcan’tbeusedtoachievetheSprintGoal.Discussyourfindings
 during the Sprint Retrospective meeting. Remember, software development is very hard
and full of risk. We’re not always going to get it right. Focus on improving in the next
Sprint.

In-Sprint vs. out-of-Sprint bugs
Not all bugs are equal—so they shouldn’t be treated equally. Bugs found in code running in
 production, or in a done Increment waiting to be released to production, are out of the scope of the
team’s forecast work for the Sprint. As such, they should be handled the same as any feature request.
The bug should be added to the Product Backlog, groomed by the Scrum Team, and forecast for a
later Sprint.

IftheProductOwnerdeemsthebugasbeingcriticalandrequiringanimmediatefix,thenthe
DevelopmentTeamshoulddropwhattheyaredoingandfixthebug.Thehotfixmayormaynot
require the full Development Team’s capacity. Regardless, everyone must realize that the Sprint’s
forecast may be missed, and that achieving the Sprint Goal might even be in jeopardy. The Product
Owner weighs these risks and, after collaborating with the Development Team, makes the decision.

Note Unplanned events are just that. You can’t plan them at the start of the Sprint. If the
Development Team plans its tasks to the point where they consume 100 percent of the
team’s available time, they will have no capacity left to handle unplanned work like an
emergencybugfix.Whentheemergencydoeshappen,itwillprobablycauseadropin
Velocity. Since Velocity is an input to Sprint Planning, a decreased Velocity provides slack
time in the Sprint for handling bugs and other work that might arise. High-performance
Scrum Teams watch their capacity while maximizing the value that their work produces.

146 PART II Using Scrum

I refer to bugs found in the code that the Development Team is working on during the Sprint as
 in-Sprintbugs.Thesemaynotbebugsaccordingtotheclassicdefinition,butrather,thecodeisjust
notquitethereyet.Mostteams’Definitionof“Done”includes“codecompiles,”“noerrors,”or“no
bugs found in new code.” In these cases, it’s not really a bug—the developers just aren’t done yet.

The goal for in-Sprint bugs is to fixthem,notmanagethem.Ideally,youwanttofixallbugsdiscovered
during the Sprint. If you don’t, they could affect the Development Team’s ability to achieve its forecast or
Sprint Goal. Here is the guidance I give the Scrum Team for handling in-Sprint bugs:

 ■ Ifit’sasmallbug(<nhourstofix)andwon’t affecttheburndown,thenjustfixit.The
 Development Team decides what n equals. A value of 2 feels right to me.

 ■ Ifit’salargerbug(>nhourstofix)andwon’t affect the ability to achieve the Sprint Goal or
forecast, then create a Bug work item, associate a Task work item, and have a developer code
thefixduringtheSprint.Theworkitemswillexplainthereasonbehindthehiccupinthe
 burndown.

 ■ Ifit’salargerbug(>nhourstofix)andwill affect the ability to achieve the Sprint Goal or fore-
cast, then create a Bug work item and discuss the situation with the Product Owner. She may
valuethebugfixoveranotherPBIintheforecast.Ifnot,thenthebugwillbeleftinthecode
thisSprintandtheBugworkitemwillbegroomedandfixedinafutureSprint.

 ■ Ifanotherteammemberfindsasmallbugandit’snotpossibletocollaborateonan
immediatefix,thenaBugworkitemshouldbecreatedandassignedtothecurrentSprint.
TheDevelopmentTeammustdecideifitcanbefixedinthecurrentSprintorinalaterone.
If the bug is left in the code, the Product Owner should be consulted. Everyone will need to
realize that the Sprint’s forecast may be missed and that achieving the Sprint Goal might be in
 jeopardy. What’s worse is that you have now added technical debt to your software product.

I refer to bugs found in production code, or in a done Increment waiting to be released to
 production, as out-of-Sprint bugs. Typically, these bugs don’t affect the code associated with the
 forecast work that the Development Team is working on. If code is affected, then treat them as
 in-Sprint bugs. Otherwise, consider the guidance I give a Scrum Team for handling out-of-Sprint bugs:

 ■ If the Product Owner determines that the bug is critical, the Development Team should do
whateverneedstobedonetogetafixintoproduction.EveryonemustrealizethattheSprint’s
forecast may be missed and achieving the Sprint Goal might be in jeopardy.

 ■ If the bug is not critical, then create a Bug work item. The Product Owner will decide if and
when the bug is groomed and forecast in a future Sprint.

 ■ If the number of critical bug occurrences increase, consider adjusting the Development Team’s
capacity or dedicating a developer to supporting maintenance issues like these. The Scrum
Team should also look for the root cause of these critical bugs and a solution during the next
Sprint Retrospective.

 CHAPTER 5 The Product Backlog 147

Note If you suspect a bug exists, write a failing test to verify it. The test could be
automated(thatis,aunittest)ormanual(thatis,aTestCaseworkitem).IknowthatI’ve
said that unplanned items in the Product Backlog should not have any associated tasks or
testcases.Myreasonforthisguidanceistoreducewaste,likedefiningthehow(through
tasks and test cases) too early. The exception to my guidance would be a situation where
the Test Case work items existed before the Bug work item. If this happens, don’t discard
theTestCase.ItmaystillbeofvalueinafutureSprintwhenthefixgetsforecast.

Bug reactivations
Reactivations occur when bugs have been closed prematurely. Frequent reactivations are a smell of
a deeper dysfunction. People sometimes mark bugs as done when the underlying problem has not
beenfixed.Whenthishappens,itintroduceswasteintotheprocess.Adeveloperhastowriteandrun
a test and reopen the Bug work item. The original code may need to be refactored or scrapped, and
then retested. At a minimum, the reactivation doubles the number of context switches and usually
more than doubles the total effort required to complete the corresponding work.

Watching the rate at which reactivations occur is important. A tiny amount of waste might
beacceptable,butamedium-to-high(orrising)rateofreactivationsshouldbeasmell,warningthe
DevelopmentTeamtodiagnosetherootcauseandfixit.Althoughsloppydevelopmentpracticeisan
obvious possibility, other potential causes include poor bug reporting, inadequate test lab management,
and overly aggressive triage. The Sprint Retrospective is a great venue for such discussion.

Tip Consider creating an All Bugs shared query. Microsoft forgot to create one of these in
theVisualStudioScrumprocesstemplate.Youcanaddwhatevercriteriayouwant(state,
iteration, severity, effort, etc.). You can even make the query a team favorite so it’ll show as
aslicktileontheteamproject’sWebAccesshomepage.Youcanalsoaddbuilddefinitions
and version control paths to the team favorites area.

Effective Product Backlog creation
WritingabookaboutthefusionofScrumandtoolsisdifficult.Ihavetoconstantlybalanceany
guidance I offer with that of the team’s ability to self-organize. Most of my recommendations are for
teams new to Scrum and the ALM tools in Visual Studio. I understand that these teams will develop
their own behaviors over time. My goal is that these behaviors are healthy ones. To that end,
Table 5-2 lists some of the preferred practices that I recommend when creating a Product Backlog.

148 PART II Using Scrum

TABLE 5-2 Preferred practices when creating a Product Backlog.

Tip Reason

Keep titles short and to the point Sometimes the user will have only the title to go by.

Considerprefixingbugtitleswith“Bug:” The backlog page doesn’t differentiate between PBI and Bug work items.

Leave items in the root iteration Don’t set the iteration path of a PBI or bug until the Sprint in which they
are forecast for development. Things change, and your effort could be
wasted. For release planning, consider using the forecasting tool.

Don’t create and link tasks or test cases You should wait until the Sprint in which the PBI or bug is forecast for
development. Things change, and your effort could be wasted.

The Assigned To user should be the
Product Owner

Since the Product Owner is responsible for the Product Backlog, it makes
sense that he or she be the person assigned.

Use the right tool for the job Use the backlog page for ordering, planning, and grooming. Use the work
items page for added tool-support, such as bulk editing or linking. Use
Excelforanofflinebulk-editingexperienceorcreatingadhocchartsor
graphs.

Link to documents rather than attach
them

Documents stored on SharePoint can be linked to the work item, as well
asdiscoveredindependently.Attacheddocumentsarehardertofind.

AsyourProductBackloggrows,youcouldfindyourselflookingathundredsofitemspotentially.
At the time of this writing, there is no pagination support or a way to group or organize the Product
Backlog other than ordering it. Ordering a large Product Backlog can be very tedious, as you may
have to drag up or down several “screens” of items. It might be faster to set the Backlog Priorityfield
manually than to drag a PBI up several hundred rows.

When viewing the Product Backlog, only New, Approved, and Committed PBI and Bug work items
are displayed. Done and Removed work items are not displayed. You would need to run a standard
workitemqueryorusethesearchfeaturetofindDoneandRemovedworkitems.PBIorBugwork
items in the Committed state and assigned to a Sprint are also not displayed in the Product Backlog.
You would need to go to the respective Sprint Backlog to see those work items.

If your organization has multiple Scrum Teams working on a software product, then you will see
onlythosePBIandBugworkitemsassignedtotheareapathsspecifiedasbelongingtoyourteam.
For example, let’s assume there is a Red team that owns areas R1, R2, and R3 and a Blue team that
owns areas B1 and B2. If a user on the Red team changes the area of one of their PBIs to B1, it will
disappear from their Product Backlog and appear on the Blue team’s Product Backlog. The Red team
user would need to use the search feature or create a custom query to locate that work item in the
future.

Tailspin Toys case study Currently, the Tailspin Toys website is small enough that a single
ScrumTeam(Paula’steam)canhandleallofthesoftwaredevelopment.Becauseofthis,
theScrumTeamhascompleteauthorityoverallareasanditerations(Sprints)oftheteam
project.

 CHAPTER 5 The Product Backlog 149

Grooming the Product Backlog

Product Backlog grooming is an ongoing, part-time activity where the entire Scrum Team meets
to better understand the upcoming items in the Product Backlog. When the time is right, the
 Development Team will estimate the effort required to develop the item. When and where the Scrum
Team meets to groom the backlog is up to them. The Scrum Guide only recommends doing it, and
that it takes no more than 10 percent of the team’s capacity during the Sprint.

Tip Fellow Professional Scrum Developer, Simon Reindl, recommends that a Scrum Team
discuss(groom)aPBIthreetimesbeforeconsideringitreadyforforecasting.

Initially, a PBI or Bug work item need only have a title to be added to the Product Backlog. The
valuesfortheotherfieldswillbegintoemergeandcontinueuntilthetimethatittheitemisforecast
for development. It may even pivot a bit after that. Prior to forecasting the work item, the Scrum
Team should have a solid understanding of the requirement, its value to the customer, what success
looks like, and a level of effort required to develop it. This evolution can occur at the Product Backlog
grooming session, Sprint Planning meeting, or Sprint Review.

Tip ScrumTeamsgenerallygroomtheirProductBacklogfromtoptobottom,firstmaking
sure that there is understanding and consensus around the highest-ordered items. There
aretimeswhenyoumaywanttojumptoaspecificworkitemorbugthatisn’teasyto
find.Tofindaworkitem,Irecommendusingthesearchintheupper-rightcornerofWeb
Access. Searching will take you to the work items page and display the search results just as
though you ran a query. By default, it looks in the work item’s title, description, and repro
steps(forbugs).Youcanaddfilterstothesearchbyprefixinga:(forassignedto),c:(for
created by), s:(forstate),andt: (for work item type). As you can see in Figure 5-13, I am
searchingforall(shopping)cartbugsassignedtoPaula.

FIGURE 5-13 Searching for shopping cart bugs assigned to Paula.

As details emerge, and consensus forms, you should edit the work item and make any updates.
This can occur during Product Backlog grooming or any time during the Sprint. Here are some
 example edits that a team member might make as a result of grooming the Product Backlog:

 ■ Set state to Removed The Product Owner determines the PBI or Bug is a duplicate or
 otherwise unnecessary.

 ■ Set state to Approved The Product Owner decides that this is a good requirement.

150 PART II Using Scrum

 ■ Improve description A description that explains the who, what, and why is added.

 ■ Assign business value The Product Owner assigns a business value.

 ■ Add acceptance criteria After collaborating with the customer or experts, criteria is added.

 ■ Link documents Any supporting documents are linked or attached.

 ■ Estimate effort After reaching a baseline understanding, the Development Team estimates
the effort required to develop the item.

When a PBI or Bug work item is initially created, it is in the New state. When the Product Owner
decides that the item is valid, its state should be changed to Approved. When the Development Team
forecasts to deliver the item in the current Sprint, its state should be changed to Committed. Finally,
whenthePBIorBugworkitemisdoneaccordingtotheDevelopmentTeam’sdefinition,thestate
should be changed to Done.

The Removed state is reserved for situations where the Product Owner determines that the item
is invalid for whatever reason. It could be that the item is already in the Product Backlog, was already
developed, or is not realistic.

Done and Removed PBI and Bug work items don’t show up in the Product Backlog. On the backlog
page, this will always be the case because the behind-the-scenes query is hard-coded that way. On
the work items page, however, you can edit the Product Backlog to include these additional states.
I recommend leaving the Product Backlog query untouched and creating another query instead.
You could call it Product Backlog (all states) or something.

Note At the time of this writing, you cannot type in the Reasonfield.Youcanonly
 select items from the drop-down list, and the choices are limited. If the reason that you
want is not listed, you should add a short comment to the discussion on the History tab.
Customizing the work item type might also be an option.

Specifying acceptance criteria
A high-performance Scrum Team won’t forecast any work until they know what success looks like.
For example, there’s not a lot to go on if a PBI is titled “Monthly sales report,” with a description
that reads, “As a salesman, I want to see a monthly report of my sales activity so that I am better
informed.” A Development Team would be able to build any of a hundred different reports that are
fitforthispurpose.Ratherthancommunethisinformationonthefly,orbuildthewrongthing,the
 Development Team needs to take a more measured approach to knowing what to develop and what
done looks like. This is done by collaborating and identifying acceptance criteria, which is the Product
Owner’s responsibility.

Usingacceptancecriteriaisalightweight,agilewayofestablishingrequirementsanddefining
successforaPBIorbugfix.Thinkofitastheworkitem’sownDefinitionof“Done,”asestablishedby
theProductOwner.Acceptancecriteriashoulddefinethewhat, but not the how. The Development

 CHAPTER 5 The Product Backlog 151

Teamshouldhavefreereinoverwhattobuild(andhowtobuildit)solongasitmeetstheacceptance
criteriaandtheDefinitionof“Done.”Figure5-14showsaPBIwithanemergingsetofacceptancecriteria.

FIGURE 5-14 A PBI’s acceptance criteria.

Each individual acceptance criterion should be testable. In other words, you should be able to
create and execute a manual or automated test to verify that each bullet is done. Sometimes it might
take multiple tests to verify one criterion. Sometimes one test can verify multiple criteria. We will dive
deeper into this idea in Chapter 7, “Development.”

Scope creep (a.k.a. Feature creep)
So what happens when the Product Owner needs to change the acceptance criteria? If the PBI or Bug
work item hasn’t been forecast yet, there’s no problem. Change the criteria and re-estimate the item
at the next grooming opportunity.

If the Development Team hasalreadyforecasttheworkforthecurrentSprint,thereflexistoresist
the change. After all, don’t the rules of Scrum “unionize” the Development Team to protect against
practices like scope creep? Some might think so, and they would be wrong. The Product Owner is
responsible for maximizing the value of the product, as well as the work of the Development Team.
Sometimesthesetworesponsibilitiesconflict,especiallywhenbusinessormarketdriversdemandan
immediate change.

The correct response is for the entire Scrum Team to collaborate on how to bring value to the
productwithrespecttothisnewrequirement.ThisistheN(negotiable)intheINVESTacronym
we talked about in Chapter 1. Yes, the forecast may slip. Yes, the Sprint Goal may not be achieved.
Yes, there will probably be waste. But, in the mind of the Product Owner, the immediate change to the
 software product is worth the waste to ultimately avoid much greater waste. The Sprint Retrospective
meeting should be used to better understand what happened and how to keep it from happening again
in the future.

152 PART II Using Scrum

Tailspin Toys case study Because Sprints are only two weeks long, scope creep is not
much of a problem. When it does happen, the Development Team is professional and
 collaborates with Paula to maximize the value of the website. Just as Paula has learned to
trust the developers’ abilities, so have they learned to trust her judgment.

Estimating items in the Product Backlog
Higher-ordered items in the Product Backlog are clearer and more detailed than lower-ordered ones.
More accurate estimates are made based on the increased clarity and detail. The lower in the order,
the less detail. This is why you want to estimate the items toward the top of the Product Backlog
rather than in the middle or at the bottom. You would be wasting your time, and that of the entire
Development Team, if you estimated items too far down. I discussed this, and the concept of the
Product Backlog iceberg, in Chapter 1.

EachitemintheProductBacklogisunique.It’sdifficulttoestimatesomethinguniquethatisbeing
builtforthefirsttime,especiallyifitisunlikeanythingbuiltbefore.Traditionalestimationtechniques
do not work. As weird as it sounds, if you want to be more accurate, you should be less precise. It’s
okaytobepreciseonsmallthings,likeSprinttasks(thatis,“createawebform,”“updateastored
 procedure,” “create a data-driven unit test,” etc.). For larger items, such as PBIs and Bugs, you want to
useascalethatislessprecise,likeT-shirtsizes(XS,S,M,L,XL)oraFibonaccisequenceofnumbers
(1,2,3,5,8,13,21,34,etc.)

The Development Team is responsible for all estimates. It makes sense that the people who will
performthework(thatis,theDevelopmentTeam)makethefinalestimate.Insmallerteams,where
the Product Owner and/or Scrum Master are also Development Team members, then they will have
input on the estimations as well. Never underestimate how long good estimation takes, but also
 realize that too much analysis and estimation can have a diminished return on the time invested.

Tip Scrum offers three formal opportunities to groom the Product Backlog: the Sprint
Planning meeting, the Product Backlog grooming session, and the Sprint Review meeting.
It’s best to do the bulk of your estimation during Product Backlog grooming. This way,
the Development Team can spend less time forecasting work at the next Sprint Planning
 meeting and more time on creating a plan to develop it.

Estimation should be performed as late as possible. Early estimates are less accurate than later
ones. You always know more today than you did yesterday. You also don’t want to waste the
 Development Team’s time estimating items that are “way down the list.” Proper ordering of the
Product Backlog can reduce waste when estimating. The Product Owner should know what’s coming
upnextorsoonthereafter,andfocusonthoseitems.Heorsheshouldwaituntillarger(epic)PBIsare
decomposed.

 CHAPTER 5 The Product Backlog 153

Sometimes it’s a chicken-and-egg problem though. The Product Owner needs an idea of the cost
(effort)ofaPBIbeforeheorshecanorderit.Asolutionforaddingvaluetotheestimationprocess
isfortheDevelopmentTeam(oraproxy)toprovidetheProductOwneraroughorderofmagnitude
estimate,suchasaT-shirtsize(XS,S,M,L,XL).ThiscangivetheProductOwnerenoughinsighttobe
able to order the item effectively. A more thorough estimate, provided by the entire Development
Team and using a more precise technique, can be performed at a future grooming session.

The Scrum Guide does not prescribe any particular estimation technique or unit of measure.
Teams can use whatever practice and values they wish. Planning Poker® is a very popular method.
Story points are very popular too—although some teams prefer to call them “complexity points” or
 something very abstract like “acorns.” I once worked for a team building pharmaceutical software
whichwentsofarastousetheterm“Vicodins.”(Vicodinisaprescriptionpainmedication,which
isfittinggivensomeoftheirpainfuluserstories.)Whatevertermyoudecideon,usinganabstract
measure like a story point is preferred for Agile estimation. Abstract values have an advantage
overtemporalvalues(hours,days,ideal-days,weeks)becausetheirusagedoesn’timplyaplanora
 commitment or anything that smells like a schedule. For example, if you were estimating in days, a
stakeholdermighthaveaspecificexpectation.

Note Agile estimation is not a silver bullet. In fact, it’s the worst form of estimation except
all the others that have been tried. Agile estimation techniques won’t remove uncertainty
from early estimates, but they also won’t waste unnecessary time. Estimates will become
more accurate over time. This is due to the empirical nature of agile estimation techniques,
where actual work is taken into account.

Planning Poker
Planning Poker is a tool for estimating software development projects. It is a technique where
each Development Team member selects an estimate card such that it cannot be seen by the other
 players. After everyone has selected a card, all cards are exposed at once. The Product Owner and
Scrum Master don’t participate in the estimation game unless they are also on the Development
Team. Ideally, the Scrum Master “chairs” the process. The Product Owner should offer support
where needed, such as answering questions. Other stakeholders or domain experts may attend the
 grooming session to offer support, but not to estimate.

TheunitsrepresentedaretypicallystorypointsinalimitedFibonaccisequence(0,1,2,3,5,8,
13, 21, 34, etc). The cards are numbered in this sequence to account for the fact that the larger an
 estimate is, the more uncertainty it contains. Thus, if a developer wants to play an 8, he is forced
to reconsider that some of the perceived uncertainty does not exist and play a 5, or accept a
 conservative estimate accounting for the uncertainty and play a 13. Some decks may also contain
largernumbers,questionmarks,infinitysymbols,orcoffeebreakcards.

154 PART II Using Scrum

Typically, the most knowledgeable developer or domain expert for a given item provides a short
overview. The Development Team is given an opportunity to ask questions and to discuss and clarify
assumptions and risks. A summary of the discussion can be recorded if the Scrum Team decides. As
the Development Team considers the effort, they should reference a few “golden PBIs” that they’ve
worked on recently. These will be used as a baseline for this relative estimation technique. These
referenced items don’t have to be similar to the one being estimated, but it helps. When you estimate
a new item, you compare the work required relative to this baseline. As the Development Team
 improves, it can decide to rebase its efforts and select different “golden” PBIs.

Estimation commences and Development Team members with high estimates and low estimates
are given an opportunity to justify their estimate as discussion continues. The team should repeat the
process until a consensus is reached. If consensus is not reached after a few rounds, estimation should
be tabled until the next grooming session. More will be known later.

Avoid anchoring
Anchoring occurs when the Development Team openly discusses their estimates prior to the playing
of the cards. A team normally has a mix of conservative and impulsive estimators. Some developers
may have an agenda too. Developers are likely to want as much time as they can have to do the job,
and the Product Owner is likely to want it as quickly as possible. Compromise through collaboration
becomes important at this juncture.

The estimate becomes anchored when the Product Owner, or one of the more experienced
 developers, says something like, “This should be easy” or “I could do that in a day.” Anchoring can also
go the other way, when someone says something foreboding like, “Isn’t that the component riddled
with technical debt?” Whoever starts the conversation with the statement, “That’ll take the entire
Sprint!” immediately has an impact on the thinking of the other team members. Their estimates have
now been anchored. They are now likely to make at least a subconscious reference to that estimate.
For example, those who were thinking 5 points are likely to increase their estimate.

Thisbecomesaparticularproblemifaninfluentialteammembermakestheoriginalstatement.
Because the remainder of the team has been anchored, they may consciously or otherwise fail to
express their original unity. In fact they may fail to even discover that they were thinking the same
thing.Thiscanbedangerous,resultinginestimatesthatareinfluencedbyagendas,attitudes,alphas,
or opinions that are not focused on getting the job done right.

Note AstudybyK.Molokken-OstvoldandN.C.Haugen(IEEE)foundthatestimates
 obtained through the Planning Poker process were less optimistic and more accurate than
estimates obtained through mechanical combination of individual estimates for the same
tasks. For more information, search for Combining Estimates with Planning Poker—An
Empirical Study, at http://ieee.org.

http://ieee.org
http://ieee.org

 CHAPTER 5 The Product Backlog 155

White Elephant game
There are many methods that an Agile software development team can use to estimate the size or
effort of a PBI. While Planning Poker is the most popular, several of my fellow professional Scrum
developersusetheWhiteElephantgame.Itislooselybasedontheideaandworkflowofawhite
elephant gift exchange.

YoustartwiththeDevelopmentTeamstandinginahalfcircle,facingawhiteboardwithfive
columns(swimlanes):XS,S,M,L,andXL.OnanearbytableisashuffleddeckofPBIsandatimer.The
cards can be index cards, sticky notes, or a hybrid. The cards contain the titles of the items that you
areabouttoestimate.TheScrumMasterstartsthetimer,andthefirstDevelopmentTeammember
performs these steps:

1. Pick the top card off the deck.

2. Read the item out loud.

3. Stick the card to the whiteboard in one of the columns.

4. Provide a reason to the group for the decision.

5. Start the timer for the next player.

Everyone should have laser focus and be listen actively to the estimator’s reasons. Everyone else
should remain silent. There should be no discussion or judgment. If the developer does not stick the
cardtotheboardwithinoneminute,thecardisplacedintheM(medium)column.Theplayerthen
restarts the timer for the next player.

After a few rounds, there should be an assortment of cards stuck to the whiteboard. Team
 members can now, on their turn, choose to move one of the cards to a different column instead of
selecting a new card from the deck. The player should read the item out loud, as well as state the
reason supporting the decision to change the estimate.

Eventually, all of the cards will be stuck to the whiteboard and estimated. Each player, on their turn,
can either move a card between columns or simply pass.Passingmeansthattheyaresatisfiedwith
the current estimates. If a developer does not make a decision within one minute, it will be generally
understood to be a pass. The estimation game ends when the pile of cards is now on the whiteboard
and every developer signals pass.

Tracking estimates in the Product Backlog
In a PBI or Bug work item, the Effortfieldholdstheestimate.Microsoftdesignedtheseworkitemsto
be generic. Therefore, there is no label or tooltip that suggests or recommends a particular practice
or unit of measure. The EffortfieldindicatestherelativeratingfortheamountofworkthatthePBI
or Bug implementation will require. Larger numbers indicate more work than smaller numbers. In
contrast, Sprint Task work items should be estimated in hours, since respective queries, charts, and
reports expect that.

156 PART II Using Scrum

Tip I’m often asked if size is the same as effort in Scrum. My answer is yes, so long as
we agree that the unit of measure is abstract and not temporal. In other words, effort =
size = story points. Some high-performance Scrum Teams use the term size to represent
the initial T-shirt size estimate and then effort to be the more precise estimation after
 grooming. Other teams consider effort to be more generic—just a mix of complexity and
thevolumeofwork.Regardlessofyourpracticeorvernacular,thedataentryfieldinTeam
Foundation Server is called Effort. You’ll need to live with it or customize it. I recommend
living with it.

Tailspin Toys case study The Development Team still uses Planning Poker to estimate the
effortofthePBIsandbugfixesintheProductBacklog.ThisoccursprimarilyattheProduct
Backlog grooming sessions on Friday mornings. Since they have been working together, on
the same domain, using familiar tools and technologies, the Development Team’s baseline
is well established and consistent. They have many golden PBIs to use when performing
relative estimation.

Ordering the Product Backlog
The Product Backlog should be ordered by the Product Owner to maximize the value of the software
beingdeveloped.Heorshewillknowwhatfeaturesandbugfixesneedtobedevelopedbefore
 others. Release planning depends on the backlog being correctly ordered. The order can be based on
many factors: business value, risk, priority, technical value, learning value, or necessity.

Items at a higher order are clearer and more detailed than lower-ordered ones. Effort estimates
are more accurate on these items as well. In fact, the higher the order, the more a PBI or bug has been
considered, and the consensus is greater regarding it, its value, and its cost.

Smell It’s a smell when I see Development Team members ordering the Product Backlog.
This is typically the responsibility of the Product Owner. It could be that the pertinent items
need to be arranged according to technical dependencies, and the Product Owner is aware
of this. The worry is that the Scrum Team has an absent Product Owner who defers the
“what” decisions to the Development Team.

In Web Access, you can order the Product Backlog by dragging items. If you click and hold on an
item, you can drag it above or below another item and then release it. You can see this in Figure 5-15,
as the Monthly sales report PBI is dragged to the top of the Product Backlog. When it is dropped, it
will be the highest-ordered item in the Product Backlog.

 CHAPTER 5 The Product Backlog 157

FIGURE 5-15 Ordering the Product Backlog by dragging a PBI.

The work item’s position in the Product Backlog is tracked behind the scenes in the Backlog Priority
field.Ifyouaddanewworkitemusingthe“quick add” panel, the new work item will be half of the
value of the current highest-ordered item. For example, if the current highest-ordered PBI has a
 Backlog Priority value of 6250, the newly added PBI will have a Backlog Priority value of 3125.

If you are curious, you can see the Backlog Priorityfieldvaluewhenyouedittheworkitem.You
can also compare the current value with the previous value by reviewing the change history on the
workitem’sHistorytab(asseeninFigure5-16).YoucanchangetheBacklog Priority value manually
too, which is important if you are not licensed to use the Web Access backlog page or want to change
the execution order of the PBI or bug once the work has been forecast.

Since the order is persisted in the Backlog Priorityfield,otherlistsandqueriescanuseit.For
example, when you assign the forecast PBIs and bugs to a Sprint, the Sprint Backlog will display those
PBI or Bug work items in the same order. This is good, because if the Product Owner has signaled that
the Monthly sales report is the most important item, then the Development Team should see it at the
topoftheSprintBacklogandconsiderexecutingitsworkfirst.

158 PART II Using Scrum

FIGURE 5-16 Viewing previous and current Backlog Priority values in the work item History tab.

Note Each time you drag in the backlog page, history is generated. Microsoft is
 considering ways to limit this in the future. Until then, be mindful of your drag-and-drop
activity.

Tailspin Toys case study Paula uses the drag-and-drop features on the backlog page to
set the order of the Product Backlog. Once she has it set for the release plan, the order
doesn’t change that often. Rarely does she have to drag something up from the bottom
of the list, or vice versa. This is good because her Product Backlog contains over 100 work
items.

Customizing the backlog columns
By default, the backlog page only shows the title, state, effort, and iteration path of the work items.
It also shows an order number, but this is auto-generated by Web Access and is not persisted. While
 ordering the Product Backlog, it might be helpful to see additional columns of data, such as area
path, business value, and the work item type.

You can customize the columns and column sequence for the backlog page. You can add or
remove columns, change the sequence of the columns, or change the column width for the pages
that display the Product Backlog or Sprint Backlog. Here are the high-level steps to follow in order to
customize the backlog columns:

1. UseWitadmintoexporttheAgileprocessconfigurationfilefortheteamproject.

Note You can also use the Process Editor found in the Team Foundation Server
Power Tools.

2. EdittheexportedconfigurationfileandlocatetheColumns element within the ProductBacklog
section. If you want to customize the Sprint Backlog page, you’ll need to make edits within the
IterationBacklog section.

 CHAPTER 5 The Product Backlog 159

3. Add a Columnelementthatspecifiesthereferencenameofthefieldthatyouwantlistedand
the width in pixels. You can also remove any columns or change their widths. For example, you
could add the System.AreaPath and Microsoft.VSTS.Common.BusinessValuefieldsasIdidhere
(seebold):

<?xml version="1.0" encoding="utf-8"?>
<AgileProjectConfiguration>
 <IterationBacklog>
 <Columns>
 <Column width="50" refname="Microsoft.VSTS.Scheduling.Effort" />
 <Column width="400" refname="System.Title" />
 <Column width="100" refname="System.State" />
 <Column width="100" refname="System.AssignedTo" />
 <Column width="50" refname="Microsoft.VSTS.Scheduling.RemainingWork" />
 </Columns>
 </IterationBacklog>
 <ProductBacklog>
 <AddPanel>
 <Fields>
 <Field refname="System.Title" />
 <Field refname="Microsoft.VSTS.Common.BusinessValue" />
 </Fields>
 </AddPanel>
 <Columns>
 <Column width="350" refname="System.Title" />
 <Column width="80" refname="System.State" />
 <Column width="150" refname="System.AreaPath" />
 <Column width="100" refname="Microsoft.VSTS.Common.BusinessValue" />
 <Column width="50" refname="Microsoft.VSTS.Scheduling.Effort" />
 <Column width="100" refname="System.IterationPath" />
 </Columns>
 </ProductBacklog>
</AgileProjectConfiguration>

4. Savethefile.

5. UseWitadmintoimporttheupdatedconfigurationfilebacktotheteamproject.

Note At the time of this writing, the backlog columns cannot be customized for the hosted
Team Foundation Service.

Afteryouhaveimportedtheconfigurationfile,youwillneedtorefreshthebacklogpage.Youwill
then see the new columns displayed, as shown in Figure 5-17.

160 PART II Using Scrum

FIGURE 5-17 The Product Backlog displaying additional columns.

Tailspin Toys case study Andy has customized the backlog page to include the Area Path
and Business Valuefields.ThishashelpedPaulaordertheProductBacklog,aswellaslocate
 individual PBIs. Originally, Andy also added the work item type column, but later he removed it
inlieuofjustprefixingBugworkitemswith“Bug:”andreclaimingsomescreenrealestate.

Planning a release

After the Product Backlog has been groomed, a release plan can be created. This plan can be formal
or informal. A formal plan can be documented to include expectations and dates, then made visible
to the stakeholders. An informal plan is just an understanding between the Product Owner and the
DevelopmentTeamthatbyacertaindate,theywillshipwhat’sdone,ortheywillshipaspecificsetof
functionality when it’s done. Either way, you will need the Product Backlog to be in good shape.

Note ReleaseplanningisnolongeranofficialeventinScrum.It’sassumedthatevery
 organization will do some level of release planning. As far as Scrum is concerned, keeping
the Product Backlog healthy and estimated is the best input for accurate release planning.

A release plan establishes the goal of the release and includes the highest-ordered PBIs, the major
risks, and the overall features and functionality that the release will contain. It also establishes a probable
delivery date and/or feature set, and a cost that should hold if nothing changes. The organization can then
inspect progress and make changes to this release plan on a Sprint-by-Sprint basis.

The release plan will probably start with a large margin of error unless the Development Team
isalreadyestablishedwithaknownVelocity.Theplanwillbecomemoreandmorerefined(and
 accurate) as development progresses and empirical data is gathered. The key to release planning is to
have the Product Backlog in good shape. This is a result of an engaged Product Owner and constant
grooming by an engaged Scrum Team.

 CHAPTER 5 The Product Backlog 161

Most organizations already have a release planning process. In these processes, most of
the planning is done at the beginning of the release and left unchanged as time passes. In an
organizationpracticingScrum,theProductOwnerdefinestheoverallgoalwithstakeholdersand
workswiththeDevelopmentTeamtodefineprobableoutcomes.Thisstyleofreleaseplanning
 requires substantially less time than to build a traditional release plan.

Traditional release efforts are up-front “guesstimates” that seldom prove true. Scrum’s just-in-time
planning is ongoing during all of its events. In Scrum, release efforts probably consume slightly more
effort than in traditional release planning efforts. Empirical methods usually do take longer than
guessing. Scrum’s approach, however, adds more value and probability of success.

Time-driven vs. feature-driven releases
Iftheprojectistime-driven(a.k.a.“releasebydate”),thentheDevelopmentTeam’sVelocitycanhelp
predict the total effort that can be expended by the deadline. Starting at the highest-ordered Product
Backlog item, the team will work down the list until the cumulative effort reaches the total available.
This will show the set of features that can be delivered by the deadline, given the current Velocity and
capacity of the Development Team.

Iftheprojectisfeature-driven(a.k.a.“releasebyfeature”),thentheDevelopmentTeamcan
 calculate the cumulative effort required to build the desired feature set. This can be divided by the
team’sVelocitytoestimatetheamountoftime(numberofSprints)requiredfordelivery,giventhe
current capacity of the Development Team.

Release planning provides a view of what functionality can be developed by a given date.
 Conversely, it can provide a view of whenafixedsetoffunctionalitycanbedeveloped.Release
 planning is something that occurs all the way through a software product’s lifecycle, not just at the
beginning. Release planning typically corresponds to the version increment of the software product.

As the Development Team progresses through the Sprints, their actual Velocity can be applied to
the Product Backlog to assess how the release plan compares to reality. If a release burndown chart
is being maintained, it will include data from past Sprints and can provide a view of the progress. This
information is an important input into release planning, as well as inspection and adaptation.

Tailspin Toys case study Originally, the Tailspin Toys website released quarterly. As the team
and tools got better, this changed to monthly. Management hopes that the new tools will help
theirhigh-performanceScrumTeammovetoacontinuousdeployment(CD)releasemodel.

Controlling and prioritizing scope
It is a fact of life that developing the desired functionality will require more than the available time
andbudget.Basedonprojectprogress,youcanmakechangestothevariablesavailable(time,
team capacity, and scope) but never compromise quality. The most effective variation to make is to
the scope. Scope control, at its simplest, is the deferral of developing PBIs until a later release, thus
 reducing the scope for the current release.

162 PART II Using Scrum

It’s not enough for the Development Team to sit back and quote the Scrum Guide to the
 Product Owner. Yes, there are rules in place to keep scope creep from occurring during the Sprint.
 Unfortunately, the Scrum values, as well as the Agile Manifesto values, outweigh them. It is important
that PBIs be “negotiable” so that their desired outcome can be achieved by pragmatically adjusting
the sophistication of the implementation. In other words, it’s more important to deliver business value
in the form of working software than to follow a plan.

A high-performance Scrum Team should always ask itself these questions:

 ■ How can we turn the vision into a winning product in the best possible way?

 ■ Howcanwemeetorexceedthedesiredsatisfactionandreturnoninvestment(ROI)?

Using Velocity to estimate
If the Development Team has completed multiple Sprints, it can use this empirical data to plan its
 releases more effectively. The Development Team can review how many PBIs it has completed,
accordingtoitsDefinitionof“Done,”overthepastfewSprints.Thisdatacanbeusedtocomputethe
team’s Velocity.

Velocity is how much effort a team can develop in a single Sprint. Once established, a team’s
 Velocity can be used to plan Sprints and releases. Velocity is most accurate when the team
composition,Sprintduration,Definitionof“Done,”andestimationtechniquesremainconstant.

Note I’m often asked how a team’s Velocity can be meaningful when PBIs are estimated
using such crude precision and in such abstract values as story points. Fortunately, it is.
Accordingtothelawoflargenumbers(LLN),theaverageoftheresultsobtainedfrom
alargenumberoftrials(Sprints)shouldbeclosetotheexpectedvalueandwilltendto
 become closer as more trials are performed.

AkeypiecetomaintainingaconsistentandhonestVelocityishavingasolidDefinitionof“Done”
and sticking to it. It may seem small, but it can be the most critical checkpoint of a Scrum project.
Without a consistent meaning of done,Velocitycannotbeestimated.Conversely,acommonDefinition
of “Done” ensures that the Increment produced at the end of the Sprint is of high quality, with minimal
defects.High-performanceScrumDevelopmentTeamswillgraduallyaddto(a.k.a.ratchetup)their
Definitionof“Done”knowingthatitmayaffecttheirVelocityforashortperiodoftime,butafter
that, both the quality and Velocity should go up. This is the epitome of continuous improvement.

There are several Agile practices that, if adopted, can increase a team’s Velocity. Here is a partial
list:

 ■ Create and maintain a clean Product Backlog.

 ■ Use Agile planning to plan releases and Sprints just-in-time.

 ■ Test early and often.

 CHAPTER 5 The Product Backlog 163

 ■ Build, deploy, and test continuously.

 ■ Avoid accumulating technical debt.

 ■ Branch strategically, and for good reason.

 ■ Use models effectively, and for good reason.

 ■ Learn from your mistakes.

 ■ Inspect and adapt.

After the Scrum Team has completed a few Sprints, the Velocity chart in Web Access will
become more valuable. On the backlog page, a thumbnail of the Velocity is visible at all times in
the upper-right area of the page, as shown in Figure 5-18. This small representation of the Velocity
chartishardtosee,butitdoesgiveyouasketchofhowthecurrentSprint(intherightmostcolumn)
 compares with the previous ones. When you look at the Velocity chart onscreen, you’ll notice that
some of the vertical bars are green and some contain blue. The green color represents the effort that
is in the Done state. The blue color represents effort that is in the Committed state.

FIGURE 5-18 The Velocity thumbnail visible on the backlog page.

If you click on the Velocity thumbnail, it will open to a larger chart. You can see this in Figure 5-19.
This zoomed-in view allows you to actually see the number of story points by Sprint and state. For
past Sprints, only work items in the Done state are displayed.

Note At the time of this writing, the Velocity chart does not compute an average Velocity
acrosstheSprints.Youalsodon’thavetheabilitytofilteroutworkitemeffortinthe
Committed(blue)state.Thesewouldbothbenicefeaturestohaveinafuturereleaseof
Web Access. Until then, you will have to compute the average Velocity using whatever
method the Scrum Team decides on, or run the Velocity report, which provides an average.

Team Foundation Server also provides a Velocity report. This report also includes a graph that
shows the amount of effort that the team has reported as done for each Sprint. The source of the raw
data is the Product Backlog itself—just like the charts in Web Access. The horizontal axis represents
Sprints, and the vertical axis measures the sum of effort from the done PBI and Bug work items. The
report includes a horizontal line that represents the average Velocity across all the Sprints on the
report. You can see this line in Figure 5-20.

164 PART II Using Scrum

18

13

Sprint 1 Sprint 2 Sprint 3

VELOCITY x

13

5

FIGURE 5-19 The full-sized Velocity chart.

41

22
25

39
42

50

40

30

20

Ef
fo

rt

10

0
Release 5\Sprint 1 Release 5\Sprint 3 Release 5\Sprint 5

Release 5\Sprint 2 Release 5\Sprint 4 Release 5\Sprint 6

35 34

FIGURE 5-20 The Velocity report includes an average Velocity across Sprints.

Another difference between the chart in Web Access and the report is the data on which they are
based. The Web Access chart is based on the operational databases, so its data is up to date in real
time.ThereportsdatacomesfromthedatawarehouseandtheSQLServerAnalysisServices(SSAS)
cube—both of which must be updated by a scheduled event. This difference may cause the graphs to
show different information.

Tailspin Toys case study The Development Team’s Velocity seems to have normalized around 21.
This has been the average of their last few Sprints.

 CHAPTER 5 The Product Backlog 165

The forecasting tool
By using the forecasting tool in Web Access, you can plan the number of Sprints it will take to
 complete a set of work. The forecasting tool is available only in the Product Backlog, not any of the
Sprint Backlogs. Prior to being able to use the forecasting tool, your Product Backlog must have PBI
andBugworkitemsalreadycreatedwiththeeffortspecified.

You can turn on forecasting by clicking the Off hyperlink next to Forecast on the right side of
thebacklogpage.Thefirsttimeyoudothis,WebAccesspromptsyoufortheVelocity.Usingyour
 Development Team’s Velocity, Web Access will add a Forecast column and horizontal lines to the
Product Backlog. In the Forecast column, it will display the Sprint that it predicts the PBI or Bug
work item will be developed in. As you can see in Figure 5-21, it’s a very slick and visual way to see a
 forecast over several Sprints.

FIGURE 5-21 The forecasting tool uses Effort to predict which items will be forecast and when.

The tool is not based on magic. In fact, its algorithm is quite simple. The forecasting tool walks
down the ordered backlog, adding up the points of effort of each item. Once the sum is greater than
theVelocity,itincrementstheSprintnumber.Whenit’soutofworkitemsorSprintsdefinedforthe
team, it stops.

166 PART II Using Scrum

Note The forecasting tool will sometimes forecast two items in the same Sprint whose
combinedeffortisgreaterthantheteam’sVelocity.Atfirstglance,thismayseemlikea
bug, but it’s actually by design. It’s happening because the forecasting logic assumes that
PBIs can split across Sprint lines. For example, it might assume that a larger PBI can be
startedinSprintFiveandbefinishedinSprintSix.TheScrumTeammayormaynotwant
to adopt this practice. I think the healthy practice to adopt is to have the team split the PBI
prior to using the forecasting tool. Microsoft knows this and may change the behavior or
make it selectable in a future release.

Using the backlog page, a team can forecast and plan the work in the current Sprint. The team
can then review and track its progress against the backlog by using the task board. The task board
displays Task work items that are associated with the forecast PBI and Bug work items in the current
Sprint. The task board shows the state of each task as it progresses towards completion. We will dive
deeper into using these tools to plan and execute a Sprint in the next chapter.

Tailspin Toys case study WhentheDevelopmentTeamwasfirstlearningScrum,Velocity
meant everything. It was their one true metric. They could endeavor to improve it each
Sprint. Everyone in the organization could see it on the reports and dashboards. As the
team improved, they learned that business value in the form of working software was the
most important metric, and that Velocity was just the trailing indicator. The Development
Team still uses Velocity, but only as one of several inputs into Sprint Planning. They now
just forecast the number of PBIs that feels like the right amount of work, given all of the
variables. Paula still uses Velocity, and the forecasting tool in the backlog page, for release
planning.

Release Burndown report
The Release Burndown report displays a sum of remaining effort for PBI and Bug work items across
Sprints. By reviewing the Release Burndown report, you can understand how quickly the team is
 delivering items in the Product Backlog.

The report also tracks how much work must still be performed to complete a release. As you can
see in Figure 5-22, the graph shows how much work remained at the start of each Sprint in a release.
The source of the raw data is the Product Backlog. Each Sprint appears along the horizontal axis,
and the vertical axis measures the effort that remained when each Sprint started. The amount of
estimatedeffortontheverticalaxisisinwhateverunitthattheteamhasdecidedtouse(thatis,story
points).

 CHAPTER 5 The Product Backlog 167

200

154

136

111

68

26

250

200

150

100

Ef
fo

rt

50

0
Release 5\Sprint 1 Release 5\Sprint 3 Release 5\Sprint 5 Release 6\Sprint 1

Release 5\Sprint 2 Release 5\Sprint 4 Release 5\Sprint 6

245

FIGURE 5-22 The Release Burndown report shows the work remaining in the release, by Sprint.

Forthisreporttoreflectreality,theScrumTeamneedstobediligentaboutsettingtheiteration
path and state for each PBI and Bug work item, as they are forecast. As the Development Team
 completes the work, the state must be changed to Done for the report to acknowledge the end of
that effort.

Note There is no release burndown chart in Web Access. You will have to run the Release
Burndown report if you want this information.

Chapter burndown

Here are the key concepts we covered in this chapter.

 ■ Team Web Access This web-based portal is used to view and manage a team project,
 including the Product Backlog and Sprint Backlogs.

 ■ The backlog page A customizable view within Web Access allowing licensed users to create
and manage the Product Backlog and Sprint Backlogs.

 ■ Quick Add A customizable panel at the top of the backlog page allowing the user to add a
PBI or Bug work item quickly to the Product Backlog.

 ■ Epics Any PBI that is too large to be developed in a single Sprint. Epics can be decomposed
within the Product Backlog in a couple of different ways.

 ■ Reporting bugs Bugsfoundin-Sprintshouldjustbefixed;otherwise,usetheBugworkitem
to report a bug. Bugs coexist in the Product Backlog alongside other PBI work items.

168 PART II Using Scrum

 ■ Grooming The part-time activity where the Product Owner and Development Team
 understand and estimate the items in the Product Backlog.

 ■ Agile estimation Use empiricism and decreased precision to estimate the size or effort of
items in the Product Backlog. Only the Development Team estimates.

 ■ Ordering the backlog Use a drag-and-drop approach in the backlog page to order the
Product Backlog. This can be tedious with large Product Backlogs.

 ■ Velocity Usethebuilt-inVelocitychartinWebAccesstosee(inrealtime)howmanypointsof
effort the team is able to complete per Sprint. The Velocity report also computes an average.

 ■ Forecasting Use the forecasting tool and the team’s Velocity to view which items in the
 Product Backlog will potentially be developed in each upcoming Sprint.

 ■ Release planning Use a groomed Product Backlog to forecast what will be released by a
specificdate,orwhenaspecificsetoffunctionalitywillbereleased.

 ■ Release Burndown A report that displays a sum of remaining effort for items in the Product
Backlog across Sprints.

 169

C H A P T E R 6

The Sprint

TheSprintisafixed-lengthevent(30daysorless)inwhichtheDevelopmentTeamforecasts
items from the Product Backlog and develops the items in the Sprint Backlog according to the

acceptancecriteriaandtheirDefinitionof“Done.”

At the beginning of the Sprint, the Scrum Team attends the Sprint Planning meeting. The input
elements for this meeting are the existing Increment and a groomed Product Backlog. The Development
Team’svelocity,capacity,andtheDefinitionof“Done“arealsohelpfulinputsbecausetheyassistthe
 Development Team in identifying a comfortable amount of work to forecast for the Sprint. The output
elements of the Sprint Planning meeting are the Sprint Goal and Sprint Backlog. The Sprint Backlog
containstheforecastProductBacklogitems(PBIs)andtheplanfordevelopingthosePBIs.

Each day of the Sprint, the Development Team meets for the Daily Scrum. This is a time-boxed
meeting, lasting no longer than 15 minutes. The Development Team uses this opportunity to
 synchronize with each other and develop a plan for the next 24 hours. The Development Team
 updates their remaining work daily so that they can assess the progress of their forecast work.
Beyond that, what the Development Team does during the course of the day depends on what is
required to get the forecast work done. Professional Scrum developers make sure that the work
 performed is always of value to the organization.

This chapter focuses on how to use tools in Microsoft Visual Studio Team Web Access to plan and
manage the work in the Sprint Backlog. If you are more interested in the concept of the Sprint and
the Sprint Backlog, and less on how to manage them using Visual Studio, you can read Chapter 1,
“Scrumdamentals.“

Note In this chapter, I refer to the Product Backlog list on the backlog page as the
 (product) backlog pageandtheSprintBackloglistonthebacklogpage(alsoknownasthe
“iteration backlog”) as the (Sprint) backlog page. This will help me set the context when
Iamtalkingaboutthespecificbehaviorsonthebacklogpage.Iwillalsorefertotheboard
page as the task board.

C H A P T E R 6

The Sprint

Creating the Sprint Backlog

Forecasting the PBIs

Capturing the Sprint Goal

Creating the plan

Daily Scrum activities

The Daily Scrum

Taking on work

The task board

Chapter burndown

170 PART II Using Scrum

Creating the Sprint Backlog

The Sprint Backlog contains the forecast PBIs. In Microsoft Team Foundation Server, this equates
to the PBI and Bug work items that the Development Team will work on during the Sprint. In addition,
the Sprint Backlog contains the plan for developing these items. In Team Foundation Server, this plan
materializes as Task and/or Test Case work items linked to the respective PBI and Bug work items. The
majority of that plan should be created during the Sprint planning, but it will continue to emerge into
the Sprint.

Forecasting the PBIs
Assuming that the Development Team has already come to a consensus on what feels like the right
amount of work, the act of forecasting the PBIs in Team Foundation Server is trivial. In fact, there are
really only two settings to make in order to forecast a PBI or Bug work item:

 ■ Set the Iteration Path from the root to the current Sprint.

 ■ Set the state to Committed.

The easiest way to set the Iteration PathforaPBIorBugistodragtheworkiteminthe(product)
backlog page to the current Sprint on the left side. You can see this in Figure 6-1. After you drop the
item, the Iteration Path will be updated immediately. If you don’t have access to the backlog page,
you can set the Iteration Path manually and see the same result.

FIGURE 6-1 Forecasting a PBI or Bug work item by dragging it to the Sprint.

 CHAPTER 6 The Sprint 171

Note If a Sprint is not visible on the left side of the backlog page, it’s because it hasn’t
been selected on the Iterations page in the Control Panel. You can get to that page by
clickingtheAdministerServerlink(thesmallgearicon)intheupper-rightsectionofthe
page. There is also a Configure schedule and iterations shortcut on your team project’s
home page that will take you there. It may seem like extra work to have to select the
Sprints, but it’s actually a nice feature that keeps the list of Sprints small and more
 manageable on the backlog page.

WorkitemsthathavebeenassignedtoaspecificIteration Pathwillremainvisibleinthe(product)
backlog page. They will also be visible in the Sprint Backlog. When the state of the PBI or Bug is
changedtoCommitted,theworkitemwilldisappearfromthe(product)backlogpage.Thereason
is that the query behind the scenes doesn’t consider the Iteration Path, only the State. Ideally, those
 forecast PBI and Bug work items will never return to the Product Backlog—because the Development
Team got the work done.

Tip To “un-forecast” a PBI or Bug, just drag that work item back to the Product Backlog
link listed above the Sprints. This will reset the Iteration Path back to the root value,
 indicating that the item is no longer planned for development in any particular Sprint.

Mechanically, the other step in forecasting a PBI or Bug work item is to set its State to Committed.
Unfortunately, the drag-and-drop operation does not do this for you automatically. You will need to
set the state by manually opening each work item one at a time. This isn’t so painful if you have only
a couple of items forecast in the Sprint.

For a larger number of items, you can use the bulk editing feature on the work items page. First,
run the Sprint Backlog query to see the PBI and Bug work items in that Sprint. If the query doesn’t
return the expected work items, you may have to edit it and change the Iteration Path criteria to the
current Sprint. In fact, you should probably edit all the Current Sprint queries while you are at it.

When the query returns the correct PBI and Bug work items, you need to multiselect and edit
them. You can do this by using the standard Windows keyboard combinations of the Ctrl and Shift
keys, while clicking the rows. Notice that I mention the Ctrl key. This is because sometimes there will
be items in the Sprint Backlog that you don’t want to select, such as an epic parent PBI. Microsoft
designed the tool to include parent work items in the Sprint Backlog for reference. Work item 905, in
Figure 6-2, shows an example of this.

172 PART II Using Scrum

FIGURE 6-2 Selecting multiple work items to edit.

TheEditWorkItemsscreenletsyouspecifythefield(s)thatyouwanttochangefortheselected
items. In addition to setting the State to Committed, I recommend adding a quick note for the
 historical record. You can see an example of this in Figure 6-3.

FIGURE 6-3 Changing the State and adding notes for the selected work items.

From the perspective of Team Foundation Server, once the Iteration Path and State fieldsareset,
thosePBIandBugworkitemsareforecastforthatSprint.Theywillnolongerappearinthe(product)
backlog page in Team Web Access or in the Product Backlog query results. They will appear in the
(Sprint)backlogpageandonthetaskboard.

 CHAPTER 6 The Sprint 173

Tailspin Toys case study Typically,Paula(theProductOwner)istheuserwhoeditsthe
items in the Product Backlog, setting the Iteration Path and State. Other Scrum Team
 members have done this in the past as well. The backlog page is typically used, but
Microsoft Excel also provides an easy way to make bulk edits quickly to work items. These
changes are done during the Sprint Planning meeting, and the user who is “driving” the
keyboard decides which tool to use.

Capturing the Sprint Goal
After the Development Team forecasts the PBIs and Bugs that it believes it can develop in the
Sprint, they collaborate with the Product Owner to craft a Sprint Goal. The Sprint Goal is a vision or
 objective—in narrative form—that guides the Development Team as they develop the Increment.
The Sprint Goal also provides stakeholders the ability to see a synopsis of what the Development
Team is working on.

Note The Sprint Goal doesn’t have to be captured electronically. It can simply be written
on a whiteboard in the Development Team’s area or another public place. The advantage
ofusinganelectronicformatisthatitcanbesharedwithstakeholdersoutsidetheoffice.
A list of past Sprint Goals can be maintained as well, for reference.

Unfortunately,thereisnot“first-class”supportforcapturingaSprintGoalinTeamFoundation
Server 2012. In the prior version, the Visual Studio Scrum 1.0 process template had a Sprint work
item type. This type had Sprint Goal and Sprint RetrospectivefieldsfortheScrumTeamtouse.
 Because version 2.0 no longer supports this work item type, the team will need to be more creative
in where and how it records these elements of the Sprint.

Smell It’sasmellwhenaScrumTeamdoesn’thaveaSprintGoal.Yes,it’sdifficulttocraft
a good goal, especially when the forecast work spans many areas and features. Having
a goal, however, gives the Development Team something to focus on and commit to.
It’s good for people to have goals. High-performance Scrum teams understand the
 psychological value in having a Sprint Goal, working toward it, and achieving it.

One option for capturing the Sprint Goal electronically is to use Microsoft SharePoint.
IrecommendthatTeamFoundationServerbeinstalledandconfiguredwithSharePoint,andthat
eachteamprojectbeconfiguredwithitsownprojectportal.ForteamsusingthehostedTeam
FoundationServiceorwhodon’thaveSharePointinstalled,theywillhavetofindanothermethodof
recording the Sprint Goal. Having a SharePoint portal gives the Scrum Team a great place to create
lists, documents, and Wiki pages to capture details like the Sprint Goal, Sprint Retrospective notes,
andtheirDefinitionof“Done.“Figure6-4showsaSprintGoalbeingrecordedinaSharePointWiki.

174 PART II Using Scrum

FIGURE 6-4 Capturing the Sprint Goal in a SharePoint Wiki.

Tailspin Toys case study Paula and the Development Team craft the Sprint Goal together.
Typically, this is done after the work is selected; but some Sprints in the past have had
the goal in mind before the work is selected. Either way, the Sprint Goal is recorded in
SharePoint as a Wiki entry. Past goals are combined and saved in a separate Wiki entry.

Creating the plan
Forecasting the work items and crafting the Sprint Goal are only two of the outputs of the Sprint
Planning meeting. The Development Team must also identify the plan for implementing those items.
This plan emerges after the Development Team has collaborated on a design. In Team Foundation
Server, the plan is represented by a collection of Task work items associated with their parent PBI
orBugworkitem.Thisemerginghierarchyofworkitemscanbeseenandmanagedinthe(Sprint)
 backlog page and task board.

Tip Team Web Access knows what the current Sprint is. It shows the high-level details
on the project’s home page, including the Sprint number, start and end dates, remaining
work, and a Sprint burndown. Clicking the summary information, as shown in Figure 6-5,
willtakeyoudirectlytothe(Sprint)backlogpage.Clickingtheburndownthumbnailwill
simply expand it.

 CHAPTER 6 The Sprint 175

FIGURE 6-5 ClickingtheSprintsummaryonthehomepagetakesyoutothe(Sprint)backlogpage.

Prior to the Sprint, there shouldn’t be any Task work items in the Sprint Backlog. Ideally, the
 Development Team creates its tasks during the Sprint Planning meeting and not before. It is possible
that during some previous Product Backlog grooming sessions, an idea for the plan emerged. These
ideas should be captured as notes, however, rather than Task work items. Plans change. The latest
responsible moment for creating an actionable plan is during the Sprint Planning meeting. Not
only does this allow the developers to create a plan with the latest information available, but it also
 reduces waste.

Fromthe(Sprint)backlogpage,youcancreateanassociatedTaskworkitembyclickingthelarge
plussign(+)iconnexttothePBIorBugworkitem.ThenewtaskwilldefaultitsIteration Path and
Area Path to that of its parent. The Development Team should give the task a Title and Remaining
Work(inhours)ataminimum.AdditionaldetailscanbeenteredintotheDescriptionfield.

Tip Remember, the Development Team should estimate the number of hours for each
task as a team. It should not be assumed that any particular developer will be doing any
 particular piece of work. In other words, don’t let the developer with the best skills in a
functional area provide the estimate. In reality, it might be someone else that ends up
 doing the work, and in that case those estimates will be off. Once a developer owns the
task, he or she will be responsible for re-estimating it regularly until it is done. The overall
variance should be a wash because since some team estimates will be lower and others
higher than that of the actual developer’s.

176 PART II Using Scrum

As the Development Team brainstorms its tasks, it’s best to leave the Assigned Tofieldblank.Since
all the work will be done aftertheSprintPlanningmeeting,it’sdifficulttoknowwhowillbeperforming
each task. That said, I know some teams prefer to leave the meeting with each developer having at least
one task to get started on. This is one of the many behaviors that the team can decide to adopt.

Tip Fellow Professional Scrum Developer Simon Reindl recommends not having Visual
Studio running at all while the plan is being formulated. Keystrokes and mouse clicks can
interrupt a productive conversation. Sticky or whiteboard notes can be converted to work
items after the meeting.

Tailspin Toys case study The Development Team likes to work on sticky notes or a
 whiteboard during the Sprint Planning meeting. When consensus is reached and estimates
are made, they will convert these into Task work items in Team Foundation Server.
Sometimes they use Team Web Access, but Excel is still a favorite tool for being able to
blast in a large batch of tasks quickly.

Usually,only50to80percentofthetotalplanwillbeidentifiedduringtheSprintPlanningmeeting.
The rest should be “stubbed out” for later detailing, or given rougher estimates that will be decomposed
later in the Sprint. The act of decomposing work implies that the Development Team has a consensus
about how the work will be accomplished. High-performance Scrum Teams are good at reaching
 consensus.

Note I get pushback from some teams who think that creating Task work items, or any
type of work item for that matter, is waste. Before I argue or agree with them, I like to
findoutmoreabouttheirteam.Iftheyareahigh-performanceScrumDevelopment
Team, then perhaps they don’t need to track individual Task work items. They can maintain
a burndown manually at the PBI level and let the team decide how to decompose and
track its work. I explain that if you create and track Task work items in Team Foundation
Server, even to the point of associating them with code check-ins, you will gain traceability
and transparency. This is important to the Product Owner and stakeholders, as well as
your fellow developers, who want to trace which forecast work was developed by which
 check-ins, and vice versa. Development Teams new to Scrum can also use this information to
learnwhattheyareactuallycapableofandtoimprovetheirconfidenceforthenextSprint.

When decomposing PBI and Bug work items into tasks, do what works for your team. Consider
 decomposing along design seams. The goal is to achieve independence from other tasks, or at
least to achieve sequential dependence. In other words, you should try to avoid interdependence
andinitialblockingtasks.Initialblockingtasksarethosethathavetobedonefirst,usuallybya
singledeveloper(orapair),andpreventamajorityofworkfrommovingforwarduntilthey’re
complete.Ideally,eachdeveloper(orapair)canworkononetaskatatimeandhavemade
meaningful progress when it’s done.

 CHAPTER 6 The Sprint 177

Here are some questions to consider as the Development Team creates its plan:

 ■ Does this task provide a meaningful step towards the completion of the item?

 ■ Doesthistaskhavecriteriaforbeingdone(eitherexplicitorimplicit)?

 ■ Can this task be worked on by a pair of developers effectively?

 ■ Can this task be worked on by multiple pairs effectively?

 ■ Doesthistaskdependonanyothertasksbeingdonefirst?

 ■ Doothertasksdependonthistaskbeingdonefirst?

 ■ Can the task be completed in one day or less?

 ■ Has anyone else created this task already?

 ■ Is this task already done?

Remember, Sprint tasks are what you actually must do during the Sprint. They include work across
all disciplines: analysis, design, coding, database, testing, documentation, deployment, security, etc.
ThetasksmustbringtogethereverythingrequiredfromtheperspectiveofthePBIorBugfix,aswell
as the software product’s quality needs and the nature of the people doing the work. Completion of
allSprinttasksforaPBIorBugfixshouldresultintheDefinitionof“Done”beingmetforthatitem.
You can see an example of just such a plan in Figure 6-6.

FIGURE 6-6 An example plan represented by tasks in the Sprint Backlog.

Tailspin Toys case study The Development Team has become quite good at envisioning
the plan during the Sprint Planning meeting and then creating a representation of it using
Task work items. They don’t always get the Task work items created during the meeting,
but they are keyed in shortly thereafter. If new tasks emerge during the Sprint, they are
usuallyidentifiedduringtheDailyScrumandarecreatedlaterbythedeveloperwho
brought them up.

178 PART II Using Scrum

Capacity planning
The(Sprint)backlogpageinTeamWebAccessprovidestheabilitytoenterandtrackthe
DevelopmentTeam’scapacityfortheSprint.Dailycapacity(inhours)canbespecifiedbyteam
member.Thiscapacitycanevenbescopedtoaspecificactivitytype(deployment,design,
 development, documentation, requirements, or testing). In addition, you can enter the number of
days off by Development Team member, as well as for the entire team.

Thepurposeforenteringthesecapacitydetailsistoenablethe(Sprint)backlogpagetohelp
the Development Team plan its work for the Sprint. By turning work details on, additional graphs
are displayed on the right side of the screen. These graphs show the total hours of planned work
 compared to the capacity of the Development Team and the individual team members.

Smell It’s a smell if I see a Development Team using capacity planning tools of any kind.
While it might be helpful for teams new to Scrum to avoid forecasting too much work,
high-performance Scrum Teams recognize capacity planning as a potential dysfunction
and a source of waste. They are aware of their capacity and upcoming days off, and they
will use that as an input when forecasting a comfortable amount of work for the Sprint.
Planning capacity by individual or activity type is counter to the self-organizing and
 self-managing attributes of the Development Team. Let the team decide what seems like
the right amount of work, what to work on next, and who should do what type of work.

Customizing the (Sprint) backlog page
Bydefault,the(Sprint)backlogpageshowstheWork Item ID, Title, State, Work Item Type, Assigned
To, Remaining Work, Activity Type, and Effort.Justlikethe(product)backlogpage,thispagecanbe
customized. For example, the Development Team might want to remove the Activityfieldandrelated
behaviors.

Here are the high-level steps to follow in order to remove the activity column and features:

1. Use witadmin exportcommonprocessconfigtoexportthecommonprocessconfigurationfile
for the team project.

Note You can also use the Process Editor found in the Team Foundation Server
Power Tools.

2. Edittheexportedconfigurationfile,andthenlocateandremovetheelementthatidentifies
the Activity Type field.Youcanseethiselementinthefollowingboldfacedline:

<?xml version="1.0" encoding="utf-8"?>
<CommonProjectConfiguration>
.
.
.

 CHAPTER 6 The Sprint 179

 <TypeFields>
 <TypeField refname="Microsoft.VSTS.Common.Activity" type="Activity" />
 <TypeField refname="Microsoft.VSTS.Common.BacklogPriority" type="Order" />
 .
 .
 .
 </TypeFields>
.
.
.
</CommonProjectConfiguration>

3. Savethefile.

4. Use witadmin importcommonprocessconfigtoimporttheupdatedconfigurationfilebackto
the team project.

Afteryouhaveimportedtheconfigurationfile,youwillneedtorefreshthe(Sprint)backlogpage.
You will then see that the Activity column has been removed. In addition, activity is no longer an
optioninthecapacityplanningtoolsandcharts.Thissimplifiestheviewandremovesatoolthat
could enable a dysfunctional behavior. The customization affects only the targeted team project, not
all team projects in the collection. Also, all teams and team members will experience the change. It
affects all teams on the team project.

Note Microsoft always intended the Activity feature to be optional. Removing it by
customizingtheconfigurationfilewon’thaveanynegativesideeffects.Ifateamwantsto
completely remove all references to Activity, they would need to customize the Task work
item type and remove the Microsoft.VSTS.Common.Activityfield.Thisbehaviorcannotbe
customized for the hosted Team Foundation Service.

Tailspin Toys case study Andyhascustomizedthe(Sprint)backlogpageandremovedthe
Activityfieldandrelatedbehavior.

Daily Scrum activities

What the Development Team should be doing in between the Sprint Planning and Sprint Review
meetings is rather vague in the Scrum Guide. This is by design. Besides meeting for the Daily Scrum
and ensuring that progress is tracked and monitored, the developers are on their own to self-organize
and manage their own work. This is how it should be.

Once the Sprint has been planned, the Development Team must execute the work. It is
 important to make progress on a daily basis so that at the end of the Sprint, the Development Team
 accomplished what it set out to do. Team Foundation Server includes a number of tools that can help
run the iteration and track the progress of the team.

180 PART II Using Scrum

Developers can use the task board to help visualize the work in progress, what work has been
done, and what work remains. The Development Team can use this task board collectively or
 individually, as each developer keeps track of his or her work and the overall work for the team. The
Development Team can also use the burndown chart that is calculated automatically to review the
rate of progress. As the Sprint progresses, these calculations and tools can be used to decide whether
to adjust plans, add more work, or make changes to help deliver a done Increment of the software
product.

The rest of this chapter includes those Scrum-related activities that the Development Team needs
toperformthroughoutthedevelopmentportionoftheSprint.Softwareengineering-specifictopics
won’t be covered in this section, but many will be covered in the chapters ahead.

The Daily Scrum
As we learned in Chapter 1, the Daily Scrum is a 15-minute, time-boxed meeting for the Development
Team to synchronize their activities and create a plan for the next 24 hours. It allows developers to
listen to what other developers have done and are about to do. This leads to increased collaboration,
as well as accountability. Team members need to understand that commitments are being made at
this meeting and that these commitments will be tested 24 hours from now.

The Development Team can use the dialogue heard during the Scrum to assess their progress.
By hearing what is or isn’t being accomplished each day, the team can determine if they are on their
way to achieving the Sprint Goal. As teams improve in their collaboration, this vibe will become more
 noticeable—even outside the Daily Scrum. High-performance teams may even outgrow the need
for a formal assessment tool, such as a Sprint burndown chart. Whatever method they choose to use
must be transparent, however.

Handling impediments
During the Daily Scrum, it is likely that someone will raise an impediment. An impediment is
 anything that blocks or slows down the progress of the Development Team. In my experience, most
 impediments are small and can be resolved quickly. It usually just takes some collaboration with
someone else in the organization, such as a colleague, stakeholder, or IT support person. Larger
 impediments usually require more steps in order to be removed, such as adding a skillset to the team
or co-locating distributed team members.

Note Some teams refer to smaller impediments that can be quickly resolved as issues.
They reserve the word impediment for larger, more organizational issues. In these cases,
a strong Scrum Master might be required to resolve them.

 CHAPTER 6 The Sprint 181

Impediments must be cleared in order for the Development Team to be productive. In Scrum,
there are two formal opportunities to identify impediments—at the Daily Scrum and at the Sprint
 Retrospective meeting. Impediments can occur at any time, however, and the Development Team
should be ready to handle them.

Tip Remove impediments—don’t manage them! Successful Scrum adoption hinges on the
ability to inspect and adapt.Ifimpedimentsareidentifiedbutarenotbeingremoved,the
Scrum Master needs to become more actively involved.

ImpedimentsthatsurfaceduringtheDailyScrumshouldbebrieflydiscussed.Ifthedeveloper
experiencing the blockage cannot remove the impediment themselves, another Development Team
member should offer to help. The Scrum Master, or the Development Team member playing the role
of Scrum Master, should ensure that this happens. As a last resort, the Scrum Master should take
 ownership of removing the impediment.

Impediments should be removed as early as possible, but just not during the Daily Scrum.
 Problem-solving discussions detract from the real purpose of the Daily Scrum. If it is necessary, time
to discuss the impediment and its resolution can be scheduled after the meeting.

Smell It’s a smell when I hear members of a Development Team repeatedly telling each
other that they have no impediments. Occasionally this can be true; however, developing
software is a complex process. It is fraught with risks and the potential for problems every
day. In my opinion, developers tend to be optimistic, problem-solving individuals and, in
theiropinion,nothingeverblocksthem.Theyhavelotsof(other)worktheycanbedoing.
This attitude is more common on teams new to Scrum where team members might be
 hesitant to share their problems openly. High-performance Scrum Teams know that it’s
about the team, and not the individual. They know the importance of raising impediments
early,beingtransparentaboutprogress,andfeelingconfidentenoughtoaskothers
for help.

If the impediment cannot be resolved immediately, an Impediment work item can be created in
Team Foundation Server. You can see an example in Figure 6-7. It is not required that impediments be
tracked this way, especially if the Development Team expects the impediment to be resolved quickly.

Open impediments can be tracked by running the Open Impediments shared query found in the
Current Sprint folder. This query returns all impediments in the Sprint that have a State of Open. Once
an impediment is resolved, its State should be changed to Closed. For impediments that are scoped to
a release or the entire product development, an additional query will need to be created.

182 PART II Using Scrum

FIGURE 6-7 Creating an Impediment work item.

Tip Fellow Professional Scrum Developer Simon Reindl has found it helpful to have
 managers and other executives regularly query the list of impediments. By returning the
impediments by date, they can see the organizational changes taking place, including
the level of inspection and adaption that is occurring. Seeing indicators that the team is
 improving can be as powerful as seeing the software product improving.

Note If the Development Team wants, the new Impediment work item can be linked back
totherelatedTaskworkitem(s)affectedbytheimpediment.Inaddition,thosetaskscan
be marked as Blocked, which will surface them on the Blocked Tasks shared query. While
these extra steps provide context, they should be used only if the Development Team
 decides that there is value in tracking the additional detail.

Tailspin Toys case study The Scrum Team has very few open impediments. The team
members have become quite good at removing them quickly. Because of this, they don’t
bother marking tasks as Blocked or linking impediments. Regular team communication
keeps everyone aware of the current issues and what they might be blocking.

 CHAPTER 6 The Sprint 183

Taking on work
As needed during the Sprint, the Development Team works on the tasks required to develop the
forecastworkandachievetheSprintGoal.Ideally,alltaskswereidentifiedduringtheSprintPlanning
meeting, but this rarely happens. High-performance Scrum Teams will broadly identify all tasks at
ahighlevel,tobebrokendownlater.TeamsjustgettingstartedwithScrummightfindthemselves
stillworkingouttheplan(thatis,identifyingtasks)wellintotheSprint.Allteamswilldothistosome
 degree. Being able to envision and capture the plan before starting the actual work is a skill that
comes with the experience of working together as a team, on the same domain, using the same tools
and practices.

Task ownership is not a required outcome of the Sprint Planning meeting. In fact, it’s important to
leave “to do” tasks unassigned so that Development Team members who have capacity can pick
a relevant task to work on next. In Scrum, work should never be directed or assigned. When creating
or updating a task, don’t assign it to anyone who doesn’t request the work. Resist the urge to assign
tasks to the ideal person for the task. Doing so will decrease collaboration and the opportunity for
other team members to learn. When the time is right, the team decides who will take on that task.
This decision takes many factors into account, including the background, experience, availability, and
capacity of the candidate developer.

Ironically, in Team Foundation Server, ownership is tracked using the Assigned Tofield.Whenthe
time is right, the developer who will be performing the work should change the task’s Assigned To
fieldtohisorhername.Heorshecanaskanotherteammembertodoitaswell.Taskownershipcan
besetfromthe(Sprint)backlogpage,thetaskboard,orfromtheworkitemspage.

Note In Team Foundation Server, a work item can be assigned only to a single user. If two
developers are going to pair up on a task, one of them will need to be the Assigned To
user. High-performance Scrum Development Teams may not even care about who the task
is assigned to, so long as it gets completed and progress against it can be assessed.

Decomposing tasks
The Scrum Guide tells us that work planned by the Development Team is decomposed to units of one
day or less. This aligns with the guidance that I have always given developers. If the Development
Team is using tasks, then a task should be small enough to be completed in a single day—whether by
asingledeveloperorapair.Thisconstraintforcesdeveloperstocreatemorespecific,granular,atomic
tasksthatelevateefficiencybyreducingbottlenecksandrisks.Bypursuingsmallerunitsofwork,
complex problems can be decomposed more easily to a level of detail that can be understood and
achieved. Smaller tasks also lead to improved transparency and more accurate predictions of when
the remaining work will be completed.

184 PART II Using Scrum

Note Traditional project management thinking might be opposed to this level of
 granularity. Not only would it cause their Gantt charts to explode, it would be way too hard
and risky to identify all those tiny tasks ahead of time. Fortunately, there is no “ahead of
time” in Scrum. The Sprint Backlog is created just-in-time by the developers who will be
doing the work and is discarded at the end of the Sprint.

Assumingtheone-day(eight-hour)tasksizelimit,youmightfind“epic”tasksintheSprintBacklog.
Similar in concept to epic PBIs, these are tasks that are too large to be completed in a single day.
More than likely, the task should be decomposed. The relevant question then becomes if and how to
track the original task as well as the decomposed tasks in Team Foundation Server. Just as with epic
PBIs, there are a couple of options for how to do this.

Tip Fellow Professional Scrum Developer Jose Luis Soria Teruel even recommends
 decomposing tasks that are in the six- to eight-hour range. Developers new to Scrum may
trytoplantheirentire(eight-hour)day’scapacity.Thisisnotrealistic.Peopletakebreaks,
check email, have impromptu meetings, and perform other activities that distract from
 development. Keep these factors in mind as you decompose tasks.

Thefirstapproachwouldbetocreateadditional,child-linkedtasks.Eachofthesewouldhave
smaller remaining work values, achievable in a single day. The parent task would become a permanent
placeholder. A team member would never directly work on that task. When all its child tasks are done,
someone would have to set its State to Done. The advantage to this approach is that it establishes a
visual breakdown of the work. This can be helpful for teams new to Scrum.

A disadvantage to this approach is that you now have something in your Sprint Backlog that
isn’treallyatask.Ifyouaccidentally(oronpurpose)lefttheparenttask’sremainingworkvalue,it
could mess up a burndown chart or other assessment. To be safe, you should set the parent task’s
 Remaining Work fieldtozeroafterthechildtasksarelinked.

Note Unfortunately,the(Sprint)backlogpagedoesnotsupporttaskhierarchies.Itdoesn’t
have drag-and-drop linking capability or the ability to display multiple levels of tasks. It will
displayonlythelowest(leaf)leveloftasks.Ifyouwanttovisualizethetaskhierarchy,
you should run the Sprint Backlog query found in the Current Sprint folder, as shown in
Figure 6-8.

 CHAPTER 6 The Sprint 185

FIGURE 6-8 Using the Sprint Backlog query to visualize a task hierarchy.

The second approach would be to edit and rename the original task, making it one of the eventual
children.Thenyouwouldaddadditionaltasksassiblingsofthefirstone.Youwilllosethe“big
 picture” that the tasks were once related under a common “epic,” but you also won’t have dummy
items in your Sprint Backlog generating noise and waste. You can always keep them associated using
atitlenamingconvention,description,orhistorynotes.Byreviewingthechangehistoryofthefirst
task, you can see that it used to be the parent task.

I tend toward the second approach because tasks have such a short lifespan anyway. Because they
only serve the Development Team, it is doubtful that somebody else would want to see how work
breaks down during the Sprint. This approach keeps the Sprint Backlog lean and reduces the chances
that a burndown or other assessment tool might provide misleading information.

Smell It’s a smell when I see several “epic” tasks in the Sprint Backlog by the middle or
later part of the Sprint. Either the Development Team isn’t breaking down their work, or
they aren’t using tasks to plan and track their work. It’s also a smell when I see one task per
PBI with a generic title like “Develop it.”

The task board
A task board is a collaborative tool used by the Development Team to communicate its plan for
 developing the forecast PBIs. It also provides visibility into the team’s progress by displaying the
relevant tasks by state. Observers can quickly see what work is done, currently being worked on, and
not yet started.

186 PART II Using Scrum

The task board is not a reporting tool. It’s not meant to be used by management to hold the team
accountable for their progress. In other words, it should not be used as a “blame board.” Once these
behaviors start to surface in the organization, the developers will be less inclined to be honest and
transparent about the tasks they are working on. The fear is that they will revert to their old ways and
focus on making the burndown look good, even if that means stretching the truth.

Note You can think of the task board as an information “radiator.” It’s always on,
 constantly updated, and relays useful, visual information to anyone who happens by
and cares to take a look. You can learn more about information radiators here:
http://guide.agilealliance.org/guide/radiator.html.

In Team Foundation Server, the task board can be found on the board page of Team Web Access.
 Unlike the backlog page, this one is two-dimensional. In the default backlog items view, the forecast PBI
and Bug work items are listed down the left side. Across the board are the associated Task work items in
one of three states: To Do, In Progress, and Done. You can see an example of this in Figure 6-9.

FIGURE 6-9 The task board showing the forecast work for the Sprint and associated tasks.

The task board displays PBI and Bug work items that are assigned to the current Sprint. These
backlogitemscanbeinanyworkflowstate(otherthanRemoved).Theitemsdon’thavetohaveany
associated tasks to be displayed either. If a PBI or Bug work item is assigned to another Sprint but has
linked tasks in the current Sprint, you will see them listed here as well. Tasks not associated with
arequirement(a.k.a.“free-floating”tasks)arenotdisplayedontheboard.Someseethisasan
 impediment in that the board does not show the “big picture” of all the work the Development Team
must do during the Sprint. I feel that this is okay, because work performed outside that required to
develop the forecast work and achieve the Sprint Goal, while important, is not required to be tracked
as part of Scrum.

http://guide.agilealliance.org/guide/radiator.html
http://guide.agilealliance.org/guide/radiator.html

 CHAPTER 6 The Sprint 187

Smell It’s a smell if any of the PBI or Bug work items listed on the task board isn’t set to
the current Sprint or isn’t in the Committed state. It’s also a smell if any of the associated
Task work items are in a different Sprint. It could be that it is an older task from a prior
Sprint and that the parent PBI or Bug work item wasn’t completed.

The tasks that are displayed on the board don’t have to be “Task” work items. The board is
flexibleenoughtodisplaywhateverworkitemtypeisdesignatedastheTaskworkitemcategory.
For example, if a team were using a custom process template containing an SBT(SprintBacklogtask)
work item type, the administrator would need to ensure the SBT type was marked as the Task work
item category. Once that customization was performed, the developers could drag SBT work items
across the task board. Process templates and work item categories were discussed in Chapter 3, ”Microsoft
Visual Studio Scrum 2.0.” It just so happens that in the Visual Studio Scrum 2.0 process template, this
equates to the Task work item.

Each task on the board displays four pieces of information:

1. The task’s title

2. Thetask’sowner(whichwillbeblankifunassigned)

3. The task’s remaining work value to complete the task

4. Thetask’sstate(representedbythecolumnthatthetaskisin)

TheDevelopmentTeamcanviewandupdatethetaskboardtoreflectthestatusinworkitems
visually via dragging. Anybody viewing the board can see the progress that the Development Team is
making against each PBI or Bug. Developers can quickly focus on the remaining pieces of work. The
board leads to increased transparency, honesty, and accountability.

Note YoucanonlymanageTaskworkitems(orwhateverworkitemisoftheTask
 category) on the task board. In other words, you cannot drag the PBI and Bug work items
themselves across the various states. For high-performance Scrum teams that choose not
to use Task work items, this renders the task board useless. Also, you cannot view past
Sprintsonthetaskboard.Youcanonlydothatfromthe(Sprint)backlogpage,orby
 running an appropriate work item query. Requests for these features are quite popular on
the http://visualstudio.uservoice.com website.

An integrated, real-time Sprint burndown chart is also embedded in the task board. The burndown
showstheremainingwork(inhours)intheSprint.Thetaskboardisavailabletousersinthestandard
license. In other words, a user only needs to own the Team Foundation Server Client Access License
(CAL)tousetheboard.TeamWebAccesslicensingwasdiscussedinChapter5,”TheProductBacklog.”

http://visualstudio.uservoice.com
http://visualstudio.uservoice.com

188 PART II Using Scrum

There are a number of activities a developer can perform in the task board:

 ■ Viewtheplan(tasks)fordevelopingtheforecastwork.

 ■ View the progress of development.

 ■ Add tasks to a PBI or Bug work item.

 ■ Makeeditstoaspecifictask.

 ■ Change the state by dragging between columns.

 ■ Change the remaining work value.

Smell It’s a smell whenever I see someone outside the Development Team changing the
Sprint Backlog. According to the rules of Scrum, only the Development Team is allowed to
add, delete, or change the contents of the Sprint Backlog. The task board is fun to use, and
sometimes Scrum Masters, Product Owners, or other users want to “play” with it. This is
fine,solongastheyaremakingchangesaccordingtotheDevelopmentTeam’swishes.

Tailspin Toys case study The entire Scrum Team, and even a few stakeholders, use the task
board to some degree each Sprint. Developers refer to it throughout the day as they see
what work remains to be done, what their colleagues are working on, and to take on new
workthemselves.Scott(theScrumMaster)usesthetaskboardtokeepaneyeonthebig
picture. He watches the amount of work in progress while looking for bottlenecks. Scott’s
goalistohelptheDevelopmentTeamdeliverPaula’s(theProductOwner)PBIsintheorder
she wants them. Paula and the stakeholders also monitor the task board, but they know
that they should not touch anything.

Viewing tasks by team member
The default view in the task board is by backlog item. This provides a visual of the work in progress
for each of the forecast items in the Sprint Backlog. By default, all tasks are displayed in light blue. You
might think that this is just the color the task board uses for tasks. In reality, the blue is the highlighted
color. By default, tasks for all team members are highlighted.

If you want to see the tasks owned by a particular team member or those tasks that are unassigned
easily, you can click the hyperlink next to the person label on the right side of the screen and select
the team member, as shown in Figure 6-10.

 CHAPTER 6 The Sprint 189

FIGURE 6-10 Highlighting tasks by Development Team member.

UsingthisfeaturecausestheTaskworkitem(s)ownedbythatteammembertobehighlighted,
and all other tasks to be displayed in a lighter, gray color, as shown for Anna in Figure 6-11. The
 contrasting colors makes it easy for you to see the tasks undertaken by a given team member.
 Unfortunately, these colors cannot be customized. There also is no support for coloring tasks
 differently when they are blocked, done, larger than one day, etc.

FIGURE 6-11 Highlighting Anna’s task.

The highlighting feature is also helpful when a developer is looking to take on a new piece of
work. By selecting Unassigned, those tasks that are not assigned to anyone will be highlighted in blue.
Ideally, they will all be found in the To Do column.

Tip Thehighlightbypersonfeaturehasanothersubtlebenefit:anytaskscreatedonthis
screen(byclickingthelargeplussignicons)willdefaulttothefiltereduser.Thiscanbe
useful when one person is driving the tool during a planning meeting. Personally, I’d rather
the tool just default tasks to the currently logged in user, or no user at all. That would
 better support the self-organization and self-managing qualities of Scrum.

190 PART II Using Scrum

Smell It’s a smell if I see unassigned tasks in the In Progress or Done columns. If a
Developer has started working on a task, then that person should claim ownership of it all
the way through to Done. If a Developer stops working on a task to the point where he or
she has essentially abandoned it, then he or she should move it back to the To Do column
andremovehimselforherselffromtheAssignedTofield.It’salsoasmellifIseetasksin
the To Do column that are owned by somebody. How can the team know if that Developer
will be available when the need for that task arises? Task ownership should be declared
as late as is responsible, ideally as that Developer starts working on the task. Seeing
“ preowned” tasks makes me wonder if there aren’t some capacity planning or command
and control dysfunctions at play on the team.

There is another way to view tasks on the board. It’s the team members view, and you can select
it by clicking that tab in the upper-left corner of the screen. You can use this view to pivot the task
board to display tasks by team member. This view shows the developers down the left side of the
screenratherthanthebacklogitems.YoucanseethisinFigure6-12.Thefirstrowliststhosetasks
that are unassigned. The “highlight by person“ feature works on this screen as well.

FIGURE 6-12 Viewing tasks by team member rather than by requirement.

Note You cannot drag tasks vertically in this view. In other words, you cannot
hand off a task to another developer by dragging it up or down to that person’s row.

Tailspin Toys case study The Development Team rarely uses this view, and when they do,
it’s to get a feel for all of the unassigned tasks, regardless of the backlog item they are
linked to. By expanding the Unassigned group, they can see all those tasks.

 CHAPTER 6 The Sprint 191

Adding new tasks
AstheDevelopmentTeamidentifiesnewworkorwantstodecomposelargerpiecesofwork,newTask
work items will be created. Ideally, this is done at the beginning of the Sprint, perhaps even as a result
of the Sprint Planning meeting. The reality is that there will be new tasks or re-tasking occurring all
 throughout the Sprint because developers always know more today than they did yesterday.

Over time, the Development Team will improve in its ability to identify and create the plan—in the
form of Task work items—earlier in the Sprint. The important thing to remember about the task board is
thatitshouldaccuratelyreflecttheremainingworkintheSprint,tothebestofeveryone’sknowledge.

There are several places in Visual Studio and Team Web Access to create a new Task work item.
We’ll focus on creating one from the task board. Next to each PBI or Bug work item is a large plus
sign(+)icon,asyoucanseeinFigure6-13.Whenyouclickit,anewTaskworkitemformwillopen
that allows you to create the task. The Area, Iteration, and Link To The Parent Work Item are all
defaultedforyou.Also,iftheviewiscurrentlybeingfilteredbyteammember,thenthatpersonwill
be the default Assigned To user.

Note You can only add tasks to the backlog page of the board. You cannot add tasks when
viewing the board by team members. Also, there is no “quick add” experience when adding
taskslikethereiswhenaddingPBIandBugworkitemsonthe(product)backlogpage.

FIGURE 6-13 Adding a new task from the task board.

Ifyouareaddingataskofsubstantialcomplexity,youshouldhaveanotherdeveloper(ortwo)
review it. They should also assist in estimating the effort required to complete the task. Don’t spend
too much time estimating the task. Record a quick consensus value. You can adjust it later when you
know more information. Be sure to let the Development Team know about the task by adding a good
description and maybe discussing it at the next applicable Daily Scrum meeting.

192 PART II Using Scrum

Setting task ownership
It’s quite normal to have tasks that are not assigned to anyone. In fact, I believe that it reveals a
healthy team behavior. As Development Team members have availability, they should take ownership
of the next most important task in the Sprint Backlog. This is decided by the Development Team,
possibly during the Daily Scrum but at any point throughout the day. Professional Scrum developers
know that selecting and taking ownership of a task should not be based on what task they want to do
next, or what task they feel they are best suited to do. If possible, they should take ownership of the
next most important task, as determined by the Development Team, required to complete the current
PBI or Bug before moving on to the next one.

The purpose of the Daily Scrum is to identify the plan for the next 24 hours. This means the
developers synchronize what Task work items each will be working on or pairing up to work on. The
developers can then go back to their desks and take ownership of those tasks in question. Taking
ownership, as well as changing ownership, can happen at any time during the day.

In the task board, you can take ownership of a task quickly by clicking in the area just to the
right of the remaining work value. You can see this in Figure 6-14. This will cause a drop-down list to
 appear that will allow you to select a user or reset the task back to Unassigned. You’ll notice that the
drop-down list only displays those users already assigned to other work items. It won’t contain the
entire list, as you’d see when editing a work item in the work item window. While this abbreviated list
is cleaner and easier to work with, it requires additional effort when a user is not found in the list. You
can’ttypethenameinthefield.Instead,you’llhavetodouble-clicktheworkitemandedititnormally
in order to select the correct developer. Once saved, the user will appear in the quick drop-down list.

FIGURE 6-14 Using the task board to take ownership of a task quickly.

Note I’m often asked by teams new to Scrum and Team Foundation Server if the
 developer should be the one who physically changes the Assigned Tofield.Myanswer
is to let the team decide. This might be a useful practice for a new Scrum Development
Team to adopt in order to shed any of its old command and control style behavior. If
no such behavior exists, then I suggest letting any Development Team member change
the Assigned Tofield.TheScrumMastercandothisaswell.Ifthere’severaproblemor
 disagreement, remember that Team Foundation Server tracks who changes a work item,
what was changed, and when.

 CHAPTER 6 The Sprint 193

Tailspin Toys case study For the most part, each individual developer manages his or her
own task ownership. Occasionally, during a Daily Scrum or other planning meeting, the
task board will be displayed on a projector and one of the developers will be driving. He
or she creates and manages the tasks as the team decides. Dave shows off sometimes by
bringing his Windows 8 tablet and manipulates the task board using touch.

Changing a task’s state
A Task work item can be in the To Do, In Progress, Done, or Removed state. The natural progression
isfromToDo>InProgress>Done.Thesethreestatesmaptothethreecolumnsonthetaskboard.
A Task work item can be dragged to one of these state columns. When dropped, the task’s Statefield
will change to that value and be saved automatically. When dropping a task in the Done column, the
Remaining Workfieldissetto0(blank).

Theserules,includingtherulesdefiningwhichstatetransitionsareallowed,aredefinedbythe
process template used to create the team project. Team projects created using the Visual Studio
Scrum 2.0 process are allowed to drag task work items from:

 ■ ToDo>InProgress

 ■ ToDo>Done

 ■ InProgress>ToDo

 ■ InProgress>Done

 ■ Done>InProgress

 ■ Done>ToDo

Note When dragging a task from Done to In Progress, an error will be displayed, as shown
in Figure 6-15. You will need to provide a Remaining Work value to dismiss the error.

FIGURE 6-15 Error message displayed when dragging a Done task back to In Progress.

194 PART II Using Scrum

Smell It’s a smell when I see a developer regularly having more than one task at a time in a
state of In Progress. There are situations where this can occur, but developers should strive
to limit their work in progress in order to maximize their productivity.

Tip Be careful when dragging another person’s task to a different state. If you are currently
filteringonanotherteammember,thatteammemberwillbeassignedautomaticallyto
thattask.Forexample,ifIamfilteredonAnna’staskssoIcanseethemhighlightedinblue,
and then I decide to move one of my tasks to the Done column, the tool will automatically
set Anna as the owner of my task when I drop it.

Thetaskboardisveryflexibleinthatitsupportsanynumberofdifferentprocesstemplates—even
ones that haven’t been invented yet. The support includes what column headings appear on the task
boardandhowtheycorrespondtotheworkflowstatesassignedtothedefaulttasktypeassignedto
the Task Category. In the Visual Studio Scrum 2.0 process template, the column sequence corresponds
tothenaturalprogressionoftheworkflowtransitions,movingfromlefttoright.TheTaskworkitem’s
workflowstates(ToDo,InProgress,andDone)eachmatchavalidmetastate(Proposed,InProgress,
andComplete).ThisflexibilityisprovidedbymappingdefinitionsfoundintheCommonConfiguration.
xmlfile,asyoucanseeintheboldedtexthere:

<?xml version="1.0" encoding="UTF-8"?>
<CommonProjectConfiguration>
 .
 .
 .
 <TaskWorkItems category="Microsoft.TaskCategory">
 <States>
 <State value="To Do" type="Proposed"/>
 <State value="In Progress" type="InProgress"/>
 <State value="Done" type="Complete"/>
 </States>
 </TaskWorkItems>
 .
 .
 .
</CommonProjectConfiguration>

Note No column is mapped to the Removed state. If you want to remove a task from the
Sprint Backlog, you will have to double-click it and manually change its state to Removed.

 CHAPTER 6 The Sprint 195

Updating remaining work estimates
A high-performance Scrum Development Team may update their remaining work estimates daily.
This enables the tool to assess the progress made against the forecast work. You can update the
 Remaining Workfieldquicklybyclickingthenumberonthetaskandselectinganewonefromthe
drop-downcontrolthatappears.Thedrop-downlistdisplaysthenextfivenumberslowerthanthe
currentnumber,aswellasa“zero”option.Ifthecurrentnumberislessthanfive,thedrop-downlist
willstartshowingfractionalnumbers.Ifthenumberisalreadyzero,thedrop-downlistshowsthefirst
sixnumbersintheFibonaccisequence(1,2,3,5,8,and13).AnychangetoRemaining Work takes
place immediately. There is no need to save your changes.

Tip If the number you want is not in the drop-down list, you can just type it into the tiny
field.Itcanbedifficulttodothisfora“zero”hourvaluebecausenothingisdisplayed.
You will have to guess where the number would be displayed. If all else fails, you can just
 double-click the task and edit it in the regular work item window.

Microsoftchosethisdrop-downlistpopulationschemebasedonthefindingsofstudiesthat
it performed internally. The Development Team analyzed the deltas when hours were reduced.
 Whenever a developer updated their remaining work, they tracked the average change from the
original number to the new number. After studying six months of data, they found approximately
80percentofalldeltaswerewithinfiveofthecurrentnumber.Interestingly,theyalsofoundthat
about2percentofthenumberswereover20hourstobeginwith.Regardlessofthesefindings,
or how the drop-down control behaves, your Development Team can choose to record whatever
 numbers are accurate for them.

Smell It’s a smell when I see a Development Team tracking actual hours worked.
Remember that Scrum is a team effort. Tracking actual hours turns it into a collection of
individual efforts. If management is really after the knowledge of whether you are ahead
ofscheduleorbehindit,aSprintburndownchartshouldsuffice.Itis acceptable for the
DevelopmentTeamtodiscusshowlongaspecifictaskorPBItooktocompleteduringthe
Sprint Retrospective meeting. An output of that discussion might be a way to improve
 estimation for the next Sprint.

Tailspin Toys case study Each developer updates his or her remaining work estimates at
least daily, and sometimes several times throughout the day as new determinations are
made. In addition, each developer takes a look at the upcoming, unassigned tasks to see
if the remaining work estimates still feel right. If changes are recommended, they discuss
them at the Daily Scrum or at a follow-up meeting and, collectively, decide what the new
estimate should be.

196 PART II Using Scrum

Chapter burndown

Here are the key concepts that we covered in this chapter:

 ■ Forecasting the PBIs Set the Iteration Path to the current Sprint and the state to
 Committed for the forecast work items.

 ■ Capturing the Sprint Goal Thereisnofirst-classsupportforSprintGoalsinTeam
 Foundation Server. Consider using the SharePoint Wiki to record the Sprint Goal.

 ■ Creating Sprint tasks Ideally, tasks are created early in the Sprint. It’s to be expected that
additionaltaskswillbeidentifiedandcreatedlaterintheSprint.

 ■ Handling impediments Impediments should be removed rather than managed. Create an
Impediment work item as a last result.

 ■ Taking on work Developers take ownership of Task work items by setting the Assigned To
fieldtotheirusername.InScrum,workisneverassigned.

 ■ Decomposing tasks Tasks should be small enough to be accomplished in a day. Create
larger tasks as you brainstorm the plan, but decompose them later in the Sprint.

 ■ The task board The task board is a great way to visualize the work in progress, as well as the
work yet to be done in the Sprint. Only the Development Team should make changes to the
Sprint Backlog.

 ■ Changing a task’s state A developer can change the state of task by dragging it to the
respectivecolumninthetaskboard.Theboardshouldaccuratelyreflecttheworkthe
 Development Team is doing.

 ■ Updating remaining work Each developer should re-estimate the remaining work for their
tasks each day. Use the task board to update these values quickly.

 197

C H A P T E R 7

Acceptance test-driven
development

Traditional software development directed us to hand off a code-complete application to testers at
the end of a lengthy development cycle. As our craft improved, we sought shorter development

cycles, but we still handed off to testers. As we embraced Scrum, we removed the handoff by building
a cross-functional Development Team able to perform all of the required activities. We’re getting
 better, but I contend that there is still room for improvement.

Thephysicsofsoftwaredevelopmenttellsusthattestersmusthaveastable,finishedpieceof
 software to click and poke. On the surface, this sounds like an honest appraisal. I mean, why bother
 wasting time testing software that isn’t code complete, right? Isn’t Scrum about identifying and removing
waste? Yes it is, and I contend that there is waste to be removed when testing efforts are delayed.

Acceptancetest-drivendevelopment(ATDD)isarelativelynewpracticethatmovestesting
 activities to an earlier place in the Sprint. ATDD encourages the Development Team to discuss
 collaboratively the acceptance criteria with the right people. These conversations yield practical
 examples that give way to understanding the features and scenarios that become the basis for
acceptancetests,andevencodingspecifications.Allofthiscanbeaccomplishedpriortoany
applicationcoding.AbenefitofATDDisthatitprovidestheDevelopmentTeamwithashared
 understanding of what it’s developing and what done looks like at each step of the process.

This chapter introduces ATDD and shows how to implement it using Microsoft Visual Studio 2012.

Note In this chapter, when I mention a PBI, I’m referring to the Scrum concept of a Product
Backlog Item, not the Team Foundation Server work item type. Remember that in Scrum,
a PBI can be any number of possible types of requirements, such as a feature request or
abugfix.Becausebugshaveacceptancecriteriathatcanbeverifiedthroughacceptance
tests,ATDDcanalsobeusedasapracticetodeterminewhenabughasbeenfixed.

C H A P T E R 7

Acceptance test-driven
development

Keep the conversation going

Collaborativespecifications

Executablespecifications

Acceptance test-driven development

Test-driven development

Automated acceptance testing

Creating a test case

Associating an automated test

Executing automated acceptance tests

Reusing test cases

Other acceptance-testing frameworks

Acceptance

Chapter burndown

198 PART II Using Scrum

Keep the conversation going

I can’t stress enough the importance of conversation. It’s one of the tenets of Scrum, and Agile
software development in general. I’m not talking about developers talking to other developers about
tools and technologies. I’m talking about the Development Team talking with the Product Owner,
domain experts, and other stakeholders in order to better understand what they are developing and
if they are on the right track.

A common misconception about Scrum is that, after Sprint Planning is over and development begins,
the Development Team becomes sequestered. This is true in terms of non-developers being allowed to
interrupt the team. But the opposite is not true. If the Development Team has questions or concerns
about the work that it’s performing, the developers should reach out to whoever can help. Even if there’s a
chance that development may have to change direction abruptly, the discussion needs to happen. In other
words, the conversation should not stop just because work has been forecast, a plan has been devised,
and development has started. None of these are immutable if there is no value in what’s being developed.

Tip Sometimes it’s hard to have an honest and open conversation with people outside
your immediate circle. This is especially true when you have to break some bad news, such
as sharing the reality of a missed forecast. Professional Scrum developers should always
practice HARD communication with others. HARD is a mnemonic for Honest, Appropriate,
Respectful, and Direct.

When talking with the Product Owner, domain experts, and stakeholders, the Development Team
also has to be careful about the language they use. They speak tech, while the other side speaks
 business. It’s plausible that enough words might sound similar enough so that a conversation can
actuallytakeplaceandaconsensuscanbereachedbybothsides.Forcriticaldecisions,likedefining
what is acceptable behavior for a feature, a more precise language should be used—language that is
mutually understood and devoid of ambiguity.

A good approach for coming up with this common language is to collaborate on identifying
the behaviors for features, by creating real-world tests using real-world examples. Discussing and
capturingtestideaslikepassingcases,failingcases,boundaryconditions,configurations,anduser
interactions leads to an understanding shared by both sides.

Smell It’sasmellwhenIseeaPBIintheSprintBacklogwithoutanydefinitionofsuccess,
such as acceptance criteria. It could be that the item is so simple that it doesn’t require
any further explanation or have need for validation. More likely, the item made it into the
Sprint with the expectation that additional details would emerge. While it’s true that some
additional details will emerge during the Sprint, I will question the Development Team’s
ability to forecast work when it doesn’t know all the key acceptance criteria. Knowing the
adequate level of requirements in order to be comfortable forecasting a PBI is a skill that
will improve over time.

 CHAPTER 7 Acceptance test-driven development 199

Collaborative specifications
When the Development Team begins developing a PBI, they should already have an idea what success
lookslike.Infact,Iwouldhopethattheyhavemorethanjustanidea.SuccessisdefinedbythePBI’s
acceptancecriteria.Wheneachcriterioninthatlistissatisfied,accordingtotheDefinitionof“Done,”
theDevelopmentTeamisfinishedwiththePBI.Unfortunately,therecanbealotofdistancebetween
what was built and what should have been built. Conversations are the best way to bridge that gap,
and those conversations should be recorded in a testable format.

In Chapter 1, “Scrumdamentals,“ we learned that the most popular format of describing a user
story looks like this: As a (role), I want (something), so that (benefit). Figure 7-1 shows an example of
this.

FIGURE 7-1 Describing a PBI with a user story description.

Thisdescriptiononlydefines,atahighlevel,thepurposeandvaluepropositionofthePBI.
 Acceptance criteria can be used to describe the PBI further. This can be expressed as a simple bulleted
list in the Acceptance CriteriafieldofaPBIworkitem,asshowninFigure7-2.

FIGURE 7-2 Acceptance criteria expressed as a simple bulleted list.

The reality is that acceptance criteria may morph during the Sprint to some degree. A competent
Development Team understands and even expects this to happen. For example, the Development Team
might realize that their server doesn’t support the level of encryption required or the Product Owner may
become concerned after reading that a popular social networking site was hacked due to an inadequate
encryption technique. Both of these are valid, business reasons for a change in the scope of work.

Tip Major deviations from the plan in the Sprint Backlog should be discussed with the
Product Owner so that risks can be assessed, tradeoffs discussed, and a new plan formulated.

200 PART II Using Scrum

Duringconversation,youmayfindthataPBIwillbreakdownintomultiplefeatures.Afeature is a
discrete unit of functionality that delivers value to the user or business. A PBI may be large enough to
have several features. For example, a “Customer logon” PBI will have features for creating the logon,
logging on, changing the password, resetting a forgotten password, and so on. A PBI may also be
small enough that the PBI is the feature. It’s important that the Scrum Team identify these features
prior to the forecast. But, just as with acceptance criteria, a feature may be discovered during the
Sprint that is of high enough value to the Product Owner that a tradeoff is considered.

A feature may break down into multiple scenarios. A scenario is a narrative that describes a
workfloworsequenceofstepsthroughthefeaturethatexercisesonepathtowardachievingan
 expected result. These steps could be taken by a user or the software. Scenarios provide more depth
to features by expanding on the context and actions that take place within the feature. For example,
the Reset a Forgotten Password feature will have scenarios for validating the email address, sending
the email, approving the password reset, resetting the password, etc.

Even a small PBI, consisting of only a single feature, could still have multiple scenarios. There will be
at least one scenario that includes the normal sequence of steps where everything goes as expected,
with no exceptions or error conditions. These are known as happy path scenarios. Professional Scrum
developers will also include at least one scenario that tests for the occurrence of exceptions or error
conditions. These are known as sad path scenarios.

Note Some more security-minded Development Teams will identify evil path scenarios.
These scenarios are similar to those of the sad path, but identify the steps that a malicious
user, such as a hacker, would take when using the feature.

Some Scrum Teams will record these features and scenarios in the PBI work item from the very
beginning of the PBI’s life cycle. This requires a certain level of understanding and commitment
by everyone involved with the creation, grooming, and understanding of the items in the Product
 Backlog. I applaud teams that are doing this, as it signals a shift from thinking about PBIs as
“desirements”tothinkingaboutthemas“specifications.”Inaddition,theseforward-thinkingteams
can easily convert “yes-but’s” that are overheard during review meetings into a sad path scenario that
everyone will understand.

Tip When grooming the Product Backlog, the Scrum Team should try to identify all the PBI’s
features, but not necessarily all the possible scenarios. The full set of happy and sad path
 scenarios will emerge during the Sprint as the PBI is being developed. Ultimately, it’s the
Scrum Team’s decision as to what is recorded and when, but I would only suggest spending a
 minimum amount of time on analysis in order to reach a consensus on the estimate of effort.
This will minimize waste in the event that the PBI isn’t forecast any time soon.

 CHAPTER 7 Acceptance test-driven development 201

Neither the Visual Studio Scrum process template nor Team Foundation Server, in general,
providesfirst-classsupportforrecordingaPBI’sfeaturesandscenarios.Teamsarefreetousethe
 Descriptionfield,asI’vedoneinFigure7-3,ortheAcceptance Criteriafield.CustomizingthePBIand
Bug work item types is another possibility.

FIGURE 7-3 Recording a PBI’s features and scenarios using the Descriptionfield.

Note Fellow Professional Scrum Developer Jose Luis Soria Teruel likes using the Acceptance
Criteriafieldtotrackfeaturesandscenarios.Heconsidersthemtobeinseparablefromthe
acceptancecriteriaandthereforeshouldbelocatedinthesamefield.

Executable specifications
When the Development Team begins developing a PBI, they should have an idea of the required
 features and the essential scenarios. These scenarios can begin as simple statements, as shown in
Figure 7-3. This syntax is adequate for the Development Team to collaborate with the Product Owner,
 domain experts, and other stakeholders in order to estimate the level of effort and even forecast the PBI
for development. Once development is underway, however, these scenarios should be refactored into a
more testable format. This will make it easier to create acceptance tests, especially automated ones.

Note Acceptance tests verify that a PBI meets the expectations set forth by the Product
Owner. This occurs by comparing the observed behavior against the expected results. This
behavior can be as large as a test that exercises the entire PBI, or just a feature, or just a
specificscenariowithinafeature.

202 PART II Using Scrum

Scenarios, and their associated acceptance tests, are typically expressed in a natural language that
enables the developer, Product Owner, and stakeholders to have a shared understanding of what
the expected behavior should be and how to verify it. Having a readable set of tests that can be
 understood by a variety of people is a recipe for success and transparency. A popular format is the
Given-When-Then(GWT)format:

Given [context], When [event occurs], Then [expected result]

The Given part of the scenario is used to put the context of the scenario into a known state before
actions are taken. The Whenpartdescribestheaction(s)takenbytheuser.TheThen part describes
the behavior that is expected. Each of these parts should be written in non-technical terms, using the
language,benefits,andvaluesunderstoodbytheProductOwnerandstakeholders.

Here are some examples:

 ■ Given the existence of millions of new tweets every minute, when a visitor browses to the
 Tailspin Toys home page, then only @TailspinToys or #TailspinToys tweets are displayed.

 ■ Given the existence of more than 10 @TailspinToys and #TailspinToys tweets, when a visitor
browses to the Tailspin Toys home page, then only the last ten tweets are displayed.

 ■ Given a new @TailspinToys or #TailspinToys tweet is sent, when a visitor browses to the Tailspin
Toys home page, then the tweet displays in 15 minutes or less.

Tip If you have several givens, whens, or thens, you can include and or but to the steps to
makethemmorereadable(fluent).Forexample,ratherthansaying,“Given10tweetsare
listed, Given all tweets mention Tailspin Toys …” you can use and to make it more readable:
“Given 10 tweets are listed and all tweets mention Tailspin Toys ….”

Acceptance test-driven development

During the Sprint, the Development Team, the Product Owner, and any stakeholders required should
identify all scenarios, including happy and sad paths. These should be recorded or reworded in a
natural language format like GWT. This can be captured in the PBI work item, as shown in Figure 7-4.
From that, one or more failing acceptance tests should be created. All of this should be done prior
to any coding of the PBI. As coding progresses and the Increment emerges, more and more of these
failingtestswillpassuntilfinallytheDevelopmentTeamisdonewiththatPBI.Keepinmindthat
acceptancecriteriaandrelatedtestswillbeadjustedandfine-tunedasthecodingprogressesandthe
feature emerges.

 CHAPTER 7 Acceptance test-driven development 203

FIGURE 7-4 Rewording scenarios using the GWT format.

During the Sprint, the Development Team iterates through each feature, developing each scenario.
Depending on the complexity of the scenario, the Development Team might need to create multiple
acceptance tests. A good practice is to have at least one happy path and one sad path test per
 scenario. This means that with a moderately complex PBI, there could be a dozen acceptance tests,
and with a very complex PBI, there could be dozens.

Smell It’s a smell if a Development Team does not have any sad path acceptance tests
or if all of their tests are manual. I would suggest they consider this at their next Sprint
Retrospective meeting and ratchet up their acceptance-testing practices in the next Sprint.

These acceptance tests should be created before any coding begins and they should be automated
tests. This can be achieved by pairing a team member who has strong coding skills with another team
member with a background in testing. In my experience, this kind of duet can produce automated
 acceptance tests of high value. Remember, all of these will be failing tests until the scenario is
 properly coded. For example, if a PBI in the Sprint Backlog has 3 features, each containing 4 scenarios,
with 1 happy path and 1 sad path acceptance test, then there should exist 24 failing, automated
 acceptance tests before any coding on the PBI commences.

As development progresses, more and more acceptance tests will start passing. When the last test
passes,theDevelopmentTeamiseffectivelyfinishedwiththePBI.AssumingthattheDevelopment
TeamkepttotheirDefinitionof“Done,”andnoadditionalworkisrequired,thePBIshouldbe
 accepted by the Product Owner and demonstrated at the Sprint Review meeting. The Product
OwnercanthendecidetoreleasethePBItoproduction.ThissimplifiedATDDworkflowcanbeseen
in Figure 7-5.

204 PART II Using Scrum

Create a PBI

Identify acceptance criteria,
features, and scenarios

For each
scenario

TDD

The Sprint

PBI is done/accepted

PBI is demonstrated

PBI is released (potentially)

Create a failing acceptance test

Make the acceptance test pass

FIGURE 7-5 Acceptancetest-drivendevelopmentworkflow.

I’msometimesaskedhowATDDisdifferentfrombehavior-drivendevelopment(BDD),test-driven
requirements(TDRs),functionaltest-drivendevelopment(FTDD),orstorytest-drivendevelopment
(STDD).Itellpeoplethateachofthesepracticeshavethesamegoal:toexpressanabstractbusiness
requirement in a more understandable and testable format.

ATDD can provide added value for distributed teams. Team members collocated with the
 Product Owner can identify the acceptance criteria, features, and scenarios. They can also create the
 failing acceptance tests. These tests, written in a natural language, help the distributed team avoid
 misunderstanding. They provide the requirements and a level of documentation required by the
distributedteam.Comparedtotraditionalrequirements,theseexecutablespecificationsprovidean
order of magnitude with more value and reduced waste. Furthermore, having a simple yet concrete
goal of “make these tests pass” helps teams who struggle to self-organize.

Tailspin Toys case study The Development Team has started practicing ATDD only
recently.RelocatingthetestingactivitiesearlierintheSprintwasdifficultatfirst,butthe
developersquicklyrealizedthebenefitofnothavingtodelaytestingorrefactoringtheir
tests. As for breaking down a PBI into features, scenarios, and acceptance tests—they were
already doing that, but just didn’t use those terms or know that it was ATDD.

 CHAPTER 7 Acceptance test-driven development 205

Test-driven development
Within the “outer loop” of acceptance test-driven development, the Development Team can employ
any development practices that they choose to. Any practice should strive to minimize waste while
allowingthedeveloperstodevelopsomethingfitforthedesiredpurpose.Beyondthosebasicrules,
the Development Team is encouraged to try new approaches to designing, coding, and testing.
The usefulness of these experiments can be discussed at the Sprint Retrospective meeting and
 abandoned, embraced, or enhanced in the next Sprint.

ThemostpopularATDD“innerloop”practiceistest-drivendevelopment(TDD).TDDsuggests
codinginshort,repeatablecycleswherethedeveloper(orpairofdevelopers)firstwritesafailingunit
test.ThefailingtestspecifiesapieceofdesiredfunctionalityinthePBI.Next,thetestismadetopass
by adding the minimum amount of code required. Finally, the code is refactored to be effective and
tomeetanystandards,suchastheDevelopmentTeam’sDefinitionof“Done.”Afterward,thecycle
repeats for the next unit of functionality.

Tip ATDD can sometimes be confused with TDD, and I’m not talking about the letters in
theacronym.Onewaytokeepthemsortedinyourmindisthatunittests(TDD)ensure
thattheteambuildsthefeatureright,whileacceptancetests(ATDD)ensurethattheteam
builds the right feature.

One of the tenets of TDD is that you do not write a single line of application code until you have
written a test that fails in the absence of that code. Advocates of TDD explain that the practice will
force requirements to become clearer and mistakes to be caught by developers. Developers will also
gravitate towards architectures and design patterns that are more testable and easier to refactor.
 Another nice side effect of adopting TDD is that the Development Team will end up with unit tests
(andacceptancetests),wheretheymaynothavehadanybefore.

The strongest argument in favor of TDD is that it uses tests as technical product requirements.
Because the developer must write a test before writing the code under the test, he or she is forced to
understandtherequirementsandfilteroutanyambiguityinordertodefinethetest.Thisprocess,in
turn, directs developers to think in small increments and in terms of reuse. As a result, unnecessary
codeisidentifiedandremovedasaclearandatomicdesignemerges.Thisbecomeseasiertogrow
and maintain.

TDD enables continual refactoring in order to keep the code lean. For example, assume a
 Development Team has high-quality unit tests that cover a high percentage of its code. When
 refactoring or experimenting, the developer can immediately see failing test results caused by any
sideeffects.Anicesafetynetlikethisprovidesconfidence,aswellastheabilitytocodefaster,by
reducing the number of bugs and side effects that can be introduced accidentally.

Note Having a project with many high-quality unit tests is like having a car with big,
 high-performance brakes. Both allow their users to operate safely at a high velocity.

206 PART II Using Scrum

Tailspin Toys case study The Development Team members know TDD, understand its
value, and are comfortable practicing it. However, they decided as a team during a prior
SprintRetrospectivethattheydon’tseevalueinusingiteveryday.However,ifaspecific
scenario involves a lot of design work or involves working on a highly complex area of the
application, the developers will pair up and use TDD to design their way through it.

Automated acceptance testing

All professional Scrum developers agree that automated testing is awesome and is a must-have for
software development. The same can be said for automated acceptance testing. In fact, a growing
number of professional Scrum developers believe that all acceptance tests can be automated.
ShortoftheProductOwnerverbally(manually)acceptingthework,anyscenariothatrequires
humanverificationcanbecoveredthroughanautomatedtest.Itmaynotbeeasy,butbyadopting
an automated acceptance-testing practice, the Development Team will be able to use these tests
throughout the Sprint for ATDD, as well as later, for regression testing.

Note Some professional Scrum developers feel that, while possible, there would be a
 diminishing return on investment for automating all acceptance tests. An example would
be the situation where the Development Team wants to automate the acceptance of
userinterface(UI)controlsbeinglinedup,fonttypesandsizesbeingconsistent,andso
on.Manualacceptanceuserinterface(UI)testswouldprobablymakemoresensehere.My
 guidance is that if you don’t have an automated test and have opted for a manual acceptance
test it had better be for a very good reason. It is also something to consider improving in a
 future Sprint.

Visual Studio 2012 does not include an end-to-end ATDD solution, or any structured
 acceptance-testing framework for that matter. It does, however, have all the features necessary
towireonetogether.ByusingTestCaseworkitems,MicrosoftTestManager(MTM),andvarious
 automated tests, such as unit tests, Visual Studio developers can practice ATDD. This section will show
you how that is done, by taking the following approach:

1. Create one or more Test Case work items and associate them with the PBI work item.

2. Associate the Test Case work item with an automated test.

3. Makeeachtestpassbycodingitsfeatureorscenarioaccordingtothespecification.

Creating a test case
One way to associate acceptance tests with a PBI is by using one or more Test Case work items. A test
case is just another work item type in the Visual Studio Scrum process template. Test cases can be
very lightweight, such as only having a title and a description. These work items would merely serve

 CHAPTER 7 Acceptance test-driven development 207

as extra points of documentation. Some Test Case work items might morph to become manual tests,
including the actual test steps and expectations. Other Test Case work items can get associated with
an automated test, such as a unit test or coded UI test. These are the ones that ATDD practitioners
should be using.

Eventhoughtheacceptancetests(TestCaseworkitems)arephysicallylinkedtothePBIasawhole,
you should logically link them to a single acceptance criterion, feature, or scenario. As previously
mentioned, the scenarios are the tests, so linking them logically to the Test Case work items is
 preferred. This can be done through naming conventions or comments on the work item link. You can
seeadiagramofaPBIwithfeaturesandscenariosdefinedbeinglinkedtomultipletestcaseswhich,
in turn, are linked to automated tests in Figure 7-6.

PBI

Feature

As a ..., I want ..., so that ...

Feature

Feature
Scenario (GWT) Test Case

Scenario (GWT) Test Case

Scenario (GWT) Test Case

Scenario (GWT) Test Case

Scenario (GWT) Test Case

Scenario (GWT) Test Case

Coded UI Test

Unit Test

Unit Test

Unit Test

Ordered Test

It must ...
It should ...
It should ...
It should always ...
It should never ...

Description

Acceptance Criteria

Manual Test

FIGURE 7-6 Linking scenarios to acceptance tests in Team Foundation Server.

Test Case work items can be created separately, and then linked to the PBI in two distinct steps.
However, I prefer to create and link at the same time. When brainstorming a PBI’s features, scenarios,
andspecifications,theDevelopmentTeamwillwanttocapturethisinformationquickly.Atfirst,this
can be recorded on the PBI work item. A developer can then click the New linked work item icon
on the test cases tab when editing a PBI work item. This allows a Test Case work item to be created,
specifying a title and comment, and linking it to the PBI all in one step, as shown in Figure 7-7. Notice
that my comment provides a logical link to the scenario within the PBI. For those looking at this who
are not used to the GWT format, it is readable by humans.

Smell It’s a smell when I see only one Test Case work item per PBI. It’s a stench when I
don’t see any. It could be that the Development Team has self-organized around another
methodtotesttheacceptabilityoftheitemsintheSprintBacklog;ifso,that’sfine.
Professional Scrum Development Teams can use whatever tools and practices that they
 determine brings them value and reduces waste.

208 PART II Using Scrum

FIGURE 7-7 Using the Tested By link type when adding a test case to a PBI.

When linking a PBI to a test case, you should use the Tested By link type. If you were ever linking
in the other direction, from a test case to a PBI, you would use the Tests link type. This link type
 relationship is more self-explanatory than the standard parent/child link type. After clicking OK, the
Test Case work item opens, allowing information to be tweaked, like the owner or description. The
test case picks up the Assigned To user, as well as the Area and Iteration paths from the parent PBI.

Smell It’s a smell when I see Task or Test Case work items assigned to the Product Owner.
These types of work items exist in the Sprint Backlog and, as such, are owned by the
Development Team. If the Product Owner wants to change acceptance criteria or suggest
new features, he or she would need to discuss this with the Development Team and, after
collaborating on the impact and tradeoffs, the Development Team would change the
respective work items. If the Product Owner is also on the Development Team, then this
smell goes away, but another one shows up that I’ve mentioned earlier. Having a Product
Owner also be a developer can be problematic in its own right, although it would explain
why he or she owns these work items.

When associating a Test Case work item, you should reference the scenario or feature that you
are testing. You can either use a naming convention when specifying the test case’s title, or the
link’s Comment fieldtodothis,asshowninFigure7-7.Youcandescribethescenariofurtherin
the description of the test case, as shown in Figure 7-8. Logically linking a Test Case work item to
a scenario or feature this way is not ideal, but it’s the closest integration you can achieve with the
 current set of tools. Hopefully, in the future Microsoft will add some better support for mapping an
 acceptance test directly to a feature or scenario within a PBI.

 CHAPTER 7 Acceptance test-driven development 209

FIGURE 7-8 Using the test case’s Description fieldtotrackthescenario.

Tip There is no “quick add” or other shortcut for adding a Test Case work item to a PBI
fromthe(Sprint)backlogpageorthetaskboard.OpeningthePBIandaddingalinktoa
new or existing test case is a quick alternative. Fellow Professional Scrum Developer Ryan
Cromwell still appreciates the fast, bulk editing approach of Microsoft Excel to creating and
 linking work items.

IftheDevelopmentTeamisfollowingATDDclosely,thenallacceptancetests(TestCasework
items) should be created before any development begins. The associated automated or manual tests
should be completed as much as possible. The goal is to have failing acceptance tests rather than
(unit)teststhatfailtobuild.Figure7-9showsaPBIwithitslinkedacceptancetests,intheformofTest
Case work items. These will be used to verify the behavior of each scenario and feature.

FIGURE 7-9 APBIanditsacceptancetests(intheformoflinkedtestcases).

210 PART II Using Scrum

Once the Test Case work item is created, you can associate an automated test to it or turn it into a
manual test. Later, when the test case is run, the associated test will be executed in turn.

Note Manual tests, including how to create and run them, are not covered in this chapter.
Until that time when the Development Team is able to have 10 percent of their acceptance
tests automated, manual tests still will be required. Visit http://msdn.microsoft.com/en-us/
library/dd286715(v=vs.110) for more information on creating a manual test case.

Associating an automated test
You associate an automated test with a Test Case work item using Visual Studio. You cannot use MTM
to do this, as it only offers read-only support. Before associating, there are several prerequisites to
satisfy. Visual Studio must have the applicable test project open, and it must build successfully. After
creating the automated test, the test project must be checked in to Team Foundation Server. This test
project must also be part of an automated build using Team Foundation Build. Later, in MTM, this
build will be associated with the test run.

I’ll begin with the assumption that the Development Team already has a test project or the
 knowledge of how to create one. That project should contain an automated test that executes a
scenariospecificationandverifiestheresultingbehavior.ThiscanbeaVisualStudiounittest,an
ordered list of units, a coded UI test, or another Visual Studio test type. As code is completed, the test
should compile and execute without error, but it should also fail because the application code has not
been implemented yet.

Tip When practicing ATDD, use the same discipline as when practicing TDD. Never
stub out your tests. Spend the time to create each test as completely and thoroughly as
 possible. It won’t be easy. Much of the target code may not exist yet and you may have
to use some form of double, such as a mocking framework. The Microsoft Fakes isolation
framework helps developers create, maintain, and inject dummy implementations in to
their unit tests in order to make testing more robust and scalable. Learn more about the
Fakes framework that is built into Visual Studio 2012 here: http://msdn.microsoft.com/
en-us/ library/hh549175(v=vs.110).aspx.

Note When talking to people about unit tests, I have to be mindful of the context. There’s the
theoretical unit test which is a fast, in-memory, consistent, automated, and repeatable test of a
functional unit of work in the software. There’s also the Visual Studio unit test, which is used to
implement a test of a functional unit of work; but it can also be used to implement tests larger
in scope than a unit test, such as an integration test. For example, when I say the Development
Team can use a unit test as the automation behind an acceptance test, I’m talking about the
Visual Studio test type that will call into many functional units to test the entire scenario.

http://msdn.microsoft.com/en-us/library/dd286715(v=vs.110)
http://msdn.microsoft.com/en-us/library/hh549175(v=vs.110).aspx

 CHAPTER 7 Acceptance test-driven development 211

To associate the automated test with the test case, you will have to be connected to the Team
Foundation Server and team project. Open up the corresponding Test Case work item and, on the
Associated Automation tab, click the ellipsis button next to the Automated test namefield,asshown
in Figure 7-10.

FIGURE 7-10 Associating an automated test with a test case.

You will be presented with a list of automated tests. This dialog box only shows the list of tests that
are part of the currently loaded test project or solution. Select the corresponding acceptance test
method, as shown in Figure 7-11, and click OK.

FIGURE 7-11 Selecting the corresponding automated test.

Tip When it comes to a naming convention for your automated tests, such as unit tests,
my recommendation is to have one! There are a number of ways to name your test
 projects, assemblies, namespaces, test classes, and test methods. Some follow a strict BDD
format,whileothersarefinejustusingclearnamesthatdescribethecontextandexpected
behaviors. For help getting started, consider visiting www.stackoverflow.com to view the
latest conversations on the subject.

212 PART II Using Scrum

Only one automated test may be associated with each test case. Once a test has been selected,
the Test Case work item’s Automation status is changed to Automated. The associated automated
testname,storage(assemblyfilename),andtypearedisplayedontheAssociatedAutomationtab
seen in Figure 7-12. If you want to change the associated automated test, you’ll need to click Remove
 Association and start over, selecting a different automated test.

FIGURE 7-12 Viewing the associated test name, storage, and type.

Tip It can be tedious to associate automated tests in this way. If you have several tests,
you may want to consider using the Tcm.exe command-line utility to create the test cases
and/or associate the automation for you. Each automated test that you select, based on
the parameters provided, will have a test case created for it, and the automated test will
alsogetassociated.It’snotquitethesameflowwe’vebeendiscussinginthischapter,butit
can save a lot of time when you need to create many such automated acceptance tests. By
using the /syncsuite switch the utility will update existing test cases with automation. See
http://msdn.microsoft.com/en-us/library/ff942471.aspx for more information.

CodedUI CodeFirst
Code First API Library, Scaffolding & Guidance for Coded UI Tests, or just CodedUI CodeFirst for
short, is a set of features designed to help you write more maintainable coded UI tests for web
applications.ItisdevelopedandmaintainedonCodePlexandinstallablefromtheofficialNuGetfeed.
You can think of CodedUI CodeFirst as a way to do test-driven webpage development by writing Page
Objects that interact with the elements on the page—even before they exist.

CodedUICodeFirstcontainsextensionmethodsforUITestControl(tosimplifythefindingofand
interacting with HtmlControls) and Page Object pattern guidance and bases classes. This is helpful
for coding, but what’s really nice is the support for Test Case work item scaffolding. This enables the
Development Team to write acceptance tests for web applications using coded UI tests while making
them less fragile.

 CHAPTER 7 Acceptance test-driven development 213

Test case scaffolding reads the steps and parameters from a Test Case work item and creates a test
class based on that. By typing in Scaffold TestCase {test-case-id} in the Package Manager Console,
the scaffolder will create a test class with method names based on the test case. The test method will
contain the test steps as comments so that the developer will just have to implement Page Objects
and make assertions according to the steps.

There are two types of templates: one for plain test cases and one for test cases with parameters.
The class is named the same as the title of the test case followed by its ID. The test method is
 attributed with metadata such as work item ID and description. The body of the test method contains
all the steps from the test case as comments. A parameterized test case will get one test method for
each iteration scaffolded. The parameters and their associated values are accessible at run time.

Note The test case scaffolding is implemented as a T4Scaffolding custom scaffolder. A
T4Scaffolding provides a fast and customizable way to generate code and build parts of a
.NET application via templates. T4Scaffolding is available separately in the NuGet Gallery.

Hereisthehigh-levelworkflowtopracticeATDDusingCodedUICodeFirst:

1. Acceptancetestcase(s)arecreatedandassociatedwiththePBI.

2. The test case is scaffolded.

3. Thepagesthatareneededtorunthetestcaseareidentified.

4. A Page object is created for each page in the test case.

5. The scaffolded test class is updated to derive from PageTest.

6. Developers will implement just enough of the Page object and webpage to drive the test case
scenario, naming the respective methods according to the actions in the test case.

7. The acceptance tests are executed and they should fail.

8. Using TDD, implement the underlying features in the web application.

9. The acceptance tests are executed and they should pass.

10. An automated build, deploy, and test environment is established to automate the execution of
the acceptance tests.

11. Seek feedback and acceptance by the Product Owner.

For more information on CodedUI CodeFirst, visit http://codeduicodefirst.codeplex.com. Be sure to
check the Wiki for the latest guidance documentation. To download the NuGet package, visit
http://nuget.org/packages/CodedUI.CodeFirst or execute Install-Package CodedUI.CodeFirst from
within the Package Manager Console in Visual Studio to install it.

214 PART II Using Scrum

Executing automated acceptance tests
When implementing automated acceptance tests using Test Case work items, you will use MTM to run
them. In order to be able to run these tests and, in turn, execute the associated automated test, you
will need to meet some prerequisites.

First, you must have a test controller, connected to a team project collection, and one or more test
agents installed. The test controller runs as a service and manages tests on one or more machines
by communicating with test agents that are installed on each machine. Each agent can perform
tasks such as installing software, running tests, and collecting test data. By using a test controller, a
 developer can run tests on any machine that has a test agent installed on it.

Depending on the complexity of the software application, you may have to install additional
agentsanddefineadditionalroles.Arolerepresentsanindividualcomputerinvolvedintheexecution
of the software application. You can also think of a role as a location to run tests or collect data. For
example, if you have an application that consists of a web server, a database server, and a desktop
client,youwoulddefinethreeroles.Thedesktopclientwouldrunthetestsandcollectdatalocally,
and the other roles would collect any data required on the machine assigned to that role. Multiple
machines can be assigned to the same role. Environments and roles are managed using MTM.

Next, you will want to create a test plan and test suite in MTM. Here are the high-level steps for
such a setup:

1. Start MTM.

2. Connect to your Team Foundation Server and team project.

3. Select or add a test plan like the one in Figure 7-13.

FIGURE 7-13 Keeping it simple by naming the plan the same as the Sprint.

4. Make sure that the PBIs are added to the test plan as requirement test suites like in Figure 7-14.

FIGURE 7-14 Adding the PBIs to the Sprint 2 test plan as requirement test suites.

 CHAPTER 7 Acceptance test-driven development 215

To be thorough, you should also set a few properties on your test plan. You can set these properties by
clicking on the Properties link on the Testing Center’s Plan menu. The important properties to set are:

 ■ Name The name should refer to the current Sprint.

 ■ Iteration The iteration should be set to the current Sprint.

 ■ State The state should be Active.

 ■ Start Date/End Date These dates should match the Sprint’s start and end dates.

 ■ Test Settings If you want the ability to collect additional data, such as IntelliTrace, Test Impact, or
desktop video, then create custom test settings for manual and/or automated test runs.

 ■ Test Environment Select the standard or virtual test environment that you have set up for
testing. This is a requirement to run automated acceptance tests using test cases.

 ■ Builds Selectthebuilddefinitionand/orqualitytouseasafilter.Bydefault,whenanewtest
caseisrun,itwillselectthelatestbuildthatmeetsthefiltercriteria.

 ■ Configurations Selectthedefaulttestconfigurations(operatingsystemtype,browsertype,
and so on) to be used when test cases are run in this test plan.

As previously mentioned, you must be using automated builds in order to run a test case with
associated automation. This is a good practice anyway, but in this context, it becomes a requirement
because MTM needs to access the relevant test binaries. Also, before you can run a test case, you
must associate it with a build number. This can be done just-in-time, as you run the test—which is
helpfulifyouarerunningacceptancetestsoncontinuousintegration(CI)builds.If,however,youare
running acceptance tests on a nightly build, you can specify the build number at the test plan level, as
shown in Figure 7-15, and it will become the default when running tests.

FIGURE 7-15 Associating a build with the test plan on the test plan’s Properties page.

216 PART II Using Scrum

Tip Another reason to specify a build when running tests is so that the test results are
published and correlated in the data warehouse. The Scrum Team and other stakeholders
can view various reports and see how quality is trending higher and higher throughout the
Sprint and release.

To run the automated tests, you must be in the Testing Center. You must also make sure that the
latestcode(forboththePBIandthetests)ischeckedinandbuiltsuccessfullyusingTeamFoundation
Build.Theautomatedbuildcanbetriggeredtorunafteracheckinofcodeorataspecifictime
 during the night. When and how often the build runs is a product of how many acceptance tests are
to be run, how long it takes to run them, and if there is any value in running them often.

Youcaneasilyselectandrunasingletestcase,multipletestcases,oralltestcasesforaspecific
PBI. It just depends on how many tests you select in the user interface. Figure 7-16 shows the test run
results of running all the test cases for a single PBI. As you can see, the Development Team has made
half the acceptance tests pass. Because they are practicing ATDD, they can use this as the type of
milepost on the road to done.

FIGURE 7-16 Viewing the results of an automated test run.

 CHAPTER 7 Acceptance test-driven development 217

Tip You can also view the progress of your automated acceptance tests from within
Visual Studio. Using the Test Explorer, you can view the results of an automated test run.
Depending on your naming convention, you can also use the search box in Test Explorer to
findandrunonlythoseteststhatcontainthespecifiedstring.

Once an acceptance test is run, its results are associated with the Test Case work item. This allows
other developers on the team to see the results. Unfortunately, these results cannot be seen when
viewing the test case or its PBI work item from inside Visual Studio or Team Web Access. A developer
would need to either return to MTM or run one of the reports, such as the Backlog Overview report
to see the test-driven progress of PBI development. You can see an example of the Backlog Overview
report in Figure 7-17.

FIGURE 7-17 Use the Backlog Overview report to track ATDD progress by PBI.

WhenthePBIhasbeendeveloped,itsbehaviorshouldbeverifiablebyoneormorepassing
acceptancetests.Whenalltestcasespass,thePBIshouldbecompleteaccordingtothespecification.
If it’s not, then the Development Team probably didn’t identify all scenarios or acceptance tests up
front. This will improve after practicing ATDD for a while. If, however, all work was done according to
theDefinitionof“Done,”thenallthat’sleftisfortheProductOwnertoacceptthework.

Reusing test cases
As we’ve already discussed, when the Development Team sets up their testing for a Sprint, they need
to create a test plan and then add the appropriate test suites and test cases. Each PBI forecast for that
Sprint should have at least one to two test cases. In addition, test cases from previous Sprints may
need to be added to support regression testing. To accomplish this, I recommend creating a standard
testsuite(whichisessentiallyjustasimplefolder)inthetestplantoholdanyregressiontestsfrom
prior Sprints. You can see an example of this in Figure 7-18.

218 PART II Using Scrum

FIGURE 7-18 Creating a Regression Tests test suite.

Tip Check out the Test Release Management guidance by the ALM Rangers. It covers
test release management, which includes preferred test case management practices for
Agile software development teams. Visit http://vsartestreleaseguide.codeplex.com for more
 information.

By design, a single Test Case work item can be associated with multiple PBIs. For example, you
mightcreateagenerictestcasethatverifiesthatapagerequestreturnsaresponsein5secondsor
less. Since that is such a common request, you would probably want to reuse this test case for other
PBIs in later Sprints. Microsoft recognized this need and, from the very beginning, has included the
ability to copy a test suite in order to bring forward references to older test cases into newer test
plans.

There is a problem with this approach. If you tweak the test case to better support the current
Sprint’s PBI, such as make it 10 seconds instead of 5, those changes will affect other Sprints’ test cases
used to verify other PBIs. This could be bad for various regression and regulatory reasons. There is a
better way, and we will get to that shortly.

If you right-click the new Regression Tests folder, you can choose the Copy suite from another test
plan option. This will let you select a test suite to copy to the current test plan, as shown in
Figure7-19.Youcancopyaspecifictestsuite,suchasaPBI,orallthesuitesinthesourcetestplan.

Unfortunately, copying test suites like this produces a shallow copy. This is to say that the original
(Sprint1)testcasesarenotcopied,butonlyreferencedfromtheSprint2testplan.Youcanverify
this by looking at the work item numbers of the test cases and seeing that they are the same in both
plans. As previously mentioned, any tweaks made to test cases in Sprint 2, for whatever reason, will
retroactivelyaffecttheSprint1testcasesaswell.Thismaybefineforsometeamswhoconsiderold
test cases to be history, like those who release to production every Sprint. But for teams that want to
protect their test cases from prior Sprints, like those who don’t release for several Sprints, they should
make a deep copy of the Test Case work items.

 CHAPTER 7 Acceptance test-driven development 219

FIGURE 7-19 Copying a test suite from another test plan.

Tip Youcanworkaroundthislimitationbyfirstcreatingacopyofeachtestcaseyouwant
in the new plan. This can be done by right-clicking each work item in a query result win-
dow and selecting Create Copy. This generates a copy of the selected test cases with new
work item IDs. You can then add these work items to the new test plan. The TFS Tester
Power Tool, available in the Visual Studio Gallery at http://visualstudiogallery.msdn
. microsoft.com/72576517-821b-46c2-aa1a-fab940752292 helps automate these steps.

Microsoft Test Manager 2012 includes the ability to clone a test suite properly by performing a
deep copy. Cloning creates new test cases in the destination test plan that are true copies of the test
cases in the source test plan. You can change, add, or remove test cases from either the source test
suite or the destination test plan as needed, without affecting other test plans. The newly copied
test cases won’t have any of the historical data like test runs, results, associated bugs, and so on. This
feature is available only through the command-line utility Tcm.exe.

Duringthecloneoperation,eachtestcaseiscopied(byvalue)fromthesourcetestplantothe
destination plan. They appear as new test cases in the destination test plan. As part of the clone
 operation, the new test cases can be assigned to a new iteration path.

Here’s a list of the objects that are copied during the clone operation:

 ■ Test case Each work item gets a new ID and retains its shared steps and test suite association.

 ■ Shared steps When the test case includes shared steps, that work item is deep copied as well.

 ■ Test suite Names and hierarchical structure are copied and preserved, including the order of
thetestcases,assigneddevelopers,andtestconfigurations.

http://visualstudiogallery.msdn.microsoft.com/72576517-821b-46c2-aa1a-fab940752292

220 PART II Using Scrum

 ■ Action recording When the test case includes an action recording, it is copied as well.

 ■ Attachments Any work item attachments are copied.

 ■ Test configuration Thetestconfigurationisreappliedinthedestinationtestplan.

Here’s a list of the objects that are not copied during the clone operation:

 ■ Test settings The test setting for the destination test plan is used instead.

 ■ Test results Any previous test results are not copied.

 ■ Test runs Because links to test runs are applicable only to the source test plan, they are not
retained. This also applies to links to exploratory test sessions.

 ■ Requirements BecauserequirementsarespecifictoaSprint,whentherequirementsare
cloned, they are created as static test suites in the destination test plan. Cloned test cases will
be added as tests under this static test suite. Additionally, cloned test cases will not include
links to their original requirements.

 ■ Bugs Any previously linked Bug work items are not copied.

Tip To avoid duplicate clone operations, check the Links tab and see if any links have a
comment mentioning TF237027, as shown in Figure 7-20. This is the Team Foundation
Server message that indicates that a clone operation has been executed previously.

FIGURE 7-20 The link comment indicates that this test case was cloned from another.

You perform the clone operation from the Visual Studio command prompt using Tcm.exe. You
must specify the collection, the source and destination suites, and a value for the new destination test
plan. You can use the overridefieldname and overridefieldvalue parameters to specify a new area path,
iterationpath,orothertestcasefields.Forexample,here’sthecommandlinetocloneatestsuite
fromSprint1(suiteID#6)toanewsuiteinSprint2(underneathsuiteID#26).Youcanseetheresults
of the cloning operation in Figure 7-21.

C:\Projects>tcm.exe suites /clone /collection:http://vsalm:8080/tfs/Scrum
/teamproject:tailspin /suiteid:6 /destinationsuiteid:26
/overridefieldname:"Iteration Path" /overridefieldvalue:"Tailspin\Release 1\Sprint 2"

 CHAPTER 7 Acceptance test-driven development 221

FIGURE 7-21 All acceptance tests from Sprint 1, cloned into Sprint 2’s test plan.

Note If you clone a test case with an associated automated test, you must specify
a build in the destination test plan. Visit http://msdn.microsoft.com/en-us/library/
hh543843(v=vs.110).aspx for more information about cloning test cases.

Tailspin Toys case study Paula(theProductOwner)wantstomovetoacontinuous
delivery(CD)modelinthenearfuture.ShewantseachPBItobereleasedtotheproduction
servers as she accepts the work. Once CD is implemented, saving and protecting prior
Sprint test cases won’t be so important. If and when a production bug comes up, the
Development Team will execute a deep copy using the command line of any relevant test
casesfromtheoriginalPBItobetweakedandusedtoverifyandfixthebug.UntilCDisin
place,however,severalSprints,worthoffinishedworkcangetstackeduppriortorelease.
It’s important for the Development Team to ensure that they don’t break this backlog of
done work. Reference copies of test cases, using the copy feature inside MTM, will work
finefortheirneeds.

Other acceptance-testing frameworks
Bynow,youshouldunderstandwhyhavingexecutablespecificationsisimportant.Having
specificationsthataremerelytestablebymanualacceptancetestsisastart,butexecutable
specificationsroboticallyverifiedbyautomatedtestsareideal.Theyshouldbethegoalforall
 professional Scrum Development Teams.

http://msdn.microsoft.com/en-us/library/hh543843(v=vs.110).aspx

222 PART II Using Scrum

The approach I have outlined so far in this chapter is really just a partial ATDD implementation.
If the Development Team wants a trueexecutablespecification,whichisonewheretheframework
actuallypassesthespecificationdatatothetestrunnertoexecute,theywillneedtoimplement
anopen-source.NETacceptance-testingframework.Withtheseframeworks,ifthespecificationis
changed, then it will automatically affect the test. In the approach using Test Case work items, the link
is only a logicalone.Ifthespecificationischangedthetestwillnotbechangedautomatically.

Even with the latest Visual Studio 2012 tools, a professional Scrum Development Team that wants a
full-fidelity,automatedacceptance-testingprocessneedstouseoneoftheopen-sourceframeworks.
Visual Studio can integrate with any of these frameworks. By using Visual Studio Generic test, an
external test runner can be invoked and the test results imported into Team Foundation Server for
 reporting. I have listed the most popular frameworks for .NET developers in Table 7-1. There are
 others available, and new ones seem to appear each day. This is good news because it shows that
there is excitement in the developer community.

When evaluating these frameworks, keep in mind that some are behavior frameworks, while others
are spec frameworks. Some frameworks, such as RSpec, support both. Here is the distinction:

 ■ Behavior frameworks Use a shared language and structure to focus more on the PBI
and acceptance criteria at the application level. These criteria can then be wired up to code,
 providing an automated way to run the acceptance tests.

 ■ Spec frameworks Focus at the unit level, using unit tests rather than acceptance tests. These
frameworks allow the developer to replace or augment the existing unit test syntax with one
that’s focused more on behavior.

TABLE 7-1 .NET acceptance-testing frameworks.

Framework Type Description

Framework for Integrated Test
(Fit)

N/A Anopen-sourcetoolfirstreleasedin2002.Fitcreatesafeedback
loopbetweentheuserandthedevelopersbyusingMicrosoftOffice
to enter examples that are displayed in HTML and connected to the
softwareusingtestfixtures.FitoriginallyonlysupportedJava,buthas
since been ported to C#. You can learn more about Fit here:
http://fit.c2.com.

FitNesse N/A FitNesseisanintegrateddevelopmentenvironment(IDE)forFit
that uses a wiki as its client. FitNesse enables the creating, running,
 organizing, annotating, and sharing of Fit tests throughout the team.
You can learn more about FitNesse here: http://fitnesse.org.

StoryQ XSpec StoryQisaportable(singleDLL),embeddedBDDframeworkfor
Microsoft .NET Framework 3.5. It runs within your existing test
runnerandhelpsproducehuman-friendlytestoutput(HTMLor
text).StoryQ’sfluentinterfaceaddsstrongtyping,IntelliSense,and
 documentation to your BDD grammar. You can learn more about
StoryQ here: http://storyq.codeplex.com.

NBehave XBehave NBehaveenablesdefiningandexecutingapplicationrequirement
goals. You can learn more about NBehave here:
http://nbehave.codeplex.com.

http://fit.c2.com
http://fitnesse.org
http://storyq.codeplex.com
http://nbehave.codeplex.com

 CHAPTER 7 Acceptance test-driven development 223

Framework Type Description

MSpec XSpec Machine.Specifications(MSpecforshort)isanXSpecframework
geared toward removing language noise and simplifying tests.
MSpec uses named delegates and anonymous functions to increase
 readability. You can learn more about MSpec here:
https://github.com/machine/machine.specifications.

NSpec XSpec NSpec drives development by specifying behavior within a declared
context. It is heavily inspired by RSpec and builds upon the NUnit
 assertion library. You can learn more about NSpec here:
http://nspec.org.

SpecFlow XBehave SpecFlow is a very popular framework for facilitating acceptance tests
as acceptance criteria. It is quite similar to Cucumber from the Ruby
world. You can learn more about SpecFlow here:
http://www.specflow.org.

These frameworks all operate by calling public methods on .NET assemblies and evaluating the
 results. This is similar to how Visual Studio unit tests execute, but the similarities stop there. With
simpleunittests,there’snobuilt-insupportforspecifyingexpectationsforspecificconditions.
There is only the developer’s word that he or she will name the test method, class, and namespace
 responsibly in order for others to be able to understand its intent and purpose. Third-party
 acceptance-testing frameworks, on the other hand, take a more explicit approach by enabling the
developertodefinethescenario,scenariosteps,givens,whens,thens,andbindings/hooksintothe
application code.

Note Some of my fellow professional Scrum developer colleagues don’t see the value in
distinguishing frameworks by behavior versus spec. They feel that both types serve the
purpose of driving and verifying the intent of the code. While I agree with them, I think
it’salsoimportanttocalloutthosethatarebettersuitedforacceptancetesting(XBehave)
 versus those that are better suited for creating unit tests and domain-driven design
(XSpec).

Regardlessofwhichframeworkyouchoose,thetestsbecometheexecutablespecification.
 Investing in a framework is worth it in the long run. Not only will you have a way of knowing your progress
during the Sprint, but you’ll also have automated tests to use for regression testing down the road.

Tip ItcanbedifficulttofindaProductOwner,domainexpert,orotherstakeholderwhois
 interested in learning and using an acceptance-testing framework. I’ve found that it’s more
common that the Product Owner just tells the Development Team what he or she wants and
leaves the decision of selecting the testing framework up to the developers. If this were a
straight “how” decision, I would agree, but acceptance testing is about understanding the
criteria, features, and scenarios—it’s a “what,” and that must involve the Product Owner. The
Scrum Team should try out a framework for a couple of Sprints and then abandon, embrace, or
enhance it after discussing its value during a Sprint Retrospective meeting.

https://github.com/machine/machine.specifications
http://nspec.org
http://www.specflow.org

224 PART II Using Scrum

Tailspin Toys case study The Development Team is evaluating SpecFlow to use as their
acceptance-testing framework. Compared to the other frameworks, it is far easier to
 integrate testing with the entire Scrum Team. The SpecFlow stories are written in plain
business English rather than in Gherkin-speak. Paula and the domain experts appreciate
this. The fact that SpecFlow integrates into Visual Studio 2012 is also a plus.

Acceptance

As I visit with software development teams, I realize that there is a lot of confusion around the concept of
acceptance. For example, a common misconception I hear is that having passing acceptance tests means
that the PBI has been accepted. This is not necessarily true. Having passing acceptance tests only proves
thattheacceptancecriteriahavebeensatisfied.ItdoesnotnecessarilymeanthattheProductOwnerwill
accept the work. Acceptance testing and Product Owner acceptance are two distinct activities. Table 7-2
lists some other common misconceptions around acceptance.

TABLE 7-2 Common misconceptions about acceptance.

Misconception Why it’s a misconception

Passing acceptance tests is equivalent to being
done with the PBI.

The Development Team is done when the a cceptance criteria
havebeenvalidated,theDefinitionof“Done”hasbeenmet,and
the Product Owner accepts the work.

Passing acceptance tests is equivalent to the PBI
being accepted.

Only the Product Owner can accept a PBI. An engaged Product
Ownerwillwanttosee/usethePBIfirsthandbeforeacceptingit.

Acceptance tests must be manual tests. Almostallscenarioscanbeverifiedusingautomatedtests.

Acceptance can occur only at the Sprint Review
meeting.

The Product Owner can accept the work at any time during the
Sprint. In fact, it can even be released to production mid-Sprint.

Stakeholders can accept the work. Only the Product Owner may accept the work.

In reality, there’s no guarantee that the Product Owner will like what you have built, let alone
 accept it. High-performance Scrum Development Teams know this and will relentlessly pursue
the Product Owner to get his or her opinion about and eventual acceptance of the feature they
aredeveloping.Thisisbecauseitisverydifficulttocapture,inanexecutablespecification,what
 somebody “likes.” Product Owner acceptance is, and always will be, a carbon-based test, meaning
that the Product Owner themselves will need to put eyes and hands on it.

Tip Product Owners are just people. People have a hard time itemizing their wants,
 desires, and tastes. This is especially true with something as abstract as software. You can
count on people telling you what they don’t like after seeing it. Scrum embraces this fact,
and so should you. For example, if you and your colleagues are working on a PBI and have
justfinisheddesigningtheuserinterface,havetheProductOwnerlookatitandgiveanod
before any additional work is spent wiring it up.

 CHAPTER 7 Acceptance test-driven development 225

Tailspin Toys case study TheDevelopmentTeamisfortunatethatPaula(theProduct
Owner) works in the same building and makes herself regularly available for questions and
feedback.AsthedevelopersgetclosetofinishingaPBI,theymakesurePaulalikeswhat
they are doing. The same is true when the Development Team is brainstorming complex
plumbing or User Experience designs. Paula wants the software to be the best for her
 users, and she knows that her regular involvement will produce better results. When it
comes time to “ accept” the work, the odds are Paula has already accepted it, just not in so
many words. It’s because of this work ethic and mindset that the Scrum Team believes that
a continuous delivery model is within their reach.

Chapter burndown

Here are the key concepts we covered in this chapter:

 ■ Desirements Requirements without acceptance criteria expressed as executable
specificationsarenothingmorethanjustwishfulthinking.

 ■ Acceptance criteria TheProductOwner’sdefinitionofsuccessforagivenPBI.

 ■ Feature A discrete unit of functionality that delivers value to the user or business. A PBI may
break down into multiple features, or it may be the feature.

 ■ Scenario Anarrativethatdescribesaworkfloworsequenceofstepsthroughafeature.
A feature may break down into multiple scenarios.

 ■ Executable specification Aninitialfailingautomatedacceptancetestthatverifiesaspecific
scenario.

 ■ Acceptance test-driven development (ATDD) Thepracticeofdefiningexecutable
specificationsintheformoffailingautomatedtestspriortowritinganyapplicationcode.
Development is done when all acceptance tests pass.

 ■ Test case A type of work item that can be used as an acceptance test. Test cases can be
manual or automated. Professional Scrum developers prefer automated acceptance tests.

 ■ Associated automation Test Case work items can be associated with an automated unit
test, ordered test, coded UI tests, and so on. The association is performed within Visual Studio
and the test is executed from within MTM or during an automated Team Foundation Build.

 ■ Regression testing Test cases from prior Sprints can be copied or cloned to the current
Sprint and used for regression testing.

 ■ SpecFlow The most popular third-party acceptance-testing framework for .NET.

 ■ Acceptance Acceptance testing and Product Owner acceptance are two separate activities.
The Product Owner should never accept work that hasn’t passed acceptance tests.

 227

C H A P T E R 8

Effective collaboration

There’s a buzz—a kind of energy that you can feel—when a high-performance Scrum
 Development Team works in harmony to solve a problem. Each developer gets totally absorbed

in his or her task. Each member of the Development Team does his or her part integrating the design,
thecoding,andthetesting.Scenariosandfeaturesarecompletedandverified.ProductBacklog
items(PBIs)aremovedtothedonecolumn.Everyonelosestrackoftime.Theyareexperiencingflow.
 Everyonefeelshappyandsatisfied.

BruceTuckmanwroteaboutthestagesofgroupdevelopment.Heidentifiedfourstagesinthe
development model: forming, storming, norming, and performing. In the initial, forming stage, the
individuals come together to form the team. They may not know each other or everyone’s strengths
and weaknesses. This leads to the storming stage, where each developer competes for their idea’s
consideration while working together to resolve their differences. This necessary stage can sometimes
be completed quickly. Unfortunately, some teams never leave this stage. Once the team members are
able to resolve their differences and participate with one another more comfortably, they enter the
norming phase. Here, the entity of the team begins to emerge. The members converge on a single
goal and come up with a mutual plan. Compromise and consensus decision making occurs in this
phase.High-performanceScrumDevelopmentTeamshavereachedthefourthandfinalphase,known
as performing.Theseteamsnotonlyfunctionasaunit,buttheyalsofindwaystogetthejobdone
smoothlyandefficiently.Theyareabletoself-organizeandself-manageeffectively.Inmyopinion,
very few teams reach this phase, but every one that does has mastered the art of collaboration.

In this chapter, we will look at some practices and tools that enable more effective collaboration.
By learning and adopting these practices, a team will increase its ability to reach the performing
phase of Bruce Tuckman’s model.

Individuals and interactions over processes and tools

The Agile Manifesto clearly states that while there is value in process and tools, there is more value in
interacting with individuals. This is to say that Agile software development recognizes the importance
of people and the value that they bring when working together. After all, it’s people who build
 software, not the process or the tool. If you put bright, empowered, motivated people in a room with
no process and inadequate tools, they will still be able to get something accomplished. Their Velocity
may suffer, but they will produce value. They will also inspect and adapt their processes, while looking

C H A P T E R 8

Effective collaboration

Individuals and interactions over processes and tools

Listen actively

Collocate

Set up a team room

Meet effectively

Collaborate productively

Achieve continuous feedback

Collaborative development practices

Collective code ownership

Commenting in code

Code reviews

Collaborative development tools

Team Foundation Server

Continuous integration

Gated check-in builds

Email alerts

Shelving

My Work

PowerPoint Storyboarding

Feedback client

Code reviews

Chapter burndown

228 PART II Using Scrum

for methods of improvement. Conversely, if the people don’t work well together, no process or tool
willfixthat.Abadprocesscanscrewupagoodtool,butbadpeoplecanscrewupeverything.

Tip Fellow Professional Scrum Developer Simon Reindl reminds us that to err is human,
but to forgive is vital.

Software development is a team sport. To succeed in this sport, game after game, the team must
share the vision, divide the work, and learn from each other. In other words, they must collaborate.
Evenateamofexpertcraftsmen(rockstarsintheirownright)isdoomedtofailiftheydon’t
 collaborate with each other. If the striker on a soccer team has his best game ever—scoring four
goals—buttheotherteamscoresfivegoals,itisstillaloss.Theotherteam,withevenmediocre
 players, probably collaborated better.

A few years ago, Ken Schwaber did a series of podcasts where he answered frequently asked
 questions about Scrum. My favorite question that he answered was, “Do I need very good developers
for Scrum?” His answer was insightful: “You need very good developers for software development.
You can do Scrum with terrible software developers, and you’ll get terrible increments of functionality
every Sprint.”

WhenIhearaboutteamsthathavetriedScrumandgivenupbecauseitwas“toodifficult,”Iknow
that they are not talking about the complexity of Scrum. These are software developers. They are
some of the smartest problem solvers you’ll ever meet. Besides, Scrum is easy to understand. Chapter 1
pretty much covered it. No, what these people are talking about is the discipline of practicing Scrum
correctly within an organization that allowed them to do so, every single day. That’s why they gave up.

I agree with the Agile Manifesto. This is evident throughout this book as I point out the value of
interacting and collaborating with individuals. I have discussed process and tools as well, but have
beenmostvigilantinpointingoutthatnotallapplicationlifecyclemanagement(ALM)toolsand
automation frameworks are healthy for a team. Most are. Some, however, can lead to one or more
dysfunctionalbehaviors.Forexample,socialnetworks,televisionswithdigitalvideorecorders(DVRs),
andvideogamesareappealingandfun,butsometimesthekids(ordevelopersinthiscase)needto
get outside and interact with others.

Years ago, I was once asked to build a web-based work item approval system on top of Team
FoundationServer(TFS).Theclientdesigneditsothatemailalertswouldbesentwhenaworkitem
changed to a certain state. These emails contained embedded hyperlinks that would redirect the user
to a webpage that allowed managers or leads to authorize the state change. It was a sophisticated
system—it even knew which users could cover for others if someone was on vacation or out of
theoffice.Mycompanybuiltit.Theclientinstalledit.Itdidexactlywhattheywanted,butthey
ended up not using it. The reason they mothballed it was that it was too mechanical and removed
the opportunity for two people to meet face to face and have a discussion. This was a learning
 opportunity for me and something I keep in mind whenever I see a shiny new feature in Microsoft
Visual Studio. I ask myself, “Does this feature encourage collaboration or discourage it?”

 CHAPTER 8 Effective Collaboration 229 229

When it comes time to meet and collaborate with members of your Scrum Team or stakeholders,
here are some tips to consider:

 ■ Establish the scope and the goal of the meeting, and stay focused on these topics.

 ■ Meet face to face, especially if you anticipate a substantive conversation.

 ■ Meet at a whiteboard, especially if you’re intent on solving a problem.

 ■ Set a time-box for the meeting. Be prepared to explain the concept.

 ■ Leave the gadgets in the other room, unless they are required.

 ■ Employ active listening techniques.

In this section, I discuss some of the general—but important—collaboration practices that a Scrum
Team can adopt.

Listen actively
Software developers tend to have a short attention span and be impatient with anybody who is not
as smart as them or who doesn’t have the answer that they are looking for. Of course, I could just
betalkingaboutmyself.Butastheysay,acknowledgingthatyouhaveaproblemisthefirststepin
 curing it. For me, active listening was that cure.

Active listening is a communication technique where the listener is required to feed back what is
heard to the speaker. This can be as simple as nodding the head, writing a note on a piece of paper,
or restating or paraphrasing what was said. This demonstrates your sincerity and respect for what
the person is saying. It also helps alleviate assumptions and other things that get taken for granted.
Opening a laptop and clicking through emails or otherwise getting distracted by anything else is not
active listening and may even be considered disrespectful. Even “lightweight” devices such as tablets,
slates, and smartphones can fall into this category.

Another part of active listening is waiting to speak. This is my particular problem. I tend to
 complete other people’s sentences in order to move the conversation along to a more interesting
topic. In my mind, I think I’m being helpful, but I know that I’m probably coming across as being rude.
This is especially true for people who don’t know me and is especially apparent to me when I have
a conversation with another ADHD individual. Fortunately, there are techniques that can be used
to overcome this particular interpersonal dysfunction. My favorite is to take a stack of sticky notes
with me and write down the things that come to mind while the other person is talking. Soon it will
be my turn to talk, and I can go back through my notes. See what I did? I solved the feedback and
 interruption problems with a single solution.

I’ll re-mention HARD at this point. HARD is a mnemonic for Honest, Appropriate, Respectful, and
Direct. It is a reminder of how you should always communicate with people, especially those that
don’t know you. Actively listening plus HARD communication is a recipe for successful collaboration.

230 PART II Using Scrum

Tailspin Toys case study DuringarecentSprintRetrospectivemeeting,Scott(the
Scrum Master) brought up his observations made during the Sprint. He witnessed a
fewdevelopershavingdifficultyconversingrespectfullywitheachother(aswellaswith
 stakeholders) during a couple of meetings. As a team, they decided to improve their
communicationabilities,specificallytheiractivelisteningskills.Scottdidsomesearching
online and found several websites dedicated to the subject. During the next few Sprints, Scott
coached the team as they adopted more and more of the techniques that they learned.

Collocate
I think we can all agree that communication and collaboration provides more value when practiced
face to face, rather than remotely. At least I would hope that everyone knows this, because we
 experience it every day of our lives. When two people communicate face to face, they exchange
more than just words. There are facial expressions, body language, and other nonverbal gestures.
This kind of sideband data can be just as important, if not more important, than the text that is
 exchanged. For example, the look on a Product Owner’s face when you suggest a solution to a
 problem can short-circuit the need for a detailed explanation. Thank you, collocated Product Owner.
You just gave me back 20 minutes of my day.

RememberthatScrumhasseveralformalevents(meetings)builtintotheframeworkwhere
 collaboration can occur. In addition, the Scrum Team, and certainly the Development Team, should
be continuously “meeting.” These are not traditional meetings, where someone speaks and everyone
elselistens.Theseareshort,collaborative,time-boxedmeetingswiththespecificpurposeofsolvinga
problem. In fact, I wouldn’t even call them a meeting, but more of a conversation. It’s important that
they occur as needed, with no logistical impediments. For example, if two developers need to discuss
something with the Product Owner, but all the conference rooms are booked, they should meet
anyway, somewhere, anywhere. To some degree, business formalities, and even etiquette, go out the
window during the Sprint when the Development Team is in the zone, developing and generating
business value.

When forming a new Development Team, collocation should be a requirement. This is not just a
nice-to-have feature. It’s required if you want a high-quality product and process. By collocation, I’m
not talking about being in the same time zone, city, or building. While these options are better than
some I’ve seen, I want the team in the same room or in adjacent rooms. The Product Owner should
be nearby too, but not necessarily in the same room. This way, the face-to-face communication can
occur on demand.

Tip Fellow Professional Scrum Developer Simon Reindl suggests bringing a
 geographically dispersed team together periodically. This is especially true at the
 beginning of a new project, so they know with whom they are working.

 CHAPTER 8 Effective Collaboration 231

Professional Scrum developers know the value of collocation, and they strive for it. That said, there
maybecultural,political,orfinancialreasonsfornotcollocatingtheDevelopmentTeam.Thisisthe
realitythatIseeasIvisitlargerorganizations.ThemostcommonjustificationI’mgivenwhenIask
why the team is not collocated is that it saves money to have one or more of the functions supported
or outsourced remotely, usually overseas. When I hear that, I hope that somebody, somewhere is
 doing the math on that, taking into account the decreased quality of the product and the process.
Even if this decrease is not detectable or measurable, the decision makers should consider what the
 increase in quality could be if they were to bring the entire team together.

Note Do I think that developers working remotely as part of a distributed team can’t be
professional? Of course not. They absolutely can be professional and the team absolutely
can collaborate, deliver high-quality software, and create business value. That said, an
 attribute of a professional Scrum developer is to inspect and adapt constantly, such as
looking for ways to improve the process. Collocating a dislocated team is one of the
biggest improvements that can be made, usually resulting in an increase of quality and
Velocity. That team’s Product Owner should wake up in the morning and go to bed
at night, thinking of ways to maximize the product’s value through the work of the
Development Team, such as through collocation.

Most organizations consider their custom software as a strategic advantage over their competitors.
Iwillsometimesaskexecutiveswheretheywouldbewithouttheirline-of-business(LOB)application
or public-facing website. They all agree that it would be a complete disaster. Not only has their staff
forgotten how to run the business manually using paper and pencil, but they don’t even know where
tofindthepaperandpencils.Next,Iaskthemwhytheytrytosavemoneybylimitingthecapabilities
and productivity of the team developing that custom software. At this point, I’m either asked to tell
them more, or I’m escorted out of the building.

Note I recently had a conversation with an IT director of a very large organization.
HeexplainedtomethattheProductOwnerworkedoutofthemainoffice,asdidthe
 programmers. The testers were overseas—nearly 10 time zones away. He shared with me
a problem that they’d been having for the past few months. He said the programmers
would code a feature and then go home for the night. The testers would come in,
 download the binaries, begin testing, and run into a bug. This blocked them from doing
anyfurthertestinguntilthedeveloperscouldfixit.Theprogrammerswouldcomeinthe
nextday,seethelackofprogress,fixthebug,andhavetowaituntiltheendoftheday
for the testers to do their thing. Sometimes this dance would take three to four days before
 testing could proceed. He asked me how TFS could help him. I answered by asking why the
 testers weren’t collocated with the rest of the team. He told me it was because they save
money by sending the work offshore. I’m glad we were having this conversation in person
 because he was able to see the awesome facial expression I made at that point.

232 PART II Using Scrum

Set up a team room
Having the entire Development Team work in a shared, common room can be a good thing.
 Whiteboards containing plans and design notes are visible to everyone. Artifacts such as the Sprint
Backlog and burndown chart can be updated easily and seen by everyone. During critical design
points, the team room can become a war room of sorts as the developers move from strategic
 planning to tactical planning. Communication becomes more open and happens in real time.
 Developers tend to focus their productivity toward solving problems, while minimizing time spent
on wasteful activities. Team rooms allow everyone, including stakeholders, to feel that buzz that
I mentioned in the beginning of the chapter.

However, not every developer wants to work in a war room every day. There needs to be the
 opportunity to have private conversations, take phone calls, or just take a timeout from the rest of the
team. Developers are smart and can self-organize to come up with solutions for these requirements.
I’ve seen developers put on headphones, adjourn themselves to quiet rooms, or work away from the
officeforashorttimeasneeded.Ideally,themanagersandtheorganizationtrusttheirdevelopers
to the point where they can accommodate their needs. If they don’t, then that is a big impediment
to self-organization. Generating business value in the form of working software is a way for the
 Development Team to earn that trust.

Some personalities and cultures see collocation as an impediment. These developers may actually
be counterproductive in such an environment. Remember that Scrum is about people, and people
are just human. Their idiosyncrasies map directly to their ability to collaborate and work effectively as
a team. The Velocity at which the Development Team is able to create business value is a function of
the Development Team’s productivity. Perhaps for these people, being in close proximity to, but not
inthesamesharedroomwith,therestoftheteamisgoodenoughatfirst.AstrongScrumMaster,as
well as open and honest Sprint Retrospectives, can be used to improve this.

Note An open-space team room is not the same thing as an open-planoffice.Open-plan
officesaretypicallyinhabitedbyemployeesworkingondifferenttasksfordifferent
 projects. Open-space team rooms are inhabited by developers working on a common
 software product. Both environments can generate noise, but the type of conversations
foundinanopen-planofficewilltypicallybemorecontrastingandthus,moredistracting.

My recommendation is to set up a team room and just try it out. See if management will let the
Development Team take over one of the conference rooms for a Sprint or two. If, during the Sprint
Retrospective, the Development Team honestly believes that they were productive, then the Scrum
 Master can work with management to create a more permanent, open-space room.

Tailspin Toys case study The Development Team has been collocated since day one, with
Paula(theProductOwner)inanearbyoffice.DuringtheSprint,theyregularlymeetand
 collaborate whenever and wherever it is required. Day to day, the developers sit near each other

 CHAPTER 8 Effective Collaboration 233

inalarge,open-spaceroomwithahalf-dozenwhiteboards(approximatelyoneforeachPBI).
Because the developers use laptops with wireless connections, there’s a minimum amount
of cables in the room, and individuals can be more nomadic as they work. When one of
the developers needs to concentrate or requires some personal space, he or she will put
on headphones or go to a quieter room down the hall. When a developer has to travel or
otherwise work remotely, the team will set up a dedicated computer with an always-on
Skypeconnection,includingvideo.Scott(theScrumMaster)hasdoneagoodjobofedu-
cating the organization. Although the stakeholders know where the team room is located,
they know to avoid it during a Sprint—unless of course they’re invited by the Development
Team. Scott still has to remind them from time to time.

Meet effectively
High-performance Scrum Development Teams know to avoid meetings, if possible. To be clear, I’m not
talking about the built-in Scrum events, such as the Sprint Planning meeting, the Daily Scrum meeting, the
Sprint Review meeting, or the Sprint Retrospective meeting. I’m also not talking about the regular Product
Backlog grooming sessions, nor those impromptu but important meetings requested by the Development
Team in order to clarify requirements, gather feedback, or seek the Product Owner’s acceptance. I hope,
in fact, that I’ve made it clear that these meetings are important and they should be attended by all of
the involved parties face to face, if possible. I am talking about all the other meetings that an organization
might require its technical staff to attend. You know the ones that I’m talking about They are mandatory,
read-only(theydon’taskforyourfeedback),andprovidezerobusinessvaluetothesoftwareproduct
being developed or the development process itself. Unfortunately, some of these meetings cannot be
avoided. They are a fact of life and a requirement to keep your job and get paid.

When you are invited to such a meeting, try to identify its purpose and expected outcome. This may
be stated in the invitation, but if it’s not, you may have to query the meeting organizer or sponsor. I know
many developers who will not accept a meeting invitation if no clear agenda or objective is given. From
this information, hopefully you can determine who the intended audience should be. Will the meeting be
technical?Willdecisionsbemade?Ifyoudon’tfittheaudienceprofile,trytoskipthemeeting,orsendthe
Scrum Master instead. Being a proxy for the Development Team at meetings like this is one of his or her
duties and allows the Development Team to what they do best.

Ifthetablesareeverturned,andyoufindyourselforganizingameeting,youcanfollowthesame
advice:

 ■ Onlyschedulemeetingsthatareabsolutelynecessaryandthatcan’tbesatisfiedbyoneofthe
other built-in meetings.

 ■ Keep the meeting as short as possible.

 ■ Establish a time-box to enforce it.

 ■ Outline the agenda and expected outcome in the invitation.

234 PART II Using Scrum

 ■ Send invitations only to those people who need to attend.

 ■ At the beginning of the meeting, explain the time-box and its concept.

When someone who is versed in Scrum sets up and runs a meeting, he or she will end up sharing
good behaviors and practices, such as transparency, active listening, and time-boxing. This is a
good way to get others in the organization more educated on Scrum and some of its attributes and
 practices. If appropriate, email any retrospective notes to the attendees, including action items. These
behaviors may even infect the organization as other business units and teams will want “to get some
of that Scrum.”

Tip One way to keep meetings constructive is to say “yes, and” instead of “yes, but.”
If the current topic or solution being discussed is one that there is partial agreement on,
 saying “yes, and …” comes across as being more constructive. If someone hears “yes, but,”
then they might think their idea is being discounted, or they may feel limited in what
can be accomplished. If, however, they hear “yes, and,” they will think that their idea was
 accepted, or at least understood, and be more prone to ideas. More importantly, the
 person will be more open to collaborating on a shared solution, which should always be
the goal to avoid discussions becoming polarized.

Tailspin Toys case study Paula(theProductOwner)andScott(theScrumMaster)are
good at running interference for the development team. For meetings that are not related
to the development of the software product, Scott will try to attend as a proxy for the
Development Team. Some meetings, such as the “all hands” meetings, cannot be avoided,
and the developers do attend them.

Collaborate productively
Collaboration means working with people. This typically means dividing the work between two or
more individuals and working together. Both the process of dividing the work and the actual working
together with others can require intense concentration. Getting into this productive state, otherwise
known as the flow or the zone, can take time. Getting out of that state prematurely, as caused by any
kind of interruption, can be considered waste. The irony is that collaboration requires interruption,
and you will need to get used to it and master it.

We are taught at a young age that it is disrespectful to interrupt others. If your team is working in
an open-space team room, it’s easy to see when a fellow developer is deep in thought or in the zone.
Your instinct should be not to interrupt them. When you’re working by yourself, however, it may be
harder to know when you are in the zone. Stopping to take a mental assessment may actually kick you
out of the zone. High-performance Scrum developers know how to minimize interruptions in order
to maximize productivity. There have been numerous books, blog posts, and white papers written
about being more productive.

 CHAPTER 8 Effective Collaboration 235

Here are some of my favorite tips:

 ■ Cell phone Turn it to vibrate, turn it off, or leave it at home.

 ■ Exit Microsoft Outlook Email can be a great productivity tool, but it can waste a lot of your
timeaswell.Ifyoucan’tordon’twanttoturnitoff,thenbesuretodisableallnotifications.
Having an icon appear in the system tray, seeing the mouse pointer change, or hearing an
 audible alert when a new email arrives, can have the same conditioning effect as one of
Pavlov’s dogs hearing a bell ring. Try to check email only three times a day: at the start of your
day, after lunch, and before leaving.

 ■ Exit IM/chat client Close the program, or at least set your status to busy. The exception
to this is if the tool is used by the Development Team to share code or quick questions and
feedback.

 ■ Limit Internet searches Developers can spend their whole day on the Internet if they are not
careful. Time-box the search and keep the scope to just researching the problem at hand.

 ■ Just get started Some planning is required before starting a task, but overplanning
 becomes the antithesis of productivity.

 ■ Avoid formal meetingsOnereasonthatScrumissosuccessfulisthatitdefinesthe
 important meetings to minimize the need for unimportant ones. A developer’s productivity
drops when he or she is away from the keyboard. Feel free to attend the valuable ad hoc
meetings over coffee or at another’s desk, but send the Scrum Master to the formal meetings
in the Development Team’s stead.

 ■ Use active listening When your colleague is talking, you should listen to what he or she is
saying, and expect the same courtesy when you are talking.

 ■ Stop fiddling Developers can have complex software environments. These can include multiple
versionsofsoftware,oneormoreintegrateddevelopmentenvironments(IDEs),virtual
desktopsandservers,databases,frameworks,softwaredevelopmentkits(SDKS),testingtools,
installers, etc. Do yourself a favor. Get it working, script it, snapshot it, and forget about it.
Endless tweaking tends to have a diminished return on value. Solve today’s problem today and
tomorrow’s problem tomorrow.

 ■ Life happens We’re all human and have a life outside of software development. When issues
emerge, be open and honest about it, and take the necessary time to get your head right. Be
appropriately transparent with the rest of your team.

Tailspin Toys case study The Scrum Team is always looking to do better. This is evident
during their Sprint Retrospective meetings where collaboration practices are almost always
discussed as improvement is sought. Everyone knows that the best way to increase Velocity
is to improve the individuals and interactions.

236 PART II Using Scrum

Achieve continuous feedback
Developers love feedback loops—the faster the better. As soon as we type a few lines of substantive
code, we hit F5 to see what the compiler thinks. As soon as we’ve got the method refactored, we run
ourunitteststoseethempass.Assoonaswehaveatangibleuserinterface(UI),wehaveacolleague
or the Product Owner look at it to tell us how he or she likes it. As soon as we are done with a task,
we check in so that the continuous integration build or another developer can evaluate our work.
 Continuous feedback like this is healthy for the product, as well as the developer.

Automated feedback provided by builds, unit tests, code coverage, code analysis, and acceptance
tests are awesome. Developers can call upon Visual Studio or TFS to provide this feedback at any
time, day or night. The results tell the Development Team that they are building the feature correctly.
High-performance Scrum Development Teams will take advantage of all of these features to ensure
that they are well informed about the progress and quality of their work.

Smell It’s a smell if the Development Team doesn’t ask for feedback from the Product
Owner during the Sprint. Passing unit and acceptance tests only ensure that the quality of
the feature or scenario has been met. The Development Team will want to make sure that
thepersonrequestingthefeature(theProductOwner)ishappywithitsdesign,function,
andusability.TheSprintReviewmeetingshouldnotbethefirsttimethattheProduct
Owner sees a feature being demonstrated.

Product Owner feedback is just as important as other types of feedback. An engaged Product
Owner who knows the product and the desires of its users can quickly give the Development Team
positive or negative feedback on a feature being developed. Getting in-person guidance on the
usability of a feature early in its development is very valuable. If the Development Team builds
the wrong feature, it’s essentially the same as if they introduced a bug into the software product.
Thesameadvicegoesforfeaturesasforbugs—it’seasierandcheaperto“fix”themearlierintheir
 lifecycle.

Note TheProductOwnerfeedbackloopshouldbeasshort(fast)aspossibleaswell.Thisis
another argument for collocating him or her near the Development Team.

I’moftenaskediftheDevelopmentTeamcanreachoutdirectlytothestakeholder(useror
 customer) who requested the feature in order to gather feedback. Technically, the answer is no. The
Product Owner is the one source of feedback to the Development Team. If she wants to establish her
own feedback loop to the stakeholders, that’s her prerogative. That said, I feel that there are times
and conditions where the Development Team can solicit feedback directly from a stakeholder if they
decide that bypassing the Product Owner will provide them more value. The Product Owner should
be informed and agree to this. During the next Sprint Retrospective meeting, this can be discussed to
determineifitwasaone-timethingorifthere’sadeeperdysfunctiontoaddress(likeanuntrainedor
absent Product Owner).

 CHAPTER 8 Effective Collaboration 237

I see Product Owner feedback as falling into three broad categories in Scrum, with practices and
tools that can support each. These are listed in Table 8-1.

TABLE 8-1 Types of Product Owner feedback with the associated practice and tools.

Type of feedback When is it given? Practice Visual Studio tool

Can you give us more details
about this PBI?

Product Backlog
grooming, Sprint
Planning meeting
 during development

Collaborate with the Product
Owner or stakeholder at a
whiteboard

PBI work item,
PowerPoint
 storyboarding

Do you like this? Is this the
behavior you were expecting?

During development Sit down with the Product
Owner or stakeholder and go
through the feature

Microsoft Feedback
client

What else do you want, not
want, or want developed
differently?

Sprint Review meeting Collaborate with the Product
Owner and stakeholders to
update the Product Backlog

Team Web Access,
Microsoft Excel

The rest of this chapter will discuss some of the more effective collaboration practices and tools.

Collaborative development practices

Even the simplest software product requires a team with many talents. Beyond having the standard
capabilities of design, code, and test, there can be many types and levels of talent within each
discipline. Every developer has a unique background, set of skills, expertise, and personality. Each
brings something different to the team. For example, you may have two C# programmers with similar
resumes and experience. The way in which they analyze and solve problems will vary radically. Both
approachescanbefitforpurposeaccordingtotherequirements,buttheycanbeverydifferent.

A high-performance Scrum Development Team understands this reality, and even uses it. These
types of teams recognize everyone has a different way of solving problems, and so long as those
solutionsfitwithintheparametersoftheproductandtheDevelopmentTeam’spractices,theyshould
be embraced. Long, drawn-out discussions and arguments over approaches and coding styles tend to
generate little value, and typically only lower Velocity and morale.

In this section, we will explore several contemporary practices that boost the Development Team’s
effectiveness during collaboration.

Note A self-organizing Scrum Development Team should pick and choose from these
as well as other development practices and try them for a Sprint or two. Later, during a
Sprint Retrospective, the team can decide whether to continue to embrace the practice, to
 amplify it, or to abandon it.

238 PART II Using Scrum

Collective code ownership
ExtremeProgramming(XP)gaveusthenotionofcollective code ownership. With this approach to
ownership,individualdevelopersdonotownmodules,files,classes,ormethods.Allofthosethings
are owned collectively, by the entire Development Team. Any developer can make changes anywhere
in the code base.

Consider the alternative to collective code ownership, where each developer owns an assembly,
a namespace, or a class. On the surface, that may seem like a good idea. The developer is the ex-
pert on this component , as well as the gatekeeper for all changes. Strong code ownership like this
hasatendencytoblockproductivity.Considerthesituationwheretwodevelopers(ArtandDave)
are working on separate tasks that both need to touch a common component owned by a third
developer(Toni).DavewillhavetowaitwhileArt’sfunctionalityiscodedandtested.Acollectivecode
ownership model would allow Dave to code the feature himself. The source control tools in TFS would
trackwhomadewhatchangestowhichfilesandenableamerge(orarollback)tooccuriftherewere
any problems. Another potential problem with strong code ownership pops up when refactoring.
Modernrefactoringtools,likethoseinVisualStudio,candothissafely,butifthefileorfilesare
locked, then productivity is blocked again.

Adopting a collective code ownership mentality can take time. This is especially true if the
 Development Team used to have strong code ownership. Pairing and shared learning is a way to
break up the turf and politics. Just as it takes time for the Product Owner and organization to trust
the Development Team’s ability to self-organize and self-manage, it also takes time for the individual
developers to trust each other.

Tracking ownership in TFS
The biggest advantage with collective code ownership is the boost in the social dynamics of the

Development Team. Because each developer has full control over all source code, there are less
boundariesandmoreopportunitiestofindsolutions.RememberthatinScrum,theDevelopment
Team owns all the problems and all the solutions collectively. This includes the artifacts of those
 solutions, namely the source code.

Shouldyoueverhaveaneedtodeterminewhomadeaspecificchangetoafile,TFScanhelpyou.
Byright-clickingafileorafolderandselectingViewHistory(asshowninFigure8-1),youcanseea
historyofchanges,includingwhomadethem,thetypeofchange,thedateandtime,anda(hopefully
 meaningful) comment. If you want to see what was changed between two versions, you can select
them both and right-click, choosing Compare as shown in Figure 8-2. The UI will show removed text
inredandnewtextingreen.Ifyouwanttoseewhowrotewhichlineofcodeinaspecificversionofa
file,youcanusetheAnnotatetoolasshowninFigure8-3.

 CHAPTER 8 Effective Collaboration 239

FIGURE 8-1 ViewingahistoryofchangestoaspecificfileinTeamFoundationServer.

FIGURE 8-2 Comparingtwoversionsofafiletoseethedifferences.

FIGURE 8-3 UsingAnnotatetoseewhichdevelopermadewhichchangesinaspecificfile.

240 PART II Using Scrum

Tailspin Toys case study Because each member of the Scrum Team is a team project
 administrator, everyone has full control over every aspect of the team project. This includes
theabilitytoview,edit,andevendeletefilesfromsourcecontrol.Shouldtheneedarise
to see who made a change, the developers are all trained in TFS and can view history,
 compare, and annotate as needed. Sometimes they will use the Annotate feature to praise
another developer for good work.

Commenting in code
With collective code ownership comes a certain amount of responsibility. Other developers on
the team will need to understand the code. If a developer or pair of developers is working on a
rather complex part of the code, they should consider adding some comments. This can be a block of
 comments that give another developer enough information to understand this code. The comments
can also be regularly sprinkled throughout longer algorithms. You can think of comments as being
messages to the future, and it might be you reading those comments a year from now.

Tip Comments shouldn’t tell the reader how the code works. The code should tell them
that. If the code isn’t clear, then you should refactor the code rather than add descriptive
comments.

When commenting in code, only comment about what the code can’t say for itself. If the code is
well formed and follows popular patterns and principles, it probably doesn’t need comments. When
someone looks at the source code, its logic and purpose should be apparent. Keep this in mind while
you are coding. Constantly ask yourself how clearly your code is telling you, or another developer,
what it is doing.

Tip Fellow Professional Scrum Developer Jose Luis Soria Teruel suggests that commenting
in perfectly readable code can sometimes be useful too. For example, in Microsoft Visual
C#,youcancreatedocumentationforyourcodebyincludingXMLtagsinspecialcomment
fieldsinthesourcecodedirectlybeforethecodeblocktheyreferto.Ifyouaredeveloping
anapplicationprogramminginterface(API)forthirdparties,youmaywanttoatleastuse
the summary tag to describe a type or a type member.

Rememberthatcommentsliveinsideyoursourcecodefiles,andassuch,theybecomeinventoryjust
like the code itself. Comments can even be a form of technical debt if they are wrong or misleading. Be
 diligent about updating your comments or removing them as you refactor and improve your code. Adding
more comments isn’t necessarily a good thing unless they add value. Perhaps it’s time to refactor the code
into simpler units rather than adding more comments. You should prefer unit tests over comments. The
best comment is a set of working unit tests with high coverage.

 CHAPTER 8 Effective Collaboration 241

Smell It’sasmellwhenIseeafilewiththeauthor’snameatthetop.Iunderstanda
 developer wanting to get credit for his or her work, but this kind of comment tells
everyoneelsetogoaway.Itcouldbethatthecodefileisreallyoldandhasn’tbeen
touched since the team started practicing collective code ownership. If that’s the case,
someone should remove it. TFS tracks this through changesets, so it is redundant anyway.
Itcouldalsobeanorganizationalrequirementtohavepredefinedheadersandrequire
 authors to add their names. If that’s the case, meet with the decision makers and ensure
that the value delivered by the practice outweighs the waste that it seems to generate.

Tailspin Toys case study The Development Team uses popular frameworks, principles,
and practices as they design and code. As a result, there’s not a lot of opportunity for
 meaningful comments. Only when they are coding some complex LOB methods do they
add comments. The Development Team also knows that when checking in to TFS, they will
associateaTaskworkitem(whichlinksbacktoaPBIorBugworkitem)andameaningful
comment. Together, these two items provide more than enough context to explain later
why the changes were made. Additional comments in code are not required.

Code reviews
A code review is a simple way to assure code quality by having another developer look at the
code.Thisassurancecancovermultiplelevelsofquality.Itcanassurethatthecodeworks,isfitfor
 purpose, is absent of bugs, is absent of avoidable technical debt, is readable, and meet’s the team’s
agreed-uponcodingstandards,aswellastheDefinitionof“Done.”Additionally,thedeveloperwhose
code is being reviewed can use the conversation as an opportunity to learn about the way that he or
she writes code.

ProfessionalScrumdevelopersrecognizethatthecandidfeedback(otherwiseknownascriticism)
given during a code review is targeted at the code and not themselves. For new developers, or
 developers new to code reviews, there can be a tendency to take these criticisms as an insult, even
becoming defensive. Over time, these developers will see that even experienced developers make
mistakes. Everyone is human. Everyone screws up now and then. Everyone can improve. Code reviews
are just another type of shared learning activity, where any developer can learn from another.

Tip Code reviews can also catch and enforce coding style and standard issues. Be careful
spending too much time with these kinds of topics during a code review, as they can
 become a rathole. A rathole is any discussion that detours the original purpose of the
 conversation. Don’t get me wrong—discussions around coding styles and standards are very
important, but any debate or decisions around changing existing standards, or establishing
new ones, should be deferred until the Sprint Retrospective meeting. High-performance

242 PART II Using Scrum

Scrum Development Teams know that matters of style are not absolute. Developers should
beallowedtoself-organizeandusewhateverstyleisfitforpurpose.OnceaDevelopment
Team has been working together for a while, their coding standards will begin to emerge.
ThesestandardsmayevenbecomepartoftheDefinitionof“Done.”

When reviewing someone else’s code, you should avoid appearing as a “senior” developer.
The truth is that you may be the senior developer, but because everyone is equal within a Scrum
 Development Team, it’s all about the sharing and learning. Choose your tone and your words carefully
as you identify problems and improvements in someone else’s code. Developers new to Scrum may
be put on the defensive. Don’t aggravate the situation by also going on the offensive.

Code reviews don’t have to be a formal process. They can happen spontaneously. They also
shouldn’t be despised or avoided. High-performance Scrum Development Teams actually look
 forward to code reviews. This is because those teams know that the code is owned collectively.
 Problems and criticisms aren’t directed at a single developer; rather, they are learning opportunities
for the entire team. Every code writer and code reviewer will have different perspectives and
 approaches to solving problems.

Tip Typically, most developers know the code that needs to be reviewed. This can change,
depending on the frequency of the code reviews. Developers can forget the changes that
theymadeandthecontextiftoomuchtimeelapses.Fortunately,TFSknowswhatfilesa
 developer has worked on for any given date range. From inside Source Control Explorer,
the developer can right-click a parent-level folder and view the history. Unfortunately,
thiswillshowactivityfromeverydeveloper.There’snowaytofilteroutotherdevelopers’
changes.Ifyoudropthecommandline,however,thisfilteringcanbeaccomplishedusing
the Tf.exe command-line utility.

Here’s an example where Dave is asking TFS to list all of his changesets for a given date
range:

tf.exe history $/Tailspin/Code/Dev /version:D"07/04/2012"~D"07/17/2012" /user:"Dave
(Developer)" /recursive

ProfessionalScrumdevelopersshouldbuildsolutionsthatarefitforpurposewhileavoidinggold
plating. Gold plating is any design or coding that is above and beyond what is absolutely necessary for
the task at hand. For example, if a PBI requires a method that calculates the sales tax for the state of
Washington, and the developer adds additional logic to handle the nearby states, that’s gold plating.
The developer may try to justify the extra coding as being required down the road for a future Sprint.
In order to maximize value and minimize waste, Development Teams should solve today’s problem
todayandtomorrow’sproblemtomorrow(inthenextSprint,asitisinScrum).Codereviewscanbe
a good way to unearth gold plating.

 CHAPTER 8 Effective Collaboration 243

Pair programming
You can think of pair programming as a form of code review—one that happens in real time. The
practice of pair programming has two developers sit together at one computer. One developer types
atthekeyboard(drives),whiletheotherobserves,navigates,spellchecks,andotherwisereviewsthe
code being typed. The two developers will switch roles frequently.

Abenefitofthistwo-personapproachisthatthedrivercanfocusonthetactical(coding)activities,
while the observer is thinking about the broader, strategic solution to the problem. This collaboration
leads to better and simpler designs and fewer bugs, in shorter periods of time. Pairs of developers
working in close proximity like this are also less prone to get sidetracked from the task at hand.

During pair programming, knowledge is passed back and forth. The two developers can learn
new practices and techniques from each other. Pairing a newly hired developer, or a developer
with a different or weaker skill set, with a developer who is stronger will help improve the overall
 effectiveness and Velocity of the Development Team. Some teams scale this idea using an approach
called “promiscuous pairing.” Each developer cycles through all the other developers on the team,
rather than pairing with only one partner. This behavior causes knowledge of the software product
and its inner workings to spread throughout the whole Development Team. This reduces risk if a key
developer leaves the team. Figure 8-4 demonstrates the possible outcomes of pairing weaker and
strong developers together.

Developer B

W
ea

k

D
ev

el
o

p
er

 A Mentoring

MentoringDanger

Flow

St
ro

n
g

Weak Strong

FIGURE 8-4 Possible outcomes when pairing developers together.

Tailspin Toys case study The organization has no policies around code reviews. They leave
it up to the Development Team to decide. Sometimes the developers perform ad hoc code
reviews. These are done whenever a developer hits the wall or needs a better solution
for a complex problem. These kinds of code reviews are almost like an impromptu pair
 programming session. In addition, the entire Development Team likes to sit down in the
conference room and use a projector. Each developer in turn shows off code. With a full
room, this approach encourages discussion on design and style. As the team has improved,
each review begins by showing the automated tests.

244 PART II Using Scrum

Collaborative development tools

Over the years, I have met with hundreds of software development teams. In my opinion, the most
productive, collaborative tools for software developers to facilitate a discussion are a whiteboard and
a dry erase marker or a laptop running Visual Studio and a projector. Using tools like these implies
several things: the collaborators are collocated, they each see the same thing, and they are having a
discussioninrealtime.Therearenoenvironmentalimpedimentsblockingtheflow.

In a perfect world, all discussions and brainstorming meetings would occur like this. Unfortunately,
someofusworkinaworldthatisnotcollocated.Ourteammembersdon’tworkinthesameoffice,
or even live in the same city, state, or country. When we are in bed, our colleagues are at work, and
vice versa. For environments like this, high-bandwidth collaboration tools like a whiteboard don’t
have the same impact. Alternatively, electronic tools must be substituted. Fortunately, Visual Studio
2012 includes several good ones.

Tip There are countless more collaborative development tools available as open source or
for commercial license. A popular example is join.me.Itisafree(andridiculouslysimple)
screen-sharingtoolformeetingsonthefly.Youcanlearnmoreathttp://join.me.

In this section, I will discuss some of the Visual Studio 2012 features that enable collaboration.

Team Foundation Server
Team Foundation Server is the team’s hub for coordinating development efforts on a shared code
baseusingsharedworkitemsandshared,automatedbuilds.TFSdirectlysupportsthefirsttwo,
andTeamFoundationBuild(TeamBuild),afeatureofTFS,enablesautomatedbuilds.Theteam
can use Team Build to automate the compilation, deployment, and testing of its software products.
 Having at least one automated build for the product should be a goal. High-performance Scrum
Development Teams will have several.

TFS should be at the center of the development team at all times, especially when coding. There
are challenges, however, when supporting a busy team of developers working on a shared code base.
Parallel development such as this can lead to concurrency issues. In the time between a developer
getting the latest version of code, making changes, and then checking it back in, one or more
 developers may have checked in their changes to the same folder. This means that when the original
developerchecksinhisorhercode,theprobabilitythataconflictwilloccurincreaseswiththelength
oftimethatthecodeisnotcheckedin.Becausetheseconflictsusuallyrequireamergeoperation,you
should check in frequently.

Mergingoccurswhentwovariantsofthesamefilearecombinedinalogicalwaytocreateanew
versionofthefile.Manuallyintegratingfileslikethisisatime-consumingprocessandshouldbe
avoided. TFS can often auto-merge for you, but not always. One way to avoid having to merge is to
enablelockingsothateachdeveloperlocksthefile(s)thatheorsheisworkingon.Whilethiswill
preventanyoneelseformakingchangestothefileuntilthefirstdeveloperisdone,itwillblockother

 CHAPTER 8 Effective Collaboration 245

developersfromworkingonthefileandbeingproductive.Thereisabetterway—tointegrate,or
merge, continuously.

Smell It’s a smell when I see a team project that does not have multiple check-out enabled.
Either the team has been burned in the past by an inferior revision control system and
wants to play it safe, or they haven’t learned how to collaborate together effectively. Either
way, wholesale locking like this is a recipe for an impediment. To overcome this, I usually
start with a bit of education, letting the developers know that even with multiple check-out
enabled,theyarestillabletolockindividualfilesasneeded,suchaswhenperforminga
tricky refactoring operation. I’ve yet to see a team project that truly required locking of this
nature that didn’t have a deeper dysfunction driving the need.

Continuous integration
High-performance Scrum Development Teams have learned how to work smarter, not harder. One way
that they do this is by continuously integrating their code changes with others on the team and running
automated tests to verify the integration didn’t break anything. While these same automated tests can
be run inside Visual Studio, Team Build can probably run them faster and they will be asynchronous,
enablingthedevelopertoworkonsomethingelse.Anotherbenefitisthatthetestscanberunina
controlledenvironmentthatwillshowanyconfigurationmanagementproblemsquickly.

A better way to avoid painful, manual merge operations is to do smaller, less painful merges
throughouttheday.Thisisthebasisforcontinuousintegration(CI).AutomatedCItakesthisastep
further. Upon a check-in, an automated build gets launched, having been triggered by a check-in
event. Source code is compiled, binaries are deployed, automated tests are run, and feedback is
returned to the team quickly.

Tip Another way to minimize the pain of manually merging code is to listen to the other
developers during the Daily Scrum. Remember that the purpose of the Daily Scrum is
to synchronize and create a plan for the next 24 hours. This means that each developer
 verbally shares their planned tasks with the other developers. If a developer hears another
mentionataskthatwillbeinthesamefileorfilesthatheorshewasplanningonworking
on, they should consider pairing up and working on their overlapping tasks together. This
should alleviate any need to merge the code manually, as well as increase knowledge and
productivity in general.

CI is about reducing risk. When a developer defers integration until late in the day, the week, or
theSprint,theriskoffailure(i.e.,featuresnotworking,sideeffects,bugs)increases.Byintegrating
code changes with others regularly throughout the day, the Development Team will identify these
problemsearlyandbeabletofixthemsoonerbecausetheoffendingcodeisfreshineveryone’s
mind. The practice of CI is a must for any high-performance Scrum Development Team.

246 PART II Using Scrum

ADevelopmentTeamshouldn’tbeafraidtobreakthebuildandworktogethertofixit.
 Refactoring, restructuring classes and methods, and changing internal interfaces can be messy work.
Theremaybetimesthatyouwanttocheckinyournot-yet-finishedcodesothatanotherdeveloper
can begin working with a part of it. You may also want to see how many errors and warnings and
failedtestsoccurwhenyourchangesareintegratedwithothers.Thisisfine.Youareinthemiddleof
theSprint.Thisisnotproductioncode.Justasasurgeonmayneedtomakesomecutsinordertofix
a critical problem, so might you have to break some code in the development process. These cuts are
temporary, and the CI build and failing tests will illuminate them until they are all healed.

Tailspin Toys case study The Development Team has invested in a very powerful, very fast
build server. They keep it quite busy, integrating code changes, building, and testing on
every check-in. The developers aren’t afraid to break the build, but they are disciplined to
check the results of every build to ensure that they don’t miss a broken one. Some have
installedthebuildnotificationtoolandothersuseemailnotificationstostayconnectedto
the build status.

Builds check-in policy
Scrum Development Teams stay busy. They will work on a design task and when it’s done, switch
toacodingortestingtask,andrepeat,andrepeat.Astheyfinishatask,theyusuallycheckintheir
work. When CI builds are enabled, the check-in triggers an automated build. The developer then
starts working on another task and, hopefully, remembers to go back and check that build’s status
and quality. Unfortunately, the developer may become focused on the new task or get sidetracked by
something else. He or she may forget to evaluate the results of that CI build. Compound several builds
on top of each other, and you might have a tangle of build results to work through.

TheBuildscheck-inpolicywascreatedasasolutionforjustsuchasituation.Whenyouconfigure
a CI build in Team Build, every check-in operation starts a build. When one of these builds breaks,
itisimportantfortheDevelopmentTeamtofixtheproblemthatbrokethebuildbeforemaking
 additional, unrelated changes. You can use the Builds check-in policy as a tool to limit additional
check-insuntilthebrokenbuildisfixed.Whenthispolicyisenabled,itliterallyblocksanyone
elsefromaddingnewfilestoanysourcecontrolfolderthatisaworkingfolderin/underthebuild
definition.Whenthepolicyfails,thedeveloperwhoisattemptingtocheckinwillreceiveamessage
like the one shown in Figure 8-5.

When a developer runs into this warning message, the expected behavior is that he or she can
query the other team member who “broke” the build. Remember, it could just be that a single test
failed, and not some catastrophic system error. Once the Development Team has been consulted, the
developer who received the warning can then choose to override it by clicking the Override Warnings
hyperlink on the Pending Changes page and providing a comment. All developers will be blocked like
this until the CI build completes without errors and all tests pass.

 CHAPTER 8 Effective Collaboration 247

FIGURE 8-5 Builds check-in policy warning when the last CI build failed.

Tailspin Toys case study The Development Team tried the Builds check-in policy for a
few Sprints and then, after discussing it during a Sprint Retrospective meeting, decided to
 disable it. What had happened was, as they improved their CI practice, they got better at
proactively watching and analyzing the build results. In addition, some developers have
optedtoenabletheBuildNotificationstool.

Build Notifications tool
Rather than having TFS block check-ins when a build fails, some developers would rather just be
notifiedwhenthebuildcompletesandthenchecktheresultsmanually.Fortunately,Microsoft
includesanotificationtoolthatdoesexactlythis.

TheBuildNotificationstoolisinstalledbydefault,butnotconfigured.Thedeveloperwillhaveto
startitmanuallyatfirst.ItcanbefoundundertheStartmenubypointingtoMicrosoftVisualStudio
2012>TeamFoundationServerTools.Eachdevelopercanchoosethebuild(s)thattheywantto
monitor.Theycanalsochoosetobenotifiedwheneachbuildgetsqueued,starts,orcompletes.They
can also choose to monitor only builds that they have started or that anyone on the team has started.
You can see an example of the settings in Figure 8-6.

Note TheBuildNotificationtoolusedtobepartoftheTeamFoundationServerPower
tools, but starting with TFS 2010, Microsoft now includes it “in the box,” as part of a Visual
Studio or Team Explorer installation.

248 PART II Using Scrum

FIGURE 8-6 EnablingbuildnotificationsfortheTailspin.CIbuild.

Thenotificationswillappearinthesystemnotificationarea(otherwiseknownasthesystem tray),
in the lower-right corner of the Windows desktop. You can see an example of this in Figure 8-7.
Thenotificationwillappearforafewsecondsandthenfadeaway.Youcanclickhyperlinksonthe
notificationtoallowyoutoviewthedetailsofthebuild.Ifthenotificationhassincedisappeared,
right-clicktheBuildNotificationsicon,inthesystemnotificationarea,toviewabuild’sstatusorreplay
arecentnotification.

FIGURE 8-7 Anotificationthatabuildhasfinished,butonlypartiallysucceeded.

Tailspin Toys case study There is not a team-level practice or requirement to use the Build
Notificationtool.Somedevelopersontheteam,however,haveconfigureditanduseit.
Others have since disabled it. The most common reason for disabling it is to avoid the
“noise” that it generates. As previously mentioned, the Development Team is quite good at
watching the CI builds and responding to any problems.

 CHAPTER 8 Effective Collaboration 249

Gated check-in builds
Gated check-in builds are a type of private build, triggered by a check-in, but built using shelvesets in
order to ensure that there are no errors prior to checking in. The purpose of a gated check-in build
is to verify that the developer’s code integrates with the other team members and that tests pass
before committing the changes to the main source control repository. This feature was introduced in
TFS 2010.

One of the problems plaguing the gated check-in build feature is performance. Even in TFS 2012,
theslowperformanceoftheUInotificationsbecomeapparent—veryfast.Also,eachgatedcheck-in
definitioncanhaveonlyonerunningbuildatatime.Therefore,activeteamsdoinglotsofcheckins
and builds are more likely to develop a large queue of gated check-in builds. Fortunately, there’s a
new feature in TFS 2012 that helps with performance, which I’ll get to in a moment.

Smell It’s a smell if I see a team using gated check-in builds on their development
 codeline. Ideally, the Development Team practices lots of small, frequent check-ins. If one
breaksthebuild,afewminuteslater,theyshouldknowaboutit,fixit,andkeepgoing.

Gatedcheck-insareasolutiontoamisunderstanding.WhentheoriginalauthorsofXPsaid,“Don’t
break the build,” they didn’t mean it literally. They meant that if a developer ever does break the
build,itistheirresponsibilitytofixitimmediately.Really,theauthorsshouldhavesaid,“Don’tever
leave the build broken.” When I’ve seen teams use gated check-in builds, they often do so because
they are unable to meet the requirement of never leaving it broken. It could be that their build
takes too long or they simply don’t have the discipline to follow the practice. It also may be because
the organization has a low tolerance for broken builds. We need to recognize that these are all
 dysfunctions of some type.

Tip If your production gated check-in build takes a long time to complete, even without
running tests, consider creating a second CI build that builds and runs the tests. The CI
build would kick off in parallel with the gated check-in build and provide a measure of
quality.ItmighttakeareallylongtimetofinishtheCIbuild,butatleastthegatedcheck-in
build wouldn’t get any slower, and you’d still get a sense of the code quality.

For teams running long gated check-in builds, TFS 2012 offers a helpful new feature. Gated
 check-in builds can now batch together multiple shelvesets into a single build. For example, a team
mightconfigureaproductionbuildtobuilduptothreesubmissionssimultaneously,asshownin
Figure8-8.Thesesubmissions(shelvesets)wouldgetmergedandbuilttogetherononebuildagent.
Ifthebuildsucceeds,andalltestspass,eachshelvesetwouldbecommitted(checkedin)separately.
If the build fails or any tests fail, then each shelveset is built, one at a time, to determine which one
caused the failure.

250 PART II Using Scrum

FIGURE 8-8 Configuringagatedcheck-inbuildtomergeandbuilduptothreesubmissions.

Tailspin Toys case study The Development Team makes heavy use of CI builds. They were
selected over gated check-in builds for development in the DEV folder. Everyone agreed
that the practice of CI promotes healthier team behaviors than relying on a tool. The team
doesusegatedcheck-inbuildswhenfixingbugsincode(inthePRODfolder)thathas
been released.

Email alerts
A developer can also monitor builds by enabling an email alert. He or she can register an email
 address with TFS to receive an email that alerts them to the fact that a build has completed or a
build’s quality has changed. In fact, alerts can be established to notify when changes occur to work
items,codereviews,andsourcecontrolfiles,aswellasbuilds.Thesearejuststandardemails
(ineitherplaintextorHTMLformat)thataresentfromTFStoauser’sinboxusinganintermediary
SimpleMailTransferProtocol(SMTPserver).Developerscansubscribetoalertsforthemselves,for
others, or for the entire team.

The body of these email alerts contain hyperlinks that can be clicked to take the reader to the
respective information in Team Web Access. Emails pertaining to source control, such as check-ins,
will display information about the changeset when clicked. Emails about work items will take the
reader to the respective work item when clicked. Emails about builds will direct the user to the build
in question.

 CHAPTER 8 Effective Collaboration 251

BeforeTFScansendanyalertemail,aTFSadministratormustconfiguretheservertousean
 existing SMTP server. This can be accomplished in the Team Foundation Server Administrative Console
in the Application Tier section, as shown in Figure 8-9. At a minimum, the administrator must specify
the SMTP Server and the Email From Address. In TFS 2012, Microsoft added the ability to specify
optional advanced SMTP settings, including User, Password, Port, and additional security information
directly from the console. This was a long-anticipated feature in the product.

FIGURE 8-9 ConfiguringSMTPsettingssothatTFScansendalertemails.

Tip The out-of-the-box emails are very plain. They convey the basic information, and
not much else. There are no fancy colors or graphics. If a team wanted to, they could
add some style or missing functionality to the content and format of the base email
alertsbycustomizingtheassociated.xsltransformfiles.Theeventserviceusesthesefiles
totransformtheXMLdataforaneventintoahuman-readableemailmessage.Editing
therespective.xslfilewouldprovideadifferentformatfortheemail.Youshouldmake
abackupcopyofthetransformfilesbeforeattemptinganycustomization.Betteryet,
 consider creating a separate team project for such an effort so that you can manage
changestothosefiles.Formoreinformationcheckouthttp://msdn.microsoft.com/en-us/
library/bb552337.aspx.

Alert subscriptions are stored on the server and organized by team project. A developer can
add different alerts for each team project or team that they are a member of. A developer can also
configureateam alert, which is new in Visual Studio 2012. Team alerts simplify the administration
of setting up the same alert for everyone on the team. For example, if all Scrum Team members,
 including the Product Owner and Scrum Master, want to be informed when a build has completed or
when a PBI is “done,” someone can create a team alert such as the one shown in Figure 8-10.

http://msdn.microsoft.com/en-us/library/bb552337.aspx

252 PART II Using Scrum

FIGURE 8-10 CreatingateamalertsothateveryoneontheTailspinTeamisnotifiedwhenaPBIisdone.

Forbuild-relatedalerts,therearetwofieldsthatyoushouldbeawareof:RequestedByand
RequestedFor.TheRequestedByfieldispopulatedbyTFSandisalwaystheaccountthatactually
queues the build. For manual builds, it contains the user that queues the build, but for CI and
 scheduled builds, it contains the build service account. If you are interested in knowing who
requestedtheCIbuild,thiswon’twork.Instead,youshouldreferencetheRequestedForfield.Its
behaviorisverysimilartotheRequestedByfield,exceptthatforCIbuildsitcontainstheuserwho
performed the check-in.

Emailalertscanalsobeconfiguredtoletadeveloper,orawholeteam,knowwhenabuildhas
completedorfailed.ThiswouldbeanalternativetousingtheBuildNotificationstoolpreviously
mentioned.Inaddition,byusingtheRequestedForfield,asingleteamalertcanbecreatedthatis
smart enough to only email the developer who requested the build, and nobody else. This is done
by creating a team alert with the criteria Requested For = [Me], as shown in Figure 8-11. This criteria
establishes a behavior which causes an email to be sent to only the person who requested the build.
You’ll be happy to know that the [Me] macro, and its related behavior, is available for all types of
alerts.

FIGURE 8-11 Creating a team alert with the [Me] macro to email only the developer who broke the build.

 CHAPTER 8 Effective Collaboration 253

Shelving
Shelving lets you set aside a batch of pending changes for whatever reason. It could be that you were
interrupted by some more important work, or you want to queue a private build, back up your work,
or hand something off to another developer. Shelving can also be used when you want to have your
code reviewed.

Shelving produces an artifact called a shelveset. Shelvesets exist outside of the normal TFS source
controlrepositoryandareidentifiedbyauniquenameprovidedbythedeveloperwhocreatedit.
Somepointintimelater,thatdeveloper(oranother)canunshelvethosependingchangesintoalocal
workspace and continue working or review the code.

When a developer shelves his or her code, anybody on the team with the appropriate permissions
can view and unshelve those pending changes. In other words, to unshelve a pending change,
you must have the Read and Check out permissions set to Allow. For a Scrum Development Team
practicingmyrecommendedsecurityconfiguration,thismeansthatanydevelopercanunshelve
 another developer’s pending changes. This is how it should be on a high-performance Scrum
 Development Team. Any developer can review any other developer’s code without being limited by
the tool.

If the developer reviewing the code makes any changes, he or she must create a new shelveset or
checkinthecode.Thisisbecausetheseconddevelopercannotchangethefirstdeveloper’sshelveset.
What I have seen happen is that the reviewer will create a second shelveset with the proposed
changesandcomments,andthenthefirstdeveloperwillcreateathirdshelveset,andsoon.Ifthe
two developers are not diligent about cleaning up their shelvesets as they iterate, there will be a big
housekeepingtaskattheend.Forthisreason,aswellasforgeneralefficiencyreasons,codereviews
should be performed in person, where all developers look at the same screen at the same time.

Smell It’s a smell if I see a team using shelvesets as a mechanism for code reviews. If
it turns out that they are used sparingly for situations where the coder or reviewer are
 remote, then that is OK. I will suggest, however, that the developers use a screen- sharing
utility such as Microsoft Lync or http://join.me. By sharing a screen, you avoid the
 back-and-forth of shelveset creation or the administrivia of creating them or cleaning them
up after the exercise.

Tailspin Toys case study The Development Team primarily uses shelvesets for interruptions
and private builds. They also use them indirectly with the new suspend and resume
 features in Visual Studio 2012.

254 PART II Using Scrum

My Work
Visual Studio 2012 Premium and Ultimate edition users can use My Work as a way to see and manage
their current, in-progress work. As a developer works through his or her tasks in the Sprint Backlog,
they can be started in the My Work page. Work can also be suspended and resumed as needed. Code
reviews can be requested and managed. Check-ins can be performed. It’s a very powerful page within
Team Explorer, and every developer on the team should consider using it.

To begin working on a new task, drag it from the Available Work Items section to the In Progress
section, as shown in Figure 8-12. You can also right-click the task and add it to In Progress or click the
Start link. If the task you want to start isn’t visible, you may have to run a different query or refresh
theresults.ItmaybethatyouhavetocreatetheTaskworkitemfirst.

FIGURE 8-12 Getting started on a new task by dragging it to the In Progress section.

Note Microsoft provides two default queries to get you started in the Available Work
Itemswindow:“AllIterations-<projectteam>”and“CurrentIteration-<projectteam>”.
The second query is the interesting one. It contains some behind-the-scenes magic to
determinatewhatthecurrentiterationis.Ifyourteamhassetuptheiterations(Sprints)
andspecifiedstartandenddates,thenTFSknowswhatthecurrentSprintis.Thisvalue
is looked up and hard-coded into this query to return Task work items from the current
Sprint. This is very convenient, but unfortunately the magic cannot be bottled and reused
on other custom queries. Hopefully, Microsoft will give us a CurrentIteration macro, or
something like it, to use in our queries some day soon.

Dragging the work item to the In Progress section will also change the State to In Progress. More
important, it gives you context on what you’re doing. For example, even taking 60 seconds to
answer a phone call can generate a lengthy “Now where was I?” pause. Being able to see what

 CHAPTER 8 Effective Collaboration 255

item you are working on will help return that focus more quickly. If you exit Visual Studio without
finishinganInProgresstask,itwillstillbetherelaterwhenyoureturn.

Smell It’s a smell if I see two or more tasks In Progress. Just because Team Explorer allows
it, doesn’t mean that it makes sense from a work management perspective. Are you really
workingontwothingsatonce?Perhapsyoudidn’tcreatetherighttasksinthefirstplace.
Maybe you switched context and didn’t know how to suspend your existing work before
starting something new.

Later,whenyouaredonewithyourtask,youcancheckinyourchangesandresolve(ratherthan
associate) the task. You can also just click the Finish link in My Work. Both of these methods will
 transition the work item to the Done state and set any Remaining Hours to zero. If you click Finish,
Visual Studio may prompt you with a warning that you haven’t checked anything in. For tasks that
don’t require a check-in, you can dismiss the warning. The task will be removed from My Work, as will
the pending changes when you check them in, allowing you to move to your next task.

Code reviews can also be requested and managed from the My Work page. I will discuss them
later in this chapter.

Suspending and resuming work
FromtimetotimethroughouttheSprint(orthedayonsomedysfunctionalteams),adeveloperwill
experience an interruption. In a perfect world, this never happens, but in the real world, it does.
A high-performance Scrum Development Team works to marginalize this reality by either reducing
the number of interruptions or making them less painful. When an interruption does occur, switching
contexttothenewproblemcanbedifficultandwasteful.

For example, let’s say that you are deep in thought, implementing a complex scenario within a
PBI and the Product Owner drops into the team area with an emergency. It’s obvious that an urgent
bugfixisrequiredand,asthisiscriticaltothebusiness,youshoulddropwhatyou’redoingandfixit.
Forget your forecast. It’s about saving money and customers at this point. What most developers do
is to shelve their code, undo pending changes, and close their solution. Others will just start a new
instanceofVisualStudio,getthespecificversionofcodethat’srunninginproduction,andgoabout
locating,verifying,andfixingthebug.VisualStudio2012nowoffersabetterway.

From the My Work page, the developer can suspend the current work he or she is doing. Behind
thescenes,ashelvesetiscreatedtosaveanypendingchangestocode,tests,andotherfiles.
 Important elements of Visual Studio are also saved, such as open windows, breakpoints, and other
debugstates.Thedeveloperassignsthesuspendedworkafriendlynameinordertofinditeasilyat
some point in the future. By default, this name is the title of the In Progress work item, as you can see
in Figure 8-13.

256 PART II Using Scrum

FIGURE 8-13 Suspending in-progress work and giving it a friendly name.

Suspending will shelve any pending changes and then undo the local changes, putting your
workspace back into a clean state. It is now ready to handle the new crisis by dragging the new task
into the In Progress section. You can see the suspended work listed in the Suspended & Shelved Work
section of the My Work page, as shown in Figure 8-14.

FIGURE 8-14 Suspended work is given a friendly name and persisted as a shelveset.

Smell It’s a smell if I see more than one piece of suspended work listed. Maybe you are the kind
of developer who spends more time helping, mentoring, and supporting others. This could
explain the various pieces of suspended work. Maybe your organization is so chaotic that even
the interruptions get interrupted? Maybe you are just the kind of developer who leaves a bunch
of half-eaten sandwiches sitting around your house. That’s a different kind of smell.

Later, when the crisis has passed and the developer is able to return to the planned work, he or
she can select the suspended work and click the Resume link. The original pending changes will be
unshelved, and the task will be put back in the In Progress section. Other IDE settings and behaviors
will be restored as well.

In the event that your interruption gets interrupted, you may want to suspend it, and return to
your original work. If this is the case, then instead of a Resume link, there will be a Switch link. Clicking
Switch will suspend the interruption work, and return context to the original task. Alternatively, you
can choose to Merge With In Progress and bring all the pending changes from the two tasks together.

 CHAPTER 8 Effective Collaboration 257

PowerPoint Storyboarding
Visualizations allow the Development Team to elicit feedback more easily. This feedback can come from
other members of the Scrum Team, as well as stakeholders, especially domain experts. Shapes and lines
drawn on a whiteboard to represent components and actions enable ideas to be vetted by the right
people. It’s faster to sketch out the high-level concepts and their interactions than it is to try to design or
codeanythinginVisualStudio.It’salsocheapertofixabuginadrawingthanlaterincode.

As previously mentioned, feedback is important when brainstorming how to tackle a problem
such as developing a particular feature or scenario. This is especially true when the developers
arenotfamiliarwiththedomainortheworkflowiscomplex.Havingtherightpeopleinvolvedin
the conversation is critical. The more eyes you can put on a problem, the better the chances of
findinganoptimalsolution.Unfortunately,thisisnotalwayspossiblewhentherequiredpeopleare
 geographically distributed.

Smell It’s a smell when the Development Team doesn’t have access to the people who
know the domain. It’s the Product Owner’s responsibility to either know the domain or
collaborate with experts who do. The Scrum Master might have to get involved to make
sure the introductions, communication, and collaboration occur effectively. It’s also a smell
when the opposite occurs, and the Development Team becomes the domain experts. This
is natural in an organization that encapsulates its critical business processes into software.
Thedevelopersknowthesoftware,andthusthedomainbehindit.Thisisfinesolongas
the organization doesn’t start using their technical staff as the business help desk.

For Development Teams that love their whiteboards, I recommend setting up a laptop with a
 webcam in the meeting room or team area. By aiming the webcam at the whiteboard, and then
strategically standing out of the way after drawing on it, remote attendees can be part of the design
session and discussion. This is less ideal than collaborating in person, but still allows for rapid design
with a dry erase pen, rather than fumbling with a software design tool.

WhentheDevelopmentTeamhasaneedtopresenttheirideasto(andgatherfeedbackfrom)
 remote stakeholders, then the new PowerPoint Storyboarding feature in Visual Studio 2012 can be
beneficial.UsersofVisualStudio2012Premium,Ultimate,orTestProfessionaleditionscaninstalland
usePowerPointStoryboarding,whichallowsadevelopertoillustrateaPBIoraspecificfeatureor
scenariousingMicrosoftPowerPoint.Theillustrationiscreatedbydragginganddroppingpredefined,
inline images and adding formatted text. It can then be linked to a work item, such as the PBI that it
 describes, and shared with other TFS users.

Smell It’s a smell when I see storyboards created before the Sprint in which the PBI gets
forecast for development. It could be that the Development Team had to iterate on the
design of a complex feature or scenario with a remote stakeholder or two before they were
able to estimate it. It could also be that the Development Team started working on this

258 PART II Using Scrum

PBIinapreviousSprintanddidn’tfinishit.Frommyexperiences,themorelikelyreasonisthat
someoneontheteamgotbored,firedupPowerPoint,andstarteddesigningsomething.When
a developer has spare time, he or she should help the rest of the Development Team complete
their forecast work. If the whole Development Team has spare time, they should meet with the
Product Owner to discuss working on an additional PBI.

Tip Fellow Professional Scrum Developer Jose Luis Soria Teruel has experimented with
 using storyboards while grooming the Product Backlog. Wary of generating waste, he and
theotherdeveloperskeepthemtotheright(rough)levelofdetail.Thiswasapracticethat
they opted into as a team.

To create a PowerPoint storyboard, there are a few simple steps to follow:

1. Open the PBI work item, choose the Storyboarding tab, and then choose the Start
 Storyboarding link. You can also start the tool from the Start menu under Microsoft Visual
Studio 2012 or by starting PowerPoint directly.

2. Add slides, shapes, and text to the blank presentation to illustrate a PBI, feature, or scenario,
as shown with the Customer Login storyboard in Figure 8-15.

FIGURE 8-15 An example PowerPoint storyboard with annotations.

3. Save the storyboard presentation to a network share or Microsoft SharePoint.

4. (Optional)LinkthepresentationtothePBIworkitemthatitdescribes,asshownin
Figure 8-16.

5. Share the storyboard with others.

 CHAPTER 8 Effective Collaboration 259

FIGURE 8-16 A PBI work item with a linked PowerPoint storyboard.

6. Others may provide feedback by annotating the PowerPoint document or by using the
 Feedback client.

As the stakeholders review the storyboard, they can add comments or even make changes to the
illustrations using the built-in features of PowerPoint. If the presentation is stored on SharePoint,
itcanenjoythedualbenefitofbroadavailabilityandrevisioncontrol.Userscancheckoutthe
 presentation and check in any changes. Feedback can also be provided out-of-band, via email, voice,
or using the Feedback client, which is covered in the next section.

Tip I’m often asked if a Development Team should use PowerPoint Storyboarding or
SketchFlow. On the surface, they appear to be very similar in functionality. SketchFlow is a
feature of Expression Studio Ultimate and has a new UI to learn. PowerPoint Storyboarding
runs inside PowerPoint, so the learning curve isn’t as steep. While SketchFlow is more
sophisticated(witharichersetofusercontrolsfordesigningUIs),it’snotasnicely
 integrated into a development process that uses TFS. Another important difference is
thatSketchFlowisabletoconvert(forward-engineer)theprototypesintostarterprojects.
PowerPoint storyboards don’t support that. They will always just be illustrations.

Creating a storyboard
To create a storyboard, a developer can select from several layouts that support common user
 interfaces, such as web and Windows Phone backgrounds. Images can be dragged and dropped
from the Storyboard Shapes pane in addition to using all the features available within PowerPoint.
These features include clipping and inserting screenshots, hyperlinking from one page to another,
 animation, inserting images and shapes, and aligning and grouping objects. For example, a developer

260 PART II Using Scrum

might create two slides to illustrate the UI for a particular PBI. She might add information about
upcoming service appointments to the customer’s account page and add buttons that customers can
use to schedule, reschedule, and cancel those appointments.

Tip You can save a custom shape to MyShapes and then use it in the same way that you
usethepredefinedstoryboardshapes.Also,youcanexportshapestosharewithother
 developers on the team or import shapes that others have created. Microsoft has also
 created a Storyboard Shapes Authoring tool to help make storyboard shapes that can be
used with PowerPoint Storyboarding. It is available for free at http://visualstudiogallery
.msdn.microsoft.com/75f32d63-8ff2-49f3-b86e-70297d300858.

Before you can link a storyboard to a work item, you must save it to a shared location. The shared
locationcanbeanysharedfolderonthenetworkoraSharePointsite(suchastheteamproject
portal). By linking the storyboard to a work item, you are essentially inviting the rest of your team
toaccessthissharedfile,sobesuretheyhavetheappropriatepermissions.Theycanopenthe
 presentation, review it, and add their comments. You can link storyboards only to certain types of
work items based on the process template from which your team project was created. In the Visual
Studio Scrum process template, you can only link storyboards to Product Backlog Item work items.
It is possible to link a storyboard to more than one work item.

Note You cannot create work items from PowerPoint, but you can link to them. This means
thatifyoucreatethestoryboardfirst,youwillhavetoswitchtoVisualStudioorTeamWeb
Access to create the PBI so that you may link it. This situation is less likely to occur for a
Scrum Team, who should be creating and grooming PBIs a long time before the Sprint.

To create and modify storyboards by using PowerPoint Storyboarding, a developer must have
 installed either PowerPoint 2007 or later, and one of the following versions: Visual Studio Premium,
Visual Studio Ultimate, or Visual Studio Test Professional. Storyboarding is not available in Visual
Studio Professional or Express edition. To view storyboards that were created by using the PowerPoint
Storyboarding template, users must have PowerPoint 2007 or later installed. They do not need Visual
Studio 2012 installed.

Tailspin Toys case study In the past, some developers on the team have used Balsamiq
to mock up complex UIs. Over time, the Development Team realized that in-person
 conversations at a whiteboard provide the most value. They take this approach whenever
possible. Occasionally, however, it’s not possible because a stakeholder or expert is not
available for an in-person discussion. When this happens, they will usually generate and
send the storyboard over email or even store them on SkyDrive, allowing the stakeholder
to review and comment. Once the feature or scenario is done, the storyboards are deleted.

http://visualstudiogallery.msdn.microsoft.com/75f32d63-8ff2-49f3-b86e-70297d300858

 CHAPTER 8 Effective Collaboration 261

Feedback client
As you read in the last section, the PowerPoint Storyboarding tool enables a team to create rapidly a
UI mockup or illustration of a feature that can be shared with other team members or stakeholders.
It’s important to close that loop by collecting rich feedback about what those users think of a feature,
and whether it is still being brainstormed, under development, or has been released. Feedback
should always be welcomed, and even encouraged. If the feature has been released and valid
 feedback is given, it can be captured in the Product Backlog to be considered for future development.

One of the new features of Visual Studio 2012 is the ability to capture rich stakeholder feedback
onfeaturesbeingimplementedandbugsbeingfixed.Thisisgoodfordistributedorganizations
whowantstakeholderstoevaluatetheemergingIncrementoradesignthatmaystillbeinflux.The
 Feedback client is used to gather this type of feedback. It is versatile enough that it can be used to
provide feedback on anything the user can see and interact with on the desktop.

Note Users submitting feedback using the Feedback client do not need a TFS Client Access
License(CAL).AWindowsServerCALmaystillberequired,however.Pleaserefertothe
latest version of the Visual Studio 2012 licensing white paper at http://go.microsoft.com/
fwlink/?LinkID=246172.

This type of feedback can either be formally requested via a work item and email sent from Visual
Studio, or it can be provided voluntarily, without solicitation. We will look at both scenarios shortly.

Requesting feedback
ThefirstfeedbackscenariooccurswhenamemberoftheScrumTeam,preferablytheProduct
Owner, solicits feedback from one or more stakeholders. These stakeholders will receive a feedback
request through an email that is constructed from the feedback request form. From the email, the
 stakeholders can install and launch the Feedback client tool, which guides them in providing and
capturing their feedback. TFS stores this feedback as a Feedback Response work item.

Inordertorequestfeedback,TFSmustbeconfiguredtouseanexistingSMTPserverinorderto
send emails. This requirement was mentioned earlier in the chapter in the context of setting up email
alertsand,hopefully,itisalreadyconfigured.Tobegin,clicktheRequestFeedbacklinkontheTeam
Web Access home page, as shown in Figure 8-17.

FIGURE 8-17 The Request Feedback link on the Team Web Access home page.

http://go.microsoft.com/fwlink/?LinkID=246172
http://go.microsoft.com/fwlink/?LinkID=246172
http://go.microsoft.com/fwlink/?LinkID=246172

262 PART II Using Scrum

Feedback can be requested on any aspect of the product, from the entire application down
toaspecificscenariowithinafeature.Becausethefeedbackrequestisessentiallyanemail,the
requestercanbeasambiguousorasspecificasheorshewantstobe.Inaddition,onerequestcan
bepartitionedtoaskforfeedbackonuptofivediscreteitems.Forexample,iftheDevelopmentTeam
is code-complete on three scenarios within a PBI, a request could be created that contains three
items—one for each scenario the Product Owner desires feedback on.

Note Regardless of the size and scope of the request, the stakeholders must be able to
accessphysicallytheapplicationandfeature(s)inquestion,andtheymusthavethetime
and know-how to do it. This should be considered as the feedback request is created.

When creating the feedback request, one or more stakeholders must be selected. These users
must have an email address associated with their user name. Users without email addresses won’t be
sent a request. The stakeholders should also be told how to access the application in question. An
addressandinstructionscanbeprovidedforawebapplication,(rich)clientapplication,oraremote
machine.Finally,theitem(s)tobeevaluatedandanyrelatednotesareaddedtotherequest.
Figure 8-18 shows a feedback request ready to be sent to a stakeholder to evaluate the Customer
Login feature of a web application.

FIGURE 8-18 Creating a request for feedback on the Customer Login feature.

 CHAPTER 8 Effective Collaboration 263

Tip Consider previewing the request before sending it. It will show what the email that the
stakeholder(s)receivewilllooklikeandallowyoutocustomizeit.Itwillalsoshowtheemail
addresses rather than the user names, so you can see if there are any discrepancies, such as
wrong or missing email addresses associated with the user names. For example, if you add a
stakeholder by user name and that user doesn’t have an email address associated with his or
her account, you will receive an error message like this: TF400596: Cannot find email
addresses for the following recipient(s): ‘Chuck’. If this occurs, you can just add the email
 address manually and continue with the request. However, you should ask the stakeholder to
updatehisorherprofileandprovideavalidemailaddresstoavoidthiserrorinthefuture.

As the feedback requester, you will receive a copy of the email submission automatically when you
send it. You can also add other email addresses in the To box when previewing the email. Figure 8-19
shows a sample email requesting feedback. If an administrator has not granted permissions to the
accounts of those stakeholders that you add, they will not be able to provide feedback through the
Feedback client.

FIGURE 8-19 A sample email sent to a stakeholder requesting feedback.

Providing feedback
Whenthestakeholderreceivestherequest,heorsheshouldfirstmakesurethattheFeedbackclient
isinstalled.Ifthisisthefirsttimeprovidingfeedback,itwillneedtobeinstalled.Theemailcontains
a hyperlink to download it, if necessary. Next, the stakeholder starts the feedback session by clicking
the large hyperlink in the email, or copying and pasting the supplemental URL into the web browser.

264 PART II Using Scrum

As the stakeholder reviews the new feature, he or she is able to perform the following tasks using
the Feedback client:

 ■ Record video of the interaction with the application.

 ■ Record voice comments.

 ■ Capture a screenshot.

 ■ Annotate a screenshot using a program such as Microsoft Paint.

 ■ Type comments.

 ■ Attachafile.

 ■ Rate each item of feedback on a scale of 1–5 stars.

On the Provide page of the Feedback client, one or more items appear for the user to provide
feedback. For each item, he or she can get context on what’s being asked and then provide free-form
feedback through any of the aforementioned methods of input. Figure 8-20 shows the various
 recording options. If there are multiple items, clicking Next will advance to the next item for which to
provide feedback. Recordings appear as images within the Feedback client’s text box.

FIGURE 8-20 The Feedback client provides many ways to record and attach your feedback.

By annotating screenshots, the reviewer can indicate corrections or improvements by adding text
or images to the screenshot that was captured. By default, Paint opens automatically when the user
opens a screenshot image that was captured within the Feedback client. Another annotation tool,
suchasPaint.NETorSnagit,canbeconfiguredinsteadbyclickingonthecogiconatthetopofthe

 CHAPTER 8 Effective Collaboration 265

feedback tool, as shown in Figure 8-21. After feedback has been provided for each item, the user can
review, make corrections or additions, and then submit the feedback to the requesting user via TFS.

FIGURE 8-21 Clickthecogicontoconfigureyourannotationtool.

Tip Be careful when recording sensitive data, such as user names, passwords, account
numbers, etc. If the recording is going, everything will be captured. If you do record
 sensitive data, you can delete the recording by deleting its representative image in the text
box and then record it again.

In order for stakeholders to be able to provide feedback, an administrator must grant them
specificpermissionsinTFS.TheycaneitherbeaddedtotheLimitedlicensegroupinTeamWeb
Accessoracustomgroupwithspecificpermissions.TheLimitedgroupisprovidedspecificallyto
 support access to TFS for users who do not need a CAL. If the stakeholders have a CAL and you are
not going to use the Limited group, then make sure to grant the minimum permissions required,
which are project-level permissions to create and view test runs and view project-level information, as
well as area path permissions to view and edit work items in the respective nodes.

Regardless of which permissions approach you take, you should try to group the feedback
 stakeholders together in their own Windows group. Because providing feedback is probably the only
way that they will interact with TFS, keeping them grouped together will simplify management and
allow the Scrum Team to know exactly who their feedback stakeholders are.

Feedback requests generate a Feedback Request work item assigned to the creator of the request. The
Descriptionfieldcontainsthebodyoftheemailthatwassent.FeedbackResponseworkitemsarecreated
to hold the feedback provided by the stakeholder using the tool. Remember that both Feedback Request
and Feedback Response work item types are designated as Hidden types. This means that they cannot be
created directly from Visual Studio or Team Web Access. Instead, they are created using the appropriate
tool, such as the Request Feedback link and Feedback client respectively.

Smell It’s a smell when the Development Team solicits stakeholder feedback directly.
Gathering feedback from stakeholders is the responsibility of the Product Owner, not the
Development Team. If the developers want to seek feedback from stakeholders or other
domain experts, they should do it with the blessing of the Product Owner. If necessary, the
Scrum Master can help facilitate this. Visual Studio, however, doesn’t know about the rules
of Scrum, and it allows anyone to request or provide feedback. If the Feedback client is
 being used inconsistently with the rules of Scrum, the Scrum Team should discuss it during
the next Sprint Retrospective meeting and adapt accordingly.

266 PART II Using Scrum

Tailspin Toys case study The Development Team does not use this feature, but Paula
(theProductOwner)does.Shewillsometimessendarequestforfeedbacktoastakeholder
inaremoteoffice,alongwithalinktothetestwebsite.Andy(theTFSadministrator)will
add any new stakeholders to the Limited license group in Team Web Access so that they
have adequate permissions.

Voluntary feedback
Another way to use the Feedback client to provide feedback is for a stakeholder to start it directly. It
can be found on the Start menu under Visual Studio 2012. If it’s missing, it can be downloaded from
Microsoft.

When started, the client will be in voluntary feedback mode. There won’t be any associated request
or instructions, as you can see in Figure 8-22. Hopefully, the stakeholder will already know what
 application to start, what features or scenarios to evaluate and provide feedback on, and what team
project to submit the feedback response to.

FIGURE 8-22 Feedback client running in voluntary feedback mode.

 CHAPTER 8 Effective Collaboration 267

Feedback that has been submitted voluntarily like this can be found in TFS by running the
 Feedback shared query. This query returns work items that are in the Microsoft.FeedbackResponse
Category work item type category. In the Visual Studio Scrum process template, this would only
include Feedback Response work items.

WhenviewingaFeedbackResponseworkitem,youwillseemanyofthestandardfields,suchas
title, created by, state, rating, area, and iteration.ThemoreinterestingdatawillbeintheNotesfield,
as it contains the comments typed by the stakeholder and any references to audio, video, screenshots,
orattachedfiles.Therewon’tbeanylinkedstories(PBIs),butthedevelopercanaddthemasneeded.
BeawarethatanyfilesattachedintheFeedbackclientwillappearasResultAttachmentslinksonthe
All Links tab and not as true work item attachments.

Note Currently, the Feedback client doesn’t capture and persist system information. It was
available during the beta version of Visual Studio 2012, but it was later removed. Microsoft
is considering enabling it in a future update, along with the ability to disable it selectively
for organizations that are sensitive to this kind of data being collected.

Tailspin Toys case study During the Sprint, completed features are deployed to a
dedicatedacceptancetestingenvironmentwheretheScrumTeam(aswellasstakeholders)
can use the system and provide feedback. Once Paula’s remote stakeholders know how
to use the Feedback client, they may drop in on the deployed website periodically and
provide feedback. The Development Team has created an email alert that watches for new
Feedback Response work items being created to let everyone know when an unsolicited,
voluntarily provided piece of feedback arrives.

Code reviews
As we discussed earlier in this chapter, code reviews and pair programming are two ways that
 developers can collaborate to help assure higher code quality. These practices also reduce the risk of
creating bugs, technical debt, and gold plating. Visual Studio Premium and Ultimate edition users can
use Visual Studio to facilitate code reviews.

Smell It’s a smell when I see a collocated Development Team using tools to facilitate
code reviews. They should be able to practice these reviews in person. Excuses are usually
to the effect of “But the developers are busy right now” or “It would be rude to interrupt
them.” It’s obvious that they want to use the asynchronous behavior that the tool provides.
Iunderstandthatthere’sacosttointerruptions,andthatinstantmessaging(IM)andShort
MessageService(SMS)textsaregoodforquickquestions.Codereviewsarenotquick
 interruptions. They require a full stop and context shift in order for the review to have
 everyone’s full attention. As I’ve mentioned several times in this chapter, conversations

268 PART II Using Scrum

thattakeplacefacetofacearemoreefficient,reduceambiguityandmisunderstanding,
and provide more value than anything facilitated by a tool.

Tip Fellow Professional Scrum Developer Jose Luis Soria Teruel sometimes uses the Code
Review tool to ask people outside the Development Team to review the code. It’s useful
to get the opinion of someone not working directly on the code, especially where new
technologies are concerned. The Code Review tool provides the opportunity to involve an
expert in the matter being reviewed.

From the My Work page, you can request a code review of work that currently has a state of
In Progress or that has been suspended. You can also request a code review on a shelveset or
 changeset. Code reviews can be requested from various other pages and menus as well. Let’s focus
on the scenario where we want another developer to review some code that is currently In Progress.
Assumingthattherearependingchangesononeormorefiles,thecoderwillclicktheRequest
 Review link from the My Work page. Next, he or she selects one or more reviewers to send the
 request to. He or she can specify a friendly name for the code review, the area path, and a helpful
comment, as shown in Figure 8-23. Unlike sending a request for feedback, this feature just assigns
work items to the other TFS users. No email is sent.

FIGURE 8-23 Creating a new code review request for two other developers.

 CHAPTER 8 Effective Collaboration 269

Tip EachcodereviewrecipientmusthaveaccesstothefilesinTFS.Inotherwords,ifsome
filesareofflimitstoaparticulardeveloper,don’taskhertoreviewyourchangestothose
files.Shewon’tgetveryfar.Also,itispossibletoaddyourselfasareviewer.Microsoft
enabledthisparticularworkflowsothatyoucouldaddcommentsonyourowncodeto
explain the context before the review is sent to others. When those reviewers receive the
codereviewrequest,theycanreadyourcommentsfirsttoobtaincontextandunderstanding.

When the request is submitted, a Code Review Request work item is created and assigned to the
requester. In addition, one or more Code Review Response work items are created and assigned
to the individual developers being asked to review the code. All of these work items are in the
 Requested state. Code Review Request and Code Review Response work item types are designated
as Hidden types. This means that they cannot be created directly from Visual Studio or Team Web
Access. Instead, they are created and managed using the appropriate tooling in Team Explorer. While
you can query and open one of these work item types in Team Explorer or Team Web Access, the data
in the form is read only.

The prospective reviewers will see the incoming request in the Code Reviews & Requests section
of their My Work window. You can see an example of this in Figure 8-24. A number in parentheses
shows, at a glance, how many code reviews are being displayed in the view. This is a quick way to
see if any code reviews need your attention. There are several available views that can be selected to
show code reviews in different ways. If you are curious, you can click the Open Query link to see the
workitemquery(WIQ)behindanyoftheviews.

Here is a list of the built-in views:

 ■ Incoming Requests Shows active code reviews in which you are a reviewer.

 ■ Outgoing Requests Shows active code reviews that you have requested.

 ■ Incoming & Outgoing Shows both incoming and outgoing code reviews. This is the default
view.

 ■ Recently Finished Shows code reviews that have been completed in the last seven days.

FIGURE 8-24 My Work page showing an incoming code review request.

270 PART II Using Scrum

When a request appears, the prospective code reviewer should open it to learn more. This opens
the Code Review page in Team Explorer, as you can see in Figure 8-25. On this page, the reviewer can
accept or decline the request by clicking the respective link towards the top. If the developer chooses
to decline the request, he or she can provide a reason for declining the request.

FIGURE 8-25 Opening a code review request in Team Explorer.

Reviewing code within Visual Studio consists of performing one or more of the following activities:

 ■ View the associated shelveset or changeset that contains the code.

 ■ Open and review the associated Task work items.

 ■ Add additional reviewers or remove current reviewers.

 ■ Add overall comments.

 ■ Comment on another’s overall comment.

 ■ Reviewtheindividualfilesandaddinlinecomments(asshowninFigure8-26).

 ■ Checktheboxesnexttoeachfiletoensureeverythingisreviewed.

 ■ Finish the review.

 CHAPTER 8 Effective Collaboration 271

FIGURE 8-26 Adding two separate comments about the CustomerLogin table.

Once the reviewer is done with the review, he or she can complete and send it with an overall
opinion. The opinion choices are Looks Good, With Comments, or Needs Work. At this point, the
workitemwillbeclosedandthepersonnamedintheAssigned-Tofieldwillberemoved.Atanytime,
the code review requester can expand the outbound request in his or her My Work page and see if
theprospectivereviewershaveaccepted,declined,ignored,orfinishedtherequest.Therequestercan
also complete the code review as a whole at any time by closing it or abandoning it.

Tailspin Toys case study The Development Team has been performing code reviews
and pair programming for some time now. They don’t make either practice mandatory,
but let the individual developers decide which will serve them best. They rarely use the
code review features in Visual Studio, opting for in-person reviews instead. Occasionally,
 however, they have used this tooling when team members are on the road or otherwise
working remotely.

Chapter burndown

Here are the key concepts we covered in this chapter:

 ■ Collaboration is key Software development is a team sport. The Scrum Team needs to
 communicate with each other, as well as stakeholders, effectively.

 ■ Active listening Communication techniques that enable better, more effective dialogue.

 ■ Collocated teams Development Teams working in close proximity are more productive
and generate more business value than teams that are geographically distributed. Large,
 open-space team rooms can be particularly effective.

 ■ Meet effectivelyScrumhasallthebuilt-inevents(meetings)thataDevelopmentTeam
needs. Limit attendance to other meetings, or send the Scrum Master instead.

 ■ Limit interruptions Turn off or otherwise neutralize cell phones, email clients, and IM/chat
clients. Limit Internet searches and attending non-essential meetings.

272 PART II Using Scrum

 ■ Collective code ownership The entire Development Team owns every aspect of the code.
Everyone can read, check out, or check in code for any assembly, namespace, or class. TFS will
effectively track all changes made.

 ■ Comments When commenting code, be sure to explain your actions to others, assuming the
code and/or check-in comments can’t do it for you.

 ■ Code reviews Practice these in person, or consider pair programming as an alternative.
Developers should be open to giving and receiving criticism. Use the code review features in
Visual Studio only when in-person reviews are not possible.

 ■ Continuous integration Merging is painful, so do it more often so it hurts less. Stay in touch
with your builds, especially when they fail. Get them healthy again as soon as possible.

 ■ Builds check-in policy This check-in policy requires that the last build was successful for
eachaffectedCIbuilddefinition.

 ■ Build Notification toolConfigureandusethistoreceivealertsfromTFSinyournotification
area(systemtray)whenabuildqueues,starts,orcompletes.

 ■ Gated check-in build Use this on production code to ensure that the codeline stays healthy.
CI is a better practice for the active development codeline.

 ■ Email alertsTFScanbeconfiguredtosendindividualsortheentireteamanemailwhen
something interesting happens, like a build breaking.

 ■ My Work A page in Team Explorer that enables a developer to see and manage their current,
in-progress work. The page is available to Visual Studio 2012 Ultimate or Premium users. Work
can be suspended and resumed as other priorities crop up.

 ■ PowerPoint storyboards Mockups and illustrations can be created in a familiar environment
and shared with remote stakeholders to obtain their feedback.

 ■ Feedback client A freely downloadable, lightweight tool that enables desktop video, audio,
screenshots, and notes to be recorded as a stakeholder evaluates a piece of software. This
feedback can be requested, or it can be offered voluntarily, without solicitation.

 273

P A R T I I I

Improving

CHAPTER 9 Continuous improvement. .275

P A R T I I I

Improving

C H A P T E R 9

Continuous improvement

Common challenges

Bugs

Impediments

Estimation

Assessing progress

Renegotiating scope

Undone work

Spikes

Fixed-Price contracts and Scrum

Common dysfunctions

Not getting “done”

Flaccid Scrum

Not inspecting, not adapting

Development Team challenges

Working with a challenging Product Owner

Working with challenging stakeholders

Working with a challenging Scrum Master

Changing Scrum

Improving

Get a coach

Build a cross-functional team

Achieve self-organization

Improve transparency

Swarm

Use a Kanban board to limit WIP

Professional Scrum Developer training

Assess your knowledge

Become a high-performance Scrum Development Team

Chapter burndown

 275

C H A P T E R 9

Continuous improvement

One thing that I hope I have made clear is that high-performance Scrum Development Teams know
they can always do better. They can build a better product. They can increase its quality. They can

build it faster. They can build with less waste. They can learn new techniques that will help them improve
personally and as a team. I use the term continuous improvement to categorize all of this.

Knowing where to start is a big part of improving. There are tactical improvements, which help the
team successfully deliver the Increment during the Sprint while not generating waste. Mastering some
of the common challenges that Scrum Teams run into will help in this regard. There are also strategic
improvements, such as learning to become more cross-functional and self-organizing. Teams that
improve in these areas will see orders of magnitude increases in capability and performance.

Note The FBI Sentinel Project is just such an example of a Scrum Team realizing this
kind of increase in capability. While working in the basement of the Hoover building, the
teamfinishedover80percentoftheworkinjust10percentofthebudget—afteralarge
 government contracting agency failed to deliver. You can read more about the FBI case
study in Software in 30 Days by Ken Schwaber and Jeff Sutherland.

In this chapter, we will look at how to handle common challenges, as well as how to identify
and overcome various dysfunctions. We’ll also look at some healthy behaviors to adopt in order to
 improve to the point of becoming a high-performance Scrum Team.

Common challenges

There are many challenges facing Scrum Development Teams, as well as any software development
teams in general. Software development is a complex effort, and anyone who is not in the middle of
itwillhavedifficultyunderstandingthat.Eventhesmartestdeveloperswillrunintothedilemmaof
balancing the values of Scrum against getting something out the door.

For example, when an experienced developer sees the need to refactor one of the larger classes in
the application, when should he or she do this? If he puts on a propeller hat, her or his technical side
wantstoopenupthecodefileandstartrefactoringrightnowbecauseitshouldn’ttakemorethanaday’s

276 PART III Improving

time at most. However, when he or she puts on the Scrum robe, he or she wants to spend time wisely
and in ways that provide maximum business value to the Product Owner. One developer, two urges.
Which one wins? The answer is, of course, “it depends.”

 Andinthat,youcanfindtheprimarygoalofthissection—toaddresssomeofthemorecommon
challenges facing Scrum Development Teams and help them make good decisions.

Bugs
A bug communicates that a potential problem exists in the code that the Development Team is
 currently developing or has developed. Most teams believe that when a bug is located, it should be
reported,perhapsasaBugworkiteminTeamFoundationServer(TFS).AsI’vesaidpreviously,Ithink
thatitshouldjustbefixed.IalwayspreferthatDevelopmentTeamsfixbugsratherthanmanage
them. There are, of course, exceptions to this rule.

IfthebugisassociatedwithworkthatisbeingdoneinthecurrentSprint,thenfixit.Ireferto
these as in-Sprint bugs. The fact is that maybe it isn’t a bug at all. It could just be that the developer
isn’tfinishedwiththework.Anextremeexampleofthiswouldbewhenadeveloperforgetstoadd
a semicolon at the end of a line of code and the compiler raises an error. Obviously, the developer
shouldjustfixthecoderatherthancreateaBugworkiteminTFS.Thisexampleissilly,butitscales.
Consider a larger and more complex issue that is blocking the team from completing its work. Either
thebugwillneedtobefixedorthatworkwillhavetoberenegotiatedwiththeProductOwner.
Bugs that come up during work within a Sprint are just an indicator the complexity of software
 development.

If, on the other hand, a bug is discovered in code that was previously thought to be done, and
the bug’s existence doesn’t affect the Development Team’s ability to deliver its forecast work in the
current Sprint, then create a Bug work item in TFS. The bug goes into the Product Backlog like other
ProductBacklogitems(PBIs)andwillbegroomedbytheScrumTeamandorderedbytheProduct
OwnertobefixedinalaterSprint,perhapseventhenextone.Irefertotheseasout-of-Sprint bugs.

Tip When you create a Bug work item, you should report the problem accurately in a way
that helps your fellow developers understand the full impact of the problem. The steps to
 reproduce the bug should be listed so that someone else can reproduce the behavior. Also,
 include the expected behavior that is currently broken. This will serve as acceptance criteria
whentheteamfixesthebuglater.ThisiscoveredindetailinChapter5,“The Product Backlog.“

I should be clear: It’s always the Development Team’s prerogative to create work items in TFS. They
may decide that all bugs of a certain size, or larger, should be represented as a work item. On the
other hand, the team may decide that if one developer locates a bug, but does not have the skills to
fixit,heorshecanimmediatelypairupandcollaboratewithanotherdevelopertofixitratherthan
creating a work item. While I prefer this type of behavior, it can be a source of interruption for the
team. Ultimately, it is the Development Team’s decision.

 CHAPTER 9 Continuous improvement 277 277

Note ProfessionalScrumMasterCharlesBradleydevelopedahelpfulflowchartthat
 encapsulates this type of decision-making process pertaining to the triage and handling
ofbugs.Atthetopoftheflowchartisthedetectionofweirdbehaviorinthesoftware
product.Thepossibleoutcomes,throughtherestoftheflowchart,aresimilartothose
that I have just mentioned. For more information about the Bradley Bug Chart, visit
http://www.scrumcrazy.com/bugs.

Previously, we have talked about writing and running tests to verify our design, as well as the
behaviorofnewcodethatwearebuilding.Whenfacedwithapotentialnewbugtofix,testsarealso
recommended. In fact, writing an automated test to verify the existence of a bug should be one of
thefirststepsperformed,possiblyevenbeforethebugisputintheProductBacklog.

Note Fellow Professional Scrum Developer Mike Vincent reminds us that writing a failing unit
test may not be enough to prove the existence of a bug. A broader integration test or even a
userinterface(UI)testthatexercisesthefunctionalityatahigherlevelmayberequired.

At a high level, here are the steps that a Development Team should take when handling bugs:

1. Verify the existence of the bug by writing a failing test. These should be automated tests, but
not necessarily unit tests.

2. Fix the bug by making the test pass.

3. Verifythebugisfixed,andthefixdidn’tbreakanythingelse,byrerunningalltests.

4. Refactoranyrelevantcodeinaccordancewithyourteam’sDefinitionof“Done.”Avoid“gold
plating.”

5. Rerun all tests to ensure that the refactoring didn’t break anything else.

6. Integrate your code with the latest version from TFS and rerun all tests. A continuous
integration(CI)buildrunningonTeamBuildcanautomatethis.

IftheDevelopmentTeamisusingworkitemstotrackthebugandthefix:

1. Associatethechangesetwiththe“fixthebug”Taskworkitem.

2. Set the Task and Bug work items to a State of Done.

Impediments
An impediment is anything keeping the team from being productive. Impediments can be
 environmental, interpersonal, technical, or even aesthetic in nature. Regardless of what the
 impediment is, or its size, if it’s blocking the team from being productive, it should be removed. Just
as the sweepers in the game of curling keep the path of the stone free from bumps and debris, so
should members of the team keep the path of productive software development free of impediments.

278 PART III Improving

Scrum has two formal opportunities to identify impediments: each day during the Daily Scrum,
and at the end of the Sprint during the Sprint Retrospective meeting. However, impediments can
beidentifiedatanytimeduringtheSprint.Moreimportant,theycanandshouldberemoved at any
time.Theproblemisnotfindingtheopportunitytoidentifyimpediments,butrathergettingthe
 developers to be honest about their existence.

It’s common to hear software developers say that nothing’s blocking them. Hearing this repeatedly
doesnotreflectrealityandmightactuallybeasmellofanunderlyingdysfunction.I’mnotsayingthat
developers are patently dishonest. On the contrary, they are often just being optimistic. They have a
lotofworktodoandcaneasilyfindsomethingelsetoworkon.Theymaynotrealizethat“blocking”
can also mean that they are experiencing slow or non-optimal progress. Also, nobody wants to bother
others with something as depressing as an impediment. What they don’t realize is that by sharing
their problems with the rest of the team, their honesty and openness will actually invite others to help
remove the impediment. The impediment might just disappear sooner than expected.

Smell It’s a smell if I see a Scrum Team relying on their Scrum Master to remove
 impediments. Servant leadership only goes so far and can be abused by the rest of the
team if allowed. While Scrum Masters are typically associated with being impediment
removers,ahealthierteambehaviorisforthepersonwhoidentifiedtheimpedimentto
become the one who removes it, if possible. Don’t let any person utter the words “that’s
not my job.”

While the Microsoft Visual Studio Scrum 2.0 process template does contain an Impediment work
item type, I prefer the team members not use it. My guidance is the same with impediments as with
bugs: Remove them, don’t manage them. Only create an Impediment work item if it will be some
time before the impediment can be removed. Impediment work items can be in one of two states:
Open or Closed. They are created in the Open state with the default reason “New impediment.” When
the impediment is removed or is no longer blocking productive work, the state should be changed
to Closed with the reason “Impediment removed.” Additional notes can be added to the work item
 history.

Note For products requiring more than one Scrum Team, the recording and sharing of
 impediments becomes more important. Being able to view impediments across a large
project or organization allows management the necessary visibility into any hotspots or
trends.

Tip WhenanimpedimentblocksaspecificTaskworkitem,besuretomarkthetaskas
blocked and create a link to the Impediment work item. This will increase the visibility and
understanding of exactly how the impediment affects the team.

 CHAPTER 9 Continuous improvement 279

Identifyinganimpedimentisjustthefirststep.Amoreimportantstepistoexecuteaplanto
remove it. Some team members will be able to remove certain types of impediments more easily
than others. The Product Owner, or management, may need to get involved as well. Regardless of
thelevelofdifficultyoramountofceremonyinvolvedinremovinganimpediment,itshouldstillbe
identified.Inotherwords,don’tkeepanimpedimenttoyourselfjustbecauseyouthinkit’llbedifficult
to remove. If you see something, say something. Blow your whistle.

Smell It’s a smell if I see that a team is not dealing with their impediments. Ideally, any
 impediment that survives to the next Sprint should be resolved during that Sprint. It’s the
Scrum Master’s job to keep a watchful eye on older impediments and appropriately nudge
the team to remove them. I think of the impediment list as being the Scrum Master’s
 backlog.

Estimation
Estimating the effort required to develop items in the Product Backlog is a team skill that will improve
over time. Initially, the team may not have experience working with the domain, the tools, or each
 other. They may not have a common baseline to use for relative estimation either. All of this will
emerge and improve over time.

Regardless of how experienced your team is, when it comes to Agile estimation, always remember
and follow the basics:

 ■ Keep it groomed A big reason for keeping the items in the Product Backlog groomed
is to enable more accurate estimation. The Development Team should have just enough
 information in order to estimate a PBI, but no more. Specifying additional requirement
 information beyond what the Development Team needs to estimate, especially when it
 describes how the item should be developed, is wasteful. Once it becomes apparent that a PBI
willbeforecastinthenextSprint,morerefineddetails,suchasacceptancecriteriaandfresh
estimates, are encouraged.

 ■ Estimate as a team The entire Development Team should be involved in the estimation. Each
PBI will require different types of activities and disciplines. The whole cross-functional team
needs to be in the room as each item is discussed and estimated. Estimation by proxy will lead
to the wrong estimates.

 ■ Be less precise If you want to be more accurate, be less precise. Initially, consider estimating
the size of the PBI using T-shirt sizes. This will help with coarse-grain release planning. Later,
as it becomes more likely that a PBI will be developed, consider using a more precise unit of
measure, such as story points. In the Sprint Planning meeting, as well as during the Sprint, the
team can be even more precise as it estimates tasks in hours.

280 PART III Improving

 ■ Be relative No two PBIs will ever be the same level of complexity or amount of effort to
 develop. This is the nature of software development. To mitigate this while estimating, the
team should think in terms of how the size of one PBI relates to another. This size usually
relates to effort, but it can also relate to complexity. It doesn’t matter which, so long as the
Development Team is consistent. By comparing a new PBI with one of a similar size that was
previously developed, the Development Team is able to determine if the new one is more
work, less work, or about the same. Over time, working consistently as a team, more baseline
PBIs will become available that can be used for comparison.

 ■ Don’t translate Keep any units of measure abstract. Avoid the temptation by you, or the
organization, to translate story points into days, hours, or dollars. Knowing how many days are
in a Sprint allows management to reconcile the work the team delivers, or more important,
to translate the business value of that work into a monetary value. They already know what it
costs to employ the team per Sprint. From this information, they can determine the business
value per monetary unit, which should be the ultimate metric for any organization. Similarly,
the Product Owner can also use the number of days in a Sprint and the Development Team’s
Velocity to assist with release planning. Either way, these computations are informative and
healthy,andnotthetypeof“translation”I’mreferringtohere.Tryingtofigureouthowmany
hours a “typical” story point equates to or how many dollars a “typical” story point costs is
pointless, as well as wasteful.

Note Fellow Professional Scrum Developer Jose Luis Soria Teruel stresses that the process
of estimation is more important than the outcome. The real value is in all the information
that is gained and uncertainty that is removed as a result of the conversation that
 estimation fosters.

When a team new to Scrum estimates features of a new product, in a new domain, using new
tools, estimates will be way off. As the team normalizes and becomes familiar with each other as
well as the product, this will turn around. Eventually, estimation will occur faster and become more
accurate.Ifthisisdesirable(anditshouldbe),thenkeeptheteamtogether.Theywillimprove.

Smell It’s a smell when I see management break up a high-performance Scrum
Development Team. It’s actually more than a smell—it’s a downright shame. I know what
they’re thinking. They’re thinking that they can distribute these individuals to other teams
within the organization as seeds. The seeds will then grow new high-performance Scrum
Development Teams. While this may be true, it destroys self-organization and generates
waste due to the length of time that it requires to become a high-performance team.
I contend that the organization will derive more value by leaving that team intact. Let
the Scrum Master plant and water seeds in other teams without dismantling a proven
generatorofbusinessvalue.SpecificadviceandtechniquesforscalingScrumarebeyond
the scope of this book.

 CHAPTER 9 Continuous improvement 281

Tip Fellow Professional Scrum Developer Chad Albrecht agrees with this guidance. He
encourages organizations to keep their high-performance Scrum Development Teams
together whenever possible. However, when an organization wants to spin up several new
Development Teams in a relatively short amount of time, splitting up a solid team is a good
way to go about it, especially when done with professional assistance.

Tracking actual hours spent on tasks and PBIs is not important in Scrum. Although it is easy for
TFS to track this information, I recommend teams resist the urges or requests to track or compute
actual hours. It can only be used for evil. Once actual hours are tallied by task, or task activity type,
 somebody somewhere will use it as a measuring stick, or a beating stick, to attempt to improve the
team’s abilities. As I’ve previously explained, improving because someone else wants you to improve
doesn’t work. The desire must come from within, not from a spreadsheet.

Note Tracking hours on a timesheet in order to get paid is a different matter altogether.
So is the tracking of hours in order to bill a project or client. If management expects this
data, provide it. But do so knowing that the totals you are providing have nothing to
dowithyourefficacy.IftrackinghoursdetractsfromtheDevelopmentTeam’sabilityto
developsoftwareefficiently,havetheScrumMasterdoit.

Tracking original task estimates is also not important. The only estimate that a Development Team
should track is the amount of remaining work left to be done. In TFS, this relates to the total number
of hours for all Task work items in the To Do and In Progress states in the Sprint Backlog. These
 estimates can change daily, and therefore should be updated daily. Hopefully, the work remaining
estimatesgodown.Somedays,however,theywillgoup.Somedays,newtasksareidentifiedthatthe
 Development Team didn’t foresee. This is the nature of a complex effort like software development.

Tip When pressed by management for why your original estimates were off, give the
 honest answer: “What we do is very complex and hard to predict.”

For example, let’s assume a Development Team estimated that the development of a new
 mobile-browser-friendly home page would be eight story points and the sum of all the hours of the
initial tasks would be 120 hours. Let’s also assume that development ended up taking 160 hours to
 complete the PBI. Should the Development Team be concerned about the gap in their estimates?
Sure. They should discuss it during the Sprint Retrospective meeting and determine if they can and
how they might make better estimates going forward. Should management be concerned about
the deviation from the original estimates? Sure, but they should know that their best people are on
the job and they should be given the freedom to make those improvements themselves. Additional
“ management” won’t make estimates more accurate.

282 PART III Improving

Note Some Scrum practitioners are not fond of breaking PBIs down into tasks. They’ve
seen situations where most or all of the tasks were done, but the PBI wasn’t. While I would
consider this to be a dysfunction that should be repaired, these same practitioners prefer
tohavesmallerPBIsinthefirstplace.Thisremovestheneedtobreakthemdowninto
tasks. It also removes the need to estimate because each PBI would be of a small enough
size to be completed in one or two days at the most. Unfortunately, the task board found
in Visual Studio Team Web Access does not support working with PBIs directly. It expects
there to be associated tasks that will move across the board through the different states.

Assessing progress
Assessing progress simply means knowing how much work is left to do before reaching a goal. This
is not necessarily the Sprint Goal, but any goal. The goal could be completing a PBI, completing all
forecast PBIs for a Sprint, or completing all of the work promised in a release. Progress towards each
of these types of goals can be measured in a number of ways. The Scrum Guide does not provide
guidance on how to assess progress other than noting that it should be done by the team daily.
Table 9-1 lists some practices that can be used to assess progress.

TABLE 9-1 Practices for assessing progress toward a goal.

Goal Practice to assess progress Goal is reached when

Release Sum story points of undone PBIs in Product Backlog Sum = 0

Count undone PBIs in Product Backlog Count = 0

Sprint Sum story points of undone PBIs in Sprint Backlog Sum = 0

Count undone PBIs in Sprint Backlog Count = 0

Count failing tests [assumes acceptance test-driven devel-
opment(ATDD)]

All tests pass

PBI(and
Sprint)

Sum work remaining hours of undone tasks in Sprint
Backlog

Sum = 0

Count undone tasks in Sprint Backlog Count = 0

Countfailingtests(assumesATDD) All tests pass

The most popular way to assess the progress of a release is to maintain a release burndown chart
like the one shown in Figure 9-1. This kind of chart shows how much work remained at the start of
each Sprint in a given release. The data comes from the Scrum Team’s groomed Product Backlog.
Each Sprint appears along the horizontal axis. The vertical axis measures the effort that remained
when each Sprint started. The unit of measure is whatever your team has decided to use. Story points
are the most common.

 CHAPTER 9 Continuous improvement 283

Release 5\Sprint 1

200

250

Ef
fo

rt

200

150

100

50

0

154

136

111

68

26

Release 5\Sprint 3 Release 5\Sprint 5 Release 6\Sprint 1

Release 5\Sprint 2 Release 5\Sprint 4 Release 5\Sprint 6

245

FIGURE 9-1 Example of a release burndown chart.

Note Fellow Professional Scrum Developer Jose Luis Soria Teruel reminds us that for
a long-running project, one with multiple releases, the remaining work could actually
 increase over time as the Product Backlog evolves. In cases like this, the release burndown
alone won’t tell you how quickly the team is completing items in the Product Backlog,
especiallyiftheburndownreferstomorethanonerelease(astheoneinFigure9-1does).

The most popular way to assess the progress of a Sprint is to maintain a Sprint burndown chart
like the one shown in Figure 9-2. This kind of chart shows how much work remained at the end of
specifiedintervalsduringaSprint.ThedatacomesfromtheDevelopmentTeam’sregularlyupdated
Sprint Backlog. The days of the Sprint appear along the horizontal axis. The vertical axis measures
theamountofremainingworktocompletethetasksidentifiedintheSprint.Theunitofmeasureis
 typically hours.

Sprint burndown charts can show the team how much work remains in the Sprint. These charts will
often include an ideal trend line. This line represents the ideal rate at which the Development Team
is able to complete all of the remaining effort, at a constant rate, by the end of the Sprint. It is usually
manifested as a straight line displayed on the chart. By using the trend line, the team can gauge
howit’sdoingandknowifitisontracktofinishallforecastworkbytheendoftheSprint,giventhe
 constant rate.

Burndownchartsaregeneratedfromactualdata.Becauseofthistheyreflecttherealityofthe
Development Team’s activity. For example, if the developers all go away for a three-day training class,
theburndownwillreflectaflathorizontalline(nomovement)forthosedays.Thismeansthatthe
amount of work completed is the same as the amount of work added, which can happen when new
tasks are discovered.

284 PART III Improving

May 24

60

50

40

30

20

10

Re
m

ai
n

in
g

 W
o

rk
 (

H
o

u
rs

)

To
d

ay

0
May 26 May 28 May 30 Jun 01 Jun 03

Ideal Trend
In Progress
To Do

FIGURE 9-2 Example of a Sprint burndown chart.

Burndown charts can also illuminate other facts about how the Development Team works:

 ■ Actual and ideal trend lines are diverging or are far apart The Development Team will
probably miss their forecast. This will happen from time to time, but more often with new
teams. As the Development Team’s estimation practices improve and Velocity normalizes, the
forecasts should become more accurate. On the other hand, sometimes the actual trend line
is below the ideal one, meaning the Development Team should complete their forecast work
earlier than expected and will be able to collaborate with the Product Owner about adding
more work to the Sprint.

 ■ The total number of hours is increasing This occurs when additional tasks are added to the
Sprint Backlog during the Sprint. Some new tasks are to be expected, but a large number of
tasks, or new tasks over several days, indicates poor Sprint planning, a badly groomed Product
Backlog, or scope creep. This becomes very evident if the team is using a Sprint burndown
chart.

Smell Fellow Professional Scrum Developer Luis Fraile has seen this as a smell of
theDevelopmentTeamviolatingtheYouAin’tGonnaNeedIt(YAGNI)principle.
This principle instructs developers not to add functionality until it is necessary,
and not just because they might need it in the future.

 CHAPTER 9 Continuous improvement 285

Note Fellow Professional Scrum Developer Chad Albrecht says that it is normal
for an experienced Scrum Development Team to add tasks and actually burn up
thefirstfewdaysofatwo-weekSprint.Hedescribesthisasapatternofdoing
“just enough” planning during the Sprint Planning meeting. Additionally, teams
thatarepracticingsingle-pieceflow(workingonasinglePBIuntilitisdonebefore
 moving to the next one) will witness multiple, small burn-ups during the Sprint. The
numberofbumps(burn-ups)istypicallyrelatedtothenumberofPBIsforecast.

 ■ Actual performance is significantly above the ideal trend line The Development Team
has really missed the estimates or the amount of work forecast. Attention should be given to
both during the next Sprint Retrospective meeting.

 ■ Tasks move to “Done” prematurely Reactivating a task by moving it from Done back to
InProgresswillbereflectedontheburndownasabump.Knowingwhenadeveloperisdone
with a piece of work is a practice that will improve over time.

 ■ Not creating tasks for large pieces of work The Development Team should decide when to
create a Task work item and when to just do the work. The rule of thumb I use is two hours for
a two-week Sprint. This is totally dependent on the Sprint length and other team behaviors.
Forexample,ifadeveloperrealizesthataSecureSocketsLayer(SSL)certificateisexpiredwhile
deploying the application to a staging environment, he or she may want to create a Task for
what’s about to take a measurable period of time to accomplish.

 ■ Tasks stay “In Progress” for more than two days Sprint burndowns don’t usually show this
levelofgranularity,butflatspots(orrises)arealwaysaconcern.Wherethisstalenessbecomes
obvious is during the Daily Scrums. Other developers should be concerned, or at least
inquisitive,whenafellowdevelopersaystheyare(still)workingonthesametaskforseveraldays.
There may be a lack of transparency or openness in play here. Keep the burndown, and the team,
accurate by updating all of the Remaining WorkfieldsofyourTaskworkitemseachday.

 ■ Burndown actually looks like a “burn-up” Increasing hours may be due to “scope creep,”
which occurs when a substantial amount of work is added to a Sprint after it is planned. This
is to be expected to some degree. A high-performance Scrum Development Team will strive
towards effectively estimating work at the beginning of the Sprint.

WhenanorganizationfirstadoptsScrum,thecustomersandmanagementwillstillbeexpectingto
see the old management reports pertaining to software development. The ones they get in Scrum are
going to be quite different. There will be a transition period for them to unlearn the old reports and
begin understanding the new ones. During this period, the customers and management should also
learn what it means for the team to be self-organizing and self-managing. This will also explain why
the old reports are not necessary anymore. A good Scrum Master can explain to stakeholders that any
report or artifact showing progress is primarily for the team and that they are being allowed access in
order to provide transparency.

286 PART III Improving

Note Burndown charts, graphs, and reports used to be artifacts in Scrum. In 2011,
they were dropped from the Scrum Guide and are no longer a part of Scrum. This is
 because there are many ways that a team can assess progress. For example, in Chapter 7,
”Acceptance test-driven development,” we looked at the practice of ATDD. We talked about
breaking down PBIs into features and scenarios and specifying the expected behavior
in the form of failing acceptance tests. If this practice is adopted by the Development
Team, they will have an array of failing tests prior to coding the features. As development
 proceeds, failing tests become passing tests. At any time, the team can use the remaining
number of failing tests as a measure of progress.

Another way to assess progress is to simply ask the Development Team. At the Daily Scrum, simply
askeachteammemberhowconfidenttheyareinbeingabletomeettheSprintGoalandcompletethe
forecast work. The numbers can be given a percentage such as 50 percent, 80 percent, 100 percent, and so
on,andtrackedeachday.Ifthepercentagesstaythesameorgoup,that’sfine.Iftheystarttodrop,that’s
an indication that something is wrong, and one that can be trusted because it comes directly from the front
line. This technique for assessing progress can be just as effective as using a burndown.

Renegotiating scope
In the business world, things can change suddenly. Software being developed to support the business
or to sell or support a product or service can quickly become obsolete. Or, thinking about it more
optimistically,thesoftwarecanbemodifiedtotakeadvantageofnewopportunities.Regardlessof
the reason for the change, a Product Owner may determine that one or more forecast PBIs no longer
has value once the Sprint has begun. This realization can also be initiated by the Development Team
astheydeterminethataPBIisnotabletobedevelopedtoanydegreethatwouldbefitforpurpose.

Note Renegotiating scope can mean that the Development Team has completed all of its
forecastworkandwantstoaddmorePBIstoitsSprintBacklog(scopeincreases).Inthis
section, however, I’m talking about the more challenging scenarios where the forecast
work was notcompletedorhasbecomeirrelevant(scopedecreases).

The best case scenario when renegotiating scope is that the Development Team has not yet started
on the PBI. Hopefully only an hour or less of the team’s time spent planning the work will be wasted.
The more complex scenario is where the scope needs to be renegotiated after the Development Team
has started working on it. Obviously, the further into the development process, the more work will be
 potentially wasted. The Product Owner should take this into consideration before pressing the “big red
button”tostopdevelopment.Itmaybemoreefficient(lesswasteful)tocreateanewPBIinstead.Itisthe
job of the Scrum Master to help the Product Owner understand the costs associated with the potential
waste. These costs are probably irrelevant if the work the Development Team is doing is truly without value.

 CHAPTER 9 Continuous improvement 287

Smell It’s a smell if I see a Product Owner regularly renegotiating scope. More often than
not, it’s a dysfunctional Product Owner at work, trying to continuously introduce new,
high-priority work. This dysfunction could also be restated as a lack of proper Product
Backlog grooming. It could also be that the Product Owner is new to the role and still
 getting the hang of effectively ordering the Product Backlog. Either way, the Scrum
Master should get involved and make sure that changing scope is truly the exception to
theprocess,andnottherule.Nothingfrustrates(andburnsout)gooddeveloperslike
an organization that keeps giving priority 1 work, on top of other priority 1 work.
If everything is priority 1, then there are no priorities.

Canceling a Sprint
If it is determined that the Sprint Goal becomes obsolete, the Product Owner can cancel the Sprint.
In other words, the Sprint could be canceled if the Product Owner determines that there is no chance
to realize any value in any of the forecast work being developed. For example, if a company suddenly
decides to abandon support for a particular platform, the Sprint could be canceled if it contained only
PBIs targeting that platform.

Note Only the Product Owner has the authority to cancel a Sprint, but he or she can do it
undertheinfluenceofstakeholdersorothersontheScrumTeam.

You would cancel a Sprint only if you were unable to proceed and create anything of value during
the Sprint. Here are some examples:

 ■ Business conditions change in a way that the PBIs in the Sprint Backlog no longer have value.

 ■ The technology on which you’ve been building the software proves invalid, and switching to a
new technology requires a large amount of new planning.

 ■ The organization might undergo a restructuring where developers get moved off the team.

 ■ Critical production support issues arise and take the team away to the point where it isn’t able
to deliver any features or value in the Increment for the Sprint.

When a Sprint is canceled, any “done” PBIs should be reviewed to determine if they are potentially
releasable. The Product Owner may choose to accept the work. All undone PBIs are moved back to
the Product Backlog. They should be re-estimated if required, or left to sink to the dark depths of the
backlog if they are not.

When a Sprint is canceled, it means that at least some amount of the work will have to be thrown
away. Although Scrum minimizes waste through short iterations and just-in-time requirements,
 canceling a Sprint should be the last thing considered. Cancellations consume resources, since
everyone has to regroup in another Sprint Planning meeting to start another Sprint. They are often
traumatic to the Scrum Team and are very uncommon. They are not a good thing.

288 PART III Improving

Tip If your Product Owner is canceling Sprints frequently, consider shortening them
 instead. I’ve worked with teams in volatile markets who normalized on three-day Sprints
for just such a reason. This is an extremely short Sprint, with a relatively high cost in the
overhead of meetings, and should be attempted only by high-performance Scrum Teams.

Undone work
A common problem that Scrum Development Teams face is that of undone work. The Sprint is over,
andsomethingsdidnotgetdone.MaybeanentirePBI(ortwo)didn’tgettouched.Morelikely,
 however, is that a PBI is in progress with one or more undone tasks, code half written, tests half
passed,theDefinitionof“Done”notfullyadheredto,andsoon.Irefertothattypeofundonework
as unfinished. Regardless of how much work was accomplished for a PBI, it cannot be released unless
it is done. Not only would the feature not work correctly, but the Development Team will have intro-
duced technical debt into the product.

Regardless of the type of undone work, or its level of undoneness, the guidance is the same:

1. ThePBI(s)arenotdemonstratedintheSprintReviewmeeting.

2. ThePBI(s)aremovedbacktotheProductBacklog.

3. TheProductOwnerwillconsiderdevelopingthePBI(s)inafutureSprint.

There are other nuances to consider when dealing with undone work:

 ■ No partial credit Story points for partially completed PBIs should not be summed into
Velocity, even partially. The Development Team is either done with a PBI, or they aren’t.
The exception to this is when a PBI can be split and partially released during the Sprint
(seethenextbullet).

 ■ Decompose and release smaller PBIs If a PBI can’t be delivered in whole, as forecast, and
the Development Team determines that it can be decomposed, they should talk with the
Product Owner. That discussion could yield a plan to release smaller, logical parts of the PBI as
smaller PBIs that are truly done and contain business value.

 ■ Re-estimate the PBIs Undone PBIs should be regroomed and re-estimated. This increases
transparencybecausethenewestimatesreflecttheDevelopmentTeam’slatestthinking.
Besides,thenewestimateswillbemoreaccurate,sincetheteamhasfirst-handexperience.
They may also be lower than the original.

 ■ Product Owner owns the order It is always the Product Owner’s prerogative to reorder the
Product Backlog at any time, for any reason. This means that an undone PBI from the current
Sprint may not necessarily be the top-ordered item, or even in the Sprint Backlog, for the next
Sprint.

 CHAPTER 9 Continuous improvement 289

 ■ Excluding undone work from the IncrementIntheeventthataSprintendswithunfinished
work,theremaybealotofmanualeffortrequiredtoexcludetheunfinishedcodeand
behaviorfromtherestoftheIncrement.Single-pieceflow(limitingworkinprogressby
swarming on a PBI) is one such approach. The Development Team can just decide that they
will not advance to the next PBI in the Sprint Backlog until the prior one is done, documented,
and exists with an installer, for example. For some environments, this is not practical, so other,
more engineering-centric solutions are required. The two most common approaches are to
create a version control branch per PBI or to use feature toggles in the application. We will look
at feature toggles in the next section.

 ■ Product Owner cannot override the Definition of “Done” Under no circumstances can
theProductOwner,astakeholder,ortheorganizationoverridetheDefinitionof“Done”and
saythataPBIorbugfixisdonewhenitisn’t.Thatsaid,theProductOwnermaydetermine
thatincludinganunfinishedPBIintheIncrementwilladdmorebusinessvaluetothesoftware
product than not including it. This should be done only after carefully considering the
tradeoffs,suchasthetechnicaldebtthatwillbeincurred.UnfinishedPBIsshouldbetrackedin
theProductBacklogandfinishedassoonaspossible.

Note Fellow Professional Scrum Developer Trainer Chad Albrecht feels that using version
control branches to isolate work per PBI is dysfunctional and does not promote good
 collaboration and CI practices. He has seen many teams do this, and they typically spend
alotoftimemergingwhiletryingtofigureouthoweverythingintegrates.Chadprefers
using a combination of feature toggles, extensive test automation, and CI behavior to
mitigatethechaosgeneratedbyunfinishedwork.

A potentially releasable software product is one that has been designed, developed, tested,
andotherwisedoneaccordingtotheDevelopmentTeam’sdefinition.Theonlyactivityleftisthe
actual release of the software. This means that the Development Team must create any build
packages,installers,helpfiles,andotherartifactstoassistintheactualreleasebeforedeclaringthe
 corresponding PBI, as well as the Increment, “Done.” Whether or not the Product Owner chooses to
release the feature is irrelevant. The Development Team must complete all work as if the Product
Owner was going to release it at the end of the Sprint.

Smell It’s a smell when a Scrum Team, including the Product Owner, just assumes that
undone PBIs will be carried forward to the next Sprint. That may very well be the case, but
assumptions like this can lead to unhealthy behaviors, such as compromising on quality,
pushing off undone work until the next Sprint, and so on. It’s always the Product Owner’s
decision what work will be considered for the next Sprint. He or she should listen to the
Development Team, but it is only one source of input to consider. In other words, it’s a
 dysfunction to assume that the Development Team will just continue working on any
current,unfinishedPBIsinthenextSprint.

290 PART III Improving

VelocitysimplyindicateshowmanyPBIs(orthesumofstorypoints)ateamusuallycompletes
per Sprint. It is not a commitment or a target and should only be used as one of several inputs for
release and Sprint planning. For example, just because the Development Team was able to deliver
30 points last Sprint, that doesn’t mean they will again. The Velocity for next Sprint is always
 unknown, and someone can only guess what it will be. These guesses will become more accurate over
time. Velocity should also increase over time as the team improves. However, making a commitment
based on a guess, even a good one, is still risky. It takes courage to stop guessing and trust that the
 Development Team will be able to self-organize and forecast a comfortable amount of work and then
deliver the best Increment possible given all the constraints.

Smell It’s a smell when I hear the term Velocity and “credit” or “score” together, or when
management tries to compare the Velocities of two Development Teams. This smells like
thedevelopersarebeinggamedinsomeway,orevenartificiallyrewardedsomehow.
Remember that Velocity is just a historical record. It should not be the goal. It is a lagging
indicator of how well the Development Team is working together. Using Velocity in any
other way diminishes its value. Don’t put too much scrutiny, positive or negative, on the
numbers. The Development Team should focus on delivering business value in the form of
working software, and not on increasing its Velocity. That will occur as the team improves.

Feature toggles
A feature toggle is a technique where functionality can be selectively excluded, or disabled, from a
release. These types of solutions are not new. I’ve heard them previously referred to as feature bits,
feature flags, and feature switches. Feature toggles are most often used in the context of undone work
and in lieu of branching in version control. They allow a Development Team to release an Increment
thathasunfinishedfeatures.Theseunfinishedfeaturesarehidden(toggled),sotheydonotappearin
the UI.

Tip Ideally,theDevelopmentTeamwillfinishapartiallycompletedfeatureinanupcoming
Sprint, prior to the release. This minimizes waste and also ensures the toggled feature
doesn’t become long-term technical debt in the product. Even more ideal is that the team
gets better about completing its forecast work and doesn’t need such solutions in the
firstplace.Becarefulreleasingasoftwareproductwithfeaturetoggles,sincetheycan
(bydesign)causedifferentbehaviorindifferentdeployments,whichcanmaketheprocess
of triaging a bug very complex.

The actual implementation of the feature toggle can vary. Menu items can be disabled. Entries
inApp.configorWeb.configfilescanbeused.Evencompilerdirectivescanbeused.Whilethese
techniques can be implemented easily by most .NET developers, there are some third-party libraries
available to simplify the practice further.

 CHAPTER 9 Continuous improvement 291

JasonRoberts(www.dontcodetired.com) has released a simple, yet effective, library called
FeatureToggle.ItdefinesanumberofdifferenttypesoftogglesandsupportsmanyMicrosoft
run-timeplatforms.Youcandownloadthecodeatgithub(https://github.com/jason-roberts/
FeatureToggle) or via NuGet.

Here is a short example, taken from the github wiki, that shows how to use a SimpleFeatureToggle.
First, create a toggle for the feature that you want to control by inheriting from SimpleFeatureToggle:

private class SaveToPdfFeatureToggle : SimpleFeatureToggle { }

Next,addanentrytotheAppSettingssectionoftheApp.configorWeb.configfile.Thiswillcontrol
the value of the SaveToPdfFeatureToggle:

<appSettings>
 <add key="FeatureToggle.SaveToPdfFeatureToggle " value="true"/>
</appSettings>

In the application, add code to query the state of the toggle in code and behave accordingly:

var savePdfFeature = new SaveToPdfFeatureToggle();
if (savePdfFeature.FeatureEnabled)
 ShowSavePdfButton();
else
 HideSavePdfButton();

Later,iftheProductOwnerdecidestodisablethefeature,oritwasn’tfinished,thenreturntothe
.configfileandsetthetoggletofalse:

<appSettings>
 <add key="FeatureToggle.SaveToPdfFeatureToggle " value="false"/>
</appSettings>

Development Teams working in a continuous delivery environment don’t necessarily need
 feature toggles to include or exclude functionality in a release selectively. This is because each PBI
iseffectivelyitsownrelease.Whilethechanceofhavingundoneworkinafixed-lengthSprintstill
exists, these teams may use feature toggles a bit differently. They may use the practice to keep a
featuredisableduntilsomefuturedate.Forexample,ifanonlineSoftwareasaService(SaaS)product
wants to begin offering a new paid feature starting November 1, the product team will probably get
it installed in the production environment days or weeks earlier, and leave it “switched off” until the
release date. Microsoft sometimes takes this approach with their hosted Team Foundation Service.

Handling undone work in Visual Studio
Unfortunately, Visual Studio does not offer any tools for handling undone work. All moving or
 copying operations will have to be performed manually, and it can be a time-consuming undertaking.
Because of this, Product Backlogs and Sprint Backlogs end up in a less-than-desired state of
 organization due to the amount of work required to organize them properly.

292 PART III Improving

When a PBI is not done at the end of a Sprint, the opportunity to work on it as part of the existing
body of work is often lost forever. The reason for this is that when the same PBI or feature is planned
inthenextSprint(orafutureSprint),thecontextforthatworkmaybedifferent.Thisiswhythe
PBI must be re-estimated and reordered, especially for complex work. Admittedly, this isn’t true for
simple or even complicated tasks, such as building a CRUD data entry form.

When considering how to handle undone work in the context of Visual Studio, there are basically
four approaches:

 ■ Move to Product BacklogThisisthemostcommonapproachandfitswithmyguidance
from earlier in this section. The PBI work item is simply moved back to the Product Backlog by
changing its Iteration path and Statefieldsaccordingly.(YoucanalsodraganddropinTeam
Web Access). Linked work items remain linked. No record, other than notes in the History,
shows that the PBI was ever in the original Sprint.

 ■ Copy to Product Backlog The PBI work item is shallow-copied and the copy’s Iteration path
and StatefieldsaresetforittoappearintheProductBacklog.TheoriginalPBIworkitemand
all linked work items remain in the original Sprint in the committed State. The new PBI has no
linkedworkitems,soabrandnewplan(TaskandTestCaseworkitems)canbeestablished
during Sprint planning.

Note Fellow Professional Scrum Developer David Starr recommends this
 approach. He prefers to create a new PBI and replan it from scratch during a later
Sprint. This is especially helpful when the PBI requires overly complex work to
completesuchthatthenewdefinitionofworkwillbedifferentfromtheoldplan.
The old PBI, and any linked work items, should be abandoned and left to the
 historical record of the last Sprint.

 ■ Move to (next) Sprint Backlog If the Product Owner wishes, then the iteration paths of the
PBI work item and all linked work items can be changed to the next Sprint. Everything appears
just the way it was in the original Sprint. No record, other than notes in the History, shows that
the PBI was ever in the original Sprint.

 ■ Copy to (next) Sprint Backlog If the Product Owner wishes, then the PBI work item can be
shallow-copied and have its iteration path set to the next Sprint. The original PBI work item
and all linked work items remain in the original Sprint in the Committed state. The new PBI has
nolinkedworkitems,soabrandnewplan(TaskandTestCaseworkitems)canbeestablished
during Sprint planning.

There will be times that a Scrum Team may want to use each of these approaches. One cannot be
prescribed as the “recommended” one without knowing more about how the team likes to work and
other factors. There are also a number of other activities to consider when copying or moving undone
work items. I’ve listed some of these in Table 9-2.

 CHAPTER 9 Continuous improvement 293

TABLE 9-2 Considerations when copying or moving undone work items.

Consideration

 ■ Set the PBI’s State to Approved when moving or copying to the Product Backlog.

 ■ Set the PBI’s Iteration to the root when moving or copying to the Product Backlog.

Re-estimate and reorder PBIs after moving or copying them to the Product Backlog.

Clear all Remaining WorkfieldsinlinkedTaskworkitems(re-estimatedasneeded)

Clear all Assigned TofieldsinlinkedTaskworkitems(theyshouldnotbepreownedbyanyone).

Setallstatesandfieldsappropriatelyforotherlinkedworkitems(likeTestCases).

Copyall(orjusttheundonetasks)tothenextSprintBacklogiftheplanstillmakessense.

TestCaseandotherworkitemscouldalsobecopiedtothe(next)SprintBacklogifapplicable.

Add appropriate notes to the History tab of the various work items.

Spikes
There will be times that the Development Team will be required to develop something that it hasn’t
donebefore.Needlesstosay,theycannotestimatethetaskwithanyconfidenceeither.Thiscould
 include developing a new capability using a new product, component, framework, system, or
 language. The developers will need to learn and practice in order to develop the feature successfully.
They also need this experience sooner, in order to be able to estimate the size of the PBI.

Organizations can’t expect their developers to gain this knowledge on their own, although some
developers will. I know many developers who consider their profession as their hobby. For these
geeks, learning new things is just fun. For the rest of the world, this learning will have to come during
companytime,onthecompanydime.ButhowdoesthisfitwithScrum?Theansweristoperforma
spike,whichisanotherwordforatechnicalinvestigation,proofofconcept(POC),oranexperiment.
The outcome of which is to gain just enough knowledge to be able to give the Development Team
someconfidenceintheirestimate.Ultimately,Scrumisaboutlearningfromdataderivedfrom
experiments—sothespikeconceptfitsrightin.

Note When fellow Professional Scrum Master Charles Bradley sees the look of sheer panic
on the faces of the Development Team when estimating a new PBI, he knows that it’s time
to perform a spike.

Most spikes are small and executed as needed throughout the Sprint. In fact, I wouldn’t even call
them a spike. They are just part of development. Some Scrum practitioners call them spike tasks
(asopposedtothelargerspike stories). If a developer needs to clarify a technical issue, and another
team member cannot help, the developer can create a quick spike instead. Time-boxing should
always be used to keep spikes as small as is necessary. The Development Team can decide the criteria
for when to track the task in the Sprint Backlog, such as by creating a TFS work item.

294 PART III Improving

Tip A spike is not the same thing as a tracer bullet. A tracer bullet is development that cuts
vertically through the many layers of architecture. This is sometimes known as the practice
of developing thin, vertical slices. Emergent architecture is the practice of continually
 developing in thin slices like this. Tracer bullets can be experimental in nature, like a spike.
But, unlike a spike, they are not typically discarded at the end of the experiment.

When a spike takes a large amount of time, or is required to be accomplished before the
 Development Team can estimate a PBI, it should be treated like any other PBI. Spikes are part of the
Sprint and should therefore be accounted for in Sprint Planning and be represented in the Sprint
Backlog.ThismeansthatthespikeshouldbeaddedtotheProductBacklogfirst,andforecastaspart
oftheSprint.Aplanshouldbecreatedandtracked,justlikeanyotherfeatureorbugfix.Thereshould
alwaysbeotherPBIsforecastforthatSprint,evenjustafewsmallones,sotheproduct(andthe
 Product Owner) will enjoy some increment of business value every Sprint.

Tip Fellow Professional Scrum Master Charles Bradley recommends that a Scrum Team
add acceptance criteria to any spike PBI to ensure that the follow-on PBI exists and is
 properly groomed. This way, the spike is not “done” until another PBI exists containing
clearacceptancecriteria,andthatisestimable(withsomelevelofDevelopmentTeam
confidence).

Smell It’s a smell when a spike takes the majority of the team the majority of the Sprint to
accomplish. It’s a stench when it takes multiple Sprints. I guess it may be possible that the
new architecture or technology is so alien that it really does require that much capacity to
understand it to the point of being able to use it effectively. In my experience, however,
goodsoftwaredevelopersaren’tcaughtflat-footedlikethisveryoften.Newtoolsand
technology are pretty similar to the previous ones. Also, don’t let the Development Team
get into the habit of creating a spike for every PBI that it grooms. Spikes should be few and
far between.

Fixed-Price contracts and Scrum
Scrum works well when the Product Owner, customer, and stakeholders trust the Development Team
and all are able to work together collaboratively. If the customer has had enough projects fail in the
past, this trust won’t be there initially. In their minds, it will need to be replaced with a contractual
relationship with the development group instead. The customer’s hope is that the contract and its
clauses and signatures will minimize the customer’s risk and provide a legal way of recovering costs if
the developers fail to deliver. From their perspective, they only have one shot at getting the software
theywant,sotheywanttodefineeverythingupfrontandthenmanageriskbyputtingamonetary
limit on the cost.

 CHAPTER 9 Continuous improvement 295

The most common of these contract development agreements are known as fixed-priceor(fixed-
bid)contracts.Theyattempttopredictexactlythecost(andthetime)atwhichthesoftwarethat’s
beenspecifiedbythecustomerwillbedelivered.Thecommonmisconceptionisthatitisimpossible
touseScrumonafixed-pricecontract.TherealityisthatScrumhandlesthisinthesamewaythatany
other process would. Everything the customer wants is detailed and estimated, generating an idea of
a time at which everything can be delivered.

Herearethecommonchallengeswithfixed-pricedcontracts:

 ■ Price is the most important factor and is driven by competition, not quality.

 ■ Requirements are vague, wrong, out of date, or missing.

 ■ Team-basedestimationisimpossibleduetoinsufficientdata.

 ■ Noknowledgeableperson(suchasaProductOwner)exists.

 ■ TheScrumTeamdoesn’thaveanyincentivetospendtimeenlighteningthe(potential)
 customer about Scrum, or creating and grooming a Product Backlog prior to signing a
 contract.

 ■ Qualityisnotdefined,onlyassumed.

 ■ NoDefinitionof“Done,”orevenabasisforone,exists.

 ■ Deadlinesareartificialandimpossible.

 ■ Risks are not shared or are ignored.

Tip Bewareoffixed-price,fixed-scopecontracts.Scrum+fixed-price+fixed-scopedon’t
mix. This is the whole idea behind having a Product Backlog and an active Product Owner
toorderthePBIs.Ifthecustomerinafixed-pricecontractwantstoownboththedateand
thenumberoffeatures,theonlyremainingvariableisquality,andsacrificingqualitynever
works out, especially in a contract situation.

Anyfixed-pricecontractshouldbevariable-scope.ThisfitsbetterwithScrumbecausetheteam
cannowapplyaconsistentDefinitionof“Done”andestablishanuncompromisingbaselineofquality
for all of the work it does. The team then can start using iterative, incremental development to begin
delivering increments of working software every month or sooner. This model provides more value
and less risk to both parties, but is hard to conceptualize and agree to without knowing more about
Scrum and the Development Team.

Perhapsabetternameforafixed-pricecontractwouldbesimplyfixed-budget contract. The
customer knows how much they want to spend, or at least what the ceiling is. By creating an ordered
Product Backlog, the customer will get the most important features before the money runs out.
Therefore, the ideal Scrum contract model should be fixed-budget, variable-scope.

296 PART III Improving

HerearetworulestoconsiderwhenusingScrumforafixed-priceproject:

 ■ Thecustomer(viatheProductOwner)canreplaceanyitemintheProductBacklogwith
another item of similar size, provided the Development Team hasn’t started working on it or
completed it yet.

 ■ Atanypointintime,thecustomer(viatheProductOwner)cansaythattheyhaveenough
functionality and effectively end the development effort.

Speaking of risk, it’s important for both the customer and the Scrum Team to share the risk.
 Typically, this means that the customer must become the Product Owner or work closely with a
knowledgeable Product Owner to order the Product Backlog and determine the scope. This removes
the risk of the Development Team developing the wrong features, or not getting to their “must-have”
features before the budget runs out. Some customers, after learning that they will be accountable for
this, may decide to walk away and offer the work to a competitor. You should let this happen. In my
opinion, this is the right thing to do, rather than running the risk of building the wrong product or a
product of questionable quality and value.

Common dysfunctions

Leo Tolstoy told us that “happy families are all alike, but that every unhappy family is unhappy in
its own way.” This is true of teams that develop software as well. A certain amount of dysfunction is
going to exist, even in high-performance Scrum Teams, and it will always be unique. This is because
Scrum is about people, and people don’t behave like highly predictable machines.

Removingadysfunctionalbehaviorcanbedifficult.Identifyingitinthefirstplacecanbevery
difficult,especiallyifyouareinthemiddleofitorthecauseofit.PartofbecominggoodatScrumis
theabilitytoinspectanddetectdysfunctionalbehavior.Atfirst,thismaybetheabilitytoknowwhen
your team isn’t following the rules of Scrum, according the Scrum Guide. But that’s not enough.

It may seem like the Scrum Guide has an answer for everything, but it doesn’t. The complex world
of software development will sometimes put you and your team in the middle of two practices that
conflictwitheachother.Yourabilitiesshouldtranscendfromjustknowingtherulestoknowing
(andapplying)theprinciplesandvaluesofScrum.Knowingthehigher-levelreasoningbehindAgile
softwaredevelopmentandwhyScrumworksallowsyoutoidentifyandresolvesuchconflicts.

Teams new to Scrum will fumble with applying the right practice for a given dysfunction. Their
heads are down, executing the practice. High-performance Scrum Teams have moved beyond rote
practices and think in principles. Their heads are up, looking for dysfunction and ways to generate
more value. It’s a state of mind, and it comes with experience.

This section serves as a guidebook to the different types of dysfunction that can be found on a
Scrum Team, and offers ideas for removing them.

 CHAPTER 9 Continuous improvement 297

Not getting “done”
You would think that doneiswhenanewfeatureorbugfixhasbeendeployedandisrunninghappily
inproduction.Iwouldagree.Ifthat’sthestatusofyourPBI,thenyouaredefinitelydonewithit.From
Scrum’s point of view, however, this is not always the case. Done doesn’t necessarily mean that the PBI
is in production, but that it easily could be. This is the concept of potentially releasable, or potentially
shippable, as some of us still say. In Scrum, “done” typically includes everything up to, but excluding
being deployed. It’s actually up to the Development Team to decide what ”done” means, through the
Definitionof“Done.”

What ”done” doesn’t mean is that the PBI has been coded but not yet tested. In Scrum, all software
engineeringactivities,includingtesting,mustbefinishedbeforeaPBIcanbeconsidereddone.It’sa
dysfunctionwhenaDevelopmentTeamisnotabletocompleteitsworkaccordingtotheDefinition
of“Done.”Perhapstheirdefinitionistoostringent.PerhapstheSprintlengthistooshort.Morelikely,
their Sprint length is too long. Nothing focuses the Development Team like knowing it has a Sprint
Review meeting in the same week that the Sprint starts.

Smell It’s a smell what I hear a team using the terms “done done,” “proper done,” or “really done.”
Historically, these terms have meant that both coding and testing had been completed,
whichimpliesthattherewasa“done”statewherejustthecodingwasfinished.InScrum
there is only ”done,” and the team is either there or they aren’t. It is a Boolean state.

In Chapter 1, “Scrumdamentals,“ImentionedthattheDefinitionof“Done”isanauditablechecklist
thateachPBImustgothroughbeforeitisconsidereddone.Wheneachiteminthatdefinitionis
“checked” and the Product Owner accepts the work, the PBI is done. Some Development Teams
includeaniteminthedefinitionverifyingtheProductOwner’sacceptance.Otherteamsdon’t,and
justunderstandthatit’ssimplyapartofScrum’sworkflowforbeingdone.Eitherapproachisfine,so
long as it is uniformly applied, understood by the entire Scrum Team, and never undermined.

If a Development Team is not able to complete all of its work—such as performance, regression,
stability, security, and integration testing—within a Sprint for each PBI, this work then becomes
undone work. Sprint after Sprint, this backlog of undone work accumulates and must be addressed
at some point prior to releasing the Increment. The work may appear to accumulate linearly, but in
fact, the accumulation is more exponential. This is due to the inherently complex nature of software
 development, as well as the attributes and behaviors of the product and the organization. For
 example, the organization may not have a proper environment provisioned yet to complete the
testing, or a lengthy “route to live.” These should be considered impediments. Regardless, additional
“release” Sprints must be added to the end of any release to complete this undone work. The number
of these Sprints is unpredictable to the degree that the accumulation of undone work is not linear.
Needless to say, undone work is a form of technical debt and should be avoided.

298 PART III Improving

Tip There are times that the Development Team will not get done. It is hard to prevent this
from happening from time to time. It is important not to make it a habit by forecasting too
much work. It is also important to craft a reasonable Sprint Goal during Sprint Planning.
Having a Sprint Goal is important because, even if some of the forecast PBIs aren’t
 completed, at least the goal was met and the Sprint was not a failure. Refer to Chapter 1 for
more information on Sprint Goals. The Development Team should make good use of the
Sprint Retrospective and Sprint Planning meetings by analyzing all of the inputs, checking
capacity and recent Velocity, and forecasting a comfortable amount of work each Sprint.

Flaccid Scrum
InJanuary2009,MartinFowlerwroteablogpostonthetopicofflaccidScrum.Justasthename
implies, his observations of many teams doing Scrum was that they were doing poorly. His typical
 observation would include a team that wanted to use an Agile process, so they picked Scrum. The
team adopted the Scrum practices, and maybe even the principles. After a while, progress slowed
because the code base became a mess and the team found itself drowning in technical debt. You can
read Martin Fowler’s article here: http://martinfowler.com/bliki/FlaccidScrum.html.

The fact that these teams were using Scrum was orthogonal to the root cause of the problem.
It was just another example of teams and organizations considering Scrum a silver bullet. Scrum
issimplyaframeworkforplanningandmanagingcomplexwork.Itsaysnothingaboutspecific
 development and engineering practices exercised within, other than the generic statement: “As Scrum
Teamsmature,itisexpectedthattheirDefinitionof‘Done’willexpandtoincludemorestringent
criteria for higher quality.”

I surmise that the software products that these teams were developing suffered low quality
 because the developers were not inspecting, not adapting, or both. Remember that Scrum has built-in
opportunities to inspect and adapt, at both the process and the product level. The fact that technical
debtwasbuildinguptocriticallevelswasbecausetheteamseitherdidn’tknow(weren’tinspecting)
ordidn’tcare(weren’tadapting).

Note I’ve met with many such teams who love to throw around the terms Sprint, Scrum
Master, Product Backlog, and so on. But when it came to being able to deliver business
value within a time-box, they couldn’t do it. It seems as though they were using the Scrum
nouns, but not doing the Scrum verbs.

TofightflaccidScrum,theDevelopmentTeamneedstoinspectandadaptitstechnicalpractices.
This is true especially if there is a lot of technical debt and technical dysfunction present. During the
Sprint Retrospective meeting, the team should inspect its current practices and, if improvement is
required,agreetoadopt,continueusing,orabandonanyspecificpractice.Theycanalsotakethis
opportunitytoratchetuptheirDefinitionof“Done”andincludemorestringentcriteriaforhigher
quality. Most importantly, in the next Sprint, they can adapt by executing on these improvements.

 CHAPTER 9 Continuous improvement 299

Tip TheProfessionalScrumDeveloper(PSD)programwasadirectresponsetothe
problemofflaccidScrum.Theprogramconsistsofatrainingcourse,assessment,
certification,andacommunitydevelopedforthemostneglectedroleinScrum:the
Development Team. The PSD course was developed in cooperation between Microsoft,
Scrum.org, and Accentient.

Not inspecting, not adapting
Flaccid Scrum came about because of many reasons. Teams were uneducated. Teams didn’t have
aDefinitionof“Done,”didn’tsticktoit,ordidn’ttrytoimproveit.Teamsweren’tabletodeliver
 business value in a single Sprint. Teams weren’t inspecting. Teams weren’t adapting.

Scrum is based on empiricism, which means that the players make decisions based on what is.
TheseplayersmustfrequentlyinspectScrumartifactsandtheirprogresstowardagoal(releaseor
Sprint) to detect any undesirable variances. Good decisions can’t be made if you don’t have the data.
Conversely, rich data is useless unless it is acted upon. Not doing either is a dysfunction.

Tip If I want to know how well a Scrum Team is inspecting and adapting, I will ask about
theirSprintRetrospectives.Inmyexperience,theSprintRetrospectiveisthefirsttosuffer
when times get rough. Sure, the team may meet and discuss things, but they may not
actontheirfindings.Icontendthat“roughtimes”iscodefor“wedidn’tlikewhatwe
 discovered” or “we didn’t want to improve.” Fellow Professional Scrum Developer Simon
Reindl also likes to ask the Development Team to see their automated regression test
 coverage. This is an indication of how well they are improving technically.

For example, a Scrum Team may be very diligent about scheduling and attending their Sprint
Retrospective meetings. They may have rich conversations and discuss the high and low points of
the Sprint. They may even identify things to do differently in the next Sprint. Multiple team members
capture this information and then do nothing with it. They have inspected, but not adapted.

Tip Fellow Professional Scrum Master Charles Bradley recommends that anything the
Scrum Team tries to do differently in the next Sprint remain visible and transparent to
the team. There are several strategies for encouraging adaptions. Some teams use a
Retrospective Backlog, while others add tasks to the next Sprint’s Backlog to represent the
work and time needed to adapt their practices. Still others use a small portion of the Sprint
Retrospective to inspect whether they made the adaptations suggested from the previous
Sprint Retrospective.

300 PART III Improving

Smell It’s a smell when I see nobody taking notes at the various Scrum events, such as the
Daily Scrum or the Sprint Retrospective. Does the team not have anything interesting to
discussandrecord?Maybetheyhavenothingthatcanbefixed,andthusnoactionitems.
For the teams I’ve worked with, however, this is rarely the case. More likely, nobody wants
to be the secretary and do the paperwork. This is a behavior the team should correct. In
the meantime, and at the very least, the Scrum Master should be recording any inspections
and then ensuring the appropriate adaptations are made. It’s also a smell when I hear the
sameitem(s)cominguprepeatedly.Thisisafailuretoadapt.

On the other hand, formal inspection should not occur so frequently that it gets in the way of
the work. In order to minimize this, Scrum prescribes four formal opportunities for inspection and
 adaptation:

 ■ Sprint Planning meeting The Product Backlog is inspected, and the Sprint Backlog is
adapted.

 ■ Daily Scrum The Development Team’s progress is inspected, and their plan for the next 24
hours is adapted.

 ■ Sprint Review meeting The Increment is inspected, and the Product Backlog is adapted.

 ■ Sprint Retrospective meetingTheprocessandpractices,includingtheDefinitionof“Done,”
areinspectedandadapted(duringthenextSprint).

Development Team challenges
It takes time for a Development Team to be able to self-organize, even with the support of the
 organization. Development teams that come from a more formal, “waterfall” background are used to
therelativesafetyofthedifferentstages.Hidingbehind(thewrong)requirementsorinfrontof(the
yet to be run) tests provides a level of safety and cover. Moving to an attitude of understanding that
everybody is on the same team, working towards the same goals, and sharing in the same successes
and failures will take time.

As I’ve said before, Scrum is about people. These people work together as a team communicating,
listening, complementing each other’s skills, sharing objectives, and solving problems together. There
must be compassion and respect for each other, as well as trust. These attributes will develop and
improve over time. High-performance Scrum Development Teams continually balance the three raw
ingredients of a Development Team: people, process, and technology. You can see this in Figure 9-3.

People exhibit different behaviors depending on the context of a situation. There is the normal
 behavior: how team members usually see each other. There is problem solving behavior: the team
members are fully engaged mentally and getting stuff done. There is also stress behavior: quite
 different from the others and often harder for the rest of the team to deal with. During any given
Sprint, each of these behaviors will be observable.

 CHAPTER 9 Continuous improvement 301

People Process

Technology

ProcessPeople

Technology

FIGURE 9-3 Achieving high-performance Scrum is a continuous balancing act.

Note There are many frameworks and techniques out there that try to capture and
 categorize the attributes of people and their interpersonal relationships. In my opinion,
these should not be used to “improve” a Development Team unless the current climate
is a disaster. FIRO-B is interesting because it focuses on capturing and measuring the
 interpersonal needs of members of small groups. The theory is based on the belief that
when people get together in a group, there are three main interpersonal needs they are
looking to obtain: affection/openness, control, and inclusion. The instrument helps teams
measure/control feelings when it comes to these needs. For more information on FIRO-B,
visit https://www.cpp.com/products/firo-b/index.aspx.

Scrum Development Teams need to learn to deal effectively with ambiguity. For most projects, the
team won’t have all the answers. Effectiveness in the face of ambiguity is a measure of intellectual
growthandmaturity.DevelopmentTeamswillfindthemselvesinunusualcircumstancesthatcannot
be solved by thinking at the practice level; rather, it can be solved only by abstracting to the principle
level. It’s up to the individuals to make judgments and not just copy and paste random bits of
 practice.

In addition to dealing with ambiguity, there are a number of other challenges facing a
 Development Team. Here is a list of dysfunctions, expressed as “weasel words,” that may be found in
any given Development Team:

 ■ I don’t have all the requirements and can’t get started. A major theme in Scrum is the
ability for the Development Team to self-organize and get the job done. If there are missing
requirements,fixthatbygettingtheanswers.Ifyouwanttoaddfunctionalityoverandabove
what the Product Owner is asking for, don’t. Remember, the Product Owner owns the what,
and the Development Team owns the how.

302 PART III Improving

 ■ I monopolize the conversation. Stop doing that. Use active listening skills to improve your
ability to communicate and collaborate with others.

 ■ I tell other people what to do. The entire Development Team needs to be able to
 self- organize. This means that nobody, not a Scrum Master, not a Product Owner, not a
 manager, and certainly not a developer can order another developer to work on a particular
task or to do a task in a particular way. Work is never assigned in Scrum. Perhaps you need to
excuse yourself from the team for a while so they can learn these skills on their own.
The Scrum Master can help you arrange a vacation.

 ■ I’m quiet and don’t like to converse with others. Effective collaboration requires all parties
to communicate. This is more than just actively listening, but also actively talking and sharing
ideas.

 ■ I’m a coder, not a tester or I’m a tester, not a coder. In Scrum, everyone is a developer
regardless of what their business card says or what activity they are working on that day.
 Besides, most tests in Visual Studio are written in code.

 ■ I’m not to blame, another developer broke it. In Scrum, the whole team succeeds or fails.
Ifsomethingbrokeit’sbecausetheteambrokeit.Theteamwillfixit.Focusonbeingateam
player.

 ■ I’ll let the Scrum Master remove the impediment. If you can remove the impediment
yourself,doit.Ifyoucannot,orifyoucanprovidemorevaluebydoingsomethingelse(such
as developing software), consider asking the Scrum Master for help.

 ■ I write great code by myself. That’s nice to know. Having another developer review your
code or pairing with another developer isn’t always about you. It can be a learning experience
for others, as well as improve the quality of the product. It also helps hedge against the event
where you are hit by a bus, or decide to quit your job because you’ve won the lottery.

 ■ I’ll work evenings and weekends to get this done. Thank you, but that sounds like an
 unsustainable pace. Typically, this smell is due to time management or over-forecasting
dysfunctions.DuringthenextSprintRetrospective,theteamshoulddiscussthisandfindan
alternative approach to reaching its goals, such as forecasting less work in the next Sprint.

 ■ I can slack off because others will do my work. Every day, the entire Development Team
meetsfortheDailyScrum.Duringthismeeting,eachdeveloperclarifieshisorherplanforthe
next 24 hours. If, for example, by the third day, a developer is still working on the same task,
theothersshouldnotice.Theself-managingteamcanthenfindanappropriatesolution.

 ■ Nobody on our team has that skill set. This may be true, especially as a software product
delves into new markets and new technologies. The reality is the Development Team needs
to acquire the necessary skill set. Attending training, adding a new developer to the team,
or learning the technology on their own are all options. Be sure to account for this change in
capacity at the next Sprint Planning meeting, and add any large spikes to the Product Backlog.

 CHAPTER 9 Continuous improvement 303

 ■ I’ll give it to the testers at the end of the Sprint. There are no testers in Scrum, only
 developers. Some developers will focus on coding tasks, and others on testing tasks, but this
is not written in stone. For a PBI to be done, it needs to be tested as well. Don’t wait until the
end of the Sprint to do this as it increases the risk of not being able to release the PBI. If you
have the capacity, you can do the testing tasks yourself.

 ■ Nothing is blocking me. These are commonly heard words during a daily Scrum. But
theydonotalwaysreflectreality.Developersneedtolearnthattransparencyandopenness
starts within themselves and the team. If there is an impediment or even the possibility of an
 impediment blocking some work, be sure to let others know, regardless of whether you have
other things to work on or not. Identifying actual or possible impediments is not whining, and
it is not a sign of weakness. In fact, it is quite the opposite. Identifying impediments is about
transparency and creating a strong, high-performance Scrum Team.

Measuring performance
A Development Team’s performance should be measured by what it is able to develop. In other
words, rate the team by its ability to turn requirements into Increments of functionality that are
actuallydeployedtoproduction.ThiscanbemeasuredforaspecificSprintorfortheentirerelease.

Velocity isthemeasureofhowmanyPBIs(orstorypoints)theteamisabletodelivereachSprint.
This measure can then be divided by the cost of the team to develop that Increment. You can also use
aconsistentnumbersuchas$100,000(or100,000financialunits).Performancecanbemeasuredas
you see this ratio increasing over time.

Tip From the perspective of the business, Velocity is not a good metric on which to base
performance. If the Product Owner tracks business value for each PBI, this provides a
 better measure than just the number of PBIs or the sum of their story points. Whether the
businessvalueisspecifiedinanumericrange,income/profit,orsomespecificscale,when
this number is expressed over a monetary amount, it will tell the business exactly how
muchvalueisbeingreturnedoninvestment(ROI).TrackingROIperPBIorteamhelpsthe
Product Owner and organization focus on the business value.

The performance of individual team members should never be measured. The team is
 self -managing and operates as a unit, not as a group of individuals. For a given Sprint or release,
some developers may be a lot more heads-down than others. As such, it may appear to stakeholders
like these individuals are “working harder” and more worthy of praise. Other developers, those not
at the keyboard, may actually be “working harder” while coaching, mentoring, or designing. Invisible
metrics like this are hard to measure and can be missed. A better approach is to rate the performance
of the team as a whole and by the business value of what they deliver.

304 PART III Improving

Working with a challenging Product Owner
The Product Owner is responsible for maximizing the value of the product and the work of the
 Development Team. This is a lot of responsibility for a single person, making this the hardest role in
Scrum.Needlesstosay,mostProductOwnerscanfindatleastoneortwodysfunctionstoimprove
upon.

One of the biggest dysfunctions a Product Owner can possess is not knowing their role. They must
reflecttherealvalueandprioritiesofthebusiness,customer,oruserwithrespecttothesoftware
product. This is both the biggest responsibility and the biggest potential risk of the role. The Product
Owner is one person, not a committee. The desires of the committee, however, may be represented
by the Product Owner in the Product Backlog.

Note OrganizationsstruggletofindviableProductOwnercandidatesamongtheirexisting
employees. People with technical backgrounds are typically better suited to be on the
Development Team, as they like to get involved with how things are developed rather than
what should be developed. Employees with management backgrounds might be inclined
to install command-and-control practices. Candidates with strong Scrum knowledge
 typically gravitate towards being the Scrum Master.

Successful Product Owners tend to have product management and even marketing
 backgrounds. They understand terms like “market segment” and “sales channel.” When
no such candidates exist, I’ve seen some organizations advertise the position of Product
Owner online and in the local papers. Seriously. It sounds weird, but by bringing in
 someone off the street with the knowledge of what a Product Owner should do, but
 absent the knowledge of organizational politics and the “old way” of doing things in the
organization, is often a recipe for success. They just need to learn the product and the
 desires of the customer and users to succeed.

Being able to negotiate the politics of an organization, its committees, and the users can be an
exhaustive, full-time job. For the Product Owner to succeed, the entire organization must respect
his or her decisions. The Product Owner’s decisions are visible in the content and ordering of the
Product Backlog. No one is allowed to tell the Development Team to work from a different set of
 requirements, and the Development Team isn’t allowed to act on what anyone else says.

Here is a list of other challenges you might encounter when working with Product Owners:

 ■ Injecting their own version of Scrum There is only one version of Scrum, and it’s documented
in the Scrum Guide.Anythingelserisksupsettingtheestablishedflow.Anyallegiancetoold
 waterfall habits must go. Understand that mental muscle memory takes time to fade.

 ■ Insufficient acceptance criteria A good PBI doesn’t just stop at a title and description. The
ProductOwner,withhelpifnecessary,shouldevolvetherequirementanddefinewhatsuccess
looks like in the form of acceptance criteria. These should be testable, or even written as
executablespecificationsifthat’swhattheScrumTeamispracticing.

 CHAPTER 9 Continuous improvement 305

Tip When creating a PBI, and specifying its acceptance criteria, remember the
INVEST mnemonic: Independent, Negotiable, Valuable, Estimable, Small, and
Testable. Refer to Chapter 1 for more information.

 ■ Absent or doesn’t interact with the team In order to maximize the work of the
 Development Team, the Product Owner must interact and collaborate. This is especially true
during Sprint Planning, Sprint Review, and Sprint Retrospective meetings, and especially the
regular Product Backlog grooming. The Product Owner should also be available during the
Sprint to clarify requirements, review work, and provide feedback.

Note Fellow Professional Scrum Developer Chad Albrecht reminds us that
the Product Owner’s primary responsibility is to understand the product.
He recommends that a Product Owner spend 75 percent of his or her time
 understanding the product, its customers and users, the competition, and so on.
Only 25 percent of the Product Owner’s time should be spent interacting with the
Development Team. The Development Team should use their autonomy to make
good decisions about development and keep the Product Owner in the loop.
This keeps the Product Owner from being an impediment and also engages the
Development Team more than if the Product Owner has to make every decision.

 ■ Disrupts the teamWhetherit’stointroduceanewpieceofworkduringtheSprint(scope
creep) or just wandering into the team room and asking how things are going, these intrusions
caninterrupttheflow.TheScrumMastershouldgetinvolvedandhelptheProductOwner
understand this.

 ■ Product Owner provides the solutions The Product Owner must allow the Development
Teamtoself-organizeandcomeupwithitsownsolution.Solongasitisfit-for-purpose,meets
alltheacceptancecriteria,andabidesbytheDefinitionof“Done,”itshouldbeacceptable.

 ■ The Development Team elicits PBIs directly It’s good to know that they have that skill, but
their time is better spent on deciding how to implement the feature, not determining what
feature to develop. If the Product Owner needs technical assistance expressing a requirement,
this should be done collaboratively during grooming.

 ■ Indecisiveness The Product Owner has the authority to make decisions pertaining to the
software product. This includes everything from determining the value of a PBI, to ordering
the Product Backlog, to changing the scope of a Sprint, and even canceling a Sprint. The
ScrumMastercanhelptheProductOwnerunderstandtheramificationsofthesedecisions,
but the decisions still have to be made.

 ■ Not being prepared This common dysfunction is especially risky with regard to Product
Owners.Theplansofmultiplepeople(theDevelopmentTeam)dependonthedecisionsmade

306 PART III Improving

byasingleperson(theProductOwner).IftheProductOwnerisnotprepared,muchwastecan
be generated. Regularly scheduled Product Backlog grooming sessions can help.

Tip Fellow Professional Scrum Developer Mike Vincent can’t stress enough
how important it is for a Product Owner to be prepared. When he or she is not
prepared, the Development Team can usually compensate, but at the cost of
reduced Velocity. Instead, the Development Team should learn to push back
on the Product Owner, saying “no” or demanding more information. A good
Scrum Master can help facilitate this, either immediately or at the next Sprint
Retrospective meeting.

 ■ Command-and-control Product Owner In Scrum, the Product Owner is not the “boss” in
the traditional sense. It’s acceptable to say no, especially when he or she is asking you to do
something that is out of bounds for the Product Owner role or the rules of Scrum in general.
The Scrum Master can be called in to referee if necessary.

 ■ Expects a commitment, not a forecast An important change was made in the Scrum Guide
in 2011. The Development Team now forecasts the work that it honestly feels that it can deliver
during the Sprint, but they don’t commit to it. If a Product Owner expects a commitment, such
as assuming the developers will sleep under their desks until the Sprint Backlog is done, that
is an unhealthy, dysfunctional behavior. While this might be possible once every few Sprints,
such as during the last Sprint before a release, it is not a sustainable pace. The Product Owner
must learn the difference between a forecast and a commitment. A good Scrum Master can
help explain this concept.

Tip Fellow Professional Scrum Developer Jose Luis Soria Teruel wrote a great
article explaining the difference between commit and forecast. He also included
the reasoning behind the change. You can read his article on Scrum.org at
http://www.scrum.org/About/All-Articles/articleType/ArticleView/articleId/95/
Commitment-vs-Forecast-A-subtle-but-important-change-to-Scrum.

 ■ Multiple Product Owners The Product Owner is one person, not a committee. The Development
Team,aswellasthestakeholders,shouldhavea“singlewringableneck”(or“onethroattochoke”).
Having multiple Product Owners is confusing to everybody. Pick one, and the others become
stakeholders who help the Product Owner create PBIs and order the Product Backlog.

 ■ Multiple Stakeholders, but no true Product Owner People often confuse the role of
 Product Owner with that of a business stakeholder. Just because someone has a large
influenceontheproduct,orthebusinessunitthatusestheproduct,doesn’tmakethatperson
aProductOwner.TheProductOwnerisaroledefinedintheScrum Guide. The Product Owner
worksverycollaborativelyandcloselywiththerestoftheScrumteam,andfulfillshisorher
Scrum role dutifully.

http://www.scrum.org/About/All-Articles/articleType/ArticleView/articleId/95/Commitment-vs-Forecast-A-subtle-but-important-change-to-Scrum

 CHAPTER 9 Continuous improvement 307

 ■ The Development Team maintains the Product Backlog Developers typically do not have
the proper vision and insight into the needs of the customer and users to maintain the Product
Backlog adequately. They are better at solving technical problems. The Product Owner needs
to be present and accountable for maximizing ROI in the software product. This is done
through the content and order of the items in the Product Backlog. While there may be times
that the Development Team gets involved, such as helping the Product Owner understand
how technical dependencies affect the delivery order, these should be the exception and
not the rule. The Product Owner is responsible for maintaining the content and order of the
Product Backlog, and passing that task along to the Development Team smells like a weak or
unprepared Product Owner.

 ■ Acting as a developer Product Owners sometimes come up through an organization’s
technical ranks. While developing the product, someone learned everything there is to know
about it and ended up becoming its Product Owner. Unfortunately, this increases the chances
that person will become involved with how it should be developed, when he or she should be
focused only on what to develop. Having a Product Owner also be a developer is sometimes
unavoidable, especially for smaller teams such as startups.

The Product Owner is a full member of the Scrum Team and, as such, should be present at all Scrum
events, with the exception of the Daily Scrum. The purpose of the Daily Scrum is for the Development
Team to create a plan for the next 24 hours. The Product Owner shouldn’t have any input on the plan,
nor does he or she need to know about it once it is made. The Product Owner, however, should be
 available to the Development Team during work time. Being in close proximity and ready to collaborate
in person as needed is a recipe for a successful software product. Keep in mind that the Product Owner
also needs to work with stakeholders during these same hours, so availability may be limited.

Smell It’s a smell when I meet a Scrum Team who still goes by their old titles. When I’m
introduced to the Scrum Master, and he tells me his name is Dave and he’s the CIO, I get
confused. The rest of his teammates might get confused too. Remember, in Scrum, there
are only the Product Owner, Scrum Master, and Development Team roles.

Working with challenging stakeholders
StakeholdersarenotanofficialroleinScrum,buttheyexistandcanbechallengingtoworkwith.
Remember that a stakeholder is any person who has a direct or indirect interest in the work of the
Development Team. He or she may be a customer, a user, a domain expert, a manager, or a company
 executive. For the most part, the Development Team may not interact with stakeholders too often.
The only time the Development Team is guaranteed to interact with stakeholders is during the
Sprint Review meeting. They may also interact at any other time, as required during Product Backlog
grooming or to help understand a requirement.

Stakeholders may or may not know about Scrum. And what they do know, may not be accurate.
Some stakeholders may think Scrum is a “silver bullet” and just by using the nouns during
 conversations and meetings, the software will develop itself quickly, perfectly, and without bugs.

308 PART III Improving

It’s the responsibility of the Scrum Master to squash this illusion and tell the uneducated that Scrum’s
success depends on empiricism and the commitment of the people practicing it. Stakeholders are
welcome, and encouraged, to watch the great experiment take place.

Note Scrum was not designed to keep stakeholders from interacting with the
Development Team. On the contrary, Scrum brings the two camps closer together, just
in a more structured and productive way. For example, the Sprint Review meeting allows
stakeholders to see working software and provide instant feedback, which is captured in
the Product Backlog. Most stakeholders are ecstatic that there is a software development
process used by the organization that actually allows them to see the working results of
the Development Team’s effort every few weeks. This is welcome transparency, much like
being able to meet the chef at a nice restaurant.

Here is a list of challenges you might encounter when interacting with stakeholders:

 ■ Doesn’t understand the Definition of “Done” Since stakeholders do not necessarily
know Scrum, they may not understand why something “they saw running on your desktop
 yesterday” isn’t done and able to be demonstrated during Sprint Review. You, or the Scrum
Master,canexplainhowtheDefinitionof“Done”ensuresanuncompromisinglevelofquality.
This should be done using their terms. For example, instead of saying, “Load testing has not
been completed,” you should say, “We still don’t know how the application performs with lots
of concurrent users.”

 ■ Doesn’t provide feedback Some stakeholders are just not that interested in the software
product. They may be paying for it, or managing the department of employees that will be
 using it, but they just don’t care. If it won’t hurt the long-term prospects of the product,
 consider uninviting them to the next Sprint Review, or at least inviting some other, more
interested parties. Whenever possible, invite a few key users. They tend to be passionate about
what the team is doing and provide extremely valuable feedback.

 ■ Injects their own version of Scrum There is only one version of Scrum, and it’s documented
in the Scrum Guide.Anythingelserisksupsettingtheestablishedflow.

 ■ Absent or doesn’t interact with the team In order to maximize the work of the
DevelopmentTeam,stakeholders(specificallydomainexperts)mustbeavailableperiodically
to help answer questions and provide feedback.

 ■ Disrupts the teamStakeholders,bydefinition,haveaninterestinwhattheDevelopment
Team is doing. They may wander into the team room and ask how things are going. These
intrusionscaninterrupttheflow.TheScrumMastershouldgetinvolved.

 ■ Provides the solutions The stakeholders are free to work with the Product Owner to clarify
what is to be developed. The Development Team, however, is self-organizing and comes up
with its own solutions.

 CHAPTER 9 Continuous improvement 309

 ■ Not able to say “no” to a stakeholder In Scrum, the stakeholder is not your “boss” in the
traditional sense. Unfortunately, he or she may be the owner of the company, and absolutely
your boss outside of Scrum. High-performance Scrum Developers are able to balance
 following the rules of Scrum with remaining employed.

 ■ Expects a commitment, not a forecast Stakeholders also must acknowledge the reality
of software development and allow the Development Team to forecast the work they can
do in a Sprint—not force them to commit to it. The Scrum Master can explain that what the
 Development Team does is very hard.

 ■ Acts as a manager The Development Team is self-organizing and self-managing. Nobody,
including stakeholders, can tell the developers how to do their work, or what they should work
onnext.Thatsaid,stakeholderscanbeveryinfluentialastowhatshouldbeworkedonnext.
This should be routed to the Development Team through the Product Owner via the Product
Backlog, however.

 ■ Acts as a developer Some stakeholders may be developers from another team, or have that
skillset on their resume. Be cautious of them getting too involved in the development. They
can easily become a distraction. If, on the other hand, they have the skills you need and the
 capacity to help, have them join the Development Team, even if on a part-time basis.

 ■ Acts as an insurgent Some stakeholders, for whatever reason, are just anti-Scrum. Maybe
they tried it at a previous business unit or organization and were unsuccessful. Maybe they
prefer waterfall, or Kanban. Maybe they hate Rugby. Unfortunately, sometimes such a person
is necessary to support the successful adoption of Scrum. Hopefully the Scrum Master can
help educate him or her.

Working with a challenging Scrum Master
The Scrum Master is responsible for ensuring that Scrum is understood and enacted. Scrum Masters
do this by ensuring that the Scrum Team adheres to Scrum theory, practices, and rules. The Scrum
Master is a servant-leader for the Scrum Team and a facilitator who supports the team in learning
self- organization, and understanding and adopting the rules of Scrum.

A good Scrum Master brings value to the Scrum Team, and the organization, by helping both
adopt and progress towards good Scrum in a realistic way. By applying what they know, the Scrum
Master can help the team deliver software that is of a higher quality and value faster. This is done
bymaximizingthebenefitsproducedbyScrum.AgreatScrumMastershouldbeputtinghimselfor
herself out of a job by teaching the team to identify and solve their own problems.

Tip ThekeytofindingagoodScrumMasterisseeinghimorherinaction.Letthe
 candidate attend a Daily Scrum and tell you what he or she observes. One’s knowledge
of the rules of Scrum, as well as one’s perception of the team’s behavior and level of
 collaboration, should speak volumes about experience and capability.

310 PART III Improving

Beyond supporting the Scrum Team, Scrum Masters can also be responsible for educating the
organization and leading the effort to adopt Scrum. This means that they are a help desk of sorts,
where the standard questions are asked and answered. It also means that the Scrum Master is a
walkingScrumsalesperson,alwayspointingoutthebenefitsofadoptingScrumtonewpeopleand
 potential teams. Your Scrum Master should be able to articulate why Scrum works and is healthy for
the organization, even to the loudest critics and detractors.

Here is a list of challenges you might encounter when working with Scrum Masters:

 ■ Doesn’t know Scrum This is a deal breaker. If there is one person on the Scrum Team, or
in the organization, who must know Scrum, it’s the Scrum Master. Inform management that the
Scrum Master needs more training than just reading the Scrum Guide and then send him or her
toaScrum.orgtrainingclass(http://www.scrum.org/Courses). Experience will come with time, but
since it’s required on day one, hire an experienced Scrum Master, even if only temporarily.

 ■ Doesn’t enforce the rules AScrumMasteractsasarefereeandshouldbeconfidentin
“throwingaflag”orshowingateammatea“yellowcard”whenthesituationcallsforit.
TherulesofScrumhavebeenfine-tunedoveryearsofuseandworkonlywhentheyare
 followed. That said, there is room for adaptation once the core principles are embedded in the
 organization.

Tip It may be challenging for a Scrum Master to actually enforce the rules.
ItendtostereotypeScrumMastersasbeingfirmandresolved,butinpractice,
this type of Scrum Master sometimes can create an adversarial environment. As
an alternative, a Scrum Master should coach their team members to follow the
rules of Scrum. If the team wants to step outside the rules of Scrum, the Scrum
Master should use powerful questioning and dialogue to probe and discuss.
If, after the discussion, the team still wants to break the rules, the Scrum Master
may want to allow it as a learning experience. Then, during the next Sprint
Retrospective, the Scrum Master should talk about the issues that resulted from
not following the rules.

 ■ Focuses too much on rules and practices A Scrum Master should enforce the rules, but
 focusing too much on the rules and practices can create a “cargo cult” mentality. In this
dysfunction, the team is certainly executing all of the practices, but they are not reaping the
intendedbenefits.AScrumMastershouldalwaysmakesurethattheteamisgettingthemost
out the Scrum practices and rules.

 ■ Doesn’t act as a firewall The Scrum Master should block any wasteful request or interruption
of the Development Team’s time. This could include going to meetings in place of the rest of the
team,trackingandprovidingactualhoursworkedtothecentralProjectManagementOffice
(PMO),oreducatingothersintheorganizationonhowtointerpretaburndownchart.AScrum
MastershouldrespecttheDevelopmentTeam’sflow,anddowhateverispossibletoprotectit.

 CHAPTER 9 Continuous improvement 311

 ■ Acts as a manager The Development Team is self-organizing and self-managing. Nobody,
including the Scrum Master, can tell the developers how to do their work. The Scrum Master
should avoid even suggesting how a team member does his or her work, or what to work on
next. The exception to this is when the Scrum Master is asked for help, or if the Development
Team as a whole, or an individual developer, exhibits dysfunctional behavior or otherwise has
become an impediment. The Scrum Master has the authority to implement and enact the rules
of Scrum, including removing such impediments. I’ll leave it at that.

 ■ Absent Scrum Master The Scrum Master is a servant–leader and, as such, should be
 collocated with the team, ready to help. The only time the Scrum Master should be unavailable
is when he or she is away educating the organization, removing an impediment, or taking a
(much-deserved)vacation.

 ■ Doesn’t manage conflicts Since Scrum is about people, Scrum Teams will inevitably
experienceconflicts.Simpleconflictscan(andshould)behandledbythepeopleinvolved.
MorecomplexandemotionalconflictsmayrequiretheScrumMastertobecomeinvolved.
IfaScrumMasterishesitantordoesn’thavethesocialskillsrequiredtomanagesuchconflicts,
this is a dysfunction.

 ■ Settles for the status quo A Scrum Master should be hungry for improvement. Just as
a teacher gets excited when students are learning new things and applying what they’ve
learned, so should a Scrum Master thrive on seeing the Scrum Team improving.

 ■ Poor communication This is more than just the Scrum Master not being able to
 communicate clearly, but allowing communication dysfunctions to grow and thrive in the
team. A good Scrum Master knows how to teach and foster good communication skills in the
Scrum Team. This includes teaching topics such as active listening.

 ■ Has a day job AnyadditionalrolethataScrumMasteroccupiesisaconflictthatcancause
difficulty.Sometimesthisisunavoidable,however,especiallyforsmallerteamsorstartups.

 ■ Doesn’t deal with impediments A good Scrum Master will give the team the opportunity
to remove their own impediments and then learn from the experience. A dysfunctional
Scrum Master will allow impediments to linger. If the Scrum Master can’t remove the directly
impediment,heorsheshouldatleastfindsomeoneelseintheorganizationwhocan.

 ■ Acts as a developerInalotofways,theScrumMasterislikeafirefighter.Heorshesits,
waiting to be called upon to answer a question or remove an impediment. Having the Scrum
Master involved in the actual development, taking on tasks, tends to distract from the job of
helping the team follow the rules of Scrum. Sometimes this is unavoidable, however, especially
for smaller teams, such as startups.

312 PART III Improving

Note Fellow Professional Scrum Developer Jose Luis Soria Teruel also warns us against
the “Mom” Scrum Master. This type of dysfunctional Scrum Master deals only with the
 secretarial and nanny tasks—paperwork, updating the Sprint Backlog and burndowns,
 running the stopwatch, and so on. New and uneducated Scrum Teams might think that this
is what the Scrum Master does. I only hope somebody in the organization is aware of this
dysfunction, since the Scrum Master doesn’t seem capable of recognizing the impediment.

Changing Scrum
Scrum is just a set of rules put forth in the Scrum Guide. This makes it comparable to the game of
chess. Chess has rules too. One rule in chess is that a player is allowed to have only one king on the
board. Scrum’s rules dictate only having one Product Owner. There are many other comparisons,
but you get the idea. When you sit down to play chess, you either play by the rules or you don’t.
Same with Scrum. If you want a short-term win, you can cheat, but you won’t learn how to play the
game properly or get good at it. Learning how the chess pieces move is fairly easy, just like learning
therulesofScrum,butmasteringchess(andScrum)isdifficultandtakesalongtimeandalotof
 experience.

Note Fellow Professional Scrum Master Charles Bradley is someone who knows how to
play the game of Scrum properly. Because of that, he can easily spot those who cheat. To
avoid the embarrassment of being called out by a Professional Scrum practitioner, don’t
cheat.

The rules of Scrum should be considered immutable and sacred. An organization or team should
not change them. You should inspect and adapt your behaviors within those rules and improve
accordingly.EveryScrumrole,rule,andeventisdesignedtoprovidethedesiredbenefitsandaddress
predictable recurring problems. Feel safe. Scrum will not fail you.

Old waterfall habits
Waterfall development is the name given to a more traditional, sequential design approach to
 software development where one phase of development is completed before moving to the next. For
example, design is done before programming. Programming is done before testing. And so on. Each
phase is performed as though you are not coming back to it. Maximum attention is given in getting
itrightthefirsttime.Thisapproachtodevelopingsoftwareisveryrisky,morecostly,andlessefficient
than Scrum.

Unfortunately, waterfall has been in existence for over 50 years. Many IT professionals, and
present-day managers, are familiar with it and have it imprinted in their mental muscle memory.
When these people are introduced to Scrum, they may feel compelled to change it, molding it into
something they are more familiar with.

 CHAPTER 9 Continuous improvement 313

Here are some waterfall habits that should not be implemented in Scrum and the reasons why:

 ■ Longer Sprints (more than one month) Sprint lengths of one month or less provide focus
and reduce risk. Longer Sprints increase risk exponentially.

 ■ Multiple Product OwnersHavingasingleProductOwnerreducescomplexityandconflicts
in prioritizing and ordering items in the Product Backlog.

 ■ Big requirements up frontTimespentdefiningdetailedrequirements,andespeciallyhow
they should be implemented, is wasted when development is delayed or skipped altogether.

 ■ Separate teams to code and to testCross-functionalteamsaremoreefficientbecausetheyare
abletoworktogetherwithlesscontextswitching.Onlyfeaturesthataredone(includingtesting)are
potentially releasable. This abates the exponential buildup of work toward the end of the release.

 ■ Infrastructure and architecture Sprints Every Sprint must generate an Increment
 containing business value. This keeps the Development Team focused on what’s best for the
customer or user. Emergent architecture is a practice that can help maintain this focus.

 ■ Delay testing until later Sprints All aspects of development, including testing, must be
done during the Sprint. Delaying testing produces technical debt and undone work that
 accumulates exponentially.

 ■ Change is bad so we should minimize it Change is a fact of life in software development.
Scrum embraces this fact through the use of shorter Sprints and an ordered Product Backlog
maintained by an engaged Product Owner.

 ■ Project manager plans and assigns work (command and control) The Development
Team is self-organizing and can create and take ownership of their own work. They are also
 expected to estimate as a team, not rely on a proxy to do the estimation. There are no project
managers in Scrum.

 ■ Must follow the plan and conform to the schedule In Scrum, the plan is broken up into
Sprintsofonemonthorlessinlength.Beyondthat,thereisnofirmplan,onlyaProduct
 Backlog with items ordered in a way that represents what the Product Owner would like
 developed next.

 ■ No value in the software until the very end Every Sprint must generate an Increment
 containing business value. This means that all development activities, including integration
with other teams and systems, must be done by the end of the Sprint to realize any value.

 ■ Always report a bug The Development Team is self-organizing and can determine if the
strangebehaviorisabugornot.Theyarealsocapableofjustfixingthebugratherthan
 creating a work item.

 ■ Daily Scrums are status meetings The Daily Scrum is for the Development Team to
 synchronize and create a plan for the next 24 hours. It’s not meant for other purposes, or for
others to attend.

314 PART III Improving

 ■ Work is never re-estimated Professional Scrum Developers understand that they know
moretodaythantheydidyesterday.Applyingthisnewknowledgetoexistingestimates(either
PBIs or Sprint Backlog tasks) is a healthy practice that boosts transparency.

 ■ Quality gets sacrificedTheDefinitionof“Done,”whenproperlyadheredto,protectsthe
quality of the work the Development Team does and keeps undone work, and the ensuing
technical debt, out of the Increment.

 ■ Gold platingTheDevelopmentTeamonlyneedstodevelopwhatisfitsthepurposefora
given PBI, and nothing more. In Scrum, the developers no longer have to predict what might
eventually be needed. The next Sprint’s features will be revealed just in time.

Note This kind of a change, from waterfall to Scrum, is too much for some managers. Ken
Schwaber wrote in his book The Enterprise and Scrum that up to 20 percent of them might
leaveastheyfindthattheydon’tlikethenewwayofworkingandmanaging.

ScrumButs
ManyorganizationshavemodifiedScrumagainstthisguidance.Intheirminds,theyaredoingthe
rightthingandadaptingScrumtofittheirparticularflavorofchaos.Thisispartlybecausepast
 software approaches required tailoring in order to succeed. Scrum is the opposite, in that changing
Scrum itself can prevent you from succeeding altogether. These changes and tweaks are generally
known as “ScrumButs.” When a representative is asked if their organization or team is doing Scrum,
they say “Yes, but ….”

In fact, a ScrumBut has a particular syntax:

WeuseScrum,but(ScrumBut)because(Reason)so|instead|therefore(Workaround).

Here is an example of a ScrumBut:

“WeuseScrum,but(wedon’thaveDailyScrums)because(theyaretoomuchoverhead),so
(weonlyhavethemonceaweekorasneeded).”

ScrumButs are excuses why teams can’t take full advantage of Scrum to generate business value
in the form of working software. ScrumButs mean that Scrum has exposed a dysfunction that is
contributingtotheproblembutistoohardtofix.AScrumButretainstheproblemwhilemodifying
Scrum to make it invisible so that the dysfunction is no longer a thorn in the side.

Organizations may make short-term changes to Scrum in order to give them time to correct
deficiencies.Forexample,ateam’sDefinitionof“Done”maynotinitiallyincluderegressionand
 performance testing because it will take several months to develop an automated testing framework.
For these months, transparency is compromised, but it is restored as quickly as possible. For more
 information on ScrumButs, visit http://www.scrum.org/scrumbut.

 CHAPTER 9 Continuous improvement 315

Note Several of my Professional Scrum Developer colleagues feel that “ScrumBut” is
too negative. While they acknowledge that they exist, they prefer using a softer, more
 optimistic metaphor, such as an “adoption compromise.” This still suggests that there are
compromises being made to the rules of Scrum during adoption that will be tracked and
removed as soon as possible. Fellow Professional Scrum Developer Simon Reindl has even
provided the new regular expression to highlight the transience of the practice and the
aspiration to adopt better Scrum: We have compromised our adoption of Scrum by using
<Incorrect Scrum Practice>as we found that adopting<Correct Scrum Practice>too
challenging to introduce CURRENTLY.

Improving

No matter where you are in the game of Scrum, you can always improve. Whether you’re a part of a
new team just getting started and still not sure what a time-box is, or your team has released several
Increments of software successfully using Scrum, there are always new things to learn and new ways
to enhance your practices.

A Scrum Team should inspect and adapt constantly. This includes the behaviors and practices of
the team beyond simply identifying and removing a dysfunction. The absence of a dysfunction is
an improvement, but the team can go beyond that. For example, it may take several Sprints for a
 dysfunctional Scrum Master to stop providing estimates on behalf of the Development Team. It may
take even more Sprints for the Development Team to understand how to estimate on their own.
It may take several more Sprints for these estimates to normalize.

Improvement can occur only if the culture allows it. The organization and management must
allow its teams to experiment, to fail, to inspect, and to adapt. Successful companies yield successful
teams because they allow their people the freedom to explore, learn, cross-pollinate, set up practice
communities, and implement their retrospective items. Most of all, the culture must understand that
improvement takes time.

In this section, we look at ways in which a Scrum Team can continue to improve beyond just
 knowing Scrum and removing dysfunctions.

Get a coach
I’ll start with the best advice on how to improve. There may be times when the Scrum Team needs
helpimprovingtheirgame.Justlikeanysportsteam,aScrumTeamcanalsobenefitfromthehelpof
a coach. A Scrum coach is an expert in Scrum, both in theory and in practice. They have an in-depth
understanding of the practices and principles of Scrum, and have real experience on actual Scrum
projects. A Scrum coach is somebody who can teach and coach all of the Scrum roles, including
the organization itself, effectively. He or she can teach new patterns and behaviors for increased
 collaboration and high-performance achievement.

316 PART III Improving

Note Don’t confuse a Scrum coach with an Agile coach. For teams doing Scrum, they will
want a Scrum coach who absolutely knows Scrum. Agile coaches may or may not know
Scrum, and even vary on what or how much they know about Agile and related practices.
Nobody accidentally becomes a Scrum coach.

A good Scrum coach will also have experience in a variety of organizational settings, which is
 useful when educating the rest of the organization. A coach can help the organization understand
how the changes will affect leadership and team member responsibilities. By mentoring and gradually
sharing best practices about Scrum adoption, the organizational change of adopting Scrum won’t be
so painful.

Tip When searching for a Scrum coach, pay attention to the candidate’s background and
ifheorshehasexperienceplayingthevariousroles.It’shardtofindacoachthathas
played the role of the Product Owner, Scrum Master, and developer. At least make sure the
 candidate has played the role you are most in need of help with.

There is a myth surrounding what a Scrum coach does. People think that coaching is purely a
soft-touch approach—only providing guidance and the ability for people to discover problems
and solutions for themselves. People also think that coaches do not tell people what to do. Some
coachesfitthismoldand,inmyopinion,arefairlyworthless.Thetruthis,coachesneedtohavethe
difficultconversationsandtheseconversationsaresometimesnotniceandnotpolite.Thisisbecause
coaches help people identify and overcome unpleasant things. One minute the coach will need to be
 compassionate and understanding, and the next minute authoritative and uncompromising.

Build a cross-functional team
The Scrum Development Team is a cross-functional group of people possessing all the different
skills required to turn requirements into an Increment of potentially releasable functionality. The
 Development Team needs to know all the skills necessary to turn the requirements into something
thattheorganizationdefinesas“done.”Teammemberswillneedtodeveloptheskillsofbusiness
analyst, designer, tester, programmer, technical writer, and so on.

It may take several Sprints for the Development Team to even know what functionality it has or may
need.WhenScrumwasfirstadoptedinanorganization,alloftheanalysts,programmers,andtesters
were united on the Development Team. Since each of them played a role in the development of the
Increment, they became known as a developer. As self-organization and collective ownership attitudes
became established, the backgrounds and titles previously held by the developers became blurred.

Note The opposite of a cross-functional Development Team is a dysfunctional one.

 CHAPTER 9 Continuous improvement 317

What is a cross-functional Development Team today may not be so tomorrow. Over time, the
team, not the management, may determine that additional team members are required. To satisfy
this need, new developers may be added, or the current ones trained, in order to support new
 technologies for domains being considered for the software product. The opposite may become a
reality, as less developers are required because they are able to do more with less.

Tip In Scrum, the Product Owner provides the vision for the software product. This should
bereflectedbytheitems,andtheirorder,intheProductBacklog.Anorderedbacklog
serves as a roadmap for the planned features. It also serves as a roadmap for the planned
technologies and new domains, which can serve as a “heads-up” for what functionality the
Development Team will need in the near and distant future.

Making unnecessary changes to the Development Team will cause problems. When the problems
that it causes are less than the problems caused by not changing it, then it is worthwhile. You should
beawareandpreparedforthedifficultythatthenewteammember(s)aregoingtohavebeingintroduced
into an existing team. If we refer back to Bruce Tuckman’s stages of group development, any changes
made to the makeup of the team will cause the team to revert to the forming stage of the model. Just
think of the problems associated with a child when his or her family moves to a new town and the
overheadthathastohappenforthatchildtofitin.Developersarenotmuchdifferent.

Note Don’t confuse cross-functional teams with cross-functional individuals. Scrum
 demands cross-functional Development Teams. This means that at a minimum, there must
be at least one developer that is capable of performing each type of task in the Sprint
Backlog. For example, if there are C++ tasks that must be accomplished, there must be at
least one developer who can code in C++. High-performance Scrum Development Teams
endeavor to have cross-functional individuals as well. This means that if C++ tasks are
 becoming more prevalent in the upcoming Sprints, one or more developers should pick up
that skillset. Having a cross-functional team of cross-functional developers is a recipe for
meeting goals and increasing Velocity.

Achieve self-organization
Scrum relies on self-organizing teams to handle the complexity inherent in software development.
A self-organizing team will approach a project, and, based on the requirements at hand, decide
how best to develop a solution while taking advantage of each team member’s various strengths.
It takes a certain mindset and aptitude to be able to self-organize. But, compared with traditional
 practices—such as a chief architect creating the initial design or a project manager assigning work—
self- organization is a revolutionary improvement.

Every developer on a self-organizing team will work, independently or in pairs, towards some
shared goal. Everyone collaborates to reach the goal, valuing the team’s output over individual
 productivity. Members of the team trust each other and are interested in each other’s work, providing

318 PART III Improving

constructive feedback where appropriate. Self-organizing teams are able to get work done and
develop an Increment of value. They are not blocked by impediments; they communicate any issues
appropriately to achieve transparency.

An organization must allow its Development Teams to self-organize and self-manage. This comes
with time and the storing up of trust. That trust is a direct result of the Development Team being able
to deliver increments of business value regularly in the form of working software. Education, provided
by the Scrum Master or Scrum coach, can help the organization see that this is a reason to trust the
team. Once that trust is in place, the Development Team will be given more leniency to make its own
decisions and plans, and then to execute them.

Note Fellow Professional Scrum Developer Mike Vincent recommends that management
and other stakeholders of an organization keep their hands off the Scrum Team. The
team should be allowed to make mistakes, inspect, adapt, and improve. Newer teams
may need some coaching help to become self-organizing, especially within a heavy
 command-and-control culture.

Improve transparency
Transparency, along with inspection and adaptation, are the three pillars of Scrum, or any empirical
process control framework for that matter. The importance of being transparent—as a developer to
the rest of your team, or as a Development Team to the Product Owner, or as the Scrum Team to the
organization—cannotbeoverstated.Significantaspectsofthedevelopmentprocessmustbemade
visibletothoseresponsiblefortheoutcome.Transparencyrequiresthoseaspectsbedefinedbya
common standard so that observers share a common understanding of what is being seen.

In Scrum, being transparent means that all observers should understand the basics of the
framework,aswellastheartifactstheymaybelookingat:ProductBacklog,Definitionof“Done,”
burndowncharts,taskboards,themeetings,andsoon.Thedatareflectedintheseartifactsarelike
beacons of light. They shine brightly into all corners of the Development Team’s activities, leaving
nowhere for slackers or other waste to hide.

Some developers might be reluctant, or at least uncomfortable, about this “nowhere to hide”
 quality of Scrum. Nobody wants to work in a glass house, even though doing so means that a
 developer will be more productive and exhibit healthier behaviors because they never know who
might be watching. Being able to admit mistakes and ask for help will assist everyone in becoming
more comfortable with this quality of Scrum. Besides, making mistakes and learning from them are a
good way to improve.

Take the task board, for example. Whether we are talking about a physical one, one implemented
on a whiteboard, or an electronic one like in Visual Studio, it is a great information radiator and
sourceoftransparency.TheboardreflectstheDevelopmentTeam’scurrenttasks.Itshowswherethey
are, what they’ve done, and what they still have to do. The transparency of tasks on the board is not
created for the sake of reporting, but rather for a general awareness. This awareness enables the team
to manage themselves.

 CHAPTER 9 Continuous improvement 319

Swarm
Swarming is a term used in Agile software development where the entire Development Team focuses
ononeproblem(PBI)andvoraciouslycollaboratesonituntilit’sdone.Justlikeaswarmofbeeson
a mission, there is no commander, controller, or coordinator—just a self-organizing team working
as a unit. Swarming in software development is a relatively new practice and may feel alien to some.
Swarming is not a part of Scrum.

Swarmingisawayoflimitingtheworkinprogress(WIP),andexperiencingsingle-pieceflow
in an effort to deliver the PBIs successfully in the order the Product Owner expects them. Without
some degree of swarming, the Development Team might jump around between several PBIs and
 accomplish none of them. While there are other ways to limit WIP, swarming is a popular practice
used by many high-performance Scrum Development Teams.

When a Development Team swarms, they overcome any disadvantage that individual developers
might encounter. This is done by dividing the Development Team into one or two smaller swarms.
The number and size of the swarm depends on the size of the Development Team. The next PBI
(inorder)isselectedfromtheSprintBacklogandswarmingbegins.TheDevelopmentTeamdecides,
just-in-time, which tasks will need to be done in order to complete the PBI. Members of the swarm
collaborateandcommunicateconstantlyinordertofindthemosteffectivewaytofinishtheir
 solution. When they get to done, they move to the next one in order, and so on. Members of the
subswarms may switch with other members as needed.

Note Maybe we should update Bruce Tuckman’s group development model. The new
model would be forming, storming, norming, performing, swarming. O.K. maybe not.

Before a team considers swarming on a PBI, there are a few prerequisites that should be in place.
Theteamshouldbecross-functionalandself-organizing,asshouldanysubswarmteams.ADefinition
of “Done,” understood by all, should be established and referenced by the entire team. Also, the PBIs
that the team will swarm on should be large enough that everyone on the team can contribute to its
 development. Ownership of tasks, when swarming, can be complex. Some tasks might be handled
by a single developer, where others are handled by a pair or more. So long as one of the involved
developers owns the task and updates the remaining work estimates daily, there won’t be an issue.
Remember that in TFS, a work item cannot be assigned to multiple users.

Use a Kanban board to limit WIP
Like Scrum, Kanban is a strategy for managing work that involves breaking down a problem into a
plan and then visually transitioning that work through a series of states. Kanban makes heavier use of
states in order to limit the WIP. This allows the Development Team to control how much work can be
in each state. Scrum Teams prefer to use the burndown chart to visualize and manage work through
an iteration. Kanban teams prefer to use a Cumulative Flow Diagram to visualize work across the
entire backlog. Visualizing the backlog in this manner can help to identify bottlenecks in the process.
Scrum Teams can also use a Cumulative Flow Diagram.

320 PART III Improving

At the time of this writing, Microsoft has enabled Kanban support in their hosted Team Foundation
Service and, at the same time, announced upcoming support for on-premises TFS. With this feature,
Development Teams can now allow you to manage their Scrum Team projects using Kanban to visual-
izetheflowoftheitemsintheProductBacklog.

In the center of this new support is the Kanban board. It can be used with a team project created
using the Visual Studio Scrum 2.0 process template. The board is associated with the Product Backlog
and is found on the board tab, as opposed to the board menu option, as you can see in Figure 9-4.

FIGURE 9-4 Access the Kanban board on the board tab on the Product Backlog page.

On the new Kanban board, the Product Backlog items appear by state, in descending order
 according to the Backlog Priorityfield.Onlythetop20workitemsarevisibleineachcolumn.You
can see an example of this in Figure 9-5. You can set a limit to the number of items that can be in any
particular state, such as Approved or Committed. If you try to drag more than the limit of work items
into that column, the color will change to provide visual feedback that you’ve exceeded a WIP limit.

At any time, you can review progress by looking at the Cumulative Flow Diagram, available on the
Kanbanboardpage.Thechartshowscumulativeflowofprogressovertime.Thestartdateisthefirst
week there is data, or, if you have more than 30 weeks of data, then the chart will show data for the
31 weeks prior to the current date. Figure 9-6 shows an example of this chart.

Scrum and Kanban are two different approaches to Agile software development. Scrum prescribes
cross-functional,self-organizingteamsworkinginfixed-lengthSprints.Kanbanprescribesvisualizingthe
workflowandlimitingWIPbyworkflowstate.OptimizationinScrumcomesfromcontinuousinspecting
andadapting,whereasinKanban,itcomesfrommeasuringandoptimizingleadtime(cycletime).Both
Scrum and Kanban are just process tools, and aspects of these tools can be mixed and matched.

Tip Be careful mixing Scrum and Kanban. Only high-performance Scrum Teams should
consider adopting Kanban practices.

 CHAPTER 9 Continuous improvement 321

FIGURE 9-5 Use the Kanban board to visualize PBIs and set limits by state.

CUMULATIVE FLOW

7/22/2012
0

1

W
o

rk
 It

em
 C

o
u

n
t

2

3

4

5

6
New
Approved
Committed
Done

FIGURE 9-6 Use the Cumulative Flow Diagram to see progress over time.

322 PART III Improving

Professional Scrum Developer training
GreatsoftwaredevelopmentusingScrumandtoday’sapplicationlifecyclemanagement(ALM)tools
requires the seamless integration of the tools, a well-functioning team, and software development
best practices. Scrum.org’s PSD course is the only course available that teaches how this is done.

The PSD course teaches students how to work in a team, using contemporary software
 development practices and the ALM tools found in Visual Studio 2012 to develop an Increment of
potentially releasable functionality. All of this is done as iterative incremental development within the
Scrum framework. This course was developed in partnership with Microsoft.

The PSD course is suitable for any member of a software development team, including architects,
programmers, database developers, testers, and others with some technical knowledge. Product
Owners, Scrum Masters, and other stakeholders are welcome to attend this class, so long as they keep
in mind that all attendees will be expected to participate fully on their development team.

 As with all Scrum.org courses, the curriculum and materials are standardized and regularly
 enhanced through contributions from the Scrum.org network of Professional Scrum Trainers. Only
themostqualifiedinstructorsareselectedtoteachthePSDcourse.Theseareindividualswith
top-notch skills in the technologies coupled with excellent knowledge of how to use them within the
Scrum framework. Each instructor brings his or her individual experiences and areas of expertise to
bear, but all students learn the same core course content. This improves a student’s ability to pass the
 Professional Scrum Developer assessment and apply Scrum in his or her workplace.

For more information on the PSD program and training, visit http://www.scrum.org/Courses/
Professional-Scrum-Developer.

Assess your knowledge
Scrum.org also provides tools that you can use to examine and enhance your knowledge of Scrum.
The primary aim of these assessments is to provide information about an individual’s, or a team’s,
level of knowledge and thereby to enable improvement.

Scrum.org assessments are grounded in the Scrum Body of Knowledge—the Scrum Guide, which
is written and maintained by Scrum’s founders Ken Schwaber and Jeff Sutherland. The Scrum Guide is
published by and freely available at Scrum.org.

Each of Scrum.org’s assessments is developed by Scrum thought leaders with formal input from a
wide range of industry experts and then enhanced with input from the larger Scrum community. They
are then monitored in an ongoing attempt to ensure their continued integrity and relevance.

Currently, Scrum.org provides four families of assessments:

 ■ Scrum Open A freely available assessment of basic Scrum knowledge, available for members
of the Scrum.org community.

 ■ Professional Scrum Master Two levels of assessment of Scrum knowledge for Scrum
 Masters.

http://www.scrum.org/Courses/Professional-Scrum-Developer

 CHAPTER 9 Continuous improvement 323

 ■ Professional Scrum Developer An assessment that tests the knowledge of developing
 software on a Development Team using contemporary development practices. The assessment
is tool- and technology-agnostic.

 ■ Professional Scrum Product Owner Two levels of assessment of Scrum knowledge for
 Product Owners.

Thosewhoachieveaminimumpassingassessmentscorereceivecertification.AllScrum.org
 assessments use the most recent version of the English Scrum Guide as the source for questions
regarding the rules, artifacts, events, and roles of Scrum. Reading the Scrum Guide alone will not
provide enough preparation for someone to pass an assessment. Questions often ask test-takers
to interpret information and apply it to challenging situations, so knowledge gained from personal
experience of Scrum, as well as other sources, is typically required.

Become a high-performance Scrum Development Team
High-performance Scrum Development Teams are the best of the best. They have mastered the key
pillars of Scrum: self-organization, transparency, inspection, and adaptation. They have focus, exhibit
courage and openness, believe in and practice commitment, and respect others. They know the rules
of Scrum according to the Scrum Guide, and are able to deliver Increments of business value regularly
in the form of working software.

It’s possible to become a high-performance Scrum Development Team through continuous
 improvement, as you can see in Figure 9-7.

This should be your goal.

Scrum

Improving

Not
Doing
Scrum

High-Performance
Scrum

Few teams reach this zone.Many teams never leave this zone.

FIGURE 9-7 Teams can progress from not doing Scrum all the way to High-Performance Scrum.

Looking at a distribution curve and contemplating your own situation, you might be wondering,
“Is my team doing Scrum?” It turns out that this is a harder question to answer than you might think.
One might believe that just reading the Scrum guide,fillingalltheroles,attendingalloftheevent
meetings,andusingtheartifactscorrectlywouldbeenough.Eventhisisnoteasytodefine,however.

324 PART III Improving

Note In November 2011, several Professional Scrum Trainers met in Redmond, WA,
prior to the annual ALM Summit. One of the items on the agenda was to create a way to
definitivelydetermineifateamwasontheleftsideofthefirstdottedlineinFigure9-7.
Teams wanted to know if they were “doing Scrum.” To determine this, the PSTs created a
simple, measurable checklist that a team could answer. If all questions were answered in
theaffirmative,thatteamwasdoingScrum.Themeasureof“howwell”theyaredoing
Scrum and where they are at on their journey to improvement is another story.

□ Does your Scrum Team maintain an ordered Product Backlog?

□ Does your Development Team contain three to nine developers?

□ Does your Product Owner actively manage the Product Backlog?

□ Does your Scrum Master actively manage the process?

□ Doyouhavefixed-lengthSprintsofonemonthorless?

□ Does the Development Team create a Sprint Backlog during Sprint Planning?

□ Can progress be assessed from the Sprint Backlog?

□ Does your Scrum Team hold Sprint Review and Sprint Retrospective meetings?

□ Does your Development Team develop done, potentially releasable software
each Sprint?

□ Do your stakeholders inspect the Increment and provide feedback?

Note Theaboveisnotanofficialchecklist.Itrepresentsaworkinprogress,draftedby
 several like-minded Professional Scrum Trainers.

All throughout this book, I have provided patterns to adopt and anti-patterns to avoid when it
comes to Professional Scrum development. All of this guidance, in addition to adopting the core
principles and values of Scrum, should be consumed and applied in order for you and your fellow
developers to become high-performance Professional Scrum Developers.

Chapter burndown

Here are the key concepts we covered in this chapter:

 ■ Professional Scrum Developers Know the rules of Scrum and how to overcome its common
challenges.Theyalsoknowthatdysfunctionsshouldbeidentifiedandremoved.

 CHAPTER 9 Continuous improvement 325

 ■ High-performance Scrum Developers Are hungry to do better and take every opportunity
to inspect and adapt, remove or mitigate dysfunction, and continuously improve their game of
Scrum.

 ■ Fix bugs, don’t manage them Fix in-Sprint bugs, if possible, rather than creating work items
and kicking them around.

 ■ Remove impediments, don’t manage them Remove your own impediments rather than
relying on the Scrum Master to do it for you.

 ■ Estimate as a team Help the Product Owner keep the Product Backlog groomed, including
estimating the size of the upcoming PBIs.

 ■ Assess progress Use burndown charts, work item counts, or passing tests to assess your
progress towards a goal.

 ■ Renegotiating scope This can happen, and when it does, collaborate with the Product
Owner to accommodate the change. Constant changing of scope is a dysfunction.

 ■ Canceling a Sprint Only the Product Owner can cancel a Sprint. It is a traumatic event and
should be avoided if possible.

 ■ Undone workUnfinishedPBIscannotbereleased.Instead,theyshouldbeputbackonthe
Product Backlog for grooming and consideration to be developed in a future Sprint. Visual
Studio doesn’t offer any tooling support for this.

 ■ Spikes Spikes are experiments performed by the Development Team to learn and prove
 concepts. Larger spikes should be represented in the Product Backlog and Sprint Backlog.

 ■ Fixed-price contractsScrumworksaswellasanyotherprocesswhenitcomestofixed-price
contracts. It works better when a level of trust and shared risks exist between the Scrum Team
and the customer.

 ■ Measuring performance This should be done at a team level, not an individual level.

 ■ DoneEveryPBIshouldbedone,accordingtotheDevelopmentTeam’sDefinitionof“Done.”
Undone work should not be released.

 ■ Inspect and adapt Take advantage of the built-in Scrum events to ask yourself and your
team how are you are doing with the product, as well as the process. Be sure to act on any of
thosefindingsthatrequireit.

 ■ Don’t change Scrum The framework is already very pluggable, allowing any number of
 processes and practices to be implemented. Changing Scrum is usually done to hide an
 underlying dysfunction.

 ■ Scrum is like chess You either play it as its rules state, or you don’t. Scrum and chess do not
fail or succeed. They are either played or not played.

 327

TheScrumGuideistheofficialScrumBodyofKnowledgeandismaintainedbyScrum’screators,
Ken Schwaber and Jeff Sutherland. It is available in 30 languages. The latest version can be found
at http://www.scrum.org/scrum-guides.

A P P E N D I X A

The Scrum Guide

TheDefinitiveGuidetoScrum:TheRulesoftheGame

Scrum is a framework for developing and sustaining complex products. This Guide contains the
definitionofScrum.ThisdefinitionconsistsofScrum’sroles,events,artifacts,andtherulesthatbind
them together. Ken Schwaber and Jeff Sutherland developed Scrum; the Scrum Guide is written and
provided by them. Together, they stand behind the Scrum Guide.

Scrum Overview

Scrum(n):Aframeworkwithinwhichpeoplecanaddresscomplexadaptiveproblems,while
 productively and creatively delivering products of the highest possible value. Scrum is:

 ■ Lightweight

 ■ Simple to understand

 ■ Extremelydifficulttomaster

Scrum is a process framework that has been used to manage complex product development since
the early 1990s. Scrum is not a process or a technique for building products; rather, it is a framework
within which you can employ various processes and techniques. Scrum makes clear the relative
efficacyofyourproductmanagementanddevelopmentpracticessothatyoucanimprove.

Scrum Framework
The Scrum framework consists of Scrum Teams and their associated roles, events, artifacts, and rules. Each
componentwithintheframeworkservesaspecificpurposeandisessentialtoScrum’ssuccessandusage.

SpecificstrategiesforusingtheScrumframeworkvaryandaredescribedelsewhere.

The rules of Scrum bind together the events, roles, and artifacts, governing the relationships and
interaction between them. The rules of Scrum are described throughout the body of this document.

http://www.scrum.org/scrum-guides

328 Appendix328 #

Scrum Theory

Scrum is founded on empirical process control theory, or empiricism. Empiricism asserts that
 knowledge comes from experience and making decisions based on what is known. Scrum employs an
iterative, incremental approach to optimize predictability and control risk.

Three pillars uphold every implementation of empirical process control: transparency, inspection,
and adaptation.

Transparency
Significantaspectsoftheprocessmustbevisibletothoseresponsiblefortheoutcome.Transparency
requiresthoseaspectsbedefinedbyacommonstandardsoobserversshareacommon
 understanding of what is being seen.

For example:

 ■ A common language referring to the process must be shared by all participants; and,

 ■ Acommondefinitionof“Done”1mustbesharedbythoseperformingtheworkandthose
 accepting the work product.

Inspection
Scrum users must frequently inspect Scrum artifacts and progress toward a goal to detect undesirable
variances. Their inspection should not be so frequent that inspection gets in the way of the work.
Inspectionsaremostbeneficialwhendiligentlyperformedbyskilledinspectorsatthepointofwork.

Adaptation
If an inspector determines that one or more aspects of a process deviate outside acceptable limits,
and that the resulting product will be unacceptable, the process or the material being processed must
be adjusted. An adjustment must be made as soon as possible to minimize further deviation.

Scrum prescribes four formal opportunities for inspection and adaptation, as described in the
Scrum Events section of this document.

 ■ Sprint Planning Meeting

 ■ Daily Scrum

 ■ Sprint Review

 ■ Sprint Retrospective

 Appendix 329

Scrum

Scrum is a framework structured to support complex product development. Scrum consists of Scrum
Teams and their associated roles, events, artifacts, and rules. Each component within the framework
servesaspecificpurposeandisessentialtoScrum’ssuccessandusage.

The Scrum Team

The Scrum Team consists of a Product Owner, the Development Team, and a Scrum Master. Scrum
Teams are self-organizing and cross-functional. Self-organizing teams choose how best to accomplish
their work, rather than being directed by others outside the team. Cross-functional teams have all
competencies needed to accomplish the work without depending on others not part of the team. The
teammodelinScrumisdesignedtooptimizeflexibility,creativity,andproductivity.

Scrum Teams deliver products iteratively and incrementally, maximizing opportunities for
 feedback. Incremental deliveries of “Done” product ensure a potentially useful version of working
product is always available.one is allowed to tell the Development Team to work from a different set
of requirements, and the Development Team isn’t allowed to act on what anyone else says.

The Product Owner
The Product Owner is responsible for maximizing the value of the product and the work of the
 Development Team. How this is done may vary widely across organizations, Scrum Teams, and
 individuals.

The Product Owner is the sole person responsible for managing the Product Backlog. Product
Backlog management includes:

 ■ Clearly expressing Product Backlog items;

 ■ Ordering the items in the Product Backlog to best achieve goals and missions;

 ■ Ensuring the value of the work the Development Team performs;

 ■ Ensuring that the Product Backlog is visible, transparent, and clear to all, and shows what the
Scrum Team will work on next; and,

 ■ Ensuring the Development Team understands items in the Product Backlog to the level
needed.

The Product Owner may do the above work, or have the Development Team do it. However, the
Product Owner remains accountable.

The Product Owner is one person, not a committee. The Product Owner may represent the desires
of a committee in the Product Backlog, but those wanting to change a backlog item’s priority must
convince the Product Owner.

330 Appendix

For the Product Owner to succeed, the entire organization must respect his or her decisions.
The Product Owner’s decisions are visible in the content and ordering of the Product Backlog.
No one is allowed to tell the Development Team to work from a different set of requirements, and the
 Development Team isn’t allowed to act on what anyone else says.

The Development Team
The Development Team consists of professionals who do the work of delivering a potentially
 releasable Increment of “Done” product at the end of each Sprint. Only members of the Development
Team create the Increment.

Development Teams are structured and empowered by the organization to organize and manage
theirownwork.TheresultingsynergyoptimizestheDevelopmentTeam’soverallefficiencyand
 effectiveness. Development Teams have the following characteristics:

 ■ Theyareself-organizing.Noone(noteventheScrumMaster)tellstheDevelopmentTeam
how to turn Product Backlog into Increments of potentially releasable functionality;

 ■ Development Teams are cross-functional, with all of the skills as a team necessary to create a
product Increment;

 ■ Scrum recognizes no titles for Development Team members other than Developer, regardless
of the work being performed by the person; there are no exceptions to this rule;

 ■ Individual Development Team members may have specialized skills and areas of focus, but
 accountability belongs to the Development Team as a whole; and,

 ■ Development Teams do not contain sub-teams dedicated to particular domains like testing or
business analysis.

Development Team Size
Optimal Development Team size is small enough to remain nimble and large enough to complete
significantwork.FewerthanthreeDevelopmentTeammembersdecreasesinteractionandresultsin
smaller productivity gains. Smaller Development Teams may encounter skill constraints during the
Sprint, causing the Development Team to be unable to deliver a potentially releasable Increment.
Having more than nine members requires too much coordination. Large Development Teams
 generate too much complexity for an empirical process to manage. The Product Owner and Scrum
Master roles are not included in this count unless they are also executing the work of the Sprint
 Backlog.

The Scrum Master
The Scrum Master is responsible for ensuring Scrum is understood and enacted. Scrum Masters do
this by ensuring that the Scrum Team adheres to Scrum theory, practices, and rules. The Scrum Master
is a servant-leader for the Scrum Team.

 Appendix 331

The Scrum Master helps those outside the Scrum Team understand which of their interactions
with the Scrum Team are helpful and which aren’t. The Scrum Master helps everyone change these
 interactions to maximize the value created by the Scrum Team.

Scrum Master Service to the Product Owner
The Scrum Master serves the Product Owner in several ways, including:

 ■ Finding techniques for effective Product Backlog management;

 ■ Clearly communicating vision, goals, and Product Backlog items to the Development Team;

 ■ Teaching the Scrum Team to create clear and concise Product Backlog items;

 ■ Understanding long-term product planning in an empirical environment;

 ■ Understanding and practicing agility; and,

 ■ Facilitating Scrum events as requested or needed.

Scrum Master Service to the Development Team
The Scrum Master serves the Development Team in several ways, including:

 ■ Coaching the Development Team in self-organization and cross-functionality;

 ■ Teaching and leading the Development Team to create high-value products;

 ■ Removing impediments to the Development Team’s progress;

 ■ Facilitating Scrum events as requested or needed; and,

 ■ Coaching the Development Team in organizational environments in which Scrum is not yet
fully adopted and understood.

Scrum Master Service to the Organization
The Scrum Master serves the organization in several ways, including:

 ■ Leading and coaching the organization in its Scrum adoption;

 ■ Planning Scrum implementations within the organization;

 ■ Helping employees and stakeholders understand and enact Scrum and empirical product
development;

 ■ Causing change that increases the productivity of the Scrum Team; and,

 ■ Working with other Scrum Masters to increase the effectiveness of the application of Scrum in
the organization.

332 Appendix

Scrum Events

Prescribed events are used in Scrum to create regularity and to minimize the need for meetings not
definedinScrum.Scrumusestime-boxedevents,suchthateveryeventhasamaximumduration.
This ensures an appropriate amount of time is spent planning without allowing waste in the planning
process.

Other than the Sprint itself, which is a container for all other events, each event in Scrum is a
formalopportunitytoinspectandadaptsomething.Theseeventsarespecificallydesignedto
 enable critical transparency and inspection. Failure to include any of these events results in reduced
 transparency and is a lost opportunity to inspect and adapt.

The Sprint
The heart of Scrum is a Sprint, a time-box of one month or less during which a “Done”, useable, and
potentially releasable product Increment is created. Sprints have consistent durations throughout a
development effort. A new Sprint starts immediately after the conclusion of the previous Sprint.

Sprints contain and consist of the Sprint Planning Meeting, Daily Scrums, the development work,
the Sprint Review, and the Sprint Retrospective.

During the Sprint:

 ■ No changes are made that would affect the Sprint Goal;

 ■ Development Team composition remains constant;

 ■ Quality goals do not decrease; and,

 ■ Scopemaybeclarifiedandre-negotiatedbetweentheProductOwnerandDevelopment
Team as more is learned.

Each Sprint may be considered a project with no more than a one-month horizon. Like projects,
Sprintsareusedtoaccomplishsomething.EachSprinthasadefinitionofwhatistobebuilt,adesign
andflexibleplanthatwillguidebuildingit,thework,andtheresultantproduct.

Sprintsarelimitedtoonecalendarmonth.WhenaSprint’shorizonistoolongthedefinition
of what is being built may change, complexity may rise, and risk may increase. Sprints enable
 predictability by ensuring inspection and adaptation of progress toward a goal at least every calendar
month. Sprints also limit risk to one calendar month of cost.

Cancelling a Sprint
A Sprint can be cancelled before the Sprint time-box is over. Only the Product Owner has the
authoritytocanceltheSprint,althoughheorshemaydosounderinfluencefromthestakeholders,
the Development Team, or the Scrum Master.

 Appendix 333

A Sprint would be cancelled if the Sprint Goal becomes obsolete. This might occur if the company
changes direction or if market or technology conditions change. In general, a Sprint should be
 cancelled if it no longer makes sense given the circumstances. But, due to the short duration of
Sprints, cancellation rarely makes sense.

When a Sprint is cancelled, any completed and “Done” Product Backlog Items are reviewed. If part
of the work is potentially releasable, the Product Owner typically accepts it. All incomplete Product
Backlog Items are re-estimated and put back on the Product Backlog. The work done on them
 depreciates quickly and must be frequently re-estimated.

Sprint cancellations consume resources, since everyone has to regroup in another Sprint Planning
Meeting to start another Sprint. Sprint cancellations are often traumatic to the Scrum Team, and are
very uncommon.

Sprint Planning Meeting
The work to be performed in the Sprint is planned at the Sprint Planning Meeting. This plan is created
by the collaborative work of the entire Scrum Team.

The Sprint Planning Meeting is time-boxed to eight hours for a one-month Sprint. For shorter
Sprints, the event is proportionately shorter. For example, two-week Sprints have four-hour Sprint
Planning Meetings.

The Sprint Planning Meeting consists of two parts, each one being a time-box of one half of the
Sprint Planning Meeting duration. The two parts of the Sprint Planning Meeting answer the following
questions, respectively:

 ■ What will be delivered in the Increment resulting from the upcoming Sprint?

 ■ How will the work needed to deliver the Increment be achieved?

Part One: What will be done this Sprint?
In this part, the Development Team works to forecast the functionality that will be developed during
the Sprint. The Product Owner presents ordered Product Backlog items to the Development Team
and the entire Scrum Team collaborates on understanding the work of the Sprint.

The input to this meeting is the Product Backlog, the latest product Increment, projected capacity
of the Development Team during the Sprint, and past performance of the Development Team. The
number of items selected from the Product Backlog for the Sprint is solely up to the Development
Team. Only the Development Team can assess what it can accomplish over the upcoming Sprint.

After the Development Team forecasts the Product Backlog items it will deliver in the Sprint, the
Scrum Team crafts a Sprint Goal. The Sprint Goal is an objective that will be met within the Sprint
through the implementation of the Product Backlog, and it provides guidance to the Development
Team on why it is building the Increment.

334 Appendix

Part Two: How will the chosen work get done?
Having selected the work of the Sprint, the Development Team decides how it will build this
 functionality into a “Done” product Increment during the Sprint. The Product Backlog items selected
for this Sprint plus the plan for delivering them is called the Sprint Backlog.

The Development Team usually starts by designing the system and the work needed to convert
the Product Backlog into a working product Increment. Work may be of varying size, or estimated
effort. However, enough work is planned during the Sprint Planning Meeting for the Development
TeamtoforecastwhatitbelievesitcandointheupcomingSprint.Workplannedforthefirstdays
of the Sprint by the Development Team is decomposed to units of one day or less by the end of this
 meeting. The Development Team self-organizes to undertake the work in the Sprint Backlog, both
during the Sprint Planning Meeting and as needed throughout the Sprint.

The Product Owner may be present during the second part of the Sprint Planning Meeting to
clarify the selected Product Backlog items and to help make trade-offs. If the Development Team
determines it has too much or too little work, it may renegotiate the Sprint Backlog items with the
Product Owner. The Development Team may also invite other people to attend in order to provide
technical or domain advice.

By the end of the Sprint Planning Meeting, the Development Team should be able to explain to the
Product Owner and Scrum Master how it intends to work as a self-organizing team to accomplish the
Sprint Goal and create the anticipated Increment.

Sprint Goal
TheSprintGoalgivestheDevelopmentTeamsomeflexibilityregardingthefunctionality
 implemented within the Sprint.

As the Development Team works, it keeps this goal in mind. In order to satisfy the Sprint Goal,
it implements the functionality and technology. If the work turns out to be different than the
 Development Team expected, then they collaborate with the Product Owner to negotiate the scope
of Sprint Backlog within the Sprint.

The Sprint Goal may be a milestone in the larger purpose of the product roadmap.

Daily Scrum
The Daily Scrum is a 15-minute time-boxed event for the Development Team to synchronize activities
and create a plan for the next 24 hours. This is done by inspecting the work since the last Daily Scrum
and forecasting the work that could be done before the next one.

The Daily Scrum is held at the same time and place each day to reduce complexity. During the
meeting, each Development Team member explains:

 ■ What has been accomplished since the last meeting?

 Appendix 335

 ■ What will be done before the next meeting?

 ■ What obstacles are in the way?

The Development Team uses the Daily Scrum to assess progress toward the Sprint Goal and to
assess how progress is trending toward completing the work in the Sprint Backlog. The Daily Scrum
optimizes the probability that the Development Team will meet the Sprint Goal. The Development
Team often meets immediately after the Daily Scrum to re-plan the rest of the Sprint’s work. Every
day, the Development Team should be able to explain to the Product Owner and Scrum Master how it
intends to work together as a self-organizing team to accomplish the goal and create the anticipated
Increment in the remainder of the Sprint.

The Scrum Master ensures that the Development Team has the meeting, but the Development
Team is responsible for conducting the Daily Scrum. The Scrum Master teaches the Development
Team to keep the Daily Scrum within the 15-minute time-box.

The Scrum Master enforces the rule that only Development Team members participate in the
Daily Scrum. The Daily Scrum is not a status meeting, and is for the people transforming the Product
 Backlog items into an Increment.

Daily Scrums improve communications, eliminate other meetings, identify and remove
 impediments to development, highlight and promote quick decision-making, and improve the
 Development Team’s level of project knowledge. This is a key inspect and adapt meeting.

Sprint Review
A Sprint Review is held at the end of the Sprint to inspect the Increment and adapt the Product
Backlog if needed. During the Sprint Review, the Scrum Team and stakeholders collaborate about
what was done in the Sprint. Based on that and any changes to the Product Backlog during the Sprint,
attendees collaborate on the next things that could be done. This is an informal meeting, and the
 presentation of the Increment is intended to elicit feedback and foster collaboration.

This is a four-hour time-boxed meeting for one-month Sprints. Proportionately less time is
 allocated for shorter Sprints. For example, two week Sprints have two-hour Sprint Reviews.

 ■ The Sprint Review includes the following elements:

 ■ TheProductOwneridentifieswhathasbeen“Done”andwhathasnotbeen“Done”;

 ■ The Development Team discusses what went well during the Sprint, what problems it ran into,
and how those problems were solved;

 ■ The Development Team demonstrates the work that it has “Done” and answers questions
about the Increment;

 ■ The Product Owner discusses the Product Backlog as it stands. He or she projects likely
completion dates based on progress to date; and,

336 Appendix

 ■ The entire group collaborates on what to do next, so that the Sprint Review provides valuable
input to subsequent Sprint Planning Meetings.

TheresultoftheSprintReviewisarevisedProductBacklogthatdefinestheprobableProduct
Backlog items for the next Sprint. The Product Backlog may also be adjusted overall to meet new
 opportunities.

Sprint Retrospective
The Sprint Retrospective is an opportunity for the Scrum Team to inspect itself and create a plan for
improvements to be enacted during the next Sprint.

The Sprint Retrospective occurs after the Sprint Review and prior to the next Sprint Planning
Meeting. This is a three-hour time-boxed meeting for one-month Sprints. Proportionately less time is
allocated for shorter Sprints.

The purpose of the Sprint Retrospective is to:

 ■ Inspect how the last Sprint went with regards to people, relationships, process, and tools;

 ■ Identify and order the major items that went well and potential improvements; and,

 ■ Create a plan for implementing improvements to the way the Scrum Team does its work.

The Scrum Master encourages the Scrum Team to improve, within the Scrum process framework,
its development process and practices to make it more effective and enjoyable for the next Sprint.
During each Sprint Retrospective, the Scrum Team plans ways to increase product quality by adapting
theDefinitionof“Done”asappropriate.

BytheendoftheSprintRetrospective,theScrumTeamshouldhaveidentifiedimprovements
that it will implement in the next Sprint. Implementing these improvements in the next Sprint is the
 adaptation to the inspection of the Scrum Team itself. Although improvements may be implemented
at any time, the Sprint Retrospective provides a formal opportunity to focus on inspection and
 adaptation.

Scrum Artifacts

Scrum’s artifacts represent work or value in various ways that are useful in providing transparency and
opportunitiesforinspectionandadaptation.ArtifactsdefinedbyScrumarespecificallydesignedto
maximize transparency of key information needed to ensure Scrum Teams are successful in delivering
a “Done” Increment.

 Appendix 337

Product Backlog
The Product Backlog is an ordered list of everything that might be needed in the product and is the
single source of requirements for any changes to be made to the product. The Product Owner is
responsible for the Product Backlog, including its content, availability, and ordering.

A Product Backlog is never complete. The earliest development of it only lays out the initially
known and best-understood requirements. The Product Backlog evolves as the product and the
environment in which it will be used evolves. The Product Backlog is dynamic; it constantly changes
to identify what the product needs to be appropriate, competitive, and useful. As long as a product
exists, its Product Backlog also exists.

TheProductBackloglistsallfeatures,functions,requirements,enhancements,andfixesthat
constitute the changes to be made to the product in future releases. Product Backlog items have the
attributes of a description, order, and estimate.

The Product Backlog is often ordered by value, risk, priority, and necessity. Top-ordered Product
Backlog items drive immediate development activities. The higher the order, the more a Product
Backlog item has been considered, and the more consensus exists regarding it and its value.

Higher ordered Product Backlog items are clearer and more detailed than lower ordered ones.
More precise estimates are made based on the greater clarity and increased detail; the lower the
 order, the less detail. Product Backlog items that will occupy the Development Team for the
upcomingSprintarefine-grained,havingbeendecomposedsothatanyoneitemcanbe“Done”
within the Sprint time-box. Product Backlog items that can be “Done” by the Development Team
within one Sprint are deemed “ready” or “actionable” for selection in a Sprint Planning Meeting.

As a product is used and gains value, and the marketplace provides feedback, the Product Backlog
becomes a larger and more exhaustive list. Requirements never stop changing, so a Product Backlog
is a living artifact. Changes in business requirements, market conditions, or technology may cause
changes in the Product Backlog.

Multiple Scrum Teams often work together on the same product. One Product Backlog is used to
describe the upcoming work on the product. A Product Backlog attribute that groups items is then
employed.

Product Backlog grooming is the act of adding detail, estimates, and order to items in the
 Product Backlog. This is an ongoing process in which the Product Owner and the Development Team
 collaborate on the details of Product Backlog items. During Product Backlog grooming, items are
reviewed and revised. However, they can be updated at any time by the Product Owner or at the
Product Owner’s discretion.

Grooming is a part-time activity during a Sprint between the Product Owner and the Development
Team. Often the Development Team has the domain knowledge to perform grooming itself. How and
when grooming is done is decided by the Scrum Team. Grooming usually consumes no more than
10% of the capacity of the Development Team.

338 Appendix

TheDevelopmentTeamisresponsibleforallestimates.TheProductOwnermayinfluencethe
Development Team by helping understand and select trade-offs, but the people who will perform the
workmakethefinalestimate.

Monitoring Progress Toward a Goal
At any point in time, the total work remaining to reach a goal can be summed. The Product Owner
tracks this total work remaining at least for every Sprint Review. The Product Owner compares this
amount with work remaining at previous Sprint Reviews to assess progress toward completing
 projected work by the desired time for the goal. This information is made transparent to all
 stakeholders.

Various trend burndown, burnup and other projective practices have been used to forecast
progress. These have proven useful. However, these do not replace the importance of empiricism.
In complex environments, what will happen is unknown. Only what has happened may be used for
forward-looking decision-making.

Sprint Backlog
The Sprint Backlog is the set of Product Backlog items selected for the Sprint plus a plan for delivering
the product Increment and realizing the Sprint Goal. The Sprint Backlog is a forecast by the Develop-
ment Team about what functionality will be in the next Increment and the work needed to deliver
that functionality.

TheSprintBacklogdefinestheworktheDevelopmentTeamwillperformtoturnProductBacklog
items into a “Done” Increment. The Sprint Backlog makes visible all of the work that the Development
TeamidentifiesasnecessarytomeettheSprintGoal.

The Sprint Backlog is a plan with enough detail that changes in progress can be understood in the
DailyScrum.TheDevelopmentTeammodifiesSprintBacklogthroughouttheSprint,andtheSprint
Backlog emerges during the Sprint. This emergence occurs as the Development Team works through
the plan and learns more about the work needed to achieve the Sprint Goal.

As new work is required, the Development Team adds it to the Sprint Backlog. As work is performed
or completed, the estimated remaining work is updated. When elements of the plan are deemed
 unnecessary, they are removed. Only the Development Team can change its Sprint Backlog during a
Sprint. The Sprint Backlog is a highly visible, real-time picture of the work that the Development Team
plans to accomplish during the Sprint, and it belongs solely to the Development Team.

Monitoring Sprint Progress
At any point in time in a Sprint, the total work remaining in the Sprint Backlog items can be
summed. The Development Team tracks this total work remaining at least for every Daily Scrum.
The Development Team tracks these sums daily and projects the likelihood of achieving the Sprint
Goal. By tracking the remaining work throughout the Sprint, the Development Team can manage its
 progress.

 Appendix 339

Scrum does not consider the time spent working on Sprint Backlog Items. The work remaining and
date are the only variables of interest.

Increment
The Increment is the sum of all the Product Backlog items completed during a Sprint and all previous
Sprints. At the end of a Sprint, the new Increment must be “Done,” which means it must be in useable
conditionandmeettheScrumTeam’sDefinitionof“Done.”Itmustbeinuseableconditionregardless
of whether the Product Owner decides to actually release it.

Definition of “Done”
When the Product Backlog item or an Increment is described as “Done”, everyone must understand
what“Done”means.AlthoughthisvariessignificantlyperScrumTeam,membersmusthavea
shared understanding of what it means for work to be complete, to ensure transparency. This is the
“DefinitionofDone”fortheScrumTeamandisusedtoassesswhenworkiscompleteontheproduct
Increment.

ThesamedefinitionguidestheDevelopmentTeaminknowinghowmanyProductBacklogitems
it can select during a Sprint Planning Meeting. The purpose of each Sprint is to deliver Increments of
potentiallyreleasablefunctionalitythatadheretotheScrumTeam’scurrentDefinitionof“Done.”

Development Teams deliver an Increment of product functionality every Sprint. This Increment is
useable, so a Product Owner may choose to immediately release it. Each Increment is additive to all
prior Increments and thoroughly tested, ensuring that all Increments work together.

AsScrumTeamsmature,itisexpectedthattheirDefinitionof“Done”willexpandtoincludemore
stringent criteria for higher quality.

Conclusion

Scrum is free and offered in this guide. Scrum’s roles, artifacts, events, and rules are immutable and
although implementing only parts of Scrum is possible, the result is not Scrum. Scrum exists only in its
entirety and functions well as a container for other techniques, methodologies, and practices.

Acknowledgements

People
Of the thousands of people who have contributed to Scrum, we should single out those who were
instrumentalinitsfirsttenyears.FirsttherewasJeffSutherland,workingwithJeffMcKenna,andKen
Schwaber, working with Mike Smith and Chris Martin. Many others contributed in the ensuing years

340 Appendix

andwithouttheirhelpScrumwouldnotberefinedasitistoday.DavidStarrprovidedkeyinsights
and editorial skills in formulating this version of the Scrum Guide.

History
KenSchwaberandJeffSutherlandfirstco-presentedScrumattheOOPSLAconferencein1995.This
presentation essentially documented the learning that Ken and Jeff had over the previous few years
applying Scrum.

ThehistoryofScrumisalreadyconsideredlong.Tohonorthefirstplaceswhereitwastriedand
refined,werecognizeIndividual,Inc.,FidelityInvestments,andIDX(nowGEMedical).

The Scrum Guide documents Scrum as developed and sustained for twenty-plus years by Jeff
Sutherland and Ken Schwaber. Other sources provide you with patterns, processes, and insights about
how the practices, facilitations, and tools that complement the Scrum framework. These optimize
productivity, value, creativity, and pride.

Index

 341

Symbols and Numbers
.NET frameworks, 222–223
4 Ls activity, 26
5 Why’s technique, 26

A
Acceptance criteria

acceptance tests vs., 224
adding, 150
asdefinitionofsuccessfulPBIs,198–200
confirmationof,30–31
definitionof,225
Definitionof“Done”and,36
expected results and, 143
fields,69,72,75
specifying, 150–151

Acceptancetest-drivendevelopment(ATDD)
benefitsof,204
overview, 197
workflow,202–204
workflowdiagram,204

Acceptance tests
acceptance criteria vs., 224
associating, with Test Cases, 210–212
automated, 203, 206–210
defining,76
executing, 214–217
failing, 202, 204–205, 209
function of, 201
manual, 206, 210, 221
running, 216–217
sad path, 202–203
specificationsand,201

Acceptance, concept of, 224–225

Active listening, 229–230
Activityfield,75,178–179
Adaptation, 296–298, 326
Agents

build, 99, 124
for Visual Studio 2012, 53–54

Agile estimation, 153, 168
Agile Manifesto, 3, 227–228
Agile templates, 59
Albrecht, Chad, 279, 283, 287, 303
Alerts

email, 228, 235, 250–252, 261–263
team, 251–252

All Iterations query, 254
Allocation of work, 175
ALM. See Application lifecycle management

(ALM)
Anchoring of estimates, 154
Annotation tools, 264
Applicationlifecyclemanagement(ALM)

definitionof,41
Development Teams and, 43–44
tools for enabling, 41–42, 45–46

Architectural validation, 49
Architecture Explorer feature, 49
Artifacts. See also Increments; also Product Backlogs;

alsoSprintBacklogs;alsoSpecifictypesof
artifacts(e.g.workitems,sourcecontrol,
automated builds and tests)

Scrum, 27–28, 334
storage of, 45, 52

Assessment
of progress, 280–284
Scrum.org, 320–321

AssignedTofield,176,183,190,192,196
Attachments, 86, 267

342

Backlog management feature

B
Backlog management feature, 47
Backlog Overview reports, 62, 64, 83–84, 89,

118–119, 217
Backlog pages, 128–129

customization, 158–160
Product, 128–129, 139
Sprint, 170–172, 178–179

BacklogPriorityfield
changes to, 64
entering numbers in, 68, 72, 75
hidden, 62, 65
limiting, 317–318
ordering Product Backlog using, 148
parent-child hierarchy and, 135
sorting in, 131
viewing values in, 157

Backlogs. See Product Backlogs; Sprint Backlogs
Behavior frameworks, 222
Blocked tasks, 74, 76, 182, 276
Board page. See Task boards
Bradley, Charles, 275, 291–292, 297, 310
Branch builds, 114
Branching, 110–111
Buddy builds, 114
Bug triage, 140–141
Bug work items

customization, 86–87
forecasting, 170–172
in Team Foundation Server, 127
in-Sprint, 146, 274
Out-of-Sprint, 146–147, 274
overview, 70–73
reactivation of, 147
reporting, 140–147
validating, 140–141

Bugs, software
handling, 145, 274–275
sources of, 144–145

Build agents, 99, 124
Build controllers, 99
Build machines, 99–100
BuildNotificationstool,247–249,252,272
Build numbers, 142, 215–216
Build Success Over Time reports, 85
Build Summary reports, 85
Builds

automated, 98, 113–115, 244
hosted, 53

monitoring, 250–252
property, 215
types of, 113–114

Bulk edits, 139–140, 148, 171–172
Burndown charts, 13, 34, 167, 187, 280–284
Burn-ups, 283
Business value, 43, 68, 140, 338

C
Cancellation of Sprints, 16, 285–286, 330–331
CapabilityMaturityModelIntegration(CMMI)

templates. SeeCMMI(CapabilityMaturity
Model Integration) templates

Capacity planning, 178, 300, 331
Car Speeding Toward Abyss activity, 26
Cards, user story, 30
Certification,297,320–321
Changes

implementing, 8, 24
team member, 8
tracking, 238–239

Changesets, 108, 241, 268, 270
Check-in builds

continuousintegration(CI),98,114–115,215,
245–250

gated, 114, 249–250, 272
limiting, 246–247
policy, 114, 246–247, 272

Child-linked tasks, 135–136, 184–185
Circles and Soup technique, 26
Cloning, test suite, 219–221
CMMI(CapabilityMaturityModelIntegration)

templates, 59, 140
Coaches

developers as, 301
Scrum, 313–314
Scrum Masters as, 11–12, 308, 329

Code clone analysis, 48, 98
Code First API Library, Scaffolding & Guidance for

Coded UI Tests, 212–213
Code metrics, 48
Code ownership, 238–241
Code Review Requests, 63, 80–81, 269
Code Review Response, 63, 80–81, 269
Code reviews, 267–271

built-in views for, 269
definitionof,49
developers and, 241–243

 343

 Development Teams

opening, 270
requesting, 268
shelvesets in, 253

Code Reviews and Request feature, 268–271
CodedUI CodeFirst, 212–213
Collaboration

best practices for creating, 237
bug handling using, 274
challenges to, 300–301
group development model in, 227
HARD communication in, 198, 229
importance of, 228–229
informal meetings as part of, 230
productive, 234–235
tools for enabling, 244

Collocation, 230–233
Columns, backlog, 158–160
Command-and-control practices, 11, 34, 302,

304, 316
Comments

in code, 240–241
in source code, 240–241
link, 220
on code reviews, 269

Commitment, to Sprint Goal, 18–19
Communication. See Collaboration; Collocation;

Conversations
Complete builds, 114
Conchango, 61
Concrete class, 3
Configurationsproperty,215
Confirmation,userstory,30
Consensus, 17, 176, 199, 227
Continuousdelivery(CD)ofvalue,43
Continuousintegration(CI)builds,98,114–115,

215, 245–246
Contracts,fixed-price,292–294
Conversations

importance of, 198
individual, value of, 227
user story, 30

Copying
test suites, 218–219
undone work, 289–291
undone work items, 289–291

Creating
Product Backlogs, 127–128
Sprint Backlogs, 170
storyboards, 258–260
tasks, 175–176

team projects, 103–104
Test Cases, 76–78, 206–210

Cromwell, Ryan, 209
Cross-functionality, 8, 33, 39, 314–315
Cumulative Flow Diagrams, 317–318
Current Iterations query, 254
Customization

of backlog columns, 158–160
bug work items, 86–87
process templates, 86–88
of quick add panel, 132–134
(Sprint)Backlogpage,178–179

D
Daily Scrum, 20–21, 169, 179–182, 332–333

duration of, 20
Product Owners and, 21
Scrum Masters and, 333
stakeholders and, 13
whiteboards, use of, in, 21–22

Daily standup. See Daily Scrum
Debug builds, 114
Decomposition

Product Backlog item, 286
task, 74, 135–136, 176–177, 183–185, 196, 286

Deep copies, 218
Definitionof“Done,”5,36,287,295–296,337

transparency and, 117
Velocity and, 162–164

Dependency graphs, 49
Dependency validation, 63
Descriptionfield,201
Desirements, 200, 225
Developers

as coaches, 301
attributes of professional, 37–38
definitionof,1
feedback for, 115
pair programming by, 243
role of, 6–9
training for, 297, 320
viewing tasks of, 188–190

Development Teams
allocation of work on, 175
applicationlifecyclemanagement(ALM)and,

43–44
capacity planning for, 178
challenges facing, 273–294, 298–301

344

DevOps

Development Teams (continued)
characteristics of, 328
collaboration outside, 198
cross-functionality of, 8, 33, 39, 314–315
Definitionof“Done”and,36
dysfunctional behavior on, 294–301
estimation and, 152, 336
group development model and, 227, 315
high-performance, 321–322
members of, 1
performance measurement of, 301
Product Backlogs and, 29
Product Owners and, 10, 22, 302–305
responsibilities of, 5, 7–8, 20
role of, 6–9, 328
Scrum Masters and, 12, 307–310, 329
Scrum rules and, 310–313
self-organization in, 315–316, 328
size of, 7–9, 328
Sprint Backlog and, 33–34
stakeholders and, 14, 305–307

DevOps, 43
DistributedVersionControlSystems(DVCS),113
Done state, 64–65, 108–109, 119, 193, 255
Done,Definitionof.SeeDefinitionof“Done”
Drag-and-drop feature, 65, 156–158, 171, 184,

193–194
DVCS(DistributedVersionControlSystems),113
Dysfunctional behaviors, common, 294–310

E
Eclipse, 52, 54, 98
Effortfield,119,155
Email alerts, 228, 235, 250–252, 261–263
EMC, 61
Emergent architecture, 292, 311
Emotional seismograph activity, 25
Empiricism, 297, 326, 336
Epicfield,86
Epics, 134–137, 167, 184–185
Estimation

Agile, 153, 168
anchoring, 154
Development Teams and, 152, 336
Effortfieldand,155
of items in Product Backlog, 152–155, 277–280
of time, 175
of unknown entities, 291–292

project, 162
remaining work, 195
task, 20, 34
translation of story points and, 278

Events, Scrum, 4–6, 330
Evil path scenarios, 200
Excel, Microsoft, 129, 137–139, 148
Executablespecifications

definitionof,225
importance of, 221–222
overview, 201–204

Experiments, 291–292
Exploratory testing, 47
Expresseditions(VisualStudio2012),50–51
Expression Studio Ultimate, 259

F
F5 builds, 114
Fakes framework, 50, 210
FBI Sentinel Project, 273
Feature creep. See Scope creep
Feature-drive release plans, 161
Features, 200–201, 208
FeatureToggle, 289
Feature toggles, 287–289
Feedback

for developers, 115
for Development Teams, 236–237
from Product Owners, 236
from stakeholders, 236, 257–267
gathering, 257–260
managing, 48
permissions for, 265
providing, 259, 263–266
requesting, 261–263
voluntary, 266–267

Feedback client tool, 48, 63, 80, 261–267, 272
Feedback Request, 63, 80–81, 265
Feedback Response, 63, 80–81, 261, 265
Feedback Response work item, 267
Files

attachment, 86, 267
working with, 244–245

FIRO-B, 299
Fishbowl activity, 26
FitNesse, 222
Fixed-budget contracts, 293
Fixed-price contracts, 292–294, 323

 345

 Local builds

Fixed-scope contracts, 293
Flow, getting into the, 227, 234, 303
Folders, 81, 109–111
Forecasting, 17–19, 165–166, 170–172, 304, 336
Forming stage of development, 227
FoundinBuildfield,142
Fowler, Martin, 296
Fraile, Luis, 282
FrameworkforIntegratedFitness(FIT),222
Frameworks, 222–223
Full builds, 114

G
Gartner Magic Quadrant, 45
Gated check-in builds, 114, 249–250, 272
GE Medical, 338
Git, 113
Given-When-Then(GWT)format,87,202
Gold plating, 36, 143, 242, 275, 312
Graphs. See also Reports

dependency, 49
Grooming

definitionof,168,335
estimation and, 277
Product Backlog, 5, 7, 27, 31, 149–150, 152
scenarios and, 200
undone work, 323

Group development model, 227, 315

H
Happiness Metric activity, 26
Happy path scenarios, 200
HARD communication, 198, 229
Haugen, N. C., 154
Hidden work item types, 80–81, 265, 269
Hierarchy in backlogs, 174, 184–185
Highlighting tasks by person feature, 188–190
Hours, tracking, 34, 74, 119, 279

I
Iceberg, Product Backlog, concept of, 31, 152
Icons, 111, 264
IDX,338
Images, use of, 142
Impediments, 62, 78–80, 180–182, 275–277

InProgress(taskstate),64,76,193,254–255,268.
See also Work in progress

Incremental builds, 114
Increments, 6, 16, 35, 44, 287, 328, 337
Individual, Inc., 338
Initial blocking tasks, 176
Inspection, 15, 296–298, 326
In-Sprint bugs, 146, 274
IntegratedinBuildfield,142
Integration builds, 114
Integration Platform, 140
Intellitrace, 49
Interruptions

handling, 255–256
limiting, 234–235
Scrum Masters and, 12–13, 308

INVEST mnemonic, 30–31, 151, 302
Ishikawa(Fishbone)diagram,26
Iteration paths

manual change of, 82–83
setting, 170

Iteration property, 215

J
join.me, 244, 253

K
Kanban, 106, 317–318

L
Lab Management, Microsoft, 41, 48, 53, 95, 100–102
Label builds, 114
Labels, 112
Lao Tzu, 11–12
Lawoflargenumbers(LLN),162
Layer diagrams, 49, 98
Licenses, 55, 261
Licenses, Team Web Access, 129–130
Limited license group, 129, 265
Link types, 65, 69, 72, 119, 208
Linking

scenarios, 207
storyboards, 64, 70, 73, 260
Test Cases, 69, 72

Links tab, 220
Local builds, 114

346

Machine.Specifications (MSpec)

M
Machine.Specifications(MSpec),223
Macros, 252

team-based, 83
Mad, Sad, Glad activity, 26
Magic Quadrant, 45
Mainline builds, 114
Martin, Chris, 337
McKenna, Jeff, 337, 252
Measurement

performance, 301
Sprint Backlog, 34
task, 20

Meetings
duration of, 17, 22, 24
effective, 233–234
face-to-face, 230–233

Mergingfiles,244
Michaelis, Mark, 83
MicrosoftDeveloperNetwork(MSDN)subscriptions,

54–55
Microsoft Excel, 129, 137–139, 148
Microsoft fakes, 50, 210
Microsoft Lab Management, 41, 48, 53, 95, 100–102
Microsoft Paint, 264
Microsoft Sharepoint. See Sharepoint, Microsoft
MicrosoftSolutionsFramework(MSF),59
MicrosoftTestManager(MTM),41,47,77,214,

219, 225
Microsoft Visual Studio 2010, 46
Microsoft Visual Studio 2010 Express, 50
Microsoft Visual Studio 2012. See Visual Studio 2012
Microsoft Visual Studio Scrum 2.0. See Visual

Studio Scrum 2.0
Microsoft Visual Studio Team Explorer Everywhere

2012, 54
MicrosoftVisualStudioTeamSystem(VSTS),41
Molokken-Ostvold, K., 154
Moving undone work items, 289–291
MSDN(MicrosoftDeveloperNetwork)

subscriptions, 54–55
MSF(MicrosoftSolutionsFramework),59
MSpec(Machine.Specifications),223
MTM, 41, 47, 77, 214, 219, 225
Multiple check-out feature, 245
My Work feature, 49, 254–256, 268–269
MyShapes, 260

N
Name property, 215
Naming, 211
NBehave, 222
Negotiable value, 151, 162
Nightly builds, 114
Norming stage of development, 227
NSpec, 223
NuGet, 213, 289

O
Offices,open-plan,232
Open Impediments query, 181
Opinions, code review, 271
Out-of-Sprint bugs, 146–147, 274
Ownership

code, 238–241
task, 183, 192–193, 196
tracking, 238–240

P
Page objects, 212–213
Paint, Microsoft, 264
Pair programming, 243, 267
Parent-child hierarchy, creating, 135–136
Parking lots, use of, 21
Partial builds, 114
Partially succeeded builds, 114
Perfection Game technique, 26
Performance, 283, 301
Performing stage of development, 227
Permissions

stakeholder feedback, 265
Team Foundation Server, 121–122
Team Web Access, 129–130

Planning. See Sprint Planning
Planning Poker, 153–155
Plans

considerations while creating, 177
high-level, 19–20
release, 160–161
Scrum Retrospective, 24
work item implementation, 174–176

Potentially releasable, concept of, 35, 287, 295

 347

 Reactivation

PowerPoint Storyboarding, 48, 257–260, 272
Predictability, 326
Premiumedition(VisualStudio2012),46,

48–50, 55–56
Prioritization, 31–32, 156–158, 317–318, 335.

See alsoBacklogPriorityfield
Private builds, 114
Problem tree diagram technique, 26
Problem-solving behavior, 298
Process Editor, 60–61
Process templates

changes made to, 65–67
customizations, 86–88
definitionof,58–59
downloading, 59–61
elements in, 58–59
history of Visual Studio Scrum, 57
modifying, 88
MSF, 59
new features of, 63–65
Process Editor, 59–61
task boards and, 194
work item types in, 62

ProductBacklogitems(PBIs),28–29,67–70
attributes of, 335
creating, 127–128
decomposing, 134–137
estimation and, 280
features and scenarios in, 200–201
forecasting, 17, 170–172
importing, 137–140
prioritizing, 31–32, 156–158
renaming, 136
responsibility for, 127
Sprint cancellation and, 285
states of, 70, 150
types of, 28
unfinished,286–287
value in, 128
Velocity and, 8–9

Product Backlogs, 27–32, 335–336
acceptance criteria in, 150–151
best practices for, 147–148
concept of iceberg structure, 152
creating, 127–128
definitionof,127
grooming, 5, 7, 27, 149–150, 152, 168, 335
iceberg concept of, 31
item estimation in, 152–155
Kanban and, 317–318

managing, 128–129
ordering, 156–158
prioritizing, 335
purpose of, 4
removing work items from, 132
responsibility for, 10

Product Owners, 9–11
attributes of successful, 302
common dysfunctions of, 302–305
Daily Scrum and, 21
Definitionof“Done”and,5
Development Teams and, 10, 22, 302–305
feedback, 236–237
Product Backlog and, 4, 29, 127–128
responsibilities of, 32, 302–305, 327–328
role of, 9–11, 327–328
scope negotiation and, 284–285
Scrum Masters and, 329
Sprint cancellation and, 285–286

Product value, 10
Productivity

email alerts and, 235
ways to increase, 234–235

Professionaledition(VisualStudio2012),46–47,55
Professional Scrum Developer tool, 321
ProfessionalScrumDevelopers(PSD)

program, 297
Professional Scrum Master tool, 320
Professional Scrum Product Owner tool, 321
Profiling,advanced,47
Progress

assessment of, 280–284
monitoring, 336
warning signs of poor, 281–284

Project portals, 51, 115–117, 125, 173
Promiscuous pairings, 243
Properties, test plan, 215

Q
Quality control, 43, 98
Queries, 62, 81–82, 181, 254
Queued builds, 114
Quick add panel, 130–132, 157, 167

R
Ratholes, 241
Reactivation

348

Regression tests

Reactivation, (Continued)
bug work item, 147
task, 283

Regression tests, 217–218, 225
Reindl, Simon

on creating plans, 176
on evaluating Development Team

improvement, 297
ion impediments, 182
on forgiveness, 228
on need for face-to-face meetings, 230
on Product Backlog grooming, 149
on using custom queries, 138

Release builds, 114
Release Burndown reports, 62, 84, 166–168
Release planning, 156, 160–161, 168
Release plans, 160–161
Remainingworkfield,193,195
Remember the Future activity, 26
Remote access, 257
Removed state, 70, 73, 76, 150, 193–194
Removing

Activityfield,178–179
work items, 132

Reports, 83–86
Backlog Overview, 62, 64, 83–84, 89,

118–119, 217
bug work item, 140–144
engineering, 85–86
Release Burndown, 62, 84, 166–168
Team Explorer, 118–120
Team Foundation Server, 118–121, 163
Team Web Access, 120
Test Case Readiness, 85–86
Test Plan Progress, 86
using, 283
Velocity, 84, 168
Visual Studio Scrum 2.0, 62

Request Feedback link, 261
RequestedByfield,252
RequestedForfield,252
Requests, 63, 80–81, 269
Requirement test suites, 214
Requirements, 132

software, 4, 28–29
work item category, 62, 65. See also

 Acceptance criteria
Result Attachments, 267
Resumption of in-progress work, 255–256

Retirement, application, 42
Risk, control of, 294, 326
Roberts, Jason, 289
Roles

in testing, 214
Scrum, 6–14, 327–329. See also Development

Teams; also Product Owners; also Scrum
Masters

S
Sad path acceptance tests, 202–203
Sad path scenarios, 200, 203
Scaffolding, test case, 212–213
Scenarios

acceptance tests for, 202–203
definitionof,200
grooming and, 200
linking, 207
rewording, 202–203
types of, 200

Scheduling, 16
Schwaber, Ken, 4, 15, 228, 273, 312, 320, 325,

337–338
Scope

controlling, 161–162
renegotiation of, 284–285, 323
variable, 293

Scope creep, 151–152, 162, 282–283, 303
Screenshots as feedback tool, 264
Scrum

applicationlifecyclemanagement(ALM)and,
41–46

certificationin,320–321
checklist for “doing,” 321–322
coaches, 313–314
compromises in using, 312–313
definitionof,3,325
developer training, 320–322
dysfunctional behaviors found with,

294–298
events, 14–27, 330
framework, 4–6, 325
improving the practice of, 296–297, 313
preparation for, 93–94
rules of, 310
theory of, 326
waterfall practices to avoid in, 310–312

Scrum Guide 3–4, 37

 349

 Sprint Review

Scrum Masters
as coaches, 11–12, 308, 329
attributes of successful, 307–308
common dysfunctions of, 307–310
Daily Scrum and, 333
Development Teams and, 12, 307–310, 329
Impediments and, 181, 276
responsibilities of, 328–329
role of, 11–13, 310, 328–329

Scrum Open, 320
Scrum Teams

benefitsofVisualStudio2012for,
45–46

improving, 313–318
roles on, 6–14, 327–329
self-organization in, 315–316

Scrum.org, 4, 117, 320–321
ScrumButs, 312–313
SCVMM, 101–102
Security groups, 121–122
Self-organization, 315–316, 328
Servant leaders, 11
Severityfield,72,140
Shallow copies, 218
Shapes, custom, 260
Shared queries, 81–82
Shared Steps, 62, 67, 77, 80, 219
Sharepoint, Microsoft

capturing Sprint Goals in, 173–174, 196
increasing transparency using, 125, 148
project portals in, 51, 115–117
storingDefinitionof“Done”in,117
storyboards in, 258–259

Shelvesets, 114, 249, 253, 256
Shelving, 253
Single-pieceflow,practiceof,283,287,317
Size of Development Teams, 7–9, 328
Sketchflow,259
Smith, Mike, 337
SMTP settings, 251
Snapshots, in testing, 102
Software development

agile practices in, 3, 29, 43–44
continuous delivery value in, 42–44
risks in, 37–38
waterfall practices in, 310–312

Software in 30 Days(Schwaberand
Sutherland), 273

Soria Teruel, Jose Luis

onAcceptanceCriteriafieldfortrackingfeatures
and scenarios, 201

on commenting code, 240
on decomposing tasks, 184
on difference between commit and forecast,

304
on estimation, 278
on priority vs. order, 32
on release burndown charts, 281
on role of Scrum Masters, 310
on storyboarding, 258
on use of Code Review tool, 267
on when to start Sprints, 16

Source code, 238–241
Source control, 51, 108–110
Spec frameworks, 222
SpecFlow, 223, 225
Spikes, 291–292, 323
SprintBacklogitems(SBIs),6,32,34
Sprint Backlogs, 32–35, 336

capacity planning in, 178
creating, 170–177
customization, 178–179
definitionof,332
epics in, 184–185
forecasting, 170–172
managing, 128–129
measurement, 34
purpose of, 4–5

Sprint Burndown reports, 62, 84
Sprint Goals

achieving, 19, 332
capturing, 66, 115–117, 173–174, 196
commitment to, 18–19
definitionof,18,331
obsolete, 285, 331

Sprint Planning
duration of, 17
inputs and outputs of, 169, 331–332
overview, 17–20, 331–332
purpose of, 4, 326

Sprint Retrospective, 24–27, 297, 334
definitionof,39
duration of, 24
publishing notes from, 115
purpose of, 6, 24–25, 326
review of bugs and failures, 144
techniques for successful, 25–26

Sprint Review, 6, 22–24, 326, 333–334

350

Sprints

Sprints
cancellation of, 16, 285–286, 330–331
definitionof,15,169
determining current, 254
length of, 15–16, 330
monitoring progress of, 336–337
overview, 4–6, 330–331
rules of, 330
scope of, 16
selecting from Product Backlog page, 171
summary, 174
when to start, 16

Stakeholders
at Sprint Reviews, 6, 22–23
common dysfunctions of, 305–307
considerations, 13–14
Daily Scrum and, 13
Development Teams and, 14, 305–307
feedback from, 236, 257–267
feedback permissions for, 265

Standard environments, 101
Standup, daily. See Daily Scrum
Starfishactivity,26
Starr, David, 290, 337
Start Date/End Date property, 215
Statefields,172,193–194,290
State property, 215
Static code analysis, 47
Steps, 77
StepsToReproducefield,72,142–144
Sticky notes, use of, 19, 21, 33, 115, 155
Stories

spike, 291–292
user, 23, 29–31, 68

Storming stage, of development, 227
Story points, 20, 199, 278
Storyboard Shapes Authoring tool, 259–260
Storyboards, 48, 69–70, 257–260, 272
StoryQ, 222
Stress behavior, 298
Subscriptions

email alert, 251
MSDN(MicrosoftDeveloperNetwork),54–55

Success,acceptancecriteriaasdefinitionof,199
Suspension

of in-progress work, 254–256
task, 49

Sutherland, Jeff, 4, 273, 320, 325, 337–338
Swarming, 317
System builds, 114

SystemCenterVirtualMachineManager(SCVMM),
101–102

System.WorkItemTypefield,141
Systemsdevelopmentlifecycle(SDLC),41

T
T4Scaffolding, 213
Tags, 99
Task boards

accessing, 186
adding new tasks, 191
changing task states, 193–194
process templates and, 194
purpose of, 47, 185–186
setting task ownership, 192
transparency and, 316
use of, 180
viewing tasks on, 188–190

Task suspend and resume feature, 49
Task work items, 62, 73–76

adding, 191
changing states of, 193–194
in Sprint Backlog, 174–176

Tasks
blocked, 74, 76, 182, 276
creating, 175–176
decomposing, 74, 135–136, 176–177, 183–185,

196, 286
highlighting by person, 188–190
planning, 19–20
reactivation of, 283
spike, 291–292
suspending work on, 255–256
suspension of, 49
unassigned, 20, 183, 188–190, 192
viewing, by team member, 188–190
when to create, 283

Tcm.exe command, 212, 219–220
Team alerts, 251–252
Team Explorer, 76

Code Review work item types in, 80, 269–270
My Work feature, 254–256, 271
process templates in, 59
project portal settings in, 116–117
reports, 118–120
shared queries in, 81
team projects in, 103
team selection within, 122–124

 351

 Tracking

Test Case work items in, 129
Team Explorer Everywhere, 52, 54
Team Foundation Build, 51, 97–100, 114, 124, 244
TeamFoundationServer(TMS),51,244–245

builddefinitionsin,113–115
configuring,108–113
definitionof,56
documentation in, 115–117
Integration Platform, 140
Kanban and, 318
on-premises vs. hosted, 94–95
permissions, 121–122
process templates in, 59
reports, 118–121, 163
standard environments in, 101–102
Team Foundation Service vs., 94–95
team project collections in, 96–97
team projects in, 103–108
teams within, 122–124
Tester Power Tool, 219
tracking ownership in, 238–240

Team Foundation Server 2012 Express, 50–51
Team Foundation Service, 52–53, 56, 94–95, 318
Team project collections, 96–97, 124
Team projects

Backlog, 104–107
creating, 103–104
default groups, 121–122
naming, 107–108
security groups, 121–122
single, modifying, 88
teams within, 122–124

Team Radar activity, 26
Team rooms, 232–233, 271
Team Web Access

backlog page in, 128–129
bulk edits for, 171–172
bulk edits in, 139–140
features of, 47–48
forecasting tool in, 165–166
licensing levels in, 129–130
Product Backlog management, 128–134,

156–160
queries in, 81
reports, 120
Sprint summary, 174
Velocity charts in, 163–164, 168

Teams. See also Development Teams; also
Scrum Teams

collocated, 230, 236

common dysfunctions of, 294–298
development of, 278–279
estimation and, 277
interpersonal dynamics of, 298–301

Test Case Migrator Plus project, 140
Test Case Readiness reports, 85–86
Test case scaffolding, 212–213
Test Cases

associating automated tests with, 210–212
cloning, 219–221
copying, 219
creating, 76–78, 206–210
linking, 69, 72
reusing, 217–221
states of, 78

Test controllers, 214
Test Environment property, 215
Test Manager, 41, 47, 77, 214, 219, 225
Test Plan Progress reports, 86
Test plans, 214–216
TestProfessionaledition(VisualStudio2012),

46–49, 55
Test Settings property, 215
Test suites, 214, 217–221
Test-drivendevelopment(TDD),205–206
Tested by link type, 69, 72, 77, 119, 208
Tester Power Tool, 219
Testing Center, 215–216
Tests. See also Acceptance tests

automated, 97, 275
code coverage, 48
manual, 97
regression, 217–218, 225
UI, 48, 212
unit, 47, 205, 210

Tests link type, 69, 72, 77, 208
Tf.exe command line utility, 63, 242
TFS Integration Platform, 140
TFS Tester Power Tool, 219
The Enterprise and Scrum(Schwaber),312
Time-boxing, 14, 291
Time-driven release plans, 161
Timeline activity, 25
To Do state, 64, 76, 193
Toggles, feature, 287–289
Torvalds, Linus, 113
Tracer bullets, 292
Tracking

changes, 238–241
estimates, 279

352

Training, developer

Tracking, (Continued)
hours, 34, 74, 119, 279
impediments, 181
ownership, 238–240

Training, developer, 297, 320–322
Translation, of story points and estimation, 278
Transparency

definitionof“Done”and,117
need for, 326
task boards and, 316

Trend lines, 34, 84, 281–282
Triage, bug, 140–141
Trunk builds, 114
Tuckman, Bruce, 227, 315
Tweaking, 235

U
UITestControl, 212
Ultimateedition(VisualStudio2012),46,48–50,56
UML diagrams, 50
Unassigned tasks, 20, 183, 188–190, 192
Undone work, 36–37, 286–291
Unit tests, 47, 205, 210
User stories, 23, 29–31, 68
User Stories Overview Report, 64, 83, 95

V
Validation

architectural, 49
dependency, 63

Value
continuous delivery of, 43
negotiable, 151, 162
product, 10

Variable scope, 293
Velocity

as performance measurement, 301
charts, 163–164, 168
Definitionof“Done”and,36,162–164
estimation and, 162–164, 288
forecasts and, 18
Product Backlog items and, 8–9
reports, 84, 168
team composition and, 8–9
undone work in, 286

Version control, 51, 113, 147, 287

Viewing
acceptance test results, 216–217
tasks, 188–190
values, 157

Vincent, Mike, 45, 275, 304, 316
Virtual Test Lab Management, 95
Virtualization, value of, 100–102
Visual Studio 2010, 46
Visual Studio 2010 Express, 50
Visual Studio 2012

agents for, 53–54
ALM features of, 45
ALM tools in, 43
editions, 46–51
licensing, 55
overview, 44
subscription to, 54–55
Team Explorer Everywhere, 52
Team Foundation Server, 51
Team Foundation Service in, 52–53

Visual Studio Lab Management, 41, 48, 53, 95,
100–102

Visual Studio Scrum 2.0
customizations, 86–88
features removed from, 66–67
My Work page, 254–256
new features in, 62–66
process templates, 57, 86–88
queries, 62, 82
reports, 62
undone work in, 289–291
work item types, 62

Visual Studio Team Explorer Everywhere 2012, 54
VisualStudioTeamSystem(VSTS),41
Visualizations, 257–260, 317–318

W
Warning signs, of poor progress, 281–284
Waterfall practices, 310–312
Weasel words, dysfunctional behavior, 299–301
Web Access. See Team Web Access
Web performance and load testing feature, 49
White box tests, 98
White Elephant game, 155
Whiteboards, use of

as collaborative tool, 244, 257–258
danger in, 48
in Daily Scrum, 21–22

 353

 Zone

Response; also Impediments; also Product
Backlogitems(PBIs);alsoSharedSteps;
also Task work items; also Test Cases

Work items
adding, 130–134
editing, 139–140, 171–172
importing, 137–140
removing, 132
selecting, 171
stubbing out, 176
undone, 289–291

Workspaces, local, 113

Y
YouAin’tGonnaNeedIt(YAGNI)principle,282

Z
Zone, getting into the, 234–235, 303

during planning, 19
remote access to, 257
in team rooms, 232
in White Elephant game, 155

Witadmin.exe command-line utility, 88, 132
Work

allocation of, 175
taking on, 183, 196
updating remaining, 195

Work details function, 178
Work in progress

managing, 254–256, 317–318. See also My
Work feature

resumption, 255–256
suspension of, 254–256

Work item categories, 48, 62, 64–65
Work item queries, 81–83
Work item types, 62, 67–81, 88, 265, 269. See

also Bug work items; also Code Review
Requests; also Code Review Response;
also Feedback Request; also Feedback

About the author

RICHARD HUNDHAUSEN is the president of Accentient, a company that helps
software development teams understand and leverage Application Lifecycle
Management and Scrum tools and practices. He has over 30 years of software
development experience and over 20 years of training experience. He is a
Microsoft Regional Director, Visual Studio ALM MVP, and the author of several

books and courses—including the Professional Scrum Developer program from Microsoft.
You can reach Richard via email at richard@accentient.com.

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

	Cover Page
	Praise for this book Page
	Title Page
	Copyright Page

	Dedication
	Contents at a Glance Page
	Contents
	Foreword
	Introduction
	Who should read this book
	Who should not read this book
	Organization of this book
	Finding your best starting point in this book

	Conventions and features in this book
	Code samples
	Installing and using the Scrum Robot

	Acknowledgments
	Errata & book support
	We want to hear from you
	Stay in touch

	Part I: Fundamentals
	Chapter 1: Scrumdamentals
	The Scrum Guide
	Scrum in action
	Scrum roles
	Scrum events
	Scrum artifacts
	Definition of “Done”

	The professional Scrum developer
	Chapter burndown

	Chapter 2: Microsoft Visual Studio 2012 ALM
	Delivering continuous value
	Visual Studio 2012
	Editions
	Team Foundation Server
	Team Foundation Service
	Visual Studio Team Explorer Everywhere 2012
	MSDN subscriptions

	Chapter burndown

	Chapter 3: Microsoft Visual Studio Scrum 2.0
	Dissecting the process template
	MSF process templates
	Exploring a process template

	Visual Studio Scrum 2.0
	What’s new and different
	Work item types
	Work item queries
	Reports
	Common customizations

	Chapter burndown

	Part II: Using Scrum
	Chapter 4: The pre-game
	Setting up the development environment
	Team Foundation Server: Buy vs. build
	Create a team project collection
	Configure Team Foundation Build
	Configure Lab Management

	Setting up product development
	Create a team project
	Source control
	Automated builds
	Project portal
	Reports
	Security groups
	Teams

	Chapter burndown

	Chapter 5: The Product Backlog
	Creating the Product Backlog
	Team Web Access
	Using the “quick add” experience
	Handling epic PBIs
	Importing existing PBIs
	Reporting a bug
	Effective Product Backlog creation

	Grooming the Product Backlog
	Specifying acceptance criteria
	Estimating items in the Product Backlog
	Tracking estimates in the Product Backlog
	Ordering the Product Backlog

	Planning a release
	Time-driven vs. feature-driven releases
	Controlling and prioritizing scope
	Using Velocity to estimate
	Release Burndown report

	Chapter burndown

	Chapter 6: The Sprint
	Creating the Sprint Backlog
	Forecasting the PBIs
	Capturing the Sprint Goal
	Creating the plan

	Daily Scrum activities
	The Daily Scrum
	Taking on work
	The task board

	Chapter burndown

	Chapter 7: Acceptance test-driven development
	Keep the conversation going
	Collaborative specifications
	Executable specifications

	Acceptance test-driven development
	Test-driven development

	Automated acceptance testing
	Creating a test case
	Associating an automated test
	Executing automated acceptance tests
	Reusing test cases
	Other acceptance-testing frameworks

	Acceptance
	Chapter burndown

	Chapter 8: Effective collaboration
	Individuals and interactions over processes and tools
	Listen actively
	Collocate
	Set up a team room
	Meet effectively
	Collaborate productively
	Achieve continuous feedback

	Collaborative development practices
	Collective code ownership
	Commenting in code
	Code reviews

	Collaborative development tools
	Team Foundation Server
	Continuous integration
	Gated check-in builds
	Email alerts
	Shelving
	My Work
	PowerPoint Storyboarding
	Feedback client
	Code reviews

	Chapter burndown

	Part III: Improving
	Chapter 9: Continuous improvement
	Common challenges
	Bugs
	Impediments
	Estimation
	Assessing progress
	Renegotiating scope
	Undone work
	Spikes
	Fixed-Price contracts and Scrum

	Common dysfunctions
	Not getting “done”
	Flaccid Scrum
	Not inspecting, not adapting
	Development Team challenges
	Working with a challenging Product Owner
	Working with challenging stakeholders
	Working with a challenging Scrum Master
	Changing Scrum

	Improving
	Get a coach
	Build a cross-functional team
	Achieve self-organization
	Improve transparency
	Swarm
	Use a Kanban board to limit WIP
	Professional Scrum Developer training
	Assess your knowledge
	Become a high-performance Scrum Development Team

	Chapter burndown

	Appendix Page
	Index Page
	About the author
	Survey Page

