
www.it-ebooks.info

http://www.it-ebooks.info/

ffirs.indd iffirs.indd i 28/07/12 6:10 PM28/07/12 6:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

PROFESSIONAL
MOBILE APPLICATION DEVELOPMENT

INTRODUCTION . xxiii

CHAPTER 1 Preliminary Considerations . 1

CHAPTER 2 Diving into Mobile: App or Website?. 11

CHAPTER 3 Creating Consumable Web Services for Mobile Devices 37

CHAPTER 4 Mobile User Interface Design . 89

CHAPTER 5 Mobile Websites . 117

CHAPTER 6 Getting Started with Android . 151

CHAPTER 7 Getting Started with iOS . 183

CHAPTER 8 Getting Started with Windows Phone 7 . 229

CHAPTER 9 Getting Started with BlackBerry . 253

CHAPTER 10 Getting Started with Appcelerator Titanium . 283

CHAPTER 11 Getting Started with PhoneGap . 309

CHAPTER 12 Getting Started with MonoTouch and Mono for Android 343

INDEX . 379

ffirs.indd iffirs.indd i 09/08/12 7:15 PM09/08/12 7:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ffirs.indd iiffirs.indd ii 09/08/12 7:15 PM09/08/12 7:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

PROFESSIONAL

Mobile Application Development

ffirs.indd iiiffirs.indd iii 09/08/12 7:15 PM09/08/12 7:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ffirs.indd ivffirs.indd iv 09/08/12 7:15 PM09/08/12 7:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

John Wiley & Sons, Inc.

PROFESSIONAL

Mobile Application Development

Jeff McWherter
Scott Gowell

ffirs.indd vffirs.indd v 09/08/12 7:15 PM09/08/12 7:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Professional Mobile Application Development

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-20390-3
ISBN: 978-1-118-22842-5 (ebk)
ISBN: 978-1-118-24068-7 (ebk)
ISBN: 978-1-118-26551-2 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012940037

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

ffirs.indd viffirs.indd vi 09/08/12 7:15 PM09/08/12 7:15 PM

www.it-ebooks.info

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://www.it-ebooks.info/

To my daughter Abigail Grace: I will help you to

succeed in anything you choose to do in life.
—Jeff McWherter

For Barbara and Charlotte, I couldn’t have done it

without you.
—Scott Gowell

ffirs.indd viiffirs.indd vii 09/08/12 7:15 PM09/08/12 7:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ffirs.indd viiiffirs.indd viii 09/08/12 7:15 PM09/08/12 7:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE AUTHORS

JEFF MCWHERTER wrote Chapters 2, 7, 9 and 12. He is a partner at Gravity Works Design and
Development and manages the day-to-day activities of the development staff. Jeff graduated from
Michigan State University with a degree in Telecommunications, and has 15 years of professional
experience in software development. He is a founding member of the Greater Lansing Users for
.NET (GLUG.net). He enjoys profi ling code, applying design patterns, fi nding obscure namespaces,
and long walks in the park. His lifelong interest in programming began with a Home Computing
Magazine in 1983, which included an article about writing a game called Boa Alley in BASIC. Jeff
currently lives in a farming community near Lansing, MI. When he is not in front of the computer
he enjoys Lego, Snowboarding, board games, salt-water fi sh and spending time with his beautiful
wife Carla and daughter Abigail Grace.

SCOTT GOWELL wrote Chapters 1, 6 and 10. He is Senior Developer at Gravity Works Design
and Development. Scott graduated from Northern Michigan University with a degree in Network
Computing, and has been working as a professional in software development since Spring of 2003.
Scott lives with his wife Barbara and their daughter Charlotte. When not working he loves spending
time with his family, playing with Duplo and dinosaurs or snuggling up on the couch to watch
a movie.

ABOUT THE CONTRIBUTORS

DAVID SILVA SMITH wrote Chapter 3. Dave is Director of Business Development at Gravity Works
Design and Development. Dave has been creating websites and writing code since he was in 7th
grade. Dave is happy he can use his technology skills to work with customers proposing solutions to
their problems and proposing ways for them to capitalize on business opportunities. Dave graduated
from Michigan State University and serves as a board member on a number of professional organi-
zations in the Lansing area. When Dave is not working he enjoys spending time with his son Colin.
Dave also enjoys playing football, basketball, and volleyball.

LAUREN THERESE GRACE COLTON wrote Chapter 4. Lauren is a geek fascinated by how people inter-
act with technology to fi nd and use information. A graduate of James Madison College at Michigan
State University, her editorial work includes the International Encyclopedia of the Social Sciences

ffirs.indd ixffirs.indd ix 09/08/12 7:15 PM09/08/12 7:15 PM

www.it-ebooks.info

http://GLUG.net
http://www.it-ebooks.info/

and the Encyclopedia of Modern China. During much of her time spent working on this book,
her husband Adam was cooking homemade pizza, while her lovely pit bulls Maggie and Beatrice
cuddled at her feet.

AMELIA MARSCHALL-MILLER wrote Chapter 5. Amelia is Partner and Creative Director at Gravity
Works Design and Development. She holds a Bachelors degree from Northern Michigan University
in Graphic Design and Marketing. Amelia has over fi ve years of graphic and web design experience
and is continually exploring the latest techniques in website design. She has spoken at regional and
national conferences about front end web technologies, including HTML5, CSS3, and the mobile
web. She is one of the rare designers who likes to code. (Or, one of the rare coders who likes to
design!) When she is not designing or building websites, Amelia enjoys swimming and competing in
triathlons, and going on camping and ski trips with her husband John.

ADAM RYDER wrote Chapter 11. He is a developer at Gravity Works Design and Development. He
has a Bachelors of Science from Lake Superior State University in Computer Science. When Adam is
not working he enjoys spending time with his family. He fi shes regularly and spends time camping in
Michigan’s State Park system with his fi ancée, Alicia, and yellow lab, Jasper.

x ❘ ABOUT THE AUTHORS

ffirs.indd xffirs.indd x 09/08/12 7:15 PM09/08/12 7:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

EXECUTIVE EDITOR
Carol Long

PROJECT EDITOR
Brian Herrmann

TECHNICAL EDITOR
Al Scherer

PRODUCTION EDITOR
Christine Mugnolo

COPY EDITOR
Kimberly A. Cofer

EDITORIAL MANAGER
Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER
Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING
David Mayhew

MARKETING MANAGER
Ashley Zurcher

BUSINESS MANAGER
Amy Knies

PRODUCTION MANAGER
Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP
PUBLISHER
Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER
Neil Edde

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Katie Crocker

PROOFREADER
Mark Steven Long

INDEXER
Robert Swanson

COVER DESIGNER
LeAndra Young

COVER IMAGE
© iStock / kokouu

CREDITS

ffirs.indd xiffirs.indd xi 09/08/12 7:15 PM09/08/12 7:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ffirs.indd xiiffirs.indd xii 09/08/12 7:15 PM09/08/12 7:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS

THE SUCCESS OF THIS BOOK came from the dedication of the entire team at Gravity Works Design
and Development. With Jeff and Scott acting as lead authors and co-conductors, an orchestra
of highly passionate individuals — Amelia, Lauren, Dave, and Adam — spent countless hours
researching and working on portions of this book to ensure it maintained high standards and
contained expertise on topics from those who know them best. Professional Mobile Application
Development provides the collective knowledge from all of us at Gravity Works.

Throughout the years, the whole Gravity Works team has had the opportunity to attend hundreds
of conferences and user groups targeted at developers, designers, and user interface experts. It is at
these events that we meet other passionate people and learn new things. We would like to thank the
organizers of these events, and encourage others to host more events on emerging technologies.

Finally, a huge thank you to our families. Your patience while we worked late nights and weekends
at Gravity Works, in local coffee shops, and on our kitchen tables will not be forgotten!

ffirs.indd xiiiffirs.indd xiii 09/08/12 7:15 PM09/08/12 7:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ffirs.indd xivffirs.indd xiv 09/08/12 7:15 PM09/08/12 7:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

INTRODUCTION xxiii

CHAPTER 1: PRELIMINARY CONSIDERATIONS 1

Why You Might Be Here 2

Competition 2

Quality vs. Time to Market 2

Legacy System Integration 2

Mobile Web vs. Mobile App 3

Cost of Development 3

Hardware 3

Software 4

Licenses and Developer Accounts 5

Documentation and APIs 5

The Bottom Line 6

Importance of Mobile Strategies
 in the Business World 6

Why Is Mobile Development Diffi cult? 6

Mobile Development Today 8

Mobile Myths 8

Third-Party Frameworks 9

Appcelerator Titanium Mobile Framework 9

Nitobi PhoneGap 10

MonoDroid and MonoTouch 10

Summary 10

CHAPTER 2: DIVING INTO MOBILE: APP OR WEBSITE? 11

Mobile Web Presence 12

Mobile Content 13

Mobile Browsers 14

 Mobile Applications 17

You’re a Mobile App If . . . 17

When to Create an App 18

Benefi ts of a Mobile App 22

ftoc.indd xvftoc.indd xv 28/07/12 6:10 PM28/07/12 6:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xvi

CONTENTS

Marketing 24

Quick Response Codes 25

The Advertising You Get from the App Market 26

Third-Party Markets 32

Your App as a Mobile Web App 33

Summary 36

CHAPTER 3: CREATING CONSUMABLE
WEB SERVICES FOR MOBILE DEVICES 37

What Is a Web Service? 37

Examples of Web Services 38

Advantages of Web Services 39

Web Services Languages (Formats) 40

eXtensible Markup Language (XML) 40

JavaScript Object Notation (JSON) 42

Transferring Nontextual Data 42

Creating an Example Web Service 42

Using the Microsoft Stack 43

Using the Linux Apache MySQL PHP (LAMP) Stack 77

Debugging Web Services 83

Tools 83

Advanced Web Service Techniques 85

Summary 86

CHAPTER 4: MOBILE USER INTERFACE DESIGN 89

Eff ective Use of Screen Real Estate 90

Embrace Minimalism 90

Use a Visual Hierarchy 90

Stay Focused 90

Understanding Mobile Application Users 91

Proximity 91

Closure 91

Continuity 92

Figure and Ground 92

Similarity 92

The Social Aspect of Mobile 92

Usability 93

Accessibility 94

Understanding Mobile Information Design 96

Information Display 96

Design Patterns 96

ftoc.indd xviftoc.indd xvi 28/07/12 6:10 PM28/07/12 6:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

xvii

Content Structure and Usage 107

Understanding Mobile Platforms 109

Android 110

iOS 110

BlackBerry OS 111

Windows Phone 7 112

Mobile Web Browsers 112

Using the Tools of Mobile Interface Design 113

User Acceptance Testing 113

Information Design Tools 114

Summary 115

CHAPTER 5: MOBILE WEBSITES 117

Choosing a Mobile Web Option 118

Why Do People Use Your Website on Mobile Devices? 118

What Can Your Current Website Accommodate? 118

How Much Do You Want to Provide for Mobile Users? 119

Adaptive Mobile Websites 120

Get Your Queries in Place 121

Add Mobile Styles 125

Dedicated Mobile Websites 140

Mobile Web Apps with HTML5 143

What Exactly Is HTML5? 143

And What Exactly Is a Mobile Web App? 144

How Do You Use HTML5 in a Mobile Web App? 144

Make Your Mobile Web App Even More Native 148

Summary 150

CHAPTER 6: GETTING STARTED WITH ANDROID 151

Why Target Android? 152

Who Supports Android? 152

Android as Competition to Itself 152

Multiple Markets and Market Locks 152

Getting the Tools You Need 153

Downloading and Installing JDK 153

Downloading and Installing Eclipse 153

Downloading and Installing the Android SDK 154

Downloading and Confi guring the Eclipse ADT Plug-in 155

Installing Additional SDK Components 157

Development 158

ftoc.indd xviiftoc.indd xvii 28/07/12 6:10 PM28/07/12 6:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xviii

CONTENTS

Connecting to the Google Play 172

Getting an Android Developer Account 172

Signing Your Application 172

Android Development Practices 172

Android Fundamentals 172

Fragments as UI Elements 173

Ask for Permission 173

Mind the Back Stack 174

Building the Derby App in Android 174

Common Interactions 174

Offl ine Storage 176

Web Service 177

GPS 180

Accelerometer 181

Summary 182

CHAPTER 7: GETTING STARTED WITH IOS 183

The iPhone Craze 183

Apple in Its Beauty 184

Apple Devices 185

Getting the Tools You Need 187

Hardware 187

xCode and the iOS SDK 191

The iOS Human Interface Guideline 193

iOS Project 193

Anatomy of an iOS App 194

Getting to Know the xCode IDE 195

Debugging iOS Apps 199

The iOS Simulator 199

Debugging Code 200

Instruments 204

Objective-C Basics 204

Classes 205

Control Structures 206

Try Catch 207

Hello World App 208

Creating the Project 208

Creating the User Interface 211

Building the Derby App in iOS 214

User Interface 215

Team Roster 217

ftoc.indd xviiiftoc.indd xviii 28/07/12 6:10 PM28/07/12 6:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

xix

Details 219

Leagues and Team Names 220

Other Useful iOS Things 223

Offl ine Storage 223

GPS 224

Summary 227

CHAPTER 8: GETTING STARTED WITH
WINDOWS PHONE 7 229

New Kid on the Block 229

Metro 230

Application Bar 230

Tiles 232

Tombstoning 233

Getting the Tools You Need 234

Hardware 234

Visual Studio and Windows Phone SDK 234

Windows Phone 7 Project 236

Silverlight vs. Windows Phone 7 236

Anatomy of a Windows Phone 7 App 237

The Windows Phone 7 Emulator 238

Building the Derby App in Windows Phone 7 239

Creating the Project 239

User Interface 240

Derby Names 241

Leagues 243

Distribution 244

Other Useful Windows Phone Things 245

Offl ine Storage 245

Notifi cations 247

GPS 249

Accelerometer 250

Web Services 252

Summary 252

CHAPTER 9: GETTING STARTED WITH BLACKBERRY 253

The BlackBerry Craze 254

BlackBerry Devices 254

BlackBerry Playbook 259

Getting the Tools You Need 259

BlackBerry Developer Program 259

ftoc.indd xixftoc.indd xix 28/07/12 6:10 PM28/07/12 6:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xx

CONTENTS

Code Signing Keys 260

BlackBerry Java Development Environment 260

Implementing the Derby App with BlackBerry for Java 265

BlackBerry Eclipse Specifi cs 269

BlackBerry Development with WebWorks 270

Other Useful BlackBerry Things 276

Offl ine Storage 277

Location Services 278

BlackBerry Distribution 280

Summary 280

CHAPTER 10: GETTING STARTED WITH
APPCELERATOR TITANIUM 283

Why Use Titanium? 284

Who Is Using Titanium? 284

NBC 285

GetGlue 286

Getting the Tools You Need 287

Installing Titanium Studio 287

Downloading the Kitchen Sink 290

Development 291

Connecting Titanium to the Markets 294

Versioning Your App 296

Building the Derby App in Titanium 297

Common UI Patterns 297

Offl ine Storage 301

Web Service 302

GPS 305

Accelerometer 306

Summary 308

CHAPTER 11: GETTING STARTED WITH PHONEGAP 309

History of PhoneGap 309

Why Use PhoneGap? 310

Who Is Using PhoneGap? 310

METAR Reader 310

Logitech Squeezebox Controller 311

Wikipedia 311

Diff erences between PhoneGap and HTML5 311

ftoc.indd xxftoc.indd xx 28/07/12 6:10 PM28/07/12 6:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

xxi

Getting the Tools You Need 312

Installing PhoneGap for iOS 312

Installing PhoneGap for Android 314

Installing PhoneGap for Windows Phone 7 317

PhoneGap Tools and IDE 319

PhoneGap Project 323

Anatomy of a PhoneGap Application 323

Creating User Interfaces 324

Debugging 324

Useful JavaScript Libraries 325

Building the Derby App in PhoneGap 330

Other Useful Phone Gap Things 335

Pickers 336

Offl ine Storage 337

GPS 339

Accelerometer 340

Connecting PhoneGap to the Markets 341

Summary 341

CHAPTER 12: GETTING STARTED WITH MONOTOUCH
AND MONO FOR ANDROID 343

The Mono Framework 343

MonoTouch 344

Mono for Android 345

Assemblies 346

Why MonoTouch/Mono for Android? 347

Downsides 347

Xamarin Mobile 348

Getting the Tools You Need 350

Mono Framework 350

MonoTouch 351

Mono for Android 352

Getting to Know MonoDevelop 353

Debugging 354

MonoTouch Specifi cs 355

Mono for Android Specifi cs 356

Mono Projects 357

Anatomy of a MonoTouch App 358

Anatomy of a Mono for Android App 361

ftoc.indd xxiftoc.indd xxi 28/07/12 6:10 PM28/07/12 6:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xxii

CONTENTS

Building the Derby App with Mono 362

MonoTouch 362

Mono for Android 368

Other Useful MonoTouch/Mono Features 374

Local Storage 374

GPS 375

Summary 377

INDEX 379

ftoc.indd xxiiftoc.indd xxii 28/07/12 6:10 PM28/07/12 6:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

IN RECENT YEARS, MOBILE DEVICES have gained popularity due to lower costs, small and sleek
sizes, and the capability to act as a computer with you at all times. The increased use of mobile
devices has created new issues for developers and network administrators, such as how to secure
the devices, how to deal with increases in bandwidth, and how to make existing codebases usable
on a device ten times smaller than it was designed for.

This book discusses these problems and many more, with a detailed overview of how to get started
developing for a variety of mobile devices. If you are reading this, you are interested in learning
about mobile development; we hope to give you the information and tools to start down the best
path to develop a mobile application.

Who This Book Is For

This book is targeted at anyone interested in mobile development. We assume the reader is a
 technical professional with some type of development experience during their career.

Whether you are a developer or a manager, this book explains key concepts and basic platform
requirements for creating mobile applications.

What This Book Covers

Professional Mobile Application Development covers the key concepts needed to develop mobile
apps and mobile websites, using a variety of platforms and technologies:

 ➤ Whether to develop an app or a mobile website

 ➤ Why a mobile presence is important

 ➤ Mobile user interfaces design concepts

 ➤ Creating mobile web apps using responsive techniques

 ➤ Creating web services on the Microsoft stack for mobile consumption

 ➤ Creating web services on the Linux stack for mobile consumption

 ➤ Basics of Objective C

 ➤ Developing an iOS app from start to fi nish

 ➤ Basics of the Android SDK

 ➤ Developing a BlackBerry Java app

 ➤ Developing a BlackBerry WebWorks app

 ➤ Windows Phone 7 development

flast.indd xxiiiflast.indd xxiii 28/07/12 6:10 PM28/07/12 6:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xxiv

INTRODUCTION

 ➤ Basic Java Script development

 ➤ Creating an app with PhoneGap

 ➤ Working with the Titanium framework to create an app

Each chapter discusses the tools, techniques, best practices, advantages, and disadvantages of each
mobile development platform.

How This Book Is Structured

Many readers of Professional Mobile Application Development will not have any experience
with creating any type of mobile application, whereas others may have experience with some
types of mobile platforms presented in this book. After the fi rst few chapters, which are aimed at
high-level design and platform decisions, this book is intended to allow a reader to “fl ip around”
and read about mobile development for the platforms that are relevant to them, independent of
other chapters.

Chapter 1: Preliminary Considerations

This chapter starts with an introduction to what it takes to develop mobile apps. Mobile develop-
ment is a hot trend right now, and many companies are jumping in, spending time developing a
mobile strategy. With so many options available to develop mobile apps, this chapter discusses these
options, weighing advantages and disadvantages.

Chapter 2: Diving into Mobile: App or Website?

One of the most heated topics in the mobile world today is whether to design a mobile app or a
mobile website, and this chapter is devoted entirely to this topic. After reading this chapter, you will
have a good understanding of when you should develop a mobile app, and when a mobile website
is suffi cient.

Chapter 3: Creating Consumable Web Services
for Mobile Devices

Most mobile apps share data and need a way to persist this data to a server. In recent years, the
bandwidth that mobile apps use has increased drastically. This chapter discusses how to create
services that your mobile app can consume. It discusses various options on both Windows and
UNIX platform stacks.

Chapter 4: Mobile User Interface Design

Mobile interfaces are a young medium, and diffi cult: designers work with a telescoped view of
almost limitless information. The constraints of this rapidly growing context give teams the
opportunity to focus and innovate as devices and best practices evolve. This chapter gives an
in-depth look at mobile design patterns and usability practices.

flast.indd xxivflast.indd xxiv 28/07/12 6:10 PM28/07/12 6:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

xxv

Chapter 5: Mobile Websites

With the growing use of mobile devices for everyday web browsing, it’s important to provide web-
site interfaces that are easy to use on these devices. From mobilizing an existing website to designing
a completely new one, this chapter discusses tools and techniques to create mobile websites.

Chapter 6: Getting Started with Android

Currently Android holds the top spot in mobile device market share. Android development should
be at the forefront of your mobile app strategy. This chapter discusses what it takes to get started
developing apps on the Android platform. From start to fi nish, it provides all the resources for
a developer who has never developed on the Android platform to deploy an app.

Chapter 7: Getting Started with iOS

iPhones and iPads have become the devices that many people compare other mobile devices to.
Apple devices helped launch the mobile trend, but many developers are hesitant to start developing
for iOS because of the tools that Apple provides. This chapter will help alleviate your worries,
and provide clear examples of what it takes to develop an iOS app from start to fi nish and deploy
to iTunes.

Chapter 8: Getting Started with Windows Phone 7

Windows Phone 7 is considered the new kid on the block when it comes to mobile platforms. Even
though the market share is low, it is climbing fast, and is important to include within your mobile
app strategy. This chapter covers everything you need to create a Windows Phone 7 app from start
to fi nish and deploy to the market.

Chapter 9: Getting Started with BlackBerry

This chapter provides the reader with the knowledge of the necessary tools required to develop
mobile apps for the BlackBerry platform. Even though BlackBerry has lost market share in recent
years, it’s still important to understand where BlackBerry fi ts within your mobile strategy.

Chapter 10: Getting Started with Appcelerator Titanium

This chapter is the fi rst chapter in which mobile apps are created using a framework instead of the
native tools. Appcelerator Titanium enables developers to create cross-platform mobile apps using
JavaScript. This chapter explores tools and best practices that will enable you to start developing
with Titanium in no time.

Chapter 11: Getting Started with PhoneGap

PhoneGap enables developers to create cross-platform mobile apps using HTML and JavaScript.
Because of this, PhoneGap is an excellent solution for developers with HTML and JavaScript expe-
rience. This chapter explores this platform in depth and what it takes to get started developing
with PhoneGap.

flast.indd xxvflast.indd xxv 28/07/12 6:10 PM28/07/12 6:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xxvi

INTRODUCTION

Chapter 12: Getting Started with MonoTouch and
Mono for Android

The fi nal chapter of this book looks at developing iOS and Android apps using the Mono develop-
ment stack. Using Mono enables developers to create mobile apps using C#, which is an appealing
option for cross-platform mobile development, especially in environments where developers are
profi cient in C#.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Warnings hold important, not-to-be-forgotten information that is directly
 relevant to the surrounding text.

Notes indicates notes, tips, hints, tricks, and asides to the current
discussion.

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show keyboard strokes like this: Ctrl+A.

 ➤ We show fi lenames, URLs, and code within the text like so: persistence.properties.

 ➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the present context
or to show changes from a previous code snippet.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code fi les that accompany the book. All the source code used in this book
is available for download at www.wrox.com.

flast.indd xxviflast.indd xxvi 28/07/12 6:10 PM28/07/12 6:10 PM

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

INTRODUCTION

xxvii

And a complete list of code downloads for all current Wrox books is available at www.wrox.com/
dynamic/books/download.aspx.

Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book’s ISBN is 978-1-118-20390-3.

A complete book list including links to errata is also available at www.wrox.com/
misc-pages/booklist.shtml.

Most of the code on www.wrox.com is compressed in a .ZIP, .RAR archive, or similar archive format
appropriate to the platform. Once you download the code, just decompress it with an appropriate
compression tool.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list, including links to each book’s errata, is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem
in subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to email
you topics of interest of your choosing when new posts are made to the forums. Wrox authors,
editors, other industry experts, and your fellow readers are present on these forums.

flast.indd xxviiflast.indd xxvii 28/07/12 6:10 PM28/07/12 6:10 PM

www.it-ebooks.info

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://P2P.WROX.COM
http://www.it-ebooks.info/

xxviii

INTRODUCTION

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to http://p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an email with information describing how to verify your account and
complete the joining process.

You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxviiiflast.indd xxviii 28/07/12 6:10 PM28/07/12 6:10 PM

www.it-ebooks.info

http://p2p.wrox.com
http://p2p.wrox.com
http://www.it-ebooks.info/

Preliminary Considerations

WHAT’S IN THIS CHAPTER?

 ➤ Reasons to Build a Mobile App

 ➤ Costs of Developing a Mobile App

 ➤ Importance of Developing a Mobile Strategy

 ➤ Diffi culties in Mobile App Development

 ➤ Mobile Application Development Today

 ➤ Myths of Mobile Application Design

 ➤ Explanation of Third-Party Mobile Frameworks

This book is for any developer or team that needs to create, refi ne, or strengthen their mobile
development strategy.

From a development team of one to two people to an enterprise-level team with multiple
 divisions, the topic of mobile development will eventually come up.

The problem is that mobile development is an animal all its own. There is a wide array of
 platforms, languages, features, and dimensions, and each has its own idiosyncrasies. This
book will highlight those issues, and give examples for approaching and working with them.
Specifi cally this book shows you how to develop an application that connects to a remote
 service and implements device-specifi c functionality. The book also explains the how and the
whys and wherefores of mobile application development.

But fi rst, this book assumes you’re here for one of several reasons.

1

c01.indd 1c01.indd 1 28/07/12 5:37 PM28/07/12 5:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

2 ❘ CHAPTER 1 PRELIMINARY CONSIDERATIONS

WHY YOU MIGHT BE HERE

As a developer in a competitive market, the following thoughts have almost surely crossed your
mind, or they may have been brought to your attention by your managers:

 ➤ Your competitors have mobile apps, but you don’t.

 ➤ Mobile apps make good business sense.

 ➤ Your services would add value to a user’s mobile experience but your website isn’t mobile
friendly.

 ➤ Do you need a mobile application or a mobile website?

The following sections elaborate on these assumptions.

Competition

Do your competitors offer products or services that you do not? Is that why they have an app? Is
that a market you want to expand into? If you are already in that market, can you add any features
to an app that will have more draw than your competitors? Differentiate yourself by leveraging the
technology your customers have available without making it a gimmick. For instance, you could
offer location-based incentives: when a customer enters your premises you can have your application
display a coupon, discount, or any current promotions. This leverages the device GPS, which isn’t
something you can get with just a mobile website.

Alternatively, you could offer an augmented reality experience: process the camera input, coupled
with GPS, for a layer of information overlaying your products. Taking advantage of all device fea-
tures requires a mobile application.

Quality vs. Time to Market

Sometimes, a bad mobile application or website can be worse than no mobile app or website. The
iTunes App Store is littered with cookie-cutter applications that wrap RSS feed data. Often these
cookie-cutter apps lose all branding of a given company, and such applications can negatively
impact your reach. Things to consider when looking at developing an app is that in the Android
Market, users are given a grace period during which they can request a refund for the full purchase
amount. You need to know what you want to deliver, and understand that the way you deliver it
makes your customers — and potential customers — know that you are serious.

Legacy System Integration

This gets into enterprise-level development, which is discussed in Chapters 3, 6, and 7. Chapter 3
explains how to use a newer technology, OData, to expose data in a very mobile-consumable
fashion. Chapters 6 and 7 explain the pitfalls and caveats to mobile application deployment (as
opposed to “development”), and the limitations to overcome when developing inside the company
intranet bubble.

c01.indd 2c01.indd 2 28/07/12 5:37 PM28/07/12 5:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Cost of Development ❘ 3

Mobile Web vs. Mobile App

You may not need a mobile application; you may need a mobile website. Chapter 2 discusses how to
determine whether you need a mobile website or a mobile app more in depth.

Now that the major reasons for looking into mobile app development have been covered, the next
section discusses the costs you can expect to incur when taking on mobile application development.

COST OF DEVELOPMENT

There are many costs associated with mobile application development. Each developer will need
hardware and software to develop the applications on. The team will need devices to test the soft-
ware on. And if you want to deploy your application to any public market, then your company will
need accounts on the various markets (these often renew annually).

Hardware

To develop good mobile apps, you’ll need an Intel-based Mac because, simply put, you won’t be able
to physically build the iOS implementation of your application without one. The nice thing about
the Intel versions of Mac is that you can run Windows on them either virtually (using something
like Parallels, or VMWare Fusion) or on the bare metal (using Apple’s BootCamp). Expect to spend
between $800 (for a refurbished machine) and $1600 (for a brand-new machine).

When I started at my current employer, I was given a MacBook Pro that was
purchased from the Apple Refurb shop, so it wasn’t as expensive as buying a
brand-new one. I can say, hands down, it has been the best Windows machine I
have ever used. I have developed many mobile applications on it, and am writ-
ing this book on it as well.

In addition to the Mac, you’ll also need multiple monitors. When debugging any application, it
is invaluable to step through your source while interacting with the running application. When
developing, I have the emulator/simulator running in one monitor, My Dev Tool (IDE) running on
another, and a web browser on another with the documentation for the platform for which I am
developing. Having access to all of this information at once prevents context switching for a devel-
oper, and helps maintain focus.

If you are seriously considering mobile development, you need to know that the emulator and
simulators are great, but not perfect, so you’ll need one of each of the types of devices you want
to develop for. I can speak from personal experience: when developing an application, application
behavior is not exact from the emulator to the device being emulated. This has happened to me on
multiple platforms, so I cannot say that this is more prone to happen on one versus another. Here
are some examples of devices you can use to test the various platforms as well as specifi c versions.

c01.indd 3c01.indd 3 28/07/12 5:37 PM28/07/12 5:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

4 ❘ CHAPTER 1 PRELIMINARY CONSIDERATIONS

 ➤ BlackBerry (6 or 7): BlackBerry Bold 9900

 ➤ Android 2.2 (Froyo): Motorola Droid 2

 ➤ Android 3.0 Tablet: Samsung Galaxy Tablet

 ➤ Apple iPod Touch: iPod Touch 3rd Generation

 ➤ Apple iPhone (versions 3.x and 4.x) (cell service): iPhone 3GS

 ➤ Apple iPhone (versions 4 and greater) (cell service): iPhone 4

 ➤ Apple iPad (WiFi or 3G for cell service testing): iPad 1

 ➤ Apple iPad (with camera): iPad 2 or iPad 3

 ➤ Windows Phone 7: Samsung Focus

Software

When developing mobile applications there are few overlaps when it comes to software. To develop
for iOS you need a Mac, to develop for BlackBerry you need Windows, for Java-based frameworks
use Eclipse. Building HTML for PhoneGap can be done in your text editor of choice. Table 1-1 and
the following sections present an outline for what you will need for all of the platforms.

TABLE 1-1: Software Needed for Development

TARGETED FRAMEWORK SOFTWARE REQUIRED

Window Phone 7 Windows Phone SDK

Visual Studio Express

Expression Blend for Windows Phone

(Windows only)

iOS xCode 4, iOS SDK

xCode 4.1, iOS SDK

(on Mac OS X 107)

(Mac Only)

Android Eclipse, Android SDK

BlackBerry Eclipse, BlackBerry Plugin, BlackBerry Simulator (only works on Windows)

Titanium Titanium Studio, Titanium Mobile SDK

+ Android software + iOS software

PhoneGap PhoneGap Plugin + iOS software (Mac only) + Android software +

Windows Phone 7 software (Windows only)

Any Framework Text

Editors

TextMate (Mac)

Notepad++ (Windows)

c01.indd 4c01.indd 4 28/07/12 5:37 PM28/07/12 5:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Cost of Development ❘ 5

Licenses and Developer Accounts

The following table contains information regarding all of the various accounts necessary to develop
for each platform and costs associated with such. In most cases you can expect to pay roughly $100
per platform annually for developer accounts.

PLATFORM URL CAVEATS

BlackBerry http://us.blackberry.com/developers/

appworld/distribution.jsp

Titanium https://my.appcelerator.com/auth/

signup/offer/community

Windows Dev

Marketplace

http://create.msdn.com/

en-US/home/membership

Can submit unlimited paid apps, can

submit only 100 free apps. Cut of

Market Price to Store: 30%

Apple iOS

Developer

http://developer.apple.com/

programs/start/standard/

create.php

Can only develop ad-hoc applications

on up to 100 devices. Developers

who publish their applications on the

App Store will receive 70% of sales

revenue, and will not have to pay any

distribution costs for the application.

Android

Developer

https://market.android.com/

publish/signup

Application developers receive 70% of

the application price, with the remain-

ing 30% distributed among carriers

and payment processors.

Documentation and APIs

What follows are links to the respective technologies’ online documentation and APIs. This will be
the location for the latest information in the respective technology. Later chapters reference specifi c
code elements. Resources for these code elements can be found at the following websites:

 ➤ MSDN Library: http://msdn.microsoft.com/en-us/library/ff402535(v=vs.92).aspx

 ➤ iOS Documentation: http://developer.apple.com/devcenter/ios/index.action

 ➤ BlackBerry Documentation: http://docs.blackberry.com/en/developers/
?userType=21

 ➤ Android SDK Documentation: http://developer.android.com/reference/packages
.html and http://developer.android.com/guide/index.html

 ➤ PhoneGap Documentation: http://docs.phonegap.com/

 ➤ Titanium API Documentation: http://developer.appcelerator.com/apidoc/
mobile/latest

c01.indd 5c01.indd 5 28/07/12 5:37 PM28/07/12 5:37 PM

www.it-ebooks.info

http://us.blackberry.com/developers/appworld/distribution.jsp
http://us.blackberry.com/developers/appworld/distribution.jsp
https://my.appcelerator.com/auth/signup/offer/community
https://my.appcelerator.com/auth/signup/offer/community
http://create.msdn.com/en-US/home/membership
http://create.msdn.com/en-US/home/membership
http://developer.apple.com/programs/start/standard/create.php
http://developer.apple.com/programs/start/standard/create.php
http://developer.apple.com/programs/start/standard/create.php
https://market.android.com/publish/signup
https://market.android.com/publish/signup
http://msdn.microsoft.com/en-us/library/ff402535(v=vs.92).aspx
http://developer.apple.com/devcenter/ios/index.action
http://docs.blackberry.com/en/developers/?userType=21
http://docs.blackberry.com/en/developers/?userType=21
http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
http://developer.android.com/guide/index.html
http://docs.phonegap.com/
http://developer.appcelerator.com/apidoc/mobile/latest
http://developer.appcelerator.com/apidoc/mobile/latest
http://www.it-ebooks.info/

6 ❘ CHAPTER 1 PRELIMINARY CONSIDERATIONS

The Bottom Line

Total cost per developer to create, maintain, and distribute mobile applications for all the platforms
you can expect to pay a few thousand dollars just for the minimum infrastructure. And this is really
the bare minimum for development. Given the opportunity to expand this more I would upgrade
the laptop to a MacBook Pro, with plenty of RAM, and upgrade the hard disk drive (HDD) to a
solid-state drive (SSD). By making these upgrades you will incur a higher initial cost, but the speed
increase compared to the bare bones will recoup that cost, if only in peace of mind. It is
diffi cult to quantify the savings from these upgrades, but developers without them are at a distinct
disadvantage.

IMPORTANCE OF MOBILE STRATEGIES
IN THE BUSINESS WORLD

If potential customers cannot reach your services, they are lost potential customers. Smartphones,
tablets, and other nontraditional devices are pervasive in the market. The onus of responsibility is
on developers to help customers get a product anywhere. Whether you’re a content provider, product
company, or service company, expanding product reach is necessary. And one of the most effective
ways to reach farther is to simplify a message so that it can be delivered to a wider audience. As of
September 2011, Nielsen reports that 40 percent of all mobile consumers in the United States over
the age of 18 have smartphones: http://blog.nielsen.com/nielsenwire/online_mobile/40-
percent-of-u-s-mobile-users-own-smartphones-40-percent-are-android/.

Wired states as of November 2011 that global smartphone usage has reached 30 percent: www.wired
.com/gadgetlab/2011/11/smartphones-feature-phones/.

WHY IS MOBILE DEVELOPMENT DIFFICULT?

The simple answer to this question is the same that plagues application developers for Mac and
Windows, web developers, and mobile developers as seen from the public eye. So-called killer apps
are not defi ned solely by what they do or how they look, but rather by how they fulfi ll a need and
codify it for the user.

Couple that with the more intimate nature of a mobile application (I touch this and it does what I
told it to do), and the more rigid (fi xed size) UI design patterns of the mobile device and you get a
perfect storm of potential problems.

The good news is that with proper planning and research, you target your potential clients and start
imposing your own parameters on the problem at hand, and the rest can be accounted for within
that scope.

Some may scoff at the limitations when looking at the resolution offerings made by Apple iOS
devices, but these strict requirements afford developers dimensions they can take for granted. In
Android development, there are eleven standard potential confi gurations. Not all potential reso-
lutions are actively being developed and produced, and the Android Development site tracks the

c01.indd 6c01.indd 6 28/07/12 5:37 PM28/07/12 5:37 PM

www.it-ebooks.info

http://www.wired.com/gadgetlab/2011/11/smartphones-feature-phones/
http://www.wired.com/gadgetlab/2011/11/smartphones-feature-phones/
http://blog.nielsen.com/nielsenwire/online_mobile/40-percent-of-u-s-mobile-users-own-smartphones-40-percent-are-android/
http://blog.nielsen.com/nielsenwire/online_mobile/40-percent-of-u-s-mobile-users-own-smartphones-40-percent-are-android/
http://www.it-ebooks.info/

Why Is Mobile Development Diffi cult? ❘ 7

progress and adoption of standard screen resolutions by device providers. Unfortunately, this makes
fi nding the lowest common denominator more diffi cult, which you can see in Figures 1-1 and 1-2.

I have called out Android specifi cally in the following fi gures as it has the largest amount of differ-
ent screen sizes. Additionally, the folks at Android mine this data regularly to provide exactly this
type of information to developers. They understand the diffi culty of accounting for all the differ-
ent sizes when creating quality applications. Figure 1-1 is a pie chart that accounts for the different
resource and resolution types as perceived on the Android Market. Figure 1-2 simply enumerates all
the possible resolutions and pixel densities afforded for Android.

FIGURE 1-2: Resolutions available to Android

FIGURE 1-1: Screen sizes and densities per Google research

http://developer.android.com/resources/dashboard/screens.html

http://developer.android.com/guide/practices/screens _ support.html

Mobile development is diffi cult because the paradigms of design and functionality differ between
it and types of development that have existed for decades. It is still new, the technologies change
rapidly, and not all of the answers are known. What makes a great app different from a good app?
Design? Utility? These are all things to be mindful of while developing your app.

c01.indd 7c01.indd 7 28/07/12 5:37 PM28/07/12 5:37 PM

www.it-ebooks.info

http://developer.android.com/resources/dashboard/screens.html
http://developer.android.com/guide/practices/screens_support.html
http://www.it-ebooks.info/

8 ❘ CHAPTER 1 PRELIMINARY CONSIDERATIONS

MOBILE DEVELOPMENT TODAY

As it stands, there are really four major development targets. Each of the native frameworks comes
with certain expectations and a user base. BlackBerry is often used in education and government,
whereas the iPhone and Android user base is far more widespread. Windows Phone 7 being the new-
comer is used primarily by developers and hasn’t necessarily hit its stride yet.

iOS, the technology that is run on Apple mobile devices, has benefi ts and limitations specifi c to its
development cycle. The base language is Objective-C, with Cocoa Touch as the interface layer. At
this time iOS can be developed only using Apple’s XCode, which can run only on a Macintosh.

The Android framework, on the other hand, is written in Java, and can be developed using any Java
tools. The specifi c tooling recommended by Google and the Android community is Eclipse with the
Android toolkit, and that is what the examples in Chapter 6 use. Unlike iOS, it can be developed on
PC, Mac, or Linux.

Like Android, the BlackBerry device framework is also written in Java; however, it is limited in that
the Emulator and Distribution tools run only on Windows at this time.

The newest native framework on the market is Windows Phone 7 and its framework sits on top
of the Microsoft’s .NET Framework. The language of choice is C# and the framework lies in a
subset of Silverlight, Microsoft’s multiplatform web technology. It also has the limitation that the
Microsoft Windows Phone tools run only on Windows.

MOBILE MYTHS

There are many myths associated with mobile application development. It’s cheap, it’s easy, it’s
unnecessary, you can’t do it without a large team, and you shouldn’t have to pay for it.

Myth #1: It is inexpensive to develop a mobile solution.

As previously mentioned, mobile development is not cheap. This does not include any
development time, design time, and deployment time, or any potential money lost by tak-
ing too long to get to market. Iterative design and development can be expensive. Finding
a happy medium is necessary to be successful when developing a mobile solution.

Myth #2: It’s easy to develop a mobile solution.

Future chapters discuss how to leverage existing data, use new technologies to expose
that data, interpret the nuances of the native development platforms, and use the newer
third-party platforms for mobile application development. In addition, later chapters
attempt to make learning these topics easier than just hitting your favorite search engine
and looking for tutorials. Each chapter explains each topic; this book hopefully makes
the process of developing a mobile application easier. It is in no way easy.

Myth #3: We don’t need a mobile presence.

With the smartphone market growing at such a large rate, and the ease with which
mobile applications become available (through the market applications on the device and
the markets’ respective websites) there is a large set of potential customers to reach.

c01.indd 8c01.indd 8 28/07/12 5:37 PM28/07/12 5:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Third-Party Frameworks ❘ 9

Not everyone needs to become a mobile developer. My urge to learn mobile development
came from wanting to track my newborn daughter’s sleeping schedule. As new parents,
my wife and I needed a solution. Two years later, I do mobile development every day,
as my company’s clients’ needs have expanded into that market.

Myth #4: You need a large development team.

Many single-developer companies are successfully releasing quality applications on the
different platform markets. Certainly, a jack-of-all-trades can take an idea from wire-
frame to market. That being said, without a serious QA resource, development resource,
and design resource it can be diffi cult to break away from the cookie-cutter style of appli-
cations very prevalent in the market.

Myth #5: Sweat equity can pay for the application.

Not to disparage the act of creating a startup, and not to fl y in the face of innovation, but
potential and dreams do not always a fortune make. Working with a partner to develop a
product or solution with no capital is not easy.

You’ve already seen the examples of what expenses to account for and resources to
acquire when starting the development process. If you already have these resources, you
are probably already an application developer, most likely with a 9-to-5 job or working
as a contractor. There are 24 hours in the day, but they are not all billable. Eventually,
something has to give; when bills come in it is generally the “side project” that falls by
the wayside. Think about that before you get started. Good luck if you start on the road
to becoming a contractor — it is not an easy path to travel.

Now that you know what mobile technologies are out there, and that you understand the various
myths surrounding mobile development, the next section explains the other options developers have
for creating apps and elaborates on the “build one, deploy everywhere” development case.

THIRD-PARTY FRAMEWORKS

There are a number of third-party frameworks for mobile development. The idea of the “write once
and deploy to many languages” is the key force driving these frameworks. There are a few differ-
ent types: interpreted, translated, and web. Translated frameworks take a single language and use a
one-for-one replacement to develop a binary in the native language. Web frameworks use the native
language’s control for displaying web content, and stick developer-generated HTML web applications
in it. They also use plugins to afford native device functionality inside the web application. Lastly
are the interpreted frameworks: Right now the Mono products are the only ones that fall into this
category. They use a rewrite of the .NET Framework to interpret the code in a native application.

Appcelerator Titanium Mobile Framework

Released in December 2008, with support for iOS 5 and Android 4.0, Appcelerator is also look-
ing to release a version that will build and deploy to BlackBerry. The framework heavily utilizes a
JavaScript API, and the build process creates source code in the languages you build to. iOS gets
an Objective-C source and project binary, and Android gets a compressed Java source and project
binary. Titanium effectively translates its specifi c JavaScript objects into native objects (where pos-
sible). Specifi c implementations are explained in Chapter 10.

c01.indd 9c01.indd 9 28/07/12 5:37 PM28/07/12 5:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

10 ❘ CHAPTER 1 PRELIMINARY CONSIDERATIONS

Nitobi PhoneGap

Released in March 2009, Nitobi was acquired by Adobe in late 2011. It’s now up to version 1.2,
with support for iOS, Android, BlackBerry, WebOS, Symbian, and Windows Phone 7. This frame-
work uses standard HTML5 and CSS3 elements wrapped in the native web browser controls to
simulate a native application, which is discussed in Chapter 11.

MonoDroid and MonoTouch

This newly formed company is made up of the original Ximian Team — after being acquired by
Novell. Later discontinued by Attachmate, Xamarin is now the developers and maintainers of the
MonoTouch and MonoDroid products. The Mono project itself is an open source implementation of
the .NET Framework so that C#-based .NET applications can be developed on systems other than
Windows.

MonoTouch

Initially developed by the Mono Team, MonoTouch was their way of developing iOS apps using
.NET and specifi cally the Mono Framework. First released in Q3 2009, the Mono Team has been
actively maintaining the project, and version 5 released Q3 2011 includes iOS 5 support.

MonoDroid

Compared to MonoTouch, this project is in its relative infancy, with the fi rst major release in Q2
2011. MonoDroid enables users to develop and distribute Android applications using Windows and
the Visual Studio environment.

SUMMARY

Upon fi nishing this chapter, you should feel comfortable with your knowledge of what technolo-
gies exist to develop mobile applications, and what resources you need to develop for the platform
or platforms of your choosing. You should be familiar with the myths that surround developing
for mobile apps, and the diffi culties generally associated with mobile app development. You should
know about the seven frameworks that will be covered in later chapters. You may also be ask-
ing yourself after all this if you even need a mobile application. Chapter 2 illustrates reasons that
require creating an app, and what you can do with a well-crafted mobile website.

c01.indd 10c01.indd 10 28/07/12 5:37 PM28/07/12 5:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Diving into Mobile:
App or Website?

Unless you have been living under a rock for the past three years, you know that mobile
applications are the hottest technology since websites became popular in the dot-com boom
of the late 1990s. Both of these technology explosions have similar traits, mainly revolving
around people, companies, and developers trying to adapt to new technology and learning
only enough to get the project done. Many developers read comics that poke fun of upper
management learning buzzwords, from virtualization to cloud computing. If you are reading
this book someone probably approached you with an idea to create a mobile application.

The parallels of the dot-com boom to the mobile boom start with nontechnical upper
management and toys. In the late 1990s the toy was the Internet, and today it’s the iDevice.
iDevices like the iPad and iPhone are making their way into upper-management hands;
they like the ease of use, and feel that every application should be developed with a user
interface that is as easy to use as the iDevices. Whether it’s a web app or desktop app, in most
situations, entire user interfaces must be rewritten to get this type of user experience. I have
worked with a few companies where the decision makers have completely replaced desktop
computers with tablet computers. This creates a great number of issues for the IT staff. In
many situations, these companies have a good point about the interfaces and applications that
newer mobile devices contain, but dumping the trusty laptop for an iPad as a primary work
machine may not pan out: try working on complex spreadsheets with a tablet.

With increasing pressure from management for mobile-device support, does it make sense to
build a native application, or can you get away with a mobile website? Many times it does not
make sense to spend the time and money it takes to create a mobile application if a mobile
website will fulfi ll the needs of the user. It’s just a matter of convincing upper management
that they really don’t need that new shiny app.

Before dismissing the brilliant idea of the person who signs your paychecks, the following
sections compare when it makes sense to create a mobile application, and when a mobile
website will suffi ce.

2

c02.indd 11c02.indd 11 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

12 ❘ CHAPTER 2 DIVING INTO MOBILE: APP OR WEBSITE?

MOBILE WEB PRESENCE

It’s not a matter of if you need a mobile web presence, it’s a matter of how fast can you get it done.
In 2010, more than 63 million people in the United States accessed the Internet from a mobile
device, as shown in Figure 2-1. Technology research fi rm Gartner states there will be more than 1.7
billion mobile Internet users worldwide by 2013. Without a mobile web presence, you are missing
out on customers; if you do not have a mobile web presence, your competitors will. Establishing a
mobile presence early could get you an important head start in a fast-growing technology.

FIGURE 2-1: The increase in the number of mobile Internet users

Looking through the Google Analytics of more than 60 websites that we work with, the percentage
of mobile traffi c was about 19 percent in 2011. Across the Internet, this tends to be on the high
end, with most others reporting between 10 and 15 percent. With mobile traffi c as high as it is, and
growing more popular, it is time to have a mobile website.

Most reputable companies have a website, but many do not translate very well to a mobile device.
A mobile web presence takes the desktop site content and renders the information to be easily
consumed on a mobile device. In recent years, Internet users and customers have begun to relate
the look of a company website to how reputable a business is. Although not always the case, a
well-developed and maintained website with fresh content informs the user or customer that the
company cares about them, and wants to make sure they have the tools needed to comfortably do
business.

c02.indd 12c02.indd 12 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Web Presence ❘ 13

Mobile Content

A mobile website experience is signifi cantly different from the desktop view. With a limited screen
size, new usability techniques have been developed to help people view and navigate data. Mobile
web browsers do the best job they can, providing rich tools for panning and zooming through a
website, but commonly used, complex drop-down menus make mobile navigation troublesome.

Navigation is one of the most important, and often most diffi cult, areas of mobile website design.
It’s common to present users with thinned-down content they can access on a mobile device. When
in the planning stages of your mobile website project, plan for time to develop a content strategy.
Chapter 4 discusses mobile content in greater detail. Figure 2-2 is an example of a company with
a great deal of content on its normal website. A drop-down menu with multiple levels would not
provide the best interaction on a mobile device. Figure 2-3 is the mobile rendering.

FIGURE 2-2: Desktop website of a commercial site

c02.indd 13c02.indd 13 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

14 ❘ CHAPTER 2 DIVING INTO MOBILE: APP OR WEBSITE?

FIGURE 2-3: Mobile version of site

shown in Figure 2-2

Mobile Browsers

Let’s give credit where credit is due: to the developers of mobile web browsers. Mobile browsers
have been built to render websites not intended to be displayed on small devices; tools to zoom,
pan, scroll, and highlight links help make browsing normal websites more tolerable. Figure 2-4
shows the top fi ve mobile browsers. In 2011 notice the increase of usage from the Android browser
and the decrease of usage from the BlackBerry browser, which coincides with the Android
bumping BlackBerry off the top spot for market share for mobile devices in 2011.

c02.indd 14c02.indd 14 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Web Presence ❘ 15

FIGURE 2-4: Top fi ve mobile browsers

Symbian OS has not been discussed thus far, and it won’t be discussed in much
detail. Symbian is a mobile device OS owned by Accenture. It is found on
many devices, and does have quite a large market share, but the development
experience for the device is diffi cult. The Opera Mini browser shows up in
numerous builds of the Symbian OS.

Table 2-1 shows the mobile browser share throughout the world. It’s important to know this share
as well. Different countries favor different devices. For example, if most of your customers are in the
South America, you may want to ensure your mobile website renders well on Symbian devices.

TABLE 2-1: Mobile OS Market Share by Country as of February 2012

COUNTRY APPLE BLACKBERRY ANDROID OTHER SYMBIAN

USA 43 7 40 10

Brazil 18 42 40

Russia 11 19 29 41

UK 41 33 21 5

continues

c02.indd 15c02.indd 15 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

16 ❘ CHAPTER 2 DIVING INTO MOBILE: APP OR WEBSITE?

TABLE 2-1 (continued)

COUNTRY APPLE BLACKBERRY ANDROID OTHER SYMBIAN

Germany 47 39 9 5

Peru 12 45 20 23

Japan 48 46 6

Argentina 12 44 12 32

France 56 31 9 4

Mexico 25 24 26 25

South Korea 9 90 1

Spain 38 48 6 8

Australia 73 20 3 4

China 12 33 26 40

Mobile User Browsing Behavior

Not all mobile web presences should be created equally. In order to create a great mobile
interface, you should spend time identifying behaviors of mobile users. Even if this phase is
just asking a few internal employees, it’s important to research how the mobile version of the
existing website will differ, and design for that behavior. Chapter 5 discusses strategies to cater
to behavior type on a mobile web page in more depth, but an introduction to mobile browsing
behavior is necessary here. The following list gives a few reasons why users might need access to
your mobile content:

 ➤ Repetition: Users are coming back to your site constantly. It’s possible they are sitting
on the page and hitting refresh to see new content. The question is, is site content changing
frequently enough that users would come back and check for updates? Sports scores, weather
reports, and stock quotes are types of content that need to be available, and fast, on mobile
devices.

 ➤ Boredom: Maybe users are trying to pass time in the lobby of a doctor’s offi ce. They are
surfi ng the web like they do in the comfort of their own home, but in public. They could
have heard a radio announcement about a cleaning service and are interested, so they navigate
to the company’s page to learn more information about the offer while they are passing the
time.

 ➤ Urgency: Users are out and about and suddenly have the urge for a hamburger. They need
to fi nd the nearest open burger joint.

http://connect.icrossing.co.uk/wp-content/uploads/2012/02/iCrossing _ Mobile-marketing _ 2012 _ V2.gif

c02.indd 16c02.indd 16 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://connect.icrossing.co.uk/wp-content/uploads/2012/02/iCrossing_Mobile-marketing_2012_V2.gif
http://www.it-ebooks.info/

 Mobile Applications ❘ 17

 MOBILE APPLICATIONS

The decision to create a mobile application can be diffi cult. It’s not a decision to rush into, and it
requires a great deal of thought. A mobile application can be an opportunity to improve interaction
with customers, create brand awareness, and even create additional revenue. But if the objectives of
the app are unclear, customers can be upset, and money can be lost.

In a June 2011 study, mobile analytics company Flurry found that time spent using mobile
applications surpassed time spent using the mobile browser only in the United States; other
countries have not become as “app crazed” as the United States. Figure 2-5 shows these fi gures.
With users spending this much time in mobile applications, it’s worthwhile looking into creating a
mobile app if your business domain has a good fi t.

FIGURE 2-5: Mobile browsing behavior in the U.S.

You’re a Mobile App If . . .

Developers like to fi nd a defi nite answer to all of the world’s problems, but the world is not as
black-and-white as we all may like. This chapter will help provide guidelines for deciding whether
to build a native app or mobile web app. The following list provides some scenarios where a native
app would be the best solution:

c02.indd 17c02.indd 17 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

18 ❘ CHAPTER 2 DIVING INTO MOBILE: APP OR WEBSITE?

 ➤ If you require graphics and processing power

 ➤ If you require the use of the device’s camera

 ➤ If you need to use the device’s microphone

 ➤ If you require access to the device’s address book

 ➤ If you require access to the device’s media library

 ➤ If you will be using the market for payment

 ➤ If you require use of push notifi cations

 ➤ If you need to run as a background service

 ➤ If you want to design a game

When to Create an App

Deciding when to create an app is diffi cult. Throughout this chapter, we are working to provide you
with facts (and some opinions) to help you make your own decisions. Mobile apps can offer a way
for customers to connect with a brand, if done correctly. A pretty UI that offers no value will be
rated poorly in the market or iTunes (or, even worse, Apple will reject the app).

Just because you develop an app does not mean it will be successful: it must provide value. We have
heard stories of silly app ideas that have made the developer thousands of dollars with minimal
effort. Those days are over: for every successful silly app, hundreds more just like it are available for
users to choose.

The Apple approval process for mobile applications can be a scary thing. Apple
has the power to reject the app that you spent time and money to create if the
app does not adhere to Apple’s strict guidelines. We have spent a great deal
of time reading through the Human Guideline Interface document (a lengthy
specifi cation that defi nes how the UI of an iOS app should work) to fully
understand exactly what Apple will and will not allow. Prior to beginning
development of an app, we will let our client know if we are concerned that the
app may not be approved, but will also say we are always unsure until Apple
has approved the app. Most questions arise with membership or subscription-
based applications. We also ask that customers plan for three weeks after
submission to wait for approval.

Regardless of whether you are just starting to develop a mobile strategy or have been working on
it for some time, do not let the allure of a mobile app trap you into making a decision. Figure 2-6
represents a study performed by the Info-tech research group in 2010 (www.transformyx
.com/s3web/1002043/docs/mktg-infotech-developmobileapp.pdf) that asked companies,
across various industries include health care, manufacturing, and education, about what their

c02.indd 18c02.indd 18 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://www.transformyx.com/s3web/1002043/docs/mktg-infotech-developmobileapp.pdf
http://www.transformyx.com/s3web/1002043/docs/mktg-infotech-developmobileapp.pdf
http://www.it-ebooks.info/

 Mobile Applications ❘ 19

plans were in regards to developing a mobile
app. The numbers are still quite low, with many
organizations still on the fence.

New Revenue Sources

Monetizing your hard work is something all
mobile app developers want, whether it’s to
increase your job security or for personal gain.
The mobile trend has opened up new ways for
developers/companies to make money off their
apps.

 ➤ In-app purchasing for mobile applications
has revolutionized digital commerce.
People are looking for convenience,
and can purchase tangible and digital
goods with one click, reducing buyer
hesitation. Adobe reports that 62 percent
(www.scene7.com/registration/
s7datasheets.asp?id=70130000000kRTrAAM) of consumers with mobile devices are
purchasing goods through those mobile devices, which equates to billions in revenue.

A much debated use of in-app purchasing/micropayments was developed within the
Smurfs Village app for iOS. The Smurf Village app is a time-elapsed game, targeted at
children. To speed up the game, you can purchase Smurf Berries at varying rates from
$5 to $99. Think of the amount of damage a small child could do on a Sunday afternoon
to your credit card.

 ➤ With print media on the decline, many traditional media companies have seen the trend
that people are purchasing digital content. This has been popular with subscription-based
services, such as magazines or newsletters. New tools within both iOS and Android
provide APIs to sell content. In some cases, this technology has brought new life to a
dying industry.

Types of Mobile Apps

When development of your mobile app is fi nished and the app is being deployed to the market, you
are required to put it into a category within the market to allow users to discover your app more
easily. Within all markets, apps are divided into categories, and some categories are more popular
than others. It’s common across all of the markets to see games being a large percentage of the
types of apps available for the platform. Figure 2-7 shows a distribution of apps among the Android
Market provided by AndroidZoom.

FIGURE 2-6: Plans to develop an app

c02.indd 19c02.indd 19 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://www.scene7.com/registration/s7datasheets.asp?id=70130000000kRTrAAM
http://www.scene7.com/registration/s7datasheets.asp?id=70130000000kRTrAAM
http://www.it-ebooks.info/

20 ❘ CHAPTER 2 DIVING INTO MOBILE: APP OR WEBSITE?

Do People Really Want to Put

Your App on Their Mobile Device?

A study from Nielsen (http://blog.nielsen
.com/nielsenwire/online_mobile/games-

dominate-americas-growing-appetite-for-

mobile-apps/) across a wide range of phone
users have found that iPhone users install the most
applications, coming in at 40 apps, as shown in
Figure 2-8.

Although users will visit hundreds of websites in
a day, they will install only a few apps. Does your
app provide enough value that the user is going to
take the time to download it and keep it in their
list of installed apps? The only way to determine
if you app has value is user research. This research
can be a simple question/answer session among
peers, or could be a formal user research study.
User research is discussed more in Chapter 4.

FIGURE 2-7: Types of apps in the markets

FIGURE 2-8: Average number of apps installed

per platform

c02.indd 20c02.indd 20 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://blog.nielsen.com/nielsenwire/online_mobile/games-dominate-americas-growing-appetite-for-mobile-apps/
http://blog.nielsen.com/nielsenwire/online_mobile/games-dominate-americas-growing-appetite-for-mobile-apps/
http://blog.nielsen.com/nielsenwire/online_mobile/games-dominate-americas-growing-appetite-for-mobile-apps/
http://www.it-ebooks.info/

 Mobile Applications ❘ 21

Resources

Do you have the developers on staff to develop the app? If you do not have the staff, are you able to
gauge a mobile developer’s talent? Are you willing to do what it takes to support the app or should
you consider outsourcing the development to a qualifi ed fi rm? These are some of the questions you
need to ask yourself before jumping into creating a mobile app.

Support and Maintenance

Mobile apps are software projects, just like any other. They take care and feeding; a little more
than a standard website, in some cases. Mobile development is similar to desktop development in
many ways. Once you deploy it, it’s deployed and there is not a good way to update the app.
You can’t force users to get updates to the app, and when they fi nd a bug you fi xed two versions
ago, they will give you poor feedback in the market. Sure, when you publish an update of your
app to the market, it shows up in the available downloads, but most users do not update
their apps.

The developer accounts for iOS, Android, and BlackBerry all contain tools that show the
stack traces of runtime errors that are uploaded from your app on the customer’s phone.
Be proactive, and go through the logs and look for errors before someone lets you know
about them.

Development of Your Mobile Solution

If you are planning on creating a mobile app, you will more than likely support iOS and Android.
Depending on the industry, you may even take on BlackBerry; schools and government agencies are
big BlackBerry users. When it comes to the initial development of the app, you have many different
choices and development platforms to choose from (native vs. nonnative). Chapters 6–12 discuss
these platforms, but from our experience most developers without a C backend will cringe when
they hear Objective-C, the language in which native iOS apps are developed. Some platforms allow
iOS apps to be created without using Objective-C, but do you have the in-house staff to make these
decisions? If you decide that creating mobile apps is part of your strategy, we highly recommend
that you spend time with someone who has worked in mobile environments before. Not just a few
web videos — actually take the time to sit down with a mobile developer to see the tricks of the
trade. Many issues arise with emulators, SDK versions, and small things that are diffi cult to fi nd in
the documentation, that pair programming with someone who has created an app on that platform
could point out.

In case you were wondering, the average creeps up when the target of the study
is mobile developers. The iOS users at Gravity Works have an average of
91 apps installed on their iOS devices.

c02.indd 21c02.indd 21 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

22 ❘ CHAPTER 2 DIVING INTO MOBILE: APP OR WEBSITE?

Benefi ts of a Mobile App

Not only will your marketing department get to brag about your newly developed mobile
application using the latest technology, but numerous other reasons exist why it may make sense
to develop a mobile app as opposed to a mobile web app.

Make Use of the Native Devices Features

It will always be easier to stretch the hardware boundaries of a mobile app. Great features such as
in-app purchasing do not have the same tight integration with the UI and operating system unless
you are creating a native app. Even if you decide to go with a nonnative solution such as Titanium,
PhoneGap, or MonoTouch, these solutions are slow to adapt new features in a platform’s operating
system.

Sometimes it’s not about being on the bleeding edge of technology; it’s just delivering value to your
customer.

Offl ine Content

You may have heard that content is king; it is absolutely true in mobile apps. Many business apps
need to display changing data to the user. Depending on the business domain, a mobile web app
may not be a good idea. For example, a mobile application that lists all of the state legislators
requires the data of the app to come from someplace. The state capital in Michigan does not get
reliable cellular coverage, so for this app to function properly, an offl ine caching strategy should be
used. When having the data stored locally, you should also defi ne a strategy on how that offl ine data
is going to be updated. Is it updated when the app is updated through the market or perhaps there a
background service that checks to see if the device has access to the Internet, and prompts the user if
they would like to obtain a refreshed set of data.

FRAGMENTATION

Because iOS is the hot platform to develop on, many startups and established
companies are putting money and resources into creating iOS applications that will
be installed on an iDevice. Android is starting to obtain majority market share, and
developers are scrambling to port their newly developed apps.

What about Windows Phone 7 and BlackBerry? Do they hold enough market to go
through the hassle of more app submission processes? Who is going to write the
app and then maintain it when updates to the OS are pushed?

Fragmentation is costly and should be planned for when creating a mobile strategy.

A mobile web app can serve offl ine content, but these features are new to the
HTML5 spec. The offl ine content features of HTML 5 are discussed in more
depth in Chapter 5.

c02.indd 22c02.indd 22 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

 Mobile Applications ❘ 23

Mobile apps have a long history, and rich set of tools for developers to anticipate the app working
without Internet connectivity. Storing settings as user preferences or a more complex solution such
as SQLite database will be discussed in depth for each mobile platform in Chapters 6–9.

If an app requires an Internet connection, the user must be informed the app
will not function properly without it, or the application risks Apple App Store
rejection. Features like this help make a better user experience, but make
developers upset that they have to do the extra work.

Richer User Experience

Users generally provide higher ratings for apps that have the native interface. No matter how nice
the iOS interface is, if you create an Android app and provide UI elements from iOS, users are more
likely to rate your app lower.

Users look for apps that have a UI that is consistent with the rest of the apps on their device. It is
possible to create HTML and CSS that provide these interfaces on a mobile web app, but it can get
diffi cult. Many developers opt for creating interfaces that do not resemble iOS, Android, Windows
Phone 7, or BlackBerry. It’s a design the developer created on their own. Such a design strategy can
work, as long as the correct amount of user interface research has been performed. In most cases,
however, it’s best to just stick with the UI you should be working with, which is the native UI for the
platform.

Ease of Discovery

Markets provide a place to present your app to the world. Most users are not using a search engine
to fi nd apps for their mobile devices; they are using the built-in search tools within the installed
market tool.

Push Notifi cations

In recent years, text messages (simple message service [SMS]) have become the preferred
communication over instant messaging among young people. An instant notifi cation on your mobile
device means an immediate response is expected. Push notifi cations simulate the same behavior
of text messages, but are app based. Push notifi cations alert users of something that they should
be aware of instantly: a new e-mail, a new tweet, or some other bit of information that may be
important to the app that was downloaded.

Increased Customer Feedback

Businesses often hope to build brand loyalty through apps. When loyalty has been achieved, you
can capitalize on this loyalty within the app, asking for feedback about your company. Quick polls,
short forms, and rich integration with social media services such as Facebook and Twitter can
provide a level of feedback that is not seen with mobile web apps.

c02.indd 23c02.indd 23 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

24 ❘ CHAPTER 2 DIVING INTO MOBILE: APP OR WEBSITE?

MARKETING

After your app is created, you can’t just throw it up on a market and expect users to fi nd it. The
success of your app may depend on how much marketing you put into it. Rushing an app to the
market without a marketing plan could take away from your app performing to its full potential.
Although you may have heard success stories where an app was an overnight success, this is not
normal. Using advertisements on your existing website, press releases, and mailings to existing
customers are all ways to drive interest in your app for potential users. The market is just one tool
for mobile marketing; expect to use many tools to make your app a success.

When talking about enterprise apps — apps that are intended for internal employee use — strategies
exist to skip the market altogether. They are discussed in Chapters 6–9.

The underlying concepts that drive mobile markets are not new. Amazon and Netfl ix offer similar
concepts in different industries, providing hundreds of thousands of products but perhaps selling
only a few copies of certain titles a month. This concept is called the long tail, the statistical
property that a larger share of a given data set rests within the tail: a good deal of money is made
from many products that are purchased only once a month. Figure 2-9 shows that the majority
of the total can be calculated not from the items that had the most revenue, but rather from the
combination of all the smaller sales.

It’s important to understand this concept because the long tail statistical property is starting to
emerge within mobile markets, meaning not all of the markets’ revenue is coming from the most
popular titles such as Angry Birds; it’s coming from the combined income of the thousands of apps
with a smaller following.

Products

P
o

p
u

la
ri

ty

FIGURE 2-9: The long tail

c02.indd 24c02.indd 24 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Marketing ❘ 25

Quick Response Codes

Getting the word out about your app is important, and it’s
important to provide the user with a very simple way to
download your app while you have their interest. Typing
a long URL in a web browser or remembering the name
of your app can be problematic for some users. Quick
response (QR) codes provide a means for users to scan an
image with their mobile device, and then a web browser
will open automatically to the URL embedded within the
image.

QR codes were originally created for use in the
automobile industry in the early 1990s, but have
gained popularity in other industry use. QR codes are
a type of matrix barcode, which is a machine-readable
representation of data. QR codes can hold a great deal
more data than the barcodes most people are accustomed
to seeing. Figure 2-10 shows a QR code, with contact
information for Gravity Works that could contain a
product coupon code.

Another popular alternative to QR codes are Microsoft
Tags. A Microsoft Tag is a high capacity color barcode
(HCCB), developed by Microsoft. A Tag is web URL
encoded as a color image, that when scanned using the
Microsoft Tag application sends a request to a Microsoft
server, then a redirect to the URL encoded in the image.
Figure 2-11 represents an encoded link to the Gravity
Works web page.

DIFFERENTIATING MARKETING AND ADVERTISING

Depending on why you are developing mobile apps, you may need to perform
multiple roles. When it comes to marketing, most developers do not even know
where to begin.

Advertising is not personal and directed toward the general public. Paid
communications such as radio, direct mail, and TV placements are considered
advertising.

Marketing is a process. Part of this process contains strategies to fi nd out what
products or services will provide value to clients, how to sell to clients, and how to
communicate. Advertising is part of the marketing strategy.

FIGURE 2-10: QR code

FIGURE 2-11: Microsoft Tag

c02.indd 25c02.indd 25 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

26 ❘ CHAPTER 2 DIVING INTO MOBILE: APP OR WEBSITE?

Not only are QR codes and Microsoft Tags useful for marketing your app, a study from Microsoft
(http://blogs.technet.com/b/next/archive/2011/03/22/tag-infographic-shares-
revealing-stats-on-mobile-usage.aspx) indicates that 29 percent of smartphone users are open
to scanning a mobile tag to get coupon codes. Have you thought about how this feature can help
drive business on a mobile website? Have you seen these tags around?

The Advertising You Get from the App Market

iOS users tend to install apps from within iTunes or the App Store directly on their devices. Android
users tend to install apps either directly from their device or from the web interface. The App Store
(iOS), Market (Android), Market Place (Windows Phone), and App World (BlackBerry) give apps
discoverability, and a place where users can search for keywords your app may contain, or possibly
stumble on it while browsing through categories. Even in markets with more than 250,000 apps to
choose from, users will fi nd apps that are relevant to them.

Unless you are planning an enterprise deployment, these markets are often the only public locations
where an app can be downloaded. The markets for the different mobile platforms are all very
similar, and this section only briefl y examines the marketing tools provided.

iTunes has the clean, functional App Store interface you would expect from Apple. Featured
apps appear on the top of the screen, and people browse categories as shown in Figure 2-12.
You can download apps in this interface, and they appear on your device the next time
synchronization occurs.

FIGURE 2-12: iTunes App Store

c02.indd 26c02.indd 26 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://blogs.technet.com/b/next/archive/2011/03/22/tag-infographic-shares-revealing-stats-on-mobile-usage.aspx
http://blogs.technet.com/b/next/archive/2011/03/22/tag-infographic-shares-revealing-stats-on-mobile-usage.aspx
http://www.it-ebooks.info/

Marketing ❘ 27

The greatest benefi t to having your app in the Android Market is discoverability, and the Android
Market offers great tools for potential users to fi nd your app; apps are sorted by category and then
subcategory so potential users can browse for apps very easily, as shown in Figure 2-13.

FIGURE 2-13: Android Market

Featured Apps

New and Noteworthy, Featured, and Editor’s Choice are all market sections that are maintained
by the Android Market staff to promote apps. One of the most important differences between the
popular apps and the ones you have never heard of before are these sections. Featured sections are
the fi rst areas users see when they access the market, and people are inclined to download what
other people are downloading. No hard-and-fast rules exist on how to get on one of the featured
apps lists, so plan to build the best app you can and create buzz. The staff that selects the apps are
advocates for the platform, and are looking for apps that have a great user experience and provide
value. Download volume, positive ratings, and artwork are all metrics many speculate are taken
strongly into consideration by the market staff who select these apps

c02.indd 27c02.indd 27 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

28 ❘ CHAPTER 2 DIVING INTO MOBILE: APP OR WEBSITE?

Figure 2-14 shows the Featured section of the Android Market on the web. Given the screen shot
was taken in late October, you can understand why so many apps relate to Halloween. Some apps
have a great deal of downloads, others do not. The one thing all these apps have in common is that
they are all well written and perform well because they have been selected as a featured app.

FIGURE 2-14: Android Market Featured section

Having an app featured within the market is something every mobile developer hopes to accomplish.
It is somewhat of a mystery how apps magically appear in these lists. Just because your app is well
designed, attractive, and provides value does not guarantee it a featured spot.

Description

Your app description may arguably be the most important marketing tool within the market. If
users are on the fence about downloading an app, your app description should push them over
the fence to download. Figure 2-15 shows the description of the Michigan High School Athletic
Association (MHSAA) iOS application. The MHSAA has a huge market: anyone who is interested
in high school sports in Michigan. The app description is tailored to that market, providing them
with a list of features, and hoping to drum up excitement with catchy text like “MHSAA Mobile
lets you pick the lineup.” This text is based on the feature that drives the app — the ability to follow
a school and receive updates for only that school.

c02.indd 28c02.indd 28 28/07/12 5:43 PM28/07/12 5:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Marketing ❘ 29

 User Reviews

User reviews can make or break an app; in the mobile world, users are very harsh over all platforms.
Having a good rating with positive feedback is what a potential user needs to see to download
an app. If you rush to market with your app without thoroughly testing, users will give it poor
feedback, and that is a permanent record. Figure 2-16 shows a set of user reviews for the MHSAA
mobile application within the iOS App Store.

FIGURE 2-15: iOS app description

FIGURE 2-16: User reviews of the MHSAA app in the iOS App Store

c02.indd 29c02.indd 29 28/07/12 5:44 PM28/07/12 5:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

30 ❘ CHAPTER 2 DIVING INTO MOBILE: APP OR WEBSITE?

With more than 9,000 downloads, the app in Figure 2-16 only has seven reviews. If the app does
the job users are looking for, oftentimes they do not rate the app. If the app goes above and beyond,
they tend to give positive ratings, and if it does not do everything they hoped it would, negative
feedback is given. Negative feedback is often given for features that are not included. The 1-star
rating in Figure 2-18 was from a user who wanted real-time score reporting. Based on business
knowledge, coordinating every announcer at contests between more than 2,000 schools was too
large of an undertaking for this version of the app. Because of this rating, other users may be turned
off — not because it does not function, but because of a feature that one user wanted.

User reviews are often subjective, and companies or developers take them personally. It’s very
common for negative user reviews to be based off functionality the user expects in the app and
not how the current app performs.

TRIAGE FROM POOR FEEDBACK

How to handle feedback of an app that has been poorly rated in the market is
something that we discuss often. The only way to address poor feedback is with
good feedback. When we fi rst release an app to the market, we encourage the client
to inform employees, friends, and family to download the application and rate the
app with legitimate feedback. It’s important to stress legitimate feedback: do not
ask for good ratings, just ask for reviews.

We have had situations where apps have been rated poorly because users did not
perform updates, or did not understand how the app was supposed to work. Not
having to deal with poor feedback is the best option, so test thoroughly and get
feedback from friends, family, clients, and colleagues before submitting an app.

Track Your App Sales

Tracking app sales can help provide insight as to where your app should be priced. If you are selling
your app, see what the market feels is a reasonable price, and adjust the price of your app. App sales
metrics are useful to free apps as well, helping to identify trends based on advertising campaigns
and other app marketing Figure 2-17 shows an eight-month period of a 99-cent app, distributed
only in the Android Market.

All of the mobile markets provide sales tools similar to the Android tools shown in Figure 2-17.
Tracking information, such as which OS version, may help you focus on future development efforts.
Meaning if you notice the majority of your Android user base is using Android 2.3, you may want
to implement a new feature only included in Android 2.3 or above.

Being able to track sales down to the day will also help with marketing and advertising efforts,
comparing sales trends to campaigns.

c02.indd 30c02.indd 30 28/07/12 5:44 PM28/07/12 5:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Marketing ❘ 31

Knowing Where Your Users Are

Knowing where in the world your app is being used can help advertising and product decisions.
If you fi nd that your app is performing well in a specifi c region, you may decide to make
adjustments, such as language localization. Advanced analytics that users may need to opt into
will provide a valuable look at where users are, and how they are using your app. Determining
which features are being used, when the app is being run, and how often are all valuable tools in a
marketer’s tool belt.

The platform markets provide some tools, but some apps may require detailed analytics.
To get this level of detail, you can use advanced analytics within third-party tools like Flurry
(www.flurry.com).

Flurry can be integrated into iOS, Android, Windows Phone 7, and BlackBerry apps via an
SDK that is downloaded once you have created a Flurry account. Once you have added the
Flurry references to your project, your app will then send detailed data — such as how long
the user was using your app, geographic information, and errors — to the Flurry service.
From the data that is collected, detailed reports can be generated that contain information such
as frequency of app usage. Having detailed information can help you develop your app to fi t your
customers’ needs.

Figure 2-18 shows the Analytics dashboard with a sampling of data you will have access to.

FIGURE 2-17: Android app sales

c02.indd 31c02.indd 31 28/07/12 5:44 PM28/07/12 5:44 PM

www.it-ebooks.info

http://www.flurry.com
http://www.it-ebooks.info/

32 ❘ CHAPTER 2 DIVING INTO MOBILE: APP OR WEBSITE?

FIGURE 2-18: Flurry analytics

Discoverability

It may be diffi cult to think that users are sitting around browsing thousands of apps, but it’s true.
Although one of the lesser value marketing tools, the capability for users to stumble upon your app
is important when the app is fi rst released. As mentioned previously, crafting a description with
valuable keywords about your app and placing the app in the correct market category will aid in
users discovering your app.

Third-Party Markets

Depending on the mobile platform, there may be more than one market to deploy your app to.
Third-party markets provide another place for your app to live, in the hopes that someone will
discover it. When it comes to the Android platform, some device manufacturers (such as Archos)
decide not to integrate with the Google Android Market, and have created their own market. This
allows the manufacturers to restrict which apps are allowed into their market, providing users with
a limited selection of apps to download.

Although the recommended market may be the easiest way to get apps, third-party markets, two of
which are discussed in the following sections, offer benefi ts as well.

One of the best-known third-party markets is the Amazon App Store for Android. The Amazon
App Store provides an online and mobile interface for users to purchase apps. Apps on
the Amazon App Store are often cheaper than the same app in the Google Android Market.
Amazon also offers a free download of a selected paid app each day, which has helped make
this market popular among Android users who know about it.

c02.indd 32c02.indd 32 28/07/12 5:44 PM28/07/12 5:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Your App as a Mobile Web App ❘ 33

Another great feature of the Amazon App Store for Android is the Test Drive feature shown in
Figure 2-19. Test Drive allows people to try the app out before they buy. The Amazon App Store
imposes a 30-minute time limit, but the app functions exactly as if it was installed on your phone.

FIGURE 2-19: Amazon Test Drive

To deploy apps to the Amazon App Store, sign up for an Amazon App Store Developer account.
Subscription fees similar to the Google Market may apply. Since the Amazon App Store for Android
is still fairly new, Amazon is currently waving the costs for new developers.

YOUR APP AS A MOBILE WEB APP

Mobile web apps are an extremely popular solution to the “mobile app versus mobile website”
problem, because they are relatively easy to create and maintain. The popularity of mobile web
apps has grown proportionately to the popularity of smartphones. In 2001 alone, an estimated
1.5 million mobile web apps were downloaded.

Mobile web apps, in a nutshell, are mobile apps created using HTML and CSS, viewed in mobile
web browsers. Mobile web apps differ from mobile websites by having a focused application
purpose, like native mobile apps do.

Figure 2-20 shows an example of a mobile web app that has been designed with the platform UI
in mind, in this case different interfaces for the iPhone and iPad. A good mobile web app will have
business logic abstracted into a common library. This will allow for platform-specifi c UI code to be
created that calls into this common library, keeping the app easily maintainable.

c02.indd 33c02.indd 33 28/07/12 5:44 PM28/07/12 5:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

34 ❘ CHAPTER 2 DIVING INTO MOBILE: APP OR WEBSITE?

FIGURE 2-20: Mobile web apps

Mobile web apps span across many categories of apps. In some cases, such as shopping, mobile
web apps are more popular choices. Figure 2-21 shows a comparison of mobile web apps versus
native apps.

FIGURE 2-21: Mobile web app vs. App Store categories

c02.indd 34c02.indd 34 28/07/12 5:44 PM28/07/12 5:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Your App as a Mobile Web App ❘ 35

Mobile web apps have a wonderful development story. Designers, front-end web developers, and
even back-end web developers can create an app using HTML and JavaScript with familiar tools,
to rival even the slickest native app. With the introduction of HTML5, many features have been
added to mobile browsers that help achieve this functionality. Table 2-2 is list of mobile capabilities
between the various mobile platforms.

TABLE 2-2: Native vs. HTML5 Device Features

HTML5 ANDROID IOS BLACKBERRY WP7

Location/GPS Yes Yes Yes Yes Yes

Camera No Yes Yes Yes Yes

Accelerometer Limited Yes Yes Yes Yes

Video Yes Yes Yes Yes Yes

Audio Yes Yes Yes Yes Yes

Local Storage Limited Yes Yes Yes Yes

Push Notifi cations Yes Yes Yes Yes Yes

In-App Purchase No Yes Yes Yes No

App Market No Yes Yes Yes Yes

If you are looking for a fast solution that can be developed with resources you may already have
access to, a mobile web app may be the better solution. The following benefi ts may sway your
decision in favor of creating a mobile web app:

 ➤ Easier to get started: HTML is a popular technology, so there is a good chance that the
developers on the team will already have experience with the language. Besides the ease of
use of the language, there are no startup costs, licenses, or large SDKs to download as there
is with native app development. Most developers are willing to learn something new, but
are overworked. When they want to get into something, they want to do it now, not have to
wait for two weeks before they can get going.

 ➤ Easier cross-platform development: Creating a mobile web app will make it easier for
you to create a codebase where parts of it can be shared. Depending on the app type, be
prepared to create a new UI for each platform deployment.

 ➤ HTML5 offers rich features: We have all heard that HTML5 makes it easy to create mobile
web apps. HTML5 offers great new features that make mobile web apps a viable solution
instead of developing a mobile app. The truth is that HTML5 is just a tool in a mobile
developer’s belt, and with it, developers and designers can provide apps to users that are
usable and compete with native mobile apps.

c02.indd 35c02.indd 35 28/07/12 5:44 PM28/07/12 5:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

36 ❘ CHAPTER 2 DIVING INTO MOBILE: APP OR WEBSITE?

 ➤ Easier updates: Not all users will update your mobile app. But if you have control over what
the user sees, app updates can be made at any time. This is one of our favorite features
about mobile web apps. With a mobile web app, there is no complicated process for
publishing — it is just like launching any regular website.

 ➤ No approval process: With a mobile web app, there are no constraints as to if your app
can be published or not. When the Google Voice app was not approved in the iTunes store,
Google released a mobile web app that provided the same functionality without the iTunes
hassle.

SUMMARY

When creating a mobile strategy, it’s important that companies spend the time to fi nd out exactly
which model fi ts best for their business domain. Starting down the wrong path can be costly, and be
detrimental to a company’s reputation. This chapter has stressed the importance and necessity of a
mobile web presence, and that app development should not be taken lightly nor rushed into because
it is trendy.

Creating a mobile web app can be the better solution if it fi ts your business domain. The ease of
updates and use of existing resources are very compelling reasons to build a mobile web app.

When you are creating a truly great app that provides user value, there are no shortcuts to build once
and run everywhere. Developing an app for mobile platforms is expensive and time-consuming, but if
your business domain calls for it, it’s in investment that needs to be made.

At this point, you should have a really good idea of what a mobile application is, and what
platforms you will look into developing for. Chapter 3 discusses Web Services as they pertain to
mobile apps.

c02.indd 36c02.indd 36 28/07/12 5:44 PM28/07/12 5:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Consumable Web
Services for Mobile Devices

WHAT’S IN THIS CHAPTER?

 ➤ Understanding web services

 ➤ Using web service languages (formats)

 ➤ Creating an example service

 ➤ Debugging web services

Many of today’s mobile applications are personalized, and are not useful if they can only
access the data on the phone. For a user to get, for example, sports scores, retrieve stock
quotes, or perform accounting work, the mobile device needs to communicate with one or
more servers. The best way to achieve this communication is through web services.

This chapter covers what a web service is, the technologies involved in web services, and how
to create web services on the Windows platform and the Linux platform. Four different
walkthroughs show you how to create web services with four different technologies.

WHAT IS A WEB SERVICE?

A web service enables two electronic devices to communicate over the Internet. The World
Wide Web Consortium (W3C) defi nes web service as “a software system designed to support
interoperable machine-to-machine interaction over a network.” In practice this means a server
communicating over port 80 or port 443 in plain text to the client.

Other methods of communication are remote procedure calls (RPC), the distributed component
object model (DCOM), and the common object request broker architecture (CORBA). These
methods of communication don’t work well through the Internet due to fi rewalls and the data

3

c03.indd 37c03.indd 37 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

38 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

formats they use. Typically their data formats are specifi c to whatever tool created the service,
and it becomes a signifi cant challenge to have a Java application read data from a .NET or C++
application. They generally also use a specifi c port, which requires IT departments or, even worse,
home users, to troubleshoot and confi gure their fi rewalls to allow the application to communicate.
Finally those technologies don’t work well through the Internet because they aren’t designed to work
with the Hypertext Transfer Protocol.

WHAT IS A PORT?

A port is similar to a TV channel. News comes in on the news channel, sports on
ESPN, and so on. Instead of watching the channels, computer applications are
listening on port numbers. The information coming to the computer on that port
number is routed to the application listening on that port number. For example,
when your computer requests a web page from a web server, it issues the request
through port 80. That traffi c is delivered by the server’s operating system to
a HyperText Transfer Protocol (HTTP) server application such as Microsoft’s
Internet Information Services (IIS) or the Apache Web Server. Connecting with a
fi le transfer protocol (FTP) client to the same server, the FTP software uses port 21.
Both FTP and HTTP traffi c are going to the same computer with the same address,
so having different ports enables the server to route the traffi c to the
correct application.

Examples of Web Services

Because you are reading this book, I’m assuming you are a developer or have some type of
development background, so I’ll use the StackOverfl ow web service as an example. You can view
my StackOverfl ow profi le by using a nice user interface StackOverfl ow has created to access their
web service by going to http://data.stackexchange.com/stackoverflow/query/66263/
find-david-silva-smith in a web browser. That URL is a query which shows the data from my
StackOverfl ow profi le. To view my profi le data in its raw form to compare it to the pretty formatted
data just shown, enter this URL in a browser: http://data.stackexchange.com/stackoverflow/
atom/Users(46076).

Think how easily an application can be written using that data. This is the power of web services.
By making your data easily consumable through web services, others can use the data you have
created in ways you never imagined.

Not convinced yet? What if you wanted to display the weather for Lansing, Michigan, on your web
page? How hard would that be to program? For starters, you would have to purchase equipment
to measure the temperature, wind speed, and humidity, which could be expensive. Then you would
have to program that equipment to report the information to a web server, which would then
display that information on your web page. Wow, this is sounding diffi cult, and there are many
issues that haven’t been addressed yet, such as reliability. Instead of doing all that work, leveraging a

c03.indd 38c03.indd 38 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://data.stackexchange.com/stackoverflow/query/66263/find-david-silva-smith
http://data.stackexchange.com/stackoverflow/query/66263/find-david-silva-smith
http://data.stackexchange.com/stackoverflow/atom/Users(46076)
http://data.stackexchange.com/stackoverflow/atom/Users(46076)
http://www.it-ebooks.info/

What Is a Web Service? ❘ 39

web service will be much faster. Simply type this URL into a web browser: http://www.google
.com/ig/api?weather=Lansing,MI. No equipment required, no risk of schedule overruns, and
if requirements change and the software needs to display the weather for Lake Odessa instead of
Lansing, you just replace the Lansing,MI on the end of the URL with Lake%20Odessa,MI.

WHAT IS THAT UGLY %20?

Not all characters are valid in uniform resource locators (URLs). A space is one
such character — it is represented as %20. The percent sign indicates that the follow-
ing two hexadecimal characters represent a single character — 20 in hexadecimal
is 32 in decimal, which is the ASCII code for space. If that isn’t confusing enough,
different characters are valid in different parts of a URL. To encode a URL, use the
JavaScript encodeURI() method or the equivalent function in your programming
language. For parts of a URL, use the JavaScript encodeURIComponent() method
or the equivalent function in your programming language. This JavaScript code
shows an example of when this difference is important:

<script type=”text/javascript”>
 var url = ‘http://www.gravityworksdesign.com/
 large images.aspx?folder=2012/April’;
 document.write(encodeURI(url));
 document.write(‘
’);
 document.write(encodeURIComponent(url));
 var urlCorrect = ‘http://www.gravityworksdesign.com/
 large images.aspx?folder=’
 var queryCorrect = ‘2012/April’;
 document.write(‘
’);
 document.write(encodeURI(urlCorrect) +
 encodeURIComponent(queryCorrect));
</script>

It outputs:

 http://www.gravityworksdesign.com/large%20images.
aspx?folder=2012/April

 http%3A%2F%2Fwww.gravityworksdesign.com%2Flarge%20images.aspx
 %3Ffolder%3D2012%2FApril

 http://www.gravityworksdesign.com/large%20images.aspx?
 folder=2012%2FApril

The fi rst two URLs are invalid because the URL wasn’t encoded correctly. The
third URL is correctly encoded.

Advantages of Web Services

The primary advantages web services provide are ease of access and ease of consumption. Web
services advantages stem from simplicity. Usage of web services for data exchange has exploded due
to these advantages.

c03.indd 39c03.indd 39 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.google.com/ig/api?weather=Lansing,MI
http://www.google.com/ig/api?weather=Lansing,MI
http://www.gravityworksdesign.com/large%20images.aspx?folder=2012/April
http://www.gravityworksdesign.com/large%20images.aspx?folder=2012/April
http://www.gravityworksdesign.com/largeimages.aspx?folder=2012/April
http://www.gravityworksdesign.com/largeimages.aspx?folder=2012/April
http://www.gravityworksdesign.com/largeimages.aspx?folder=
http://www.gravityworksdesign.com/largeimages.aspx?folder=
http%3A%2F%2Fwww.gravityworksdesign.com%2Flarge%20images.aspx%3Ffolder%3D2012%2FApril
http%3A%2F%2Fwww.gravityworksdesign.com%2Flarge%20images.aspx%3Ffolder%3D2012%2FApril
http://www.gravityworksdesign.com/large%20images.aspx?folder=2012%2FApril
http://www.gravityworksdesign.com/large%20images.aspx?folder=2012%2FApril
http://www.it-ebooks.info/

40 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

Web services are easy to access because they use the same World Wide Web technologies such as web
browsers and web servers that power the Internet. These technologies have proven to be robust and
work great for web services just as they work great for delivering web pages. They have no
fi rewall issues with special ports like other communication technologies, and all modern
programming languages provide a way to get web pages and, therefore, to consume web services.

The second advantage of web services over other technologies is the consumability, which is the
ability to understand what the server is communicating. Web services use plain text for this. Other
technologies like RPC, DCOM, and CORBA typically use the in-memory representation of their
objects for transmission or use a custom data exchange format. These complexities make it expensive
for languages to interoperate with the information. The memory representations don’t have friendly
text like <zipcode>48906</zipcode>, which most people can guess contains ZIP code information;
the server might send something like 1011111100001010, which could represent many pieces of
information. This discussion leads us into the next section, which discusses web service languages.

WEB SERVICES LANGUAGES (FORMATS)

For communication to occur between two people they need to speak the same language. Computer
systems work the same way — they also need to use the same language. Most computer languages that
are widely known, such as C++, enable humans to talk to computers. But those computer languages are
hard for both computers and humans to understand because computers only understand zeros and ones,
and represent all data as zeros and ones. For example, the number 5 is represented as 00000101 in a
computer. A lowercase h is represented as 01101000, and 01001000 represents an uppercase H. Binary
representations are the most effi cient way for two computer systems to exchange data.

One of the reasons web services have been so successful is because of their self-describing nature.
Instead of giving a number like 5 and hoping the user of the web service knows that 5 is a weight,
an age, or dollars, the 5 is described in a service like this: <length measurement=”inches”>5
</length>. This states clearly the measurement is for length and is 5 inches.

Format choice is an important decision — it impacts the ease of accessing the web service and the
performance of your application. When designing a web service, consider how the service will be
accessed. For example, mobile devices have less processing power than their desktop counterparts,
and the different platforms (BlackBerry, Windows Phone, Android, and iOS) have different
 programming APIs available for accessing and consuming the data. The two self-describing formats
that have taken off for web services are XML and JSON. I recommend sticking with one of these
two formats to maximize the ease of consuming the services and maximize developer productivity.

eXtensible Markup Language (XML)

XML was designed as a way to describe documents, but it took off as a data interchange format
after it was introduced. XML was envisioned to be a simple human-readable language; for example,
a person object can be represented like this in XML:

<person>
 <firstname>David</firstname>
 <lastname>Smith</lastname>
</person>

c03.indd 40c03.indd 40 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Web Services Languages (Formats) ❘ 41

And the same person can also be represented like this:

<person firstname=”David” lastname=”Smith” />

Both XML fragments are easy for a person to understand, but different representations make it
harder for programmers to write correct software. Having a single agreed-upon representation of
the data will speed up your development effort.

XML enables you to defi ne the language systems used to communicate by creating an XML Schema
Document (XSD). This enables software to verify an XML document conforms to a predefi ned
 contract. For example, the XSD can specify that the cost of a movie must be a number. XSD
also provides the benefi t of enabling tools to generate code based on the XSD. Programmers can
increase productivity by feeding their programming tool an XSD fi le and getting back code they
can immediately use to interact with the data. Without the XSD fi le programmers have to write code
to understand the XML.

One of the reasons for choosing XML is the maturity of the platform. It has been around since
February 1998. It has many tools around it — XPath, XQuery, XSLT, and XSD. Since it is a mature
language, many systems work well with XML. These advantages make XML a good choice for data
interchange and it may even be required for some projects to work with existing systems.

eXtensible Stylesheet Language Transformations (XSLT)

XSLT is used to transform a document into another representation. Initially it was envisioned as
primarily changing XML data documents into representations for human consumption, such as
XHTML. Another common use is applying an XSLT transformation to one application’s XML
output to be used by another application that doesn’t understand the original representation.

The following example shows how XSLT can transform an XML data fragment for display on a
web page.

This fragment: <person><age>30</age></person> would better be displayed on a web page like
this: Age:30.

The following XSLT will loop through each element in the XML with the name of person. Within
each person node, the XSLT will then output the span tag with the value of the age element included
within the span tag.

<xsl:template match=”/”>
 <xsl:for-each select=”person”>
 Age:<xsl:value-of select=”age”/>
 </xsl:for-each>
</xsl:template>

XQuery

XQuery is used to retrieve a subset of data from a full XML document, like a SQL query is used to
retrieve a subset of data from a database.

This example shows how to get the total amount paid for this sample order:

c03.indd 41c03.indd 41 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

42 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

<order>
 <item price=”50” currency=”USD” name=”metal gear” />
 <item price=”25” currency=”USD” name=”plastic gear” />
</order>

The following XQuery returns the sum:

sum(doc(‘orders.xml’)/order/item/@price)

For testing or learning XQuery, a handy online sandbox is: http://basex.org/products/
live-demo/.

JavaScript Object Notation (JSON)

JSON was created in 2001 and came into use by Yahoo in 2005. JSON has few rules, few base types,
and is human readable. JSON schema enables document validation, but this is rarely used. JSON is a
great format for transmitting data between systems because it is simple, text based, and self-describing.

A person can be represented in JSON like this:

{
 firstName : “David”,
 lastName : “Smith”
}

One thing to watch out for is how dates are represented in JSON. There is no base type of date
and there is no standard way to represent dates. It is recommended to represent dates using the
International Standards Organization 8601 format. In ISO-8601 dates look like this: 1997-07-
16T19:20:30.45+01:00. Representing dates in ISO-8601 keeps them human readable, ensures
programming languages can parse them, and keeps time zone information.

Choosing ISO-8601 as the default data interchange format for projects is a good idea. Using JSON
will reduce the amount of time spent dealing with serialization issues.

Transferring Nontextual Data

Both JSON and XML create human-readable text documents. What happens if a service needs to
transmit or receive an image, a video, or a PDF document, such as a check image for a fi nancial
service or a video clip for a public safety service? This type of nontextual data is called binary data.
When transmitting binary data as text, it needs to be Base64 encoded so it can be represented with
the rest of the data. Base64 encoding comes with two downsides. First, the size of the text representa-
tion increases by 33 percent. Second, there is additional processing overhead by both the sender and
receiver for encoding or decoding the Base64 data to binary and vice versa.

CREATING AN EXAMPLE WEB SERVICE

Having talked about the technologies behind creating a consumable web service, this section shows
how to create a consumable web service in a Linux Apache PHP environment, and three different
service delivery technologies on the Microsoft .NET stack: WCF, OData, and ASP.NET MVC.

c03.indd 42c03.indd 42 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://basex.org/products/live-demo/
http://basex.org/products/live-demo/
http://www.it-ebooks.info/

Creating an Example Web Service ❘ 43

Using the Microsoft Stack

The .NET platform has a variety of technologies enabling the easy creation of consumable web
services. This section walks through creating a database and sample data for the services to
operate on. The rest of the section shows how to create the service in three .NET technologies:
WCF, OData, and MVC.

Creating the Datastore

The WCF, OData, and MVC walkthroughs later in this section all assume the database script from
this section has been executed.

The example services will expose a simple data model consisting of two tables: Leagues and
DerbyNames. Some of the Gravity Works staff are Roller Derby fans. They noticed the players had
interesting names and decided their information (which is publicly available) would make a good
example service.

Figure 3-1 shows a database diagram of the
tables the script will create.

Open SQL Server Management Studio 2008
and connect to the local SQL Server instance
running on the machine. Open a new query
window and run the SQL-Server-Create-
Derby-Database script (full SQL script can
be found within the download section for this book at http://www.wrox.com) to create the tables
and insert the data used for the rest of the walkthroughs:

After running the script, SQL Server Management Studio will display “Query Executed
Successfully.” The walkthroughs in this section use this database to retrieve data.

Using Windows Communication Foundation

Windows Communication Foundation (WCF) is a .NET Framework library designed for developers to
create communication endpoints for software. Web services are software communication
endpoints, so on the surface WCF seems like an ideal choice for creating consumable web services.
Unfortunately, WCF is designed for a broad number of communication scenarios, and this broad
set of capabilities introduces a lot of complexity that is not necessary for web services. For example,
WCF supports reliable sessions, transactions, TCP, named pipes, Microsoft Message Queuing,
activity tracing, and Windows Management Instrumentation.

This walkthrough assumes the following software is installed:

 ➤ ASP.NET 4.0

 ➤ Visual Studio 2010

 ➤ IIS 7.5

 ➤ Microsoft SQL Server 2008 R2

FIGURE 3-1: Database diagram

c03.indd 43c03.indd 43 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

44 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

 1. Open Visual Studio and select File ➪ New Project to create a new project.

 2. In the New Project template selection screen, open the Visual C# node and select the WCF
node.

 3. From the WCF project types that display, select WCF Service Application. If that project type
does not display, ensure the fi lter at the top of the dialog box is set to .NET Framework 4.

 4. Set the project name to DerbyNamesService and click OK, as shown in Figure 3-2.

FIGURE 3-2: New WCF Service Application

For ease of database access this walkthrough uses LINQ to SQL. LINQ to SQL is an Object
Relational Mapper technology that ships with the .NET Framework. Using LINQ requires an addi-
tional project reference to System.Data.Linq.

To add the reference, right-click the References node of the DerbyNamesService project and select
Add Reference.

In the Add Reference dialog box, fi nd System.Data.Linq and click the Add button as shown in
Figure 3-3.

c03.indd 44c03.indd 44 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Example Web Service ❘ 45

After adding the System.Data.Linq reference, you need to create a class to access the data. To do
this, right-click the DerbyNamesService project and choose Add ➪ New Item as shown in Figure 3-4.

FIGURE 3-3: Add Reference dialog box

FIGURE 3-4: Add New Item

c03.indd 45c03.indd 45 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

46 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

In the Add New Item dialog box, select Class, name it DerbyContext, and click the Add button as
shown in Figure 3-5.

FIGURE 3-5: Add New Class

The DerbyContext class will provide the data. To represent the data as .NET objects, add two more
code fi les: DerbyNames and Leagues. The DerbyNames class will contain the information on a derby
player. Make the DerbyNames.cs fi le contain this code:

using System;
using System.Data.Linq.Mapping;

namespace DerbyNamesService
{
 [Table]
 public class DerbyNames
 {
 [Column(IsPrimaryKey = true)]
 public int DerbyNameId;
 [Column]
 public string Name;
 [Column]

c03.indd 46c03.indd 46 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Example Web Service ❘ 47

 public string Number;
 [Column]
 public DateTime? DateAdded;
 [Column]
 public string League;
 }
}

The Leagues class will contain information about the derby leagues, such as the league name. Make
the Leagues.cs fi le contain this code:

using System.Data.Linq.Mapping;

namespace DerbyNamesService
{
 [Table]
 public class Leagues
 {
 [Column(IsPrimaryKey=true)]
 public int LeagueId;
 [Column]
 public string LeagueName;
 [Column]
 public string URL;
 [Column]
 public string StateProvince;
 [Column]
 public string CountryCode;
 }
}

The DerbyContext will be the class providing access to the database from the DerbyService class.
Modify the DerbyContext.cs code to contain this code:

using System.Data.Linq;
using DerbyNamesService;

namespace DerbyNamesService
{
 public class DerbyContext : DataContext
 {
 public Table<DerbyNames> DerbyNames;
 public Table<Leagues> Leagues;
 public DerbyContext()
 : base(“Data Source=.;Initial Catalog=DerbyNames;
 User Id=webUser;Password=webuser;”)
 {

 }
 }
}

c03.indd 47c03.indd 47 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

48 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

In the Visual Studio Solution Explorer, rename Service1.svc to DerbyService.svc and then
rename IService1.cs to IDerbyService.cs. If Visual Studio prompts if you would like to rename
all project references, click Yes. This step is just a cleanup step to rename the default fi les Visual
Studio creates for you. The IDerbyService interface defi nes the contract for the service — in other
words, this interface will expose the operations the service provides. Change the IDerbyService.cs
fi le to contain the following code:

using System.Collections.Generic;
using System.ServiceModel;

namespace DerbyNamesService
{
 [ServiceContract]
 public interface IDerbyService
 {
 [OperationContract]
 public IEnumerable<DerbyNames> PlayerNames();

 [OperationContract]
 public IEnumerable<Leagues> Leagues();
 }
}

With the service contract defi ned, a class to implement the operations defi ned by the IDerbyService
contract needs to be created. The DerbyService.svc.cs fi le will implement the contract. In other
words, the contract states what the service will do and the DerbyService actually does the work.
Open the DerbyService.svc.cs fi le and replace the existing code with the following code:

using System.Collections.Generic;
using System.Linq;
using System.ServiceModel.Web;

namespace DerbyNamesService
{
 public class DerbyNames : IDerbyNames
 {
 [WebGet(UriTemplate=”/PlayerNames”)]
 public DerbyName GetNames()
 {
 //get all the names from the database.
 var names = new DerbyContext().DerbyNames.ToList();
 return names;
 }

 [WebGet(UriTemplate=”/Leagues”)]
 public IEnumerable<Leagues> Leagues()
 {
 //Get all the leagues from the database.
 var leagues = new DerbyContext().Leagues.ToList();
 return leagues;
}
 }
}

c03.indd 48c03.indd 48 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Example Web Service ❘ 49

Previously when Visual Studio asked to rename project references, it was only referring to C# code.
The DerbyService.svc markup contains text that needs to be updated. To make the change Visual
Studio missed, right-click the DerbyService.svc fi le and select View Markup as shown in
Figure 3-6.

FIGURE 3-6: View Markup

Change the text Service=”DerbyNamesService.Service1” to Service=”DerbyNamesService
.DerbyService” to match the class renaming you performed earlier. To make the service accessible
it needs to be specifi ed in the web.config. In this context, the service endpoint is effectively a web-
site to which you connect your client code. This site will receive communications from your client
over HTTP, and return objects from your data source as text. To specify the service endpoint, insert
the following XML as a child node of the system.servicemodel node:

<services>
 <service name=”DerbyNamesService.DerbyService”>
 <endpoint binding=”webHttpBinding”
 contract=”DerbyNamesService.IDerbyService”/>
 </service>
 </services>

c03.indd 49c03.indd 49 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

50 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

To make the service return XML for easy consumption by mobile devices, insert the following XML
as a child node of the behaviors node:

 <endpointBehaviors>
 <behavior>
 <webHttp defaultOutgoingResponseFormat=”Xml”/>
 </behavior>
 </endpointBehaviors>

The fi nal web.config should look like this:

<?xml version=”1.0”?>
<configuration>
 <system.web>
 <compilation debug=”true” targetFramework=”4.0” />
 </system.web>
 <system.serviceModel>
 <services>
 <service name=”DerbyNamesService.DerbyService”>
 <endpoint binding=”webHttpBinding”
 contract=”DerbyNamesService.IDerbyService”/>
 </service>
 </services>
 <behaviors>
 <endpointBehaviors>
 <behavior>
 <webHttp defaultOutgoingResponseFormat=”Xml”/>
 </behavior>
 </endpointBehaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled=”true”/>
 <serviceDebug includeExceptionDetailInFaults=”false”/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <serviceHostingEnvironment multipleSiteBindingsEnabled=”true” />
 </system.serviceModel>
 <system.webServer>
 <modules runAllManagedModulesForAllRequests=”true”/>
 </system.webServer>
</configuration>

After all that work, the service is coded and confi gured. Click the solution and start debugging.
Visual Studio will launch the ASP.NET Development Server and launch the system default browser
with a URL similar to http://localhost:13610. The number is the port on which the ASP.NET
Development Server is delivering requests. Add /DerbyService.svc/PlayerNames to the end of the
URL to get the PlayerNames. Figure 3-7 shows the result in Google Chrome.

c03.indd 50c03.indd 50 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://localhost:13610
http://www.it-ebooks.info/

Creating an Example Web Service ❘ 51

With the service returning data, you can now have some fun! Using the Chrome Developer Tools will
show the service response payload is 3.07KB. You can open the Chrome Developer Tools by using the
keystroke Ctrl+Shift+I in Google Chrome. Figure 3-8 shows the Chrome Developer Tools network tab.

FIGURE 3-7: Player Names XML result

FIGURE 3-8: Chrome Developer Tools network view

c03.indd 51c03.indd 51 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

52 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

An earlier section of this chapter discussed the differences in protocols. Change the protocol to
JSON and see what happens. WCF makes this change easy. Open the web.config fi le and fi nd the
webHttp node under the behavior node. Change the defaultOutgoingResponseFormat from
XML to JSON. The node should look like this:

<webHttp defaultOutgoingResponseFormat=”Json”/>

Then rebuild the project and navigate back to the ASP.NET Development Server URL
/DerbyService.svc/PlayerNames. On my machine, Chrome developer tools show the response size
is now 2.22KB, which is a 28 percent reduction in size from the XML format. This reduction in
size will result in faster transfer times, especially for larger data services. I recommended using JSON
as the default data format and providing XML only if the requirements demand it.

The next improvement to make is getting URLs that make more sense. The URL /DerbyService
.svc/PlayerNames doesn’t look nice. A better URL would be /RollerDerby/PlayerNames.
ASP.NET routing is the easiest way to get the URL /RollerDerby/PlayerNames.

Routing is built into ASP.NET, but to get it to work with the service you need to add one reference.
Expand the DerbyNameService project node, right-click References, and select Add
Reference to bring up Add Reference dialog box. Select the .NET tab and fi nd System
.ServiceModel.Activation. Click OK to add the System.ServiceModel.Activation assembly
to the project as shown in Figure 3-9.

FIGURE 3-9: Add Reference dialog box

c03.indd 52c03.indd 52 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Example Web Service ❘ 53

Right-click the DerbyNames project and select Add New Item from the menu. From the Add New
Item dialog box, select Global Application Class, and click the Add button to add it to the project
as shown in Figure 3-10.

FIGURE 3-10: Add Global.asax dialog box

Find the Application_Start method within the Global.asax fi le and add the following line of
code within the method:

RegisterRoutes(RouteTable.Routes);

Below the Application_Start method, add the following method:

private void RegisterRoutes(RouteCollection routes)
{
 routes.Add(new ServiceRoute(“RollerDerby”,
 new WebServiceHostFactory(), typeof(DerbyService)));
}

The RouteTable class is in the System.Web.Routing namespace. The WebServiceHostFactory
and ServiceRoute classes are in the System.ServiceModel.Activation namespace. Add these
using statements at the top of the fi le to resolve the references:

using System.Web.Routing;
using System.ServiceModel.Activation;

c03.indd 53c03.indd 53 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

54 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

For ASP.NET routing to work, WCF requests need to fl ow through ASP.NET. To turn this feature
on, open the web.config fi le and fi nd the serviceHostingEnvironment element. Add the attribute
aspNetCompatibilityEnabled=”true”. The serviceHostingEnvironment element should look
like this:

<serviceHostingEnvironment multipleSiteBindingsEnabled=”true”
 aspNetCompatibilityEnabled=”true” />

ASP.NET routing also requires the service class be attributed stating it supports ASP.NET
compatibility. To enable this, open the DerbyService.svc.cs class and add the
AspNetCompatibilityRequirements attribute like this:

 [AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Required)]

The AspNetCompatibilityRequirements attribute is in the System.ServiceModel.Activation
namespace, which requires the following using statement:

using System.ServiceModel.Activation;

After making those changes, compile and run the project. Navigate to the URL /RollerDerby/
PlayerNames and the same JSON document displayed in Figure 3-7 will display. Since I’m discussing
nice-looking URLs (also known as friendly URLS), notice when giving a URL the service doesn’t
understand such as /RollerDerby/THIS-PAGE-DOES-NOT-EXIST, the browser displays the strange
looking page as shown in Figure 3-11.

FIGURE 3-11: A typical 404 page

Using Chrome Developer Tools shows the response has the correct 404 code. This is the same result
when navigating to the root service: /RollerDerby. It would be better if missing pages were
controlled by the DerbyService class. Fortunately, the WebGet attribute applied to the service
 methods gives control of the URLs.

c03.indd 54c03.indd 54 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Example Web Service ❘ 55

To deliver a 404 page that doesn’t expose the underlying technology as WCF, add the following
method to the DerbyService class:

[WebGet(UriTemplate=”*”)]
public void ErrorForGet()
{
 throw new WebFaultException(HttpStatusCode.NotFound);
}

The method name doesn’t matter. The functionality is coming from the UriTemplate
parameter. The asterisk means if there isn’t a better match, run this attributed method for the
request. The HttpStatusCode class is in the System.NET namespace, which requires the following
using statement:

using System.Net;

Change the DerbyService class so it does not implement the IDerbyService. Because it is not
using the IDerbyService, add the ServiceContract attribute to the DerbyService class, which
requires the following using statement:

using System.ServiceModel;

The fi nal change to remove the response body is a web.config change. Find and remove the
Services node along with its child service node. After rebuilding, running the application, and
navigating to /RollerDerby/THIS-PAGE-DOES-NOT-EXIST, the page returns a 404 error with an
empty body as shown in Figure 3-12:

FIGURE 3-12: A 404 page with an empty body

c03.indd 55c03.indd 55 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

56 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

It is important for web services to be discoverable. Users may try to navigate to /RollerDerby. The
service is currently confi gured to give a 404 error at that URL. It would help users to expose the
PlayerName and Leagues operations of the service from the /RollerDerby URL so the users can
fi nd the supported service operations.

To expose the services, open the DerbyService class and add the following method:

[WebGet(UriTemplate=””)]
public Stream Root()
{
 WebOperationContext.Current.OutgoingResponse.ContentType = “text/html”;
 string html = “Player Names
<a” +
 “href=\”Leagues\”>Leagues”;
 return new MemoryStream(Encoding.UTF8.GetBytes(html));
}

The Stream and MemoryStream classes are in the System.IO namespace, and the Encoding class
is in the System.Text namespace. Add these two using
statements:

using System.IO;
using System.Text;

After building the project, running it, and navigating the
browser to /RollerDerby, users are able to
discover the operations the RollerDerby service
provides. In Chrome, the page looks like Figure 3-13.

The fi nal code for the DerbyNamesService should look like
this:

using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Net;
using System.ServiceModel;
using System.ServiceModel.Activation;
using System.ServiceModel.Web;
using System.Text;

namespace DerbyNamesService
{
 [AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Required)]
 [ServiceContract]
 public class DerbyService
 {
 [WebGet(UriTemplate=”/PlayerNames”)]
 public IEnumerable<DerbyNames> PlayerNames()
 {
 var names = new DerbyContext().DerbyNames.ToList();
 return names;
 }

 [WebGet(UriTemplate=”/Leagues”)]

FIGURE 3-13: Discoverable service URLs

c03.indd 56c03.indd 56 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Example Web Service ❘ 57

 public IEnumerable<Leagues> Leagues()
 {
 var leagues = new DerbyContext().Leagues.ToList();
 return leagues;
 }

 [WebGet(UriTemplate = “*”)]
 public void ErrorForGet()
 {
 throw new WebFaultException(HttpStatusCode.NotFound);
 }

 [WebGet(UriTemplate = “”)]
 public Stream Root()
 {
 WebOperationContext.Current.OutgoingResponse.ContentType = “text/html”;
 string html = “Player Names

 Leagues”;
 return new MemoryStream(Encoding.UTF8.GetBytes(html));
 }
 }
}

The fi nal web.config should look like this:

<?xml version=”1.0”?>
<configuration>
 <system.web>
 <compilation debug=”true” targetFramework=”4.0” />
 </system.web>
 <system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior>
 <webHttp defaultOutgoingResponseFormat=”Json”/>
 </behavior>
 </endpointBehaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled=”true”/>
 <serviceDebug includeExceptionDetailInFaults=”false”/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <serviceHostingEnvironment multipleSiteBindingsEnabled=”true”
 aspNetCompatibilityEnabled=”true” />
 </system.serviceModel>
 <system.webServer>
 <modules runAllManagedModulesForAllRequests=”true”/>
 </system.webServer>
</configuration>

As shown in this section, WCF is a fl exible framework capable of delivering consumable web services
to clients. The downside of using WCF for web services is the complexity of the technology stack.
With all the fl exibility WCF provides, using it to deliver text data over HTTP is using only a small
percentage of the framework.

c03.indd 57c03.indd 57 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

58 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

Using Open Data Protocol (OData)

The Open Data Protocol (OData) is a web protocol for querying and updating data in a standard
way. OData has many querying capabilities such as getting the count, expanding related entities,
paging, and many fi lter options. Read about the capabilities on http://www.odata.org. Microsoft
created the technology and has released it under the Open Specifi cation Promise, which means
Microsoft has granted everyone license to use the OData technology. OData is a great choice for
web services that create, read, update, and delete data without complex business rules. OData has
especially advanced querying capabilities that make it fl exible for many projects.

This walkthrough assumes the following software is installed:

 ➤ Visual Studio 2010

 ➤ IIS 7.5

 ➤ Entity Framework 4.0

 ➤ SQL Server 2008 R2

 1. Open Visual studio and select File ➪ New Project.

 2. From the New Project menu, select ASP.NET Empty Web Application.

 3. Name the service ODataDerbyService and click OK, as shown in Figure 3-14.

FIGURE 3-14: New Empty Web Application dialog box

c03.indd 58c03.indd 58 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.odata.org
http://www.it-ebooks.info/

Creating an Example Web Service ❘ 59

To deliver data from the service, this example uses Entity Framework. Entity Framework is an
Object Relational Mapper that has been released by Microsoft. What that means is that it will
bind your database to C# objects directly without the user needing to do any of the heavy
lifting.

Right-click the ODataDerbyService project and select Add New Item.

From the Templates tree, fi nd Data and then select the ADO.NET Entity Data Model template.
Enter DerbyData.edmx for the name and click the Add button as shown in Figure 3-15.

FIGURE 3-15: Add new ADO.NET Entity Data Model dialog box

On the fi rst screen of the Entity Data Model Wizard, select Generate from Database and click
Next. On the next screen of the wizard, click the New Connection button. If you are connecting to
SQL Server on the same machine as you are developing on it refer to it by the local instance address.
For the server name enter a dot (.). For the database name select DerbyNames from the drop-down
list. Then click OK as shown in Figure 3-16.

c03.indd 59c03.indd 59 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

60 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

FIGURE 3-16: Database Connection Properties dialog box

After clicking OK on the Connection Properties dialog box, Visual Studio will be back in the Entity
Data Model Wizard. Click Next to continue.

On the Choose Your Database Objects step of the wizard, check Tables, leave the rest of the settings
at their defaults, and click Finish, as shown in Figure 3-17.

FIGURE 3-17: Data Model Wizard Choose Objects dialog box

c03.indd 60c03.indd 60 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Example Web Service ❘ 61

With the data model created, the next step is to add the OData service. Right-click the
ODataDerbyService project and select Add New Item. From the Add New Item dialog box, in
the Installed Templates tree select the Web node and then select WCF Data Service. Name it
DerbyService.svc and then click the Add button as shown in Figure 3-18.

FIGURE 3-18: Add new WCF Data Service

Visual Studio has done almost all of the work to make OData expose the database as a web service.
To make the service access the data model created earlier, open the DerbyService.svc.cs class and
fi nd the comment /* TODO: put your data source class name here /*. Replace that com-
ment with DerbyNamesEntities like this:

public class DerbyService : DataService<DerbyNamesEntities>

Now the service is connected to the data. However, by default OData doesn’t expose any of the data
for security reasons. To expose the two tables from the model, uncomment this line:

config.SetEntitySetAccessRule(“MyEntityset”, EntitySetRights.AllRead);

and change the string “MyEntityset” to “*” like this:

config.SetEntitySetAccessRule(“*”, EntitySetRights.AllRead);

c03.indd 61c03.indd 61 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

62 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

The fi nal DerbyService.svc.cs fi le should look like Figure 3-19.

FIGURE 3-19: The fi nal DerbyService.svc.cs fi le

That is all the confi guration required to confi gure
an OData service. Build the project, run the
project, and if Visual Studio doesn’t point the
browser to the DerbyService.svc URL,
navigate to /DerbyService.svc/. Figure 3-20
shows results in Google Chrome.

OData is showing DerbyNames and Leagues col-
lections are available.

In the browser address bar add /DerbyNames
after DerbyService.svc. The service responds
with an XML document showing the DerbyNames
from the database. Notice the DerbyNames XML
document isn’t color coded — this is because the
content type request header is application/
atom+xml instead of application/xml. OData
uses the Atom and AtomPub format to represent
collections. Also notice the DerbyNames XML

FIGURE 3-20: Chrome displaying service results

c03.indd 62c03.indd 62 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Example Web Service ❘ 63

document has links like <id>http://localhost:25457/DerbyService.svc/DerbyNames(1)</
id>. That link is to the URL showing the DerbyName with a primary key of 1. This starts to show
the power of OData. OData provides many querying capabilities. The document is telling consum-
ers how to query the service for a particular instance of a collection item.

To expand upon the querying capabilities, enter this URL:

/DerbyService.svc/DerbyNames?$filter=League%20eq%20’Lansing%20Derby%20Vixens’

The query string is telling the OData service to return items from the DerbyNames collection where
League is equal to “Lansing Derby Vixens.” OData responds by returning all the players in the
system from the Lansing Derby Vixens league as shown in Figure 3-21.

FIGURE 3-21: Chrome displaying query results

OData does have the capability to return JSON. Unfortunately, the WCF Data Services implementa-
tion does not implement the $format query parameter specifi ed in the OData specifi cation. Instead,
the WCF Data Services implementation responds with JSON only when the HTTP accept request
header is set to “application/json”. Unfortunately, some programming platforms do not support
changing request headers. The following procedure shows how to make the service return JSON
without modifying the request headers on the client.

c03.indd 63c03.indd 63 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

64 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

First, the service code needs to have access to all incoming requests before the requests are put into
the OData pipeline. To get access to the requests, right-click the ODataDerbyService project and
select Add New Item. In the Add New Item dialog box Installed Template tree, select Web. From the
Templates select Global Application Class. Click the Add button to create the codefi le in the project
as shown in Figure 3-22.

FIGURE 3-22: Add New Global Application Class dialog box

The Global class has a method named Application_BeginRequest, which is called when an
HTTP request enters the application. This is a good spot to change the HTTP accept request header
before WCF Data Services processes the request. To change the request header, insert the following
line in the Application_BeginRequest method:

protected void Application_BeginRequest(object sender, EventArgs e)
{
 HttpContext.Current.Request.Headers[“accept”] = “application/json”;
}

Unfortunately, the ASP.NET Development Server does not allow modifying the request headers, but
IIS 7.5 does. For this method to work in the debug environment requires using IIS Express instead of
the ASP.NET Development Server. To change the environment, right-click the ODataDerbyService
project and click Properties. From the properties window navigation tree select the Web tab. In the
Web tab fi nd the Servers section and select the radio button for Use Local IIS Web Server. Mark the
Use IIS Express checkbox and accept the Project URL, as shown in Figure 3-23.

c03.indd 64c03.indd 64 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Example Web Service ❘ 65

FIGURE 3-23: ODataDerbyService Project Properties dialog box

Close the property window to save the changes. Build the project, run it, and change the browser
URL to /DerbyService.svc/DerbyNames?$filter=League%20eq%20’Lansing%20Derby%20
Vixens’.

The document is now returned in JSON instead of XML as shown in Figure 3-24.

FIGURE 3-24: Chrome showing JSON result

c03.indd 65c03.indd 65 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

66 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

For this query, changing the format to JSON resulted in a 75 percent reduction in the size of the
document.

OData also enables inserting and updating data. Open the DerbyService.svc.cs fi le and change
the config.SetEntitySetAccessRule second parameter from EntitySetRights.AllRead
to EntitySetRights.All. This will make all data in all tables readable and writable. To set
rights on a specifi c table use a line like this: config.SetEntitySetAccessRule(“tableName”,
EntitySetRights.All);

To insert a player name, submit the following HTTP request programmatically or using a tool like
Fiddler (discussed in the later “Debugging” section):

POST http://localhost:25457/DerbyService.svc/DerbyNames HTTP/1.1
User-Agent: Fiddler
Host: localhost:25457
content-type: application/json
Content-Length: 108

{“Name”:”gravityworks”,
“Number”:”infinity”,
“League”:”Lansing Derby Vixens”,
“DateAdded”: “2012/04/30”
}

OData is a great choice for applications that are dealing with CRUD operations. Instead of writing
boilerplate code to read, update, delete, and insert data, OData gives a robust set of operations with
little work.

Using ASP.NET MVC 3

ASP.NET MVC is a web framework released by Microsoft. It follows the model-view-controller pat-
tern. This separation provides benefi ts such as easy testability and providing different views of the
same model. These features make ASP.NET MVC a great choice for creating web services.

This walkthrough assumes the following software is installed:

 ➤ ASP.NET 4.0

 ➤ ASP.NET MVC 3

 ➤ Visual Studio 2010

 ➤ IIS 7.5

 ➤ Microsoft SQL Server 2008 R2

To get started you need a project. Open Visual Studio and select File ➪ New Project. From the New
Project dialog box, select the Web node from the Installed Templates tree and then select ASP.NET
MVC3 Web Application. Name the project MVCDerbyService and click OK to create the project as
shown in Figure 3-25.

c03.indd 66c03.indd 66 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://localhost:25457/DerbyService.svc/DerbyNames
http://www.it-ebooks.info/

Creating an Example Web Service ❘ 67

On the New ASP.NET MVC 3 Project Template dialog box, select Internet Application, set the
view engine to Razor, and check the Use HTML5 Semantic Markup checkbox. Then click OK to
continue. Figure 3-26 shows the confi guration screen with the options for this walkthrough.

FIGURE 3-25: Create new ASP.NET MVC 3 Web Application Project dialog box

FIGURE 3-26: New ASP.NET MVC 3 Project Template dialog box

c03.indd 67c03.indd 67 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

68 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

For ease of database access this walkthrough uses LINQ to SQL. Using LINQ to SQL requires
an additional project reference to System.Data.Linq. To add the reference, right-click the
References node of the DerbyNamesService project and select Add Reference. In the Add Reference
dialog box click the .NET tab, fi nd System.Data.Linq, and click the Add button as shown in
Figure 3-27.

FIGURE 3-27: Add Reference dialog box

After adding the System.Data.Linq reference, you need to create a class to access the data. To add
the data access class, fi nd the Models folder in the Solution Explorer. Right-click the Models folder
and select Add New Item as shown in Figure 3-28.

c03.indd 68c03.indd 68 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Example Web Service ❘ 69

In the Add New Item dialog box, select the Web node from the Installed Templates tree. Then select
Class from the Templates, name it DerbyContext, and click the Add button as shown in Figure 3-29.

FIGURE 3-28: Add New Item menu

FIGURE 3-29: Add New Class dialog box

c03.indd 69c03.indd 69 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

70 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

The DerbyContext class will provide the data. To represent the data as .NET objects, add two more
code fi les, DerbyNames and Leagues, in the Models folder.

The DerbyNames class will contain the information on a derby player. Make the DerbyNames.cs fi le
contain this code:

using System;
using System.Data.Linq.Mapping;
namespace MVCDerbyService.Models
{
 [Table]
 public class DerbyNames
 {
 [Column(IsPrimaryKey = true)]
 public int DerbyNameId;
 [Column]
 public string Name;
 [Column]
 public string Number;
 [Column]
 public DateTime? DateAdded;
 [Column]
 public string League;
 }
}

The Leagues class will contain information about the derby leagues, such as the league name. Make
the Leagues.cs fi le contain this code:

using System.Data.Linq.Mapping;

namespace MVCDerbyService.Models
{
 [Table]
 public class Leagues
 {
 [Column(IsPrimaryKey = true)]
 public int LeagueId;
 [Column]
 public string LeagueName;
 [Column]
 public string URL;
 [Column]
 public string StateProvince;
 [Column]
 public string CountryCode;
 }
}

The DerbyContext will be the class providing access to the database from the DerbyService class.
Modify the DerbyContext.cs code to contain this code:

c03.indd 70c03.indd 70 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Example Web Service ❘ 71

using System.Data.Linq;

namespace MVCDerbyService.Models
{
 public class DerbyContext : DataContext
 {
 public Table<DerbyNames> DerbyNames;
 public Table<Leagues> Leagues;
 public DerbyContext()
 : base(“Data Source=.;Initial Catalog=DerbyNames;
 User Id=webUser;Password=webuser;”)
 { }
 }
}

MVC uses a concept called a controller to route requests. To create a request endpoint, right-click
the Controllers folder and select Add Controller, as shown in Figure 3-30.

FIGURE 3-30: Add New Controller context menu

In the Add Controller dialog box, name the controller DerbyServiceController and select the Empty
controller template.

Modify DerbyServiceController.cs to contain the following code:

c03.indd 71c03.indd 71 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

72 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

using System.Collections.Generic;
using System.Linq;
using System.Web.Mvc;
using MVCDerbyService.Models;

namespace MVCDerbyService.Controllers
{
 public class DerbyServiceController : Controller
 {
 public ActionResult DerbyNames()
 {
 DerbyContext dc = new DerbyContext();
 List<DerbyNames> names = dc.DerbyNames.ToList();
 return Json(names, JsonRequestBehavior.AllowGet);
 }
 }
}

One controller class with one method is all MVC requires to create an HTTP endpoint. Build and
run the project. Visual Studio will open a web browser with a localhost URL. Add /DerbyService/
DerbyNames to run the preceding code. The results in Chrome are shown in Figure 3-31.

Figure 3-31 shows MVC correctly set the content type to application/json.

FIGURE 3-31: Chrome displaying the content type

c03.indd 72c03.indd 72 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Example Web Service ❘ 73

What if the service needs to return XML? It would be nice to have an XmlResult class provid-
ing functionality similar to the JsonResult class. Unfortunately, MVC does not ship with an
XmlResult class, but we can easily build one.

The DerbyNames method is returning a JsonResult, which is a type of ActionResult. To create
an XmlResult class, fi rst add a Results folder to the MVCDerbyService project to keep the project
well organized.

Right-click the Results folder and add a new class named XmlResult. The contents of the
XmlResult class should look like this:

using System.Web.Mvc;
using System.Xml.Serialization;

namespace MVCDerbyService.Results
{
 public class XmlResult : ActionResult
 {
 private object payload { get; set; }

 public XmlResult(object data)
 {
 payload = data;
 }

 public override void ExecuteResult(ControllerContext context)
 {
 XmlSerializer serializer = new XmlSerializer(payload.GetType());
 context.HttpContext.Response.ContentType = “text/xml”;
 serializer.Serialize(context.HttpContext.Response.Output, payload);
 }
 }
}

MVC uses routes to match incoming request URLs to the appropriate controller. To enable return-
ing XML, open the Global.asax.cs fi le in the root of the solution. Find the RegisterRoutes
method and add routes.MapRoute(“format”,”{controller}/{action}.{format}”); between
the two existing route statements.

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute(“{resource}.axd/{*pathInfo}”);

 routes.MapRoute(“format”, “{controller}/{action}.{format}”);

 routes.MapRoute(
 “Default”, // Route name
 “{controller}/{action}/{id}”, // URL with parameters
 new { controller = “Home”, action = “Index”,
 id = UrlParameter.Optional } // Parameter defaults
);
}

c03.indd 73c03.indd 73 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

74 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

With the route in place it is time to change the controller to respond to the format information.
Open the DerbyServiceController.cs fi le and modify it like this:

using System.Collections.Generic;
using System.Linq;
using System.Web.Mvc;
using MVCDerbyService.Models;
using MVCDerbyService.Results;

namespace MVCDerbyService.Controllers
{
 public class DerbyServiceController : Controller
 {
 public ActionResult DerbyNames(string format)
 {
 DerbyContext dc = new DerbyContext();
 List<DerbyNames> names = dc.DerbyNames.ToList();
 if (string.Compare(format, “xml”) == 0)
 {
 return new XmlResult(names);
 }
 return Json(names, JsonRequestBehavior.AllowGet);
 }
 }
}

After building and running the project, navigating to /DerbyService/DerbyNames.xml displays the
same document in XML instead of JSON.

This approach of specifying the format in the URL works and provides advantages, for example
being able to have anchor links to PDF and comma separated value (CSV) representations, but the
HTTP specifi cation has MIME types for content negotiation. Content negotiation enables the client to
request the information as well as the format of the information. For example, web browsers request
text/html. For correctness and expected behavior the service should return HTML, XML, or JSON
depending on what the client requests in the accept header. If the service does not support the
requested type, the service should return a 406 error code specifying the valid values for the header,
such as HTML, XML, and JSON.

Supporting different request headers will require a new result class. Add an AcceptHeaderResult
class in the Results folder. Open the AcceptHeaderResult.cs fi le and replace the generated fi le
contents with the following code:

using System.Web.Mvc;

namespace MVCDerbyService.Results

{

 public class AcceptHeaderResult : ActionResult

 {

 private object payload { get; set; }

 public AcceptHeaderResult(object data)

 {

c03.indd 74c03.indd 74 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Example Web Service ❘ 75

 payload = data;

 }

 public override void ExecuteResult(ControllerContext context)

 {

 string accept = context.HttpContext.Request.Headers[“accept”].ToLower();

 ActionResult result = null;

 if (accept.Contains(“text/html”))

 {

 context.Controller.ViewData.Model = payload;

 result = new ViewResult() { TempData = context.Controller.TempData,

 ViewData = context.Controller.ViewData };

 }

 else if (accept.Contains(“application/json”))

 {

 result = new JsonResult() { Data = payload, JsonRequestBehavior =

 JsonRequestBehavior.AllowGet };

 }

 else if (accept.Contains(“text/xml”))

 {

 result = new XmlResult(payload);

 }

 else

 {

 result = new HttpStatusCodeResult(406, “Type not supported.”);

 }

 result.ExecuteResult(context);

 }

 }

}

To use the new AcceptHeaderResult class you need to modify the DerbyService controller to use
it. Modify the DerbyServiceController.cs fi le like this:

using System.Collections.Generic;
using System.Linq;
using System.Web.Mvc;
using MVCDerbyService.Models;
using MVCDerbyService.Results;

namespace MVCDerbyService.Controllers
{
 public class DerbyServiceController : Controller
 {
 public ActionResult DerbyNames()
 {
 DerbyContext dc = new DerbyContext();
 List<DerbyNames> names = dc.DerbyNames.ToList();
 return new AcceptHeaderResult(names);
 }
 }
}

c03.indd 75c03.indd 75 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

76 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

Using a tool like Fiddler (discussed in the next section) enables you to modify the application head-
ers to test the XML and JSON responses. To get the same JSON response from before, issue the fol-
lowing HTTP request:

GET http://localhost:33008/DerbyService/DerbyNames HTTP/1.1
Host: localhost:33008
Accept: application/json

To make the system respond with the unsupported error code, issue the following HTTP request:

GET http://localhost:33008/DerbyService/DerbyNames HTTP/1.1
Host: localhost:33008
Accept: invalid

On the ASP.NET Development Server, the nice message specifying the supported types of text/html,
text/xml, and application/json is not displayed. The message text displays on IIS 7.5 and IIS Express.

This gives a nice framework to easily add new endpoints. To add the Leagues endpoint, add the fol-
lowing method to the DerbyServiceController.cs fi le:

public ActionResult Leagues()
{
 DerbyContext dc = new DerbyContext();
 List<Leagues> names = dc.Leagues.ToList();
 return new AcceptHeaderResult(names);
}

Adding that code snippet makes the JSON and XML HTTP requests work correctly. To add
the HTML view, fi nd the DerbyService folder underneath the Views folder. Right-click the
DerbyService folder and select Add View. Name the view Leagues.

Open the Leagues.cshtml fi le and modify it as shown in the following code snippet:

<h2>Leagues</h2>

 @foreach (var item in @Model)
 {
 <div>
 @item.StateProvince - @item.LeagueName
 </div>
 }

To make this service discoverable, add content at /DerbyService. This requires a change to the
DerbyServiceController and an additional view. In the DerbyService subfolder of the Views
folder, add a new view named Index. Put the following code in the view:

@{
 ViewBag.Title = “Index”;
}

<h2>Index</h2>

c03.indd 76c03.indd 76 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://localhost:33008/DerbyService/DerbyNames
http://localhost:33008/DerbyService/DerbyNames
http://www.it-ebooks.info/

Creating an Example Web Service ❘ 77

<div>
 @Html.ActionLink(“DerbyNames”, “DerbyNames”)

</div>
<div>
 @Html.ActionLink(“Leagues”, “Leagues”)
</div>

After adding the index fi le you need to hook it up. To enable the endpoint, open
DerbyServiceController.cs and add the following method:

public ActionResult Index()
{
 return View();
}

After making those changes, navigating to /DerbyService shows a link for DerbyNames and a link
for Leagues.

This section has shown how easy it is to create a consumable service in ASP.NET MVC. The
technology is geared toward making websites, but the extensible and pluggable nature of the technology
makes it a great choice for creating consumable services.

Using the Linux Apache MySQL PHP (LAMP) Stack

Web services are cross platform. This section shows how to confi gure a web server on Linux to
retrieve data from a MySQL database and leverage a technology called OData to deliver querying
functionality with little work. OData is a web platform that enables create, read, update, and delete
operations over HTTP. OData is used to expose information from systems such as relational
database, fi le systems, and traditional websites using existing web technologies such as HTTP,
XML, and JSON. Think of it as exposing parts of your database to the World Wide Web.

This walkthrough assumes the following software is installed:

 ➤ Ubuntu 11.10

 ➤ Apache2 with URL rewrite mode

 ➤ PHP-5.4

 ➤ MySQL

 ➤ Symfony 2.0

 ➤ PHP5s XSL extension

 ➤ PHP Extension and Application Repository (PEAR)

To use OData on MySQL, fi rst you need a data source, meaning someplace where the data is
contained. Download the fi le named MySQL-Create-DerbyNames-Database.sql from the
 download section for this book at http://www.wrox.com. This document contains a script that will
create the DerbyNames database, which consists of a leagues table and a derby names table.

c03.indd 77c03.indd 77 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

78 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

To execute the script from a terminal, run the following command to log into the MySQL admin
console:

mysql -u root -p

Enter the root password when MySQL prompts for a password.

From the MySQL command prompt, execute the script by entering the following command:

source DerbyNames.sql

After creating the database, the next task is to download the OData Producer Library for PHP. The
OData Producer Library is software that will expose the MySQL database as an OData source.
Download it from http://odataphpproducer.codeplex.com/.

Unzip the fi le contents and copy the OData Producer Library fi les to /var/www/OData and ensure
the /var/www/OData directory has an Index.php fi le.

Next, PHP needs to know where the OData library is located. To confi gure PHP to look for the
OData Producer Library for PHP, create an OData.ini fi le in /etc/php5/conf.d$. After creating
the fi le, type in the following line of code and save the fi le:

include_path = “:/var/www/Odata:/var/www/OData/library”;

For the OData library to handle a request, Apache needs to hand the request to OData. By default,
on the Microsoft Windows .NET stack OData services end in .svc. To keep that convention on this
Apache confi guration, modify /var/etc/apache2/httpd.conf by adding these lines:

<Directory “/var/www”>
 <IfModule mod_rewrite.c>
 RewriteEngine on
 RewriteRule (\.svc.*) OData/Index.php
 </IfModule>
</Directory>

The OData Connector for MySQL will examine a MySQL database and produce all the PHP code
fi les necessary for read-only OData operations except one — the OData connector for MySQL does
not create the code for IDataServiceStreamProvider. IDataServiceStreamProvider is used to
deliver binary data, for example an image or a video, through the OData Producer Library.

The OData Connector for MySQL requires a specifi c piece of software called Doctrine Object
Relational Mapper. This software is an Object Relational Mapper (ORM). For those unfamiliar
with it, an ORM represents database tables as programming language objects.

Using the PEAR package manager, the Doctrine Object Relational Mapper can be installed using
the following commands:

sudo pear channel-discover pear.doctrine-project.org
sudo pear install doctrine/DoctrineORM

With the prerequisite ORM installed, it is time to download the OData Connector for the MySQL
library. The OData Connector library is built to generate PHP code fi les to perform OData

c03.indd 78c03.indd 78 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://odataphpproducer.codeplex.com/
http://www.it-ebooks.info/

Creating an Example Web Service ❘ 79

 operations against a MySQL source. You can download the package from http://odatamysqlph-
pconnect.codeplex.com. The following steps are for V 1.0.

Navigate to the directory the package downloaded to and unzip it. Open a terminal and navigate to
the unzipped package directory.

To generate the code fi les, execute the following command:

php MySQLConnector.php /db=DerbyService /srvc=DerbyService /u=webUser
/pw=webuser /h=localhost

Running the MySQLConnector.php script states:

EDMX file is successfully generated in the output folder.
Do you want to modify the EDMX file-/home/smithd98/Downloads/MySQLConnectorV1.0
/ODataConnectorForMySQL/OutputFiles/Northwind/NorthwindEDMX.xml(y/n):

Press N and the Return key to indicate no.

The terminal will print the following success messages:

MetadataProvider class has generated Successfully.
QueryProvider class has generated Successfully.
DataServiceProvider class has generated Successfully.
DSExpressionProvider class has generated Successfully.
Service.config file has generated Successfully.

Copy the generated fi les into the /var/www/OData/services/DerbyNames directory with the fol-
lowing two commands:

sudo mkdir /var/www/OData/services/DerbyNames
sudo cp ~/Downloads/MySQLConnectorV1.0/ODataConnectorForMySQL
/OutputFiles/DerbyNames/* /var/www/OData/services/DerbyNames/

One of the fi les generated by the MySQLConnector script is service.config.xml. This fi le
specifi es the confi guration information to correctly activate the service. Unfortunately, the
service.config.xml fi le generated doesn’t work correctly on Linux. To work on Linux it needs to
be modifi ed slightly.

The contents of the /var/www/OData/services/DerbyNames/service.config.xml fi le generated
by the library are:

<?xml version=”1.0”?>
<configuration>
 <services>
 <Service Name=”DerbyNames.svc”>
 <path>Services\DerbyNames\DerbyNamesDataService.php</path>
 <classname>DerbyNamesDataService</classname>
 <baseURL>/DerbyNames.svc</baseURL>
 </Service>
 </services>
</configuration>

c03.indd 79c03.indd 79 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://odatamysqlphpconnect.codeplex.com
http://odatamysqlphpconnect.codeplex.com
http://www.it-ebooks.info/

80 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

The contents of the /var/OData/services/DerbyNames/service.config.xml Service element
need to be copied into the /var/www/OData/services/service.config.xml services element as a
child element.

After copying it in there, you need to make some slight changes:

 1. Change the Service node to lowercase.

 2. Replace the backslash (\) in the path node with a forward slash (/) so the paths are valid on
Linux.

 3. Change Services to lowercase in the path node.

After making those changes, the fi le should look like this:

<?xml version=”1.0”?>
<configuration>
 <services>
 <service Name=”DerbyNames.svc”>
 <path>services/DerbyNames/DerbyNamesDataService.php</path>
 <classname>DerbyNamesDataService</classname>
 <baseURL>/DerbyNames.svc</baseURL>
 </service>
 </services>
</configuration>

Use a web browser to navigate to http://localhost/DerbyNames.svc/DerbyNames. Firefox will
display an XML document, as shown in Figure 3-32.

FIGURE 3-32: Firefox display of the XML document from the service

c03.indd 80c03.indd 80 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Example Web Service ❘ 81

If the browser displays an error like this:

Warning: Cannot modify header information - headers already sent by
(output started at /var/www/OData/services/DerbyNames/
DerbyNamesQueryProvider.php:390 in /var/www/OData/Dispatcher.php on
line 205

edit the fi le /var/www/OData/services/DerbyNames/DerbyNamesQueryProvider.php by
removing line 326. In the version I have there is a bug putting an empty line at the end of the fi le
(after the ?>).

Save the fi le and then reload http://localhost/DerbyNames.svc/DerbyNames in the browser. The
XML document shown in Figure 3-32 should display.

With everything working correctly it is time to take advantage of OData features! First, use JSON
instead of XML to reduce the size of the data returned by the OData service calls. To change the
format to JSON, use the following URL:

http://localhost/DerbyNames.svc/DerbyNames?$format=json

This time the browser displays the raw JSON, as shown in Figure 3-33.

FIGURE 3-33: JSON output from service

c03.indd 81c03.indd 81 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

82 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

Another feature of OData is that it enables querying data over HTTP. To query the service for
all the players in the Lansing Derby Vixens league, enter the following URL in the Firefox web
browser:

http://localhost/DerbyNames.svc/DerbyNames?$filter=Leagues eq ‘Lansing Derby
Vixens’&$format=json

Firefox displays the only two players in the database from the Lansing Derby Vixens League, as
shown in Figure 3-34.

FIGURE 3-34: Filtered JSON data

OData enables developers to quickly expose read, write, update, and delete operations through
web services. This chapter touched a bit on OData’s querying capabilities. The querying capabilities
would take many hours of development time to get the same functionality OData provides.
These querying capabilities make the service fl exible, which speeds up development because
the service doesn’t need to be constantly modifi ed to meet new requirements. To learn more
about the OData specifi cation and features that were not shown in this chapter, visit
http://odata.org.

c03.indd 82c03.indd 82 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://odata.org
http://www.it-ebooks.info/

Debugging Web Services ❘ 83

This section walked through creating a sample database, confi guring Apache for OData, installing
the OData library, and confi guring the OData library. OData is a good choice to use for web
services that need to provide create, read, update, and delete (CRUD) operations because it provides
so much functionality and fl exibility for such a small effort.

DEBUGGING WEB SERVICES

Despite your best intentions, all developers are not perfect and the web service you create will not
work exactly correct the fi rst time you try to test it. This section discusses methods to fi gure out
what is going wrong.

Tools

Understanding why a web service is not working correctly can be diffi cult because most of the code
running is standard software and not code written by you or your team. Most of the code delivering
web services consists of the libraries being leveraged, the platform the code is running on, the web
server code running, and the operating system code.

Fiddler

When debugging web services, it is important to have the capability to see the raw requests and
responses. Fiddler is a free Windows tool that does just that. Find installation instructions and the
download at http://www.fiddler2.com.

Fiddler shows the raw HTTP traffi c for the Windows system on which it is running. This means the
tool will show the raw HTTP service request and HTTP response if the system running Fiddler is
the one making the request. Unfortunately, when developing mobile applications, Fiddler will not be
able to show the HTTP traffi c because it is coming from an external device. Fiddler has another
feature called Composer that allows the creation and execution of a raw HTTP request. The
Composer feature enables testing and debugging of services. Getting the request and response to
behave as expected is often the fi rst place I start when debugging a misbehaving web service. I
 confi gure the Fiddler request builder to go against my localhost, which also enables me to set
breakpoints in my code. After the request and response are working correctly, I ensure my code is
passing data that matches what I’ve produced in Fiddler.

The two most important features of using Fiddler to debug web services successfully are the fi lters
and Composer. When Fiddler is running it captures all the HTTP traffi c on the machine on which it
is running. This is typically too much data, which obscures the web calls that are important. Fiddler
has the concept of fi lters, which enable a user to hide HTTP traffi c that is not of interest. I usually use
the Hosts fi lter to show only traffi c from localhost and http://www.GravityWorksDesign.com as
shown in Figure 3-35.

c03.indd 83c03.indd 83 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.fiddler2.com
http://www.GravityWorksDesign.com
http://www.it-ebooks.info/

84 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

The other feature I use all the time is Composer. Composer enables putting together the exact
HTTP request to have executed. This is useful for understanding why a web service call isn’t
working, especially requests that use HTTP accept headers, because those requests cannot be
executed by a default web browser.

Figure 3-36 shows using Fiddler to build an HTTP POST request to add a player to the WCF service
created earlier in the chapter.

FIGURE 3-35: Fiddler Filters tab

FIGURE 3-36: Fiddler Composer tab

c03.indd 84c03.indd 84 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging Web Services ❘ 85

Fiddler is a must-have tool for debugging on the Windows platform.

Wireshark and MAC HTTP Client

When developing services on the Macintosh platform I use the Mac HTTP client to test web service
requests. Unfortunately, it does not capture traffi c like Fiddler. When I need to capture traffi c on
Macintosh or Linux platforms I turn to Wireshark (http://www.wireshark.org/download.html),
a free, open source debugging tool that is much more advanced than Fiddler or the Mac HTTP client.
Wireshark is an advanced packet analysis tool used for HTTP traffi c analysis as well as any other
network traffi c, such as debugging IP phones. For my simple needs of just debugging HTTP web
calls, the additional features and complexity of Wireshark make it harder for me to use. For those
not developing web services on the Windows platform, Wireshark will be a crucial tool. Figure 3-37
shows Wireshark in action on Linux.

FIGURE 3-37: Wireshark in action on Linux

Advanced Web Service Techniques

This section covers two advanced web service techniques: Web Sockets and Web Service Callbacks.
These techniques are not required for consumable web services, but can help services run
effi ciently.

c03.indd 85c03.indd 85 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.wireshark.org/download.html
http://www.it-ebooks.info/

86 ❘ CHAPTER 3 CREATING CONSUMABLE WEB SERVICES FOR MOBILE DEVICES

Web Sockets

The HTTP protocol is designed for servers to respond to client requests. The client asks for a resource
and the server delivers that resource. A problem arises if the server wants to deliver a resource to the
client. For example, a stock viewing site like http://www.google.com/finance?q=p would be more
valuable if it were able to update data on the client when the stock data changes. Today the most
supported way to do this is by having the client continually ask the server “Do you have any new
data for me?” This is wasteful because oftentimes the answer is no. That method is known as polling.
Using Web Sockets a web server is able to deliver new data to the client without the client having to
ask for the new information.

As of this writing Web Sockets are an emerging technology that not all browsers support. As
 support becomes more mainstream, web applications for things like e-mail, weather, traffi c
information, and so on will benefi t from the ability for servers to notify clients when there is more
current information.

Web Service Callbacks

Sometimes a web service needs to call another one after it is fi nished. For example, if a web
service is exposed that delivers faxes, the fax will take a long time to send. When submitting the fax
request, the calling service should make the request and then disconnect instead of waiting for
the result. However, the calling service eventually needs to know the result of the fax. To enable this
web service, callbacks are used. Consider the following POST request:

POST http://faxservice.com/fax/000123456 HTTP/1.1
Host: faxservice.com
content-type: application/json
Content-Length: 107

{
“faxId”: “9839384”,
“OnComplete”: “http://www.gravityworksdesign.com/faxresultreceiver”,
“MessageBody”:”sending a fax”
}

The requester submits that HTTP POST request to inform the fax service to make a fax to 000123456.
After the fax service executes that request and gets a result, it calls the OnComplete service at
http://www.EXAMPLE.com/faxresultreceiver passing the result and the faxId. This enables the
original requester to match that faxId and result with the request it initiated.

SUMMARY

This chapter covered a lot of ground. Initially the chapter discussed overall web service concepts
before diving into specifi c implementations of example services on a variety of technologies. The
fi rst walkthrough created an OData web service on the Linux platform. The next set of
walkthroughs focused on three Microsoft technologies on the Windows platform: WCF, OData,
and ASP.NET MVC.

c03.indd 86c03.indd 86 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.google.com/finance?q=p
http://www.gravityworksdesign.com/faxresultreceiver
http://www.EXAMPLE.com/faxresultreceiver
http://faxservice.com/fax/000123456
http://faxservice.com
http://www.it-ebooks.info/

Summary ❘ 87

After understanding the walkthroughs, you learned that OData is a good choice for creating CRUD
services without complex business logic very quickly. You have learned WCF provides a lot of
functionality and customization, but much of it is not needed for web services. You have learned
ASP.NET MVC is a great platform for developing web services with complex business logic, because
it provides extreme fl exibility without complex features getting in the way.

The chapter wrapped up by discussing techniques for debugging services and some advanced web
service techniques. The service implementations are intended to give readers a good starting point
for creating consumable web services which will work for mobile applications and other
applications.

Now that you know how to design and implement web services, the next chapter discusses mobile
user interface design. The chapter focuses on issues like effective use of screen real estate, accessibility,
and designing for the different platforms.

c03.indd 87c03.indd 87 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c03.indd 88c03.indd 88 28/07/12 5:49 PM28/07/12 5:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile User Interface Design

WHAT’S IN THIS CHAPTER?

 ➤ Using the screen real estate effi ciently

 ➤ How the user perceives design elements

 ➤ Social aspect of mobile interfaces

 ➤ Accessibility

 ➤ Design patterns

 ➤ Designing for the platforms

Design falls into the category of craftsmanship: you do something until you are good at it,
and then keep doing it until you are better. But many developers are too excited to solve the
next functionality puzzle to spend much time with interface questions like appropriate color
 contrast or font. Don’t miss out on amazing design puzzles.

The latest generation of mobile devices are portable enough to carry at all times, connected
to voice and data networks, and contextually aware by using sensors and networks to
preemptively complete tasks.

Current mobile limitations include bandwidth, times when users cannot access wireless
Internet or phone networks, as well as a lack of technical capabilities, such as Flash, on many
mainstream mobile devices. These constraints give application creators the opportunity to
focus each application on a precise set of features. Mobile application creators can also use
exciting new interactions with motion and gestures: zooming, swiping, tapping, turning, and
shaking. These capabilities offer the chance to innovate.

Technology is changing and no device has a guaranteed market share in perpetuity, providing
the easy excuse that the next device might change everything anyway. But like learning the
syntax of one programming language and applying this knowledge to learn the next industry
standard, good design transcends next season’s toy. Developers who understand the people

4

c04.indd 89c04.indd 89 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

90 ❘ CHAPTER 4 MOBILE USER INTERFACE DESIGN

who will use an application and the information users need will craft better applications no matter
where technology goes next.

So, let’s talk design.

This chapter will introduce the mobile design context, detailing ways to use screen real estate
effi ciently. The rest of the discussion is divided among the people, the data, and the device. From
Gestalt principles to accessibility on mobile devices, this chapter covers understanding your users.
A discussion of design patterns and content structure introduces mobile information design, using
illustrations and real-world examples. An overview of platform-specifi c tips and resources ends the
chapter, with “Understanding Mobile Platforms.”

EFFECTIVE USE OF SCREEN REAL ESTATE

The fi rst step to use the smaller interfaces of mobile devices effectively is to know the context of use.
Who are the users, what do they need and why, and how, when, and where will they access and
use information?

Mobile design is diffi cult, as developers try to elegantly display a telescoped view of almost limitless
information. But user experience issues are amplifi ed on mobile interfaces. Cognitive load increases
while attention is diverted by the needs to navigate, remember what was seen, and re-fi nd original
context. Cognitive load is the mental effort to comprehend and use an application, whatever the
inherent task complexity or information structure may be.

Effectively use screen real estate by embracing minimalism, maintaining a clear visual hierarchy,
and staying focused.

Embrace Minimalism

Limit the features available on each screen, and use small, targeted design features. Content on the
screen can have a secondary use within an application, but the application designer should be able
to explain why that feature is taking up screen space. Banners, graphics, and bars should all have a
purpose.

Use a Visual Hierarchy

Help users fi ght cognitive distractions with a clear information hierarchy. Draw attention to the
most important content with visual emphasis. Users will be drawn to larger items, more intense
 colors, or elements that are called out with bullets or arrows; people tend to scan more quickly
through lighter color contrast, less-intense shades, smaller items, and text-heavy paragraphs.

A consistent hierarchy means consistent usability; mobile application creators can create a hierarchy
with position, form, size, shape, color, and contrast.

Stay Focused

Start with a focused strategy, and keep making decisions to stay focused throughout development.
A smaller fi le size is a good indicator of how fast an application will load, so the benefi ts of fi ghting
feature creep extend beyond in-application user experience.

c04.indd 90c04.indd 90 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Mobile Application Users ❘ 91

Focused content means users won’t leave because it takes too long for the overwhelming amount
of images per screen to load. And users won’t be frustrated with the number of links that must be
cycled through to complete a task. Text-heavy pages reduce engagement as eyes glaze over and users
switch to another application.

If people have taken the time to install and open an application, there is a need these users hope to
meet. Be methodical about cutting back to user necessities. Build just enough for what users need,
and knowing what users need comes from understanding users.

UNDERSTANDING MOBILE APPLICATION USERS

While standing in line at the bank or a restaurant, people pull out their mobile devices to check in,
entertain, and consume another dose of content. You can borrow metaphors from the real world,
like a trash can or recycle bin holding deleted fi les; favor industry standards and make sure interface
metaphors are appropriate to the device.

Don’t be afraid to take new risks, but look to past design concepts to frame new ideas.

The Gestalt principles have had a considerable infl uence on design, describing how the human mind
perceives and organizes visual data. The Gestalt principles refer to theories of visual perception
developed by German psychologists in the 1920s. According to these principles, every cognitive
stimulus is perceived by users in its simplest form. Key principles include proximity, closure,
continuity, fi gure and ground, and similarity.

Proximity

Users tend to group objects together. Elements placed near each
other are perceived in groups; as shown in Figure 4-1, people will
see one group of three gears, and one group of two gears. Many
smaller parts can form a unifi ed whole.

Icons that accomplish similar tasks may be categorically organized
with proximity. Place descriptive text next to graphics so that the
user can understand the relationship between these graphical and textual objects.

Closure

If enough of a shape is available, the missing pieces are completed by the
human mind. In perceiving the unenclosed spaces, users complete a pattern
by fi lling in missing information. Figure 4-2 illustrates the concept of closure:
people recognize a triangle even though the fi gure is not complete.

Harness the closure concept to create icons with a strong primary silhouette,
without overloading users on pixelated and overdone details. In grid patterns
with horizontal and vertical visual lines, use closure to precisely show the
inside and outside of list items.

FIGURE 4-1: Proximity

FIGURE 4-2: Closure

c04.indd 91c04.indd 91 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

92 ❘ CHAPTER 4 MOBILE USER INTERFACE DESIGN

Continuity

The user’s eye will follow a continuously-perceived object. When
continuity occurs, users are compelled to follow one object to
another because their focus will travel in the direction they are
already looking.

When people see Figure 4-3, they perceive the horizontal stroke as distinct from the curled stroke,
even though these separate elements overlap. Smooth visual transitions can lead users through a
mobile application, such as a link with an indicator pointing toward the next object and task.

Figure and Ground

A fi gure, such as a letter on a page, is surrounded by
white space, or the ground. In Figure 4-4, the fi gure is
the gear icon, and the ground is the surrounding space.

Complex designs can play with the line between
“fi gure” and “ground,” but mobile interfaces speed user
frustration with unclear distinctions. Primary controls and main application content should main-
tain a distinct separation between fi gure and ground.

Similarity

Similar elements are grouped in a semiautomated manner,
according to the strong visual perception of color, form, size,
and other attributes (see Figure 4-5). In perceiving similarity,
dissimilar objects become emphasized.

Strict visual grids confuse users by linking unrelated items within
the viewport. The layout should encourage the proper grouping of objects and ideas.

The Social Aspect of Mobile

We all want to be connected, and to share something with the world. Social networking and social
media outlets collect and distribute chunks of content from people across the globe, adding value to
the user experience while spreading ideas and building reputations through trusted social networks.

Connect with Existing Outlets

It can certainly help spread the word about an application when users share in-application content
with a wider audience. Count on users to share achievements or interests when “tweet results” or
“like article” options are available. It might also be benefi cial to simplify sharing and retrieving
content from current network connections. This requires API integration according to the integrated
network.

If socialization is not the primary function of an application, beware of feature creep as well as
overwhelming users with cluttered interfaces. A single “share” button can open a pop-up box with
sharing options, which saves space and simplifi es adding or removing options.

FIGURE 4-3: Continuity

GroundFigure

FIGURE 4-4: Figure and ground

FIGURE 4-5: Similarity

c04.indd 92c04.indd 92 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Mobile Application Users ❘ 93

If any person really must build new social outlets without leveraging existing platforms and APIs,
I will not discourage you from building the next great thing. But focus the interface on providing
something newer or better than what has already been done.

Usability

If a function cannot be discovered, is too small to read, or is not large enough to be selected, an
application is not usable. With real-world distractions and limited dexterity, usable applications are
the ones users will return to.

In a perfect world, usability considerations would be a regular, ongoing part of the whole process,
checking how pixels and fi ngers interact in the real world (many a button has looked great in the
mock-up design, only to be too small for actual people to use). This star life cycle is optimal:
with evaluation as the center of the star, and various design and development tasks as branches
of that evaluation process, this encourages ongoing iterations as user needs are discovered.
Remember that it’s better to do too little than nothing at all. If all else fails, hand over an
 application to a friend and see what happens when they try to use it.

Determining and Reaching the Target Audience

Research and determine the target audience: Who are they, what do they need, and how can they get
it? It is important to consider the different hardware and usage patterns, whether holding an iPad
with two hands in a meeting or thumbing through menus on the bottom of an Android phone screen.

Mobile applications can connect people with the world around them, providing personalized
 functionality. Popular applications include social networking; weather or traffi c; consumable
 content such as music or news; productivity, education, and enrichment; and games.

Usable mobile applications help users perform tasks that are appropriate for mobile devices. Mobile
tasks can involve quickly fi nding current information under some deadline (perhaps even an
emergency), often requiring privacy and communication with other people. Usability therefore starts
during mobile strategy, when stakeholders determine that the target audience will use the application
functionality on mobile devices.

Designing for Gestures

If it is diffi cult to discover gestures to tap, pinch, swipe, and zoom across an application, this means
average users will be missing out on those great features developers spent time building.

One simple solution is a pop-up box to announce the fi rst time each gesture-prompted feature
becomes available. Avoid swipe ambiguity: user error rates will be higher if the same swipe gesture
can prompt multiple actions on the same screen.

Be sure to consider the perceived versus the actual target
area when designing for mobile gestures. The actual
target area for touch input may be larger than the
perceived target area as seen on the screen as shown
in Figure 4-6. When there is no nearby gestural action,
accommodate for fi nger sizes and user error by extending

Actual Target
Perceived Target

FIGURE 4-6: Perceived target versus actual

target

c04.indd 93c04.indd 93 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

94 ❘ CHAPTER 4 MOBILE USER INTERFACE DESIGN

the actual input area into the white spaces beyond buttons and tabs. As much as possible, design
dead space to reduce errors from touching nearby target areas.

Error Protection and Correction

Without a mouse, touch-screen navigation through menus, buttons, links, and scrolling is more
prone to user errors. Be sure to include an “undo” or “back” option.

Every process should be designed to protect user input. Develop a log to preserve input history, and
design the interface to simplify information retrieval. It can be diffi cult, and it is usually frustrating,
to reproduce time-consuming data lost to accidental destruction, whether data is lost by user error
or otherwise.

Implicit data protection avoids information loss, such as a hard stop between taps to slow text
deletion. Explicit protections recover data with an undo option, and abandoned forms can be
 repopulated with recently entered data.

Save data as often, and in as much detail, as possible. Because mobile users become easily distracted
or bored, always be prepared to stop application processes.

Accessibility

An application that is easier for people to use with poor or diminished vision, limited dexterity, or
a cognitive impairment will be easier for all people to use. Consider accessibility as a way to reach
more users, as well as a better way to reach existing users. Find better ways to build features for the
entire intended audience.

Similar to the Web Content Accessibility Guidelines (WCAG) 2.0 POUR (perceivable, operational,
understandable, and robust) principles, Mobile Web Best Practices (MWBP) is a World Wide Web
Consortium standard defi ning a set of fi ve checkpoints for mobile accessibility:

 ➤ Overall Behavior: Independent of specifi c device features, the guidelines for a general
mobile experience.

 ➤ Navigation and Links: The ease of user interaction with hyperlinks on the mobile device
interfaces.

 ➤ Page Layout and Content: How content is designed on each page, and how chunks of con-
tent are laid out for accessible consumption.

 ➤ Page Defi nition: Defi ning content areas for mobile device interpretation.

 ➤ User Input: Considerations of available mobile device input methods.

The POUR principles were created for mobile web interfaces, but apply to all mobile viewports
and mobile user experiences. Common barriers to users with disabilities — whether content and
features are perceivable, operable, understandable, and robust — are detailed by the W3C at
http://www.w3.org/WAI/mobile/experiences.

Human life spans are increasing, and medical science cannot yet overcome our biology. So application
creators who do not account for people with accessibility issues are designing themselves out of the

c04.indd 94c04.indd 94 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.w3.org/WAI/mobile/experiences
http://www.it-ebooks.info/

Understanding Mobile Application Users ❘ 95

future. Leverage the built-in features of various mobile devices, and test applications with assistive
technology to validate the effective use of application features.

Hearing

Moderate to profound hearing loss can make it diffi cult for many people to communicate with a
standard telephone, but many mobile devices offer features that make promising progress.

For moderate hearing loss, adjustable volume control offers a simple way to connect with mobile
content. However, most solutions are focused on visual alerts: incoming or missed messages in call
logs, text messages, on-screen prompts, and hardware-specifi c features such as blinking alert lights.

Vision

Many users depend on tactile, audio, or other sensory alerts to access resources using mobile
devices. People with low vision through complete blindness may benefi t from sliding or fl ipping a
phone to answer and end calls (rather than a touch-screen button), and are likely to consider the
hardware fi rst. Popular and industry-standard devices without a fl ip or slide may be modifi ed to
meet the needs of low-vision users. Mobile application creators can consider adjustable font sizes,
color contrast, and backlit displays.

Tactile markers on keyboards and other hardware-specifi c buttons can help orient users to available
inputs. Where such hardware is not available, haptic feedback — kinesthetic indication, generally by
device vibration, that the user has activated a control — provides feedback that a button has been
pressed. Audible feedback and notifi cations can include action confi rmation, such as low battery or
incoming calls.

A great resource to fi nd more accessibility recommendations for vision and other accessibility topics
can be found at http://www.mobileaccessibility.info/.

Speech

Aid users with speech-related accessibility issues with output-related functionality using text
features. Text messaging, email, and predictive text are popular solutions.

Consider allowing users to save text inputs to reuse personalized outputs. “I am leaving the offi ce
now” could be recycled from a personalized dashboard within a social mobile application.

Dexterity

Many people have diffi culty for various reasons with the fi ne controls on a mobile device.

A hands-free mode can limit how much the phone must be held to properly navigate, which benefi ts
low-dexterity users as well as busy cooks, lost drivers, and distracted parents. Voice recognition is
an increasingly common way to manage hands-free controls. Limiting text input has a similar effect:
autocompletion is increasingly common, and incredibly valuable.

It is not necessary to avoid twisting and pinching for complex gestural interactions, but designers
and developers must be aware that the features and functionality behind such movements will be
inaccessible to many. Therefore, consider if what these gestures prompt is integral to the use of an
application; if so, multiple ways to access that function may be in order.

c04.indd 95c04.indd 95 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.mobileaccessibility.info/
http://www.it-ebooks.info/

96 ❘ CHAPTER 4 MOBILE USER INTERFACE DESIGN

Reduce unnecessary error correction from low dexterity by enabling a setting where selecting any
button will complete an important and time-sensitive function, such as answering a phone call while
using another application.

Cognition

From birth to trauma to age-onset impairments, a large number of mobile devices are used by
people with cognitive accessibility issues. Clear navigation and simple instructions are incredibly
important, and help all users.

Any feature to reduce the cognitive load — the amount of information users must hold in their
memory — is helpful. Associating images or photographs with long lists of information such as
 contacts can be helpful. Anticipate the information that users are seeking and allow shortcuts and
prerecorded commands. Enable user customization to include audio, visual, and tactile alerts, as
well as audio, visual, and tactile feedback as users navigate application features.

UNDERSTANDING MOBILE INFORMATION DESIGN

The visual display of information is how people connect with loved ones, colleagues, and friends. It
is how we know our gas tank is almost empty or that we can cross the street. Mobile devices offer
an exciting space to design information, fi tting personalized and real-time data into
tightly-constrained screens. But keep audience goals in mind when crafting an application, because
mobile devices are not generally used for extensive browsing or complex searches.

This section covers charming, but not overwhelming, your audience with a discussion of key mobile
design patterns. Because information design requires information, the structure and use of textual
content also appears at the end of this section.

Information Display

A microwave has a simple display. When the timer alerts us the popcorn is done, we can check to
see if the bag looks adequately puffed, and then open the microwave door and popcorn bag to start
 eating. People identify signals, interpret the meaning of these signals, determine the goal according
to these interpretations, and then carry out an action until the goal is reached.

Go beyond returning user-requested data, and choose a personality that sets an application apart.
The power to charm users can overstep redundant applications in industry-standard markets. Clean
silhouettes on application screens that do not crowd designs will display information in the ideal
manner. Overly detailed designs do not suit mobile users, who are often microtasking, infl uenced by
urgent and new surroundings, and looking for a quick fi x for boredom.

Design Patterns

Hardware and operating systems become irrelevant far quicker than design that reaches users.
A design pattern recycles and repurposes components, reusing the best ideas. More than time
 effi ciency, patterns have been refi ned by use. Look to patterns, and maintain a pattern library that
works for you, but look to the user and the purpose of an individual design above any best practices.

c04.indd 96c04.indd 96 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Mobile Information Design ❘ 97

Navigation

Good design makes it clear how users can move through and use
application features.

Annunciator Panel

An annunciator panel, seen at the top of Figure 4-7, gives information
on the state of a mobile device. Though each mobile device will provide a
slightly different panel, developers can modify or suppress the annunciator
panel — which lists the hardware features such as network connection
and battery power — within an application. Because the information in
this area is only notifi cations, application users will not usually have any
direct interaction with the annunciator panel.

Fixed Menu

A menu that remains fi xed to the viewport as users roam content is
useful in many situations:

 ➤ When users need immediate access to frequently selected functionality on multiple screens

 ➤ When a revealable menu is already used on the same screen

 ➤ When a lack of controls, confl ict with key interactions, or low discovery makes a revealable
menu a poor choice

Because fi xed menus are always accessible (at the bottom and top of Figure 4-8), users can interact
with page content as needed; keep in mind the small screen real estate, and limit any fi xed menus to
the absolute necessities.

FIGURE 4-7: Annunciator

panel

FIGURE 4-8: Fixed menu

c04.indd 97c04.indd 97 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

98 ❘ CHAPTER 4 MOBILE USER INTERFACE DESIGN

Do not stack multiple fi xed menus on top of each other, and reconsider the size and scope of an
application if you have a fi xed menu at both the top and bottom of a screen. The style, such as
whether the menu goes across the top or bottom of the viewport, will be largely determined by the
mobile device.

Expandable Menu

When all function options for one page cannot fi t on the viewport, an
expanding menu can provide selectively available options: a full menu
similar to the one shown in Figure 4-9 will reveal once prompted. A
gesture, like a swipe or double tap, may prompt the reveal as well as
selecting an on-screen icon. Soft keys — hardware buttons connected to
on-screen labels — may also prompt a menu to reveal. Users often bene-
fi t from multiple access options, especially for the harder-to-fi nd gestural
prompts.

Users may exit a menu using a back button, a close button that is part of
the revealed menu list, or by toggling with the same gesture or soft
key that prompted the reveal. Try to keep close functionality on the
screen while the menu is revealed.

Scroll

As in the case of a revealable menu giving additional functionality, there
will often be more content on a screen than can be seen in the device
viewport.

It is best to limit scrolling, limiting application screens to the size of the viewport whenever
possible. Some types of apps you develop will require scrolling to present data to the user effectively,
such as an email client. When scrolling must occur, check that the design communicates the area
that can be scrolled, the current context of a user, and the ratio of the current view to the total
content available.

Easy navigation keeps people connected, instead of losing users to navigational frustrations. Only
in-focus items should be able to scroll. Make an application more immersive, incorporating gestures
such as tilting to scroll through content. Make sure that scrolling takes place only on a single axis, if
possible. When scrolling must occur both horizontally and vertically, consider providing a
thumbnail of the user’s place within the entire scrolling area.

The vertical list (Figure 4-10) simply displays textual information, and is the foundation of
 information display on many mobile devices. This design pattern works the same no matter how
many results are returned. By stacking one line on top of another, each item takes up an entire line;
this can be horizontally ineffi cient, but a potentially good source of white space.

FIGURE 4-9: Expandable

menu

c04.indd 98c04.indd 98 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Mobile Information Design ❘ 99

An endless list of information breaks large data sets into manageable,
consumable sizes within the viewport. One portion of content fi lls
the screen, and when users either scroll to the end of a list (predictive
retrieval) or select a “more” button (explicit retrieval), the application
pulls more data from the server to the device (see Figure 4-11).

If there is an error generating information with predictive retrieval, the
application will use explicit retrieval, with users selecting a “refresh”
button to load more content.

Reduce the user’s awareness of loading content by preloading content
just beyond the screen when possible. To create great endless lists,
monitor performance and data usage during production to fi nd the best
balance of prefetched and displayed content.

Graphical data — profi le photos, category icons, status indicators — can
clarify content lists. Use position as well as size, contrast, and other
identifi ers to show the visual importance of elements that users utilize to sort information.

Selecting the thumbnail can lead to different functionality than the other content in a list item, but a
thumbnail list (Figure 4-12) will have the same interactions as any other vertical list.

FIGURE 4-10: Vertical list

FIGURE 4-11: Endless list

c04.indd 99c04.indd 99 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

100 ❘ CHAPTER 4 MOBILE USER INTERFACE DESIGN

FIGURE 4-12: Thumbnail list

FIGURE 4-13:

Expandable list

Thumbnails can be replaced by a default icon when a specifi c image
is not available, but the value of the graphical indicator diminishes as
more icons are not individually identifi able. Use icons and images to
 emphasize clarity and categorical distinction — embracing a strong and
varied silhouette — over personality or generic graphics.

An expandable list, shown in Figure 4-13, reveals additional, valuable
content for selected (touched) list items without leaving the current view.

The content that was visible before the reveal should remain unchanged;
the top of the list will remain unchanged and the selected item will
expand downward, as in Figure 4-13.

New information can be revealed as an animation whenever possible,
aligning users with the structure and context of the expanded content
areas. Higher-priority information, whether the revealed content or the
list item title, should be set apart with size, color, or contrast.

When application information is a group of images that are all or mostly
unique, consider using a thumbnail grid (see Figure 4-14). You can use little to no text, and users
can either scroll vertically or horizontally through the grid.

c04.indd 100c04.indd 100 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Mobile Information Design ❘ 101

FIGURE 4-14: Thumbnail grid

Clearly identify in-focus or selected items with some type of visual indicator such as color, zoom,
text label, or otherwise when the selected item does not immediately bring users to a new screen.
Be sure to consider the accessibility of these distinctions, from color contrast to animation.

Users may scroll by gesture, device tilt, or on-screen buttons. Choose a different pattern if
live-scrolling — a pixel-by-pixel response to user input — is not possible.

Notifi cations and Feedback

If the user needs new information, application creators must use notifi cations. These prompts pause
ongoing tasks, and enable users to change processes and behaviors according to the new information
or feedback.

Feedback is the user-perceived result of an interaction, providing immediate confi rmation like a
color change, message, or being led to a new page. Delayed feedback leads to user frustration and
redundant, often error-inducing input; confi rmation feedback is useful when user data could
otherwise be lost, and should be indicated with a distinct change in state from the initial view.

Notifi cation can inform a user (presenting a single button to close the notifi cation), offer the ability
to cancel a process or correct an error, or give multiple options from which to select. A user should
never be presented with more than three options from any notifi cation.

Users could be notifi ed they must log in to access application features. Security is often overused,
but if only authorized individuals should have access to application features — such as a personal-
ized “favorites” collection — users may need to create an account or verify credentials in a login

c04.indd 101c04.indd 101 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

102 ❘ CHAPTER 4 MOBILE USER INTERFACE DESIGN

area. Obscuring passwords is not as important in mobile applications.
The likelihood of data-entry mistakes outweighs the security concerns
of small, easy-to-move screens. User expectations do, however, shape the
perceived trustworthiness of an application. One solution is to briefl y
display each character either for a moment or until the next key is
pressed, and then mask characters as dots. In a personal mobile device
context, users should need to log in only the fi rst time they access an
application, and not on subsequent visits. However, users could be
prompted to reenter their password within the application when
completing high-risk transactions, such as making a bank withdrawal.
Figure 4-15 is an example of a simplistic mobile login screen.

If the user must make a decision, or there is a risk of human error, a
 confi rmation presents users with a choice. As shown in Figure 4-16,
clearly and simply present the available options. FIGURE 4-15: Log in

FIGURE 4-16: Confi rmation

FIGURE 4-17: Notifi cation

Because a notifi cation forces users to read, decide, and act on a
prompt to continue their task, users become frustrated with excessive
confi rmations.

Notifi cations, like those depicted in Figure 4-17, catch user attention to
indicate that further action may be required, or that an action (such
as a download or an update) has been completed. Visual design can be
complemented with notifi cation tones, a single and repetitive sound that
may change frequency over time.

Some application screens should not be obscured or disrupted by notifi -
cations, such as mediacentric functionality like music players and video.

Try to group multiple prompts in a single view, so that no prompt
obscures another important piece of information. Serialize redundant

c04.indd 102c04.indd 102 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Mobile Information Design ❘ 103

prompts: if three friends favorite your latest announcement, a single notifi cation prompt should say
clearly say “you have three favorites,” instead of three separate notifi cations.

Content and Controls

Input mechanisms, the controls users manipulate to enter or modify data, can be enhanced during
the design process by keeping a few key concepts of mobile usability. Use standard controls, which
positively shape user perceptions of an application. Consider giving distinct personality with custom
graphics or textures on controls, to invite touch interaction with screen depth.

Mobile platforms differ on the minimal size of any touch point;
controls to navigate, select, and read content should be large enough for
a fi nger to press without error. If users are most likely to hold a mobile
device from the bottom with one hand, then frequently selected points
in the interface are more usable when placed toward the bottom of the
screen. Put these primary controls in reach of users’ thumbs, and create
wide-enough controls that left-handed users can use buttons and tabs as
easily as right-handed users. Information at the top of the screen will be
out of the immediate comfortable reach of the average thumb: display
less commonly selected functionality at the top of the screen. Figure 4-18
is an example of an app that contains multiple controls on a single
screen; notice how each control can still be accessed within comfortable
reach of the average thumb.

Be sure to minimize the need to enter data to access application features,
especially text entry, which is often time-consuming and frustrating.
Where data entry is actually necessary, consider the cross-platform
 differences in touch controls, and scale content for the various screen
sizes and resolutions.

Reveal Content

You can display content either as a full page or revealed in context. When you use a full-page layout, the
user should not need to constantly bounce back and forth between pages:
all necessary information to use the features on that page should be
displayed on that very page. If content might help users decide how to
proceed, a quickly revealed, in-context design (such as a pop-up box) may
be the better design choice.

A pop-up box, shown in Figure 4-19, is a modally presented piece of
information that overlays the current screen and disrupts an ongoing user
task. It is useful for displaying a small amount of information, but should
keep an association with the current screen and task.

Users will request information, and this narrowed-down content should
be displayed in a concise and useful way.

Display a range of information, from graphics to text, in an array such as
an ordered list. Information can be contextually presented as an addition

FIGURE 4-18: This

application enables a

variety of controls across

the screen.

FIGURE 4-19: Pop-up box

c04.indd 103c04.indd 103 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

104 ❘ CHAPTER 4 MOBILE USER INTERFACE DESIGN

to other information, and be prioritized or sortable as shown in the two examples in Figure 4-20
(for smaller mobile devices) and in Figure 4-21 (for a larger mobile device).

FIGURE 4-20: Returned result detail

FIGURE 4-21: A profi le in landscape view on an iPad

c04.indd 104c04.indd 104 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Mobile Information Design ❘ 105

A hierarchy of content (see Figure 4-22) shows the parent-child
 relationship of information within the context of a larger information set.
Large amounts of data can be structured in a way that is relevant and
 readable. Precise labels and distinct structure helps users to explore, opening
and closing content to fi nd their way around the presented information.

Expandable panes, shown in Figure 4-23, reveal a small amount of
content without leaving the context of the current application screen.
Though the expanding functionality will not work on some lower-end
or older devices, the additional information or interactive elements can
enhance user experience.

However application information is displayed, lengthen the value of the
application by replenishing content, adding levels or features, and
building a community around the application.

Intervening Screens

Between delivering personalized functionality and life-changing brilliance
to users, there will be times that content must load, or a device becomes
locked while the user looks up from their device. During those times, be
sure to include application branding with the title of the application, and
do not display information from any previous screen. In this section you
learn about designing for intervening screens, beginning with the home
and idle screens.

The Home and Splash Screen

The home and splash screens show a default set of available information
when the application starts, or after a task has been completed. Make it
clear when users are on the homepage with a distinctly different screen.

The fi rst screen of an application is a great opportunity for branding,
as well as a potential point of frustration for impatient users. Minimize
the use of long, over-animated splash screens and slow-to-access main
 features. One way to reduce wait time and increase user value is to
store the last-opened screen, and display that screen the next time the
 application is opened. A useful design method to disguise slow launch
times is to use the splash screen image (see Figure 4-24) as the application
background: users will perceive a quicker entry to application features.

Parallax scrolling, where foreground and background content move at
different speeds, will make the screen appear to have more depth. This
technique helps users understand their current location within an applica-
tion, and invite more immersive engagement.

Because frequent navigation to the home screen encourages users to
jump between pages and between applications, avoid depending on the
home screen for the continuous use of primary features. It is also preferable
to send users to another actionable screen with some notifi cation of the

FIGURE 4-22: Hierarchy

FIGURE 4-23:

Expandable panes

FIGURE 4-24: Example

splash screen

c04.indd 105c04.indd 105 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

106 ❘ CHAPTER 4 MOBILE USER INTERFACE DESIGN

completed task instead of an idle screen: idle screens often send the message a task is complete,
encouraging users to jump to another application.

The home screen is where important, frequently used features are highlighted, sometimes with branding
and advertisements. As shown in Figure 4-25, the home screen layout can comfortably include up to
three columns; content may include a logo, connect to key features, and link to deeper information.

FIGURE 4-25: Home screen

The Loading Screen

An in-progress, “loading” screen signals when new data is loading,
whether the user logs in to an account, enters search criteria, or is
 receiving an automated alert. Develop applications to load as quickly as
possible to avoid showing the loading screen, but design to accommodate
application limitations.

Include the estimated position in progress (as shown in Figure 4-26),
and avoid showing information from the previous screen while newly
requested data is loading. To shape user perceptions of load times and
give the appearance of quicker data retrieval, place the progress indicator
over a screen shot of the last screen. When there is suffi cient delay, you
can display advertising on the loading screen.

FIGURE 4-26: Loading

screen

c04.indd 106c04.indd 106 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Mobile Information Design ❘ 107

Advertising

Project stakeholders need to pay the bills, and advertising can certainly help. But application creators
must fi nd a balance of attention and integration to avoid two common mistakes: too-obvious
advertising, and advertising that is confused for application content.

Set apart advertisements with a strong border, a different color or distinct texture for the
background, a full-width box, or — when the advertisement is smaller than the screen width — a
different alignment than application content.

Advertising styles and guidelines will vary across platforms, but adver-
tisements must generally:

 ➤ Be clearly differentiated from application content.

 ➤ Remain unobtrusive to application features.

 ➤ Be actionable, and allow user interaction.

 ➤ Be legible.

 ➤ Use consistent styles and layout throughout application screens.

Advertisements may scroll within application content, or be locked (as
in Figure 4-27) to the viewport. Avoid animated advertisements, which
distract from primary tasks and information.

Whether content is paid advertising, curated by application administra-
tors, or a help screen, the best content is useful content.

Content Structure and Usage

Mobile application users are there to consume, produce, and share content: it does not matter how
pretty or useful the application may seem to stakeholders if content is worthless to users.

Users need to quickly locate and effectively use information. Page layouts must therefore refl ect the
mental models that users understand. Label key elements to make it clear where users are, in context
of where they can go, as well as how to complete the current process. These content titles should
always be horizontal, and set apart with a different background or surrounding box. Be sure to
maintain consistent capitalization, using either sentence or title case throughout all headers. Titles
can include icons, but these should be descriptive of the content, and not needlessly redundant or
vague.

Structured, templated designs are valuable to great user experience: when people can predict which
information will appear on what screen, users can more easily manipulate and navigate through
mobile screens.

Information Architecture

Give every application a strong foundation by organizing, labeling, and identifying all content that
users will perceive. The most common structure is the parent-child relationship of a hierarchy. A
growing segment of interactive content is faceted, tagging chunks of content with attributes that

FIGURE 4-27:

In-application

advertisements

c04.indd 107c04.indd 107 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

108 ❘ CHAPTER 4 MOBILE USER INTERFACE DESIGN

can be fi ltered during regular application use. Application creators and stakeholders generally know
their message, and can lead users through content with an optimal hierarchy. But the benefi ts of
personalized and sortable information cannot be ignored. Consider classifying information by
name, sequence, a fi xed relationship between values, the distance between values, geographic
location and proximity, goals, or categorical subject matter.

When categorizing nonfaceted information, limit ambiguity with exclusive categories. It helps to
take note of the most important category (a user role such as “student,” a common action
like “share”) and keep all items in that menu the same theme (“student” and “teacher,” or “fi nd”
and “share”). Be sure to balance the breadth, the user’s ability to scan the page according to
 viewport size, and depth of the architecture. Limit the scope to a depth of two to three levels down.

Wayfi nding, or how users will orient themselves in a space and move around it, is generally
managed by paths, nodes, edges, landmarks, and districts.

Consistent, simple navigation elements help users fi nd and use the best information an application
has to offer. Decide what information is necessary, because too many options can be dangerously
frustrating to users. Mobile users consume information and complete simple, linear tasks; jumping
between tasks and comparing information are still more common to desktop user experiences. But
do not discount the future of mobile, and the possibility of complex information seeking and
content production.

Typography

The central focus of every application will often be textual content. The fonts used in any design
are far less important than the way traditional typography methods are used throughout a mobile
application.

Vector shapes will be rasterized on devices as fonts are converted to comply with device formats.
Even newer devices, which now enable more than bitmap fonts, can make angles look pixelated.
Technology is improving, but even the most high-end devices still have some degree of pixilation, so
be sure to consider this limitation during design.

Size, shape, contrast, color, and position all
matter. Type elements, and the relationship
between type elements, should be immediately
fi ndable, consumable, and usable. Though
sans serif fonts are generally considered easier
to read on a viewport, serif or slab serif fonts
have a proper place, such as bringing emphasis
to a header (see Figure 4-28).

Text layout and alignment should follow
certain readability guidelines. In a left-to-right language, left alignment is preferred over justifi ed
or center alignment. Because of the thin screen space, bullet lists are easier to scan than tables, and
single-column layouts will generally work best.

Mobile interfaces compound the issues of web interfaces, and add new environmental factors
and use cases. Interactive and dynamic interfaces enable exciting new design capabilities, such

FIGURE 4-28: Serif, sans serif, and slab serif fonts

c04.indd 108c04.indd 108 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Mobile Platforms ❘ 109

as animated notifi cations. But just because it’s neat doesn’t mean it is a good idea. If users only
glance down at their screen when an animation is at a low-visibility point, they miss important
information.

Plain Language

“Plain language” is the idea that content producers should speak in the language of their users, in a
way that is clear and understandable to the audience. Content usability is one of the most important
factors for task success, and plain language is usable language. Because of the limited space of a
mobile device screen, these tips are especially relevant to mobile application creators:

 ➤ Omit unnecessary words. Take the fi rst draft and cut it in half, and then see if you can cut it
in half again (you probably can).

 ➤ Use the simplest form of a verb.

 ➤ Use short, simple words; avoid jargon and abbreviations.

 ➤ Use pronouns.

For more guidelines and in-depth examples, see http://www.plainlanguage.gov.

Mobile devices have tightly restricted widths; when determining readability, font size generally
matters more than the number of characters per line. Precision is key to successful mobile content.
Mobile plain language best practices also include:

 ➤ Focus keywords to the beginning or top of any screen.

 ➤ Use the same voice, preferably active voice, throughout the interface. Try to also use the
same tense, when practical.

 ➤ If a product must be referenced, use a consistent product name.

 ➤ Correct unnecessarily mean or passive-aggressive error messages and task prompts.

 ➤ Avoid redundant content.

Plain language, and much of mobile design, is not about “dumbing down” the interface; it’s about
elegant precision. In the next section, you’ll learn about sending a clear message over various
 industry-standard platforms.

UNDERSTANDING MOBILE PLATFORMS

Developers can take advantage of native functionality across mobile devices. More than a smaller,
weblike interface, an Android, BlackBerry, WP7, or iOS device can make phone calls as well as
record and transmit contextual information like geolocation.

As bad as it is to work into any particular corner, we all have comfort zones and favorite platforms.
Just keep in mind that this fragmentation is bad for marketing, design, and user experience; this
same market fragmentation is absolutely terrible for application creators to solve exciting new
puzzles. Be aware of comfort zones and safety nets, and get ready to evolve.

c04.indd 109c04.indd 109 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.plainlanguage.gov
http://www.it-ebooks.info/

110 ❘ CHAPTER 4 MOBILE USER INTERFACE DESIGN

Android

Android has a diverse ecosystem, with fewer institutionalized restrictions and a wider variety
of mobile devices than other popular systems. The Android user base has grown to be a strong
competitor in the mobile market, but the fl exibility of Android design can introduce new issues.
Development of the Android operating system is led by Google, and backed by a global and growing
user base. Google maintains user interface guidelines in an online repository at http://developer
.android.com/guide/practices/ui_guidelines/index.html.

Interface Tips

Get started on Android application design with these hints:

 ➤ Android convention is to place view-control tabs across the top, and not the bottom, of the
screen.

 ➤ Use the main application icon for temporal, hierarchical navigation, instead of a “back”
button and main icon link to the home screen.

 ➤ Don’t mimic user interface elements or recycle icons from other platforms. For instance, list
items should not use carets to indicate deeper content.

 ➤ Parallax scrolling is common in Android applications.

 ➤ Android development can extend to home-screen “widget” tools.

Accessibility

Google provides guidelines and recommendations, such as testing with the often-preinstalled and
always-free TalkBack. Accessibility design guidelines are listed on the Android Developer website
(http://developer.android.com/guide/topics/ui/accessibility/index.html), and further
discussed by the Google “Eyes Free” project (http://eyes-free.googlecode.com/svn/trunk/
documentation/android_access/index.html).

iOS

Apple maintains strict design standards, which are detailed and updated online. iOS interface
documentation and general mobile design strategies are available from Apple, including design
strategies and case studies, at http://developer.apple.com/library/ios/#documentation/
UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html.

The iOS-specifi c user interface element usage guidelines detail standard elements and behaviors:
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/

MobileHIG/UIElementGuidelines/UIElementGuidelines.html.

Interface Tips

Apple can reject an application from the offi cial App Store because of design problems. Follow the
current guidelines closely, starting with these tips:

c04.indd 110c04.indd 110 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://developer.android.com/guide/practices/ui_guidelines/index.html
http://developer.android.com/guide/practices/ui_guidelines/index.html
http://developer.android.com/guide/topics/ui/accessibility/index.html
http://eyes-free.googlecode.com/svn/trunk/documentation/android_access/index.html
http://eyes-free.googlecode.com/svn/trunk/documentation/android_access/index.html
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/UIElementGuidelines/UIElementGuidelines.html
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/UIElementGuidelines/UIElementGuidelines.html
http://www.it-ebooks.info/

Understanding Mobile Platforms ❘ 111

 ➤ iPhone users generally hold from the bottom of the device, so main navigation items should
be in reach of user thumbs.

 ➤ Target areas for controls should be a minimum of 44 x 44 points.

 ➤ Support standard iOS gestures, such as swiping down from the top to reveal the
Notifi cation Center.

 ➤ Larger iPad screens are great for custom multi-fi nger gestures, but non-standard gestures
should never be the only way to reach and use important features.

Accessibility

See Apple’s Accessibility Programming Guide (http://developer.apple.com/library/
ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility/Accessibility_

on_iPhone/Accessibility_on_iPhone.html) for detailed guidelines on VoiceControl, Speech
Synthesis, and VoiceOver. Accessible touch and gestural controls are available on the iPad and later-
generation iPhones; screen magnifi cation and color contrast adjustments are also available.

BlackBerry OS

BlackBerry OS is often the mobile device of choice in government or corporate environments. BlackBerry
includes native support of corporate emails; and runs on many devices with hard keypads, which is
favored by users with accessibility issues as well as late adopters to touch-screen interfaces. Search
through BlackBerry user interface guidelines according to device type and version, at http://docs
.blackberry.com/en/developers/subcategories/?userType=21&category=BlackBerry+UI+Gu

idelines.

Interface Tips

When designing a BlackBerry mobile application, keep these standards in mind:

 ➤ Use BlackBerry UI components, not the tabs or other components of alternate platforms.

 ➤ Use standard interaction behaviors for an intuitive experience.

 ➤ Link common tasks to the BlackBerry track pad according to standard actions:

 ➤ Press the track pad: Default option, like revealing the menu

 ➤ Press and hold track pad: Activate available pop-up box

 ➤ Press track pad and select Shift: Highlight content

 ➤ Press track pad and select Alt: Zoom

 ➤ Move fi nger along track pad: Cursor or mouse will move accordingly

Accessibility

BlackBerry mobile devices include text-based push-delivery messages, closed captions on multimedia
content, and hearing-aid compatibility for hearing accessibility issues. Low-vision users can use the
Clarity theme and other screen adjustments, and benefi t from tactile keyboards. Predictive text and
AutoText aid users with mobility and cognitive issues.

c04.indd 111c04.indd 111 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility/Accessibility_on_iPhone/Accessibility_on_iPhone.html
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility/Accessibility_on_iPhone/Accessibility_on_iPhone.html
http://docs.blackberry.com/en/developers/subcategories/?userType=21&category=BlackBerry+UI+Guidelines
http://docs.blackberry.com/en/developers/subcategories/?userType=21&category=BlackBerry+UI+Guidelines
http://docs.blackberry.com/en/developers/subcategories/?userType=21&category=BlackBerry+UI+Guidelines
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility/Accessibility_on_iPhone/Accessibility_on_iPhone.html
http://www.it-ebooks.info/

112 ❘ CHAPTER 4 MOBILE USER INTERFACE DESIGN

Best practices and device capabilities are maintained online at http://docs.blackberry.com/en/
developers/deliverables/17965/Accessibility_825872_11.jsp.

Windows Phone 7

Developed by Microsoft, Windows Phone 7 (WP7) is a currently smaller contender, focused on
consumer markets. Using the “Metro” theme, features are divided into “Live Tiles” that link to
applications.

Microsoft maintains design-impacting requirements for hardware, including six dedicated
hardware buttons (back, start, search, camera, power, and volume), at least 4 GB of Flash memory,
and Assisted GPS.

Microsoft also keeps a collection of WP7 design resources. See http://msdn.microsoft.com/
en-us/library/ff637515(v=vs.92).aspx for more details.

Interface Tips

Windows Phone 7 interfaces are minimalist, using empty space to lend clarity to the application.

 ➤ WP7 uses movement over gradients for on-screen elements to immerse users in the
application experience.

 ➤ Users will enter a WP7 application from a “tile,” which can display dynamic and real-time
information. Tile images should be in the PNG format, 173 pixels � 173 pixels at 256 dpi.

 ➤ Do not use a “back” button to navigate back the page stack. All WP7 devices have a dedi-
cated hardware button that should always be used instead.

 ➤ Give users a distinctly WP7 experience. Panorama controls slide horizontally through
panes, and pivot controls list panes users can visit. Uniform Page Shuffl e presents
nonhierarchical information users can shuffl e through; “leaf-blowing turn” fl ips content
area into focus, scattering and tilting tiles leaving focus.

Accessibility

WP7 devices include many standard accessibility features, such as color and contrast adjustment
to themes for low-vision users. Many, but not all, devices are compatible with TTY, TDD, and
hearing aids.

Learn more about the basics of WP7 accessibility at http://www.microsoft.com/windowsphone/
en-us/howto/wp7/basics/ease-of-access-on-my-phone.aspx.

The full Accessibility and Ergonomic Guidelines for Windows Phone 6.5 are a good in-depth start,
and are available at http://msdn.microsoft.com/en-us/library/bb158589.aspx.

Mobile Web Browsers

If a mobile application sends users to a website, that website should be optimized for mobile
browsers. Similarly, mobile web applications should follow key mobile design methods. A great
resource for design best practices for mobile web browsers is published by the W3C; see
http://www.w3.org/TR/mobile-bp/.

c04.indd 112c04.indd 112 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.microsoft.com/windowsphone/en-us/howto/wp7/basics/ease-of-access-on-my-phone.aspx
http://www.microsoft.com/windowsphone/en-us/howto/wp7/basics/ease-of-access-on-my-phone.aspx
http://msdn.microsoft.com/en-us/library/bb158589.aspx
http://www.w3.org/TR/mobile-bp/
http://docs.blackberry.com/en/developers/deliverables/17965/Accessibility_825872_11.jsp
http://docs.blackberry.com/en/developers/deliverables/17965/Accessibility_825872_11.jsp
http://msdn.microsoft.com/en-us/library/ff637515(v=vs.92).aspx
http://msdn.microsoft.com/en-us/library/ff637515(v=vs.92).aspx
http://www.it-ebooks.info/

Using the Tools of Mobile Interface Design ❘ 113

Interface Tips

More detail is included in Chapter 5, but here are a few quick tips to get started:

 ➤ Test for a consistent experience when websites are accessed from a variety of mobile
browsers.

 ➤ Provide minimal navigation at the top of the page, and use consistent navigation
mechanisms.

 ➤ Do not change or refresh the current window, or cause pop-ups, without informing the user
and providing the means to stop it.

 ➤ Limit content to what the user has requested, and what the user’s device can display by
avoiding large image fi les.

 ➤ Specify default input formats; when possible, provide preselected defaults.

Accessibility

The W3C Web Accessibility Initiative provides introductions, solutions, and further resources to
create accessible mobile websites and mobile web applications. Learn more at http://www.w3.org/
WAI/mobile/.

USING THE TOOLS OF MOBILE INTERFACE DESIGN

Design is a craft, and the tools shape how any individual’s craft will develop. Some tools are
discussed in this section, but be confi dent enough in yourself to stick to the tools that work for
you; also, be confi dent enough in your craft to try new things. And always be looking for new things
to try: your next favorite tool may already be available.

User Acceptance Testing

Understand your users — their behaviors, and their goals — with accurate measurement and thor-
ough analysis. User Acceptance Testing (UAT) is an organization-specifi c, and a project-specifi c,
process. But the right tools help application designers qualitatively and quantitatively know what
users are doing, and what stakeholders are getting wrong.

Information Capture

Document user inputs and reactions the old-fashioned way by taking notes as users complete tasks.
Video recording can archive tests for later review, but cameras should not distract user focus.

Larger budgets can get access to eye-tracking and screen-capture software. Established testing
environments will be using these emulators on a desktop environment with keyboard and mouse
navigation; be aware that interscreen interactions will suffer from the incorrect context. But
 applications may be run in emulator environments for precise data on where users looked, and
when, on a screen-specifi c basis.

c04.indd 113c04.indd 113 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.w3.org/WAI/mobile/
http://www.w3.org/WAI/mobile/
http://www.it-ebooks.info/

114 ❘ CHAPTER 4 MOBILE USER INTERFACE DESIGN

Task Analysis

Standard user acceptance testing procedures apply to the mobile context. Testers will continue to
monitor results until time, budget, or questions run out.

Information Design Tools

Creating the mobile application interface requires a range of tools, and only by using a tool can
designers learn their best toolset. This section briefl y discusses some information design tools.

Sketching and Wireframes

Sometimes we need to go analog, shaping ideas on paper before focusing on the pixels. Storyboard
application screens to outline features and fl ow, focusing on the big picture. Save wasted time
 developing the wrong thing the right way by involving all key stakeholders in the sketching and
wireframing process. Mobile stencils are even on the market to help nondoodlers pencil in ideas
before turning to computer screens.

A wireframe is a rough outline of each application’s framework. Stay focused on functionality during
wireframing; these easy-to-share, easy-to-edit fi les are just a skeleton of the design. A simple image
will do, but tools such as Balsamiq Mockups (http://www.balsamiq.com/) let designers drop
 boilerplate widgets (including scroll bars, tabs, and image placeholders) into a wireframe editor.

Mock-up Designs

When you are ready to consider colors and fonts, you can build the mock-up design concept in
Adobe Creative Suite (preferences vary between PhotoShop, FireWorks, and Illustrator). The fi nal
images of buttons and icons will be pulled from the fi nal mock-up design, but details will solidify
only after some experimentation.

Look to existing stencils for a streamlined process that does not re-create the wheel. Yahoo
(http://developer.yahoo.com/ypatterns/about/stencils/) is one personal favorite; many
organizations and designers regularly post new fi les, such as Windows Phone 7 design templates
from Microsoft (http://go.microsoft.com/fwlink/?LinkId=196225).

Prototype

“Perfection is the enemy of good,” and designs that start as ugly prototypes quickly progress to
elegant, usable applications. The most primitive start is a most important iteration. Platform-specifi c
tools are available, such as the Interface Builder or Xcode for iOS, but HTML and CSS are a
standard and simple way to quickly build prototypical interactions.

On-device Testing

One of the most important tools during design will be the physical device. Buy, or borrow, the
devices an application will run on.

c04.indd 114c04.indd 114 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.balsamiq.com/
http://developer.yahoo.com/ypatterns/about/stencils/
http://go.microsoft.com/fwlink/?LinkId=196225
http://www.it-ebooks.info/

Summary ❘ 115

Simulators and Emulators

Simulators and emulators are important when the hardware is unavailable and the service contracts
for devices are prohibitively expensive. A simulator uses a different codebase to act like the intended
hardware environment. An emulator uses a virtual machine to simulate the environment using the
same codebase as the mobile application.

It can be cost prohibitive to test on many devices, making emulators incredibly useful. Emulators
can be run in collaboration with eye-tracking software already available in most testing labs, but an
emulator lacks the touch experience of a mobile application. At an absolute minimum, use one of
the target devices for user testing at this level.

During design, development, testing, and demonstration, these tools are incredibly valuable.
Emulators are discussed in more depth in Chapter 5.

SUMMARY

Focus on the mobile context, understand your users, create information designs according to
successful design patterns, and take care to meet platform-specifi c requirements or constraints.

The most important part of every interaction will be the user, so test with the user. Engage
interaction with platform-specifi c methods such as gradients in iOS and movement for Windows
Phone 7. Effectively use limited screen real estate to build consistent, precise screens. Look to
industry standards before taking a risk and trying new things. Current design and prototyping tools
allow effective iterations and “what if I tried . . .” moments. But most important, have fun.

In Chapter 5, you apply some of the design techniques used for mobile applications while creating
mobile websites.

c04.indd 115c04.indd 115 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c04.indd 116c04.indd 116 28/07/12 5:51 PM28/07/12 5:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Websites

WHAT’S IN THIS CHAPTER?

 ➤ How to Choose a Mobile Web Development Option

 ➤ Creating Adaptive Mobile Websites

 ➤ Creating Dedicated Mobile Websites

 ➤ Creating Mobile Web Apps

People are using their mobile phone browsers more and more every day to fi nd information
about businesses, make product decisions and purchases, and even determine the quality
of a business based on what they can fi nd online. Recently, I needed to call a business to
change an appointment. I searched for the company in my mobile Safari browser, only to fi nd
the site would not load because it was built entirely in Flash. Annoyed, I opened up my Maps
program to fi nd the business location, because the Google map listings always have associated
contact information. For some reason, this company did not have its map listings up to date,
and no phone number was included with the address. Finally, I was able to track down the
phone number on my third attempt using my White Pages app. But this was way too diffi cult!

With the proliferation of mobile browsers, people need to be able to access your website
and, at a minimum, be able to browse it smoothly to fi nd the information they need. Taking
it a step further and providing an optimal mobile user interface (UI), or specialized mobile
content, can provide a great experience and enhance the reputation of your organization.

You have several different strategies and techniques to choose from for your mobile website,
some of which provide quick and easy solutions for getting an optimized mobile presence up
and running. Creating a mobile website depends on the functionality of your current website,
the platform and development standards with which it was created, and the purpose that users
have for visiting the website. This chapter discusses different options for developing your
mobile website, and how to get started with each technique.

5

c05.indd 117c05.indd 117 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

118 ❘ CHAPTER 5 MOBILE WEBSITES

CHOOSING A MOBILE WEB OPTION

If your organization is itching to be mobile, but doesn’t have a focused purpose or resources to
develop a mobile app, a mobile website can be a great place to start. You can approach a mobile
website project in several ways, which are discussed in depth later on. Adaptive mobile websites
automatically adjust your current website when viewed on mobile screen sizes, modifying the layout,
sizing, and spacing to make it more mobile-friendly. Dedicated mobile websites require a completely
separate mobile website, and mobile web apps employ HTML5 functionality and specifi c UI
elements to create an app-like experience on the web.

You need to analyze some things about your organization and its current website before choosing
a mobilization strategy, as discussed in the following sections.

Why Do People Use Your Website on Mobile Devices?

For restaurants and local retail stores, this question can be pretty easy to answer. People are already
out and about, and they need to know your location, your phone number, or more information
about what they will fi nd at your store. (What’s on the menu? Do you carry the product I’m
searching for? How much will it cost if I go there?) A mobile website that makes it extremely easy
to access information is critical in these situations, and can potentially cost sales if people can’t fi nd
what they are looking for.

Some websites are less likely to be needed by people browsing on their mobile devices, such as a
commercial construction company: it’s unlikely that a customer will make a decision to work with
a construction company based on mobile website experience. But there’s no reason that less critical
mobile websites should not provide a smooth mobile experience.

What Can Your Current Website Accommodate?

Different mobile website techniques use existing desktop websites more than others. It’s important
to know how the current website was built and what the platform capabilities are when choosing
a mobile development technique. For example, if the desktop website is built entirely in Flash, you
will have to develop a separate, dedicated website for mobile devices to accommodate non-Flash
mobile browsers, such as iPhones. (Or you might consider revamping the entire website to eliminate
Flash, but that’s another story.)

Desktop websites built using clean, modern development standards — external style sheets and
semantic, div-based HTML — can work well as the base for an adaptive website design, because
existing elements are easily manipulated through CSS.

If your website is built on a content management system (CMS), you can check for any mobile
options available on the platform. More CMS platforms are focusing on facilitating great mobile
sites. As a start, most include some sort of template system for the site designs. Templates make it
easier to apply sitewide mobile modifi cations because changes made to a theme fi le instantly apply to
the entire site, which means less time updating individual pages. Global style sheets create a default
place for mobile CSS changes to be added for the entire site.

c05.indd 118c05.indd 118 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing a Mobile Web Option ❘ 119

Most theme-based CMS systems are starting to introduce mobile-friendly themes that you can use
and modify to provide your site with both a desktop and mobile optimized experience. Some CMS
systems provide other tools to help with things like mobile browser testing, mobile detection and
redirection, and mobile menu modifi cations.

The following sections provide some CMS system mobile functionality examples.

WordPress

Some specifi c WordPress themes automatically apply a different mobile theme to their blog sites
when viewed on mobile devices. Many of the available WordPress themes are considered mobile-
ready, and come with mobile versions. The default WordPress theme automatically applies an
alternate mobile theme plus a View Full Site link is included to get back to the full desktop website.

Drupal

Drupal has many themes and modules that you can piece together to create a mobile website
version. The WURFL (http://drupal.org/project/wurfl), Mobile Plugin (http://drupal
.org/project/mobileplugin), and Mobile Tools (http://drupal.org/project/mobile_tools)
modules can assist with mobile detection, redirection, theme-switching, and image scaling.
Read more about Drupal mobile options here: http://www.mediacurrent.com/blog/
going-mobile-drupal.

DotNetNuke

The latest DotNetNuke versions include built-in tools for mobile detection, redirection, and a
mobile template that provides a few layout changes for phone and tablet browsers. It also has a nice,
built-in emulator for mobile browser testing.

Lots of tools are available that are making dynamic mobile sites easier. Basic HTML and CSS
websites can also be modifi ed with mobile CSS. If you have an older website, or a lot of custom-
developed functions or complicated features, it might be diffi cult to adapt your current website,
and a dedicated site may be the way to go.

How Much Do You Want to Provide for Mobile Users?

If you want mobile users to access basically the same information as they would on a desktop
browser, a mobile website is the direction to go. That technique allows you to hide some elements
and rearrange the majority of your site for a better mobile UI. Content is identical and updated
through the same editing process.

If you know that mobile users won’t need to access a large amount of your website content,
a dedicated mobile website would be a good solution. Design a mobile-specifi c website from the
ground up, addressing specifi c organizational requirements and the needs of on-the-go customers.
A dedicated mobile website will benefi t from a thorough mobile marketing strategy, and can use
modifi ed content targeting mobile users in an optimal UI.

A mobile web app would be appropriate with a focused feature for mobile users, provided through a
web browser instead of a downloadable app. Offer robust functionality on multiple platforms, and
avoid the restrictions of app stores with a mobile web app.

c05.indd 119c05.indd 119 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://drupal.org/project/wurfl
http://drupal.org/project/mobileplugin
http://drupal.org/project/mobileplugin
http://drupal.org/project/mobile_tools
http://www.mediacurrent.com/blog/going-mobile-drupal
http://www.mediacurrent.com/blog/going-mobile-drupal
http://www.it-ebooks.info/

120 ❘ CHAPTER 5 MOBILE WEBSITES

The following table lists the pros and cons of the various mobile web development options.

ADAPTIVE MOBILE WEBSITE DEDICATED MOBILE WEBSITE MOBILE WEB APPLICATION

Pros • Maintain only one website

• Quick and least

expensive to implement

• Provide improved mobile

user interface

• Good website

performance

• More perfected mobile UI

• Fairly inexpensive to

implement

• A website that can

behave like an app

• Less development cost

than native app

• Works across platforms

Cons • No use of native device

functionality

• Not optimal performance

• Some layout restrictions

• No use of native device

functionality

• Maintain two websites

• Not in app stores

• Can’t use all mobile

features

Now that you can choose which development technique to use, lets look closely at how each one works.

ADAPTIVE MOBILE WEBSITES

An adaptive mobile website is a great fi rst project for mobile, and it allows steps to be taken incrementally
toward an optimal mobile UI. Adaptive mobile websites use CSS media queries to serve different style
sheets based on the size or type of browser or device detected viewing the site (see Figures 5-1 and 5-2).
With CSS, content and presentation layers are kept separate; media queries change website layout and
appearance without content modifi cation. No browser detection or site redirection is needed; the optimal
website layout appears automatically when media query parameters are met. As already mentioned, the
key to a smooth, responsive mobile website project is a well-coded existing website to manipulate.

FIGURE 5-1: Adaptive website example, viewed in a full-sized desktop browser

c05.indd 120c05.indd 120 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Adaptive Mobile Websites ❘ 121

Get Your Queries in Place

Media queries are the core of adaptive mobile websites.
This section explains how to choose what media type or
feature to target, and then explains different ways to add
your media query to your site.

Choose Your Target

To apply a media query to a website, fi rst determine in
what situations you will target a browser to apply your
mobile changes. One way to target browsers is by media
type. Media types have been in the W3C’s specifi cations
for many years, and more types continue to be added.
The following is a list of all the media types now
available. Some you likely recognize, but others are more
obscure.

 ➤ all: Covers all device types.

 ➤ braille: Intended for braille tactile feedback
devices.

 ➤ embossed: Intended for paged braille printers.

 ➤ handheld: Targets devices that are considered
mobile, with smaller screens and limited
bandwidth.

 ➤ print: Intended for paged material and
documents viewed on-screen in print preview
mode, or output to an actual printer.

 ➤ projection: Intended for large-scale, projected presentations.

 ➤ screen: Targets common-sized desktop computers with color screens.

 ➤ speech: Intended for speech synthesizers.

 ➤ tty: Intended for media using a fi xed-pitch character grid (such as teletypes, terminals, or
portable devices with limited display capabilities).

 ➤ tv: Targets television-type devices (low resolution, color, limited-scrollability screens,
sound available).

Media types offer numerous uses, but this chapter discusses only all and handheld. The other way
to target a browser for mobile styling is by media feature. Available media features are:

 ➤ aspect-ratio: Targets based on the ratio of the value of the width media feature to the
value of the height media feature. Accepts min/max prefi xes.

 ➤ color: Targets based on the number of bits per color component of the output device.
Accepts min/max prefi xes.

FIGURE 5-2: Adaptive website example,

viewed in a mobile-sized browser

c05.indd 121c05.indd 121 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

122 ❘ CHAPTER 5 MOBILE WEBSITES

 ➤ color-index: Targets based on the number of entries in the color lookup table of the
output device. Accepts min/max prefi xes.

 ➤ device-aspect-ratio: Targets based on the ratio of the value of the device-width media
feature to the value of the device-height media feature. Accepts min/max prefi xes.

 ➤ device-height: Targets based on the height of the rendering surface of the output device.
Accepts min/max prefi xes.

 ➤ device-width: Targets based on the width of the rendering surface of the output device.
Accepts min/max prefi xes.

 ➤ grid: Targets with a query for whether the output device is grid or bitmap.

 ➤ height: Targets based on the height of the display area of the output device. Accepts min/
max prefi xes.

 ➤ monochrome: Targets based on the number of bits per pixel in a monochrome frame buffer.

 ➤ width: Targets based on the width of the display area of the output device. Accepts min/
max prefi xes.

 ➤ orientation: Targets by portrait or landscape orientation.

 ➤ resolution: Targets based on the resolution of the output device, that is, the density of the
pixels (dots per inch, or dpi). Accepts min/max prefi xes.

 ➤ scan: Targets the scanning process of “tv” output devices.

Media features more than double the number of ways to target browsers, and give more fi ne control
with the ability to combine targeted features and properties. And, not, and only can be included for
combinations of requests.

So how do you decide the best way to target for mobile? I recommend targeting all media types,
and using the width media feature to apply your styles once a browser is smaller than a set width.
For example:

@media all and (max-width: 480px) {… }

This means whenever a browser is less than 480 pixels wide, any CSS properties defi ned inside this
media query will then apply.

You can also target small desktop monitors or tablets with a combination of widths:

@media all and (min-width:480px) and (max-width: 800px) {… }

Or widescreen monitors:

@media all and (min-width:1400px) {… }

This targeting method gives fi ner control over when styles will apply, as opposed to the handheld
media type, and this technique also makes testing easier by enabling you to test in a desktop

c05.indd 122c05.indd 122 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Adaptive Mobile Websites ❘ 123

browser. Also, some newer mobile devices have excluded themselves from the handheld distinction
in order to serve full-feature websites, because modern mobile devices have this capacity.

Link to Your Media Queries

Once you determine how to target your mobile website, you have several ways to add your
media query to the site. We recommend including your mobile CSS directly inside your global
style sheet:

@media handheld {
/* Mobile styles go here*/
}

You can also link to a separate mobile style sheet in your HTML fi le:

<link rel=”stylesheet” href=”mobile.css”, type=”text/css” media=”handheld” />

Or, import your mobile CSS from a global CSS fi le:

@import url(“mobile.css”) handheld;

The fi rst option is easiest to start with because the styles will apply instantly if the other styles in
that style sheet are working correctly. There’s no need to add any fi les; simply add your mobile
styles into an existing CSS fi le. You will want to put this section at the end of your style sheet, so all
normal CSS styles will apply fi rst and mobile styles will then be added. This technique is also best
for performance, because only one style sheet will be loaded. Additionally, the @import technique
isn’t well supported in older versions of Internet Explorer, so that’s another reason it should be
avoided.

Remember the Viewport

Another important detail is needed to ensure mobile browsers render a site correctly. A viewport
meta data tag ensures that mobile browsers on different devices zoom properly to the right size of
your site. Otherwise, if you have a 300px-wide mobile site, the browser might still render it on a
1000px-wide canvas if a viewport is not defi ned. To add the viewport, simply add this property to
the <head> tag of all pages:

<meta name=”viewport” content=”width=device-width, initial-scale=1.0,
maximum-scale=2.0”/>

Inside the content property, several things are happening, and several options are defi ned.
The width property is set to render the site at the width of the device, with the website scaled to its
normal size on load. The maximum scale is set so touchscreen mobile users can zoom the site to two
times its normal size. This example is my preferred setup, but you can make changes as desired.
For instance, setting maximum-scale to 1.0 prevents users from zooming in on the site at all.

c05.indd 123c05.indd 123 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

124 ❘ CHAPTER 5 MOBILE WEBSITES

Figures 5-3 and 5-4 show a mobile web page with and then without the proper viewport setting:

FIGURE 5-3: Mobile web page example

with viewport properly set

FIGURE 5-4: Mobile web page example

with viewport not set

The Inevitable Internet Explorer Fix

Media queries are part of the CSS3 W3C specifi cation, and are well supported across platforms.
At the time of writing, they had support at least three versions back in Firefox (since 3.6), Chrome
(since 17), Safari (since 5), Safari iOS (since 3.2), Opera (since 11.6), Opera Mobile (since 10), and
the Android browser (since 2.1). Unsurprisingly, the gap is seen in Internet Explorer, which has
supported the feature only since Internet Explorer 9. Though global usage of Internet Explorer 8 or
below is at least 30 percent (source: http://www.caniuse.com), if you are using media queries only
for mobile sites, the main worry is Windows Phone 7, which comes with an Internet Explorer 7
equivalent browser. Version 7.5 comes with Internet Explorer 9, so going forward it’s in the clear.
With a mobile market share of around 2 percent, Windows Phone is not a drastic concern, but there
is a JavaScript workaround to get media queries rendering in older mobile (and desktop) Internet
Explorer browsers:

<!--[if lt IE 9]> <script src=”http://css3-mediaqueries-js.googlecode.com/

svn/trunk/css3-mediaqueries.js”></script> <![endif]-->

The script parses your CSS and applies the media query styles, and can be tested in real time on
Internet Explorer, including when you resize the window.

c05.indd 124c05.indd 124 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.caniuse.com
http://css3-mediaqueries-js.googlecode.com/svn/trunk/css3-mediaqueries.js
http://css3-mediaqueries-js.googlecode.com/svn/trunk/css3-mediaqueries.js
http://www.it-ebooks.info/

Adaptive Mobile Websites ❘ 125

Add Mobile Styles

Once the media query is in place, it’s time to decide how to change the website for mobile browsers.
It is a good idea to create mock-ups of how you would like your website to look on mobile, but it’s
important to know the limitations of this technique, and it may be helpful to test out some changes
in the code fi rst.

Adding Your Changes to @Media

The basic process for changing your website for mobile browsers is to place CSS styles for the
mobile site inside your @media tag. These styles will apply to your site when the defi ned media type
or feature properties have been met. You can reduce the number of columns, modify the width of
content areas, increase the size of buttons and links, and hide items not needed for mobile.

In the following example, you can see that the regular site header has a width of 960px. But when
the site is viewed on a small, mobile screen, the media query applies a new width of 320px, which
will override the original width. For the logo, an alternate mobile logo image is loaded as a CSS
background image, and the size of the div is also reduced.

Here’s an example of some regular website CSS, defi ning a header that is 960px wide and 105px tall, with
a background image. The site logo is 312px by 102px, and also loaded as a background image in CSS:

#header {
float:left;
width:960px;
height:105px;
background:url(images/header-bg.jpg) no-repeat;
}

h1#logo, a#logo {
width:312px;
height:102px;
background:url(images/logo.png) no-repeat;
float:left;
margin:0;
padding:0;
}

Here’s an example of the mobile website CSS, applied to the same elements when a browser width
is under 480px wide. Now the header is set to 320px wide and 65px tall. The same float and
background properties will still apply on the mobile version, but the height and width set in the
media query section will override the regular CSS (as long as the regular CSS appears fi rst in
the style sheet).

HOW YOU LINK MATTERS

An important note is that this script works only if your @media properties are
defi ned in an existing style sheet, not when included using @import or <link>.

c05.indd 125c05.indd 125 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

126 ❘ CHAPTER 5 MOBILE WEBSITES

@media all and (max-width: 480px) {
#header {
width:320px;
height:65px;
}

h1#logo, a#logo {
width:160px;
height:100px;
background:url(images/mobile-logo.png) no-repeat!important;
margin:8px 0 0 0;
}
}

This is the process followed throughout the adaptive mobile site code: simply change the CSS for each
element to fi t into the mobile screen size and modify the site styles. You can add @media styles for one
set of properties or multiple properties to optimally change the site appearance for several devices:

@media all and (max-width: 480px) {
/*phone styles go here*/
}

@media all and (min-width:480px) and (max-width: 800px) {
/* tablet styles go here */
}

Change Your Width

The fi rst thing you’ll want to do is set a smaller width for the entire website. If you are used to
designing fi xed-width websites, you can also design mobile fi xed-width sites. Set the width of any
containing divs on your site to smaller width, such as 320px (that would fi t a portrait orientation
iPhone screen perfectly). With the right viewport, a mobile site with a fi xed width automatically
scales to fi t wider or narrower screens with everything scaled proportionally. If you turn your phone
to landscape mode, everything gets slightly bigger to fi t the width.

Alternatively, you can set div widths to 100 percent for the mobile website. This means that instead
of the entire site scaling up or down for different screen sizes, the content areas simply become
wider or narrower. Font sizes remain the same, and content areas have different lengths based on
how much content fi ts on each line.

Choosing a fi xed or fl uid mobile website width depends on your preference for user experience on
different devices and screen sizes, as well as your preference for development techniques. Fluid mobile
layouts are more fl exible and provide a better use of space on varying screen sizes, but you have more
variables and factors to test through development than with a single, fi xed mobile site version.

With either width setting, make sure that all divs are set to widths less than your determined fi xed
width, or are all set to a percent for fl uid widths. Make sure no desktop site div widths, such as
500px or 800px, persist on the mobile website, because they will break outside of the set mobile site
width and create horizontal scrolling.

c05.indd 126c05.indd 126 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Adaptive Mobile Websites ❘ 127

DEALING WITH TABLES

A related element to watch out for is
tables. As previously mentioned, if
your entire site is built with tables, this
technique won’t work. Whatever columns
are side by side in tables must stay side
by side, unlike divs, whose positions can
easily be manipulated.

Additionally, even if you have a correctly
used table of data on the site, it can cause
layout problems.

If a width is not set on the table or its
columns, the table will try to shrink to
fi t inside its containing div. But if the
table contains a lot of columns, or long
elements of content (such as a URL), it will
still break out of the right side of the site
and cause horizontal scrolling. This is a
situation in which you have to decide the
best thing to do for your project. Can
the content be easily switched to divs, and
do you have the project resources to do
this? If yes, this is the best plan of action
for your ideal mobile site design.

If it would be too time-consuming, or if
it would not make sense to move the data
out of a table, leaving a few isolated pages
with this issue might not be a deal breaker
(see Figure 5-5). Mobile users will still
be able to access and read the content; a bit of horizontal scrolling will simply be
required.

FIGURE 5-5: Mobile web page example

with table-based content breaking out of

the frame. (Although this example content

should not be laid out using tables, in

this situation, the project scope did not

include modifying this previously devel-

oped HTML content.)

Flow Your Columns

Once you have set the width for the entire site, you’ll want make sure all of the contained divs
fl ow into one continuous column because the available width is so small on a mobile phone. If
your divs are already fl oated, this part should be easy. If two divs were fl oated next to each other
in the desktop website, the second div will automatically position itself after the fi rst div once the
containing div no longer has enough room to fi t both side by side. This is why table-based websites
don’t work well with this technique: all columns will still be positioned next to each other no matter
how small the containing div is.

c05.indd 127c05.indd 127 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

128 ❘ CHAPTER 5 MOBILE WEBSITES

The order of mobile website content is controlled by the HTML content order. This can be
seen as one of the limitations of a dynamic mobile website. If a desktop website contains two
columns, all content in the left column must appear before any content in the right column on the
mobile website (see Figures 5-6 and 5-7). There is no way to switch the order of HTML content
using CSS.

Knowing this, one thing to take into consideration is the placement of any side menus. If you
have a menu placed in a left-hand column for all inside pages, this menu would appear before any of
the page content from the right column. If you are willing to live with this kind of restriction
(which I usually am), fl owing all of your content into one, usable website column is a pretty
easy process.

FIGURE 5-6: Desktop web page example with a left-side menu

In Figure 5-7, the left menu appears before the main content. The small advertisement has been
hidden below the menu (you’ll see how to do this in the next section), otherwise that also would
have appeared before the main content.

c05.indd 128c05.indd 128 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Adaptive Mobile Websites ❘ 129

Hide Content

Another thing to do while planning your mobile website is determining content areas that are
not needed on the mobile site. For items that you want to hide for mobile, it’s as easy as adding
display:none to the CSS for a class or ID that surrounds only that content.

FIGURE 5-7: The same web page

example when viewed at a mobile

screen size

HIDDEN CONTENT IS STILL ACTUALLY THERE

It’s important to note that hiding content with CSS does not remove the content
from your website completely. Content with the display:none property will still
be loaded with the page, but hidden using CSS. This means that using display:
none will not help improve the speed of your mobile website, but only decrease the
content viewed by the users to improve the mobile UI and their ease of browsing.

c05.indd 129c05.indd 129 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

130 ❘ CHAPTER 5 MOBILE WEBSITES

Some things that are best to hide on mobile include image rotators, any Flash, and any images that
are simply supplemental to the design and don’t add to the understanding of the page content.

You can also choose to hide entire sections of content that aren’t important for mobile website
users. For example, you can hide supplemental content in a side column or footer blocks, or hide
testimonials, social media links, or a persistent contact form for pages on which users wouldn’t need
them. Especially if content is repeated on every page, think about whether it’s actually important, or
just supplemental column fi ller. You may even decide to hide a side menu if the main navigation is
suffi cient for getting around the site.

Simplify Your Header

Wise use of website real estate that is “above the fold” is even more important on a mobile website
than a desktop version. Mobile browser bars may allow users to see only an area as little as 200px
in height before having to scroll. One of the most important things to do is design and simplify your
website header to just get the most pertinent information across. Use a smaller logo. Remove contact
information unless it’s critical for your mobile users (I’m talking to you, restaurants and retail
stores). Hide slogans, links that are useful only on a desktop (“Print this page”), and even
search bars.

Make sure that the header tells users what site they are on, then make sure they can quickly get to
the information they really want. Figures 5-8 and 5-9 show changes in a website header between
desktop and mobile site versions. The slogan is removed, the menu is compacted onto two lines,
and the large image rotator is hidden on the mobile site.

FIGURE 5-8: Desktop website homepage example with all content visible

c05.indd 130c05.indd 130 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Adaptive Mobile Websites ❘ 131

Modify Menus

Determining how to position the mobile website’s main
menu is arguably one of the trickiest and most important
elements to address. If a horizontal main menu contains
only a handful of items, it may be possible to leave the
links listed horizontally in one or two rows, as shown in
Figure 5-9. Make sure the links are large enough, with
enough spacing, that they can be easily hit on a touchscreen:
no more than four or fi ve items in a row, and no more than
two rows.

Or a menu created as an unordered list could be restyled so
that each item goes on its own line, becoming a vertical menu
(Figure 5-4 is one example). This would do the trick:

ul li {
 display:block;
 width:100%;
}

A third option is to use completely different HTML code
for a menu on desktop and mobile. You can change a menu
rendered inside an unordered list on desktop to a drop-down
list on mobile. A drop-down list needs only a little bit of
space, and mobile devices have developed very user-friendly
ways of handling them. It’s possible to display different
menu code on mobile. In your desktop CSS code, set your
normal styling for the elements, and set display:none
for your <select> elements. Inside the mobile media query
styles, do the opposite: set to display:none and
include any desired styling and display:inline for your <select> element.

/* Desktop Menu CSS */
nav select {display: none; }
nav ul li {float: left; list-style: none; }
nav ul a {color: #fff; display: block; }

/* Mobile Menu CSS */
@media all and (max-width: 480px) {
 nav select {display: inline; }
 nav ul {display: none; }
}

Of course, adding duplicate code for mobile can increase the size of your site and requires
maintaining two menus, so it is not ideal. Using JavaScript, you can automatically convert
the type of list displayed between a and <select> element. The following example uses

FIGURE 5-9: Mobile website homepage

example, with elements like the image

rotator and slogan hidden

c05.indd 131c05.indd 131 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

132 ❘ CHAPTER 5 MOBILE WEBSITES

the jQuery framework, which allows you to select and append HTML elements without a great
deal of logic.

Start with the menu code set as an unordered list:

<nav>

 Item 1
 Item 2

</nav>

Add this JavaScript to the <head> of your HTML fi le to specify the two separate menu types, and
when to use them:

<script type=”text/javascript”>
// Create the dropdown base
$(“nav a”).addClass(“mm-add”);

$(“<select />”).appendTo(“nav”);

// Create default option “Go to...”
$(“<option />”, {
 “selected”: “selected”,
 “value” : “”,
 “text” : “Go to...”
}).appendTo(“nav select”);

// Populate dropdown with menu items
$(“nav a.mm-add”).each(function() {
 var el = $(this);
 $(“<option />”, {
 “value” : el.attr(“href”),
 “text” : el.text()
 }).appendTo(“nav select”);
});

// Make sure it all works
$(“nav select”).change(function() {
 window.location = $(this).find(“option:selected”).val();
});
</script>

This technique is a great option for creating a space-saving mobile menu. Thanks to Chris Coyier
of CSS-tricks.com (http://css-tricks.com/convert-menu-to-dropdown) for creating this
technique. Figures 5-10, 5-11, and 5-12 show this technique in action, switching menu styles from
unordered list to drop-down list, between desktop and mobile.

c05.indd 132c05.indd 132 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://css-tricks.com/convert-menu-to-dropdown
http://CSS-tricks.com
http://www.it-ebooks.info/

Adaptive Mobile Websites ❘ 133

FIGURE 5-10: Website homepage example with a full menu, using an unordered list

FIGURE 5-11: Same website homepage

example with a select box replacing

the unordered list for the menu, when

viewed at a mobile screen size

FIGURE 5-12: On iOS devices, the select

box automatically brings up an easy to use

spinner as a standard UI element

c05.indd 133c05.indd 133 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

134 ❘ CHAPTER 5 MOBILE WEBSITES

Review Your Content

Once the basic template of your mobile site is set up — header, footer, site width, and columns — review
the content and make sure everything is where it should be. Text-heavy pages should not have many
issues. Custom website features, such as an events calendar or a contact form, may need a bit of caressing.

Scale Media

A common element that may break out of mobile site constraints is images. If you have a containing div
set to 300px, and an image that is, or has dimensions set to, 400px wide, the image will extend outside
of the div to maintain its full size. Luckily, there is a quick fi x to apply to all of the images on your site:

img {
 max-width: 100%;
}

This little bit of CSS ensures that no images break outside of any surrounding div, and all modern
browsers will scale down content proportionally that have a max-width set. The max-width: 100%
CSS property can also be applied to other media such as video, object, and embed to constrain the
size at which they are displayed.

Once again, scaling an image using CSS does not change the size of the media that has to be loaded
by the browser. A 600x400, 200k image shown at 300x200 on mobile is still a 200k element
loading on the website. Some tools have emerged lately that can help improve bandwidth by
changing the actual size of media fi les on mobile devices.

Adaptive Images

Adaptive Images (http://adaptive-images.com) from Matt Wilcox is an excellent, drop-in
JavaScript and PHP script solution that automatically resizes actual image fi le sizes to the specifi c
dimensions at which they are viewed. This creates the ideal scenario: lightweight, easy to implement, and
does all the work for you on the fl y. Combining adaptive images with max-width: 100%; should cover
all the bases — display and load images at the optimal size. Just follow these steps and you’re done:

 1. Download the latest version of Adaptive Images from http://adaptive-images.com/
download.htm.

 2. Add the included .htaccess and adaptive-images.php fi les to the server document-root
folder.

 3. Add one line of JavaScript into the <head> of your site: <script>document.cookie=
’resolution=’+Math.max(screen.width,screen.height)+’; path=/’;</script>.

 4. Add your CSS Media Query values into $resolutions in the PHP fi le.

 5. Add images as you normally would, at their desktop website size.

This solution works only on websites using Apache 2 and PHP 5.x, but others have adapted the
technique in other languages, including .NET and ColdFusion. View the download page http://
adaptive-images/download.htm) for an up-to-date listing of Adaptive Images ports and plugins.

This technique was built off an earlier option created by the Filament Group called Responsive
Images (https://github.com/filamentgroup/Responsive-Images). This technique requires

c05.indd 134c05.indd 134 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://adaptive-images.com
http://adaptive-images.com/download.htm
http://adaptive-images.com/download.htm
http://adaptive-images/download.htm
http://adaptive-images/download.htm
https://github.com/filamentgroup/Responsive-Images
http://www.it-ebooks.info/

Adaptive Mobile Websites ❘ 135

you to create and upload images at multiple sizes to your website, add a query to all images’ src
elements, and then add JavaScript to test screen width and load the correct image. This technique
also requires Apache and PHP. Obviously, creating and uploading duplicate images and changing all
image fi les’ URLs is cumbersome and time-consuming. One of the main reasons to use the adaptive
mobile website technique is that it is easy to apply to an entire site with just CSS changes. I personally
would not want to take the time necessary to apply this technique to an existing website with many
images, but it’s important to know your options and understand how techniques are progressing.

Testing Made Easy

Testing adaptive mobile websites is extremely easy, especially if you are targeting your media queries
for all devices with max-width criteria as discussed earlier:

@media all and (max-width: 480px)

This means you can simply resize your browser to less than 480px wide, and you’ll instantly see
your website with the mobile CSS styles applied on your desktop screen. It’s convenient to do a
majority of testing right on your desktop as you code. Some mobile emulators are available to
enhance testing from your desktop. Screenfl y (http://quirktools.com/screenfly) uses a proxy
server to mimic devices as you view a website. Enter a website address and preview the website
on a number of different device screen sizes and resolutions (see Figure 5-13). Screenfl y’s proxy
server mimics the user agent string of a selected device, but does not emulate device behavior such
as zoom. There is also a Firefox plug-in called User Agent Switcher (https://addons.mozilla
.org/en-US/firefox/addon/user-agent-switcher) that does just what it says: it allows Firefox
to emulate the user agents of other browsers, such as iPhone or Internet Explorer.

FIGURE 5-13: Screenfl y’s emulator with desktop, tablet, mobile, and television view options

c05.indd 135c05.indd 135 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://quirktools.com/screenfly
https://addons.mozilla.org/en-US/firefox/addon/user-agent-switcher
https://addons.mozilla.org/en-US/firefox/addon/user-agent-switcher
http://www.it-ebooks.info/

136 ❘ CHAPTER 5 MOBILE WEBSITES

Testing on a desktop browser or emulator is convenient, but there is no comparison to native mobile
browsers for working out all the kinks and small details. For example, desktop browsers will not
accurately portray the left and right margin space that appears in a mobile phone browser. Using a
regular desktop browser might always show some space on each side, but when you check on your
phone, text might run right up to each edge if specifi c margins or padding were not added in the
CSS. Don’t wait until the last minute to test your website on a variety of smartphones. And if you
don’t have a slew of mobile devices for your own testing purposes, be sure to seek out a few friends
who are willing to poke around the website for you.

Break Out of Mobile (or Not?)

Depending on how far you go with your adaptive mobile website, you may or may not choose to
include a link back to your “regular” website. If you keep the majority of website content and just
modify the display for mobile users, a link to the standard desktop website shouldn’t be necessary.
Think about all the changes you have made for the mobile website, and make sure there is nothing
that someone might seek out and be unable to fi nd on the mobile website. If your mobile website
version is well tested, easy to navigate, and still contains most of your desktop website content,
people should have no reason to switch back to a desktop version.

If you’ve chosen to hide a lot of content or entire pages in your adaptive mobile site, linking to the
desktop website may be useful. To do this, you need to use a separate style sheet for your mobile
device styles, and a bit of Javascript to “break out” of the mobile styles and view the regular webpage.
The following example uses a JavaScript fi le named breakout.js that performs this functionality.

<script type=”text/javascript”
src=”http://www.website.com/js/breakout.js”></script>

View Full Website
View Mobile Website

Include spans with ids that can be called in the JavaScript, one to view the full website, and one to
view the mobile website. Inside your media query CSS, use display:none on the span ids to set
them to be visible only when viewing the mobile or full site versions, to link to the opposite.

The following JavaScript code assumes that the jQuery framework has already been loaded. After
the HTML page has been loaded, the jQuery document ready function is called, and our logic checks
to see if the user has “broken” out of mobile. This is performed in the shouldWeBreakOutOfMobile
function, which simply checks to see if a certain cookie exists (which is written when user opts to
break out of mobile):

$(document).ready(function () {

 if (shouldWeBreakOutOfMobile() == true) {

 breakOutOfMobile(document.URL, false);

 }

 else {

 $(‘head’).append(‘<meta name=”viewport” content=”width=device-width, initial-

 scale=1.0, maximum-scale=2.0” />’);

 applyMobileStyle();

 }

If the user has broken out of the mobile, the breakOutOfMobile function is called, which will
remove the mobile CSS fi le and then refresh the page without the mobile style applied:

c05.indd 136c05.indd 136 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.website.com/js/breakout.js
http://www.it-ebooks.info/

Adaptive Mobile Websites ❘ 137

function breakOutOfMobile(urlToRedirectTo, redirect) {

 $(“LINK[href*=’” + MOBILE_STYLE_SHEET + “’]”).remove();

 if (redirect == true) {

 setTimeout(function () { window.location = urlToRedirectTo; }, 1000);

 }

}

If the user is not broken out of mobile, you append a meta tag for the viewport, and then apply the
mobile CSS File:

 $(‘head’).append(‘<meta name=”viewport” content=”width=device-width, initial-

 scale=1.0, maximum-scale=2.0” />’);

 applyMobileStyle();

There are also two click functions that are important to note as well. When the FullSite span tag
is clicked using this method, the following logic is called:

 $(“#FullSite”).click(function (e) {

 breakOutOfMobileFromLink();

 saveBreakOutOfMobileCookie();

 });

This click event will break the user out of the mobile version using the technique descripted
previously, as well as write a cookie to the users browser indicating they have broken out of the
mobile. So if they try to view another page, it will not be rendered as a mobile page again.
The following method saves the cookie to accomplish this.

function saveBreakOutOfMobileCookie() {

 document.cookie = COOKIE_NAME + “=” + “Break Out Of Mobile; path=/; expires=Monday,

 04-Apr-2020 05:00:00 GMT”;

}

The second important click function is the MobileSite span. This logic will apply the mobile CSS
fi le, and then delete the cookie that indicates the site is rendering the desktop version.

$(“#MobileSite”).click(function (e) {

 applyMobileStyle();

 deleteBreakOutOfMobileCookie();

});

Here is the entire JavaScript defi ning the break out of mobile method, using cookies to ensure users
stay in their current mode once they click a link:

var MOBILE_STYLE_SHEET = “mobile.css”;

var COOKIE_NAME = “BreakOutOfMobile”;

$(document).ready(function () {

 if (shouldWeBreakOutOfMobile() == true) {

 breakOutOfMobile(document.URL, false);

 }

c05.indd 137c05.indd 137 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

138 ❘ CHAPTER 5 MOBILE WEBSITES

 else {

 $(‘head’).append(‘<meta name=”viewport” content=”width=device-width, initial-

 scale=1.0, maximum-scale=2.0” />’);

 applyMobileStyle();

 }

 $(“#FullSite”).click(function (e) {

 breakOutOfMobileFromLink();

 saveBreakOutOfMobileCookie();

 });

 $(“#MobileSite”).click(function (e) {

 applyMobileStyle();

 deleteBreakOutOfMobileCookie();

 });

});

function applyMobileStyle() {

 $(‘head’).append(“<link rel=’stylesheet’ href=” +

 MOBILE_STYLE_SHEET + “ type=’text/css’ />”);

}

function breakOutOfMobileFromLink() {

 breakOutOfMobile(document.URL, true);

}

function breakOutOfMobile(urlToRedirectTo, redirect) {

 $(“LINK[href*=’” + MOBILE_STYLE_SHEET + “’]”).remove();

 if (redirect == true) {

 setTimeout(function () { window.location = urlToRedirectTo; }, 1000);

 }

}

function deleteBreakOutOfMobileCookie() {

 document.cookie = COOKIE_NAME + ‘=; path=/; expires=Thu, 01-Jan-70 00:00:01 GMT;’;

}

function saveBreakOutOfMobileCookie() {

 document.cookie = COOKIE_NAME + “=” + “Break Out Of Mobile; path=/

 ; expires=Monday, 04-Apr-2020 05:00:00 GMT”;

 }

function shouldWeBreakOutOfMobile() {

 var tmpRtn = false;

 var breakOutCookie = document.cookie.indexOf(COOKIE_NAME);

 if (breakOutCookie != -1) {

 tmpRtn = true;

 }

 return tmpRtn;

}

c05.indd 138c05.indd 138 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Adaptive Mobile Websites ❘ 139

Taking It Further: Complete Responsive Websites

Now that you’ve seen how to use media queries to develop an adaptive mobile-specifi c website, you
can expand upon some of these techniques to create a fully responsive website. Instead of modifying
the fi xed-width desktop website to create a fi xed-width mobile website, a fully responsive website
utilizes percentage-based widths and margins for a fl exible grid layout.

This is very similar to the “liquid layouts” from years past, long despised by designers for their
unpredictable appearances and lack of layout control. But combined with media queries and other new
discoveries, designers are embracing responsive websites as the future of web design — meeting the needs
of all different screen and device types while giving designers the fi ne control over details they want.

Some web designers have even started advocating designing for mobile fi rst. Start with the small
screen, strip your site down to the essentials, and build from there. This idea might sound a
bit scary, but judging by the proliferation of smartphones and tablets, it’s really not very extreme.

Because creating a fully responsive website would generally require a full site redevelopment, and
introduces a lot of detailed coding techniques, it is out of the scope of this book to explain the entire
process. Ethan Marcotte’s Responsive Web Design, part of the A Book Apart series, details the techniques
if you are interested in learning more. Also check out Media Queries (http://mediaqueri.es) for
inspiration. They provide a wonderful gallery of responsive website designs, displaying screenshots of
each website as they appear at different screen or browser widths (see Figure 5-14).

FIGURE 5-14: Media Queries, showcasing sites optimized for desktop, tablet, and mobile

devices using responsive web design

c05.indd 139c05.indd 139 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://mediaqueri.es
http://www.it-ebooks.info/

140 ❘ CHAPTER 5 MOBILE WEBSITES

Now that we know how to create an adaptive mobile website, the next mobile site alternative we
will discuss is a dedicated mobile website.

DEDICATED MOBILE WEBSITES

With a dedicated mobile website, most of the concepts discussed for a dynamic mobile site still hold
true. You need to decide how you want to change, rearrange, or remove content from your website
for the mobile version. The difference is that you will be building the dedicated mobile website from
the ground up, so you have very few restrictions and it is easier to pay attention to the details that
create the optimal mobile browsing experience. This is also a good opportunity to undertake a fully
responsive site design, to cover the range of phone and tablet device differences.

When planning a brand new mobile website, designing ahead is a must. A designer does not need to
think about restrictions like the fl ow of columns: there is much more freedom to design a mobile site
as perfectly as possible. Start with a modifying your sitemap to include only the pages that people
will need when browsing your mobile site. You may choose to have only a small number of key
pages on the mobile site. This might allow the menu to fi t horizontally across the mobile site, when
the desktop version may have had too many links to do so.

Because a dedicated website will not mirror desktop content, it is also a good idea to cater site content
to mobile users. Rewrite mobile content to be shorter, and appeal to any mobile-specifi c user needs.

Some guidelines to follow when planning and building your dedicated mobile website are outlined
in the following sections.

Keep Files Sizes Small

Avoid using 32-bit PNG images, as these have the largest fi le size of image types used on the web.
Use JPG and GIF fi les, and if you need transparency use 8-bit PNG fi les. 8-bit fi les support alpha
transparency and render fi ne in modern mobile browsers.

Increase the Size of Elements in the User Interface

Optimize size and spacing of buttons and links; a good rule of thumb is, quite fi ttingly, to make sure users
can hit buttons easily with their thumbs when testing the site. Make sure buttons and links have large
hotspots that are the actual link area, and increase font sizes and line spacing for the mobile version.

Leverage CSS3

Many new CSS3 properties that reduce the need for design element images are well-supported by
modern mobile browsers and can speed up development. Be sure to use them to the fullest extent
when designing your mobile website. Here are a few examples:

 ➤ Gradients: background: linear-gradient(top, #000000 0%,#ffffff 100%);

 ➤ Border Radius (rounded corners): border-radius: 15px;

 ➤ Box Shadow: box-shadow: 10px 10px 5px #888;

 ➤ Text Shadow: text-shadow: 2px 2px 2px #000;

c05.indd 140c05.indd 140 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Dedicated Mobile Websites ❘ 141

Retina Images

With iPhone 4’s retina display added to the mix, the best way to create images for mobile websites
has now changed. Gone are the days of the 72dpi standard web image. Because the retina display
doubles the potential resolution users can see, simply double the size of your source fi les to
serve retina resolution images. To display an icon at 32x32 pixels, create the fi le at 64x64 pixels,
and set the image size properties to 32x32:

It is important to note that this will serve double the amount of data than what can be used on non-
retina displays. You can also use media queries to target iPhone 4’s retina display and serve only the
double resolution images to applicable devices:

<link rel=”stylesheet” type=”text/css” href=”/retina.css” media=”all and

 (-webkit-min-device-pixel-ratio: 2)” />

Then, in the retina-specifi c CSS, you can load a background image that is 64x64 pixels, and specify
its dimensions as 32x32 using the background-size CSS property.

Detection and Redirection

To redirect users to the mobile website, you can use a basic JavaScript option based on screen size,
similar to using media queries:

<script type=”text/javascript”>
 <!--
 if (screen.width <= 500) {
 document.location = “mobile.html”;
)
 //-->
</script>

This redirects users to your mobile website homepage when their screen widths are below the set
dimensions. In this example, mobile.html is the mobile homepage fi le, which will be displayed
when the website is viewed from any screen less than 500px wide — whether tablet or phone.

Users can also be redirected through JavaScript that detects the user agent. Several
scripts are available to use, depending on the language with which your website is built.
http://detectmobilebrowsers.com has a collection of downloadable scripts for fi fteen
different languages.

Link Back to the Desktop Site

Generally, content is greatly reduced on a dedicated mobile website compared to the desktop
website, so it is important to provide a link back to the regular website version. Because a dedicated
mobile website has a unique URL, it’s easy to add links between the two versions. Use a media
query and display:none to ensure the link to the desktop version appears only when someone is
viewing the site from a mobile device.

c05.indd 141c05.indd 141 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://detectmobilebrowsers.com
http://www.it-ebooks.info/

142 ❘ CHAPTER 5 MOBILE WEBSITES

Testing

Most of the same testing methods apply for a dedicated mobile website as they do for a responsive
one. You can review the initial work on a scaled-down desktop browser, and use emulators like
Screenfl y. Native mobile devices should defi nitely be used for testing the website interface and
usability. It is also important to test the detection and redirection to the mobile website using several
major mobile device platforms.

Adobe Shadow (http://adobe.com/shadow) is a great tool to assist with on-device website testing.
With it you can pair native iOS and Android devices with your computer wirelessly. Then when you
refresh your site on your desktop while using the Shadow extension for Google Chrome, the native
mobile browsers will automatically sync and refresh as well. You can also remotely inspect your site
as rendered on the mobile browsers through your desktop browser.

W3C MOBILEOK CHECKER

Another tool that can check if your website is mobile-friendly is the W3C
mobileOK Checker (http://validator.w3.org/mobile). The Checker gives a site
a percentage score (out of 100) based on a number of web standards and mobile
best practices. It also explains any errors or areas in need of improvement. I would
caution not to stress too much if your site performs poorly with the Checker,
though. I had a hard time fi nding any websites, including the dedicated mobile
websites of prominent businesses, that scored over 50 percent. As an example,
Huffi ngton Post (www.huffingtonpost.com) appears and functions quite nicely in
mobile browsers, but scores just 25 percent in the Checker.

Some factors that trigger critical or severe errors in the Checker are not that
serious, in my opinion. Any iFrames on your website cause a critical error in the
Checker, although most modern smartphones will render iFrames just fi ne. In fact,
using the recommended embed code from YouTube requires an iFrame, instead
of embedding a Flash <object>. This was designed in large part so that YouTube
could detect browser video support and serve HTML5 videos to mobile browsers
that don’t support Flash.

Responsive mobile websites will have a harder time scoring well with the Checker
because they still have to deal with all of the existing content and code of the
desktop website. A dedicated mobile website development project can pay closer
attention to fulfi lling the W3C mobile recommendations. The mobileOK Checker
is still a useful tool, and it is important to be aware of what mobile best practices
the W3C recommends. Review the Detailed Report from the Checker and think
carefully about how benefi cial addressing each error will be for the website.

The next mobile website option this chapter discusses is a mobile web app, which is meant to
function closer to a native mobile app than a normal website.

c05.indd 142c05.indd 142 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.huffingtonpost.com
http://validator.w3.org/mobile
http://adobe.com/shadow
http://www.it-ebooks.info/

Mobile Web Apps with HTML5 ❘ 143

MOBILE WEB APPS WITH HTML5

Mobile web apps can provide useful alternatives to native mobile apps. With a plethora of new
tools harnessing the HTML5 and JavaScript capabilities of modern mobile browsers, dynamic web
applications can stand up to any native app. It can take much less time for an experienced web
developer to create a mobile web app that works across platforms than to develop the same app
natively for the same variety of device platforms.

What Exactly Is HTML5?

HTML5 is really just HTML, and the evolving of the language for easier creation of web
applications. Although some features and specifi cations are new, it is not meant to create a global
shift to a “new” language. The goal of HTML5 is to create standards that are compatible across
browsers and provide ways to develop web features using open source methods that previously
required proprietary technologies. It aims to maintain backward compatibility, and not break
current HTML web pages.

Whereas previous iterations of HTML and XHTML kept adding more strict syntax and less room
for error, HTML5 scales back requirements, creating a more open environment for creating web
pages. Starting with the doctype, HTML5 is overtly simple:

<!doctype html>

That’s it. All you have to do to technically be using HTML5 is use this doctype, and it isn’t likely
to change anytime soon. Though HTML5 sounds like a version number, the compatibility factors
guiding HTML5 mean that things like the doctype should become standard, and one less thing
web developers have to worry about when making sure their websites and applications work
for everyone.

HTML5 introduces many features that you can utilize in your mobile web apps to create a more
native mobile web experience. At its core, HTML5 introduces new structural elements with
more semantic meaning than <div>s:

 ➤ <header>: For a group of introductory aides. This is defi ned by content, not position,
so you can have a <header> for your entire site and also a header within a blog post.

 ➤ <nav>: For major site navigation (not just groups of links). Again, could be used multiple
times on a page.

 ➤ <hgroup>: To aid with document outlining, can be used to wrap multiple, subsequent
headers (for example, an H1 title and H2 subtitle).

 ➤ <section>: Used to group semantically related content.

 ➤ <article>: For self-contained related content. (A rule of thumb: Think “Could this be an
RSS item?”)

 ➤ <footer>: Information about the footer’s containing element (copyright, author).
Like <header>, <footer> can be used for an entire site, or multiple elements within it.

 ➤ <aside>: A sidebar related to adjacent content (not just an unrelated side column).

c05.indd 143c05.indd 143 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

144 ❘ CHAPTER 5 MOBILE WEBSITES

These new structural elements create the base of any modern, semantically rich website or web
application. To compete with a native app, you can use more advanced HTML5 features in a mobile
web app, which are discussed in a little bit.

And What Exactly Is a Mobile Web App?

Whereas a mobile website exists to improve the mobile functionality of an existing website, a mobile
web app exists to perform a specifi c mobile function. A mobile web app should be more comparable
to a native app than to a website. A web app cannot handle some functions, or might not have
the capability to access the device to perform them. Some of the situations that would require a
native application development include:

 ➤ Resource and graphic-intensive games

 ➤ Accessing the device camera, microphone, address book, or media library

 ➤ Apps to be sold through app markets for payment

 ➤ Sending push notifi cations

 ➤ Running as a background service

If the app doesn’t need to do any of these things, creating the app on the web is a great option.
When you decide to create a mobile web app, at its core you’ll still be developing a mobile website.
You can use many of the already-discussed techniques like adaptive images and media queries. Like
a dedicated mobile website, a mobile web app will most likely be designed only for mobile phones
and possibly tablets. You’ll still be creating all of your HTML pages and can use media queries to
target different orientations and screen sizes. Then, using HTML5 and JavaScript, you can add
advanced functionality that more closely relates to a native app.

How Do You Use HTML5 in a Mobile Web App?

If you’re not looking for any of the aforementioned capabilities in your mobile app, then HTML,
CSS, and JavaScript might very well provide all the necessary tools to create a well-designed,
full-fl edged mobile web app. This section looks at some of the HTML5 features you can use to help
you create native-like, mobile web apps.

New Form Input Types

These HTML5 specifi cations are easy to understand, quick to implement, and a no-brainer to use
right away. Instead of the basic <input type=”text”>, new input types can provide a streamlined
experience in modern mobile browsers, and can also aid in form validation:

 ➤ <input type=”email”>: This markup tells browsers that they should accept the fi eld entry
only if a valid e-mail address format is followed. On iPhone, the device keyboard that is
brought up for this fi eld includes the at (@) and dot (.) symbols on the main screen, making
it easier to quickly enter the correct information (see Figure 5-15). The keyboard on Android
will not be modifi ed, though.

c05.indd 144c05.indd 144 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Web Apps with HTML5 ❘ 145

 ➤ <input type=”url”>: This tells browsers to check for a valid web address format.
A special keyboard with a “.com” button appears on iPhone; Android’s keyboard remains
the same.

 ➤ <input type=”tel”>: Although varying telephone number formats mean there’s no
validation added, this brings up a number keyboard screen on some mobile devices,
including iPhone and Android (see Figure 5-16 for iPhone example).

 ➤ <input type=”number”>: Allows only numbers to be input, and shows numeric keyboards
and number spinner controls on some devices and browsers.

 ➤ <input type=”date”>: The goal here is for browsers to provide native date pickers to
replace JavaScript widgets, and standardize valid input formats.

 ➤ <input type=”time”>: Validates a 24-hour time input format.

 ➤ <input type=”datetime”>: Validates a precise date and time.

 ➤ <input type=”range”>: Renders a slider in some browsers.

 ➤ <input type=”search”>: Expects a search to be performed, and renders with a specifi c
style in some browsers, like Safari.

 ➤ <input type=”color”>: Can provide a native browser color picker, although not
well-supported by browsers yet.

FIGURE 5-15: The specialized keyboard

that is brought up on iPhones for <input

type=“email”>
FIGURE 5-16: The number pad key-

board that is brought up on iPhones for

<input type=“tel”>

c05.indd 145c05.indd 145 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

146 ❘ CHAPTER 5 MOBILE WEBSITES

Backward compatibility is in full effect with these elements, so you don’t have to worry about
forms breaking in older browsers. If a browser doesn’t recognize an input type, it just falls back
to a regular text input fi eld. There’s no reason not to use these input types in a mobile web app to
provide a better user experience.

New form attributes have also been introduced to help replace common JavaScript widgets:

 ➤ required: Can be placed on <textarea> and most input fi elds; browsers won’t allow the
form to be submitted if the fi eld is empty.

 ➤ placeholder: Puts default text in the input box that automatically clears once the user’s
focus is on that fi eld.

 ➤ min and max: Constrains the range of values that can be entered in a fi eld, such as a number
or date range.

 ➤ multiple: When used on an input type such as e-mail, allows multiple addresses to be
added in a comma-separated format.

 ➤ step: When used on a spinner, can control the increment of options that are shown.

Offl ine Storage

HTML5 offl ine storage provides a way to save data on the client side even when there is no Internet
connection. Once data has been downloaded to the device, a manifest fi le can be used to cache fi les
locally, such as options and actions the user made. When the Internet connection is restored the
data can synchronize back to the server. Data cannot be downloaded from the server if the Internet
connection is lost, but many aspects of a mobile web app experience can continue unchanged with
offl ine storage. This is an important element for behaving more like a native mobile app, because
many apps don’t require an Internet connection to fully function.

The Cache Manifest

A manifest tells the browser what it needs to store on its local cache. Once the browser has stored
the fi les in its cache, the web app can continue to use the fi les when the user is offl ine. The manifest
can also specify fi les that should not be cached, and provide fallbacks when assets are missing.

To get started, simply add the manifest attribute to the <html> element, and point it to the fi le
containing your application manifest:

<html lang=”en” manifest=“/webapp.manifest”>

Your manifest fi le must begin with a declaration of CACHE MANIFEST, which tells your browser that
what follows is the source to a manifest fi le. Next, the fi les are listed within categories, also known
as namespaces.

CACHE MANIFEST

CACHE:
index.html
myscripts.js

c05.indd 146c05.indd 146 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Web Apps with HTML5 ❘ 147

mystyles.css

FALLBACK:
/ offline.html

NETWORK:
liveinfo.html

version 1

CACHE, quite obviously, tells the browser all of the fi les that should be cached.

FALLBACK tells the browser how to handle fi les that are not cached. If anything matches the URL
on the left, and is not in the manifest, and can’t be accessed due to lack of connection, it will be
replaced with the fi le on the right. In this case, if any URL is specifi ed besides index.html, then
show offline.html. This can be used to prevent users from accessing specifi c parts of the mobile
web app that do require an Internet connection, serving users a special page instead.

NETWORK explicitly tells the browser any fi les that must have an Internet connection to be accessed.
By default, anything not listed in the CACHE will fall in this category, and it can be specifi cally stated
using a wildcard asterisk (*).

Last, a comment is included that tells the browser to reload the contents of the manifest. To do this,
something needs to change in the contents of the fi le to force a reload.

To serve the manifest correctly, the fi le must have the extension .manifest, and it must have the
right MIME type. You’ll need to change HTTP headers and include something like this in your
mime.types fi le (when using an Apache server):

Text/cache-manifest manifest

Once the manifest fi le is in place, when a browser accesses the site it parses the HTML fi le,
processes the manifest fi le, requests the assets in the manifest fi le (regardless of whether it received
these along with the initial HTML fi le), and caches the specifi ed fi les. Then, if the browser reloads
when the Internet connection is lost, and nothing in the manifest fi le has changed, the browser will
detect that it has local cache and serve the page from the fi les saved locally.

Geolocation

Plenty of mobile web user scenarios can benefi t from geolocation. For example, many online retail
store locators now have a “use my current location” option. This will conveniently bring up the
closest stores to a user’s current location in one click, instead of having to enter a city or ZIP code.

The JavaScript Geolocation API uses GPS or network IP information to fi nd the physical location
of users. It exists inside the navigator object, is simple to work with, and allows you to enhance a
mobile web app in very native ways. To start, you can quickly fi nd the current location of your user
with the getCurrentPosition JavaScript method. Or, watchPosition checks at regular intervals
to see if the user’s position has changed.

It’s important to note when using geolocation in a web app that browsers prompt users to make sure
they accept the app’s use of their position information. If users refuse, an error handler is returned,
so make sure that your app addresses that scenario appropriately.

c05.indd 147c05.indd 147 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

148 ❘ CHAPTER 5 MOBILE WEBSITES

The success handler that is returned if the user accepts the app’s use of getCurrentPosition or
watchPosition includes a Position object containing two properties: timestamp and coords.
Using the coordinate data, you can easily map user position on a graphical interface, like Google
Maps. The following JavaScript added to your HTML fi le will get the coordinates for the user’s
current location for displaying on a map:

<script>
function getLocation() {
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(functon(position) {
 var coords = position.coords;
 showMap(coords.latitude, coords.longitude, coords.accuracy);
 });
 }
}
</script>

Canvas

The Canvas API provides 2-D drawing capabilities for a wide range of mobile web applications:
drawing tools, games, emulators, and more. It uses HTML and JavaScript to bring dynamic,
native drawing and animation, without any need for Flash. The depth of Canvas development
capabilities can fi ll a large book, and already has. The HTML5 Canvas Cookbook by Eric Rowell
is an excellent resource, from getting started with paths and drawings to advanced animation and
game development.

Make Your Mobile Web App Even More Native

Because your mobile web app is still running in a browser, you’ll have things like the browser
navigation bar taking up screen real estate, and forcing certain options to be available to users,
where a native app might have a specialized navigation bar instead. The subesquent sections discuss
additional techniques that can make a mobile web app function more like a “native” mobile app.

Add to Home Screen

On iPhone and iPad, the mobile WebKit browser includes an easy way to bookmark a website,
adding it as an icon on the device home screen. This is another detail that can make a mobile web
app seem more like a native app, with a one-touch access icon, just like any other app on the home
screen. Any website can be added to the iOS device home screen; the problem is that the majority of
users don’t know how to add these shortcuts to their devices.

Matteo Spinelli created a JavaScript project that prompts users to add a site to their home screen
(see Figure 5-17), with a bubble intuitively positioned next to the native browser button where
users must perform this function (http://cubiq.org/add-to-home-screen). It mimics YouTube’s
initial use of such a feature, with options including the message text to display, bubble appearance
frequency, and bubble animation effects. It also includes a style sheet so designers can easily
customize button appearance.

c05.indd 148c05.indd 148 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://cubiq.org/add-to-home-screen
http://www.it-ebooks.info/

Mobile Web Apps with HTML5 ❘ 149

The following two lines simply need to be added to the <head> of the mobile web app’s
HTML. The script checks the user’s device, operating system and version, and displays the bubble
only in appropriate confi gurations:

<link rel=”stylesheet” href=”path/to/add2home.css”>

<script type=”application/javascript” src=”path/to/add2home.js”></script>

FIGURE 5-17: The Add to Home pop-up on a mobile

web app

More iOS Tips and Tricks

iPhone and iPad have provided several other proprietary properties their browsers will recognize
that help create a more native mobile web app experience:

<meta name=”apple-mobile-web-app-capable” content=”yes” />
<meta name=”apple-mobile-web-app-status-bar-style” content=”black” />
<link rel=”apple-touch-icon” href=”iphon_tetris_icon.png”/>
<link rel=”apple-touch-startup-image” href=”startup.png” />

c05.indd 149c05.indd 149 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

150 ❘ CHAPTER 5 MOBILE WEBSITES

To explain each of these:

 ➤ apple-mobile-web-app-capable: A cue to the webkit browser that this web page is
behaving as a mobile, potentially offl ine, web app.

 ➤ apple-mobile-web-app-status-bar-style: Hides the browser status bar by scrolling the
screen down to the start of the web page on page load. The status bar will still appear when
a user scrolls all the way up. This also hides the navigation bar when the app is offl ine.

 ➤ apple-touch-icon: Points to the mobile web app icon image to appear on the device
home screen.

 ➤ apple-touch-startup-image: Points to the mobile web app startup image.

jQuery Mobile

jQuery Mobile (http://jquerymobile.com) is another wonderful tool that helps make great
mobile web UIs. jQuery Mobile provides an HTML5-based, touchscreen-optimized user interface
framework for cross-platform mobile devices. Based on the established jQuery and jQuery UI
foundations, it’s lightweight and easily themeable.

To get started, simply link to the jQuery and jQuery mobile scripts and the default style sheet:

<link rel=”stylesheet”

href=”http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.css” />

<script type=”text/javascript” src=”http://code.jquery.com/jquery-1.6.4.min.js”>

</script>

<script type=”text/javascript”

src=”http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.js”></script>

Instead of making the jQuery Mobile interface look like the iPhone or Android interfaces, jQuery
Mobile has an independent UI style that looks good and functions nicely on all mobile browsers.
jQuery also provides a Themeroller tool, where designers select desired colors and styles and a style
sheet is generated automatically (http://jquerymobile.com/themeroller).

Besides slick mobile styling, jQuery Mobile provides rich form controls, layouts for lists and overlays,
and UI widgets such as toggles, sliders, and tabs. Check out the Quick Start Guide for step-by-step
instructions (http://jquerymobile.com/demos/1.0/docs/about/getting-started.html).

SUMMARY

It is important for organizations to spend time when creating a mobile strategy to fi nd out exactly
which model fi ts best for their business domain. Starting down the wrong path can be costly as well
as ruin a company’s reputation. This chapter has stressed the importance of a mobile web presence,
whether it’s improving a current website on mobile using media queries, or developing a new, full-
fl edged mobile web app. The provided introduction to each technique should give your organization
the tools it needs to successfully get started on the mobile web.

Now that you understand various ways to create a mobile website, the following chapters will
explain how to develop various mobile applications, starting with Android.

c05.indd 150c05.indd 150 28/07/12 5:55 PM28/07/12 5:55 PM

www.it-ebooks.info

http://jquerymobile.com
http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.css
http://code.jquery.com/jquery-1.6.4.min.js
http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.js
http://jquerymobile.com/themeroller
http://jquerymobile.com/demos/1.0/docs/about/getting-started.html
http://www.it-ebooks.info/

Getting Started with Android

WHAT’S IN THIS CHAPTER?

 ➤ Deciding to target Android as your mobile platform

 ➤ Getting the tools you need to develop Android

 ➤ Creating a new project

 ➤ Creating the Derby project in Android

Android Inc. was initially started in 2003, out of a frustration with the smartphone market as
it existed at the time. It was acquired by Google in 2005.

The hardware side of Android is supported by the Open Handset Alliance (OHA), which
is a conglomeration of many handset manufacturers, and the software is maintained by the
Android Open Source Project, which is led by Google.

Android had its fi rst major release in late 2008; the fi rst major phone company to support it
was T-Mobile, and the original handset was the HTC Dream (G1).

The Android OS was built on a modifi ed Linux kernel and applications are written in Java. By
using Java as the development framework for the applications, Android enables you to develop
your application on all major platforms.

By leveraging the Eclipse IDE, Android affords the user almost the exact same user experience
for development on all major OS platforms.

Additionally, when researching Android you may come across the name Dalvik. It is the
virtual machine that runs on the Android device, and your applications run within it. What
does this mean to developers? Because your applications run inside this virtual space, it
provides a level of security to the base OS. Also, Dalvik has been designed with performance
in mind. As of Android 2.2 it also provides just-in-time compilation to your apps (because
Dalvik requires specially compiled .dex fi les and not just the standard .class fi les generated
in a normal Java compilation).

6

c06.indd 151c06.indd 151 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

152 ❘ CHAPTER 6 GETTING STARTED WITH ANDROID

WHY TARGET ANDROID?

Among the many reasons to target the Android platform, fi rst and foremost is cost. On average
you can get an Android smartphone for a fraction of the cost of an iPhone. They may not have
commensurate features, but thrift is a major component for new smartphone buyers.

Next is fl exibility. More types of Android devices are available, so if your application fi ts a specifi c
niche market, there is probably a device that would support your needs already in production. At
the time of writing, there are effectively two iOS devices (iPhone/iPod touch and iPad); four if you
include the retina display versions, versus roughly 15 form factors to develop for.

If you are already a Java developer, adding Android to your repertoire is a snap. What Java is to
Android, Cocoa is to CocoaTouch and C# is to Silverlight. All of the frameworks that mobile
developers use are a combination of subsets and supersets of the functionality of a given technology.

Identifying an application that exists on another platform but does not yet exist on Android is
another perfectly good reason to target Android. That being said, you should do some research,
because if a developer has targeted iOS or BlackBerry as the primary platform, you have to assume
that Android is potentially on the horizon.

WHO SUPPORTS ANDROID?

HTC, LG, Motorola, and Samsung are the major players in the Android smartphone market.
Archos, Dell, Samsung, and Toshiba hold the largest pieces of the Android tablet market. You
should note that Amazon’s Kindle Fire and Nook Color are up-and-comers and use a customized
version of the Android tablet (Version 3) OS on their devices.

ANDROID AS COMPETITION TO ITSELF

Because Android was designed to be run on many different types of devices, created by many
different manufacturers (as opposed to the closed system that Apple has maintained), it has left
itself open to the will of said manufacturers. Because of the open nature of the Android OS, it is
commonplace for manufacturers to create vendor-specifi c builds of Android, and when this happens
you are beholden to them for OS updates. Additionally in these custom builds, vendor-specifi c
limitations have arisen such as the vendor-specifi c market. You then have another hurdle to cross
when releasing your application for sale to the public because some devices may not be able to
purchase it because of these limitations.

Another issue that has cropped up is the lack of over-the-air (OTA) distribution of OS updates by
cellular carriers. Often your device is perfectly capable of running a later version of the Android
software, but carriers are often slow to distribute that to their customers.

Multiple Markets and Market Locks

Depending on your version of Android, and depending on the manufacturer of a given device, you
may fi nd yourself locked into using a vendor-specifi c Android marketplace. Additionally, application

c06.indd 152c06.indd 152 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 153

vendors can list their application not only on Google Play or vendor-specifi c marketplaces, but
also on the Amazon App Store. You often fi nd on cheap and imported Android devices a version of
Google Play that is maintained by the manufacturer. They pick and choose what applications are
available from the whole set in the marketplace. You should develop as you expect to be available
to all Android devices; just note when purchasing large quantities for an enterprise deployment that
you will have to watch out for these inconsistencies.

The version of the Android SDK that you need to support depends on what devices you want to
support. If you want to target most phones available right now, you should support Android 2.2
or 2.3. “Gingerbread” (2.3) is the last widely available version for those devices. The Android 3.x
versions are for tablets, such as the Samsung Galaxy Tab. The Android 4.x versions are the newest,
and are a combination of the Android 2.x and Android 3.x functionality meant to pull back on the
version splintering seen in devices, but not many devices currently in release support it.

Once you have decided on a version to deploy your application against, you need to set up your
development environment. In the next section you will learn all about confi guring your IDE, Java
and Android SDKs, and building emulators.

GETTING THE TOOLS YOU NEED

This section paraphrases the installation instructions from the Android Developer section, and we
added some personal notes from our experiences.

Downloading and Installing JDK

The fi rst thing that you need to do to develop Android applications is to visit http://www.oracle
.com/technetwork/java/javase/downloads/index.html and ensure that you have the Java JDK
installed. Because so many different acronyms
and versions appear on the Java download
website, Figure 6-1 points you in the direction
you need to get past all of the potential
distractions on that site.

The JDK is the Java Development Kit. You
need this package to do any Java development
on your machine, Android or otherwise. Be
sure to look for the Java Platform, Standard
Edition JDK.

Downloading and
Installing Eclipse

After you have successfully installed the JDK,
you will need a development environment.
The open source IDE Eclipse is recommended by Android directly in its documentation. You are
not limited only to Eclipse, but the tooling has been honed over time to be the easiest solution to

FIGURE 6-1: JDK download page

c06.indd 153c06.indd 153 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.it-ebooks.info/

154 ❘ CHAPTER 6 GETTING STARTED WITH ANDROID

get up and running. Figure 6-2 shows the Eclipse download page (www.eclipse.org/downloads).
Download the version of Eclipse Classic that is appropriate for your operating system.

FIGURE 6-2: Eclipse download site

Downloading and Installing the Android SDK

After you have installed the Eclipse IDE, you need to install the Android Software Developer Kit
(http://developer.android.com/sdk/index.html). This includes all the tools necessary to build
Android apps, because the SDK is not built directly into Eclipse. Figure 6-3 shows the Android SDK
download page; make sure to get the right version for your OS.

Don’t use the installer for 64-bit Windows. Just get the zip fi le and unzip it to
c:\Android. At the time of writing the installer package has diffi culty fi nding
the Java SDK installed on the machine.

For Mac deploy it to /android in your root volume.

FIGURE 6-3: Android SDK download page

c06.indd 154c06.indd 154 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.eclipse.org/downloads
http://developer.android.com/sdk/index.html
http://www.it-ebooks.info/

Getting the Tools You Need ❘ 155

Downloading and Confi guring the Eclipse ADT Plug-in

After you have installed the Android SDK you need the ADT plug-in. What this does is add the
features necessary to create Android Projects (and Android Test Projects), because they are not
bundled with the base Eclipse install. Additionally, the plug-in adds debugging tools to Eclipse to
help during the Android development process. Figure 6-4 shows the interface for installing the ADT
plug-in. You will also use this interface when upgrading ADT. The tooling generally gets a revision
when a new version of the Android OS is released.

FIGURE 6-4: Installing the ADT plug-in

Use the Update Manager feature of your Eclipse installation to install the latest revision of ADT on
your development computer. Follow these steps:

 1. Start Eclipse and select Help ➪ Install New Software.

 2. Click Add in the top-right corner.

 3. In the Add Repository dialog box that appears, enter ADT plug-in for the name and the
following URL for the location: https://dl-ssl.google.com/android/eclipse/.

 4. Click OK. If you have trouble acquiring the plug-in, try using “http” in the Location URL
instead of “https” (“https” is preferred for security reasons).

 5. In the Available Software dialog box, select the checkbox next to Developer Tools and
click Next.

c06.indd 155c06.indd 155 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

https://dl-ssl.google.com/android/eclipse/
http://www.it-ebooks.info/

156 ❘ CHAPTER 6 GETTING STARTED WITH ANDROID

 6. The next window shows a list of the tools to be downloaded. Click Next.

 7. Read and accept the license agreements and then click Finish. If you get a security warning
saying that the authenticity or validity of the software can’t be established, click OK.

 8. When the installation completes, restart Eclipse.

Once you have downloaded the ADT plug-in you need to set it up to talk to the Android SDK that
you downloaded earlier. This allows Eclipse to build, run, and debug Android applications without
needing to open a terminal or command shell. Figure 6-5 shows where you need to add the link to
the Android SDK in the Eclipse preferences.

After you’ve successfully downloaded the ADT, the next step is to modify your ADT preferences in
Eclipse to point to the Android SDK directory (see Figure 6-5):

 1. Select Window ➪ Preferences to open the Preferences panel. In Mac OS X, click Eclipse ➪
Preferences.

 2. Select Android from the left panel.

 3. You may see a dialog box asking whether you want to send usage statistics to Google. If
so, make your choice and click Proceed. You cannot continue with this procedure until you
click Proceed.

 4. For the SDK Location in the main panel, click Browse and locate your downloaded SDK
directory.

 5. Click Apply and then click OK.

FIGURE 6-5: ADT confi guration screen

c06.indd 156c06.indd 156 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 157

Installing Additional SDK Components

The last step in preparing your development environment for Android is to download additional
Android OS packages. This enables you to build applications that target that OS, and also gives you
the tools you need to emulate a device running that OS on which to test all of your applications,
whether or not they have been targeted to that OS version. Figure 6-6 shows just how many options
you have when looking to target Android OS versions.

FIGURE 6-6: Working with the SDK Manager

Correctly confi guring and using this tool will ensure that you have all the latest SDKs and utilities
afforded to you. Note that you will not necessarily need all of the versions of the SDKs listed in
Figure 6-6; this was merely to illustrate the full breadth of your options.

Loading the Android SDK Manager in Eclipse takes only a few steps:

 1. Open Eclipse.

 2. Select Window ➪ Android SDK and AVD Manager.

c06.indd 157c06.indd 157 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

158 ❘ CHAPTER 6 GETTING STARTED WITH ANDROID

 3. Select Available Packages in the left panel. This reveals all of the components that are cur-
rently available for download from the SDK repository.

 4. Select the component(s) you’d like to install and click Install Selected.

 5. Verify and accept the components you want (ensure each one is selected with a green check-
mark) and click Install. The components will now be installed into your existing Android
SDK directories.

I recommend that you download and install an Android 2.2.x, Android 2.3.x,
and Android 3.x version. This will give you the latest two handset-specifi c
versions of Android, and the current tablet version of Android. As Android
4.0 is so new, you may choose to get it, but understand that you may need to
purchase a newer device to test apps targeted to that version.

Development

The following sections discuss the application layout and Android app development.

 Creating a New Project

First things fi rst — you need to create a new Android project. The line highlighted in Figure 6-7 is
the type of project you want.

FIGURE 6-7 Creating a new Android project

c06.indd 158c06.indd 158 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 159

First you need to name your application and
add it to a workspace. Think of a workspace
as the folder in which your application resides.
Figure 6-8 illustrates what the New Android
Project screen looks like.

After you have named your application
you will need to give it a package name,
set the minimum SDK required to run your
application, and name the initial Activity that
will run when your application runs. If you
want to add a test project to your workspace,
you can do so at this time. Figure 6-9 shows
a completed Application Info step in the new
project wizard.

An important note at this point: Make sure
that your package name is unique. The
standard format for package names is
com.companyName.applicationName. This
must be unique because that is how it is known
on the Android device and in the Android
Market. When you make updates you can make
them only within your package name. If you
change your package name there will be no
upgrade path between versions.

The minimum SDK required is generally set
when you are leveraging a permission or piece
of functionality that did not exist when the core
Android version was released, or if you want
to target a specifi c type of device (tablet versus
handset). The major jumps are between 1.6
and 2.1, 2.3 and 3.x, and 3.x and 4.x.
Figure 6-10 shows you all of the SDKs that you
have installed that you can target when creating
your application. Please note that the reason
this screen is full of SDKs is because I took the
time to download them all for demonstration
purposes.

FIGURE 6-8: Naming your project

FIGURE 6-9: Confi guring application information

c06.indd 159c06.indd 159 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

160 ❘ CHAPTER 6 GETTING STARTED WITH ANDROID

This step is also very important when building your application. The minimum SDK version you
set specifi es the lowest possible version of the SDK in which your application will run, and it is the
primary version in which your application will run. Android 1.5 is the lowest version of the SDK
still supported, and Android 4.0.3 (at the time of this writing) is the highest.

FIGURE 6-10: Choosing the SDK version for your app

Figure 6-10 shows a Google version of the SDK alongside all of the versions I
have installed on my machine. The Google APIs add additional functionality to
each API Level. Please use your best judgment when deciding whether to use the
Google APIs, and research if you need the functionality they provide.

Project Structure

The major sections to note in Figure 6-11 are the src and res folders and the AndroidManifest
.xml fi le. It shows the project layout for the application that I have been building in the
previous steps.

c06.indd 160c06.indd 160 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 161

All of your code lives within your src folder, under your Package
Namespace. The res folder holds layouts and resources for different
hardware specs. HDPI, LDPI, and MDPI are the resolutions for which
you can create images. The layout subfolder holds all of your XML
layouts. These are how your application gets rendered. The code will
be how to populate these layouts. All of your XML layouts are stored
in the layout subfolder of res, and your code will be linked under the
namespace in your src folder of the project view.

The Android Manifest is the heart of your application. It holds the entire
confi guration of your app (Figure 6-12) — the permissions you request
(Figure 6-14), the application attributes (Figure 6-13), and links to
instrumentation to be attached to your app. You can edit this in Eclipse’s
Manifest Editor or in XML (Figure 6-15) because that is how it is saved.

FIGURE 6-11: Basic project

structure

FIGURE 6-12: Main Manifest Editor

c06.indd 161c06.indd 161 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

162 ❘ CHAPTER 6 GETTING STARTED WITH ANDROID

The Manifest Editor is where the initial information of your application is stored when you create
it. This interface also has links to export your application. Exporting is necessary when submitting
your app to Google Play. In Eclipse there is a specifi c menu option and wizard that expedites the
submission process.

Figure 6-13 shows all of the base properties that can be set for a given application in the app’s
AndroidManifest.xml fi le. The most common properties to edit are the Label (the text shown
under the icon, often referenced in a resource fi le) and Icon (the icon shown in the launcher UI of
your device, the icon your users will click on to launch the app).

FIGURE 6-13: Manifest Application Info Editor

The spartan view shown in Figure 6-14 is the Permissions Editor. Here you can add permission
requests to your application. The most common one is android.permission.INTERNET,
which allows the application to use the device Internet connectivity. This, along with GPS and
accelerometer, are the permissions you will add to the Derby Names application.

c06.indd 162c06.indd 162 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 163

Last is the XML Editor shown in Figure 6-15. As you make changes in the other tabs they are
refl ected here. If you feel more comfortable editing the XML by hand you can use this interface to
add, update, and remove properties as you see fi t.

FIGURE 6-14: Android Manifest Permissions Editor

FIGURE 6-15: Android Manifest XML Editor

c06.indd 163c06.indd 163 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

164 ❘ CHAPTER 6 GETTING STARTED WITH ANDROID

Android Basics

You have two options for starting your application. You can build the layout you would like
to populate, or you can build the code that will populate the layout. Either is acceptable; it just
depends on what you feel most comfortable with.

Creating User Interfaces

This section describes the common widgets that come with Android, and shows examples of the
different layout elements you can use to coordinate the fl ow of your application’s activities.

Basic Android UI Elements

All of the basic elements in Android are stored in the android.widgets namespace in the SDK.

The most commonly used elements include:

 ➤ Button: This is a standard button element.

The following XML specifi es the layout of the Button widget:

<Button
 android:layout_height=”wrap_content”
 android:layout_width=”wrap_content”
 android:id=”@+id/button”
 android:text=”Click Me”
 android:onClick=”btnClick” />

Code: This code is necessary to handle the Click event noted in the XML layout.

public void btnClick (View view) {
 //Do Something.
}

 ➤ TextView: When I see this I want to think text box, but it isn’t a text box. TextView is
effectively the same as a label in other languages. It is just a place to display text.

Layout:

<TextView
 android:id=”@+id/textview”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:text=”Hello World”/>

Code:

TextView tvToShow = (TextView)this.findViewById(R.id.textview);
tvToShow.setText(“Ta-Dah!”);

 ➤ EditText: This is the text box widget. You can edit the contents of the text box and save
those values in code.

c06.indd 164c06.indd 164 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 165

Layout:

 <EditText
 android:id=”@+id/txtUsername”
 android:hint=”Username”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content” />

Code:

EditText txtUserName = (EditText) findViewById(R.id.txtUsername);
String username = txtUserName.getText().ToString();

 ➤ CheckBox: This is a standard checkbox element.

Layout:

 <CheckBox android:id=”@+id/checkbox”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”Checkbox Text” />

Code:

final CheckBox checkbox = (CheckBox) findViewById(R.id.checkbox);
checkbox.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 if (((CheckBox) v).isChecked()) {
 //It’s Checked
 }
else {
 //Not Checked
 }
 }
});

 ➤ RadioButton: This is a standard radio button element. To really get the most bang for your
buck, though, you need a RadioGroup.

Layout:

<RadioGroup
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:orientation=”vertical”>
 <RadioButton android:id=”@+id/radio_uno”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”1 - Uno” />
 <RadioButton android:id=”@+id/radio_dos”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”2 - Dos” />
 </RadioGroup>

c06.indd 165c06.indd 165 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

166 ❘ CHAPTER 6 GETTING STARTED WITH ANDROID

Code:

private OnClickListener radioButtonOnClick = new OnClickListener() {
 public void onClick(View v) {
 RadioButton rb = (RadioButton) v;
// Do with it what you will
 //rb.getText();
 }
};

//This assigns this event to the radio buttons.
 RadioButton radio_uno = (RadioButton) findViewById(R.id.radio_uno);
 RadioButton radio_dos = (RadioButton) findViewById(R.id.radio_dos);
 radio_uno.setOnClickListener(radio_listener);
 radio_dos.setOnClickListener(radio_listener);

Figure 6-16 shows all of the major UI widgets.

 ➤ ListView: This is the element you use if you want to
show lists of data. You can overload its display and
put lots of elements in each row, or you can just bind
a text item and a value to each. The trick is using an
ArrayAdapter<T> where T is the type of object that you
want bound. Additionally, creating a layout XML for
how you want each item displayed is a good strategy.

Layout:

 <ListView
 android:id=”@+id/lstWords”
 android:layout_width=”fill_parent”
 android:divider=”#ddd”
 android:dividerHeight=”1px”
 android:paddingBottom=”67dp”
 android:layout_height=”fill_parent” />

Code:

static final String[] words = new String[]{ “Hello”, “World” };
lstWords = (ListView)findViewById(R.id.lstWords);

lstWords.setAdapter

new ArrayAdapter<String>(this.getApplicationContext(),R.id.list_content,words));

Basic Android Layouts and Views

 ➤ FrameLayout: This is very simplistic and can really contain only a single UI element. You
can, in fact, have multiple elements but they overlap each other by default.

The example code shown here is rendered in Figure 6-17:

FIGURE 6-16: Major UI elements all

together

c06.indd 166c06.indd 166 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 167

<?xml version=”1.0” encoding=”utf-8”?>
<FrameLayout
 android:id=”@+id/frameLayout”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 xmlns:android=”http://schemas.android.com/apk/res/android”>
<EditText
 android:id=”@+id/widget46”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”EditText”
 android:textSize=”18sp” />
</FrameLayout>

This is a simple FrameLayout that contains a single EditText widget with the text “EditText.”

LinearLayout: This lays out your UI elements along a given direction: horizontal or vertical.
Figure 6-18 is a linear layout, which contains four consecutive TextView widgets along the vertical.

FIGURE 6-17: FrameLayout

rendered
FIGURE 6-18: LinearLayout

rendered

Example:

 <?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 android:id=”@+id/widget59”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:orientation=”vertical”
 xmlns:android=”http://schemas.android.com/apk/res/android”>

c06.indd 167c06.indd 167 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

168 ❘ CHAPTER 6 GETTING STARTED WITH ANDROID

<TextView
 android:id=”@+id/widget60”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:background=”#ffaa0000”
 android:layout_marginTop=”5dp”
 android:layout_marginLeft=”5dp”
 android:text=”red” />
<TextView
 android:id=”@+id/widget63”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:background=”#ffaaaa00”
 android:layout_marginTop=”5dp”
 android:layout_marginLeft=”5dp”
 android:text=”yellow” />
<TextView
 android:id=”@+id/widget64”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:background=”#ff00aa00”
 android:layout_marginTop=”5dp”
 android:layout_marginLeft=”5dp”
 android:text=”green” />
<TextView
 android:id=”@+id/widget65”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:background=”#ff0000aa”
 android:layout_marginTop=”5dp”
 android:layout_marginLeft=”5dp”
 android:text=”blue” />
</LinearLayout>

 ➤ TableLayout: Think tables in HTML and this is the type of organization you get with this
layout. TableLayouts contain rows and columns, representing a grid, and you can put other
UI elements into it. The following code results in a table with two rows, each with two cells,
and is visualized in Figure 6-19:

<?xml version=”1.0” encoding=”utf-8”?>
<TableLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent”

 android:stretchColumns=”1”>

 <TableRow>

 <TextView

 android:text=”Hello”

 android:padding=”3dip” />

 <TextView

 android:text=”World”

 android:gravity=”right”

 android:padding=”3dip” />

 </TableRow>

c06.indd 168c06.indd 168 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

Getting the Tools You Need ❘ 169

 <TableRow>

 <TextView

 android:text=”Goodbye”

 android:padding=”3dip” />

 <TextView

 android:text=”User”

 android:gravity=”right”

 android:padding=”3dip” />

 </TableRow>

</TableLayout>

 ➤ RelativeLayout: This is the most complex layout of the
four mentioned in this section. You specify relationships
between UI elements to lay out your interface.

The following code represents a simple form with a
TextView acting as a label for a blank EditText widget,
with Cancel and OK widgets docked beneath EditText
relative to the right screen boundary:

<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout

 android:id=”@+id/widget37”

 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent”

 xmlns:android=”http://schemas.android.com/apk/res/android”>

 <TextView android:id=”@+id/label”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”Type here:” />

 <EditText android:id=”@+id/entry”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:background=”@android:drawable/editbox_background”

 android:layout_below=”@id/label” />

 <Button android:id=”@+id/ok”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_below=”@id/entry”

 android:layout_alignParentRight=”true”

 android:layout_marginLeft=”10px”

 android:text=”OK” />

 <Button android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_toLeftOf=”@id/ok”

 android:layout_alignTop=”@id/ok”

 android:text=”Cancel” />

</RelativeLayout>

FIGURE 6-19: TableLayout

rendered

c06.indd 169c06.indd 169 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

170 ❘ CHAPTER 6 GETTING STARTED WITH ANDROID

Figure 6-20 shows how this code renders on an Android device.

Having seen the various UI elements, now is the time to get the
rest of your development environment confi gured to be able to
debug your app.

Creating an Android Virtual Device

You need to create an Android Virtual Device (AVD) in order to
debug your application in the emulator, because this “device” is
what the emulator runs. Creating an AVD is quite easy. Eclipse
includes a tool called AVD Manager (click Window Manager ➪
AVD Manager). You need to name your AVD instance, choose
its OS version (Target), pick a skin (with which you can
customize the look and feel of the emulator) and resolution, and
specify the hardware details for the device (amount of RAM, size
of SD card, and sensors like Accelerometer and GPS). Once you
have confi gured it to your specifi cations, click Create AVD and
you are all set.

For most purposes, the stock AVD skins are fi ne for debugging,
but if you would like to emulate a specifi c device (tablet or
handset) either for demonstration purposes or because you
want it to feel like the device you are developing for, you can use a custom skin. Although you can
always set the hardware properties to mirror those of the device you are using, there is an online
community (www.xda-developers.com) dedicated to making custom skins for use with the AVD.
Using your favorite search engine, type the model and make of the Android device you want to
emulate, and most likely you will fi nd a custom skin out there for it. Creating a new AVD with the
appropriate specs and then selecting this skin gives you an emulator that looks just like the device
you are testing for.

Debugging

Debugging in Eclipse is easy. Instead of running your application, you click Debug As and you
are off and running. Set breakpoints in your code by selecting them by the gutter next to the line
numbers, and as your code progresses it will break at all your steps.

In addition to breakpoint-based debugging, you also have access to the Dalvik Debug Monitor
Server (DDMS) perspective in Eclipse (see Figure 6-21). You can use DDMS to view the heap
usage for a given process (your running app or anything running inside the virtual machine), track
memory allocation of objects inside an app, interact with the fi lesystem of the device running the
app (emulator or actual), view running threads for an application, profi le methods using tracing,
read log messages using LogCat, and emulate phone and sensor data (SMS, phone calls, location
[GPS]), as shown in Figure 6-22.

FIGURE 6-20: RelativeLayout

rendered

c06.indd 170c06.indd 170 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.xda-developers.com
http://www.it-ebooks.info/

Getting the Tools You Need ❘ 171

In Figure 6-22 you see the Emulator Control pane. In this pane you can spoof an incoming number
to your emulator, to test how your application deals with that. You can also simulate text messages.
The bottom pane in that page has a way to confi gure your GPS manually. This allows you to test
location-based code without having to move your device.

FIGURE 6-21: DDMS perspective

FIGURE 6-22: Faking out your emulator

c06.indd 171c06.indd 171 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

172 ❘ CHAPTER 6 GETTING STARTED WITH ANDROID

CONNECTING TO THE GOOGLE PLAY

This section explains what is necessary to publish your application to the Google Play. There is also
the Amazon Android Marketplace, which has other requirements. But because it may be more of
a marketing choice than a development choice, we decided to go with the explanation of the basic
Google Play distribution process.

Getting an Android Developer Account

Signup is a snap for a dev account. Just make sure you have a Google account (Gmail, or Google
Apps), $25 (one-time registration fee), head to https://play.google.com/apps/publish/signup,
and you are all set.

Signing Your Application

Signing your application with Eclipse is a relatively simple process:

 1. Right-click your project in the Package Explorer and select File ➪ Export.

 2. Select Export Android Application.

 3. Complete the steps of the wizard and you will have a keystore, and a signed release build of
your app ready for the market.

When you have created your keystore, make sure to guard it safely. It is the fi le you will use to sign
your application every time you update, and if you lose it you cannot upgrade your application in
Google Play.

SIGNS OF THE TIMES

When you are signing your application you can use the export tooling built
into Eclipse. However, if you need to request a Google Maps API key for your
application, you will need to use the keytool and jarsigner applications to get the
hash of your signature. Information regarding these tools is available at http://
developer.android.com/guide/publishing/app-signing.html.

ANDROID DEVELOPMENT PRACTICES

This section covers the fundamentals of developing an Android application, explaining the
permissions in the Manifest and how you must always manage your navigation between Activities
using the back stack.

Android Fundamentals

When developing an Android app you need to account for which of the four basic components
(Activities, Services, Content Providers, and Broadcast Receivers) of apps you need to include.

c06.indd 172c06.indd 172 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

https://play.google.com/apps/publish/signup
http://developer.android.com/guide/publishing/app-signing.html
http://developer.android.com/guide/publishing/app-signing.html
http://www.it-ebooks.info/

Android Development Practices ❘ 173

Activities

Activities are the individual screens in your application. All of the functionality that is exposed in
the UI for that screen lives in the scope of that Activity.

Services

Services are components that run in a background thread. Common usages for services are to hold
long-running processes, or for functions that can happen in parallel with the application (playing
music from your library, or updating a web service). Be aware that when you have an application
running in the background it can take processing power from the device, though contrary to
popular thought it does not affect your battery life.

Content Providers

Content providers are interfaces to the offl ine storage that you have within your app. If you create a
suite of applications you may want to have a single point for holding all of your data. You can also
leverage the Content Providers built into the Android OS. The standard set of providers in the OS
allows you to get content from the Calendar, Contacts, Media Store, Messaging, and Voice Mail
applications.

Broadcast Receivers

Broadcast receivers are components that respond to system messages. You would use a Broadcast
Receiver to catch events like the screen turning off, or the battery reaching a critical level. A
common use for a Broadcast Receiver is for querying the status of the network (Wi-Fi or cellular) so
that you can display the appropriate messaging to the user.

Fragments as UI Elements

Starting in Android 3.x, there has been a shift in design elements to account for the signifi cant
differences between the screen sizes of tablets versus handsets.Whereas normally UI design for
mobile devices is very rigid, Fragments add a level of fl exibility. Fragments themselves live as a
subactivity that you can reference in multiple places in your application. Fragments live within the
scope of their parent activity, but can be used in multiple activities.

Ask for Permission

The users of your application must approve of what functionality you want to leverage on their
device. To prompt the user for what you need, and so that your device will behave as designed, you
need to add permission requests in your application’s manifest. Visit http://developer.android
.com/reference/android/Manifest.permission.html for a list the various permissions you can
request when developing.

Depending on what version of the OS you are targeting you are afforded additional permissions.
One of the newest permissions available is READ_SOCIAL_STREAM, which enables you to access the
user’s social stream. One of the oldest permissions is your ability to set the given time zone, using,
you guessed, it SET_TIME_ZONE.

c06.indd 173c06.indd 173 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://www.it-ebooks.info/

174 ❘ CHAPTER 6 GETTING STARTED WITH ANDROID

If you try to run a piece of code in the emulator and it should be responding to fi ring events
or listening to hardware, and it isn’t, make sure you have requested permission in your app.
Additionally, do not request every possible permission. Applications that do this are often
considered malware or at least not trustworthy by the layperson.

Mind the Back Stack

Unlike iOS-based devices, all Android devices have a hardware back button. What this means
is that there is something physical on the device that interrupts the UI and takes the user to the
previous action. This is known in the back stack. It can be likened to a browser history or a copy/
paste clipboard. How this differs from those, though, is that it must be stateful (to provide the least
jarring UI to your users). You must understand that you need to persist the state of the View when
returning to it from the back stack. Additionally, if the current view affects the state of the previous
view, you must update it accordingly without requiring the user to click a UI element; it needs to be
able to be updated when the user backs up the stack.

Now that this chapter has covered all the major sections of development in Android, the next
section will show how to build the demo Derby app in Android.

BUILDING THE DERBY APP IN ANDROID

The idea of the Derby app is to build the same app over all of the mobile platforms covered in this
book. The Android version is very similar to the other versions you have built thus far or will build
in future chapters.

The requirements are to list the roster from the Lansing Derby Vixens roller derby team as the
primary function, and then list all the roller derby teams in the world with the ability to see their
team rosters.

Common Interactions

The main ways to get your users around your app, and to let them know when events happen
or issues arise is by using well-managed UI navigation (and the back stack), and timely use of
notifi cations.

UI Navigation and Using Back Stack

Because Android devices are equipped with a dedicated hardware back button, you need to make
certain considerations as you pass from activity to activity within your application. The states
of activities are stored in a back stack that persists and allows users to walk back through the
navigation one button click at a time. Extras are stateful objects held within Intents that are the
primary way that you communicate between activities. Considered “the glue between activities”
(http://developer.android.com/reference/android/content/Intent.html) Intents provide a
simple storage mechanism that can be retrieved and set, and are passed between two activities.

Use the GetExtra command to retrieve simple and complex objects from one activity to another
using an Intent.

c06.indd 174c06.indd 174 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://developer.android.com/reference/android/content/Intent.html
http://www.it-ebooks.info/

Building the Derby App in Android ❘ 175

You can select the extras you want to refer to individually from the Intent. For example:

String id = getIntent().getStringExtra(“id”);
String name = getIntent().getStringExtra(“name”);

Or you can get all of the objects you passed along as a Bundle:

Bundle extras = getIntent().getExtras();
String userName;
String id;

if (extras != null) {
 userName = extras.getString(“name”);
 id = extras.getString(“id”);
}

Use the PutExtra command to put the object you want to pass between activities. You can pass
simple or complex objects. You need to use Extras only when you want to pass data between
activities. It is not necessary to set a complex state transfer process if you don’t need that data.

String username = “DerbyUser”;
String id = “derbyuser42”;
Intent newIdea = new Intent(this, newIdea.class);
newIdea.putExtra(“username”, username);
newIdea.putExtra(“id”, id);
startActivity(newIdea);

Notifi cations

You have lots of ways to display content to your users: either in your Base UI or through different
types of notifi cations. What follows is an explanation of toasts and alerts.

Toasts

A toast is a quick notifi cation that displays (by default) in a gray translucent box over your UI.

Context context = getApplicationContext(); //Find the application you are currently
running
CharSequence text = “Greetings from the App!”; //This is the message you want to share.

int duration = Toast.LENGTH_SHORT; //This is a constant in the SDK for a quick

notification

Toast toast = Toast.makeText(context, text, duration); //Create the toast object

toast.show(); //Display it for the duration now.

Alerts

Simpler even than toasts, alerts are very similar to JavaScript alerts in that they pop a modal
form with which you have very little ability to interact. You can set a button to represent
affi rmation, declination, and cancellation alerts. The following snippet of code shows how
to do that:

//Create a new AlertDialog using its builder respective to the current context.

new AlertDialog.Builder(this)

c06.indd 175c06.indd 175 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

176 ❘ CHAPTER 6 GETTING STARTED WITH ANDROID

.setTitle(“Alert Title”) //Set Title for the Alert

.setMessage(“Is this the message you expected?”) //Set Message for the alert

.setNegativeButton(“No”, null) //Set the Declination Button (Optional)

.setPositiveButton(“Yes”, null) //Set the Affirmation Button (Optional)

.setNeutralButton(“Who Cares”, null) //Set the Cancellation Button (Optional)

.show(); //Display the alert now.

Like all things in Android, you can customize notifi cations. You can fi nd more information on
customizing them at http://developer.android.com/guide/topics/ui/notifiers/index.html.

Offl ine Storage

Even though the bulk of Android devices are smartphones — which afford users an always-on,
always-connected experience — many reasons exist to store data on the device versus querying the
a service remotely. For simple or small pieces of data you can use Shared Preferences; for larger data
sets that may include complex objects, you can use SQLite.

SQLite

SQLite is a fl at-fi le database that runs inside the Android framework. You can use it to store large object
graphs or signifi cant amounts of data so that you aren’t constantly connecting to a remote source.

This is the base class for instantiating your SQLite instance in your Android app:

public class PersistingData extends Activity{
 private static final String DATABASE_NAME = “DerbyData”;
 private SQLiteDatabase db;
 private DatabaseOpenHelper dbhelper;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ConnectToDatabase(this.getApplicationContext());
 }

 public void ConnectToDatabase(Context context){
 dbhelper = new DatabaseOpenHelper(context, DATABASE_NAME, null, 1);
 }

 public void DB_Open() throws SQLException{
 db = dbhelper.getWritableDatabase();
 }

 public void DB_Close(){
 if (db != null){
 db.close();
 }
 }
}

This is a helper class to handle creating the database for you based on a predefi ned schema:

c06.indd 176c06.indd 176 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://developer.android.com/guide/topics/ui/notifiers/index.html
http://www.it-ebooks.info/

Building the Derby App in Android ❘ 177

public class DatabaseOpenHelper extends SQLiteOpenHelper{

 public DatabaseOpenHelper(Context context, String name,
 CursorFactory factory, int version) {
 super(context, name, factory, version);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 String loadSchema =
 “CREATE TABLE DerbyNames” +
 “(DerbyNameId integer primary key autoincrement,” +
 “name TEXT, Number TEXT, League TEXT, DateAdded DateTime);”;
 db.execSQL(loadSchema);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 }
}

SharedPreferences

SharedPreferences is a set of key-value pairs saved on your device that is helpful for storing
instance-specifi c data as it pertains to the app. The main concern is the level of privacy that
you impose upon it. If you make it world-readable its value can be accessed by any application
should another application query against your key. This function is an example of leveraging
SharedPreferences to store application preference for the user:

 SharedPreferences sharedPreferences = getPreferences(MODE_PRIVATE);
 SharedPreferences.Editor editor = sharedPreferences.edit();

 public void savePreferenceToSharedPreferences(String key, String value){
 editor.putString(key, value);
 editor.commit();
 }

 public String loadPreferenceFromSharedPreferences(String key)
 {
 String tmpRtn = sharedPreferences.getString(key, “”);
 return tmpRtn;
 }

Web Service

In Chapter 3 you developed a web service for the Derby application to call. This section goes over
what you need to do to consume this information. In this example you write out the data to the log:

public class DerbyDataActivity extends Activity {
 /** Called when the activity is first created. */
 @Override

c06.indd 177c06.indd 177 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

178 ❘ CHAPTER 6 GETTING STARTED WITH ANDROID

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 getLansingDerbyVixens();
 }

In the following part you are loading up the activity, and telling it to run your
getLansingDerbyVixens function.

public void getLansingDerbyVixens() {
 String requestURL = “http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/

DerbyNames?$filter=League%20eq%20’Lansing%20Derby%20Vixens’”;

Log.i(“DerbyData”, “getSurvey-Starting”);

 try {

 URL webRequest = new URL(requestURL);

 URLConnection tc = webRequest.openConnection();

 BufferedReader in = new BufferedReader(new InputStreamReader(tc.

getInputStream()));

 Log.i(“DerbyData”, “- before loading JSON”);

 StringBuilder surveyJSON = new StringBuilder();

 String currentLine = “”;

 while ((currentLine = in.readLine()) != null) {

 surveyJSON.append(currentLine);

 }

This continuing function makes a webRequest to your service, takes the content of the response,
and reads it in as a string. Because your service returns JSON you can deserialize each item in your
JSON string to a DerbyName object using your getDerbyDataFromJSON function.

if (surveyJSON != null) {
 Log.i(“DerbyData”, “getSurvey-Have Data”);

 ArrayList<DerbyName> derbyNames = getDerbyDataFromJSON(surveyJSON.toString());

Next you iterate through the returned ArrayList<DerbyName> object and print each item’s
properties in the log.

for(DerbyName item : derbyNames){
 Log.i(“DerbyData”, String.format(“Name=%s: Number=%s: League=%s”,

 item.getName(), item.getNumber(), item.getLeague()));

}

 }

 }

 catch(Exception e) {

 Log.e(“DerbyData”, “Error getting data” + e.getMessage());

 }

Log.i(“DerbyData”, “finished”);

}

c06.indd 178c06.indd 178 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/DerbyNames?$filter=League%20eq%20%E2%80%99Lansing%20Derby%20Vixens
http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/DerbyNames?$filter=League%20eq%20%E2%80%99Lansing%20Derby%20Vixens
http://www.it-ebooks.info/

Building the Derby App in Android ❘ 179

This function takes the JSON string and deserializes it into an ArrayList of DerbyName objects.
You iterate through the contents of the returned objects and assign them to properties inside an
instance of a DerbyName object, then add it to the ArrayList to be returned to your main function.

 public static ArrayList<DerbyName> getDerbyDataFromJSON(String surveyDerby) {

 ArrayList<DerbyName> tmpRtn = new ArrayList<DerbyName>();

 Log.i(“DerbyData”, “getDerbyDataFromJSON-Starting”);

 try {

 JSONObject fullJsonObject = new JSONObject(surveyDerby);

 JSONArray jsonNames = fullJsonObject.getJSONArray(“d”);

 // loop through each json derby name

 for (int i = 0; i < jsonNames.length(); i++) {

 DerbyName derbyName = new DerbyName();

 JSONObject result = jsonNames.getJSONObject(i);

 derbyName.setDerbyNameId(result.getInt(“DerbyNameId”));

 derbyName.setName(result.getString(“Name”));

 derbyName.setNumber(result.getString(“Number”));

 derbyName.setLeague(result.getString(“League”));

 tmpRtn.add(derbyName);

 }

 } catch (JSONException e) {

 Log.e(“DerbyData”,

 “getDerbyDataFromJSON-Error converting JSON to Derby Name” + e.getMessage());

 }

 Log.i(“DerbyData”, “getDerbyDataFromJSON-Finished”);

 // return

 return tmpRtn;

 }

}

The following class is the DerbyName object you have created to hold the data you get from the web
service. You have effectively created an entity to equate to a single item from the service.

public class DerbyName {
 private int DerbyNameId;
 private String Name;
 private String Number;
 private String League;

 public int getDerbyNameId() {
 return DerbyNameId;
 }
 public void setDerbyNameId(int derbyNameId) {

c06.indd 179c06.indd 179 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

180 ❘ CHAPTER 6 GETTING STARTED WITH ANDROID

 DerbyNameId = derbyNameId;
 }
 public String getName() {
 return Name;
 }
 public void setName(String name) {
 Name = name;
 }
 public String getNumber() {
 return Number;
 }
 public void setNumber(String number) {
 Number = number;
 }
 public String getLeague() {
 return League;
 }
 public void setLeague(String league) {
 League = league;
 }
}

Long-Running Tasks over the Web

Please be aware that if you are going to be downloading a lot
of data over any web request, or if you are in a high-latency
situation, you might want to look into using the AsyncTask
(http://developer.android.com/reference/android/
os/AsyncTask.html) for handling long-running tasks on a
background thread. If your main thread hangs for roughly fi ve
seconds, you can receive a message like the one shown
Figure 6-23.

GPS

The following function connects to your device’s GPS
(if available) and displays a toast of your latitude and
longitude when you go past its set threshold:

public class SensorsGPS extends Activity {

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 /* Use the LocationManager class to obtain GPS locations */

 LocationManager locManager = (LocationManager) getSystemService(Context.

LOCATION_SERVICE);

 LocationListener locListener = new MyLocationListener();

FIGURE 6-23: Common error when

your Service times out

c06.indd 180c06.indd 180 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/android/os/AsyncTask.html
http://www.it-ebooks.info/

Building the Derby App in Android ❘ 181

 locManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0,

locListener);

}

/* Class My Location Listener */

public class MyLocationListener implements LocationListener

{

 @Override

 public void onLocationChanged(Location loc) {

 loc.getLatitude();

 loc.getLongitude();

 String Text = “My current location is: “ + “\nLatitude = “ + loc.getLatitude()

+ “\nLongitude = “ + loc.getLongitude();

 Toast.makeText(getApplicationContext(), Text, Toast.LENGTH_SHORT).show();

 }

 @Override

 public void onProviderDisabled(String provider)

 {

 Toast.makeText(getApplicationContext(), “GPS Disabled”, Toast.LENGTH_SHORT).

show();

 }

 @Override

 public void onProviderEnabled(String provider) {

 Toast.makeText(getApplicationContext(), “GPS Enabled”, Toast.LENGTH_SHORT).

show();

 }

 @Override

 public void onStatusChanged(String provider, int status, Bundle extras) {}

}

Accelerometer

In order to track motion and position of the Android device you will leverage the device’s built-in
accelerometer as it monitors the x, y, and z axes of the device.

Following is a basic Activity that monitors the Accelerometer in your device:

public class SensorsAccel extends Activity {

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 /* do this in onCreate */

 mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);

 mSensorManager.registerListener(mSensorListener, mSensorManager.

getDefaultSensor(Sensor.TYPE_ACCELEROMETER), SensorManager.SENSOR_DELAY_NORMAL);

c06.indd 181c06.indd 181 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

182 ❘ CHAPTER 6 GETTING STARTED WITH ANDROID

 mAccel = 0.00f;

 mAccelCurrent = SensorManager.GRAVITY_EARTH;

 mAccelLast = SensorManager.GRAVITY_EARTH;

 }

 private SensorManager mSensorManager;

 private float mAccel; // acceleration apart from gravity

 private float mAccelCurrent; // current acceleration including gravity

 private float mAccelLast; // last acceleration including gravity

 private final SensorEventListener mSensorListener = new SensorEventListener() {

 public void onAccuracyChanged(Sensor sensor, int accuracy) {}

 @Override

 public void onSensorChanged(SensorEvent se) {

 float x = se.values[0];

 float y = se.values[1];

 float z = se.values[2];

 mAccelLast = mAccelCurrent;

 mAccelCurrent = (float) Math.sqrt((double) (x*x + y*y + z*z));

 float delta = mAccelCurrent - mAccelLast;

 mAccel = mAccel * 0.9f + delta; // perform low-cut filter

 }

 };

 @Override

 protected void onResume() {

 super.onResume();

 mSensorManager.registerListener(mSensorListener, mSensorManager.

getDefaultSensor(Sensor.TYPE_ACCELEROMETER), SensorManager.SENSOR_DELAY_NORMAL);

 }

 @Override

 protected void onStop() {

 mSensorManager.unregisterListener(mSensorListener);

 super.onStop();

 }

}

SUMMARY

This chapter outlined the best reasons to target Android as your framework. It covered how to
get your development environment confi gured, gave you solid examples of best practices while
developing your application and connecting with the Google Play, and fi nally how to implement the
Derby application with all its respective functionality within Android.

Chapter 7 will cover these same topics using the iOS stack, for targeting iPhone, iPod touch, and
iPad devices. Please note that development will require a computer running OSX.

c06.indd 182c06.indd 182 28/07/12 6:01 PM28/07/12 6:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with iOS

WHAT’S IN THIS CHAPTER?

 ➤ History of iOS

 ➤ Getting an iOS development setup

 ➤ Objective-C Basics

 ➤ iOS Project Basics

 ➤ Implementing the Derby App

This chapter is not intended to make you an expert iOS/Objective-C/Cocoa Touch developer;
it’s intended to give you an idea of what it takes to create a mobile application on the iOS
 platform. In our everyday interaction with developers, we have found that many developers
dread learning Objective-C, the native language used to create iOS applications. At technical
conferences, we have often sat in on beginning-level sessions on how to develop iOS applications,
where the presenter has said, “This is very diffi cult, you don’t want to do it.” We have no
idea why some of the developer community thinks this way. Code is code (unless you are
working with a functional language, but that’s a topic for a different day). Learning a new
programming language/framework takes time and a bit of passion — if you are reading this
book, we have no doubt in our mind that you can obtain some more Objective-C resources
and have what you need to become an Objective-C developer.

THE IPHONE CRAZE

The fi rst iPhone was revealed at the Mac World conference in early January 2007, and later
released in June of that year. Initially, third-party native applications were not allowed. Apple
executives argued that developers could build web (HTML/CSS) applications that would

7

c07.indd 183c07.indd 183 28/07/12 6:02 PM28/07/12 6:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

184 ❘ CHAPTER 7 GETTING STARTED WITH IOS

behave like native iPhone apps. Developers pushed back, and in October 2007 Apple announced an
SDK that allowed developers to create native iPhone applications. Many argue that Apple’s
decision to allow developers to create native applications was based on the fact that the Android
platform was going to be hitting the market soon, and was an extremely open and fl exible platform
in which developers could do things that they could not within iOS. The decision to allow native
apps within iOS created a new business model for developers, where small projects after work
hours have turned into full-fl edged companies. As of February 2012, the Apple App Store
contained more than 725,700 applications, which have collectively been downloaded more than
25 billion times.

Since June 2007, iPhones have helped drive the mobile boom. Apple converted a generation of iPod
users to iPhone users with simple and effective user interface practices, and made its product “cool.”
In May 2010, 59 percent of all mobile web data consumption in the U.S. came from iPhones. The
iPhone was a game changer: a personal organizer, gaming platform, web browser, and a phone all in
one small package.

Apple in Its Beauty

When Steve Jobs introduced the world to the iPhone he proclaimed it as a revolutionary product
that would change everything, with a brand-new “multi-touch” interface as breakthrough and as
breathtaking as the mouse interface that was introduced in the 1960s. We agree with this statement,
and feel that it was the iPhone that kick-started the mobile boom. The iPhone was marketed to
consumers, and its ease of use made just about everybody want one.

At the time of its release, the core uniqueness of the iPhone went far beyond its web browser and
tightly integrated web functionality. It was six core ideas (outlined in the following list) that changed
software applications and websites. Although there were “smartphones” on the market at the time
of release of the iPhone, it was not until after the iPhone was released that smartphone manufacturers
realized the importance of all of these features being combined to provide a great mobile
development platform.

Always on the Internet: A platform that had Internet access wherever cell phone coverage
was available opened the door for a new type of application to be developed. Without this
functionality, applications such as foursquare (an app that allows you to “check in” to
locations) would not exist. This core concept is easy for developers to develop for; the most
diffi cult part is coming up with an application idea.

Location-aware: The iPhone also introduced a platform that could detect where you were
based on your location. Apart from privacy concerns, this feature has been well received
in the developer and user community. Whether it’s a mapping application or an application
that lets you tag photos with your location, this feature opened tremendous opportunity for
developers to develop location-based apps that did not have to run on a standalone GPS.

Orientation-aware: In addition to location awareness, the iPhone offered a platform that
could now detect where in space the device existed. The app that made this feature popular
is Urbanspoon. Urbanspoon displays a random restaurant in your area based on criteria

c07.indd 184c07.indd 184 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

that you set. If you do not like the restaurant that it picks, you can “shake” the phone and
it will choose another one. This is a new type of UI feature that makes interfaces easier
to use.

The mobile gaming industry has also taken full advantage of the iPhone’s orientation
awareness, releasing many games that allow you use the device as the control stick; for
example, moving the iPhone left and right in a race car game makes the car turn left and
right, making it feel as though you are actually using a steering wheel.

Innovative input: The iPhone also represented a platform that could detect multiple
fi ngers as input, as well as a wide range of gestures such as swipe up, swipe down, tap, dou-
ble tap, and so on. With new input types, new UI patterns emerged helping make the small
screen of the mobile device easier to deal with.

High-quality, scalable screen: A huge selling point for the iPhone is its high-resolution
screen on which movies and photos can be viewed with stunning picture quality.

Power consciousness: Because the iPhone runs on battery, you as a developer need to watch
the power consumption of your application. Loops within your code can cause the CPU to
work hard, and when the CPU works hard it takes more power, causing your application
to drain the device’s battery, which could result in negative comments from users. Years
ago, developers worked to keep the size of applications small; for mobile development, you
should pay close attention to how an application is coded, and ensure it doesn’t use too
much power.

Apple Devices

Throughout the years, Apple has produced many different types of mobile devices. From the iPod
classic to the iPhone, Apple has created great products, but has not always opened these products
up for developers to create apps for or modify them. For the purpose of this chapter, we are going to
discuss iPhone, iPod touch, and the iPad. Although each of these devices runs a version of iOS, it’s
important to note that older devices may not be able to run the latest version of iOS. For example, if
your company tasked you with creating an app for your sales department and the entire sales team
had iPhone 3Gs, you could not take advantage of the great features in iOS 5.0, because these devices
run only in iOS 4.2.1 and below.

iPhone

The iPhone may well be the reason why you are reading this book. Since its introduction in
2007, the iPhone has helped fuel the mobile boom that is currently underway. It has been the thorn
in the side of many IT departments, from networking issues (employees bringing their own devices to
work, which raises security concerns) to development issues (making your applications run on iOS).
From 2007 to December 2011 fi ve devices have been released. It’s important to understand the close
relationship between the iOS hardware and software. Meaning, not all versions of iOS will run on
all iOS hardware. As device hardware becomes dated, Apple stops releasing iOS updates. Table 7-1
shows iOS hardware with the version of iOS that shipped with the device and the maximum version
that can be installed on the device.

The iPhone Craze ❘ 185

c07.indd 185c07.indd 185 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

186 ❘ CHAPTER 7 GETTING STARTED WITH IOS

TABLE 7-1 iPhone Hardware and iOS Versions

DEVICE SHIPPED IOS VERSION MAX IOS VERSION

 iPhone iOS 1.0 iOS 3.1.3

iPhone 3G iOS 2.0 iOS 4.2.1

iPhone 3GS iOS 3.0

iPhone 4 iOS 4.0

iPhone 4S iOS 5

iPod Touch

After the release the original iPhone, Apple added a new product to the iPod product line: the iPod
touch. This device was built on iPhone technology, looked identical to the iPhone, and used the same
480 × 320 multitouch screen, but it was not a phone. This was a great option for consumers who
wanted the iPhone experience, but did not want to pay the fees for a cell phone contract. Because of
its lack of cellular connectivity, this device could access the Internet only through a wireless Internet
connection. Table 7-2 shows iOS hardware with the version of iOS that shipped with the device and
the maximum version that can be installed on the device.

TABLE 7-2 iPod touch Hardware and iOS Versions

DEVICE SHIPPED IOS VERSION MAX IOS VERSION

1st generation iOS 1.1 iOS 3.1.3

2nd generation iOS 2.1.1 iOS 4.2.1

3rd generation iOS 3.1.1

4th generation iOS 4.1

iPad

Introduced in January of 2010, the iPad was another revolutionary product from Apple. When the
iPad was fi rst released, many argued it was just a big iPod touch, which was partially true. You
could purchase a cellular data plan so that the device could access data but not phone service. The
same great UI that made the iPhone and iPod Touch famous was now available with a 1024 × 768
screen size.

The iPad pushed the mobile boom even more, with many industries seeing the benefi t that a tablet
computer could provide. With two models containing different data storage sizes and access to
cellular data, the iPad is leading the way in tablet computing. Table 7-3 shows iOS hardware with
the version of iOS that shipped with the device and the maximum version that can be installed on
the device.

c07.indd 186c07.indd 186 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 187

TABLE 7-3 iPad Hardware and iOS Versions

DEVICE SHIPPED IOS VERSION MAX IOS VERSION

iPad iOS 3.2

iPad 2 iOS 4.3

iPad 3 iOS 5.1

GETTING THE TOOLS YOU NEED

Developing for iOS is not a matter of opening up your favorite text editor and going to town. You
may need to do a bit of planning, with the fi rst (and most expensive) being hardware. Depending
on your development intentions you may need to pay Apple for the honor of being an iOS developer
as well.

Hardware

Oftentimes we are asked, “Do I really need to have a Mac?” The answer is yes. To develop iPhone,
iPod, and iPad applications you must have a Mac. The iPhone SDK runs only on Mac OS X. The
only sanctioned hardware for iPhone, iPod, and iPad development is an Intel-based Macintosh.

If you are having a hard time justifying the cost of the hardware, we have had great luck with
getting refurbished machines direct from Apple at the following URL:

http://store.apple.com/us/browse/home/specialdeals/mac

Because we work in many different languages and platforms each day, all of the developers we work
with have Mac computers. The developers we work with mainly in .NET like to say the Macs are
the best Windows machines they have ever had.

Program Levels

If you do not have an Apple Developer account, you can create a free account at https://
developer.apple.com/. Having the Apple Developer account allows you to create iOS applications
and run them locally on your machine using the iOS Simulator. To deploy applications you have created
to a physical device (iPhone, iPad, iPod Touch) you must belong to the iOS Developer program. This
is where the money comes in. These programs and prices change from time to time, so please use
the following only as a guide, and check https://developer.apple.com/programs/start/ios/
before making any mission-critical decisions.

iOS Developer Program

This program level allows developers to distribute apps in the App Store as an individual, a sole
proprietor, a company, an organization, a government entity, or an educational institution. The cost
for this program is $99 a year, and you are allowed to name 100 devices within your iOS Developer
account (which is covered in the device section of this chapter).

c07.indd 187c07.indd 187 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://store.apple.com/us/browse/home/specialdeals/mac
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/programs/start/ios/
http://www.it-ebooks.info/

188 ❘ CHAPTER 7 GETTING STARTED WITH IOS

iOS Developer Enterprise Program

This program level allows developers to develop proprietary apps for internal distribution within
your company, organization, government entity, or educational institution. The cost for this
 program is $299 a year. This level of the program will not allow you to distribute apps through the
App store, but allows ad hoc distributions (distribute directly to a device without using the App
Store) to devices in your organization. A valid Dun & Bradstreet (DUNS) number is required, and
this program level will take a little bit longer to get enrolled in. We have seen this process take well
over a month before acceptance into the program.

iOS Developer University Program

This program level allows higher-education institutions to create teams of up to 200 developers that
can develop iOS applications. This program level is free, and allows for programs to be tested on
physical devices, but does not allow for ad hoc or App Store deployment.

The iOS Provisioning Portal

No matter which level of Apple Developer program you registered for, you will have access to the
iOS Provisioning Portal. This is the section of the iOS Developer Center that allows you to create
the fi les necessary to deploy development and distribution (production) builds onto physical devices.

Certifi cates

During the development process of your iOS app, you will more than likely create both a development
and a distribution certifi cate. These certifi cates are used to digitally sign the app, and verify you are
who you say you are. Figure 7-1 shows the iOS Provisioning Portal Certifi cate section, found within the
iOS developer account web interface; here both development and distribution certifi cates are created.

FIGURE 7-1: iOS Provisioning Portal certifi cates

c07.indd 188c07.indd 188 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 189

App IDs

Each iOS application that you create (that you intend to deploy to a device) needs to be identifi ed on
the App IDs section of the iOS Provisioning Portal. The app ID that is created is a unique ID that
contains a number from Apple and then a bundle identifi er that you specify. The bundle identifi er is
usually in the format com.companyname.appname. As you start to develop more applications, they
tend to become messy in this interface, as shown in Figure 7-2.

FIGURE 7-2: iOS Provisioning Portal App IDs

Devices

The Devices section in the iOS Provisioning Portal section allows developers to maintain a list of
devices in which their iOS applications will be developed. These are the devices that are either used
for testing your app or for ad-hoc deployments. The number of devices that you can register on this
screen relates to the type of Apple Developer account level you selected. For example, if you registered
at the iOS Developer level, you will be able to add 100 devices. This number is 100 per year, meaning
if you add 100 devices and then delete 10, you are still out of spaces for accounts until you re-enroll
in the program the following year, which will still only have a maximum of 100 devices.

This can become problematic if you are developing iOS applications for multiple customers who
have not set up accounts for themselves. It’s important to manage and plan ahead for the amount
of devices you will need. Figure 7-3 shows that there is room for only 16 more devices in this
account.

c07.indd 189c07.indd 189 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

190 ❘ CHAPTER 7 GETTING STARTED WITH IOS

Provisioning Files

After the certifi cate, the app ID, and devices have been created/added, you can then create a provi-
sioning profi le. The provisioning profi le combines the information about which apps/certifi cates can
be installed on which devices. As with certifi cates there will be a Development and Distribution
version. Figure 7-4 shows the Provisioning section within the iOS Provisioning Portal.

FIGURE 7-3: iOS Provisioning Portal provisioning devices

FIGURE 7-4: iOS Provisioning Portal Provisioning Profi le

c07.indd 190c07.indd 190 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 191

FIGURE 7-5: iOS Dev Center

With all of the Apple administrative tasks complete with regard to setting up an account and obtaining
provisioning profi les and certifi cates, you can move on to installing the xCode IDE and starting to
work with the iOS SDK.

xCode and the iOS SDK

To create native iOS applications, you will need to install both the xCode IDE as well as the iOS SDK.
Although you can obtain xCode by using the App Store within Mac OS X, we recommend download-
ing xCode and the SDK from the downloads section in the iOS Dev Center as shown in Figure 7-5.

Installation

After you follow the steps to install xCode, you should have the xCode IDE as well as a great deal
of other useful development tools installed to /Developer/Applications, as shown in Figure 7-6.

c07.indd 191c07.indd 191 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

192 ❘ CHAPTER 7 GETTING STARTED WITH IOS

FIGURE 7-7: xCode startup screen

FIGURE 7-6: Development tools

You can start xCode from this directory or by using spotlight. After you start xCode, you should
see a screen similar to the one shown in Figure 7-7.

Components of the iPhone SDK

The iPhone SDK includes a great number of tools that help create iOS for apps. These tools range
from debugging and profi ling to developing. This section lists the most common tools that we
use that are included in the iOS SDK.

c07.indd 192c07.indd 192 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

iOS Project ❘ 193

xCode

xCode is Apple’s Integrated Development Environment (IDE) for creating Objective-C
applications. xCode enables you to manage, author, and debug your Objective-C projects.

Dashcode

Dashcode is an IDE that enables you to develop web-based iPhone/iPad applications and Dashboard
widgets. This product is not in the scope of this book as it is considered an advanced topic.

iPhone Simulator

This tool provides a method to simulate an iPhone or iPad device on your Mac, for use with testing
your iOS applications.

Interface Builder

The Interface Builder, or IB, is a visual editor that is used for designing the user interface for your
iOS application.

Instruments

Instruments is a suite of tools that helps you analyze your iOS application and monitor for performance
bottlenecks as well as memory leaks in real time while attached to an iOS device or iOS Simulator.

The iOS Human Interface Guideline

The iOS Human Interface Guideline (HIG) document is one of the most valuable tools to the iOS
developer. The iOS HIG describes guidelines and principles that help the iOS developer design a
superlative user interface and user experience. It is very important for new iOS developers to read
through this document; if you do not develop using the UI principles found in the HIG, your
application could be rejected when submitted to the Apple App Store.

The UI standards that Apple puts in place for developers can cause heated conversation. One side of
the argument is that developers are locked into obeying a set of rules that cost time and money to
learn and implement. The other side of the argument is that Apple has provided a standard UI for
applications that have been created for the platform, thus giving the user a great experience no
matter who creates the app.

You can fi nd the iOS HIG at http://developer.apple.com/library/ios/#documentation/
UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html#/apple_ref/

doc/uid/TP40006556.

With the xCode IDE and iOS SDK installed, you can now examine what exactly makes up an iOS
project with respect to fi les and code.

IOS PROJECT

By now you may be thinking that you need to follow a lot of steps before you start creating an iOS
application. This may be the reason many seasoned iOS developers try to steer new developers from
the platform. Although it takes a lot of steps to get going, they are not complicated or diffi cult; it’s
just a matter of learning them and why they exist, which is covered in the remainder of this chapter.

c07.indd 193c07.indd 193 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html#/apple_ref/doc/uid/TP40006556
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html#/apple_ref/doc/uid/TP40006556
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html#/apple_ref/doc/uid/TP40006556
http://www.it-ebooks.info/

194 ❘ CHAPTER 7 GETTING STARTED WITH IOS

With all of the “setup” out of the way, we can focus on getting into the IDE and looking at code.

Anatomy of an iOS App

iOS .app fi les, the fi les that are actually deployed to the iOS device, are just a set of directories.
Although there is an actual binary for the iOS application, you can open the .app fi le and fi nd the
images, meta data, and any other resources that are included.

Views

iPhone apps are made up of one or more views. Views usually have GUI elements such as text fi elds,
labels, buttons, and so on. You can build a view built using the Interface Builder tool, which enables
you to drag and drop controls on the view, or you can create a view entirely with code.

Code That Makes the Views Work

Because iOS applications follow the MVC design pattern, there is a clean break between the UI and
code that provides the application code.

Resources

Every iOS application contains an icon fi le, an info.plist fi le that holds information about the
application itself and the binary executable. Other resources such as images, sounds, and video are
also classifi ed as resources.

Project Structure in Depth

When an iOS project is created within xCode, the IDE creates a set of fi les
that are ready to run. These fi les provide the basics of what is needed to get
going with a new project. Figure 7-8 shows the fi les that are created for a
new project named DeleteMe.

Main.m

As with any C program, the execution of Objective-C applications start
from the main() function, which is the main.m fi le.

AppDelegate.m

The AppDelegate receives messages from the application object during the
lifetime of your application. The AppDelegate is called from the operating
system, and contains events such as the didFinishLaunchingWithOptions,
which is an event that iOS would be interested in knowing about.

MainStoryBoard.storyboard

This is where the user interface is created. In past versions of xCode/iOS the user interface was
stored within .xib (pronounced NIB) fi les. Although this method is still supported, Storyboards are
a great improvement over .xib fi les for applications with complex navigation and many views.

FIGURE 7-8: Anatomy

of an iOS app

c07.indd 194c07.indd 194 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

iOS Project ❘ 195

FIGURE 7-9: Project Navigator

Supporting Files

The supporting fi les directory contains fi les such as the plist setting fi les (which contain customiz-
able application settings), as well as string resource fi les that are used within your app.

Getting to Know the xCode IDE

It’s important to use the correct tool for the job, regardless of whether you are constructing a house
or constructing an application. If you are new to xCode, there will be a bit of a learning curve to
becoming profi cient with the IDE, but xCode is a top-notch IDE with many features for you to discover.

Navigators

The left side of the xCode window is known as the navigator area. A variety of navigators enable
you to list the contents of your project, fi nd errors, search for code, and more. The remainder of this
section introduces the Project Navigator, the Search Navigator, and the Issue Navigator.

Going from left to right, the project navigator is the fi rst of the xCode navigators; the icon looks
like a fi le folder. The Project Navigator simply shows the contents of your project or workspace, as
shown in Figure 7-9. Double-clicking a fi le in the Project Navigator opens the fi le in a new window,
and single-clicking opens the fi le within the xCode workspace.

c07.indd 195c07.indd 195 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

196 ❘ CHAPTER 7 GETTING STARTED WITH IOS

FIGURE 7-10: Search Navigator

The Issue Navigator lists project warnings and errors in real time as you make mistakes. This navi-
gator shows any issues preventing your code from compiling, as shown in Figure 7-11.

The Search Navigator helps you locate text within your project or workspace as shown in
Figure 7-10.

c07.indd 196c07.indd 196 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

iOS Project ❘ 197

FIGURE 7-11: Issue Navigator

Storyboards

In iOS versions prior to iOS 5, developers needed to create a separate XIB fi le for each view of their
application. A XIB fi le is an XML representation of your controls and instance variables that get
compiled into the application. Managing an application that contains more than a few views could
get cumbersome.

iOS 5 contained a new feature called storyboards that enables developers to lay out their workfl ow
using design tools built within xCode. Apps that use navigation and tab bars to transition between
views are now much easier to manage, with a visual representation of how the app will fl ow.
Transitions and segues are used to switch between views, without ever having to code them
by hand.

c07.indd 197c07.indd 197 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

198 ❘ CHAPTER 7 GETTING STARTED WITH IOS

With Storyboards, you will have a better conceptual overview of all the views in your app and
the connections between them. Figure 7-12 is an example of a Storyboard for an application that
contains a tab bar for navigation to three other views. Segues are the arrows that connect the views.

FIGURE 7-12: Sample Storyboard

c07.indd 198c07.indd 198 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging iOS Apps ❘ 199

DEBUGGING IOS APPS

A bug discovered in the fi eld is much more expensive to fi x than bugs that are found on a developer’s
machine or during the quality assurance process. Modern-day IDEs provide a great deal of tooling
that helps developers fi nd issues in their code before it reaches production.

The iOS Simulator

Developers use the iOS Simulator as their fi rst way of fi nding issues with the code they just created.
The iOS Simulator enables developers to run their iOS applications on their Macs without having
to have a physical iOS device. The Simulator is a great tool for testing your apps quickly. The iOS
Simulator is very quick to load, compared to other simulation tools for other mobile platforms. The
iOS Simulator is also a great tool for HTML/CSS experts to have installed as well to test mobile
webpages rendered within the mobile Safari web browser. Figures 7-13 and 7-14 show the Simulator
simulating an iPhone and iPad, respectively.

The term “debugging” was made popular by Admiral Grace Murray Hopper,
who was working on a Mark II computer at Harvard University in August 1945,
when colleagues discovered a moth stuck in a relay that was causing issues with
the system. She made the comment they were “debugging the system.”

FIGURE 7-13: iOS

Simulator simulating an

iPhone

FIGURE 7-14: iOS

Simulator simulating an

iPad

c07.indd 199c07.indd 199 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

200 ❘ CHAPTER 7 GETTING STARTED WITH IOS

By no means is the Simulator the only tool you should use for testing your app. Although the
Simulator is great for testing some things, it lacks in other areas. Not all applications that are avail-
able on a physical iOS device are available within the Simulator. Besides that, memory, performance,
accelerometer, and camera functionality cannot be tested reliably in the Simulator.

One nice feature of the iOS Simulator is the ability to test various iOS versions, as shown in
Figure 7-15.

FIGURE 7-15: iOS Simulator version options

The iOS Simulator is not an emulator. An emulator tries to mimic the behavior
of a real device. The iOS Simulator simulates real behavior of the iOS device,
but relies on various libraries that are installed on the Mac, such as QuickTime,
to perform renderings so that it looks like an actual iPhone. Applications that
are deployed to the iOS Simulator are compiled to x86 code, whereas on a real
iOS device the code would be compiled to ARM-based code.

Debugging Code

As with many modern-day IDEs, Apple and the xCode team have put a great deal of time and effort
into creating a set of tools to aid developers in their quest for hunting bugs.

When it boils down to it, developers want tools that make their life easier — tools to step through
the code, view log messages, as well as see the state of their variables. xCode provides tools for these
features, and much more.

c07.indd 200c07.indd 200 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging iOS Apps ❘ 201

The debugging tools within xCode are located at the bottom of the workspace window. If you do
not see the debugging tools, you can click View ➪ Debug Area ➪ Show Debug Area from the xCode
menu (see Figure 7-16) to make the debugging tools visible.

FIGURE 7-16: The Debug area

Local Window

When the debug area is enabled, the local window shows you a list of all of the variables that are
 currently within scope of your current breakpoint, and enables you to view details about each vari-
able. Figure 7-17 shows the local window, and you can see that an object named derbyNameDetail
that is of type NSCFArray contains 908 elements within the array.

FIGURE 7-17: The local window

c07.indd 201c07.indd 201 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

202 ❘ CHAPTER 7 GETTING STARTED WITH IOS

Breakpoints

You can set breakpoints by clicking on the “gutter” next to the line of code where you would like
the application to break. Breakpoints can be enabled and disabled; disabled breakpoints have an
opaque blue color, whereas active breakpoints are a solid blue, as shown in Figure 7-18.

FIGURE 7-18: Breakpoints added to the gutter

The top of the debug area contains the Breakpoint toolbar, with tools that enable you to Step Over,
Step Into, Step Out, and continue execution of your code. These tools are located in the Debug
Area’s toolbar, as shown in Figure 7-19.

FIGURE 7-19: Breakpoint toolbar

Output

The output section of the Debug Area gives important information about the execution of the app,
as well as displays any log messages you may add in your code. Figure 7-20 shows the application
output of an application that logged information received from a web service.

c07.indd 202c07.indd 202 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging iOS Apps ❘ 203

Call Stack

When hunting for bugs, it’s useful to follow the execution path of a particular feature, in hopes of
fi nding the issue. Figure 7-21 shows the stack trace window within xCode.

FIGURE 7-20: Output window

FIGURE 7-21: The call stack window

c07.indd 203c07.indd 203 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

204 ❘ CHAPTER 7 GETTING STARTED WITH IOS

Instruments

Suppose you’ve spent the last few weeks working nights to get a version of an iOS app ready for
release, but after you use your application for about 15 minutes, it stops for no reason. You think
it may be a memory leak of some kind, but are not completely sure because the log messages
were pretty cryptic. Instruments is the tool for you. Instruments can be found in the Developer ➪
Application directory. Tools within the Instruments tool suite enable you to track down memory
issues and help fi nd slow-running code. Instruments is one of our favorite tools found within xCode,
because it helps us fi nd those hard-to-replicate issues. Figure 7-22 shows a few of the trace templates
that are available for iOS.

FIGURE 7-22: Instruments analysis tools

OBJECTIVE-C BASICS

Objective-C is an object-oriented language based on the C programming language. Objective-C
adds Smalltalk-style messaging, which throws even the seasoned polyglot programmer for a loop
when starting with this language. Objective-C was created in the early 1980s by Brad Cox and Tom
Love, and gained popularity when Steve Jobs and NeXT licensed the language from them, and made
Objective-C the main language on NeXT’s NextSTEP operating system.

c07.indd 204c07.indd 204 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Objective-C Basics ❘ 205

Objective-C requires developers to declare a class in an interface and then defi ne the implementation,
something that non-C developers fi nd off-putting about the language. If you are comfortable
developing in C languages, Table 7-4 will help you fi nd your bearings when getting started with
Objective-C.

TABLE 7-4: Equivalencies between C languages and Objective-C

C/C++ OBJECTIVE-C

#include “library.h” #import “library.h”

this self

private: @private

protected: @protected

public: @public

Y = new MyClass(); Y = [[MyClass alloc] init];

try, throw, catch, fi nally @try, @throw, @catch, @fi nally

Classes

The interface of Objective-C classes is defi ned in a header fi le for each interface. Usually the
fi lenames of the header match the class name. For example, you can create a header fi le named
dog.h:

@interface Dog : Animal {
 // instance variables
}

// Method declarations

@end

You are telling the compiler that a new class named Dog, which is a subclass of animal, is being
declared. Any instance variables are declared between the curly brackets, and methods are declared
between the end of the curly bracket and the @end keyword.

The actual implementation of the Dog class would look like this:

#import “dog.h”
@implementation Dog
// method definitions
@end

c07.indd 205c07.indd 205 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

206 ❘ CHAPTER 7 GETTING STARTED WITH IOS

Instance Variables

The attributes that are declared between the curly brackets are instance variables. Instance variables
are declared like local or global variables, but have a different scope. Instance variables by default are
visible in all instance methods of a class and its subclasses.

Methods

Methods can be declared as either instance methods or class methods. Instance methods are called
by sending a message directly to the instance of the class, which means you need to have your own
instance of the class before you can call these methods. Instance methods are prefi xed with a minus
sign (-). The following is an example of the declaration for an instance method that returns the
name of the animal, and takes no parameters:

-(NSString) getNameOfAnimal;

A class method does not require an instance of a class. You call a class method by sending a message
to the unique class object. C# or Java developers may recognize class methods as static methods.
The following method returns an array containing a list of all nonextinct animals:

+(NSArray) getNonExtinct();

Calling Methods

You may have noticed that Objective-C is heavy on the use the brackets. In Objective-C, methods
are not called in the traditional sense; their objects are sent messages. The syntax for sending
messages is to enclose the name of the object and the message with square brackets:

[object method];
[object methodWithInput:input];

Methods can return values:

output = [object methodWithOutput];
output = [object methodWithInputAndOutput:input];

Objective-C 2.0 provides a dot-notation that can be used to invoke methods. Many new Objective-C
developers like this syntax because it looks like other languages in which they are more profi cient.

Implementation in Non-Dot Notation:

int lastLocation = [myAnimal getLastLocation];

Implementation in Dot Notation:

int lastLocation = myAnimal.getLastLocation;

Control Structures

Oftentimes when learning a new language, we like to look at the control structures to get an idea of
how to implement these types of structures.

c07.indd 206c07.indd 206 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Objective-C Basics ❘ 207

If Statements

If statements are pretty straightforward in Objective-C. The following example checks to see if an
array of animal names contains a name “luna”:

NSArray *animalNames = ...
NSString* nameOne = @”luna”;

if ([animalNames containsObject: nameOne])
{
 ...
}
else
{
 // do something else
}

For Loops

The standard C for loop can be used to iterate over an enumerable object such as an array in
Objective-C. The following example loops over an array of animal objects and prints their location
to the console screen:

NSArray *animals = ...
NSUInteger animalCount = [animals count];

for (j=0; j < animalCount; j++)
{
 NSLog([[animals objectAtIndex: j] getLastLocation]);
}

Fast Enumeration

Objective-C 2.0 also gives us new syntax for a control structure called Fast Enumeration. Fast
Enumeration is easier for developers to code, and runs faster than other traditional loops such as
for and while loops.

NSMutableArray *animals = ...

for (Animal *singleAnimalObject in animals)
{
 NSLog([singleAnimalObject getLastLocation]);
}

Try Catch

Error handling is one of those developer religious debates that we are not going to get into in this
chapter. We will tell you that exception handling in Objective-C is expensive, and was designed for
catching programmer errors or other nonrecoverable problems. If you can test for an error condition
in advance, you should do so rather than catching exceptions. Your code will run must faster.

c07.indd 207c07.indd 207 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

208 ❘ CHAPTER 7 GETTING STARTED WITH IOS

The following example illustrates the structure of exception handling in Objective-C:

@try {
 // code that may cause the exception
}
@catch (NSException *e) {
 //exception is caught and logic should be added to handle the exception
}
@finally {
 // code that should be executed no matter if an exception has occurred or not.
}

Now that the Objective-C basics are covered, you can dive in and create your fi rst native iOS app
with Objective-C and the iOS SDK.

HELLO WORLD APP

Before you can run, you need to walk. We are not huge fans of creating Hello World–type apps, but
with the iOS SDK and Objective-C so different from many other application frameworks, we felt it
made sense.

This section illustrates the steps needed to create a simple iOS application that contains a label and
a button. When the button is touched, the text in the label changes. This allows us to explain xCode
and the various tools contained within xCode that are required when making an iOS application.

Creating the Project

After opening xCode, create a Single View Application project type found under the iOS project
types, as shown in Figure 7-23. When you select a Single View Application, xCode generates the
fi les you need to start creating an iOS app that has only one view.

FIGURE 7-23: iOS project template

c07.indd 208c07.indd 208 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Hello World App ❘ 209

After you select a project template, you are prompted to enter the project level options as shown in
Figure 7-24.

FIGURE 7-24: iOS project options

For this example, enter a product name of Hello World, target the iPhone, set the company identifi er
to whatever you choose, and leave the default settings for the rest.

Product Name

xCode uses the product name you enter to name your project and the application. If you want your
application name to show up differently in iOS, there is an option in the .plist fi le to set the
display name of the app.

Company Identifi er

This identifi er is used to generate the bundle identifi er for the iOS app. The company identifi er is
usually something like com.gravityworksdesign.

Bundle Identifi er

The bundle identifi er is automatically generated for you and is a combination of the product name
and company identifi er. This identifi er is used when provisioning your app to be installed on devices.
The bundle identifi er is unique to an app, and the Apple developer tools will not allow you to provi-
sion an app when an existing app is using the same bundle identifi er.

Class Prefi x

The text you enter into the Class Prefi x fi eld is prefi xed to the fi lenames and class names of all
header and implementation fi les.

c07.indd 209c07.indd 209 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

210 ❘ CHAPTER 7 GETTING STARTED WITH IOS

Device Family

This option enables you to target which type of device your application will run on: iPhone, iPad,
or Universal. Universal allows your application to be run on both iPhone and iPad. Beneath Device
Family are three checkboxes:

 ➤ Use Storyboard: As mentioned previously in this chapter, Storyboards are new to iOS 5.
They are a great feature to aid in iOS development, but some developers are stuck in their
ways, and may not like Storyboards (or may have some other valid reason). This option
creates .xib fi les for each view just like previous versions of the iOS SDK/xCode.

 ➤ Use Automatic Reference Counting: A new feature to iOS 5, automatic reference counting
manages memory so that developers do not have to do it themselves. Automatic reference
counting can be considered a type of garbage collection mechanism. If you are creating an
application that needs to be deployed on versions of iOS less than 5, automatic reference
counting is not supported, so this option must be disabled.

 ➤ Include Unit Tests: When this option is checked, xCode generates the fi le structure for a set
of unit tests for your iOS application. It is your responsibility to create and maintain these
unit tests.

After the project has been created, you will see a screen similar to Figure 7-25. This screen contains the
project level options for your app. On this screen, you can add a launch image (splash screen), the app
icon, target-specifi c device orientations, target-specifi c versions of iOS, and the list goes on and on.

FIGURE 7-25: iOS Project screen

c07.indd 210c07.indd 210 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Hello World App ❘ 211

You do not have to do anything on this screen for the Hello World app.

Creating the User Interface

The user interface is fairly simple for this app. It has a label and a button. We are not going to get
fancy with any UI elements, but feel free to explore and extend the application to get a feel of your
fi rst iOS app.

Controls in the View

From the Project Navigator, select the MainStoryboad.storyboard fi le. You then need to put a
label control on the view. You can fi nd the controls that you have access to on the bottom right of
the IDE in the Object Library. Find the label control, and drag the control to the storyboard. Your
app should look similar to Figure 7-26 now.

FIGURE 7-26: Hello World Storyboard

When you click the label in the storyboard, you should see settings that are specifi c to that control
in the upper-right side of xCode in the Identity Inspector. The Identity Inspector is a settings tool,
which enables you to control font color, size, and other options specifi c to the control you are
working with. Figure 7-27 shows the Identity Inspector interface when editing the settings for a
button.

c07.indd 211c07.indd 211 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

212 ❘ CHAPTER 7 GETTING STARTED WITH IOS

The next step is to add a button to the view. Buttons are added like the
label control, by dragging the control onto the view. In this example
set the button text to say Change Label.

Wiring Up the Controls

By this point you should have a view that contains two controls: a label
and a button. If you run your application, you should see the interface
you developed in the iOS Simulator, but you have not told the applica-
tion to do anything yet. Wiring up the controls to events can be tricky
for new developers on this platform.

The fi rst thing you want to do is to show the Assistant Editor. You can
toggle this editor on and off by selecting the “Tuxedo” button near the
upper-right side of the IDE, as shown in Figure 7-28.

Depending on where you have the Assistant Editor set to show, yours
may be placed differently than the following screenshots. To change
where exactly on the screen the Assistant Editor shows, you can select
View ➪ Assistant Editor from the xCode menu and then select where
you would like the editor to show.

Defi ning the Label

The next step is a bit tricky. You need to defi ne your controls in the
header fi le. To do this, hold down the Control key on the keyboard,
and click and drag your label control from the storyboard to the header
fi le that is shown in the Assistant Editor (see Figure 7-29).

FIGURE 7-27: xCode

control-specifi c settings

FIGURE 7-28: Toggling the

Assistant Editor

FIGURE 7-29: Defi ning controls

c07.indd 212c07.indd 212 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Hello World App ❘ 213

Once you release the mouse, a dialog box
appears asking you to name the object. We
like to follow Hungarian notation for control
names, so name the label lblChangeMe as
shown in Figure 7-30.

Wiring the Button

Wiring the event for the button is similar to defi ning the
event. If you right-click the button you see a dialog box
similar to the one shown in Figure 7-31.

You are most interested in the Touch Up Inside event, which
is the event that occurs when a fi nger is raised off the
control. This is where you want to add logic . To do this,
simply click the circle next to the Touch Up Inside event, and
drag it to the Assistant Editor as shown in Figure 7-32. As
with the label, you are prompted for a name; name this one
btnChangeText_click.

FIGURE 7-30: Naming the control

FIGURE 7-31: Right-clicking a control

FIGURE 7-32: Defi ning the Touch event

c07.indd 213c07.indd 213 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

214 ❘ CHAPTER 7 GETTING STARTED WITH IOS

Like all Hello World–type apps, the intention was to give you an idea of the project structure and
basic interaction between the UI and code. To build upon this, the next section tackles a more
complex native iOS app.

BUILDING THE DERBY APP IN IOS

The idea of the Derby App is to build the same app over all of the mobile platforms covered in this
book. The iOS version is very similar to the other versions that you have built thus far or will build
in future chapters.

Writing the Code

With the UI completed and wired up, you can now tell your app what you want the Touch event to
do when touched. To do this, open the ViewController.m fi le, and add the following method:

- (IBAction)btnChangeText_click:(id)sender {
 NSString* newText = @”My new text”;

 lblChangeMe.text = newText;
 NSLog(newText);
}

This code defi nes a new string, sets the label text to the new string, and then logs the new string to
the event viewer. If you followed the steps correctly, your app should look similar to Figure 7-33
in your iOS Simulator, and you should see a log fi le similar to Figure 7-34 in the output window
of xCode.

FIGURE 7-33: Completed

Hello World iOS app FIGURE 7-34: Output of the Hello World app

c07.indd 214c07.indd 214 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Building the Derby App in iOS ❘ 215

The requirements are to list the roster from the Lansing Derby Vixens roller derby team as the
primary function, and then list all the roller derby teams in the world with the ability to see their
team rosters.

User Interface

The derby app contains a list of data, so you use table views throughout the application to show the
information to the user. Start by creating a new tabbed application within xCode as shown in
Figure 7-35.

FIGURE 7-35: Creating a tabbed app

By default xCode creates a new iOS application that contains a Storyboard with tabbed navigation.
Your project needs to contain three table views and one Navigation controller. The table views are
used to the list the data about the derby teams and rosters, and the navigation controller enables you
to create a “back stack” that will allow users to navigate back to the team names table view, when
fi nished viewing the team’s roster data. Start by dragging three Table View Controllers from the
Object Library onto the storyboard, and then remove the views that were added by default.

Once the previous views are removed and the table views are added, you need to connect them
to the navigation controller. To do this, Control-click the Tab Bar Controller icon on the Tab Bar
View, within the Storyboard, and drag it to the new view as shown in Figure 7-36.

c07.indd 215c07.indd 215 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

216 ❘ CHAPTER 7 GETTING STARTED WITH IOS

When prompted, select Relationship for the type of Storyboard segue from
the dialog box shown in Figure 7-37. This adds a new icon to the Tab Bar
Controller for the Table View that was just linked.

Setting the segues for the remainder of the storyboard is very similar.
Use the Control-drag functionality to link the main Tab Bar Controller
to the Navigation Controller, then link the Navigation Controller to the
League Table View, and the League Table View to the Details Table View
as shown in Figure 7-38.

FIGURE 7-36: Connecting view to tab bar

FIGURE 7-37: Selecting

relationship for segue

FIGURE 7-38: Linking the Navigation Controller for the leagues

c07.indd 216c07.indd 216 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Building the Derby App in iOS ❘ 217

The segue that is created from the Leagues view
needs to have an identifi er of “Details.” This
enables you to trigger this particular segue from
within code. To do this, click the segue (the arrow
between the Leagues Table View and the Details
Table View), and open the Identity Inspector. In
the Identifi er box enter Details as shown in
Figure 7-39.

When you have completed this task, you
should have a storyboard that looks similar to
Figure 7-40. For complete code samples, visit this
book’s page on http://www.wrox.com and click
the Download Code tab.

FIGURE 7-39: Adding an identifi er to a segue

FIGURE 7-40: Relationships completed

Team Roster

With the storyboard in place, you can now write the code to populate the table views. Start with
the Team Roster tab, which will go out to a web service, and obtain a list of all the Lansing Derby
Vixens.

c07.indd 217c07.indd 217 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

218 ❘ CHAPTER 7 GETTING STARTED WITH IOS

First create a new class named VixensViewController:

@interface VixensViewController : UITableViewController
@property(nonatomic, retain) NSArray *listData;
@end

In the viewDidLoad method within the implementation fi le, add your logic to go out the web
service and get the roster for the Lansing Derby Vixens. Notice the fi lter criteria contained within
the URL.

- (void)viewDidLoad

{

 [super viewDidLoad];

 NSMutableArray *array = [[NSMutableArray alloc] init];

 // go out to the service and get the data

 NSError *error = nil;

 NSURL *derbyService = [NSURL URLWithString:

 @”http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/

 DerbyNames?$filter=League%20eq%20’Lansing%20Derby%20Vixens’”];

 NSData *data = [NSData dataWithContentsOfURL:derbyService];

 // Use native functions to parse the JSON

 NSDictionary *derbyNames = [NSJSONSerialization

 JSONObjectWithData:data options:NSJSONReadingMutableLeaves error:&error];

 NSArray* derbyNameDetail = [derbyNames objectForKey:@”d”];

 // loop through all of the derby objects only add the name object to the array

 for (NSDictionary* derbyItem in derbyNameDetail) {

 NSString *name = [derbyItem objectForKey:@”Name”];

 NSString *league = [derbyItem objectForKey:@”League”];

 NSString *number = [derbyItem objectForKey:@”Number”];

 NSLog(@”Names: %@-%@-%@”, name, league, number);

 [array addObject:name];

 }

 self.listData = array;

}

iOS 5 is the fi rst version of the iOS SDK that contains built-in support for parsing JSON strings.
This is great because you do not have to depend on a third-party tool. The last line in the method
self.listData = array; sets the data that you will use to bind the data to the table view.

For the table view to know how many rows it needs to select, you must implement the
numberOfRowsInSection method. In this case, just return the count of the number of items in
the listData array, which is the array that you populated when the view loaded.

c07.indd 218c07.indd 218 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/DerbyNames?$filter=League%20eq%20%E2%80%99Lansing%20Derby%20Vixens
http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/DerbyNames?$filter=League%20eq%20%E2%80%99Lansing%20Derby%20Vixens
http://www.it-ebooks.info/

Building the Derby App in iOS ❘ 219

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section

{

 return [self.listData count];

}

The magic really happens in the cellForRowAtIndexPath method. This method is called for the
number of times that was returned in the numberOfRowsInSection. In the code, you create a new
cell, get the data for the correct position in the listData array, and then return the cell you created,
which will be added to the table:

- (UITableViewCell *)tableView:(UITableView *)tableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

 static NSString *CellIdentifier = @”Cell”;

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {

 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault

 reuseIdentifier:CellIdentifier];

 }

 // Configure the cell...

 NSUInteger row = [indexPath row];

 cell.textLabel.text = [listData objectAtIndex:row];

 return cell;

}

Details

The next class you need to create is DetailViewController. This is the code that drives the details
that are displayed when a team name is selected.

#import <UIKit/UIKit.h>

@interface DetailViewController : UITableViewController

@property (nonatomic, retain) NSString *data;
@property(nonatomic, retain) NSArray *listData;

@end

The logic for this is very similar to what you just implemented for the roster view, but you are
adding a new string named data, which holds the string value of the team for which you want to
receive the roster. This string is passed into this view, allowing you to fi lter which roster is shown.
You need to implement both the numberOfRowsInSection and cellForRowAtIndexPath
methods exactly as you did with the roster view.

You can see that the viewDidLoad code is very similar, but you take the data string, encode it for
URL use, and then append it to your URL that fi lters which team to get the roster for:

c07.indd 219c07.indd 219 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

220 ❘ CHAPTER 7 GETTING STARTED WITH IOS

- (void)viewDidLoad

{

 [super viewDidLoad];

 // build our URL to get the data from

 NSString* url = @”http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/

 DerbyNames?$filter=League%20eq%20’”;

 NSString* escapedUrlString = [data stringByAddingPercentEscapesUsingEncoding:

 NSASCIIStringEncoding];

 NSString *urlToGetData = [NSString stringWithFormat:@”%@%@’”,

 url,escapedUrlString];

 // get the data

 NSMutableArray *array = [[NSMutableArray alloc] init];

 NSError *error = nil;

 NSURL *derbyService = [NSURL URLWithString: urlToGetData];

 NSData *rosterData = [NSData dataWithContentsOfURL:derbyService];

 NSDictionary *derbyNames = [NSJSONSerialization JSONObjectWithData:rosterData

 options:NSJSONReadingMutableLeaves error:&error];

 // process the data

 NSArray* derbyNameDetail = [derbyNames objectForKey:@”d”];

 for (NSDictionary* derbyItem in derbyNameDetail) {

 NSString *name = [derbyItem objectForKey:@”Name”];

 NSString *league = [derbyItem objectForKey:@”League”];

 NSString *number = [derbyItem objectForKey:@”Number”];

 NSLog(@”Names: %@-%@-%@”, name, league, number);

 [array addObject:name];

 }

 // return the data

 self.listData = array;

}

Leagues and Team Names

Listing all of the team names is very similar to the code you just created for displaying the roster and
the details. Start by creating a new class named LeagueTableViewController:

#import <UIKit/UIKit.h>

@interface LeagueTableViewController : UITableViewController
@property(nonatomic, retain) NSArray *listData;
@end

The viewDidLoad method will look very similar, but notice the URL you are using this time, which
is different from the previous URL. This URL returns a JSON string containing the team names.

c07.indd 220c07.indd 220 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/DerbyNames?$filter=League%20eq%20
http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/DerbyNames?$filter=League%20eq%20
http://www.it-ebooks.info/

Building the Derby App in iOS ❘ 221

- (void)viewDidLoad

{

 [super viewDidLoad];

 NSMutableArray *array = [[NSMutableArray alloc] init];

 // go out to the service and get the data

 NSError *error = nil;

 NSURL *derbyService = [NSURL URLWithString:

 @”http://derbynames.gravityworksdesign.com/

 DerbyNamesService.svc/Leagues”];

 NSData *data = [NSData dataWithContentsOfURL:derbyService];

 // Use native functions to parse the JSON

 NSDictionary *derbyNames = [NSJSONSerialization

 JSONObjectWithData:data options:NSJSONReadingMutableLeaves

 error:&error];

 // loop through the derby objects returned only add the name object to the array

 NSArray* derbyNameDetail = [derbyNames objectForKey:@”d”];

 for (NSDictionary* derbyItem in derbyNameDetail) {

 NSString *name = [derbyItem objectForKey:@”LeagueName”];

 NSLog(@”Names: %@”, name);

 [array addObject:name];

 }

 self.listData = array;

}

What’s new in this view is the functionality to select a row. When the row is selected, a new view
that contains the list of team members for that derby team is opened. To accomplish this you fi rst
need to implement the didSelectRowAtIndexPath method. In your method you get the cell and
then call the performSegueWithIdentifier method.

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath

 *)indexPath

{

 UITableViewCell *cell = [self tableView:tableView cellForRowAtIndexPath:indexPath];

 [self performSegueWithIdentifier:@”Details” sender:cell];

}

After the user selects the table row, you need to pass the data in the cell that the user touched to the
details view, which will show the roster for that particular team. The performSeagueWithIdenti-
fier method is the code that actually switches the views for you. In this case, you are following a
segue with the name of Details. Before the transfer is performed, you set the destination controller
of the segue to a new DetailViewController and set the data property on the detail view to the
contents of the cell, in this case the name of the derby team for which you want to see the roster.

c07.indd 221c07.indd 221 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/Leagues
http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/Leagues
http://www.it-ebooks.info/

222 ❘ CHAPTER 7 GETTING STARTED WITH IOS

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender

{

 if ([segue.identifier isEqualToString:@”Details”])

 {

 DetailViewController *detailView = segue.destinationViewController;

 UITableViewCell *dataCell = (UITableViewCell *)sender;

 [detailView setData:dataCell.textLabel.text];

 }

}

After all of the code has been added to the new View Controllers you created, you need to go back
to the Storyboard and attach them as shown in Figure 7-41. You do this using the Identity Inspector
found near the upper right of the screen when you are viewing the storyboard. Map each view to the
correct class that was created.

With this logic in place, you should now have a working Derby App created natively with iOS. Your
app should look similar to Figure 7-42.

FIGURE 7-41: Attaching a

class to a View

FIGURE 7-42: Completed

Derby application

This section of the iOS chapter covered creating a native iOS mobile app using xCode and
Objective-C. The Derby app example covers the major functionality that a mobile developer would
encounter when creating an app, such as creating UI and communicating with an external data
service. By no means does this section give complete coverage as to what it takes to be an iOS
developer, but it should lead you in the right direction.

c07.indd 222c07.indd 222 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Other Useful iOS Things ❘ 223

OTHER USEFUL IOS THINGS

The two example projects up to this point have provided the basics for creating iOS applications
that will go out to a web service and render the collected data on the screen. By no means do we
feel that we have covered every possible situation you may need to develop a solution for, so
we wanted to fi nish this chapter by providing a few more short examples that will help you
out when discovering how the iOS framework works.

Offl ine Storage

Even if your application is using a web service for retrieving information, at some point you may
need to save information on the device. Depending on the size and type of data, you have a few
different options.

Plist

Property lists are the simplest way to store information on the device. In the Mac world, many
applications use the plist format to store application settings, information about the application, and
even serialized objects. It’s best to keep the data contained in these fi les simple and small, though.

The following example fi nds the path to a plist stored in the supporting fi les directory, with a name
of example. It then loads the plist into a dictionary object, and loops through each time writing the
contents of each item in the plist to the debug console.

- (void)getValuesFromPlist

{

 // build the path to your plist

 NSString *path = [[NSBundle mainBundle] pathForResource:

 @”example” ofType:@”plist”];

 // load the plist into a dictionary

 NSDictionary *pListData = [[NSDictionary alloc] initWithContentsOfFile:path];

 // loop through each of the Items in the property list and log

 for (NSString *item in pListData)

 NSLog(@”Value=%@”, item);

}

If you want to get a single item out of the plist the code is very similar. The following example cre-
ates a function named outputSinglePlistValue that takes in the name of the item you want to
output, itemName. You then just use the objectForKey method to get the value of a specifi c key in
the dictionary that was returned.

- (void)outputSinglePlistValue: (NSString*) itemName

{

 // build the path to your plist

 NSString *path = [[NSBundle mainBundle] pathForResource:

c07.indd 223c07.indd 223 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

224 ❘ CHAPTER 7 GETTING STARTED WITH IOS

 @”example” ofType:@”plist”];

 // load the plist into a dictionary

 NSDictionary *pListData = [[NSDictionary alloc] initWithContentsOfFile:path];

 NSString *value = [pListData objectForKey:itemName];

 NSLog(@”Name=%@-Value=%@”, itemName,value);

}

To write to the plist fi le, again you need to load the plist into a dictionary, this time a mutable
dictionary that will allow you to make changes. You can use the setValue method to change the
value of a key, and then write the plist database to a fi le named example.

- (void)writeToPlist

{

 NSString *path = [[NSBundle mainBundle] pathForResource:

 @”example” ofType:@”plist”];

 NSMutableDictionary* pListData = [[NSMutableDictionary alloc]

 initWithContentsOfFile:path];

[pListData setValue:@”Modified Value” forKey:@”Test1”];

 [pListData writeToFile:path atomically: YES];

}

Core Data

If the data that you need to persist on the device is nontrivial, meaning there is a great deal of it or
its complex, Core Data is the way to go. Core Data is described by Apple as a “schema-driven object
graph management and persistence framework.” Core Data is not an ORM (Object Relational
Mapper). Core Data is an API that abstracts the actual data store of the objects. Core Data can be
confi gured to store these objects as a SQLite database, a plist, custom data, or a binary fi le. Core
Data has a steep learning curve, but is well worth learning more about if your app will have a great
deal of data held within.

GPS

One of the great benefi ts to mobile devices is the GPS functionality. Once you are able to get over
the hurdles of learning the basic functions within the iOS platform, starting to work with the GPS
functions can be a great deal of fun.

The GPS functions are located in the CoreLocation framework, which is not added to a new proj-
ect by default. To do this, you will need to click the Build Phases tab on the project settings page as
shown in Figure 7-43.

c07.indd 224c07.indd 224 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Other Useful iOS Things ❘ 225

Once on the Build Phases tab, expand the Link Binary With Libraries section, and click the + button.
You are then prompted with a list of frameworks to add. Select the CoreLocation.framework as
shown in Figure 7-44.

FIGURE 7-43 Build Phases tab

FIGURE 7-44: Adding the CoreLocation framework

c07.indd 225c07.indd 225 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

226 ❘ CHAPTER 7 GETTING STARTED WITH IOS

With the reference to the CoreLocation framework in place, you are now ready to start working with
the GPS functionality. Start with the ViewController.h fi le. The CLLocationManager class will
send out updates anytime the location is changed. These updates are sent out using the delegate
pattern, which simply means your view controller needs to implement the
CLLocationManagerDelegate protocol.

@interface ViewController : UIViewController
<CLLocationManagerDelegate>{
 CLLocationManager *locationManager;
}

Once your header fi le implements the correct delegate, you can initialize the location manager in the
ViewDidLoad method of the ViewController.h fi le. When you initialize this class, you have control
over how frequently you want to receive updates as well as how accurately you want them.

// GPS Example

locationManager = [[CLLocationManager alloc] init];

locationManager.delegate = self;

locationManager.distanceFilter = kCLDistanceFilterNone;

// get GPS DatalocationManager.desiredAccuracy =

 kCLLocationAccuracyHundredMeters;

[locationManager startUpdatingLocation];

The last step you need to perform is to implement the method that is called whenever the location
has changed. In this method you convert the raw GPS data that is sent from iOS to the common
format of Degrees, Minutes, and Seconds, and then log the latitude and longitude:

- (void)locationManager:(CLLocationManager *)manager

 didUpdateToLocation:(CLLocation *)newLocation

 fromLocation:(CLLocation *)oldLocation

{

 // turn the raw lat info into degrees, minutes, seconds

 int latDegrees = newLocation.coordinate.latitude;

 double latDecimal = fabs(newLocation.coordinate.latitude - latDegrees);

 int latMinutes = latDecimal * 60;

 double latSeconds = latDecimal * 3600 - latMinutes * 60;

 NSString *latitude = [NSString stringWithFormat:@”%d° %d’ %1.4f\””, latDegrees,

 latMinutes, latSeconds];

 NSLog(latitude);

 // turn the raw long into degrees, minutes, seconds

 int longDegrees = newLocation.coordinate.longitude;

 double longdecimal = fabs(newLocation.coordinate.longitude - longDegrees);

 int longMinutes = longdecimal * 60;

 double longSeconds = longdecimal * 3600 - longMinutes * 60;

 NSString *longitude = [NSString stringWithFormat:@”%d° %d’ %1.4f\””, longDegrees,

 longMinutes, longSeconds];

 NSLog(longitude);

}

c07.indd 226c07.indd 226 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 227

When you run this example project you are prompted from iOS whether
you want to allow this application to use your current location, as
shown in Figure 7-45. The Simulator will return the GPS location for
Cupertino, California. So if you are looking for more accurate data, you
will need to deploy the app to a physical iOS device.

SUMMARY

This chapter spent a great deal of time describing the iOS platform.
After reading this chapter, you should be comfortable installing xCode
and getting started developing and debugging your fi rst iOS app.
Developing for iOS should not be rushed into. Even though corporate
executives are pushing development teams to create applications for the
iOS platform, you should take a step back and make sure it really makes
sense.

Apple has helped push the world into the mobile boom that we are in
now, and it is constantly innovating and pushing the mobile industry.
Choosing one platform helps developers focus their skills, but locks
them into that platform. Apple is known for not being kind to
developers, by providing tools that are not the easiest to work with. However iOS fi ts into your
strategy, be aware that Apple has a large market share, and will be around for a long time.

The following chapter will take a dive into what it takes to develop the same type of mobile app on
the Windows Phone 7 platform.

FIGURE 7-45: iOS prompts

for use of current location

c07.indd 227c07.indd 227 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c07.indd 228c07.indd 228 28/07/12 6:03 PM28/07/12 6:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with
Windows Phone 7

This chapter covers the basics of developing for Windows Phone 7 — how to acquire the tooling
and basic design patterns, and preparing to distribute your application to the marketplace.
During this chapter you are expected to confi gure your development machine to run Windows,
install Visual Studio and the Windows Phone 7 SDK, and go over the examples from the Derby
App. This chapter also covers the specifi c situations in which Windows Phone 7 breaks away
from other smartphone platforms.

NEW KID ON THE BLOCK

Although the Windows Mobile 6.5 design was signifi cantly different from the last major
version (6.1), it had been lambasted by critics as change for change’s sake. It used design
elements from the Zune UI at that time. It was never part of Microsoft’s mobile platform
blueprints, and was released as a stopgap until the release of Windows Phone 7. It has now
been superseded by Windows Embedded Handheld 6.5 for Enterprise Handheld Devices.

Windows Phone 7 is not the next iteration of the Windows Mobile platform, but is its
successor. It has been built specifi cally for the Qualcomm Snapdragon processor family. Since
being launched in November 2010 it has had two major revisions. The fi rst, NoDo, primarily
added copy-and-paste functionality. The second, Mango, added an update to the included
mobile browser and multitasking for third-party developed apps. Whereas iOS and Android
have a passive or reactive dashboard for their applications, Windows Phone 7 embraces
a proactive approach with constantly updating tiles for application- and context-specifi c
information.

Because Windows Phone 7 was launched three and a half years after the iPhone, it has
benefi tted from the lessons learned by older revisions of iOS. Windows Phone 7 is still a young
platform but it is opening a new channel for .NET developers to provide applications, and its
success or failure is a long way off.

8

c08.indd 229c08.indd 229 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

230 ❘ CHAPTER 8 GETTING STARTED WITH WINDOWS PHONE 7

Metro

Metro is a design language that Microsoft developed around the Segoe font family to be applied to
its entire software stack.

It is patterned on International Typographic Style, with content organized into logical groups.
Menus are replaced with panes of content, which are grouped into hubs.

The current versions of the Xbox 360 Dashboard Interface and website, the next version of the
Windows operating system, and the next version of Visual Studio all implement the Metro style.

With Metro, Microsoft took a drastically different approach to mobile interfaces than it had done
in the past. It is obvious Microsoft took an approach to be innovative, by not following in the
UI footsteps that Apple and Android had recently set. The interface puts a strong emphasis on
typography, something that had not stood out in past Microsoft software, and it uses its signature
Metro font for much of the interface and navigational elements. It uses more text and images for
navigating the interface, as opposed to iconography. It uses a freer-fl owing, horizontal scrolling
layout for most of its apps, as opposed to set screens where you navigate from one to another.

The strong design and interface standpoint that Microsoft took is commendable, and attention
to typography in particular is much appreciated by designers. But judging from its market share,
the risk has not paid off — at least not yet. The drastically different interface of Metro can be a
deterrent when looking to transfer an existing iPhone or Android app to Windows Phone 7.

Though themes and accent color customizations are not specifi c to Metro,
I think now is the time to discuss it. Users can choose either a light or dark
theme for their device, and can choose from 10 different accent colors.
When editing UI elements and setting their default colors, note that in
certain circumstances text may be diffi cult to read or effectively invisible.
When using the Light theme, text defaults to a dark color, and when using
the Dark theme, text defaults to a light color. You also can leverage built-in
system resources to bind specifi c accents and default color values to your UI
elements.

The benefi t of this is shown in Figure 8-1. By using a default style in the
Derby App (shown later), when you update the theme on your device,
the application automatically updates the styles respective to that theme.
The left half of the image is from running the application with the Dark
theme, and the right is running the application with the Light theme. I
did not have to change a line of code. You can fi nd more information on
working with these resources on the MSDN library at http://msdn
.microsoft.com/en-us/library/ff769552(v=vs.92).aspx.

Application Bar

The Application Bar is Windows Phone 7’s answer to iOS’s UITabBar and Android’s TabHost. It can
contain icon items (maximum four) and/or menu items.

FIGURE 8-1: Two themes

with no extra code

c08.indd 230c08.indd 230 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/ff769552(v=vs.92).aspx
http://msdn.microsoft.com/en-us/library/ff769552(v=vs.92).aspx
http://www.it-ebooks.info/

New Kid on the Block ❘ 231

Some common uses for items in the Application Bar are to pin the current
view to the main tile bar (loads your app in a preset state), or to add
functionality to the application that cannot be handled with the standard set
of touch events.

You can create a global App Bar in XAML (stored in your application’s
App.xaml fi le), or in code in your application page, which will show on all
pages. Figure 8-2 shows the default view of an Application Bar.

In the XAML for any page you want the global created bar you must add a
reference to it as a resource in the PhoneApplicationPage element.

MAINAPP.XAML PAGE ELEMENT

<phone:PhoneApplicationPage

 x:Class=”GravityWorks.DerbyApp.WP7.MainPage”

 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

 xmlns:phone=”clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone”

 xmlns:shell=”clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone”

 xmlns:controls=”clr-namespace:Microsoft.Phone.Controls;

assembly=Microsoft.Phone.Controls”

 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”

 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”

 mc:Ignorable=”d” d:DesignWidth=”480” d:DesignHeight=”800”

 FontFamily=”{StaticResource PhoneFontFamilyNormal}”

 FontSize=”{StaticResource PhoneFontSizeNormal}”

 Foreground=”{StaticResource PhoneForegroundBrush}”

 SupportedOrientations=”Portrait” Orientation=”Portrait”

 shell:SystemTray.IsVisible=”False”

 ApplicationBar=”{StaticResource MyGlobalAppBar}”>

APP.XAML RESOURCES

<!--Application Resources-->

<Application.Resources>

 <shell:ApplicationBar x:Key=”MyGlobalAppBar” IsVisible=”True”

IsMenuEnabled=”True”>

<shell:ApplicationBarIconButton IconUri=”/appbar.map.direction.rest.png”

Text=”Vixens” Click=”ApplicationBarIconButton_Click” />

 <shell:ApplicationBar.MenuItems>

 <shell:ApplicationBarMenuItem Text=”Menu Item” />

 </shell:ApplicationBar.MenuItems>

 </shell:ApplicationBar>

 </Application.Resources>

If you want to have a page-specifi c Application Bar you can create one in your
page’s constructor. Figure 8-3 shows the icon and menu item. The Application
Bar starts minimized and expands when you click the ellipsis. The click event
for both items in the fi gure pop up a message box with the text “Alert.” Page-
specifi c Application Bars are good for context-sensitive functions such as non-
discoverable UI functions (double-click events) or events that have no direct
touch event associated with them. The following code shows how to render
the Application Bar shown in Figure 8-3.

FIGURE 8-2: Global

Appli cation Bar

FIGURE 8-3: Page-

specifi c Application Bar

c08.indd 231c08.indd 231 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://www.it-ebooks.info/

232 ❘ CHAPTER 8 GETTING STARTED WITH WINDOWS PHONE 7

 public MainPage()

 {

 InitializeComponent();

 LoadApplicationBar();

 this.Loaded += new RoutedEventHandler(MainPage_Loaded);

 }

 private void LoadApplicationBar()

 {

 ApplicationBar = new ApplicationBar();

 ApplicationBar.Mode = ApplicationBarMode.Minimized;

 ApplicationBar.Opacity = 1.0;

 ApplicationBar.IsVisible = true;

 ApplicationBar.IsMenuEnabled = true;

 ApplicationBarIconButton button1 = new ApplicationBarIconButton();

 button1.IconUri = new Uri(“/images/blankicon.png”, UriKind.Relative);

 button1.Text = “button 1”;

 ApplicationBar.Buttons.Add(button1);

 button1.Click += event_Click;

 ApplicationBarMenuItem menuItem1 = new ApplicationBarMenuItem();

 menuItem1.Text = “menu item 1”;

 ApplicationBar.MenuItems.Add(menuItem1);

 menuItem1.Click += event_Click;

 }

 private void event_Click(object sender, EventArgs e)

 {

 MessageBox.Show(“Alert”);

 }

Tiles

Tiles are the UI elements in Windows Phone 7 that render in the main menu when pinned. Think
of pinning as adding a shortcut to your phone’s menu to an application. If you don’t confi gure any
secondary app tiles programmatically, when the application is pinned it will show the App Icon and the
Tile Title from the Project Properties as shown in Figure 8-4. This is known as the Application Tile.

private static void LoadTileInfo()

{

 StandardTileData data = new StandardTileData

 {

 Title = “Derby Names Tile”,

 Count = 42,

 BackTitle = “Gravity Works”,

 BackContent = “Derby Names App”

 };

 ShellTile.ActiveTiles.First().Update(data);

} FIGURE 8-4: Default tile

c08.indd 232c08.indd 232 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

New Kid on the Block ❘ 233

When you create a tile for your application you can update it
programmatically. These Active Tiles add additional interactivity
to your app while it is tombstoned, or between application loads
(tombstoning is explained in more detail in the next section). You
can confi gure the title for the front and back sides (as of Windows
Phone 7.1; before that it was only one-sided), a badge count on the
front (Figure 8-5), and text content on the back (Figure 8-6). You
can also confi gure backgrounds for both faces. Resolution of these
tiles is 173 � 173 pixels and images will be stretched to that size.
You can use .png or .jpg, but only .png will allow transparency.

You can use the ShellTile APIs (http://msdn.microsoft
.com/en-us/library/hh202948(v=vs.92).aspx) to update the
application tile, or create, update, or delete active tiles from user
interaction. Push Notifi cations with the correct XML format will
update the tile. You can also schedule a set of updates to your tiles
using ShellTileSchedule APIs. Inside your schedule you can set interval, links to remote content for
your update, start time, and recurrence limits.

Your application can also have secondary tiles. These tiles link to specifi c functionality or views
in your app. They are added using the same APIs, but are created as the result of user interaction
versus the application tile that will always be there when the app is pinned.

Tombstoning

Tombstoning is Windows Phone 7’s answer to multitasking. iOS (as of version 4.x) and Android
handle multitasking by putting applications in the background but not freeing up the memory used
by the application. When events fi re that would put the app in the background (in a multitasking
OS), Windows Phone 7 dumps the application out of memory, and the developer can catch the
event and save the state of the application. Then when an event is fi red to bring the application
into the foreground it effectively relaunches the app, this time fi ring an activated event instead of a
launched event. This enables the developer to pass back in the state and get the user right back to
where he was. This allows the application to be “multitasked” without persisting the application in
memory.

What does this mean for you as a developer?

To save your application and last running page’s state dictionary when being tombstoned, all data in
these dictionaries must be serializable.

You have two primary ways of storing this data on the device:

 ➤ The System.IO.IsolatedStorage namespace contains the IsolatedStorageSettings
class, which contains an ApplicationSettings dictionary of key-value pairs. This can persist
whether the app was tombstoned or closed.

 ➤ The Microsoft.Phone.Shell namespace contains the PhoneApplicationService.State
dictionary. It works between activation and deactivations, but is removed from memory
when the application closes.

FIGURE 8-5: App Tile front

FIGURE 8-6: App Tile back

c08.indd 233c08.indd 233 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/hh202948(v=vs.92).aspx
http://msdn.microsoft.com/en-us/library/hh202948(v=vs.92).aspx
http://www.it-ebooks.info/

234 ❘ CHAPTER 8 GETTING STARTED WITH WINDOWS PHONE 7

Now that you understand the idiosyncrasies of Windows Phone 7, you can learn how to get the tools
for development.

GETTING THE TOOLS YOU NEED

To develop software for Windows Phone 7 you need a machine running Windows (Vista or
Windows 7), Visual Studio 2010, and the Phone SDK, as well as a Windows Phone 7 device to
test with.

Hardware

HTC, Nokia, and Samsung are currently manufacturing Windows Phone 7 devices. Device
resolutions are 800 � 480 pixels, and most are outfi tted with both front- and rear-facing cameras,
and screens from 4.3 to 4.7 inches. They are primarily found on GSM carriers.

Visual Studio and Windows Phone SDK

Code for the Windows Phone is written in the .NET Framework, either with XNA (Microsoft’s
run time for game development), or a custom version of Silverlight (Microsoft’s Rich Internet
Application framework). User interfaces are created with XAML (eXtensible Application Markup
Language).

The Windows Phone SDK works with Visual Studio Express, and will install it if you don’t already
have it installed. If you have another version of Visual Studio 2010 on your machine it will add the
functionality to that install. The SDK also installs a specialized version of Expression Blend set up
to work specifi cally for Windows Phone 7 development. Expression Blend is a tool developed by
Microsoft for working with XAML. It provides similar functionality to Visual Studio, though its
layout is designed to be more user friendly to designers.

Installation

Microsoft’s App Hub (http://create.msdn.com/) is the download site for the Windows Phone SDK.

The Windows Phone SDK installer includes:

 ➤ Visual Studio 2010 Express for Windows Phone (if you do not have another version of
Visual Studio 2010 installed)

 ➤ Windows Phone Emulator

 ➤ Windows Phone SDK Assemblies

 ➤ Silverlight 4 SDK

 ➤ Phone SDK 7.1 Extensions for XNA Game Studio

 ➤ Expression Blend for Windows Phone 7

 ➤ WCF Data Services Client for Windows Phone

 ➤ Microsoft Advertising SDK

c08.indd 234c08.indd 234 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://create.msdn.com/
http://www.it-ebooks.info/

Getting the Tools You Need ❘ 235

To install the Windows Phone SDK you need:

 ➤ Vista (x86 or x64) or Windows 7 (x86 or x64)

 ➤ 4 GB of free disk space

 ➤ 3 GB of RAM

 ➤ DirectX 10 or above capable graphics card with a WDDM 1.1 driver

Getting to Know Visual Studio

Visual Studio is the integrated development environment from Microsoft for the .NET
Framework. Visual Studio Express for Windows phones is a trimmed-down version of Microsoft’s
full retail products. It provides developers with everything they need to develop Windows Phone 7
apps. Though the interface may seem daunting to the uninitiated, it has a relatively simple learning
curve. You are afforded both a WYSIWYG and text-based editor, as shown in Figure 8-7.

FIGURE 8-7: Visual Studio 2010

Getting to Know Expression Blend

Expression Blend is a user interface design tool developed by Microsoft, with emphasis on a
WYSIWYG design for XAML-based projects (Silverlight and WPF). Figure 8-8 shows the Blend UI
with the standard tools displayed in a Windows Phone 7 Pivot application.

c08.indd 235c08.indd 235 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

236 ❘ CHAPTER 8 GETTING STARTED WITH WINDOWS PHONE 7

WINDOWS PHONE 7 PROJECT

Ultimately, a Windows Phone 7 project is similar to a Silverlight project, which is technically a
subset of WPF. This section goes over the ins and outs of the Windows Phone 7 project structure,
and gives you some resources for adding to the stock controls in the SDK.

Silverlight vs. Windows Phone 7

Silverlight contains a subset of APIs from the .NET Framework, all optimized to run in a browser
host so that it can be run cross-platform. The Windows Phone 7 SDK is a subset of that. When
porting third-party Silverlight libraries you have to make sure they build against the WP7 version of
Silverlight because some of the APIs don’t transfer.

Windows Phone 7 contains a fair amount of controls for your application, but they are not all-
inclusive. Multiple control toolkits have been released on CodePlex; see http://silverlight
.codeplex.com/ (Microsoft) and http://coding4fun.codeplex.com/ (independent developer).

Most of the companies that produce control packages for WPF and Silverlight have created Windows
Phone 7 control packages as well. Telerik (http://www.telerik.com/products/windows-phone
.aspx), ComponentOne (http://www.componentone.com/SuperProducts/StudioWindowsPhone/),
and Infragistics (http://www.infragistics.com/dotnet/netadvantage/windows-phone
.aspx#Overview) all have prebuilt and skinnable control packs for Windows Phone 7 ranging in
price from roughly $100 to $1,500.

FIGURE 8-8: Expression Blend for Visual Studio

c08.indd 236c08.indd 236 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://coding4fun.codeplex.com/
http://silverlight.codeplex.com/
http://silverlight.codeplex.com/
http://www.telerik.com/products/windows-phone.aspx
http://www.telerik.com/products/windows-phone.aspx
http://www.componentone.com/SuperProducts/StudioWindowsPhone/
http://www.infragistics.com/dotnet/netadvantage/windows-phone.aspx#Overview
http://www.infragistics.com/dotnet/netadvantage/windows-phone.aspx#Overview
http://www.it-ebooks.info/

Windows Phone 7 Project ❘ 237

Anatomy of a Windows Phone 7 App

This section covers the basic design elements used in Windows Phone 7 application development,
and how you can leverage the tools you have at hand to implement them.

Storyboards

Storyboards are Silverlight’s control type for managing animations in code. They are defi ned in a
given page’s XAML and leveraged using code behind. Uses for these animations are limited only by
the transform operations you are allowed to perform on objects. Anytime you want to provide the
user with a custom transition between your pages or element updates, you should consider creating
an animation to smooth the user experience.

Because storyboards are held in XAML you can either edit them manually or use Expression Blend’s
WYSIWYG editor.

In Blend, in the Objects and Timelines Pane at the left, click the (+) icon to create a storyboard
(see Figure 8-9).

FIGURE 8-9: Storyboards in Blend

Once you have a storyboard, you can add key frames on your time line for each individual element
you would like to perform a transformation on. This can include moving objects and changing
properties (like color or opacity). After setting up your time line, you can start the storyboard in code.

The name you created for your storyboard will be accessible in code behind.

c08.indd 237c08.indd 237 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

238 ❘ CHAPTER 8 GETTING STARTED WITH WINDOWS PHONE 7

Pivot vs. Panorama

Both the Pivot and Panorama controls are used to delineate categories and subsets of data. With the
Pivot control you get strict isolation of these groupings (see Figure 8-10), with the menu providing
discoverable UI to show the other categories. With the Panorama control (Figure 8-11) you get
transitions between the groupings with discoverable content on the window boundaries.

FIGURE 8-10: Pivot control FIGURE 8-11: Panorama control

The Windows Phone 7 Emulator

The Windows Phone 7 emulator (see Figure 8-12) is a very powerful tool.
Not just a simulator, the emulator runs a completely sandboxed virtual
machine in order to better mimic the actual device. It also comes with
some customization and runtime tools to manipulate sensors that are
being emulated on the device, including GPS and accelerometer, as
well as provide a way to capture screenshots while testing and developing
applications.

Debugging Code

I fi nd the debugging experience inside of Visual Studio to be supremely
superior to the ones in Eclipse and the third-party frameworks. The load
time of the Emulator is quite fast. It acts responsively, and the
step-through just works. FIGURE 8-12: The Windows

Phone emulator

c08.indd 238c08.indd 238 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Building the Derby App in Windows Phone 7 ❘ 239

BUILDING THE DERBY APP IN WINDOWS PHONE 7

In this section you implement the features of the Derby Names project using Microsoft Visual
Studio, while also taking time to learn Windows Phone 7–specifi c technologies.

Creating the Project

Open Visual Studio and create a new Windows Phone project. For this application, choose
Panorama because it offers a UI in which you can share your data. Figure 8-13 shows the New
Project window.

FIGURE 8-13: Creating a Panorama project

Once you have created the application, we will step through the Solution (Figure 8-14). In a
Panorama application the application is created with the default Panorama background.
Visual Studio will create SampleData and ViewModels for your application. Ultimately, you
will be able to remove these from your application when you implement your service
communications.

c08.indd 239c08.indd 239 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

240 ❘ CHAPTER 8 GETTING STARTED WITH WINDOWS PHONE 7

App.xaml is the entry point for your application and
MainPage.xaml is the page that loads by default.
ApplicationIcon.png is the default icon that is shown
when pinned, and it is shown attached to toast notifi cations.
SplashScreenImage.jpg is the default image that shows
when your app is loading, and PanoramaBackground.jpg is
a default background created for Panorama apps.

User Interface

The default Panorama application defi nes its DataContext
in XAML. The DataContext has fi rst item’s binding
associated by default as shown in Figure 8-15. The Panorama
control can be likened to any collection-based UI element
(UITableView in iOS or the ListView in Android), and the
PanoramaItems are the respective rows in that collection
element.

When you feel familiar enough to start working with the
data you will need to create a service reference to the OData
feed. For testing purposes I created a local instance of the
service on my machine, but this will work on remote services
as well, as long as they support public consumption (see
Chapter 3).

FIGURE 8-14: Solution Explorer

FIGURE 8-15: Basic Panorama

c08.indd 240c08.indd 240 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Building the Derby App in Windows Phone 7 ❘ 241

Prior to Windows Phone SDK version 7.1, a
manual process using the svcutil command-
line tool was required to create the service
entities. As of 7.1, to reference an OData feed
you need only to right-click your project,
choose Add Service Reference, enter in the
URL of your service (as shown in
Figure 8-16), and click Go. After it has found
the service it should enumerate the models.
You are then allowed to update
the namespace and create this reference.

Once you create the service you can start
working with the Panorama control to bind
the data available from these entities.

After you have made this service, be sure to
reference this entity context when your page
needs to make calls to the service:

readonly DerbyNamesEntities context =

new DerbyNamesEntities(new Uri(“http://localhost:1132/DerbyNames.svc/”));

Derby Names

To bind data to your Panorama item you need to set the ItemsSource and TextBlock bindings.

Each individual entry in the DerbyNames entity in OData (Figure 8-16) contains properties for
Name and League, which you will bind to the TextBlocks in your Panorama item.

ODATA

<entry>

 <id>http://localhost:1132/DerbyNames.svc/DerbyNames(29530)</id>

 <title type=”text”></title>

 <updated>2012-04-17T01:11:56Z</updated>

 <author>

 <name />

 </author>

 <link rel=”edit” title=”DerbyName” href=”DerbyNames(29530)” />

 <category

term=”DerbyNamesModel.DerbyName” scheme=

“http://schemas.microsoft.com/ado/2007/08/dataservices/scheme”

 />

 <content type=”application/xml”>

 <m:properties>

 <d:DerbyNameId m:type=”Edm.Int32”>29530</d:DerbyNameId>

 <d:Name>$Yd Vicious$</d:Name>

 <d:Number>5150</d:Number>

 <d:DateAdded m:type=”Edm.DateTime”>2010-01-15T00:00:00</d:DateAdded>

FIGURE 8-16: Service reference for OData

c08.indd 241c08.indd 241 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://localhost:1132/DerbyNames.svc/
http://localhost:1132/DerbyNames.svc/DerbyNames(29530)
http://schemas.microsoft.com/ado/2007/08/dataservices/scheme
http://www.it-ebooks.info/

242 ❘ CHAPTER 8 GETTING STARTED WITH WINDOWS PHONE 7

 <d:League>TBD (delete 5/10/11)</d:League>

 </m:properties>

 </content>

 </entry>

In Figure 8-17 you see that the ItemsSource for the ListBox has been marked as the binding
container, and the two TextBlocks in the Data Template have the bindings to the League and Name
properties. Please remember that casing is important.

PANORAMA ITEM

<controls:Panorama Title=”derby girls”>

 <controls:PanoramaItem Header=”names”>

 <ListBox x:Name=”DerbyNamesList”

Margin=”0,0,-12,0” ItemsSource=”{Binding}”>

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel Margin=”0,0,0,17” Width=”432”>

 <TextBlock Text=”{Binding Name}”

TextWrapping=”Wrap” Margin=”12,-6,12,0”

Style=”{StaticResource PhoneTextExtraLargeStyle}” />

 <TextBlock Text=”{Binding League}”

TextWrapping=”Wrap” Margin=”12,-6,12,0”

Style=”{StaticResource PhoneTextSmallStyle}” />

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 </controls:PanoramaItem>

WHEN WILL THEN BE NOW?

The Panorama Item has the reference to the StaticResource of PhoneText
ExtraLargeStyle. This is what I was mentioning earlier in the “Metro” section.
This is a system property that I am leveraging to get the instant UI update when the
system theme is changed.

Now that you have the ListBox ready to be bound to you can load content from the service.

In the WCF Data Services namespaces you receive access to specialized collections for working from
remote data. The DataServiceCollection<T> object holds the dynamic entities bound from the
web service.

Because you are only querying the base set of data and not passing any parameters to the query, the
data binding method is very simple. You fi rst create a collection of type DerbyName to hold the data.
Bind that collection to the ItemsSource property of the list you want the data bound to. Assign a
callback to the LoadCompleted event on the collection (this is a great place for exception handling),
and set your query (in this case /DerbyNames because you want all the names on the system). Then
you bind the collection asynchronously with the web service by running your query.

c08.indd 242c08.indd 242 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Building the Derby App in Windows Phone 7 ❘ 243

DATABINDING FUNCTION

private void LoadDerbyNames()

 {

 var derbyNamesCollection = new DataServiceCollection<DerbyName>(context);

 DerbyNamesList.ItemsSource = derbyNamesCollection;

 derbyNamesCollection.LoadCompleted += coll_LoadCompleted;

 var DerbyNamesQuery = “/DerbyNames”;

 derbyNamesCollection.LoadAsync(new Uri(DerbyNamesQuery, UriKind.Relative));

 }

Calling the LoadDerbyNames function from your page’s Load function
results in the UI depicted in Figure 8-17.

Leagues

Each derby team belongs to a league. The entity for League is similar to
the DerbyNames entity, and will make it easy to bind from. The following
code block shows an example of a single entity of the Leagues type.

<entry>

 <id>http://localhost:1132/DerbyNames.svc/Leagues(1)</id>

 <title type=”text”></title>

 <updated>2012-04-17T20:00:29Z</updated>

 <author>

 <name />

 </author>

 <link rel=”edit” title=”League” href=”Leagues(1)” />

 <category

term=”DerbyNamesModel.League” scheme=

“http://schemas.microsoft.com/ado/2007/08/dataservices/scheme”

 />

 <content type=”application/xml”>

 <m:properties>

 <d:LeagueId m:type=”Edm.Int32”>1</d:LeagueId>

 <d:LeagueName>5 Cities Roller Kitties</d:LeagueName>

 <d:URL m:null=”true” />

 <d:StateProvince m:null=”true” />

 <d:CountryCode m:null=”true” />

 </m:properties>

 </content>

 </entry>

This time you will be using the LeagueName property only.

<controls:PanoramaItem Header=”leagues”>

 <ListBox x:Name=”DerbyLeaguesList” Margin=”0,0,-12,0” ItemsSource=”{Binding}”>

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel Margin=”0,0,0,17” Width=”432”>

 <TextBlock Text=”{Binding LeagueName}”

TextWrapping=”Wrap” Margin=”12,-6,12,0”

Style=”{StaticResource PhoneTextExtraLargeStyle}” />

FIGURE 8-17: Panorama

Item

c08.indd 243c08.indd 243 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://localhost:1132/DerbyNames.svc/Leagues(1)
http://schemas.microsoft.com/ado/2007/08/dataservices/scheme
http://www.it-ebooks.info/

244 ❘ CHAPTER 8 GETTING STARTED WITH WINDOWS PHONE 7

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

</controls:PanoramaItem>

Using effectively the same function for pulling leagues instead of derby names, you bind to the
DerbyLeaguesList ListBox.

 private void LoadLeagues()

 {

 var derbyLeagueCollection = new DataServiceCollection<League>(context);

 DerbyLeaguesList.ItemsSource = derbyLeagueCollection;

 derbyLeagueCollection.LoadCompleted += coll_LoadCompleted;

 var DerbyLeaguesQuery = “/Leagues”;

 derbyLeagueCollection.LoadAsync(new

Uri(DerbyLeaguesQuery, UriKind.Relative));

 }

Calling the LoadLeagues function from your page’s Load function results in
the following UI being displayed in the second panorama item (Figure 8-18).

DISTRIBUTION

To distribute applications in the App Hub you must create a developer
account at https://users.create.msdn.com/Register. Registration
costs $99 per year and allows you to:

 ➤ Make free, paid, or ad-funded apps and games.

 ➤ Submit unlimited paid apps to Windows Phone Marketplace.

 ➤ Submit up to 100 free apps to Windows Phone Marketplace;
additional submissions are $19.99 USD per submission.

 ➤ Expand your reach with worldwide distribution and trial options.

Additionally, all apps are content and code-certifi ed.

Figure 8-19 shows the site for creating a Microsoft Developer account. Note that the Student
account type has specifi c requirements.

Microsoft DreamSpark (http://www.dreamspark.com/Product/Product.aspx?productid=26) is
a program for students, and gives them a free App Hub account.

Submitting your application to the App Hub is a fi ve-step process. First, you upload your compiled
application XAP fi le. The XAP fi le is the binary for your application that will be pushed to the phone.
To do this you must have a unique name for your application, you must select whether this application
is being released to the public or simply being distributed to the App Hub for a private beta test, and you
need to specify a version for your app. Next, you must provide an application description (this includes
category of app, keywords, detailed description, languages supported, and art assets). Third, you set up
your price and select what markets you want to distribute your application in. Next, you provide test
information so that the developer in charge of approving your app understands the use cases.

FIGURE 8-18: Binding to

leagues

c08.indd 244c08.indd 244 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://www.dreamspark.com/Product/Product.aspx?productid=26
https://users.create.msdn.com/Register
http://www.it-ebooks.info/

Other Useful Windows Phone Things ❘ 245

Finally, you choose your publishing options (as soon as approved, as soon as approved but hidden,
manual publish). You then submit your application for certifi cation.

OTHER USEFUL WINDOWS PHONE THINGS

This section covers persisting data locally, the different types of notifi cations you can use to interact
with your users, the usage of the sensors of the device, and using external resources to improve the
quality of your application.

Offl ine Storage

Windows Phone 7 has the System.IO.IsolatedStorage namespace to handle persisting data
between application runs. Isolated storage is application-specifi c storage on the device fi lesystem.

The simplest means of implementing an isolated storage solution in Windows Phone is to leverage
your PhoneApplicationService’s state-based events. Launching and Activated handle
application load and resume from tombstone, respectively; Closing and Deactivated
handle application exit and tombstoning, respectively. Making sure that your application loads
your isolated storage instance on Launch and Activate, and saves on Close and Deactivate,
gives you tremendous capability with little effort.

FIGURE 8-19: App Hub registration

c08.indd 245c08.indd 245 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

246 ❘ CHAPTER 8 GETTING STARTED WITH WINDOWS PHONE 7

The following code persists a unique identifi er to be passed to a web service as part of an
authentication token. You fi rst need to declare the property for the unique identifi er in your
App.xaml.cs (your application’s code behind fi le):

public partial class App : Application

{

 public Guid UserAuthToken { set; get; }

}

Then you need to add calls in your events to the respective Load and Save functions:

private void Application_Launching(object sender, LaunchingEventArgs e)

{

 BindPersistantDataFromIsolatedStorage();

}

private void Application_Activated(object sender, ActivatedEventArgs e)

{

 BindPersistantDataFromIsolatedStorage();

}

private void Application_Deactivated(object sender, DeactivatedEventArgs e)

{

 SavePersistantDataToIsolatedStorage();

}

private void Application_Closing(object sender, ClosingEventArgs e)

{

 SavePersistantDataToIsolatedStorage();

}

You then need to use isolated storage in the respective Load and Save functions:

private void BindPersistantDataFromIsolatedStorage()

{

 IsolatedStorageSettings appSettings = IsolatedStorageSettings.ApplicationSettings;

 Guid authToken;

 if (settings.TryGetValue<Guid>(“authtoken”, out authToken))

 {

 UserAuthToken = new Guid(authToken);

 }

}

private void SavePersistantDataToIsolatedStorage()

{

 IsolatedStorageSettings appSettings = IsolatedStorageSettings.ApplicationSettings;

 if (UserAuthToken is Guid)

 {

 appSettings[“authtoken”] = (UserAuthToken as Guid).ToString();

 appSettings.Save();

 }

}

c08.indd 246c08.indd 246 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Other Useful Windows Phone Things ❘ 247

Windows Phone 7 Isolated Storage Explorer

Available on CodePlex, the Isolated Storage Explorer includes a WPF desktop application and a
Visual Studio plug-in to allow developers to manage data held in isolated storage on the device.
By adding a reference to the Isolated Storage Explorer Assembly and adding a command in your
application launching event you get a per-app instance treating your isolated storage like a folder in
Windows.

Notifi cations

Setting up notifi cations for Windows Phone 7 is a multistage process. First you must build up a push
channel to receive communications within your app. Creating that push channel provides you with
a Service URI to post data to. Posting data in specifi c formats determines what type of message will
be displayed to the client app.

private void EnablePushNotifications()

 {

 HttpNotificationChannel pushChannel =

HttpNotificationChannel.Find(channelName);

 if (pushChannel == null)

 {

 pushChannel = new HttpNotificationChannel(channelName);

 pushChannel.ChannelUriUpdated += PushChannel_ChannelUriUpdated;

 pushChannel.ErrorOccurred += PushChannel_ErrorOccurred;

 pushChannel.ShellToastNotificationReceived +=

PushChannel_ShellToastNotificationReceived;

 pushChannel.HttpNotificationReceived +=

PushChannel_HttpNotificationReceived;

 pushChannel.Open();

 pushChannel.BindToShellToast();

 pushChannel.BindToShellTile();

 }

 else

 {

 pushChannel.ChannelUriUpdated += PushChannel_ChannelUriUpdated;

 pushChannel.ErrorOccurred += PushChannel_ErrorOccurred;

 pushChannel.ShellToastNotificationReceived +=

PushChannel_ShellToastNotificationReceived;

 pushChannel.HttpNotificationReceived +=

PushChannel_HttpNotificationReceived;

 }

 System.Diagnostics.Debug.WriteLine(pushChannel.ChannelUri.ToString());

 }

You can use three types of notifi cations. The fi rst and simplest is the toast notifi cation. With a toast
notifi cation you can pass a title, a string of content, and a parameter. The title will be boldfaced
when displayed, the content will follow nonboldfaced, and the parameter will not be shown, but
it is what is sent to your application when the user taps on the toast message. This can contain

c08.indd 247c08.indd 247 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

248 ❘ CHAPTER 8 GETTING STARTED WITH WINDOWS PHONE 7

parameters to load on the default page, or a relative link to the page you want loaded when the app
loads as a result of the tap.

void PushChannel_ShellToastNotificationReceived(object sender, NotificationEventArgs e)

{

 StringBuilder message = new StringBuilder();

 string relativeUri = string.Empty;

 message.AppendFormat(“Received Toast {0}:\n”, DateTime.Now.ToShortTimeString());

 // Parse out the information that was part of the message.

 foreach (string key in e.Collection.Keys)

 {

 message.AppendFormat(“{0}: {1}\n”, key, e.Collection[key]);

 if (string.Compare(

 key,

 “wp:Param”,

 System.Globalization.CultureInfo.InvariantCulture,

 System.Globalization.CompareOptions.IgnoreCase) == 0){

 relativeUri = e.Collection[key];

 }

 }

 Dispatcher.BeginInvoke(() => MessageBox.Show(message.ToString()));

}

The second and more complex notifi cation is the tile notifi cation. With the tile notifi cation you can
update the application tile content. The XML data that you post contains fi elds for the title on the
front of the tile, front of the tile background image, the count for the badge, the title for the back of
the tile, the back of the tile background image, and string of content for the back of the tile.

The images for the background of the tiles must be local resource URIs. The
count for the badge cannot exceed 99.

The third and most developer-centric notifi cation type is raw. With the raw notifi cation type you
can pass data directly to the app. It will not be delivered if the application is not running.

void PushChannel_HttpNotificationReceived(object sender, HttpNotificationEventArgs e)

 {

 string message;

 using (System.IO.StreamReader reader =

new System.IO.StreamReader(e.Notification.Body))

 {

 message = reader.ReadToEnd();

 }

 Dispatcher.BeginInvoke(() =>

c08.indd 248c08.indd 248 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Other Useful Windows Phone Things ❘ 249

 MessageBox.Show(String.Format(“Received Notification {0}:\n{1}”,

 DateTime.Now.ToShortTimeString(), message))

);

 }

GPS

Windows Phone 7 has built-in functionality for leveraging the geolocation sensors in your device.
Using the System.Device.Location namespace and tracking the PositionChanged event of a
GeocoordinateWatcher adds a button to your application bar that will tell you the device’s distance
from our local derby team, the Lansing Derby Vixens.

The Windows Phone emulator has a great interface for mocking GPS location changes while
developing and debugging your app, as shown in Figure 8-20.

GeoCoordinate DerbyVixensLocation = new GeoCoordinate(42.7337, -84.5469);

 GeoCoordinateWatcher _GeoCoordinateWatcher;

 private void DistanceToVixens()

 {

 try

 {

 _GeoCoordinateWatcher =

new GeoCoordinateWatcher(GeoPositionAccuracy.High)

 {

 MovementThreshold = 10 /* 10 meters. */

 };

 _GeoCoordinateWatcher.PositionChanged +=

GeoCoordinateWatcherPositionChanged;

 _GeoCoordinateWatcher.Start();

 }

 catch

 {

 }

 }

 private void GeoCoordinateWatcherPositionChanged(object sender,

GeoPositionChangedEventArgs<GeoCoordinate> e)

 {

 _GeoCoordinateWatcher.PositionChanged -=

GeoCoordinateWatcherPositionChanged;

 GeoCoordinate current =

new GeoCoordinate(e.Position.Location.Latitude, e.Position.Location.Longitude);

 var metersFromVixens = current.GetDistanceTo(DerbyVixensLocation);

 MessageBox.Show(string.Format(“{0:0.00} meters from the Lansing Derby Vixens”,

 metersFromVixens));

 _GeoCoordinateWatcher.Stop();

 _GeoCoordinateWatcher.Dispose();

 _GeoCoordinateWatcher = null;

 }

c08.indd 249c08.indd 249 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

250 ❘ CHAPTER 8 GETTING STARTED WITH WINDOWS PHONE 7

Accelerometer

In addition to GPS, Windows Phone 7 devices are outfi tted with an accelerometer. The
emulator provides a 3-D interface for simulating accelerometer change events, as shown in
Figure 8-21.

You can track the movement of the device by capturing the ReadingChanged event on the
accelerometer. However, you need to have a delegate to call back to the UI thread if you want
to display anything special based on the event. If the application can access the UI thread, the
ReadingChanged event handler will call the delegate function; otherwise, it will dispatch the event
on the UI thread. You must also make sure that when you are done capturing this data, you stop the
accelerometer to preserve battery life.

private void LoadAccelerometer()

 {

 acc = new Accelerometer();

 acc.ReadingChanged += OnAccelerometerReadingChanged;

 acc.Start();

 }

 delegate void AccelerometerUITextUpdateDelegate(TextBlock accText, string text);

 void AccelerometerUITextUpdate (TextBlock accText, string text)

 {

FIGURE 8-20: Location pane

c08.indd 250c08.indd 250 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Other Useful Windows Phone Things ❘ 251

 accText.Text = text;

 }

 void OnAccelerometerReadingChanged(object sender,

AccelerometerReadingEventArgs e)

 {

 string accelOutput = String.Format(“X:{0} \n Y:{1} \n Z:{2}”,

e.X, args.Y, args.Z);

 if (accText.CheckAccess())

 {

 AccelerometerUITextUpdate (accText, accelOutput);

 }

 else

 {

 accText.Dispatcher.BeginInvoke(

new AccelerometerUITextUpdateDelegate (AccelerometerUITextUpdate),

 accText, accelOutput);

 }

 }

 private void AccelerometerDataComplete(){

 acc.Stop();

}

FIGURE 8-21: Accelerometer panes

c08.indd 251c08.indd 251 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

252 ❘ CHAPTER 8 GETTING STARTED WITH WINDOWS PHONE 7

Web Services

The Derby application is an example of leveraging data over the web to add value to your
application. If you don’t want to be the central repository for all data exposed to your users, you can
leverage web services that exist from other vendors.

As of spring 2011, the Windows Azure Marketplace has more than 16 categories of free and
premium data sets that you can consume with content ranging from real estate and mortgage
information, to demographics from the UN, to indicators from the World Bank. The data market is
available at https://datamarket.azure.com/.

SUMMARY

Although the newcomer to the space, the Windows Phone 7 platform has been working hard to
implement all of the features expected by a smartphone user, without giving up the Metro design
philosophy. Hopefully, you now feel comfortable in the Windows Phone 7 tooling, and can see the
parallels between iOS, Android, and Windows Phone 7 when doing UI and back-end development.
This chapter covered using sensors, implementing Metro-specifi c design patterns (such as tiles),
calling out to web services, and getting your application submitted for approval to the Marketplace.

This chapter also covered getting the tools you need to develop applications for Windows Phone 7.
It covered the UI design patterns found in these applications and discussed how to build your demo
application using the .NET Framework and your existing web service. You learned how to leverage
the sensors on the device, as well as the framework-specifi c implementations of offl ine storage.
Finally, you learned the process for getting a developer account and how to prepare to distribute
your application.

c08.indd 252c08.indd 252 28/07/12 6:04 PM28/07/12 6:04 PM

www.it-ebooks.info

https://datamarket.azure.com/
http://www.it-ebooks.info/

Getting Started with BlackBerry

WHAT’S IN THIS CHAPTER?

 ➤ History of BlackBerry

 ➤ Getting a BlackBerry development setup

 ➤ Creating mobile apps with BlackBerry for Java

 ➤ Creating mobile apps with Web Works

 ➤ Implementing the Derby App

As with the other chapters in the this book, we do not intend to make you an expert
BlackBerry developer after reading this one chapter; we simply want to give you the knowledge
of the tools you need to develop a BlackBerry application. Of the other platforms discussed
in this book, BlackBerry is the oldest but not necessarily the most mature. Over the past few
years BlackBerry has been struggling to keep its dominance in the mobile device world, and
in doing so has changed the hardware and development platforms in which applications can
be created. This has created fragmentation of the BlackBerry platform, and has caused new
mobile developers a great deal of grief when researching what languages and tools to use when
creating a native BlackBerry application.

Because of this fragmentation of the platform (along with a few other issues you will discover as
you read through this chapter), we fi nd BlackBerry to be the most diffi cult platform for which
to develop mobile apps. The goal of this chapter, then, is to help you understand what exactly
you are getting yourself into if you have to create a BlackBerry app. This chapter explores the
two recommended development paths from Research In Motion (Java and WebWorks) used to
create BlackBerry applications.

9

c09.indd 253c09.indd 253 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

254 ❘ CHAPTER 9 GETTING STARTED WITH BLACKBERRY

THE BLACKBERRY CRAZE

The year was 1999. It was the height of the
dot-com boom, and companies realized
the importance of the Internet and e-mail
and were adopting these technologies at a
fast rate. Cell phones still had not made it
to the general population, and many consumers
were still using AOL as their Internet
service provider. A company called Research
In Motion (RIM) released a small
pager-like device that contained functional-
ity for paging, personal organization, and
e-mail. Running off of two AA batteries, the
BlackBerry 850 was capable of displaying
up to eight lines of text at a time. It was the
fi rst time for many employees that work was
now tied to the side of their belt no matter
where they went. Figure 9-1 shows the BlackBerry 850; it was very simple in design, but functional.

After the BlackBerry 850, RIM ditched the pager look, and moved toward a bigger PDA-type
device. It wasn’t until 2003 that the BlackBerry smartphones were released and the BlackBerry
really started to gain momentum. BlackBerry devices gained popularity with governments and
large corporations because of a software package RIM released called the BlackBerry Enterprise
Server. This allowed network administrators to remotely manage users’ phones. Connection to the
organization’s e-mail, remote installation of custom applications, as well as remote deletion of data
attracted large organizations to the platform.

As the Internet started making its way into the majority of households in the United States,
BlackBerry devices did as well. Having a calendar and e-mail at their fi ngertips at all times was
something many people found appealing. Initially only “tech savvy” people found the thought of
this constant line to the Internet appealing, but others started to join in as well, pushing BlackBerry
to maintain the top market share in smartphone devices for many years until Google and Apple
started to take over in 2011.

BlackBerry Devices

When talking about BlackBerry devices, it important to discuss the BlackBerry operating system
(OS) as well. The BlackBerry OS is tied very closely to both the device and the wireless carrier,
meaning that the latest version of the BlackBerry OS will not run on every single BlackBerry
device under each wireless carrier. To take that a step further, if the device is running in the
enterprise, under a BlackBerry server, the enterprise can control the BlackBerry OS version as well.

From a consumer’s vantage point, a new BlackBerry is the gift that keeps giving, at least for a
while. RIM releases updates to the OS that fi x bugs, add new features, and oftentimes improve
performance, but which updates actually get installed can be dependent on the device and wireless
carrier. This makes keeping track of which OS is on which device a nightmare for developers.

FIGURE 9-1: BlackBerry 850, the fi rst BlackBerry model

c09.indd 254c09.indd 254 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

BlackBerry Desktop Software

When it comes to installing a new BlackBerry OS version, and pushing fi les to the device, the best
way to do this is through the BlackBerry Desktop Software program. You can get the BlackBerry
Desktop Software from the BlackBerry website at http://us.blackberry.com/apps-software/
desktop/.

Figure 9-2 shows the summary of a BlackBerry Storm 9530 that has been connected through the
software. Notice that the version is 5.0, and even though this device is only two years old, it is
no longer able to run the most recent version of the BlackBerry OS because it is now two full
versions behind. The BlackBerry Desktop software lists only the updates that are available for
a particular device. As with other mobile platforms, it’s important that you stay educated as to
the latest OS version and features included in the OS that may make your development process
easier.

FIGURE 9-2: BlackBerry desktop software

Whic h BlackBerry OS Version to Develop For

BlackBerry devices as we know them today have been around for almost seven years, and the platform
has more devices and OS versions than any other mobile platform. Given that the OS version is tied
closely to hardware, and the end user may not even have the ability to upgrade the OS, what is a

The BlackBerry Craze ❘ 255

c09.indd 255c09.indd 255 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://us.blackberry.com/apps-software/desktop/
http://us.blackberry.com/apps-software/desktop/
http://www.it-ebooks.info/

256 ❘ CHAPTER 9 GETTING STARTED WITH BLACKBERRY

BlackBerry developer to do? As a new BlackBerry developer you may have a single device, so you turn
to that device when you have questions about how a particular feature works. It’s important not to
make assumptions, though; if one version of the BlackBerry OS works one way, that
does not mean it will work the same in other versions. This paradigm only gets more complex as you
are developing your app and testing on other devices. Varying screen sizes, different
keyboards, specifi c carrier settings, and unavailable APIs are issues that make developing for
the BlackBerry diffi cult.

Who Is Using the Application?

The fi rst question to ask is, who is the target market of the application? If you are creating a line of
business applications for a larger corporation that has used BlackBerry for years, and has a standard
model, then of course you are going to want to develop for that version. This is rarely the case, and
we have never been lucky enough to see it. Our clients usually are developing an Android and iOS
version, and they want to cover all of the platforms. In this case, the magic OS version you want to
develop for is BlackBerry OS 5. More than 85 percent of BlackBerry devices run BlackBerry OS 5 or
above. In this case, the application is more than likely going to be distributed in the App World, and
it may be a consumer app that users will either pay for or download for free.

This may not be exactly what you wanted to hear, because BlackBerry OS 5 is lacking in many
features (mainly revolving around the JavaScript engine) and makes developing in BlackBerry
WebWorks, the framework developed by RIM that allows BlackBerry development in JavaScript and
HTML, diffi cult.

In November 2011, the BlackBerry App World
reported that 47 percent of users were still using OS
version 5, and only 34 percent were using version 6
and higher, as shown in Figure 9-3.

Even though it may be easier for you to develop a
BlackBerry version 6 app, you may be doing your
client a disservice by allowing only a small percentage
of users to access the app.

Lowest Common Denominator

By targeting a lower OS version such as 5, your app
will be able to run on newer versions such as 6 and 7,
allowing more of the users in the market to use your
app. One of the largest disadvantages of targeting a
lower OS version is the lack of features from future
versions. Future OS versions may add new UI
widgets that are standard and make your app look
like it was developed for the very fi rst BlackBerry.
With the mobile world changing so rapidly, you should be prepared to update interfaces to match
OS standards as they advance.

FIGURE 9-3: BlackBerry App World user OS

versions

19%

Pre-BlackBerry

OS 5.0

47%

BlackBerry OS 5.0

34%

BlackBerry OS 6.0 or

higher

c09.indd 256c09.indd 256 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

The BlackBerry Craze ❘ 257

Multiple Builds

Another solution is creating a build for each version you plan to support. If you are creating a
BlackBerry application, there’s a very good chance that you already have an Android and iOS
version, so adding a third BlackBerry version requires a great deal of thought about maintenance
costs. The advantage of this approach is that it enables you to match UI and feature sets of new
versions as they come out, and not have to worry about backward compatibility.

Change

Somet imes your application will not run on specifi c versions of the BlackBerry OS or specifi c
devices. Oftentimes targeting a lower BlackBerry OS version creates an inferior product. The
BlackBerry App World has settings that allow the developer to target a specifi c BlackBerry OS and
the devices to which the app can be deployed.

With devices and versions changing frequently, BlackBerry provides information to help BlackBerry
developers choose a target OS. You can fi nd this information at http://us.blackberry.com/
developers/choosingtargetos.jsp#.

Screen Resolutions

When it comes to devices, one of the most frustrating issues is the different screen resolutions. For
iOS you need to deal with only two sizes, but with BlackBerry you need to account for several
screen sizes. Table 9-1 lists the BlackBerry models with their screen resolutions.

TABLE 9-1: Device Screen Resolutions

DEVICE HORIZONTAL PIXELS VERTICAL PIXELS

71xx/81xx 240 260

82xx 240 320

83xx/87xx/88xx 320 240

89xx/96xx/97xx 480 360

90xx 480 320

93xx 320 240

91xx 360 400

95xx 360 480

98xx 360 480

BlackBerry Devices and OS Versions

Being a new BlackBerry developer, your BlackBerry device is more than likely not your primary
phone. Your device may have been a “hand-me-down” phone given to you, so it’s important to fi nd
out which version of BlackBerry OS your device can support. Table 9-2 lists BlackBerry devices as
well as their input types and max OS versions.

c09.indd 257c09.indd 257 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://us.blackberry.com/developers/choosingtargetos.jsp#
http://us.blackberry.com/developers/choosingtargetos.jsp#
http://www.it-ebooks.info/

258 ❘ CHAPTER 9 GETTING STARTED WITH BLACKBERRY

TABLE 9-2: Device OS Versions

OS MODEL NAME INPUT

5 9700 Bold Track pad 6

5 9650 Bold Track pad 6

5 9000 Bold Trackball

5 9630 Tour Trackball

5 9550 Storm 2 Touch screen

5 9520 Storm 2 Touch screen

5 9530 Storm Touch screen

5 9500 Storm Touch screen

5 8900 Curve Trackball

5 8530 Curve Track pad

5 8520 Curve Trackball

5 8350i Curve Trackball

5 8330 Curve Trackball

5 9300 Curve Track pad

5 9330 Curve Track pad

6 9800 Torch Track pad/Touch screen

6 9670 Style Track pad

6 9780 Bold Track pad

7 9900 Bold Track pad/Touch screen

7 9930 Bold Track pad/Touch screen

7 9350 Curve Track pad

7 9360 Curve Track pad

7 9370 Curve Track pad

7 9810 Torch Track pad/Touch screen

7 9850 Torch Track pad/Touch screen

7 9860 Torch Track pad/Touch screen

c09.indd 258c09.indd 258 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 259

BlackBerry Playbook

In April 2011, RIM released the BlackBerry Playbook for sale in Canada and the United States.
The Playbook is a tablet-based device sporting a 7-inch display. A year prior, RIM purchased QNX
Software Systems, which developed its own operating system for embedded devices. Playbooks
use the QNX OS, and contain a different set of APIs than BlackBerry OS. The development story
for the BlackBerry Playbook is similar to BlackBerry OS — you have many options, which often
makes it confusing to get started. You can even fi nd tools to convert applications created for
Android to run on the BlackBerry Playbook. It is out of the scope of this book to discuss developing
for the BlackBerry Playbook, but it’s important to note that the following platforms can be used to
develop applications for it:

 ➤ Native C\C++

 ➤ HTML 5 WebWorks

 ➤ Adobe AIR

 ➤ Android Runtime

You can fi nd more information about selecting which platform to use for BlackBerry Playbook
development in the Platforms section of the BlackBerry Developer Zone at https://bdsc.webapps
.blackberry.com/devzone/platforms.

GETTING THE TOOLS YOU NEED

If you have ever researched what environment is needed to develop BlackBerry applications, you
may have noticed that you can use multiple environments. BlackBerry is an evolving platform,
offering developers multiple languages and environments with which to create applications. RIM
has not always done a great job of informing developers as to the recommended environment or
even strengths of each environment. With the complexity of devices and BlackBerry OS versions,
fi guring out exactly what environment to develop in often just frustrates new BlackBerry developers.
Although RIM has added a great deal of documentation to the BlackBerry Developer Zone, as to
the different environments that BlackBerry applications can be developed with, it appears that the
future will be much of the same.

RIM is currently planning to base the new BlackBerry OS on QNX, just like the Playbooks. As
of June 2012, the name of the OS is BlackBerry OS 10 or just BB10. With not many details being
released about BB10, it has been said that BB10 will support the WebWorks environment, which is
covered later in this chapter.

BlackBerry Developer Program

One of the most important tools when it comes to BlackBerry development is the BlackBerry Developer
website, which is free to join, at http://developer.blackberry.com. The BlackBerry
Developer website contains a centralized place to download SDKs, participate in forums, and
monitor issues pertaining to the development environments as well as the BlackBerry OS. Be aware
that this interface changes frequently and is often the fi rst cause of frustration when searching for
 documentation, because it’s not where it used to be.

c09.indd 259c09.indd 259 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

https://bdsc.webapps.blackberry.com/devzone/platforms
https://bdsc.webapps.blackberry.com/devzone/platforms
http://developer.blackberry.com
http://www.it-ebooks.info/

260 ❘ CHAPTER 9 GETTING STARTED WITH BLACKBERRY

BlackBerry Partner

RIM/BlackBerry also offers a number of other higher-level paid member types that provide a great
deal of other benefi ts. Programs such the Independent Software Vendor (ISV), Professional Service
Providers, and System Integrators member types offer specifi c tools for each level that may be of
benefi t to your organization. You can fi nd more information about the various partner levels at
http://partners.blackberry.com. If you are developing for the enterprise, an ISV account will
provide a Service Level Agreement (SLA), in which your BlackBerry ISV representative may be able
to assist you with questions that may come up during application development.

Code Signing Keys

It’s a good assumption that at some point the BlackBerry application you are creating will be
deployed to the BlackBerry App World. In order to do this, your application must be signed with a
key from RIM. Also, certain APIs such as persistent store and cryptography require that the app be
signed before it can be installed on a device.

It’s free to get the signing keys, but it can take a little bit of time, so don’t expect to be able to
download them right away. Give yourself a few days before you actually need them.

When applying for your BlackBerry code signing
keys, it’s important to remember the PIN that you
used to create them. This PIN is required each
time you sign your application. Figure 9-4 shows
the signing key order form on the BlackBerry
website at https://www.blackberry.com/
SignedKeys/nfc-form.html.

Installing the Signing Keys

Once your application’s code signing keys have
been approved by RIM, you will receive three
e-mails with each one containing a separate
signing key. Each key gives access to part of the
BlackBerry API, and you should install each one
on the same computer. Installing the signing keys
is different depending on which environment
you choose to work with. The following sections
address that under each specifi c environment.

BlackBerry Java Development Environment

If you have been to the BlackBerry Developer Zone, you may have noticed the numerous
recommended approaches to creating applications for BlackBerry devices. It can be confusing as to
which environment to choose. Currently the Java Development Environment is the most powerful
approach. This may not always be the case, but as of today it’s important to know how to create
BlackBerry applications in this environment. Please note that the BlackBerry simulators will run
only on Windows machines.

FIGURE 9-4: BlackBerry Signing Key application

c09.indd 260c09.indd 260 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

https://www.blackberry.com/SignedKeys/nfc-form.html
https://www.blackberry.com/SignedKeys/nfc-form.html
http://partners.blackberry.com
http://www.it-ebooks.info/

Getting the Tools You Need ❘ 261

BlackBerry Java Plug-in for Eclipse

RIM has packaged everything you need for
BlackBerry Java development into an Eclipse
plug-in. If you already have Eclipse installed,
you can fi nd the BlackBerry Plug-in for Eclipse
install package on the BlackBerry Developer
site at https://bdsc.webapps.blackberry
.com/java/download/eclipse.

The plug-in includes all of the BlackBerry
tools for packaging and signing, as well as the
BlackBerry SDKs and the simulators. If you
do not have Eclipse installed, RIM offers a
download of Eclipse with the plug-in precon-
fi gured as well. When the plug-in is installed
correctly, you should see a new set of options
entitled BlackBerry Java Plug-in under the
preferences, as shown in Figure 9-5.

Anatomy of a Java BlackBerry App

If you have developed a Java application before, you already
have a good idea of the directory structure and where things will
be stored. Figure 9-6 shows a newly created BlackBerry app.

BlackBerry Java apps are structured in a similar manner to other
types of Java apps with source code contained within an src
directory and resources contained with the res directory.
Within each of these directories contains the fi les used to make
up a BlackBerry Java app.

 ➤ MyApp.Java: This is the entry point of the BlackBerry
application. The call to load your fi rst screen will be placed in this fi le, as well as any other
“service” type calls that the application will use. An alternative entry point can be set within
the BlackBerry properties within the Alternative Entry Point tab.

 ➤ MyScreen.Java: This is a screen that will be rendered to the user. User interfaces are
generated via code, and it’s very common to see business logic as well as UI generation logic
in the same fi le, which we highly discourage.

 ➤ BlackBerry_App_Descriptor.xml: This fi le contains settings specifi c to the application such
as Title, Version, and Description.

The BlackBerry Simulator

RIM puts a great deal of effort into maintaining the different BlackBerry simulators. Because
the BlackBerry OS is tightly tied to the hardware, RIM publishes a simulator for each device.
Specifi c device testing is a task that has always plagued mobile developers, but having a simulator
for each device type will help you track down device-specifi c issues more effi ciently. Although
simulators are never a substitute for a physical device, having a variety of simulators to choose from

FIGURE 9-5: BlackBerry Java Eclipse Plug-in

FIGURE 9-6: Anatomy of a Java

BlackBerry app

c09.indd 261c09.indd 261 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

https://bdsc.webapps.blackberry.com/java/download/eclipse
https://bdsc.webapps.blackberry.com/java/download/eclipse
http://www.it-ebooks.info/

262 ❘ CHAPTER 9 GETTING STARTED WITH BLACKBERRY

is very helpful. Figure 9-7 shows the BlackBerry 9930 simulator. Notice the keyboard, screen size,
and the skin around the phone — this software is simulating the BlackBerry 9930 Bold.

The BlackBerry Simulator contains a number of tools to help you test your applications. With
options to mock features, such as the device being placed in a holster and setting the Camera source,
BlackBerry mobile developers can use several options to help test their apps before testing on a
physical device. These options are located on the Simulate menu option, as shown in Figure 9-8.

FIGURE 9-7: The BlackBerry 9930

Simulator

FIGURE 9-8: The BlackBerry 9930

Simulator options

Hello World App

With the plug-in installed, it’s time to get to know the BlackBerry tools. In this section, you create
a simple Hello World BlackBerry application that contains a label and a button, and you learn the
basics of creating an app with the BlackBerry Java Eclipse Plug-in. When the button is touched,
the text in the label changes. This will allow you to learn the basics of creating an app with the
BlackBerry Java Eclipse Plug-in.

Creating the Project

Within Eclipse, select File ➪ New ➪ Project. When the BlackBerry Java Eclipse Plug-in is installed, you
will have an option to create a BlackBerry project. Select BlackBerry Project as shown in Figure 9-9.

c09.indd 262c09.indd 262 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 263

After you select the BlackBerry project type, you are prompted for the name of the project and
which version of the Java Runtime Environment (JRE) you would like to use, as shown in
Figure 9-10.

Creating the User Interface

Creating the UI for BlackBerry Java apps can get complicated very quickly. Because the UI is built
entirely via code, designers don’t have full control, and often the UI is left to a developer to
implement fully. Developers often “clump” UI and business logic together, which makes
understanding the app diffi cult.

As with most Hello World–type apps, this one is simple, so your business logic is contained within
your UI logic. The following logic creates a simple UI that produces a screen with a title of Hello
BlackBerry, a blank label, and a button:

public MyScreen() {
 // Set the displayed title of the screen
 setTitle(“Hello BlackBerry”);

 final LabelField lblHello = new LabelField(“”);
 ButtonField btnHello = new ButtonField(“Click Me”);

 add(lblHello);
 add(btnHello);
}

Notice that the controls are added to the screen with add function, and appear in the order that they
were added.

FIGURE 9-9: Creating a New BlackBerry project FIGURE 9-10: BlackBerry project settings

c09.indd 263c09.indd 263 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

264 ❘ CHAPTER 9 GETTING STARTED WITH BLACKBERRY

Wiring Up the Controls

BlackBerry fi elds implement an observer pattern to handle events, meaning all fi elds can have a
 listener attached. That listener is notifi ed when a change to the fi eld happens. In this example,
the listener is notifi ed when the button is touched or clicked.

The listener is simply going to change the label already placed on the screen to “My New Text.”
Because it’s a small amount of code, you can create and wire your listener all in the same spot:

btnHello.setChangeListener(new FieldChangeListener() {
 public void fieldChanged(Field field, int context) {
 lblHello.setText(“My New Text”);
 }
});

Running in the Simulator

Clicking the Run button in the Eclipse menu bar displays the prompt shown in Figure 9-11. Select
BlackBerry Simulator to run your app.

If all goes as planned, your app should look similar to the app shown in Figure 9-12. If your app
does not appear, you may need to fi nd it on the simulated BlackBerry device under the All
applications section.

FIGURE 9-11: Running the project FIGURE 9-12: Hello BlackBerry in the

simulator

c09.indd 264c09.indd 264 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 265

Basic UI

It is out of the scope of this book to discuss developing a BlackBerry UI with Java in depth, but it’s
important to note the basics. The UI for a BlackBerry app is created entirely through code. The
BlackBerry UI API follows a fi eld/layout manager/screen model:

 ➤ Screens: Only one screen is active per application. Layout Managers are added to screens.
Delegate functionality such as menu options are also handled at the screen level.

 ➤ Layout Managers: Layout Managers are a logical grouping of fi elds that can be used to
arrange fi elds on the screen. Vertical Field Managers, Horizontal Field Managers, Flow
Field Managers, and Dialog Field Managers are Layout Managers that you can use. It’s also
important to note that Layout Managers can be contained within another Layout Manager.

 ➤ Fields: Fields are the building blocks of the UI. Fields are controls such as Buttons and
Labels. Every fi eld that you add to your app must belong to a Layout Manager.

Java Micro Edition

BlackBerry applications run within the Java Micro Edition (Java ME, formerly called J2ME). Java
ME is a subset of the Java Standard Edition (Java SE) and is very similar to the Java SE, except you
may fi nd yourself hunting for objects that do not exist. The Java ME is a trimmed-down version,
and is missing some utilities that you may use often in the Java SE. We have found functions revolving
around strings and dates to be stripped to the bare bones, and missing a great deal of useful
functionality, so be aware of this when you dive into creating a BlackBerry app with Java.

Implementing the Derby App
with BlackBerry for Java

The idea of the Derby App is to build the same app over
all of the mobile platforms covered in this book. The
BlackBerry Java version is very similar to the other
versions that you have built thus far or will build in future
chapters.

The requirements are to list the roster from the Lansing
Derby Vixens roller derby team as the primary function,
and then list the other roller derby teams in the world
with the ability to see their team rosters.

User Interface

Keeping the user interface abstracted from the business
logic is easier said than done when developing BlackBerry
aps. Because the UI is generated with code, you will need
to think about how you want to abstract your UI as your
application grows. For the Derby App, we decided to
keep things simple and create one screen that would
render both the rosters as well as the leagues and teams,
as shown in Figure 9-13. FIGURE 9-13: BlackBerry Java Derby

Vixens app

c09.indd 265c09.indd 265 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

266 ❘ CHAPTER 9 GETTING STARTED WITH BLACKBERRY

The UI is simple, consisting of a toolbar on the top of the screen used for navigation and a
SimpleList control used to list the teams and roster.

Building the Toolbar

We have abstracted the logic required to render the toolbar on the screen into its own function. This
function contains a Toolbar Manager control and two Toolbar buttons.

The Toolbar Buttons are added to the Toolbar Manager, and then the Toolbar Manager is added
to the screen in the following code. Notice the events for onFocus on each button, which calls the
event that should happen when the toolbar button is pressed.

public void buildToolBar() {
 ToolbarManager topToolBar = new ToolbarManager();

 ToolbarButtonField btnLeagues = new ToolbarButtonField(){
 public boolean isFocusable() {
 return true;
 }

 protected void onFocus(int direction) {
 super.onFocus(direction);
 invalidate();

 bindLeagueDataOnScreen();
 }

 protected void onUnfocus() {
 super.onUnfocus();
 invalidate();
 }
 };

 ToolbarButtonField btnVixens = new ToolbarButtonField(){
 public boolean isFocusable() {
 return true;
 }

 protected void onFocus(int direction) {
 super.onFocus(direction);
 invalidate();

 bindTeamDataOnScreen(“Lansing Derby Vixens”);
 }

 protected void onUnfocus() {
 super.onUnfocus();
 invalidate();
 }
 };

 btnLeagues.setText(new StringProvider(“Team Names”));
 btnVixens.setText(new StringProvider(“Vixens”));

c09.indd 266c09.indd 266 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 267

 topToolBar.add(btnVixens);
 topToolBar.add(btnLeagues);

 add(topToolBar);
}

Getting the Vixens Roster

When the app is fi rst loaded, call is made out to the Derby web service to obtain the roster for the
Lansing Derby Vixens and then binds the data to the SimpleList UI control. The service returns
the data in JSON format, exactly the same as the previous examples on other platforms.

Getting the Roster

The following code goes out to the web service, obtains the raw data in JSON format, and then
converts into an array of DerbyName objects:

private DerbyName[] getDerbyNames(String teamName){
 DerbyName[] tmpRtn = null;
 teamName = replaceAll(teamName, “ “, “%20”);

 String requestURL = “http://derbynames.gravityworksdesign.com/
 DerbyNamesService.svc/DerbyNames?$filter=League%20eq%20’” +
 teamName + “’”;

 String response = NetworkHelper.getDataFromStream(requestURL);
 try {
 JSONObject json = new JSONObject(response);
 JSONArray jsonArray = json.getJSONArray(“d”);

 int total = jsonArray.length();
 tmpRtn = new DerbyName[total];

 for (int i=0;i<total;i++) {
 String derbyGirlJSON = jsonArray.getString(i);

 tmpRtn[i] = new DerbyName();
 tmpRtn[i].fromJSON(derbyGirlJSON);
 }
 } catch (JSONException e) {
 //TODO: handle error
 }

 // return
 return tmpRtn;
}

Recent versions of the BlackBerry SDK include libraries that assist in the parsing of JSON, which
makes this task quite simple. In your code you load the raw JSON text into a new JSONObject
and then loop through items in the created array, calling a function created on your DerbyName class
that will map the raw JSON to the DerbyName object:

c09.indd 267c09.indd 267 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/DerbyNames?$filter=League%20eq%20
http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/DerbyNames?$filter=League%20eq%20
http://www.it-ebooks.info/

268 ❘ CHAPTER 9 GETTING STARTED WITH BLACKBERRY

JSONObject json = new JSONObject(response);
JSONArray jsonArray = json.getJSONArray(“d”);

int total = jsonArray.length();
tmpRtn = new DerbyName[total];

for (int i=0;i<total;i++) {
 String derbyGirlJSON = jsonArray.getString(i);

 tmpRtn[i] = new DerbyName();
 tmpRtn[i].fromJSON(derbyGirlJSON);
}

fromJSON is a custom created method found in the DerbyName class. This function contains the logic
that takes the raw JSON item and maps it to your DerbyName object:

public void fromJSON(String jsonString) {
 try {
 JSONObject json = new JSONObject(jsonString);

 // build the derby name object from JSON
 setDerbyNameId(json.getInt(“DerbyNameId”));
 setName(json.getString(“Name”));
 setNumber(json.getString(“Number”));
 setLeague(json.getString(“League”));
 } catch (JSONException ex) {
 ex.printStackTrace();
 }
}

Once the data from the web service has been converted from JSON into an array of DerbyName
objects, you loop each object and add it to the simple list, which is named lstDerbyData:

private void bindTeamDataOnScreen(String teamName) {
 clearListItems();
 DerbyName[] derbyData = getDerbyNames(teamName);

 for (int i=0;i< derbyData.length;i++) {
 lstDerbyData.add(derbyData[i].getName());
 }
}

Team Names

Team names are loaded in the simple list when the TeamNames button has focus in the toolbar. The
team names are loaded very similarly as the Vixens were loaded, but you make a call to a different
web service to obtain the team names:

private String[] getDerbyLeagues() {
 String[] tmpRtn = null;
 String requestURL = “http://derbynames.gravityworksdesign.com/
 DerbyNamesService.svc/Leagues”;

c09.indd 268c09.indd 268 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/Leagues
http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/Leagues
http://www.it-ebooks.info/

Getting the Tools You Need ❘ 269

 String response = NetworkHelper.getDataFromStream(requestURL);

 try {
 JSONObject json = new JSONObject(response);
 JSONArray jsonArray = json.getJSONArray(“d”);

 int total = jsonArray.length();
 tmpRtn = new String[total];

 for (int i=0;i<total;i++) {
 JSONObject league = jsonArray.getJSONObject(i);

 tmpRtn[i] = league.getString(“LeagueName”);
 }
 } catch (JSONException e) {
 //TODO: handle error
 }

 // return
 return tmpRtn;
}

When the team names are loaded in the simple list, you also set a command that will be fi red when
the item in the simple list is touched. This adds the functionality that enables you to see the roster
for the team when it is selected.

private void bindLeagueDataOnScreen() {
 clearListItems();
 String[]leagueData = getDerbyLeagues();

 for (int i=0;i< leagueData.length;i++) {
 lstDerbyData.add(leagueData[i]);
 }

 lstDerbyData.setCommand(new CommandHandler() {
 public void execute(ReadOnlyCommandMetadata metadata, Object context){
 if(context instanceof SimpleList){
 String teamName =((SimpleList)context)
 .get(lstDerbyData.getFocusRow()).toString();

 bindTeamDataOnScreen(teamName);
 }
 }
 }, new ReadOnlyCommandMetadata(new CommandMetadata(
 CommandMetadata.COMMAND_ID)), lstDerbyData);
}

BlackBerry Eclipse Specifi cs

If you are used to the Eclipse environment, you will be right at home using this method of
creating BlackBerry apps. Debugging and writing code is the same as the other platforms that use
Eclipse.

c09.indd 269c09.indd 269 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

270 ❘ CHAPTER 9 GETTING STARTED WITH BLACKBERRY

Installing Signing Keys

You can install the BlackBerry signing keys in the
Eclipse BlackBerry JDE plug-in by accessing
the Signature Tool under the BlackBerry Java
Plug-in preferences as shown in Figure 9-14.

Selecting install starts the wizard where you
will select each .csi fi le that you were e-mailed
from RIM. After you have installed each of the
.csi fi les, you will be ready to sign your
applications as they are built.

It’s also important to note that in order to sign
your application, the signing tool needs to
communicate with RIM over the Internet, and
RIM is not shy about sending e-mails when this
process happens.

BlackBerry Development
with WebWorks

WebWorks is another BlackBerry app development approach that enables developers to create
BlackBerry apps using standard web technologies, such as CSS, HTML, and JavaScript. You can use
whatever IDE that supports HTML/CSS that you are comfortable working with. These WebWorks
apps are standalone BlackBerry apps, which means they are not the mobile websites that we talked
about in Chapter 5. WebWorks apps are installed locally to the BlackBerry device and do not need
to run the HTML on a web server. These apps are packaged into a container that can be viewed by
a “headless” browser engine on the BlackBerry device that renders the HTML/CSS for the app.

Depending on the type of app you are creating, this may be a great solution to rapidly develop a
BlackBerry app using technologies you are already familiar with. Because WebWorks apps are
HTML, existing libraries such as jQuery, Sencha, or other popular JavaScript tools can be imported
into your app. WebWorks apps can also take advantage of BlackBerry-specifi c features and provide
the native experience BlackBerry users are accustomed to.

WebWorks SDK

The BlackBerry WebWorks SDK is a set of command-line tools that are used to compile, sign, and
package WebWorks projects. The Java SE SDK is a prerequisite, so make sure it is installed before
you try to install the WebWorks SDK. You can fi nd the WebWorks SDK at https://bdsc.webapps
.blackberry.com/html5/download/sdk.

Anatomy of a BlackBerry WebWorks Project

Because WebWorks projects are created with HTML, you can use your
favorite IDE to create and maintain them. For the examples, you will
be using Visual Studio. Figure 9-15 shows a newly created WebWorks
project.

FIGURE 9-14: BlackBerry JDE plug-in Signature tool

FIGURE 9-15: BlackBerry

WebWorks app

c09.indd 270c09.indd 270 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

https://bdsc.webapps.blackberry.com/html5/download/sdk
https://bdsc.webapps.blackberry.com/html5/download/sdk
http://www.it-ebooks.info/

Getting the Tools You Need ❘ 271

BlackBerry WebWorks apps have a very simple project structure consisting of a few fi les. This allows
you to follow whatever HTML/CSS conventions you may have in place for images and asset fi les.

 ➤ confi g.xml: The WebWorks confi guration XML fi le is where settings specifi c to the app are
stored. Settings such as the name, application permissions, and start page are defi ned in
this fi le.

<?xml version=”1.0” encoding=”UTF-8”?>
<widget xmlns=”http://www.w3.org/ns/widgets”
 xmlns:rim=”http://www.blackberry.com/ns/widgets”
 version=”1.0.0.0” rim:header=”WebWorks Sample”>

 <name>Hello World</name>
 <description>This is a sample application.</description>
 <content src=”index.html”/>
</widget>

 ➤ index.html: This is the fi rst screen of your app when it loads.

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>
 <meta name=”viewport” content=”width=device-width,height=device-
 height,user-scalable=no,initial-scale=1.0”>
 <title> Hello BlackBerry </title>
</head>
<body>
 <p>Hello BlackBerry</p>
</body>
</html>

The anatomy of a WebWorks project is simple, and we suggest that you
follow a common web directory structure strategy when developing
your WebWorks app. This structure may look similar to the structure
shown in Figure 9-16.

Ripple

Ripple is a mobile environment emulator in a web browser. Ripple enables
you to test your BlackBerry WebWorks apps without all the hassle that
comes with the BlackBerry simulators. Although Ripple was recently
purchased by RIM, Ripple is not just for use with BlackBerry WebWorks projects; it works great for
testing PhoneGap (see Chapter 11) projects as well.

Since RIM purchased the Ripple emulator, it has been promoting its use with WebWorks develop-
ment. Ripple’s tools include:

 ➤ Platform switching

 ➤ Capability to simulate accelerometer actions

 ➤ Capability to modify location information

FIGURE 9-16: Common

web directory structure

c09.indd 271c09.indd 271 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.w3.org/ns/widgets
http://www.blackberry.com/ns/widgets
http://www.it-ebooks.info/

272 ❘ CHAPTER 9 GETTING STARTED WITH BLACKBERRY

 ➤ Capability to trigger phone calls

 ➤ Web Inspector tools

Ripple provides an environment that developers as well as designers will be comfortable with. The
app is shown in the middle of the screen, within a mobile phone skin, and the emulator settings are
listed along the right and left sides of the phone as shown in Figure 9-17.

The address bar on top of the Ripple emulator enables developers/designers to navigate to the exact
screen they wish to work with.

FIGURE 9-17: Ripple testing environment

Because Ripple is a web browser, the fi rst option is to host the HTML fi les on a server someplace
and access them. In most situations that would be cumbersome, and it makes more sense to keep
your fi les local.

To access your mobile app in Ripple from the local fi lesystem, copy the contents into the RippleSites
directory:

 ➤ Windows XP: C:\Documents and Settings\<Username>\RippleSites

 ➤ Windows 7: C:\Users\<Username>\RippleSites

 ➤ Mac OS: /Users/<Username>/RippleSites

c09.indd 272c09.indd 272 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 273

After the project has been copied to the RippleSites directory,
you can enter http://localhost:9900/<SiteName>.
For example, http://localhost/9900/Derby/index.html.

Implementing the Derby App with WebWorks

The requirements with the WebWorks version is to list the
roster from the Lansing Derby Vixens roller derby team as
the primary function, then list all of the roller derby teams in
the world with the ability to see their team rosters.

User Interface

The user interface is created with HTML, making it very
easy to change as the app is being created. The Derby app has
a toolbar on the top of the screen, and then a list of data as
shown in Figure 9-18.

The toolbar in this implementation is simply two HTML
anchor tabs within a div. The only thing to note is a CSS
class applied to the lnkRoster anchor. This enables you to
apply styling that indicates in the toolbar which roster you
are working with.

For the list of data, just create an unordered list that will
eventually get populated with the information you want to
display:

<body id=”mainbody”>
 <div id=”header”>
 Roster
 Team Names
 </div>

 <div id=”RosterList”>

 </div>
</body>

Getting the Roster

The fi rst screen that appears when the app starts up is a list of the Lansing Derby Vixens. You
use the Roster.html fi le to list not only the Derby Vixens, but players from other teams as well.
It’s important to note that all of the logic that is being added is JavaScript and is not
WebWorks-specifi c.

The fi rst thing you do is see if the league name was passed as a query string value. Using the follow-
ing code, the LeagueName would be ‘Test League’ if the roster HTML was accessed the following
way /roster.html?LeagueName=’Test League’:

var leagueName = getParameterByName(“LeagueName”);

FIGURE 9-18: WebWorks Derby app

c09.indd 273c09.indd 273 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://localhost:9900/
http://localhost/9900/Derby/index.html
http://www.it-ebooks.info/

274 ❘ CHAPTER 9 GETTING STARTED WITH BLACKBERRY

The getParameterByName function uses some regular expression magic to fi lter out and return the
requested parameter:

function getParameterByName(name) {
 name = name.replace(/[\[]/, “\\\[“).replace(/[\]]/, “\\\]”);
 var regexS = “[\\?&]” + name + “=([^&#]*)”;
 var regex = new RegExp(regexS);
 var results = regex.exec(window.location.href);
 if (results == null)
 return “”;
 else
 return decodeURIComponent(results[1].replace(/\+/g, “ “));
}

If a parameter was not passed in, you default to requesting the Lansing Derby Vixen data and bind
it to your unordered list:

 <script type=”text/javascript”>

 var leagueName = getParameterByName(“LeagueName”);

 if (leagueName == “”) {
 leagueName = “Lansing Derby Vixens”;
 jQuery(“#lnkRoster”).text(leagueName);
 }

 appendRosterDataOnScreen(getDerbyNames(leagueName),
 “RosterList”, true);
 </script>

In the example, two functions are required to get the roster information from the web service. The
getDerbyNames function takes in the name of the team for which you want to receive the roster, and
builds the URL to the web service:

function getDerbyNames(teamName) {
 teamName = teamName.replace(/\ /g, ‘%20’);
 var requestURL = “http://derbynames.gravityworksdesign.com/
 DerbyNamesService.svc/DerbyNames?$filter=
 League%20eq%20’” + teamName + “’”;

 return getData(requestURL);
}

The getData function is a generic HTTP request for data from the web service:

function getData(url) {
 var httpReq = new XMLHttpRequest();

 try {
 httpReq.open(“GET”, url, false);
 httpReq.setRequestHeader(“Content-Type”, “text/xml; charset=utf-8”);
 httpReq.setRequestHeader(“Pragma”, “cache”);

c09.indd 274c09.indd 274 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/DerbyNames?$filter=League%20eq%20
http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/DerbyNames?$filter=League%20eq%20
http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/DerbyNames?$filter=League%20eq%20
http://www.it-ebooks.info/

Getting the Tools You Need ❘ 275

 httpReq.setRequestHeader(“Cache-Control”, “no-transform”);
 httpReq.send(null);

 if (httpReq.readyState == 4 && httpReq.status == 200) {
 var responseText = httpReq.responseText;

 return responseText;
 } else {
 return null;
 }
 } catch (ex) {
 alert(ex.get_Description);
 return null;
 }
}

Appending the Roster Data to the Unordered List

The data is passed into appendRosterDataOnScreen as raw JSON text. Using the JavaScript eval
function, the JSON is converted into objects containing the roster information. Once the data is in
objects, you can loop over them and build the HTML list items that will be injected into the
unordered list.

function appendRosterDataOnScreen(data, listName, skipHeader) {
 var dataItems = eval(“(“ + data + “)”).d;
 var singleItem = “”;
 var list = jQuery(“#” + listName).find(‘ul’);

 for (var i = 0; i < dataItems.length; i++) {

 if (skipHeader == null) {
 var headerValue = dataItems[i].Name.substring(0, 1);

 if (m_headerList.indexOf(headerValue) >= 0) {
 headerValue = ‘’;
 }
 else {
 m_headerList.push(headerValue);
 list.append(“<li class=’letterheader’’>” +
 headerValue + “”);
 }
 }

 singleItem = “<li title=” + dataItems[i].Name + “ >” +
 dataItems[i].Name + “”;
 list.append(singleItem);
 }
}

Team Names

The methods used to create the Team Names page are very similar, with the only major difference
being in the function that builds the list items that are injected into the unordered list.

c09.indd 275c09.indd 275 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

276 ❘ CHAPTER 9 GETTING STARTED WITH BLACKBERRY

For the team names, you want to have the ability for the user to select the team, and have the
roster for the team load. To accomplish that you create an anchor tag around the list item, linking to
the roster page with a query parameter of the team name for which you want to load the roster.

function appendLeagueDataOnScreen(data, listName, skipHeader){
 var dataItems = eval(“(“+ data +”)”).d;
 var singleItem = “”;
 var list = jQuery(“#” + listName).find(‘ul’);

 for (var i = 0; i < dataItems.length; i++) {

 if (skipHeader == null){
 var headerValue = dataItems[i].LeagueName.substring(0, 1);

 if (m_headerList.indexOf(headerValue) >= 0){
 headerValue = ‘’;
 }
 else {
 m_headerList.push(headerValue);
 list.append(“<li class=’letterheader’’>” +
 headerValue + “”);
 }
 }

 var leagueName = dataItems[i].LeagueName.replace(/\ /g, ‘%20’);
 singleItem = “
 <li title=” + dataItems[i].LeagueName + “ >” +
 dataItems[i].LeagueName + “”;
 list.append(singleItem);
 }
 }
}

Installing Signing Keys from the Command Line

If the Eclipse BlackBerry JDE plug-in is not installed, then signing keys can be installed from the
command line using the Signature Tool, which is installed with the BlackBerry WebWorks Packager.
This Signature Tool is the same tool that is invoked from the Signature Tool settings in the Eclipse
plug-in. You will need to know the full path of the .csi fi le.

From the command prompt, enter the following command and follow the steps presented:

Java -java SignatureTool.ja <.csi file path>

OTHER USEFUL BLACKBERRY THINGS

The example projects up to this point have provided the basics for developing a BlackBerry app
using both Java and WebWorks. These apps cover getting data from a web service and displaying
it on the screen, which is a large part of mobile app development. By no means do we feel we have

c09.indd 276c09.indd 276 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Other Useful BlackBerry Things ❘ 277

 covered everything that could come up when developing a BlackBerry app, so we wanted to fi nish
this chapter by providing a few examples of common tasks that will help you out when discovering
how the BlackBerry development frameworks work.

Offl ine Storage

There will be times that you will need to store data on the device. This could be because the
 business rules for your app require offl ine usage, or just a matter of saving a few settings such as
username and password. The BlackBerry development environments support different methods, but
for this example we are going to talk about the simplest way to store simple settings.

BlackBerry WebWorks

Within BlackBerry WebWorks, you do not need to use any specifi c BlackBerry API calls. HTML5
contains local storage functionality that will accomplish your needs.

To store a setting:

localStorage.mysetting=”My Setting”;

To retrieve a setting:

document.getElementById(“Local Storage”).innerHTML=”My Setting: “
+ localStorage.mysetting;

BlackBerry Java

Persistent store objects are used within the BlackBerry Java. The following example commits the
value of a string to the persistent store object:

public void savePersistentObject(long key) {
 PersistentObject persistentObject =
 PersistentStore.getPersistentObject(key);

 String objectToSave = “My Setting Value”;
 persistentObject.setContents(objectToSave);
 persistentObject.commit();
}

To retrieve the value you need to cast the object to the correct type, and then you will have use of it:

public void getPersistentObject(long key) {
 PersistentObject persistentObject =
 PersistentStore.getPersistentObject(key);

 String myValue = (String)persistentObject.getContents();
}

It’s important to note that the getPersistentObject methods take a key value, which is a long.
Instead of creating your own value to pass it, if you create a string and then right-click in Eclipse,

c09.indd 277c09.indd 277 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

278 ❘ CHAPTER 9 GETTING STARTED WITH BLACKBERRY

you can convert the string value to a long as shown in Figure 9-19.
This will help with keeping your keys consistent.

If you are working with complex or hierarchical data, you may want
to look into the objects for SQL Lite, which is supported in both the
BlackBerry Java and WebWorks development environments.

Location Services

Location services are one of the great features that mobile developers
have to work with. Many apps as we know them would not be used
if not for the location services they have integrated. Both the BlackBerry Java and WebWorks have
robust functionality for location services.

BlackBerry WebWorks

You do not need to use any BlackBerry API calls within WebWorks; you can simply use HTML5
and JavaScript. You can fi nd the location services under navigator.geolocation.

In this example, you get the current location and then show the latitude and longitude in a
dialog box:

 <script type=”text/javascript”>
 // geolocation is supported
 if (navigator.geolocation !== null) {
 var options;
 navigator.geolocation.getCurrentPosition(success, error, options);
 }
 else {
 alert(“Geolocation not supported.”);
 }

 function success(position) {
 var time = position.timestamp;
 var coordinates = position.coords;

 var lat = coordinates.latitude;
 var lon = coordinates.longitude;
 var speed = coordinates.speed;
 var alt = coordinates.altitude;
 var acc = coordinates.accuracy;
 var altAcc = coordinates.altitudeAccuracy;
 var head = coordinates.heading;

 alert(“You are located at “ + lat + “, “ + lon);
 }

 function error(error) {
 alert(“Error getting location info: “ + error.message);
 }
 </script>

FIGURE 9-19: Converting a

string to long

c09.indd 278c09.indd 278 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Other Useful BlackBerry Things ❘ 279

BlackBerry Java

Location services within BlackBerry Java are very robust, offering different methods for retrieving
the GPS information, which are defi ned when creating the Location Criteria object:

 ➤ Cell Site: When the Cell Site method is used, the location is determined only on the location
of the cell tower. The accuracy is not as good as other methods.

Criteria cellSiteCriteria = new Criteria();
cellSiteCriteria.setHorizontalAccuracy(Criteria.NO_REQUIREMENT);
cellSiteCriteria.setVerticalAccuracy(Criteria.NO_REQUIREMENT);
cellSiteCriteria.setCostAllowed(true);
cellSiteCriteria.setPreferredPowerConsumption(Criteria.POWER_USAGE_LOW);

 ➤ Assisted GPS: GPS hardware on the device is used with assistance from the wireless network
to help keep power consumption low. This method provides a high accuracy but is slower
than the Cell Site method.

Criteria cellSiteCriteria = new Criteria();
cellSiteCriteria.setHorizontalAccuracy(Criteria.NO_REQUIREMENT);
cellSiteCriteria.setVerticalAccuracy(Criteria.NO_REQUIREMENT);
cellSiteCriteria.setCostAllowed(true);
cellSiteCriteria.setPreferredPowerConsumption(Criteria.POWER_USAGE_MEDIUM);

 ➤ Unassisted GPS: GPS hardware is solely used with this method. Power consumption is
higher, but will work when no wireless networks are available.

Criteria cellSiteCriteria = new Criteria();
cellSiteCriteria.setHorizontalAccuracy(Criteria.NO_REQUIREMENT);
cellSiteCriteria.setVerticalAccuracy(Criteria.NO_REQUIREMENT);
cellSiteCriteria.setCostAllowed(false);
cellSiteCriteria.setPreferredPowerConsumption(Criteria.POWER_USAGE_HIGH);

In the following example you create an unassisted location provider and return the latitude and
longitude:

public void getLocation() {
 int TIME_OUT = 60;

 // use the device GPS
 Criteria criteria = new Criteria();
 criteria.setVerticalAccuracy(50);
 criteria.setHorizontalAccuracy(50);
 criteria.setCostAllowed(false);
 criteria.setPreferredPowerConsumption(criteria.POWER_USAGE_HIGH);

 try {
 LocationProvider provider = LocationProvider
 .getInstance(criteria);
 Location currentLocation = provider.getLocation(TIME_OUT);

 if (currentLocation != null) {

c09.indd 279c09.indd 279 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

280 ❘ CHAPTER 9 GETTING STARTED WITH BLACKBERRY

 double longitude = currentLocation
 .getQualifiedCoordinates().getLongitude();

 double latitude = currentLocation
 .getQualifiedCoordinates().getLatitude();
 }
 }
 catch (final Exception e) {
 // handle error
 }
}

BLACKBERRY DISTRIBUTION

Distribution is one of the biggest issues that new mobile developers face. Most of the issues that
revolve around distribution are when a client asks for an app to be created that only their employees
can access. Network administrators at medium to large companies control exactly what software
is installed on every employee’s computer, and it’s only natural that they want to control what apps
are installed on their phones as well. BlackBerry has always been very friendly to the enterprise, and
most of the distribution methods, listed here, have the enterprise in mind:

 ➤ Over-the-Air: A BlackBerry app can be placed on a website where users are directed to
download it. This is great for apps created for the enterprise where the users’ phones are not
controlled by a BlackBerry Enterprise server.

 ➤ Desktop: BlackBerry apps can be installed from the BlackBerry Desktop Manager when the
device is connected to the computer via a USB cable. This method is good to get the app on
a few phones, perhaps for testing purposes.

 ➤ BlackBerry App World: In 2009 BlackBerry released the App World to the public. This is a
central location for BlackBerry users to discover your app. The App World takes a lot of the
headache out of deployment issues with BlackBerry and is the recommended solution when
your app will be available to the public.

 ➤ BlackBerry Enterprise Server: Many companies that have fully embraced the BlackBerry
technologies have a BlackBerry Enterprise Server (BES), which allows IT staff to manage
multiple phones in one server environment. BES allows apps to be installed/removed
remotely.

SUMMARY

This chapter walked through two of the development methods that you can use for creating
BlackBerry applications. BlackBerry Java and WebWorks both offer unique and compelling reasons
for using them, with both having upsides and downsides. Deciding which method to use can be a
frustrating process, but ultimately depends on the needs of your app.

c09.indd 280c09.indd 280 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 281

RIM is innovating and changing how development is performed, which again is extremely frustrating
to developers. It’s understandable that BlackBerry is trying to defi ne where it stands in the mobile
world today. With BlackBerry losing market share at an alarming rate, it’s important that you do not
dive right into creating a BlackBerry app without ensuring that it is the best business decision. An app
aimed at state government or education may be a great fi t for BlackBerry. As with all
platforms, don’t just develop for the platform because everyone else is doing it.

The next chapter discusses developing cross-platform mobile apps using the Appcelerator Titanium
platform, and is the fi rst nonnative platform that will be discussed.

c09.indd 281c09.indd 281 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c09.indd 282c09.indd 282 28/07/12 6:06 PM28/07/12 6:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with
Appcelerator Titanium

Previous chapters discussed the ins and outs of native mobile application development with the
tools that respective companies have available. This chapter covers third-party frameworks for
developing mobile applications.

Appcelerator Titanium was released in December 2008, and has been steadily growing in
functionality since its release. Starting with its Titanium Developer product, Appcelerator
provided a single-point interface to run applications. It tied directly into your emulators (with
some confi guration) and let users publish to the respective stores, signing your build and
creating a distributable package. As features were added to the Native iOS SDK, Titanium
released a new, major revision, and each minor version included bug fi xes and code to bring
parity between Android and iOS.

Appcelerator has been bundling the Titanium Studio product as its main development
environment as of version 1.7. You no longer need an external text editor to create your apps.
Titanium Studio (a wrapper for the Aptana product that Appcelerator acquired) is a full-
featured IDE providing a single place to handle all steps of the development environment and
adding what previous versions were missing: a rich debugging solution.

Four versions are available for Titanium. The Community version is free, provides access to
the basic API, and offers access to the support community and basic training videos. The
Indie version has a cost, for access to the Premium APIs (plug-ins and third-party services).
The Professional version has a monthly fee for everything from the past two versions, plus
Premium support. Finally, the Enterprise version is for teams with more than three developers,
and affords access to classroom training plus all of the features from the other versions.
Enterprise pricing requires you to contact Appcelerator directly, and is based on the size of
your development staff. Pricing can be found at http://www.appcelerator.com/
plans-pricing.

10

c10.indd 283c10.indd 283 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.appcelerator.com/plans-pricing
http://www.appcelerator.com/plans-pricing
http://www.it-ebooks.info/

284 ❘ CHAPTER 10 GETTING STARTED WITH APPCELERATOR TITANIUM

WHO IS USING TITANIUM?

Appcelerator keeps track of its user base through the login contained within the IDE. When
creating projects in Titanium Studio, your login name is registered with your project’s App Id,
so Appcelerator understands how many apps you are developing. From our knowledge, it doesn’t
profi le your code. Appcelerator does contact members of its developer network conferences, training
seminars, and other events. Appcelerator makes sure to let all the developers know when new
features and versions are being released.

WHY USE TITANIUM?

The primary development languages for Titanium are HTML, CSS, and JavaScript. The compile
process generates iOS and Android source code, as well as a distributable binary, respective to each
platform. This single API is quite thorough. By leveraging the Titanium framework you get a single
way to create all of your UI, transparent to the native codebase. Creating a Ti.UI.Button generates
a UIButton in iOS and an android.widget.Button for Android when compiled. Not all UI
elements are created equal; Appcelerator has tried to create simple namespace additions to account
for native, framework-specifi c elements not implemented in both platforms.

All base functionality afforded in the framework for both iOS and Android is available in
Appcelerator’s Kitchen Sink GitHub project: https://github.com/appcelerator.

As far as extra functionality, both free and purchasable options are available. Appcelerator offers
the Open Mobile Marketplace (https://marketplace.appcelerator.com/) for a collection of
add-ins you can drop directly into your application.

Appcelerator also has (+Plus) modules for access to APIs for Commerce (PayPal, StoreKit [iOS],
In-App Billing [Android]), Communications [Bump, SMS, Urban Airship], Advertising [AdMob,
DoubleClick], Media [Brightcove], and Analytics.

Urban Airship, AdMob, DoubleClick, and Brightcove are third-party services, and these premium
plug-ins require service agreements with their respective sites to leverage them in Titanium.

An added benefi t of this framework is that it also mirrors the Appcelerator Titanium Desktop product
to create applications for desktop machines (Mac, Windows, and Linux) with a very similar API.

DOES TITANIUM SUPPORT BLACKBERRY?

One of the most compelling reasons to use Titanium is the number of platforms
it can support. We have previously stated that “write once, deploy to multiple
platforms” is not a reality. Appcelerator has been saying for more than two years
that support for BlackBerry is coming; it launched a closed beta in July 2010 for
developing BlackBerry apps using the Appcelerator framework, but it has not been
merged into its release distribution yet.

Don’t hold your breath for this release. The differences between the BlackBerry
OS’s are substantial, and creating interfaces that work the same between them
would be a very large undertaking.

c10.indd 284c10.indd 284 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

https://github.com/appcelerator
https://marketplace.appcelerator.com/
http://www.it-ebooks.info/

Who is Using Titanium? ❘ 285

Every quarter, Appcelerator, along with IDC
(an IT market analysis and research fi rm), release
their mobile developer analytics report from
information gathered from developer surveys.
Figure 10-1 is an example of the type of data
included in these reports.

Appcelerator/IDC’s most recent survey focused
on cloud technologies and their effect on mobile
development. Roughly 2,000 developers participate
in Appcelerator’s Developer Network, and
many are part of its Titans program. Titans are
developers who use Titanium and have expressed
interest in helping grow the brand. Sign-up for
the program is free, but you are asked to be active
in the community to maintain membership.
Appcelerator also provides a showcase of applications developed with Titanium and organizations
using its products. Companies that have been put in the spotlight are covered in the following sections.

NBC

NBC Universal currently uses Titanium for its NBC iPad application: users can view show schedules
based on current location, view clips of upcoming and past episodes, can watch full episodes of a
few shows in current release. The videos are not downloaded, but streamed to the iPad. The interface
has a unique look and feel, while maintaining parity with the branding of the NBC site. Figure 10-2
shows the NBC app in the iTunes App Store. With more than 9,000 ratings, the user base is not small.

FIGURE 10-1: Appcelerator metrics

FIGURE 10-2: The NBC Universal app in the iTunes store

c10.indd 285c10.indd 285 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

286 ❘ CHAPTER 10 GETTING STARTED WITH APPCELERATOR TITANIUM

GetGlue

Combining social networking with media, GetGlue is a recommendation engine built around a
crowd-sourced check-in game. Users pick from preset categories, search for topics, and check in
to that topic to rate it based on their tastes; users can also browse what other people said about
that topic. Once a few likes and dislikes have been entered, the system provides recommendations
based on correlations to other user data. By giving check-in bonuses to people following an event,
a media release, or a trending topic, GetGlue incentivizes information gathering to provide these
recommendations. GetGlue provides platform-specifi c interfaces for iPhone, iPad, Android,
BlackBerry, and Mobile Web. GetGlue has recently hit the milestone of one million users with a
signifi cant portion of traffi c coming through its mobile applications. Figure 10-3 shows the GetGlue
iPhone version in the iTunes App Store.

FIGURE 10-3: The GetGlue app (iPhone version) in the iTunes App Store

These two applications show that two different-sized companies with different markets can leverage
the tools in Titanium to develop the applications for their specifi c situations. The next section
discusses what you need to do to get the tools necessary to start developing with Titanium.

c10.indd 286c10.indd 286 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 287

GETTING THE TOOLS YOU NEED

Getting the tools to develop Titanium is a pretty simple process. The sign-up process is relatively
painless, and after completing the free registration you have immediate access to all the support
forums and plug-in marketplace. Everything is handled at the Appcelerator site, and the install is a
single package.

Installing Titanium Studio

Titanium Studio can be installed on Mac or PC. Chapter 7 discussed installing the tools for iOS
development. If you have not already installed this development environment, and the Android
Development Environment as discussed in Chapter 6, please review those chapters for getting
everything necessary to develop for those platforms. They are a prerequisite for developing those
platforms using Titanium. Please note that because the iOS SDK is available only on Mac OSX, you
can create iOS apps in Titanium with Titanium Studio only on a Mac.

Go to http://www.appcelerator.com and click the Download Titanium button. You are prompted
to sign up for an account. Although the Titanium Mobile Framework is free to use, it requires an active
developer account. This also allows you access to the forums, support center, and marketplace.

Once Titanium is installed, you need to do minimal confi guration the fi rst time you run it.

The fi rst step in confi guring Titanium is
picking a workspace. Workspace is just a
fancy word for a folder to house a project.
By default, Titanium puts this folder in your
Users Documents folder (see Figure 10-4),
but feel free to move it to wherever you want.

You will see this workspace launcher
when you open a project for the fi rst time.
Once you select a place for the workspace,
mark it to use as the default.

FIGURE 10-4: Choosing your workspace

Adding the Titanium Studio package has made the development process much
easier for the amateur or hobbyist programmer and the professional programmer
alike, because it is easy to see parallels to modern IDEs.

When the Titanium project was fi rst launched, developers had to use their own
text editor with the Titanium Developer application. It acted as a wrapper for
some Python scripts that did the builds and launched the emulators. Titanium
Studio is a wholly new animal.

People familiar with the look and feel of Eclipse should be right at home in
Titanium Studio, because Aptana is a wrapper over Eclipse. That being said,
Eclipse must be installed to do Titanium development and native Android
development.

c10.indd 287c10.indd 287 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.appcelerator.com
http://www.it-ebooks.info/

288 ❘ CHAPTER 10 GETTING STARTED WITH APPCELERATOR TITANIUM

Out of the box, you need to add a link to the Android SDK to build your project for Android. Go to
Preferences ➪ Titanium Studio ➪ Titanium, as shown in Figure 10-5.

FIGURE 10-5: Confi guring the Android SDK

Titanium handles the confi guration of the link to the iOS SDK (in Mac OS X) based on queries it
can make against the OS. Once you have selected the Android SDK you want to build for, you are
ready to create your fi rst project. Creating a project is relatively simple. First choose a workspace
and then click the Create Project button on the App Explorer window — by default it is docked to
the left, as shown in Figure 10-6.

FIGURE 10-6: Titanium Studio dashboard

c10.indd 288c10.indd 288 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 289

Fill out the new project form shown in
Figure 10-7.

Make sure to fi ll in the project information as it
pertains to your application. Be sure to use the
App Id format scheme com.companyname
.project.applicationname.

When picking your App Id, please note the name
will be known in perpetuity. It is possible to
change this App Id, but you don’t want to change
the name of your app after you have signed your
build or published to the App Markets. The App
Id is the unique identifi er that Titanium, Google
Play, and the iTunes App Store use to determine
if you have versioned your product, and if you
change the App Id subsequent to release, you can
prevent people who have downloaded your app
from getting updates.

If you have the iOS SDK installed, and you have
added your link to the Android SDK to Titanium
Studio, then the iPad, iPhone, and Android are all available as selectable options at this point.

Once you have completed the new project form, the wizard builds your workspace and drops
developers into the TiApp Editor; this enables you to fully customize the Application Confi guration
fi le in either a nice graphical interface (see Figure 10-8) or in the XML editor (see Figure 10-9).

FIGURE 10-7: Creating a new Titanium mobile

project

FIGURE 10-8: TiApp GUI editor

c10.indd 289c10.indd 289 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

290 ❘ CHAPTER 10 GETTING STARTED WITH APPCELERATOR TITANIUM

Figure 10-8 shows the GUI version of the TiApp Editor. This is an easy point-and-click way to set
the values in the TiApp XML fi le. It exposes the basic options of the confi guration fi le, but for the
full feature set you must edit the XML fi le by hand, as shown in Figure 10-9.

FIGURE 10-9: TiApp XML Editor

At this point you have a “Hello World!” application that can be deployed to any of the target’s
respective emulators.

Downloading the Kitchen Sink

You can use the Samples tab to import the Kitchen Sink project to get code samples for different UI
elements. It takes a second to fetch the latest version of the Kitchen Sink from the Git repository.

Otherwise, you can get it yourself from the Appcelerator GitHub repository (https://github.com/
appcelerator/KitchenSink).

In the Kitchen Sink application you get an example of all of the UI elements afforded in Titanium
with an application you can run in the emulator to test how it will render. This is invaluable when
starting, because it can quickly demonstrate the basic navigation as it is handled in the different
platforms, and provide the code to account for it.

c10.indd 290c10.indd 290 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

https://github.com/appcelerator/KitchenSink
https://github.com/appcelerator/KitchenSink
http://www.it-ebooks.info/

Getting the Tools You Need ❘ 291

Development

From this point on the chapter discusses the application layout and gives an explanation of Titanium
as a whole.

Project Structure

The layout of the project is displayed in the Application Explorer tab as shown in Figure 10-9. The
options are:

 ➤ Resources: All project elements go in this folder. Each separate app pane can be held in a
single JavaScript fi le, to include later. I recommend creating a separate folder for images,
styles, and database scripts under this folder.

 ➤ android: This is the folder to use when building specifi cally for Android. It holds your
Android-specifi c UI elements.

 ➤ iPhone: This is the folder to use specifi cally when building for iPhone. It holds all of your
iPhone-specifi c UI elements.

 ➤ app.js: This runs when the application is started. It contains all your references to other
classes, views, UI elements, and databases, and is where all of your global variables are
declared. This is where you include your windows from the resources folder.

Covered next are the basics of Titanium and how you will use it to develop your mobile
applications.

Titanium Basics

When you mention JavaScript to most web developers, they cringe. Most times, in fact, it’s not
JavaScript they hate, it’s the document object model (DOM) of most web browsers that causes cross-
browser inconsistencies. When it comes down to it, JavaScript is a beautiful language with many
advanced programming concepts, taking many concepts from the functional world but staying true
to its roots as an OO language. JavaScript was initially created to add interactivity to web pages.
Titanium handles UI events and builds the UI as well. JavaScript is a loosely typed language, so all
variables and function references are declared with the var keyword.

Variables, classes, and functions are global unless properly namespaced: be sure to remember this
when you are naming elements in your application.

Namespaces are how you prevent naming collisions due to the global nature of JavaScript. A
namespace is a wrapper that persists your scope.

The following code shows two examples of creating a namespace around a variable and creating a
function. The fi rst is the simplest form, directly and specifi cally creating each part of the object. The
second is a more elegant form, initializing the namespace with the intended fi eld and function.

var testNS = {};
testNS.name = “Namespace Test”;
testNS.hello = new function(){
 return ‘Hello from ‘ + testNS.name;
};

c10.indd 291c10.indd 291 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

292 ❘ CHAPTER 10 GETTING STARTED WITH APPCELERATOR TITANIUM

or

var testNS = {
name: “Namespace Test”;
hello: function(){
 return ‘Hello from ‘ + testNS.name;
 }
};

Getting into Titanium specifi cally with JavaScript, you can create a button element to the window
with “Click Me” as the title of the button. The next step is to add an event listener to catch the click
event. Finally, add the button to the main window and show that window. This is standard practice
in Titanium. I recommend that you create a separate fi le for each window you want to have in your
application, and a fi le that is included to hold all of your UI element declarations. By doing that you
can leave the window class itself to event handler functions and other per-page processing functions.

Titanium.UI.setBackgroundColor(‘#000’);
var mainWindow = Ti.UI.createWindow({
 title:’Roster’,
 backgroundColor:’#fff’
});

var btnHello = Titanium.UI.createButton({
 title: ‘Click Me’
})

btnHello.addEventListener(‘click’,function(e)
{
 Titanium.API.info(“Button was clicked”);
 alert(‘Hello World!’);
});

mainWindow.add(btnHello);
mainWindow.show();

Creating User interfaces

Titanium.include() is the main way to include views in your application. Effectively no different
than a script tag in an HTML page, Titanium.include() allows for separation of concerns
with the resource allocation to happen in one place. Examples of this are shown later in the chapter.

Basic UI Elements in Titanium

All of the elements mentioned in this section are the specifi cally called out in the Titanium API
documentation. I have gone over each individually so that you can feel comfortable with them
before starting development.

 ➤ ActivityIndicator: This element is the platform-specifi c activity throbber represented in
the status bar of your device.

 ➤ Button: This is the standard button element.

c10.indd 292c10.indd 292 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 293

 ➤ DashboardItem: This is a very specifi c element that is rendered in the UI view type
DashboardView. It is effectively an image that can be moved around the UI when in
a DashboardView, and can have a badge overlay (like the mail icon in iOS).

 ➤ ImageView: This is the standard image element.

 ➤ Label: This is the standard UI element for labels. (Noneditable text displayed in your
view.)

 ➤ ProgressBar: Everyone’s favorite element to hate, this is a highly customizable UI element
to show relative completion metrics.

 ➤ SearchBar: This is the OS-specifi c search bar exposed in Titanium. It melds the search
button and text fi eld together in a single UI element. It has all of the main event handlers for
managing click, change, and blur events.

 ➤ Slider: This provides granular selection for the user when working with things like
volume, opacity, or anything that requires a fi ne level of control.

 ➤ Switch: Represented by the on/off slider, and a checkbox on/off on iOS and Android
respectively, this is the UI element to represent boolean states.

 ➤ TextArea, TextField: These are the standard editable text objects. Use TextArea for multi-
line and TextField for single line.

Basic UI View Elements in Titanium

The following elements are types of views and containers to be used inside your Titanium app.

 ➤ AlertDialog: This is the modal window that is created by an alert(‘message’) call. You
can also reference it by using the createAlertDialog function.

 ➤ ScollView: A ScrollView is a section within a window that you want to be able to scroll.
It is limited in that it can scroll on only one axis at a time.

 ➤ ScrollableView: A ScrollableView is a container that holds one or more views that can
be scrolled horizontally. This is a control you would use to represent page fl ips. It also has a
built-in paging control that you can use to show the active page index.

 ➤ View: This is a basic container. It renders on a window, and holds all of your UI objects.

 ➤ WebView: This is a View that renders valid web content. It allows you to open local or
remote content. It is not limited to just HTML; it can open PDF and SVG as well.

 ➤ Window: This is the highest level container. This is what is used to represent each individual
pane of your application.

 ➤ CoverFlowView: This view creates a slideshow-style view for the images associated with it.
It provides a horizontal scroll action by default that lets you cycle through your images.

 ➤ DashboardView: This view renders DashboardItem objects in a grid like the iOS main screen.

 ➤ OptionDialog: This view renders a modal to the user with a set of possible selections.

 ➤ EmailDialog: This view renders a modal containing the OS-specifi c send email layout.

c10.indd 293c10.indd 293 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

294 ❘ CHAPTER 10 GETTING STARTED WITH APPCELERATOR TITANIUM

Basic UI Data/Layout Elements in Titanium

This section covers layout elements that are specifi cally for data sets and to organize views within
your application.

 ➤ ButtonBar, TabbedBar, Toolbar: These elements are used to represent options that could
be used on multiple panes. The ButtonBar element renders similarly to most bottom
option bars on iOS applications. The difference between the ButtonBar and the TabbedBar
is that the TabbedBar persists its state visually.

 ➤ Picker, PickerColumn, PickerRow: This element and its children are used to create the
option picker UI element. By default it renders only a single piece of data per row, but by
specifying picker columns in each picker row you can provide many different selectors.
PickerColumns are items within the PickerRows that are children of the picker element.

 ➤ Tab, TabGroup: TabGroups are containers for tabs, and tabs contain windows. When using
a TabGroup (while it is active), it is the main container for your UI.

 ➤ TableView, TableViewRow, TableViewSection: A TableView is the standard UI element
for holding tabular data. The TableViewRows are its children, and the TableViewSection
allows you to create headers for groups of rows.

 ➤ 2DMatrix, 3DMatrix: These objects hold values for affi ne transformation matrices. These
are used to rotate, scale, and translate (and in 3-D, skew) the objects in a two-dimensional
and three-dimensional space, respectively.

Debugging

The Titanium.API module provides lots of options for logging of events:

 ➤ Ti.API.debug(): Pass messages to the console that you want to treat as debug notes.

 ➤ Ti.API.error(): Pass messages to the console for error states.

 ➤ Ti.API.info(): Pass messages to the console for success or nondebug.

 ➤ Ti.API.log(): Pass messages to the console for custom severity issues.

 ➤ Ti.API.warn(): Pass messages to the console for when nonerror issues arise.

Titanium Studio is bundled by default from Titanium Mobile SDK 1.7 onward. It is an IDE that
contains the build tools from Titanium’s original developer package and also has a very powerful
debugger. Set a breakpoint and click the green bug to debug in the emulator of your choosing. Also,
when running in debug mode, Titanium will break on uncaught exceptions or parse errors. The
error messages are generally enough to get you in the right direction, but it can sometimes take a
couple of passes to see what they are getting at.

CONNECTING TITANIUM TO THE MARKETS

You will need to have a Developer account for Apple and Android before deploying to the respective
app markets. Signing up for an Apple Developer account is explained in Chapter 7, and signing up
for Google Play Developer account is covered in Chapter 6.

c10.indd 294c10.indd 294 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Titanium to the Markets ❘ 295

In the Project Explorer window, depicted in
Figure 10-10, right-click the project you want to
deploy and select the appropriate deploy action.

To distribute a build to the iTunes App Store you
will need to cut a release build. Just like building
for development, an option is afforded you in the
Titanium Studio interface (see Figure 10-11).

The fi rst four options of this form are outlined in
Chapter 7. Next, you must select the SDK version
in which you want your fi nal build to be compiled.
After that it asks for your Distribution Certifi cate;
this is stored in your keychain. The last option
asks where you would like your compiled fi le to be
stored after building.

Figure 10-11 shows the Distribute — App Store
option.

To distribute a build to Google Play, you will
need to cut a release build. Just like building
for development, you are given an option in the
Titanium Studio interface (see Figure 10-12).
Your distribution location is the folder where
you want your build to be saved. The keystore
location is the place on your fi lesystem where the
keystore fi le is saved. The keystore password is
the password that you set up when creating your
keystore.

This differs from the iOS fl ow in that you must
also sign your application. A certifi cate will be
generated based on your passphrase, and it will
be tied to the App Id set up for the application.
Changing the App Id of this application after
market release will prevent application updates or
maintenance.

Obtaining a key for your application requires
the Java KeyTool program, distributed with the
Android SDK; instructions for use are available
at http://developer.android.com/guide/
publishing/app-signing.html#cert.

FIGURE 10-10: The Deploy menu

FIGURE 10-11: Setting up iTunes deploy

c10.indd 295c10.indd 295 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://developer.android.com/guide/publishing/app-signing.html#cert
http://developer.android.com/guide/publishing/app-signing.html#cert
http://www.it-ebooks.info/

296 ❘ CHAPTER 10 GETTING STARTED WITH APPCELERATOR TITANIUM

Versioning Your App

Versioning your app is quite simple. Open your TiApp.xml fi le and update the version parameter
(pointed out in Figure 10-13). This is not exposed in the graphical editor, so
you will need to do this by hand. This number will also be used to update your app in the stores.

FIGURE 10-12: Setting up Android deploy

FIGURE 10-13: Version number in TiApp.xml

c10.indd 296c10.indd 296 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Building the Derby App in Titanium ❘ 297

Once this is set you are ready to begin building your application.

BUILDING THE DERBY APP IN TITANIUM

The same patterns explained in the native application chapters are used to develop the Derby Names
application, only this time in Titanium. You create the UI, using some of the device features (GPS,
Accelerometer), and communicating with the web service you created in Chapter 3.

Common UI Patterns

This section discusses the basic patterns in mobile applications: standard ways to represent data,
make selections, navigation patterns, and display quick alerts to the user.

Tables

The Table UI element is the standard way to display data.

You can bind JSON objects directly to tables (as long as they have a title element):

var data = [{title:”Row 1”},{title:”Row 2”}];
var table = Titanium.UI.createTableView({data:data});
win.add(table);

Or you can bind arrays of TableViewRow objects. When you create a TableViewRow object you can
assign other UI elements to the row as well:

function BindTeamsToTable(dataFromService)
{
var dataToBind = [];
Ti.API.info(JSON.stringify(dataFromService));
for (var i=0; i<dataFromService.length; i++)
{
 var leagueName = dataFromService[i].LeagueName;
 var rowToAdd = Ti.UI.createTableViewRow(
 {
 title: leagueName, //main field to be bound and rendered
 hasChild: true //Show child arrow
 }
);
rowToAdd.addEventListener(‘click’, function(){
 teamToSearch = this.title;
 derbyservice.getRoster(BindRosterForTeam, teamToSearch);
 tabGroup.setActiveTab(0);
 });
dataToBind.push(rowToAdd);
}
var table = Ti.UI.createTableView({height: 368, top: 0, data: dataToBind});
win2.add(table);
}

c10.indd 297c10.indd 297 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

298 ❘ CHAPTER 10 GETTING STARTED WITH APPCELERATOR TITANIUM

If you have large sets of data to bind, this table element will be your go-to UI to display the data to
your users.

The Table UI element is signifi cantly different from the HTML table element,
so please don’t confuse one with the other. Whereas modern web development
frowns upon the use of tables for layout, using tables to display data in mobile
applications is commonplace.

You can fi nd more examples in the Kitchen Sink; try running both the iOS
version and the Android version simultaneously to see these differences.

Pickers

The picker UI object illustrates some of the differences between how Titanium generates UI
elements for iOS versus Android.

By default, the iOS element represented by this picker is a spinner (a date picker in iOS), whereas in
Android the element represented by this picker is, by default, a drop-down. Titanium handles this
by adding the usespinner property to the create method for this picker, but here you run the risk
of maintaining parity between look and feel inside your app versus look and feel consistent with the
OS on which your app is running. Additionally, although you can add custom views to your rows of
the picker in Titanium, they will not be rendered on the Android version.

var picker = Titanium.UI.createPicker();

var dataToBind = [];

dataToBind[0]=Titanium.UI.createPickerRow({title:’Nose’});

dataToBind[1]=Titanium.UI.createPickerRow({title:’Friends’});

//dataToBind[2]=Titanium.UI.createPickerRow({title:’Friend\’s Nose’});

//You can’t pick this.

picker.add(dataToBind);

Using a picker provides users a uniform way to enter data quickly.

Navigation (Back Stack) and Tab Groups

In iOS you need to have a back button on a child view. It is not only standard in the OS, it is
expected. As stated in the Apple Human Interface Guidelines (http://developer
.apple.com/library/ios/#DOCUMENTATION/UserExperience/Conceptual/MobileHIG/

UIElementGuidelines/UIElementGuidelines.html):

c10.indd 298c10.indd 298 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://developer.apple.com/library/ios/#DOCUMENTATION/UserExperience/Conceptual/MobileHIG/UIElementGuidelines/UIElementGuidelines.html
http://developer.apple.com/library/ios/#DOCUMENTATION/UserExperience/Conceptual/MobileHIG/UIElementGuidelines/UIElementGuidelines.html
http://developer.apple.com/library/ios/#DOCUMENTATION/UserExperience/Conceptual/MobileHIG/UIElementGuidelines/UIElementGuidelines.html
http://www.it-ebooks.info/

Building the Derby App in Titanium ❘ 299

You can use a navigation bar to enable navigation among different views, or
provide controls that manage the items in a view.

Use the title of the current view as the title of the navigation bar. When the user
navigates to a new level, two things should happen:

 ➤ The bar title should change to the new level’s title.

 ➤ A back button should appear to the left of the title, and it should be labeled with the
previous level’s title.

If users can navigate down a path, developers need to provide a simple way of going back up the
stack. Additionally, navigation back up the stack may involve persisting state as well, so be sure to
account for whether a given view’s state needs to be persisted when retracing a user’s steps through
the navigation stack. In Android, the hardware back button and the OS persist state and the “back
stack” for you. That being said, if you have a back button in your UI, make sure that it is not
displayed when on an Android device, because it will be considered unnecessary and sloppy.

When using tab groups the standard UI layout differs between iOS and Android. iOS displays tabs
inside apps on the bottom. There is generally a black background with some see-through icons,
and the tab highlights blue when selected (either the background of the tab or the icon on top). In
Android, the tab navigation is almost always rendered on the top, with black and gray being
the colors used to represent active and inactive. This only goes to further demonstrate the need for the
Android and iPhone project subdirectories, to distinguish device-based and OS-specifi c layouts.

var win1 = Titanium.UI.createWindow({
 title:’Roster’,
 backgroundColor:’#fff’
});
var tab1 = Titanium.UI.createTab({
 icon:’KS_nav_views.png’,
 title:’Roster’,
 window:win1
});

var win2 = Titanium.UI.createWindow({
 title:’Derby Team Names’,
 backgroundColor:’#fff’
});
var tab2 = Titanium.UI.createTab({
 icon:’KS_nav_ui.png’,
 title:’Team Names’,
 window:win2
});

tabGroup.addTab(tab1);
tabGroup.addTab(tab2);

tabGroup.open();

c10.indd 299c10.indd 299 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

300 ❘ CHAPTER 10 GETTING STARTED WITH APPCELERATOR TITANIUM

First you create your two basic windows, and bind them to tab elements. Once bound, you add
those tabs to the group of tabs. This builds your clickable UI for you.

Modal Forms

Modal forms are most commonly used to break away from your UI while communicating with a
third-party source. This could be authenticating with OAuth or OpenID, publishing content to
a social network, or anytime you want to lock the UI for the user.

var modal = Titanium.UI.createWindow();
modal.open({
modal: true, //Set it as modal
navBarHidden: true, //Hide the UI Chrome
fullscreen: false //Make sure that it isn’t rendered full screen.
})

The preceding code creates a new modal window. It will show up over top of the current window,
and not display any of the standard UI for a window element.

Alerts

There is a lot to be said for the value of a simple alert modal. Calling one is simple. A straight
Javascript:alert(‘message’); renders out as an OS native message. That being said, it is best
not to have this as the only way to communicate data to app users, because alerts block the UI
and prevent things from happening behind the scenes. And queuing multiple, successive alerts can
potentially put your UI in a very unmanageable state. Tread with caution.

var message = “Greetings Program!”;
alert(message);

You are also afforded the OptionDialog view for displaying alerts that require a response. The
following code snippet shows how to create an alert that requires a response. Setting the cancel
property to -1 denotes that there is no cancel action in the list of potential options:

var dialog = Titanium.UI.createOptionDialog({
 title: ‘Trick Question - Did you walk to school, or buy your lunch?’,
 options: [‘Walked to School’,’Bought my Lunch’],
 cancel:-1
});
dialog.show();
dialog.addEventListener(‘click’, new function(e){
//e.index = index of option selected.
});

Once you have built your user interface, you will need to bind data to it. The following options
show the ways you can get data onto the device.

c10.indd 300c10.indd 300 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Building the Derby App in Titanium ❘ 301

Offl ine Storage

Offl ine storage refers to any data that you will persist on the device. It can be as simple as a property
bag, storing key-value pairs, or updating resource fi les, or it can be as complex as a full SQLite
database.

SQLite

Titanium provides the developer with an interface to store data. This is exposed through the
Titanium.Database namespace. You can create a database programmatically, but I would
recommend installing one from a SQLite script in your resources folder:

var db = Ti.Database.install(‘../derbygirls.sqlite’,’derbyGirls’);

Once the database is on the device, make standard CRUD calls using the SQLite syntax:

var teamName = ‘Lansing Derby Vixens’;

var rows = db.execute(‘SELECT * FROM DerbyNames WHERE TeamName=”’ + teamName + ‘”’);

var data = [

{title:’’ + rows.fieldByName(‘Name’) + ‘ - ‘ + rows.fieldByName(‘JerseyNumber’) + ‘’}];

var derbyNameTable = Ti.UI.createTableView({

 data:data

});

var currentWindow = Ti.UI.currentWindow;

currentWindow.add(derbyNameTable);

If you do not need to store relational data sets, but still want to store large pieces of information or
content, the option afforded to you is Isolated Storage.

Isolated Storage

In most mobile SDKs you are allowed a sandboxed area of the fi lesystem most commonly known as
isolated storage. Titanium exposes this functionality through its Titanium.Filesystem namespace.

Reasons to use isolated storage would be to store resources downloaded remotely or saving large
data sets outside of a database environment. The following code looks on the fi lesystem and if it
fi nds it adds it to the specifi ed window.

for (var i = 0; i < derbyTeams.Length; i++)
{
 var teamLogo = Titanium.Filesystem.getFile(derbyTeams[i].TeamId + ‘.jpg’);
 if (!teamLogo.exists())
 {
 Ti.API.error(“We have not loaded a logo for this team yet.”);
 return;

c10.indd 301c10.indd 301 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

302 ❘ CHAPTER 10 GETTING STARTED WITH APPCELERATOR TITANIUM

 }
 else{
 var logoItem = Ti.UI.createImageView(
 {
 image: teamLogo,
 height: auto,
 width: auto
 });

 win1.add(logoItem);
 }
}

Preferences and Settings

Using the Property Bag (Preferences and Settings) is the simplest form of offl ine storage available.
It is mostly used for storing authentication tokens and default display parameters. With the
Titanium.App.Properties namespace, you can persist these properties between application
runs. The following code shows how to save and retrieve properties from the property bag.

//Setting the UserName
Ti.App.Properties.setString(“username”,”derbyfan419”);
//Getting the Hashed Password from Property Bag
var hashedPassword = Ti.App.Properties.getString(“password”);

Storing lots of information on your device can be time-consuming and diffi cult to maintain, so often
applications query data from a remote location. Web services provide an easy way to retrieve these
sets of data.

Web Service

This section shows examples to query from the web service created in Chapter 3, discusses
formatting the data to be read by Titanium, and describes some of the “gotchas” that occur in
platform-specifi c calls to a web service.

JSON Is Your Friend

Chapter 3 discussed the technology used to create the web service, but — platforms aside — what you
really need to wrap your head around is JavaScript Object Notation (JSON). JSON is a simplifi ed
way to store your data in a serializable way over the wire, while still following the structure of the
initial object. The service you use outputs JSON to parse in the app. A great resource to see how a
JSON object is outlined is the Json Parser Online (http://json.parser.online.fr/), as shown in
Figure 10-14.

c10.indd 302c10.indd 302 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://json.parser.online.fr/
http://www.it-ebooks.info/

Building the Derby App in Titanium ❘ 303

The JSON parser gives you a nice visualization of the object, and shows any parsing errors.
Effectively an array of dictionaries (key-value pairs), a JSON object can provide you with an entire
object graph with little overhead.

Something to note at this point: when building up URLs to send in an XHR request in Titanium
for Android (at least as of Titanium version 1.7), you have to do some postprocessing to it before
passing it to be sent. If you are building for iPhone, you don’t have to worry. The following code
shows the call necessary to format these request strings for Android.

if (Titanium.Platform.name == ‘android’) {
 requestString = requestString.replace(/\s/g, ‘%20’);
}

What follows is the odata object that holds the getData function. When retrieving data from
the service, pass the parameters to it, parse the response as JSON, and then pass it to the
successFunction callback to bind the data to the window:

function odata(){
this.getData = function (requestString, successFunction){
 if (Titanium.Platform.name == ‘android’) {
 requestString = requestString.replace(/\s/g, ‘%20’);
 }
var xhr = Titanium.Network.createHTTPClient();
xhr.onload = function () {
 var response = JSON.parse(this.responseText);
 var result = response.d.results;

FIGURE 10-14: Json Parser Online

c10.indd 303c10.indd 303 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

304 ❘ CHAPTER 10 GETTING STARTED WITH APPCELERATOR TITANIUM

//for some reason oData will return it both ways, in .d and .d.results
 if (result == null) {
 result = response.d;
 }

var gotData = new Date();
 successFunction(result);
};

xhr.onerror = function (e) {
 Titanium.UI.createAlertDialog({ title: ‘Error retrieving data’, message:
‘An error occurred retrieving data. Please try later.’ }).show();
 Titanium.API.error(requestString);
};

 xhr.open(‘GET’, requestString);
 xhr.setRequestHeader(‘Accept’, ‘application/json’);
 var send = new Date();
 xhr.send();

}

This class is included in app.js so that all other windows can call into it statically if necessary:

Titanium.include(‘network/odata.js’);
var odata = new odata();

Next is the derbyservice class, which is also included in app.js:

Titanium.include(‘network/derbyservice.js’);
var derbyservice = new derbyservice();

It provides the method calls in the views to get data to bind:

function derbyservice(){
 var baseServiceUrl =

 “http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/”;

 this.getAllNames = function (successFunction)

 {

 var serviceString = baseServiceUrl + “DerbyNames”;

 odata.getData(serviceString, successFunction);

 }

 this.getTeamNames = function(successFunction)

 {

 var serviceString = baseServiceUrl + “Leagues”;

 odata.getData(serviceString, successFunction);

 }

 this.getRoster = function (successFunction, leagueName)

 {

 var serviceString = baseServiceUrl +

c10.indd 304c10.indd 304 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/
http://www.it-ebooks.info/

Building the Derby App in Titanium ❘ 305

 “DerbyNames?$filter=League eq ‘” + leagueName + “’”;

 odata.getData(serviceString, successFunction);

 }

}

Now that you have a way to get data, this section discusses using location to pare down or
request data.

GPS

As more and more people get smartphones with built-in GPS devices, the call for location-based
content, information, games, social media integration, and driving directions is expected. Titanium
does provide access to the metal for talking with the GPS. The methods to access GPS are available
in the Titanium.Geolocation namespace within Titanium Mobile.

Depending on your usage, the geolocation API allows you to set the accuracy of the GPS data
returned. You are afforded multiple options: Best, Nearest Ten Meters, Hundred Meters, Kilometer,
and Three Kilometers. It is best practice to set your accuracy to one of these options prior to
accessing the GPS:

Titanium.Geolocation.accuracy = Titanium.Geolocation.ACCURACY_BEST;

The GPS also has an understanding of how far the device has moved, and triggers an update event
when the threshold of the distance fi lter has been crossed. Distance Filter is a double, and it is in
meters. Default, if nothing, is set to 0, which means GPS update events are continuously fi red.

Titanium.Geolocation.distanceFilter = 15.24; //50 Feet

To get the position as reported by the GPS, you must call the Geolocation function
getCurrentPosition. It provides object location with the following properties: latitude,
longitude, altitude, accuracy, altitudeAccuracy, heading, speed, and timestamp. The
location property contains the following subproperties: magneticHeading, trueHeading,
accuracy, x, y, z, and timestamp. The following code shows how to query the current position of
the device and check with the web service to see what teams are close to your location:

var cityToQueryBy = ‘Lansing’;

Titanium.Geolocation.getCurrentPosition(function(e)

{

 var latitude = e.coords.latitude;

 var longitude = e.coords.longitude;

 var altitude = e.coords.altitude;

 var accuracy = e.coords.accuracy;

 var altitudeAccuracy = e.coords.altitudeAccuracy;

 var heading = e.coords.heading;

 var speed = e.coords.speed;

 var timestamp = e.coords.timestamp;

 //This turns your location into a human readable object

 Titanium.Geolocation.reverseGeocoder(latitude, longitude, geolocationCallback);

c10.indd 305c10.indd 305 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

306 ❘ CHAPTER 10 GETTING STARTED WITH APPCELERATOR TITANIUM

});

function geolocationCallback(data)

{

 var places = data.places;

 if (places.length > 0)

 {

 cityToQueryBy = places[0].city;

 }

 derbyService.getTeamsByCity(cityToQueryBy, bindDataCallback);

}

function bindDataCallback(data)

{

 if (data.length > 0)

 {

 //There were teams based on your search criteria bind them to a UI element.

 }

}

//This would live in derbyservice.js

this.getAllNames = function (queryVal, successFunction)

{

 //OData Filter to look for Teams by City By Name

 var serviceString = baseServiceUrl +

 “DerbyNames?$filter=League like ‘%” + queryVal + “%’”;

 odata.getData(serviceString, successFunction);

}

You can use a headingfilter as opposed to a distancefilter to track only where the user is
going, versus information about where the user is. Difference in use cases would be a location-based
application (foursquare), versus a heading-based app (compass).

Now that you understand location-based events, the next section discusses interactions with your
device.

Accelerometer

Both the iPhone and Android devices have a built-in accelerometer and Titanium has an API for
accessing it. The Titanium.Accelerometer namespace provides access for adding an event listener
to read the coordinates of the accelerometer data, but the Appcelerator documentation recommends
that you remove the event listener when not in use.

Common uses for accelerometer data include triggering aspect changes (portrait
to landscape), triggering media (turn the ringer off when the phone headset is set
down), and randomizing navigation (spin the wheel, or shake to refresh).

c10.indd 306c10.indd 306 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Building the Derby App in Titanium ❘ 307

Here is a basic example of checking your accelerometer data on the x-axis:

var shakeCount = 5;
var xShakes = [];

Titanium.Accelerometer.addEventListener(‘update’,function(e)

 {

 if (shakeCount > 0)

 {

 Ti.API.debug(“accelerometer - x:”+e.x+”,y:”+e.y+”,z:”+e.z);

 xShakes.push(e.x);

 shakeCount--;

 }

 else

 {

 Ti.Accelerometer.removeEventListener(‘update’);

 WhipItGood(xShakes[0], xShakes[3]);
}

});

var shakeThreshold = 1.5;
function WhipItGood(int x1, int x2)
 {
 if((x1 - x2) >= Math.abs(shakeThreshold))
 {
 Ti.API.info(“It can be said that on the x axis this device has been Whipped
 well.”);
 GetRandomDerbyPlayer();
 }
}

function GetRandomDerbyPlayer()
{
 //Get a random Number (at last count our record count was around 25k
 var randomNumber=Math.floor(Math.random()*25001)
 derbyService.getDerbyPlayerById(randomNumber, randomDerbyCallback);
}

function randomDerbyCallback(data)
{
 if (data.length > 0)
 {
 //You received a random derby player.
 }
}

//This would live in derbyservice.js

this.getDerbyPlayerById = function (queryVal, successFunction)
{

 //OData Filter to look for Teams BY City BY Name

 var serviceString = baseServiceUrl +

 “DerbyNames?$filter=DerbyNameId eq ‘” + queryVal + “’”;

 odata.getData(serviceString, successFunction);

}

c10.indd 307c10.indd 307 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

308 ❘ CHAPTER 10 GETTING STARTED WITH APPCELERATOR TITANIUM

SUMMARY

Titanium is not a magic bullet. It is a solid framework for developing a single codebase to deploy to
multiple platforms. In addition, it allows developers to use a language they are more familiar with
to create apps in a domain outside of their knowledge. Titanium is not an exact match to native
languages. Not all features of the mobile platforms are exposed (or can necessarily be exposed) in
its API. With the addition of Titanium Studio, developing in the framework has grown by leaps and
bounds. The team at Appcelerator works to pack as much functionality into their framework as
possible. Titanium is an excellent tool to learn mobile device programming, and for many projects
can provide the necessary functionality to deliver a fi nished product.

c10.indd 308c10.indd 308 28/07/12 6:07 PM28/07/12 6:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

11
Getting Started with PhoneGap

WHAT’S IN THIS CHAPTER?

 ➤ History of PhoneGap

 ➤ Diff erences between HTML5 and PhoneGap

 ➤ Getting a development environment set up

 ➤ Implementing the Derby App

PhoneGap is an open source set of tools created by Nitobi Solutions (now part of Adobe)
that enables you to create mobile applications for multiple devices by utilizing the same code.
PhoneGap is a hybrid mobile application framework that allows the use of HTML, CSS,
and JavaScript to write applications that are based on the open standards of the web. These
applications also have access to the native functionality of the device. PhoneGap has been
downloaded more than 600,000 times, and more than 1,000 apps built with PhoneGap are
available in the respective app stores, which makes PhoneGap a viable solution for creating
cross-platform mobile apps.

HISTORY OF PHONEGAP

PhoneGap was started at the San Francisco iPhone Dev Camp in August 2008. iOS was shaping
up to become a popular mobile platform, but the learning curve for Objective-C was more work
than many developers wanted to take on. PhoneGap originally started as a headless browser
implementation for the iPhone. Because of the popularity of HTML/CSS/JavaScript, it was a
goal that this project use technologies with which many developers where already familiar.

Based on the growing popularity of the framework, in October 2008 Nitobi added support
for Android and BlackBerry. PhoneGap was awarded the People’s Choice award at the Web2.0
Expo Launch Pad in 2009, which was the start of developers recognizing PhoneGap as a
 valuable mobile development tool. PhoneGap version 0.7.2 was released in April 2009, and
was the fi rst version for which the Android and iPhone APIs were equivalent.

c11.indd 309c11.indd 309 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

310 ❘ CHAPTER 11 GETTING STARTED WITH PHONEGAP

In September 2009 Apple approved the use of the PhoneGap platform to build apps for the iPhone
store. Apple required that all PhoneGap apps be built using at least version 0.8.0 of the PhoneGap
software. In July 2011, PhoneGap released version 1.0.0.

WHY USE PHONEGAP?

PhoneGap enables you to leverage your current HTML, CSS, and JavaScript skill sets to create a mobile
application. This can greatly speed up development time. When you develop for multiple platforms
using PhoneGap, you can reuse the majority of the code you have written for the mobile project, further
reducing development costs. It isn’t necessary to learn Java, C#, and Objective-C to create an applica-
tion with PhoneGap that can target iPhone, Android, BlackBerry, and Windows Phone 7.

If you fi nd native functionality missing from PhoneGap, you can extend the functionality of the
PhoneGap platform using native code. With the PhoneGap add-in structure, you can create an add-in
using the native language of the device and a JavaScript API that will call the native plug-in you
created. Cross-platform development enables developers to maximize the amount of resources they
are able to share. As the iOS and Android user base grows, this concept becomes more important.

WHO IS USING PHONEGAP?

Adopting a nonnative framework can be scary for a variety of reasons, such as stability and feature
parity. Oftentimes, seeing other large projects created with the same framework will help alleviate
some worries you may have. PhoneGap has recently
released an updated showcase of applications built on
its technology. Notable applications include an iOS
application called METAR Reader, a cross-platform
tool from Logitech for controlling its Squeezebox player
on Android, iPad, or iPhone, and the offi cial Android
Wikipedia app.

METAR Reader

METAR Reader (http://www.METARReader.com)
is a website for searching for and translating the
Meteorological Terminal Aviation Routine Weather
Report (METAR) weather data from airports and
 meteorological sites. The iOS app takes the branded
interface of the METARReader.com website and ties
into all the functionality the device can offer. Don’t
know your local airport’s FAA identifi er? Use your
phone’s GPS to fi nd nearby airfi elds. You can then
request their METAR information and convert it to
human-readable format using this tool. The METAR
Reader is currently available in the Apple iOS App
Store. Figure 11-1 shows the clean UI that was created
in PhoneGap for the METAR app. FIGURE 11-1: METAR Reader PhoneGap app

c11.indd 310c11.indd 310 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.METARReader.com
http://METARReader.com
http://www.it-ebooks.info/

Logitech Squeezebox Controller

Logitech Squeezebox is a network music player. The entire line of
products can be controlled remotely from this multiplatform app. With
a consistent look and feel between iOS and Andriod, this application
leverages the quick deployment power of PhoneGap. The interfaces are
nearly identical while still affording for the differences in screen resolu-
tion and platform idiosyncrasies. Figure 11-2 shows the interface for the
Squeezebox controller.

Wikipedia

It really says something when a site like Wikipedia uses PhoneGap for
its platform of choice for a mobile application. Because the appeal of
Wikipedia has always been its use of hypertext, breaking that feel is no
different than changing a brand. Simplicity expressed through text while
still being a self-contained application is shown in Figure 11-3.

The next section discusses the differences between how
PhoneGap works with the HTML5 standard and how HTML5
behaves on the web.

DIFFERENCES BETWEEN PHONEGAP
AND HTML5

Because PhoneGap uses HTML5 as its base, it has access to
any HTML5 features that are available in the web framework
for the device that is running the application. One of the differ-
ences between PhoneGap and HTML5 is in the additional device
interactions that are available in PhoneGap. These features
can involve anything that talks to the bare metal of the device
(sensors specifi cally), or more of a logical solution such as Push
Notifi cations or In App Purchases. Another difference between
PhoneGap and HTML5 is that PhoneGap implements the fea-
tures the same way across the different devices, so that accessing
the GPS function is handled with the same JavaScript for all
PhoneGap devices. It doesn’t matter if you are using the iPhone,
Android, BlackBerry, or Windows Phone 7 GPS functions; the
calls to get the data from the GPS are the same. The other
difference between a PhoneGap app and HTML5 is that an
 application built with PhoneGap is compiled to a native app
on the device, and can be used on the device without the
Internet.

FIGURE 11-2: Logitech

Squeezebox PhoneGap app

FIGURE 11-3: Wikipedia

PhoneGap app

Diff erences between PhoneGap and HTML5 ❘ 311

c11.indd 311c11.indd 311 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

312 ❘ CHAPTER 11 GETTING STARTED WITH PHONEGAP

GETTING THE TOOLS YOU NEED

Even though PhoneGap applications are created using HTML, CSS, and JavaScript, you still need to
have the native environments and SDKs installed for the platforms for which you want to develop. If
you want your PhoneGap app to run on iOS, you need to have a Mac and have the xCode environ-
ment set up as well.

PhoneGap provides great “Get Started” pages for each platform. The documentation provided
within the interface will be everything you need to get up and running with PhoneGap. The
interface shown in Figure 11-4 makes it easy to fi nd resources as you need them. To get started with
PhoneGap, download the PhoneGap SDK at http://phonegap.com/download.

FIGURE 11-4: The PhoneGap start page for iOS

Installing PhoneGap for iOS

To develop PhoneGap apps for the iOS platform, you must install xCode and the iOS SDK. Chapter 7
discusses installing xCode and the iOS in depth.

c11.indd 312c11.indd 312 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://phonegap.com/download
http://www.it-ebooks.info/

Getting the Tools You Need ❘ 313

Installing the PhoneGap Template

With PhoneGap downloaded and unarchived, navigate to the iOS directory of the extracted directo-
ries and run the PhoneGap .pkg installer shown in Figure 11-5.

FIGURE 11-5: The PhoneGap iOS package

Creating Your First iOS PhoneGap Project

With the PhoneGap template installed, launch xCode and select Application from the iOS section,
then select PhoneGap-based Application as shown in Figure 11-6.

FIGURE 11-6: Creating a PhoneGap application

c11.indd 313c11.indd 313 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

314 ❘ CHAPTER 11 GETTING STARTED WITH PHONEGAP

Fill out the project template as shown in Figure 11-7:

 ➤ Product Name: Name of your application.

 ➤ Company Identifi er: This needs to be unique. Once you have distributed your application,
you cannot change this because it will break your ability to upgrade the application.

FIGURE 11-7: Selecting names for your PhoneGap project

Next, run the project. Click the run button in the top-right corner of xCode. This generates the www
resources directory, but sometimes the www directory is not created automatically. If your application
has thrown an error, open your project folder in Finder and drag the www folder to your target
application project.

Make sure to select Create Folder References for any added directories. Once you have done this,
run your application again and it will display the test page for the application.

Installing PhoneGap for Android

To develop PhoneGap apps for the Android platform, you must install Eclipse and the Android
SDK. Chapter 6 discusses installing Eclipse and Android in depth.

Creating Your First Android PhoneGap Project

In Chapter 6 you learned how to create an Android application. PhoneGap is an extension of an
Android app. To do this with Eclipse open, choose Create Android Application from the New
Project wizard as shown in Figure 11-8.

c11.indd 314c11.indd 314 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 315

Once you create the application you must
copy some resources from the PhoneGap
package into your application. In the root
directory of the project, create two
new directories named libs and assets/www.

After you create the directories, copy the
following fi les:

 ➤ Copy phonegap.js from your
PhoneGap zip fi le that was down-
loaded earlier to assets/www.

 ➤ Copy phonegap.jar from your
earlier PhoneGap download to
/libs.

 ➤ Copy the xml folder from your
earlier PhoneGap download to /res.

The directory structure should look similar
to Figure 11-9.

FIGURE 11-8: Creating a new Android project

FIGURE 11-9: Default application after adding resources

c11.indd 315c11.indd 315 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

316 ❘ CHAPTER 11 GETTING STARTED WITH PHONEGAP

To get the PhoneGap framework to build correctly, you now need to make some code changes:

 ➤ Instead of extending your class from the Android Activity class, change your class to
extend from the Phone Gap DroidGap.

 ➤ Replace the setContentView() line with super.loadUrl(“file:///android_asset/www/
index.html”);.

 ➤ Add import com.phonegap.*;.

This may still result in an error. You will need to add the phonegap.jar fi le into your build
path. Right-click phonegap.jar in your libs directory and select Build Path. Then remove
import android.app.Activity;.

The Android PhoneGap app should look similar to Figure 11-10.

FIGURE 11-10: Application after PhoneGap code changes

Right-click AndroidManifest.xml, select Open With ➪ Text Editor, and add the following Android
permissions:

<uses-permission android:name=”android.permission.CAMERA” />

<uses-permission android:name=”android.permission.VIBRATE” />

c11.indd 316c11.indd 316 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 317

<uses-permission android:name=”android.permission.ACCESS_COARSE_LOCATION” />

<uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION” />

<uses-permission android:name=”android.permission.ACCESS_LOCATION_EXTRA_COMMANDS” />

<uses-permission android:name=”android.permission.READ_PHONE_STATE” />

<uses-permission android:name=”android.permission.INTERNET” />

<uses-permission android:name=”android.permission.RECEIVE_SMS” />

<uses-permission android:name=”android.permission.RECORD_AUDIO” />

<uses-permission android:name=”android.permission.MODIFY_AUDIO_SETTINGS” />

<uses-permission android:name=”android.permission.READ_CONTACTS” />

<uses-permission android:name=”android.permission.WRITE_CONTACTS” />

<uses-permission android:name=”android.permission.WRITE_EXTERNAL_STORAGE” />

<uses-permission android:name=”android.permission.ACCESS_NETWORK_STATE” />

<uses-permission android:name=”android.permission.GET_ACCOUNTS” />

<uses-permission android:name=”android.permission.BROADCAST_STICKY” />

You are adding all of these permissions so that your application is afforded everything that
PhoneGap supports in Android. Generally you would add only the permissions you need at the time
you are creating the app, but PhoneGap wants to limit confi guration to project start as opposed to
as you go.

The last step in this process is to add an index.html fi le in your assets/www folder with the
following content:

<!DOCTYPE HTML>

<html>

 <head>

 <title>PhoneGap</title>

 <script type=”text/javascript” charset=”utf-8” src=”phonegap-1.4.1.js”>

 </script>

 </head>

 <body>

 <h1>Hello World</h1>

 </body>

</html>

Installing PhoneGap for Windows Phone 7

To develop PhoneGap apps for Windows Phone 7, you must install Visual Studio and the
Windows Phone SDK. Chapter 8 discusses installing Visual Studio and the Windows Phone
SDK in depth.

With the Windows Phone SDK installed, navigate to the Windows Phone directory and copy the
PhoneGapStarter.zip fi le to your templates folder located at C:\Users\username\Documents\
Visual Studio 2010\Templates\ProjectTemplates\Silverlight for Windows Phone as
shown in Figure 11-11.

Open Visual Studio and create a new PhoneGapStarter project as shown in Figure 11-12.

c11.indd 317c11.indd 317 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

318 ❘ CHAPTER 11 GETTING STARTED WITH PHONEGAP

FIGURE 11-11: Visual Studio template directory

FIGURE 11-12: PhoneGapStarter project

c11.indd 318c11.indd 318 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the Tools You Need ❘ 319

Build the application by pressing F5 and the project should run in the emulator as shown in
Figure 11-13.

FIGURE 11-13: PhoneGap in Windows 7 emulator

PhoneGap Tools and IDE

Because PhoneGap apps are created using HTML, CSS, and JavaScript, developers are not restricted
to the recommended mobile platform IDEs. Every developer and designer has their own set of tools
they like to use when creating HTML, CSS, and JavaScript that will work well in the development
cycle of PhoneGap apps.

TextMate and Notepad++

The most basic tools that you can use to create a PhoneGap app are text editors. TextMate is a text
editor for the Mac, and Notepad++ is a text editor for a Windows computer. Because PhoneGap
applications use HTML and JavaScript, a text editor is a tool that can be used across platforms. If
you are creating an application for iPhone and Android you can create your code in TextMate.

c11.indd 319c11.indd 319 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

320 ❘ CHAPTER 11 GETTING STARTED WITH PHONEGAP

If you are creating your application for BlackBerry, Windows Phone 7, or Android on Windows you
can use Notepad++. Using the same editor for multiple platforms gives you consistency while
editing. Both TextMate and Notepad++ offer syntax highlighting and code folding.

You can’t build and compile using a text editor, but you can perform a great deal of the testing in a
web browser or a tool such as Ripple.

Ripple

Working in an IDE that is not familiar can be very frustrating and a huge waste of time. In many
situations it is not acceptable to ask a designer to use xCode or Eclipse, nor would you want to.
Working with tools you are comfortable with is one of the great benefi ts of working with PhoneGap.
Ripple might be one such tool. You can get the Ripple emulator from http://ripple.tinyhippos
.com/download. From the download page, you click Install and then click the Add to Chrome
button. Once you have Ripple installed, it will place an icon in your Chrome browser’s menu bar,
which will run the emulator when it is clicked.

Ripple is a mobile emulator that enables developers/designers to run HTML created for PhoneGap
apps without having the platform SDKs installed. Figure 11-14 shows a PhoneGap app running
in Ripple.

FIGURE 11-14: Ripple mobile environment

c11.indd 320c11.indd 320 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://ripple.tinyhippos.com/download
http://ripple.tinyhippos.com/download
http://www.it-ebooks.info/

Getting the Tools You Need ❘ 321

Firebug

Firebug is a plug-in for the Firefox browser. You can
get Firebug from https://addons.mozilla.org/en-US/
firefox/addon/firebug/. Because it is a Firefox extension,
you just have to click on the Add to Firefox button. Firebug is
useful for debugging HTML, JavaScript, and CSS. If you are
writing a PhoneGap app, and none of your JavaScript is fi ring,
it could be an indication that the JavaScript syntax is incorrect. If you load the .html page in
Firefox, you can see the error in the Firebug console as shown in Figure 11-15.

Another thing that Firebug is good for is inspecting HTML elements. It enables you to see which
CSS styles are being applied to that element. The element inspector also enables you to test changes
to the HTML and see the effect those changes will have. Firebug also has a layout inspector that
shows what the CSS layout looks like and what the margins are, as well as the borders and padding.

Dreamweaver 5.5

The power of PhoneGap is that someone who knows HTML/CSS can get a mobile app running very
quickly. Adobe caught on to this early on, and understood that the people who were using its tools,
such as Adobe Fireworks, to create the designs for web applications were often the same people
who were implementing the designs with HTML/CSS in Dreamweaver. Adobe knew there would be
value in a tool that the Dreamweaver user demographic could use to create mobile applications
easily. Dreamweaver is not just a WYSIWYG (what you see is what you get) editor as many believe it
to be. Dreamweaver is a powerful tool that contains a great deal of features that enable HTML/CSS
implementers to deliver great products.

Just before Adobe acquired Nitobi, it bundled PhoneGap tools to assist with mobile development
within Dreamweaver 5.5. Because the target audience was users who may not even know what an
SDK is, Adobe made it simple to get the emulators and SDKs for iOS (Mac only) and Android on the
machine.

Setting up the Mobile Environment in Dreamweaver 5.5

You can fi nd the paths to the SDKs in the Mobile Application feature found under the Site Menu
settings. If you have a copy of Dreamweaver 5.5, and you have been working through this book
chapter by chapter, you should have the SDKs downloaded and working, so just setting the paths to
where the SDKs have been installed will do the trick.

If you are working with a machine that does
not have the SDKs installed, the Easy Install
button next to the Android path does exactly
what the name implies: it downloads every-
thing needed to run an Android application
in the emulator. If you do not have the iOS
SDK installed, there is a link with detailed
instructions on how to do so in the Mobile
Application setting. Figure 11-16 shows the
SDKs confi gured and ready for use within
Dreamweaver 5.5.

FIGURE 11-15: Firebug console show-

ing syntax error

FIGURE 11-16: Dreamweaver 5.5 mobile framework

confi guration

c11.indd 321c11.indd 321 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
http://www.it-ebooks.info/

322 ❘ CHAPTER 11 GETTING STARTED WITH PHONEGAP

Creating a PhoneGap Project in Dreamweaver 5.5

After you have set the paths to the mobile frameworks, it’s just a matter of creating a new PhoneGap
project within Dreamweaver 5.5. Choose Page from Sample ➪ Mobile Starters ➪ jQuery Mobile
(PhoneGap) as shown in Figure 11-17 to create a new project.

FIGURE 11-17: New PhoneGap project

FIGURE 11-18: Running the project

After you select the project, Dreamweaver
includes the JavaScript Library fi les for
PhoneGap as well as jQuery and jQuery
Mobile. At this point you can start adding
logic to create the mobile PhoneGap
application. When you are ready to see
your application run in the emulator, simply
select the framework under the Build and
Emulate menu group under the Site Menu
options as shown in Figure 11-18.

Before your mobile application can be deployed to a device or the market, you need to set some
other settings such as the provisioning fi le for iOS. Specifi c application framework settings such
as the Application Icon, Startup Screen Image, and Target OS are located under the Site Menu ➪
Application option, as shown in Figure 11-19.

c11.indd 322c11.indd 322 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

PhoneGap Project ❘ 323

Dreamweaver is not the cheapest solution,
but if you are used to the environment, or
are looking for a rich HTML/CSS IDE,
Dreamweaver is a powerful tool for creating
PhoneGap applications.

With the understanding of the different
development and testing environments that
can be used to create PhoneGap mobile apps,
you can dive PhoneGap code.

PHONEGAP PROJECT

With all of the setup out of the way, you
can focus on working with the tools and
examining code for mobile apps created with
PhoneGap. This section assumes you have
a fundamental understanding of HTML, CSS, JavaScript, and jQuery and have worked with these
technologies on other platforms.

Anatomy of a PhoneGap Application

PhoneGap applications have three components:

 ➤ Native code: This code isn’t modifi ed
(with some small exceptions, like the
initial setup of an Android appli-
cation and setting up permissions
for Android). Depending on which
platform you are working with, your
directory structure will match that
of the platform. Figure 11-20 shows
the directory structure in iOS and
Android.

 ➤ JavaScript: Residing within the www
folder of the PhoneGap project, the
PhoneGap JavaScript gives your code
access to the native functions of the
device.

 ➤ HTML/CSS: These fi les provide the
UI layer of the application. The HTML, CSS, and JavaScript fi les live inside a www folder
within the PhoneGap project.

FIGURE 11-19: Application settings

FIGURE 11-20: PhoneGap anatomy

c11.indd 323c11.indd 323 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

324 ❘ CHAPTER 11 GETTING STARTED WITH PHONEGAP

Creating User Interfaces

The user interface for a PhoneGap application relies on inputs and links. Every screen in PhoneGap
is another HTML page. With every screen being a different HTML page, you can use anchor tags
with an href to navigate between the screens. From the index page, which is the main screen for the
PhoneGap application, you can create links to get to the different sections of your app. When you are
creating an application to display data that you can drill into, you can list the parent data in an
unordered list of links to a child page with a query string parameter to know which individual
parent’s data to show. When you are on the child page, you can use the query string to drive the data
of the child.

The other interaction point for a user is in the input fi elds. These fi elds allow the user to pass data to
the application. This data can then be stored on the device, if it is user-specifi c data that isn’t needed
by the server. Another use for the data is that it can be sent up to a web service.

Many developers promote PhoneGap as a “write once, deploy to multiple platforms” environment
without modifying any code. This can be true, but each platform should have a unique UI. Although
possible, deploying an app to an Android device with an iOS UI would not provide the best UI
 experience. It’s best to abstract business logic as much as possible from the UI, and plan for having
separate UIs for the different platforms you plan to support.

Debugging

You can use a combination of Ripple and Firefox with Firebug platform simulators to debug
 applications in PhoneGap. The fi rst thing to check when you are debugging a PhoneGap app is to
make sure that your onDeviceReady JavaScript event is fi ring. The onDeviceReady event is the
JavaScript function that is called when PhoneGap is working correctly with the device.

You can test to ensure the function is being called by adding an alert function in the
onDeviceReady function alert(‘onDeviceReady has fired’);.

If onDeviceReady is not fi ring, open the page you are working with in Firefox so that you can
inspect it in Firebug as shown in Figure 11-21.

FIGURE 11-21: Firebug syntax error

The example illustrates a line has not been correctly terminated. If you fi x that issue, you can check
to make sure that no more syntax errors exist and try to run the program again. If onDeviceReady
is still not fi ring, you need to make sure that you are including the PhoneGap JavaScript. Once that

c11.indd 324c11.indd 324 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

PhoneGap Project ❘ 325

is included you can try to run it again. If you are getting inside
onDeviceReady, but the function isn’t running, you can wrap the call
in a try/catch block to ensure that the code isn’t throwing an error.
Then when you run the code, you will see that you haven’t declared
printToConsole as shown in Figure 11-22.

try{
 printToConsole(‘This line wasn\’t Terminated’);
}
catch(err) {
 alert(err);
}

Now you can create the printToConsole function and run the project
again to see the code in action:

function printToConsole(stringToPrint){
 console.log(stringToPrint);
}

Figure 11-23 shows PhoneGap writing a log message to the console
screen of xCode.

FIGURE 11-22: Alert showing

caught JavaScript error

FIGURE 11-23: Console from successful run

With the log showing, you have seen the basic steps for debugging a PhoneGap application.
Start with checking the syntax of your page, then check to make sure you have included all
 applicable libraries, wrap your code in try/catch blocks, and use alerts and the console log to ensure
that the code is producing the appropriate results.

Useful JavaScript Libraries

When we all started out as developers, “do not re-create the wheel” was driven into our heads. That
is a message that most developers take to heart, and they have amassed a great deal of useful tools
over the years. As a web developer, these tools could be simple JavaScript libraries that allow only
numbers to be entered into a text box or could be complex UI libraries that combine HTML/CSS
and JavaScript to create a slick interface to enter data.

PhoneGap embraces libraries, and the developer community has created a great deal of tools to help
mobile PhoneGap developers.

c11.indd 325c11.indd 325 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

326 ❘ CHAPTER 11 GETTING STARTED WITH PHONEGAP

jQuery

jQuery is a JavaScript library that is used to make DOM selection, manipulation, event handling,
and AJAX interactions easier for web development. Because PhoneGap is HTML5-based, the
jQuery library is very useful. With jQuery you can select an individual element on the page so that
you can manipulate it. jQuery is used in PhoneGap to bind events to buttons.

iScroll

One of the libraries used in most PhoneGap applications is the iScroll library. The iScroll library is
useful for both iPhone and Android projects. This library enables you to set a scrolling area on part
of the mobile screen, and have only that portion of the screen scroll. Without iScroll, PhoneGap
apps scroll over the entire screen, and any headers or footers will scroll out of sight. When the
header and footer scroll out of sight, it’s a good sign that app was not created natively.

PhoneGap iPhone apps without iScroll have a rubber band effect (where the app bounced up and
down like a stretched-out rubber band), which can be noticed any time the phone is scrolled. To set
up iScroll you set a wrapper div and a scroller div. The scroller div is necessary because only the fi rst
element inside the wrapper div is actually scrolled. The iScroll library also enables you to add pinch
to zoom (UI gestures where the thumb and index fi gure are “pinched” together on a screen to cause
a zoom effect) support. This lets you set an area that can be zoomed, as well as setting a max zoom,
a min zoom, a starting zoom, and an area that is prezoomed. Another feature of the iScroll library
is a pull to refresh (UI gesture where the top of the app is pulled down, and the content on the page
is refreshed). This enables you to set up calls that happen when the screen is pulled down, which can
be a useful way to access more information in a list of information.

The HTML for a scroller is not very complicated. You need a wrapper div which will hold the
scrolling area. Because iScroll scrolls only the fi rst element inside the wrapper, you also need a div
inside the wrapper that will be scrolled. The inner div is where the long list of elements will be held,
which are inside the unordered list:

<body onload=”onLoad()”>
 <div id=”wrapper”>
 <div id=”scroller”>

 </div>
 </div>
</body>

The JavaScript for the scroller requires two things. The fi rst is that you need to stop the native
scrolling events. You do this by adding an event listener to the touchmove event and calling
preventDefault();. The second piece is to create the scrollView by calling iScroll and passing
it the ID of the wrapper element:

<script type=”text/javascript” charset=”utf-8”>

 var scrollView;

 function onLoad() {

 document.addEventListener(‘touchmove’, function (e) { e.preventDefault(); }, false);

 document.addEventListener(“deviceready”, onDeviceReady, false);

 }

c11.indd 326c11.indd 326 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

PhoneGap Project ❘ 327

 function onDeviceReady() {

 setHeight();

 //Here we are adding a list of items which will require scrolling.

 var list = jQuery(“#scroller”).find(‘ul’);

 for (var i = 0; i < 50; i++) {

singleItem = “<li title=”+ i +” >Item” + i + “”;

 list.append(singleItem);

 }

 scrollView = new iScroll(‘wrapper’, {desktopCompatibility:true});

 }

</script>

Use CSS to set the height of the wrapper. You can also use jQuery if you are using Android, where
the devices do not have standard sizes.

var fullHeight = window.innerHeight;

var mainHeight = fullHeight - 60;

jQuery(‘#wrapper’).css({height: mainHeight + ‘px’ });

/*---------Scroll area code----------*/

#wrapper {

 height:270px; /* Of course you need to specify the object height */

 position:relative;

 z-index:1; /* it seems that recent webkit is less picky and works anyway. */

 width:100%;

 overflow:hidden;

}

jQuery Mobile

jQuery mobile is library that you can use to provide a user interface that
works seamlessly across all popular mobile platforms. jQuery mobile
provides tools to make it easy to format controls and layout of a mobile
page. Figure 11-24 is an example of a jQuery mobile page.

This page would look identical rendered on an Android device, so the
drawback of using this library is that its controls look similar to iOS
controls.

Pages are laid out very semantically in jQuery mobile. jQuery mobile
takes advantage of the HTML5 data-role attribute to identify sections
of the page, such as header, content, and footer:

<div data-role=”page”>

 <div data-role=”header”>
 <h1>Page Title</h1>
 </div><!-- /header -->

 <div data-role=”content”>
FIGURE 11-24: jQuery

Mobile UI

c11.indd 327c11.indd 327 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

328 ❘ CHAPTER 11 GETTING STARTED WITH PHONEGAP

 <p>Page content goes here.</p>
 </div><!-- /content -->

 <div data-role=”footer”>
 <h4>Page Footer</h4>
 </div><!-- /footer -->

</div><!-- /page -->

With the data roles set, and the jQuery mobile JS fi le included, the app renders a header and footer
with a scrollable content area without any more interaction required from the developer.

Sencha Touch

Sencha Touch is an MVC framework for creating HTML5 applications. It can be used
with PhoneGap for iOS, Android, and BlackBerry apps. When Sencha Touch is combined with
PhoneGap, it can be used to create native looking applications. To use Sencha Touch you need to get
the free download from http://www.sencha.com/products/touch/. After that you can include
the Sencha Touch SDK in a lib folder inside of the www folder of a PhoneGap project.

Convention for Sencha Touch projects is to have models, views, controllers, and lib folders
inside the www folder of a PhoneGap project. The app folder contains the app.js fi le, which
contains the launch events for Sencha Touch. Sencha projects need to wait for both the Sencha
launch event and PhoneGap’s device ready event before fi ring. You can check this by setting the
launched property within the Sencha launch event. Then inside the mainLaunch function, you
can check to make sure the framework is loaded by checking this property as shown in the fol-
lowing code.

 Ext.regApplication({

 name: ‘app’,

 launch: function() {

 this.launched = true;

 this.mainLaunch();

 },

 mainLaunch: function() {

 if (!device || !this.launched) {console.log(‘main Not Ready’); return;

 }

 console.log(‘mainLaunch’);

 }

});

You may have noticed this calls mainLaunch twice — once on ondeviceready and once on launch,
with the mainLaunch function continuing on to the second call.

You can then use this with the MVC pattern to create the data layers, and use them to display
the data back to the user. From the list example in the documentation you can see the differences
between the Android and the iPhone versions of the Sencha Touch application. Figure 11-25 shows
an example UI created with Sencha Touch rendered in both iOS and Android. Again, notice that the
UI is very similar to an iOS interface.

c11.indd 328c11.indd 328 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.sencha.com/products/touch/
http://www.it-ebooks.info/

PhoneGap Project ❘ 329

XUI

XUI is an open source JavaScript library built
specifi cally for mobile devices. It contains a subset
of the functionality of jQuery, but with a much
smaller footprint. Brian Leroux, who works for
Nitobi on the PhoneGap project, started the XUI
project in 2008. XUI provides selectors that use
CSS3 style selectors. For example, to get an
element in XUI you can use the following
code to select the liTest item, and turn the
text red:

x$(“#liTest”).css({‘color’:’red’});

XUI also gives you access to events. One of the
events that you can access is the button click
event, which takes a callback. You can select a
button and assign a buttonPressed function to
the click’s callback. The buttonPressed function executes when the button is pressed:

<body>
 <button id=”buttonTest” >Press For Alert</button>
</body>

function onDeviceReady(){
 x$(“#buttonTest”).click(buttonPressed);
}

function buttonPressed(){
 alert(‘Button Pressed’);
}

XUI can also use transformations to make modifi cations to the CSS properties of elements on the
DOM. It takes the new CSS style and applies the transformation based on the duration that is
specifi ed. It also has an optional callback that is called once the transformation is completed.

x$(‘#liTest’).tween({ color:’blue’, duration:1500 }, function() {
 alert(‘done!’);
});

XUI also has an XmlHttpRequest (XHR) function to return objects from a call to a JSON service.
These calls take a request string, a callback function for success, the headers to be passed, and a
callback for errors:

x$().xhr(requestString, {
 callback: successFunction,
 headers: [{name:”Accept”,
 value: “application/json”}],
 error: function(){alert(‘Error ‘);

FIGURE 11-25: iPhone Sencha list

c11.indd 329c11.indd 329 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

330 ❘ CHAPTER 11 GETTING STARTED WITH PHONEGAP

 }
});

To make the call to an outside service for
iPhone, you need to add the service to the
external hosts in the PhoneGap.plist fi le.
The easiest way to enable the external service
for debugging is to add the * wildcard to the
external hosts, as shown in Figure 11-26.

The data from the request string is placed on
the responseText variable in the success callback. This can then be parsed with JavaScript’s eval
function, which turns the XML into an array of items that can be used to get the items from the
JSON response:

function successFunction(){
 var dataItems = eval(“(“+this.responseText +”)”).d;

 for (var i = 0; i < dataItems.length; i++) {
 console.log(dataItems[i].Name);
 }
}

LawnChair

LawnChair is a JavaScript library that was built to allow persistent storage of data in a lightweight
application. The primary target for LawnChair is mobile HTML5 applications, due to LawnChair’s
lightweight nature. To use LawnChair you need to set up a data store:

var store = new Lawnchair({name:’testing’}, function(store) {});

Once you have the store, you can create an object with a key, and then place that object in the store:

var me = {key:’adam’, lastName:’Ryder’};
store.save(me);

Now that the object is stored, you can retrieve it from the store using the key:

store.get(‘adam’, function(item) {
 alert(item.lastName);
});

This would get the object and alert the lastName item from the object. LawnChair is small; only 8 K in
size. This lends itself well to being packaged in PhoneGap, because it won’t take much space on the device.

BUILDING THE DERBY APP IN PHONEGAP

The idea of the Derby App is to build the same app over all of the mobile platforms covered in this
book. The PhoneGap version is very similar to the other versions that you have built thus far or will
build in future chapters.

FIGURE 11-26: External hosts with Item 0 Set to *

c11.indd 330c11.indd 330 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Building the Derby App in PhoneGap ❘ 331

The requirements are to provide two pages: one that lists all the teams/leagues and one that lists
all the players. When a league/team is selected, the application shows the roster for the team.
When a player is selected, it shows which team the player belongs to and her number.

The fi rst thing that you want to do in the Derby App is to create a placeholder which will hold the
list of all the derby teams. You set this up on the index.html page:

<div id=”wrapper”>
 <div id=”scroller”>

 </div>
</div>

You have set up the wrapper with an unordered list inside of the scroller. You need to add the
listener for PhoneGap’s device ready event, and make a callback to the onDeviceReady function
inside the onLoad function.

You also need to add a listener to the touchmove event to prevent the default touchmove behavior.
Then you can use the iScroll library to control the movement of the screen:

function onLoad() {

 document.addEventListener(‘touchmove’, function (e) { e.preventDefault(); }, false);

 document.addEventListener(“deviceready”, onDeviceReady, false);

}

With the ondevice events wired up you can now request data from the derby name service. To
accomplish this, create a fi le named OData.js to handle all requests to the oData Derby Names
web service. This OData.js fi le will need to be included in your index.html header. The OData.js
fi le has a getData function that takes a request string and a successFunction callback. The actual
request is made using XUI’s XHR function, which calls the success function and passes the results
from the request string to the function.

function OData() {
 this.getData = function (requestString, successFunction) {
 x$().xhr(requestString, { callback: successFunction,
 headers: [{name:”Accept”,
 value: “application/json”}],
 error: function(){alert(‘Error ‘); }});
};

Next, set up a DerbyService function that contains all of the service calls and builds the request
strings and sends them to the OData function. The calls in the DerbyService contain functions to
get the leagues and take a callback.

function DerbyService() {

 this.HostName = ‘http://derbynames.gravityworksdesign.com’;
 this.BaseServiceUrl = this.HostName + ‘/DerbyNamesService.svc/’;
 this.odataService = new oData();

 this.searchAllLeagues = function (successFunction) {
 var serviceString = this.BaseServiceUrl + “Leagues?$top=50”;

c11.indd 331c11.indd 331 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://derbynames.gravityworksdesign.com
http://www.it-ebooks.info/

332 ❘ CHAPTER 11 GETTING STARTED WITH PHONEGAP

 odataService = new oData();
 odataService.getData(serviceString, successFunction);
 };
}

The onDeviceReady function calls setHeight, which is a function in your helper.js fi le and the
searchAll function, which is a local function with a callback to an anonymous function that sets
up the scrollView for your iScroll implementation:

setHeight();
searchAll(
 function(){
 setTimeout(function () {
 scrollView = new iScroll(‘wrapper’, {desktopCompatibility:true});
 }, 500);
 });

The searchAll function creates an instance of the DerbyService, and then calls the
searchAllLeagues function of the derby service with an anonymous callback function.
The anonymous callback will call another helper function to display the league data on the screen.
The displayAllLeagueDataOnScreen function takes a parameter for the response from the OData
service, the search string (currently empty string), and the ID of the div that will hold the results.

function searchAll(callback){
 var service = new DerbyService();
 service.searchAllLeagues(function(){
 displayAllLeagueDataOnScreen(this.responseText, “”, “scroller”);
 }
 });

 callback();
 }

The displayAllLeagueDataOnScreen function uses jQuery to fi nd the list name, and removes any
list items that are currently in the list. It then calls the appendAllLeagueDataOnScreen function,
passing it the data, search term, and the list name:

function displayAllLeagueDataOnScreen(data, searchTerm, listName){
 jQuery(“#” + listName).find(‘li’).remove();
 appendAllLeagueDataOnScreen(data, searchTerm, listName);
}

The appendAllLeagueDataOnScreen function calls the JavaScript eval function on the data to get
an array of dataItems to work with. You also create a temporary singleItem to hold the league
list item. You use jQuery again to fi nd the unordered list inside of the listName that was passed in.
For every dataItem, you create a link that will go to the leagues page, league.html, which shows
all of the players for that league.

After the item is created you append those items to the list. If the data item’s length is the same as the
number of records you asked for, you also add a link to get more items when you scroll to the bottom
of the list.

c11.indd 332c11.indd 332 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Building the Derby App in PhoneGap ❘ 333

function appendAllLeagueDataOnScreen(data, searchTerm, listName){

 var dataItems = eval(“(“+ data +”)”).d;

 var singleItem = “”;

 var list = jQuery(“#” + listName).find(‘ul’);

 for (var i = 0; i < dataItems.length; i++) {

singleItem = “

 <li title=”;

 singleItem = singleItem + dataItems[i].LeagueName +” >”;

 singleItem = singleItem + dataItems[i].LeagueName + “”;

 list.append(singleItem);

 }

 if(dataItems.length == 50){

 if(searchTerm == “”){

 singleItem = “”

 singleItem = singleItem + “<li id=’liAddMore’>Load More”;

 }

 else{

 singleItem = “<a href=’#’ id=’btnGetMore’

 onclick=’LoadMoreSearchPushed("”;

 singleItem = singleItem + searchTerm +

 “")’><li id=’liAddMore’>Load More”;

 }

 list.append(singleItem);

 }

}

Figure 11-27 shows the index page rendering a list of roller derby teams.

Now that you have the leagues set up as a list of links to a league.html
page, you can use CSS to change the links to look more like the native
OS list items. You can set the list-style to none and the list-type to
none, which will remove the bullets. When you set text-decorations
to none for the anchor tabs, the links will no longer be underlined.

ul {
 list-style:none;
 padding:0;
 margin:0;
 width:100%;
 text-align:left;
}

li {
 margin:5px 0;
 padding:3px 7px 7px 7px;
 border-bottom:1px solid #ddd;
 list-style-type:none;
 font-size:15px;
 font-weight:bold;
 margin-right:5px;
}

FIGURE 11-27: List of derby

teams rendered on an

iPhone

c11.indd 333c11.indd 333 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

334 ❘ CHAPTER 11 GETTING STARTED WITH PHONEGAP

a:link, a:visited {
 text-decoration:none;
 color:#000;
 font-weight:bold;
}

Figure 11-28 shows what the Derby app looks like after this small amount
of CSS has been added.

With the scrolling working and the list looking like a list, you can add a
header to the league page. The header consists of two links with classes,
which will become image links through CSS. This header will also be
used on the individualList.html page, just with different classes, so
that the links look different.

<div class=”header”>
 <a id=”btnLeague” href=’index.html’
 class=”btnTwoLeft”>Leagues
 <a id=”btnIndividuals” href=’individualList.html’
 class=”btnTwoRightSelected” >Players
</div>

Here is the CSS for the buttons; the images are stored inside the images
directory within the www directory:

.btnTwoLeft {
 height:23px;
 width:150px;
 background:url(images/btn-two-left.png) no-repeat;
 float:left;
 text-align:center;
 font-size:14px;
 font-weight:200!important;
 color:#fff!important;
 font:Georgia, “Times New Roman”, Times, serif;
 padding:7px 0 0 0;
 margin:2px 0;
}

.btnTwoLeftSelected {
 height:23px;
 width:150px;
 background:url(images/btn-two-left-selected.png) no-repeat;
 float:left;
 text-align:center;
 font-size:14px;
 font-weight:200!important;
 color:#fff!important;
 font:Georgia, “Times New Roman”, Times, serif;
 padding:7px 0 0 0;
 margin:2px 0;
}

With the header added, the league screen is now starting to look like a
mobile app. Figure 11-29 shows the header added to the league screen.

FIGURE 11-28: Formatted

league list displayed on

an iPhone

FIGURE 11-29: Derby

App with header added

c11.indd 334c11.indd 334 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Other Useful PhoneGap Things ❘ 335

There is another useful option for a list this long, and that is the ability to search. To search, you
need a text box for the search term, a button to search with, and another service call for searching:

<input id=”txtSearch” type=”search” placeholder=”Search” class=”searchbar”>
<button id=”btnSubmit” type=”button” class=”gobtn” label=”Go” >GO</button>

Wire up the button click event in the onDeviceReady function. This click function gets the
searchCriteria from the search text box and passes that to the searchLeagues function:

jQuery(“#btnSubmit”).click(function(){
 var searchCriteria = jQuery(“#txtSearch”).val();
 skipCount = 50;
 searchLeagues(searchCriteria);
});

The searchLeagues function creates a new instance of the DerbyService and calls the
searchLeagues function in the service with a callback to displayAllLeagueDataOnScreen. This is
the same function that you called when you displayed the unfi ltered list.

 function searchLeagues(searchCriteria){

 var service = new DerbyService();

 service.searchLeagues(searchCriteria, function(){

 displayAllLeagueDataOnScreen(this.responseText, searchCriteria, “scroller”);

 });

 }

The searchLeagues function in the service calls the OData object with a fi lter that looks for a sub-
string of the searchString that is passed in the LeagueName property:

 this.searchLeagues = function (searchString, successFunction) {
 var serviceString = this.BaseServiceUrl + “Leagues?$top=50&$filter=\
 substringof(‘” + searchString +
“’,LeagueName)”;

 this.odataService.getData(serviceString,
successFunction);
 };

With the search in place, Figure 11-30 shows the completed UI for the
Leagues screen in the Derby App.

With the Derby App completed, now you can take a look at some of the
other useful functions in PhoneGap.

OTHER USEFUL PHONEGAP THINGS

Thus far, the examples in this chapter have provided the basics for creating
a PhoneGap application. This application will go out to a web service and
render the data on the screen. This does not cover every possible situation
you will encounter as a PhoneGap mobile developer, so we will fi nish this

FIGURE 11-30: Derby

App with league

search added

c11.indd 335c11.indd 335 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

336 ❘ CHAPTER 11 GETTING STARTED WITH PHONEGAP

chapter by providing a few short examples of other common tasks you may need to accomplish
when working with PhoneGap.

Pickers

Pickers in PhoneGap come in two fl avors. The fi rst type of picker is a date-style picker. These
pickers rely on plug-ins to function, because there isn’t a uniform date picker available to the
different platforms yet. iOS 5 does support the HTML date input type. You can get the code
for the date picker from https://github.com/phonegap/phonegap-plugins/tree/master/
iPhone/DatePicker. This will have the .js, .h, and .m fi les. The .h and .m fi les go into your
Plugins directory. The DatePicker.js fi le belongs in your www directory. You also need to add a
DatePicker key and value to the plugins section of your phonegap.plist fi le. You need to create a
callback and a function that will be called during the onclick of a link.

 var callbackFunction = function(date) {

 console.log(date.toString());

 document.getElementById(“date”).innerHTML = date.toString();

 }

 var showDatePicker = function(mode) {

 plugins.datePicker.show({

 date: new Date(),

 mode: mode, //date or time or blank for both

 allowOldDates: false

 }, callbackFunction);

 }

The other way to create a picker, which is our recommended way, is to create a page that lists the
items you want to pick from as links back to your selector. In your HTML you could have a link to
a pickList page:

Choose Your Favorite Color

On the pickList page you can set up the list as a series of links back to the index with the choices
differentiated by the query string parameter that is passed back:

<html>

 Blue
 Green
 Red

</html>

Once back on the index page you can read the query string and take action based on what it con-
tains. You can use regular expressions in JavaScript to decode the query string and return the value
of the query string parameter. You could add another JavaScript library to handle this, but it is
quicker and easier to just write the function yourself:

function getParameterByName(name){
 name = name.replace(/[\[]/,”\\\[“).replace(/[\]]/,”\\\]”);

c11.indd 336c11.indd 336 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

https://github.com/phonegap/phonegap-plugins/tree/master/iPhone/DatePicker
https://github.com/phonegap/phonegap-plugins/tree/master/iPhone/DatePicker
http://www.it-ebooks.info/

Other Useful PhoneGap Things ❘ 337

 var regexS = “[\\?&]”+name+”=([^&#]*)”;
 var regex = new RegExp(regexS);
 var results = regex.exec(window.location.href);

 if(results == null)
 return “”;
 else
 return decodeURIComponent(results[1].replace(/\+/g, “ “));
 }

Once you make the call to getParameterByName you can use the information that you have in the
query string:

 var color = getParameterByName(‘color’);
 if (color != ‘’)
 {
 alert(‘You Chose: ‘ + color);
 }

Figure 11-31 is an example of the color picker view.

Offl ine Storage

Sometimes you will need to store data on the device. This could be
because the business rules for your app require offl ine usage, or it could
be just a matter of saving a few settings such as username and password.
This section shows you the different techniques you can use to store data
offl ine so that it can be retrieved when the user is not connected to the
web. Offl ine storage also allows you to store settings on the device for
your user.

Web SQL

If you have a lot of data that needs to be stored, one of the better ways to
store that data is in a database. PhoneGap provides a mechanism to
create, maintain, and retrieve records from an internal database. The
fi rst thing you need to do to use the database is to open it. You must do this after PhoneGap’s
deviceready event has been fi red. The following code creates or opens a database named
PlayerDemo with a version of 1.0 and a display name of Player Demo. The 10000 is the size of the
database in bytes.

function onDeviceReady() {

 var db = window.openDatabase(“PlayerDemo”, “1.0”, “Player Demo”, 10000);

}

Now that you have a database you can run transactions against it. You do that by calling the
transaction function on the database, and passing in a callback function, an error callback, and a
success callback. The callback function gets called with a transaction object. The fi rst thing you do
is populate the database:

db.transaction(populateDB, onDBError, onDBSuccess);

FIGURE 11-31: Color picker

view

c11.indd 337c11.indd 337 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

338 ❘ CHAPTER 11 GETTING STARTED WITH PHONEGAP

This calls the populateDB function and passes the function its transaction. This means that if any
of the commands in the transaction fail, the entire transaction will be rolled back. The following
function creates a players table:

function populateDB(tx){

 tx.executeSql(‘DROP TABLE IF EXISTS PLAYERS’);

 tx.executeSql(‘CREATE TABLE IF NOT EXISTS PLAYERS (id unique, number, name)’);

 tx.executeSql(‘INSERT INTO PLAYERS (id, number, name) VALUES (1, 6, “Adam”)’);

 tx.executeSql(‘INSERT INTO PLAYERS (id, number, name) VALUES (2, 1, “Jeff”)’);

 tx.executeSql(‘INSERT INTO PLAYERS (id, number, name) VALUES (3, 4, “Scott”)’);

 tx.executeSql(‘INSERT INTO PLAYERS (id, number, name) VALUES (4, 2, “Amelia”)’);

 tx.executeSql(‘INSERT INTO PLAYERS (id, number, name) VALUES (5, 5, “Dave”)’);

 tx.executeSql(‘INSERT INTO PLAYERS (id, number, name) VALUES (6, 3, “Lauren”)’);

 tx.executeSql(‘INSERT INTO PLAYERS (id, number, name) VALUES (7, 7, “Ashley”)’);

 tx.executeSql(‘INSERT INTO PLAYERS (id, number, name) VALUES (8, 9, “Nathan”)’);

 tx.executeSql(‘INSERT INTO PLAYERS (id, number, name) VALUES (9, 8, “Heather”)’);

}

Now that you have the database populated you can create another transaction that you can use to
retrieve the data from the players table that you just created. To get the data back from a query, you
call executeSQL and pass it the query, arguments, the success callback, and the error callback:

tx.executeSql(‘SELECT * FROM PLAYERS ORDER BY name’, [], onQuerySuccess, onDBError);

You can use the onQuerySuccess callback to iterate through the results and display them to the
screen, as shown in Figure 11-32:

FIGURE 11-32: SQL

returned to screen

c11.indd 338c11.indd 338 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Other Useful PhoneGap Things ❘ 339

function onQuerySuccess(tx, results){

 try{
 var playerInfo = ‘’;
 var len = results.rows.length;

 for (var i=0; i<len; i++){
 playerInfo += ‘’ + results.rows.item(i).name +
 ‘(‘ + results.rows.item(i).number
 + ‘)’;
 }

 playerInfo += ‘’;
 jQuery(‘#divPlayers’).html(playerInfo);
 }
 catch(err){
 alert(err);
 }
}

Filesystem Storage

Local storage is also available. The local storage is available as key-value
pairs. To store Lansing as a favorite, you would call setItem, passing in
the key (favorite) and the value (Lansing):

window.localStorage.setItem(“favorite”, “Lansing”);

This storage is persistent and will be available the next time the applica-
tion is run. To retrieve the data you call getItem with the key that you
are looking for. The following code retrieves the favorite item and then
alerts that item, as shown in Figure 11-33:

var fav = window.localStorage.getItem(“favorite”);
alert(fav);

GPS

You access the GPS through PhoneGap by calling the geolocation function with a callback:

function onDeviceReady() {
 navigator.geolocation.getCurrentPosition(gpsSuccess, gpsFailure);
}

As with all of the PhoneGap functions, the GPS functions cannot be called until the deviceready
event has been fi red. The success callback returns a position object, which has a coordinates
object that contains properties for latitude, longitude, altitude, accuracy, heading, and speed:

function gpsSuccess(location){

 var gpsinfo = ‘Latitude: ‘ + location.coords.latitude + ‘’;

 gpsinfo += ‘longitude: ‘ + location.coords.longitude + ‘’;

FIGURE 11-33: Local

storage alert

c11.indd 339c11.indd 339 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

340 ❘ CHAPTER 11 GETTING STARTED WITH PHONEGAP

 gpsinfo += ‘Altitude: ‘ + location.coords.altitude + ‘’;

 gpsinfo += ‘Accuracy: ‘ + location.coords.accuracy + ‘’;

 gpsinfo += ‘Speed: ‘ + location.coords.speed + ‘’;

 jQuery(‘#GPSInfo’).html(gpsinfo);

}

There is also a failure callback that returns a positionError object. The positionError object has
a code and a message property:

function gpsFailure(PositionError){
 alert(PositionError.code);
 alert(PositionError.message);
}

Accelerometer

You can access the accelerometer using the accelerometer’s watchAcceleration function with a
callback for the success and for errors. watchAcceleration is set to a variable and fi res on the
frequency that is set in the options. The iPhone simulator does not transmit accelerometer data;
however, the Android simulator does, so if you are testing without a device, the accelerometer needs
to be tested on Android.

var options = { frequency: 3000 };

watch = navigator.accelerometer.watchAcceleration(successFunction,

 errorFunction, options);

//The success function takes an acceleration object.

//This object has the x, y and z change,

//as well as the timestamp from when the acceleration was gathered.

function successFunction(acceleration){

 try{

 x$(“#spanX”).html(acceleration.x);

 x$(“#spanY”).html(acceleration.y);

 x$(“#spanZ”).html(acceleration.z);

 x$(“#spanTime”).html(acceleration.timestamp);

 }

 catch(err) {

 alert(err);

 }

}

To stop the watch from fi ring constantly, you can call the clearWatch function and pass it the
watch variable to stop the watch from fi ring:

x$(‘#btnStop’).click(function(){
 navigator.accelerometer.clearWatch(watch);
});

Now that you have a working app you can connect the application to the markets.

c11.indd 340c11.indd 340 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 341

CONNECTING PHONEGAP TO THE MARKETS

If you have been following through the book chapter by chapter, you have seen how to connect to
the different markets. Because PhoneGap applications are compiled with their native frameworks,
they are released to the markets in the same manner as their true native counterparts are released.
Refer to the corresponding section of Chapters 6–9 for more information on connecting to the vari-
ous markets.

SUMMARY

PhoneGap is an easy-to-learn framework for creating cross-platform mobile applications. Everything
in PhoneGap derives from the onDeviceReady listener. Once onDeviceReady fi res, you have access
to the device’s native components, like the GPS, camera, or accelerometer. Leveraging your current
HTML, CSS, and JavaScript knowledge also enables you to create these applications with a lower
learning curve.

Because PhoneGap is cross platform, you don’t need to learn four different languages to be able to
deploy your application across iPhone, Android, BlackBerry, and Windows Phone 7. Having the
same codebase for all platforms can also give you a sense of parity through the different device
platforms.

Now that you have created mobile applications with PhoneGap, the next chapter will show how to
create Android and iPhone applications using .NET and the Mono framework.

c11.indd 341c11.indd 341 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c11.indd 342c11.indd 342 28/07/12 6:08 PM28/07/12 6:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with MonoTouch
and Mono for Android

Developing in the mobile space can be a daunting task for developers. You have to fi gure
out which platforms you should support for your app, purchase the hardware, and join the
developer programs for each platform, so the last thing you may want to do is to learn a new
programming language.

In 2009 Miguel de Icaza, with a team of other developers, released version 1.0 of the
MonoTouch framework. MonoTouch enabled .NET developers to create iOS applications in
C# and then deploy to iOS hardware. After the initial launch of the MonoTouch framework,
Apple modifi ed the iTunes terms of service to allow only apps that were created using
Objective-C into the market, a decision that was quickly reversed.

Although short lived, this edict from Apple is a fact that many developers keep in the back of
their mind, knowing that Apple can change the terms of service again at any time. The bright
side of this policy was that it was only for apps being deployed to the iOS store; if you created
an app for internal company use that was deployed using an ad-hoc method, you were still free
to use whatever non-Objective-C framework you liked.

THE MONO FRAMEWORK

MonoTouch and Mono for Android rely on the Mono Framework to function. Mono is a
cross-platform open source implementation of the .NET Framework. The Mono project is led
by Miguel de Icaza, with the sponsorship of his company Xamarin. The Mono project was
started in 2001, with version 1.0 released in 2004. Throughout the years of development, a
team of open source developers worked to keep parity with the C# and libraries within the
.NET Framework. One of the most impressive development projects I have seen was when
the Mono project released Moonlight, the Mono implementation of Silverlight, within 24 hours
of Microsoft releasing Silverlight to the developer community at the Mix conference in 2007.

12

c12.indd 343c12.indd 343 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

344 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

The Mono project focuses on providing:

 ➤ An open source Common Language Infrastructure (CLI) implementation: ECMA-335 is the
open standard developed by Microsoft that describes the core of the .NET Framework. The
Mono CLI provides a runtime environment for code that has been compiled to Common
Intermediate Language (CIL).

 ➤ A C# compiler: ECMA-334 defi nes the open standard of the C# language. The Mono C#
compiler is responsible for compiling C# code in the Common Intermediate Language that
the CLI run time executes.

 ➤ An open development stack: The Mono project strives to provide tools that are both useful
and easy for developers to use. At the forefront is the MonoDevelop IDE along with various
other tools for linking, and other core libraries specifi c to UNIX environments such as the
GTK# library used for GUIs.

The current Mono C# compiler provides a complete feature set for C# 1, 2, and 3, with partial
support for C# 4.

MonoTouch

MonoTouch is a set of tools that enables a developer to build iOS applications using their existing
knowledge of the .NET Framework. The MonoTouch tools provide a combination of the core .NET
Framework features along with APIs provided in the iOS SDK. The MonoTouch team has spent
a great deal of time trying to provide an interface with names that match the corresponding iOS
feature, in an effort to make the MonoTouch API very similar to the iOS SDK without sacrifi cing
conventions that .NET developers are accustomed to.

Although MonoTouch is based on the open source Mono project, MonoTouch is a commercial
product, which is licensed on a developer basis. For up-to-date licensing info, visit the Xamarin
store website at https://store.xamarin.com/.

The Microsoft .NET Framework languages (Visual Basic, C#, F#) are interpreted languages that
compile to Common Intermediate Language (CIL), and then are just-in-time (JIT) compiled,
meaning in the normal uses of the .NET Framework, your code isn’t truly compiled until run time.

Interpreted code/JIT compilation is not supported within iOS and is blocked via the terms of service
as well as functionality within the iOS kernel. This means that a different solution is needed for the
Mono framework to work within iOS.

MonoTouch is delivered as a static compiler that turns .NET code into static byte code. MonoTouch
apps are compiled using ahead-of-time (AOT) compilation (static compilation), which allows
all code that is normally JITed to be generated from CIL to a single native binary that can then
be signed, just like a C compiler would generate static byte code. This method loses some of the
dynamic functionality of .NET, but features such as generics are still supported.

Linking

Because libraries cannot be reused in iOS, every time your app is installed on a device, the Mono
Framework is bundled inside your app as well. When your MonoTouch app is compiled, a process
runs that analyzes which portions of the Mono framework you are actually using, and creates a

c12.indd 344c12.indd 344 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

https://store.xamarin.com/
http://www.it-ebooks.info/

The Mono Framework ❘ 345

custom version of the Mono Framework ARM CPU architecture, with only the functionality your
app is using, and then links this version into your app. What this means is that if you have fi ve
different MonoTouch apps installed on your iOS device, each app will have its own version of the
Mono Framework. The fact that the Mono Framework needs to be installed increases the size of the
app over a natively created app, but this is fully dependent on how much of the Mono Framework is
being utilized. In most cases, the size increase of the app is trivial.

The linker is integrated into MonoTouch and the MonoDevelop IDE, so you do not need to worry
about doing anything extra.

Performance

Both Objective-C and the Mono Framework’s AOT compiler use the same low-level virtual
machine (LLVM) for generating and optimizing the binary code, so there should be no performance
difference using MonoTouch as opposed to Objective-C. Because portions of the Mono Framework
are compiled into the fi nal assembly, the apps may be larger.

Mono for Android

Mono for Android is the sibling product of MonoTouch. Mono for Android allows .NET developers
to create apps for the Android operating system using a set of tools they are familiar with.
With Mono for Android, developers can create Android applications within Visual Studio or the
MonoDevelop IDE.

Mono for Android 1.0 was released in April 2011, and is much younger then the MonoTouch
framework but is a viable alternative to native Android development.

The Android operating system is a Linux-based system where Android apps run on top of a virtual
machine named Dalvik. Mono for Android apps do not run within Dalvik, but within Mono, which
runs side-by-side with Dalvik. Mono for Android developers access features in the Android operating
system by calling .NET APIs through Mono, or by classes exposed in the Android namespace
provided for Mono for Android. This provides a bridge into the Java APIs that are exposed by Dalvik.

Both Mono and Dalvik run on top of the Linux kernel and expose API functionality to developers
to access the operating system. Figure 12-1 shows the various components of a Mono for Android
app and their interaction with the Mono framework and Dalvik.

FIGURE 12-1: Mono for Android architecture

c12.indd 345c12.indd 345 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

346 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

Performance

When it comes to performance, research suggests that Mono’s JIT compiling is faster than Dalvik’s
(http://www.koushikdutta.com/2009/01/dalvik-vs-mono.html). In our experience with Mono
for Android, both native and Mono for Android apps performed similarly. But to be fair, the apps
we have created are not complex, and usually just display data retrieved from a web service.

Assemblies

Just as with Silverlight, MonoTouch and Mono for Android are subsets of assemblies included
in the desktop .NET Framework, basically hybrids of .NET 4.0 and the Silverlight 2 API profi le.
MonoTouch/Mono for Android are extended subsets of Silverlight and the desktop .NET assemblies
to aid in your iOS development. It’s important to note that MonoTouch/Mono for Android are not

Linking

Very similar to how the linker in MonoTouch works, Mono for Android creates a custom static
version of the Mono Framework that is distributed with your Mono for Android app. It’s important
to note that the default debug releases of your Mono for Android app will not use the linker and a
shared runtime package will be installed. Although this makes repeated deploying much quicker,
it’s not a true test of your app, because turning on linking may have some unintended side effects.
Figure 12-2 shows the build settings for a Mono for Android project in MonoDevelop. Notice the
Linker Behavior setting for the Debug confi guration. To enable linking, simply uncheck the Use
Shared Mono Runtime setting and select Link All Assemblies.

FIGURE 12-2: Linker settings

c12.indd 346c12.indd 346 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.koushikdutta.com/2009/01/dalvik-vs-mono.html
http://www.it-ebooks.info/

The Mono Framework ❘ 347

ABI compatible with assemblies compiled for a different profi le, such as Silverlight or the desktop
.NET Framework. Assemblies you want you use in your MonoTouch/Mono for Android app must
be recompiled with the MonoTouch/Mono for Android profi le, just as if you were using these
assemblies in a Silverlight app.

Why MonoTouch/Mono for Android?

The true power of these frameworks comes with the ability to share code. As we have stressed in
previous chapters of this book, UI is very important to the mobile app experience, and you should
not try to plan on a single solution that works on both iOS and Android. However, a great deal of
business logic can be abstracted and shared very easily between both your iOS implementation and
your Android implementation.

As you become more experienced with a programming language, it becomes easier to follow
patterns that have been identifi ed as “good” programming practice. I know from fi rsthand experience
that the fi rst time I develop a project in a new language, it does not meet the quality I hold to other
code bases with languages I have more experience with. With that being said, using MonoTouch and
Mono for Android enable you to use a language where you already know the best practices, and let
you focus on developing a great app.

Do not re-create the wheel and keep business logic outside of the UI. There is a set of rules that we
as developers should follow, but if you are unfamiliar with a framework or programming language,
following these rules is easier said than done. With MonoTouch and Mono for Android the
expectation is that you are already familiar with .NET and C#, so you are able to take your existing
knowledge and start developing platform-specifi c apps without leaning a new framework.

Downsides

As you may have noticed when it comes to mobile development, nothing is black and white. You can
perform the exact same task in multiple ways, but many of them come with a downside. Developing
with MonoTouch and Mono for Android is no different.

Waiting for Improvements

When Apple or Google have a press conference to promote the latest and greatest features contained
in their respective mobile operating systems, in most situations, it is at that time you can update the
SDKs and start working with the new great features if you are working with a native app. When you
have selected MonoTouch or Mono for Android as your development platform, you must wait until
Xamarin includes these new features in the MonoTouch/Mono for Android SDK.

Xamarin has a fraction of the developers on staff that Apple or Google have to perform
development and testing of new features. Although Xamarian strives to keep feature parity
complete, sometimes this process takes a bit longer than we as users of the framework would like.
Because of the close interaction with xCode for the user interface development, when changes to
xCode happen, it tends to take Xamarin a while to develop a product that works correctly. The
release of xCode 4 left MonoTouch developers using an older version of the IDE for almost a year
until a solution was delivered.

c12.indd 347c12.indd 347 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

348 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

Apple Confusion

With developer certifi cates and provisioning profi les, the hoops a developer has to jump through
just to get an app installed on a device may make you start to lose your hair. Although the process
of provisioning profi les and certifi cates can be a pain in the neck, xCode and other Apple tools have
been created to help make this chore a bit easier—whereas the tools contained within MonoDevelop
will make you lose even more hair. It’s not that they don’t function within MonoDevelop, but they
are not very user-friendly, and to a new developer on the iOS platform it can be overwhelming.

Xamarin Mobile

With sharing code being one of the most appealing reasons to use MonoTouch and Mono for
Android, the Xamarin team has taken the platform one step forward with the Xamarin Mobile
library. This library provides tools to write device-specifi c functionality once. For example,
MonoTouch requires a different set of APIs for getting a contact than Mono for Android does,
because they both try to adhere to the native API naming conventions as much as possible. Xamaran
Mobile provides a single API that allows you to return the contacts for either iOS or Android. The
following code examples show how Xamarin Mobile can be useful.

To get a list of contacts in MonoTouch, you need to use the ABAddress object:

ABAddressBook addressBook = new ABAddressBook();

ABPerson[] contacts = iPhoneAddressBook.GetPeople();

Licensing

Both MonoTouch and Mono for Android are commercial products and currently require developers
to purchase a license for each. The evaluation version of both MonoTouch and Mono for Android
enable developers to create apps and deploy to the simulator/emulator only; a fully licensed version
is required to deploy to a device.

When a license is purchased, the key is entered within the IDE, and activation occurs over the
Internet. The downside occurs if Xamarian goes out of business. What is the “escape” plan if you
have to reinstall your machine, and activate the framework when the activation server no longer
exists? You are putting the fate of a great deal of development resources in the hands of an external
resource. Sure, you can argue the same fact about PhoneGap or Titanium, but because they are
open source the projects can persist after corporation backing loses interest.

As a developer you may not initially think that this could be an issue. Before
Xamarian obtained the rights for MonoTouch, the MonoTouch project was
in this exact state of limbo, and we were burned on a project. With a newly
installed machine, and no way to activate the MonoTouch license we had paid
for, there was no way to make changes to an app that had been in the fi eld for
about a year. Luckily the app was small, and we were able to rewrite it natively
for iOS. The client received their updates, but we lost time rewriting the app.

c12.indd 348c12.indd 348 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

The Mono Framework ❘ 349

With a fundamental understanding of how the Mono framework, MonoTouch, Mono for Android,
and Xamarin Mobile interact with one another, you can move on to setting up a development
environment.

foreach (ABPerson item in contacts) {

 // do something with the contact

}

In Mono for Android, you need to use the ManagedQuery object to get the contacts:

var contacts = ManagedQuery(ContactsContract.Contacts.ContentUri,

 null, null, null, null);

foreach (Contact contact in contacts)

{

 // do something with the contact

}

Xamarin Mobile uses a new AddressBook object that returns the contacts for either iOS or
Android:

var book = new AddressBook ();

foreach (Contact contact in book)

{

 // do something with the contact

}

Xamarin Mobile is currently very early in development and is focusing only on the areas shown in
Figure 12-3.

FIGURE 12-3: Xamarian Mobile features

c12.indd 349c12.indd 349 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

350 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

GETTING THE TOOLS YOU NEED

The leadership for the Mono project is all open source advocates, and as such many of the tools
required for creating mobile apps based on Mono are open source. Some companies, usually larger
companies, may have strict policies about not allowing open source projects into production code.
Often these polices stem from the licenses that some open source projects use, or management not
willing to trust that a community-funded project will be able to succeed because if the company has
issues with the product, oftentimes there is no one call to ask for support.

This chapter shows examples created within Mac OS X, and makes mention of when a particular
tool can be installed within Windows as well

Mono Framework

Installing the Mono Framework is a relatively simple process. The Mono Framework is required for
the remaining tools in this chapter to be installed. To fi nd the latest version of Mono, navigate to
http://www.go-mono.com/mono-downloads/download.html and install the latest stable version
for your platform. The examples in this chapter are for Mac OS X because MonoTouch is supported
only on Mac OS X, but if you are working on a Windows machine, you will be able to work with
Mono for Android. After the Mono Framework is installed, you can check the version by executing
Mono --version in a terminal session. The output of this command lists version information as
shown in Figure 12-4.

MonoDevelop

MonoDevelop is an open source IDE
supported under the Mono project. In 2003
developers forked another open source IDE
named Sharp Develop into the MonoDevelop
IDE. MonoDevelop has a large open source
community following, with updates being
published frequently.

MonoDevelop is supported on multiple
platforms, with Mac OS X and Windows
included. To get started with MonoDevelop,
simply download the version for your
platform from the download page
(http://monodevelop.com/Download) and
follow the install instructions. MonoDevelop
is dependent on the Mono Framework, and if you have not already installed the Mono Framework,
you will be prompted to do so.

After MonoDevelop has been installed, you should be able to start the product and have a screen
that looks similar to Figure 12-5.

FIGURE 12-4: Mono Framework version from terminal

c12.indd 350c12.indd 350 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.go-mono.com/mono-downloads/download.html
http://monodevelop.com/Download
http://www.it-ebooks.info/

Getting the Tools You Need ❘ 351

Mono/MonoDevelop follow many of the same conventions that .NET and Visual Studio follow.
Class fi les belong to project fi les and project fi les belong to solutions. If you have worked with Visual
Studio in the past, you should feel right at home with this product.

The MonoDevelop IDE is used to create solutions written in various languages that can be run on
the CLR. This means there is support for a great number of languages/frameworks ranging from
ASP.NET MVC to Silverlight (Moonlight on Mono). MonoDevelop is the IDE that you use to create
both Android and iOS applications with Mono for this chapter.

MonoTouch

The MonoTouch toolset has a very close relationship to xCode and the iOS SDK. Because of
this close-knit relationship, MonoTouch can be run only on a Mac and cannot be installed on a
Windows machine. This means that before you start to install MonoTouch, you should ensure that
you have the iOS SDK and xCode installed. This was discussed in depth in Chapter 7.

MonoTouch is a commercial product offered through Xamarin and currently is licensed to
developers, meaning that if you have a team of fi ve developers working on a MonoTouch app, you
will need to purchase fi ve licenses from Xamarin. A full version of MonoTouch enables developers
to deploy, build, and run MonoTouch apps on physical iOS devices. An unlicensed version enables
developers to build and run MonoTouch apps on the iOS Simulator.

FIGURE 12-5: MonoDevelop start screen

c12.indd 351c12.indd 351 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

352 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

Mono for Android

Mono for Android has a few options in regards to platforms and IDEs. Mono for Android
can be run on either Mac OS X or Windows. If you decide on the Windows option you can use
either MonoDevelop or Visual Studio to create Android apps. Whether you decide on Mac OS X
or Windows, you can download Mono for Android from http://xamarin.com/trial. The
prerequisites are similar to MonoTouch (Mono Framework, GTK+, MonoDevelop) with the
addition of the Android SDK. Both the Mac OS X and Windows versions of Mono for Android
check for the prerequisites and assist you with installing them if they are missing. After you have
installed Mono for Android and started MonoDevelop, you should be able to create one of the
various Mono for Android project types as shown in Figure 12-7.

To get started with MonoTouch, you must install the MonoDevelop IDE. After MonoDevelop has
been installed, you can download MonoTouch from http://xamarin.com/trial and install it
using the installer. The installer is straightforward — it’s simply a matter of clicking the Next button
a few times. If for some reason a prerequisite for the install is missing, the MonoTouch installer
will prompt you to install the missing prerequisite. After the install is complete and you restart
MonoDevelop, you should be able to create one of the various MonoTouch project types from the
New Solution dialog box as shown in Figure 12-6.

FIGURE 12-6: MonoTouch projects in MonoDevelop

c12.indd 352c12.indd 352 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://xamarin.com/trial
http://xamarin.com/trial
http://www.it-ebooks.info/

Getting to Know MonoDevelop ❘ 353

Visual Studio Support

If you are familiar with Visual Studio, and plan to go down this development path, it’s important
to note that Visual Studio Express is not supported because of its lack of support for plug-ins. After
you have installed Mono for Android, as mentioned previously, you will then need to install the
Mono Tools for Visual Studio, which you can fi nd at http://mono-tools.com/download/. This
enables you to use Visual Studio to create solutions targeted at the Mono Framework, and in this
case Mono for Android projects.

The examples in this chapter have been created using MonoDevelop on Mac OS X, but should
function the same within Visual Studio in Windows.

GETTING TO KNOW MONODEVELOP

Xamarin is working to deliver a fully integrated solution for developers with knowledge of .NET
to create apps for iOS and Android. It put a great deal of effort, along with other open source
developers, to contribute to the IDE where MonoTouch and Mono for Android apps are created.
The integration of MonoTouch and Mono for Android was very well thought out, and if you are
already familiar with MonoDevelop it will be intuitive on how these products fi t together.

MonoDevelop is not bloated full of features that most developers will never use. Its simple
user interface enables developers to rapidly fi nd tools they need when they are unfamiliar with
the product.

FIGURE 12-7: Mono for Android projects in MonoDevelop

c12.indd 353c12.indd 353 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://mono-tools.com/download/
http://www.it-ebooks.info/

354 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

MonoDevelop provides tools to Step Over,
Step Into, and Step Out on the Debug toolbar
shown in Figure 12-9.

Locals

The locals window shows you a list of all
of the variables that are currently within scope of your current breakpoint, and enables you to
view details about each variable. Figure 12-10 shows the locals window with an object named
fullLeagueData that has a count of 908 items. If you wanted to see more information about the

Debugging

It can be extremely frustrating to hunt down bugs in your application, and having well-developed
debugging tools that are integrated into the IDE is very useful when trying to resolve issues in
your app quickly. No matter what IDE you are working with, the teams that develop the IDEs are
constantly working to make debugging better for developers, and MonoDevelop is no exception.

MonoDevelop contains GUI debugging tools that are consistent with other IDEs such as xCode and
Visual Studio. With a close relationship to the .NET Framework, the debugging experience is more
like Visual Studio than any other product.

Breakpoints

You can set breakpoints by clicking in the gutter next to the line number as shown in
Figure 12-8. When you are debugging your app, and the breakpoint has been reached, the line will
be highlighted.

FIGURE 12-8: Breakpoints within MonoDevelop

FIGURE 12-9: MonoDevelop Debug toolbar

c12.indd 354c12.indd 354 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Getting to Know MonoDevelop ❘ 355

Output

The Application Output section provides important information about the execution of the app,
as well as displays any log messages you may add in your code. Figure 12-12 shows the application
output of an MonoTouch application that logged information received from a web service.

items in the fullLeagueData object, you could
click the array next the variable name and drill
into the data contained within.

Call Stack

When hunting for bugs, it’s useful to follow the
execution path of a particular feature, in hopes of
fi nding the issue. Figure 12-11 shows the Call Stack window within MonoDevelop.

FIGURE 12-10: Locals window in MonoDevelop

FIGURE 12-11: Call Stack window in MonoDevelop

FIGURE 12-12: Application Output window in MonoDevelop

MonoTouch Specifi cs

When you install MonoTouch, new tools are added to the MonoDevelop IDE that will aid in your
creation of iOS apps. These tools are specifi c to iOS apps and provide a range of functionality, such
as creating a new iOS project type, as shown in Figure 12-13, to deploying your newly created app
to a physical iOS device.

c12.indd 355c12.indd 355 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

356 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

iOS Simulator

Build confi gurations allow developers to create different build settings for different build scenarios.
Every newly created MonoTouch app preconfi gures four different build confi gurations, two for
deploying to the iOS simulator and two for deploying to a physical device. Figure 12-14 shows the
build confi gurations for a MonoTouch iPhone-only app.

When the iOS simulator is selected as an option in the build confi guration,
MonoDevelop/MonoTouch will launch the iOS simulator that was
installed when the iOS SDK/xCode was installed and push your app to the
simulator for you to test.

Interface Builder

Interface Builder is the tool included with xCode that enables developers
to create user interfaces for iOS applications. Interface Builder provides
tools with which a developer can lay out the interface, and also map the controls to the
events/functions that will be called. Interface Builder can open storyboard or XIB fi les. To work
with Interface Builder from MonoDevelop, simply click your storyboard or XIB fi le and Interface
Builder will be launched.

This interaction between MonoDevelop and xCode/Interface Builder can be somewhat fragile.
Behind the scenes, MonoDevelop generates a temporary xCode project that contains stubbed-
out Objective-C functions that match the C# classes, which allow the classes to be accessed from
Interface Builder and synchronized back to MonoDevelop.

Mono for Android Specifi cs

When Mono for Android is installed, a set of tools specifi c to working with the Android platform
is installed, and linked within the MonoDevelop IDE. The most notable of these tools are the
tools pertaining to the Android emulator. MonoDevelop can deploy your newly created Mono

FIGURE 12-13: MonoTouch project types

FIGURE 12-14:

MonoTouch build

confi gurations

c12.indd 356c12.indd 356 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Mono Projects ❘ 357

It’s important to note that the trial version of Mono for Android allows apps to be deployed only to
the emulator. A full license is required if you want to deploy to a physical device.

With the development environments installed and the basics of debugging covered, you can now examine
what exactly makes up a MonoTouch and Mono for Android project with regard to fi les and code.

MONO PROJECTS

The developers on both the MonoTouch and Mono for Android projects have spent a great deal
of time making the development experience as similar to using the recommended native tools as
possible. Core programming concepts from iOS will transfer to MonoTouch, as will concepts from

for Android app to a physical Android device or an
emulator.

The communication between MonoDevelop and the
Android emulators is another one of those “fragile”
areas. It’s best to use the tools within MonoDevelop
to start the emulators. By default the debug build
confi guration deploys your Mono for Android app to
an emulator. The screen in Figure 12-15 is presented,
which allows you select or create an AVD. If you are
unfamiliar with the AVD concept, please see Chapter 6.

The list of AVDs enumerated in MonoDevelop is the
same list of AVDs enumerated in the Eclipse AVD
Manager as shown in Figure 12-16.

FIGURE 12-15: Android emulator selection

FIGURE 12-16: Eclipse AVD Manager

c12.indd 357c12.indd 357 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

358 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

Android. Chapters 6 and 7 cover these core concepts and will be important for you to understand
before jumping into learning MonoTouch and MonoDevelop. Understanding how to write apps
using the “iOS way” and the “Android way” will help you interface with the MonoTouch and
Mono for Android frameworks, as well as research issues when you encounter them.

Anatomy of a MonoTouch App

The MonoTouch structure shown in Figure 12-17 represents a newly created tabbed application
type. If you have gone through Chapter 7, this structure should look very familiar. As with
native iOS apps, MonoTouch apps use an MVC design pattern keeping UI and business logic
separated. The following is a list of fi les and their function for a newly created MonoTouch
tabbed application type.

 ➤ Main.cs: As with most other C programs, the execution of C# applications start from the
main() function, which is located in the main.cs fi le.

 ➤ AppDelegate.cs: The AppDelegate receives messages from the application object during
the lifetime of your application. The AppDelegate is called from the operating system, and
contains events such as didFinishLaunchingWithOptions, which iOS would be interested
in knowing about.

 ➤ ViewController.cs: The view controller classes contain the business logic that is passed to
the UI views.

 ➤ ViewController_iPhone.xib: ViewController XIB fi les contain the user interface for the
MonoTouch app.

 ➤ ViewController_iPad.xib: When a universal iOS app is created, .xib fi les are created for
both iPhone and iPad. These fi les contain the UI specifi c to the iPad.

 ➤ Info.plist: This plist fi le contains confi guration settings that are specifi c to the app.

The example MonoTouch project in Figure 12-17
shows the user interface created in XIB fi les. Chapter
7 discussed creating iOS user interfaces using the
Storyboard concept. MonoTouch also provides project
types to create Storyboards in addition to XIB fi les.

Project Options

To “polish” an iOS application and make it ready for
deployment, numerous settings such as setting the
provisioning profi le and device orientation are extremely
important in the deployment process, but seem to be
hidden within MonoTouch and the MonoDevelop IDE.
If you fi nd yourself looking for a setting and can’t seem
to fi nd it, it could be hidden under the project Options
setting, which you can fi nd by right-clicking the project and selecting Options as shown in
Figure 12-18.

FIGURE 12-17: MonoTouch project

structure

c12.indd 358c12.indd 358 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Mono Projects ❘ 359

iOS Signing Options

In our opinion, one of most diffi cult concepts of iOS for new developers is the concept of certifi cates
and provisioning profi les. Figure 12-20 shows the iOS signing options that enable you to relate both
a certifi cate and a provisioning profi le to your MonoTouch app. Certifi cates and provisioning profi les

Build Options

Figure 12-19 shows the build options for the
iOS project. Options on this dialog box enable
you to select which iOS SDK your app will
run on. This dialog box also contains advanced
features, such as the linker behavior. Earlier in
this chapter we mentioned that all MonoTouch
apps include a custom-built version of the Mono
Framework, containing only features used in the
related app. By default, debug versions running on
the simulator do not link the assemblies, therefore the
entire Mono Framework is included. This is because
the time it takes to link the assemblies
is greater than the time it takes to just include the
entire framework with the app, which means making
debugging much faster.

FIGURE 12-18: MonoTouch project options

FIGURE 12-19: MonoTouch build settings

c12.indd 359c12.indd 359 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

360 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

Application Settings

Figure 12-21 shows the application settings dialog box. This dialog box enables you to set values
specifi c to the application, such as application name, version, and supported orientations.

are still installed using the tools within xCode, and will show up automatically in this interface to
use in your app.

FIGURE 12-20: MonoTouch signing settings

FIGURE 12-21: MonoTouch application settings

c12.indd 360c12.indd 360 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Mono Projects ❘ 361

Anatomy of a Mono for Android App

The structure in Figure 12-22 represents a newly created Mono
for Android application. If you have read through Chapter 6,
this structure should look very familiar.

The following is a list of fi les and their function for a newly
created Mono for Android application.

 ➤ Assets: The Assets directory contains assets such as
sound fi les or other nonimage assets your Mono for
Android app may use.

 ➤ Drawable: The Drawable directory contains images
that will be used throughout your Mono for Android application.

 ➤ Layout: The Layout directory contains the user interface XML fi les that are used to render
the UI on Mono for Android apps.

 ➤ Values: As with the convention that native Android apps use, the Mono for Android
framework has a great deal of tools built in for localization of apps. The values for each
localization schema are stored in the Values directory.

 ➤ Activity: The convention for an Activity is the same in Mono for Android as it is with
native Android apps written in Java. The convention is that each activity should reside in its
own class, which inherits from the Android Activity type. In the example in Figure 12-22,
there is only one activity.

Project Options

Mono for Android behaves similarly to MonoTouch when it comes to linking development builds,
with a few exceptions. By default debug builds do not link the Mono framework. The Mono
Framework is installed as a separate library named Mono Shared Runtime for debug builds. Release
builds link to a custom-built Mono Framework build containing only the features that your app uses.
For debug builds, these settings can be changed using the build settings as shown in Figure 12-23.

FIGURE 12-22: Mono for Android

project structure

FIGURE 12-23: Mono for Android linker settings

c12.indd 361c12.indd 361 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

362 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

The intention of this section was to give you an idea of the project structure, and basic interaction
between the UI and code. To build upon this, you will now tackle a more complex native
MonoTouch and Mono for Android app.

BUILDING THE DERBY APP WITH MONO

The idea of the Derby App is to build the same app over all of the mobile platforms covered in this
book. The MonoTouch and Mono for Android versions are very similar to the other versions that
you have built thus far.

The requirements are to list the roster from the Lansing Derby Vixens roller derby team as the primary
function, and then list all the roller derby teams in the world with the ability to see their team rosters.

MonoTouch

For the iOS version of the Derby App, you fi rst need to create an iPhone Tabbed MonoTouch
application as shown in Figure 12-25. The Tabbed application type provides a template that
contains two views linked to a tab controller that you can use to start your project. The iPhone

Certain features of Android apps require permission from the user before the app can gain access
to those features. Before users install your app on their mobile devices, they will be prompted with
a list of features that your app will be using, providing the opportunity for the user to opt not to
install your app because of a particular feature. In the Mono for Android app, to enable the features
that your app is going to use, you must use the Mono for Android Project Options dialog box as
shown in Figure 12-24.

FIGURE 12-24: Mono for Android permissions

c12.indd 362c12.indd 362 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Building the Derby App with Mono ❘ 363

User Interface

When it boils down to it, the Derby App does not contain a complex user interface. All of the
screens are simply lists of data. When the user interface is simple, creating the controls within code
is oftentimes an option. For the MonoTouch Derby App, the UITableView controls are created and
added programmatically.

To get started, rename the fi rst view code
and XIB fi le from FirstViewController to
VixensController. For the code fi les, it’s best
to right-click the class name and select the
Rename option from the Refactor menu as shown
in Figure 12-26. This ensures that all of the
constructors and places that the class is initiated
are changed as well.

With the fi rst ViewController renamed, your
project should look similar to the project shown in
Figure 12-27.

project type was selected because the only interface to the Derby App that has been shown has been
a mobile phone interface, not a tablet interface. The Storyboard option was not selected, just to
provide additional examples of how to work with user interfaces within iOS and Interface Builder.

FIGURE 12-25: Tabbed MonoTouch iPhone app creation

FIGURE 12-26: Rename refactor within

MonoDevelop

c12.indd 363c12.indd 363 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

364 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

Creating the Vixen Table View

Just as with a native iOS app created in Objective-C, the
ViewDidLoad event is fi red right after the View has loaded. Within
the VixensController, this is where the table view that contains the
list of all the Lansing Derby Vixens will be created.

Creating a UI Table view is as simple as:

 ➤ Creating a new instance of the UITableView object.

 ➤ Setting the dimensions and where in the view it will be rendered.

 ➤ Adding the newly created table view as a subview to the view (in
this case the Vixens View) you are working with.

The following code shows this process.

public override void ViewDidLoad ()
{
 base.ViewDidLoad ();
 UITableView tableView = new UITableView();
 tableView.Frame = new RectangleF (0, 0,
 this.View.Frame.Width,this.View.Frame.Height);
 this.View.AddSubview(tableView);
}

Populating the Vixens Table View

After the table view has been created, the data that will populate the view needs to be received. To
do this, I have created a helper class named Network that contains static helper functions that will
retrieve the data needed to populate the table views throughout the Derby App.

To get the roster of a team, the GetRoster function is called with the team name of the data you are
looking for. You have a few different methods within .NET to choose when it comes to mapping a
JSON response to an object. The following example simply loops through each of the JSON items
returned and manually builds the DerbyName object:

public static List<DerbyName> GetRoster(string leagueName)

{

List<DerbyName> tmpRtn = new List<DerbyName>();

 String requestURL = “http://derbynames.gravityworksdesign.com

 /DerbyNamesService.svc

 /DerbyNames?$filter=League%20eq%20’” + leagueName + “’”;

 HttpWebResponse response = GetServiceResponse(requestURL);

 JsonObject fullJsonObject =

 (JsonObject)JsonObject.Load(response.GetResponseStream());

 var rosterData = fullJsonObject[“d”];

 foreach (JsonObject singleEntry in rosterData) {

 tmpRtn.Add(new DerbyName(singleEntry[“DerbyNameId”],

FIGURE 12-27: First view

renamed

c12.indd 364c12.indd 364 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/DerbyNames?$filter=League%20eq%20
http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/DerbyNames?$filter=League%20eq%20
http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/DerbyNames?$filter=League%20eq%20
http://www.it-ebooks.info/

Building the Derby App with Mono ❘ 365

 singleEntry[“Name”],singleEntry[“Number”]

 ,singleEntry[“League”]));

 }

 return tmpRtn;

}

private static HttpWebResponse GetServiceResponse (string url)

{

 HttpWebResponse tmpRtn;

 var request = (HttpWebRequest) WebRequest.Create (url);

 tmpRtn = (HttpWebResponse) request.GetResponse ();

 return tmpRtn;

}

The data that is returned is a list of DerbyName name objects for the team name that was passed in;
in this case, “Lansing Derby Vixens.”

After the data has been retrieved, you need to set the DataSource property on the TableView
that will display the data. In this case, set the DataSource to a new TableViewDataSource object
(which you will create in the future), passing it a list of strings that contains the names of the
Lansing Derby Vixens. You can do this by adding the following code to the ViewDidLoad event:

public override void ViewDidLoad ()
{
 base.ViewDidLoad ();
 UITableView tableView;
 string teamName = “Lansing Derby Vixens”;
 List<DerbyName> fullRosterData = Network.GetRoster(teamName);
 List<string> data = new List<string>();
 fullRosterData.ForEach(derbyName => data.Add(derbyName.Name));

 tableView = new UITableView();
 tableView.DataSource = new TableViewDataSource(data);
 tableView.Frame = new RectangleF (0, 0,
 this.View.Frame.Width,this.View.Frame.Height);
 this.View.AddSubview(tableView);
}

To fully bind the data to the table view, you need to implement a few more functions. Create these
functions in a new class named TableViewDataSource, which was bound to the data source of the
table view.

The TableViewDataSource class contains a constructor that contains the data that will be bound to
the TableView, in this case a list of strings:

public TableViewDataSource (List<string> list)
{
 this.list = list;
}

c12.indd 365c12.indd 365 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

366 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

For the table view to know how many rows it needs to select, you must implement the
RowsInSection method. In this case, you just return the count of the number of items in the list
object, which is the list of strings that you populated when the view loaded:

public override int RowsInSection (UITableView tableview, int section)

{

 return list.Count;

}

The magic really happens in the GetCell method. This method is called for the number of times
that was returned in the RowsInSection. In your code, create a new cell, get the data for the correct
position in the list object, and then return the cell you created, which will be added to the table:

public override UITableViewCell GetCell (UITableView tableView, NSIndexPath indexPath)

{

 UITableViewCell cell = tableView.DequeueReusableCell (kCellIdentifier);

 if (cell == null)

 {

 cell = new UITableViewCell (UITableViewCellStyle.Default,kCellIdentifier);

 }

 cell.TextLabel.Text = list[indexPath.Row];

 return cell;

}

When complete, the TableViewDataSource class contains two methods and one constructor:

private class TableViewDataSource : UITableViewDataSource

{

 static NSString kCellIdentifier = new NSString (“DerbyName”);

 private List<string> list;

 public TableViewDataSource (List<string> list)

 {

 this.list = list;

 }

 public override int RowsInSection (UITableView tableview, int section)

 {

 return list.Count;

 }

 public override UITableViewCell GetCell (UITableView tableView,

 NSIndexPath indexPath)

 {

 UITableViewCell cell = tableView.DequeueReusableCell (kCellIdentifier);

 if (cell == null)

 {

 cell = new UITableViewCell (

 UITableViewCellStyle.Default,

 kCellIdentifier);

c12.indd 366c12.indd 366 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Building the Derby App with Mono ❘ 367

 }

 cell.TextLabel.Text = list[indexPath.Row];

 return cell;

 }

}

With the table view data wired, you should be able to run the app,
(by pressing the run button in the toolbar) and view the Derby Vixen
roster as shown in Figure 12-28.

Leagues/Team Name

The Leagues tab lists all of the roller derby leagues in a TableView. The
name of this controller is LeagueController. Creating the Leagues
tab is very similar to the Vixens tab, with two exceptions. The fi rst is
the function that is called to obtain the data that is displayed in the
list. Because this is a list of leagues, you will call the GetLeagueData
function found in the network class. This function returns a list of
League objects, returned from the Derby service.

public static List<League> GetLeagueData()

{

 List<League> tmpRtn = new List<League>();

 string requestURL = “http://derbynames.gravityworksdesign.com

 /DerbyNamesService.svc/Leagues”;

 HttpWebResponse response = GetServiceResponse(requestURL);

 JsonObject fullJsonObject =

 (JsonObject)JsonObject.Load(response.GetResponseStream());

 var leagueData = fullJsonObject[“d”];

 foreach (JsonObject singleEntry in leagueData)

 {

 tmpRtn.Add(new League(singleEntry[“LeagueId”],singleEntry[“LeagueName”]));

 }

 return tmpRtn;

}

The second difference between the views is that the League Roster screen that lists the team
members for the selected league should appear when a cell is touched on the leagues view. To
accomplish this, within the LeaguesController code fi le, create a new delegate that derives from
UITableViewDelegate. The RowSelected event is wired up inside this delegate, which simply
creates a new LeagueRoster view (which you have not created yet), sets the team name you want to
load, and then pushes the view to the iOS navigation stack to make the LeagueRoster view show.

private class TableViewDelegate : UITableViewDelegate

{

 LeaguesController leagueController;

 private List<string> list;

FIGURE 12-28: Derby

Vixens roster rendering in

Table View

c12.indd 367c12.indd 367 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/Leagues
http://derbynames.gravityworksdesign.com/DerbyNamesService.svc/Leagues
http://www.it-ebooks.info/

368 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

 public TableViewDelegate(List<string> list, LeaguesController controller)

 {

 this.leagueController = controller;

 this.list = list;

 }

 public override void RowSelected (UITableView tableView, NSIndexPath indexPath)

 {

 LeagueRoster roster = new LeagueRoster();

 roster.TeamName = list[indexPath.Row];

 leagueController.NavigationController.PushViewController(roster,true);

 }

}

League Roster

The LeagueRoster view is shown when a user selects a league/team from the team name page. The
name of this view is LeagueRoster. This view is almost identical to the Vixens view with one
exception. To know which league/team you are loading the roster for the name needs to be passed
into this view. You can do this by adding a property named TeamName to the LeagueRoster class:

public string TeamName { get; set; }

The GetRoster function within the ViewDidLoad event uses the TeamName property instead
of the hard-coded “Lansing Derby Vixens” value to retrieve the roster for the team name set in the
TeamName property:

public override void ViewDidLoad ()

{

 base.ViewDidLoad ();

 UITableView tableView;

 List<DerbyName> fullRosterData = Network.GetRoster(this.TeamName);

 List<string> data = new List<string>();

 fullRosterData.ForEach(derbyName => data.Add(derbyName.Name));

 tableView = new UITableView();

 tableView.DataSource = new TableViewDataSource(data);

 tableView.Frame = new RectangleF (0, 0,this.View.Frame.Width,

 this.View.Frame.Height);

 this.View.AddSubview(tableView);

}

Figure 12-29 shows the roster view for a selected team.

Mono for Android

For the Android version of the Derby App, you fi rst need to create a new
Mono for Android application as shown in Figure 12-30. This will
provide a simple Android app to which you will then be able to add
your specifi c derby logic. FIGURE 12-29: Roster

View for team

c12.indd 368c12.indd 368 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Building the Derby App with Mono ❘ 369

This version of the Derby App is going to use a few Android features that were introduced with
Android version 3.0, Gingerbread. To be on the safe side, for this project you will want to target
the latest Android SDK. You will want to make sure that the Android project options have the
minimum API level set to 14 for Android 4.0 as shown in Figure 12-31.

FIGURE 12-30: Creating a new Mono for Android project

FIGURE 12-31: Setting the minimum SDK to the latest version

c12.indd 369c12.indd 369 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

370 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

User Interface

As with Android apps that are created using Eclipse and Java, the user interface XML fi les for
Mono for Android apps are located under the Resources ➪ Layouts directory of the project. For the
Derby app you are going to have one main view that contains two tabs that will load the interface
using a concept called a fragment. A fragment is simply a chunk of user interface logic with its own
life cycle. The following lists the fi les required for the Derby App user interface:

 ➤ Main.axml: The Main layout fi le for the Mono for Android Derby app contains a linear
layout and a frame layout. The frame layout is used as a container where the fragments will
be loaded:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <FrameLayout android:id=”@+id/fragmentContainer”
 android:layout_width=”match_parent”
 android:layout_height=”0dip”
 android:layout_weight=”1” />
</LinearLayout>

 ➤ Tab.axml: Each tab that is created for the Derby app will use Tab.axml for the interface.
The tab’s user interface is simply a list view that will render the data:

<ListView xmlns:android=”http://schemas.android.com/apk/res/android”
 android:id=”@+id/DerbyData”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content” />

 ➤ List_item.axml: Remember from Chapter 6 that each item that is rendered in a list view
will have a layout fi le to specify how the data will be rendered in the list view. For the
Mono for Android Derby app, just a TextView control is used to render the data. If you
wanted to get fancy and add a team icon or player photo, this layout would be modifi ed to
accomplish this:

<?xml version=”1.0” encoding=”utf-8”?>
<TextView xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent” />

With the layout fi les completed, you can add the code that is required to display the UI. In the
OnCreate method of the Main.cs fi le, the navigation mode of the action must be set to Tabs,
which will allow for a tabbed interface to be rendered. Calls to custom methods named
AddVixenTab and AddLeagueTab add the fragments that will fi nish creating the interaction of
the tab and the main layout:

c12.indd 370c12.indd 370 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

Building the Derby App with Mono ❘ 371

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 SetContentView (Resource.Layout.Main);

 this.ActionBar.NavigationMode = ActionBarNavigationMode.Tabs;

 AddVixenTab (“Vixens”);
 AddLeagueTab (“Teams”);
}

To add the tabs to the Action Bar, fi rst create an ActionBar.New tab with the text that will be
rendered on the screen:

var tab = this.ActionBar.NewTab ();
tab.SetText (tabText);

After the tab has been created, you need to wire the TabSelected event to load the user interface of
the tab that was selected. In this case the Vixen Tab was selected, therefore you should remove the
LeagueTab from focus and display a new Vixen Tab to the user using fragments.

tab.TabSelected += delegate(object sender, ActionBar.TabEventArgs e) {
 m_vixenTab = new VixenTab();
 e.FragmentTransaction.Add (Resource.Id.fragmentContainer, m_vixenTab);
 e.FragmentTransaction.Remove(m_leagueTab);
};

After the TabSelected event has been wired, you simply need to add the newly created ActionBar
.Tab to the ActionBar of the Derby App:

this.ActionBar.AddTab (tab);

Creating the tabs for both the Vixens and the Leagues/Teams names is similar, with the only
exception of what is rendered in the tab (VixenTab or LeagueTab). The following code shows the
completed logic for adding both the Vixens and Leagues tabs:

private void AddVixenTab (string tabText)
{
 var tab = this.ActionBar.NewTab ();
 tab.SetText (tabText);

 tab.TabSelected += delegate(object sender, ActionBar.TabEventArgs e) {
 m_vixenTab = new VixenTab();
 e.FragmentTransaction.Add (Resource.Id.fragmentContainer, m_vixenTab);

 e.FragmentTransaction.Remove(m_leagueTab);
 };

 this.ActionBar.AddTab (tab);
}

c12.indd 371c12.indd 371 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

372 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

private void AddLeagueTab (string tabText)
{
 var tab = this.ActionBar.NewTab ();
 tab.SetText (tabText);

 tab.TabSelected += delegate(object sender, ActionBar.TabEventArgs e) {
 m_leagueTab = new LeagueTab();
 e.FragmentTransaction.Add (Resource.Id.fragmentContainer, m_leagueTab);

 e.FragmentTransaction.Remove(m_vixenTab);
 };

 this.ActionBar.AddTab (tab);
}

Getting The Vixens Roster

With the user interface complete, you can now complete the logic to render the data on the screen
for the Vixens tab. The user interface that will be infl ated for the Vixens tab is the Tab.axml. If you
remember, this layout fi le contains only a ListView control:

var view = inflater.Inflate (Resource.Layout.tab, container, false);

To get the roster for the Lansing Derby Vixens, you call the static GetRoster function found within
the Network class. This code is identical to the logic that was created for the MonoTouch app:

List<DerbyName> fullDerbyNameData = Network.GetRoster(teamName);

After the user interface has been infl ated and the data has been received, you can bind the data to
the ListView:

 derbyData.Adapter = new ArrayAdapter<string> (container.Context,
 Resource.Layout.list_item, data.ToArray());

The following code shows the entire OnCreateView function for the Vixens tab:

public override View OnCreateView (LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState)

{

 base.OnCreateView (inflater, container, savedInstanceState);

 var view = inflater.Inflate (Resource.Layout.tab, container, false);

 var derbyData = view.FindViewById<ListView> (Resource.Id.DerbyData);

 string teamName = “Lansing Derby Vixens”;

 List<DerbyName> fullDerbyNameData = Network.GetRoster(teamName);

 List<string> data = new List<string>();

 fullDerbyNameData.ForEach(derbyName => data.Add(derbyName.Name));

 derbyData.Adapter = new ArrayAdapter<string> (container.Context,

 Resource.Layout.list_item, data.ToArray());

 return view;

}

c12.indd 372c12.indd 372 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Building the Derby App with Mono ❘ 373

Getting the Leagues and TeamName

The logic for creating the Leagues tab is similar to the logic used for creating the Vixens tab. First you
call the static function GetLeagues found within the Network class to retrieve a list of leagues. Again
this code is identical to the logic used in the MonoTouch Derby App to retrieve the leagues.

Also, the ItemClick event on the derbyData list view has been wired so that when it is clicked, a
new activity is started that will display the roster for the team that was selected. To accomplish this,
you create a new Intent, and save the TeamName as an extra that is pushed to the newly created
activity:

derbyData.ItemClick += delegate (object sender, ItemEventArgs args) {
 string teamName = ((TextView)args.View).Text;
 Intent rosterList = new Intent(container.Context, typeof(LeagueRoster));

 rosterList.PutExtra(“TeamName”, teamName);
 this.StartActivity(rosterList);
};

The entire OnCreateView function for the Leagues tab is shown here:

public override View OnCreateView (LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState)

{

 base.OnCreateView (inflater, container, savedInstanceState);

 var view = inflater.Inflate (Resource.Layout.tab, container, false);

 var derbyData = view.FindViewById<ListView> (Resource.Id.DerbyData);

 List<League> fullLeagueData = Network.GetLeagueData();

 List<string> data = new List<string>();

 fullLeagueData.ForEach(league => data.Add(league.LeagueName));

 derbyData.Adapter = new ArrayAdapter<string> (container.Context,

 Resource.Layout.list_item, data.ToArray());

 derbyData.ItemClick += delegate (object sender, ItemEventArgs args) {

 string teamName = ((TextView)args.View).Text;

 Intent rosterList = new Intent(container.Context, typeof(LeagueRoster));

 rosterList.PutExtra(“TeamName”, teamName);

 this.StartActivity(rosterList);

 };

 return view;

}

Getting The Team Roster

The pattern of pushing data to a list view should be starting to look very familiar to you by
now. The team roster view again is the same concept. The LeagueRoster class inherits from
ListActivity so there is no need to infl ate the user interface that contains the ListView control.

c12.indd 373c12.indd 373 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

374 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

Also, to load the team roster, you need to get the TeamName that was passed into the Activity. You
can do this by calling the GetStringExtra method found within the Intent. In this case, if one is
not passed in, you default to “Lansing Derby Vixens”:

string teamName = Intent.GetStringExtra(“TeamName”) ?? “Lansing Derby Vixens”;

The entire onCreate method for the LeagueRoster class is as follows:

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 string teamName = Intent.GetStringExtra(“TeamName”) ??
 “Lansing Derby Vixens”;
 List<DerbyName> fullRosterData = Network.GetRoster(teamName);
 List<string> data = new List<string>();
 fullRosterData.ForEach(derbyName => data.Add(derbyName.Name));

 ListAdapter = new ArrayAdapter<string> (this, Resource.Layout.list_item,
 data.ToArray());
}

With all of the code in place, the Mono for Android Derby app should look similar to Figure 12-32.

OTHER USEFUL MONOTOUCH/MONO
FEATURES

In the two example projects up to this point we have
provided the basics for creating MonoTouch and Mono for
Android applications that will go out to a web service and
render the collected data on the screen. By no means do we
feel that we have covered every possible situation you may
need to develop a solution for, so we wanted to fi nish this
chapter by providing a few more short examples that will
help you out when discovering how MonoTouch and
Mono for Android work.

Local Storage

Even if your application is using a web service for
retrieving information, at some point you may need to save
information on the device.

MonoTouch plist

For apps written in MonoTouch, property lists (plists) are
the simplest way to store information on the device. In the
Mac world, many applications use the plist format to store

FIGURE 12-32: Mono for Android

Derby App

c12.indd 374c12.indd 374 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Other Useful MonoTouch/Mono Features ❘ 375

application settings, information about the application, and even serialized objects. It’s best to keep
the data contained in these fi les simple, though.

Different variable types require different functions to retrieve and get the plist setting. The following
example illustrates the different ways to retrieve and then save plist settings within MonoTouch:

var plist = NSUserDefaults.StandardUserDefaults;

// get plist item
string stringSetting = plist.StringForKey(“StringSetting”);
int intSetting = plist.IntForKey(“myIntKey”);
bool boolSetting = plist.BoolForKey(“myBoolKey”);

// save plist item
plist.SetString(“string”, “StringSetting”);
plist.SetInt(1, “IntSetting”);
plist.SetBool(true, “BoolSetting”);

plist.Synchronize();

Mono for Android Shared Preferences

For apps written in Mono for Android, shared preferences are the simplest way to store information
on the device. The Android framework enables shared preferences to be restricted to a single app, or
even shared as world-readable/writable, allowing all apps to access these settings if you choose.

The following code illustrates saving and retrieving shared preferences:

// save shared preference item

ISharedPreferences saveSharedPreference = GetPreferences (FileCreationMode.Append);

ISharedPreferencesEditor editor = saveSharedPreference.Edit ();

editor.PutString (“StringSetting”, “string”);

editor.PutInt (“IntSetting”, 1);

editor.PutBoolean (“BoolSetting”, false);

editor.Commit ();

// get shared preference item

ISharedPreferences getSharedPreference = GetPreferences (FileCreationMode.Append);

string stringSetting = getSharedPreference.GetString (“StringSetting”,

 “Default Value”);

int intSetting = getSharedPreference.GetInt (“IntSetting”, 1);

bool boolSetting = getSharedPreference.GetBoolean (“BoolSetting”, true);

GPS

One of the great benefi ts of mobile devices is GPS functionality. Once you are able to get over the
hurdles of learning the basic functions within MonoTouch and Mono for Android, working with the
GPS functions can be a great deal of fun.

c12.indd 375c12.indd 375 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

376 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

MonoTouch GPS

For MonoTouch, you can fi nd the GPS functionality in the MonoTouch.CoreLocation namespace.
The CLLocationManager is the class you will be using to obtain the GPS information. Keeping
with the pattern on MonoTouch trying to match the Objective-C way of doing things, MonoTouch
uses the delegate design pattern to handle the location updates. Simply put, GPS in MonoTouch is
just a matter of:

 ➤ Instantiating a CLLocationManager object.

 ➤ Confi guring settings on the CLLocation manager such as accuracy.

 ➤ Assigning a delegate that will handle the location updates.

The following code creates the CLLocationManager object, and tells it to start tracking
your location. You assign the delegate of the location manager object to an object named
LocationDelegate, which is a custom-created class.

CLLocationManager locationManager = new CLLocationManager ();

locationManager.Delegate = new LocationDelegate ();
locationManager.StartUpdatingLocation ();

The custom-created LocationDelegate object derives from CLLocationManagerDelegate and will
handle location updates when they occur. In this example, you simply write the new location to the
console:

public class LocationDelegate : CLLocationManagerDelegate
{
 public LocationDelegate () : base()
 {
 }

 public override void UpdatedLocation (CLLocationManager manager, CLLocation
 newLocation, CLLocation oldLocation)
 {
 Console.WriteLine(newLocation.Speed.ToString () + “meters/s”);
 Console.WriteLine(newLocation.Coordinate.Longitude.ToString () + “˚”);
 Console.WriteLine(newLocation.Coordinate.Latitude.ToString () + “˚”);
 Console.WriteLine(newLocation.Altitude.ToString () + “meters”);
 }
}

Mono for Android GPS

Mono for Android provides an interface named ILocationListener located in the Android
.Locations namespace that will allow GPS information to be collected from the device:

public class MonoForAndroidOther : Activity,ILocationListener

Before looking at the code, it’s important to note that you must ensure that your app has permission
to obtain the level of GPS information you are looking to retrieve. Figure 12-33 shows a Mono for
Android app with both ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION permissions set.

c12.indd 376c12.indd 376 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 377

With the correct permissions set, you need to
create a new LocationManager object
when the activity fi rst starts. This object
manages the aspects of the location data that
is being sent to your app from the operating
system. You can set a Criteria object,
which contains settings such as Accuracy,
on the LocationManager to give you fi ne
control of the data that is being sent from the operating system. The RequestLocationUpdates
function enables a developer to set how often the GPS data is being sent to your app, which is useful
to help conserve battery life.

The following code example creates a new LocationManager with no Accuracy requirements. The
last location is also retrieved and written to the console if it exists.

LocationManager locationManager =

 (LocationManager)GetSystemService(LocationService);

var criteria = new Criteria() { Accuracy = Accuracy.NoRequirement };

string bestProvider = locationManager.GetBestProvider(criteria, true);

Location lastLocation = locationManager.GetLastKnownLocation(bestProvider);

if (lastLocation != null)

{

 Console.WriteLine(“Last location, lat: {0}, long: {1}”, lastLocation.Latitude,

 lastLocation.Longitude);

}

locationManager.RequestLocationUpdates(bestProvider, 5000, 2, this);

When implementing the ILocationListener, the OnLocationChanged event is required. This event
is fi red when the location has changed. In the following example, the Latitude and Longitude are
written to the console:

void ILocationListener.OnLocationChanged (Location location)

{

 Console.WriteLine(“Location updated, lat: {0}, long: {1}”,

 location.Latitude, location.Longitude);

}

SUMMARY

This chapter spent a great deal of time describing the MonoTouch and Mono for Android platform.
After reading this chapter, you should be comfortable installing the development tools and getting
started developing and debugging your fi rst MonoTouch and Mono for Android app. Every
development platform has trade-offs. As discussed in this chapter, the major downside to creating
mobile apps with MonoTouch and Mono for Android is that they are third-party commercial

FIGURE 12-33: Android location permission

c12.indd 377c12.indd 377 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

378 ❘ CHAPTER 12 GETTING STARTED WITH MONOTOUCH AND MONO FOR ANDROID

products, which can leave you waiting for updates to the standard device SDKs and out of luck if
the company goes out of business.

If you have a good working understanding of .NET and C#, creating mobile apps in MonoTouch
and Mono for Android may be a viable option. If you or your team already has this understanding,
you may be able to roll out your mobile app faster and cheaper. However, just understanding .NET
is not enough. To develop MonoTouch and Mono for Android apps, a good working knowledge of
the key components of an iOS and Android app are required to be successful.

c12.indd 378c12.indd 378 28/07/12 6:09 PM28/07/12 6:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

379

INDEX

Numbers and Symbols

2DMatrix, 294
404 Error, 54–56
8-bit PNG fi les, 140
@media tag, 125–126
%20, 39

 A

ABAddress, 348
Accelerometer

Android Derby app, 181–182
PhoneGap, 340
smartphone device support, 35
Titanium, 306–307
Windows Phone 7 platform, 250–251

Accenture, 15
AcceptHeaderResult, 74, 75
access, web services, 39–40
accessibility

Android, 110
BlackBerry, 111–112
iOS, 111
mobile browsers, 113
UI design, 94–96
Web Accessibility Initiative, 113
website resource, 95
Windows Phone 7 platform, 112

accounts. See developer accounts
active tiles, 233
Activities (Android component), 173
Activity, Mono for Android app, 361
ActivityIndicator, 292
actual target areas, perceived vs., 93–94
Adaptive Images, 134–135
adaptive mobile websites, 120–140

CMS options, 118–119

cons, 120, 128
dedicated mobile websites vs., 140
defi ned, 118
fi xed-width, 126, 139
fl uid, 126
fully responsive mobile websites, 139
media queries, 121–125
mobile styles, 125–140
pros, 120
targeting, 121–123
testing, 135–136
viewport settings, 123–124

Add New Item dialog box, 45, 46, 53, 59, 61,
64, 68, 69

Add Reference dialog box, 44, 45, 52, 68
AddressBook, 349
adjustable font sizes, 95
AdMob, 284
Adobe Shadow, 142
ADO.NET Entity Data Model template, 59
ADT plug-in, 155–156
advertising

animated, 107
app description, 28–29
app markets, 26–32
feature apps, 27–28
in-app, 107
marketing vs., 25
tracking app sales, 30–31
UI design, 107
user reviews, 29–30

ahead-of-time compilation, 344, 345
AlertDialog, 293
alerts. See also notifi cations

Android Derby app, 175–176
Titanium Derby app, 300
visual, 95

all media type, 121

bindex.indd 379bindex.indd 379 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

380

always on Internet, iPhone core idea, 184
Amazon App Store (Android), 32–33
Amazon Kindle Fire, 152
Amazon Nook Color, 152
Android devices

hardware back button, 174
offl ine storage, 176–177

Android emulators, 356, 357
android folder, Titanium project structure, 291
Android Manifest

app confi guration, 161
permission requests, 162–163, 173–174
XML Editor, 163

Android Market. See also Google Play
categories, 19–20
discoverability, 26, 27
Featured section, 28
refund grace period, 2
tracking app sales, 30–31

Android mobile browser, 14–16
Android namespace, 345
Android platform, 151–182. See also Amazon App

Store; Google Play; Mono for Android
app development, 158–174
apps installed (average number), 20
Archos, 32, 152
AVD, 170, 357
best practices, 172–174
BlackBerry platform vs., 8
competition to itself, 152–153
debugging, 170–171
Dell, 152
developer accounts, 5, 172
development environment

additional Android OS packages, 157–158
Android SDK, 154
Eclipse, 153–154
Eclipse ADT plug-in, 155–156
JDK, 153

development target, 8, 152
documentation, 5
features, HTML5 vs., 35
Flurry service, 31–32
Google Play connection, 172
HTC, 152
iOS vs., 8
Kindle Fire, 152
layouts, 166–170

FrameLayout, 166–167

LinearLayout, 167–168
RelativeLayout, 169–170
TableLayout, 168–169

LG, 152
Linux, 8, 151
Mono for Android, 10
Motorola, 152
multitasking, 233
Nook Color, 152
open nature, 152
PhoneGap for Android, 10, 314–317
pixel densities, 7
reasons for using, 8, 152
resolutions, 6–7
Samsung, 152
screen sizes, 7
shared preferences, 176, 375
software requirements, 4
supporters, 152
Toshiba, 152
tracking app sales, 30–31
UI design, 110
UI elements, 164–166
update issues, 152
widgets, 164–166

Android projects
components, 172–173
creation, 158–160
Derby app, 174–182
structure, 160–163

Android SDK
additional components, 157–158
ADT plug-in, 155–156
device requirements, 4
downloading, installing, 154
Java KeyTool program, 295
minimum version, 159–160
SDK Manager, 157–158
version, 153

Android tablets, 152
Android Virtual Device. See AVD
Android.Locations, 376
android.widgets, 164
animals array, 207
animated advertising, 107
annunciator panel, 97
Apache, 38, 77, 78, 83, 134, 135, 147. See also

LAMP stack
APIs, platforms, 5

always on Internet, iPhone core idea – APIs, platforms

bindex.indd 380bindex.indd 380 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

381

apps. See mobile apps
App Hub, Microsoft, 234, 244–245
App IDs, 189, 284, 289, 295
app markets. See mobile app markets
App Store (iOS)

categories, 34
cookie-cutter apps, 2
discoverability, 26
number of apps, 184
Titanium build distribution, 295

App World (BlackBerry), 26, 256, 257, 260, 280
Appcelerator Titanium. See Titanium
AppDelegate.cs, MonoTouch app fi le, 358
AppDelegate.m, 194
appendAllLeagueDataOnScreen, 332
appendRosterDataOnScreen, 275
app.js, 291, 304, 328
Apple. See also iOS; iPads; iPhones; iPod Touch

approval process, 18, 36
confusion, MonoTouch/Mono for Android, 348
developer account, 187
Intel-based Mac computers, 3, 187
MacBook Pro, 3, 6
mobile boom, 11, 184, 185, 186, 227

apple-mobile-web-app-capable, 150
apple-mobile-web-app-status-bar-style, 150
apple-touch-icon, 150
apple-touch-startup-image, 150
Application Bar, 230–232
Application Output window, MonoDevelop, 355
application settings, MonoTouch app, 360
Application_BeginRequest, 64
ApplicationIcon.png, 240
Application_Start, 53
approval process, Apple, 18, 36
App.xaml, 231, 240, 246
Aptana, 283, 287
Archos, 32, 152
ARM CPU architecture, 345
array, animals, 207
‹article›, 143
‹aside›, 143
aspect-ratio, 121
ASP.NET Development Server, 50, 52, 64, 76
ASP.NET MVC

defi ned, 66
iOS apps, 194
MonoDevelop, 351
purpose, 77

ASP.NET MVC walkthrough, 66–77
Fiddler, 76
LINQ to SQL, 68
MVCDerbyService project, 66–67
software requirements, 66

ASP.NET routing, 52, 53, 54
assemblies, MonoTouch/Mono for Android,

346–347
Assets directory, Mono for Android app, 361
assets/www folder, 315, 317
assisted GPS, BlackBerry Java location services, 279
AsyncTask, 180
Atom format, 62
AtomPub format, 62
Attachmate, 10
automatic reference counting, 210
AVD (Android Virtual Device), 170, 357
AVD Manager, 170, 357
Azure Marketplace, 252

B

back stack, 174, 215, 298–299
background: linear-gradient, 140
bandwidth, limited, 89, 121, 134
Base64 encoding, 42
binary data, 42, 78
BlackBerry App World, 26, 256, 257, 260, 280
BlackBerry Desktop Manager, 280
BlackBerry Desktop Software program, 255
BlackBerry Developer website, 259–260, 261
BlackBerry Developer Zone, 259, 260
BlackBerry devices, 254–259

BlackBerry 850, 254
BlackBerry 9930 simulator, 262
BlackBerry Bold 9900, 4
BlackBerry OS versions, 255–258
BlackBerry Storm 9530, 255
screen resolutions, 257

BlackBerry Enterprise Server, 254, 280
BlackBerry Java, 260–270

apps
anatomy, 261
Derby app, 265–269
Hello World, 262–265
UI, 263, 265

location services, 279–280
offl ine storage, 277–278
plug-in for Eclipse, 261, 269–270

apps. – BlackBerry Java

bindex.indd 381bindex.indd 381 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

382

BlackBerry mobile browser, 14–16
BlackBerry OS. See also BlackBerry devices

BlackBerry OS 5, 256
BlackBerry OS 10, 259
versions, 255–258

BlackBerry partner levels, 260
BlackBerry platform, 253–281. See also

App World
Android platform vs., 8
apps installed (average number), 20
code signing keys, 260, 270, 276
developer accounts, 5
development target, 8
diffi culty, 253
documentation, 5
features, HTML5 vs., 35
Flurry service, 31–32
history, 254
licenses, 5
overview, 253
PhoneGap, 10
software requirements, 4
Titanium support, 284
tools, 259
UI design, 111–112

BlackBerry Playbook, 259
BlackBerry simulators, 261–262, 264,

271
BlackBerry WebWorks, 270–276

apps
anatomy, 270–271
Derby app, 273–276

BlackBerry OS 10, 259
location services, 278
offl ine storage, 277
Ripple, 271–273
SDK, 270

BlackBerry_App_Descriptor.xml, 261
booms

dot-com boom, 11, 254
mobile boom, 11, 184, 185, 186, 227

BootCamp, 3
border-radius, 140
boredom, mobile browsing behavior, 16
box-shadow, 140
brackets, Objective-C, 206
braille, 121
break out, of mobile styles, 136–138
breakout.js, 136

breakpoints
gutter, 170, 202, 354
MonoDevelop, 354
xCode, 202

Brightcove, 284
Broadcast Receivers (Android component), 173
btnChangeText_click, 213
build options, MonoTouch app, 359
Build Phases tab, 224, 225
bundle identifi er, Hello World-type iOS app, 209
business world, mobile app development, 6
Button, 164
Button, Titanium UI element, 292
ButtonBar, 294

C

C# compiler, 344
C languages, Objective-C, 205
CACHE MANIFEST, 146–147
Call Stack window

MonoDevelop, 355
xCode debugging, 203

Callbacks, Web Service, 85, 86
calling methods, Objective-C, 206
Canvas API, 148
categories

Android Market, 19–20
App Store, 34
mobile apps, 19–20
mobile web apps, 34

Cell Site method, BlackBerry Java location
services, 279

cellForRowAtIndexPath, 219
certifi cates, iOS Provisioning Portal, 188
CheckBox, 165
Checker, mobileOK, 142
child-parent relationship, information hierarchy,

105, 107
Chrome Developer Tools, 51, 52, 54
CIL (Common Intermediate Language), 344
class methods, 206
Class Prefi x fi eld, Hello World-type iOS app, 209
classes, Objective-C, 205–206
CLI (Common Language Infrastructure), 344
CLLocationManager, 226, 376
closure principle, 91
CMS (content management systems), 118–119

BlackBerry mobile browser – CMS (content management systems)

bindex.indd 382bindex.indd 382 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

383

Cocoa Touch – dates, ISO-8601 format

Cocoa Touch, 8, 183
code signing keys, BlackBerry, 260, 270, 276
cognitive accessibility issues, 96
color, 121
“color” ‹input type›, 145
color picker view, 337
color-index, 122
columns, adaptive mobile websites, 127–129
Common Intermediate Language (CIL), 344
Common Language Infrastructure (CLI), 344
common object request broker architecture

(CORBA), 37–38, 40
Community version, Titanium, 283
company identifi er, Hello World-type iOS app,

209
competition to itself, Android platform, 152–153
competitors, mobile app development, 2
complexity, WCF, 43, 57
ComponentOne, 236
Composer feature, 83, 84
config.xml, BlackBerry WebWorks app, 271
confi rmations, notifi cations, 102
connect with existing social outlets, 92–93
consistency, navigation, 108
consumability, web services, 40
content

controls, 103
faceted, 107–108
hidden, adaptive mobile websites, 129–130
revealed, 103–105
structure and usage, 107–109

information architecture, 107–108
plain language, 109
typography, 108–109

content lists
endlist, 99
expandable, 100
thumbnail, 99–100
vertical, 98–99

content management systems (CMS), 118–119
Content Providers (Android component), 173
continuity principle, 92
control structures, Objective-C, 206–208
controller to route requests, 71
Controllers folder, 71
controls

hands-free, 95
Hello World-type iOS app, 211–213
Panorama, 112, 238, 239, 240, 241

Pivot, 235, 238
UI design, 103
Windows Phone 7 control packages, 236

cookie-cutter apps, 2
CORBA (common object request broker

architecture), 37–38, 40
Core Data, 224
core ideas, iPhone, 184–185
CoreLocation framework, 224, 225, 226
costs

developer accounts, 5
hardware, 3
iOS Developer program levels, 187–188
mobile app development, 3–6
myth, 9
platform, 5
Titanium, 283

CoverFlowView, 293
Cox, Brad, 204
Coyier, Chris, 132
craftsmanship, design, 89
CRUD operations, 66, 83
CSS3. See also adaptive mobile websites; media

queries
adaptive mobile websites, 120
dedicated mobile websites, 140
hidden content, 129–130
PhoneGap, 10
PhoneGap apps, 323

CSS-tricks.com, 132

D

Dalvik, 151, 345, 346
Dalvik Debug Monitor Server (DDMS), 170–171
dashboard, Titanium Studio, 288
DashboardItem, 293
DashboardView, 293
Dashcode, 193
Data Model Wizard Choose Objects dialog box,

60
databases. See specifi c databases
Database Connection Properties dialog box, 60
DataContext, 240
data-role attribute, 327
DataServiceCollection‹T›, 242
“date” ‹input type›, 145
dates, ISO-8601 format, 42

bindex.indd 383bindex.indd 383 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://CSS-tricks.com
http://www.it-ebooks.info/

384

date-style picker, 336
“datetime” ‹input type›, 145
DCOM (distributed component object model),

37–38, 40
DDMS. See Dalvik Debug Monitor Server
de Icaza, Miguel, 343
Debug Area, 201, 202
debugging

Android app development, 170–171
breakpoints

gutter, 170, 202, 354
MonoDevelop, 354
xCode, 202

DDMS, 170–171
iOS apps, 199–204
MonoDevelop, 354–355
PhoneGap apps, 324–325
term invention, 199
Titanium apps, 294
web services, 83–86
Windows Phone 7 emulator, 238
xCode, 200–203

dedicated mobile websites, 140–142
adaptive mobile websites vs., 140
cons, 120
CSS3 properties, 140
defi ned, 118
detection, 141
fi le size, 140
iPhone retina display, 141
pros, 120
redirection, 141
when to use, 119

Dell, 152
Derby app

Android version, 174–182
Accelerometer, 181–182
alerts, 175–176
AyncTask, 180
back stack, 174
GPS function, 180–181
notifi cations, 175–176
toasts, 175
UI navigation, 174–175
web service, 177–180

BlackBerry Java version, 265–269
BlackBerry WebWorks version,

273–276

iOS version, 214–222
details, 219–220
Leagues/Team Names, 220–222
storyboard, 215–217
Team Roster, 217–219
UI, 215–217

Mono for Android version, 368–374
League Roster, 373–374
Leagues/Team Name, 373
UI, 370–372
Vixens Roster, 372

MonoTouch version, 362–368
League Roster, 368
Leagues/Team Name, 367–368
UI, 363–367
Vixens Table View, 364–367

PhoneGap version, 330–335
requirements, 174, 215, 265, 273, 362
Titanium version, 297–300
Windows Phone 7 version, 239–245

DerbyNames, 241–243
Leagues, 243–244
Metro, 230
project creation, 239–240
UI, 240–241

DerbyContext, 46, 47, 69, 70
DerbyData.edmx, 59
DerbyNames, 46–47, 241–243
DerbyNamesService project

fi nal code, 56–57
LINQ to SQL, 44, 68

derbyservice class, 304
DerbyServiceController, 71, 74, 75, 76, 77
DerbyService.svc.cs, 48, 54, 61–62, 66
description, app, 28–29
design patterns, 96–107. See also UI design

navigation, 97–103
annunciator panel, 97
expandable menus, 98
fi xed menus, 97–98
mobile websites, 13

scrolling, 98–101
endlist lists, 99
expandable lists, 100
graphical data, 99
limiting, 98
live, 101
parallax, 105

date-style picker – design patterns

bindex.indd 384bindex.indd 384 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

385

thumbnail grid, 100–101
thumbnail list, 99–100
vertical list, 98–99

desktop websites
link to, dedicated mobile websites, 141
mobile websites with, 118–119

details, iOS Derby app, 219–220
DetailViewController, 219, 221
detection, dedicated mobile websites, 141
detectmobilebrowsers.com, 141
developer accounts

Android, 5, 172
Apple, 187
Google Play, 172
licenses, 5
stack traces of runtime errors, 21
Titanium, 5, 294

development certifi cates, iOS Provisioning Portal,
188

development team size, 9
Device Family option, Hello World-type iOS app,

210
device-aspect-ratio, 122
device-height, 122
Devices section, iOS Provisioning Portal, 189–190
device-width, 122
dexterity-related accessibility issues, 95–96
Dialog Field Managers, 265
didSelectRowAtIndexPath, 221
DirectX 10, 235
disabilities. See accessibility
discoverability

app markets, 26–27, 32
web services, 56

display:none property, 129, 131, 136, 141
distributed component object model (DCOM),

37–38, 40
distribution

BlackBerry apps, 280
Windows Phone 7 apps, 244–245

distribution certifi cates, iOS Provisioning Portal,
188

districts, wayfi nding, 108
Doctrine Object Relational Mapper, 78
document object model. See DOM
documentation, platforms, 5
Dog class, 205
DOM (document object model), 291, 326, 329

dot-com boom, 11, 254
DotNetNuke, 119
dot-notation, Objective-C, 206
DoubleClick, 284
Drawable directory, Mono for Android app,

361
DreamSpark, 244
Dreamweaver. See also PhoneGap

mobile environment setup, 321
PhoneGap project creation, 322–323

Drupal, 119
dynamic mobile websites. See adaptive mobile

websites

E

ease of access, 39–40
easiness, mobile app development, 9
Eclipse

ADT plug-in, 155–156
Android SDK Manager, 157–158
AVD Manager, 170
BlackBerry Java plug-in, 261, 269–270
DDMS perspective, 170–171
downloading, installing, 153–154
signing your app, 172
Titanium Studio, 287

ECMA-334, 344
ECMA-335, 344
edges, wayfi nding, 108
EditText, 164–165
“email” ‹input type›, 144
EmailDialog, 293
embossed, 121
emulators. See also simulators

Android, 356, 357
information design tool, 115
iOS Simulator vs., 200
Ripple, 271–273, 320, 324
simulators vs., 115
Windows Phone 7, 238

Encoding class, 56
endlist lists, 99
Enterprise Server, BlackBerry, 254, 280
Enterprise version, Titanium, 283
Entity Data Model Wizard, 59, 60
Entity Framework, 58, 59
error handling, Objective-C, 207–208

desktop websites – error handling, Objective-C

bindex.indd 385bindex.indd 385 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://detectmobilebrowsers.com
http://www.it-ebooks.info/

386

errors
error protection/correction, 94
404 error, 54–56
runtime, stack traces of, 21

eval, 275, 332
exception handling, Objective-C, 207–208
expandable lists, 100
expandable menus, 98
expandable panes, 105
Expression Blend, 234, 235–236
eXtensible Application Markup Language.

See XAML
eXtensible Markup Language. See XML
eXtensible Stylesheet Language Transformations.

See XSLT
Eyes-Free project, 110

F

faceted content, 107–108
Fast Enumeration, 207
feature creep, 90, 92
featured apps, 27–28
Featured section, Android Market, 28
feedback. See also notifi cations

defi ned, 101
good and bad, 30
increased, 23
UI design, 101–103
user reviews, 29–30

Fiddler, 83–85
ASP.NET MVC walkthrough, 76
Composer feature, 83, 84
fi lters, 83–84
OData walkthrough, 66

fi elds, BlackBerry Java app UI, 265
fi gure and ground principle, 92
fi le size, dedicated mobile websites, 140
fi lters, Fiddler, 83–84
Firebug, 321, 324
fi xed menus, 97–98
fi xed-width mobile websites, 126, 139
Flash, 89, 117, 118, 130, 142, 148
Flow Field Managers, 265
fl uid mobile websites, 126
Flurry, 17, 31–32
focused content, screen real estate,

90–91

fonts
adjustable sizes, 95
sans serif, 108
Sego font family, 230
serif, 108
size, 109
slab serif, 108

‹footer›, 143
for loop, 207
form attributes, HTML5, 146
form input types, HTML5, 144–146
formats, web service, 40–42. See also JSON;

XML
fragmentation, platform, 22, 109, 253
fragments, 173, 370, 371
FrameLayout, 166–167
frameworks, third-party, 9. See also PhoneGap;

Titanium; specifi c frameworks
friendly URLs, 54
FTP, 38
fully responsive mobile websites, 139

G

gaming industry, iPhones, 185
Gartner study, 12
geolocation. See also GPS

location services
BlackBerry Java, 279–280
BlackBerry WebWorks, 278

mobile web apps, 147–148
PhoneGap, 339
Titanium, 305
Windows Phone 7, 249

Gestalt principles, 91–92
gestures, 93–94
“Get Started” pages, PhoneGap, 312
GetCell, 366
getCurrentPosition, 147, 148, 305
getData, 274, 303
getDerbyDataFromJSON(), 178
getDerbyNames, 274
getExtras(), 174
GetGlue, 286
getLansingDerbyVixens(), 178
GetLeagueData, 367
getParameterByName, 274, 337
getPersistentObject methods, 277

errors – getPersistentObject methods

bindex.indd 386bindex.indd 386 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

387

GitHub repository, 290
global Application Bar, 231
Global Application Class, 53, 64
good feedback, poor feedback, 30
Google APIs, Android project, 160
Google Maps API key, 172
Google Play. See also Android Market

App ID, 289
connecting to, 172
developer account, 172
Titanium build distribution, 295
vendor-specifi c marketplaces, 153

Google Voice app, 36
GPS

Android Derby app, 180–181
iOS, 224–227
location services

BlackBerry Java, 279–280
BlackBerry WebWorks, 278

Mono for Android, 376–377
MonoTouch, 376
PhoneGap, 339–340
Titanium, 305–306
Windows Phone 7 platform, 249–250

gradients: background: linear-gradient, 140
graphical data, content lists, 99
Gravity Works

apps installed, on iOS, 21
QR codes, 25
Roller Derby fans, 43

grid, 122
Ground and fi gure principle, 92
GSM carriers, 234
GUI Editor, TiApp, 289–290
gutter, 170, 202, 354

H

handheld media type, 121, 122, 123
hands-free controls, 95
hardware back button, Android devices, 174
hardware requirements, 3–4
‹header›, 143
headers, adaptive mobile websites, 130, 131
hearing-related accessibility issues, 95
height, 122
Hello World-type apps

BlackBerry Java, 262–265

iOS app, 208–214
Titanium, 288–290

‹hgroup›, 143
hidden content, adaptive mobile websites,

129–130
hierarchy

information, 90, 105, 107–108
visual, 90

HIG (Human Interface Guidelines), 18, 193,
298–299

high-quality, scalable screen, 185
home screen, 105–106
Hopper, Grace Murray, 199
Horizontal Field Managers, 265
HTC, 152, 234
HTC Dream, 151
HTML5. See also mobile web apps

CACHE MANIFEST, 146–147
Canvas API, 148
data-role attribute, 327
defi ned, 143–144
device features, 35
form attributes, 146
form input types, 144–146
geolocation, 147–148
mobile web apps, 35, 143
offl ine storage, 146–147
PhoneGap, 10
PhoneGap apps, 323
PhoneGap vs., 311
structural elements, 143–144

HTML5 Canvas Cookbook (Rowell), 148
HTTP server application, 38. See also

Apache; IIS
HttpStatusCode, 55
Human Interface Guidelines (HIG), 18, 193,

298–299
Hungarian notation, 213

I

IDC, 285
Identity Inspector, 211, 217, 222
IDerbyService, 48, 55
If statements, 207
IIS (Internet Information Services), 38, 43, 58, 64,

66, 76
IIS Express, 64, 76

GitHub repository – IIS Express

bindex.indd 387bindex.indd 387 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

388

images
Adaptive Images, 134–135
image rotators, 130, 131
Responsive Images, 134
retina display, 141
scaling, adaptive mobile websites,

134–135
ImageView, 293
in-app advertising, 107
in-app purchasing, 19, 22, 35
Independent Software Vendor, 260
index.html, BlackBerry WebWorks app, 271
Indie version, Titanium, 283
inexpensive, mobile app development, 9
Info.plist, 358
information architecture, 107–108
information capture, UAT, 113
information design, 96–109. See also UI design
information design tools, 114–115.

See also emulators; simulators
information display, 96
information hierarchy, 90, 105, 107–108
Info-tech research group study, 18–19
Infragistics, 236
innovative input, iPhone core idea, 185
input types, HTML5, 144–146
instance methods, 206
instance variables, Objective-C, 206
Instruments tool suite, iPhone SDK, 193, 204
Intel-based Mac, 3, 187
Intents, 174–175
Interface Builder, 114, 193, 194, 356, 363
International Typographic Style, 230
Internet Explorer fi x, media queries, 124–125
interpreted frameworks, 9.

See also Mono project
intervening screens, 105–107
iOS, 183–227. See also App Store; MonoTouch;

xCode
Android platform vs., 8
Apple approval process for apps, 18, 36
apps installed (average number), 20, 21
benefi ts, 8
Core Data, 224
developer accounts, 5
documentation, 5
features, HTML5 vs., 35
Flurry service, 31–32

GPS, 224–227
HIG, 18, 193, 298
Intel-based Mac, 3, 187
licenses, 5
limitations, 8
MHSAA app, 28–30
MonoTouch, 10
multitasking, 233
offl ine storage, 223–224
PhoneGap for iOS, 10, 312–314

installation, 312–313
PhoneGap template, 313
project creation, 313–314
support, 10

resolutions, 6
software requirements, 4
tips/tricks, mobile web apps, 148–150
UI design, 110–111

accessibility, 111
interface tips, 110–111

versions
iPad hardware, 187
iPhone hardware, 186
iPod Touch hardware, 186

Windows Phone 7 platform, 229
iOS apps

anatomy, 194–195
debugging, 199–204
Derby app, 214–222

details, 219–220
Leagues/Team Names, 220–222
storyboard, 215–217
Team Roster, 217–219
UI, 215–217

Hello World-type app, 208–214
MVC, 194
steps, 193

iOS Developer Enterprise Program, 188
iOS Developer Program, 187–188
iOS Developer University Program, 188
iOS Provisioning Portal, 188–191
iOS signing options, MonoTouch app,

359–360
iOS Simulator

debugging, 199–200
emulators vs., 200
MonoTouch, 356
version options, 200

images – iOS Simulator

bindex.indd 388bindex.indd 388 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

389

iPad
add to home screen, mobile web apps, 148–149
hardware versions, 4, 187
history, 186
iOS Simulator, 199
iOS versions, 187
tips/tricks, mobile web apps, 148–150

iPhone
add to home screen, mobile web apps,

148–149
core ideas, 184–185
4, 4
hardware versions, 186
history, 183–184, 185
iOS versions, 186
retina display, 141
3GS, 4
tips/tricks, mobile web apps, 148–150

iPhone folder, Titanium project structure, 291
iPhone SDK, components, 192–193, 204
iPhone Simulator, 193, 340
iPod Touch

hardware versions, 4, 186
history, 186
iOS versions, 186

iScroll library, 326–327
ISO-8601 format, 42
isolated storage, 245–246, 247, 301–302
Isolated Storage Explorer, 247
IsolatedStorageSettings, 233
Issue Navigator, 196–197
ItemsSource, 241, 242
iTunes App Store. See App Store

J

jarsigner application, 172
Java BlackBerry apps. See BlackBerry Java
Java KeyTool program, 295
Java Micro Edition, 265
Java Runtime Environment, 263
Java Standard Edition, 265
JavaScript. See also jQuery Mobile

DOM, 291, 326, 329
libraries, 325–330

iScroll, 326–327
LawnChair, 330
Sencha Touch, 328

XUI, 329–330, 331
PhoneGap apps, 323
Titanium basics, 291–292

JDK (Java Development Kit), 153
Jobs, Steve, 184, 204
jQuery

PhoneGap apps, 326
space-saving mobile menu, 132–133

jQuery Mobile
mobile web apps, 150
PhoneGap apps, 322, 327–328

JSON (JavaScript Object Notation)
defi ned, 42
OData walkthrough, 63–66
parser, 303
team names, BlackBerry Java Derby app,

268–269
Titanium, 302–305
Vixens roster, BlackBerry Java Derby app,

267–268
XML format vs., 52

Json Parser Online, 302–303
JsonResult, 73
just-in-time compilation, 344, 346

K

keystore, 172
keytool application, 172
KeyTool program, Java, 295
Kindle Fire, 152
Kitchen Sink GitHub project, 284, 290, 298

L

Label, Titanium UI element, 293
LAMP (Linux Apache MySQL PHP) stack, 77
LAMP walkthrough, 77–83

OData, 77–83
software requirements, 77

landmarks, wayfi nding, 108
languages, web service, 40–42. See also XML
Lansing Derby Vixens league, 63, 82, 174.

See also Derby app
LawnChair, 330
Layout directory, Mono for Android app, 361
Layout Managers, BlackBerry Java app UI,

265

iPad – Layout Managers, BlackBerry Java app UI

bindex.indd 389bindex.indd 389 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

390

layouts, Android app development, 166–170
FrameLayout, 166–167
LinearLayout, 167–168
RelativeLayout, 169–170
TableLayout, 168–169

lblChangeMe, 213
League Roster

Mono for Android Derby app, 373–374
MonoTouch Derby app, 368

Leagues, 47
Leagues/Team Names

BlackBerry Java Derby app, 268–269
iOS Derby app, 220–222
Mono for Android Derby app, 373
MonoTouch Derby app, 367–368
Windows Phone 7 Derby app, 243–244

LeagueTableViewController, 220
legacy system integration, 2
LG, 152
libs directory, 315, 316
licenses

developer accounts, 5
MonoTouch/Mono for Android, 348

limited bandwidth, 89, 121, 134
LinearLayout, 167–168
linking

to desktop sites, dedicated mobile websites, 141
to media queries, 123
Mono for Android, 346, 361
MonoDevelop, 344, 345, 346
MonoTouch, 344–345

LINQ to SQL, 44, 68
Linux. See also LAMP stack

Android platform, 8, 151
kernel, Mono for Android, 345
Ubuntu, 77
Wireshark, 85

liquid layouts, 139
lists

endlist, 99
expandable, 100
thumbnail, 99–100
vertical, 98–99

ListBox, 242, 244
List_item.axml, Mono for Android Derby app,

370
ListView, 166, 240, 372, 373
live-scrolling, 101

LoadCompleted, 242
loading screen, 106
local storage. See also offl ine storage

BlackBerry WebWorks, 277
MonoTouch/Mono for Android, 374–375
PhoneGap, 339
smartphone devices, 35

local window, xCode debugging, 201–202
locals window, MonoDevelop, 354–355
Location Criteria object, 279
location services

BlackBerry Java, 279–280
BlackBerry WebWorks, 278

location-aware, iPhone core idea, 184
LogCat, 170
Logitech Squeezebox controller, 311
long tail statistical property, 24
Love, Tom, 204
lowest common denominator

Android screen resolutions, 7
BlackBerry OS versions, 256

low-level virtual machine, 345

M

Mac computers. See also Apple
Intel-based Mac, 3, 187
MacBook Pro, 3, 6

Main.axml, Mono for Android Derby app, 370
Main.cs, MonoTouch app fi le, 358
main.m, 194
MainPage.xaml, 240
MainStoryBoard.storyboard, 194, 211
ManagedQuery, 349
management, toys, 11
Mango revision, 229
Marcotte, Ethan, 139
Market Place (Windows Phone), 26
marketing. See also advertising

advertising vs., 25
app description, 28–29
feature apps, 27–28
tracking app sales, 30–31
user reviews, 29–30

max, form attribute, 146
max-width: 100%, 134
max-width: 480px, 122, 135
media features, 121–122

layouts, Android app development – media features

bindex.indd 390bindex.indd 390 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

391

Media Queries, 139
media queries, 121–125

Internet Explorer fi x, 124–125
link to, 123
support, across platforms, 124
targeting mobile websites, 121–123

media scaling, adaptive mobile websites,
134–135

media types, 121, 122
MemoryStream class, 56
menus, adaptive mobile websites, 131–133
METAR (Meteorological Terminal Aviation

Routine Weather Report) Reader, 310
methods, Objective-C, 206
Metro, 112, 230, 252
Michigan High School Athletic Association

(MHSAA) iOS app, 28–30
Microsoft DreamSpark, 244
Microsoft Tags, 25–26
Microsoft.Phone.Shell, 233
Microsoft’s App Hub, 234, 244–245
min, form attribute, 146
minimal touch point, 103
minimalism, screen real estate, 90
mobile app development

competitors, 2
costs, 3–6
development team size, 9
diffi culties, 6–7
easiness, 9
hardware requirements, 3–4
importance in business world, 6
inexpensive, 9
myths, 8–9
preliminary considerations, 1–10
reasons for doing, 2–3
silly app ideas, 18
software requirements, 4
sweat equity, 9
targets, 8, 152

mobile app markets, 26–32. See also Android
Market; App Store; App World; Google Play;
Market Place
app description, 28–29
discoverability, 26–27, 32
feature apps, 27–28
know where users are, 31–32
PhoneGap apps, 341

third-party, 32–33
Titanium deployments, 294–296
tracking app sales, 30–31
user reviews, 29–30
vendor-specifi c Android, 152–153

mobile apps (native mobile apps). See also Derby
app; specifi c apps
Apple approval process, 18, 36
bad, 2
benefi ts, 22–23
categories, 19–20
cookie-cutter, 2
description, 28–29
dot-com boom vs., 11
featured, 27–28
Flurry study, 17
Google Voice, 36
installed per platform, 20–21
marketing, 24–25
MHSAA iOS app, 28–30
Microsoft Tags, 25–26
mobile web apps vs., 143, 144
mobile websites vs., 3, 11
need for, 8–9
QR codes, 25–26
reasons for creating, 18
tracking sales, 30–31
usage statistics, 17
when to create, 18–22

mobile boom, 11, 184, 185, 186, 227
mobile browsers, 14–16

design best practices, 112
Flash, 89, 117, 118, 130, 142, 148
market share by country, 15–16
top, 14–15
UI design, 112–113

accessibility, 113
interface tips, 113

mobile browsing behavior
boredom, 16
introduction, 16
repetition, 16
urgency, 16

mobile developer analytics report, Titanium, 285
mobile platforms. See platforms
Mobile Plugin, 119
mobile styles, 125–140

break out, 136–138

Media Queries – mobile styles

bindex.indd 391bindex.indd 391 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

392

columns, 127–129
content review, 134
headers, 130
hidden content, 129–130
image scaling, 134–135
in @media tag, 125–126
menus, 131–133
site width, 126–127
tables, 127

Mobile Tools, 119
mobile user interface design. See UI design
mobile web apps, 33–36, 143–150. See also

HTML5
benefi ts, 35–36
categories, 34
cons, 120
defi ned, 33, 118, 144
HTML5, 35, 143

CACHE MANIFEST, 146–147
Canvas API, 148
defi ned, 143–144
form attributes, 146
form input types, 144–146
geolocation, 147–148
mobile web apps, 35, 143
offl ine storage, 146–147
structural elements, 143–144

jQuery Mobile, 150
mobile apps vs., 143, 144
mobile websites vs., 33
pros, 120
updates, 36
when to use, 119

Mobile Web Best Practices (MWBP), 94
mobile websites, 117–150. See also adaptive

mobile websites
bad, 2
content strategy, 13–14
desktop websites with, 118–119
fully responsive, 139
increase in usage, 12
mobile apps vs., 3, 11
mobile web apps vs., 33
navigation, 13
need for, 12
reasons for using, 118
usage statistics, 17

mobileOK Checker, 142

mock-ups, 93, 114, 125
modal forms, 175, 300
Models folder, 68, 70
monitors, multiple, 3
Mono for Android

app
fi les, 361
project options, 361–362
project structure, 361

Apple confusion, 348
architecture, 345
assemblies, 346–347
Derby app, 368–374
downsides, 347–348, 377–378
GPS, 376–377
installing, 352–353
licensing, 348
linking, 346
Linux kernel, 345
local storage, 374–375
Mono framework, 345–346
MonoDevelop, 356–357
performance, 346
purpose, 10
reasons for using, 347
shared preferences, 375
waiting for improvements, 347, 377–378
Xamarin Mobile library, 348–349

Mono framework, 343–349
ARM CPU architecture, 345
assemblies, 346–347
features, 344
installing, 350
Mono for Android, 345–346
Mono Tools for Visual Studio, 353
MonoTouch, 344–345
Moonlight, 343, 351
Xamarin Mobile, 349

Mono Project, 9, 10, 343–344, 350
Mono Tools for Visual Studio, 353
monochrome, 122
MonoDevelop, 353–357

Application Output window, 355
breakpoints, 354
Call Stack window, 355
debugging, 354–355
installing, 350–351
linker, 344, 345, 346

Mobile Tools – MonoDevelop

bindex.indd 392bindex.indd 392 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

393

locals window, 354–355
Mono for Android specifi cs, 356–357
MonoTouch specifi cs, 355–356
user-friendly tools, 348

MonoTouch
app (tabbed application type), 358–360

application settings, 360
build options, 359
fi les, 358
iOS signing options, 359–360
project options, 358–360
structure, 358

Apple confusion, 348
assemblies, 346–347
Derby app, 362–368
downsides, 347–348, 377–378
GPS, 376
installing, 351–352
licensing, 348
linking, 344–345
local storage, 374–375
Mono framework, 344–345
MonoDevelop, 355–356
MVC, 358
performance, 345
plists, 374–375
purpose, 10
reasons for using, 347
waiting for improvements, 347, 377–378
Xamarin Mobile library, 348–349

MonoTouch.CoreLocation, 376
Moonlight, 343, 351
Motorola, 152
Motorola Droid 2, 4
MSDN Library, 5
multiple, form attribute, 146
multiple builds, BlackBerry OS versions, 257
multiple monitors, 3
multitasking, 229, 233
MVC. See also ASP.NET MVC

iOS apps, 194
MonoTouch, 358
Senna touch, 328

MVCDerbyService project, 66–67
MWBP. See Mobile Web Best Practices
MyApp.Java, BlackBerry Java app, 261
MyScreen.Java, BlackBerry Java app, 261
MySQL, 77, 78–79. See also LAMP stack

MySQLConnector script, 79
MySQL-Create-DerbyNames-Database.sql, 77
myths, mobile app development, 8–9

N

namespaces
Android, 345
Android.Locations, 376
android.widgets, 164
Cache Manifest, 146–147
Microsoft.Phone.Shell, 233
MonoTouch.CoreLocation, 376
Package Namespace, 161
System.Device.Location, 249
System.IO, 56
System.IO.IsolatedStorage, 233, 245
System.NET, 55
System.ServiceModel.Activation, 53, 54
System.Text, 56
System.Web.Routing, 53
Titanium, 284, 291–292
Titanium.Accelerometer, 306
Titanium.App.Properties, 302
Titanium.Database, 301
Titanium.Filesystem, 301
Titanium.Geolocation, 305
WCF Data Services, 242

native code, PhoneGap apps, 323
native mobile apps. See mobile apps
‹nav›, 143
navigation

annunciator panel, 97
consistency, 108
expandable menus, 98
fi xed menus, 97–98
mobile websites, 13
simplicity, 108
UI mobile app design, 97–103

navigator.geolocation, 278
navigators, xCode, 195–197
NBC Universal, Titanium, 285
.NET Framework. See also Mono for Android;

MonoDevelop; MonoTouch
Mono products, 9, 10, 344
Windows Phone 7, 8

NeXT, 204
Nielsen studies, 6, 20

MonoTouch – Nielsen studies

bindex.indd 393bindex.indd 393 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

394

Nitobi, 10. See also PhoneGap
nodes, wayfi nding, 108
NoDo revision, 229
Nokia, 234
nontextual data, 42
Nook Color, 152
Notepad++, 4, 319–320
notifi cations. See also alerts

confi rmations, 102
raw notifi cation type, 248–249
tile, 248
toasts, 175, 247–248
UI design, 101–103
Windows Phone 7 platform, 247–249

Novell, 10
“number” ‹input type›, 145
numberOfRowsInSection, 218, 219

O

OAuth, 300
Object Relational Mapper, 44, 59, 78
Objective-C

basics, 204–208
brackets, 206
C languages, 205
classes, 205–206
control structures, 206–208
diffi culty, 183
dot-notation, 206
Fast Enumeration, 207
instance variables, 206
methods, 206
try/catch, 207–208

OData (Open Data Protocol)
CRUD operations, 66, 83
defi ned, 58, 77
DerbyNames, 241–242
LAMP walkthrough, 77–83
querying capabilities, 58, 63

OData Connector for MySQL, 78
OData Producer Library, 78
OData walkthrough, 58–66

DerbyService.svc.cs, 61–62, 66
Fiddler, 66
JSON format, 63–66
software requirements, 58
WCF Data Services, 61, 63, 64

ODataDerbyService project, 58, 59, 61, 64, 65
offl ine content, 22–23
offl ine storage

Android devices, 176–177
BlackBerry Java, 277–278
BlackBerry WebWorks, 277
HTML5, 146–147
iOS plists, 223–224
isolated storage, 245–246, 247, 301–302
MonoTouch plists, 374–375
PhoneGap, 337–339
shared preferences, 176, 375
Titanium, 301–302
Windows Phone 7, 245–247

OnCreateView, 372, 373
on-device testing, 114
onDeviceReady, 324, 325, 328, 331, 332, 335,

341
Open Data Protocol. See OData
open development stack, Mono project, 344
Open Mobile Marketplace, 284
open nature, Android platform, 152
Open Specifi cation Promise, 58
OpenID, 300
Opera Mini browser, 15
Opera Mobile browser, 124
operational, POUR principle, 94
OptionDialog, 293, 300
orientation, 122
orientation-aware, iPhone core idea, 184–185
output section, xCode debugging, 202–203
over-the-air

BlackBerry app distribution, 280
OS updates, 152

P

Package Namespace, 161
page-specifi c Application Bar, 231–232
panes, expandable, 105
Panorama controls, 112, 238, 239, 240, 241
Panorama Item, 242–243, 244
PanoramaBackground.jpg, 240
parallax scrolling, 105
Parallels, 3
parent-child relationship, information hierarchy,

105, 107
paths, wayfi nding, 108

Nitobi, 10 – paths, wayfi nding

bindex.indd 394bindex.indd 394 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

395

PEAR (PHP Extension and Application
Repository), 77, 78

perceivable, operational, understandable, robust
(POUR principles), 94

perceived target areas, actual vs., 93–94
performance

Mono for Android, 346
MonoTouch, 345

performSegueWithIdentifier, 221
permission requests, Android Manifest, 162–163,

173–174
permissions, Android PhoneGap app, 316–317
Permissions Editor, 162–163
PhoneApplicationPage, 231
PhoneApplicationService.State, 233, 245
PhoneGap, 309–341

Accelerometer, 340
documentation, 5
Firebug, 321, 324
geolocation, 339
“Get Started” pages, 312
GPS, 339–340
history, 309–310
HTML5 vs., 311
Logitech Squeezebox controller, 311
METAR Reader, 310
Notepad++, 319–320
overview, 10, 309
PhoneGap for Android, 10, 314–317
PhoneGap for iOS, 10, 312–314
PhoneGap for Windows Phone 7, 10, 317–319
pickers, 336–337
reasons for using, 310
Ripple emulator, 320
SDK, 312
software requirements, 4
supported platforms, 10
TextMate, 319–320
tools, 312, 319–323
who is using, 310–311
Wikipedia, 311

PhoneGap apps
anatomy, 323
Android

installing, 314
project creation, 314–317

CSS, 323
debugging, 324–325

Dreamweaver, 321–323
HTML, 323
iOS

installation, 312–313
PhoneGap template, 313
project creation, 313–314

iScroll library, 326–327
JavaScript, 323
JavaScript libraries, 325–330
jQuery, 326
jQuery Mobile, 322, 327–328
LawnChair, 330
mobile app markets, 341
native code, 323
Sencha Touch, 328
UI, 324
Windows Phone 7

installation, 317
project creation, 317–319

XUI, 329–330, 331
PhoneText ExtraLargeStyle, 242
PHP, 77, 78, 134, 135. See also LAMP stack
PHP Extension and Application Repository

(PEAR), 77, 78
Picker, 294
pickers, 298, 336–337
PickerColumn, 294
PickerRow, 294
PIN, BlackBerry code signing keys, 260
pinning, 232, 233, 240
Pivot controls, 235, 238
pixel densities, Android, 7
pixilation, typography, 108
placeholder, form attribute, 146
plain language, 109
plain text, web services, 37, 40
platforms. See also Android platform; BlackBerry

platform; iOS; Symbian OS; Windows Phone
7 platform
APIs, 5
costs, 5
developer accounts, 5
documentation, 5
fragmentation, 22, 109, 253
hardware requirements, 4
licenses, 5
mobile apps installed, 20–21
smartphones list, 4

PEAR (PHP Extension and Application Repository) – platforms

bindex.indd 395bindex.indd 395 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

396

software requirements, 4
third-party frameworks, 9

Playbook, BlackBerry, 259
PlayerDemo database, 337
plists

iOS, 223–224
MonoTouch, 374–375

PNG fi les, 8-bit, 140
poor feedback, good feedback, 30
populateDB, 338
pop-up box, 92, 93, 103
ports

ASP.NET Development Server, 50
defi ned, 38
special, 38, 40
web services, 37, 40

POUR principles (perceivable, operational,
understandable, robust), 94

power consciousness, iPhone core idea, 185
precision, UI design, 109
Preferences and Settings, Titanium offl ine storage,

302
print, 121
printToConsole, 325
Producer Library, OData, 78
product name, Hello World-type iOS app, 209
Professional Service Providers, 260
Professional version, Titanium, 283
ProgressBar, 293
Project Navigator, 195
project options

Mono for Android app, 361–362
MonoTouch app, 358–360

projection, 121
Property Bag, 301, 302
prototypes, 114
Provisioning section, iOS Provisioning Portal, 190
proximity principle, 91
push notifi cations, 18, 23, 35, 144
putExtra(), 175

Q

QNX Software Systems, 259
QR (quick response) codes, 25–26
Qualcomm Snapdragon processor family, 229
quality, time to market vs., 2
quick response codes. See QR codes

R

RadioButton, 165–166
“range” ‹input type›, 145
raw notifi cation type, 248–249
READ_SOCIAL_STREAM, 173
redirection, dedicated mobile websites, 141
refund grace period, Android Market, 2
RelativeLayout, 169–170
remote procedure calls (RPC), 37–38, 40
repetition, mobile browsing behavior, 16
request headers, 62, 63, 64, 74
required, form attribute, 146
res folder, 160–161
Research In Motion (RIM), 253, 254.

See also BlackBerry platform
resolution, 122
resolutions. See screen resolutions
resources, iOS apps, 194
Resources folder, Titanium project structure, 291
Responsive Images, 134
responsive mobile websites, 139
Responsive Web Design (Marcotte), 139
revealed content, 103–105
RIM. See Research In Motion
Ripple emulator, 271–273, 320, 324
RippleSites directory, 272–273
robust, POUR principle, 94
Roller Derby fans, 43
routing, ASP.NET, 52, 53, 54
Rowell, Eric, 148
RPCs (remote procedure calls), 37–38, 40

S

SampleData, 239
Samsung, 152, 234
Samsung Focus, 4
Samsung Galaxy Tablet, 4
sans serif fonts, 108
scalable screen, high-quality, 185
scan, 122
screen, 121
screens

BlackBerry Java app UI, 265
home, 105–106
intervening, 105–107
loading, 106

Playbook, BlackBerry – screens

bindex.indd 396bindex.indd 396 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

397

sizes, Android, 7
splash, 105–106

screen real estate
focused content, 90–91
minimalism, 90
visual hierarchy, 90

screen resolutions
Android, 6–7
BlackBerry devices, 257
iOS, 6

Screenfl y, 135, 142
ScrollableView, 293
scrolling, 98–101

endlist lists, 99
expandable lists, 100
graphical data, 99
limiting, 98
live, 101
parallax, 105
thumbnail grid, 100–101
thumbnail list, 99–100
vertical list, 98–99

ScrollView, 293
SDKs (software development kits).

See also Android SDK
BlackBerry WebWorks, 270
Flurry feature, 31
iPhone, components, 192–193, 204
mobile app development, 4
PhoneGap, 312
Windows Phone 7, 234–236

“search” ‹input type›, 145
Search Navigator, 196
SearchBar, 293
‹section›, 143
Segoe font family, 230
segues, 197, 198, 216, 217
self-describing formats, 40, 42. See also JSON;

XML
Sencha Touch, 328
serif fonts, 108
Service Level Agreement, 260
Services (Android component), 173
SET_TIME_ZONE, 173
Settings and Preferences, Titanium offl ine storage,

302
setValue, 224
Shadow, Adobe, 142

share button, 92
shared preferences, 176, 375
SharedPreferences, 177
ShellTile APIs, 233
ShellTileSchedule APIs, 233
shouldWeBreakOutOfMobile, 136
Signature Tool, 270, 276
signing keys, BlackBerry, 260, 270, 276
silly app ideas, 18
Silverlight

MonoTouch/Mono for Android assemblies,
346–347

Moonlight, 343, 351
Windows Phone 7, 8, 234, 235, 236

similarity principle, 92
simplicity

navigation, 108
web services, 39

simulators. See also emulators; iOS Simulator
BlackBerry, 261–262, 264, 271
emulators vs., 115
iPhone Simulator, 193, 340

Single View Application project type, 208
size, font, 95, 109
sketching, 114
slab serif fonts, 108
Slider, 293
smartphones

list, for testing platforms, 4
market growth, 8
usage, 6

Smurfs’ Village app, 19
social aspect, of mobile design, 92–93
software development kits. See SDKs
software requirements, 4
Solution Explorer, 48, 68
space-saving mobile menu, 132–133
speech, 121
speech-related accessibility issues, 95
Spinelli, Matteo, 148
spinner, 133, 145, 146, 298
splash screen, 105–106
SplashScreenImage.jpg, 240
SQLite database

Android offl ine storage, 176–177
Core Data, 224
Titanium offl ine storage, 301

SQL-Server-Create-Derby-Database script, 43

screen real estate – SQL-Server-Create-Derby-Database script

bindex.indd 397bindex.indd 397 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

398

Squeezebox controller, 311
src folder, 160–161
stack traces, of runtime errors, 21
StackOverfl ow web service, 38
StaticResource, 242
step, form attribute, 146
storage. See offl ine storage
storyboards

iOS Derby app, 215–217
iOS Device Family option, 210
MainStoryBoard.storyboard, 194, 211
overview, 197–198
Windows Phone 7 apps, 237
XAML, 237

Stream class, 56
structural elements, HTML5, 143–144
successFunction callback, 303, 331
supporting fi les directory, iOS apps, 195
svcutil, 241
sweat equity, 9
Switch, 293
Symbian OS

market share by country, 15–16
PhoneGap, 10

System Integrators, 260
System.Data.Linq, 44, 45, 68
System.Device.Location, 249
System.IO, 56
System.IO.IsolatedStorage, 233, 245
System.NET, 55
System.ServiceModel.Activation, 52, 53, 54
System.Text, 56
System.Web.Routing, 53

T

Tab, 294
tab groups, 298–299
Tab.axml, Mono for Android Derby app, 370
tabbed application type, 215, 358–360, 362
TabbedBar, 294
TabGroup, 294
TabGroups, 294
TabHost, 230
TableLayout, 168–169
tables

adaptive mobile websites, 127
Titanium Table UI element, 297–298

TableView, 294
TableViewDataSource, 365, 366
TableViewRow, 294, 297
TableViewSection, 294
Tags, Microsoft, 25–26
TalkBack, 110
targeting mobile websites, 121–123
targets

BlackBerry OS versions, 256
mobile app development, 8, 152
perceived vs. actual target area, 93–94
usability, mobile UI design, 93

task analysis, UAT, 113
Team Names/Leagues

BlackBerry Java Derby app, 268–269
BlackBerry WebWorks Derby app,

275–276
iOS Derby app, 220–222
Mono for Android Derby app, 373
MonoTouch Derby app, 367–368
Windows Phone 7 Derby app, 243–244

Team Roster, iOS Derby app, 217–219
“tel” ‹input type›, 145
Telerik, 236
Test Drive feature, 33
testing

adaptive mobile websites, 135–136
dedicated mobile websites, 142
on-device testing, 114
platforms, smartphones list, 4
UAT, 113–114

information capture, 113
task analysis, 114

unit tests, 210
text editors, 4, 319–320
TextArea, 293
text-based editor, Visual Studio, 235
TextBlocks, 241, 242
TextField, 293
TextMate, 4, 319–320
text-shadow, 140
TextView, 164
Themeroller tool, 150
third-party app markets, 32–33
third-party frameworks, 9. See also PhoneGap;

Titanium
3DMatrix, 294
thumbnail grid, 100–101

Squeezebox controller – thumbnail grid

bindex.indd 398bindex.indd 398 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

399

thumbnail list, 99–100
thumbnail lists, 99–100
Ti.API.debug(), 294
Ti.API.error(), 294
Ti.API.info(), 294
Ti.API.log(), 294
Ti.API.warn(), 294
TiApp GUI Editor, 289–290
TiApp XML Editor, 290
tile notifi cation, 248
tiles, 112, 232–233, 248, 252
“time” ‹input type›, 145
time to market, quality vs., 2
Titanium (Appcelerator Titanium Mobile

framework), 283–308
Accelerometer, 306–307
basics, 291–292
BlackBerry support, 284
developer accounts, 5, 294
documentation, 5
geolocation, 305
GetGlue, 286
GPS, 305–306
JSON, 302–305
licenses, 5
mobile developer analytics report,

285
namespaces, 284, 291–292
NBC Universal, 285
offl ine storage, 301–302
overview, 9, 283
pricing, 283
reasons for using, 284
software requirements, 4
tools, 287
versions, 283
web service, 302–305
who is using, 284–286

Titanium apps
debugging, 294
deployment to mobile app markets,

294–296
Derby app, 297–300
Hello World app, 288–290
project structure, 291
UI elements, 292–294
UI patterns, 297–300
versioning, 296

Titanium Desktop product, 284
Titanium Studio

confi guring, 287–288
dashboard, 288
Eclipse, 287
installation, 287
overview, 283
workspace, 287

Titanium.Accelerometer, 306
Titanium.App.Properties, 302
Titanium.Database, 301
Titanium.Filesystem, 301
Titanium.Geolocation, 305
Titans program, 285
T-Mobile, 151
toasts, 175, 247–248
tombstoning, 233, 245
Toolbar, 294
Toshiba, 152
touch input

minimal touch point, 103
perceived vs. actual target area, 93–94

Touch Up Inside Event, 213
toys, management, 11
tracking app sales, 30–31
translated frameworks, 9
try/catch, 207–208, 325
tty, 121
tv, 121
typography

Metro interface, 230
mobile UI design, 108–109

U

UAT (User Acceptance Testing), 113–114
information capture, 113
task analysis, 114

Ubuntu, 77
UI (user interface)

BlackBerry Java, 263
BlackBerry Java Derby app, 265–267
BlackBerry WebWorks Derby app, 273
Expression Blend, 235–236
Hello World-type iOS app, 211–214
iOS Derby app, 215–217
Mono for Android Derby app, 370–372
MonoTouch Derby app, 363–367

thumbnail list – UI (user interface)

bindex.indd 399bindex.indd 399 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

400

PhoneGap apps, 324
Titanium

elements, 292–294
patterns, 297–300

Windows Phone 7 Derby app, 240–241
Zune, 229

UI design (mobile user interface design), 89–115
accessibility

Android, 110
BlackBerry OS, 111–112
cognition issues, 96
dexterity issues, 95–96
hearing issues, 95
iOS, 111
mobile browsers, 113
MWBP, 94
need, 94–95
need for, 94–95
POUR principles, 94
speech issues, 95
vision issues, 95
WCAG, 94
Web Accessibility Initiative, 113
website resource, 95
Windows Phone 7 platform, 112

advertising, 107
closure principle, 91
content, 103–105
content structure and usage

information architecture, 107–108
plain language, 109
typography, 108–109

continuity principle, 92
controls, 103
craftsmanship, 89
design patterns, 96–107
elements, Android app development, 164–166

Button, 164
CheckBox, 165
EditText, 164–165
fragments, 173
ListView, 166
RadioButton, 165–166
TextView, 164

faceted content, 107–108
feature creep, 90, 92
feedback, 101–103
fi gure and ground principle, 92

Gestalt principles, 91–92
gestures, 93–94
HIG, 18, 193, 298
information architecture, 107–108
information capture, UAT, 113
information design, 96–109
information design tools, 114–115
information display, 96
information hierarchy, 90, 105, 107–108
intervening screens, 105–107
limitations, 89
mobile browsers, 112–113
mobile platforms

Android, 110
BlackBerry, 111–112
iOS, 110–111
Windows Phone 7, 112

navigation, 97–103
annunciator panel, 97
consistency, 108
expandable menus, 98
fi xed menus, 97–98
simplicity, 108
UI mobile app design, 97–103

notifi cations, 101–103
precision, 109
proximity principle, 91
revealed content, 103–105
screen real estate, 90–91
screens

home, 105–106
intervening, 105–107
loading, 106
splash, 105–106

scrolling, 98–101
endlist lists, 99
expandable lists, 100
graphical data, 99
limiting, 98
live, 101
parallax, 105
thumbnail grid, 100–101
thumbnail list, 99–100
vertical list, 98–99

similarity principle, 92
social aspect, 92–93
targets

perceived vs. actual target area, 93–94

UI design (mobile user interface design) – targets

bindex.indd 400bindex.indd 400 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

401

usability, mobile UI design, 93
tools, 113–115
UAT, 113–114
understanding users, 89–90, 91
usability

error protection/correction, 94
gestures design, 93–94
target audience, 93

UI navigation, Android Derby app, 174–175
UITabBar, 230
UITableView, 240, 363
unassisted GPS, BlackBerry Java location services,

279
understandable, POUR principle, 94
understanding users, 89–90, 91
unit tests, 210
Universal, iOS Device Family option, 210
updates

Android, 152
mobile web apps, 36
over-the-air, 152

upper management, toys, 11
Urban Airship, 284
Urbanspoon, 184
urgency, mobile browsing behavior, 16
“url” ‹input type›, 145
URLs, friendly, 54
usability, mobile UI design, 93–94

error protection and correction, 94
gestures design, 93–94
target audience, 93

User Acceptance Testing. See UAT
User Agent Switcher, 135
user interface. See UI
user reviews, 29–30
users, understanding, 89–90, 91

V

Values directory, Mono for Android app, 361
vendor-specifi c Android marketplaces, 152–153
versions. See specifi c versions
Vertical Field Managers, 265
vertical lists, 98–99
View, Titanium UI view element, 293
View Markup, 49
ViewController.cs, 358
ViewController_iPad.xib, 358

ViewController_iPhone.xib:

ViewController XIB fi les, 358
ViewController.m, 214
viewDidLoad, 218, 219, 220, 226, 364, 368
ViewModels, 239
viewport settings, adaptive mobile websites,

123–124
views, iOS apps, 194
Views folder, 76
vision-related accessibility issues, 95
visual alerts, 95
visual hierarchy, 90
Visual Studio

ASP.NET MVC walkthrough, 66–67, 72
Metro, 230
Mono for Android, 10
Mono Tools, 353
OData walkthrough, 58–59, 60, 61, 62
Solution Explorer, 48, 68
WCF walkthrough, 43–44, 48, 49, 50
Windows Phone 7, 4
Windows Phone 7 SDK, 234–236

Vixens Roster
BlackBerry Java Derby app, 267–268
Mono for Android Derby app, 372

Vixens Table View, MonoTouch Derby app,
364–367

VMWare Fusion, 3
voice recognition, 95

W

W3C (World Wide Web Consortium)
media queries, 124
media types, 121
mobile browsers design, 112
mobileOK Checker, 142
MWBP, 94
POUR principles, 94
Web Accessibility Initiative, 113
web services defi nition, 37

watchPosition, 147, 148
wayfi nding, 108
WCAG (Web Content Accessibility Guidelines), 94
WCF (Windows Communication Foundation)

complexity, 43, 57
defi ned, 43

WCF Data Services, 61, 63, 64, 234, 242

UI navigation, Android Derby app – WCF Data Services

bindex.indd 401bindex.indd 401 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

402

WCF walkthrough, 43–57
improvements, 52–53
software requirements, 43
SQL-Server-Create-Derby-Database script, 43
web.config, 49, 50, 52, 54, 55, 57

WDDM 1.1 driver, 235
weather web service, 38–39
Web Accessibility Initiative, 113
Web Content Accessibility Guidelines (WCAG), 94
web frameworks, 9
Web Service Callbacks, 85, 86
web services, 37–87. See also ASP.NET MVC

walkthrough; LAMP walkthrough; OData
walkthrough; WCF walkthrough
access, 39–40
advantages, 39–40
consumability, 40
CORBA vs., 37–38, 40
DCOM vs., 37–38, 40
debugging, 83–86
defi ned, 37
Derby app, Android version, 177–180
discoverable, 56
ease of access, 39–40
examples, 38–39
formats, 40–42
languages, 40–42
plain text, 37, 40
power, 38
RPC vs., 37–38, 40
self-describing formats, 40, 42
Titanium, 302–305
weather, 38–39
Windows Phone 7 platform, 252

Web Sockets, 85, 86
Web SQL, 337–339
web.config, 49, 50, 52, 54, 55, 57
WebOS, 10
websites. See desktop websites; mobile websites
WebView, 293
WebWorks. See BlackBerry WebWorks
widgets, Android, 164–166
width

adaptive mobile websites, 126–127
device-width, 122
fi xed-width mobile websites, 126, 139
max-width: 100%, 134
max-width: 480px, 122, 135

width media feature, 122
Wikipedia, PhoneGap, 311
Wilcox, Matt, 134
Window, Titanium UI view element, 293
Windows Azure Marketplace, 252
Windows Communication Foundation. See WCF
Windows Dev Marketplace

developer accounts, 5
Windows Embedded Handheld 6.5, 229
Windows Mobile 6.5, 229
Windows Phone 7 apps

anatomy, 237–238
Derby app, 239–245
distribution, 244–245
storyboards, 237

Windows Phone 7 platform, 229–252. See also
Market Place
Accelerometer, 250–251
API, link, 5
App Hub, 234, 244–245
Application Bar, 230–232
control packages, 236
debugging, 238
developer accounts, 5
documentation, 5
emulator, 238
features, HTML5 vs., 35
Flurry service, 31–32
geolocation, 249
GPS, 249–250
HTC, 234
Internet Explorer fi x, media queries,

124–125
iOS, 229
Isolated Storage Explorer, 247
licenses, 5
Metro, 112, 230, 252
.NET Framework, 8
Nokia, 234
notifi cations, 247–249
offl ine storage, 245–247
PhoneGap for Windows Phone 7, 10, 317–319
Samsung, 234
Silverlight, 8, 234, 235, 236
software requirements, 4
tiles, 112, 232–233, 248, 252
tombstoning, 233, 245
UI design, 112

WCF walkthrough – Windows Phone 7 platform

bindex.indd 402bindex.indd 402 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

403

web services, 252
Windows Phone 7 SDK

download, 234
installation, 234–235
Visual Studio, 234–236

wireframes, 114
Wireshark, 85
WordPress, 119
workspace, Titanium Studio, 287
World Wide Web Consortium. See W3C
WURFL, 119
WYSIWYG editor, 235, 237, 321

X

Xamarin. See also Mono for Android;
MonoDevelop; MonoTouch
de Icaza, 343
history, 10
store website, 344
waiting for improvements, 347, 377–378

Xamarin Mobile library, 348–349
XAML (eXtensible Application Markup

Language)
Expression Blend, 234, 235–236
global Application Bar, 231
Panorama application, 240
storyboards, 237

XAP fi le, 244

xCode, 195–198
debugging tools, 200–203
download, 191
installation, 191
prototypes, 114
startup screen, 192

XHR (XmlHttpRequest), 303, 329, 331
XIB fi les, 194, 197, 210, 356, 358, 363
Ximian Team, 10
XML (eXtensible Markup Language), 40–42

JSON format vs., 52
maturity of platform, 41
purpose, 40–41
tools, 41

XML Editor
Android Manifest, 163
TiApp, 289

XML Schema Document (XSD), 41
XmlHttpRequest (XHR), 303, 329, 331
XmlResult, 73
XQuery, 41–42
XSD. See XML Schema Document
XSLT (eXtensible Stylesheet Language

Transformations), 41
XUI, 329–330, 331

Z

Zune UI, 229

Windows Phone 7 SDK – Zune UI

bindex.indd 403bindex.indd 403 28/07/12 5:39 PM28/07/12 5:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

START YOUR FREE TRIAL TODAY!
Visit my.safaribooksonline.com/wrox52 to get started.

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

• Access to hundreds of expert-led instructional
videos on today’s hottest topics.

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Mobile access using any device with a browser

• Rough Cuts pre-published manuscripts

*Available to new subscribers only. Discount applies to the
Safari Library and is valid for fi rst 12 consecutive monthly
billing cycles. Safari Library is not available in all countries.

Read this book for free online—along with thousands of others—
with this 15-day trial offer.

badvert.indd 1badvert.indd 1 28/07/12 5:42 PM28/07/12 5:42 PM

www.it-ebooks.info

http://my.safaribooksonline.com/wrox52
http://www.it-ebooks.info/

Related Wrox Books
Beginning Mobile Application Development in the Cloud
ISBN: 978-1-118-03469-9

With this guide, you’ll learn how to build cross-platform applications for mobile devices

that are supported by the power of Cloud-based services such as Amazon Web Services.

An introduction to Cloud-based applications explains how to use HTML5 to create cross-

platform mobile apps and then use Cloud services to enhance those apps. You’ll learn

how to build your first app with HTML5 and set it up in the Cloud, while also discovering

how to use jQuery to your advantage.

Professional Android 4 Application Development
ISBN: 978-1-118-10227-5

The fast-growing popularity of Android smartphones and tablets creates huge opportunities

for developers. Written by an Android authority, this practical book walks you through a

series of hands-on projects that illustrate the features of the Android SDK.

Professional Android Programming
with Mono for Android and .NET/C#
ISBN: 978-1-118-02643-4

For the millions of .NET/C# developers who have been eagerly awaiting the book that will

guide them through the white-hot field of Android application programming, this is the

book. This must-have resource dives into writing applications against Mono with C# and

compiling executables that run on the Android family of devices.

Beginning iOS 5 Application Development
ISBN: 978-1-118-14425-1

Ideal for beginning developers who are eager to create native applications for Apple’s

mobile devices, this full-color guide walks you through the core building blocks of iPhone

and iPad application development, including new features such as iCloud Programming,

Twitter integration, importing and exporting documents from within your iOS applications,

the new Xcode® 4, multitasking features, location-based services, the notification system,

and more. You’ll quickly discover that this book is replete with everything you need in order

to confidently build your first iPhone or iPad application.

Professional Cross-Platform Mobile Development in C#
ISBN: 978-1-118-15770-1

Assuming no experience with mobile development, this book provides the fundamentals

for building enterprise mobile applications in .NET/C# and Mono that can be delivered

on all the major mobile platforms in the market today. The team of authors explains

the technical considerations for building mobile apps while also addressing security

and deployment needs. The featured real-world examples, best practices, and proven

techniques round out the essentials of cross-platform mobile development and help give

you an edge over your competition.

www.it-ebooks.info

http://www.it-ebooks.info/

Related Wrox Books
Beginning Mobile Application Development in the Cloud
ISBN: 978-1-118-03469-9

With this guide, you’ll learn how to build cross-platform applications for mobile devices

that are supported by the power of Cloud-based services such as Amazon Web Services.

An introduction to Cloud-based applications explains how to use HTML5 to create cross-

platform mobile apps and then use Cloud services to enhance those apps. You’ll learn

how to build your first app with HTML5 and set it up in the Cloud, while also discovering

how to use jQuery to your advantage.

Professional Android 4 Application Development
ISBN: 978-1-118-10227-5

The fast-growing popularity of Android smartphones and tablets creates huge opportunities

for developers. Written by an Android authority, this practical book walks you through a

series of hands-on projects that illustrate the features of the Android SDK.

Professional Android Programming
with Mono for Android and .NET/C#
ISBN: 978-1-118-02643-4

For the millions of .NET/C# developers who have been eagerly awaiting the book that will

guide them through the white-hot field of Android application programming, this is the

book. This must-have resource dives into writing applications against Mono with C# and

compiling executables that run on the Android family of devices.

Beginning iOS 5 Application Development
ISBN: 978-1-118-14425-1

Ideal for beginning developers who are eager to create native applications for Apple’s

mobile devices, this full-color guide walks you through the core building blocks of iPhone

and iPad application development, including new features such as iCloud Programming,

Twitter integration, importing and exporting documents from within your iOS applications,

the new Xcode® 4, multitasking features, location-based services, the notification system,

and more. You’ll quickly discover that this book is replete with everything you need in order

to confidently build your first iPhone or iPad application.

Professional Cross-Platform Mobile Development in C#
ISBN: 978-1-118-15770-1

Assuming no experience with mobile development, this book provides the fundamentals

for building enterprise mobile applications in .NET/C# and Mono that can be delivered

on all the major mobile platforms in the market today. The team of authors explains

the technical considerations for building mobile apps while also addressing security

and deployment needs. The featured real-world examples, best practices, and proven

techniques round out the essentials of cross-platform mobile development and help give

you an edge over your competition.

www.it-ebooks.info

http://www.it-ebooks.info/

	Professional Mobile Application Development
	About the Authors
	About the Contributors
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	Chapter 1: Preliminary Considerations
	Chapter 2: Diving into Mobile: App or Website?
	Chapter 3: Creating Consumable Web Services for Mobile Devices
	Chapter 4: Mobile User Interface Design
	Chapter 5: Mobile Websites
	Chapter 6: Getting Started with Android
	Chapter 7: Getting Started with iOS
	Chapter 8: Getting Started with Windows Phone 7
	Chapter 9: Getting Started with BlackBerry
	Chapter 10: Getting Started with Appcelerator Titanium
	Chapter 11: Getting Started with PhoneGap
	Chapter 12: Getting Started with MonoTouch and Mono for Android
	Conventions
	Source Code
	Errata
	P2P.Wrox.Com

	Chapter 1: Preliminary Considerations
	Why You Might Be Here
	Competition
	Quality vs. Time to Market
	Legacy System Integration
	Mobile Web vs. Mobile App

	Cost of Development
	Hardware
	Software
	Licenses and Developer Accounts
	Documentation and APIs
	The Bottom Line

	Importance of Mobile Strategies in the Business World
	Why Is Mobile Development Difficult?
	Mobile Development Today
	Mobile Myths
	Third-Party Frameworks
	Appcelerator Titanium Mobile Framework
	Nitobi PhoneGap
	MonoDroid and MonoTouch

	Summary

	Chapter 2: Diving into Mobile: App or Website?
	Mobile Web Presence
	Mobile Content
	Mobile Browsers

	Mobile Applications
	You're a Mobile App If . . .
	When to Create an App
	Benefits of a Mobile App

	Marketing
	Quick Response Codes
	The Advertising You Get from the App Market
	Third-Party Markets

	Your App as a Mobile Web App
	Summary

	Chapter 3: Creating Consumable Web Services for Mobile Devices
	What Is a Web Service?
	Examples of Web Services
	Advantages of Web Services

	Web Services Languages (Formats)
	eXtensible Markup Language (XML)
	JavaScript Object Notation (JSON)
	Transferring Nontextual Data

	Creating an Example Web Service
	Using the Microsoft Stack
	Using the Linux Apache MySQL PHP (LAMP) Stack

	Debugging Web Services
	Tools
	Advanced Web Service Techniques

	Summary

	Chapter 4: Mobile User Interface Design
	Effective Use of Screen Real Estate
	Embrace Minimalism
	Use a Visual Hierarchy
	Stay Focused

	Understanding Mobile Application Users
	Proximity
	Closure
	Continuity
	Figure and Ground
	Similarity
	The Social Aspect of Mobile
	Usability
	Accessibility

	Understanding Mobile Information Design
	Information Display
	Design Patterns
	Content Structure and Usage

	Understanding Mobile Platforms
	Android
	iOS
	BlackBerry OS
	Windows Phone 7
	Mobile Web Browsers

	Using the Tools of Mobile Interface Design
	User Acceptance Testing
	Information Design Tools

	Summary

	Chapter 5: Mobile Websites
	Choosing a Mobile Web Option
	Why Do People Use Your Website on Mobile Devices?
	What Can Your Current Website Accommodate?
	How Much Do You Want to Provide for Mobile Users?

	Adaptive Mobile Websites
	Get Your Queries in Place
	Add Mobile Styles

	Dedicated Mobile Websites
	Mobile Web Apps with HTML5
	What Exactly Is HTML5?
	And What Exactly Is a Mobile Web App?
	How Do You Use HTML5 in a Mobile Web App?
	Make Your Mobile Web App Even More Native

	Summary

	Chapter 6: Getting Started with Android
	Why Target Android?
	Who Supports Android?
	Android as Competition to Itself
	Multiple Markets and Market Locks

	Getting the Tools You Need
	Downloading and Installing JDK
	Downloading and Installing Eclipse
	Downloading and Installing the Android SDK
	Downloading and Configuring the Eclipse ADT Plug-in
	Installing Additional SDK Components
	Development

	Connecting to the Google Play
	Getting an Android Developer Account
	Signing Your Application

	Android Development Practices
	Android Fundamentals
	Fragments as UI Elements
	Ask for Permission
	Mind the Back Stack

	Building the Derby App in Android
	Common Interactions
	Offline Storage
	Web Service
	GPS
	Accelerometer

	Summary

	Chapter 7: Getting Started with IOS
	The iPhone Craze
	Apple in Its Beauty
	Apple Devices

	Getting the Tools You Need
	Hardware
	xCode and the iOS SDK
	The iOS Human Interface Guideline

	iOS Project
	Anatomy of an iOS App
	Getting to Know the xCode IDE

	Debugging iOS Apps
	The iOS Simulator
	Debugging Code
	Instruments

	Objective-C Basics
	Classes
	Control Structures
	Try Catch

	Hello World App
	Creating the Project
	Creating the User Interface

	Building the Derby App in iOS
	User Interface
	Team Roster
	Details
	Leagues and Team Names

	Other Useful iOS Things
	Offline Storage
	GPS

	Summary

	Chapter 8: Getting Started with Windows Phone 7
	New Kid on the Block
	Metro
	Application Bar
	Tiles
	Tombstoning

	Getting the Tools You Need
	Hardware
	Visual Studio and Windows Phone SDK

	Windows Phone 7 Project
	Silverlight vs. Windows Phone 7
	Anatomy of a Windows Phone 7 App
	The Windows Phone 7 Emulator

	Building the Derby App in Windows Phone 7
	Creating the Project
	User Interface
	Derby Names
	Leagues

	Distribution
	Other Useful Windows Phone Things
	Offline Storage
	Notifications
	GPS
	Accelerometer
	Web Services

	Summary

	Chapter 9: Getting Started with Blackberry
	The BlackBerry Craze
	BlackBerry Devices
	BlackBerry Playbook

	Getting the Tools You Need
	BlackBerry Developer Program
	Code Signing Keys
	BlackBerry Java Development Environment
	Implementing the Derby App with BlackBerry for Java
	BlackBerry Eclipse Specifics
	BlackBerry Development with WebWorks

	Other Useful BlackBerry Things
	Offline Storage
	Location Services

	BlackBerry Distribution
	Summary

	Chapter 10: Getting Started with Appcelerator Titanium
	Why Use Titanium?
	Who Is Using Titanium?
	NBC
	GetGlue

	Getting the Tools You Need
	Installing Titanium Studio
	Downloading the Kitchen Sink
	Development

	Connecting Titanium to the Markets
	Versioning Your App

	Building the Derby App in Titanium
	Common UI Patterns
	Offline Storage
	Web Service
	GPS
	Accelerometer

	Summary

	Chapter 11: Getting Started with Phonegap
	History of PhoneGap
	Why Use PhoneGap?
	Who Is Using PhoneGap?
	METAR Reader
	Logitech Squeezebox Controller
	Wikipedia

	Differences between PhoneGap and HTML5
	Getting the Tools You Need
	Installing PhoneGap for iOS
	Installing PhoneGap for Android
	Installing PhoneGap for Windows Phone 7
	PhoneGap Tools and IDE

	PhoneGap Project
	Anatomy of a PhoneGap Application
	Creating User Interfaces
	Debugging
	Useful JavaScript Libraries

	Building the Derby App in PhoneGap
	Other Useful Phone Gap Things
	Pickers
	Offline Storage
	GPS
	Accelerometer

	Connecting PhoneGap to the Markets
	Summary

	Chapter 12: Getting Started with Monotouch and Mono for Android
	The Mono Framework
	MonoTouch
	Mono for Android
	Assemblies
	Why MonoTouch/Mono for Android?
	Downsides
	Xamarin Mobile

	Getting the Tools You Need
	Mono Framework
	MonoTouch
	Mono for Android

	Getting to Know MonoDevelop
	Debugging
	MonoTouch Specifics
	Mono for Android Specifics

	Mono Projects
	Anatomy of a MonoTouch App
	Anatomy of a Mono for Android App

	Building the Derby App with Mono
	MonoTouch
	Mono for Android

	Other Useful MonoTouch/Mono Features
	Local Storage
	GPS

	Summary

	Index
	Advertisement

