

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2007 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2006940673

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 2 1 0 9 8 7

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Active Directory, ActiveX, Excel, Expression, Hotmail, InfoPath,
IntelliSense, MSDN, MSN, OneNote, Outlook, PowerPoint, SharePoint, SideShow, Visio, Visual Basic,
Visual C#, Visual C++, Visual Studio, Windows, Windows Media, Windows NT, Windows Server,
Windows Vista, Xbox and Xbox 360 are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Other product and company names mentioned
herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: Melissa von Tschudi-Sutton
Production: nSight, Inc.

Body Part No. X13-24186

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2007 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2006940673

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 2 1 0 9 8 7

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Active Directory, ActiveX, Excel, Expression, Hotmail, InfoPath,
IntelliSense, MSDN, MSN, OneNote, Outlook, PowerPoint, SharePoint, SideShow, Visio, Visual Basic,
Visual C#, Visual C++, Visual Studio, Windows, Windows Media, Windows NT, Windows Server,
Windows Vista, Xbox and Xbox 360 are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Other product and company names mentioned
herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: Melissa von Tschudi-Sutton
Production: nSight, Inc.

Body Part No. X13-24186

Contents at a Glance

Part I Introducing Microsoft Office Outlook 2007
1 What’s New in Microsoft Office Outlook 2007 2007 3
2 Outlook as a Platform . 19

Part II Quick Guide to Building Solutions
3 Writing Your First Outlook Add-in Using Visual Basic .NET 61
4 Writing Your First Outlook Add-in Using C# . 87

Part III Working with Outlook Data
5 Built-in Item Types . 115
6 Accessing Outlook Data. 171
7 Address Books and Recipients . 215
8 Responding to Events. 247
9 Sharing Information with Other Users. 281

10 Organizing Outlook Data. 297
11 Searching Outlook Data. 335

Part IV Providing a User Interface for Your Solution
12 Introducing the Outlook User Interface . 371
13 Creating Form Regions. 391
14 Form Region Controls . 435
15 Extending the Ribbon. 453
16 Completing Your User Interface . 471

Part V Advanced Topics
17 Using the PropertyAccessor Object . 489
18 Add-in Setup and Deployment. 509
19 Trust and Security . 519
v

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Table of Contents
Foreword. xxi

Acknowledgments. .xxv

Introduction .xxvii

Why We Wrote This Book . xxvii
Who This Book Is For . xxviii
How This Book Is Organized. xxviii

Part I: Introducing Microsoft Office Outlook 2007 . xxviii
Part II: Quick Guide to Building Solutions . xxix
Part III: Working with Outlook Data . xxix
Part IV: Providing a User Interface for Your Solution . xxix
Part V: Advanced Topics . xxx

Sample Code on the Web . xxx
Code Snippets . xxxiii

Building the Sample Add-Ins . xxxiii
System Requirements. xxxv
Support for This Book . xxxv

Part I Introducing Microsoft Office Outlook 2007
1

Form Regions . 4
Security. 6
Table Object. 7
Improved Search. 8
Enhanced Events . 9
AddressEntry Enhancements . 11

SelectNamesDialog Object . 11
ExchangeUser and ExchangeDistributionList Objects . 12

What’s New in Microsoft Office Outlook 2007 .3
vii

viii Table of Contents
Sharing Objects . 12
Rules Objects . 13
PropertyAccessor Object . 14

PropertyAccessor Sample Code . 14
Developer Reference . 16
Summary . 17

2 Outlook as a Platform . 19

Why Integrate with Outlook? . 19
Different Types of Outlook Integration . 21

Data Integration. 22
Functional Integration . 24

Integration Guidelines. 26
Data Integration. 26
Business Logic . 29
User Interface Integration and Data Presentation . 30
InfoPath Forms. 38

APIs . 40
Architecture . 40
Outlook Object Model . 41
Form Regions . 43
MAPI as a Platform Component . 45
Outlook 2007 Integration API Reference. 51
Simple MAPI . 51
Deemphasized and Phased-Out Components . 52

Development Tools . 53
Visual Basic for Applications . 53
Visual Studio Tools for Office. 54
Managed Versus Native Code . 55

 Add-In Model . 56
Summary . 57

Part II Quick Guide to Building Solutions
3 Writing Your First Outlook Add-in Using Visual Basic .NET. 61

Introducing the Instant Search Add-In. 61
Install the Outlook Add-in Templates. 62

Table of Contents ix
Creating the Instant Search Add-In . 63
Writing Code . 65

The InitializeAddin Method. 66
Turn Option Strict On . 67
Adding Instance Variables. 67
Hooking Up Events in Visual Basic . 68
ItemContextMenuDisplay Event . 68
ContextMenuClose Event . 70
The DisplayInstantSearchExplorer Method. 71
Writing Code for Submenu Click Events. 72
Building the Add-in Project . 73

Creating a Shim Project . 74
Creating a Setup Project . 78

Building the Setup Project . 81
Installing the Instant Search Add-In . 81

Testing the Instant Search Add-in Solution . 82
What to Expect . 82
Troubleshooting . 82

Debug Mode . 83
Debugging Code . 84

Summary . 85

4 Writing Your First Outlook Add-in Using C# . 87

Introducing the Instant Search Add-In . 87
Install the Outlook Add-in Templates . 88
Creating the Instant Search Add-In . 89
Writing Code . 91

InitializeAddin Method . 92
Adding Instance Variables. 93
Hooking Up Events in Visual C# . 94
ItemContextMenuDisplay Event . 94
ContextMenuClose Event . 97
Cleaning Up Event Handlers. 98
DisplayInstantSearchExplorer Method. 98
Writing Code for Submenu Click Events. 99
Building the Add-in Project . 101

Creating a Shim Project . 101

x Table of Contents
Creating a Setup Project . 105
Building the Setup Project . 108
Installing the Instant Search Add-In . 108

Testing the Instant Search Add-in Solution . 109
What to Expect. 109
Troubleshooting. 109

Debug Mode . 110
Debugging Code . 111

Summary . 112

Part III Working with Outlook Data
5 Built-in Item Types . 115

Introduction to Built-in and Custom Item Types . 115
Understanding MessageClass . 117
Built-in vs. Custom Types . 118
Creating an Item . 118

MailItem, PostItem, and SharingItem Objects . 122
Appropriate Uses of MailItem and PostItem . 123
Compose MailItem . 123
Read MailItem . 132
Adding an Electronic Business Card . 136
Create a To-Do Item . 137

PostItem Object . 139
Creating a PostItem . 140
Responding to a PostItem . 140

AppointmentItem Object . 140
Appropriate Uses of AppointmentItem. 141
One-Time Appointments . 141
All-Day Events . 143
Appointment Attendees . 144
Recurring Appointments . 146

MeetingItem Object. 154
ContactItem Object . 158

Appropriate Uses of ContactItem . 158
Working with Contact Properties . 158
Electronic Business Cards . 160

Table of Contents xi
TaskItem Object . 162
Appropriate Uses of TaskItem. 162
Creating a Recurring Task . 162
Delegating a Task . 163

TaskRequestItem Object. 163
Working with Task Requests . 164

Other Item Types . 166
DistListItem Object . 166
JournalItem Object . 167
NoteItem Object . 167
StorageItem Object. 168

Summary . 170

6 Accessing Outlook Data. 171

An Overview of Outlook Data Storage . 171
Exchange Server . 171
Personal Folder Files (.pst) . 173
Custom Store Providers . 173

Accounts Collection and Account Object . 173
Stores Collection and Store Object. 174

Stores Collection . 174
Adding or Removing a Store Programmatically . 175
Working with the Store Object . 176

Folders Collection and Folder Objects . 178
An Overview of Folder Types . 178
Folders Collection . 180
Folder Object. 182
Working with the Folder Object. 183
Folder Properties and Methods . 187

Folder Permissions . 191
Assigning Folder Permissions . 192
Assigning Roles. 193
Using the SharingItem Object to Assign Folder Permissions. 194

Accessing Items in a Folder. 194
Performance Considerations . 194
OutlookItem Helper Class . 195
Items Collection . 196

xii Table of Contents
Table Object . 201
Summary . 214

7 Address Books and Recipients . 215

An Overview of Outlook Address Books . 215
Exchange Global Address List . 215
Exchange Containers. 216
Offline Address Book . 216
Outlook Address Book . 217
Other Address Book Providers . 217

The Recipients Collection and Recipient Objects. 218
Outlook Object Model Guard Considerations . 218
The CreateRecipient Method . 218
Working with the Recipients Collection Object. 220
Obtaining the SMTP Address of a Recipient . 223

The AddressLists Collection and AddressList Objects . 224
Enumerating AddressList Objects . 224
The AddressListType Property . 224
Determining Resolution Order of Address Lists . 225
Finding a Specific AddressList Object . 225
Determining the Contacts Folder for a Contacts Address Book. 226

The AddressEntries Collection and AddressEntry Object . 227
The AddressEntryUserType Property . 228
Finding a Specific AddressEntry Object . 229
The GetAddressEntryFromID Method . 229
Displaying AddressEntry Details . 231
Getting Availability Information for a User . 232

The ExchangeUser Object . 234
Working with ExchangeUser Properties . 234
Obtaining an ExchangeUser Object from an AddressEntry Object 235
The GetExchangeUserManager Method. 236
The GetDirectReports Method . 236
The GetMemberOfList Method . 237
Obtaining Proxy Addresses for an ExchangeUser Object 238

The ExchangeDistributionList Object. 238
The GetExchangeDistributionListMembers Method . 239
The GetMemberOfList Method . 240

Table of Contents xiii
The GetOwners Method. 240
The SelectNamesDialog Object . 240

Using the SetDefaultDisplayMode Method . 241
Dialog Caption and Recipient Selectors . 242
Setting the InitialAddressList Property . 243
Displaying the Select Names Dialog Box . 245
Using SelectNamesDialog.Recipients . 245

Summary . 246

8 Responding to Events. 247

Writing Event Handlers in Managed Code. 247
Hooking Up Events in Visual Basic .NET . 249
Hooking Up Events in C# . 251

Outlook 2007 Events . 254
Application Object Events . 254
Explorers Collection Event . 259
Explorer Object Events . 262
Folders Collection Events. 264
Folder Object Events . 264
FormRegion Object . 265
Inspectors Collection Event . 265
Inspector Object Events . 268
Items Collection Events . 269
Item-Level Events . 270
Namespace Object Events. 274
NavigationGroups Collection Events . 275
NavigationPane Object Event. 275
OutlookBarPane Object Events. 275
OutlookBarGroup Object Events . 276
OutlookBarShortcut Object Events . 276
Stores Collection Events. 277
SyncObject Object Events . 278
Reminders Collection Events. 278
Views Collection Events. 279

Summary . 280

9 Sharing Information with Other Users. 281

Outlook and Shared Data . 281

xiv Table of Contents
Sharing in iCalendar Format . 281
Sharing a Calendar Through E-Mail . 282
Saving a Calendar to Disk. 283
Saving an Appointment to Disk . 284
Opening an iCalendar File . 285

Subscribing to Shared Folders . 286
RSS Feeds . 286
SharePoint Folders. 287
Internet Calendars . 289

Using the SharingItem Object . 290
SharingItem Types . 291
Sharing a Folder with a Sharing Invitation . 291
Requesting Folder Access with a Sharing Request . 292
Processing a Sharing Item . 293

Summary . 295

10 Organizing Outlook Data. 297

How Outlook 2007 Helps to Organize Information . 297
The Categories Collection and Category Objects . 297

Creating a Category . 299
Assigning One or More Categories to an Item . 299
Displaying the Categories Dialog Box . 300

Task Flagging . 301
Controlling Visibility of the To-Do Bar . 301
Creating To-Do Items That Appear in the To-Do Bar. 302

The Rules Collection and Rule Objects . 303
Overview of Rules Programming . 303
Rules Collection . 306
The Rule Object . 310
The RuleActions Collection. 312
The RuleConditions Collection . 314
Get or Set Action or Condition Properties with an Array 317
Rules Sample Add-In. 318

Search Folders . 319
When to Use a Search Folder. 319
Enumerating Search Folders . 320
Creating a Search Folder Programmatically . 321

Table of Contents xv
Outlook Views. 325
Objects That Derive from the View Object . 325
Adding or Removing a View Programmatically . 326

Customizing Your View . 327
Specifying Fields in a View . 327
Filtering Items in the View Object . 329
Sorting Items in a View . 329
The AutoFormatRules Collection . 330

Summary . 334

11 Searching Outlook Data. 335

Overview of Searching Data . 335
Outlook Query Languages . 335

AQS. 337
DASL . 342

Date-Time Comparisons . 354
Filtering Recurring Items in the Calendar Folder . 354
Date-Time Format of Comparison Strings . 355
Time Zones Used in Comparison. 356
Conversion to UTC for DASL Queries . 357

Integer Comparisons . 358
Invalid Properties . 359

Jet . 359
DASL . 359

Comparison and Logical Operators. 360
Comparison Operators . 360
Logical Operators . 360
Null Comparisons . 361

Search Entry Points. 361
Search Considerations . 364

Performance . 364
Read-Only vs. Read/Write. 365
Searching Subfolders . 366
Windows Desktop Search . 366

Summary . 367

xvi Table of Contents
Part IV Providing a User Interface for Your Solution
12 Introducing the Outlook User Interface . 371

Decoding the User Interface . 371
The Explorer Window (The Explorer Object) . 372
Programming the Explorer Object. 373

The Explorers Collection . 373
The Inspector Window (The Inspector Object) . 377
Programming the Inspectors Collection and
Inspector Object . 378

The Inspectors Collection . 378
Working with the Navigation Pane. 380

Making the Most of Navigation Modules . 380
Adding Structure with Navigation Groups . 382
Removing Folders . 384

Folder Views . 385
The Reading Pane . 385

Customizing the Reading Pane . 385
The To-Do Bar. 386
Command Bars. 386
Context Menus . 386
Folder Home Pages . 389
Summary . 390

13 Creating Form Regions. 391

Introduction to Form Regions . 391
Form Pages Compared with Form Regions . 392
Form Region Types . 392
Standard Form Types. 395
Anatomy of a Form Region Solution . 396

Becoming Familiar with Form Region Design . 396
Designing a Form Region. 397
Adding Controls. 399
Working with Fields. 403
Polishing Your Form Region. 406

Form Region End to End. 411
Step 1: Creating a Form Region. 411
Step 2: Writing Business Logic . 415

Table of Contents xvii
Step 3: Registering the Form Region. 423
Advanced Form Region Methods . 433

Summary . 434

14 Form Region Controls . 435

Standard Controls . 435
The Outlook Check Box. 435
The Outlook Combo Box . 435
The Outlook Command Button . 436
The Outlook Label Control . 437
The Outlook List Box . 437
The Outlook Option Button . 437
The Outlook Text Box. 438

Outlook-Specific Controls . 438
The Outlook Body Control . 438
The Outlook Business Card Control. 438
The Outlook Category Control. 439
The Outlook Contact Photo Control . 440
The Outlook Date Control . 441
The Outlook Frame Header Control . 441
The Outlook InfoBar Control . 442
The Outlook Page Control . 443
The Outlook Recipient Control . 444
The Outlook Sender Photo Control. 444
The Outlook Time Zone Control . 445
The Outlook Time Control . 446
The Outlook View Control . 447

Using Form Region Controls. 447
Adding Controls to the Control Toolbox . 447
Adding Controls Programmatically . 448
Programmatic Access to Controls . 450

Summary . 452

15 Extending the Ribbon. 453

Introducing Ribbon Extensibility . 453
What Happens with Existing Code . 454

Outlook RibbonX Sample Add-In . 458
Installation Instructions . 458

xviii Table of Contents
Running the Sample Add-In . 459
Modifying Your Code to Use RibbonX . 459

Authoring Ribbon XML. 461
IRibbonExtensibility Interface . 462
Detecting Errors . 465
NewInspector Event . 466
OutlookInspector Class . 467
IRibbonUI Object . 468
IRibbonControl Object. 468

Summary . 470

16 Completing Your User Interface . 471

Custom Task Panes. 471
When to Use a Custom Task Pane. 472
Implementing a Custom Task Pane. 472
Adding a Custom Task Pane in an Add-In . 475

Custom Property Pages . 478
Designing a Custom Property Page . 479

Summary . 486

Part V Advanced Topics
17 Using the PropertyAccessor Object . 489

Scenarios for PropertyAccessor . 489
Objects That Implement PropertyAccessor . 490
PropertyAccessor Namespaces. 491

Obtaining a Specific SchemaName String. 491
Type Specifiers . 492
The Proptag Namespace . 492
Named Property ID Namespace . 493
Named Property String Namespace . 494
Office Namespaces . 495
DAV Namespaces. 496

The PropertyAccessor Object . 497
The GetProperty Method . 497
The SetProperty Method. 498
The GetProperties Method . 499
The SetProperties Method . 500

Table of Contents xix
The DeleteProperty Method . 501
The DeleteProperties Method. 501
Date-Time Properties . 502
Multivalued Properties . 502
Helper Methods . 503

Detecting and Reporting Error Conditions. 505
Property Size Limitations. 506
Summary . 507

18 Add-in Setup and Deployment. 509

Creating a Setup Project . 509
Writing Required Keys to the Windows Registry . 510

Installing to HKEY_CURRENT_USER . 510
Installing to HKEY_LOCAL_MACHINE . 510
Registry Keys Required for an Add-In. 510
Registry Keys Required for a Form Region. 512

Required Installation Components . 512
.NET Framework Version 2.0 . 512
Visual Studio Tools for Office Runtime . 513
Primary Interop Assemblies . 514
Add-in Assembly and Other Required Components . 516
Using a COM Shim . 516
Writing Custom Actions . 516

Deploying to Users Who Are Not Administrators . 517
Summary . 517

19 Trust and Security . 519

Code Security for Outlook 2007. 519
Guard Principles . 522
Security Warning Types . 523
Detecting Trusted State . 525
Trapping Errors . 526
Restricted Properties and Methods . 526

Trusting Managed Code . 531
Trustable Shared Add-Ins . 531

Trust Center . 532
Administrative Options . 535

Group Policy Security for COM Add-Ins . 535

xx Table of Contents
Exchange-Brokered Security for COM Add-Ins . 536
Configuring a Security Policy. 536
Trusting an Add-In. 537
Form Region Policy . 540
Folder Home Page Policy . 541

Summary . 542

Index. 543

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

xxi

Foreword
Hello, my name is Brian, and I’m a developer. Now, you may wonder, is that a problem?
Actually, it is. You see, if an application provides an object model, I will code it. Ever since I
started programming on Windows, I’ve been attracted to applications that expose their fea-
tures via a programmatic application programming interface (API), allowing me to make
them my own. Each release of Microsoft Outlook—from the first release in 1996 to the new-
est release in 2007—has provided ways for me and you to customize and extend, to make it
our own.

While early releases of Outlook provided extensibility via VBScript, C++ extensions, and
automation, it was Outlook 2000 that sparked a hot and heavy relationship that I’ve main-
tained to this day. Outlook 2000 let me write in-process add-ins using my component tech-
nology and programming language of choice: COM and Visual Basic. Reading the
documentation on how to write an add-in brought joy to my heart. All I had to do was imple-
ment a COM interface, IDTExtensibility2, and I could bring the power of component-based
solutions to Outlook. I had the power to do just about anything I wanted. With the ability
to bind my code to Outlook via its rich set of events or via user interface (UI) elements such
as command bars, I could create compelling applications on top of Outlook for myself and
customers. I was excited.

I proceeded to write articles, speak at conferences, and tinker. I got involved with creating
digital dashboards where I was able to mix COM, Visual Basic, VBScript, DHTML, and the
Outlook View Control to provide information displays consolidating local and remote infor-
mation for quick and efficient review. It was at one of these conferences—in either the desert
of Arizona or the sweltering heat of an Atlanta summer—that I met Randy Byrne. I had
picked up Randy’s first edition of the book you hold in your hands, and I was looking for-
ward to meeting him. I found his writing style pleasant, and the golden nuggets of insight in
how to build applications on top of Outlook always made my solutions better. What was
great about meeting Randy was that he was just as friendly as his writing made him out to
be—something a bit unusual for a technical subject like programming. Talking with Randy
about Outlook was always pleasant, and it never seemed to bother him when I asked what
was either a simple question or something I had missed on page 562 of his book.

Randy updated the book for Outlook 2002, and I got my copy. Updated with essential infor-
mation, such as how to deal with the new object model guard released in the wake of
viruses like Melissa, I once again was indebted to Randy for taking the time to make the long
journey that is writing a book. And, as in the past, whenever I’d run into Randy at shows,
like Microsoft’s annual technical show Tech Ed, we’d exchange pleasantries, chat, and of
course have the occasional discussion about Outlook.

xxii Foreword
As Outlook matured, programming options changed. Microsoft released the Common Lan-
guage Runtime and the .NET Framework, Visual Basic .NET, and Visual C#. This new gen-
eration of development technologies sparked a new revolution and interest in programming
the Windows platform. The increases in productivity that the new languages brought and
the deep richness of the Framework’s class libraries made it easy to leave the world of COM
behind for the managed world. However, applications built upon COM can’t be rewritten
overnight. Thus, if you wanted to work with Outlook, you still needed to deal with COM.
From the managed world, that means knowing COM and .NET. You need to understand the
impact of two different memory models and the cost of marshaling between two call stacks.

Outlook 2003 proved a less significant update than previous versions for developers. This
led Randy and other authors to forgo writing updated and new versions of their books. But
Randy wasn’t just relaxing. He founded Micro Eye, Inc., to provide Outlook consulting ser-
vices as well as popular add-ins like ZipOut. But something wonderful happened. Randy
joined Microsoft as a Program Manager on the Outlook team. My heart filled with joy. With
“one of us” on the inside, Outlook could only get better for developers like me (after all, it’s
always about me). And get better it has.

Outlook 2007 is the most significant release of the product to date. While many will cite fea-
tures such as the Ribbon, application task panes, and form regions as great new features,
I’m most happy with the unification of the programming model and a better Outlook object
model guard. Since early betas, I’ve poked and prodded at Outlook 2007 to see what I could
do. No longer do I need to drop down to CDO or use third-party libraries to get around
issues in the object model or runtime. It’s a great way to work. However, don’t get me
wrong—I’m a sucker for shiny and new. The new Ribbon, I have to say, is just darn pretty
and, once you get used to it, very functional. Naturally, I want to get my solutions using the
Ribbon. In addition, form regions remove issues I’ve had for years when working with the
built-in Outlook forms. Issues in the past that often had me eschew them completely and
instead rely upon other form technologies such as Windows Forms.

Yet, I have to admit, I have stumbled. Some of the new features of Outlook 2007 have forced
me to think a bit harder than normal. And that is why I was elated to find out that Randy
was updating “the book” for Outlook 2007. Better yet, he enlisted a cohort on the Outlook
team to be his coauthor. I had read Ryan Gregg’s blog and MSDN articles, and I knew Randy
had made a great decision. As I read my draft copy of their book, I didn’t want to put it
down. For one thing, Randy and Ryan have written this book for me. Okay—not just for me,
but for you and me, the managed developer. Providing examples in both C# and Visual
Basic for download, they take you on a journey, exploring what Outlook 2007 has to offer
you. More importantly, they provide insight into why you should do things for performance
and safety. In addition, because both of them are on the team, you know they write with
firsthand knowledge and authority. This book is for those of you who want to write the best
Outlook 2007 solutions.

Foreword xxiii
On a trip to Redmond this fall, they asked me to write the foreword. I was not only honored
but eager. After all, I knew without a doubt that this would be the book I would immediately
acquire once published. I knew it would be the book I would recommend without hesita-
tion. And here you have it. You hold the book on programming Outlook 2007 for managed
developers. I’m sure I might have something to say about Outlook 2007 at a conference or
in an article, but I know I won’t be writing a book. There’s no need. Now close the cover and
get to the register. You’ve got solutions to build.

Brian A. Randell

Upland, California

January 2007

Acknowledgments
A very large cast was required to produce Microsoft Office Outlook 2007. As Program Manag-
ers on the product team, we first want to thank all the Outlook team members who worked
constantly to define, create, and test their individual features. For many of these improve-
ments in Outlook 2007, the platform team was able to provide an object model to expose the
feature to the developer community. Without the hard work of the feature teams, the platform
would be diminished.

Beyond the product team as a whole, Randy Byrne wants to thank two individuals who were
willing to take a risk by bringing him into the Outlook product team: Will Kennedy, General
Manager of Outlook, and Marc Olson, the Group Program Manager of Outlook when he was
recruited by Microsoft. Will’s challenge to the platform team to provide better documentation
is, in part, responsible for this book. Without adequate documentation, developing for
Outlook can be a painful experience. For the platform team, two individuals stand out for
praise. The first is Peter Allenspach, Group Program Manager, whose enthusiasm, knowledge,
and dedication helped to make the Outlook platform what it is today. Peter actually wrote the
draft of Chapter 2, “Outlook as a Platform,” but modestly declined to be listed as a coauthor.
The second is Ryan Gregg, Program Manager and coauthor, who brought fantastic managed
coding skills to the team. There isn’t an Outlook add-in project that Ryan couldn’t complete in
a matter of hours or, at most, days. We also want to offer special thanks to Program Managers
Rainer Schiller and Rajesh Ramanathan for their work in helping the platform effort.

Drew Carlson, Development Manager, brought his vast historical knowledge of the Outlook plat-
form to our team. His sense of humor was always invaluable when we struggled with difficult
decisions. Matt Hainje, Development Lead, managed the developers for the platform team and
was our platform architect. Talking over problems with Matt always provided food for thought,
and he always challenged us on the Program Manager side to think clearly about our design deci-
sions. The following individual Outlook developers deserve thanks for their great platform con-
tributions: Michael J. Smith, Julia Cai, Andrew Coates, Rock Hymas, Brian Hill, and Wes Haggard.

Jim Reynolds, Test Lead, put together a great test team for our platform effort and helped us
prepare a Microsoft Exchange server environment for this book. On Jim’s team, we want to
thank Scott Mitten, Garett Sakamoto, Olga Gerasimova, Raja Iqbal, Kumiko Yada, Sid Patel,
Shu Zhang, and Anh Phan for all their hard work. Garett deserves special mention for doing
the late-night testing to ensure that we met performance goals for the new Table object. John
Guin, also a Test Lead, pitched in to provide extraordinary testing for form regions.

Of course, there are others who deserve acknowledgment even though they were not directly
part of the platform effort in Outlook 2007. Angela Wong, Programmer Writer for Office User
Assistance, was an invaluable contributor to the content of this book. Angela authored the
Outlook 2007 Developer’s Reference and made sure that the pyramids (the metaphor we
adopted for the Developer’s Reference and this book) were built on time and without calamity.
xxv

xxvi Acknowledgments
Thanks so much, Angela, for all your hard work. Bill Jacob, a Support Engineer in Messaging
Developer Support, took on the task of reviewing many of the chapters in this book. Bill’s
knowledge of Outlook developer issues is encyclopedic, and we both owe him an enormous
debt of gratitude for taking on the reviewing chore. When you’re next in Redmond, the beers
are on us! Also on the product support side, we offer special thanks to Stephen Griffin, whose
knowledge of all things MAPI is legendary. We’d also like to thank the following individuals at
Microsoft who contributed to this book in one way or another: Ronna Pinkerton, Jean Phil-
ippe Bagel, Carlos Brito, Kendall Keil, Chris Antos, GT Herbert, Alon Brown, Bob Novitskey,
and all our friends at Business Contact Manager including Jeff Keyes, Chris Heydemann, Nick
Thomson, and Dmitri Davydok. For their help in making Outlook a less challenging environ-
ment for managed code developers, we offer praise and special appreciation for KD Hallman,
Eric Carter, Andrew Whitechapel, Misha Shneerson, and John Durant.

Finally, several individuals who have been awarded Microsoft Most Valuable Professional
(MVP) status have acted as a sounding board for ideas. Sue Mosher, Outlook MVP extraordi-
naire and owner of OutlookCode.com, provided excellent feedback about how we could
improve Outlook platform documentation. Her object model bug reports during the beta
were also greatly appreciated. Yes, we do enjoy finding bugs before we ship! David Kane,
Outlook MVP, offered valuable pragmatic advice on how we could improve the Outlook devel-
oper experience. Finally, Dmitry Streblechenko, still a wizard of Extended MAPI, provided
encouragement for the changes we made to improve object model guard security.

Because a book of this type is by its very nature a group effort, I want to thank the Microsoft
Press team behind this book. Our acquisitions editor, Ben Ryan, put this book on the schedule
and gave us guidance about how to write a book and do our Program Manager jobs at the
same time. Melissa von Tschudi-Sutton, our project editor, deserves a big cheer for keeping us
on track and on schedule. Melissa, it’s been great to work with you. The team at our produc-
tion vendor, nSight, also deserves kudos. Cindy Gierhart acted as project manager. Jay Harlow,
also an Outlook MVP, served as technical editor, and Teresa Horton was the copy editor.
Again, I thank the nSight team for their professionalism and enthusiasm.

Randy Byrne I want to thank my wonderful wife, Susan Cohen Byrne, for her patience and
understanding while I completed yet another book. When immersed in writing a book for
developers, it helps to come up from the depths and have a great partner to talk to and share
some laughs. My beautiful daughters, Lily and Zoe, fill me with pride and joy, and those feel-
ings help start the day and get the job done. Additional thanks go to my dear friends Susan
Brown, Steve Ekstrom, Steve Cohen, Fern Friedman, and Davide Atenoux for their support
and encouragement.

Ryan Gregg I’d like to thank my parents, Randall Gregg and Cheri Gregg, for their constant
love and encouragement to reach for and obtain my dreams. Even from 1,800 miles away,
there isn’t a day that goes by that I don’t feel their impact on my life, and I’m grateful for all
they have done to help me along the way. I’d also like to thank my close friends Jessica, Zack,
Garett, Jared, and Melissa for helping me stay grounded and always pushing me to do the best.

Introduction
Microsoft Office Outlook 2007 offers compelling new product features including Instant
Search, task flagging, the To-Do Bar, Calendar overlays, sharing with friends and coworkers,
Really Simple Syndication (RSS) feeds, Electronic Business Cards, Microsoft Office SharePoint
Server integration, and plenty of other features that make Outlook 2007 the most exciting
release in the history of the product. As a developer, you can benefit from the innovation built
into Outlook 2007. The Outlook 2007 object model has been expanded with more than dou-
ble the number of objects compared to previous versions. New form region technology allows
you to create custom forms that have the same look and feel as Outlook’s.

If you are a seasoned Microsoft .NET developer, why should you care about these platform
improvements in Outlook 2007? In the past, .NET development against Outlook could be
compared with finding your way through a maze. You never knew when you were going to hit
an insurmountable obstacle or retrace your steps. If you wanted to do anything at a lower level
or do advanced but commonplace tasks such as display the Address Book or access named
properties, you were out of luck. You had to write Extended Messaging Application Program-
ming Interface (MAPI) code, but you hit a catch-22 because Extended MAPI code is not sup-
ported for .NET development. Time to pull down those C++ books from the shelf. For many
developers, writing C++ native code is a barrier to entry and contradicts your commitment to
writing managed code.

Hopefully, the platform improvements in Outlook 2007 solve both the barrier to entry and
the requirement to learn C++ and Extended MAPI for advanced solutions. One of the primary
goals for Outlook 2007 extensibility is to unify existing programming models so that the Out-
look object model is sufficient for an Outlook developer. The Outlook 2007 platform removes
the roadblocks that developers experienced in previous versions of Outlook. Outlook 2007
allows you to write managed solutions that are fully supported because they use only the Out-
look object model. For the vast majority of scenarios, you write code with application pro-
gramming interfaces (APIs) that are supported for .NET development.

Why We Wrote This Book
We wrote this book because, quite frankly, there has been a lack of guidance from the product
team about best coding and design practices for an Outlook solution. This book attempts to
remedy this deficiency by providing top-level suggestions about when and how to integrate
with Outlook. We’ve also done our best to deliver reusable .NET code samples that you can
adapt for your application. As platform program managers for Outlook, we are passionate
about improving and expanding Outlook extensibility to accommodate a wide range of solu-
tions. Although each release of Outlook aims to accommodate the most relevant and
requested new features for the Outlook user community, not every need will be addressed by
xxvii

xxviii Introduction
a product release. As a developer, the Outlook platform lets you address the gaps in Outlook’s
feature set. Use your ingenuity and the Outlook platform to fill these needs. The Outlook solu-
tion landscape is vast, and your contribution is welcomed and encouraged.

Who This Book Is For
This book is aimed at beginning to intermediate-level developers who want to write managed
solutions for Outlook using Microsoft Visual Studio 2005. Other developers who are writing
native solutions, whether in C++ or Microsoft Visual Basic 6.0, will also benefit from the dis-
cussion of the new programmability features in Outlook 2007. A basic knowledge of Microsoft
Visual Basic .NET or Microsoft Visual C# is required to understand the code samples pro-
vided with this book. Component Object Model (COM) add-ins are the primary customiza-
tion technology for extending Outlook. Of course, this means that there are interop issues to
be considered when writing managed code against a COM-based type library such as the Out-
look object model. We’ve tried to address these interop issues when they are relevant to writ-
ing managed code for Outlook. It’s important to note, however, that the focus of this book is
writing applications for Outlook rather than writing managed code per se.

There are several other extensibility technologies that are not covered in this book, except to
note their usage in Outlook 2007 or previous versions. This book is not for developers who
are looking for a deep dive into Extended MAPI, Exchange Client Extensions (ECEs), or
Collaboration Data Objects (CDO) version 1.21.

How This Book Is Organized
This book is organized into five major parts, which can be read as a whole or used in part as
your needs dictate. Although we both share responsibility for all the content of this book,
Randy wrote Chapters 1, 3 through 8, 10, 11, 15, 17, 18, and the Introduction. Ryan authored
Chapters 9, 12 through 14, 16, and 19. Peter Allenspach created the initial draft of Chapter 2,
and Randy provided additional content for the version delivered in this book.

Part I: Introducing Microsoft Office Outlook 2007

Chapter 1, “What’s New in Microsoft Office Outlook 2007,” provides an overview of the major
new programmability features in Outlook 2007. Use this chapter to familiarize yourself with
the new capabilities of the Outlook object model and Outlook form regions. Form regions
provide an improved model for adding user interface (UI) elements to Outlook 2007. Chapter
2, “Outlook as a Platform,” covers the program team’s rationale behind the new extensibility
areas in Outlook 2007. This chapter also provides prescriptive guidance about how to build
solutions that are deeply integrated with Outlook. It covers the internal MAPI architecture
used to build Outlook and discusses the architectural pillars of the product.

Introduction xxix
Part II: Quick Guide to Building Solutions

This section is for the developer who has a stack of projects to complete but insufficient time
to get them coded and tested. Chapter 3, “Writing Your First Outlook Add-in Using Visual
Basic .NET,” walks you through the process of creating an add-in, writing code for a custom
context menu item, and adding a COM shim and setup project to the solution. Chapter 4,
“Writing Your First Outlook Add-in Using C#,” does the same for C# developers. Use these
chapters as a learning tool or to jumpstart your own solution.

Part III: Working with Outlook Data

These chapters familiarize you with the objects used to represent and contain data. Chapter 5,
“Built-in Item Types,” focuses on the core item types in the Outlook object model. You’ll see
plenty of code samples that illustrate how to work with these objects. Chapter 6, “Accessing
Outlook Data,” discusses the objects such as the Store and Folder objects that act as containers
for items. In Chapter 6, you discover how to use the Items collection and Table object to access
items. Because Outlook is a messaging client, you need to send items to recipients or under-
stand the identity of the message sender. Chapter 7, “Address Books and Recipients,” intro-
duces you to the objects that represent recipients and address books. Later in the section, you
learn how to write event handlers in Chapter 8, “Responding to Events.” Events are the crux
of any add-in that seeks to understand user actions or enforce its own business logic. Chapter
9, “Sharing Information with Other Users,” shows you how to share Outlook items with other
users. Finally, the chapters that conclude this section concentrate on organizing and search-
ing Outlook data. Chapter 10, “Organizing Outlook Data,” discusses the use of task flagging,
color categories, rules, search folders, and views to organize data for a user. Chapter 11,
“Searching Outlook Data,” provides in-depth coverage of Outlook query syntax and offers
plenty of code samples to solve common search problems.

Part IV: Providing a User Interface for Your Solution

If your application requires a UI, this section is for you. Chapter 12, “Introducing the Outlook
User Interface,” introduces you to the UI objects in Outlook. In Chapter 13, “Creating Form
Regions,” you learn how to create a simple form region in a step-by-step fashion. Of course, a
UI that lacks appropriate controls is not very practical. Consequently, Chapter 14, “Form
Region Controls,” covers all the new Outlook controls that you can use on a form region. The
Microsoft Office Fluent user interface is the term used to describe the new UI for the 2007
Microsoft Office system. The Ribbon is a component of the Microsoft Office Fluent user inter-
face and the term used throughout this book to refer to the Ribbon component. Chapter 15,
“Extending the Ribbon,” discusses how Ribbon extensibility works in Outlook. This chapter
addresses very specific Ribbon extensibility issues that you need to be aware of when you cus-
tomize the Ribbon for Outlook. Chapter 16, “Completing Your User Interface,” covers special-
ized topics such as Outlook property pages and custom task panes.

xxx Introduction
Part V: Advanced Topics

This section covers advanced topics that might be relevant for your solution. Chapter 17,
“Using the PropertyAccessor Object,” discusses how to use the PropertyAccessor object to access
low-level properties on numerous objects. Chapter 18, “Add-in Setup and Deployment,” cov-
ers what you need to know to deploy your solution to a target computer. Finally, Chapter 19,
“Trust and Security,” discusses the significant changes that have been made to object model
security in Outlook 2007.

Sample Code on the Web
The code samples provided in this book are primarily Visual C#, but equivalent Visual Basic
.NET samples are available from this book’s companion Web site. All of the code samples dis-
cussed in this book can be downloaded from the book’s companion Web site at the following
address:

http://www.microsoft.com/mspress/companion/978-0-7356-2249-3/

Before you can run the sample code, you must download the sample code installation package
available on the book’s companion Web site. Once you have downloaded the sample code
installation package to your hard disk, double-click SampleCode_978-0-7356-2249-4.msi to
begin the setup process. Follow the steps in the setup wizard to complete the installation.

The sample code installation package will install SampleCodeCS and SampleCodeVB to the
following folder:

My Documents\Visual Studio 2005\Projects

The CS suffix denotes C# sample code and snippets. The VB suffix denotes Visual Basic sam-
ple code and snippets. Additionally, links to Outlook add-in templates and to other sample
Outlook add-ins discussed in this book are provided on the book’s companion Web site.

Note The name of your personal documents folder depends on the operating system
installed on your computer. On Microsoft Windows Vista, your personal documents folder is
named Documents. On Microsoft Windows XP, your personal documents folder is named My
Documents. You should adjust path specifications for your personal documents folder
according to your installed operating system.

If you install the sample add-ins on Windows Vista, you must run Visual Studio 2005 as
Administrator to build the Sample Code solutions. To run Visual Studio 2005 as Administra-
tor, follow these steps:

1. Click the Start menu, and locate Microsoft Visual Studio 2005.

2. Right-click Microsoft Visual Studio 2005.

Introduction xxxi
3. Select the Run As Administrator command.

To run the C# sample code add-in, follow these steps:

1. Close Outlook 2007.

2. In the My Documents\Visual Studio 2005\Projects\SampleCodeCS folder, open the
SampleCodeCS solution.

3. In Solution Explorer, select SampleCodeCSSetup.

4. From the Build menu, select Rebuild SampleCodeCSSetup.

5. [Optional] After the build process has completed, from the Project menu, select Install to
install the solution.

6. Start Outlook to start the add-in in Run mode or press F5 to start the add-in in Debug
mode.

If Outlook does not launch in Debug mode, perform the following steps:

1. In Solution Explorer, select SampleCodeAddinCS.

2. On the Project menu, click SampleCodeAddinCS Properties, and then click the Debug tab.

3. Under Start Action, select the Start External Program check box, and then click Browse.

4. In the [Drive:]\Program Files\Microsoft Office\Office12 folder, select Outlook.exe.

To run the Visual Basic sample code add-in, follow these steps:

1. Close Outlook 2007.

2. In the My Documents\Visual Studio 2005\Projects\SampleCodeVB folder, open the
SampleCodeVB solution.

3. In Solution Explorer, select SampleCodeVBSetup.

4. From the Build menu, select Rebuild SampleCodeVBSetup.

5. [Optional] After the build process has completed, from the Project menu, select Install to
install the solution.

6. Start Outlook to start the add-in in Run mode or press F5 to start the add-in in Debug mode.

If Outlook does not launch in Debug mode, perform the following steps:

1. In Solution Explorer, select SampleCodeAddinVB.

2. From the Project menu, click SampleCodeAddinVB Properties, and then click the
Debug tab.

3. Under Start Action, select the Start External Program check box, and then click Browse.

4. In the [Drive:]\Program Files\Microsoft Office\Office12 folder, select Outlook.exe.

xxxii Introduction
Once you have installed the sample code add-in, you can run individual methods by selecting
the chapter number and name in the Outlook 2007 Sample Code dialog box, shown in the fol-
lowing figure.

To run a method in the Sample Add-in, follow these steps:

1. Follow earlier instructions to launch the Sample Add-in in Debug mode.

2. Click the Sample Code command button (shown in the following figure) on the Stan-
dard command bar in the Outlook Explorer window. The Explorer window represents
the main Outlook application window in which the contents of a folder are displayed.

Introduction xxxiii
3. The Outlook 2007 Sample Code dialog box displays.

4. Select a chapter from the Chapter drop-down list.

5. From the Methods list box, select a method from the Methods list box.

6. Click the Run Selected Method command button to run the method.

Because methods in the sample code add-in often write to the trace listeners in the Listeners
collection, consider running the sample code add-in in Debug mode. The sample code is orga-
nized by chapter in the sample code add-in project. In the sample code add-in project, simply
navigate to the correct chapter in the Solution Explorer to examine the sample code for a
given chapter. You can set breakpoints in the sample code and step the code to facilitate your
learning process.

Code Snippets

When you download and install the sample code, you also install the code snippets that
accompany this book. Code samples that are available as a snippet are identified throughout
this book by the graphic shown in the page margin. Use these snippets in your own code as
required. The installation package will install Outlook code snippets to the Programming
Applications for Microsoft Office Outlook 2007 folder under the My Code Snippets folder.
Depending on the language used by the snippet, the My Code Snippets folder is under either
the Visual C# or the Visual Basic folder. Typically personal snippet folders are located here:

My Documents\Visual Studio 2005\Code Snippets\Visual C#\My Code Snippets

or

My Documents\Visual Studio 2005\Code Snippets\Visual Basic\My Code Snippets

Before you can use the code snippets, you must install them through the Code Snippets
Manager:

1. Select Code Snippets Manager on the Tools menu in Visual Studio 2005.

2. Select the snippet language in the Language drop-down.

3. Click the Add button, and then open the Programming Applications for Microsoft Office
Outlook 2007 folder in the appropriate location.

4. Click OK to close the Code Snippets Manager dialog box.

To insert a code snippet by browsing in the code editor, follow these steps:

1. Right-click the Code Editor where you want to insert the code.

2. On the shortcut menu, click Insert Snippet. The IntelliSense code snippet picker
appears.

3. Navigate to the task of your choice and click it. The snippet code is inserted into your
code.

xxxiv Introduction
4. Once you have added the snippet to your code, there might be parts of it that need cus-
tomization, such as replacing variable names with more appropriate names or adding
using (C#) or Imports (Visual Basic) directives. The code editor helps you with the pro-
cess of correcting your code.

Building the Sample Add-Ins
Several sample add-ins in addition to the code sample add-in are available on this book’s com-
panion Web site. Some of the chapters discuss these sample add-ins, so you will want to
download and build these sample add-ins as well as the sample code add-in. The Outlook
2007 sample add-ins run only on Visual Studio 2005 Standard Edition, Visual Studio 2005
Professional Edition, or Visual Studio 2005 Team System. If you are using Microsoft Visual C#
Express Edition or Microsoft Visual Basic Express Edition to open the sample add-ins, you
will not be able to build the setup and deployment project and install the sample add-ins.

The following procedures assume that you have downloaded and installed the sample add-ins
from the book’s companion Web site.

To run a sample add-in, follow these steps:

1. Close Outlook 2007.

2. In the My Documents\Visual Studio 2005\Projects\SolutionName folder, open the
SolutionName solution.

3. In Solution Explorer, select AddinNameSetup.

4. From the Build menu, select Rebuild AddinNameSetup.

5. [Optional] After the build process has completed, from the Project menu, select Install to
install the solution.

6. Start Outlook to start the add-in in Run mode or press F5 to start the add-in in Debug
mode.

If Outlook does not launch in Debug mode, perform the following steps:

1. In Solution Explorer, select AddinName.

2. From the Project menu, select AddinName Properties, and then click the Debug tab.

3. Under Start Action, select the Start External Program check box and click Browse.

4. In the Drive:\Program Files\Microsoft Office\Office12 folder, select Outlook.exe.

Note If you install the sample add-ins on Windows Vista, an update to Visual Studio 2005
might be required. To build add-ins such as the Prepare Me sample, you need to start Visual
Studio with elevated privilege.

Introduction xxxv
System Requirements
The following table lists the components required to run the code samples for this book.

Support for This Book
Every effort has been made to the accuracy of this book and companion CD content.
Microsoft Press provides corrections to this book through the Web at the following location:

http://www.microsoft.com/learning/support

To connect directly to the Microsoft Knowledge Base and enter a query regarding a question
or issue that you may have, go to the following address:

http://www.microsoft.com/learning/support/search.asp

Table I-1 System Requirements

Component Requirement
Software Microsoft Office Outlook 2007

Microsoft Visual Studio 2005
Microsoft Visual Studio 2005 Tools for the 2007 Microsoft Office
System (optional)

Computer and processor 500 megahertz (MHz) processor or higher
Memory 256 megabyte (MB) of RAM or higher
Hard disk 1.5 gigabyte (GB) for Outlook 2007; a portion of this disk space will

be freed after installation if the original download package is
removed from the hard drive. Sample code that accompanies this
book requires 5 MB.

Drive CD-ROM or DVD drive
Display 1024 × 768 or higher resolution monitor
Operating system Windows XP with Service Pack (SP) 2, Windows Server 2003 with

SP1, Windows Vista, or later operating system
Other Connectivity to Microsoft Exchange Server 2000 or later is required

for certain advanced functionality in Outlook 2007. Instant Search
requires Microsoft Windows Desktop Search 3.0. Dynamic Calen-
dars require server connectivity. Connectivity to Microsoft Win-
dows Server 2003 with SP1 or later running Microsoft Windows
SharePoint Services is required for certain advanced collaboration
functionality. Connectivity to Microsoft Office SharePoint Server
2007 is required for certain advanced functionality. Microsoft Inter-
net Explorer 6.0 or later, 32-bit browser only. Internet functionality
requires Internet access (fees might apply).

xxxvi Introduction
If you have comments, questions, or ideas regarding the book or companion Web content, or
if you have questions that are not answered by querying the Knowledge Base, please send
them to Microsoft Press using either of the following methods:

E-Mail: mspinput@microsoft.com

Postal Mail:

Microsoft Press
Attn: Programming Applications for Microsoft Office Outlook 2007, Editor
One Microsoft Way
Redmond, WA 98052–6399

Please note that product support is not offered through the preceding mail addresses. For
support information, please visit the Microsoft Product Support Web site at the following
address:

http://support.microsoft.com

Part I
Introducing Microsoft Office
Outlook 2007

In this part:
Chapter 1: What’s New in Microsoft Office Outlook 2007. 3

Chapter 2: Outlook as a Platform. 19

Chapter 1

What’s New in Microsoft Office
Outlook 2007

This chapter provides a top-level view of the enhancements and additions for developers in
Microsoft Office Outlook 2007. Subsequent chapters provide in-depth discussions about how
to extend Outlook 2007.

Outlook 2007 introduces significant new improvements in its object model and forms tech-
nology to accommodate developer wants and provide a more comprehensive platform for
Outlook-based solutions. The following are the pillars of the Office Outlook 2007 extensibil-
ity vision:

■ Unification, so that developers no longer require Collaboration Data Objects 1.21
(CDO), Exchange Client Extensions, or other third-party libraries to complete their solu-
tions. Application programming interfaces (APIs) such as CDO and Messaging Applica-
tion Programming Interface (MAPI) are unsupported for managed solutions. The
Outlook object model is fully supported for Microsoft .NET development.

■ Performance, so that developers do not have to resort to other APIs when enumerating
the contents of a folder or performing search operations.

■ Trust and security, so that the Outlook object model cannot be used as a means to prop-
agate e-mail–based worms and viruses.

■ Forms, so that your application can support a richer and more contemporary user
interface.

■ Innovation, so that developers can access the new features of Outlook such as search,
task flagging, category coloring, side-by-side calendars, and sharing through the Out-
look object model.

The remainder of this chapter introduces you to the major new platform features of Outlook
2007. These improvements will make your life as an Outlook developer more productive so
that you can concentrate on creating a first-class solution rather than searching the Web for
workarounds. Previous versions of Outlook have made it difficult, especially for .NET devel-
opers, to complete an Outlook development project without resorting to unsupported APIs or
third-party libraries. Outlook 2007 remedies this situation from an object model perspective,
and provides some great new user interface technologies that will appeal to end users.
3

4 Part I Introducing Microsoft Office Outlook 2007
Managed Code and Outlook 2007
Outlook 2007 extensibility is still COM-based. If you program against the Outlook object
model using Microsoft Visual Studio 2005, you still use Primary Interop Assemblies
(PIAs) to provide the interop layer between your managed assembly and the Outlook
object model. You can benefit from the app domain isolation provided by the Visual
Studio 2005 COM Shim Wizard or Microsoft Visual Studio 2005 Tools for the 2007
Microsoft Office System (VSTO) system to improve the resiliency of your solution. The
focus of this book is managed add-in development for Outlook 2007. The code examples
provided are primarily Visual C#, but equivalent Visual Basic .NET samples are available
on the Web site that accompanies this book. I’ll focus on how you complete Outlook
development tasks using managed code. Along the way, you’ll learn about specific issues
such as object lifetime and instance variable scope that affect managed code developers
using the Outlook 2007 PIAs.

Form Regions
Form regions allow you to customize both built-in and custom items in ways that were impos-
sible in previous versions of Outlook. For example, previous versions of Outlook only allowed
customization of the first page of a Contact item. In Outlook 2007, you can use form regions
to customize the first page of any built-in Outlook item. You can add controls bound to cus-
tom fields for your solution or work with the Outlook controls that bind to Outlook data such
as subject or start time. From a user interface perspective, form regions are the most impor-
tant and exciting new addition to the Outlook extensibility platform. Here is a quick guide to
what you can accomplish with form regions:

■ You can add a new user interface as an adjoining form region to the default page of any
standard Outlook form. A standard form represents a built-in Outlook item type such as
a Contact item.

■ If you are using adjoining or separate form regions only to add a user interface to a stan-
dard form, you can choose to specify the message class of the form regions as the same
message class as that of the standard form (for example, IPM.Contact), or as a custom
message class derived from the standard message class (for example, IPM.Contact.Sales).

■ You can use separate form regions to replace the default page of a standard form, or
replace the entire standard form. In this case, you must specify a derived message class
(for example, IPM.Contact.Sales) for these form regions and register the form regions for
that message class.

■ Multiple add-ins can add form regions to the same form.

■ Use the Outlook controls that ship with Outlook 2007 to create your form region. All
controls on a form region are correctly themed. Outlook controls also support a full

Chapter 1 What’s New in Microsoft Office Outlook 2007 5

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

range of control events such as MouseUp, MouseDown, Keypress, and others. In-the-box
controls for Outlook 2007 include the following:

❑ Microsoft Office Outlook Body Control

❑ Microsoft Office Outlook Business Card Control

❑ Microsoft Office Outlook Category Control

❑ Microsoft Office Outlook Check Box Control

❑ Microsoft Office Outlook Combo Box Control

❑ Microsoft Office Outlook Command Button Control

❑ Microsoft Office Outlook Contact Photo Control

❑ Microsoft Office Outlook Date Control

❑ Microsoft Office Outlook Frame Header Control

❑ Microsoft Office Outlook InfoBar Control

❑ Microsoft Office Outlook Label Control

❑ Microsoft Office Outlook List Box Control

❑ Microsoft Office Outlook Option Button Control

❑ Microsoft Office Outlook Page Control

❑ Microsoft Office Outlook Recipient Control

❑ Microsoft Office Outlook Sender Photo Control

❑ Microsoft Office Outlook Text Box Control

❑ Microsoft Office Outlook Time Control

❑ Microsoft Office Outlook Time Zone Control

Chapters 12 through 14 discuss how to design and deploy form regions in your solution. If
you are wondering when to use form regions as opposed to other form technologies such as
InfoPath forms, the simplest answer is that Outlook form regions are the best choice for
extending Outlook forms and data. For example, you might want to add catering information
to an Outlook appointment item, and a form region is a great place to expose information
such as caterer, menu selections, and delivery time to the users of your solution. InfoPath
forms are also exposed in Outlook 2007, but are best used for data that is not integrated
directly with Outlook. For example, a survey such as a hardware inventory survey is more
appropriate for an InfoPath form.

In the 2007 Microsoft Office system, other Microsoft applications make use of form regions to
integrate their user interface into Outlook. Figure 1-1 shows a Microsoft Business Contact
Manager form region for a Business Contact item. Notice that by using the new Outlook con-
trols such as the Electronic Business Card Control and Contact Photo Control, this custom

6 Part I Introducing Microsoft Office Outlook 2007
form is tightly integrated with the look and feel of a built-in Outlook Contact Inspector. An
Inspector designates the window in which an Outlook item is displayed. At the same time, the
developers of Business Contact Manager can display their own custom data on the first page
of their form.

Figure 1-1 Microsoft Business Contact Manager uses form region technology in a Business
Contact item.

Security
Thanks to the Outlook object model guard, Outlook 2007 continues to remain secure from
the threat of e-mail worms or viruses. The Outlook object model guard prevents e-mail
worms and viruses from accessing e-mail addresses or other confidential information stored
in Outlook. However, developers should understand that Outlook 2007 has introduced an
important change in the way that the Outlook object model guard operates. Although the
behavior of the object model guard has not changed significantly for Outlook add-ins,
Outlook 2007 allows external applications to run without object model guard prompts
provided that the machine on which your code is running has functional antivirus soft-
ware installed and all antivirus definitions are current.

This change represents a major departure from the way the object model guard worked in pre-
vious versions for external out-of-process COM callers. Before Outlook 2007, external COM
callers were always untrusted from the perspective of the object model guard. This means that
external applications had to resort to Extended Messaging Application Programming Interface

Chapter 1 What’s New in Microsoft Office Outlook 2007 7
(also known as Extended MAPI) or third-party libraries to prevent display of Outlook 2007
object model guard warning dialog boxes such as the one shown in Figure 1-2.

Figure 1-2 Address warning dialog box appears when untrusted code accesses a protected prop-
erty or method.

The object model guard was originally introduced for Microsoft Outlook 98 and Microsoft
Outlook 2000 product versions. Since the introduction of the object model guard, developers
have struggled with it because it often confused end users and frustrated legitimate devel-
opers. Moreover, if you needed to use CDO 1.21 for property operations or improved per-
formance, you faced a different security model that did not integrate with the Outlook add-
in trust model. Because the Outlook 2007 object model has removed the need for CDO,
Outlook 2007 offers a new and improved security story for developers. The overall goal is to
remove development roadblocks for legitimate Outlook developers.

Table Object
One of the most frequent complaints from developers is lack of performance when using the
Outlook object model. The Table and related objects address these complaints. The Table
object lets you enumerate items in a folder. It also provides you with the ability to specify table
columns and to filter and sort rows in the table. Unlike Outlook item-level objects, the rows in
the table represent light items rather than hydrated full items. For this reason, the new Table
object offers a significant performance improvement over the legacy Items collection. For very
large collections (greater than 1,000 items), the Table performs in approximately 10 to 20 per-
cent of the time required for enumeration of the Items collection object without the use of
Items.SetColumns. Unlike the Items collection, the Table object encourages developers to write
performant code and does not have the pitfalls of the Items collection, where a developer
could retrieve the Body property or the Attachments collection on each MailItem and in turn
see performance suffer dramatically.

You’ll learn about the Table object in detail in Chapter 11, “Searching Outlook Data.” From the
standpoint of usability, programming the Table object is very straightforward. You call the
GetTable method on a Folder object, and then iterate over the rows in the Table object using the
GetNextRow method. Depending on the folder type, there is a default set of columns that you
can access using the indexer on the Row object. If the default column set does not contain the
property you need, you can add or remove columns from the table. It’s as simple as that. To

8 Part I Introducing Microsoft Office Outlook 2007
give you an idea, here is a C# code sample that enumerates all the items in the Inbox that con-
tain the word “Office” in the subject:

private void DemoTable()
{
 string filter = "@SQL=" + "\""+ "urn:schemas:httpmail:subject"
 + "\"" + " ci_startswith 'Office'";
 Outlook.Table table =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).GetTable(
 filter, Outlook.OlTableContents.olUserItems);
 while (!table.EndOfTable)
 {
 Outlook.Row nextRow = table.GetNextRow();
 Debug.WriteLine (nextRow["Subject"]);
 }
}

Improved Search
Instant Search with word wheeling and hit highlighting delivers a vastly improved search
experience for users of Outlook 2007. As a developer, you might be wondering if you can
exploit this feature and drive Outlook’s search engine programmatically. The answer is yes;
you can leverage Instant Search both in the Table object and in the Outlook Explorer window.
An Explorer designates the main Outlook window in which the contents of a folder is dis-
played. From the developer’s standpoint, you can create queries that cause Outlook to use the
same search engine that delivers instant results in the Outlook user interface.

For programmatic search, the Outlook restriction language supports two new keywords:
ci_startswith and ci_phrasematch. If Windows Desktop Search (WDS) is installed and opera-
tional on a given Store, you can search the contents of a folder in that Store using these key-
words. The ci_ keywords are designed to return results on string properties such as body or
subject. Full details are provided in Chapter 11. You can also use the ci_ keywords when you
create a search folder programmatically. The use of these keywords forces Outlook to construct
the search folder using the Instant Search engine. Because search folders can also include sub-
folders, you can create search folders that span multiple folders. The Search object also sup-
ports the Table object, so it’s best practice to use Search.GetTable to return rows in a search
folder. If you persist the search folder by calling Save on the Search object, that search folder
will continue to use the WDS engine to populate the search folder in a performant manner.

If you need to control Outlook Instant Search in the Outlook Explorer window, you should
consider the new Search method on the Explorer object. The Search method lets you program-
matically specify a query string for Instant Search just as if the user had typed the criteria in
the Instant Search pane. Some solution developers might want to develop a custom task pane
that only is visible when the user navigates to his or her application folder. A custom task pane
is a new user interface element that you create programmatically for an Outlook Explorer or

Chapter 1 What’s New in Microsoft Office Outlook 2007 9
Inspector window. This custom task pane would enable the user to search the application
folder or all related folders using controls in the custom task pane. The Instant Search query
would be built using the controls in the task pane and makes your custom search very discov-
erable for the user.

Enhanced Events
Events are the oxygen of add-in development. Although Outlook has a considerable number
of events compared to other Microsoft Office applications, most of these events are repeated
across different item types. In an effort to improve your ability to listen to events in Outlook
2007, the events have been enhanced to support common developer scenarios. For example,
one of the biggest gaps in Outlook’s previous event model was the ItemRemove event on the
Items collection object. The ItemRemove event fires when an item has been removed from a
folder, but it does not tell the user which item has been removed. There were a number of pub-
lished hacks to work around this limitation. You can now remove those hacks from your code.
Outlook 2007 introduces BeforeItemMove and BeforeFolderMove events on the Folder object.
These events provide reliable event handling when an item or subfolder is removed from a
folder. The item or folder that is being removed is passed as a parameter to the event, and the
event is cancelable when you must prevent removal of certain items or folders to maintain
data integrity for your solution.

Another important change in the Outlook events model is that you have the ability to cus-
tomize context menus based on events that fire on the Application object. The following
Application-level events let you customize the context menu by adding, removing, or repur-
posing controls:

■ AttachmentContextMenuDisplay

■ FolderContextMenuDisplay

■ ItemContextMenuDisplay

■ ShortcutContextMenuDisplay

■ StoreContextMenuDisplay

■ ViewContextMenuDisplay

If you’ve used the Office object model to customize command bars, then writing code for com-
mand bar events is straightforward. The event passes a CommandBar object that represents
the context menu that is about to be displayed. You then write code to modify the controls on
that CommandBar object. Figure 1-3 displays a custom Instant Search context menu added to
the item context menu. This context menu provides quick access to searches for other mes-
sages from the sender of the item.

10 Part I Introducing Microsoft Office Outlook 2007
Figure 1-3 Custom context menu for Instant Search is created in the ItemContextMenuDisplay
event.

Another area where events have been improved is in the area of attachment events for items.
The number of attachment events has been expanded to include the following:

■ AttachmentRemove

■ BeforeAttachmentAdd

■ BeforeAttachmentPreview

■ BeforeAttachmentRead

■ BeforeAttachmentWriteToTempFile

These events let you know when an attachment is being added, read, previewed in the Read-
ing Pane, or written to a temporary file. The goal for providing these new attachment events is
to achieve parity with attachment events in Microsoft Exchange Client Extensions (ECEs).
ECEs, an API that predates Microsoft Outlook 97, requires C++ coding skills, and is not sup-
ported for .NET development. In the interest of providing full support for .NET developers,
we’ve identified the lacking events in the Outlook object model when compared with ECEs.
The ItemLoad event on the Application object is another ECE parity event that fires whenever
an item is loaded into memory, whether as a result of creating an item, viewing an item in the
Reading Pane, or opening the item in an Inspector window. In previous versions of Outlook,
you had only the NewInspector event to tell you that an item is about to be displayed in an
Inspector window. The ItemLoad event makes the following scenario possible:

1. A user edits an item using in-cell editing in a View.

Chapter 1 What’s New in Microsoft Office Outlook 2007 11
2. You need to enforce business logic to prevent changing a custom field to a value that is
invalid.

3. You use the ItemLoad event to hook up an event handler for the CustomPropertyChange
event for the item.

4. The CustomPropertyChange event handles your solution business logic and prevents
invalid values during the in-cell editing process.

Other events added to the Outlook 2007 object model provide support for new Outlook fea-
tures or fill in gaps from previous versions. For example, an item now offers a BeforeAutoSave
event that lets you write custom business logic before an auto save occurs. In Outlook 2007,
auto save occurs for all item types rather than just mail items. If the item does not have all
appropriate fields completed, you can cancel the auto save or display an alert to the user.

AddressEntry Enhancements
Previous versions of the object model had several coverage gaps regarding address books and
recipients. To remedy this problem, the Outlook 2007 object model provides parity with the
ability of CDO 1.21 to display the Address Book programmatically and return detailed infor-
mation about AddressEntry objects. The SelectNamesDialog object lets you display the Outlook
Address Book dialog box and set options such as the number of buttons, button captions, and
initial address list displayed.

SelectNamesDialog Object

For example, let’s assume that you need to display an Address Book dialog box that prompts
the user for recipients in his or her Contacts folder. In previous versions of Outlook, you had to
resort to CDO 1.21 or third-party libraries to achieve this functionality. In Outlook 2007, you
can display the Address Book by obtaining an instance of the SelectNamesDialog object. Here
is a brief description of what you can do with the SelectNamesDialog object (see Figure 1-4):

■ Set the dialog box caption.

■ Control the number of recipient selectors and change the caption for a given selector.

■ Set or get the initial address list shown in the dialog box, and determine if the initial
address list is the only address list available in the dialog box.

■ Determine if multiple recipients can be selected.

■ Display the Outlook Address Book dialog box.

■ Obtain a Recipients collection object that contains all the recipients selected in the dialog
box.

12 Part I Introducing Microsoft Office Outlook 2007
Figure 1-4 Customize the Outlook Address Book using the SelectNamesDialog object.

ExchangeUser and ExchangeDistributionList Objects

Now that you can display the Outlook Address Book programatically, you might wonder how
you can discover additional information about the selected recipients. If the recipient is a Sim-
ple Mail Transfer Protocol (SMTP) address, there isn’t much you can do beyond the recipient’s
display name and SMTP address. However, if the recipient is a Microsoft Exchange recipient,
the Outlook 2007 object model makes the process much easier. You can use two new objects
that derive from the legacy AddressEntry object:

■ ExchangeUser

■ ExchangeDistributionList

These objects derive from the AddressEntry object. Unlike the legacy AddressEntry object,
they provide full programmatic details on an AddressEntry that represents an Exchange user
or an Exchange distribution list. You can obtain properties on these objects such as
PrimarySMTPAddress, LastName, FirstName, OfficeLocation, Department, and so forth. You
can also determine the manager or the ExchangeUser object or obtain an AddressEntries
collection that represents all the direct reports for the given ExchangeUser object.

Sharing Objects
Outlook 2007 makes sharing information with others easier than it has been in previous ver-
sions. There are a variety of sharing mechanisms such as Exchange public folders or Microsoft
SharePoint sites. Sharing objects are discussed in detail in Chapter 9, “Sharing Information
with Other Users.” Let’s focus briefly on sharing personal information such as contacts or
calendars. You can create solutions that share personal information with coworkers or with
friends and family. Add-ins that enable users to share information will provide a great

Chapter 1 What’s New in Microsoft Office Outlook 2007 13
opportunity for developers in Outlook 2007. You can use sharing objects to extend Outlook
and provide more complex sharing scenarios for your customers.

Here is a quick look at several sharing objects that you can use in your solutions:

■ The SharingItem object, which lets you programmatically send sharing messages in an
Exchange environment

■ The CalenderSharing object, which lets you export a calendar date range to an ICal
attachment

■ The OpenSharedFolder method on the Namespace object, which lets you open several
sharing resources, including a WebCal Uniform Resource Locator (URL), RSS URL, or
SharePoint URL

■ The OpenSharedItem method on the Namespace object, which lets you open an item in
Outlook’s .msg format, vCard format, or iCal format

Rules Objects
Rules are one of the most powerful features of Outlook for staying organized and responding
to the continuous flow of messages into your Inbox. In previous versions of Outlook, develop-
ers were not able to create rules programmatically. In Outlook 2007, you can programmati-
cally create rules, determine conditions or exceptions that determine whether the rule will
run, and set actions to occur. Typical rule actions include moving or copying an item to a
folder, setting one or more categories on the item, or marking the item as a task. Items flagged
for follow-up appear in your To-Do list, which represents an important new feature in Outlook
2007. You can also establish rule conditions or exceptions that determine whether the rule
executes. Typical rule conditions are whether the message is from or to a recipient, whether
you are on the To or Cc line of a message, whether the message contains specific words in the
body or subject, or whether the item is from a specified RSS feed.

The rule objects are simple to use and can be used to create rules programmatically for your
solution. For more information on rule objects, see Chapter 10, “Organizing Outlook Data.”
Here is a quick guide to new rule objects in Outlook 2007:

■ All Rules defined for the logged-on session are contained in the Rules collection object.
Obtain the Rules collection object by calling GetRules on the DefaultStore property of the
Namespace object.

■ You can enumerate the Rule objects in the Rules collection. When you enumerate Rules,
you can enable or disable a rule programmatically.

■ To create a new Rule, call Rules.Create. When you call the Create method, you must
specify an OlRuleType argument. A Rule can be an OlRuleType.olRuleReceive or an
OlRuleType.olRuleSend rule. These enum values correspond to Send or Receive Rules in
the Outlook Rules Wizard.

14 Part I Introducing Microsoft Office Outlook 2007
■ Once you have an instance of a new Rule object, you can programmatically enable
Rule.Actions, Rule.Conditions, and Rule.Exceptions. Each of these objects represents static
collection objects. You cannot programmatically add your own Rule actions, for example,
to the RuleActions collection object.

■ Some rule actions or conditions can only be enabled or disabled. For example, you can
only enable or disable the OnlyToMe rule condition. Other rule conditions require that
you set additional properties on the rule condition.

■ Once you have finished setting rule actions, conditions, and exceptions, you should call
Rules.Save to persist the newly created Rule object.

■ You can also call Rule.Execute to run the Rule object programmatically. You don’t have to
save the rule to call Rule.Execute.

PropertyAccessor Object
Like the Table object, the PropertyAccessor object offers a momentous change in what you can
accomplish using the Outlook object model. PropertyAccessor provides access to Outlook
object properties that are not available through the Outlook object model. For readers familiar
with CDO 1.21, PropertyAccessor is a replacement for the CDO Fields and Field objects. Unlike
CDO, PropertyAccessor uses a readable string value instead of an integer tag value to access
both built-in and custom properties on Outlook objects. The following objects support
PropertyAccessor:

PropertyAccessor Sample Code

Let’s take a look at how you would write code to use the PropertyAccessor object. When a mes-
sage is delivered via SMTP, the message is stamped with a Transport Header that contains infor-
mation about the routing used to deliver the message to its destination. In previous versions of

AddressEntry AddressList
AppointmentItem Attachment
ContactItem DistListItem
DocumentItem ExchangeDistributionList
ExchangeUser Folder
JournalItem MailItem
MeetingItem NoteItem
PostItem Recipient
RemoteItem ReportItem
SharingItem Store
TaskItem TaskRequestAcceptItem
TaskRequestDeclineItem TaskRequestItem
TaskRequestUpdateItem

Chapter 1 What’s New in Microsoft Office Outlook 2007 15
Outlook, developers would have to resort to CDO, Extended MAPI, or third-party libraries
to read this property. In Outlook 2007, you can use the PropertyAccessor object to read the
value of the Transport Header (PR_TRANSPORT_MESSAGE_HEADERS). The following code
example shows you how to restrict the Table object for messages where the Transport Header
property is not null. Use Namespace.GetItemFromID to open a Row object, and then use the
GetProperty method of the PropertyAccessor object to display the Transport Header in a mes-
sage box.

void DemoPropertyAccessorGetProperty()
{
 string EntryID = "";
 //Proptag for PR_TRANSPORT_MESSAGE_HEADERS
 string PR_TRANSPORT_MESSAGE_HEADERS =
 @"http://schemas.microsoft.com/mapi/proptag/0x007D001E";
 string filter = "@SQL=" + "Not("
 + "\"" + PR_TRANSPORT_MESSAGE_HEADERS + "\"" + " Is Null)";
 Outlook.Table table = Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).GetTable(
 filter, Outlook.OlTableContents.olUserItems);
 if (table.GetRowCount() > 0)
 {
 Outlook.Row nextRow = table.GetNextRow();
 EntryID = nextRow["EntryID"].ToString();
 }
 else
 {
 return;
 }
 //Get MailItem using GetItemFromID
 Outlook.MailItem mail =
 (Outlook.MailItem)
 Application.Session.GetItemFromID(EntryID, Type.Missing);
 //Obtain an instance of PropertyAccessor class
 Outlook.PropertyAccessor PA = mail.PropertyAccessor;
 string Transport = (string)PA.GetProperty(
 PR_TRANSPORT_MESSAGE_HEADERS);
 //Call GetProperty
 MessageBox.Show(this, Transport,
 "Transport Header: " + mail.Subject);
}

Chapter 17, “Using the PropertyAccessor Object,” provides you with all the technical details
of using the PropertyAccessor object in your solution. The key point to remember is that
PropertyAccessor should be used only for properties that are not exposed directly in the
Outlook object model. You can also use PropertyAccessor to create named properties on
items that are hidden from views and do not display in an Outlook Inspector.

16 Part I Introducing Microsoft Office Outlook 2007
Developer Reference
Although the Outlook Developer Reference is not a new object model feature, it does repre-
sent a significant improvement in the developer experience when programming Outlook
2007. The entry point for the Developer Reference is no longer available in the main Outlook
Help viewer. To display the Developer Reference, follow these simple steps:

1. Press Alt + F11 to open the Outlook VBA editor.

2. Press F1 to display the Outlook Developer Reference shown in Figure 1-5.

Figure 1-5 Use the completely redesigned Outlook 2007 Developer Reference as your pri-
mary help source.

What’s new about the Outlook 2007 Developer Reference? Here are the key points that
should make this the first place you look for help in programming Outlook 2007:

■ A Visual Studio look and feel. The Help viewer and the Help content itself has been
changed so that the VBA documentation resembles the help for Visual Studio 2005.

■ Organization by objects and then members that belong to that object. Previous versions
of Outlook developer help were organized by properties, methods, and events. The older
organizational scheme made it difficult to understand how a member related to a given
object. For example, there was only one topic for the Add method, whether it applied to

Chapter 1 What’s New in Microsoft Office Outlook 2007 17
the Items, Folders, or Attachments collection objects. Now each member topic is specific to
its parent object.

■ Task-based topics are available in the “How Do I…” book. Many developers know what
they want to accomplish, but they don’t necessarily know which objects and members
will let them complete the task. Task-based topics address this need. If you have a task-
based sample that you’d like to add to the “How Do I…” book, please see that Help topic
for instructions on submitting your own task-based solution. If your code is used in the
Outlook Developer Reference, a link will be provided to your Web site along with the
code sample.

■ Expanded What’s New topics document the changes between versions of the object
model. This section lists all new objects, collections, and enumerations in Outlook 2007.
It also provides you with information about changes that could potentially break exist-
ing solutions.

Summary
Outlook 2007 has more than doubled the number of objects available when you program
Outlook. The improvements to the Outlook object model are more than quantitative, how-
ever. After many versions in which extensibility was an afterthought, Outlook 2007 has spe-
cifically targeted platform improvements as an overall product goal. Form regions are the
most visible sign of these platform investments. Unification is part of an ongoing effort across
this and future versions to ensure that the Outlook object model is all that you need to com-
plete a professional solution.

Managed code developers are the target audience for this book. If you are a managed code
developer, you should be happy with these changes because writing code using other APIs
such as CDO, ECEs, or Extended MAPI was unsupported for .NET development. Developer
nirvana isn’t guaranteed in this release, but Microsoft has made great strides in enabling your
work as an Outlook developer. The remainder of this book will get you started on the journey.
It’s then up to you to create some great solutions for Outlook 2007.

Chapter 2

Outlook as a Platform
The platform is an essential cornerstone that contributes to the success of Microsoft Office
Outlook 2007. Outlook won’t ever have every single feature that customers ask for. The plat-
form allows independent software vendors (ISVs) to leverage this business opportunity by
complementing Outlook functionality not available in the shipped Outlook product. The plat-
form also allows organizations to tailor Outlook to meet their specific needs and implement
custom business logic or requirements within Outlook.

The goal of this chapter is to provide an overview of the Outlook platform capabilities with
high-level guidance of when to integrate with Outlook and how to accomplish this integra-
tion. This chapter contains no code samples and focuses on a top-level view of the Outlook
platform. If you are not familiar with the Outlook platform, consider reading this chapter to
gain a sense of the Outlook development landscape. If you are familiar with the Outlook plat-
form and want to dive directly into the Outlook object model, add-in construction, and
Microsoft Visual Basic .NET or C# sample code, you can skip this chapter and proceed
directly to Chapter 3, “Writing Your First Outlook Add-In Using Visual Basic .NET,” or Chap-
ter 4, “Writing Your First Outlook Add-In Using C#.”

Why Integrate with Outlook?
For users around the globe, Outlook is the information hub they depend on for messaging,
time, contact, and information management. Outlook allows the user to prioritize, organize,
and search information. Users especially value Outlook’s offline capabilities, which allow
them to remain connected with work when they’re on the go. They often spend many hours
daily in Outlook. From an application perspective, Outlook is where users live. The Outlook
platform provides ISVs and organizations with the opportunity to extend, enrich, and custom-
ize the Outlook experience for these users.

The Outlook platform allows the introduction of entirely new features or adjustment of Out-
look’s built-in functionality to meet specific needs. Outlook’s solution landscape is vast, and
here is a quick, although incomplete, glance at solutions that target Outlook:

■ Device synchronization applications

■ Antivirus, phishing, and spam solutions

■ Integration of customer relationship management (CRM) systems, line of business
(LOB) applications, workflow, archiving, and document management
19

20 Part I Introducing Microsoft Office Outlook 2007
■ Mail utilities that include attachment compression, content encryption, thread compres-
sion, and productivity solutions

■ Unified messaging and other forms of communications (fax, voice messaging, video)

One interesting characteristic of a seamlessly integrated Outlook solution is that the customer
perceives it as being a native Outlook feature. This user perception is desirable because it
helps make Outlook predictable, consistent, and easy to use. Deep integration can be accom-
plished by adopting Outlook’s user experience metaphors and paying attention to customer
expectations. For example, it’s important for a solution to support offline capabilities, mean-
ing the customer can get work done even when there’s no network or limited connectivity. If
the solution introduces form customizations, they show up in the Reading Pane and also
when the form is opened in a separate window. The associated functionality for these custom
forms is exposed in context menus, Ribbon, and command bars. Users can search, sort, filter,
categorize, drag, or create rules for the data that the solution introduces in the same way they
would if they were working with Outlook’s built-in data. The solution offers a consistent expe-
rience across different computers by roaming preferences (just like Outlook roams views), cat-
egories, and rules in Microsoft Exchange mailboxes.

A successful Outlook solution accomplishes more than just introducing a new feature; it actu-
ally solves a customer problem in a holistic manner by guiding the user end-to-end to get his
or her job done. Many such Outlook solutions leverage the user’s familiarity with Outlook by
building on Outlook’s extensive usability experience, therefore reducing or eliminating the
need for additional user training.

The contrast to a seamless Outlook solution is a superficial integration that takes advantage of
users living in Outlook. Outlook is not designed to be a generic shell. Such integrations often
cause user confusion because they don’t work like the rest of Outlook and introduce function-
ality that does not really belong to Outlook. These inconsistencies can have an impact beyond
the solution on all of Outlook because the user does not know what constitutes the boundary
between Outlook and the solution.

The prime goal of the Outlook platform is to facilitate integration of your solution into Out-
look. The Outlook platform is not about offering a palette of reusable controls that can be
used outside the context of Outlook or supporting server scenarios like running the Outlook
object model in Microsoft ASP.NET applications, automating mailboxes of an organization, or
installing the Outlook implementation of the Messaging Application Programming Interface
(MAPI) on a server.

Customers expect Outlook solutions to build on Outlook strengths such as cached Exchange
mode. Outlook offers rich functionality that is also available when the customer works offline
or without network connectivity. Critical information is stored in a user’s mailbox and is easily
accessible thanks to integrated Instant Search, a new feature in Outlook 2007. Outlook’s
cached Exchange capability means that customers also expect data associated with Outlook
solutions such as a CRM integration to work offline and be easily searchable. Customers also

Chapter 2 Outlook as a Platform 21
expect that basic Outlook functionality like categories, rules, flagging for follow-up, or
responding to mail works consistently for all data showing up in Outlook.

Outlook’s core functionality revolves around Mail, Calendaring, Contacts, and Tasks. These
types are prominently exposed in the Navigation Pane and have dedicated forms, views, and
appropriate actions such as Send, Reply, Reply to All, and Forward. For example, media types
(pictures, music, or videos) are not native Outlook types and are less deeply integrated into
Outlook; they show up as attachments in the Reading Pane and on an Inspector. Outlook
2007 offers a richer preview experience for attachments, but otherwise Outlook is not opti-
mized for these types. If the solution you’re about to write is not about extending Outlook’s
core types, then integrating into Outlook might not be the right answer for your customers. In
this case, you should investigate delivering the functionality of your solution as part of a sep-
arate standalone application.

For those solutions that follow the guidelines established in this chapter and deeply integrate
with Outlook, the Outlook 2007 platform enhancements enable your solution in the follow-
ing ways:

■ The consolidated Outlook 2007 object model is sufficient for most solutions and
replaces deprecated application programming interfaces (APIs) such as Collaboration
Data Objects (CDO) 1.21. The Outlook object model is fully supported for Microsoft
.NET Framework development.

■ Form regions allow you to integrate your user interface with Outlook’s built-in forms
and provide a rich palette of controls to ensure that you can clone existing Outlook
forms.

■ Ribbon extensibility (referred to as RibbonX) and custom task panes ensure that your
solution is integrated with the discoverability and usability improvements in the 2007
Microsoft Office system.

These enhancements are not only geared toward external developers; many Outlook integra-
tions developed within Microsoft rely heavily on these Outlook 2007 platform enhancements:
Microsoft Business Contact Manager, Microsoft Exchange Unified Messenger Add-in, and
Microsoft Outlook Mobile Service as well as other Microsoft add-ins that ship with Office
2007. This internal Microsoft usage helps to ensure that the platform is stable, performant,
and offers a comprehensive set of functionality.

Different Types of Outlook Integration
There are two different categories of Outlook integration from a platform perspective: data
integration and functional integration. Many real-world Outlook solutions utilize both types
of integration. The following discussion introduces the two types of Outlook integration, cites
specific implementations that ship with Outlook 2007, and then proposes guidelines for
achieving data and functional integration with your solution and Outlook.

22 Part I Introducing Microsoft Office Outlook 2007
Data Integration

This model is used by solutions that want to either simply access Outlook data or bring their
data into Outlook and let Outlook manage the data from that point on.

Examples of Data Integration

The following list provides some general categories of data integration and also focuses on
specific data integration solutions:

■ Synchronization of Contacts, Calendar, and Mail These solutions enable two-way syn-
chronization of Outlook folders with miscellaneous portable devices and mobile
phones.

■ Connector/provider applications These applications bring data into Outlook from
other sources like messaging and collaboration back ends or CRM systems.

■ Online Meeting integration Adds Online Meeting to the Outlook Calendar and intro-
duces additional information for a meeting like dial-in number, access code, and URLs to
resources. Shows these fields on meeting requests.

■ Calendar Gadget for Microsoft Windows SideShow This add-in shipping with Office
2007 obtains one week of appointments and meetings from the default Outlook Calen-
dar and passes this data to Windows SideShow gadgets.

How Did Microsoft Office Outlook 2007 Calendar Gadget for Windows
SideShow Do It?

The Microsoft Office Outlook 2007 Calendar Gadget for Windows SideShow is an in-process
Component Object Model (COM) add-in for Outlook. It relies primarily on the Outlook object
model. The add-in allows users to view their calendar on Windows SideShow-compatible
devices. Windows SideShow, shown in Figure 2-1, is new for Microsoft Windows Vista and
enables developers to write gadgets or mini-applications to send data from the computer to
devices connected to the computer. A Windows SideShow-compatible device can take several
forms, such as a display attached to the lid of a laptop, a front-panel display on a desktop or
server, or a small display in a keyboard. It can also be part of an existing device such as a cell
phone, portable media player, or digital picture frame.

Chapter 2 Outlook as a Platform 23
Figure 2-1 Windows SideShow uses the Outlook object model to gather its data.

SideShow Implementation Windows SideShow is implemented as an Outlook add-in. The
add-in enumerates calendar items on the user’s default calendar, and sends about a week’s
worth of calendar data to the Windows SideShow platform. The add-in only reads calendar
data; there is no integration into the Outlook user experience. Writing this functionality as a
trusted COM add-in ensures that the code by default won’t trigger any Outlook security
prompts. The default date range is 2 days previous and 5 days ahead. The information is
updated every day, as well as when calendar changes are detected. The primary data format
used is iCalendar. The add-in generates its own iCalendar representations of the appointments
on a background thread for performance reasons, and sends those directly down to the
devices. For Windows SideShow-compatible devices that do not support iCalendar, the add-in
provides a simple text-only version of the content that shows the user’s next five appointments
within the next 24 hours. This is very useful information on small text displays, such as those
embedded in keyboards, as it gives the user at-a-glance access to his or her important upcom-
ing appointments. This data is refreshed at a regular interval. When there are no Windows
SideShow–compatible devices connected to the computer, the add-in does nothing except wait
for devices to be connected to minimize the performance impact for Outlook.

Paying Attention to Performance The first performance goal is to ensure that the add-in is
only retrieving calendar data when there’s actually a SideShow device present and active. Only
doing work when required is an important guideline applying to all add-ins. The second goal
is to ensure that users won’t notice when the SideShow add-in accesses Outlook data. Any
operation has to be less than 250 milliseconds in duration for users to not perceive the oper-
ation as a hang. This requirement is especially important because the user did not initiate the
sync to the SideShow device, so the user would not understand why Outlook suddenly
appears to hang.

Minimizing the performance impact to Outlook represents the main design challenge when
utilizing the Outlook object model for add-ins without a user interface (UI). All calls into the
object model occur on Outlook’s main UI thread; thus they have the ability to negatively affect

24 Part I Introducing Microsoft Office Outlook 2007
the user experience by causing sporadic hangs, stutters, and feelings of sluggishness. To
address these issues, the Calendar Gadget performs as little work as necessary on the Outlook
UI thread, reserving the bulk of the heavy lifting for a background thread. To minimize the
cross-thread marshaling, all calls into the object model occur on the main thread. When pro-
cessing the calendar, the add-in handles one appointment at a time, and then sets a timer
before processing the next item to allow the message pump to process other messages. For
each calendar appointment, it extracts the important properties, stores them in a temporary
object, and queues it for the worker thread. Generating the iCal items on the worker thread is
more efficient than utilizing Outlook’s save as iCalendar functionality for single appointments.
Bulk exporting iCalendar items through the CalendarSharing object is not an option because
SideShow gadgets don’t support iCal recurrence.

Functional Integration

Functional integration is the model that’s followed by solutions that want to introduce new
functionality into the Outlook user experience through customizing command bars for Out-
look’s main Explorer window, introducing custom forms with RibbonX, or providing custom
task panes for Outlook Explorer or Inspector windows.

Examples of Functional Integration

There are many ways to categorize functional integration. The following list provides some
examples of functional integration.

■ Mail applications Compression of attachments, archiving mail, adding disclaimers to
mail messages, encryption, and content security

■ Corporate compliance Restricting Reply All, ensuring that messages are addressed to
correct recipients

■ E-mail protection Spam blocking and antivirus

■ Utilities Printing of Calendars or Contacts

■ Productivity tools Helping a user become more productive with Outlook by enhanc-
ing search, prioritization, and organizational schemes

■ Unified messaging Directing voice mails and other communications to a user’s Inbox

How Did Unified Messaging Add-In for Outlook 2007 Do It?

The Unified Messaging add-in for Exchange provides integrated support for listening to voice
mails within Outlook. Voice mails can be viewed using a form region that includes an inline
Media Player and a private field for taking notes (see Figure 2-2). A form region is a new tech-
nology in Outlook 2007 that allows you to replace or integrate with Outlook’s built-in forms.
The Unified Messaging add-in also provides the ability to have the Exchange server make an
outbound phone call to a specified number and play the voice mail. This feature is useful

Chapter 2 Outlook as a Platform 25

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

when privacy is a concern, or when the computer does not have speakers. The add-in intro-
duces an additional Tools Options page for viewing and editing Unified Messaging prefer-
ences. A user can reset his or her PIN, update his or her voice mail greetings, and define the
default folder when accessing the Exchange mailbox with a phone.

Figure 2-2 The Unified Messaging add-in uses Outlook 2007 form regions.

Unified Messaging Implementation The Unified Messaging add-in relies on the Outlook
object model, form regions, and RibbonX. The add-in introduces a custom form region with
its own custom message class for Exchange voice messages. The form region renders in the
Reading Pane and in a separate Inspector window. It hosts a Windows Media Player control
and extends the default Ribbon by adding controls for playing the voice mail and initiating
Play on Phone. A custom string property is used to store the voice mail annotations. The add-
in uses property pages to add a new tab to Outlook’s Tools Options dialog box. It also utilizes
two Exchange Web services. The Auto-Discover Web service is used to locate the appropriate
Exchange Server that provides Unified Messaging support, and the Unified Messaging Web
service provides advanced features specific to Unified Messenger for voice mails, such as Play
on Phone.

Paying Attention to Discovering Unified Messenger Availability The add-in is scoped to
voice messages with a certain message class and offers its functionality once it discovers that
Exchange Unified Messaging is available. This implementation decision has been made to
minimize the performance impact for users without Unified Messenger capabilities and to
limit the attack surface. This is not at all to say that the Unified Messenger add-in is insecure;
it actually went through an in-depth security analysis. It’s simply following a good security
practice, which is to only enable functionality when required. The add-in attempts to locate
the Exchange Unified Messaging Server over different network connections using corporate
local area network (LAN), Internet, virtual private network (VPN), or remote procedure call

26 Part I Introducing Microsoft Office Outlook 2007
(RPC) over Secure Hypertext Transfer Protocol (HTTPS). If it fails to find the server, it will dis-
able the Tools Options tab and Play on Phone command.

Integration Guidelines
The goal for the Outlook 2007 platform enhancements is to enable developers to build rich
solutions by relying on only the Outlook object model, form regions, RibbonX, custom task
panes, and also, in some cases, Extended MAPI.

Data Integration

There’s a wide range of data integration scenarios and there are many options available to
accomplish those scenarios. This breadth of options makes it important to define clear goals
first so that the appropriate data integration path can be identified. The purpose of the follow-
ing discussion is to identify the data integration scenarios. After the scenarios have been iden-
tified, the focus will be on how the data integration can be accomplished.

Integrating with Data That Is Already in Outlook

Many customers have one single Outlook MAPI profile that often contains only one store con-
taining all Outlook data (mail, contacts, calendar, and tasks). Examples are customers with an
Exchange account or multiple Post Office Protocol (POP) accounts. If there’s more than one
store associated with the Outlook profile, then it’s likely to be either one or more proxy Per-
sonal Folders File (.pst) stores used for Hotmail and Internet Message Access Protocol (IMAP)
e-mail replication or an archive .pst file.

One example of such a data integration scenario would be synchronizing calendar and con-
tact data from Outlook to a device. When configured to run against Exchange, Outlook would
replicate these appointment and contact items to the default folders for these items while this
Outlook sync integration would then sync the data from and to the device. Because the Out-
look platform does not offer a sync API, it’s up to this sync integration to keep track of repli-
cation state and perform conflict resolution. For example, an item might have changed both in
Outlook and on the device. The sync integration code has to detect that the items have
changed and attempt a conflict resolution. Ideally, conflict resolution does not involve the
user and is silent. If a user has added a contact phone number on the device and changed the
mailing address in Outlook, the sync code can silently merge these two changes.

The two APIs that accomplish data integration are the Outlook object model and Extended
MAPI.

Bringing Data into Outlook

Since the introduction of cached Exchange mode in Microsoft Office Outlook 2003, custom-
ers expect data to be available locally when they’re on the go without network connectivity or

Chapter 2 Outlook as a Platform 27
connected over a high-latency/low-bandwidth network connection. This means that custom-
ers also expect that the data associated with solutions is available offline. Often the back-end
data repository contains much more data than what’s suitable to cache locally, asking for a
model allowing to cache only the critical subset and offering online access to the rest.

The data can be locally cached in a dedicated Outlook .pst-based store, meaning that there’s a
separate store offering its own folder hierarchy exposed in the Outlook Navigation Pane.
There are two options to accomplish the replication: the solution can replicate the data into
the .pst either by writing its own replication algorithm using a combination of MAPI and the
Outlook object model, or by relying on the Replication API. The Replication API provides the
functionality for a MAPI Transport provider to synchronize Outlook items between a server
and a private, .pst-based local store created for that provider.

Another option is to introduce either a custom MAPI store provider that offers online-only
access to the back end or a store provider that locally caches the data. One more alternative is
a hybrid architecture, which locally caches the most critical data and offers online access to
the rest.

Customizing Outlook Items

Besides identifying in what store the data should be persisted, a solution also needs to deter-
mine if the data can be stored in the properties already defined by Outlook or if new custom
properties have to be introduced. MAPI provides the foundation for Outlook data storage.
MAPI predates Extensible Markup Language (XML), which means that there’s no schema
associated with MAPI items. Outlook items represent simple property bags that are preserved
when items are moved or copied within and across stores. If an Outlook item requires addi-
tional properties and these properties need to be visible within Outlook, then the custom
properties must be created through the Outlook object model’s UserProperties object. In this
case, the properties would appear in the Outlook Field Chooser so they can be added or
removed from Views or displayed in an Outlook Inspector window. Creating properties
directly through MAPI won’t do the job, but once the property is created through the object
model it can be accessed with MAPI.

Another question that you must ask is whether or not a custom item type identified by a cus-
tom message class is required. A custom message class is typically introduced if the item is ren-
dered by a custom form, which is covered later in the section “User Interface Integration and
Data Presentation.”

Data Integration with Outlook Object Model

The Outlook object model is by far the most comprehensive and powerful API for program-
ming Outlook, but performance considerations have to be factored in. The Outlook object
model runs on Outlook’s foreground thread, meaning performance is critical especially if
your application requires that you synchronize a significant amount of data. Performance will

28 Part I Introducing Microsoft Office Outlook 2007
be likely the most demanding aspect for data integration. Performance considerations include
the following:

■ Using appropriate object model members, including the new Table object and Instant
Search queries.

■ Data throttling, where you fetch data when the machine is in an idle state.

■ Data granularity, so that you read and write data in small chunks.

It’s recommended to couple the solution lifetime to Outlook and only run when Outlook
does, including running against the same MAPI profile that Outlook is logged into.

Data Integration with Extended MAPI

Extended MAPI allows data access and runs on a separate thread. The tricky part is that MAPI
sits below Outlook’s business logic, which means that writing data is complex and opaque for
certain scenarios. If the data access scenario involves mail or contact items, then using MAPI
is acceptable. If the scenario involves appointment or task items, MAPI is problematic. The
business logic of Outlook’s Calendar is complicated, and many properties such as the recur-
rence pattern are stored as an opaque binary blob. In addition, all meeting actions have many
side effects, including meeting deletion, sending a meeting cancellation, or changing proper-
ties such as location or time and then sending a meeting update. Task assignments and recur-
rence are opaque in a manner similar to that of appointment items. If possible, it’s
recommended that the MAPI integration only be executed when Outlook is running and
against the same Outlook profile the user is logged into.

Data Integration with MAPI Store or Address Book Providers

Although MAPI providers offer a rich model for creating a store or Address Book provider, you
should be aware that writing such a provider, especially a MAPI store provider, is a complex
task requiring developers with extensive unmanaged C++ and MAPI coding skills. If you are
writing a custom MAPI store provider, your store will not be indexed by the Instant Search
engine. If you rely on folder home pages for your custom store, those pages are disabled by
default in a nondefault store as a security mitigation. Keep these limitations in mind before
you decide to invest your resources in writing a MAPI store or Address Book provider.

Data Integration with Replication API

The Replication API, documented as part of the Outlook 2007 Integration API Reference,
offers another option for replicating items from a back-end data repository into an Outlook
.pst-based store. The Replication API is used for replicating the data into a dedicated .pst-
based store and keeping track of the synchronization state. Because the business logic for
appointment, contact, and task items is only exposed in the Outlook object model, this API is
not ideal for these types. The positive aspect of this approach is that it does not require the
introduction of a custom MAPI store provider, which is complex to write and maintain. Criti-

Chapter 2 Outlook as a Platform 29
cal Outlook 2007 functionality such as Instant Search will work without modifications on
your part provided that Windows Desktop Search is installed and enabled for your store.

Business Logic

Outlook implements business logic for both built-in and custom items. Events in the Outlook
object model allow you to write code that overrides or modifies that business logic.

Business Logic for Built-In Items

Integrating into Outlook through the Outlook object model ensures that the Outlook solu-
tion also benefits from Outlook’s rich business logic for different Outlook item types. When
an item is accessed through MAPI, the Outlook business logic is bypassed.

Outlook’s business logic is invoked whenever an item of a certain type is loaded. For exam-
ple, if an item is programmatically opened without a UI or a user opens a contact item
(MessageClass is IPM.Contact) or a customized contact rendered with a form region
(MessageClass is IPM.Contact.OwnVersion), then Outlook’s contact business logic is invoked.
For a discussion of how MessageClass relates to built-in and custom types, see Chapter 5,
“Built-In Item Types.” Calendaring involves considerable business logic, and the following
examples provide you with an overview:

■ Appointment items ensure that the start time of the meeting is before the end time.

■ Appointments also support recurrence, including exceptions; for example, a weekly
meeting on Wednesday at 5 P.M. except for this week, when the meeting is on Thursday
at 2 P.M.

■ The recurrence also accommodates non-Gregorian calendars, like birthdays based on
lunar calendars.

■ A cancellation is sent when the meeting is deleted from the calendar or an attendee is
removed.

■ Meeting requests are processed when they arrive in the mailbox and get tentatively
added to the calendar.

■ When the user accepts or declines a meeting, the user is asked to send a response to the
organizer.

■ Meeting responses from meeting attendees are automatically added to the meeting’s
Tracking tab in the organizer’s calendar.

For contact items, the business logic primarily revolves around keeping related fields in sync,
for example the FullName property with FirstName, MiddleName, LastName, Suffix, and Prefix
or FileAs with CompanyName or the name fields. Addresses (Home, Business, Other) are also
stored as both individual fields (city, country, postal code, state, street) and as free-form mul-
tiline fields with custom formatting.

30 Part I Introducing Microsoft Office Outlook 2007
Custom Business Logic

Outlook does not allow turning off or overwriting the built-in business logic for the differ-
ent item types. In other words, if a solution introduces an item with a MessageClass of
IPM.Contact.OwnVersion, Outlook’s business logic for contacts will kick in, and if the
FirstName field changes it will also update the FullName field. Although the Outlook busi-
ness logic cannot be overwritten, Outlook’s rich event model provides developers with a
way to customize and refine Outlook’s built-in behavior. This customization can be accom-
plished by writing an Outlook add-in with an event handler that gets called when Outlook
saves an item, a built-in or custom property is changed, a file gets attached, or an e-mail is
sent. This rich event model allows Outlook solutions to extend built-in actions and perform
additional data validation.

Another option is to customize built-in actions or introduce new custom actions as part of
introducing a form region to render a custom item type. If the solution intends to introduce its
own item type and control the business logic associated with the item, you should consider
basing the custom item on a Post item. The Post item is the closest item type to a “start-from-
scratch” item, as this is the item type with the least built-in Outlook business logic. Custom
properties can be added to this custom Post item using the UserProperties object, and your
add-in can control custom property business logic by implementing event handlers hooked
up to item or form control change events.

User Interface Integration and Data Presentation

This section enumerates the different Outlook UI extensibility mechanisms and provides
guidelines for how to integrate your UI with Outlook. The goal of UI integration is that cus-
tomers don’t perceive your UI as different from the Outlook UI. The entry points of your UI
should be parallel with entry points for the Outlook UI.

Outlook Explorer Window

The Outlook Explorer window shown in Figure 2-3 is the main Outlook application window
and displays folder contents. A word of caution is in order before discussing the Explorer win-
dow. Although Outlook offers the ability to extend its UI, you should consider that the surface
area for customization is limited in the Explorer window. This constraint means that it’s often
desirable to integrate with the existing UI rather than layering your custom UI on top of the
Outlook UI. It’s quite common for a user to have a number of add-ins installed. If each one of
them introduces a new top-level menu and toolbar for the Outlook Explorer, the UI will
become busy to a point that Outlook usability as a whole suffers.

Chapter 2 Outlook as a Platform 31
Figure 2-3 The Outlook Explorer window.

Instead of introducing a new menu or toolbar, consider merging custom commands with
existing menus. Add-in preferences can be exposed under an additional tab in the Outlook
Tools Options dialog box. Another solution is to make the functionality available only when
the user actually needs it. In short, your UI should be context-sensitive. If an Outlook solution
has its own store, then a custom UI can be available when the user works in this store and be
hidden otherwise.

Introducing a custom task pane for Outlook Explorer is challenging because Outlook 2007
also introduces the To-Do Bar, meaning that many users will run Outlook with four panes (the
Navigation Pane, the View Pane, the Reading Pane, and the To-Do Bar). Introducing a fifth ver-
tical pane is not desirable unless you locate a custom task pane in a horizontal location at the
bottom of the Explorer window. To avoid user confusion, add-ins should not automatically
hide or collapse panes without user interaction.

Command Bars

The menu bar, standard, and advanced toolbars that appear at the top of the Outlook
Explorer window are built using Office command bars. Add-ins can introduce a custom
toolbar or add, remove, or hide commands in built-in menu bars and toolbars. Command
bars are an Office extensibility mechanism shared by different Office applications. With
Office 2007, Microsoft Word, Excel, and PowerPoint use the Ribbon exclusively, whereas
Outlook 2007 is a hybrid, relying on command bars for Outlook Explorer windows and the
Ribbon for Outlook Inspector windows.

32 Part I Introducing Microsoft Office Outlook 2007
Navigation Pane

The Navigation Pane shown in Figure 2-4 appears on the left side of the Explorer window and
allows the user to select different Outlook modules, such as Mail or Calendar. Additionally,
the Navigation Pane displays a list of folders for each module. The object model includes sup-
port for switching modules, controlling which modules are displayed, and modifying the
grouping of folders in modules that have folder groups. The Outlook platform does not allow
you to add a new module to the Navigation Pane.

Figure 2-4 Outlook Navigation Pane.

View Pane

The View Pane shown in Figure 2-5 typically renders the contents of a folder with a view
optimized for the item types stored in the folder. For example, mail items are displayed in a
table view, meetings and appointments in a calendar view, and contacts as business cards.
The Outlook 2007 object model allows fully dynamic view customization in the View Pane.
You can add or modify folder views programmatically. View fields can be added or removed,
Group By fields can be added or removed, a filter can be applied, and almost all aspects of
the view can be customized programmatically.

Chapter 2 Outlook as a Platform 33
Figure 2-5 Outlook View Pane.

Reading Pane

The Reading Pane shown in Figure 2-6 displays the currently selected item or attachment.
Outlook 2007 provides the ability to customize the look of the Reading Pane for both items
and attachments. Form regions can be used to extend or replace how an item is rendered in
the Reading Pane. A custom preview handler also can be registered to control the way an
attachment is previewed in the Reading Pane.

34 Part I Introducing Microsoft Office Outlook 2007
Figure 2-6 Reading Pane with form region customization.

To-Do Bar

The To-Do Bar displayed in Figure 2-7 provides a quick summary of upcoming appointments
and tasks. Items are added to the To-Do Bar by creating a new task item or by flagging mail or
contact items for follow-up.

Figure 2-7 Outlook To-Do Bar.

Chapter 2 Outlook as a Platform 35
Context Menus

The Explorer window contains a number of context menus that can be customized. The Nav-
igation Pane offers the store and folder context menus, the View Pane offers the items and
views context menus, the Reading Pane offers the attachment context menu, and the To-Do
Bar also supports the item context menu.

Property Pages

Configuration options for your solution can be integrated into the Outlook Tools Options dia-
log box by using a property page similar to the one shown in Figure 2-8. Property pages can
also be used to extend the Folder Properties dialog box.

Figure 2-8 Unified Messaging property page in the Tools Options dialog box.

Outlook Inspector Window

New to Outlook 2007, form regions are the centerpiece for customizing the Inspector window
and the Reading Pane. Form regions allow for an additive UI by introducing an adjoining form
region that shows up on the bottom of the first tab of a custom or built-in Outlook Inspector
window. Figure 2-9 illustrates an adjoining form region on an Outlook Inspector window.
Separate regions provide more control. They can be either added to or replace one or all of the
tabs of an existing form. If, for example, a Contact form needs to be completely customized,
the add-in can introduce a new form region that is used whenever an IPM.Contact.MyCustomer
item is displayed. The add-in can also register IPM.Contact.MyCustomer as the default form
used when a user creates a new Contact in the MyCustomer folder. Outlook’s built-in Inspec-
tors can essentially be cloned due to the introduction of a number of additional controls for
use in form regions. Controls that ship with Outlook 2007 include simple label, edit, list box,
and combo box controls, as well as more complex controls to duplicate Outlook’s date/time

36 Part I Introducing Microsoft Office Outlook 2007
picker, category strip, and scheduling controls. All controls support data binding to built-in or
custom properties. Unlike controls in previous versions of Outlook, both the control hosting
surface and the controls placed on that surface use Windows themes.

Figure 2-9 The Outlook Inspector Window with adjoining form region.

Although not an immediate component of the Outlook platform, Ribbon extensibility (known
as RibbonX) allows you to add custom groups and commands to the Ribbon for a given
Inspector type. Figure 2-10 illustrates a custom group added to the Ribbon on the Inspector
for an appointment item. You can also repurpose built-in commands, hide built-in groups and
commands, and insert your custom commands into built-in groups. RibbonX offers a superior
control palette to Office command bars. You can leverage new picture galleries in your solu-
tion or utilize a host of controls that had no equivalent in the Office command bars object
model.

Figure 2-10 Prepare for Meeting sample add-in customizes the Ribbon for an Outlook appoint-
ment item.

Custom task panes provide another customization option for the Outlook Inspector window.
Whereas form regions target the extension and customization of the Outlook Inspector itself
by typically displaying new user properties, custom task panes facilitate bringing related data

Chapter 2 Outlook as a Platform 37
into Outlook just like a built-in task pane such as the Research Pane. Figure 2-11 shows the
Prepare for Meeting custom task pane in an Appointment Inspector window.

Figure 2-11 Custom task pane in an Appointment Inspector window.

Use Interface Integration Example

Let’s look at an add-in with the goal of customizing Outlook Contacts as customers of a shoe
store. Shoe Size and Customer ID are two additional properties that need to be tracked for
each customer. The add-in would introduce an adjoining form region for Contacts containing
these two properties and store the data as user properties in the backing Contact item. The
add-in would rely on the Outlook built-in Contact Inspector to render the rest of the form.
RibbonX would be used to add a new verb to the Ribbon, allowing the user to check store
inventory for shoes in a corresponding size and then show the results in a custom task pane
docked to the Outlook Contact Inspector. This “Check for shoes” verb could also be added to
the item context menu so the clerk could enumerate the available shoes in a custom task pane
docked to the Outlook Explorer window. The Views object model would be used to create a
new custom List View for the Customer Contact folder including these two new properties.
The add-in could also introduce a custom toolbar that shows up when this Customer Contact
folder is selected and allows the store clerk to restrict the Customer list and only display cus-
tomers with a specified shoe size.

38 Part I Introducing Microsoft Office Outlook 2007
InfoPath Forms

The following discussion concentrates on the use of InfoPath forms. Although not strictly a
component of the Outlook platform, InfoPath e-mail forms do provide a compelling way to
collect survey data from messaging recipients. This section helps you understand the purpose
and design of InfoPath forms. You’ll learn when InfoPath forms are appropriate in comparison
to Outlook forms. Although there is no direct link between the Outlook object model and the
InfoPath development environment, an InfoPath e-mail form uses aspects of the platform
such as MessageClass and form-based rules that will help you understand the platform as a
whole.

Microsoft Office InfoPath 2007 is a forms application that provides users with a way to gather
structured information. Because InfoPath uses XML standards, data collected in InfoPath
forms can be integrated directly into existing business processes such as databases, Web ser-
vices, or workflows. Alternatively, collected data can be saved as individual files on collabora-
tive sites such as a Microsoft Office SharePoint Server document library. Integration with
other Office applications, such as Outlook 2007 and Microsoft Office Excel 2007, allows the
forms experience to reach more users and provide easier data analysis. Use of InfoPath Forms
Services even allows users to fill out InfoPath forms in the browser.

When to Use InfoPath Forms

InfoPath forms are best suited to collecting data by integrating into the e-mail functionality of
Outlook. These forms can target data collection in an ad hoc manner, such as status reports
and surveys, or be designed to integrate tightly with existing business processes and LOB
applications using databases, Web services, and workflows. Forms designed to target people,
calendar, or task information are better suited to using Outlook forms. Such forms can add
new capabilities on top of Outlook, such as a customer relations form, or can extend certain
information on existing Outlook forms, such as adding an employee number to a contact
item.

An example of a common InfoPath form scenario is a weekly status report. Although certain
information in the form could be derived from Outlook, the majority of the information per-
tains to business processes. In this case, an InfoPath status report form can be published to all
team members as an InfoPath e-mail form. Each team member completes and submits the
form, which is submitted back to the manager. Individual reports can be merged together to
form a single report, which can be again submitted to the manager’s manager, and so on.

Alternatively, the status report could be part of an LOB application. For example, if the status
report tracks sales numbers, then data could be submitted directly to the back-end CRM sys-
tem using InfoPath’s built-in support for XML Web services. Subsequent workflow operations
could send updated sales numbers, reports, and tasks to other members of the sales team.

Chapter 2 Outlook as a Platform 39
Creating and Deploying InfoPath Forms

InfoPath forms are created using the design environment inside InfoPath 2007. The InfoPath
design environment allows form designers to drag and drop controls to quickly build the
form.

When a form designer creates a new InfoPath form, he or she actually creates what is known
as a form template. A form template defines the data structure, appearance, and behavior of
the forms that users fill out. Think of a form template as a blueprint—the starting point that
enables users to create new forms that use and store data in the same way. Because a form
template must be available before you can fill out a form, form templates must be deployed
to a location where users can access them. Form templates are commonly deployed to loca-
tions on a company network, such as shared folders, Web servers, or libraries on Microsoft
Windows SharePoint Services version 3 sites. Forms can also be deployed via installable
packages (.msi or .js).

If a user has permission to access the location where a form template is stored, he or she can
fill out a form based on that template by using InfoPath, a Web browser, a mobile device, or
Outlook 2007. Whether a form is filled out by using InfoPath or one of the other methods
depends on several factors, including how a form template is designed and the technology
available when the form is deployed. For example, to fill out a form in Outlook 2007, the form
must be published to a list of e-mail recipients.

Using InfoPath E-Mail Forms in Outlook 2007

You can use InfoPath forms in Outlook 2007 to help streamline the processes you use to col-
laborate and share data. That’s because you can open, fill out, and submit InfoPath e-mail
forms with Outlook 2007. If you receive an InfoPath e-mail form, you can reply to it, forward
it, and store it just as you would with other items in Outlook 2007.

InfoPath e-mail forms also allow added analysis features. By storing collections of related
e-mail forms in InfoPath Forms folders in Outlook 2007, you can organize and review data
easily. For example, if you collect status report forms from your team, you can store the
completed forms in an InfoPath Forms folder. Besides keeping all related forms in one place,
you can also choose to show data from each form in columns in a custom view for that folder
thanks to Outlook 2007 read-only promotion of a subset of XML properties for InfoPath
forms. This allows for quickly grouping, filtering, and sorting data from multiple forms.
The InfoPath form is stored as an XML attachment of an item with message class set to
IPM.InfoPath.FormID, meaning the XML payload (data, schema) is opaque to Outlook.
Outlook defers rendering, editing, and actions (for example, responding to these forms) to
InfoPath. Because InfoPath is built on XML standards, information can be quickly merged
into a single InfoPath form or exported for more detailed analysis in Excel.

40 Part I Introducing Microsoft Office Outlook 2007
APIs
The following section discusses the architecture and APIs that serve as the foundation for
Outlook and any third-party address book, store, or transport provider used to extend
Outlook.

Architecture

To understand the role of the different APIs, it’s best to take a quick look at the overall
Outlook architecture illustrated in Figure 2-12. Significant parts of Outlook are built on
top of its own implementation of MAPI.

The three MAPI pillars used by Outlook are as follows:

■ MAPI Address Book providers

■ MAPI store providers

■ Outlook Transport is partially built as a MAPI Transport infrastructure

Figure 2-12 provides a simplified perspective of the Outlook architecture. MAPI is the com-
mon foundation for both Outlook and CDO 1.2.1, which implement their own separate busi-
ness logic. One goal for the Outlook 2007 platform enhancements was to unify these APIs all
under the Outlook object model. This unification means that now all applications built on top
of the Outlook object model will go through the very same business logic that Outlook relies
on internally for its Personal Information Management (PIM) data types.

Chapter 2 Outlook as a Platform 41
Figure 2-12 Outlook 2007 architecture.

Outlook Object Model

The object model constitutes the heart of the Outlook platform. The goal for the Outlook
2007 platform enhancements is to enable developers to build rich solutions by relying on the
Outlook object model. The following areas provide the pillars of the Outlook 2007 platform.

MAPI Address
Book Providers

MAPI Store
Providers

Outlook
Protocol
Manager

MAPI
Transport
Providers

Outlook
Mobile
Service
(OMS)

EMSABP LDAP

EMSMDB
(Transport)

3rd Party
Transports

POP/SMTP
Protocol
Handlers

Contact
Address

Book

3rd Party
Address

Book
Providers

Offline
Address

Book

Active
Directory

LDAP
Server

POP/SMTP
Server

3rd Party
Server

Exchange
Server

Web
Service

MSPST

EMSMDB
(Store)

Replication
API

3rd Party
Store

Providers

OST

PST 3rd Party
Store

Exchange Server

Outlook

online

42 Part I Introducing Microsoft Office Outlook 2007
Unification

The Outlook object model is the central piece of the Outlook platform. One of the prime goals
of the Outlook 2007 platform enhancements was to unify existing APIs such as CDO,
Exchange Client Extensions (ECEs), and a subset of Extended MAPI into the Outlook object
model. As part of the unification, many events were added to the Outlook object model to
accomplish parity with ECEs. The Outlook object model now provides equivalent objects for
CDO’s AddressBook, InfoStores, Fields, and HiddenMessages objects. The new PropertyAccessor
and Table objects offer alternatives to the IMAPIProp and IMAPITable interfaces in Extended
MAPI.

Unification means that the Outlook object model will be the sole API developers will rely on
when writing a tightly integrated Outlook solution. Solution developers are no longer shut
out by entry barriers caused by fragmented APIs. Unification reduces the cost of writing
Outlook solutions because developers have to familiarize themselves with only one API. If
possible, you should avoid relying on CDO and ECE when writing new Outlook solutions.
These APIs are primarily supported to ensure compatibility with existing solutions. Applica-
tion compatibility represents another important goal. The Outlook 2007 object model is
compatible with previous Outlook versions; newly added functionality enhances the object
model without removing or altering existing objects or methods. Unlike CDO, ECE, and
MAPI, the Outlook object model is fully supported for managed code development.

Performance

Performance is another critical attribute for writing successful Outlook integrations. Our cus-
tomers spend much time in Outlook and expect it to remain responsive at all times. The new
Table object provides lightweight read-only row items for performant enumeration, sort, and
search of Outlook data. Enumerating items with the Table object is approximately an order of
magnitude faster than the enumeration of the Items collection without calling the SetColumns
method. Making the Outlook object model performant is also essential to ensure that devel-
opers won’t have to fall back to Extended MAPI or CDO when writing their solutions. The
Outlook object model also allows developers to leverage the Outlook 2007 integrated Instant
Search infrastructure by using the content indexer for prefix and substring matching for
searching Outlook items and attachments.

Security and Trustworthiness

Outlook 2007 has improved the object model guard that warns the user when a program
attempts to send e-mail messages or get address book information, making it easier for
Outlook developers to write solutions that do not trigger Outlook security warnings. At the
same time, Outlook remains secure and trustworthy out of the box and allows administra-
tors control over which solutions should run in the enterprise. By default, all installed add-
ins have trusted access to the Outlook object model, meaning they won’t trigger any secu-
rity prompts. If antivirus software is installed, these prompts also don’t show up when an

Chapter 2 Outlook as a Platform 43
external application accesses the object model from a different process. IT administrators
can define security preferences through the existing Outlook security form stored in
Exchange Public Folders or using Windows Group Policies. Group Policy administration of
Outlook security settings is new to Outlook 2007.

Innovation

Outlook 2007 introduces a wide range of new features that can be controlled programmatically:

■ Sharing protocols (webcal://, feed://, stssync://)

■ Calendar improvements (side-by-side, overlay, ICal sharing)

■ Electronic business cards

■ Task flagging

■ Color categories

■ Time zones for appointments

■ Navigation groups and folder in the Navigation Pane

Besides providing the object model for these new features, Outlook 2007 programmatically
exposes rules and views. The chapters in this book provide detailed information and sample
code on using the objects that represent these features in your solution.

Form Regions

Outlook solutions can rely on Outlook custom forms with form pages or the new Outlook
2007 form regions to customize the forms associated with Outlook. The new separate and
adjoining form regions in Outlook 2007 provide an additive or replacement UI to custom and
built-in forms. Outlook 2007 form regions are the preferred form of customization technology
because they have the following advantages over Outlook custom forms with form pagess:

■ Form regions are supported in the Reading Pane.

■ An additive UI can be provided through adjoining form regions. One item type can sup-
port multiple adjoining form regions from different add-ins.

■ Outlook 2007 also introduces a full palette of Outlook form controls for form regions,
allowing developers to clone the look and functionality of Outlook built-in forms:

❑ Category Strip and Button

❑ Contact Photo

❑ Electronic Business Card Preview

❑ Scheduling Free/Busy

❑ InfoBar

44 Part I Introducing Microsoft Office Outlook 2007
❑ Date Picker, Time Picker, and TimeZone

❑ Sender Contact Photo

■ Form regions and controls support Windows themes, meaning they have the same
appearance as Outlook built-in forms.

■ Form regions are installed locally as part of the Outlook solution and no longer rely on
the Outlook forms cache. Form regions are no longer deployed through the Exchange
Public Folder organizational forms library.

■ The business logic for a form region is implemented in an add-in and no longer in
VBScript behind an Outlook form. The form and add-in make up an Outlook solution
that is installed and updated at the same time.

■ Form region controls support additional events besides the Click event.

■ Compared to forms in earlier versions of Outlook, form regions are easily localized with-
out creating a separate form definition for each language supported for your solution.

■ Form regions support auto-layout, allowing the developer to define placement and resiz-
ing rules at design time that Outlook obeys at run time when drawing the forms.

Form regions are based on earlier Outlook forms technology. You design form regions in the
Outlook Forms Designer shown in Figure 2-13.

Figure 2-13 Designing form regions in the Outlook Forms Designer.

Form regions can provide an additional UI to built-in forms or completely customize the
forms area, which involves the introduction of a custom item type with a customized message
class such as IPM.Contact.MyItem.

Chapter 2 Outlook as a Platform 45

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The following list describes the available types of form regions for built-in or custom forms:

■ Adjoining An adjoining form region allows showing an additive UI on the bottom of
the main tab of a built-in or custom form. Many custom form scenarios involve adding
a small number of fields and don’t require a change to the rest of the form. An adjoining
form region addresses this scenario. More than one adjoining form region is supported
per form and each form region is expandable and collapsible. They enable lightweight
extension of forms without having to redesign the entire form and also facilitate more
than one solution extending the Outlook form.

■ Separate A separate form region allows adding an additional tab to a built-in or custom
form.

MAPI as a Platform Component

MAPI was introduced in the early 1990s as a specification for a messaging subsystem and all
the components that interact with it. MAPI was created to provide a standardized application-
level interface that allowed messaging components to communicate with widely incompatible
messaging systems. The interfaces between components are not APIs, but rather COM inter-
faces. MAPI is not a library, meaning there are different implementations of MAPI developed
by Microsoft and other ISVs.

In the context of this chapter, MAPI refers to the Outlook implementation of MAPI that
gets installed as part of Outlook. The Outlook implementation of MAPI is a cornerstone of
Outlook’s own architecture and enables ISVs to tightly integrate into Outlook. MAPI differ-
entiates between consumers (client applications) and producers (access providers) of mes-
saging services. Outlook does both; it is a rich application offering a consistent user
experience across different back ends and also ships a number of MAPI providers enabling
connectivity to a wide range of back-end servers. The MAPI solution landscape for Outlook
also covers both aspects: from MAPI clients such as antivirus software accessing e-mail
messages to MAPI providers adding additional address book, store, and transport capabil-
ities to Outlook. From a MAPI perspective, Outlook is a MAPI client with its own MAPI
subsystem implementation and a number of MAPI service providers.

The main programming interface for MAPI is an object-based interface known as the MAPI
programming interface. Based on COM, the MAPI programming interface is used by the MAPI
subsystem and by messaging-based client applications and service providers written in
unmanaged C or C++. Writing managed MAPI code is not supported.

What happened in the last decade since MAPI was introduced? The Exchange Client with
separate Personal Address Book (PAB) and Calendaring (Schedule+) components became
Outlook with tightly integrated Calendaring, Contacts, Tasks, Notes, and Journaling.
Outlook as a PIM is implemented on top of the MAPI 1.0 specifications.

46 Part I Introducing Microsoft Office Outlook 2007
In other words, the additional functionality is not directly exposed through MAPI but through
other APIs sitting on top of the MAPI infrastructure (Outlook object model, Outlook integra-
tion APIs, CDO). MAPI itself knows about e-mail items and address book entries but is agnos-
tic to other PIM types like Contact, Appointment, Task, and Journal items. For MAPI these
items are simply mail items with extra properties. MAPI does not know the meaning of these
properties, nor is it aware of the business logic. Recurrence for an appointment item is a
binary blob, and start time and end time are two individual properties not coupled with each
other. This means MAPI APIs are great for mail and address book functionality and to some
degree for also reading other PIM items, but MAPI is largely not suitable to create or update
them, as it would be up to the caller to be intimately familiar with item properties and busi-
ness logic.

The recommendation is to use higher-level APIs like the Outlook object model to create or
modify Outlook items. Using the object model ensures that the items are created in a consis-
tent manner so that the proper side effects are triggered. For example, when a meeting orga-
nizer changes the meeting time, an update needs to be sent to all attendees; simply changing
the property would leave the meeting in an inconsistent state.

One significant difference between MAPI and the Outlook object model is that MAPI runs in
the caller’s process, whereas the Outlook object model runs on Outlook’s foreground thread,
making it very critical to write performant code. MAPI does not specify the protocol used
between client and server. This architecture allowed Outlook to add support for the popular
Internet protocols (POP, Simple Mail Transfer Protocol [SMTP], IMAP, Lightweight Directory
Access Protocol [LDAP]) and formats (Multipurpose Internet Mail Extensions [MIME], iCal,
vCard) that emerged in the mid-1990s on top of its MAPI-based infrastructure. This enabled
ISVs to either rely on these standards to integrate with Outlook or use MAPI to implement a
custom solution. Outlook has positioned itself as the premier offline client. One significant
enhancement is cached Exchange built on top of a refined synchronization protocol when
running against Exchange. ISVs can benefit from these capabilities by also making their solu-
tions work seamlessly whether the user is online or offline.

Over time, the MAPI spooler was replaced in Outlook by the MAPI protocol handler, and the
MAPI form servers infrastructure by Outlook forms and form regions in Outlook 2007. For
additional information on development tasks using MAPI, please search for the MAPI Soft-
ware Development Kit on MSDN.

MAPI Profiles

MAPI profiles allow storing different configurations for a specific user. A profile defines what
stores, address books, and accounts, including preferences associated with them, should be
loaded when Outlook is booted into this profile. MAPI profiles are stored in the registry under
HKEY_CURRENT_USER (HKCU). For example, the user can have a profile configured with

Chapter 2 Outlook as a Platform 47
a business Exchange account and another profile with private POP and Hotmail accounts.
MAPI profiles predate Windows user profiles. One scenario for which they were introduced
was multiple users sharing the same computer, but with Windows supporting fast user
switching this is no longer a driving factor. When multiple profiles are set up, Outlook is typ-
ically configured to prompt at boot to allow the user to select which profile Outlook should
load. Currently most users have only one single profile and add all the services they need to
this single profile. A large percentage of Outlook users keep Outlook running throughout the
entire day; closing Outlook and restarting the application is often too cumbersome to get to
the mail sent to a different account. Solutions integrating with Outlook should be able to han-
dle multiple profiles, but the majority of users run with only one profile.

MAPI Service Providers

MAPI service providers come in three varieties: transport providers, message store providers,
and Address Book providers. Providers are dynamic-link libararies (DLLs) that implement a
specific pseudo-COM API, such as IMessageStore, and the underlying required interfaces,
such as IMAPIProp. MAPI providers are registered in Mapisvc.inf so the Outlook implementa-
tion of MAPI can discover these new services and make them available under Account Settings
on the Tools menu. The user can configure these services for each Outlook profile. Adminis-
trators can also preconfigure Outlook profiles by creating and deploying Outlook profile file
(PRF) files.

Note Outlook 2007 no longer relies on Mapisvc.inf to discover its own built-in MAPI
providers.

The Outlook 2007 Integration API Reference available on MSDN includes updated sample
code for different MAPI providers.

MAPI Message Store Provider A message store provider supports creating, submitting,
and storing messages. Outlook relies on these MAPI messages to store Mail, Contacts,
Appointments, and Tasks. Additionally, other Outlook components such as views or rules are
stored in hidden messages. The stores associated with MAPI store providers show up in the
Outlook folder list and in Outlook’s Navigation Pane, shown in Figure 2-14.

48 Part I Introducing Microsoft Office Outlook 2007
Figure 2-14 Business Contact Manager folder hierarchy implemented as MAPI store provider.

Outlook’s Message Store Provider Outlook 2007 ships with the following MAPI message
store providers:

■ Mspst32.dll contains the MAPI provider for Outlook Personal Folders files (.pst). Offline
Folder files (.ost) are also .pst-based and therefore also rely on this provider.

■ Emsmdb32.dll is the Electronic Messaging System Microsoft Database provider.
EMSMDB implements both a transport and a message store, and as such is a dual pro-
vider. The transport provides the ability to submit messages to Exchange Server. This
provider also enables reading and writing messages to an Exchange store.

■ Bcmms32.dll implements the MAPI store provider for the Business Contact Manager
functionality of Outlook 2007. This storage is SQL Express and contains Contact-based
items (Account and Business Contacts), Task-based items (Opportunity, Business
Projects, Project Task, Marketing Campaign) and Journal-based items (Business Notes
and Phone logs) but no Mail, Calendar, and Notes items or folders.

Custom Message Store Provider Writing a MAPI store provider allows a solution to inte-
grate data from another source like a local database, server back end for messaging, CRM, or
LOB application into Outlook. Writing a message store provider is complex and requires
unmanaged C++ and MAPI development proficiency. Before you consider writing a custom

Chapter 2 Outlook as a Platform 49
message store provider, it’s recommended that you also evaluate other alternatives. An alter-
native to a MAPI custom store provider is to cache the data in a .pst-based store by using the
Outlook Replication API documented in the Outlook 2007 Integration API Reference.

MAPI Transport Providers The purpose of a MAPI transport provider is to facilitate the
transmission of messages over different protocols. An example would be sending e-mail mes-
sages over a Web service or using a separate transport to communicate with a back-end ser-
vice. Microsoft LiveMeeting uses a separate transport provider to communicate with
LiveMeeting server.

Outlook’s MAPI Transport Providers Outlook 2007 ships with the following MAPI trans-
port providers:

■ Omsxp.dll implements the Outlook Mobile Service (OMS) transport provider for send-
ing Short Message Service (SMS) and Multimedia Messaging Service (MMS) text and
multimedia messages through the Outlook Mobile Service Web service to a cellular car-
rier that routes these messages to mobile phones. The OMS provider delivers to recipi-
ents with e-mail type MOBILE. The OMS provider also converts the MAPI message to an
XML payload as part of submitting the message.

■ Emsmdb32.dll is the Electronic Messaging System Microsoft Database provider. As men-
tioned earlier, EMSMDB implements both a transport and a message store, and as such
is a dual tightly-coupled provider.

Note Outlook does not internally rely on a physical MAPI transport provider for submitting
messages through SMTP (POP or IMAP configurations), HTTP (Hotmail), or Exchange (cached
Exchange mode).

Custom MAPI Transport Providers Outlook Mobile Service offers the canonical example
of such a provider. New to Outlook 2007, Outlook Mobile Service enables delivery to recipi-
ents with a custom e-mail type such as MYADRTYPE. When the user sends a message to such
a recipient, MAPI will ask each registered transport if it knows how to deliver to recipients
with type MYADRTYPE. Only the custom MAPI transport provider knows how to transport
this item and therefore gets to deliver the message. The transport provider can serialize the
MAPI message into another format such as XML or MIME during the submission process.

MAPI Address Book Provider An Address Book provider enables recipient e-mail lookup
and directory browsing. Recipients can be either single users or distribution lists. An Address
Book provider introduces a new list of entries into the Address Book. As shown in Figure 2-15,
the OMS address list shows up in the Address List drop-down box along with Global Address
List and Outlook Address Book in the Outlook Address Book. This address list will also be
searched during name resolution when a user clicks the Check Names button on the Ribbon
or during automatic background name resolution.

50 Part I Introducing Microsoft Office Outlook 2007
Figure 2-15 Outlook Mobile Service Address Book provider.

Outlook’s MAPI Address Book Provider Outlook 2007 ships four different MAPI Address
Book providers:

■ Emsabp32.Dll (Electronic Messaging System Address Book provider) implements the
Address Book provider used when Exchange accounts are configured. It implements
IAddrBook and supports both online mode against Microsoft Active Directory directory
service via Name Service Provider Interface (NSPI) and offline mode against Offline
Address Book (OAB), which is either downloaded from an Exchange Public Folder or
with Background Intelligent Transfer Service (BITS) from a Web server.

■ Contab32.dll contains the Outlook Address Book, also known as the Contact Address
Book provider. This provider exposes Personal Contacts Personal Distribution Lists
stored in Contacts folders in the Address Book.

■ Emablt32.dll is the Outlook LDAP provider enabling Outlook to connect to a variety of
different LDAP servers.

■ Omsxp.dll implements the Outlook Mobile Service Address Book provider, which
allows addressing of SMS messages. It’s a sibling of the Outlook Address Book. It
shows the mobile number instead of the e-mail address for Outlook Contacts. When
the user picks a user from this provider, a recipient with type MOBILE is created. This
provider is configured once the user adds an Outlook Mobile Service account to an
Outlook profile.

Custom MAPI Address Book Provider An Address Book provider allows integrating
another source of contact information into Outlook, typically for addressing e-mail messages.
Writing such a provider is difficult, so alternatives should be considered. If possible, rely on
the built-in LDAP provider or, if the data set is relatively small, replicate data into an Outlook
Contacts folder and rely on the Outlook Address Book provider.

Chapter 2 Outlook as a Platform 51
Outlook 2007 Integration API Reference

The Microsoft Office Outlook 2007 Integration API Reference provides a set of complimen-
tary APIs that allow developers to create a tight integration with Outlook. The Replication API
is worth looking at especially for data integration scenarios. These APIs are version specific;
they were introduced for Outlook 2003 (meaning they’re not supported for versions before
Outlook 2003) and were enhanced and slightly modified for Outlook 2007. Although it’s a
platform goal to maintain compatibility for these APIs, it should be assumed that solutions
relying on these APIs need to be revised for every major version of Office. Because these APIs
offer deep Outlook integration, they have to be adjusted when the internal Outlook archi-
tecture evolves. Fortunately, the transition from Outlook 2003 to Outlook 2007 involves
very little work.

The components of the Outlook 2007 Integration API Reference are as follows:

■ The Account Management API provides access to user account information and notifica-
tions of account changes.

■ The Offline State API supports Outlook callbacks, notifying clients of changes in a user’s
connection state in Outlook—for example, from being online to being offline in Outlook.

■ The Data Degradation Layer API enables data access to stores, items, and folders in
either Unicode/Wide or ANSI (Windows System Codepage) for both Unicode and ANSI
stores. For ANSI stores the data is downgraded (degraded) from Unicode to ANSI.

■ The Free/Busy API provides free/busy status information about specific user accounts
within a specific time range.

■ The MAPI–MIME Conversion API supports conversion between MIME objects and
MAPI messages.

■ The Replication API supports synchronizing Outlook folders and Outlook items
between a local store and a server. The most powerful API documented in this reference,
it allows .ost-based offline storage and replication. A CRM solution can, for example, use
these APIs to replicate data from the CRM database back end.

■ The Store API provides miscellaneous store functionality.

Simple MAPI

Simple MAPI is a very limited library of only 12 functions. Originally, Simple MAPI was devel-
oped to enable the Microsoft Mail client to communicate with Microsoft Mail post offices.
Extended MAPI completely supersedes the older version. These simple APIs continue to offer
applications an easy way to offer e-mail capabilities by integrating into the default e-mail pro-
gram. For example, Office applications or the Windows Shell use Simple MAPI for Send To
functionality. This API is not recommended for further use.

52 Part I Introducing Microsoft Office Outlook 2007
Deemphasized and Phased-Out Components

Outlook solutions should no longer rely on the following technologies and APIs. Although
most of these components continue to be supported in Outlook 2007, you should consider
updating your code to use the new technologies introduced in this version of Outlook. If you
are creating a new solution that only targets Outlook 2007, use of these deprecated technolo-
gies is not recommended.

Collaboration Data Objects 1.2.1

CDO 1.2.1 is an API that sits on top of MAPI for creating, sending, and receiving e-mail as well
as calendaring and public folder applications. Thanks to the unification effort for Outlook
2007, all critical CDO functionality is now incorporated in the Outlook 2007 object model. If
you use CDO, you should consider removing your solution’s dependency on CDO. CDO used
to be an optionally installed component, but with Office 2007 it’s only available as a Web
download. Existing versions of CDO will be removed by Office 2007 Setup.

Exchange Client Extensions

As the name indicates, this extensibility technology was introduced for the Microsoft
Exchange 4.0 client to customize menus and toolbars, preprocess outgoing and incoming
messages, add property sheets, and provide MAPI forms integration. Outlook, the successor
of the Exchange client, later added support for ECEs. Outlook 2007 added a large number of
new events to the Outlook object model, enabling developers to phase out their code relying
on ECEs. ECEs also enable the customization of command bars for Outlook items; these cus-
tomizations manifest themselves on the Add-ins tab of the Ribbon.

Outlook Custom Forms with Form Pages

Outlook 2007 continues to support Outlook custom forms with form pages, except for one-
off form definitions, which were deprecated for security and reliability reasons. In one-off
forms, the form is embedded in the message and contains definitions for custom properties
and VBScript. One-off forms no longer run script and do not propagate custom properties to
a recipient. A one-off form will render in a built-in form instead of the custom form definition
stored in the form. Although Outlook custom forms with form pages continue to be sup-
ported in Outlook 2007, solutions that target Outlook 2007 should use form regions in place
of these legacy forms.

MAPI Form Server (IMAPIForm)

MAPI Form Server is a pluggable forms infrastructure introduced with MAPI 1.0. Outlook
2007 continues to support this technology, but it’s expected to be deprecated in a future
Office release.

Chapter 2 Outlook as a Platform 53
Exchange Forms Designer Forms

Exchange Forms Designer forms were included with Exchange 4.0 and 5.0 and were designed
for the pre-Outlook Exchange client. Outlook 97 also included the Exchange Forms Designer.
This form development package has its own design environment based on 16-bit Microsoft
Visual Basic 4.0. Outlook has supported using these forms, but since Outlook 2002 you must
download the necessary runtime files for these forms to work. Although they are considered
obsolete, Outlook 2007 continues to support these forms if you have the runtime installed.

Electronic Forms Designer (Microsoft Mail 3.0) Forms

Electronic Forms Designer forms are based on 16-bit Microsoft Mail 3.0 technology. These
forms work in Outlook 97 through Outlook 2002 and have a dependency on the Microsoft
Mail 3.0 client extension. Outlook 2003 and Outlook 2007 do not include this extension
and therefore Electronic Forms Designer forms are not supported in Outlook 2003 and
later versions.

Development Tools
The following section discusses development tools that you can use to create an Outlook
solution. The development tool that you select to create your solution depends in part on your
scenario and also on the resources within your company. If you have a large number of devel-
opers who have moved from Microsoft Visual Basic 6.0 to Microsoft Visual Basic .NET, then
Visual Basic will be a natural choice for your development tool. If you have trained C# devel-
opers, then C# would be your preference. Although the sample code in this book has been
written using C#, the code is also provided online in Visual Basic versions. The Microsoft
Visual Basic .NET version of the sample code is not listed directly in the book because of space
considerations rather than as a matter of preference. Visual Basic .NET sample code is avail-
able on the Web site for this book.

Visual Basic for Applications

Microsoft Visual Basic for Applications (VBA) is the development environment that ships with
Outlook 2007. However, unlike other Office applications like Word and Excel, Outlook VBA
is a prototyping tool only. Although Outlook VBA can be used to create personal productivity
macros, it is not suitable for the development and deployment of a professional solution. The
limitations of Outlook VBA are as follows:

■ The Outlook VBA project is contained in a single file named VBAProject.otm. Only one
Outlook VBA project can be deployed in a given user profile on a machine. This archi-
tecture means that only one VBAProject.otm can be deployed for a user. If another solu-
tion overwrites the VBAProject.otm file, the customizations in the original file are lost.

54 Part I Introducing Microsoft Office Outlook 2007
■ Unlike other Office applications, Outlook VBA cannot be attached to a document so that
customization travels with the document or template.

■ Custom task panes are not supported in Outlook VBA.

■ You cannot customize the Ribbon using Outlook VBA. Only command bars can be cus-
tomized in Outlook VBA.

■ You cannot record macros in Outlook VBA.

Visual Studio Tools for Office

Microsoft Visual Studio 2005 Tools for the 2007 Microsoft Office System (VSTO) is a rec-
ommended development environment for Outlook add-ins. As shown in Figure 2-16, VSTO
provides an abundance of benefits to the Outlook developer. Due to scheduling consider-
ations, VSTO is not used for the sample add-ins in this book. The sample add-ins use a COM
shim architecture and do not utilize VSTO features. Both MSDN and third-party publica-
tions will provide you with plenty of information to get you started using VSTO. A short list
of VSTO benefits includes the following:

■ Use of the Common Language Runtime (CLR) 2.0. The CLR offers type safety, memory
management and garbage collection, and a host of useful classes and features that are
well documented in the extensive literature available on MSDN.

■ A professional development environment with integrated debugger.

■ Templates that provide the framework for creating a managed Outlook add-in using
either C# or Visual Basic .NET.

■ AppDomain isolation. For an Outlook developer, AppDomain isolation prevents an add-
in from crashing due to an unhandled exception in another add-in. It also prevents an
add-in from crashing other add-ins in a shared AppDomain.

■ Support for new 2007 Office system extensibility features, including:

❑ Outlook form regions

❑ RibbonX

❑ Custom task panes

Chapter 2 Outlook as a Platform 55
Figure 2-16 Using VSTO to develop an add-in for Outlook 2007.

Managed Versus Native Code

Microsoft Visual Studio represents the strategic development platform for Microsoft, and the
recommendation of Visual Studio 2005 or VSTO for Outlook add-in development follows that
strategic direction. If your team is trained in either Visual Basic .NET or C#, they will be able
to develop professional Outlook solutions using the guidance provided in this book. How-
ever, you might wonder if managed code is suitable for all Outlook solutions. The answer, of
course, depends on your scenario. If your solution requires development of any of the follow-
ing platform components, you should consider using a native code development environment
such as Microsoft C++:

■ Transport, Address Book, or custom store providers

■ Synchronization using Replication API

■ Extended MAPI functionality not available in the Outlook 2007 object model

Another indication that you should consider native code rather than managed code is perfor-
mance. Although Outlook 2007 has targeted performance improvements over previous ver-
sions, you should understand that managed code requires the Outlook Primary Interop
Assemblies (PIAs) to provide the Interop layer between .NET Framework assemblies and the
COM-based Outlook object model. This Interop layer does add a performance consideration to
using managed code. Although this performance layer is not an obstacle for the vast majority

56 Part I Introducing Microsoft Office Outlook 2007
of Outlook solutions, it is a gating factor if your solution repeatedly enumerates large numbers
of Outlook items, for example. Remember that the Outlook object model operates on the fore-
ground thread, so operations that poll the Outlook data store using the object model and the
foreground thread can degrade the performance of Outlook as a whole. When you have to sat-
isfy stringent performance requirements, you should consider a native development environ-
ment such as C++. If you must write native code, you should also weigh the additional cost in
time and resources required by C++ development against going with a solution built using C#
or Visual Basic .NET. The final decision is yours, and the choice of development tool is dic-
tated first by your scenario, and second by your resources and budget.

 Add-In Model
The primary customization technology for the Outlook 2007 platform is a COM add-in. Of
course, you can create a managed add-in using VSTO or Visual Studio 2005. Managed add-ins
use an Interop layer to connect to the Outlook host application, but they still use the basic
COM add-in technology. In Outlook 2007, add-ins have achieved new prominence because an
add-in is the only way that you can create Outlook 2007 form regions, Ribbon customizations
for an Outlook Inspector, and Office custom task panes. Add-ins are also the preferred
method for creating event listeners that implement the business logic of your solution. Your
add-in can leverage the improved event model in Outlook 2007 to determine when an item is
being saved or sent, an attachment is being added or removed from an item, an item is being
deleted from a folder, or a custom or built-in item property is being changed. And those are
just a few of the event listeners that are possible in Outlook.

Outlook has supported COM add-ins since Microsoft Office 2000, which is when the COM
add-in architecture was first introduced in Office. The core architecture involved in creating a
COM add-in has not changed in terms of how the Office application communicates with
COM add-ins. Office 2007 continues to use the same architecture that was first implemented
in Office 2000.

Overall, unless there is a specific reason that dictates otherwise, COM add-ins are the recom-
mended way for developers to create a custom solution that integrates with Outlook. Of
course, there are many factors to take into account when designing a custom solution, but key
benefits of using a COM add-in in Outlook include the following:

■ COM add-ins are the supported way to create an Outlook-based solution that can be
deployed (as opposed to Outlook VBA). Deployment can occur through a standard
Windows installer (.msi) or through a push technology such as Microsoft Systems
Management Server.

■ COM add-ins allow a solution to be trusted so that Object Model Guard security
prompts are not generated when the object model is used to access the address book or
recipient information, or to programmatically send e-mail. In Outlook 2007, all add-ins
are trusted by default from the perspective of the Outlook object model guard. In locked-

Chapter 2 Outlook as a Platform 57
down environments, IT administrators can use the Outlook security form in Exchange
public folders or use group policy objects to control a list of trusted add-ins.

■ Even if you are developing a standalone application, you could also develop a proxy add-
in and have the standalone program interact with the COM add-in by using public meth-
ods and properties exposed by the add-in. In this way, any functionality that would typ-
ically generate a security prompt can be done from within the add-in. Outlook 2007 also
provides the ability to turn off security prompts when antivirus software is installed and
current. This ability can also be controlled via group policy.

■ COM add-ins are the replacement technology for ECEs. Previous versions of the Outlook
object model did not provide some key functionality that you could achieve in a client
extension, so many developers still developed extensions in C++ because they provided
more options. However, due to the many object model improvements in Outlook 2007,
the COM add-in architecture is even more viable for many developers.

There are some scenarios where an add-in is not recommended for an Outlook solution. It’s
worthwhile to point these out so that you don’t attempt to create a solution with the wrong
technology. Add-ins and the Outlook object model are not recommended if you need to create
any of the following components:-

■ Windows service application Because the Outlook object model can display UI ele-
ments and operates on Outlook’s foreground thread, the Outlook object model and add-
in technology are not suitable for use in a Windows service application. For a service
application, you can use CDO or Extended MAPI. Because CDO is being deprecated in
this release, it is suggested that you use Extended MAPI for a Windows service application.

■ Web application The Outlook object model is not suitable for use in a Web applica-
tion. Exchange 2007 offers Web services for use in a Web application. Previous versions
of Exchange offer the Web Distributed Authoring and Versioning (WebDAV) protocol or
the Exchange OLE DB (ExOLEDB) provider for use in Web applications.

Summary
This chapter has taken you on a tour of the Outlook platform. Along the way, you’ve learned
how some solutions that ship with the 2007 Office system have taken advantage of the Outlook
2007 object model and form regions. In brief, this chapter has described the pillars of the
Outlook 2007 platform enhancements. You’ve also been exposed to how Outlook relies on
MAPI as the cornerstone of its internal architecture. During this discussion, prescriptive guid-
ance has been provided to offer suggestions about how to build solutions on top of Outlook.
Although prescriptive guidance must always be tied to practical scenarios, it’s hoped that you
will follow these guidelines to make your solution integrate seamlessly with Outlook 2007.

Part II
Quick Guide to Building Solutions

In this part:
Chapter 3: Writing Your First Outlook Add-in Using Visual Basic .NET . . 61

Chapter 4: Writing Your First Outlook Add-in Using C#. 87

Chapter 3

Writing Your First Outlook Add-in
Using Visual Basic .NET

The goal of this chapter is to walk you through the process of creating a Microsoft Visual Basic
add-in for Microsoft Office Outlook 2007. Once you’ve created and built the project, you will
be able to use the add-in in your everyday activities. Unlike the C# sample code in the rest of
this book, this code focuses on Visual Basic development experience. Although the steps you
need to follow in Visual Basic are not that different from the steps required for Visual C#, it
will be helpful to the Visual Basic developer to cover all the steps in detail necessary to create,
build, and deploy an Outlook 2007 add-in. If you are interested in obtaining practical results
in a very short time, this chapter is for you.

When you have finished this chapter, you will have:

■ Used the Outlook add-in templates supplied with this book.

■ Created a new Outlook add-in project for Visual Basic.

■ Written code to add a custom pop-up menu to the context menu for a mail item.

■ Built a Component Object Model (COM) shim project so that the add-in runs in a sep-
arate application domain.

■ Built a setup project so that you can deploy the Instant Search add-in.

Microsoft Visual Studio 2005 continues to provide built-in support for developing Office add-
ins through the Shared add-in template, but this template is missing some key blocks of code
that are useful for writing Outlook 2007 COM add-ins in managed code. Although using
Microsoft Visual Studio 2005 Tools for the 2007 Microsoft Office System (VSTO) offers
another preferred development approach, it is not covered in this chapter. You can easily
adapt the code in this chapter to work with VSTO. For this example, you’ll learn how to write
an add-in based on the Outlook add-in template for Visual Basic supplied on the Web site that
contains sample code for this book.

Introducing the Instant Search Add-In
The Instant Search add-in places an Instant Search command at the bottom of an item’s con-
text menu, as shown in Figure 3-1. Instant Search is a pop-up command bar control that lets
the user take advantage of Outlook’s Instant Search feature and display messages from the
sender sent last week, this week, last month, this month, or all messages. The search results
are displayed in a separate Explorer window, shown in Figure 3-2.
61

62 Part II Quick Guide to Building Solutions
Figure 3-1 Instant Search pop-up menu.

Figure 3-2 Results from Instant Search are shown in a separate Explorer window.

Install the Outlook Add-in Templates
To get you started writing Outlook add-ins, templates for both Visual Basic and Visual C# are
provided on the Web site that contains the sample code for this book. Before you can create
the Instant Search add-in, you must install the Outlook Add-in Templates.

Chapter 3 Writing Your First Outlook Add-in Using Visual Basic .NET 63
To install the Outlook Add-in Templates, follow these steps:

1. Download the Outlook Add-in Template’s installation package from this book’s com-
panion Web site.

2. Double-click OutlookAddinTemplates.msi to begin the installation process.

3. In the Microsoft Office Outlook 2007 Add-in Templates Setup dialog box, click Next.

4. After reviewing the End-User License Agreement, select I Agree to accept the agreement,
and then click Next.

5. Click Next to confirm that you wish to start the installation.

6. If you are installing the templates on Microsoft Windows Vista, you will see the User
Account Control dialog box after installation begins. Click Allow to indicate that you
trust the setup package for the Outlook Add-in templates.

7. After the installation has completed, click Close to dismiss the Setup Wizard dialog box.

Creating the Instant Search Add-In
To create a Visual Studio solution for the Instant Search add-in, follow these steps:

1. Open Visual Studio 2005, and press Ctrl+Shift+N to display the New Project dialog box.

2. In the Project Types list, click the Other Project Types node.

3. Under Visual Studio Installed Templates, click Blank Solution.

4. In the Name text box, type InstantSearchVB (as shown in Figure 3-3), and then click
OK to create the solution.

Figure 3-3 Visual Studio 2005 New Project dialog box for InstantSearchVB solution.

64 Part II Quick Guide to Building Solutions
Now that the custom templates are installed and you’ve created a Visual Studio solution to
contain your add-in, shim, and setup projects, proceed by creating an add-in project using the
template.

To create a Visual Studio add-in project using the add-in template, follow these steps:

1. From the File menu, select the Add pop-up menu, and then select New Project to add a
new project to the InstantSearchVB solution.

2. In the Project Types list, click the Visual Basic node.

3. In the Templates list, from the My Templates group, select Office Outlook 2007 Visual
Basic Add-In.

4. In the Name text box, type InstantSearchAddinVB, as shown in Figure 3-4, and then
click OK.

Figure 3-4 Visual Studio 2005 New Project dialog box for InstantSearchAddinVB project.

5. You will then see the InstantSearchAddinVB project in the Visual Studio editor, shown in
Figure 3-5.

Chapter 3 Writing Your First Outlook Add-in Using Visual Basic .NET 65
Figure 3-5 InstantSearchAddinVB project in the Visual Studio editor.

Writing Code
The next step in completing the Instant Search add-in is to write code in the project. Before
you start to write code, you should understand that the template is a generic project aimed
at typical Outlook add-in scenarios. The template creates code that allows you to track mul-
tiple instances of Inspector or Explorer windows. For the Instant Search add-in, you don’t
need to track Inspector or Explorer windows, so you will comment out the existing code in
the InitializeAddin and ShutdownAddin methods. At this point, you should follow this proce-
dure to remove the code in these methods:

1. Locate the InitializeAddin and ShutdownAddin methods, shown in Figure 3-6, in the
Connect class. You might need to expand the “Initialize and Shutdown methods”
region before you can see the InitializeAddin and ShutdownAddin methods.

66 Part II Quick Guide to Building Solutions
Figure 3-6 The Initialize and Shutdown methods region in the Connect class.

2. Comment out all the code in the InitializeAddin method.

3. Comment out all the code in the ShutdownAddin method.

The InitializeAddin Method

The InitializeAddin method runs when your add-in is loaded by the host application, which
in this case is Outlook 2007. If you were to examine the Connect.Designer.vb class,
InitializeAddin gets called in the OnConnection method of the add-in. OnConnection is a
method called by Office add-ins that must implement the IDTExtensibility2 interface.
Connect.Designer.vb abstracts the details of the IDTExtensiblity2 interface and provides you
with two methods, InitializeAddin and ShutdownAddin, which correspond to Startup and
Shutdown events. Without getting into too many details about the IDTExtensibility2 inter-
face, InitializeAddin is called when the add-in is loaded by the host application at boot time
or when the add-in is loaded through a user action such as connecting the add-in manually
via the COM Add-Ins dialog box. You use InitializeAddin and ShutdownAddin to create and
destroy class-level instance variables that are required for your add-in and to wire up event
handlers required by your solution. In the case of the InstantSearchAddinVB project, no
code is required in the InitializeAddin or ShutdownAddin methods.

Note To examine Connect.Designer.vb in the Solution Explorer, you need to show all files in
the project. To display the Solution Explorer, press Ctrl+R. To show all files, select the Project
menu in Visual Studio, and then select Show All Files.

Chapter 3 Writing Your First Outlook Add-in Using Visual Basic .NET 67
Turn Option Strict On

The Option Strict directive is not turned on by default in the Outlook Visual Basic template.
However, it is strongly recommended that you navigate to the top of the Connect class and type
Option Strict On. Option Strict On involves more work on your part because you must cast
Outlook members that return a type of Object to the correct type. Because Option Strict On pro-
vides strong typing, prevents unintended type conversions with data loss, disallows late bind-
ing, and improves performance, you should add this directive to the Connect class.

Adding Instance Variables

The next step is to create class-level instance variables in the Connect class to represent com-
mand bar controls on the context menu for an item. Context menus in Outlook use the famil-
iar Office command bars object model that has been present in several versions of Office.
Context menu commands do not use the new Ribbon extensibility model.

To add instance variables to the Connect class, follow these steps:

1. Display the Solution Explorer by pressing Ctrl+R.

2. Double-click Connect.vb in the Solution Explorer to display the Code Editor for the
Connect class.

3. Locate the instance variables region shown in Figure 3-7 in Connect.vb. You might need
to expand the “Instance Variables” region before you can see the InitializeAddin method.

Figure 3-7 Class-level instance variables in the Connect class.

68 Part II Quick Guide to Building Solutions
4. Type the following code in the instance variables region in the Connect class:

 'Context menu commands
 Dim WithEvents ctlThisWeek As Office.CommandBarButton
 Dim WithEvents ctlLastWeek As Office.CommandBarButton
 Dim WithEvents ctlThisMonth As Office.CommandBarButton
 Dim WithEvents ctlLastMonth As Office.CommandBarButton
 Dim WithEvents ctlAllMessages As Office.CommandBarButton
 'Selection
 Dim LastSelection As Outlook.Selection

Hooking Up Events in Visual Basic

If you use the WithEvents keyword when you declare an event-aware instance variable,
Visual Studio does all the work for you to hook up the event. Because the Application
instance variable that represents the Outlook.Application object has been declared WithEvents
in Connect.Designer.vb, all the application-level events are available in the right drop-down list
in the Visual Studio Code Editor. All you have to do is select the event and then write code in
the event handler. The relevant events for item context menus are the ItemContextMenuDisplay
and ContextMenuClose events on the Application object.

ItemContextMenuDisplay Event

The ItemContextMenuDisplay event occurs before a context menu for either a single high-
lighted Outlook item or for one or more selected Outlook items is to be displayed, allowing
the CommandBar object representing the context menu to be customized by an add-in. For the
Instant Search add-in, the Instant Search pop-up on the context menu is displayed only when
a single mail item is selected. When more than one mail item is selected or when the single
selected item is not a mail item, the Instant Search pop-up on the context menu does not
appear. Because the Application instance variable that represents the Outlook.Application
object in the Connect class is declared using WithEvents, the Application variable appears in the
left drop-down list of the Code Editor for the Connect class. When you select the Application
object in the left drop-down list and then select the correct event name in the right drop-down
list, the event procedure is stubbed out for you.

To write code for the ItemContextMenuDisplay event, follow these steps:

1. In the Connect class Code Editor, select the Application object in the left drop-down list.

2. Select the ItemContextMenuDisplay event in the right drop-down list.

3. Write the following code in the ItemContextMenuDisplay event handler:

Private Sub Application_ItemContextMenuDisplay(_
ByVal CommandBar As Microsoft.Office.Core.CommandBar, _
ByVal Selection As Microsoft.Office.Interop.Outlook.Selection) _
Handles Application.ItemContextMenuDisplay
 Dim ctlInstantSearch As Office.CommandBarPopup
 Try

Chapter 3 Writing Your First Outlook Add-in Using Visual Basic .NET 69
 If Selection.Count = 0 Then
 Exit Sub
 End If
 'Determine selection and only modify context menu
 'for MailItem and Selection.Count = 1
 'IsInstantSearchEnabled must also return True
 Dim oItem As New OutlookItem(Selection.Item(1))
 If oItem.Class = Outlook.OlObjectClass.olMail _
 AndAlso Selection.Count = 1 _
 AndAlso oItem.Parent.Store.IsInstantSearchEnabled Then
 ctlInstantSearch = CType(CommandBar.FindControl(_
 Tag:="InstantSearchAddinVB.ctlInstantSearch"), _
 Office.CommandBarPopup)
 If ctlInstantSearch Is Nothing Then
 ctlInstantSearch = CType(CommandBar.Controls.Add _
 (Type:=Office.MsoControlType.msoControlPopup, _
 Parameter:="InstantSearchAddinVB.ctlInstantSearch"), _
 Office.CommandBarPopup)
 With ctlInstantSearch
 .Caption = "Instant Search"
 .Tag = "InstantSearchAddinVB.ctlInstantSearch"
 .BeginGroup = True
 End With
 LastSelection = Selection
 'Add controls to popup
 ctlThisWeek = CType(ctlInstantSearch.CommandBar.Controls _
 .Add(Office.MsoControlType.msoControlButton), _
 Office.CommandBarButton)
 ctlThisWeek.Caption = "Received This Week..."
 ctlThisMonth = CType(ctlInstantSearch.CommandBar.Controls _
 .Add(Office.MsoControlType.msoControlButton), _
 Office.CommandBarButton)
 ctlThisMonth.Caption = "Received This Month..."
 ctlLastWeek = CType(ctlInstantSearch.CommandBar.Controls _
 .Add(Office.MsoControlType.msoControlButton), _
 Office.CommandBarButton)
 ctlLastWeek.Caption = "Received Last Week..."
 ctlLastMonth = CType(ctlInstantSearch.CommandBar.Controls _
 .Add(Office.MsoControlType.msoControlButton), _
 Office.CommandBarButton)
 ctlLastMonth.Caption = "Received Last Month..."
 ctlAllMessages = CType(ctlInstantSearch.CommandBar.Controls _
 .Add(Office.MsoControlType.msoControlButton), _
 Office.CommandBarButton)
 ctlAllMessages.Caption = "All Messages Received..."
 End If
 End If
 Catch ex As Exception
 Debug.WriteLine(ex.Message)
 End Try
End Sub

This event procedure looks at the Selection object passed in the event. If Selection.Count is zero,
then the code exits from the event procedure and no command bar pop-up is created. The
Selection collection, like other collection objects in the Outlook object model, is one-based and

70 Part II Quick Guide to Building Solutions

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

the indexer for the Selection object returns a type Object. The OutlookItem class uses reflection
to determine the common properties of an Outlook item and allows you to determine the
underlying type of the item Object. For complete details on the OutlookItem class, see the sec-
tion “The OutlookItem Helper Class” in Chapter 6, “Accessing Outlook Data.”

If Selection.Count is one and the item returned by the indexer of the Selection object represents
a MailItem and the IsInstantSearchEnabled property returns True on the Store object that con-
tains the item, then the Office CommandBar object model is used to create a pop-up menu rep-
resented by the instance variable ctlInstantSearch. ctlInstantSearch represents an
Office.CommandBarPopup object. To add the pop-up menu to the item context menu, you
call the Add method on the CommandBar object passed in the ItemContextMenuDisplay
event. Once the pop-up menu has been added, you then set the Caption and Tag properties
for ctlInstantSearch. The Caption property is set to “Instant Search” and the Tag property is
set to the ProgID of the Instant Search add-in, “InstantSearchAddinVB.Connect.”

Once you have instantiated the CommandBarPopup object that represents the Instant Search
pop-up menu, you then add additional CommandBarControl objects that represent additional
menu items on the pop-up menu. Each of the menu items corresponds to the following time
intervals for messages received:

■ This Week

■ Last Week

■ This Month

■ Last Month

■ All Messages

Note that the instance variables ctlThisWeek, ctlLastWeek, ctlThisMonth, ctlLastMonth, and
ctlAllMessages are also declared using WithEvents. You’ll write code for the Click event for
these instance variables later in the chapter.

ContextMenuClose Event

The ContextMenuClose event occurs just after a context menu is closed so that add-ins can dis-
pose of any object references that have been obtained from other context menu events such as
ItemContextMenuDisplay. In the case of the Instant Search add-in, the LastSelection object is set
to Nothing.

To write code for the ContextMenuClose event, follow these steps:

1. In the Connect class Code Editor, select the Application object in the left drop-down list.

2. Select the ContextMenuClose event in the right drop-down list.

3. Write the following code in the ContextMenuClose event handler:

Chapter 3 Writing Your First Outlook Add-in Using Visual Basic .NET 71
Private Sub Application_ContextMenuClose(_
ByVal ContextMenu As Microsoft.Office.Interop.Outlook.OlContextMenu) _
 Handles Application.ContextMenuClose
 LastSelection = Nothing
End Sub

The DisplayInstantSearchExplorer Method

To reduce the amount of code you need to write, the DisplayInstantSearchExplorer method is
called from the Click event procedures for the submenu controls on the Instant Search pop-up
menu. The DisplayInstantSearchExplorer method displays the results of an Instant Search
query in a new Explorer window by calling the Search method on the Explorer object. The
Search method is new to Outlook 2007 and allows you to use the Advanced Query Syntax of
Microsoft Windows Desktop Search to return results. For additional details on Advanced
Query Syntax, see Chapter 11, “Searching Outlook Data.” This method takes three arguments,
shown in Table 3-1.

To write code for the DisplayInstantSearchExplorer method, follow these steps:

1. In the Connect class Code Editor, click at the bottom of the Connect class before the
End Class statement.

2. Write the following code in the DisplayInstantSearchExplorer method:

Private Sub DisplayInstantSearchExplorer(_
 ByVal Folder As Outlook.Folder, _
 ByVal InstantSearch As String, _
 ByVal ShowToDoBar As Boolean)
 Dim exp As Outlook.Explorer = _
 Application.Explorers.Add(Folder, _
 Outlook.OlFolderDisplayMode.olFolderDisplayNoNavigation)
 'Call Explorer.Search to automate Instant Search
 exp.Search(InstantSearch, _
 Outlook.OlSearchScope.olSearchScopeAllFolders)
 exp.Display()
 exp.ShowPane(Outlook.OlPane.olToDoBar, ShowToDoBar)
End Sub

Table 3-1 Parameters for the DisplayInstantSearchExplorer Method

Parameter Required Type Description
Folder Yes Outlook.Folder Represents the Folder object that contains the item

on which the context menu is being displayed.
InstantSearch Yes String A String that contains a valid Advanced Query Syntax

query.
ShowToDoBar Yes Boolean If ShowToDoBar equals True, displays the To-Do Bar in

the new Explorer window. If False, hides the To-Do
Bar.

72 Part II Quick Guide to Building Solutions
Writing Code for Submenu Click Events

Next you write code for the submenu Click events on the five menu items that exist on the
Instant Search pop-up menu. When the user clicks any one of the submenu items, the Click
event for the Office.CommandBarButton is called. The code in the Click event simply calls the
DisplayInstantSearchFolder method with the correct parameters to display an Explorer win-
dow that shows the results of the search. Once you’ve completed this task, you’ll be ready to
build the Instant Search add-in.

To write code for submenu Click events, follow these steps:

1. In the Connect class Code Editor, select the ctlThisWeek object in the left drop-down list.

2. Select the Click event in the right drop-down list.

3. Write the code shown in the ctlThisWeek_Click event handler.

4. Repeat the preceding sequence for ctlLastWeek, ctlThisMonth, ctlLastMonth, and
ctlAllMessages objects.

Private Sub ctlThisWeek_Click(_
ByVal Ctrl As Microsoft.Office.Core.CommandBarButton, _
ByRef CancelDefault As Boolean) Handles ctlThisWeek.Click
 If LastSelection.Count = 1 Then
 Dim oMail As Outlook.MailItem = _
 CType(LastSelection.Item(1), Outlook.MailItem)
 Dim fromAddress As String = oMail.SenderName
 Dim currentFolder As Outlook.Folder _
 = CType(oMail.Parent, Outlook.Folder)
 Dim SearchQuery As String = "from:(" & fromAddress & ")" _
 & " received:(this week)"
 DisplayInstantSearchExplorer(currentFolder, SearchQuery, False)
 End If
End Sub

Private Sub ctlThisMonth_Click(_
ByVal Ctrl As Microsoft.Office.Core.CommandBarButton, _
ByRef CancelDefault As Boolean) Handles ctlThisMonth.Click
 If LastSelection.Count = 1 Then
 If LastSelection.Count = 1 Then
 Dim oMail As Outlook.MailItem = _
 CType(LastSelection.Item(1), Outlook.MailItem)
 Dim fromAddress As String = oMail.SenderName
 Dim currentFolder As Outlook.Folder _
 = CType(oMail.Parent, Outlook.Folder)
 Dim SearchQuery As String = "from:(" & fromAddress & ")" _
 & " received:(this month)"
 DisplayInstantSearchExplorer(currentFolder, SearchQuery, False)
 End If
 End If
End Sub

Private Sub ctlLastWeek_Click(_
ByVal Ctrl As Microsoft.Office.Core.CommandBarButton, _

Chapter 3 Writing Your First Outlook Add-in Using Visual Basic .NET 73
ByRef CancelDefault As Boolean) Handles ctlLastWeek.Click
 If LastSelection.Count = 1 Then
 Dim oMail As Outlook.MailItem = _
 CType(LastSelection.Item(1), Outlook.MailItem)
 Dim fromAddress As String = oMail.SenderName
 Dim currentFolder As Outlook.Folder _
 = CType(oMail.Parent, Outlook.Folder)
 Dim SearchQuery As String = "from:(" & fromAddress & ")" _
 & " received:(last week)"
 DisplayInstantSearchExplorer(currentFolder, SearchQuery, False)
 End If
End Sub

Private Sub ctlLastMonth_Click(_
ByVal Ctrl As Microsoft.Office.Core.CommandBarButton, _
ByRef CancelDefault As Boolean) Handles ctlLastMonth.Click
 If LastSelection.Count = 1 Then
 Dim oMail As Outlook.MailItem = _
 CType(LastSelection.Item(1), Outlook.MailItem)
 Dim fromAddress As String = oMail.SenderName
 Dim currentFolder As Outlook.Folder _
 = CType(oMail.Parent, Outlook.Folder)
 Dim SearchQuery As String = "from:(" & fromAddress & ")" _
 & " received:(last month)"
 DisplayInstantSearchExplorer(currentFolder, SearchQuery, False)
 End If
End Sub

Private Sub ctlAllMessages_Click(_
ByVal Ctrl As Microsoft.Office.Core.CommandBarButton, _
ByRef CancelDefault As Boolean) Handles ctlAllMessages.Click
 If LastSelection.Count = 1 Then
 Dim oMail As Outlook.MailItem = _
 CType(LastSelection.Item(1), Outlook.MailItem)
 Dim fromAddress As String = oMail.SenderName
 Dim currentFolder As Outlook.Folder _
 = CType(oMail.Parent, Outlook.Folder)
 Dim SearchQuery As String = "from:(" & fromAddress & ")"
 DisplayInstantSearchExplorer(currentFolder, SearchQuery, False)
 End If
End Sub

Building the Add-in Project

You’re now ready to build the Instant Search add-in project. Before you build the project, you
should check the Error window to ensure that you don’t have an error in your code.

To build the Instant Search add-in project, follow these steps:

1. Press Ctrl+W, and then press Ctrl+E to display the Error list window.

2. Ensure that there are no errors in your code. If there are errors, Visual Studio will suggest
how you should correct them.

74 Part II Quick Guide to Building Solutions
3. From the Build menu, select Build InstantSearchAddinVB.

4. In the status bar, you should see “Build Succeeded” if the build completed successfully.

5. Save the Instant Search add-in project from the File menu by selecting Save All or by
pressing Ctrl+Shift+S. Click OK to save the project to the InstantSearchAddinVB folder.

Creating a Shim Project
Now that you’ve successfully created the InstantSearchAddinVB project, the next step is to
create a COM shim for the add-in. If you don’t use VSTO to create your add-in for Outlook
2007, you should shim your managed extension to provide application domain isolation. For
details on the concept of an application domain, represented by the AppDomain object, search
for “AppDomain” in the Visual Studio 2005 Developer’s Reference. Application domain isola-
tion means that an exception in another add-in will not cause your add-in to crash or operate
in an unexpected manner. Similarly, if your add-in encounters an unhandled exception, it will
not cause all other managed add-ins running in the Outlook process to crash. Provided by
either the COM shim or VSTO, application domain isolation offers several advantages.

When Outlook loads add-ins, an add-in that causes an error during boot can be placed on a
disabled add-in list. Because Outlook cannot distinguish between one shared add-in and
another, Outlook places Mscoree.dll on its disabled list and consequently all shared managed
add-ins are disabled. With application domain isolation, disabling one add-in does not disable
all other managed add-ins.

Application domain isolation prevents an unhandled exception in one add-in from crashing
all other add-ins in the same application domain. Unexpected behavior can occur when add-
ins share the same application domain. For example, if add-in A calls ReleaseCOMObject and
FinalReleaseCOMObject on an object that it shares with add-in B and both add-ins are in the
same application domain, add-in B encounters an access violation when it attempts to access
the shared object.

If an Exchange administrator uses the Outlook security form in an Exchange public folder or
group policy to maintain a list of trusted add-ins, trusting a shared add-in means trusting
Mscoree.dll, which in effect trusts all shared add-ins and negates the intended action, which is
to trust a single add-in. For additional information on Outlook security and the concept of a
trusted add-in, see Chapter 19, “Trust and Security.” For VSTO add-ins, the administrator
trusts the manifest of the managed add-in assembly. For COM shim add-ins, the administrator
trusts the COM shim that acts as a proxy for the managed add-in.

A COM shim acts as a native proxy for your managed add-in. COM shims must be written in
C++. However, thanks to the COM Shim Wizard that is available on MSDN or on the Web site
that accompanies this book, knowledge of C++ is completely optional. Basically, you only
need to click through the COM Shim Wizard, and all the C++ code will be written for you
automatically.

Chapter 3 Writing Your First Outlook Add-in Using Visual Basic .NET 75
To install the Visual Studio COM Shim Wizard, follow these steps:

1. Download the file by clicking the Download link on the Web site that accompanies this
book and saving the file to your hard disk. You can also download the COM Shim Wiz-
ard from MSDN. Search for “COM Shim Wizard” at http://msdn.microsoft.com.

2. Double-click the COMShimWizardSetup.msi program file on your hard disk to start the
setup program and accept the defaults to complete the installation unless you are install-
ing the wizard on Windows Vista.

3. If you are installing the COM Shim Wizard on Windows Vista, you might have to turn
User Account Control off temporarily to get the installation to complete successfully. To
turn off User Account Control, launch User Accounts in Windows Control Panel. When
you start the installation for the COM Shim Wizard under Windows Vista, you should
install the program for Everyone instead of Just Me.

To create a Visual Studio shim project using the COM Shim Wizard, follow these steps:

1. From the File menu, select the Add pop-up menu, and then select New Project to add a
new project to the InstantSearchVB solution.

2. Expand the Other Languages node in the Project Types list.

3. Under Other Languages, expand the Visual C++ node.

4. Under Visual C++, click the COMShims node, and then in the Visual Studio Installed
Templates group, click Addin Shim.

5. In the Name text box, type InstantSearchShimVB as shown in Figure 3-8, and then
click OK.

Figure 3-8 Visual Studio 2005 New Project dialog box for InstantSearchShimVB project.

76 Part II Quick Guide to Building Solutions
6. The COM Shim Wizard page shown in Figure 3-9 will appear. Click the ellipsis (…) to
specify the location of the managed assembly for your add-in.

Figure 3-9 Specify The Managed Add-in Assembly page of the COM Shim Wizard.

7. Locate the managed assembly named InstantSearchAddinVB.dll in this folder under
your Documents folder:

Visual Studio 2005\Projects\InstantSearchVB\InstantSearchAddinVB\bin\Release

8. In the Release folder, select InstantSearchAddinVB.dll and click Open.

9. A Security Warning dialog box appears to indicate that you should strong-name your
add-in dynamic link library (DLL). In this case, you do not provide a strong-name key for
the add-in. In the Security Warning dialog box, click Yes.

10. Click Next to move to the next page of the COM Shim Wizard.

11. In the Description text box, clear the suggested description and type Instant Search
Add-in (VB).

12. In the Friendly Name text box, clear the suggested friendly name and type Microsoft
Outlook Sample Instant Search Add-in (VB).

13. In the Which Host Applications Is This Add-In Used For list, select the Microsoft
Outlook check box, as shown in Figure 3-10.

Chapter 3 Writing Your First Outlook Add-in Using Visual Basic .NET 77
Figure 3-10 IDTExtensibility2 Add-In Details page of the COM Shim Wizard.

14. Click Next to display the Summary wizard page shown in Figure 3-11.

Figure 3-11 Summary page of the COM Shim Wizard.

15. Click Finish to add the InstantSearchShimVB project to the InstantSearchVB solution.

For the InstantSearchShimVB.dll to work correctly with the managed component
InstantSearchAddinVB.dll, both DLLs must be in the same folder. To accommodate this
requirement, you should change the Output Directory for the shim DLL to be the same as
the folder for the managed add-in DLL.

78 Part II Quick Guide to Building Solutions
To set the Output Directory for the COM shim project, follow these steps:

1. In the Solution Explorer window, click InstantSearchShimVB.

2. From the Project menu, select Properties.

3. In the InstantSearchShimVB Property Pages dialog box shown in Figure 3-12, expand
the Configuration Properties node and click the General node.

4. In the Output Directory combo box, type ..\InstantSearchAddinVB\bin\Release, and
then click OK.

Figure 3-12 Property Pages dialog box for the InstantSearchShimVB project.

Creating a Setup Project
The next step is to add a setup project to your solution. Once you have a setup project, you
will be able to deploy the add-in to other users. Of course, you can modify this add-in to suit
your own requirements.

To create a Visual Studio setup project, follow these steps:

1. From the File menu, select the Add pop-up menu, and then select New Project to add a
new project to the InstantSearchVB solution.

2. In the Project Types list, expand the Other Project Types node.

3. Under Other Project Types, click the Setup and Deployment node.

4. In the Visual Studio Installed Templates group, click Setup Project.

5. In the Name text box, type InstantSearchSetupVB as shown in Figure 3-13 and then
click OK.

Chapter 3 Writing Your First Outlook Add-in Using Visual Basic .NET 79
Figure 3-13 Visual Studio 2005 New Project dialog box for the InstantSearchSetupVB project.

Next you’ll set properties on the InstantSearchSetupVB project so that the user installing the
project sees the correct title for the solution during setup.

To set properties on the InstantSearchSetupVB project, follow these steps:

1. In the Solution Explorer window, click InstantSearchSetupVB.

2. Press F4 to open the Properties dialog box shown in Figure 3-14.

Figure 3-14 Properties dialog box for the InstantSearchSetupVB project.

3. For the Title and ProductName properties of the Setup project, type Microsoft Outlook
Sample Instant Search Add-in (VB).

80 Part II Quick Guide to Building Solutions
Finally, you need to add project outputs to the setup project. In this case, you’ll add project
outputs for both the managed add-in DLL and the shim DLL. Adding a project output to the
setup project installs these DLLs to the Application folder created by the setup project.

To add primary outputs to the setup project, follow these steps:

1. In the Solution Explorer window, click InstantSearchSetupVB.

2. From the Project menu, select the Add pop-up menu, and then select Project Output to
add new project outputs to the InstantSearchSetupVB solution.

3. In the Add Project Output Group dialog box shown in Figure 3-15, in the Project drop-
down list box, select InstantSearchAddinVB, and then click OK.

Figure 3-15 Add Project Output Group dialog box.

4. Repeat the step to display the Add Project Output Group dialog box, but this time in the
Project drop-down list box, select InstantSearchShimVB, and then click OK.

5. In the Solution Explorer, under the InstantSearchSetupVB project, click Primary Output
from InstantSearchShimVB and press F4 to display the Properties dialog box.

6. In the Properties window shown in Figure 3-16, click the Register property and select
vsdrpCOMSelfReg in the drop-down list box.

Chapter 3 Writing Your First Outlook Add-in Using Visual Basic .NET 81
Figure 3-16 Properties window for primary output from InstantSearchShimVB.

At this point, both InstantSearchAddinVB and InstantSearchShimVB should be listed as
project outputs for the InstantSearchSetupVB project.

Building the Setup Project

You’re almost at the finish line. In just a few more steps, you’ll have an add-in that you can
install on your own machine or that of a colleague.

To build the setup project, follow these steps:

1. In the Solution Explorer window, click InstantSearchSetupVB.

2. From the Build menu, select Build Solution to build the entire InstantSearchVB solution.

Installing the Instant Search Add-In

Assuming that the solution built successfully, you can now install the Instant Search add-in
using the built setup project.

To install the setup project, follow these steps:

1. In the Solution Explorer window, right-click InstantSearchSetupVB and select Install on
the context menu.

2. Click through the Setup dialog boxes to install Microsoft Outlook Sample Instant Search
Add-in (VB).

3. Click Close when the setup process is complete.

82 Part II Quick Guide to Building Solutions
Note If you are installing the add-in on Windows Vista, you will see the User Account Con-
trol dialog box after installation begins. Click Allow to indicate that you trust the setup pack-
age for the Microsoft Outlook Sample Instant Search Add-in (VB).

Testing the Instant Search Add-in Solution
Now that you’ve built the complete InstantSearchVB solution, you can proceed to test the add-
in to ensure that all the steps were followed correctly and that you don’t see unexpected
results.

What to Expect

When you launch Outlook after setup of the add-in and you right-click a mail message in your
Inbox, you should see the Instant Search pop-up menu shown in Figure 3-1 at the bottom of
the item’s context menu. When you select a command on the Instant Search pop-up menu
such as Received This Week, you should see a new Explorer window that displays all mes-
sages received from the sender during this week.

When you close Outlook, the Instant Search add-in should not cause Outlook to remain in
memory. See the “Debug Mode” section later in this chapter for suggestions about how to
determine whether Outlook remains in memory after you shut down Outlook.

Troubleshooting

If you do not see the Instant Search pop-up menu, check to ensure that the Instant Search add-
in is installed. If the add-in is not installed, then you need to re-examine the steps to ensure
that you did not miss a critical step.

To determine if the Instant Search add-in is installed correctly, follow these steps:

1. From the Tools menu in the Outlook Explorer window, select Trust Center.

2. In the left pane of the Trust Center dialog box, click Add-Ins. At the bottom of the dialog
box, in the Manage drop-down list box, ensure that COM Add-Ins is selected, and click
Go to display the COM Add-Ins dialog box.

3. The COM Add-Ins dialog box should indicate that the add-in is installed and connected
as shown in Figure 13-17.

Chapter 3 Writing Your First Outlook Add-in Using Visual Basic .NET 83
Figure 3-17 The COM Add-Ins dialog box can help you troubleshoot your add-in.

Debug Mode
So far you’ve stepped through creating an add-in, and the endpoint was to use the add-in in
Run mode in Outlook. What should you do when confronted with the real-world experience
of writing your add-in from scratch? Although you should follow the same steps overall that
are described in this chapter, when you are coding the add-in project you will run the add-in
project in Debug mode. To run the add-in in Debug mode, you must set the start action for
your add-in in the add-in project.

To set the start action for your add-in, follow these steps:

1. In the Solution Explorer window, click InstantSearchAddinVB.

2. From the Project menu, select InstantSearchAddinVB Properties.

3. In the Properties dialog box, click the Debug tab.

4. Under Start Action, select the Start External Program check box.

5. Click the ellipsis (…) to open the Select File dialog box.

6. In the Office12 folder, select Outlook.exe as shown in Figure 3-18. The Office12 folder is
typically located here:

C:\Program Files\Microsoft Office\Office12\Outlook.exe

84 Part II Quick Guide to Building Solutions
Figure 3-18 Set the start action for your add-in on the Debug tab.

Debugging Code

Before you attempt to debug your add-in, you should shut down Outlook. If Outlook is run-
ning, your debug session might not yield the expected results. Use the Windows Task Man-
ager to ensure that Outlook is not running before you start in Debug mode. If Outlook is not
running, you will not see Outlook.exe in the process list in the Task Manager.

To ensure that Outlook is not running before you start debugging, follow these steps:

1. Press Ctrl+Alt+Delete to launch the Windows Task Manager.

2. In the Windows Security dialog box, click Task Manager.

3. In the Windows Task Manager dialog box, click the Processes tab.

4. Ensure that Outlook.exe is not in the list of running processes.

One interesting way to ensure that Outlook has shut down cleanly is to use the Mail appli-
cation in Control Panel to force Outlook to boot with a profile prompt. If the profile prompt
appears when you start Outlook in Debug mode, you can be assured that no previous
instance of Outlook was running when you started your debug session. When you have
completed debugging, you can remove the profile prompt by using the Mail application
again.

Chapter 3 Writing Your First Outlook Add-in Using Visual Basic .NET 85
Once you have your add-in project set up to perform debugging, you can use the great debug-
ging features of Visual Studio 2005. These features include debugging tools such as setting
breakpoints, using watch and locals windows, and using edit and continue. Be aware that
when you hit a breakpoint in your code, you might cause Outlook to become unresponsive
until you continue execution.

To debug your add-in, follow these steps:

1. Ensure that Outlook is shut down.

2. Set your breakpoints before you begin the debugging process.

3. Press F5 to launch Outlook and begin the debugging process.

4. From the Visual Studio Debug menu, select Stop Debugging to stop debugging. Outlook
closes when you stop the debugging process.

Summary
This chapter has provided you with end-to-end instructions on how to build an Outlook add-
in using Visual Studio 2005. The add-in you have created leverages the new Instant Search fea-
ture of Outlook 2007. To ensure add-in stability, the Instant Search add-in is provided with its
own application domain by way of a COM shim. Finally, you also created a setup project so
that you can deploy the add-in to other users. You should be able to use the understanding
you’ve gained in this chapter to move on to create an add-in with your own unique design and
features. Happy coding!

C04622493.fm Page 87 Sunday, February 6, 2005 11:44 AM
Chapter 4

Writing Your First Outlook Add-in
Using C#

The goal of this chapter is to walk you through the process of creating a Visual C# add-in for
Microsoft Office Outlook 2007. Once you’ve created and built the project, you will be able to
use the add-in in your everyday activities. If you are interested in obtaining practical results in
a very short time, this chapter is for you.

In this chapter, you’ll learn how to:

■ Use the Outlook add-in templates supplied with this book.

■ Create a new Outlook add-in project for Visual C#.

■ Write code to add a custom pop-up menu to the context menu for a mail item.

■ Build a Component Object Model (COM) shim project so that the add-in runs in a sep-
arate application domain.

■ Build a setup project so that you can deploy the Instant Search add-in.

Microsoft Visual Studio 2005 continues to provide built-in support for developing Office add-
ins through the Shared add-in template, but this template is missing some key blocks of code
that are useful for writing Outlook 2007 COM add-ins in managed code. Although using
Microsoft Visual Studio 2005 Tools for the 2007 Microsoft Office System (VSTO) offers
another preferred development approach, it is not covered in this chapter. You can easily
adapt the code in this chapter to work with VSTO. For this example, you’ll learn how to write
an add-in based on the Outlook Add-in Template for Visual C# supplied on the Web site that
contains sample code for this book.

Introducing the Instant Search Add-In
The Instant Search add-in places an Instant Search command at the bottom of an item’s con-
text menu, as shown in Figure 4-1. Instant Search is a pop-up command bar control that lets
the user take advantage of Outlook’s Instant Search feature and display messages from the
sender sent last week, this week, last month, this month, or all messages. The search results
are displayed in a separate Explorer window, shown in Figure 4-2.
87

88 Part II Quick Guide to Building Solutions

C04622493.fm Page 88 Sunday, February 6, 2005 11:44 AM
Figure 4-1 Instant Search pop-up menu.

Figure 4-2 Results from Instant Search are shown in a separate Explorer window.

Install the Outlook Add-in Templates
To get you started writing Outlook add-ins, templates for both Visual Basic and Visual C# are
provided on the Web site that contains the sample code for this book. Before you can create
the Instant Search add-in, you must install the Outlook Add-in Templates.

Chapter 4 Writing Your First Outlook Add-in Using C# 89

C04622493.fm Page 89 Sunday, February 6, 2005 11:44 AM
To install the Outlook Add-in Templates, follow these steps:

1. Download the Outlook Add-in Templates installation package from this book’s compan-
ion Web site.

2. Double-click OutlookAddinTemplates.msi to begin the installation process.

3. In the Microsoft Office Outlook 2007 Add-in Templates Setup dialog box, click Next.

4. After reviewing the End-User License Agreement, select I Agree to accept the agreement,
and then click Next.

5. Click Next to confirm that you wish to start the installation.

6. If you are installing the templates on Microsoft Windows Vista, you will see the User
Account Control dialog box after installation begins. Click Allow to indicate that you
trust the setup package for the Outlook Add-in Templates.

7. After installation has completed, click Close to dismiss the Setup Wizard dialog box.

Creating the Instant Search Add-In
To create a Visual Studio solution for the Instant Search add-in, follow these steps:

1. Open Visual Studio 2005, and press Ctrl+Shift+N to display the New Project dialog box.

2. In the Project Types list, click the Other Project Types node.

3. Under Visual Studio Installed Templates, click Blank Solution.

4. In the Name text box, type InstantSearchCS, as shown in Figure 4-3, and click OK to
create the solution.

Figure 4-3 Visual Studio 2005 New Project dialog box for the InstantSearchCS solution.

90 Part II Quick Guide to Building Solutions

C04622493.fm Page 90 Sunday, February 6, 2005 11:44 AM
Now that the custom templates are installed and you’ve created a Visual Studio solution to
contain your add-in, shim, and setup projects, proceed by creating an add-in project using the
template.

To create a Visual Studio add-in project using the add-in template, follow these steps:

1. From the File menu, select the Add pop-up menu, then select New Project to add a new
project to the InstantSearchCS solution.

2. In the Project Types list, click the Visual C# node.

3. In the Templates list, from the My Templates group, select Office Outlook 2007 Visual
C# Add-in.

4. In the Name text box, type InstantSearchAddinCS, as shown in Figure 4-4, and click OK.

Figure 4-4 Visual Studio 2005 New Project dialog box for the InstantSearchAddinCS project.

You will then see the InstantSearchAddinCS project in the Visual Studio editor, shown in
Figure 4-5.

Chapter 4 Writing Your First Outlook Add-in Using C# 91

C04622493.fm Page 91 Sunday, February 6, 2005 11:44 AM
Figure 4-5 InstantSearchAddinCS project in the Visual Studio editor.

Writing Code
The next step in completing the Instant Search add-in is to write code in the project. Before
you start to write code, you should understand that the template is a generic project aimed
at typical Outlook add-in scenarios. The template creates code that allows you to track mul-
tiple instances of Inspector or Explorer windows. For the Instant Search add-in, you don’t
need to track Inspector or Explorer windows so you will comment out the existing code in
the InitializeAddin and ShutdownAddin methods. At this point, you should follow the next
procedure to remove the code in these methods.

To remove the code in the InitializeAddin and ShutdownAddin methods, follow these steps:

1. Locate the InitializeAddin and ShutdownAddin methods shown in Figure 4-6 in the
Connect class. You might need to expand the “Initialize and Shutdown methods” region
before you can see the InitializeAddin and ShutdownAddin methods.

2. Comment out all the code in the InitializeAddin method.

3. Comment out all the code in the ShutdownAddin method.

92 Part II Quick Guide to Building Solutions

C04622493.fm Page 92 Sunday, February 6, 2005 11:44 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Figure 4-6 The Initialize and Shutdown methods region in the Connect class.

InitializeAddin Method

The InitializeAddin method runs when your add-in is loaded by the host application, which in
this case is Outlook 2007. If you were to examine the Connect.Designer.cs class, InitializeAddin
gets called in the OnConnection method of the add-in. OnConnection is a method called by
Office add-ins that must implement the IDTExtensibility2 interface. Connect.Designer.cs
abstracts the details of the IDTExtensibility2 interface and provides you with two methods,
InitializeAddin and ShutdownAddin, which correspond to Startup and Shutdown events. With-
out getting into too many details about the IDTExtensibility2 interface, InitializeAddin is called
when the add-in is loaded by the host application at boot time or when the add-in is loaded
through a user action such as connecting the add-in manually via the COM Add-Ins dialog
box. You use InitializeAddin and ShutdownAddin to create and destroy class-level instance vari-
ables that are required for your add-in, and to wire up event handlers required by your solu-
tion. In the case of the InstantSearchAddinCS project, you need to wire up event handlers for
the ItemContextMenuDisplay and ContextMenuClose events for the Application object in the
InitializeAddin event. You remove those event handlers in the ShutdownAddin event.

Note To examine Connect.Designer.cs in the Solution Explorer, you need to show all files in
the project. To display the Solution Explorer, press Ctrl+R. To show all files, in Visual Studio,
select the Project menu, and then select Show All Files.

Chapter 4 Writing Your First Outlook Add-in Using C# 93

C04622493.fm Page 93 Sunday, February 6, 2005 11:44 AM
Adding Instance Variables

The next step is to create class-level instance variables in the Connect class to represent com-
mand bar controls on the context menu for an item. Context menus in Outlook use the famil-
iar Office command bars object model that has been included in several versions of Office.
Context menu commands do not use the new Ribbon extensibility model.

To add instance variables to the Connect class, follow these steps:

1. Display the Solution Explorer by pressing Ctrl+R.

2. In the Solution Explorer, double-click Connect.cs to display the Code Editor for the
Connect class.

3. Locate the instance variables region shown in Figure 4-7 in Connect.cs. You might need
to expand the “Instance Variables” region before you can see the InitializeAddin method.

Figure 4-7 Class-level instance variables in the Connect class.

4. Type the following code in the instance variables region in the Connect class:

// Context menu commands
private Office.CommandBarButton ctlThisWeek;
private Office.CommandBarButton ctlLastWeek;
private Office.CommandBarButton ctlThisMonth;
private Office.CommandBarButton ctlLastMonth;
private Office.CommandBarButton ctlAllMessages;
// Selection
private Outlook.Selection LastSelection;

94 Part II Quick Guide to Building Solutions

C04622493.fm Page 94 Sunday, February 6, 2005 11:44 AM
Hooking Up Events in Visual C#

Hooking up Outlook events is somewhat more complicated in Visual C# than it is in Visual
Basic, but once you get the basic concept, it is a straightforward process and Visual C# will
handle most of the work for you. Each event has a corresponding event handler method that
is called when the event fires. To hook up the event handler method, you select the event
member from the parent object and then use the += operator to create an event delegate that
handles the event. The relevant events for item context menus are the ItemContextMenuDisplay
and ContextMenuClose events on the Application object.

ItemContextMenuDisplay Event

The ItemContextMenuDisplay event occurs before a context menu is to be displayed for either
a single highlighted Outlook item or for one or more selected Outlook items, allowing the
CommandBar object representing the context menu to be customized by an add-in. For the
Instant Search add-in, the Instant Search pop-up on the context menu is displayed only when
a single mail item is selected. When more than one mail item is selected or when the single
selected item is not a mail item, the Instant Search pop-up on the context menu does not
appear.

To hook up the event handlers for the ItemContextMenuDisplay and ContextMenuClose events,
follow these steps:

1. In the Connect class Code Editor, click inside the InitializeAddin method. Remember that
you just commented out the existing code in this method.

2. Type Application and then press the period key (.).

3. In the Intellisense window, use your mouse or the keyboard to scroll to the
ItemContextMenuDisplay event.

4. Press the Enter key to select the ItemContextMenuDisplay event.

5. Type +=. Visual C# will offer to hook up the event for you. At this point, press the Tab key.

6. Press the Tab key again to insert the event delegate.

7. Type Application and then press the period key (.).

8. In the Intellisense window, use your mouse or the keyboard to scroll to the
ContextMenuClose event.

9. Press the Enter key to select the ContextMenuClose event.

10. Type +=. Visual C# will offer to hook up the event for you. At this point, press the Tab key.

11. Press the Tab key again to insert the event delegate. At this point, you should see the fol-
lowing lines of code to hook up the event handlers:

Chapter 4 Writing Your First Outlook Add-in Using C# 95

C04622493.fm Page 95 Sunday, February 6, 2005 11:44 AM
Application.ItemContextMenuDisplay +=
 new Outlook.ApplicationEvents_11_ItemContextMenuDisplayEventHandler(
 Application_ItemContextMenuDisplay);
Application.ContextMenuClose +=
 new Outlook.ApplicationEvents_11_ContextMenuCloseEventHandler(
 Application_ContextMenuClose);

To write code for the ItemContextMenuDisplay event, follow these steps:

1. In the Connect class Code Editor, find the Application_ItemContextMenuDisplay event
handler that was created when you hooked up the ItemContextMenuDisplay event.

2. Remove the line that Visual Studio inserted into the event handler:

throw new Exception("The method or operation is not implemented.");

3. Write the following code in the Application_ItemContextMenuDisplay event handler:

private void Application_ItemContextMenuDisplay(
 Microsoft.Office.Core.CommandBar CommandBar,
 Microsoft.Office.Interop.Outlook.Selection Selection)
{
 Office.CommandBarPopup ctlInstantSearch;
 try
 {
 if (Selection.Count == 0)
 return;

 OutlookItem oItem = new OutlookItem(Selection[1]);

 if ((Selection.Count == 1) &&
 (oItem.Class == Outlook.OlObjectClass.olMail) &&
 (oItem.Parent.Store.IsInstantSearchEnabled))
 {
 ctlInstantSearch = (Office.CommandBarPopup)
 CommandBar.FindControl(
 Type.Missing, Type.Missing,
 "InstantSearchAddinCS.ctlInstantSearch",
 Type.Missing, Type.Missing);
 if (ctlInstantSearch == null)
 {
 ctlInstantSearch = (Office.CommandBarPopup)
 CommandBar.Controls.Add(
 Office.MsoControlType.msoControlPopup, Type.Missing,
 "InstantSearchAddinCS.ctlInstantSearch",
 Type.Missing, Type.Missing);
 ctlInstantSearch.Caption = "Instant Search";
 ctlInstantSearch.Tag = "InstantSearchAddinCS.ctlInstantSearch";
 ctlInstantSearch.BeginGroup = true;
 LastSelection = Selection;
 //Add controls to popup
 ctlThisWeek =
 (Office.CommandBarButton)
 ctlInstantSearch.CommandBar.Controls.Add(
 Office.MsoControlType.msoControlButton,
 Type.Missing, Type.Missing, Type.Missing, Type.Missing);

96 Part II Quick Guide to Building Solutions

C04622493.fm Page 96 Sunday, February 6, 2005 11:44 AM
 ctlThisWeek.Caption = "Received This Week...";
 ctlThisMonth =
 (Office.CommandBarButton)
 ctlInstantSearch.CommandBar.Controls.Add(
 Office.MsoControlType.msoControlButton,
 Type.Missing, Type.Missing, Type.Missing, Type.Missing);
 ctlThisMonth.Caption = "Received This Month...";
 ctlLastWeek =
 (Office.CommandBarButton)
 ctlInstantSearch.CommandBar.Controls.Add(
 Office.MsoControlType.msoControlButton,
 Type.Missing, Type.Missing, Type.Missing, Type.Missing);
 ctlLastWeek.Caption = "Received Last Week...";
 ctlLastMonth =
 (Office.CommandBarButton)
 ctlInstantSearch.CommandBar.Controls.Add(
 Office.MsoControlType.msoControlButton,
 Type.Missing, Type.Missing, Type.Missing, Type.Missing);
 ctlLastMonth.Caption = "Received Last Month...";
 ctlAllMessages =
 (Office.CommandBarButton)
 ctlInstantSearch.CommandBar.Controls.Add(
 Office.MsoControlType.msoControlButton,
 Type.Missing, Type.Missing, Type.Missing, Type.Missing);
 ctlAllMessages.Caption = "All Message Received...";
 // Hook up event listeners for the buttons
 ctlThisWeek.Click +=
 new Microsoft.Office.Core.
 _CommandBarButtonEvents_ClickEventHandler(
 ctlThisWeek_Click);
 ctlLastWeek.Click +=
 new Microsoft.Office.Core.
 _CommandBarButtonEvents_ClickEventHandler(
 ctlLastWeek_Click);
 ctlThisMonth.Click +=
 new Microsoft.Office.Core.
 _CommandBarButtonEvents_ClickEventHandler(
 ctlThisMonth_Click);
 ctlLastMonth.Click +=
 new Microsoft.Office.Core.
 _CommandBarButtonEvents_ClickEventHandler(
 ctlLastMonth_Click);
 ctlAllMessages.Click +=
 new Microsoft.Office.Core.
 _CommandBarButtonEvents_ClickEventHandler(
 ctlAllMessages_Click);
 }
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

Chapter 4 Writing Your First Outlook Add-in Using C# 97

C04622493.fm Page 97 Sunday, February 6, 2005 11:44 AM
This event procedure looks at the Selection object passed in the event. If Selection.Count is zero,
then the code exits from the event procedure and no command bar pop-up is created. The
Selection collection, like other collection objects in the Outlook object model, is one-based and
the indexer for the Selection object returns a type Object. The OutlookItem class uses reflection
to determine the common properties of an Outlook item and allows you to determine the
underlying type of the item Object. For complete details on the OutlookItem class, see the sec-
tion “OutlookItem Helper Class” in Chapter 6, “Accessing Outlook Data.”

If Selection.Count is one and the item returned by the indexer of the Selection object represents
a MailItem and the IsInstantSearchEnabled property returns True on the Store object that con-
tains the item, then the Office CommandBar object model is used to create a pop-up menu rep-
resented by the instance variable ctlInstantSearch. ctlInstantSearch represents an
Office.CommandBarPopup object. To add the pop-up menu to the item context menu, you
call the Add method on the CommandBar object passed in the ItemContextMenuDisplay
event. Once the pop-up menu has been added, you then set the Caption and Tag properties
for ctlInstantSearch. The Caption property is set to “Instant Search” and the Tag property is
set to the ProgID of the Instant Search add-in, “InstantSearchAddinCS.Connect.”

Once you have instantiated the CommandBarPopup object that represents the Instant Search
pop-up menu, you then add additional CommandBarControl objects that represent additional
menu items on the pop-up menu. Each of the menu items corresponds to the following time
intervals for messages received:

■ This Week

■ Last Week

■ This Month

■ Last Month

■ All Messages

Note that the instance variables ctlThisWeek, ctlLastWeek, ctlThisMonth, ctlLastMonth, and
ctlAllMessages also require event handlers. You’ll write code for the Click event for these
instance variables later in the chapter.

ContextMenuClose Event

The ContextMenuClose event occurs just after a context menu is closed so that add-ins can dispose
of any object references that have been obtained from other context menu events such as Item-
ContextMenuDisplay. In the case of the Instant Search add-in, the LastSelection object is set to null.

To write code for the ContextMenuClose event, follow these steps:

1. In the Connect class Code Editor, find the Application_ContextMenuClose event handler
that was created when you hooked up the ContextMenuClose event.

2. Remove the line that Visual Studio inserted into the event handler:

98 Part II Quick Guide to Building Solutions

C04622493.fm Page 98 Sunday, February 6, 2005 11:44 AM
throw new Exception("The method or operation is not implemented.");

3. Write the following code in the Application_ContextMenuClose event handler:

private void Application_ContextMenuClose(
 Microsoft.Office.Interop.Outlook.OlContextMenu ContextMenu)
{
 // Use this method to clean up any state for the context menu
 LastSelection = null;
}

Cleaning Up Event Handlers

In the ShutdownAddin method, you need to clean up any existing event handlers for Outlook
to shut down efficiently and correctly. For the Instant Search add-in, you remove the event del-
egates for both the ItemContextMenuDisplay and ContextMenuClose events.

To remove event delegates for ItemContextMenuDisplay and ContextMenuClose events, follow
these steps:

1. In the Connect class Code Editor, click inside the ShutdownAddin method. Remember
that you previously commented out the existing code in this method.

2. Type the following code into the ShutdownAddin method:

Application.ItemContextMenuDisplay -=
 new Outlook.ApplicationEvents_11_ItemContextMenuDisplayEventHandler(
 Application_ItemContextMenuDisplay);
Application.ContextMenuClose -=
 new Outlook.ApplicationEvents_11_ContextMenuCloseEventHandler(
 Application_ContextMenuClose);

DisplayInstantSearchExplorer Method

To reduce the amount of code you need to write, the DisplayInstantSearchExplorer method is
called from the Click event procedures for the submenu controls on the Instant Search pop-up
menu. The DisplayInstantSearchExplorer method displays the results of an Instant Search
query in a new Explorer window by calling the Search method on the Explorer object. The
Search method is new to Outlook 2007 and allows you to use the Advanced Query Syntax of
Windows Desktop Search to return results. For additional details on Advanced Query Syntax,
see Chapter 11, “Searching Outlook Data.” This method takes three arguments, shown in
Table 4-1.

Table 4-1 Parameters for the DisplayInstantSearchExplorer Method

Parameter
Require
d Type Description

Folder Yes Outlook.Folder Represents the Folder object that contains the item on
which the context menu is being displayed.

Chapter 4 Writing Your First Outlook Add-in Using C# 99

C04622493.fm Page 99 Sunday, February 6, 2005 11:44 AM
To write code for the DisplayInstantSearchExplorer method, follow these steps:

1. In the Connect class Code Editor, click at the bottom of the Connect class before the clos-
ing bracket (}).

2. Write the following code in the DisplayInstantSearchExplorer method:

private void DisplayInstantSearchExplorer(
 Outlook.Folder Folder,
 string InstantSearch,
 bool ShowToDoBar)
{
 Outlook.Explorer exp =
 this.Application.Explorers.Add(
 Folder,
 Outlook.OlFolderDisplayMode.olFolderDisplayNoNavigation);
 //Call Explorer.Search to automate Instant Search
 exp.Search(InstantSearch ,
 Outlook.OlSearchScope.olSearchScopeAllFolders);
 exp.Display();
 exp.ShowPane(Outlook.OlPane.olToDoBar, ShowToDoBar);
}

Writing Code for Submenu Click Events

Next you write code for the submenu Click events on the five menu items that exist on the
Instant Search pop-up menu. When the user clicks any one of the submenu items, the Click
event for the Office.CommandBarButton is called. The code in the Click event simply calls the
DisplayInstantSearchFolder method with the correct parameters to display an Explorer win-
dow that shows the results of the search. Once you’ve completed this task, you’ll be ready to
build the Instant Search add-in.

To write code for submenu Click events, follow these steps.

1. In the Connect class Code Editor, find the ctlThisWeek_Click, ctlLastWeek_Click,
ctlThisMonth_Click, ctlLastMonth_Click, and ctlAllMessages_Click event handlers that
were created when you hooked up the relevant events.

2. Write the following code in the event handlers for each control:

private void ctlThisWeek_Click(
 Microsoft.Office.Core.CommandBarButton Ctrl, ref bool CancelDefault)

InstantSearch Yes string A string object that contains a valid Advanced Query
Syntax query.

ShowToDoBar Yes bool If ShowToDoBar equals true, displays the To-Do Bar in
the new Explorer window. If false, hides the To-Do Bar.

Table 4-1 Parameters for the DisplayInstantSearchExplorer Method

Parameter
Require
d Type Description

100 Part II Quick Guide to Building Solutions

C04622493.fm Page 100 Sunday, February 6, 2005 11:44 AM
{
 if (LastSelection.Count == 1)
 {
 Outlook.MailItem oMail = (Outlook.MailItem)LastSelection[1];
 string fromAddress = oMail.SenderName;
 Outlook.Folder currentFolder = (Outlook.Folder)oMail.Parent;
 string SearchQuery = "from:(" + fromAddress + ")" +
 " received:(this week)";
 DisplayInstantSearchExplorer(currentFolder, SearchQuery, false);
 }
}

private void ctlLastWeek_Click(
 Microsoft.Office.Core.CommandBarButton Ctrl, ref bool CancelDefault)
{
 if (LastSelection.Count == 1)
 {
 Outlook.MailItem oMail = (Outlook.MailItem)LastSelection[1];
 string fromAddress = oMail.SenderName;
 Outlook.Folder currentFolder = (Outlook.Folder)oMail.Parent;
 string SearchQuery = "from:(" + fromAddress + ")" +
 " received:(last week)";
 DisplayInstantSearchExplorer(currentFolder, SearchQuery, false);
 }
}

private void ctlThisMonth_Click(
 Microsoft.Office.Core.CommandBarButton Ctrl, ref bool CancelDefault)
{
 if (LastSelection.Count == 1)
 {
 Outlook.MailItem oMail = (Outlook.MailItem)LastSelection[1];
 string fromAddress = oMail.SenderName;
 Outlook.Folder currentFolder = (Outlook.Folder)oMail.Parent;
 string SearchQuery = "from:(" + fromAddress + ")" +
 " received:(this month)";
 DisplayInstantSearchExplorer(currentFolder, SearchQuery, false);
 }
}

private void ctlLastMonth_Click(
 Microsoft.Office.Core.CommandBarButton Ctrl, ref bool CancelDefault)
{
 if (LastSelection.Count == 1)
 {
 Outlook.MailItem oMail = (Outlook.MailItem)LastSelection[1];
 string fromAddress = oMail.SenderName;
 Outlook.Folder currentFolder = (Outlook.Folder)oMail.Parent;
 string SearchQuery = "from:(" + fromAddress + ")" +
 " received:(last month)";
 DisplayInstantSearchExplorer(currentFolder, SearchQuery, false);
 }
}

private void ctlAllMessages_Click(

Chapter 4 Writing Your First Outlook Add-in Using C# 101

C04622493.fm Page 101 Sunday, February 6, 2005 11:44 AM
 Microsoft.Office.Core.CommandBarButton Ctrl, ref bool CancelDefault)
{
 if (LastSelection.Count == 1)
 {
 Outlook.MailItem oMail = (Outlook.MailItem)LastSelection[1];
 string fromAddress = oMail.SenderName;
 Outlook.Folder currentFolder = (Outlook.Folder)oMail.Parent;
 string SearchQuery = "from:(" + fromAddress + ")";
 DisplayInstantSearchExplorer(currentFolder, SearchQuery, false);
 }
}

Building the Add-in Project

You’re now ready to build the Instant Search add-in project. Before you build the project, you
should check the Error window to ensure that you don’t have an error in your code.

To build the Instant Search add-in project, follow these steps:

1. Press Ctrl+W and then press Ctrl+E to display the Error list window.

2. Ensure that there are no errors in your code. If there are errors, Visual Studio will suggest
how you should correct the errors.

3. From the Build menu, select Build InstantSearchAddinCS.

4. In the status bar, you should see “Build Succeeded” if the build completed successfully.

5. Save the Instant Search add-in project from the File menu by selecting Save All or by
pressing Ctrl+Shift+S. Click OK to save the project to the InstantSearchAddinCS folder.

Creating a Shim Project
Now that you’ve successfully created the InstantSearchAddinCS project, the next step is to
create a COM shim for the add-in. If you don’t use VSTO to create your add-in for Outlook
2007, you should shim your managed extension to provide application domain isolation. For
details on the concept of an application domain, represented by the AppDomain object, search
for AppDomain in the Visual Studio 2005 Developer’s Reference. Application domain isola-
tion means that an exception in another add-in will not cause your add-in to crash or operate
in an unexpected manner. Similarly, if your add-in encounters an unhandled exception, it will
not cause all other managed add-ins running in the Outlook process to crash. Provided by
either the COM shim or VSTO, application domain isolation offers several advantages.

When Outlook loads add-ins, an add-in that causes an error during boot can be placed on a
disabled add-in list. Because Outlook cannot distinguish between one shared add-in and
another, Outlook places Mscoree.dll on its disabled list, and consequently all shared managed
add-ins are disabled. With application domain isolation, disabling one add-in does not disable
all other managed add-ins.

102 Part II Quick Guide to Building Solutions

C04622493.fm Page 102 Sunday, February 6, 2005 11:44 AM
Application domain isolation prevents an unhandled exception in one add-in from crashing
all other add-ins in the same application domain. Unexpected behavior can occur when add-
ins share the same application domain. For example, if add-in A calls ReleaseCOMObject or
FinalReleaseCOMObject on an object that it shares with add-in B and both add-ins are in the
same application domain, add-in B encounters an access violation when it attempts to access
the shared object.

If an Exchange administrator uses the Outlook security form in an Exchange public folder or
group policy to maintain a list of trusted add-ins, trusting a shared add-in means trusting
Mscoree.dll, which in effect trusts all shared add-ins and negates the intended action, which is
to trust a single add-in. For additional information on Outlook security and the concept of a
trusted add-in, see Chapter 19, “Trust and Security.” For VSTO add-ins, the administrator
trusts the manifest of the managed add-in assembly. For COM shim add-ins, the administrator
trusts the COM shim that acts as a proxy for the managed add-in.

A COM shim acts as a native proxy for your managed add-in. COM shims must be written in
C++. However, thanks to the COM Shim Wizard that is available on MSDN or on the Web site
that accompanies this book, knowledge of C++ is completely optional. Basically you only need to
click through the COM Shim Wizard and all the C++ code will be written for you automatically.

To install the Visual Studio COM Shim Wizard, follow these steps:

1. Download the file by clicking the Download link on the Web site that accompanies this
book and saving the file to your hard disk. You can also download the COM Shim Wiz-
ard from MSDN. Search for “COM Shim Wizard” at http://msdn.microsoft.com.

2. Double-click the COMShimWizardSetup.msi program file on your hard disk to start the
setup program and accept the defaults to complete the installation unless you are install-
ing the wizard on Windows Vista.

3. If you are installing the COM Shim Wizard on Windows Vista, you might have to turn
User Account Control off temporarily to get the installation to complete successfully. To
turn off User Account Control, launch User Accounts in Windows Control Panel. When
you start the installation for the COM Shim Wizard under Windows Vista, you should
install the program for Everyone instead of Just Me.

To create a Visual Studio shim project using the COM Shim Wizard, follow these steps:

1. From the File menu, select the Add pop-up menu, then select New Project to add a new
project to the InstantSearchCS solution.

2. In the Project Types list, expand the Other Languages node.

3. Under Other Languages, expand the Visual C++ node.

4. Under Visual C++, click the COMShims node, then from the Visual Studio Installed
Templates group, click Addin Shim.

5. In the Name text box, type InstantSearchShimCS as shown in Figure 4-8, and click OK.

Chapter 4 Writing Your First Outlook Add-in Using C# 103

C04622493.fm Page 103 Sunday, February 6, 2005 11:44 AM
Figure 4-8 Visual Studio 2005 New Project dialog box for InstantSearchShimCS project.

6. The COM Shim Wizard page shown in Figure 4-9 will appear. Click the ellipsis (…) to
specify the location of the managed assembly for your add-in.

Figure 4-9 Specify the Managed Add-in Assembly dialog box in the COM Shim Wizard.

7. Locate the managed assembly named InstantSearchAddinCS.dll in this folder under
your Documents folder:

Visual Studio 2005\Projects\InstantSearchCS\InstantSearchAddinCS\bin\Release

8. Select InstantSearchAddinCS.dll in the Release folder and click Open.

9. A Security Warning dialog box appears to indicate that you should strong-name your
add-in dynamic-link library (DLL). In this case, you do not provide a strong-name key for
the add-in. In the Security Warning dialog box, click Yes.

10. Click Next to move to the next page of the COM Shim Wizard.

104 Part II Quick Guide to Building Solutions

C04622493.fm Page 104 Sunday, February 6, 2005 11:44 AM
11. In the Description text box, clear the suggested description and type Instant Search
Add-in (CS).

12. In the Friendly Name text box, clear the suggested friendly name and type Microsoft
Outlook Sample Instant Search Add-in (CS).

13. In the Which Host Applications Is This Add-in User For list, select the Microsoft Outlook
check box as shown in Figure 4-10.

Figure 4-10 IDTExtensibility2 Add-in Details page in the COM Shim Wizard.

14. Click Next to display the Summary wizard page shown in Figure 4-11.

Figure 4-11 Summary wizard page in the COM Shim Wizard.

15. Click Finish to add the InstantSearchShimCS project to the InstantSearchCS solution.

Chapter 4 Writing Your First Outlook Add-in Using C# 105

C04622493.fm Page 105 Sunday, February 6, 2005 11:44 AM
For the InstantSearchShimCS.dll to work correctly with the managed component
InstantSearchAddinCS.dll, both DLLs must be in the same folder. To accommodate this
requirement, you should change the Output Directory for the Shim DLL to be the same as
the folder for the managed add-in DLL.

To set the Output Directory for the COM shim project, follow these steps:

1. In the Solution Explorer window, click InstantSearchShimCS.

2. From the Project menu, select Properties.

3. In the InstantSearchShimCS Property Pages dialog box shown in Figure 4-12, expand
the Configuration Properties node and click the General node.

4. In the Output Directory combo box, type ..\InstantSearchAddinCS\bin\Release and
then click OK.

Figure 4-12 Property Pages dialog box for the InstantSearchShimCS project.

Creating a Setup Project
The next step is to add a setup project to your solution. Once you have a setup project, you
will be able to deploy the add-in to other users. Of course, you can modify this add-in to suit
your own requirements.

To create a Visual Studio setup project, follow these steps:

1. From the File menu, select the Add pop-up menu, and then select New Project to add a
new project to the InstantSearchCS solution.

2. In the Project Types list, expand the Other Project Types node.

106 Part II Quick Guide to Building Solutions

C04622493.fm Page 106 Sunday, February 6, 2005 11:44 AM
3. Under Other Project Types, click the Setup and Deployment node.

4. In the Visual Studio Installed Templates group, click Setup Project.

5. In the Name text box, type InstantSearchSetupCS as shown in Figure 4-13, and then
click OK.

Figure 4-13 Visual Studio 2005 New Project dialog box for InstantSearchSetupCS project.

Next you’ll set properties on the InstantSearchSetupCS project so that the user installing the
project sees the correct title for the solution during setup.

To set properties on the InstantSearchSetupCS project, follow these steps:

1. In the Solution Explorer window, click InstantSearchSetupCS.

2. Press F4 to open the Properties dialog box, shown in Figure 4-14.

Figure 4-14 Properties dialog box for the InstantSearchSetupCS project.

Chapter 4 Writing Your First Outlook Add-in Using C# 107

C04622493.fm Page 107 Sunday, February 6, 2005 11:44 AM
3. For the Title and ProductName properties of the setup project, type Microsoft Outlook
Sample Instant Search Add-in (CS).

Finally, you need to add project outputs to the setup project. In this case, you’ll add project
outputs for both the managed add-in DLL and the shim DLL. Adding a project output to the
setup project installs these DLLs to the Application folder created by the setup project.

To add primary outputs to the setup project, follow these steps:

1. In the Solution Explorer window, click InstantSearchSetupCS.

2. From the Project menu, select the Add pop-up menu, then select Project Output to add
new project outputs to the InstantSearchSetupCS solution.

3. In the Add Project Output dialog box shown in Figure 4-15, in the Project drop-down
list, select InstantSearchAddinCS, and then click OK.

Figure 4-15 Add Project Output dialog box.

4. Repeat the step to display the Add Project Output dialog box, but this time, in the Project
drop-down list box, select InstantSearchShimCS, and then click OK.

5. In the Solution Explorer, under the InstantSearchSetupCS project, click Primary Output
From InstantSearchShimCS and press F4 to display the Properties dialog box.

6. In the Properties dialog box shown in Figure 4-16, click the Register property and select
vsdrpCOMSelfReg in the drop-down list box.

108 Part II Quick Guide to Building Solutions

C04622493.fm Page 108 Sunday, February 6, 2005 11:44 AM
Figure 4-16 Properties dialog box for primary output from InstantSearchShimCS.

At this point, both InstantSearchAddinCS and InstantSearchShimCS should be listed as
project outputs for the InstantSearchSetupCS project.

Building the Setup Project

You’re almost at the finish line. In just a few more steps, you’ll have an add-in that you can
install on your machine or that of a colleague.

To build the setup project, follow these steps:

1. In the Solution Explorer window, click InstantSearchSetupCS.

2. From the Build menu, select Build Solution to build the entire InstantSearchCS solution.

Installing the Instant Search Add-In

Assuming that the solution built successfully, you can now install the Instant Search add-in
using the built setup project.

To install the setup project, follow these steps:

1. In the Solution Explorer window, right-click InstantSearchSetupCS, and from the con-
text menu, select Install.

2. Click through the Setup dialog boxes to install Microsoft Outlook Sample Instant Search
Add-in (CS).

3. When the setup process is complete, click Close.

Chapter 4 Writing Your First Outlook Add-in Using C# 109

C04622493.fm Page 109 Sunday, February 6, 2005 11:44 AM
Note If you are installing the add-in on Windows Vista, you will see the User Account Con-
trol dialog box after installation begins. Click Allow to indicate that you trust the setup pack-
age for the Microsoft Outlook Sample Instant Search Add-in (CS).

Testing the Instant Search Add-in Solution
Now that you’ve built the complete InstantSearchCS solution, you can proceed to test the
add-in to ensure that all the steps were followed correctly and that you don’t see unexpected
results.

What to Expect

When you launch Outlook after setup of the add-in and you right-click a mail message in your
Inbox, you should see the Instant Search pop-up menu shown in Figure 4-1 at the bottom of
the item’s context menu. When you select a command on the Instant Search pop-up menu
such as Received This Week, you should see a new Explorer window that displays all mes-
sages received from the sender during this week.

When you close Outlook, the Instant Search add-in should not cause Outlook to remain in
memory. See the section “Debug Mode” later in this chapter for suggestions about how to
determine whether Outlook remains in memory after you shut it down.

Troubleshooting

If you do not see the Instant Search pop-up menu, check to ensure that the Instant Search add-
in is installed. If the add-in is not installed, you need to re-examine the steps to ensure that you
did not miss a critical step.

To determine if the Instant Search add-in is installed correctly, follow these steps:

1. In the Outlook Explorer window, from the Tools menu, select Trust Center.

2. In the left pane of the Trust Center dialog box, click Add-ins. At the bottom of the dialog
box, in the Manage drop-down list box, ensure that COM Add-ins is selected, then click
Go to display the COM Add-ins dialog box.

3. The COM Add-ins dialog box should indicate that the add-in is installed and connected
as shown in Figure 4-17.

110 Part II Quick Guide to Building Solutions

C04622493.fm Page 110 Sunday, February 6, 2005 11:44 AM
Figure 4-17 The COM Add-ins dialog box can help you troubleshoot your add-in.

Debug Mode
So far you’ve stepped through creating an add-in, and the endpoint was to use the add-in in
Run mode in Outlook. What should you do when confronted with the real-world experience
of writing your add-in from scratch? Although you should follow the same steps overall that
are described in this chapter, when you are coding the add-in project you will run the add-in
project in Debug mode. To run the add-in in Debug mode, you must set the start action for
your add-in in the add-in project.

To set the start action for your add-in, follow these steps:

1. In the Solution Explorer window, click InstantSearchAddinCS.

2. From the Project menu, select InstantSearchAddinCS Properties.

3. In the Properties dialog box, click the Debug tab.

4. Under Start Action, select the Start External Program check box.

5. Click the ellipsis (…) to open the Select File dialog box.

6. In the Office12 folder, select Outlook.exe, as shown in Figure 4-18. The Office 12 folder
is typically located here:

C:\Program Files\Microsoft Office\Office12\outlook.exe

Chapter 4 Writing Your First Outlook Add-in Using C# 111

C04622493.fm Page 111 Sunday, February 6, 2005 11:44 AM
Figure 4-18 Set the start action for your add-in on the Debug tab.

Debugging Code

Before you attempt to debug your add-in, you should shut down Outlook before you pro-
ceed. If Outlook is running, your debug session might not yield the expected results. Use
the Windows Task Manager to ensure that Outlook is not running before you start in Debug
mode. If Outlook is not running, you will not see Outlook.exe in the process list in the Task
Manager.

To ensure that Outlook is not running before you start debugging, follow these steps:

1. Press Ctrl+Alt+Delete to launch the Windows Task Manager.

2. In the Windows Security dialog box, click Task Manager.

3. In the Windows Task Manager dialog box, click the Processes tab.

4. Ensure that Outlook.exe is not in the list of running processes.

One interesting way to ensure that Outlook has shut down cleanly is to use the Mail applica-
tion in Control Panel to force Outlook to boot with a profile prompt. If the profile prompt
appears when you start Outlook in Debug mode, you can be assured that no previous
instance of Outlook was running when you started your debug session. When you have com-
pleted debugging, you can remove the profile prompt by using the Mail application again.

112 Part II Quick Guide to Building Solutions

C04622493.fm Page 112 Sunday, February 6, 2005 11:44 AM
Once you have your add-in project set up to perform debugging, you can use the great debug-
ging features of Visual Studio 2005. These features include debugging tools such as setting
breakpoints, using watch and locals windows, and using edit and continue. Be aware that
when you hit a breakpoint in your code, you might cause Outlook to become unresponsive
until you continue execution.

To debug your add-in, follow these steps:

1. Ensure that Outlook is shut down.

2. Set your breakpoints before you begin the debugging process.

3. Press F5 to launch Outlook and begin the debugging process.

4. From the Visual Studio Debug menu, select Stop Debugging to stop debugging. Outlook
closes when you stop the debugging process.

Summary
This chapter has provided you with end-to-end instructions on how to build an Outlook add-
in using Visual Studio 2005. The add-in you have created leverages the new Instant Search fea-
ture of Outlook 2007. To ensure add-in stability, the Instant Search add-in is provided with its
own application domain by way of a COM shim. Finally, you also have created a setup project
so that you can deploy the add-in to other users. You should be able to use the understanding
you’ve gained in this chapter to move on to create an add-in with your own unique design and
features. Happy coding!

Part III
Working with Outlook Data

In this part:
Chapter 5: Built-in Item Types . 115

Chapter 6: Accessing Outlook Data . 171

Chapter 7: Address Books and Recipients . 215

Chapter 8: Responding to Events . 247

Chapter 9: Sharing Information with Other Users 281

Chapter 10: Organizing Outlook Data . 297

Chapter 11: Searching Outlook Data . 335

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 5

Built-in Item Types
This chapter introduces you to the built-in item types in Microsoft Office Outlook 2007. We’ll
cover the basic types used in the Outlook object model to represent e-mail messages, appoint-
ments, contacts, and tasks.

■ Introduction to built-in and custom types Explains the difference between Outlook’s
built-in and custom types. The MessageClass property on an item provides the distinction
between a built-in and custom type.

■ Creating an item You’ll learn how to create a built-in item type programmatically and
how to write code that uses the properties and methods of that type.

■ Properties and methods of built-in types Code samples for using the important prop-
erties and methods of built-in types such as MailItem, AppointmentItem, ContactItem, and
TaskItem. This chapter concentrates especially on the properties and methods that are
new to Outlook 2007.

Introduction to Built-in and Custom Item Types
Outlook features built-in types that are appropriate to modules such as Mail, Calendar, Con-
tacts, and Tasks. Modules provide a way of conceptualizing the type of work that an Outlook
user needs to perform. For example, you navigate to the Mail module to send and respond to
e-mail messages. If you need to work with contacts, you navigate to the Contacts module to
display your contacts in views such as the Card or Electronic Business Card view. The trend in
Outlook 2007 is to break down some of the fences between individual modules. For example,
you can now view tasks on the Calendar or on the To-Do Bar in the Mail module. You can also
view upcoming appointments on the To-Do Bar, so the notion of item type being tied to mod-
ule no longer applies in all cases.

Built-in item types are specialized for the functionality particular to each module. These built-
in types also provide you with business logic that pertains to the specific type. For example,
appointment items have a start and end time, and start time must always precede end time.
Recurring appointments follow defined patterns of recurrence, but recurrence exceptions
allow variations in the recurrence patterns. Meetings (appointments with attendees) also have
business logic that relates to how meeting updates and cancellations are handled, and how
the meeting is represented on the attendees’ calendar. In this chapter, you learn how you can
use built-in item types that lend themselves to the functionality that you want to expose in
your solution.
115

116 Part III Working with Outlook Data
Before a discussion of how these types can be used in your code, you should understand all
the built-in types available in Outlook 2007. Table 5-1 lists all the objects that represent built-
in and custom items in Outlook and the corresponding base message class. Note that an aster-
isk after the base message class (for example, IPM.Sharing.*) indicates that multiple message
classes are used for a given built-in type. The IPM prefix in the message class stands for “inter-
personal message” and applies to the visible item types in Outlook. Custom items cannot be
derived from the base class representing the built-in item. From an object model perspective,
a custom item is still represented by the base class for a particular item type. However, as
explained later in this chapter, custom items use a custom message class by appending an
identifier to the base message class.

Table 5-1 Built-in Outlook Item Types

Object Base message class OlObjectClass Description
AppointmentItem IPM.Appointment olAppointment Represents an appointment

item in a Calendar folder.
ContactItem IPM.Contact olContact Represents a contact item in

a Contacts folder.
DistListItem IPM.DistList olDistributionList Represents an Outlook dis-

tribution list in a Contacts
folder.

DocumentItem IPM.Document.* olDocument Represents an Office docu-
ment that has been dragged
into an Outlook folder. The
type of document is
appended to the message
class so that Word docu-
ments have a message class
of IPM.Document.Word.Doc-
ument.8.

JournalItem IPM.Journal olJournal Represents a journal item in
a Journal folder.

MailItem IPM.Note olNote Represents a mail message in
an Outlook folder such as
Drafts, Inbox, or Sent Items.

MeetingItem IPM.Schedule.
Meeting.Response
IPM.Schedule.
Meeting.Resp.Pos
IPM.Schedule.
Meeting.Resp.Neg
IPM.Schedule.
Meeting.Resp.Tent
IPM.Schedule.
Meeting.Resp.Canceled

olMeetingRequest Represents a meeting
request, cancellation, accept,
decline, or tentative mes-
sage in an Outlook folder.

Chapter 5 Built-in Item Types 117
Understanding MessageClass

The distinguishing factor for a built-in item versus a custom item is the item’s message class.
MessageClass is a string property on all Outlook item types, and each item type is identified

NoteItem IPM.StickyNote olNote Represents a note in the
Notes folder.

PostItem IPM.Post olPost Represents a post in an Out-
look folder. The new Outlook
2007 RSS item is also typed
as a PostItem object. Unlike a
normal post item, an RSS
item has some special prop-
erties and a message class of
IPM.Post.Rss.

RemoteItem IPM.Remote olRemote Represents a mail message
that has not been fully
downloaded from the server.
Typically a remote item only
provides message subject,
date received, sender, and
the first 255 characters of
the message body.

ReportItem REPORT.IPM.Note.* olReport Represents a mail delivery
report such as a nondelivery
report that appears in the
Inbox when delivery fails.

SharingItem IPM.Sharing.* olSharing Represents a sharing invita-
tion to view another user’s
folder in the Inbox.

StorageItem Any valid message class,
defaults to IPM.Storage

olStorageItem Represents a hidden mes-
sage in a folder.

TaskItem IPM.Task olTask Represents a task in a Tasks
folder.

TaskRequestAccept-
Item

IPM.TaskRequest.Accept olTaskRequest-
Accept

Represents an accept
response to a task request in
the Inbox.

TaskRequest-
DeclineItem

IPM.TaskRequest.Decline olTaskRequest-
Decline

Represents a decline
response to a task request in
the Inbox.

TaskRequestItem IPM.TaskRequest olTaskRequest Represents a task request in
the Inbox.

TaskRequestUp-
dateItem

IPM.TaskRequest.Update olTaskRequest-
Update

Represents an update to a
task request in the Inbox.

Table 5-1 Built-in Outlook Item Types

Object Base message class OlObjectClass Description

118 Part III Working with Outlook Data
with a unique message class. MessageClass corresponds to PR_MESSAGE_CLASS on the
underlying IMessage exposed by the Messaging Application Programming Interface (MAPI).
Outlook uses MessageClass to determine how to display the item in an Outlook Inspector win-
dow. It also uses MessageClass to type the item as MailItem, ContactItem, and so forth. For
example, all built-in contact items have a message class equal to IPM.Contact. Custom item
types append a custom identifier to the built-in item’s message class. For example, if you cre-
ate a custom form named Shoe Store, the message class for that custom item would be
IPM.Contact.Shoe Store. In addition to a unique message class, custom types support both cus-
tom properties and custom actions.

Built-in vs. Custom Types

If you are new to the Outlook object model, this profusion of types might confuse or intimi-
date you. Think of an Outlook item as a property bag that also has some item-specific verbs
such as Send or common verbs such as Save or Display. Although all Outlook items have prop-
erties in common, other item types wrap Outlook’s internal business logic and expose a spe-
cific set of properties based on a specific item type. For example, an AppointmentItem exposes
both StartTime and EndTime. EndTime must occur after StartTime, or Outlook will raise an
error when you attempt to save the item.

To make matters more perplexing, the Outlook object model distinguishes between items that
are displayed in a window and the data storage for that item. An Inspector object is a generic
object that represents any Outlook item displayed in a window. If you need to know which
type of item is displayed in a given Inspector window, you examine the Inspector.CurrentItem
property, which returns an object that represents the underlying item type. For the best
Microsoft .NET Framework coding experience, you should cast that object to the appropriate
type such as MailItem.

Creating an Item

There are several ways that you can create an item in Outlook. Unfortunately, you cannot cre-
ate an Outlook item using a New clause. You must use one of the following methods to create
an item:

■ Application.CreateItem

■ Application.CreateItemFromTemplate

■ Items.Add

■ Namespace.OpenSharedItem

Once you have created the item, you should call the Save method to persist the item to a folder
or the Send method if you want to send the item to one or more recipients.

Chapter 5 Built-in Item Types 119
To create a built-in Outlook item in a default folder, you must use the CreateItem method of the
Outlook Application object. If you want to create a custom item (such as IPM.Contact.Sample)
or a built-in item in a nondefault folder, use the Items.Add method described later in this chapter.

Application.CreateItem Method

Here are general guidelines for creating items with the CreateItem method:

■ Use CreateItem to create a built-in item such as a contact or appointment item in the
default folder for that item.

■ CreateItem returns an object, and you should cast the returned object to the appropriate
type.

■ You must call Item.Save to persist the item. When you save a nonsendable item created
with CreateItem, the item is saved into the default folder for the item in the default store.

Note If a MailItem is saved but not sent, the item is saved in the Drafts folder rather
than the Inbox.

■ If you need to create a custom item, you should use the Add method of the Items collec-
tion on the Folder object.

■ If you need to create a built-in item in a nondefault folder, you should use the Add
method of the Items collection on the Folder object.

The following code sample creates a ContactItem object in the default Contacts folder:

private void CreateContact()
{
 Outlook.ContactItem contact = Application.CreateItem(
 Outlook.OlItemType.olContactItem) as Outlook.ContactItem;
 contact.FirstName = "Nancy";
 contact.LastName = "Freehafer";
 contact.CompanyName = "Contoso Ltd.";
 contact.Email1Address = "nancyf@contoso.com";
 contact.Save();
}

If you want to use a helper method for creating items, take a look at the OutlookHelper class in
the sample code on this book’s companion Web site. The static OutlookHelper class allows you
to use several overrides for each item type. You can also use these helper procedures as code
snippets to simplify item creation. Here are three overrides for MailItemCreate:

internal static Outlook.MailItem MailItemCreate()
{
 return Application.CreateItem(
 Outlook.OlItemType.olMailItem) as Outlook.MailItem;
}

120 Part III Working with Outlook Data
internal static Outlook.MailItem MailItemCreate(
 string subject)
{
 Outlook.MailItem mail = Application.CreateItem(
 Outlook.OlItemType.olMailItem) as Outlook.MailItem;
 mail.Subject = subject;
 return mail;
}

internal static Outlook.MailItem MailItemCreate
 (string subject, string body)
{
 Outlook.MailItem mail = Application.CreateItem(
 Outlook.OlItemType.olMailItem) as Outlook.MailItem;
 mail.Subject = subject;
 mail.Body = body;
 return mail;
}

For example, the following code example creates a mail message and assigns subject and body
in one call. When the Display method is called, the programmatically created message is dis-
played to the user.

private void CreateMail()
{
 Outlook.MailItem mail =
 OutlookHelper.MailItemCreate("Test Message", "Body text");
 mail.Display(false);
}

Application.CreateItemFromTemplate Method

You can also create an item by using the CreateItemFromTemplate method. This method is use-
ful if you have an Outlook form template file (.oft) stored on disk that you want to use as a
message template. Template files can contain preformatted text, stationery, or images that you
want to include in the message. If the template file contains code behind the form, the form
code will not run. The CreateItemFromTemplate method takes two arguments: the path to the
template file and the optional folder where the item will be created when saved. The following
code example opens Ivy.oft, assigns a subject, and then saves the message to the Drafts folder:

private void CreateItemFromTemplate()
{
 Outlook.Folder folder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderDrafts) as Outlook.Folder;
 Outlook.MailItem mail =
 Application.CreateItemFromTemplate(
 @"c:\ivy.oft", folder) as Outlook.MailItem;
 mail.Subject = "Congratulations";
 mail.Save();
}

Chapter 5 Built-in Item Types 121
Items.Add() Method

Items.Add provides another way to add items programmatically. The Items collection is avail-
able on a Folder object. The Items.Add method should be used in the following situations:

■ Use Items.Add to create a built-in item or custom item in any folder that is appropriate
for the item that you wish to create. For example, you should use
Items.Add("IPM.Contact.Shoe Store") in a Contacts folder.

■ The optional Type argument can specify a built-in item by passing an OlItemType enum
value. To create a custom item, provide a string representing a valid message class. If you
do not specify Type, the item returned defaults to the type of the Folder or to MailItem if
the parent folder is not typed.

■ Items.Add returns an object, and you should cast the returned object to the appropriate
type.

■ You must call Item.Save to persist the item.

Note Type can be one of the following OlItemType constants: olAppointmentItem,
olContactItem, olJournalItem, olMailItem, olNoteItem, olPostItem, or olTaskItem, or any valid
message class.

The following code sample adds a custom contact item named Shoe Store to the Shoe Store
folder, which is a subfolder of the default Contacts folder:

private void CreateCustomItem()
{
 Outlook.Folder folder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderContacts).Folders[
 "Shoe Store"] as Outlook.Folder;
 Outlook.ContactItem contact =
 folder.Items.Add(
 "IPM.Contact.Shoe Store") as Outlook.ContactItem;
 contact.FirstName = "Michael";
 contact.LastName = "Sullivan";
 contact.UserProperties["Shoe Size"].Value = "9";
 contact.Save();
}

Namespace.OpenSharedItem() Method

The OpenSharedItem method on the Namespace object is new to Outlook 2007. It allows you
to create an item from a file. Use the OpenSharedItem method to open messages stored as
Outlook message format (.msg) files, iCalendar appointment (.ics) files, or vCard (.vcf)

122 Part III Working with Outlook Data
files. Be sure to cast the object returned by this method to the appropriate item type and call
the Save method to persist the item. The item returned by OpenSharedItem will be saved in
the default folder for the specific item type. If you need to move the item to a nondefault
folder, use the Move method for the item.

The ImportContacts procedure imports all the vCard files in a file system folder and saves the
contacts into the folder specified by the targetFolder parameter.

private void ImportContacts(string path, Outlook.Folder targetFolder)
{
 Outlook.ContactItem contact;
 Outlook.ContactItem moveContact;
 if (Directory.Exists(path))
 {
 string[] files = Directory.GetFiles(path, "*.vcf");
 foreach (string file in files)
 {
 contact = Application.Session.OpenSharedItem(file)
 as Outlook.ContactItem;
 if (targetFolder ==
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderContacts)
 as Outlook.Folder)
 {
 contact.Save();
 }
 else
 {
 moveContact = contact.Move(targetFolder)
 as Outlook.ContactItem;
 moveContact.Save();
 }
 }

 }
}

MailItem, PostItem, and SharingItem Objects
The MailItem object represents a received message in a mail folder or a sent message in a
folder such as the Sent Items folder. MailItem is one of the most important Outlook item
types. This section also covers some of the methods and properties of the PostItem and
SharingItem objects, close relatives of MailItem. The properties of the PostItem object are sim-
ilar to the properties of the MailItem object, so they are discussed together in this section.
The SharingItem object is new to Outlook 2007. For a detailed discussion of the SharingItem
object, see Chapter 9, “Sharing Information with Other Users.”

Chapter 5 Built-in Item Types 123
Appropriate Uses of MailItem and PostItem

From a developer’s perspective, a MailItem object is used to compose or read a message that is
transmitted to one or more recipients. For compose messages, you can also set the body text,
subject, and recipients of the message. For read messages, you can get body text, subject,
recipients, and take actions such as Reply, Reply All, and Forward. The uses of MailItem are
extensive. At the simplest level, you might want to enforce certain organizational mail rules
such as ensuring that Reply All is limited to a maximum number of recipients. Another simple
scenario is preventing attachments greater than the maximum attachment size from being
attached to a message. Intermediate scenarios that apply to MailItem revolve around disclaim-
ers and inspection of the body text for keywords or inappropriate language. Finally, more
complex scenarios can be built around organizing incoming messages in a folder hierarchy,
associating received messages with a specific customer record, or creating an approval work-
flow. Some of these scenarios can be accomplished using the new Rules object in Outlook
2007. However, the Rules object does not cover every scenario. In some cases, your solution
requires that you write code that utilizes the MailItem object.

The PostItem object is typically used for folder-based conversations in a shared folder such as
a Microsoft Exchange public folder. Custom post items can be used for specific scenarios that
require additional custom properties that are not available on the built-in PostItem object. For
example, a Product Ideas folder might contain posts that allow the user to mark the posts by
product category and product technology. Another use of PostItem is as a type of blank item
that allows you to build from scratch. In this case, PostItem serves as a base class that you dec-
orate with custom properties and actions.

Compose MailItem

To create a compose MailItem, use the CreateItem method of the Application object. Once you
have a MailItem object, you can set properties on the item. Once you have set properties such
as Subject or added recipients to the Recipients collection, you can send the message program-
matically by calling the Send method.

Adding Recipients

Recipient and AddressEntry objects are discussed in detail in Chapter 7, “Address Books and
Recipients.” The example code that follows creates a new MailItem, sets the Subject to
“Quarterly Sales Report FY06 Q4,” addresses the message to the user’s manager, attaches
C:\Sales reports\fy06q4.xlsx, and then sends the message.

Note The sample code will run correctly only against a Microsoft Exchange Server account.
The code assumes that a manager relationship has been established for users in Microsoft
Active Directory directory service. The code uses the new ExchangeUser object to determine
the current user’s manager by calling the GetExchangeUserManager method.

124 Part III Working with Outlook Data
private void SendSalesReport()
{
 Outlook.MailItem mail = Application.CreateItem(
 Outlook.OlItemType.olMailItem) as Outlook.MailItem;
 mail.Subject = "Quarterly Sales Report FY06 Q4";
 Outlook.AddressEntry currentUser =
 Application.Session.CurrentUser.AddressEntry;
 if (currentUser.Type == "EX")
 {
 Outlook.ExchangeUser manager =
 currentUser.GetExchangeUser().GetExchangeUserManager();
 //Add recipient using display name, alias, or smtp address
 mail.Recipients.Add(manager.PrimarySmtpAddress);
 mail.Recipients.ResolveAll();
 mail.Attachments.Add(@"c:\sales reports\fy06q4.xlsx",
 Outlook.OlAttachmentType.olByValue , Type.Missing, Type.Missing);
 mail.Send();
 }
}

Set the Clear-Text Body

For all item types, you can set the clear-text body for the message by using the Item.Body prop-
erty. For example, the following line sets the message body to “This is the message body.”

 mail.Body = "This is the message body.";

Set the HTML Body

If you want to format the message body, then you should consider using the HTMLBody
property. Note that the HTMLBody property is only available on MailItem, PostItem, and
SharingItem objects. The following procedure creates a compose note (shown in Figure 5-1)
that displays “This is the message body.”

private void CreateHTMLMail()
{
 Outlook.MailItem mail = Application.CreateItem(
 Outlook.OlItemType.olMailItem) as Outlook.MailItem;
 mail.HTMLBody = "<body>" +
 "This is the <I>message</I> body.</body>";
 mail.Display(false);
}

Chapter 5 Built-in Item Types 125
Figure 5-1 Compose Note uses the HTMLBody property to format the message body.

Formatting the Body Using WordEditor

If you need to format the message body for item types other than MailItem, PostItem, or
SharingItem, you must use the Item.GetInspector().WordEditor property. The WordEditor prop-
erty returns a Word Document object. By using the Word Selection object, you can use the
Word object model to format the text in the body of the item. To use the Word object model
in your solution, you must add a reference to the Microsoft Word 12.0 Object Model. To add
a reference to the Word object model, follow these steps:

1. On the Project menu, select Add Reference.

2. Click the COM tab.

3. Select Microsoft Word 12.0 Object Model, and then click OK.

Note You can use the WordEditor object only when an Inspector is displayed in the Outlook
user interface. If you attempt to access the Inspector.WordEditor object before the item is dis-
played, Outlook will raise an error. The Word.Selection object provides methods and proper-
ties that allow you to add and format text in an Outlook item. The best practice for using the
Word.Selection object is to write code in the Inspector’s Activate event. If you attempt to use
the NewInspector event of the Inspectors object or the Open event for the item to access the
Word.Selection object, Outlook will raise runtime error 4605, “This method or property is not
available because the document is locked for editing.”

The following code sample uses the WordEditor to create a message body for a ContactItem.
The sample code utilizes several events, namely the Inspectors_NewInspector event and the
Inspector_Activate event. For a complete discussion of Outlook events, see Chapter 8,
“Responding to Events.” Like the example for the HTMLBody property, the message body dis-
plays “This is the message body.”

126 Part III Working with Outlook Data
// Instance variables with class-level scope
Outlook.Inspectors m_Inspectors;
Outlook.Inspector m_Inspector;

// Startup procedure
private void ThisApplication_Startup()
{
 m_Inspectors = ThisApplication.Inspectors;
 m_Inspectors.NewInspector +=
 new Outlook.InspectorsEvents_NewInspectorEventHandler(
 Inspectors_NewInspector);
}

private void Inspectors_NewInspector(Outlook.Inspector Inspector)
{
 try
 {
 OutlookItem olItem = new OutlookItem(Inspector.CurrentItem);
 // Make sure this is a new contact item
 if (olItem.Class == Outlook.OlObjectClass.olContact &
 olItem.Size = 0)
 {
 m_Inspector = Inspector;
 m_Inspector.Activate +=
 new Outlook.InspectorEvents_ActivateEventHandler(
 Inspector_Activate);
 }
 else
 {
 m_Inspector.Activate -=
 new Outlook.InspectorEvents_ActivateEventHandler(
 Inspector_Activate);
 m_Inspector = null;
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

private void Inspector_Activate()
{
 try
 {
 //Word objects
 Word.Application wordApplication;
 Word.Document doc;
 Word.Selection sel;
 //Test for null since Outlook
 //can be installed in standalone mode
 if (m_Inspector != null)
 {
 doc = m_Inspector.WordEditor;
 wordApplication = doc.Parent as Word.Application;

Chapter 5 Built-in Item Types 127
 sel = wordApplication.Selection;
 sel.BoldRun();
 sel.TypeText("This");
 sel.BoldRun;
 sel.TypeText(" is the ");
 sel.ItalicRun();
 sel.TypeText("message");
 sel.ItalicRun();
 sel.TypeText(" body.");
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

Important You should always test for null (Nothing in Microsoft Visual Basic) when you
access the WordEditor property of the Inspector object. It is possible for Outlook to be
installed in standalone mode. In this case, Word is not installed and the Word object model
is not available.

Body Formats

When you set the HTMLBody property, Outlook automatically sets the BodyFormat property
of the MailItem to OlBodyFormat.olFormatHTML. You can control the message format of a
MessageItem, PostItem, or SharingItem by setting the BodyFormat property. The BodyFormat
property overrides the user’s default mail format setting.

Note If you change the BodyFormat property from Rich Text Format (RTF) to Hypertext
Markup Language (HTML) or from HTML to RTF, the formatting of the message will be lost.
The BodyFormat property is available only for MailItem, PostItem, and SharingItem objects.

The following procedure checks the BodyFormat property for a new MailItem. If the BodyFormat
is not RTF, then the BodyFormat property is set to RTF. Note that Outlook does not provide a
method for obtaining the raw RTF stream through the Outlook object model.

private void SendMessageUsingRTF()
{
 Outlook.MailItem mail = Application.CreateItem(
 Outlook.OlItemType.olMailItem) as Outlook.MailItem;
 //Test default format
 if (mail.BodyFormat != Outlook.OlBodyFormat.olFormatRichText)
 {
 mail.BodyFormat = Outlook.OlBodyFormat.olFormatRichText;
 }
 //Cannot set RTF stream directly
 mail.Subject = "RTF Message";

128 Part III Working with Outlook Data
 mail.Body = "RTF Body";
 mail.Display(false);
}

Adding Attachments

To add attachments to any item type, use the Add method of the Attachments collection. The
Add method requires several parameters that are explained in Table 5-2.

For most attachments, you will use the OlAttachmentType.olByValue constant and pass a path
to the file you wish to attach in the Add method. If you want to attach an Outlook message file
format file (.msg), pass both the path to the .msg file and OlAttachmentType.olEmbeddedItem in
the Add method. The following line from the earlier Sales Report example adds a Microsoft
Excel workbook to the message:

mail.Attachments.Add(@"c:\sales reports\fy06q4.xlsx",
 Outlook.OlAttachmentType.olByValue,
 System.Type.Missing, System.Type.Missing);

Table 5-2 Add Method Parameters

Name
Required/
Optional Type Description

Source Required Object The source of the attachment. Source can be a file rep-
resented by a full file system path or an Outlook item
that constitutes an embedded message.

Type Optional Long The type of the attachment, which can be one of the
OlAttachmentType constants: olByValue, olByReference,
olEmbeddedItem, olOLE.

Position Optional Long This parameter applies only to e-mail messages using
Microsoft Outlook Rich Text Format; it is the position
where the attachment should be placed within the body
text of the message. A value of 1 for the Position param-
eter specifies that the attachment should be positioned
at the beginning of the message body. A value n greater
than the number of characters in the body of the e-mail
item specifies that the attachment should be placed at
the end. A value of 0 makes the attachment hidden.

Dis-
playName

Optional String This parameter applies only if the mail item is in RTF and
Type is set to olByValue; the name is displayed in an
Inspector object for the attachment or when viewing the
properties of the attachment. If the mail item is in Plain
Text or HTML format, then the attachment is displayed
using the file name in the Source parameter.

Chapter 5 Built-in Item Types 129
Attachment Security

Outlook protects users from malicious code that is transported via e-mail. By default, attach-
ments with certain file extensions such as .exe and .bat are blocked whether the attachment is
added by the user or programmatically. These attachments are known as Level 1 attachments,
and a blocked attachment cannot be opened by the user or programmatically. Level 1 attach-
ments are not available in the Attachments collection so they cannot be saved or enumerated
programmatically. Level 2 attachments provide a lesser degree of threat to the user, but Level
2 attachments must be saved to the file system before they can be opened. Outlook 2007
introduces the new BlockLevel property on the Attachment object that lets you determine the
security status of the attachment. Attachment.BlockLevel returns an OlBlockLevelStatus value.
Valid OlBlockLevelStatus values are as shown in Table 5-3.

More Info Attachment security is covered in detail in Chapter 19, “Trust and Security.”

Saving Attachments

The SaveAsFile method on the Attachment object allows you to save attachments to the file sys-
tem. The RemoveAttachmentsAndSaveToDisk procedure provides a useful utility that removes
all attachments greater than a specified size from mail items in a folder. Attachments where
Attachment.Type = OlAttachmentType.olByValue are removed from the message. This procedure
illustrates some important concepts in Outlook development:

■ Using a restriction clause to provide a subset of items in a folder. For additional details,
see Chapter 11, “Searching Outlook Data.”

■ Outlook collections such as the Attachments collection are one-based. If you use the
Index [n] operator for an Outlook collection, you can reference Attachments[1] to
Attachments[n] where n represents Attachments.Count. In Visual Basic, you reference
Attachments(1) to Attachments(n).

■ To remove items from a collection, you cannot use a foreach (C#) or For…Each (Visual
Basic) construct. If you do so, you will fail to iterate over the correct number of items in
the collection. Instead, use the Index operator to obtain the first item in the collection

Table 5-3 OlBlockLevelStatus Enumeration

Name Description
olAttachmentBlockLevelNone There is no restriction on the type of the attachment based on its

file extension.
olAttachmentBlockLevelOpen There is a restriction on the type of the attachment based on its

file extension such that users must first save the attachment to
disk before opening it.

130 Part III Working with Outlook Data
and then delete the first item in the collection. Use a while construct to determine when
you have deleted the appropriate number of items in the collection.

private void RemoveAttachmentsAndSaveToDisk(string path,
 Outlook.Folder folder, int size)
{
 Outlook.Items attachItems;
 Outlook.Attachment attachment;
 Outlook.Attachments attachments;
 int byValueCount;
 int removeCount;
 bool saveMessage;
 try
 {
 //The restriction will find all items that
 //have attachments and MessageClass = IPM.Note
 string filter = "@SQL=" + "\""
 + "urn:schemas:httpmail:hasattachment"
 + "\"" + " = True" + " AND " + "\""
 + "http://schemas.microsoft.com/mapi/proptag/0x001A001E"
 + "\"" + " = 'IPM.Note'";
 attachItems = folder.Items.Restrict(filter);
 foreach (Outlook.MailItem mail in attachItems)
 {
 saveMessage = false;
 byValueCount = 0;
 attachments = mail.Attachments;
 //Obtain the count of ByValue attachments
 foreach(Outlook.Attachment attach in attachments)
 {
 if (attach.Size > size
 & attach.Type ==
 Outlook.OlAttachmentType.olByValue)
 {
 byValueCount = byValueCount + 1;
 }
 }
 if (byValueCount > 0)
 {
 //removeCount is number of attachments to remove
 removeCount = attachments.Count - byValueCount;
 while (mail.Attachments.Count != removeCount)
 {
 //Use indexer to obtain
 //first attachment in collection
 attachment = mail.Attachments[1];
 //You can refine this code to save
 //separate copies of attachments
 //with the same name
 attachment.SaveAsFile(path + @"\"
 + attachment.FileName);
 attachment.Delete();
 if (saveMessage != true)
 {
 saveMessage = true;

Chapter 5 Built-in Item Types 131
 }
 }
 if (saveMessage)
 {
 mail.Save();
 }
 }
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

Sending the Message

To send a message, you call the Send method. On a PostItem, the Post method is analogous to
the Send method. The Send method is available on the following objects:

■ AppointmentItem

■ MailItem

■ MeetingItem

■ SharingItem

■ TaskItem

Note Calling the Send method does not guarantee that the message will be submitted to
the Outbox and transported to message recipients. For example, if the user is connected to
an Exchange server, he or she can establish delayed delivery options. Calling the Send
method will always place the item in the Outbox. Other factors including network connectiv-
ity, online versus offline state, and delayed delivery options will determine when the message
is delivered to recipients.

Send Using a Specific Account

New to Outlook 2007, the SendUsingAccount property allows you to send an item using a spe-
cific e-mail account. Before discussing sending using an account, a review of Outlook profiles
and accounts is helpful. A profile is a collection of e-mail accounts such as an Exchange Server,
Post Office Protocol 3 (POP3), Internet Message Access Protocol (IMAP), or Hypertext Trans-
fer Protocol (HTTP) account. A profile can contain one or more accounts. A new profile is cre-
ated automatically when you run Outlook for the first time, and after that the profile runs
each time you start Outlook. Most users need only one profile. However, sometimes it is use-
ful to have more than one profile. For example, you might want one profile for work and
another profile for home. The Outlook object model does not allow you to create or modify
profiles and accounts programmatically. However, the new Namespace.CurrentProfileName

132 Part III Working with Outlook Data
and Application.DefaultProfileName properties provide the name of the current profile and
default profile, respectively.

If you want to send an item using a specific e-mail account, you must first obtain an Account
object that represents the e-mail account that you want to use to send the item. Once you have
obtained that Account object, simply set the SendUsingAccount property to that Account object
and then call the Send method. The following example creates a message with an attached itin-
erary document and sends the message using the MSN Hotmail account:

private void SendUsingAccountExample()
{
 Outlook.MailItem mail = Application.CreateItem(
 Outlook.OlItemType.olMailItem) as Outlook.MailItem;
 mail.Subject = "Our itinerary";
 mail.Attachments.Add(@"c:\travel\itinerary.doc",
 Outlook.OlAttachmentType.olByValue,
 Type.Missing, Type.Missing);
 Outlook.Account account =
 Application.Session.Accounts["MSN Hotmail"];
 mail.SendUsingAccount = account;
 mail.Send();
}

Read MailItem
From an object model perspective, a read message is no different than a compose message.
To clarify, a read message refers to a received message rather than a message that has been
read or has not been read (unread) by the user. Your Inbox and its subfolders are populated
by read messages. A read message is a MailItem where the MailItem.Size is greater than zero
and the MailItem.Sent is true. A read MailItem also has properties that are empty on a com-
pose MailItem. For example, properties such as SenderName or SenderEmailAddress will
always return an empty string for a compose note.

Distinguishing a Read Note from a Compose Note

The easiest and most effective way to determine whether an item is a compose note or a read note
is to examine the Size and Sent properties of the item. For example, the following IsReadNote
method determines whether the mail instance variable is a read note or a compose note:

private bool IsReadNote(Outlook.MailItem mail)
{
 if (mail != null)
 {
 if (mail.Size > 0 && mail.Sent)
 {
 return true;
 }
 else
 {

Chapter 5 Built-in Item Types 133
 return false;
 }
 }
 else
 throw new ArgumentNullException();
}

Determining the Sender Display Name and SMTP Address

Let’s assume that you want to determine the sender display name and Simple Mail Transfer
Protocol (SMTP) address for a received mail item. The simplest option is to examine the
MailItem.SenderName or the MailItem.SenderEmailAddress properties. This technique works
without a problem if the sender is external to your organization. Without diving too far into
Exchange addresses, SenderEmailAddress does not return an SMTP address if the sender of the
message is internal to your organization. In this case, you need to use the new PropertyAccessor
object to return the sender’s SMTP address.

The following GetSenderSMTPAddress procedure illustrates the use of the new PropertyAccessor
object to obtain values that are not exposed directly in the Outlook object model. For com-
plete details regarding the PropertyAccessor object, see Chapter 17, “Using the PropertyAccessor
Object.” The code example examines the SenderEMailType property of the received MailItem
object. If SenderEMailType equals EX, then the sender of the message resides on an
Exchange server in your organization. You can then use the PropertyAccessor to obtain the
EntryID property of the sender, use the GetAddressEntryFromID method on the Namespace
object, and then obtain an AddressEntry object for the sender. Once you have an AddressEntry
object for the sender, you examine the AddressEntryType property of the AddressEntry object.
You can then cast the AddressEntry object to a new ExchangeUser object that exposes the
PrimarySMTPAddress property as a first-class member of the ExchangeUser object. If the
AddressEntry object for the sender does not represent an ExchangeUser object, you can examine
the PR_SMTP_ADDRESS property of the AddressEntry object by using the PropertyAccessor
object. Use this procedure in your own code whenever you want to determine the SMTP
address for the sender of a MailItem object.

private string GetSenderSMTPAddress(Outlook.MailItem mail)
{
 string PR_SENT_REPRESENTING_ENTRYID =
 @"http://schemas.microsoft.com/mapi/proptag/0x00410102";
 string PR_SMTP_ADDRESS =
 @"http://schemas.microsoft.com/mapi/proptag/0x39FE001E";
 if (mail.SenderEmailType == "EX")
 {
 string senderEntryID =
 mail.PropertyAccessor.BinaryToString(
 mail.PropertyAccessor.GetProperty(
 PR_SENT_REPRESENTING_ENTRYID));
 Outlook.AddressEntry sender =
 Application.Session.
 GetAddressEntryFromID(senderEntryID);

134 Part III Working with Outlook Data
 if (sender != null)
 {
 //Now we have an AddressEntry representing the Sender
 if (sender.AddressEntryUserType ==
 Outlook.OlAddressEntryUserType.
 olExchangeUserAddressEntry
 || sender.AddressEntryUserType ==
 Outlook.OlAddressEntryUserType.
 olExchangeRemoteUserAddressEntry)
 {
 //Use the ExchangeUser object PrimarySMTPAddress
 Outlook.ExchangeUser exchUser =
 sender.GetExchangeUser();
 if (exchUser != null)
 {
 return exchUser.PrimarySmtpAddress;
 }
 else
 {
 return null;
 }
 }
 else
 {
 return sender.PropertyAccessor.GetProperty(
 PR_SMTP_ADDRESS) as string;
 }
 }
 else
 {
 return null;
 }
 }
 else
 {
 return mail.SenderEmailAddress;
 }
}

Creating a Response

You create a response to a MailItem by calling the Forward, Reply, or ReplyAll methods on the
item. Each of these methods returns a MailItem object. When you call the Forward, Reply, or
ReplyAll methods, you create a response using the default response style for the appropriate
response type. The default response style is controlled by the the user’s response style settings
in the E-Mail Options dialog box shown in Figure 5-2. To display the E-Mail Options dialog
box, follow these steps:

1. In the Outlook Explorer window, from the Tools menu, select Options.

2. Click the Preferences tab.

3. Click E-Mail Options.

Chapter 5 Built-in Item Types 135
Figure 5-2 The E-Mail Options dialog box allows the user to set reply and forward styles.

Responding Using an Action Object

If you want to create a response using a nondefault response style, you can use the Actions col-
lection on the item; obtain an Action object representing the type of response such as Reply,
ReplyAll, or Forward; set the Action.ReplyStyle; and then call the Execute method of the Action
object to obtain a MailItem object that uses the specified reply style. For example, the follow-
ing example displays two reply messages to the user. Both messages are replies to an item in
the Inbox. The first message, represented by the mail1 instance variable, uses the user’s
default reply style. The second message, represented by the mail2 instance variable, uses the
OlReplyStyle.olReplyTickOriginalText reply style.

private void SetReplyStyleExample()
{
 Outlook.MailItem mail = Application.Session.
 GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).Items.Find(
 "[MessageClass]='IPM.Note'") as Outlook.MailItem;
 //Default reply action
 Outlook.MailItem mail1 = mail.Reply() as Outlook.MailItem;
 mail1.Display(false);
 //Reply using Action object
 Outlook.Action action = mail.Actions["Reply"];
 action.ReplyStyle =
 Outlook.OlActionReplyStyle.olReplyTickOriginalText;
 Outlook.MailItem mail2 = action.Execute() as Outlook.MailItem;
 mail2.Display(false);
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

136 Part III Working with Outlook Data
Adding an Electronic Business Card

Electronic Business Cards in Outlook 2007 provide a great new way to share your contact
information with others. Fortunately, developers can leverage this functionality. To send a
message with an Electronic Business Card (see Figure 5-3), you call the AddBusinessCard
method on the MailItem object. Electronic Business Cards can only be added to messages
where the mail format is HTML. The AddBusinessCard procedure takes a string representing
an e-mail address and attempts to find a ContactItem with that address in the default Contacts
folder. A ContactItem can have up to three distinct e-mail addresses. If the contact is found, the
AddBusinessCard method is called on the MailItem represented by the mail instance variable.
Finally, the message is displayed to the user.

private void AddBusinessCard(string eMailAddress)
{
 Outlook.MailItem mail = Application.CreateItem(
 Outlook.OlItemType.olMailItem) as Outlook.MailItem;
 mail.BodyFormat = Outlook.OlBodyFormat.olFormatHTML;
 Outlook.ContactItem contact = Application.Session.
 GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderContacts).Items.Find(
 "[Email1Address]='" + eMailAddress + "'" + " OR " +
 "[Email2Address]='" + eMailAddress + "'" + " OR " +
 "[Email3Address]='" + eMailAddress + "'")
 as Outlook.ContactItem;
 if (contact == null)
 {
 return;
 }
 mail.AddBusinessCard(contact);
 mail.Display(false);
}

Figure 5-3 Add an Electronic Business Card to a message programmatically.

Chapter 5 Built-in Item Types 137
Create a To-Do Item

To-do items are also new to Outlook 2007. A to-do item is any Outlook item—such as a task,
an e-mail message, or a contact—that has been flagged for follow-up. To-do items appear in
the To-Do Bar. The To-Do Bar occupies a separate pane in the Outlook Explorer window
and provides a convenient location for the user to see upcoming appointments and to-do
items. The following item types can be marked programmatically as to-do items:

■ MailItem

■ PostItem

■ SharingItem

■ ContactItem

■ DistListItem

By default, a TaskItem is always a to-do item and will appear in the To-Do Bar. To create a to-do
item using code, you call the MarkAsTask method on the item and provide an OlMarkInterval
constant. The OlMarkInterval constant controls where the to-do item appears on the To-Do
Bar. Valid OlMarkInterval constants are listed in Table 5-4.

When you call MarkAsTask, several other properties such as TaskStartDate, TaskDueDate,
TaskCompletedDate, and TaskSubject can be set on the item. Depending on the value of
OlMarkInterval, the properties listed in Table 5-5 are set to the specified default values.

Table 5-4 OlMarkInterval Enumeration

Name Description
olMarkLater Mark the task due with no date.
olMarkNextWeek Mark the task due next week.
olMarkThisWeek Mark the task due this week.
olMarkToday Mark the task due today.
olMarkTomorrow Mark the task due tomorrow.

Table 5-5 Default Properties Depend on OlMarkInterval Value

Enumeration value Property values
olMarkLater IsMarkedAsTask is set to true.

TaskSubject is set to the value of the Subject property for the Outlook item.
TaskStartDate, TaskDueDate, and TaskCompletedDate are set to null
(Nothing in Visual Basic).
ToDoTaskOrdinal is set to the current date and time.

138 Part III Working with Outlook Data
Creating a to-do item is simple. Just call the MarkAsTask method on the item and then save the
item. If you want to create a reminder, you’ll need a few additional lines of code. The following
procedure creates a to-do item marked for follow-up tomorrow and sets a reminder for tomor-
row at 10:00 A.M.

private void CreateToDoItemExample()
{
 //Date operations
 DateTime today = DateTime.Parse("10:00 AM");
 TimeSpan duration = TimeSpan.FromDays(1);
 DateTime tomorrow = today.Add(duration);
 Outlook.MailItem mail = Application.Session.
 GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).Items.Find(
 "[MessageClass]='IPM.Note'") as Outlook.MailItem;

olMarkNextWeek IsMarkedAsTask is set to true.
TaskSubject is set to the value of the Subject property for the Outlook item.
TaskStartDate is set to the first working day of next week.
TaskDueDate is set to the last working day of next week.
TaskCompletedDate is set to null (Nothing in Visual Basic).
ToDoTaskOrdinal is set to the current date and time.

olMarkThisWeek IsMarkedAsTask is set to true.
TaskSubject is set to the value of the Subject property for the Outlook item.
TaskStartDate is set to a date two working days ahead of the current date.
If that value would exceed the value of TaskDueDate, then TaskStartDate is
set to the value of TaskDueDate.
TaskDueDate is set to the last working day of the current week.
TaskCompletedDate is set to null (Nothing in Visual Basic).
ToDoTaskOrdinal is set to the current date and time.

olMarkToday IsMarkedAsTask is set to true.
TaskSubject is set to the value of the Subject property for the Outlook item.
TaskStartDate and TaskDueDate are set to the current date.
TaskCompletedDate is set to null (Nothing in Visual Basic).
ToDoTaskOrdinal is set to the current date and time.

olMarkTomorrow IsMarkedAsTask is set to true.
TaskSubject is set to the value of the Subject property for the Outlook item.
TaskStartDate and TaskDueDate are set to one day after the current date.
TaskCompletedDate is set to null (Nothing in Visual Basic).
ToDoTaskOrdinal is set to the current date and time.

Table 5-5 Default Properties Depend on OlMarkInterval Value

Enumeration value Property values

Chapter 5 Built-in Item Types 139
 mail.MarkAsTask(Outlook.OlMarkInterval.olMarkTomorrow);
 mail.TaskStartDate = today;
 mail.ReminderSet = true;
 mail.ReminderTime = tomorrow;
 mail.Save();
}

If you want to mark an item as a to-do item programmatically, you should be aware of the fol-
lowing behaviors:

■ You must explicitly call the Save method on the item after you call MarkAsTask.

■ To set a reminder on the to-do item, set the ReminderSet property to true and use the stan-
dard Reminder properties such as ReminderTime to set the time of the reminder. In Outlook
2007, you can now use Reminder properties to set a reminder on a ContactItem.

■ Set nondefault values for TaskStartDate and TaskDueDate after you call the MarkAsTask
method.

■ To clear the to-do item, call the ClearTaskFlag method on the item.

■ To mark the to-do item as complete, set the TaskCompletedDate on the item. If the
TaskCompletedDate is set, the item will not appear in the To-Do Bar. Marking the to-do
item as complete does not clear the to-do item.

■ The TaskSubject of the item controls how the to-do item is displayed in the To-Do Bar. By
default, the TaskSubject of the item is set to the Item.Subject. Set the TaskSubject property
to create a different subject for the to-do item.

■ To change the position of the to-do item within its To-Do Bar group such as Today or
Tomorrow, set a different value for the ToDoTaskOrdinal property. ToDoTaskOrdinal
returns or sets a Date value that represents the ordinal value of the task for the item in
its To-Do Bar group.

■ If an item is marked as a to-do item, the item’s IsMarkedAsTask property returns true.
IsMarkedAsTask is a computed property. See Chapter 11 for information on how to
search for to-do items in Outlook queries.

PostItem Object
The PostItem object represents a message posted in a folder. Unlike a MailItem object, a PostItem
object is not sent to a recipient. From a user perspective, posts are typically used for threaded
discussions in a folder. For a developer, a PostItem object can also serve as an empty canvas that
you decorate with user interface, properties, and actions that are appropriate to your solution.
Think of a PostItem object as a “blank” item that you can customize when Outlook’s built-in
types are too overloaded with properties or business logic for your requirements.

140 Part III Working with Outlook Data

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Creating a PostItem

You create a PostItem object by using the CreateItem or Items.Add methods discussed earlier. If
you do create a PostItem object using CreateItem, the post will be saved in the user’s Inbox.
Because PostItem objects are used in application folders rather than the Inbox, you will gener-
ally use the Items.Add method to create the PostItem object. To persist a PostItem object, you call
the Post method rather than the Save method.

Responding to a PostItem

To respond to a PostItem object, you can call the Reply or Forward methods on the PostItem
or execute the Reply to Folder Action object obtained from the Actions collection object. The
Reply and Forward methods return a MailItem object. The Reply to Folder Action returns a
PostItem object. The following code sample creates a PostItem object and posts the item in
the current folder. It then uses the Reply to Folder Action object to create a reply to the orig-
inal PostItem object.

private void CreateDiscussionExample()
{
 Outlook.PostItem post = Application.
 ActiveExplorer().CurrentFolder.Items.Add("IPM.Post")
 as Outlook.PostItem;
 post.Subject = "My Subject";
 post.Post();
 Outlook.PostItem replyPost =
 post.Actions["Reply to Folder"].Execute()
 as Outlook.PostItem;
 replyPost.Subject = "RE: " + post.Subject;
 replyPost.Post();
}

AppointmentItem Object
An AppointmentItem object represents an appointment in the Calendar folder. An
AppointmentItem object can represent a one-time appointment, an event, a meeting, or recur-
ring events, appointments, and meetings. A meeting usually involves more than one person
and is created when an AppointmentItem object is sent to other users, who then receive it in the
form of a MeetingItem object in their respective Inbox folders.

An appointment or meeting can be recurring—that is, set to occur more than once on a
regular or repetitive basis. When this occurs, a RecurrencePattern object is created for the
AppointmentItem object. An instance of a recurring appointment can be changed or deleted.
This creates an exception to the recurrence pattern, and this exception is represented by an
Exception object. All Exception objects associated with a given AppointmentItem object are con-
tained in an Exceptions collection associated with the AppointmentItem.

Chapter 5 Built-in Item Types 141
Appropriate Uses of AppointmentItem

Use the AppointmentItem object if you need to create standard appointments programmati-
cally. If your solution focuses on adding value to Outlook’s built-in calendaring functionality,
you should consider using a form region to add a custom user interface to Outlook’s built-in
appointment item. For a complete discussion of form regions, see Chapter 13, “Creating Form
Regions.”

One-Time Appointments

One-time appointments are the simplest items to work with from a developer’s point of view.
You’ll learn about one-time appointments first, and then move on to more complex topics on
meeting requests and recurring appointments.

Setting Start and End Time

Outlook enforces its internal business logic for the start and end times of an appointment.
The end time must always follow the start time. If the end time does not follow the start time,
Outlook raises an error when you attempt to save the appointment. When you set the start
and end times of an appointment, the time is set in local time according to the current time
zone.

Using the TimeZone Object

The TimeZone object is new to Outlook 2007. You obtain a TimeZone object from the TimeZones
collection, which represents all the time zones known to Microsoft Windows. You can use the
TimeZone object to set or get the new StartTimeZone and EndTimeZone properties on the
AppointmentItem object. If you need to know the user’s current time zone, you should obtain
the CurrentTimeZone property of the TimeZones object. The TimeZones object has a helper
method, ConvertTime, that allows you to convert a given date and time value in a source time
zone to a date and time value in a destination time zone.

Before using the TimeZone object in your code, you should understand how Outlook stores
and displays dates on items. In the Outlook user interface, all dates are displayed in local
time. Local time is expressed in the user’s current time zone, controlled by the user’s set-
tings in the Windows Control Panel. The object model also sets or gets properties such as
Appointment.Start and Appointment.End in local time. However, Outlook stores date and time
values internally as Coordinated Universal Time (UTC) rather than local time. If you were to
examine the internal value of Appointment.Start using the PropertyAccessor object, you would
find that the internal date and time value actually is equal to the local date and time value con-
verted to the equivalent UTC date and time value.

The time zone information is used to map the appointment to the correct UTC time when
the appointment is saved, and into the correct local time when the item is displayed in the
calendar. To examine the UTC time values for an appointment based on the StartTimeZone

142 Part III Working with Outlook Data
or EndTimeZone properties, you should use the StartUTC and EndUTC properties on the
AppointmentItem object.

Changing StartTimeZone affects the value of AppointmentItem.Start, which is always repre-
sented in the local time zone, Application.TimeZones.CurrentTimeZone. Changing EndTimeZone
also changes the value of AppointmentItem.End, which is always represented in the local time
zone, Application.TimeZones.CurrentTimeZone.

Depending on the circumstances, changing the StartTimeZone or EndTimeZone might or might
not cause Outlook to recalculate and update the AppointmentItem.StartInStartTimeZone and
AppointmentItem.EndInEndTimeZone properties. StartInStartTimeZone and EndInEndTimeZone
set or get values that are DateTime values rather than TimeZone objects.

As an example, in the appointment Inspector, if you are the organizer of an appointment with
a start time at 1 P.M. Eastern Standard Time (EST) and end time at 3 P.M. EST, changing the
appointment to have an EndTimeZone of Pacific Standard Time (PST) will result in an appoint-
ment lasting from 1 P.M. EST to 3 P.M. PST, with the EndInEndTimeZone remaining as 3 P.M.
However, if you are not the organizer, changing the EndTimeZone from EST to PST will cause
Outlook to recalculate and update the EndInEndTimeZone, and the appointment will last from
1 P.M. EST to 12 P.M PST.

Another example is changing the EndTimeZone property, resulting in an appointment end
time that occurs before a previously set appointment start time, in which case Outlook
recalculates and updates the EndInEndTimeZone. For example, an appointment with a start
time at 1 P.M. PST and end time at 3 P.M. PST has its EndTimeZone changed to EST. In this
case, changing the EndTimeZone would result in Outlook recalculating and updating the
EndInEndTimeZone to 6 P.M. (in EST).

The following code sample creates an appointment that starts in the Pacific time zone (GMT—
8:00) and ends in the Eastern time zone (GMT—5:30):

private void TimeZoneExample()
{
 Outlook.AppointmentItem appt = Application.CreateItem(
 Outlook.OlItemType.olAppointmentItem)
 as Outlook.AppointmentItem;
 Outlook.TimeZones tzs = Application.TimeZones;
 //Obtain timezone using indexer and locale-independent key
 Outlook.TimeZone tzEastern = tzs["Eastern Standard Time"];
 Outlook.TimeZone tzPacific = tzs["Pacific Standard Time"];
 appt.Subject = "SEA - JFK Flight";
 appt.Start = DateTime.Parse("8/9/2006 8:00 AM");
 appt.StartTimeZone = tzPacific;
 appt.End = DateTime.Parse("8/9/2006 5:30 PM");
 appt.Display(false);
}

Chapter 5 Built-in Item Types 143
Note You should retrieve a specific TimeZone from the TimeZones object by using the
locale-independent key for the TimeZone in the Windows registry. Locale-independent
TimeZone keys are listed under the following key: HKEY_LOCAL_MACHINE\SOFTWARE
\Microsoft\Windows NT\CurrentVersion\Time Zones.

Creating a Reminder

To create a reminder on an AppointmentItem object, you set the ReminderSet property to true.
To remove a reminder, set the ReminderSet property to false. The following sample creates a
reminder on a private appointment for wine tasting in Napa, California. If you want to
change the time when the reminder will fire from the user’s default value, use the
ReminderMinutesBeforeStart property to set the number of minutes that the reminder will
appear before the start of the appointment. The following example creates an appointment for
wine tasting, sets the Sensitivity property for the item to Outlook.OlSensitivity.olPrivate, and
then creates a reminder for the appointment that fires 2 hours (120 minutes) before the
appointment starts:

private void ReminderExample()
{
 Outlook.AppointmentItem appt = Application.CreateItem(
 Outlook.OlItemType.olAppointmentItem)
 as Outlook.AppointmentItem;
 appt.Subject = "Wine Tasting";
 appt.Location = "Napa CA";
 appt.Sensitivity = Outlook.OlSensitivity.olPrivate;
 appt.Start = DateTime.Parse("10/21/2006 10:00 AM");
 appt.End = DateTime.Parse("10/21/2006 3:00 PM");
 appt.ReminderSet = true;
 appt.ReminderMinutesBeforeStart = 120;
 appt.Save();
}

All-Day Events

An event is an activity that lasts 24 hours or longer. Examples of events include trade shows,
seminars, or vacations. To create an all-day event programmatically, set the AllDayEvent prop-
erty to true. Events and annual events do not occupy blocks of time in the user’s calendar;
instead, they appear as banners. A banner appears at the top of a calendar day or week view.
An all-day appointment displays the user’s time as busy when viewed by other people, but an
event or annual event displays the user’s time as free.

If you create an AppointmentItem object, set the AllDayEvent property to true, and do not set
the Start and End properties, the event will occur today. If you want the event to occur on a
future date, you must set the AllDayEvent property to true and set the Start property to 12:00
A.M.(midnight) on the day you want the event to begin. If the event has a duration of only one

144 Part III Working with Outlook Data
day, set the End property to 12:00 A.M. on the day following the day on which the event
begins. Otherwise you should set the End property to 12:00 A.M. on a date that is more than
one day after the start date. If you set the Start or End time to a date and time value that does
not occur at 12:00 A.M., the appointment will become a multiday appointment rather than an
all-day event.

For example, the following code sample creates an all-day event that begins on June 11, 2007
and ends on June 15, 2007. Note that the End property for the appointment is set to 12:00
A.M. on June 16, 2007:

private void AllDayEventExample()
{
 Outlook.AppointmentItem appt = Application.CreateItem(
 Outlook.OlItemType.olAppointmentItem)
 as Outlook.AppointmentItem;
 appt.Subject = "Developer's Conference";
 appt.AllDayEvent = true;
 appt.Start = DateTime.Parse("6/11/2007 12:00 AM");
 appt.End = DateTime.Parse("6/16/2007 12:00 AM");
 appt.Display(false);
}

Appointment Attendees

It’s worthwhile to spend a brief amount of time discussing appointments versus meetings. A
simple appointment or simple event does not have attendees. A meeting is an appointment
that has one or more attendees. An appointment that represents a meeting exists on the orga-
nizer’s calendar and also on an attendee’s calendar if the attendee replies with accept or ten-
tative to the meeting request from the organizer. All three types of appointments (simple
appointment, appointment where current user is organizer, appointment where current user
is attendee) are represented by an AppointmentItem object. To invite attendees, add recipients
to the Recipients object for the AppointmentItem object. To send a meeting request for the
Appointment item, call the Send method of the AppointmentItem object.

Using the Recipients Collection to Add Attendees

Meeting attendees can be one of the types shown in Table 5-6.

Table 5-6 Types of Meeting Attendees

Attendee type Description
Required The attendee represents an attendee for whom meeting attendance is required.
Optional The attendee represents an attendee for whom meeting attendance is optional.
Resource The attendee represents a resource such as a conference room or equipment for

a meeting.

Chapter 5 Built-in Item Types 145
To set the attendee type for a meeting attendee, you add a recipient to the Recipients collection
for the AppointmentItem object that represents the meeting. Only the organizer of the meeting
can add attendees. If an attendee wants to invite others to the meeting, he or she forwards the
appointment from his or her calendar to additional invitees. You can obtain the programmatic
equivalent of a forwarded appointment by calling the Forward method on the AppointmentItem
object in the attendee’s calendar.

The MeetingAttendeesExample provides you with sample code for adding attendees to a meeting.
Notice that the Type property of the Recipient object is typed as an int (Integer in Visual Basic)
rather than OlMeetingRecipientType. You must cast the appropriate OlMeetingRecipientType
constant to an int before you can assign the value to the Type property of the Recipient object.
This code also calls the ResolveAll method of the Recipients collection. If ResolveAll returns true,
the Send method on the AppointmentItem object sends the meeting request to attendees. If
ResolveAll returns false, the appointment is displayed to the user.

private void MeetingAttendeesExample()
{
 Outlook.Recipient recip;
 Outlook.AppointmentItem appt = Application.CreateItem(
 Outlook.OlItemType.olAppointmentItem)
 as Outlook.AppointmentItem;
 appt.MeetingStatus = Outlook.OlMeetingStatus.olMeeting;
 appt.Subject = "Sales Strategy FY2007";
 appt.Start = DateTime.Parse("5/17/2007 10:00 AM");
 appt.End = DateTime.Parse("5/17/2007 11:00 AM");
 recip = appt.Recipients.Add("someone@example.com");
 recip.Type = (int)Outlook.OlMeetingRecipientType.olOptional;
 recip = appt.Recipients.Add("teamdistributionlistalias");
 recip.Type = (int)Outlook.OlMeetingRecipientType.olRequired;
 recip = appt.Recipients.Add("Conf Room 36/2731");
 recip.Type = (int)Outlook.OlMeetingRecipientType.olResource;
 if (appt.Recipients.ResolveAll() == true)
 {
 appt.Send();
 }
 else
 {
 appt.Display(false);
 }
}

Checking Attendee Availability

To check attendee availability for an existing meeting on an appointment organizer’s calen-
dar, you enumerate the Recipients collection for the AppointmentItem object and examine the
MeetingResponseStatus property of the Recipient object. For example, the following code looks
for the Sales Strategy FY2007 meeting created in the previous code sample. If the appoint-
ment is found, the code enumerates the MeetingResponseStatus property for each Recipient in
the Recipients collection for the AppointmentItem object.

146 Part III Working with Outlook Data
private void CheckAttendeeStatus()
{
 Outlook.AppointmentItem appt = Application.Session.
 GetDefaultFolder(Outlook.OlDefaultFolders.olFolderCalendar).
 Items.Find("[Subject]='Sales Strategy FY2007'")
 as Outlook.AppointmentItem;
 if (appt != null)
 {
 foreach (Outlook.Recipient recip in appt.Recipients)
 {
 switch (recip.MeetingResponseStatus)
 {
 case Outlook.OlResponseStatus.olResponseAccepted:
 Debug.WriteLine("Accepted: " + recip.Name);
 break;
 case Outlook.OlResponseStatus.olResponseTentative:
 Debug.WriteLine("Tentative: " + recip.Name);
 break;
 case Outlook.OlResponseStatus.olResponseDeclined:
 Debug.WriteLine("Declined: " + recip.Name);
 break;
 case Outlook.OlResponseStatus.olResponseOrganized:
 Debug.WriteLine("Organizer: " + recip.Name);
 break;
 case Outlook.OlResponseStatus.olResponseNone:
 Debug.WriteLine("None: " + recip.Name);
 break;
 case Outlook.OlResponseStatus.olResponseNotResponded:
 Debug.WriteLine("Not responded: " + recip.Name);
 break;
 }
 }
 }
}

Recurring Appointments

The RecurrencePattern object provides the ability to create recurring appointments at predict-
able intervals—daily, weekly, monthly, or yearly. Of course, recurring appointments are shifted
or canceled to accommodate the flexible schedules of end users. To that end, the Outlook
object model offers the Exception object, which allows you to create exceptions to a standard
recurrence pattern.

Creating a Recurring Appointment

A recurring appointment is represented by an AppointmentItem object with the IsRecurring
property set to true. However, you cannot set this property directly. Instead, you create a recur-
ring appointment by calling the GetRecurrencePattern method of the AppointmentItem object
and then saving the item. The following example illustrates how to create an appointment

Chapter 5 Built-in Item Types 147
named Test Appointment and then call the GetRecurrencePattern method to make it a recur-
ring appointment:

private void CreateRecurringAppointment()
{
 Outlook.AppointmentItem appt = Application.CreateItem(
 Outlook.OlItemType.olAppointmentItem)
 as Outlook.AppointmentItem;
 appt.Subject = "Weekly Extensibility Team Meeting";
 Outlook.RecurrencePattern pattern = appt.GetRecurrencePattern();
 appt.Save();
}

The GetRecurrencePattern method returns a RecurrencePattern object. You can change
the recurrence pattern of the appointment by setting properties of the appointment’s
RecurrencePattern object.

Note If you call GetRecurrencePattern without setting the properties of the
RecurrencePattern object, Outlook uses the default RecurrencePattern object. The
default RecurrencePattern object occurs weekly on the weekday on which the appointment
is created and has no end date.

Setting the Recurrence Pattern of an Appointment

When a new recurring appointment is created, it inherits a default recurrence pattern based
on the time at which the appointment was created. To change the recurrence pattern of an
appointment, set the appropriate properties of the appointment’s RecurrencePattern object.

To set a nondefault RecurrencePattern object for a recurring appointment, you must set the
RecurrenceType property before you set other RecurrencePattern properties. Valid
RecurrencePattern properties for a given RecurrenceType are shown in Table 5-7.

Table 5-7 Valid RecurrencePattern Properties by RecurrenceType

OlRecurrence type Valid RecurrencePattern properties
olRecursDaily Duration, EndTime, Interval, NoEndDate, Occurrences, PatternStartDate,

PatternEndDate, StartTime
olRecursWeekly DayOfWeekMask, Duration, EndTime, Interval, NoEndDate, Occurrences,

PatternStartDate, PatternEndDate, StartTime
olRecursMonthly DayOfMonth, Duration, EndTime, Interval, NoEndDate, Occurrences,

PatternStartDate, PatternEndDate, StartTime
olRecursMonthNth DayOfWeekMask, Duration, EndTime, Interval, Instance, NoEndDate,

Occurrences, PatternStartDate, PatternEndDate, StartTime

148 Part III Working with Outlook Data
Creating a Recurring Appointment Using DayOfWeekMask

The following example uses GetRecurrencePattern to obtain the RecurrencePattern object
for a newly created AppointmentItem. The properties RecurrenceType, DayOfWeekMask,
PatternStartDate, PatternEndDate, Duration, StartTime, EndTime, and Subject are set, and the
appointment is saved and then displayed with the pattern: “Occurs every Monday, Wednes-
day, and Friday effective 7/10/2006 until 8/25/2006 from 2:00 PM to 3:00 PM.”

private void RecurringAppointmentEveryMondayWednesdayFriday()
{
 Outlook.AppointmentItem appt = Application.CreateItem(
 Outlook.OlItemType.olAppointmentItem)
 as Outlook.AppointmentItem;
 appt.Subject = "Recurring Appointment DaysOfWeekMask Example";
 Outlook.RecurrencePattern pattern = appt.GetRecurrencePattern();
 pattern.RecurrenceType = Outlook.OlRecurrenceType.olRecursWeekly;
 // Logical OR for DayOfWeekMask creates pattern
 pattern.DayOfWeekMask = Outlook.OlDaysOfWeek.olMonday |
 Outlook.OlDaysOfWeek.olWednesday |
 Outlook.OlDaysOfWeek.olFriday;
 pattern.PatternStartDate = DateTime.Parse("7/10/2006");
 pattern.PatternEndDate = DateTime.Parse("8/25/2006");
 pattern.Duration = 60;
 pattern.StartTime = DateTime.Parse("2:00:00 PM");
 pattern.EndTime = DateTime.Parse("3:00:00 PM");
 appt.Save();
 appt.Display(false);
}

Creating a Recurring Event

The next recurrence example uses GetRecurrencePattern to obtain the RecurrencePattern
object for a multiday event rather than an appointment. To create a recurring event instead
of an appointment, you must set the Duration property to 1440, which is the number of min-
utes in a day (60 * 24). You must also set the StartTime and EndTime properties for the
RecurrencePattern object to 12:00 A.M. The properties RecurrenceType, DayOfWeekMask,
PatternStartDate, PatternEndDate, Duration, StartTime, EndTime, and Subject are set, the
appointment is saved, and then it is displayed with the pattern: “Occurs every Monday,
Tuesday, Wednesday, Thursday, and Friday effective 7/10/2006 until 8/4/2006.”

olRecursYearly DayOfMonth, Duration, EndTime, Interval, MonthOfYear, NoEndDate,
Occurrences, PatternStartDate, PatternEndDate, StartTime

olRecursYearNth DayOfWeekMask, Duration, EndTime, Interval, Instance, NoEndDate,
Occurrences, PatternStartDate, PatternEndDate, StartTime

Table 5-7 Valid RecurrencePattern Properties by RecurrenceType

OlRecurrence type Valid RecurrencePattern properties

Chapter 5 Built-in Item Types 149
private void RecurringEventEveryWeekday()
{
 Outlook.AppointmentItem appt = Application.CreateItem(
 Outlook.OlItemType.olAppointmentItem)
 as Outlook.AppointmentItem;
 appt.Subject = "Recurring Event Every Weekday Example";
 Outlook.RecurrencePattern pattern = appt.GetRecurrencePattern();
 pattern.RecurrenceType = Outlook.OlRecurrenceType.olRecursWeekly;
 // Logical OR for DayOfWeekMask creates pattern
 pattern.DayOfWeekMask = Outlook.OlDaysOfWeek.olMonday |
 Outlook.OlDaysOfWeek.olTuesday |
 Outlook.OlDaysOfWeek.olWednesday |
 Outlook.OlDaysOfWeek.olThursday |
 Outlook.OlDaysOfWeek.olFriday;
 pattern.PatternStartDate = DateTime.Parse("7/10/2006");
 pattern.PatternEndDate = DateTime.Parse("8/4/2006");
 //Duration for all-day event = 60 * 24 = 1440
 pattern.Duration = 1440;
 //All-day event starts and ends at 12:00 AM
 pattern.StartTime = DateTime.Parse("12:00:00 AM");
 pattern.EndTime = DateTime.Parse("12:00:00 AM");
 appt.Save();
 appt.Display(false);
}

Creating a MonthNth or YearNth Recurrence

MonthNth and YearNth recurrences are similar in that they occur on the Nth day of every
month or year. To set a MonthNth or YearNth recurrence, you must set the RecurrenceType
property to the correct OlRecurrenceType value and also set the DayOfWeekMask and Interval
properties. The Interval property indicates the Nth day of pattern (monthly or yearly) on
which the recurrence occurs. This recurrence example creates a recurrence that occurs on the
Nth day of every year. For a YearNth recurrence, you must also set the MonthOfYear property
to indicate the month of the recurrence. The properties RecurrenceType, DayOfWeekMask,
MonthOfYear, Instance, Occurrences, StartTime, EndTime, and Subject are set, the appointment
is saved, and it is then displayed with the pattern: “Occurs the first Monday of June effective
6/1/2007 until 6/6/2016 from 2:00 PM to 5:00 PM.”

private void RecurringYearNthAppointment()
{
 Outlook.AppointmentItem appt = Application.CreateItem(
 Outlook.OlItemType.olAppointmentItem)
 as Outlook.AppointmentItem;
 appt.Subject = "Recurring YearNth Appointment";
 Outlook.RecurrencePattern pattern = appt.GetRecurrencePattern();
 pattern.RecurrenceType = Outlook.OlRecurrenceType.olRecursYearNth;
 pattern.DayOfWeekMask = Outlook.OlDaysOfWeek.olMonday;
 pattern.MonthOfYear = 6;
 pattern.Instance = 1;
 pattern.Occurrences = 10;
 pattern.Duration = 180;

150 Part III Working with Outlook Data
 pattern.PatternStartDate = DateTime.Parse("6/1/2007");
 pattern.StartTime = DateTime.Parse("2:00:00 PM");
 pattern.EndTime = DateTime.Parse("5:00:00 PM");
 appt.Save();
 appt.Display(false);
}

Working with a Single Appointment in a Series

To determine whether an instance of a recurring appointment occurs at a particular time,
use the GetOccurrence method of the RecurrencePattern object. This method returns an
AppointmentItem object representing the instance of the recurring appointment.

Important The GetOccurrence method will produce an error if an instance of the recurring
appointment does not start at the date and time you provide. If it is possible that your code
supplies a date and time that does not match an instance of a recurring appointment
(because of user input, for example), you should be able to handle the error appropriately.

The following example illustrates how to use the GetOccurrence method to determine whether
a recurring appointment (created by the code in the previous example) starts on a date and
time provided by the user. The try…catch block ensures that the procedure will continue if the
user enters anything that does not match the start date and time of an instance of the recur-
ring appointment. After calling the GetOccurrence method, you should test the singleAppt vari-
able to determine whether it is set to null, indicating that the method failed and did not return
an AppointmentItem object.

private void CheckOccurrenceExample()
{
 Outlook.AppointmentItem appt = Application.Session.
 GetDefaultFolder(Outlook.OlDefaultFolders.olFolderCalendar).
 Items.Find(
 "[Subject]='Recurring Appointment DaysOfWeekMask Example'")
 as Outlook.AppointmentItem;
 if (appt != null)
 {
 try
 {
 Outlook.RecurrencePattern pattern =
 appt.GetRecurrencePattern();
 Outlook.AppointmentItem singleAppt =
 pattern.GetOccurrence(DateTime.Parse(
 "7/21/2006 2:00 PM"))
 as Outlook.AppointmentItem;
 if (singleAppt != null)
 {
 Debug.WriteLine("7/21/2006 2:00 PM occurrence found.");
 }
 }

Chapter 5 Built-in Item Types 151
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 }
}

Once you retrieve the AppointmentItem object representing an instance of a recurring appoint-
ment, you can delete or change the appointment instance. When this happens, Outlook cre-
ates an Exception object. The properties of this object describe the changes that were made to
the instance. All of the Exception objects for a recurring appointment are contained in an
Exceptions collection associated with the appointment’s RecurrencePattern object.

The AppointmentItem property of the Exception object returns the AppointmentItem object
that constitutes the exception to the original recurrence pattern of the recurring appoint-
ment. You can use the methods and properties of the AppointmentItem object to work with
the appointment exception. The following example changes the subject of an instance of
the recurring appointment created by the code in the previous section. It then uses the
AppointmentItem property of the resulting Exception object to change the start time of the
appointment exception.

private void CreateExceptionExample()
{
 Outlook.AppointmentItem appt = Application.Session.
 GetDefaultFolder(Outlook.OlDefaultFolders.olFolderCalendar).
 Items.Find(
 "[Subject]='Recurring Appointment DaysOfWeekMask Example'")
 as Outlook.AppointmentItem;
 if (appt != null)
 {
 try
 {
 Outlook.RecurrencePattern pattern =
 appt.GetRecurrencePattern();
 Outlook.AppointmentItem myInstance =
 pattern.GetOccurrence(DateTime.Parse(
 "7/21/2006 2:00 PM"))
 as Outlook.AppointmentItem;
 if (myInstance != null)
 {
 myInstance.Subject = "My Exception";
 myInstance.Save();
 Outlook.RecurrencePattern newPattern =
 appt.GetRecurrencePattern();
 Outlook.Exception myException =
 newPattern.Exceptions[1];
 if (myException != null)
 {
 Outlook.AppointmentItem myNewInstance =
 myException.AppointmentItem;
 myNewInstance.Start =

152 Part III Working with Outlook Data
 DateTime.Parse("7/21/2006 1:00 PM");
 myNewInstance.End =
 DateTime.Parse("7/21/2006 2:00 PM");
 myNewInstance.Save();
 }
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 }
}

The following two sections describe how to use the Exception object to work with changed or
deleted instances of a recurring appointment.

Determining the Original Date of an Exception

The OriginalDate property of the Exception object returns the start date and time of the
changed appointment before it was changed. The following example uses the OriginalDate
property to retrieve the original start date of the appointment exception created in the previ-
ous section. In addition, it uses the Start property of the AppointmentItem associated with the
Exception object to provide the new start date of the appointment.

private void ShowOriginalDateExample()
{
 Outlook.AppointmentItem appt = Application.Session.
 GetDefaultFolder(Outlook.OlDefaultFolders.olFolderCalendar).
 Items.Find(
 "[Subject]='Recurring Appointment DaysOfWeekMask Example'")
 as Outlook.AppointmentItem;
 if (appt != null)
 {
 try
 {
 Outlook.RecurrencePattern pattern =
 appt.GetRecurrencePattern();
 Outlook.Exception myException =
 pattern.Exceptions[1];
 if (myException != null)
 {
 string msg =
 "The occurrence originally occurred on "
 + myException.OriginalDate
 + ". The exception now occurs on "
 + myException.AppointmentItem.Start;
 Debug.WriteLine(msg);
 }
 }
 catch (Exception ex)
 {

Chapter 5 Built-in Item Types 153
 Debug.WriteLine(ex.Message);
 }
 }
}

Determining Whether an Appointment Instance Was Deleted

When an appointment in a recurring series is deleted, an Exception object representing the
deleted appointment is created, and the Deleted property of the Exception object is set to true.
The following example uses the Delete method of the AppointmentItem object to delete the
appointment instance changed in the previous section. It then tests the value of the Deleted
property of the Exception object representing the deleted appointment to determine whether
the appointment was actually deleted.

private void CheckDeletedExceptionExample()
{
 Outlook.AppointmentItem appt = Application.Session.
 GetDefaultFolder(Outlook.OlDefaultFolders.olFolderCalendar).
 Items.Find(
 "[Subject]='Recurring Appointment DaysOfWeekMask Example'")
 as Outlook.AppointmentItem;
 if (appt != null)
 {
 try
 {
 Outlook.RecurrencePattern pattern =
 appt.GetRecurrencePattern();
 Outlook.AppointmentItem singleAppt =
 pattern.GetOccurrence(DateTime.Parse(
 "7/21/2006 1:00:00 PM"));
 singleAppt.Delete();
 Outlook.Exception myException =
 pattern.Exceptions[1];
 if (myException.Deleted)
 {
 Debug.WriteLine("7/21/2006 1:00 PM deleted.");
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 }
}

Using GlobalAppointmentID

In Outlook 2007, there are situations where the EntryID property of AppointmentItem objects
might change, such as when an item is moved to a different folder or to a different store. The
EntryID property can also change when a user performs certain functions in Outlook, such as
exporting and then reimporting data.

154 Part III Working with Outlook Data
Therefore, each Outlook appointment item is assigned a Global Object ID, a unique global
identifier that does not change during those situations. The Global Object ID is a MAPI prop-
erty that Outlook uses to correlate meeting updates and responses with a particular meeting
on the calendar. The Global Object ID is the same across all copies of the item. In the object
model, the Global Object ID is represented by the GlobalAppointmentID property.

If you need to ensure that you are working with the correct instance of an AppointmentItem
object, you can examine the item’s GlobalAppointmentID property. GlobalAppointmentID is a
string that does not change even if the AppointmentItem is moved or the organizer makes
changes to the meeting. The GlobalAppointmentID property is especially useful in scenarios
where your code is using the Outlook object model to synchronize appointments with a
mobile device.

MeetingItem Object
A MeetingItem object represents a request for a meeting received in a user’s Inbox mail folder.
You cannot create a MeetingItem object directly. Instead, Outlook creates a MeetingItem object
in each recipient’s Inbox folder when a user sends an AppointmentItem object with its
MeetingStatus property set to OlMeetingStatus.olMeeting. The following example shows how to
create an appointment and then send the appointment as a meeting request to a required
attendee, an optional attendee, and a conference room (known as a resource).

Working with Meeting Requests

Most often, you do not work directly with a MeetingItem object. For example, you do not use
the MeetingItem object to accept or decline the meeting. Instead, you use the appointment
associated with the meeting request.

The GetAssociatedAppointment method of the MeetingItem object returns an AppointmentItem
object that you can use to accept or refuse the meeting request or to directly add the meeting
(as an appointment) to the Calendar folder.

You can also directly access an AppointmentItem object that has its MeetingStatus property set
to OlMeetingStatus.olMeeting to determine which recipients have accepted or declined the
meeting request. The following sections illustrate how to work with a meeting request
through the appointment associated with the meeting.

Retrieving the Appointment Associated with a Meeting

The MeetingItem object is a message containing a request to add an appointment to the recip-
ient’s calendar; it is not the appointment itself. To access the appointment associated with the
meeting request, you use the GetAssociatedAppointment method of the MeetingItem object. This
method requires a bool (Boolean in Visual Basic) argument that specifies whether the appoint-
ment is added to the user’s Calendar.

Chapter 5 Built-in Item Types 155
The following example calls the GetAssociatedAppointment method of each MeetingItem in
the user’s Inbox and then uses the returned AppointmentItem object to write the subject of
the appointment to the trace listeners in the Listeners collection. Note that the argument of
GetAssociatedAppointment is set to false so that the appointment is not added to the user’s
Calendar.

private void MeetingRequestsExample()
{
 Outlook.Folder folder = Application.Session.
 GetDefaultFolder(Outlook.OlDefaultFolders.olFolderInbox)
 as Outlook.Folder;
 string filter = "[MessageClass] = " +
 "'IPM.Schedule.Meeting.Request'";
 Outlook.Items items = folder.Items.Restrict(filter);
 foreach(Outlook.MeetingItem request in items)
 {
 Outlook.AppointmentItem appt =
 request.GetAssociatedAppointment(false);
 if(appt != null)
 {
 Debug.WriteLine(appt.Subject);
 }
 }
}

Responding to a Meeting Request

To respond to a meeting request, you use the GetAssociatedAppointment method of the
MeetingItem object to obtain the AppointmentItem object associated with the meeting
request. You then use the Respond method of the AppointmentItem object to notify the meet-
ing organizer whether the meeting has been accepted, declined, or tentatively added to the
receiving user’s Calendar.

The Respond method allows you to send the notification without user intervention, or it can
allow the user to edit the response before sending it. The Respond method accepts three
parameters: the first specifies the actual response (accept, decline, or tentative), and the sec-
ond two are bool (Boolean in Visual Basic) values that determine whether the user will be given
the opportunity to edit the response.

To send the notification without requiring action by the user, you call the Respond method
with the second parameter set to true and then send the AppointmentItem as shown in the fol-
lowing example:

private void AutoAcceptMeetingRequests()
{
 Outlook.Folder folder = Application.Session.
 GetDefaultFolder(Outlook.OlDefaultFolders.olFolderInbox)
 as Outlook.Folder;
 string filter = "[MessageClass] = " +
 "'IPM.Schedule.Meeting.Request'";

156 Part III Working with Outlook Data
 Outlook.Items items = folder.Items.Restrict(filter);
 foreach (Outlook.MeetingItem request in items)
 {
 Outlook.AppointmentItem appt =
 request.GetAssociatedAppointment(true);
 if (appt != null)
 {
 appt.Respond(
 Outlook.OlMeetingResponse.olMeetingAccepted,
 true, Type.Missing);
 }
 }
}

If you want to allow the user to choose how to respond (that is, whether to send a response
and whether to edit the body of the response before sending), call the Respond method with
the second parameter set to false and the third parameter set to true, as shown here:

private void PromptUserMeetingRequest()
{
 Outlook.Folder folder = Application.Session.
 GetDefaultFolder(Outlook.OlDefaultFolders.olFolderInbox)
 as Outlook.Folder;
 string filter = "[MessageClass] = " +
 "'IPM.Schedule.Meeting.Request'";
 Outlook.Items items = folder.Items.Restrict(filter);
 foreach (Outlook.MeetingItem request in items)
 {
 Outlook.AppointmentItem appt =
 request.GetAssociatedAppointment(true);
 if (appt != null)
 {
 appt.Respond(
 Outlook.OlMeetingResponse.olMeetingAccepted,
 false, true);
 }
 }
}

You can use the Respond method to display a dialog box that gives the user three choices:

■ Edit The Response Before Sending

■ Send The Response Now

■ Don’t Send A Response

Outlook immediately sends the AppointmentItem to the meeting organizer if the user selects
Send The Response Now. If the user selects Edit The Response Before Sending, Outlook
opens the item to allow the user to change recipients, the subject, or the body text before send-
ing the response. Instead of giving the user the choice of how to respond, you can call the
Respond method with the second and third parameters both set to false. The result is the same
as when the user selects Edit The Response Before Sending.

Chapter 5 Built-in Item Types 157
Determining the Status of a Recipient of a Meeting Request

An AppointmentItem object created from a MeetingItem object has an associated Recipients col-
lection object. You can use the MeetingResponseStatus property of the Recipient objects in this
collection to determine whether a given recipient has accepted or declined the requested
meeting.

The following example returns the MeetingResponseStatus property for the user’s manager. If
the user’s manager is not found in the Recipients collection, CheckManagerResponseStatus
returns null. This example requires an Exchange Server account to run correctly. To check
that the Recipient object is the same as the ExchangeUser object that represents the user’s
manager, the code calls the new CompareEntryIDs method of the Namespace object. If the
two objects are equivalent, CompareEntryIDs returns true. If the entry identifiers are not
equivalent, CompareEntryIDs returns false. Entry identifiers cannot be compared directly
because one object can be represented by two different binary values. Use CompareEntryIDs
to determine whether two entry identifiers represent the same object.

private object CheckManagerResponseStatus(
 Outlook.AppointmentItem appt)
{
 try
 {
 Outlook.AddressEntry user =
 Application.Session.CurrentUser.AddressEntry;
 Outlook.ExchangeUser userEx = user.GetExchangeUser();
 if (userEx == null)
 {
 return null;
 }
 Outlook.ExchangeUser manager =
 userEx.GetExchangeUserManager();
 if (manager == null)
 {
 return null;
 }
 foreach (Outlook.Recipient recip in appt.Recipients)
 {
 if (Application.Session.CompareEntryIDs(
 recip.AddressEntry.ID, manager.ID))
 {
 return recip.MeetingResponseStatus;
 }
 }
 return null;
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

158 Part III Working with Outlook Data
ContactItem Object
A ContactItem object represents a contact in a Contacts folder. A Contacts folder can serve as an
address list so that you send messages to contacts that have an e-mail address. A ContactItem
object can represent a unique person or an entity such as a business or organization. Because
an important component of the Outlook experience is about people and communications, the
ContactItem object is one of the favorite Outlook items for developer customization.

Appropriate Uses of ContactItem

ContactItem scenarios are extensive. One of the most frequent uses of the ContactItem object is
in customer relationship applications. For small business applications, a solution like
Microsoft Business Contact Manager creates a rich user experience and several custom types
based on the ContactItem. For medium-sized businesses, a solution like Microsoft Customer
Relations Manager creates a different set of custom contact types to represent customers, ven-
dors, opportunities, and so forth. Other custom solutions extend Outlook’s built-in contact
behavior. For example, you could create a form region that displays driving directions from
the user’s home location to the contact’s business address. Still other contact solutions
revolve around shared contacts in a non-Exchange environment.

Working with Contact Properties

Think of an Outlook ContactItem object as a very large property bag. It has more than 100
properties such as Department; OfficeLocation; IMAddress; mailing addresses for home, office,
and other locations; three e-mail addresses; and multiple phone numbers for office, home,
mobile, and pager. If the built-in properties are not sufficient, you can add custom properties
using the UserProperties collection.

Setting the Contact Name and Company

When you create a ContactItem object, you can set its FirstName, MiddleName, and LastName
properties. If the contact represents an entity rather than a person, you would set the
CompanyName property. The following simple code example creates a ContactItem object and
sets commonly used properties for the contact. If you run this code sample, you’ll notice that
a dialog box appears to resolve the contact’s business telephone number. This dialog box
appears when you call the ShowCheckPhoneDialog method on the ContactItem object. This dia-
log box allows the user to resolve a phone number based on local dialing conventions.

private void CreateContactExample()
{
 Outlook.ContactItem contact = Application.CreateItem(
 Outlook.OlItemType.olContactItem) as Outlook.ContactItem;
 contact.FirstName = "Nancy";
 contact.LastName = "Freehafer";
 contact.JobTitle= "Account Representative";
 contact.CompanyName = "Contoso Ltd.";

Chapter 5 Built-in Item Types 159
 contact.OfficeLocation = "36/2529";
 contact.BusinessTelephoneNumber = "4255551212 x432";
 contact.WebPage = "http://www.contoso.com";
 contact.BusinessAddressStreet = "1 Microsoft Way";
 contact.BusinessAddressCity = "Redmond";
 contact.BusinessAddressState = "WA";
 contact.BusinessAddressPostalCode = "98052";
 contact.BusinessAddressCountry =
 "United States of America";
 contact.Email1Address = "nancyf@contoso.com";
 contact.Email1AddressType = "SMTP";
 contact.Email1DisplayName =
 "Nancy Freehafer (nancyf@contoso.com)";
 contact.Display(false);
 contact.ShowCheckPhoneDialog(
 Outlook.OlContactPhoneNumber.
 olContactPhoneBusiness);
}

Adding Items to the Links Collection Object

You can link an Outlook item to a contact by using the Links collection. You can add Link
items to any Item type except for StorageItem and SharingItem objects. Linked items appear on
the Activities page of the contact item. The following example shows you how to use the Add
method of the Links collection to add the contact created in the previous example to a task.
Only ContactItem objects can be added as members of the Links collection for an item. You
cannot add a DistListItem object to the Links collection.

private void LinkedContactExample()
{
 Outlook.ContactItem contact =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderContacts).Items.Find(
 "[Subject] = 'Nancy Freehafer'")
 as Outlook.ContactItem;
 if (contact != null)
 {
 Outlook.TaskItem task = Application.CreateItem(
 Outlook.OlItemType.olTaskItem) as Outlook.TaskItem;
 task.Links.Add(contact);
 task.Subject = "Linked Contact Example";
 DateTime startDate = DateTime.Now;
 task.StartDate = startDate;
 task.DueDate = startDate.AddDays(7);
 task.ReminderSet = true;
 task.Display(false);
 }
}

160 Part III Working with Outlook Data

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Note The Contacts button that allows a user to link an item to a contact is hidden by
default in Outlook 2007. To make the Contacts button visible in the Inspector window for an
item, follow these steps:

1. In the Outlook Explorer window, from the Options menu, select Tools.

2. Click the Preferences tab.

3. On the Preferences tab, click Contact Options.

4. Select the Show Contact Linking On All Forms check box.

5. Click OK twice.

Electronic Business Cards

Electronic Business Cards are new to Outlook 2007. An Electronic Business Card is another
view of a contact that captures specific information from that contact and allows you to share
that information with other people in a highly recognizable form. You can send an Electronic
Business Card programmatically as shown in the earlier section “Adding an Electronic Busi-
ness Card.” The Outlook 2007 object model fully supports Electronic Business Cards. Table
5-8 lists the members of the ContactItem object that pertain to Electronic Business Cards.

Table 5-8 ContactItem Members for Electronic Business Cards

ContactItem member Description
BusinessCardLayoutXML Returns or sets a String representing the Extensible Markup Language

(XML) for the business card on the parent ContactItem object. For
more information on the format of the XML, see the Office 2007 XML
Schema reference.

BusinessCardType Returns an OlBusinessCardType constant that determines the type of
Electronic Business Card. OlBusinessCardType can be either an Inter-
Connect business card (which cannot be modifed through the Out-
look object model), or an Outlook business card.

AddBusinessCardLogo Adds a logo picture to the business card on the parent ContactItem
object by specifying the path of a picture to load. A business card can
only have one logo picture, so any existing business card logo will be
replaced. Standard graphic formats are supported (.bmp, .jpg, .png,
and .gif).

ForwardAsBusinessCard Forwards the ContactItem object as an Electronic Business Card and
returns a MailItem object.

ResetBusinessCard Resets the business card on the contact item to the default value,
deleting any custom layout and business card logo. For contacts with
an InterConnect card type, this resets the contact to using an Outlook
business card.

Chapter 5 Built-in Item Types 161
Let’s take a quick look at how you can modify an Electronic Business Card in your code.
The following example uses the XML document class to obtain the layout attribute in the
string returned for BusinessCardLayoutXML for the ContactItem object created in the earlier
CreateContactItem example. The sample changes the card layout from left-aligned to right-
aligned. Although this sample is a simple one, it shows you a basic technique that you can
extend in a powerful way to modify card layouts.

private void BusinessCardLayoutExample()
{
 Outlook.ContactItem contact =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderContacts).Items.Find(
 "[Subject] = 'Nancy Freehafer'")
 as Outlook.ContactItem;
 if (contact != null)
 {
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(contact.BusinessCardLayoutXml);
 XmlElement root = doc.DocumentElement;
 string layoutValue = root.GetAttribute("layout");
 if (layoutValue == "left")
 {
 root.SetAttribute("layout", "right");
 contact.BusinessCardLayoutXml = doc.OuterXml;
 contact.Save();
 }
 }
}

Note For complete documentation of the schema for Electronic Business Cards, see the
Electronic Business Card layout book in the 2007 Microsoft Office System XML Schema Ref-
erence. The Schema Reference is available in the 2007 Microsoft Office System Resource Kit.

SaveBusinessCardImage Saves an image of the business card generated from the parent
ContactItem object; saves the business card image in the specified
path. Depending on the extension specified, this outputs the image in
Portable Network Graphics (.png) format or Joint Photographic
Experts Group (.jpg) format.

ShowBusinessCardEditor Displays the Edit Business Card dialog box to the user. Calling this
method retrieves the data for the specified ContactItem object and
then modally displays that data in the Edit Business Card dialog box.
An error occurs if the data cannot be retrieved.

Table 5-8 ContactItem Members for Electronic Business Cards

ContactItem member Description

162 Part III Working with Outlook Data
TaskItem Object
The TaskItem object represents a single item in a Tasks folder. A task is similar to an appoint-
ment in that it can be sent to others (much like a meeting request) and can be a recurring task.
Unlike an appointment, however, an uncompleted recurring task has only a single instance.
When an instance of a recurring task is marked as complete, Outlook creates a second
instance of the task for the next time period in the task’s recurrence pattern.

Appropriate Uses of TaskItem

Solutions that focus on tasks are typically built around the concept of a project that contains
many tasks and subtasks. A custom task item could represent a subtask of a parent task. Tasks
that have not been completed appear on the To-Do Bar. Also new to Outlook 2007, tasks can
appear in the daily task list on a Calendar view. Tasks in the daily task list can be arranged by
task due or start date. In general, built-in and custom task items help users organize their time
and meet important deadlines.

Creating a Recurring Task

You can use the GetRecurrencePattern method of the TaskItem object to create a recurring task,
in much the same manner as you would create a recurring appointment. (For more informa-
tion, see the section “Creating a Recurring Appointment” earlier in this chapter.) The follow-
ing example shows how to create a task and then call the GetRecurrencePattern method to
make the task a recurring task:

private void CreateRecurringTask()
{
 Outlook.TaskItem task = Application.CreateItem(
 Outlook.OlItemType.olTaskItem) as Outlook.TaskItem;
 task.Subject = "Tax Preparation";
 task.StartDate = DateTime.Parse("4/1/2007 8:00 AM");
 task.DueDate = DateTime.Parse("4/15/2007 8:00 AM");
 Outlook.RecurrencePattern pattern =
 task.GetRecurrencePattern();
 pattern.RecurrenceType = Outlook.OlRecurrenceType.olRecursYearly;
 pattern.PatternStartDate = DateTime.Parse("4/1/2007");
 pattern.NoEndDate = true;
 task.ReminderSet = true;
 task.ReminderTime = DateTime.Parse("4/1/2007 8:00 AM");
 task.Save();
}

As with a recurring meeting, you use the RecurrencePattern object associated with the task to
specify how often and when the task will recur. Unlike a recurring appointment, however, a
recurring task does not have multiple occurrences. Instead, when a recurring task is marked
as completed, Outlook creates a copy of the task for the next date in the recurrence pattern.

Chapter 5 Built-in Item Types 163
Consequently, the RecurrencePattern object of a task does not support the GetOccurrence
method or the Exceptions property.

Note The Regenerate property of the RecurrencePattern object is used to control the regen-
eration of the task as each occurrence of a recurring task is completed.

To create a recurrence pattern, you must first set the RecurrenceType property to set the
frequency, then set the Regenerate property to true to regenerate the task. After setting
Regenerate to true, do not set it to false. If you subsequently set Regenerate to false, you
should set up the recurrence pattern again by getting a new RecurrencePattern object.

The Regenerate property has no effect for a RecurrencePattern object where the Parent object
of the RecurrencePattern object is an AppointmentItem object.

Delegating a Task

In much the same way as you can invite others to a meeting by sending them an AppointmentItem
object, you can delegate a task to others by sending them a TaskItem object. Before sending the
object, however, you must first use the Assign method to create an assigned task. The following
example shows how to create and delegate a task using the Assign and Send methods:

private void AssignTaskExample()
{
 Outlook.TaskItem task = Application.CreateItem(
 Outlook.OlItemType.olTaskItem) as Outlook.TaskItem;
 task.Subject = "Tax Preparation";
 task.StartDate = DateTime.Parse("4/1/2007 8:00 AM");
 task.DueDate = DateTime.Parse("4/15/2007 8:00 AM");
 Outlook.RecurrencePattern pattern =
 task.GetRecurrencePattern();
 pattern.RecurrenceType = Outlook.OlRecurrenceType.olRecursYearly;
 pattern.PatternStartDate = DateTime.Parse("4/1/2007");
 pattern.NoEndDate = true;
 task.ReminderSet = true;
 task.ReminderTime = DateTime.Parse("4/1/2007 8:00 AM");
 task.Assign();
 task.Recipients.Add("accountant@example.com");
 task.Recipients.ResolveAll();
 task.Send();
}

When a task is assigned and sent to another user, the user receives a TaskRequestItem object.
You can use this object to access the task associated with the request and to respond to the
task request.

TaskRequestItem Object
A TaskRequestItem object represents a request to assign a task in the Inbox of the user to whom
the task is being assigned. The TaskRequestItem object is similar to several related task objects

164 Part III Working with Outlook Data
(the TaskRequestAcceptItem, TaskRequestDeclineItem, and TaskRequestUpdateItem objects) that
are associated with task accept, decline, or update messages.

The following example filters the new Table object so that it contains only rows where the
MessageClass value equals IPM.TaskRequest and writes the subject of each task request in the
user’s Inbox folder to the trace listeners in the Listeners collection:

private void ShowTaskRequests()
{
 string filter = "[MessageClass] = 'IPM.TaskRequest'";
 Outlook.Table table =
 Application.Session.GetDefaultFolder
 (Outlook.OlDefaultFolders.olFolderInbox).GetTable
 (filter, Outlook.OlTableContents.olUserItems);
 while (!table.EndOfTable)
 {
 Outlook.Row nextRow = table.GetNextRow();
 Debug.WriteLine(nextRow["Subject"]);
 }
}

Working with Task Requests

As with a MeetingItem object, usually you will not work directly with a TaskRequestItem object.
For example, you do not use the TaskRequestItem object to accept or decline the task. Instead,
you use the task associated with the task request.

The GetAssociatedTask method of the TaskRequestItem object returns a TaskItem object that you
can use to accept or refuse the task.

Retrieving the Associated Task of a Task Request

Using the GetAssociatedTask method, you can access the task associated with a TaskRequestItem
object. Properties of the TaskItem object returned by this method contain additional informa-
tion about the assigned task, such as its due date.

Important Before you call the GetAssociatedTask method for a TaskRequestItem object, you
must first process the TaskRequestItem object. By default, this is done automatically (unless
the user has cleared the Process Requests And Responses On Arrival check box in the Track-
ing Options dialog box, which is available through the E-Mail Preferences dialog box on the
Preferences tab of the Tools Options dialog box). You can also process a TaskRequestItem
object by calling its Display method. Note that when a TaskRequestItem object is processed, its
associated task is added to the user’s Tasks folder.

The following code example writes the subject and due date of every task request in the user’s
Inbox to the trace listeners in the Listeners collection. This example is similar to the one in the
previous section, but it uses the GetAssociatedTask method to access the DueDate property of

Chapter 5 Built-in Item Types 165
the task associated with the task request. Unlike the previous example, the restriction is
applied to the Items collection for the Inbox folder, and GetAssociatedTask is used in a foreach
loop to access the associated task for each task request. Note that this example assumes that
the TaskRequestItem objects have already been processed.

private void ShowAssociatedTasks()
{
 string filter = "[MessageClass] = 'IPM.TaskRequest'";
 Outlook.Items items =
 Application.Session.GetDefaultFolder
 (Outlook.OlDefaultFolders.olFolderInbox).
 Items.Restrict(filter);
 foreach (Outlook.TaskRequestItem taskRequest in items)
 {
 Outlook.TaskItem task = taskRequest.GetAssociatedTask(false);
 Debug.WriteLine(String.Format("Subject: " + task.Subject
 + "\n"+ "Due: " + task.DueDate + "\n"));
 }
}

Responding to a Task Request

To accept, decline, or modify a task request, use the Respond method of the TaskItem object
returned by the GetAssociatedTask method of a TaskRequestItem object. The following example
retrieves the first TaskRequestItem object in the user’s Inbox and accepts it:

private void AcceptTaskRequest()
{
 string filter = "[MessageClass] = 'IPM.TaskRequest'";
 Outlook.Items items =
 Application.Session.GetDefaultFolder
 (Outlook.OlDefaultFolders.olFolderInbox).
 Items.Restrict(filter);
 if (items.Count > 0)
 {
 Outlook.TaskRequestItem taskRequest =
 (Outlook.TaskRequestItem)items[1];
 Outlook.TaskItem task =
 taskRequest.GetAssociatedTask(false);
 task.Respond(
 Outlook.OlTaskResponse.olTaskAccept, true, false);
 task.Send();
 }
}

Note that if you set the second parameter of the Respond method to true, you must call the
Send method of the TaskItem object.

When the Respond method is used to respond to a task request, the initiating user receives a
TaskRequestAcceptItem, TaskRequestDeclineItem, or TaskRequestUpdateItem object, depending on
the type of response. You work with these objects in much the same way as a TaskRequestItem

166 Part III Working with Outlook Data
object in that you use the object’s GetAssociatedTask method to retrieve the TaskItem object
associated with the request and then call the methods and access the properties of the TaskItem
object.

Other Item Types
This section contains a description of additional built-in Outlook item types. Except for
StorageItem, which corresponds to a hidden item, each item type represents an item that can
be created in the Outlook user interface.

DistListItem Object

The DistListItem object represents an Outlook distribution list in an Outlook Contacts folder.
A distribution list can contain multiple recipients and is used to send messages to everyone in
the list. Don’t confuse an Outlook distribution list with an Exchange distribution list. To learn
more about how an Exchange distribution list is represented in the Outlook object model, see
“The ExchangeDistributionList Object” in Chapter 7.

The following code sample uses the Table object to find all contacts in the default Contact
folder where the contact is categorized as a Top Customer and where the Email1Address prop-
erty is not empty. The Email1Address name is then added as a column in the Table object. A
Recipient object is created using the CreateRecipient method on the Namespace object. When
you call the AddMember method of the DistListItem object, you must pass a resolved Recipient
object as a parameter to the AddMember method. Finally, the Top Customers distribution list
is displayed to the user.

private void CreateDistributionList()
{
 Outlook.DistListItem distList = Application.CreateItem(
 Outlook.OlItemType.olDistributionListItem)
 as Outlook.DistListItem;
 distList.Subject = "Top Customers";
 //Find top customer category in Contacts folder
 string filter = "[Categories] = 'Top Customer'"
 + " AND [Email1Address] <> ''";
 Outlook.Table table =
 Application.Session.GetDefaultFolder
 (Outlook.OlDefaultFolders.olFolderContacts).
 GetTable(filter, Outlook.OlTableContents.olUserItems);
 table.Columns.Add("Email1Address");
 while (!table.EndOfTable)
 {
 Outlook.Row nextRow = table.GetNextRow();
 Outlook.Recipient recip =
 Application.Session.CreateRecipient(
 nextRow["Email1Address"].ToString());
 //Resolve the Recipient before calling AddMember
 recip.Resolve();

Chapter 5 Built-in Item Types 167
 distList.AddMember(recip);
 }
 distList.Display(false);
}

JournalItem Object

The JournalItem object represents a journal item in a Journal folder. Journal items provide a
convenient way to record activity in relationship to any Outlook item. A journal entry can be
as simple as the record of a phone call or as complex as the composite of several interactions
with customers.

Because the JournalItem object records activities in time, the two most important methods of
the JournalItem object are the StartTimer and StopTimer methods. The following example finds
the contact created in the CreateContactExample procedure in the earlier section “Setting the
Contact Name and Company,” creates a journal item, adds a link to the contact for the journal
item, and then starts the journal’s timer with the StartTimer method:

private void LinkJournalItemToContact()
{
 Outlook.ContactItem contact =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderContacts).Items.Find(
 "[Subject] = 'Nancy Freehafer'")
 as Outlook.ContactItem;
 if (contact != null)
 {
 Outlook.JournalItem journal =
 Application.CreateItem(
 Outlook.OlItemType.olJournalItem)
 as Outlook.JournalItem;
 journal.Subject = contact.Subject;
 journal.Companies = contact.CompanyName;
 journal.Links.Add(contact);
 journal.Display(false);
 journal.StartTimer();
 }
}

NoteItem Object

The NoteItem object represents a note in a Notes folder. Don’t confuse the NoteItem object with
a MailItem object. Because the message class of a MailItem object is IPM.Note, the objects can
sometimes be confused. The NoteItem object is not customizable. You cannot create a custom
note in the Outlook Forms Designer.

The Subject property of a NoteItem object is read-only because it is calculated from the body
text of the note. The Subject property is not available until you have saved the note. To set the

168 Part III Working with Outlook Data
body of the note, use the Body property. If you obtain the Inspector for the NoteItem object, cer-
tain Inspector properties such as WordEditor will always return null (Nothing in Visual Basic).
To assign a color to a NoteItem object, set the Categories property of the NoteItem object. The
color assigned to the category will act as the color of the NoteItem object.

The following simple code example creates a note that acts as a visual reminder to order pizza
for the team meeting:

private void OrderPizzaNote()
{
 Outlook.NoteItem note =
 Application.CreateItem(
 Outlook.OlItemType.olNoteItem)
 as Outlook.NoteItem;
 note.Body = "Order Pizza for Team Meeting";
 note.Categories = "Urgent";
 note.Save();
}

StorageItem Object

A StorageItem object represents an item that is always saved as a hidden item in the parent
folder and stores private data for Outlook solutions. A StorageItem object is stored at the folder
level, allowing it to roam with the account and be available online or offline.

The Outlook object model does not provide any collection object for StorageItem objects. How-
ever, you can use Folder.GetTable to obtain a Table object with all the hidden items in a Folder
object, when you set the TableContents parameter to OlTableContents.olHiddenItems. If ensur-
ing that data stored with the StorageItem object is a primary concern, then you should encrypt
the data before storing it with the StorageItem object. Although StorageItem objects cannot be
opened by the end user, there are tools that that allow a user to inspect the hidden messages
in a folder.

Once you have obtained a StorageItem object, you can do the following to store solution data:

■ Add attachments to the item for storage.

■ Use explicit built-in properties of the item such as Body to store custom data.

■ Add custom properties to the item using the UserProperties.Add method. Note that,
in this case, the optional AddToFolderFields and DisplayFormat arguments of the
UserProperties.Add method will be ignored.

■ Use the PropertyAccessor object to get or set custom properties.

The default message class for a new StorageItem is IPM.Storage. If the StorageItem object existed
as a hidden message in a version of Outlook prior to Outlook 2007, the message class will
remain unchanged. To prevent modification of the message class, StorageItem does not expose
an explicit MessageClass property.

Chapter 5 Built-in Item Types 169
The following code sample is from the PrepareMe sample add-in that is available on this
book’s companion Web site. The add-in uses a StorageItem object to store application-specific
data that roams and is available online and offline. You create or retrieve a StorageItem object
by calling the GetStorage method on the folder that contains the item. If the StorageItem object
does not exist, GetStorage will create the hidden item for you. It is a recommended practice to
set the subject of the StorageItem object to the ProgID for your add-in.

Outlook.StorageItem storage =
 this.Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).GetStorage(
 "IPM.Note.PrepareMeAddinCS",
 Outlook.OlStorageIdentifierType.olIdentifyByMessageClass);
Outlook.UserProperty userProp =
 (Outlook.UserProperty)storage.
 UserProperties["MessagesFromAttendee"];
if (userProp == null)
{
 //First run, so add default values
 storage.Subject = "PrepareMeAddinCS.UserSettings";
 storage.UserProperties.Add("MessagesFromAttendee",
 Outlook.OlUserPropertyType.olInteger,
 Type.Missing, Type.Missing);
 storage.UserProperties["MessagesFromAttendee"].Value = 4;
 storage.UserProperties.Add("RelatedAppointments",
 Outlook.OlUserPropertyType.olInteger,
 Type.Missing, Type.Missing);
 storage.UserProperties["RelatedAppointments"].Value = 4;
 storage.UserProperties.Add("ExpandDistributionLists",
 Outlook.OlUserPropertyType.olYesNo,
 Type.Missing, Type.Missing);
 storage.UserProperties["ExpandDistributionLists"].Value = 0;
 storage.Save();
}
//Read values from StorageItem
m_MessagesFromAttendee = (int)storage.
 UserProperties["MessagesFromAttendee"].Value;
m_RelatedAppointments = (int)storage.
 UserProperties["RelatedAppointments"].Value;
m_ExpandDistributionLists = (bool)storage.
 UserProperties["ExpandDistributionLists"].Value;

To create and retrieve a StorageItem object, you need to understand how the GetStorage
method works on a Folder object. The GetStorage method obtains a StorageItem object on a
Folder object using the identifier specified by StorageIdentifier and has the identifier type
specified by StorageIdentifierType.

If you specify the EntryID property for the StorageItem object by using the olIdentifyByEntryID
value for StorageIdentifierType, then the GetStorage method returns the StorageItem with the
specified EntryID property. If no StorageItem object can be found using that EntryID property
or if the StorageItem object does not exist, the GetStorage method raises an error.

170 Part III Working with Outlook Data
If you specify the message class for the StorageItem object by using the olIdentifyByMessageClass
value for StorageIdentifierType, the GetStorage method returns the StorageItem object with the
specified message class. If there are multiple items with the same message class, the GetStorage
method returns the item with the most recent PR_LAST_MODIFICATION_TIME. If no
StorageItem exists with the specified message class, the GetStorage method creates a new
StorageItem object with the message class specified by StorageIdentifier.

If you specify the Subject value of the StorageItem object, the GetStorage method returns the
StorageItem with the Subject specified in the GetStorage call. If there are multiple items with
the same subject, the GetStorage method will return the item with the most recent
PR_LAST_MODIFICATION_TIME. If no StorageItem object exists with the specified subject,
the GetStorage method creates a new StorageItem object with the subject specified by
StorageIdentifier.

GetStorage returns an error if the store provider does not support hidden items, if the parent
Folder object is read-only, or if the parent Folder object does not support the creation of hidden
items, such as a Hotmail, IMAP, SharePoint, or public folder.

Summary
This chapter provided you with an overview of the built-in Outlook item types. You should
now have an understanding of how to create these built-in items programmatically. Although
the chapter didn’t cover every property and method of the built-in item types, you should also
know how to use the important properties and methods of each item type. For a comprehen-
sive listing of the properties and methods that pertain to each object, see the Outlook 2007
Developer Reference.

Chapter 6

Accessing Outlook Data
This chapter provides an overview of the ways you can work with Microsoft Office Outlook
2007 data. You’ll learn about Stores and Folders objects as the containers for Outlook items,
and you’ll also get an introduction to the Items and Table objects that allow you to enumerate
the items in a folder.

This chapter covers the following topics:

■ An overview of Outlook Data Storage

■ Using the Stores collection and Store object

■ Working with the Folders collection and Folder object

■ Coding strategies for accessing items in a folder

■ When to use the Items collection and the new Table object

■ The new features of the Table object and how to manipulate Row and Column objects

An Overview of Outlook Data Storage
Outlook stores its data in different containers depending on account type and configuration.
Examples of different mail account types are Microsoft Exchange, Post Office Protocol 3
(POP3), Internet Message Access Protocol (IMAP), and Hypertext Transfer Protocol (HTTP).
For example, an Exchange account allows users to store their data in an Offline Folder File
(.ost), which provides both online and offline access to items without depending on the avail-
ability of the Exchange server for the user’s mailbox. It’s also possible to configure an
Exchange account for online use, meaning that Outlook items are only accessible if the user is
connected to an Exchange server. A robust solution must be able to handle the different types
of data storage available depending on account and account configuration.

Exchange Server

The following sections describe data storage on an Exchange server. If an Exchange server is
configured for the current profile, only one Account object in the Accounts collection will have
Account.AccountType equal to OlAccountType.olExchange.

Online Mode

To determine whether the user’s Exchange account is configured in online mode, you need to
examine the ExchangeConnectionMode property of the Namespace object. As previously
described, online mode refers to a configuration where Outlook is connected directly to the
171

172 Part III Working with Outlook Data
user’s Exchange mailbox server. The value returned by the ExchangeConnectionMode property
only applies to the user’s primary mailbox. It does not apply to a delegate or public folder
Exchange store. If ExchangeConnection Mode returns OlExchangeConnectionMode.olOnline,
then the user’s Exchange account is configured in online mode. As a developer, you should be
aware of the following issues of an Exchange account configured for online mode:

■ The behavior of search queries can change if the user is running in online mode.
Store.IsInstantSearchEnabled will always return false when running against an Exchange
account configured for online mode. If you are running in online mode against Microsoft
Exchange Server 2007, Instant Search results can be returned provided that content
indexing is enabled on the server. However, there is no way to determine whether con-
tent indexing is enabled on Exchange Server if Outlook is running in online mode.

■ You should exercise caution when enumerating items in a folder using the Items collec-
tion. Depending on the configuration of the Exchange server by the server administrator
and whether you are running in a separate AppDomain, your code could raise an excep-
tion after you enumerate 255 items in a folder. To avoid this exception, you should con-
sider calling Marshal.ReleaseComObject within the scope of a foreach construct.

Cached Mode

Cached mode provides performance and reliability benefits by caching data from the user’s
Exchange server in an Offline Folder File (.ost). Use the ExchangeConnectionMode property to
determine if Outlook is operating in cached mode. The ExchangeConnectionMode property
also determines how cached mode is operating, which includes information about how head-
ers, bodies, and attachments are downloaded to the .ost file from the Exchange server. Table
6-1 lists the possible values for the OlExchangeConnectionMode enumeration.

Table 6-1 OlExchangeConnectionMode Values

Value Description
olCachedConnectedDrizzle The account is using cached Exchange mode such that headers are

downloaded first, followed by the bodies and attachments of full
items.

olCachedConnectedFull The account is using cached Exchange mode on a local area net-
work or a fast connection with the Exchange server. The user can
also select this state manually, disabling auto-detect logic and
always downloading full items regardless of connection speed.

olCachedConnectedHeaders The account is using cached Exchange mode on a dial-up or slow
connection with the Exchange server, such that only headers are
downloaded. Full item bodies and attachments remain on the
server. The user can also select this state manually, regardless of
connection speed.

olCachedDisconnected The account is using cached Exchange mode with a disconnected
connection to the Exchange server.

olCachedOffline The account is using cached Exchange mode, and the user has
selected Work Offline from the File menu.

Chapter 6 Accessing Outlook Data 173
Personal Folder Files (.pst)

Personal Folder Files (.pst) are the most common data storage container for Outlook. If users
have a POP3 account and do not have an Exchange account, they will always store their data
in a .pst file. Typically, IMAP and HTTP accounts also store their data in a .pst file. If you want
to add content to the user’s .pst file, then the Outlook object model is the preferred method of
adding items. You cannot write directly to .pst files. The first type of .pst file is the Outlook 97–
2002 Personal Folders File, which is compatible with all versions of Outlook including Out-
look 2007. The second type of .pst file is the Office Outlook Personal Folders File, which is
compatible with Microsoft Outlook 2003 and Outlook 2007. This .pst file format provides
much greater storage capacity for items and folders than the original .pst file format. It also
supports multilingual Unicode data.

Custom Store Providers

Advanced Messaging Application Programming Interface (MAPI) developers can write cus-
tom store providers to create additional sets of folders that can be used in Outlook. One of the
common types of custom store provider is known as a wrapped .pst, and it builds on the archi-
tecture of Outlook’s native .pst file. Programming a custom store provider is not discussed in
this book. For a general discussion of MAPI store providers, see Chapter 2, “Outlook as a Plat-
form.” For more information on custom store providers, see the “Microsoft Office Outlook
2007 Integration API Reference” published on MSDN. In most cases, you can use the Outlook
object model to add items to folders in a custom store provider and to write events that
respond to changes in folder content.

Accounts Collection and Account Object
The Accounts collection and the Account object provide you with a method of enumerating
accounts for the current profile. You obtain the Accounts collection from the Namespace object.
The Account object offers some basic properties such as DisplayName, AccountType, UserName,
and SmtpAddress to help you understand the identity of the account. The Accounts collection
and Account objects do not allow you to establish or modify an account programmatically.
Accounts for profiles other than the current profile are not supported. Certain account types
such as RSS Feeds, SharePoint Lists, Internet Calendars, and Published Calendars are not

olDisconnected The account has a disconnected connection to the Exchange server.
olNoExchange The account does not use an Exchange server.
olOffline The account is not connected to an Exchange server and is in the

classic offline mode. This also occurs when the user selects Work
Offline from the File menu.

olOnline The account is connected to an Exchange server and is in the classic
online mode.

Table 6-1 OlExchangeConnectionMode Values

Value Description

174 Part III Working with Outlook Data
available in the Accounts collection. Only e-mail accounts are represented in the Accounts col-
lection. The following procedure enumerates all the Account objects in the current profile and
writes the account DisplayName, UserName, and SmtpAddress properties to the trace listeners
in the Listeners collection:

private void EnumerateAccounts()
{
 Outlook.Accounts accounts =
 Application.Session.Accounts;
 foreach(Outlook.Account account in accounts)
 {
 try
 {
 Debug.WriteLine(String.Format("Account: "
 + account.DisplayName
 + "\n" + "UserName: "
 + account.UserName
 + "\n" + "SmtpAddress: "
 + account.SmtpAddress + "\n"));
 }
 catch(Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 }
}

Stores Collection and Store Object
Both the Stores collection and the Store object are new to Outlook 2007. These objects provide
information about the stores in a given profile and also let you determine the characteristics of
a given Store object.

Stores Collection

The Stores collection lets you enumerate the stores in a given profile. It also provides events
that tell you when a Store object has been added to the current profile or when a Store object
is about to be removed. You can use the BeforeStoreRemove event to prevent removal of a
Store object that is required for your solution. You obtain the Stores collection from the
Namespace object. The following code sample enumerates the stores in the current profile. If
the IsDataFileStore property of the Store object returns true to indicate it is a .pst or .ost store,
then the DisplayName and FilePath properties of the Store object are written to the trace lis-
teners in the Listeners collection.

private void EnumerateStores()
{
 Outlook.Stores stores = Application.Session.Stores;
 foreach(Outlook.Store store in stores)
 {
 if (store.IsDataFileStore == true)

Chapter 6 Accessing Outlook Data 175
 {
 Debug.WriteLine(String.Format("Store: "
 + store.DisplayName
 + "\n" + "File Path: "
 + store.FilePath + "\n"));
 }
 }
}

Adding or Removing a Store Programmatically

To add a Store object, you call the AddStoreEx method on the Namespace object. The only Store
object that you can add or remove programmatically is a .pst store. To remove a Store object,
use the RemoveStore method of the Namespace object. The following code sample adds a
Unicode store by specifying OlStoreType.olUnicode as the Type parameter for the AddStoreEx
method. It also places the .pst in the default location for user .pst files, Documents and
Settings\UserName\Local Settings\Application Data\Microsoft\Outlook. Note that
Environment.SpecialFolder.LocalApplicationData is used to retrieve the path to the Application
Data folder under the Local Settings folder. Once the .pst store has been added, the sample
code removes the Store object by calling the RemoveStore method on the Namespace object.
RemoveStore requires a Folder object to remove the Store object. In this case, the code enumer-
ates the Stores collection to find the Store object that has just been added based on the FilePath
property of the Store object. If the FilePath property of the Store object is the same as the path
to MyUnicodeStore.pst, the GetRootFolder method of the Store object returns a reference to the
root folder of the .pst file. This Folder object is passed to the RemoveStore method to remove
the Store object. Note that RemoveStore only removes the store from the current profile. It does
not delete the .pst file from the file system.

private void CreateUnicodePST()
{
 string path = Environment.GetFolderPath(
 Environment.SpecialFolder.LocalApplicationData)
 + @"\Microsoft\Outlook\MyUnicodeStore.pst";
 try
 {
 Application.Session.AddStoreEx(
 path, Outlook.OlStoreType.olStoreUnicode);
 Outlook.Stores stores = Application.Session.Stores;
 foreach (Outlook.Store store in stores)
 {
 if (store.FilePath == path)
 {
 Outlook.Folder folder =
 store.GetRootFolder() as Outlook.Folder;
 //Remove the store
 Application.Session.RemoveStore(folder);
 }
 }
 }
 catch (Exception ex)

176 Part III Working with Outlook Data
 {
 Debug.WriteLine(ex.Message);
 }
}

Working with the Store Object

The Store object has several useful properties, methods, and events. The following sections
discuss how you can use these members in your code.

ExchangeStoreType Property

The ExchangeStoreType property distinguishes among different Exchange store types, such
as primary Exchange mailbox, Exchange mailbox, Public Folder store, or non-Exchange
store. If the Store object is not an Exchange store, ExchangeStoreType will return
OlExchangeStoreType.olNotExchange. ExchangeStoreType will return
OlExchangeStoreType.olExchangeMailbox for a Store object that represents a mailbox for
which the current user is a delegate. For the Store object that represents the user’s primary
mailbox, ExchangeStoreType will return OlExchangeStoreType.olExchangePrimaryMailbox.
This property does not distinguish among every type of store including Hotmail, HTTP,
IMAP, and so forth. Use Account.AccountType for the type of server associated with an e-mail
account, such as Exchange, HTTP, IMAP, or POP3.

FilePath and IsDataFileStore Properties

You can use the FilePath property in conjunction with the the IsDataFileStore property. The
FilePath property returns the file path of a Personal Folders File (.pst) store or an Offline
Folder File (.ost) store. If the store is not a .pst or .ost store, FilePath returns an empty string.

IsDataFileStore supports both Exchange stores and POP3 stores and will return false for
HTTP-type stores such as Hotmail and MSN and for IMAP stores. For Exchange stores,
IsDataFileStore will return false if the user profile is not using cached Exchange mode.
IsDataFileStore will also return false when the store is an Exchange Public Folder store
(Store.ExchangeStoreType equals olExchangePublicFolder).

IsDataFileStore does not indicate whether the store is located on a local hard drive. For example,
a .pst file could be located on a mapped network drive and IsDataFileStore would still return true.

The return value of IsDataFileStore can change if the user is configured for classic
Exchange offline mode. When the user is offline and using classic Exchange offline
mode, IsDataFileStore returns true. When the user is online and using classic Exchange
online mode, IsDataFileStore returns false.

GetRootFolder Method

To return the root folder for a given Store object, use the GetRootFolder method. The GetRootFolder
method returns a Folder object that represents the root folder in the Store object. You can use

Chapter 6 Accessing Outlook Data 177
the GetRootFolder method to enumerate the subfolders of the root folder of the Store object.
Unlike NameSpace.Folders, which contains all folders for all stores in the current profile,
Store.GetRootFolder.Folders allows you to enumerate all folders for a given Store object in the
current profile. To determine the name of the current profile, examine the CurrentProfileName
property of the Namespace object. If the store provider does not support root folders,
GetRootFolder will raise an error. Your code should be able to handle this possibility.

GetSearchFolders Method

To return all the search folders for a given Store object, use the GetSearchFolders method. A
search folder is a virtual folder that provides a view of all e-mail items that match specific
search criteria. The GetSearchFolders method returns a Folders object. GetSearchFolders returns
all the visible active search folders for the Store object. It does not return uninitialized or aged-
out search folders. GetSearchFolders returns a Folders collection object with Folders.Count equal
to zero (0) if no search folders have been defined for the Store object. The following code sam-
ple enumerates the search folders for the default store and writes the folder path for the search
folder to the trace listeners in the Listeners collection:

private void EnumerateSearchFolders()
{
 Outlook.Store store =
 Application.Session.DefaultStore;
 Outlook.Folders folders = store.GetSearchFolders();
 foreach (Outlook.Folder folder in folders)
 {
 Debug.WriteLine(folder.FolderPath);
 }
}

GetSpecialFolder Method

A special folder exists in a store and represents a special type of search folder that is not available
in the collection of visible search folders. GetSpecialFolder returns a Folder object. For example, a
store can support an All Tasks special folder that contains all of the items marked for follow-up
for the given store. Why would you use GetSpecialFolder instead of GetDefaultFolder to return
items marked for follow-up? GetDefaultFolder only returns the items marked for follow-up for
the default store. If you need to enumerate items marked for follow-up in all stores in the current
profile, you should use GetSpecialFolder to return the folder that contains items marked for
follow-up in each store in the profile. The following EnumerateAllTasksFolder procedure enumer-
ates all stores in the profile and then uses GetSpecialFolder(OlSpecialFolder.olSpecialFolderAllTasks)
to return a Folder object for the parent Store object. If the Folder object is not null, then you use
the Table object to obtain the Subject property for each item marked for follow-up.

private void EnumerateAllTasksFolders()
{
 Outlook.Stores stores =
 Application.Session.Stores;

178 Part III Working with Outlook Data
 foreach (Outlook.Store store in stores)
 {
 Outlook.Folder folder =
 store.GetSpecialFolder(
 Outlook.OlSpecialFolders.olSpecialFolderAllTasks)
 as Outlook.Folder;
 if (folder != null)
 {
 Outlook.Table table = folder.GetTable(
 "", Outlook.OlTableContents.olUserItems);
 while (!table.EndOfTable)
 {
 Outlook.Row nextRow = table.GetNextRow();
 Debug.WriteLine(nextRow["Subject"]);
 }
 }
 }
}

Folders Collection and Folder Objects
The Folders collection and Folder objects represent the folder hierarchy where Outlook items
are stored. Each Folder object has a Folders property that returns a Folders collection object.
The Folder object supports two means of obtaining items in a folder. The Items collection
object lets you enumerate, restrict, and find items in a folder. New to Outlook 2007, the Table
object provides a performant read-only row set that also lets you enumerate, restrict, or find
items in a folder. Each item is represented by a Row object with a default number of columns.
If you need additional columns beyond the default, you can use the Add method of the table’s
Columns collection to add columns to the Table object. From the perspective of a managed
code developer, you should think of the Table object as Outlook’s Component Object Model
(COM) equivalent to the Microsoft .NET Framework System.Data.IDataReader interface. The
following discussion covers the Folders collection and Folder objects. At the end of this chapter,
you learn how to use either the Items collection or the Table object to access the data in a folder.

An Overview of Folder Types

Before you learn about the Folders collection and Folder objects, it’s a good idea to step back
and consider how folders are typed and how your specific scenario might dictate the type of
folder you use in your solution. In Outlook, folders are typed according to the type of item
that they contain. For example, a Calendar folder always contains appointment items. A Con-
tacts folder can contain contact items and private distribution lists. Mail folders generally con-
tain mail or post items. However, there are notable exceptions to this rule. For example, the
Deleted Items folder is typed as a Mail folder, but it can contain items of any item type.

Some solutions do not require special content folders to hold solution-specific items. In this
case, you only need to understand the folder type (for example, Calendar folder for appoint-
ment items) and how that folder type contains items that are appropriate to your solution.
Other solutions require content folders in addition to the default folders in your mailbox that

Chapter 6 Accessing Outlook Data 179
contain custom items that have custom properties and enforce the business logic of your solu-
tion. The following discussion provides a scenario-based overview of folder types.

Placeholder Folders

Placeholder folders provide a logical hierarchy for your application folders. Public folder and
mailbox folder applications sometimes include placeholder folders that provide a logical
means of organizing the application folders that actually hold the items manipulated by a
user. If you are creating an Exchange placeholder folder, you can assign permissions to a place-
holder folder, which prevents users from adding, editing, or deleting items in the folder. One
example of a placeholder folder is the RSS Subscriptions folder under the root mailbox folder.
The actual RSS feed folders that contain RSS items are subfolders of the RSS Subscriptions
placeholder folder. Another example of a placeholder folder would be a top-level placeholder
folder named Sales with regional placeholder folders for East, West, South, and Midwest.
Under the regional folders you could add application folders named Current Customers and
Prospective Customers that contain items holding the data for your application.

Content Folders

Content folders provide a place to store and organize information. Default folders such as
Inbox, Calendar, Contacts, and Tasks are good examples of content folders. Microsoft
SharePoint folders that contain Microsoft Word documents, Microsoft Excel workbooks, or
Microsoft PowerPoint presentations are also examples of content folders. Another example of
a content folder would be a folder that holds items that are essential to your application. For
example, Microsoft Business Contact Manager creates content folders that contain business
contacts, opportunities, and so forth.

Search Folders

Search folders are virtual folders that can aggregate information from multiple physical fold-
ers. You can create search folders programmatically depending on the requirements of your
solution. For example, you might want to create one or more search folders that use a catego-
ries scheme to organize mail from customer contacts.

Discussion Folders

Discussion folders provide a public forum for users to submit, share, and respond to ideas and
information. For example, you can create a discussion folder for posting job openings, job can-
didate information, and interview responses for a candidate. You can create a Technical Users
Group folder where writers and designers can post, read, and share information and solutions to
problems. Typically, a discussion folder contains post items that can be used for posts and replies.

Planning the Folder Design of Your Solution

To create folders that meet the needs of your users, it is essential to plan them first. If you dive
headfirst into creating a folder hierarchy and its contents, you might have to redesign both

180 Part III Working with Outlook Data
your folder structure and the custom forms contained in those folders if business rules
change or design requirements are overlooked. Careful planning avoids expensive, time-
consuming redesigns. Your motto when you approach folder design should be to plan, plan,
and plan again. Although planning processes differ with each organization and application,
these are general steps you should follow when planning the folder design of your solution:

■ Determine who will plan, design, and implement the folder.

■ Decide whether the folder is stored in Exchange public folders, an individual mailbox, or
perhaps a shared or delegated mailbox.

■ When you identify folder users and their needs, evaluate their requirements in terms of
folder roles and permissions. Folder roles and permissions can only be created for
Exchange server folders, whether those folders are public folders or folders in a mailbox.
For example, what is the default permission on the application folder? Can your users
modify the folder items created by other users? Create a list of user groups that will have
access to your folder and determine whether they have permission to create, edit, or
delete folder items.

■ You also need to consider which forms will be available in your folders and which users
can modify those forms.

■ Be aware that folder users do not have to correspond to individual mailbox accounts.
Exchange distribution lists provide a convenient way for you to manage the users who
have been assigned to a public folder permissions role such as editor or author.

■ Consider whether data should be consolidated in a single location, typically for backup
and reporting purposes.

■ Consider whether data should be accessible in a user’s default folders so that it will syn-
chronize with mobile devices.

■ Create a design plan that identifies the problems to be solved and how the folder will
solve them. The design plan should include preliminary graphics of form windows or
views to be created.

Folders Collection

The Folders collection contains a set of Folder objects that represent all the available Outlook
folders in a specific subset at one level of the folder tree. The parent object of a Folders collec-
tion object is always a Folder object. You can use the Add method of the Folders collection to
add one or more folders to the parent Folder object. To enumerate folders, use the index oper-
ator to reference each folder in the collection. If you want to enumerate all folders in a given
Store object, use the GetRootFolder method (discussed earlier) to obtain the root folder of the
store. You can then use the Folders property on the Folder object that represents the root folder
to walk the folder list for a given Store object.

Chapter 6 Accessing Outlook Data 181
Adding a Folder Object to the Folder List

You can use the Add method of the Folders collection to add a Folder object to the Outlook
folder list. The following example uses the Add method of the Folders collection to add a folder
called My New Folder as a subfolder of the Inbox folder. The folder is then displayed to the user.

private void AddMyNewFolder()
{
 Outlook.Folder folder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox)
 as Outlook.Folder;
 Outlook.Folders folders = folder.Folders;
 try
 {
 Outlook.Folder newFolder = folders.Add(
 "My New Folder", Type.Missing)
 as Outlook.Folder;
 newFolder.Display();
 }
 catch (Exception ex)
 {
 MessageBox.Show(
 "Could not add 'My New Folder'",
 "Add Folder",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 }
}

Note The Add method of the Folders collection takes two arguments: Name, a string that
represents the folder name, and Type, an object that represents the folder type.

The first argument specifies the folder name for the new folder. The folder name must be
unique. If the folder name already exists in the Folders collection, Outlook raises an error.

The second argument specifies the folder type. Type is an object type that represents the
Outlook folder type for the new folder. If the folder type is not specified, the new folder will
default to the same type as the folder in which it is created.

Type can be one of the following OlDefaultFolders constants: olFolderCalendar,
olFolderContacts, olFolderDrafts, olFolderInbox, olFolderJournal, olFolderNotes, or olFolderTasks.
(The constants olFolderDeletedItems, olFolderOutbox, olFolderJunk, olFolderConflicts,
olFolderLocalFailures, olFolderServerFailures, olFolderSyncIssues, olPublicFoldersAllPublicFolders,
olFolderRssFeeds, olFolderToDo, olFolderManagedEmail, and olFolderSentMail cannot be speci-
fied for this argument.)

Iterating Through a Collection of Folders

To iterate through a collection of folders, you should use the Folders property to obtain the sub-
folders of the parent Folder object. The following EnumerateFoldersInDefaultStore procedure

182 Part III Working with Outlook Data
walks through the folders in the user’s default store by obtaining the root folder for the
default store. Once you have the root folder, you call the EnumerateFolders procedure on the
root folder. EnumerateFolders is a generic procedure that you can adapt to your own code
requirements. EnumerateFolders is called recursively to enumerate all the folders in a hierar-
chy. Both EnumerateFoldersInDefaultStore and EnumerateFolders are listed here. The
EnumerateFolders procedure simply writes the FolderPath property of the Folder to the trace
listeners in the Listeners collection.

private void EnumerateFoldersInDefaultStore()
{
 Outlook.Folder root =
 Application.Session.
 DefaultStore.GetRootFolder() as Outlook.Folder;
 EnumerateFolders(root);
}

private void EnumerateFolders(Outlook.Folder folder)
{
 Outlook.Folders childFolders =
 folder.Folders;
 if (childFolders.Count > 0)
 {
 foreach(Outlook.Folder childFolder in childFolders)
 {
 //Write the folder path
 Debug.WriteLine(childFolder.FolderPath);
 //Call EnumerateFolders using childFolder
 EnumerateFolders(childFolder);
 }
 }
}

Folder Object

The Folder object represents a folder in the Outlook folder list. The Folder object serves as the
gateway to the Items collection or the Table object that lets you access each item in the folder.

MAPIFolder Object vs. Folder Object
Previous versions of Outlook supported the MAPIFolder object. This object has been
deprecated in Outlook 2007. Although existing solutions that access this object will
still run, you should use the Folder object for Outlook 2007 or later versions. The
Folder object has almost the same members of MAPIFolder, plus some new ones,
including BeforeFolderMove, BeforeItemMove, GetCalendarExporter, GetStorage, GetTable,
PropertyAccessor, Store, and UserDefinedProperties.

Chapter 6 Accessing Outlook Data 183
Properties and methods that returned a MAPIFolder object in previous versions of the
Outlook object model will continue to do so in Outlook 2007. To use the Folder object
instead of the MAPIFolder object, you must cast the MAPIFolder object returned by legacy
properties and methods to a Folder object.

Working with the Folder Object

To add a new folder programmatically, use the Add method of the Folders collection discussed
earlier. To work with an existing folder, the Outlook object model offers several different
methods to access a specific folder.

GetDefaultFolder Method

The GetDefaultFolder method of the Namespace object returns a default folder in the user’s
default store. For example, the following example uses GetDefaultFolder to return the user’s
RSS Feeds root folder and displays a message box containing the folder names for all RSS
feeds under the RSS Feeds folder:

private void GetRSSFeeds()
{
 Outlook.Folder folder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderRssFeeds)
 as Outlook.Folder;
 if (folder != null)
 {
 if (folder.Folders.Count > 0)
 {
 StringBuilder sb = new StringBuilder();
 foreach (Outlook.Folder subfolder
 in folder.Folders)
 {
 sb.AppendLine(subfolder.Name);
 }
 MessageBox.Show(sb.ToString(),
 "RSS Feeds",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 }
}

Note GetDefaultFolder takes an OlDefaultFolders value to return the correct default folder.
Don’t assume that GetDefaultFolder will always return a Folder object for all possible values of
OlDefaultFolders. For example, if you specify olFolderManagedEmail as FolderType but the Man-
aged Folders group has not been deployed, then GetDefaultFolder will return null (Nothing in
Microsoft Visual Basic).

184 Part III Working with Outlook Data
Parent Property and Folders Property

You can also reference folders by navigation from a specific folder. Each item and folder exposes
a Parent property that returns the parent folder for that object. Each folder also exposes a Folders
property that returns a Folders collection that contains the subfolders of the parent folder. If you
need to access a specific subfolder of the Folders collection, you obtain the Folder object that rep-
resents the subfolder by using the indexer on the Folders collection. The indexer requires that
you supply the name of the subfolder or the one-based integer index within the collection.

GetFolderFromID Method

The GetFolderFromID method of the Namespace object returns a Folder object based on the
EntryID and StoreID parameters that are passed to the method. The EntryID and StoreID prop-
erties of the Folder object can be used to identify a folder in Outlook. The EntryID property
corresponds to the MAPI property PR_ENTRYID and the StoreID property corresponds to the
MAPI property PR_STORE_ENTRYID. The EntryID and StoreID properties, which are analo-
gous to primary keys in a database table, let you identify both Folder and Item objects in the
Outlook folder hierarchy. Once you have these values, you can use the GetFolderFromID
method to return a Folder object. You can also use the GetFolderFromID method to return both
default and nondefault folders in any Store object provided that the current user has access
rights to that folder.

Important Although EntryID values are guaranteed to be unique within a store, it’s impor-
tant to realize that the EntryID property of an item might not stay consistent depending on
how the user interacts with the data. For example, if an item is moved from one store to
another and then moved back to the original store, the EntryID property of the item will
change. Also, if a user exports the data in a folder and then imports it back again, the EntryID
property for each item will change because new items are actually being created by this pro-
cess. Any custom solution should take into account the possibility that the EntryID property
for a given item might change.

The following example shows how you can cause the user to select a folder from the folder
list. The PickFolder method of the Namespace object displays the Select Folder dialog box to
the user. You cannot customize the folder list displayed in this dialog box. Once the user
selects a folder, the code displays the EntryID, StoreID UnReadItemCount, DefaultMessageClass,
CurrentView.Name, and FolderPath properties for the selected folder, and then uses the
GetFolderFromID method to reinstantiate the Folder object and display the folder.

private void ShowFolderInfo()
{
 Outlook.Folder folder =
 Application.Session.PickFolder()
 as Outlook.Folder;
 if (folder != null)
 {

Chapter 6 Accessing Outlook Data 185

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 StringBuilder sb = new StringBuilder();
 sb.AppendLine("Folder EntryID:");
 sb.AppendLine(folder.EntryID);
 sb.AppendLine();
 sb.AppendLine("Folder StoreID:");
 sb.AppendLine(folder.StoreID);
 sb.AppendLine();
 sb.AppendLine("Unread Item Count: "
 + folder.UnReadItemCount);
 sb.AppendLine("Default MessageClass: "
 + folder.DefaultMessageClass);
 sb.AppendLine("Current View: "
 + folder.CurrentView.Name);
 sb.AppendLine("Folder Path: "
 + folder.FolderPath);
 MessageBox.Show(sb.ToString(),
 "Folder Information",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 Outlook.Folder folderFromID =
 Application.Session.GetFolderFromID(
 folder.EntryID, folder.StoreID)
 as Outlook.Folder ;
 folderFromID.Display();
 }
}

GetFolder(folderPath) Procedure

So far you’ve seen how to retrieve a default folder using the GetDefaultFolder method or
retrieve a default or nondefault folder using the folder’s EntryID and StoreID properties. What
happens if you don’t know the EntryID and StoreID properties and the folder is a nondefault
folder? If you know the path to the folder, you can use the GetFolder procedure shown next to
obtain the correct Folder object. The GetFolder procedure splits the FolderPath property into a
string array and then uses the array to find the correct Folder object starting from the top of the
FolderPath property. GetFolder returns a Folder object. If GetFolder does not find the specified
folder, it returns null (Nothing in Visual Basic). The FolderPath property supplied to the
GetFolder procedure is specified as follows:

\\RootFolder\Folder\Subfolder

where RootFolder represents the root folder of the store, Folder is a subfolder of the root, and
the Subfolder represents a subfolder of Folder. Of course, there can be additional subfolders
below the Subfolder. If you are specifying the FolderPath property in C#, be sure to escape the
FolderPath property with the @ character. Typical FolderPath specifications are as follows:

■ \\Mailbox – UserName\Inbox\Sales Reports

■ \\Public Folders\All Public Folders\Human Resources\Documents\Training Material

■ \\Archive 2007\Calendar

186 Part III Working with Outlook Data
If you need to determine the root folder for a user’s default store, obtain the root folder by calling
the GetRootFolder method on the DefaultStore object as demonstrated in the GetKeyContacts
example next. Once you have the FolderPath property for the folder that you want to reference,
supply the FolderPath argument to the GetFolder procedure.

private void GetKeyContacts()
{
 string folderPath =
 Application.Session.
 DefaultStore.GetRootFolder().FolderPath
 + @"\Contacts\Key Contacts";
 Outlook.Folder folder = GetFolder(folderPath);
 if (folder != null)
 {
 //Work with folder here
 Debug.WriteLine("Found Key Contacts");
 }
}

The complete listing for the GetFolder procedure is shown here.

//folderPath is a string
//that indicates path to folder
//Usage: myFolder =
//GetFolder(@"\\Mailbox - UserName\Inbox\Subfolder");
public Outlook.Folder GetFolder(string folderPath)
{
 Outlook.Folder folder;
 string backslash = @"\";
 try
 {
 if (folderPath.StartsWith(@"\\"))
 {
 folderPath = folderPath.Remove(0, 2);
 }
 String[] folders =
 folderPath.Split(backslash.ToCharArray());
 folder =
 Application.Session.Folders[folders[0]]
 as Outlook.Folder;
 if (folder != null)
 {
 for (int i = 1; i <= folders.GetUpperBound(0); i++)
 {
 Outlook.Folders subFolders = folder.Folders;
 folder = subFolders[folders[i]]
 as Outlook.Folder;
 if (folder == null)
 {
 return null;
 }
 }
 }

Chapter 6 Accessing Outlook Data 187
 return folder;
 }
 catch { return null; }
}

Folder Properties and Methods

There are several properties on the Folder object that determine the type of folder that you
are working with and the default message class for that folder. If you need more information
about the capabilities of the folder represented by the Folder object, you can examine the
UserDefinedProperties collection or use the PropertyAccessor object to retrieve additional
folder properties. The following discussion will help you to understand how to use those
properties in your code.

DefaultItemType Property

The DefaultItemType property indicates the default item type supported for the folder.
Table 6-2 lists the folder type and the corresponding OlDefaultItemType value returned by
Folder.DefaultItemType.

DefaultMessageClass Property

The DefaultMessageClass property indicates the default message class for the folder. For exam-
ple, if the Folder object represents a Contacts folder, the DefaultMessageClass property is
IPM.Contact. If a custom form or a replacement or replace-all form region has been established
as the default form for the folder, you must use the PropertyAccessor object to determine the
message class of the default form. The DefaultMessageClass property will not tell you the mes-
sage class of the default form for the folder. The following GetDefaultMessageClass procedure
uses the PropertyAccessor object to determine the default form a folder. For additional informa-
tion on using the PropertyAccessor object, see Chapter 17, “Using the PropertyAccessor Object.”
Use the GetDefaultMessageClass procedure in your code to determine the correct default mes-
sage class for a folder. If the folder property PR_DEF_POST_MSGCLASS is not found and Out-
look raises an error, then the catch block returns the DefaultMessageClass property for the
Folder object.

Table 6-2 Possible Folder.DefaultItemType Values

Folder type DefaultItemType returns
Mail OlItemType.olMailItem
Calendar OlItemType.olAppointmentItem
Contacts OlItemType.olContactItem
Tasks OlItemType.olTaskItem
Journal OlItemType.olJournalItem
Notes OlItemType.olNoteItem

188 Part III Working with Outlook Data
private string GetDefaultMessageClass(Outlook.Folder folder)
{
 if (folder == null)
 throw new ArgumentNullException();
 try
 {
 const string PR_DEF_POST_MSGCLASS =
 @"http://schemas.microsoft.com/mapi/proptag/0x36E5001E";
 string messageClass =
 folder.PropertyAccessor.GetProperty(
 PR_DEF_POST_MSGCLASS).ToString();
 return messageClass;
 }
 catch
 {
 return folder.DefaultMessageClass;
 }
}

GetCalendarExporter Method

The GetCalendarExporter method returns a CalendarSharing object for the parent Folder
object. If the parent Folder object does not represent a Calendar folder, Outlook raises an
error. The following example uses the GetCalendarExporter method to return a
CalendarSharing object from the default Calendar folder with one week of free, busy, and
subject details. It then calls the ForwardAsICal method on the CalendarSharing object and
displays the message with an ICalendar payload to the user.

private void DemoCalendarSharing()
{
 //Get instance of CalendarSharing object
 Outlook.CalendarSharing calShare =
 Application.Session.GetDefaultFolder
 (Outlook.OlDefaultFolders.olFolderCalendar).
 GetCalendarExporter();
 //Free busy and subject details
 calShare.CalendarDetail =
 Outlook.OlCalendarDetail.olFreeBusyAndSubject;
 //Set start and end dates
 calShare.StartDate = DateTime.Today;
 calShare.EndDate = calShare.StartDate.AddDays(1);
 //Call ForwardAsICal method
 Outlook.MailItem mail =
 calShare.ForwardAsICal(Outlook.OlCalendarMailFormat
 .olCalendarMailFormatDailySchedule);
 //Add recipient
 mail.Recipients.Add("someone@example.com");
 mail.Recipients.ResolveAll();
 //Set subject
 string CalName =
 Application.Session.GetDefaultFolder
 (Outlook.OlDefaultFolders.olFolderCalendar).Name;
 mail.Subject =
 Application.Session.CurrentUser.Name +

Chapter 6 Accessing Outlook Data 189
 CalName.PadLeft(CalName.Length + 1);
 //Display calendar sharing item
 mail.Display(false);
}

GetStorage Method

The GetStorage method creates or retrieves a StorageItem object in a folder. A StorageItem object
is hidden from the user and cannot be displayed programmatically. In an Exchange environ-
ment, a StorageItem object is typically used to roam solution settings and ensure that those set-
tings are available online and offline. For example, you might want to store an order number
value that is available on all machines where a given user might log in to Outlook. Rather than
store that value in the Windows registry, you persist the order number in a custom Order
Number UserProperty property on a StorageItem object in the user’s Inbox folder. You can
assign a custom message class to the storage item or identify it by subject. If you provide a sub-
ject, it’s a good idea to use the Programmatic Identifier (ProgID) for your add-in. Outlook also
stores settings in hidden messages. A few examples of Outlook settings stored in hidden mes-
sages are calendar working hours, autoarchive settings, and categories.

The following code sample retrieves the Extensible Markup Language (XML) stored in
the hidden message in the Calendar folder with the message class equal to
IPM.Configuration.WorkHours. Notice that the PropertyAccessor object returns the XML as an
object. This object contains a byte stream rather than a string representation of the XML. To
convert the XML to a string, use System.Text.Encoding.Ascii.GetText to convert byte to a string.
Once you have the XML, you can use a variety of methods to determine the working hours
start and end time as well as workdays. For additional information on the GetStorage method,
see the Outlook 2007 Developer Reference and the section on StorageItem in Chapter 5, “Built-
in Item Types.”

private string GetWorkHoursXML()
{
 try
 {
 Outlook.StorageItem storage =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderCalendar).GetStorage(
 "IPM.Configuration.WorkHours",
 Outlook.OlStorageIdentifierType.olIdentifyByMessageClass);
 Outlook.PropertyAccessor pa = storage.PropertyAccessor;
 //PropertyAccessor will return a byte array for this property
 byte[] rawXmlBytes = (byte[])pa.GetProperty(
 "http://schemas.microsoft.com/mapi/proptag/0x7C080102");
 //Use Encoding to convert the array to a string
 return System.Text.Encoding.ASCII.GetString(rawXmlBytes);
 }
 catch
 {
 return string.Empty;
 }
}

190 Part III Working with Outlook Data
UserDefinedProperties Collection

The UserDefinedProperties collection represents the user-defined custom properties for the
Folder object. This object addresses a common complaint of Outlook developers. If you define
custom properties on the items in your solution, those properties must be defined at the
folder as well as the item level. The UserProperties collection on an item such as a ContactItem
object allows you to define user properties on an item and assign values to a specific
UserProperty object. The Add method on the UserProperties collection contains an optional
bool (Boolean in Visual Basic) parameter AddToFolderFields that ensures that the UserProperty
object is added to the folder as well as the item. The custom UserProperty object must be
added to both the folder and the item. When you write your code, you add the custom prop-
erty to both the item and the folder. So far, all is well. If the custom property is not added to
the folder through developer error or user action (an end user can delete the custom prop-
erty in the Outlook Field Chooser or move the item to a different folder), Find and Restrict
operations that use that property will fail.

The UserDefinedProperties collection allows you to add, access, and remove UserDefinedProperty
objects at the folder level. The UserDefinedProperties collection is new to Outlook 2007. Each
Folder object exposes a UserDefinedProperties collection that represents the user-defined prop-
erties for that folder. Your application logic can test whether your custom properties exist in
the folder and add them if they do not or if they have been removed. The point to remember
is that if your custom properties are not defined at the folder level, you won’t be able to use
Outlook queries to find or restrict items with those custom properties. Find and Restrict oper-
ations are discussed in Chapter 11, “Searching Outlook Data.”

Note To actually persist a custom property represented by a UserDefinedProperty object in
a folder, you must save the custom property with the same name in the item itself. Storing a
value in a UserDefinedProperty object for the folder has no effect. You should use the item’s
UserProperties collection to access the UserProperty object that you want to set, and then set
the Value property on the UserProperty object. Be sure to call the Save method on the item to
persist your changes.

private void DemoUserDefinedProperty()
{
 Outlook.Folder folder =
 Application.ActiveExplorer().CurrentFolder
 as Outlook.Folder;
 Outlook.PostItem post = folder.Items.Add("IPM.Post")
 as Outlook.PostItem;
 //Add UserProperty to PostItem
 post.UserProperties.Add("ColorID",
 Outlook.OlUserPropertyType.olText,
 false, Type.Missing);
 post.UserProperties["ColorID"].Value = "Green";
 post.Subject = "UserProperty Example";
 post.Save();
 Outlook.PostItem findPost;

Chapter 6 Accessing Outlook Data 191
 try
 {
 //Items.Find will fail unless custom property
 //is defined in the folder
 findPost =
 folder.Items.Find("[ColorID] = 'Green'")
 as Outlook.PostItem;
 }
 catch(Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 //Add ColorID field to the folder
 folder.UserDefinedProperties.Add("ColorID",
 Outlook.OlUserPropertyType.olText,
 Type.Missing, Type.Missing);
 //Now the find works ok
 Outlook.PostItem findPostOK;
 try
 {
 findPostOK =
 folder.Items.Find("[ColorID] = 'Green'")
 as Outlook.PostItem;
 if (findPostOK != null)
 {
 Debug.WriteLine("Found PostItem");
 }
 //Clean up by deleting PostItem and ColorID
 findPostOK.Delete();
 Outlook.UserDefinedProperty userProperty =
 folder.UserDefinedProperties["ColorID"];
 userProperty.Delete();
 }
 catch(Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

Folder Permissions
One additional consideration for accessing data in folders is folder permissions. For folders
hosted on an Exchange server (online mode or cached Exchange mode), folders have permis-
sions that control whether the logged-on user can add, edit, or delete items in folders. Folders
in a Personal Folders File (.pst) do not support folder permissions. If your solution operates
within the context of the user’s mailbox, then permissions are less of an issue because the
logged-on user typically has Owner permissions on his or her mailbox folders. The following
section describes how you assign folder permissions through the Outlook user interface. The
Folder object does not expose a member that lets you programmatically get or set folder per-
missions. However, you can use the SharingItem object in an Exchange environment to grant
permissions to other users.

192 Part III Working with Outlook Data
Assigning Folder Permissions

You assign permissions to users to define the functions they can perform in the folder. You
determine who can view and use the folder in the folder’s Properties dialog box on the Per-
missions tab by adding user or distribution list names in the Name list box. After the names
are added to the Name list box, you can assign roles to define the permissions for each user or
distribution list, as shown in Figure 6-1.

Figure 6-1 Permissions for a Calendar folder.

To display the Permissions tab, follow these steps:

1. In the Folder List, right-click the folder where you want to set permissions.

2. On the context menu, click Change Sharing Permissions.

The names in the Name list box determine who can view and use the folder. If you create the
folder, you are automatically given owner permissions for the folder. With owner permissions,
you can add users to and remove users from the Name list box. You can also change permis-
sions for selected users.

One name in the Name list box is Default. The permissions defined for Default are granted to
all users who have access to the folder. If you want to give a particular user permissions other
than Default, add the user’s name to the Name list box, and then set permissions for that user.

You can remove any name from the Name list box except Default and, if you are the sole owner
of the folder, your name. If you remove Default or your name, they will reappear the next time
you view the Permissions tab.

Chapter 6 Accessing Outlook Data 193
Assigning Roles

When you set permissions for a user, you define the functions that the user can perform
within the folder. You can set permissions by using predefined roles or by using custom roles:

■ Predefined roles Predefined groups of permissions that are available from the Roles
drop-down list box.

■ Custom roles Permissions you set for the user that do not match any of the predefined
roles.

To assign roles to users, follow these steps:

1. On the Permissions tab in the Name list box, select the user name for which you want to
set permissions.

2. In the Roles drop-down list box, select a role for the user.

Table 6-3 lists the roles and the predefined permissions that are assigned to each one.

To assign a custom role, follow these steps:

1. In the Name list box, select the user name for which you want to set permissions.

2. In the Roles drop-down list box, select the role that most closely resembles the permis-
sions you want to grant to the user.

3. Under Permissions, select the options you want. If the permissions do not match a role,
Custom will display in the Roles drop-down list box. If the permissions match a role, that
role will display in the Roles drop-down list box.

Table 6-3 Roles and Folder Permissions

Role Description
Owner Create, read, modify, and delete all items and files and create subfolders. As

the folder owner, you can change permissions others have for the folder.
Publishing Editor Create, read, modify, and delete all items and files and create subfolders.
Editor Create, read, modify, and delete all items and files.
Nonediting Author Create and read items. This person or group cannot edit but can delete

items and files you create.
Publishing Author Create and read items and files, create subfolders, and modify and delete

items and files you create.
Author Create and read items and files, and modify and delete items and files you

create.
Reviewer Read items and files only.
Contributor Create items and files only. The user cannot open the folder.
None The user cannot open the folder.
Custom Perform activities defined by the folder owner from options selected on the

Permissions tab.

194 Part III Working with Outlook Data
Using the SharingItem Object to Assign Folder Permissions

Outlook 2007 does not directly support setting permissions on the Folder object. If you need
to programmatically set folder permissions across multiple mailboxes, the suggested
approach is to use an Exchange Server application programming interface (API) such as the
Web Distributed Authoring and Versioning (WebDAV) protocol or the Exchange OLE DB Pro-
vider (ExOLEDB). Only WebDAV is suitable for use in client-side code. For additional infor-
mation on these APIs, see the appropriate version of the Microsoft Exchange Server Software
Development Kit on MSDN. However, if you cannot gain programmatic access to Exchange
servers in your organization, Outlook 2007 does offer an indirect mechanism for setting folder
permissions. You can use a SharingItem object to assign a limited subset of folder permissions.
For complete details, including code samples, see the section “Using the SharingItem Object”
in Chapter 9, “Sharing Information with Other Users.”

Accessing Items in a Folder
At this point, you should have a good understanding of how to navigate the Outlook folder
hierarchy using the Outlook object model. Once you have instantiated the appropriate folder,
the next consideration is accessing the items in the folder. This section discusses ways that
you can enumerate items in the folder. Restricting and searching for items is covered in detail
in Chapter 11.

Performance Considerations

Performance is always an important factor when accessing items in a folder, especially when
the folder contains a large number of items. For this discussion, more than 1,000 items in a
folder is considered a large number of items. Although performance is dependent on other
factors such as disk I/O, CPU speed, and available memory, you don’t want your code to be
responsible for a performance bottleneck. Generally, you want to keep all operations that enu-
merate folders and items to less than one second in duration, if possible. The Outlook object
model operates on Outlook’s main foreground thread, so you will block Outlook responsive-
ness if your code execution goes into a loop that does not perform adequately. Performance
was one of the reasons that developers turned to other APIs such as Collaboration Data
Objects (CDO) or Extended MAPI in past versions of Outlook, but Outlook 2007 offers some
important innovations that seek to address performance concerns.

The primary performance improvement in Outlook 2007 is the Table object. The Table object
provides a read-only row set that lets you enumerate, filter, and sort the rows in the table. You
navigate the rows returned by the Table object in a forward-only manner. Each row represents
an item in the parent Folder object. Unlike the Items collection, the Table object encourages
developers to write efficient code and does not have the disadvantages of the Items collection,
where a developer could retrieve the Body property or the Attachments collection on the item
and in turn see performance degrade dramatically. Although performance results are
dependent on a variety of factors, in general the Table object lets you enumerate results in

Chapter 6 Accessing Outlook Data 195
approximately 10 percent to 20 percent of the time required by the Items collection without
the use of the SetColumns method.

Should you use the Table object or the Items collection to achieve the best performance when
enumerating items? The general recommendation would be to use the Table object because it
is inherently faster than the Items collection. However, there are occasions when you should
use the Items collection rather than the Table object. The clear recommendation for the Items
collection is when you need to enumerate recurrences in a Calendar folder. The Table object in
Outlook 2007 only returns the master series for recurring appointments; it does not return
individual appointment occurrences or exceptions.

However, there are other scenarios where you should consider the Items collection. Deciding
which approach to take depends on a variety of factors. For example, if you want to delete
many items in a folder you should probably use the Items collection because you will need to
access these items in a read/write manner. For scenarios where you only need to change or
delete one or a few items, using the Table object should be more efficient. Although the Row
object that represents an item is read-only, in this scenario it should be more efficient as there
are only a limited number of items to change or delete. If you need to perform write operations
on the item or delete the item, you can instantiate a full item by obtaining the EntryID column
from the Row object and then using the GetItemFromID method of the Namespace object.

OutlookItem Helper Class

The OutlookItem helper class is available in C# and Visual Basic versions with the code that
accompanies this book. Because upcoming code samples implement this class, you need to
understand the rationale behind the OutlookItem class.

The OutlookItem class uses reflection to expose properties and methods that are common to all
items. It also provides IntelliSense for these common members. Unfortunately, the COM-based
Outlook object model returns object for many members such as Namespace.GetItemFromID,
Inspector.CurrentItem, Items[], and so forth. To use object in a strongly typed code environment
such as C# or Visual Basic (with Option Strict On), you always need to cast the object represent-
ing the item to an Outlook type such as MailItem. The OutlookItem class helps you to cast
object to the correct Outlook type and also allows you to use common members directly on
the OutlookItem object.

For example, the following code displays all the selected items in the active Explorer window.
Because the Display method is common to all items, it appears as a method on the OutlookItem
class. The variable myItem is an instance of OutlookItem, and you can simply write myItem.Dis-
play()to display each item in the Selection object.

private void DisplaySelectedItems()
{
 Outlook.Selection selection =
 Application.ActiveExplorer().Selection;
 for (int i = 1; i <= selection.Count; i++)

196 Part III Working with Outlook Data
 {
 OutlookItem myItem = new OutlookItem(selection[i]);
 myItem.Display();
 }
}

Important The use of reflection in the OutlookItem class can slow the performance of your
code. Avoid the use of the OutlookItem class in a foreach construct on the Items collection
where you are looping over hundreds or thousands of items. When you need to enumerate
a large number of items, consider using the Restrict method to reduce the number of items or
use the Table object to return read-only Row objects. You can use the EntryID column
returned in the Table object to open the item with the GetItemFromID method of the
Namespace object and then cast the returned object to the appropriate type.

Items Collection

The Items collection is the old standby for enumerating items through the object model. It has
been a feature of the object model for many versions of Outlook. In general, you should prefer
the Table object in Outlook 2007 when you enumerate or restrict items in a folder. However,
there are some circumstances when you might want to use the Items collection instead of the
Table object. The following sections cover those areas where the Items collection is preferred to
the Table object. The Restrict and Sort methods of the Items object are covered only briefly in
this chapter. For a detailed discussion of searching for items using either the Table object or
the Items collection, see Chapter 11.

Deleting Items in a Collection

For example, let’s assume that you want to delete meeting responses from the user’s Sent
Items folder. You could use the Table object to return rows representing the meeting responses
and then open each item by using the GetItemFromID method on the Namespace object and
then casting the item to a MeetingItem object. At this point, you would call the Delete method
on the MeetingItem object. You can write simpler code by restricting the Items collection and
then deleting each object in the restricted Items collection. Note that when you delete items
from the Items collection, you cannot use a foreach construct or an incrementing for(int i=1;
i<=items.Count; i++) loop. You should use a decrementing for(int i=items.Count; i>0; i--) loop to
delete the items in the collection. The following code sample restricts the items in the Deleted
Items folder and then deletes each item. This method is much more efficient than looping
over all the items in the folder and only deleting items with the appropriate MessageClass
property.

private void DeleteMeetingRequestsAndResponses()
{
 //Obtain Sent Items folder
 Outlook.Folder folder =
 Application.Session.GetDefaultFolder(

Chapter 6 Accessing Outlook Data 197
 Outlook.OlDefaultFolders.olFolderSentMail)
 as Outlook.Folder;
 //Create filter string
 string filter = "[MessageClass] = 'IPM.Schedule.Meeting.Request'"
 + " OR "
 + "[MessageClass] = 'IPM.Schedule.Meeting.Resp.Pos'"
 + " OR "
 + "[MessageClass] = 'IPM.Schedule.Meeting.Resp.Neg'"
 + " OR "
 + "[MessageClass] = 'IPM.Schedule.Meeting.Resp.Tent'"
 + " OR "
 + "[MessageClass] = 'IPM.Schedule.Meeting.Resp.Canceled'"
 + " OR "
 + "[MessageClass] = 'IPM.Schedule.Meeting.Canceled'";
 Outlook.Items meetingItems = folder.Items.Restrict(filter);
 try
 {
 for (int i = meetingItems.Count; i > 0; i--)
 {
 try
 {
 //Get the first item in the collection
 Outlook.MeetingItem meeting = meetingItems[i]
 as Outlook.MeetingItem;
 meeting.Delete();
 }
 catch { }
 }
 }
 catch(Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

Using SetColumns and ResetColumns to Improve Performance

You can enhance the performance of the Items collection by caching the properties that you
want to use on each item in the Items collection. To cache properties on the Items collection,
call the SetColumns method before you enumerate the items in the collection. The SetColumns
method takes one argument, a comma-delimited string of property names. Once you have
completed enumerating the items in the collection, you should call the ResetColumns method
to clear the property cache. The following code sample uses SetColumns to cache the FileAs,
CompanyName, and JobTitle properties for a subset of items in the Contacts folder. Notice that
the restriction for the Items collection specifies that CompanyName and JobTitle are not null. If
you don’t test for null or empty strings in the restriction, you should do so if you attempt to
use the property in string concatenation.

private void EnumerateContactsWithSetColumns()
{
 //Obtain Contacts folder

198 Part III Working with Outlook Data
 Outlook.Folder folder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderContacts)
 as Outlook.Folder;
 string filter = "Not([CompanyName] Is Null)" +
 " AND Not([JobTitle] Is Null)";
 Outlook.Items items = folder.Items.Restrict(filter);
 items.SetColumns("FileAs, CompanyName, JobTitle");
 for (int i = 1; i <= items.Count; i++)
 {
 //Create an instance of OutlookItem
 OutlookItem myItem = new OutlookItem(items[i]);
 if (myItem.Class == Outlook.OlObjectClass.olContact)
 {
 //Use InnerObject to return ContactItem
 Outlook.ContactItem contact =
 myItem.InnerObject as Outlook.ContactItem;
 StringBuilder sb = new StringBuilder();
 sb.AppendLine(contact.FileAs);
 sb.AppendLine(contact.CompanyName);
 sb.AppendLine(contact.JobTitle);
 sb.AppendLine();
 Debug.WriteLine(sb.ToString());
 }
 }
 items.ResetColumns();
}

Note You cannot specify custom properties in the UserDefinedProperties collection for the
Folder object in the SetColumns method. You also cannot specify computed properties or
property objects such as IsMarkedAsTask or Attachments. If the specified property is not avail-
able on items in the folder (such as FirstName in the Inbox folder), Outlook raises an error.

Use IncludeRecurrences to Expand Recurring Appointments

If you need to expand recurring appointments in a Calendar folder, you must use the Items
collection and set the IncludeRecurrences property to true. The Table object does not support
recurrences in Outlook 2007. The IncludeRecurrences property only has an effect if the Items
collection contains appointments and is sorted by the Start property in ascending order. The
default value of IncludeRecurrences is false. Use this property when you want to retrieve all
appointments for a given date range, where recurring appointments would not normally
appear because they are not actual items in a folder. If you need to sort and filter appointment
items that contain recurring appointments, you must do so in this order:

■ Create a filter and call the Restrict method on the Items collection for the Calendar folder
based on Start and End properties. In the following code sample, this Items collection is
named calendarItems. If you don’t create this filter, you will have an Items collection for all
recurrences in the Calendar folder and performance will suffer.

Chapter 6 Accessing Outlook Data 199
■ Call the Sort method to sort the items in ascending order.

■ Set IncludeRecurrences to true.

■ Create another filter, and call the Restrict method again on the previously restricted
Items collection. In the following code sample, the second Items collection is named
restrictedItems. At this point, you can enumerate the items in restrictedItems.

private void FilterRecurringAppointments()
{
 Outlook.Folder folder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderCalendar)
 as Outlook.Folder;
 //Set end value
 DateTime end = DateTime.Now;
 //Set start value
 DateTime start = end.AddDays(-7);
 //Initial restriction is Jet query for date range
 string filter1 = "[Start] >= '" +
 start.ToString("g")
 + "' AND [End] <= '" +
 end.ToString("g") + "'";
 Outlook.Items calendarItems = folder.Items.Restrict(filter1);
 calendarItems.Sort("[Start]", Type.Missing);
 calendarItems.IncludeRecurrences = true;
 //Create DASL query for second restriction
 string filter2;
 if (Application.Session.DefaultStore.IsInstantSearchEnabled)
 {
 filter2 = "@SQL="
 + "\"" + "urn:schemas:httpmail:subject" + "\""
 + " ci_startswith 'Office'";
 }
 else
 {
 filter2 = "@SQL="
 + "\"" + "urn:schemas:httpmail:subject" + "\""
 + " like '%Office%'";
 }
 Outlook.Items restrictedItems =
 calendarItems.Restrict(filter2);
 foreach (Outlook.AppointmentItem appt in restrictedItems)
 {
 StringBuilder sb = new StringBuilder();
 sb.AppendLine(appt.Subject);
 sb.AppendLine("Start: " + appt.Start);
 sb.AppendLine("End: " + appt.End);
 sb.AppendLine();
 Debug.WriteLine(sb.ToString());
 }
}

If the collection includes recurring appointments with no end date, setting the
IncludeRecurrences property to true might cause the collection to be of infinite count. Be sure to

200 Part III Working with Outlook Data
include a test for this in any loop. You should not use the Count property of the Items collec-
tion when iterating the Items collection with the IncludeRecurrences property set to true. The
value of Count will be an undefined value. Instead, use a foreach construct to iterate the items
in the filtered collection.

Obtaining Recurring Appointments in a Date Range

To obtain recurring appointments in a date range, use the Items collection and apply a restric-
tion for Start and End properties. After you apply the filter, you must call the Sort method and
set the IncludeRecurrences property to true. For best performance, keep the date range as small
as possible. The following DemoApptsInRange procedure calls the GetRecurringAppointments
routine, which returns an Items collection that contains AppointmentItem objects that fall
within the range specified by the startTime and endTime parameters passed to the method.

Note When you create a filter for the Restrict method that specifies Start and End times,
you must format the DateTime string without seconds in the time portion. If you use seconds,
the query will fail. In the GetAppointmentsInRange procedure, the g format specifier in the
DateTime.ToString() method ensures that a string containing a short date and short time are
used in the filter.

private void DemoApptsInRange()
{
 Outlook.Folder calFolder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderCalendar)
 as Outlook.Folder;
 DateTime start = DateTime.Now;
 DateTime end = start.AddDays(7);
 Outlook.Items rangeAppts = GetAppointmentsInRange(
 calFolder, start, end);
 if (rangeAppts != null)
 {
 foreach(Outlook.AppointmentItem appt in rangeAppts)
 {
 Debug.WriteLine(appt.Subject);
 }
 }
}

private Outlook.Items GetAppointmentsInRange(
 Outlook.Folder folder, DateTime startTime, DateTime endTime)
{
 string filter = "[Start] >= '"
 + startTime.ToString("g")
 + "' AND [End] <= '"
 + endTime.ToString("g") + "'";
 try
 {
 Outlook.Items calItems = folder.Items.Restrict(filter);
 calItems.Sort("[Start]", Type.Missing);

Chapter 6 Accessing Outlook Data 201
 calItems.IncludeRecurrences = true;
 if (calItems.Count > 0)
 {
 return calItems;
 }
 else
 {
 return null;
 }
 }
 catch { return null; }
}

Table Object

The Table object represents a set of items from a Folder or Search object, with items as rows of
the table and properties as columns of the table. New to Outlook 2007, the Table object has
been added to the Outlook object model to address performance concerns with the Items col-
lection. It makes it easier for developers to write performant code and supports new query
operators that let you take advantage of the new Instant Search feature in Outlook 2007.

Using the GetTable Method

To obtain an instance of the Table object, you call the GetTable method on a Folder object or a
Search object. The GetTable method takes two optional parameters when called against a
Folder object: Filter (a string that contains a valid Outlook query) and TableContents (an
OlTableContents value). The Filter parameter allows you to restrict the Table object and return
a subset of items in the folder. If you specify an empty string for the filter or pass Type.Missing,
all items in the folder will be returned in the table. The TableContents parameter determines
whether the Row objects in the parent Table object represent hidden items in the folder or user
items, meaning items that can be viewed and opened by the logged-on user. If you specify
Type.Missing for the TableContents parameter, user items will be returned in the table.

The GetTable method does not take parameters when called against a Search object (which
represents an Outlook search folder). You cannot view hidden items in a search folder, and
the restriction for the Search object is specified in the Filter parameter of the AdvancedSearch
method that creates the Search object. AdvancedSearch is a method on the Application object
that returns a Search object. For additional information on the Search object and search fold-
ers, see Chapter 10, “Organizing Outlook Data.”

By default, each item in the returned Table object contains only a default subset of the item’s
properties. You can regard each Row object of a table as an item in the folder, each Column
object as a property of the item, and the Table object as an in-memory lightweight row set that
allows fast enumeration and filtering of items in the folder. Although additions and deletions
of the underlying folder are reflected by the rows in the table, the Table object does not sup-
port any events for adding, changing, and removing of rows. If you require a writable object,

202 Part III Working with Outlook Data
call Row[“EntryID”] to obtain the item’s EntryID property, then call the GetItemFromID method
of the Namespace object to obtain a full item object that supports read and write operations.

Once you have an instance of a Table object, enumerating the items in the table is simple. Test
if the EndOfTable property returns true. If it returns false, call the GetNextRow method to return
a Row object. The Table object contains a default number of Column objects available in the
Columns collection. You can add or remove columns from the default Columns collection. Each
Column object represents a property of the underlying item represented by the Row object.
Using the Indexer, the Row object can return a Column property by the name of the Column
object or a one-based integer index. You iterate in a forward-only manner through the Table
object by calling GetNextRow until the EndOfTable property returns true. If you need to return
to the start of the table, call the MoveToStart method. The Table object does not support a
move previous or move last operation. Additionally, the Table object supports a Sort method to
perform a single-column sort on the rows.

The following code sample obtains a Table object for the Inbox folder. The Table object is
sorted by the LastModificationTime property, and the subject of each item is written to the
trace listeners in the Listeners collection.

private void DemoTableForInbox()
{
 //Obtain Inbox
 Outlook.Folder folder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox)
 as Outlook.Folder;
 //Obtain Table using defaults
 Outlook.Table table =
 folder.GetTable(Type.Missing, Type.Missing);
 table.Sort("LastModificationTime",
 Outlook.OlSortOrder.olDescending);
 while (!table.EndOfTable)
 {
 Outlook.Row nextRow = table.GetNextRow();
 Debug.WriteLine(nextRow["Subject"]);
 }
}

private void DemoTableForInbox()
{
 //Obtain Inbox
 Outlook.Folder folder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox)
 as Outlook.Folder;
 //Obtain Table using defaults
 Outlook.Table table =
 folder.GetTable(Type.Missing, Type.Missing);
 table.Sort("LastModificationTime",
 Outlook.OlSortOrder.olDescending);
 while (!table.EndOfTable)

Chapter 6 Accessing Outlook Data 203
 {
 Outlook.Row nextRow = table.GetNextRow();
 Debug.WriteLine(nextRow["Subject"]);
 }
}

GetArray Method

You can squeeze additional performance from the Table object by using the GetArray method.
This method takes an optional integer MaxRows parameter that determines how many rows
will be returned in the array. GetArray returns a two-dimensional array representing a set of
row and column values from the Table object. The array is zero-based; an array index (i, j)
indexes into the ith column and jth row in the array. Columns in the array correspond to col-
umns in the table, and rows in the array correspond to rows in the table. If MaxRows is greater
than the total number of rows in the table, Outlook returns a “Could not complete the opera-
tion. One or more parameter values are not valid” error.

The DemoGetArrayForTable procedure uses GetArray to return an Array object that contains
elements for every row in the table. Note that the array elements are zero-based rather than
one-based as is the case with Outlook collections. The first dimension of the Array object con-
tains the elements that represent the rows of the table. The second dimension of the Array
object contains the elements that represent the columns of a given row.

private void DemoGetArrayForTable()
{
 //Obtain Inbox
 Outlook.Folder folder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox)
 as Outlook.Folder;
 Outlook.Table table =
 folder.GetTable("", Outlook.OlTableContents.olUserItems);
 Array tableArray = table.GetArray(table.GetRowCount()) as Array;
 for(int i = 0; i < tableArray.GetUpperBound(0); i++)
 {
 for (int j = 0; j < tableArray.GetUpperBound(1); j++)
 {
 Debug.WriteLine(tableArray.GetValue(i, j));
 }
 }
}

Default Columns Set

Based on data access models that are familiar to most developers, the Table object supports a
Columns collection. The default Columns collection depends on the DefaultItemType property
of the Table object’s parent Folder object. The default columns for different folder types are
shown in Table 6-4 through Table 6-7. See the earlier section on the DefaultItemType property
for a discussion of how DefaultItemType relates to the Folder object type.

204 Part III Working with Outlook Data
Table 6-4 Default Columns Returned for All Folder Types Including Inbox, SentItems,
DeletedItems, and Search Folders

Column Description
1 EntryID
2 Subject
3 CreationTime
4 LastModificationTime
5 MessageClass

Table 6-5 Calendar Folder Default Columns

Column Description
1 EntryID
2 Subject
3 CreationTime
4 LastModificationTime
5 MessageClass
6 Start
7 End
8 IsRecurring

Table 6-6 Contacts Folder Default Columns

Column Description
1 EntryID
2 Subject
3 CreationTime
4 LastModificationTime
5 MessageClass
6 FirstName
7 LastName
8 CompanyName

Table 6-7 Tasks Folder Default Columns

Column Description
1 EntryID
2 Subject
3 CreationTime
4 LastModificationTime
5 MessageClass
6 DueDate
7 PercentComplete
8 IsRecurring

Chapter 6 Accessing Outlook Data 205
You can specify the Column object within a Row object by specifying the index of the column.
Index can be either a string representing the name of the Column object or a one-based integer
value. The property value might return null. If Row[Index] can return null, be sure that your
code tests for null values.

Adding Columns to the Table

To add columns to the table, you call the Add method of the Columns collection. This method
adds the Column object specified by Name property to the Columns collection and resets the
table. If Columns.Add returns an error, it will not change the current row in the table.

Name can be an explicit built-in or custom property name, or a property name referenced by
namespace. For more information on referencing properties by namespace, see Chapter 17.

Valid Name Values If you are adding a property that is an explicit built-in property in the
object model, for example, the JobTitle property of the ContactItem object, you must specify
Name as the explicit built-in property name in English. Localized property names are not sup-
ported. For certain types of properties, the format used when adding these properties as col-
umns affects how their values are expressed in the Table object. For more information on
property value representation in a Table object, see the section “Factors That Determine Property
Value Representation” later in this chapter. Table 6-8 summarizes valid values for the Name
argument of Columns.Add.

Appending Type Information If you are adding a custom property to a Table object, refer-
encing the property by the MAPI string namespace, you will have to explicitly append the type

Table 6-8 Valid Name Values for Columns.Add

Name Remarks
Valid Built-in Property Name such as
ReceivedTime, JobTitle, AssistantName, or
AssistantTelephoneNumber.
or
Valid Custom Property Name that has been
added to the folder’s UserDefinedProperties
collection such as [Shoe Size].

You must supply the English name of the prop-
erty. Localized names for built-in properties are
not supported. Date and time values are
returned as local time. Property names are case-
insensitive. Custom property names that contain
space characters must be enclosed in brackets ([
]) and can represent localized names.

MAPI Proptag namespace such as
http://schemas.microsoft.com/mapi/proptag
/0x0037001E

Date and time values returned as Coordinated
Universal Time (UTC) time. Namespace names
are case-sensitive.

MAPI ID namespace such as http://schemas
.microsoft.com/mapi/id/{GUID}/HHHHHHHH

Date and time values returned as UTC time.
Namespace names are case-sensitive.

MAPI String namespace such as
http://schemas.microsoft.com/mapi/string
/{GUID}/myprop

Must append type specifier to the end of the
property name. Date and time values are
returned as UTC time. Namespace names are
case-sensitive.

Content-class specific namespace such as
urn:schemas:contacts:givenName

Date and time values are returned as UTC time.
Namespace names are case-sensitive.

206 Part III Working with Outlook Data
of the property to the end of the property reference. For example, to add the custom property
MyCustomProperty, which has the type Unicode string, you will have to explicitly append the
MAPI property type 001F to the reference, resulting in http://schemas.microsoft.com/mapi
/string/{HHHHHHHH-HHHH-HHHH-HHHH-HHHHHHHHHHHH}/MyCustomProperty
/0000001F, where {HHHHHHHH-HHHH-HHHH-HHHH-HHHHHHHHHHHH} represents the
namespace GUID, MyCustomProperty represents the named property name, and 0000001F
represents the PT_UNICODE MAPI property type (0x001F) plus a Hex prefix (0x0000).

The correlation of commonly used MAPI property types to COM variant types and .NET
Framework types is shown in Table 6-9. Use the Hex value plus the leading 0000 characters
when you specify the MAPI property type for any MAPI string namespace properties that you
specify in Columns.Add.

When to Use Columns.Add Certain properties cannot be added to a Table object using
Columns.Add, including binary properties, computed properties, and Hypertext Markup
Language (HTML) or Rich Text Format (RTF) body content. For more information, see the
section titled “Invalid Properties” later in this chapter.

Although the SetColumns method of the Items collection can be used to facilitate caching certain
properties for extremely fast access to those properties of an Items collection, some properties

Table 6-9 MAPI Property Types

MAPI property
type Hex value

COM variant
type

.NET Framework
type in system
namespace Description

PT_BINARY 0102 VT_BLOB Byte [] Binary (unknown format)
PT_BOOL 000B VT_BOOL Boolean Boolean
PT_CURRENCY 0006 VT_CY Double 8-byte integer (scaled by

10,000)
PT_DOUBLE 0005 VT_R8 Double 8-byte real (floating point)
PT_ERROR 000A VT_ERROR UInt32 SCODE value; 32-bit

unsigned integer
PT_FLOAT 0004 VT_R4 Single 4-byte real (floating point)
PT_LONG 0003 VT_I4 Int64 4-byte integer
PT_MV_STRING8 101E or 101F VT_ARRAY String[] Multivalued string (key-

words)
PT_NULL 0001 VT_NULL Null (Nothing in

Visual Basic)
Null (no valid data)

PT_SHORT 0002 VT_I2 Int32 2-byte integer
PT_SYSTIME 0040 VT_DATE DateTime 8-byte real (date in inte-

ger, time in fraction)
PT_STRING8 001E VT_BSTR String String
PT_UNICODE 001F VT_BSTR String Unicode string

Chapter 6 Accessing Outlook Data 207
are not allowed for SetColumns. Because these limitations do not apply to Columns.Add, the
Table object is a less restrictive alternative than the Items collection.

To see how Columns.Add works in practice, consider the following code sample. Before adjust-
ing the column set, the code creates a filter that will only return items in the Inbox that have
one or more attachments. The PR_HASATTACH property is used to create the initial table
restriction. Following the restriction, the sample code uses the RemoveAll method to remove
all columns from the Table object. It then adds the EntryID, Subject, and ReceivedTime proper-
ties using the built-in property names. The ReceivedTime property is also added as a MAPI
namespace name so that the value returned in the table is a UTC Date/Time value. Finally, the
code walks the table and writes Subject and ReceivedTime (Local and UTC) to the trace listen-
ers in the Listeners collection.

private void DemoTableColumns()
{
 const string PR_HASATTACH =
 "http://schemas.microsoft.com/mapi/proptag/0x0E1B000B";
 //Obtain Inbox
 Outlook.Folder folder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox)
 as Outlook.Folder;
 //Create filter
 string filter = "@SQL=" + "\""
 + PR_HASATTACH + "\"" + " = 1";
 Outlook.Table table =
 folder.GetTable(filter,
 Outlook.OlTableContents.olUserItems);
 //Remove default columns
 table.Columns.RemoveAll();
 //Add using built-in name
 table.Columns.Add("EntryID");
 table.Columns.Add("Subject");
 table.Columns.Add("ReceivedTime");
 table.Sort("ReceivedTime", Outlook.OlSortOrder.olDescending);
 //Add using namespace
 //Date received
 table.Columns.Add(
 "urn:schemas:httpmail:datereceived");
 while (!table.EndOfTable)
 {
 Outlook.Row nextRow = table.GetNextRow();
 StringBuilder sb = new StringBuilder();
 sb.AppendLine(nextRow["Subject"].ToString());
 //Reference column by name
 sb.AppendLine("Received (Local): "
 + nextRow["ReceivedTime"]);
 //Reference column by index
 sb.AppendLine("Received (UTC): " + nextRow[4]);
 sb.AppendLine();
 Debug.WriteLine(sb.ToString());
 }
}

208 Part III Working with Outlook Data

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Factors That Determine Property Value Representation

There are several factors that affect the type and format of a property in a Table object. String
properties are affected by the store provider, and binary, date, and multivalued properties are
affected by the way the property is referenced when it is first added to Table with the Add
method of the Columns collection.

String Properties Affected by Store Providers The length of the value of a string property
depends on the store provider. For Exchange and .ost and .pst stores, the length of the string
value will not exceed 255 bytes. This means that string values longer than 255 bytes will be
truncated after the first 255 characters.

For example, if you use Columns.Add to add the PR_INTERNET_TRANSPORT_HEADERS
property (referenced by namespace as http://schemas.microsoft.com/mapi/proptag
/0x007d001e) to a Table object, the Table object will only store the first 255 characters of the
full content of the property. If you need to determine the full content of the property, you
must use the EntryID property in the GetItemFromID method of the Namespace object to
obtain a full item. Once you have the item, you can use the PropertyAccessor object to obtain
the complete property value.

Note You should be aware that the size of the property value that can be returned by the
PropertyAccessor object is store-dependent. For .ost and .pst stores, the PropertyAccessor
object can get PT_STRING8 and PT_BINARY properties that are less than or equal to 4088
bytes. If the property size exceeds 4088 bytes, Outlook will raise an error.

Date, Binary, and Multivalued Properties Affected by Property Reference The type
and format of a binary, date, or multivalued property are affected by how the property is refer-
enced when it is first added to a Table object. You should determine if the property is refer-
enced by its explicit built-in name (if it has one) or by namespace (regardless of the existence
of an explicit built-in name). Built-in name references sometimes return a different column
value than a namespace reference. Table 6-10 summarizes the difference in the property value
representation (in terms of type and format) per original property type.

Table 6-10 Values Returned in Table Object Depend on Property Specifier

Type
Return type if property
specified using built-in name

Return type if property
specified using namespace

Binary (PT_BINARY) String Byte array
Date (PT_SYSTIME) Local DateTime UTC DateTime
Multivalued, also known
as keywords type such as
Categories property
(PT_MV_STRING8)

String containing comma-
separated values

One-dimensional array contain-
ing one element for each
keyword

Chapter 6 Accessing Outlook Data 209
To better understand how to add a MAPI string namespace property to the Table object and
how multivalued properties affect the values returned in a Column object, another code sam-
ple is in order. The TableMultiValuedProperties procedure restricts the Table object to return
rows where the Categories property is not null. The property that represents the Categories prop-
erty uses the MAPI string namespace. A Distributed Authoring and Versioning (DAV) Search-
ing and Locating (DASL) filter is constructed for items that have categories (the actual filter
restricts on categories that are not null). The type specifier 0000001f is concatenated with the
categoriesProperty constant to add a Categories column to the Table object. Finally, the Column
object that represents the Categories property contains a one-dimensional string array where
each element of the array represents a category assigned to the item. Both the item Subject
property and the Categories property are written to the trace listeners of the Listeners collection.

void TableMultiValuedProperties()
{
 const string categoriesProperty =
 "http://schemas.microsoft.com/mapi/string/"
 + "{00020329-0000-0000-C000-000000000046}/Keywords";
 //Inbox
 Outlook.Folder folder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox)
 as Outlook.Folder;
 //Call GetTable with filter for categories
 string filter = "@SQL="
 + "Not(" + "\"" + categoriesProperty
 + "\"" + " Is Null)";
 Outlook.Table table =
 folder.GetTable(filter,
 Outlook.OlTableContents.olUserItems);
 //Add categories column and append type specifier
 table.Columns.Add(categoriesProperty + "/0000001F");
 while (!table.EndOfTable)
 {
 Outlook.Row nextRow = table.GetNextRow();
 string[] categories =
 (string[])nextRow[categoriesProperty + "/0000001F"];
 Debug.WriteLine("Subject: " + nextRow["Subject"]);
 Debug.Write("Categories: ");
 foreach(string category in categories)
 {
 Debug.Write("\t" + category);
 }
 Debug.WriteLine("\n");
 }
}

Invalid Properties

Some properties cannot be added to the Table object using Columns.Add. Other properties
cannot be used in a filter for the Restrict method of the Table object. If you attempt to add an

210 Part III Working with Outlook Data
invalid property in Columns.Add, Outlook raises a “The property Name does not support this
operation” error where Name is the property that you are attempting to add. Table 6-11 lists
properties that are invalid for use in the Table object.

The following list is a list of known invalid properties that cannot be added to the Table object
using Columns.Add. Outlook raises an error if you attempt to add a property in this list. Many
of these properties are available on the full item. If you need to examine these properties, you
should consider using the Items collection in place of the Table object.

■ AutoResolvedWinner

■ BodyFormat

■ Class

Table 6-11 Invalid Properties for the Table Object

Property For Columns.Add For table filter
Binary properties such as
EntryID

Supported via built-in or
namespace property
representation.

Not supported. Outlook will
raise an error.

Body properties including
Body and HTMLBody and
namespace representation of
those properties including
PR_RTF_COMPRESSED

The Body property is supported
with a condition that only the
first 255 bytes of the value are
stored in a Table object. Other
properties representing the
body content in HTML or RTF
are not supported. Because only
the first 255 bytes of Body are
returned, if you want to obtain
the full body content of an item
in text or HTML, use the item’s
EntryID in GetItemFromID to
obtain the item object. Then
retrieve the full value of Body
through the item object.

Only the Body property repre-
sented in text is supported in a
filter. This means that the prop-
erty must be referenced in a
DASL filter as urn:schemas:http-
mail:textdescription, and you
cannot filter on any HTML tags
in the body. To improve perfor-
mance, use context indexer key-
words in the filter to match
strings in the body.

Computed properties, such as
AutoResolvedWinner and
BodyFormat (see the complete
list of computed properties later
in this section)

Not supported. Not supported.

Multivalued properties, such as
Categories, Children,
Companies, and VotingOptions

Supported. Supported, provided that you
can create a DASL query using
the namespace representation.

Properties returning an object,
such as Attachments, Parent,
Recipients, RecurrencePattern,
and UserProperties

Not supported. Not supported.

Chapter 6 Accessing Outlook Data 211
■ Companies

■ ContactNames

■ DLName

■ DownloadState

■ FlagIcon

■ HtmlBody

■ InternetCodePage

■ IsConflict

■ IsMarkedAsTask

■ MeetingWorkspaceURL

■ MemberCount

■ Permission

■ PermissionService

■ RecurrenceState

■ ResponseState

■ Saved

■ Sent

■ Submitted

■ TaskSubject

■ Unread

■ VotingOptions

Although these computed properties cannot be added to the column set for the table, you can
work around this limitation by using a DASL query to restrict the items that appear in the
Table object. If a namespace representation of the computed property exists, you can use the
namespace property to create a DASL query that restricts the Table object to return rows for a
specified value of the computed property. For example, the following code sample returns all
Inbox items where IsMarkedAsTask equals true. It then writes certain to-do properties such as
TaskSubject, TaskDueDate, TaskStartDate, and TaskCompletedDate to the trace listeners of the
Listeners collection.

private void GetToDoItems()
{
 //Obtain Inbox
 Outlook.Folder folder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox)

212 Part III Working with Outlook Data
 as Outlook.Folder;
 //DASL filter for IsMarkedAsTask
 string filter = "@SQL=" + "\"" +
 "http://schemas.microsoft.com/mapi/proptag/0x0E2B0003"
 + "\"" + " = 1";
 Outlook.Table table =
 folder.GetTable(filter,
 Outlook.OlTableContents.olUserItems);
 table.Columns.Add ("TaskStartDate");
 table.Columns.Add ("TaskDueDate");
 table.Columns.Add ("TaskCompletedDate");
 //Use GUID/ID to represent TaskSubject
 table.Columns.Add(
 "http://schemas.microsoft.com/mapi/id/" +
 "{00062008-0000-0000-C000-000000000046}/85A4001E");
 while (!table.EndOfTable)
 {
 Outlook.Row nextRow = table.GetNextRow();
 StringBuilder sb = new StringBuilder();
 sb.AppendLine("Task Subject: " + nextRow[9]);
 sb.AppendLine("Start Date: "
 + nextRow["TaskStartDate"]);
 sb.AppendLine("Due Date: "
 + nextRow["TaskDueDate"]);
 sb.AppendLine("Completed Date: "
 + nextRow["TaskCompletedDate"]);
 sb.AppendLine();
 Debug.WriteLine(sb.ToString());
 }
}

Row Helper Methods

The Table object supports the helper methods shown in Table 6-12 to support conversion of
binary and date/time property values. The GetArray method is also included in this list even
though it doesn’t serve as a conversion function. GetArray returns columns in a Row object as
a one-dimensional array.

A quick code sample should help you to understand how to use these methods. Let’s assume
that you want to return the PR_SENT_REPRESENTING_ENTRYID property for the first item
in the Inbox. This property can be used to open an AddressEntry object representing the

Table 6-12 Row Helper Methods

Method Description
BinaryToString Converts a binary value to its string representation
GetArray Returns columns in a Row object as a one-dimensional array
LocalTimeToUTC Converts a local date/time value to UTC
StringToBinary Converts a string value to its binary representation
UTCToLocalTime Converts a UTC date/time to local time

Chapter 6 Accessing Outlook Data 213
sender of the message. If you convert the binary value of this property to a string, you can use
the string representation to return an AddressEntry object from the GetAddressEntryFromID
method of the Namespace object. After the PR_SENT_REPRESENTING_ENTRYID property
is added to the Table object, the code uses the BinaryToString method to obtain the string
representation of PR_SENT_REPRESENTING_ENTRYID. This string is passed to the
GetAddressEntryFromID method. Once you have an AddressEntry object, you can call the
Details method of the AddressEntry object to display a modal dialog box that contains
detailed information about the sender.

private void DemoRowHelperMethods()
{
 const string PR_SENT_REPRESENTING_ENTRYID =
 "http://schemas.microsoft.com/mapi/proptag/0x00410102";
 //Obtain Inbox
 Outlook.Folder folder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox)
 as Outlook.Folder;
 Outlook.Table table =
 folder.GetTable("",
 Outlook.OlTableContents.olUserItems);
 table.Sort("ReceivedTime",
 Outlook.OlSortOrder.olDescending);
 table.Columns.Add(PR_SENT_REPRESENTING_ENTRYID);
 if (!table.EndOfTable)
 {
 //First row in Table
 Outlook.Row nextRow = table.GetNextRow();
 //EntryID of sender
 string senderID = nextRow.BinaryToString(6);
 Outlook.AddressEntry addrEntry =
 Application.Session.GetAddressEntryFromID(
 senderID);
 //Display modal dialog
 addrEntry.Details(0);
 }
}

Returning Hidden Items

The Table object has one more important feature that you should be aware of. You can use
the Table object to return hidden items in the folder by setting the TableContents parameter
in the GetFolder method to OlTableContents.olHiddenItems. You can also pass a filter restric-
tion in the GetTable method to return a subset of hidden items in a folder. Returning hidden
items in the Table object differs from the GetStorage method discussed in Chapter 5. GetStorage
returns only one single hidden item. The Table object can return all or a subset of hidden
items in a folder. The following code sample uses the Table object to write the Subject and
MessageClass for each hidden item in the Inbox to the trace listeners of the Listeners collection.

214 Part III Working with Outlook Data
private void TableForInboxHiddenItems()
{
 //Inbox
 Outlook.Folder folder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox)
 as Outlook.Folder;
 //Call GetTable with OlTableContents.olHiddenItems
 Outlook.Table table =
 folder.GetTable("",
 Outlook.OlTableContents.olHiddenItems);
 while (!table.EndOfTable)
 {
 Outlook.Row nextRow = table.GetNextRow();
 //Test for null subject
 if (nextRow["Subject"]==null)
 {
 Debug.WriteLine(nextRow["MessageClass"]);
 }
 else
 {
 Debug.WriteLine(nextRow["Subject"] + " "
 + nextRow["MessageClass"]);
 }
 }
}

Summary
This chapter focuses on the Folders collection and Folder objects as containers for Outlook
items. You’ve learned how to access and enumerate folders to work with the items that are
contained within the folder. The Items collection has some targeted usage scenarios that
revolve around recurring appointments in Calendar folders and obtaining items for write
operations. If you want to optimize performance, the new Table object is the best way to
retrieve items in a Folder or Search object. The Table object also provides the maximum
amount of flexibility, as you can easily obtain item properties that are not available on the
built-in item types.

Chapter 7

Address Books and Recipients
To communicate electronically, you need an addressing system. This chapter first provides an
overview of common address books in Outlook including the Exchange Global Address List,
the Outlook Address Book, and custom address books. Once you have the overview, you will
dive into the Recipients collection and the Recipient object. These objects provide the founda-
tion for related objects such as the AddressEntry object. Derived from the AddressEntry
object, the ExchangeUser object exposes detailed information about a user on Microsoft
Exchange. This information includes manager and direct reports relationships. The
ExchangeDistributionList object lets you enumerate Exchange distribution list owners and
membership. There are plenty of code samples to help you get started. Finally, you display
the Outlook Address Book programmatically using the SelectNamesDialog object.

In this chapter, you will:

■ Use the Recipient object to determine PrimarySmtpAddress.

■ Learn how to use the new ExchangeUser and ExchangeDistributionList objects.

■ Learn about AddressList and AddressEntry objects.

■ Display the Outlook 2007 Address Book dialog box programmatically, modify dialog
labels and recipient selectors, and return a Recipients collection.

An Overview of Outlook Address Books
This chapter focuses on the objects that allow you to send items to a collection of recipients or,
conversely, allow you to understand which recipient sent an item or the recipients to whom
the item was addressed. Before we discuss how to use address-related objects, here’s a quick
overview of the address book providers that ship with Outlook.

Exchange Global Address List

If the user is configured with an Exchange account, his or her mailbox sits on an Exchange
server, and the Exchange Address Book provider provides services that allow the Outlook cli-
ent to render addresses in the Address Book dialog box and resolve recipients to a unique
Exchange address. Chapter 2, “Outlook as a Platform,” provides an extensive discussion of
address book providers and the Exchange Address Book provider in particular.

The Exchange Global Address List (GAL) contains an aggregated list of all messaging recipi-
ents for an organization. All data in the GAL comes from Microsoft Windows Active Directory
directory service by way of global catalog servers. The GAL contains entries for individual
mailbox users, remote users (known as Exchange contacts, which you should not confuse
215

216 Part III Working with Outlook Data
with an Outlook contact) who do not belong to the corporate domain, e-mail distribution
lists, and resources such as conference rooms. In an Exchange environment, there will always
be a GAL in the AddressLists collection. You should be aware that it is possible for a given mail-
box or address entity (such as an Exchange public folder) to be hidden from the GAL.

Note Because Microsoft Office Outlook 2007 requires Microsoft Exchange Server 2000 or
later, technologies such as Microsoft Exchange 5.5 directory services are no longer used.
Exchange 2000 and later versions always integrate directly with Windows Active Directory.
Due to this integration, services such as distribution lists and address lists are delivered
through Active Directory.

A new feature of Outlook 2007 when running against a Microsoft Exchange 2007 server is the
hierarchical address book. When the hierarchical address book is turned on by an Exchange
administrator, members of an organization are displayed in a tree view control and they are
grouped by department. The Outlook 2007 object model does not provide programmatic
access to the nodes of the hierarchical address book.

Exchange Containers

Exchange 2000 and later versions support the concept of an address list container, which
allows the user to select a subset of addresses in the GAL for display in the Outlook Address
Book dialog box. An Exchange administrator can create a build rule for an Exchange container
by using the Exchange System Manager console. These build rules use the lightweight direc-
tory access protocol (LDAP) search filter syntax to create an Exchange container. For example,
you could create an address list of all full-time employees in the engineering department of
your organization. Similarly, you can create a container for all conference rooms across the
entire company. From an Outlook object model perspective, you cannot create an Exchange
container programmatically. You can enumerate the containers within the AddressLists collec-
tion and then enumerate all the AddressEntry objects within the individual container.

Offline Address Book

Cached mode allows an Exchange user to work when disconnected from the Exchange server.
The offline address book (OAB) provides similar functionality for the address book in a dis-
connected state. The OAB contains user properties that Outlook utilizes to send an e-mail
message or display information about a user. By using an OAB, Outlook does not have to con-
nect to the Exchange server to resolve names or open the information for each user. This
design reduces network traffic and improves performance.

The OAB is a snapshot of information from the GAL. Consequently, not all the information in the
GAL is available in the OAB. The following information in the GAL is not available in the OAB:

■ Custom properties added by a server administrator, such as the employee ID of each
employee

Chapter 7 Address Books and Recipients 217
■ Information about the organizational hierarchy, such as manager and direct reports lists

■ Distribution list memberships

Using the Offline Address Book dialog box available through the Send/Receive Setting dialog
box, the user or an IT administrator can elect to download full OAB details or no details. Your
code should examine the ExchangeConnectionMode property of the Namespace object to deter-
mine if the user is in a disconnected state. If the user is disconnected, your code should han-
dle the possibility that you won’t be able to obtain custom properties, information about the
user’s position in the organizational hierarchy, or distribution list membership. For complete
details on the ExchangeConnectionMode property, see Chapter 6, “Accessing Outlook Data.”

Outlook Address Book

The Outlook Address Book (also known as the Contacts Address Book, or CAB) provider
allows Outlook to display addresses for all items that contain at least one e-mail address or fax
number entry in a Contacts folder. By default, the Outlook Address Book for your default Con-
tacts folder is shown as an address list in the Outlook Address Book. If the user is configured
for only a Post Office Protocol 3 (POP3) or Internet Message Access Protocol (IMAP) account,
the Outlook Address Book is the only address book that will appear by default. The user can
control whether nondefault Contacts folders will appear in the address book. You can also
programmatically control whether a Contacts folder appears in the Outlook Address Book by
setting the ShowAsOutlookAB property on the Folder object. Typically, all Outlook users will
have a CAB in their list of address books. Outlook 2007 provides new methods that let you
obtain the corresponding Contacts folder for a given Contacts address list.

Other Address Book Providers

Although there are other address book providers that can be installed with Outlook 2007,
these address book providers represent the exception rather than the rule. Internet directory
services are used to find e-mail addresses that are not in a local Outlook Address Book or a
corporate-wide directory such as the GAL. LDAP provides access to Internet directories. To
communicate with an LDAP server, Outlook requires network connectivity to connect to the
LDAP server. Depending on the capabilities of the LDAP server, an address entry for an
Internet directory might only return the distinguished name and display name for the
address entry.

You can also install custom address book providers that appear in the AddressLists collec-
tion. Custom address book providers return an AddressList.AddressListType equal to
OlAddressList.olCustomAddressList. An example of a custom address book provider is the
Microsoft Office Outlook Messaging Service (OMS) provider that ships with Outlook 2007.
If OMS is configured as an address book, then OMS provides an address list for all items in
the default Contacts folder that have a mobile phone number. Unlike the Outlook Address
Book that returns address entries that have an e-mail address or fax number, OMS only
returns address entries that have a mobile phone number.

218 Part III Working with Outlook Data
The Recipients Collection and Recipient Objects
Before discussing Outlook address books and address entries, it’s helpful to understand the
Recipients collection and Recipient objects. Think of a Recipient object as a virtual AddressEntry
object. Unlike an AddressEntry object, a Recipient object has no corresponding address book
container per se. AddressEntry objects can be stored in a variety of locations, including an
Outlook Contacts folder or the Exchange GAL. Once a Recipient object is resolved to a phys-
ical AddressEntry object, you can use the AddressEntry property of the Recipient object to
return the actual AddressEntry object for the Recipient object. A Recipient object is said to be
resolved when its Resolved property equals true.

You add Recipient objects to the Recipients collection to create recipients for an outbound
e-mail message, sharing request, or meeting request. You can examine the Recipients collection
to enforce certain mail rules, such as controlling Reply All behavior to prevent corporate
spam. When an inbound item arrives in your mailbox, it also has a Recipients collection that
lets you understand the destination recipients of the message. Outlook also stamps inbound
messages with certain properties that you can use to determine the sender of a message or the
organizer of an appointment.

Outlook Object Model Guard Considerations

You should be aware that when you attempt to access a Recipient, Recipients, SelectNamesDialog,
AddressEntry, AddressEntries, AddressList, or AddressLists object, Outlook will display an
Address Book warning dialog box unless your code is trusted from the perspective of the
object model guard. The Outlook object model guard is discussed in detail in Chapter 19,
“Trust and Security.” See the discussion in Chapter 19 about how to ensure that your code is
trusted and does not display security prompts when you access objects that contain e-mail
addresses.

The CreateRecipient Method

Typically, Recipient objects are associated with sendable items such as a MailItem object. Send-
able items always expose a Recipients property that lets you access the Recipients collection for
the item. However, it is possible to create a free-standing Recipient object that is not bound to
the Recipients collection of an item. To create a Recipient object, you use the CreateRecipient
method of the Namespace object. This unbound Recipient object can be passed to a method
such as GetSharedDefaultFolder that allows you to open a shared Exchange folder and display
that folder in an Explorer window. GetSharedDefaultFolder is used in Exchange delegate sce-
narios where the delegate has permission to access the folder of the delegator. You must
resolve the Recipient object before you pass it to the GetSharedDefaultFolder method. To resolve
a Recipient object, you call its Resolve method.

When you create a Recipient object using the CreateRecipient method of the Namespace
object or the Add method of the Recipients collection, you must provide a recipient name.

Chapter 7 Address Books and Recipients 219
The Recipient object is then resolved against this name. A recipient name can take any of the
following formats:

■ Display name The display name of the recipient as it appears in an address list. Display
names are not necessarily unique, and you should not assume that a given name will
resolve.

■ Alias An Exchange alias is a unique identifier that corresponds to the Messaging Appli-
cation Programming Interface (MAPI) property PR_ACCOUNT. An Exchange alias is
unique, but does not guarantee that the recipient will resolve.

■ Simple Mail Transfer Protocol (SMTP) address An SMTP address takes the form
username@domain. For example, someone@example.com is a valid SMTP address.

The following code sample opens the Calendar folder of the current user’s manager. If the
user does not have permission to open the manager’s Calendar folder or an error occurs, an
alert dialog box is displayed to the user.

private void DisplayManagerCalendar()
{
 Outlook.AddressEntry addrEntry =
 Application.Session.CurrentUser.AddressEntry;
 if (addrEntry.Type == "EX")
 {
 Outlook.ExchangeUser manager =
 Application.Session.CurrentUser.
 AddressEntry.GetExchangeUser().GetExchangeUserManager();
 if (manager != null)
 {
 Outlook.Recipient recip =
 Application.Session.CreateRecipient(manager.Name);
 if (recip.Resolve())
 {
 try
 {
 Outlook.Folder folder =
 Application.Session.GetSharedDefaultFolder(
 recip, Outlook.OlDefaultFolders.olFolderCalendar)
 as Outlook.Folder;
 folder.Display();
 }
 catch
 {
 MessageBox.Show("Could not open manager's calendar.",
 "GetSharedDefaultFolder Example",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 }
 }

 }
 }
}

220 Part III Working with Outlook Data
Working with the Recipients Collection Object

The Recipients collection implements typical collection object methods such as Add, Remove,
and Item (the Index operator). It also supports a ResolveAll method that resolves all the
Recipient objects in the collection. If all Recipient objects in the collection are resolved, then
ResolveAll returns true. If one or more of the Recipient objects fail to resolve, then ResolveAll
returns false.

Adding Recipients to a MailItem Object

When you add a Recipient object to the Recipients collection of a MailItem object, you can
control whether the recipient is a To, Cc, or Bcc recipient by setting the Type property of the
Recipient object. Unfortunately, the Type property of the Recipient object is typed as an int
(Integer in Microsoft Visual Basic) and does not correlate to a specific recipient type enumer-
ation. You can, however, determine the type of a message Recipient object by setting the Type
property to a value from the OlMailRecipientType enumeration. The following code sample
sets To, Cc, and Bcc recipients for a message by setting the Recipient.Type property to the cor-
rect value of OlMailRecipientType:

private void SetRecipientTypeForMail()
{
 Outlook.MailItem mail = Application.CreateItem(
 Outlook.OlItemType.olMailItem) as Outlook.MailItem;
 mail.Subject = "Sample Message";
 Outlook.Recipient recipTo =
 mail.Recipients.Add("someone@example.com");
 recipTo.Type = (int)Outlook.OlMailRecipientType.olTo;
 Outlook.Recipient recipCc =
 mail.Recipients.Add("someonecc@example.com");
 recipCc.Type = (int)Outlook.OlMailRecipientType.olCC;
 Outlook.Recipient recipBcc =
 mail.Recipients.Add("someonebcc@example.com");
 recipBcc.Type = (int)Outlook.OlMailRecipientType.olBCC;
 mail.Recipients.ResolveAll();
 mail.Display(false);
}

Adding Recipients to an AppointmentItem Object

Adding recipients to an AppointmentItem object that represents a meeting request is very sim-
ilar to adding recipients to a message. In the case of an AppointmentItem object, you use the
OlMeetingRecipientType enumeration to specify whether the recipient of the message is a
required, optional, or resource attendee. The following code sample creates an appointment
and adds required and optional attendees. It also adds a conference room for the meeting.
Notice that you must set the MeetingStatus property to OlMeetingStatus.olMeeting to change the
appointment into a meeting request.

Chapter 7 Address Books and Recipients 221
private void SetRecipientTypeForAppt()
{
 Outlook.AppointmentItem appt =
 Application.CreateItem(
 Outlook.OlItemType.olAppointmentItem)
 as Outlook.AppointmentItem;
 appt.Subject = "Customer Review";
 appt.MeetingStatus = Outlook.OlMeetingStatus.olMeeting;
 appt.Location = "36/2021";
 appt.Start = DateTime.Parse("10/20/2006 10:00 AM");
 appt.End = DateTime.Parse("10/20/2006 11:00 AM");
 Outlook.Recipient recipRequired =
 appt.Recipients.Add("Ryan Gregg");
 recipRequired.Type =
 (int)Outlook.OlMeetingRecipientType.olRequired;
 Outlook.Recipient recipOptional =
 appt.Recipients.Add("Peter Allenspach");
 recipOptional.Type =
 (int)Outlook.OlMeetingRecipientType.olOptional;
 Outlook.Recipient recipConf =
 appt.Recipients.Add("Conf Room 36/2021 (14) AV");
 recipConf.Type =
 (int)Outlook.OlMeetingRecipientType.olResource;
 appt.Recipients.ResolveAll();
 appt.Display(false);
}

Resolving Recipients

To resolve a recipient, you can call the ResolveAll method of the Recipients collection or the
Resolve method of the Recipient object. Both of these methods return a bool (Boolean in Visual
Basic) that indicates whether the recipient has been resolved. To determine the resolution sta-
tus, you can examine the Resolved property of the Recipient object. When the Resolved property
is false, the EntryID property of the Recipient object is null (Nothing in Visual Basic). When a
Recipient object is resolved, it is resolved against address lists in the user’s profile according to
the ResolutionOrder property of the AddressList objects in the AddressLists collection. For more
information about resolution order, see the section “Determining Resolution Order of
Address Lists” later in this chapter.

It is possible for an address not to be resolved due to an ambiguous or invalid name. For
example, let’s assume that you want to resolve a recipient where the recipient name equals
“Jane.” Because there could be more than one individual named Jane in an organization, Out-
look displays the Check Names dialog box (also known as the Ambiguous Name Resolution
dialog box) shown in Figure 7-1 to allow the user to resolve an ambiguous name.

222 Part III Working with Outlook Data
Figure 7-1 The Check Names dialog box.

You can write code that will display the Check Names dialog box programmatically if the
recipient cannot be resolved. The following ResolveRecipient method displays the Check
Names dialog box if the name cannot be resolved. If the user cancels the Check Names dialog
box, the code presents the Select Names dialog box to the user. The Select Names dialog box
is the Outlook Address Book. If the user selects a name from the Select Names dialog box and
the name is resolved, then ResolveRecipient returns the AddressEntry property of the resolved
Recipient object. If the user cancels the Select Names dialog box, ResolveRecipient returns null.

private void ResolveRecipients(Outlook.Recipients recips)
{
 if (recips == null)
 {
 throw new ArgumentNullException();
 }
 if (recips.ResolveAll())
 {
 return;
 }
 else
 {
 for(int i = recips.Count; i > 0; i--)
 {
 if (!recips[i].Resolve())
 {
 Outlook.SelectNamesDialog snd =
 Application.Session.
 GetSelectNamesDialog();
 snd.Recipients.Add(recips[i].Name);
 snd.NumberOfRecipientSelectors =
 Outlook.OlRecipientSelectors.olShowTo;
 snd.AllowMultipleSelection = false;
 snd.Display();
 if (!snd.Recipients.ResolveAll())
 {
 recips.Remove(i);

Chapter 7 Address Books and Recipients 223
 }
 else
 {
 recips.Remove(i);
 recips.Add(snd.Recipients[1].Address);
 }
 snd = null;
 }
 }
 }
}

Note The Check Names dialog box and the Select Names dialog box are parented to the
main Outlook window. The Check Names dialog box is modal to the Select Names dialog
box. The Select Names dialog box is modeless. You cannot parent these dialog boxes to your
own custom dialog box.

Obtaining the SMTP Address of a Recipient

The Recipient object does not directly expose the SMTP address of a resolved recipient. How-
ever, you can use the PropertyAccessor object to obtain the MAPI property PR_SMTP_ADDRESS.
The following GetSMTPAddress method returns the SMTP address of a resolved recipient:

private string GetSMTPAddress(Outlook.Recipient recip)
{
 const string PR_SMTP_ADDRESS =
 "http://schemas.microsoft.com/mapi/proptag/0x39FE001E";
 if (recip != null)
 {
 if (!recip.Resolved)
 {
 return null;
 }
 else
 {
 Outlook.PropertyAccessor pa = recip.PropertyAccessor;
 try
 {
 string smtpAddress =
 pa.GetProperty(PR_SMTP_ADDRESS).ToString();
 return smtpAddress;
 }
 catch { return null; }
 }
 }
 else
 {
 throw new ArgumentNullException();
 }
}

224 Part III Working with Outlook Data

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The AddressLists Collection and AddressList Objects
The AddressLists collection represents all address lists available in the current profile. You
obtain an instance of the AddressLists collection from the AddressLists property of the
Namespace object.

Enumerating AddressList Objects

To enumerate the AddressList objects in the AddressLists collection, use a foreach construct as
shown in the following example. This example creates a string that contains the Name,
ResolutionOrder, IsReadOnly, and IsInitialAddressList properties of the AddressList object and
writes the string to the trace listeners of the Listeners collection.

private void EnumerateAddressLists()
{
 Outlook.AddressLists addrLists =
 Application.Session.AddressLists;
 foreach (Outlook.AddressList addrList in addrLists)
 {
 StringBuilder sb = new StringBuilder();
 sb.AppendLine("Display Name: " + addrList.Name);
 sb.AppendLine("Resolution Order: "
 + addrList.ResolutionOrder.ToString());
 sb.AppendLine("Read-only : "
 + addrList.IsReadOnly.ToString());
 sb.AppendLine("Initial Address List: "
 + addrList.IsInitialAddressList.ToString());
 sb.AppendLine("");
 Debug.WriteLine(sb.ToString());
 }
}

The AddressListType Property

To determine the type of AddressList object, you should use the new AddressListType property.
This property returns an OlAddressListType constant. Valid OlAddressListType values are shown
in Table 7-1.

Table 7-1 OlAddressListType Values

Value Description
OlCustomAddressList A custom address book provider
OlExchangeContainer A container for address lists on an Exchange server
olExchangeGlobalAddressList An Exchange GAL
olOutlookAddressList An address list that corresponds to the Outlook Contacts

Address Book
olOutlookLdapAddressList An address list that uses LDAP

Chapter 7 Address Books and Recipients 225
Determining Resolution Order of Address Lists

New to Outlook 2007, the ResolutionOrder property lets you determine the resolution order
for a specific AddressList object. The ResolutionOrder property indicates the order that Outlook
uses to resolve recipient addresses.

Note The order of resolution for the ResolutionOrder property is one-based. The first
AddressList object to be used for resolving recipient names has a ResolutionOrder value equal
to 1. If an AddressList object is not used to resolve addresses, then its ResolutionOrder prop-
erty has a value of –1.

The ResolutionOrder property corresponds to the position of the address list in the When
Sending Mail, Check Names Using These Address Lists In The Following Order list box in the
Addressing dialog box shown in Figure 7-2. To access the Addressing dialog box, click Tools.
In the Address Book dialog box, click Options.

Figure 7-2 The Addressing dialog box controls resolution order.

The ResolutionOrder property is read-only. You cannot change the resolution order of an
address list through the Outlook object model.

Finding a Specific AddressList Object

The AddressLists collection does not support an explicit method to find an address list.
Because the AddressLists collection is generally a small collection, you can simply iterate over
the collection and find the specific AddressList object by performing a name comparison.
There are some helper methods that have been introduced in Outlook 2007 to return the GAL
in particular. Because the name of the GAL is dependent on the locale, Outlook 2007 intro-
duces the GetGlobalAddressList method on the Namespace object. The following code sample
displays a message with the number of address entries in the GAL.

226 Part III Working with Outlook Data
private void DemoGetGlobalAddressList()
{
 Outlook.AddressList gal =
 Application.Session.GetGlobalAddressList();
 string message = "There are " + gal.AddressEntries.Count
 + " entries in the GAL.";
 MessageBox.Show(message, "Global Address List",
 MessageBoxButtons.OK, MessageBoxIcon.Information);
}

Determining the Contacts Folder for a Contacts Address Book

One of the problems that troubled developers in past versions of Outlook was the inability to
obtain a reference to the Contacts folder that corresponded to a given CAB. Because multiple
CABs can have the same name, resolving the address book name to a Contact folder name was
not productive. In Outlook 2007, the GetContactsFolder method on the AddressList object
solves this problem for you. If the AddressList object represents a Contacts folder, then
GetContactsFolder will return a Folder object that represents the Contacts folder. If the
AddressList object does not represent a Contacts folder or the Contacts folder cannot be
found (in the case of a Contacts folder in the Public Folders store), then GetContacts Folder
returns null (Nothing in Visual Basic).

To demonstrate how this works in practice, take a look at the following code sample. This
sample uses the GetDefaultFolder method to return the default Contacts folder. Once you’ve
obtained a Folder object representing the default Contacts folder, you enumerate the AddressLists
collection and use GetContactsFolder to find the AddressList object that represents the default
Contacts folder (see Figure 7-3). You compare the EntryID values of these two folder objects
using the new CompareEntryIDs method of the Namespace object. Once you have a match, you
set the InitialAddressList property of the SelectNamesDialog object to the AddressList object that
represents the default Contacts folder. When you set this property of the SelectNamesDialog
object, you cause the specified AddressList object to be displayed first in the Outlook Address
Book no matter what the default settings are for the initial address list. Finally, the Outlook
Address Book is displayed by calling the Display method of the SelectNamesDialog object.

private void ShowContactsFolderAsInitialAddressList()
{
 Outlook.AddressLists addrLists;
 Outlook.Folder contactsFolder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderContacts)
 as Outlook.Folder;
 addrLists = Application.Session.AddressLists;
 foreach(Outlook.AddressList addrList in addrLists)
 {
 Outlook.Folder testFolder =
 addrList.GetContactsFolder() as Outlook.Folder;
 if (testFolder != null)
 {
 //Test to determine if Folder returned

Chapter 7 Address Books and Recipients 227
 //by GetContactsFolder has same EntryID
 //as default Contacts folder.
 if (Application.Session.CompareEntryIDs(
 contactsFolder.EntryID, testFolder.EntryID))
 {
 Outlook.SelectNamesDialog snd =
 Application.
 Session.GetSelectNamesDialog();
 snd.InitialAddressList = addrList;
 snd.Display();
 }
 }
 }
}

Figure 7-3 Use the GetContactsFolder method to display the Contacts address list.

The AddressEntries Collection and AddressEntry Object
The AddressEntries collection and AddressEntry object let you access the contents of an individ-
ual AddressList object. The AddressEntries object represents the collection of AddressEntry
objects in the parent AddressList object. The AddressEntry object represents an individual
address entry in an address list. The AddressEntry object has been enhanced in Outlook 2007
so that you can accurately determine the type of the AddressEntry object. For users connected to
an Exchange server, Outlook 2007 introduces two objects that derive from the base AddressEntry
object, the ExchangeUser and ExchangeDistributionList objects. Later in this chapter you’ll see
how these new objects make your development work easier when discovering information
about an Exchange user. If your organization has implemented an organizational hierarchy in
Active Directory, you can use the ExchangeUser object to build an organizational chart or
traverse the hierarchy by understanding manager and direct reports relationships.

To enumerate addresses in an address list, you obtain the AddressEntries collection from the
AddressEntries property of the AddressList object. The following code sample enumerates the first

228 Part III Working with Outlook Data
100 primary SMTP addresses in the GAL. To obtain the SMTP address for an AddressEntry
object, you must cast it to an ExchangeUser or ExchangeDistributionList object using the
GetExchangeUser or GetExchangeDistributionList methods on the AddressEntry object. In the
case of an AddressEntry object that represents an Exchange user, this method returns an
ExchangeUser object that exposes properties of the AddressEntry object in a first-class man-
ner. Instead of using property tags as required by Collaboration Data Objects 1.21, you sim-
ply use the correct ExchangeUser property such as JobTitle, Department, Alias, PhoneNumber,
or PrimarySMTPAddress.

private void EnumerateGAL()
{
 Outlook.AddressList gal =
 Application.Session.GetGlobalAddressList();
 if (gal != null)
 {
 for (int i = 1;
 i <= Math.Min(100,gal.AddressEntries.Count -1); i++)
 {
 Outlook.AddressEntry addrEntry =
 gal.AddressEntries[i];
 if(addrEntry.AddressEntryUserType ==
 Outlook.OlAddressEntryUserType.
 olExchangeUserAddressEntry
 || addrEntry.AddressEntryUserType ==
 Outlook.OlAddressEntryUserType.
 olExchangeRemoteUserAddressEntry)
 {
 Outlook.ExchangeUser exchUser =
 addrEntry.GetExchangeUser();
 Debug.WriteLine(exchUser.Name + " "
 + exchUser.PrimarySmtpAddress);
 }
 if (addrEntry.AddressEntryUserType ==
 Outlook.OlAddressEntryUserType.
 olExchangeDistributionListAddressEntry)
 {
 Outlook.ExchangeDistributionList exchDL =
 addrEntry.GetExchangeDistributionList();
 Debug.WriteLine(exchDL.Name + " "
 + exchDL.PrimarySmtpAddress);
 }
 }
 }
}

The AddressEntryUserType Property

To determine the type of AddressEntry object, you should use the new AddressEntryUserType
property. This property returns an OlAddressEntryUserType constant. Valid
OlAddressEntryUserType values are shown in Table 7-2.

Chapter 7 Address Books and Recipients 229
Finding a Specific AddressEntry Object

The Outlook object model does not provide a method to find a specific AddressEntry object
in the AddressEntries collection. You also cannot restrict the AddressEntries collection to
return a subset of AddressEntry objects. If you need to find a specific AddressEntry object in
an AddressList object, you must enumerate the list to find a match. However, you can use
recipient resolution to perform a function similar to finding a specific address entry. See the
section “Resolving Recipients” earlier in this chapter.

The GetAddressEntryFromID Method

If you have the EntryID value of an AddressEntry object, you can use the GetAddressEntryFromID
method of the Namespace object to return the AddressEntry object represented by the EntryID
value. GetAddressEntryFromID is new to Outlook 2007. The GetSenderSMTPAddress procedure
uses the GetAddressEntryFromID method to return an AddressEntry object that represents the
sender of a message.

Although the Outlook object model provides you with the ability to return the SenderName and
SenderEmailAddress properties for a MailItem object, these properties don’t correlate to a
unique SMTP address. To obtain the EntryID value of the sender’s AddressEntry, the code uses
the PropertyAccessor object to return the MAPI property PR_SENT_REPRESENTING_ENTRYID.
This property always represents the sender of the message rather than the delegate in a dele-
gate scenario. In the case of a delegate scenario, the PR_SENDER_ENTRYID would represent
the delegate rather than the delegator.

Table 7-2 OlAddressEntryUserType Values

Value Description
olExchangeAgentAddressEntry An address entry that is an Exchange agent
olExchangeDistributionListAddressEntry An address entry that is an Exchange distribution list
olExchangeOrganizationAddressEntry An address entry that is an Exchange organization
olExchangePublicFolderAddressEntry An address entry that is an Exchange public folder
olExchangeRemoteUserAddressEntry An Exchange user that belongs to a different

Exchange forest
olExchangeUserAddressEntry An Exchange user that belongs to the same Exchange

forest
olLdapAddressEntry An address entry that uses LDAP
olOtherAddressEntry A custom or some other type of address entry such as

FAX or MOBILE
olOutlookContactAddressEntry An address entry in an Outlook Contacts folder
olOutlookDistributionListAddressEntry An address entry that is an Outlook distribution list
olSmtpAddressEntry An address entry that uses SMTP

230 Part III Working with Outlook Data
private string GetSenderSMTPAddress(Outlook.MailItem mail)
{
 if (mail == null)
 {
 throw new ArgumentNullException();
 }
 string PR_SENT_REPRESENTING_ENTRYID =
 @"http://schemas.microsoft.com/mapi/proptag/0x00410102";
 string PR_SMTP_ADDRESS =
 @"http://schemas.microsoft.com/mapi/proptag/0x39FE001E";
 if (mail.SenderEmailType == "EX")
 {
 string senderEntryID =
 mail.PropertyAccessor.BinaryToString(
 mail.PropertyAccessor.GetProperty(
 PR_SENT_REPRESENTING_ENTRYID));
 Outlook.AddressEntry sender =
 Application.Session.
 GetAddressEntryFromID(senderEntryID);
 if (sender != null)
 {
 //Now we have an AddressEntry representing the Sender
 if (sender.AddressEntryUserType ==
 Outlook.OlAddressEntryUserType.
 olExchangeUserAddressEntry
 || sender.AddressEntryUserType ==
 Outlook.OlAddressEntryUserType.
 olExchangeRemoteUserAddressEntry)
 {
 //Use the ExchangeUser object PrimarySMTPAddress
 Outlook.ExchangeUser exchUser =
 sender.GetExchangeUser();
 if (exchUser != null)
 {
 return exchUser.PrimarySmtpAddress;
 }
 else
 {
 return null;
 }
 }
 else
 {
 return sender.PropertyAccessor.GetProperty(
 PR_SMTP_ADDRESS) as string;
 }
 }
 else
 {
 return null;
 }
 }
 else
 {
 return mail.SenderEmailAddress;
 }
}

Chapter 7 Address Books and Recipients 231
Displaying AddressEntry Details

To display the Details dialog box for an address entry, you call the Details method of the
AddressEntry object. The dialog box displayed depends on the type of address entry. If the
AddressEntry object represents an Exchange user, then a dialog box similar to Figure 7-4 is dis-
played. If the AddressEntry object represents an Exchange distribution list, then a dialog box
similar to Figure 7-5 is displayed.

Figure 7-4 Details dialog box for an AddressEntry object that represents an Exchange user.

Figure 7-5 Details dialog box for an AddressEntry object that represents an Exchange distribution list.

If the AddressEntry object represents an Outlook contact, then a Contact Inspector will be dis-
played. If the AddressEntry object represents an Outlook personal distribution list, an Outlook
distribution list Inspector will appear. If the AddressEntry object represents an SMTP address,
then a dialog box similar to Figure 7-6 will be displayed.

232 Part III Working with Outlook Data
Figure 7-6 Details dialog box for an SMTP AddressEntry object.

Getting Availability Information for a User

You can determine whether someone is available at a given time using the GetFreeBusy
method of the AddressEntry object. This method returns a string representing 30 days of avail-
ability (also known as free/busy) information starting at midnight on a specified date. Each
character in the string indicates whether the person is available during a specified time
period. The CompleteFormat parameter of the GetFreeBusy method allows you to specify the
granularity of availability details.

If CompleteFormat is set to false, the default value, the string returned by the GetFreeBusy
method contains one of the characters shown in Table 7-3 for each time slot in the availability
string.

If CompleteFormat is set to true, the string returned by the GetFreeBusy method contains one of
the characters shown in Table 7-4 for each time slot in the availability string.

For example, the following statement returns a string 1,440 characters long (48 half-hour
periods over 30 days) containing 0 for each half-hour period the person is free, 1 for each
period the person has a busy time marked tentative, 3 for each period the person has a busy
time marked out of office, and 2 for other busy periods:

Table 7-3 CompleteFormat Equals false

Character Description
0 The time slot represents a free period.
1 The time slot represents a tentative, out of office, or busy period.

Table 7-4 CompleteFormat Equals true

Character Description
0 The time slot represents a free period.
1 The time slot represents a tentative period.
2 The time slot represents a busy period.
3 The time slot represents an out of office period.

Chapter 7 Address Books and Recipients 233
string status = myAddressEntry.GetFreeBusy("7/1/07", 30, true);

The following statement returns a string 720 characters long (24 one-hour periods over 30
days) containing 0 for each hour the person is free and 1 for each hour the person is busy,
regardless of how the busy periods are designated:

string status = myAddressEntry.GetFreeBusy("7/1/07", 60, false);

The following code sample displays the next time that the user’s manager has an open time
slot with a duration of 60 minutes. Note that this code sample makes assumptions about the
manager’s working hours and compares the free/busy string character representing a time
slot to default working hours. If you want to expand this sample to use actual working hours,
take a look at the GetWorkHoursXML sample in the section “GetStorage Method” in Chapter 6.
If you have sufficient permission on another user’s calendar, you can obtain working hours
from that user’s Calendar folder.

private void GetManagerOpenInterval()
{
 const int slotLength = 60;
 Outlook.AddressEntry addrEntry =
 Application.Session.CurrentUser.AddressEntry;
 if (addrEntry.Type == "EX")
 {
 Outlook.ExchangeUser manager =
 Application.Session.CurrentUser.
 AddressEntry.GetExchangeUser().GetExchangeUserManager();
 if (manager != null)
 {
 string freeBusy = manager.GetFreeBusy(
 DateTime.Now, slotLength, true);
 for (int i = 1; i < freeBusy.Length; i++)
 {
 if (freeBusy.Substring(i, 1) == "0")
 {
 //Get number of minutes into
 //the day for free interval
 double busySlot = (i - 1) * slotLength;
 //Get an actual date/time
 DateTime dateBusySlot =
 DateTime.Now.Date.AddMinutes(busySlot);
 //dateBusySlot.AddMinutes(busySlot);
 if (dateBusySlot.TimeOfDay >=
 DateTime.Parse("8:00 AM").TimeOfDay &
 dateBusySlot.TimeOfDay <=
 DateTime.Parse("5:00 PM").TimeOfDay &
 !(dateBusySlot.DayOfWeek == DayOfWeek.Saturday |
 dateBusySlot.DayOfWeek == DayOfWeek.Sunday))
 {
 StringBuilder sb = new StringBuilder();
 sb.AppendLine(manager.Name
 + " first open interval:");
 sb.AppendLine(dateBusySlot.ToString("f"));

234 Part III Working with Outlook Data
 Debug.WriteLine(sb.ToString());
 }
 }
 }
 }
 }
}

Note You cannot obtain availability information for an AddressEntry object that represents
an Exchange distribution list. If you need to determine availability information for members of
a distribution list, you should obtain the members of the list by using the
GetExchangeDistributionListMembers method. Once you have an AddressEntries collection that
represents the members of the list, determine if the AddressEntry object in the collection rep-
resents an ExchangeUser object. If the AddressEntry object represents an ExchangeUser object,
then call the GetFreeBusy method on each individual ExchangeUser object in the distribution list.

The ExchangeUser Object
The ExchangeUser object provides detailed information about an AddressEntry object that rep-
resents an Exchange mailbox user. The ExchangeUser object is derived from the AddressEntry
object, and is returned instead of an AddressEntry object when the caller performs a query
interface on the AddressEntry object. To perform the cast, just call the GetExchangeUser
method on the AddressEntry object.

Working with ExchangeUser Properties

The ExchangeUser object provides first-class access to properties applicable to Exchange users
such as FirstName, LastName, JobTitle, and OfficeLocation. This object also implements proper-
ties for Japanese phonetic rendering (yomigana) of the following properties:

■ YomiCompanyName

■ YomiDepartment

■ YomiDisplayName

■ YomiFirstName

■ YomiLastName

If these properties are not supported on the version of Exchange Server on which the user’s
mailbox is located, they will return an empty string.

You can also access other custom properties specific to the Exchange user that are not
exposed in the object model through the PropertyAccessor object. An example of an Exchange
custom property would be a property that represents the EmployeeID of the mailbox user

Chapter 7 Address Books and Recipients 235
(defined as an extension to the Active Directory schema) or a legacy Exchange custom
attribute property.

Note Some of the explicit built-in properties on the ExchangeUser object are read/write
properties. Setting these properties requires the code to be running under an appropriate
Exchange administrator account. Without sufficient permissions, calling the
ExchangeUser.Update method will result in a Permission Denied error. Outlook raises the error
when you attempt to save the underlying AddressEntry object rather than when you set the
property.

Obtaining an ExchangeUser Object from an AddressEntry Object

To obtain an ExchangeUser object from an AddressEntry object, you call the GetExchangeUser
method on an AddressEntry object. The following procedure obtains the AddressEntry property
for the Recipient object returned by Namespace.CurrentUser. If the AddressEntry object repre-
sents an Exchange mailbox user, then the GetExchangeUser method is called to return an
ExchangeUser object. The Name, PrimarySMTPAddress, JobTitle, Department, OfficeLocation,
BusinessTelephoneNumber, and MobileTelephoneNumber properties are written to the trace lis-
teners of the Listeners collection.

private void GetCurrentUserInfo()
{
 Outlook.AddressEntry addrEntry =
 Application.Session.CurrentUser.AddressEntry;
 if (addrEntry.Type == "EX")
 {
 Outlook.ExchangeUser currentUser =
 Application.Session.CurrentUser.
 AddressEntry.GetExchangeUser();
 if (currentUser != null)
 {
 StringBuilder sb = new StringBuilder();
 sb.AppendLine("Name: "
 + currentUser.Name);
 sb.AppendLine("STMP address: "
 + currentUser.PrimarySmtpAddress);
 sb.AppendLine("Title: "
 + currentUser.JobTitle);
 sb.AppendLine("Department: "
 + currentUser.Department);
 sb.AppendLine("Location: "
 + currentUser.OfficeLocation);
 sb.AppendLine("Business phone: "
 + currentUser.BusinessTelephoneNumber);
 sb.AppendLine("Mobile phone: "
 + currentUser.MobileTelephoneNumber);
 Debug.WriteLine(sb.ToString());
 }
 }
}

236 Part III Working with Outlook Data
The GetExchangeUserManager Method

The GetExchangeUserManager method returns an ExchangeUser object that represents the
manager of an ExchangeUser object in the organizational hierarchy. The logged-on user must
be online for this method to return an ExchangeUser object. If the user is not online, then
GetExchangeUserManager will return null (Nothing in Visual Basic). Your code should test for
this possibility. Similar to the GetCurrentUser procedure earlier, this routine writes manager
information to the trace listeners of the Listeners collection.

private void GetManagerInfo()
{
 Outlook.AddressEntry currentUser =
 Application.Session.CurrentUser.AddressEntry;
 if (currentUser.Type == "EX")
 {
 Outlook.ExchangeUser manager =
 currentUser.GetExchangeUser().GetExchangeUserManager();
 if (manager != null)
 {
 StringBuilder sb = new StringBuilder();
 sb.AppendLine("Name: "
 + manager.Name);
 sb.AppendLine("STMP address: "
 + manager.PrimarySmtpAddress);
 sb.AppendLine("Title: "
 + manager.JobTitle);
 sb.AppendLine("Department: "
 + manager.Department);
 sb.AppendLine("Location: "
 + manager.OfficeLocation);
 sb.AppendLine("Business phone: "
 + manager.BusinessTelephoneNumber);
 sb.AppendLine("Mobile phone: "
 + manager.MobileTelephoneNumber);
 Debug.WriteLine(sb.ToString());
 }
 }
}

The GetDirectReports Method

The GetDirectReports method returns an AddressEntries collection that represents the address
entries for all the direct reports of a given Exchange user. If the user has no direct reports, then
GetDirectReports().Count will equal zero (0). The logged-on user must be online for this
method to return an AddressEntries collection. If the user is not online, GetDirectReports will
return null (Nothing in Visual Basic). Your code should test for this possibility. The following
procedure obtains a reference to the current user’s manager and then writes information
about each of the manager’s direct reports to the trace listeners of the Listeners collection:

Chapter 7 Address Books and Recipients 237
private void GetManagerDirectReports()
{
 Outlook.AddressEntry currentUser =
 Application.Session.CurrentUser.AddressEntry;
 if (currentUser.Type == "EX")
 {
 Outlook.ExchangeUser manager =
 currentUser.GetExchangeUser().GetExchangeUserManager();
 if (manager != null)
 {
 Outlook.AddressEntries addrEntries =
 manager.GetDirectReports();
 if (addrEntries != null)
 {
 foreach (Outlook.AddressEntry addrEntry
 in addrEntries)
 {
 Outlook.ExchangeUser exchUser =
 addrEntry.GetExchangeUser();
 StringBuilder sb = new StringBuilder();
 sb.AppendLine("Name: "
 + exchUser.Name);
 sb.AppendLine("Title: "
 + exchUser.JobTitle);
 sb.AppendLine("Department: "
 + exchUser.Department);
 sb.AppendLine("Location: "
 + exchUser.OfficeLocation);
 Debug.WriteLine(sb.ToString());
 }
 }
 }
 }
}

The GetMemberOfList Method

The GetMemberOfList method returns an AddressEntries collection that represents the address
entries for all distribution lists where the Exchange user is a member. If the user is not a member
of any distribution lists, then GetMemberOfList().Count will equal zero (0). The logged-on user
must be online for this method to return an AddressEntries collection. If the user is not online,
GetMemberOfList will return null (Nothing in Visual Basic). Your code should test for this possi-
bility. The following procedure obtains a reference to the current user and then writes informa-
tion about each of the user’s distribution lists to the trace listeners of the Listeners collection:

private void GetCurrentUserMembership()
{
 Outlook.AddressEntry currentUser =
 Application.Session.CurrentUser.AddressEntry;
 if (currentUser.Type == "EX")
 {
 Outlook.ExchangeUser exchUser =
 currentUser.GetExchangeUser();

238 Part III Working with Outlook Data
 if (exchUser != null)
 {
 Outlook.AddressEntries addrEntries =
 exchUser.GetMemberOfList();
 if (addrEntries != null)
 {
 foreach (Outlook.AddressEntry addrEntry
 in addrEntries)
 {
 Debug.WriteLine(addrEntry.Name);
 }
 }
 }
 }
}

Obtaining Proxy Addresses for an ExchangeUser Object

The ExchangeUser object does not directly expose the proxy addresses for the user.
However, you can use the PropertyAccessor object to obtain the MAPI property
PR_EMS_AB_PROXY_ADDRESSES. This property is a multivalued string property that con-
tains all the foreign addresses for a given user. The following GetSMTPAddress procedure
returns an array of strings containing the proxy addresses for the ExchangeUser object passed
as a method argument:

private string[] GetProxyAddresses(Outlook.ExchangeUser exchUser)
{
 const string PR_EMS_AB_PROXY_ADDRESSES =
 "http://schemas.microsoft.com/mapi/proptag/0x800F101E";
 if (exchUser != null)
 {
 return exchUser.PropertyAccessor.GetProperty(
 PR_EMS_AB_PROXY_ADDRESSES) as string[];
 }
 else
 {
 throw new ArgumentNullException();
 }
}

The ExchangeDistributionList Object
The ExchangeDistributionList object provides detailed information about an AddressEntry
object that represents an Exchange distribution list. The ExchangeDistributionList object is
derived from the AddressEntry object and is returned instead of an AddressEntry object when
the caller performs a query interface on the AddressEntry object. To perform the cast, just call
the GetExchangeDistributionList method on the AddressEntry object.

Chapter 7 Address Books and Recipients 239
Compared to the ExchangeUser object, ExchangeDistributionList exposes a limited number of
properties such as Alias, Comments, and PrimarySMTPAddress. However, this object does allow
you to enumerate the members of the list, return an AddressEntries collection that contains the
owners of the distribution list, and determine distribution list membership.

To obtain an ExchangeDistributionList object from an AddressEntry object, call the
GetExchangeDistributionList method on an AddressEntry object.

The GetExchangeDistributionListMembers Method

The GetExchangeDistributionListMembers method returns an AddressEntries collection that con-
tains all the members of the list. Because distribution lists can be nested inside of other distribu-
tion lists, the AddressEntries collection returned by GetExchangeDistributionListMembers can
represent any type of Exchange AddressEntry object. The logged-on user must be online
for this method to return an AddressEntries collection. If the user is not online,
GetExchangeDistributionListMembers will return null (Nothing in Visual Basic). Your code
should test for this possibility.

The following code sample displays the All Groups container of the Select Names dialog box.
When the user selects a distribution list from the list, the distribution list members are written
to the trace listeners of the Listeners collection.

Important Expanding distribution list members programmatically can place a perfor-
mance burden on an Exchange server. Use the GetExchangeDistributionListMembers method
cautiously, and understand that your code will be slow when expanding large distribution lists.

private void GetDistributionListMembers()
{
 Outlook.SelectNamesDialog snd =
 Application.Session.GetSelectNamesDialog();
 Outlook.AddressLists addrLists =
 Application.Session.AddressLists;
 foreach (Outlook.AddressList addrList in addrLists)
 {
 if (addrList.Name == "All Groups")
 {
 snd.InitialAddressList = addrList;
 break;
 }
 }
 snd.NumberOfRecipientSelectors =
 Outlook.OlRecipientSelectors.olShowTo;
 snd.ToLabel = "D/L";
 snd.ShowOnlyInitialAddressList = true;
 snd.AllowMultipleSelection = false;
 snd.Display();
 if(snd.Recipients.Count > 0)
 {
 Outlook.AddressEntry addrEntry =

240 Part III Working with Outlook Data
 snd.Recipients[1].AddressEntry;
 if (addrEntry.AddressEntryUserType ==
 Outlook.OlAddressEntryUserType.
 olExchangeDistributionListAddressEntry)
 {
 Outlook.ExchangeDistributionList exchDL =
 addrEntry.GetExchangeDistributionList();
 Outlook.AddressEntries addrEntries =
 exchDL.GetExchangeDistributionListMembers();
 if(addrEntries != null)
 foreach (Outlook.AddressEntry exchDLMember
 in addrEntries)
 {
 Debug.WriteLine(exchDLMember.Name);
 }
 }
 }
}

The GetMemberOfList Method

The GetMemberOfList method returns an AddressEntries collection that represents the address
entries for all distribution lists where the Exchange distribution list is a member. If the dis-
tribution list is not a member of any other distribution lists, GetMemberOfList returns an
AddressEntries collection with Count equal to zero (0). The logged-on user must be online for
this method to return an AddressEntries collection. If the user is not online, GetMemberOfList
will return null (Nothing in Visual Basic). Your code should test for this possibility.

The GetOwners Method

The GetOwners method returns an AddressEntries collection that represents the address
entries for all owners of the Exchange distribution list. If the distribution list has no owners,
GetOwners returns an AddressEntries collection with Count equal to zero (0). The logged-on
user must be online for this method to return an AddressEntries collection. If the user is not
online, GetOwners will return null (Nothing in Visual Basic). Your code should test for this pos-
sibility.

The SelectNamesDialog Object
Finally, the Outlook object model will let you display an Outlook Address Book without hav-
ing to resort to Collaboration Data Objects 1.21, Extended MAPI, or third-party libraries. The
SelectNamesDialog object shown in Figure 7-7 displays the Select Names dialog box for the
user to select entries from one or more address lists and returns the selected entries in the
Recipients collection object returned by the read-only property SelectNamesDialog.Recipients.

To obtain an instance of the SelectNamesDialog instance, you call the GetSelectNamesDialog
method on the Namespace object. Once you have an instance of SelectNamesDialog, you set
properties or call a method to configure the dialog box in exactly the manner that you desire.

Chapter 7 Address Books and Recipients 241

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

To display the dialog box after configuration, you simply call the Display method. After the
dialog box has been displayed, you examine the Recipients property to determine the selected
addresses. If the user clicks Cancel or closes the dialog box without selecting recipients, the
Recipients property will have a Count value of zero (0).

Figure 7-7 The Select Names dialog box displaying the GAL.

Using the SetDefaultDisplayMode Method

SelectNamesDialog can be used to present the same dialog box in many different variations to
the user. Each of these variations can be configured in a locale-independent manner. For
example, the Select Names dialog box can be used to select recipients for a message or attend-
ees for an appointment. The SetDefaultDisplayMode method allows you to specify eight differ-
ent configurations of the dialog box with the OlDefaultSelectNamesDisplayMode enumeration.
Valid values for OlDefaultSelectNamesDisplayMode are shown in Table 7-5.

Table 7-5 OlDefaultSelectNamesDisplayMode Values

Name Description
olDefaultDelegates Displays one edit box for To recipients, uses localized string representing

Add for the To button, and localized string representing Add Users for
the caption. CcLabel and BccLabel are set to an empty string. Sets
AllowMultipleSelection to true and NumberOfRecipientSelectors to olTo.

olDefaultMail Displays three edit boxes for To, Cc, and Bcc recipients, uses localized
strings representing To, Cc, and Bcc for To, Cc, and Bcc buttons, and
localized string representing Select Names for the caption. Sets
AllowMultipleSelection to true and NumberOfRecipientSelectors to
olToCcBcc.

242 Part III Working with Outlook Data
Dialog Caption and Recipient Selectors

If the SetDefaultDisplayMode method doesn’t provide the correct configuration for the dialog box,
you can set properties that determine the caption for the dialog box, the number of recipient
selectors that appear on the dialog box, and the label for each of the recipient selectors. To change
the dialog box caption, set the Caption property on the SelectNamesDialog object. To change the
recipient selector labels, set the ToLabel, CcLabel, or BccLabel properties. Each recipient selector
corresponds to a different value for the Type property of a Recipient object that is added to a given
recipient selector. For example, if the user adds a recipient to the To recipient selector (its
actual label does not change Recipient.Type), then Recipient.Type = olMailRecipientType.olTo (1).
The Cc recipient selector corresponds to a Recipient.Type = olMailRecipientType.olCC (2), and
the Bcc recipient selector makes the Recipient.Type = olMailRecipientType.olBcc (3).

olDefaultMeeting Displays three edit boxes for Required, Optional, and Resource recipi-
ents, uses localized strings representing Required, Optional, and
Resources for the To, Cc, and Bcc buttons, and localized string repre-
senting Select Attendees and Resources for the caption. Sets
AllowMultipleSelection to true and NumberOfRecipientSelectors to
olToCcBcc.

olDefaultMembers Displays one edit box for To recipients, uses localized string representing
To for the To button, and localized string representing Select Members
for caption. CcLabel and BccLabel are set to an empty string. Sets
AllowMultipleSelection to true and NumberOfRecipientSelectors to olTo.

olDefaultPickRooms Displays one edit box for Resource recipients, uses localized string rep-
resenting Rooms for To button, and localized string representing Select
Rooms for caption. CcLabel and BccLabel are set to an empty string. Sets
AllowMultipleSelection to true and NumberOfRecipientSelectors to
olShowTo. InitialDisplayList is set to the GAL.

olDefaultSharingRequest Displays one edit box for To recipients, uses localized string represent-
ing To for To button, and localized string representing Select Names
for caption. CcLabel and BccLabel are set to an empty string. Sets
AllowMultipleSelection to true and NumberOfRecipientSelectors to olTo.

olDefaultSingleName Displays no edit boxes for recipients; uses localized string representing
Select Name for caption. ToLabel, CcLabel, and BccLabel are set to an
empty string. Sets AllowMultipleSelection to false and
NumberOfRecipientSelectors to olNone.

olDefaultTask Displays one edit box for To recipients, uses localized string representing
To for To button, and localized string representing Select Task Recipient
for caption. CcLabel and BccLabel are set to an empty string. Sets
AllowMultipleSelection to true and NumberOfRecipientSelectors to olTo.

Table 7-5 OlDefaultSelectNamesDisplayMode Values

Name Description

Chapter 7 Address Books and Recipients 243
Note The length of the Caption property that is visible in the dialog box depends on
screen resolution. The length of the labels for To, Cc, and Bcc recipient selectors is limited to
32 characters. If the recipient selector label contains more than 32 characters, only the first 32
characters will be displayed on the command button. The recipient selector label will always
display –> characters after the label text. To provide an accelerator key for the recipient selec-
tor edit boxes, include an ampersand (&) character in the label argument string, immediately
before the character that serves as the access key. For example, if ToLabel is “Local &Attend-
ees,” users can press Alt+A to move the focus to the first recipient selector edit box.

Setting the InitialAddressList Property

The user can control the initial address list in the Select Names dialog box and address list res-
olution order. See the section “Determining Resolution Order of Address Lists” earlier in this
chapter. You can override the user’s preference if you want to show a specific address list first,
and you can also show only the initial address list so that other address lists are not available
in the Address List drop-down list. To set the initial address list, you set the InitialAddressList
property of the SelectNamesDialog object to an AddressList object that represents the initial
address list that you want to display.

To show only the initial address list in the dialog box, set the ShowOnlyInitialAddressList prop-
erty to true. The default value of this property is false, meaning that all address lists are dis-
played. If you do not set the InitialAddressList property and then set ShowOnlyInitialAddressList
to true, the AddressList object with AddressList.IsInitialAddressList equal to true will be the only
address list available in the drop-down list box.

The following code sample enumerates the AddressLists collection to find the AddressList object
that represents the default Contacts folder. It then displays a customized Select Names dialog
box, as shown in Figure 7-8, that allows the user to select addresses from the Contacts Address
Book that represent winners of a contest. Finally, the selections are displayed in a message box.

Figure 7-8 Customized Select Names dialog box displaying the Contacts address book.

244 Part III Working with Outlook Data
void DemoSetInitialAddressList()
{
 Outlook.AddressList contactsAddrList = null;
 Outlook.SelectNamesDialog snd =
 Application.Session.GetSelectNamesDialog();
 //First obtain the default Contacts folder
 string contactsEntryID =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderContacts).EntryID;
 //Enumerate AddressLists
 Outlook.AddressLists addrLists =
 Application.Session.AddressLists;
 foreach (Outlook.AddressList addrList in addrLists)
 {
 if (addrList.GetContactsFolder() != null)
 {
 //GetContactsFolder returns Folder object; compare EntryIDs
 if (Application.Session.CompareEntryIDs(
 addrList.GetContactsFolder().EntryID, contactsEntryID))
 {
 contactsAddrList = addrList;
 break;
 }
 }
 else
 {
 MessageBox.Show("Could not find Contacts Address Book.",
 "Lookup Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 return;
 }
 }
 //Set additional properties on SelectNamesDialog
 snd.Caption = "Special Contest";
 //Set InitialAddressList to Contacts folder AddressList
 snd.InitialAddressList = contactsAddrList;
 snd.NumberOfRecipientSelectors =
 Outlook.OlRecipientSelectors.olShowTo;
 snd.ToLabel = "Award Winner(s)";
 //Display
 snd.Display();
 //Enumerate names of selected award winners
 Outlook.Recipients recips = snd.Recipients;
 if (recips.Count > 0)
 {
 StringBuilder sb = new StringBuilder();
 foreach (Outlook.Recipient recip in recips)
 {
 sb.AppendLine(recip.Name);
 }
 MessageBox.Show(sb.ToString(),
 "Contest Winners",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
}

Chapter 7 Address Books and Recipients 245
Displaying the Select Names Dialog Box

To display the Select Names dialog box, you call the Display method on the SelectNamesDialog
object. If the user cancels the dialog box, Recipients.Count will equal zero (0). The Select
Names dialog box is modeless and parented to the Outlook application window. When you
call the Display method, code execution will halt until the user either clicks OK or dismisses
the dialog box.

Using SelectNamesDialog.Recipients

The SelectNamesDialog object has a Recipients property that returns a Recipients collection that
allows you to set initial addresses in the dialog box or get the addresses selected by the user.
The Recipients property is read-only, so you cannot set the Recipients property to another
instance of a Recipients collection. However, you can add recipients to the collection by using
the Add method for SelectNamesDialog.Recipients.

If you add a Recipient object to the Recipients collection for the SelectNamesDialog object, be
sure to specify the Type property of the Recipient object. Recipient.Type controls the recipient
selector in which the Recipient object appears. For example, in the next sample, the Type
property for the Recipient object that represents a conference room resource is set to
OlMeetingRecipientType.olResource, which represents a value of three (3). The conference room
consequently appears in the Resources recipient selector. The default Type for a Recipient object
added to the Recipients collection is olTo, which represents a value of one (1).

After you call the Display method, you can enumerate the Recipients collection for the
SelectNamesDialog object and add to the Recipients collection for another object such as a
MailItem or AppointmentItem. The following code sample uses the SetDefaultDisplayMode
method to set the mode to Select Names dialog box for a meeting. It then populates the
Resources recipient selector with Conf Room 36/2739. Once the dialog box is displayed to
the user, it then enumerates the Recipients collection for the instance of SelectNamesDialog
and adds those recipients to the Recipients collection for the meeting request represented by
the appt variable. Finally, the code displays the meeting request to the user.

private void DemoSelectNamesDialogRecipients()
{
 Outlook.AppointmentItem appt = Application.CreateItem(
 Outlook.OlItemType.olAppointmentItem)
 as Outlook.AppointmentItem;
 appt.MeetingStatus = Outlook.OlMeetingStatus.olMeeting;
 appt.Subject = "Team Morale Event";
 appt.Start= DateTime.Parse("5/17/2007 11:00 AM");
 appt.End=DateTime.Parse("5/17/2007 12:00 PM");
 Outlook.SelectNamesDialog snd =
 Application.Session.GetSelectNamesDialog();
 snd.SetDefaultDisplayMode(
 Outlook.OlDefaultSelectNamesDisplayMode.olDefaultMeeting);
 Outlook.Recipient confRoom =

246 Part III Working with Outlook Data
 snd.Recipients.Add("Conf Room 36/2739");
 //Explicitly specify Recipient.Type
 confRoom.Type = (int)Outlook.OlMeetingRecipientType.olResource;
 snd.Recipients.ResolveAll();
 snd.Display();
 //Add Recipients to meeting request
 Outlook.Recipients recips = snd.Recipients;
 if (recips.Count > 0)
 {
 foreach (Outlook.Recipient recip in recips)
 {
 appt.Recipients.Add(recip.Name);
 }
 }
 appt.Recipients.ResolveAll();
 appt.Display(false);
}

Summary
In this chapter, you’ve learned how to work with Outlook address lists, address entries, and
recipients. Unlike previous versions of Outlook, you can now display an Address Book dialog
box using the SelectNamesDialog object so that you can customize the addressing components
of your solution. The ExchangeUser and ExchangeDistibutionList objects provide richer objects
that are easier to program when you are writing code for users connected to an Exchange
server. You can determine organizational hierarchy programmatically by using the new
GetExchangeUserManager and GetDirectReports methods. The new and enhanced addressing
objects in Outlook 2007 make it possible to write your code without resorting to Collabo-
ration Data Objects 1.21, Extended MAPI, or third-party libraries.

Chapter 8

Responding to Events
Events are the oxygen of add-in development. Using Outlook events, your solution can
respond to user actions and enforce business logic. To help you write great add-ins and to
satisfy common developer requests, many new events have been added to Microsoft Office
Outlook 2007. This chapter introduces you to the multiple classes used to wrap Component
Object Model (COM) objects in Microsoft Visual Studio 2005. Some of these classes wrap
Outlook events, and you’ll learn which event-related class is appropriate to a particular object.
Although the sample code in this chapter is predominantly C#, a brief discussion of events in
Microsoft Visual Basic .NET will cover two different methods of hooking up events in your
add-in. If you are a C# developer, you need to understand how to scope instance variables that
are event-aware. After you complete this chapter, you should be ready to hook up event dele-
gates for any of the objects in the Outlook object model. This chapter provides you with a
basic understanding of the following topics:

■ Learning how COM events are exposed in managed code

■ Writing event handlers in Visual Basic

■ Writing event handlers in Visual C#

■ Learning the new events in Outlook 2007

Writing Event Handlers in Managed Code
Once you get the hang of it, writing event handlers in managed code is straightforward. How-
ever, the interop wrapper for the Outlook object model creates many helper objects releated to
events that can be somewhat intimidating. To give you an idea of how the Outlook Primary
Interop Assembly (PIA) adds complexity, take a look at Figure 8-1, which shows the Outlook
Application interface in the Visual Studio 2005 object browser.
247

248 Part III Working with Outlook Data
Figure 8-1 Outlook Application object in the Visual Studio 2005 object browser.

You’ll notice that in addition to the Outlook Application object (which the PIA exposes as an
interface), there are additional classes such as ApplicationClass and ApplicationEvents_SinkHelper
and event delegates for every event exposed on the Outlook Application object. Table 8-1 lists
the interfaces, classes, and delegates that pertain to the Outlook Application object. Most of
these objects created by the PIA are not relevant to writing Outlook code. However, in the case
of events, you need to understand the role and function of event delegates.

Table 8-1 Interfaces, Delegates, and Events Associated with the Application Object in
Outlook

Example Description
Application The Application [Object] interface is a wrapper for a coclass that is

required by managed code for COM interoperability. Use the Object
interface in your code.

_Application The _Application [_Object] interface is a wrapper for a COM inter-
face implemented by a coclass that is required by managed code
for COM interoperability. Do not use the _Object interface in your
code.

ApplicationClass The ApplicationClass [ObjectClass] class is a wrapper for a coclass or
coclass member that is required by managed code for COM
interoperability. Do not use ObjectClass in your code.

ApplicationEvents_SinkHelper The ApplicationEvents_SinkHelper [ObjectEvents_SinkHelper] class is
a wrapper for a coclass or coclass member that is required by man-
aged code for COM interoperability. Do not use
ObjectNameEvents_SinkHelper in your code.

Chapter 8 Responding to Events 249
What exactly is an event delegate? An event delegate is represented by one or more delegate
classes. Delegate is a special type in the Microsoft .NET Framework that provides the functionality
of a function pointer. The delegate allows the event sender to communicate with the event
receiver. The delegate class can hold a reference to a method. Unlike other classes, a delegate class
has a signature, and it can hold references only to methods that match its signature. From a cod-
ing perspective, this means that the event handler method for an Outlook event must match
the signature defined by the event delegate. With a few exceptions, Visual Studio will auto-
mate the process of writing code to hook up an event delegate and its event handler method.

An example of an event delegate would be the
ApplicationEvents_11_ItemContextMenuDisplayEventHandler delegate. Generally, the event
delegates follow the pattern ApplicationEvents_EventNameEventHandler where EventName
is the name of the event such as ItemSend. To accommodate events added in later versions,
there are also event delegates such as ApplicationEvents_10_EventNameEventHandler and
ApplicationEvents_11_EventNameEventHandler.

Hooking Up Events in Visual Basic .NET

To hook up events in Visual Basic .NET, you should use the WithEvents keyword when you
declare the instance variable that will expose the events that you want to hook up. Although
you can also use the AddHandler statement to hook up events, the simplest approach for a
Visual Basic developer is to use WithEvents.

ApplicationEvents The ApplicationEvents [ObjectEvents] interface is a wrapper for a
COM interface implemented by a coclass that is required by man-
aged code for COM interoperability.

ApplicationEvents_Event The ApplicationEvents_Event [ObjectEvents_Event] interface is a
wrapper for a COM interface implemented by a coclass that is
required by managed code for COM interoperability. You can use
this interface in your code when a method and event name are
identical.

ApplicationEvents_10_Event The ApplicationEvents_10_Event [ObjectEvents_10_Event] interface is
a wrapper for a COM interface that has been superseded by a later
version. The later version of this interface implements all members
of earlier interfaces and additional new members. You can use this
interface in your code when a method and event name are identi-
cal.

ApplicationEvents_11_Event The ApplicationEvents_11_Event [ObjectEvents_11_Event] interface is
a wrapper for a COM interface that has been superseded by a later
version. The later version of this interface implements all members of
earlier interfaces and additional new members. You can use this inter-
face in your code when a method and event name are identical.

Table 8-1 Interfaces, Delegates, and Events Associated with the Application Object in
Outlook

Example Description

250 Part III Working with Outlook Data
The Visual Basic Add-in template that accompanies this book provides you with a framework
for hooking up events. The Visual Basic Add-in template is especially helpful if you need to
handle events for Explorer and Inspector objects. See the section “Install the Outlook Add-in
Templates” in Chapter 3, “Writing Your First Outlook Add-in Using Visual Basic .NET,” for
step-by-step installation instructions.

Using the WithEvents Keyword

Although the WithEvents keyword is the most common and easiest way to declare an event-
aware instance variable, you should be aware of the following restrictions for WithEvents:

■ When an instance variable is defined using WithEvents, you can declaratively specify that
a method handles the variable’s events using the Handles keyword.

■ You can use WithEvents only at class or module level. This means the declaration context
for a WithEvents variable must be a class or module and cannot be a source file,
namespace, structure, or procedure.

■ You cannot use WithEvents for an instance variable that represents an array.

Fortunately, you don’t have to focus on unhooking your event procedures when you use the
WithEvents keyword. Behind the scenes, Visual Basic disconnects the COM connection points
when you dereference the event-aware instance variable.

To write an event procedure in Visual Basic, you should follow these steps. This is a generic
example and might not apply to every situation in which you need to write an event procedure.

1. Declare an instance variable using the WithEvents keyword. Typically, the instance vari-
able will have class- or module-level scope. Assume for this example that the instance
variable is named m_Contact and is declared in the OutlookInspector class.

2. In the OutlookInspector class Code Editor, select the m_Contact object in the left Class
Name drop-down list.

3. Select an event exposed on m_Contact in the right Method Name drop-down list. Visual
Studio stubs out the event procedure for you. Assuming that m_Contact represents a
ContactItem object, select the PropertyChange event.

4. Write code in the m_Contact_PropertyChange event procedure. You should see an event
procedure similar to the following:

'Declare class-level instance variable using WithEvents
Private WithEvents m_Contact As Outlook.ContactItem

Private Sub m_Contact_PropertyChange(_
 ByVal Name As String) Handles m_Contact.PropertyChange
 'Write event code here
End Sub

Chapter 8 Responding to Events 251
Using AddHandler and RemoveHandler Statements

For most situations in Visual Basic, you don’t need to use the AddHandler statement to hook
up events. For simplicity and ease of coding, use the WithEvents keyword. Whenever you
hook up an event using AddHandler, you should be sure to unhook the event using the
RemoveHandler statement. The AddHandler and RemoveHandler statements allow you to
start and stop event handling at any time during program execution. For example, the fol-
lowing code sample hooks up the ItemLoad event on the Application object using the
AddHandler and RemoveHandler pattern:

AddHandler Application.ItemLoad, AddressOf Application_ItemLoad
'Additional statements here...
RemoveHandler Application.ItemLoad, AddressOf Application_ItemLoad

'Event procedure for ItemLoad event
Sub Application_ItemLoad(ByVal Item As Object)
 'ItemLoad code here
End Sub

Hooking Up Events in C#

Hooking up events in C# is more complex than hooking up an event in Visual Basic. How-
ever, once you understand how to write C# event handler code, the process is fairly straight-
forward.

Common Errors and Issues for Events

Here are some common errors and issues that developers encounter when writing event han-
dlers in C#. Some of these items also apply to writing an event procedure in Visual Basic.

■ The instance variable for the event does not have broad enough scope. Typically, you
should declare event-aware instance variables at the class level. If the scope of the
instance variable is too narrow, then your instance variable will fall out of scope and be
garbage collected. The symptom of this condition is that your event will run once, but on
subsequent occasions the event will fail to fire.

■ If you do not unhook your C# event delegates using the –= operator, your add-in might
not shut down correctly and will cause Outlook to remain in memory.

■ Because an event name and method name are identical on a given object, the Intellisense
window will only show the method name when you attempt to hook up the event pro-
cedure in C#. The event name appears to be missing from the Intellisense window.

■ The firing order of events is not always predictable. Although the item-level Open event
will always follow the item-level Read event, in other circumstances the event order
might surprise you. For example, the BeforeAttachmentSave event fires when the item is
saved rather than when the attachment is added to the item.

252 Part III Working with Outlook Data
■ In certain events, you have to be careful not to call additional members on the object dur-
ing an event procedure. If you do so, Outlook will raise an error or you will experience
unpredictable results.

Step-by-Step Event Procedures for C#

To write an event procedure in C#, you should follow these steps. The following proce-
dures assume that you are writing event procedures for the m_Contact instance variable in
the OutlookInspector class.

To write an event procedure in C# when the event name does not collide with a method name,
follow these steps:

1. Declare an instance variable with class-level scope. Assume for this example that the
instance variable is named m_Contact and is declared in the OutlookInspector class.

2. In the OutlookInspector class Code Editor, click inside the OutlookInspector constructor.

3. Type m_Contact, and then press the period key (.).

4. In the Intellisense window, use your mouse or the keyboard to scroll to the
PropertyChange event.

5. Press Enter to select the PropertyChange event.

6. Type +=. Visual C# offers to hook up the event for you. At this point, press Tab.

7. Press Tab again to insert the event handler.

8. Write code in the m_Contact_CustomPropertyChange event handler. You should see code
similar to the following:

// Class-level instance variable
private Outlook.ContactItem m_Contact;
// Hookup the event delegate
m_Contact.PropertyChange +=
 new Outlook.ItemEvents_10_PropertyChangeEventHandler(
 m_Contact_PropertyChange);
// Event delegate
void m_Contact_PropertyChange(string Name)
{
 // Implement PropertyChange here
}

To write an event procedure in C# when the event name collides with a method name, follow
these steps:

1. Declare an instance variable with class-level scope. Assume for this example that the
instance variable is named m_Contact and is declared in the OutlookInspector class.

2. In the OutlookInspector class Code Editor, click inside the OutlookInspector constructor.

3. Type the open parenthesis key twice so that you see ((.

Chapter 8 Responding to Events 253
4. Type Outlook, and then press the period key. This step assumes that you have created
a using directive to provide an Outlook alias for the Microsoft.Office.Interop.Outlook
namespace.

5. Find the <ClassName>Events_Event interface in the Intellisense window. For most objects
such as the Inspector or Explorer objects, the <ClassName> name is the name of the object.
For item-level events, always use the ItemEvents_Event interface. Because you are writing
an event for m_Contact that represents a ContactItem, select the ItemEvents_Event.

6. Type the close parenthesis key once so that you see).

7. In the Intellisense window, use your mouse or keyboard to scroll to the m_Contact
instance variable, and press the scrollbar.

8. Type the close parenthesis key once so that you see), and then press the period key.

9. In the Intellisense window, use your mouse or the keyboard to scroll to the Close event.

10. Press Enter to select the Close event.

11. Type +=. Visual C# offers to hook up the event for you. At this point, press Tab.

12. Press Tab again to insert the event handler.

13. Write code in the m_Contact_Close event handler. You should see code similar to the
following:

// Class-level instance variable
private Outlook.ContactItem m_Contact;
// Hookup the event delegate
m_Contact.PropertyChange +=
 new Outlook.ItemEvents_10_PropertyChangeEventHandler(
 m_Contact_PropertyChange);
// Event delegate
void m_Contact_Close(ref bool Cancel)
{
 // Implement Close here
}

Unhooking Event Handlers

You should always unhook event handlers using the –= operator for events when the class
that contains your event-aware instance variable is being destroyed. For example, in the case
of the m_Contact_PropertyChange and m_Contact_Close handlers shown earlier, you should
add the following statements to the OutlookInspectorWindow_Close procedure:

m_Contact.PropertyChange -=
new Outlook.ItemEvents_10_PropertyChangeEventHandler(
m_Contact_PropertyChange);

((Outlook.ItemEvents_10_Event)m_Contact).Close -=
new Outlook.ItemEvents_10_CloseEventHandler(
m_Contact_Close);

254 Part III Working with Outlook Data
Outlook 2007 Events
The following sections contain descriptions for all the events in the Outlook 2007 object
model with the exception of Outlook control events such as MouseUp, MouseDown, and Click.
For detailed information regarding Outlook control events, see the Outlook Developer’s
Reference.

Application Object Events

The Application object supports several new events in Outlook 2007, most notably context
menu events that allow you to customize a context menu by adding new commands or repur-
posing existing commands. The following events are exposed on the Application object.

AdvancedSearchComplete

This event occurs when the AdvancedSearch method has completed. The AdvancedSearchComplete
event is used to return the Search object that was created by the AdvancedSearch method.

Application.AdvancedSearchComplete +=
 new Outlook.ApplicationEvents_11_AdvancedSearchCompleteEventHandler(
 Application_AdvancedSearchComplete);

AdvancedSearchStopped

This event occurs when a specified Search object’s Stop method has been executed. If you call
the Stop method on a Search object, the Search.Results collection might not contain complete
results for the search.

Note Both the AdvancedSearchComplete and AdvancedSearchStopped events will fire only if
the AdvancedSearch method is called programmatically. These events do not occur for a
search that executes when a user invokes the Advanced Find dialog box in the Outlook user
interface or when a user performs an Instant Search query.

AttachmentContextMenuDisplay

This event occurs before a context menu, for one or more selected attachments is to be dis-
played, allowing the CommandBar object representing the context menu to be customized by
an add-in. This is a new event for Outlook 2007.

BeforeFolderSharingDialog

This event occurs before the Sharing dialog box is displayed for a selected Folder object. This
event provides an add-in with the capability of replacing the sharing user interface supplied
by Outlook with a custom user interface. This event does not occur if a sharing message is

Chapter 8 Responding to Events 255
programmatically created and displayed. This event is cancelable, and it is a new event for
Outlook 2007.

ContextMenuClose

This is a new event for Outlook 2007 that occurs just after a context menu is closed so that
add-ins can dispose of any object references that might have been obtained from one of the
following events:

■ AttachmentContextMenuDisplay

■ FolderContextMenuDisplay

■ ItemContextMenuDisplay

■ ShortcutContextMenuDisplay

■ StoreContextMenuDisplay

■ ViewContextMenuDisplay

FolderContextMenuDisplay

This event occurs before a context menu for a folder is to be displayed, allowing the CommandBar
object representing the context menu to be customized by an add-in. This is a new event for
Outlook 2007. The following example hooks up the Application_FolderContextMenuDisplay
event handler:

Application.FolderContextMenuDisplay +=
 new Outlook.ApplicationEvents_11_FolderContextMenuDisplayEventHandler(
 Application_FolderContextMenuDisplay);

void Application_FolderContextMenuDisplay(Office.CommandBar CommandBar,
 Outlook.MAPIFolder Folder)
{
 if((Outlook.Folder)Folder == (Outlook.Folder)
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox))
 {
 //Customize Command Bar object
 }
}

ItemContextMenuDisplay

This event occurs before a context menu for either a single highlighted Outlook item or for
one or more selected Outlook items is to be displayed, allowing the CommandBar object
representing the context menu to be customized by an add-in. This is a new event for
Outlook 2007. The following example hooks up the Application_ItemContextMenuDisplay

256 Part III Working with Outlook Data
event handler. In the event handler, the OutlookItem class is used to determine if the
selected item is a ContactItem.

Application.ItemContextMenuDisplay +=
 new Outlook.ApplicationEvents_11_ItemContextMenuDisplayEventHandler(
 Application_ItemContextMenuDisplay);

void Application_ItemContextMenuDisplay(Office.CommandBar CommandBar,
 Outlook.Selection Selection)
{
 if (Selection.Count == 1)
 {
 OutlookItem olItem = new OutlookItem(Selection[1]);
 if (olItem.Class = Outlook.OlObjectClass.olContact)
 {
 //Customize CommandBar object
 }
 }
}

ItemLoad

This event occurs when an Outlook item loads into memory. This is a new event for Outlook
2007. Other than the values for the Class and MessageClass properties of the Outlook item,
data for the item is not yet available. If you attempt to get or set any property other than
Class or MessageClass on the Item object returned in the event, Outlook raises an error. Sim-
ilarly, an error occurs if you attempt to call any method on the Item object, or if you call the
GetObjectReference method of the Application object on the Item object returned in the event.

The ItemLoad event is a chatty event, which means that the event will fire frequently, and you
should exercise caution when hooking up this event so that you don’t affect Outlook perfor-
mance. The Item object returned in this event will always be a weak referenced item. This
means that Outlook will fire an Unload event on the Item object when the item reference is
about to be destroyed. You cannot prevent the dereferencing of a weak referenced item.

ItemLoad is particularly helpful when you need to enforce business logic for items that can be
edited using the in-cell editing feature of a view. Because an Inspector is not displayed during
in-cell editing, you cannot rely on the NewInspector event to hook up item-level events such
as PropertyChange or CustomPropertyChange. Instead of the NewInspector event, you can use
the ItemLoad event to hook up an event-aware instance variable. If the Reading Pane is not
turned on, the ItemLoad event will not fire automatically. When the Reading Pane is visible,
the ItemLoad event will always fire when the user navigates to an item in a view.

The ItemLoad event fires before the NewInspector event on the Inspectors collection (provided
that the Item is displayed in an Inspector), the item-level Open event, or the item-level Read
event.

Chapter 8 Responding to Events 257
ItemLoad fires under the following conditions:

■ An item is created through user action or programmatically.

■ An item is opened in an Inspector through user action or programmatically.

■ A user clicks Previous or Next in an Inspector.

■ An item is loaded in the Reading Pane.

■ A user uses in-cell editing in a view to modify the item.

■ A user displays the context menu for an item in a view and selects the Follow-up or
Categories pop-up menus.

■ A user displays the context menu for an item in a view, and the item has attachments.

■ A meeting request creates an associated item in a user’s default calendar folder.

■ A task request creates an associated item in a user’s default task folder.

■ The user displays the context menu for a task.

■ The user displays the context menu for a meeting request.

ItemLoad does not fire when the following conditions occur:

■ An Outlook item is synchronized with a folder.

■ A server-side rule is triggered for an Outlook item.

■ A reminder is triggered for an Outlook item.

■ A Desktop Alert is displayed for an Outlook item.

ItemSend

This event occurs when an item is sent either because a user clicked Send on the item or
because code causes an item to be sent. Typically, the ItemSend event occurs after the item-level
Send event and before the item-level Write and Close events. You should apply user-interface
elements such as alert and dialog boxes with care in the ItemSend event. If you use the Cancel
argument to cancel sending the item, and the item has already been sent from an open Inspec-
tor, the Inspector will remain in its previously displayed state. The item’s Inspector will not
close as it normally would when Send is clicked.

MapiLogonComplete

This event occurs when logon to the Messaging Programming Application Interface (MAPI)
session has completed. When MapiLogonComplete occurs, it means that a valid Namespace
object has been created and that you have full access to all the objects, events, and properties
in the Outlook object model.

258 Part III Working with Outlook Data
NewMail

This event occurs when one or more new items are received in the Inbox. Generally, you
should prefer the NewMailEx event over the NewMail event. The NewMail event tells you that
items have been received, but it does not tell which items have been received in the Inbox.

NewMailEx

This event occurs when one or more new items are received in the Inbox. This event passes a
comma-delimited string containing the entry IDs of all the items received in the Inbox since
the last time the event was fired. This event fires for e-mail accounts that provide notifications
for received messages, such as Microsoft Exchange Server and Post Office Protocol 3 (POP3)
accounts.

For users with an online Exchange Server account (noncached Exchange mode), NewMailEx
will fire only if Outlook is running. The event will not fire for the items that are received using
an online Exchange Server account when Outlook is not running.

For users using cached Exchange mode, the event will fire in all settings: Download Full
Items, Download Headers, and Download Headers and then Full Items. In cached Exchange
mode, the event will fire before rule processing occurs.

The following code sample uses the Split method to return a string array of entry IDs from the
EntryIDsCollection string passed in the event:

Application.NewMailEx +=
 new Outlook.ApplicationEvents_11_NewMailExEventHandler(
 Application_NewMailEx);

void Application_NewMailEx(string EntryIDCollection)
{
 string[] EntryIDs;
 //Create string array from EntryIDCollection delimited by ,
 EntryIDs = EntryIDCollection.Split(',');
 //Remove the leading space
 for (int i = 0; i <= EntryIDs.GetUpperBound(0); i++)
 {
 Debug.WriteLine(EntryIDs[i]);
 }
}

OptionsPagesAdd

This event occurs whenever the Options dialog box on the Tools menu is about to be dis-
played. You can use this event to add custom property pages to the Tools Options dialog box.
For additional information on implementing a custom property page, see Chapter 16, “Com-
pleting Your User Interface.”

Chapter 8 Responding to Events 259
Quit

This occurs when Outlook is about to shut down. Because the Quit event collides with the
Quit method, you need to hook up this event as follows:

((Outlook.ApplicationEvents_Event)Application).Quit +=
 new Outlook.ApplicationEvents_QuitEventHandler(
 Connect_Quit);

Reminder

This event occurs immediately before a reminder is displayed.

ShortcutContextMenuDisplay

This event occurs before a context menu for a shortcut on the Outlook bar (such as the
Outlook Today shortcut) is to be displayed, allowing the CommandBar object representing
the context menu to be customized by an add-in. This is a new event for Outlook 2007.

Startup

This event occurs when Outlook is starting but after all add-in programs have been loaded.

StoreContextMenuDisplay

This event occurs before a context menu for a store, such as an Exchange mailbox or a Per-
sonal Folders (.pst) File, is to be displayed, allowing the CommandBar object representing the
context menu to be customized by an add-in. This is a new event for Outlook 2007.

ViewContextMenuDisplay

This event occurs before a context menu for a view (such as a table view) is to be displayed,
allowing the CommandBar object representing the context menu to be customized by an add-
in. This event is new for Outlook 2007.

Explorers Collection Event

The Explorers collection exposes only one event, the NewExplorer event.

NewExplorer

The NewExplorer event fires after a new Explorer window has been created and before it is dis-
played. A new Explorer window can be created through a user action or through your code.
The OutlookExplorer class in the Outlook Add-in Template that accompanies this book dem-
onstrates how you can use the NewExplorer event to wrap multiple instances of an Explorer

260 Part III Working with Outlook Data
object. The Outlook Add-in Template declares a class-level instance variable named explorers
in the Connect class. The NewExplorer event is hooked up as follows:

// Connect class-level Instance Variables
private Outlook.Explorers explorers;
private List<OutlookExplorer> explorerWindows;

// Hookup NewExplorer event
explorers.NewExplorer +=
 new Outlook.ExplorersEvents_NewExplorerEventHandler(
 explorers_NewExplorer);
// Event handler for NewExplorer
void explorers_NewExplorer(Outlook.Explorer Explorer)
{
 // Check to see if this is a new window we don't already track
 OutlookExplorer existingWindow = FindOutlookExplorer(Explorer);
 if (existingWindow == null)
 {
 AddExplorer(Explorer);
 }
}
// AddExplorer method
private void AddExplorer(Outlook.Explorer explorer)
{
 OutlookExplorer window =
 new OutlookExplorer(explorer);
 window.Close +=
 new EventHandler(WrappedExplorerWindow_Close);
}
// Looks up the window wrapper for a given Explorer window object
private OutlookExplorer FindOutlookExplorer(object window)
{
 foreach (OutlookExplorer explorer in explorerWindows)
 {
 if (explorer.Window == window)
 {
 return explorer;
 }
 }
 return null;
}

The code in the NewExplorer event calls the FindOutlookExplorer method to check if the new
Explorer window is already wrapped in the explorerWindows list. If FindOutlookExplorer does
not find the Explorer object in explorerWindows, then the AddExplorer method adds an
instance of the OutlookExplorer class to explorerWindows. You can use the OutlookExplorer
class to raise events for this particular Explorer window. Remember that multiple Explorer or
Inspector windows can be open simultaneously. Typically, you hook up additional events in
the constructor of the OutlookExplorer class as follows:

// OutlookExplorer class-level instance variables
private Outlook.Explorer m_Window;

Chapter 8 Responding to Events 261
// OutlookExplorer constructor
public OutlookExplorer(Outlook.Explorer explorer)
{
 m_Window = explorer;

 // Hookup the close event
 ((Outlook.ExplorerEvents_Event)explorer).Close +=
 new Outlook.ExplorerEvents_CloseEventHandler(
 OutlookExplorerWindow_Close);

 // Hookup explorer-level events as needed.
 m_Window.FolderSwitch +=
 new Outlook.ExplorerEvents_10_FolderSwitchEventHandler(
 m_Window_FolderSwitch);
 m_Window.BeforeViewSwitch +=
 new Outlook.ExplorerEvents_10_BeforeViewSwitchEventHandler(
 m_Window_BeforeViewSwitch);
 m_Window.ViewSwitch +=
 new Outlook.ExplorerEvents_10_ViewSwitchEventHandler(
 m_Window_ViewSwitch);
 m_Window.SelectionChange +=
 new Outlook.ExplorerEvents_10_SelectionChangeEventHandler(
 m_Window_SelectionChange);
}

When the Explorer closes, you need to unhook all the events that you’ve hooked up in the
OutlookExplorer constructor in the OutlookExplorerWindow_Close event handler.

private void OutlookExplorerWindow_Close()
{
 // Unhook explorer-level events
 m_Window.BeforeFolderSwitch -=
 Outlook.ExplorerEvents_10_BeforeFolderSwitchEventHandler(
 m_Window_BeforeFolderSwitch);
 m_Window.BeforeViewSwitch -=
 new Outlook.ExplorerEvents_10_BeforeViewSwitchEventHandler(
 m_Window_BeforeViewSwitch);
 m_Window.ViewSwitch -=
 new Outlook.ExplorerEvents_10_ViewSwitchEventHandler(
 m_Window_ViewSwitch);
 m_Window.SelectionChange -=
 new Outlook.ExplorerEvents_10_SelectionChangeEventHandler(
 m_Window_SelectionChange);

 // Unhook events from the window
 ((Outlook.ExplorerEvents_Event)m_Window).Close -=
 new Outlook.ExplorerEvents_CloseEventHandler(
 OutlookExplorerWindow_Close);

 // Raise the OutlookExplorer close event
 if (Close != null)
 {
 Close(this, EventArgs.Empty);
 }

262 Part III Working with Outlook Data

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 // Release instance variables
 m_Window = null;
}

Explorer Object Events

Explorer object events provide you with a great deal of control over the Outlook user interface.
You can control the size and window state of Explorer windows, respond to selection changes
through the SelectionChange event and the Selection object, and determine when the user has
changed his or her view or the current folder. The BeforeFolderSwitch and BeforeViewSwitch
events are cancelable, so you can prevent the user from moving to a folder or activating a view.
If you combine the Explorer object events with the new events and programmatic control for
the NavigationPane object and NavigationGroups collection, you have considerable program-
matic control over the Outlook user interface.

Activate

This event occurs when an Explorer window becomes the active window, either as a result of
user action or through program code. Because the Activate event collides with the Activate
method, you need to hook up this event as follows:

((Outlook.ExplorerEvents_Event)m_Window).Activate +=
 new Outlook.ExplorerEvents_ActivateEventHandler(
 m_Window_Activate);

BeforeFolderSwitch

This event occurs when the Explorer window navigates to a new folder, either as a result of
user action or through program code. This event is cancelable, so you can prevent users from
navigating to prohibited folders.

BeforeItemCopy

This event occurs when an Outlook item is copied. This event is cancelable.

BeforeItemCut

This event occurs when an Outlook item is cut. This event is cancelable.

BeforeMaximize

This event occurs when an Explorer window is maximized. This event is cancelable.

BeforeMinimize

This event occurs when an Explorer window is minimized. This event is cancelable.

Chapter 8 Responding to Events 263
BeforeMove

This event occurs when an Explorer window is moved. This event is cancelable.

BeforeSize

This event occurs when an Explorer window is resized. This event is cancelable.

BeforeViewSwitch

This event occurs before the Explorer window changes to a new view, either as a result
of user action or through program code. The BeforeViewSwitch event is similar to the
BeforeFolderSwitch event, except that it occurs before a view is switched to a new view, either
through a user action or programmatically. If a user changes from the Contacts folder to
the Tasks folder but does not explicitly change the view with the View selector, the
BeforeViewSwitch event will not fire, even though the default views on the two folders
have different names. This event is cancelable.

Close

This event occurs when an Explorer window is being closed. This event is cancelable. If you
use the Close method to fire this event, it can only be canceled if the Close method uses the
olPromptForSave argument. Because the Close event collides with the Close method, you need
to hook up this event as follows:

((Outlook.ExplorerEvents_Event)explorer).Close +=
 new Outlook.ExplorerEvents_CloseEventHandler(
 OutlookExplorerWindow_Close);

Deactivate

The Deactivate event fires when an Explorer window ceases to be the active window, either as
a result of user action or through program code.

Warning You should not display a message box, dialog box, or any other user interface
element during the Deactivate event of an Explorer or Inspector object. Showing a user
interface element in the Deactivate event might disrupt the activation sequence and make
Outlook behave unpredictably.

FolderSwitch

This event occurs when the current folder changes in the Explorer window, either through a
user action or a programmatic change.

264 Part III Working with Outlook Data
SelectionChange

This event occurs when the user switches to a different item in a folder, either through a user
action or a programmatic change.

ViewSwitch

This event occurs when the view in the Explorer changes, either as a result of user action or
through program code.

Folders Collection Events

The Folders collection contains all the Folder objects belonging to a parent Folder object. The
NameSpace object also contains a Folders object containing all the root folders for the current
logged-on user. The Folders collection events occur when folders are added, changed, or
deleted because of user action or program code. The Folders collection events give you a pow-
erful means to control folder names, hierarchical structure, and folder contents, in addition to
traditional Exchange roles and folder permissions.

FolderAdd

This event occurs when a folder is added to the Folders collection, either through a user action
or program code.

FolderChange

This event occurs when a folder in a Folders collection is changed, either through user
action or program code. The FolderChange event fires if a user or program code renames a
folder or if an item in the folder is added, changed, or removed. To determine which item
was added, changed, or removed, use the ItemAdd, ItemChange, or ItemRemove events on
the Items collection.

FolderRemove

This event occurs when a folder is deleted from its Folders collection, either through user
action or program code. Unlike the FolderAdd and FolderChange events, FolderRemove does
not return a Folder object in the event for the folder that has been removed. Instead of the
FolderRemove event, consider using the BeforeFolderMove event on the Folder object. This
event fires when a folder is deleted or moved.

Folder Object Events

The Folder object supports two events, BeforeFolderMove and BeforeItemMove, to satisfy devel-
oper requests for a reliable method of detecting folder or item moves and deletions.

Chapter 8 Responding to Events 265
BeforeFolderMove

This event occurs when a folder is about to be moved or deleted, either as a result of user
action or through program code. This event fires when the folder is about to be moved to
another folder (including the Deleted Items folder) or when the folder is about to be perma-
nently deleted. It does not fire during autoarchiving or synchronizing operations. If the action
is a permanent delete, the MoveTo folder returned in the event will be null (Nothing in Visual
Basic). This event is cancelable, and it is a new event for Outlook 2007.

BeforeItemMove

This event occurs when an Outlook item is about to be moved or deleted, either as a result of
user action or through program code. This event fires when the item is about to be moved to
another folder (including the Deleted Items folder) or when the item is about to be perma-
nently deleted. It does not fire during autoarchiving or synchronizing operations. If the action
is a permanent delete, the MoveTo folder returned in the event will be null (Nothing in Visual
Basic). This event is cancelable, and it is a new event for Outlook 2007.

FormRegion Object

The FormRegion object represents a form region in an Outlook form. The FormRegion object
allows an add-in to add code behind a form region in a custom form to modify the appearance
and behavior of the form region.

To obtain an instance of the FormRegion object, an add-in must implement the FormRegionStartup
interface. Outlook allocates storage for the form region, instantiates an instance of the
FormRegion object, and returns the FormRegion object in the GetFormRegionStorage
method.

The FormRegion object supports two events, Close and Expanded.

Close

This event occurs when the frame is closed for a form region, which occurs just before the
Close event of the Inspector object associated with the Outlook item. This is a new event for
Outlook 2007.

Expanded

This event occurs when an adjoining form region expands or collapses. If the Expand param-
eter passed in the event returns true, then the form region is expanding. If the Expand param-
eter returns false, then the form region is collapsing. It is a new event for Outlook 2007.

Inspectors Collection Event

The Inspectors collection exposes only one event, the NewInspector event.

266 Part III Working with Outlook Data
NewInspector

The NewInspector event fires after a new Inspector window has been created and before it is
displayed. A new Inspector window can be created through a user action or through your
code. The OutlookInspector class in the Outlook Add-in Template that accompanies this
book demonstrates how you can use the NewInspector event to wrap multiple instances of
an Inspector object. The Outlook Add-in Template declares a class-level instance variable
named inspectors in the Connect class. The NewInspector event is hooked up as follows:

// Connect class-level instance variables
private Outlook.Inspectors inspectors;
private List<OutlookInspector> inspectorWindows;

// Hookup NewInspector event
inspectors.NewInspector +=
 new Outlook.InspectorsEvents_NewInspectorEventHandler(
 inspectors_NewInspector);
// Event handler for NewInspector
void inspectors_NewInspector(Outlook.Inspector Inspector)
{
 // Check to see if this is a new window we don't already track
 OutlookInspector existingWindow = FindOutlookInspector(Inspector);
 if (existingWindow == null)
 {
 AddInspector(Inspector);
 }
}
// AddInspector method
private void AddInspector(Outlook.Inspector inspector)
{
 OutlookInspector window =
 new OutlookInspector(inspector);
 window.Close +=
 new EventHandler(WrappedInspectorWindow_Close);
}
// Looks up the window wrapper for a given Inspector window object
private OutlookInspector FindOutlookInspector(object window)
{
 foreach (OutlookInspector inspector in inspectorWindows)
 {
 if (inspector.Window == window)
 {
 return inspector;
 }
 }
 return null;
}

The code in the NewInspector event calls the FindOutlookInspector method to check if the new
Inspector window is already wrapped in the inspectorWindows list. If FindOutlookInspector
does not find the Inspector object in inspectorWindows, then the AddInspector method adds an
instance of the OutlookInspector class to inspectorWindows. You can use the OutlookInspector

Chapter 8 Responding to Events 267
class to raise events for this particular Inspector window. Remember that multiple Explorer
or Inspector windows can be open simultaneously. If you need to track item-level events
such as Open, PropertyChange, or CustomPropertyChange, you hook up these events in the
OutlookInspector class. Typically, you hook up additional events in the constructor of the
OutlookInspector class as follows:

// OutlookInspector class-level instance variables
private Outlook.Inspector m_Window;
// Use these instance variables to handle item-level events
private Outlook.MailItem m_Mail;
private Outlook.AppointmentItem m_Appointment;
private Outlook.ContactItem m_Contact;
private Outlook.ContactItem m_Task;
// OutlookInspector constructor
public OutlookInspector(Outlook.Inspector inspector)
{
 m_Window = inspector;

 // Hookup the close event
 ((Outlook.InspectorEvents_Event)inspector).Close +=
 new Outlook.InspectorEvents_CloseEventHandler(
 OutlookInspectorWindow_Close);

 // Hookup item-level events as needed
 // For example, the following code hooks up
 // Open, PropertyChange, and CustomPropertyChange, Close
 // events for a ContactItem
 // ---
 OutlookItem olItem = new OutlookItem(inspector.CurrentItem);
 if (olItem.Class == Outlook.OlObjectClass.olContact)
 {
 m_Contact = olItem.InnerObject as Outlook.ContactItem;
 m_Contact.Open +=
 new Outlook.ItemEvents_10_OpenEventHandler(
 m_Contact_Open);
 m_Contact.PropertyChange +=
 new Outlook.ItemEvents_10_PropertyChangeEventHandler(
 m_Contact_PropertyChange);
 m_Contact.CustomPropertyChange +=
 new Outlook.ItemEvents_10_CustomPropertyChangeEventHandler(
 m_Contact_CustomPropertyChange);
 ((Outlook.ItemEvents_Event)m_Contact).Close +=
 new Outlook.ItemEvents_CloseEventHandler(
 m_Contact_Close);
 }
}

When the Inspector window closes, you need to unhook all the events that you’ve hooked up
in the OutlookInspector constructor in the OutlookInspectorWindow_Close event handler.

private void OutlookInspectorWindow_Close()
{
 // Unhook events from any item-level instance variables

268 Part III Working with Outlook Data
 m_Contact.Open -=
 new Outlook.ItemEvents_10_OpenEventHandler(
 m_Contact_Open);
 m_Contact.PropertyChange -=
 new Outlook.ItemEvents_10_PropertyChangeEventHandler(
 m_Contact_PropertyChange);
 m_Contact.CustomPropertyChange -=
 new Outlook.ItemEvents_10_CustomPropertyChangeEventHandler(
 m_Contact_CustomPropertyChange);
 ((Outlook.ItemEvents_Event)m_Contact).Close -=
 new Outlook.ItemEvents_CloseEventHandler(
 m_Contact_Close);

 // Unhook events from the window
 ((Outlook.InspectorEvents_Event)m_Window).Close -=
 new Outlook.InspectorEvents_CloseEventHandler(
 OutlookInspectorWindow_Close);

 // Raise the OutlookInspector close event
 if (Close != null)
 {
 Close(this, EventArgs.Empty);
 }

 // Release instance variables
 m_Mail = null;
 m_Appointment = null;
 m_Contact = null;
 m_Task = null;
 m_Window = null;
}

Inspector Object Events

The Inspector object events let you track when an Inspector window is activated, maximized,
minimized, moved, sized, or closed. The Close event is the most frequently used event, as it
lets you tear down an instance of the OutlookInspector class when the Inspector is closed.

Activate

This event occurs when an Inspector window becomes the active window, either as a result of
user action or through program code. Because the Activate event collides with the Activate
method, you need to hook up this event as follows:

((Outlook.InspectorEvents_Event)m_Window).Activate +=
 new Outlook.InspectorEvents_ActivateEventHandler(
 m_Window_Activate);

BeforeMaximize

This event occurs when an Inspector window is maximized. This event is cancelable.

Chapter 8 Responding to Events 269
BeforeMinimize

This event occurs when an Inspector window is minimized. This event is cancelable.

BeforeMove

This event occurs when an Inspector window is moved. This event is cancelable.

BeforeSize

This event occurs when an Inspector window is resized. This event is cancelable.

Close

This event occurs when an Inspector window is being closed. This event is cancelable. If you
use the Close method to fire this event, it can only be canceled if the Close method uses the
olPromptForSave argument. Because the Close event collides with the Close method, you need
to hook up this event as follows:

((Outlook.InspectorEvents_Event)inspector).Close +=
 new Outlook.InspectorEvents_CloseEventHandler(
 OutlookInspectorWindow_Close);

Deactivate

The Deactivate event fires when an Inspector window ceases to be the active window, either as
a result of user action or through program code.

PageChange

This event occurs when the active form page changes, either programmatically or by user
action, on an Inspector object. If you call either the Close or SetCurrentFormPage methods in the
event handler for this event, Outlook raises an error. This is a new event for Outlook 2007.

Items Collection Events

Like the Folders collection, the Items collection gives you a great deal of control over what
happens in folders and with the items contained within folders. You can use the Items col-
lection events to respond to item created, changed, and deleted events. Because the Item
object returned in the ItemAdd and ItemChange events is of type Object, consider using the
OutlookItem class to determine the underlying type of the item and cast it to the correct type
such as MailItem if necessary.

270 Part III Working with Outlook Data
ItemAdd

This event occurs when one or more items are added to the Items collection, either through
user action or programmatically.

ItemChange

This event occurs when one or more items are changed in the Items collection, either through
user action or programmatically.

ItemRemove

This event occurs when one or more items are removed from the Items collection, either through
user action or programmatically. Unlike the ItemAdd and ItemChange events, ItemRemove
does not return an Item object in the event for the item that has been removed. Instead of
the ItemRemove event, consider using the BeforeItemMove event on the Folder object. This
event will fire when an item is deleted or moved.

Item-Level Events

Item-level events provide you with the ability to create event handlers that implement your
business logic on the level of an Outlook item. Item-level events are common to all item
objects such as MailItem, AppointmentItem, ContactItem, TaskItem, and so forth. The only item
that does not expose item-level events is the NoteItem. For some item types, certain events
might never fire. For example, the Send event will not fire on a ContactItem object.

The entry point for item-level events is generally through the NewInspector or ItemLoad events.
For example, the NewInspector event section earlier in the chapter showed you how to hook up
item-level events in the constructor for the OutlookInspector class. You should always remem-
ber that Outlook can display multiple Inspectors, each of which represents an item-level
object at the data level. Use the OutlookInspector class or a similar class of your own design to
wrap each Inspector, and then create event-aware item-level instance variables that can handle
item-level events.

AttachmentAdd

This event occurs when an attachment has been added to an instance of the parent object.

AttachmentRead

This event occurs when an attachment in an instance of the parent object has been opened for
reading.

Chapter 8 Responding to Events 271
AttachmentRemove

This event occurs when an attachment has been removed from an instance of the parent
object.

BeforeAttachmentAdd

This event occurs before an attachment is added to an instance of the parent object. This event
is cancelable, and it is a new event for Outlook 2007.

BeforeAttachmentPreview

This event occurs before an attachment associated with an instance of the parent object is pre-
viewed, either from the attachment strip in the Reading Pane of the active Explorer or from
the active Inspector. This event is cancelable, and it is a new event for Outlook 2007.

BeforeAttachmentRead

This event occurs before an attachment associated with an instance of the parent object is read
from the file system, an attachment stream, or an Attachment object. This event is cancelable.
It is also a new event for Outlook 2007.

BeforeAttachmentSave

This event occurs just before an attachment is saved. This event is cancelable. This event cor-
responds to when attachments are saved to the messaging store. The BeforeAttachmentSave
event occurs just before an attachment is saved when an item is saved. If a user edits an attach-
ment and then saves those changes, the BeforeAttachmentSave event does not occur at that
time; instead it occurs when the item itself is later saved. It also does not occur when the
attachment is saved on the hard disk using the SaveAsFile method.

BeforeAttachmentWriteToTempFile

This event occurs before an attachment associated with an instance of the parent object is
written to a temporary file. This event is cancelable. It is also a new event for Outlook 2007.

BeforeAutoSave

This event occurs before the item is automatically saved by Outlook. This event is cancelable,
and it is a new event for Outlook 2007. You can use this event to ensure that your business
logic is maintained when an item is automatically saved.

272 Part III Working with Outlook Data
BeforeCheckNames

This event occurs just before Outlook starts resolving names in the Recipients collection for an
item. This event is cancelable. The event does not fire under the following circumstances:

■ You customized a Journal Entry form and then resolved a contact in the Contacts field.

■ You customized a Contact form and then resolved a contact in the Contacts field.

■ You customized any type of form, and Outlook automatically resolved the name in the
background.

■ You programmatically created and resolved a recipient.

BeforeDelete

This event occurs before an item is deleted. This event is cancelable. For this event to fire when
an item is deleted through a user action, the Inspector for the item must be open. If you need
to prevent deletion on an item regardless of whether an Inspector for the item is displayed, use
the BeforeItemMove event on the Folder object.

Close

This event occurs when the Inspector window associated with an item is being closed. This
event is cancelable. If you use the Close method to fire this event, it can only be canceled if the
Close method uses the olPromptForSave argument. Because the Close event collides with the
Close method, you should hook up this event by casting the item-level interface (in this case,
the ContactItem interface represented by the m_Contact instance variable) to the
ItemEvents_Event interface.

((Outlook.ItemEvents_Event)m_Contact).Close +=
 new Outlook.ItemEvents_CloseEventHandler(
 m_Contact_Close);

CustomAction

This event occurs when a custom action executes for an item. This event is cancelable.

CustomPropertyChange

This event occurs when a custom property of an item is changed. The name of the custom
property is passed in the event procedure.

Note The CustomPropertyChange event will only fire for custom properties that have been
added to the UserProperties collection on the object. It will not fire for named properties that
have been added to the item through the PropertyAccessor object.

Chapter 8 Responding to Events 273
Forward

This event occurs when the user selects the Forward action for an item or when the Forward
method is called for the item. This event is cancelable.

Open

This event occurs when an item is being opened in an Inspector window. This event is cancel-
able. When this event occurs, the Inspector object is initialized but not yet displayed. This
event occurs after the NewInspector event and allows you to set initial values of custom or built-
in properties, for example. The Open event differs from the Read event in that the Read event
occurs whenever the user selects the item in a view that supports in-cell editing as well as
when the item is being opened in an Inspector window.

PropertyChange

This event occurs when an explicit built-in property (for example, the Subject property) for an
item is changed.

Read

This event occurs when an item is opened for editing by the user. The Read event differs from
the Open event in that Read occurs whenever the user selects the item in a view that supports
in-cell editing as well as when the item is being opened in an Inspector window. The Read
event fires before the Open event.

Reply

This event occurs when the user selects the Reply action for an item, or when the Reply
method is called for the item. This event is cancelable.

ReplyAll

This event occurs when the user selects the Reply to All action for an item or when the
ReplyAll method is called for the item. This event is cancelable.

Send

This event occurs when the user selects the Send action for an item or when the Send method
is called for the item. This event is cancelable. When the Send event occurs, the item has not
yet been persisted to storage, so you can modify the item programmatically during this event.
Because the Send event collides with the Send method, you should hook up this event by cast-
ing the item-level interface (in this case, the MailItem interface represented by the m_Mail
instance variable) to the ItemEvents_Event interface.

274 Part III Working with Outlook Data
((Outlook.ItemEvents_Event)m_Mail).Send +=
 new Outlook.ItemEvents_SendEventHandler(
 m_Mail_Send);

Unload

This event occurs before an Outlook item is unloaded from memory, either programmatically
or by user action. It is a new event for Outlook 2007. This event occurs after the Close event
for the Outlook item occurs but before the Outlook item is unloaded from memory, allow-
ing an add-in to release any resources related to the object. Although the event occurs before
the Outlook item is unloaded from memory, this event cannot be canceled.

Note This event is meant only as a notification event so that an add-in can dereference
the object. An error occurs if any property or method for this object is called within the
Unload event.

Write

This event occurs when an item is saved, either programmatically or through user action.
This event is cancelable. If an item is automatically saved, the Write event occurs after the
BeforeAutoSave event.

Namespace Object Events

The following events are exposed on the Namespace object.

AutoDiscoverComplete

This event occurs after Outlook has finished accessing the autodiscovery service of an
Exchange server and has the related information available in the AutoDiscoverXml property of
the Namespace object. The AutoDiscoverXml property is an Extensible Markup Language
(XML) string that is returned from the autodiscovery service of the Exchange server and con-
tains user, account, and protocol information. The event will not fire unless the logged-on user
is configured with an Exchange account, and the Exchange server version supports the auto-
discovery service. This is a new event for Outlook 2007.

OptionsPagesAdd

This event occurs whenever the Properties dialog box for the Folder object returned in the
event is about to be displayed. You can use this event to add custom property pages to the
folder’s Properties dialog box. For additional information on implementing a custom property
page, see Chapter 16, “Completing Your User Interface.”

Chapter 8 Responding to Events 275
NavigationGroups Collection Events

The NavigationGroups collection contains a set of NavigationGroup objects that represent
the navigation groups displayed by a navigation module in the Navigation Pane. Use the
NavigationGroups collection events to determine when a navigation folder has been added,
removed, or selected.

NavigationFolderAdd

This event occurs after a folder is added to a NavigationGroups collection. This is a new event
for Outlook 2007.

NavigationFolderRemove

This event occurs after a navigation folder has been removed from the NavigationGroups col-
lection. This is a new event for Outlook 2007.

SelectedChange

This event occurs after the selection state is changed for a navigation folder contained in a
Calendar navigation module represented by a CalendarModule object. This event occurs
when the selection state changes for a folder in the Calendar navigation module, either by a
user checking or unchecking a folder in the Calendar navigation module of the Navigation
Pane or by an add-in changing the value of the IsSelected property for a NavigationFolder
object contained in the NavigationGroups collection of a CalendarModule object. This is a
new event for Outlook 2007.

NavigationPane Object Event

The NavigationPane object exposes only the ModuleSwitch event.

ModuleSwitch

This event occurs after the selection changes for a navigation module in the NavigationModules
collection of the NavigationPane object. This is a new event for Outlook 2007.

OutlookBarPane Object Events

OutlookBarPane object events let you track changes to the Shortcuts pane in the Navigation
Pane. The Shortcuts pane is the area in the Navigation Pane that contains shortcuts and short-
cut groups. It can be accessed using the Shortcuts button at the bottom of the Navigation
Pane. Although the Shortcuts pane (previously known as the Outlook Bar pane) is customiz-
able through program code, its use was deprecated with the introduction of the Navigation
Pane in Microsoft Outlook 2003.

276 Part III Working with Outlook Data
BeforeNavigate

This event occurs when the user clicks a shortcut in the Shortcuts pane to navigate to a differ-
ent folder. This event is cancelable.

OutlookBarGroup Object Events

These events fire when a Shortcuts pane group is added or removed, either programmatically
or through a user action.

GroupAdd

This event occurs after a Shortcuts pane group has been added to the Shortcuts pane, either
because of a user action or through program code.

BeforeGroupAdd

This event occurs before a Shortcuts pane group has been added to the Shortcuts pane, either
because of a user action or through program code. This event is cancelable.

BeforeGroupRemove

This event occurs before a Shortcuts pane group has been removed from the Shortcuts pane,
either because of a user action or through program code. This event is cancelable.

OutlookBarShortcut Object Events

These events occur when a Shortcuts pane shortcut is added or removed, either programmat-
ically or through a user action.

ShortcutAdd

This event occurs after a shortcut has been added to a Shortcuts pane group, either because of
user action or through program code.

BeforeShortcutAdd

This event occurs before a shortcut is added to a Shortcuts pane group, either because of user
action or through program code. This event is cancelable.

BeforeShortcutRemove

This event occurs before a shortcut is removed from a Shortcuts pane group, either because of
user action or through program code. This event is cancelable.

Chapter 8 Responding to Events 277
Stores Collection Events

The Stores collection is new to Outlook 2007. The Stores collection contains a set of Store
objects that represent each store available in the current profile. Use the Stores collection
events to determine when a Store object is about to be removed or when a store has been
added.

BeforeStoreRemove

This event occurs when a store is about to be removed from the current session, either pro-
grammatically or through user action. This event is cancelable. This is a new event for Outlook
2007.

Outlook must be running for this event to fire. This event fires when any of the following
occurs:

■ A store is removed by the user clicking the Close command on the context menu.

■ A store is removed programmatically by calling Session.RemoveStore.

This event does not fire when any of the following occur:

■ Outlook shuts down and closes a primary or delegate store.

■ A store is removed through the Mail icon in Microsoft Windows Control Panel and
Outlook is not running.

■ A delegate store is removed on the Advanced tab of the Microsoft Exchange Server dialog
box.

■ A store is removed through the Data Files tab of the Account Manager dialog box when
Outlook is not running.

■ An Internet Message Access Protocol (IMAP) store is removed from the profile.

You can use the BeforeStoreRemove event to determine that a store has been removed and take
appropriate actions if the store is required for your application. If the store is required, you can
use the AddStore method on the Namespace object to remount the store.

StoreAdd

This event occurs when a store has been added to the current session, either programmati-
cally or through user action. This is a new event for Outlook 2007.

Outlook must be running for this event to fire. This event fires when any of the following
occur:

■ A store is added through the Open Outlook Data File dialog box by selecting Open and
then Outlook Data File on the File menu.

278 Part III Working with Outlook Data
■ A store is added through the Data Files tab of the Account Manager dialog box.

■ A store is added successfully by calling the Session.AddStore method.

This event does not fire when any of the following occurs:

■ Outlook starts and opens a primary or delegate store.

■ A store is added through the Mail icon in Windows Control Panel and Outlook is not
running.

■ A delegate store is added through the Advanced tab of the Microsoft Exchange Server
dialog box.

SyncObject Object Events

The SyncObject object represents a Send/Receive group for a user. Use the SyncObject events to
monitor the progress of a Send/Receive group.

OnError

This event occurs when Outlook encounters an error while synchronizing a user’s folders
using the specified Send/Receive group.

Progress

This event occurs periodically while Outlook is synchronizing a user’s folders using the spec-
ified Send/Receive group.

SyncEnd

This event occurs immediately after Outlook finishes synchronizing a user’s folders using the
specified Send/Receive group.

SyncStart

This event occurs when Outlook begins synchronizing a user’s folders using the specified
Send/Receive group.

Reminders Collection Events

The Reminders collection represents all the Reminder items stored in the hidden Reminders
folder of the mailbox of the logged-on user. Reminder items include appointment reminders,
task reminders, and follow-up reminders. Use the Reminders collection events to determine
when a reminder is added, changed, removed, snoozed, or displayed in the Reminders dia-
log box.

Chapter 8 Responding to Events 279
BeforeReminderShow

This event occurs before the Reminder dialog box is displayed. This event is cancelable.

ReminderAdd

This event occurs after a reminder is added, either programmatically or through user action.

ReminderChange

This event occurs after a reminder is changed, either programmatically or through user action.

ReminderFire

This event occurs before the reminder is executed. This event is not cancelable.

ReminderRemove

This event occurs when a Reminder object has been removed from the collection. Because the
ReminderRemove event does not pass a Reminder object, you cannot determine which
reminder has been removed from the Reminders collection. A reminder is removed from the
Reminders collection when any of the following events occur:

■ A reminder is dismissed programmatically or by a user action.

■ A reminder is turned off programmatically or by a user action in the item containing the
reminder.

■ The item containing a reminder is deleted.

■ A reminder is removed from the Reminders collection with the Remove method.

Snooze

This event occurs when a reminder is dismissed either programmatically or through user
action. Because the Snooze event collides with the Snooze method, you need to hook up this
event as follows:

((Outlook.ReminderCollectionEvents_Event)reminders).Snooze +=
 new Outlook.ReminderCollectionEvents_SnoozeEventHandler(
 Connect_Snooze);

Views Collection Events

Use the Views collection events to determine when a View object has been added or removed
from the Views collection on a Folder object. The Views collection does not expose an event
that lets you know that a view has been modified.

280 Part III Working with Outlook Data
ViewAdd

This event occurs when a view is added to the Views collection, either through user action or
program code.

ViewRemove

This event occurs when a view is removed from the Views collection, either through user
action or program code.

Summary
In this chapter, you’ve learned how writing event handlers in managed code can present some
special challenges due to the Outlook PIAs. Visual Basic events are straightforward if you use
the WithEvents keyword. C# events require that you understand some issues such as scope
and method and event name collisions before you start to code event procedures. Once you
understand these issues, writing event procedures in C# is not difficult. Finally, this chapter
provides an overview of every event in the Outlook 2007 object model. Understanding how
and when to use a specific event will get you started on writing events for your own solution.
Events bring your add-in to life and allow it to respond to a variety of user actions in a manner
that is consistent with the business logic of your application.

Chapter 9

Sharing Information with Other
Users

Enabling users to share information is one of the key investment areas in Microsoft Office
Outlook 2007. In previous versions of Outlook, the ability to open shared items or work with
shared data was restricted to a Microsoft Exchange environment and only enabled accessing
shared default folders. For Outlook 2007, this support has been extended to include addi-
tional sharing technologies, such as Internet calendars and RSS feeds, and to send and receive
sharing invitations and requests.

This chapter describes the different ways of sharing and accessing shared data. Specific topics
include:

■ What is sharing? Learn more about what sharing means and how it applies to solutions.

■ Accessing shared folders In addition to accessing shared folders via Exchange, you can
now access Internet calendars and RSS subscriptions. As an example, you’ll see how to
subscribe to an online calendar.

■ Sharing items Learn how to create and use the SharingItem object.

Outlook and Shared Data
Outlook 2007 includes several different sharing technologies that enable users to share calen-
dars, mail, and other item types. These technologies are used together through the object
model to enable data sharing scenarios to provide access to folders, and send and receive
information on shared Web data such as RSS feeds and Internet calendars.

The sharing portions of the object model also enable the sending and receiving of sharing
invitations and sharing requests, which can be used to notify users of a new, available shared
resource, request that users share the contents of their folder, and set permissions on folders
through the object model.

Sharing in iCalendar Format
By sharing calendar items in iCalendar format, you can send items to other Outlook or non-
Outlook clients via standard Internet mail formats and protocols. The object model supports
folder-level export to the iCalendar format through the CalendarSharing object. To create a
new instance of this object for a folder, call the GetCalendarExporter method on the Folder
object.
281

282 Part III Working with Outlook Data
Outlook.Folder calendar = Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderCalendar) as Outlook.Folder;
Outlook.CalendarSharing exporter = calendar.GetCalendarExporter();

Once you have obtained an instance of the CalendarSharing object, you can then set properties
on the object and execute a method to either save the contents to disk or forward the calendar
via e-mail.

Sharing a Calendar Through E-Mail

Previously it was necessary to write a complex macro to e-mail a calendar to another user in
Outlook. However, Outlook 2007 simplifies the work by providing most of the necessary
code through the CalendarSharing object. Now this task is straightforward and requires only
setting a few properties and executing a method to send the e-mail. The following code sample
generates an e-mail that contains the next seven days of calendar information and forwards it
to an arbitrary e-mail address. By setting properties on the CalendarSharing object, this code
shows all appointments in the time range, and includes attachments from those appoint-
ments, but will not include details of appointments marked “private.”

public void SendNextWeekToAddress(string sendToAddresses)
{
 if (string.IsNullOrEmpty(sendToAddresses))
 throw new ArgumentException(
 "sendToAddress",
 "Parameter must contain a value.");

 Outlook.Folder calendar = Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderCalendar) as Outlook.Folder;
 Outlook.CalendarSharing exporter = calendar.GetCalendarExporter();

 // Set the properties for the export
 exporter.CalendarDetail = Outlook.OlCalendarDetail.olFullDetails;
 exporter.IncludeAttachments = true;
 exporter.IncludePrivateDetails = false;
 exporter.RestrictToWorkingHours = false;
 exporter.StartDate = DateTime.Today.Date;
 exporter.EndDate = exporter.StartDate.AddDays(7);

 // Create a new mail item
 Outlook.MailItem calendarMail = exporter.ForwardAsICal(
 Outlook.OlCalendarMailFormat.olCalendarMailFormatDailySchedule);
 calendarMail.To = sendToAddresses;
 ((Outlook.MailItemClass)calendarMail).Send();
}

When calling the ForwardAsICal method, the format of the body of the e-mail can be deter-
mined by the parameter passed into the method call. Both the daily schedule format and the
event list format are supported. Figure 9-1 shows an example of the e-mail message received
when using this method.

Chapter 9 Sharing Information with Other Users 283
Figure 9-1 An example of a daily schedule format e-mail generated from the object model.

You can customize the information contained in the e-mail by modifying the detail level and
other settings. For example, you could only show free/busy information, or just include the
subjects of appointments on the calendar instead of the full details.

Important Calling the ForwardAsICal method might take several seconds to complete
while Outlook builds the iCalendar information for the calendar. Depending on the size of
the calendar and the number of days included, Outlook might become unresponsive to the
user for a short period of time. If you anticipate that this will happen when calling the
method, you should provide the user with an indication that this is occurring.

Saving a Calendar to Disk

Using the same CalendarSharing object you can also save a whole calendar, or a range of
appointments from a calendar to disk in an Internet Calendaring and Scheduling (ICS) file.
Outlook will automatically optimize the ICS file so that recurring appointments are expressed
as recurring appointments in the ICS and not as individual instances, whenever possible.

The process is very much the same as it was for sending a calendar via e-mail. The following
code sample obtains an instance of the CalendarSharing object from the Folder object, sets the
appropriate properties for the type of output file, and then calls the SaveAsICal method.
Instead of exporting just the public details, this time around the code indicates that every-
thing should be saved, including details of items marked as private.

284 Part III Working with Outlook Data

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

public void SaveCalendarToDisk(string calendarFileName)
{
 if (string.IsNullOrEmpty(sendToAddresses))
 throw new ArgumentException(
 "calendarFileName",
 "Parameter must contain a value.");

 Outlook.Folder calendar = Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderCalendar) as Outlook.Folder;
 Outlook.CalendarSharing exporter = calendar.GetCalendarExporter();

 // Set the properties for the export
 exporter.CalendarDetail = Outlook.OlCalendarDetail.olFullDetails;
 exporter.IncludeAttachments = true;
 exporter.IncludePrivateDetails = true;
 exporter.RestrictToWorkingHours = false;
 exporter.IncludeWholeCalendar = true;

 // Save the calendar to disk
 exporter.SaveAsICal(calendarFileName);
}

Important Saving a calendar to disk can take a noticeable amount of time depending on
the size of the calendar being saved. While the command is executing, the Outlook window
will appear unresponsive to the user. If the calendar you are saving is large enough, you
should warn the user before you execute this command.

Saving an Appointment to Disk

You can also save single-instance appointments and recurring appointments to individual
appointment iCalendar files using the SaveAs method on the AppointmentItem object. This
method can be used to serialize the properties of an appointment into a standard format that
is readable by other programs.

The following code saves the first appointment in the default Calendar folder to disk as an
iCalendar file:

public void ExportAppointmentToDisk(string exportFileName))
{
 if (string.IsNullOrEmpty(sendToAddresses))
 throw new ArgumentException(
 "exportFileName",
 "Parameter must contain a value.");

 Outlook.Folder calendar = Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderCalendar) as Outlook.Folder;

 // Check to see if this is an appointment item; if it's not we do nothing
 OutlookItem item = new OutlookItem(calendar.Items[1]);
 if (item.Class != Outlook.OlObjectClass.olAppointment)

Chapter 9 Sharing Information with Other Users 285
 return;

 Outlook.AppointmentItem appointment = item.InnerObject as Outlook.AppointmentItem;
 appointment.SaveAs(exportFileName, Outlook.OlSaveAsType.olICal);
}

When saving an appointment to disk in the iCalendar format, some properties (including all
custom properties) are stripped from the item because they are not supported in the iCalen-
dar format. To save an appointment without losing custom fields and some Outlook-specific
information, you should save the item as an Outlook Message (MSG) file by changing the sec-
ond parameter of the SaveAs method to Outlook.OlSaveAsType.olMSG.

Opening an iCalendar File

Reading iCalendar format files can be a little trickier than writing those files to disk. Outlook
treats iCalendar files that contain a single or recurring appointment or meeting in one way,
and a file that contains a group of appointments in another. You need to use two different
methods depending on the contents of the file. However, because the contents are not always
known before you attempt to load the file, your code for loading an iCalendar file should be
robust enough to handle the error case.

The following method opens either type of iCalendar file and displays the resulting item or
folder to the user. For iCalendar files that contain multiple appointments, the contents are
imported as a new calendar in the default store. For single-appointment iCalendar files, an
Inspector window is displayed with the item details, but the item is not copied into the default
store. After performing basic validation on the input, this code block attempts to open the file
as an item first. If this fails, it then attempts to open the file as a list of items. If either method
succeeds, the resulting item or folder is displayed to the user.

public void OpenICalendarFile(string fileName)
{
 if (string.IsNullOrEmpty(sendToAddresses))
 throw new ArgumentException(
 "exportFileName",
 "Parameter must contain a value.");
 if (!File.Exists(fileName))
 throw new FileNotFoundException(fileName);

 // First try to open the iCalendar file as an appointment (not a calendar folder).
 object item = null;
 try
 {
 item = Application.Session.OpenSharedItem(fileName);
 }
 catch
 {}

 if (item != null)
 {
 // Display the item

286 Part III Working with Outlook Data
 OutlookItem olItem = new OutlookItem(item);
 olItem.Display();
 return;
 }

 // If unsuccessful in opening it as an item, try opening it as a folder
 Outlook.Folder importedFolder = null;
 try
 {
 importedFolder = Application.Session.OpenSharedFolder(fileName,
 Type.Missing, Type.Missing, Type.Missing) as Outlook.Folder;
 }
 catch
 { }

 // If successful, open the folder in a new Explorer window
 if (importedFolder != null)
 {
 Outlook.Explorer explorer =
 Application.Explorers.Add(importedFolder,
 Outlook.OlFolderDisplayMode.olFolderDisplayNormal);
 explorer.Display();
 }
}

Subscribing to Shared Folders
Outlook 2007 has a new emphasis on providing access to shared data, such as Internet calen-
dars, RSS feeds, and data from Microsoft SharePoint lists and document libraries. The object
model includes new functionality to enable connecting to these shared sources of data and
setting up the synchronization contexts to continue to poll those shared resources.

The next three sections explain using the NameSpace.OpenSharedFolder method to download
and synchronize with a particular type of shared folder.

RSS Feeds

Subscribing to a new RSS feed is a straightforward process through the object model. Calling
OpenSharedFolder on the NameSpace object with a Uniform Resource Locator (URL) that
refers to a valid RSS feed is all that is necessary. It is also possible to customize properties of
the subscription by specifying other properties in the OpenSharedFolder method. You can pro-
vide a name for the subscription, specify if attachments should be downloaded, and deter-
mine if Outlook should use the refresh ratio provided in the RSS feed.

public void AddRssFeed()
{
 string feedUrl = "feed://example.org/rssfeed.xml";
 Outlook.Folder subscriptionFolder =
 Application.Session.OpenSharedFolder(feedUrl,
 "Example RSS Feed", true, true) as Outlook.Folder;

Chapter 9 Sharing Information with Other Users 287
 Outlook.Explorer exp =
 Application.Explorers.Add(subscriptionFolder,
 Outlook.OlFolderDisplayMode.olFolderDisplayNormal);
 exp.Display();
}

In this example, the default title provided by the RSS feed is overridden with “Example RSS
Feed,” and the feed is configured to download attachments automatically and respect the
time-to-live (TTL) of the RSS feed.

Moving an RSS feed folder is as simple as moving the folder returned by the call to
OpenSharedFolder. Outlook automatically updates the synchronization destination to match
the new location of the folder at the next sharing reconciliation opportunity, and items are
delivered to the correct location. You cannot, however, move a folder while a send/receive
operation on that folder is in progress. Because Outlook immediately starts to download
feed items after a call to OpenSharedFolder, you might need to wait until that operation is
complete to move the folder.

Important The OpenSharedFolder method requires that the correct protocol handler be
specified on the folder URL. For instance, you cannot use a URL that begins with http:// for
an RSS feed; you must instead use the feed:// URL. Outlook cannot open RSS feeds that
require authentication unless Windows NT LAN Manager (NTLM) authentication is available,
and it cannot load RSS feeds from secure (Secure Sockets Layer [SSL]) locations.

SharePoint Folders

Connecting to a SharePoint folder with the object model is just a straightforward use of the
OpenSharedFolder method on the NameSpace object. To open a SharePoint folder, a special
URL is required. This URL uses the stssync: protocol to provide details on the SharePoint
server, folder path, and other details that Outlook needs in order to create the synchroniza-
tion relationship.

Outlook supports synchronizing SharePoint folders for calendars, contact lists, task lists, dis-
cussion boards, and document libraries. Based on information in the URL provided, Outlook
will create a new folder of the same base type as the SharePoint folder. For instance, a Share-
Point calendar folder will create a new calendar folder in Outlook when replicated. SharePoint
synchronized folders are stored in their own Outlook Personal Folders File (PST) outside of
the user’s mailbox.

To automate the synchronization of a new SharePoint folder in Outlook, use the
NameSpace.OpenSharedFolder method and provide the stssync:// URL. You can provide a cus-
tom folder name and specify if Outlook should use the default TTL for the folder. SharePoint
folders always download item attachments.

288 Part III Working with Outlook Data
public void AddSpsFolder()
{
 string calendarUrl = "stssync://sts/?ver=1.1&type=calendar&cmd=add-folder&" +
 "base-url=http://example.org/calendar&" +
 "list-url=/Lists/Calendar/calendar.aspx&" +
 "guid=&site-name=Example%20Site&list-name=Calendar";
 string folderName = "Example SPS Calendar";
 bool useDefaultTTL = true;

 Outlook.Folder calendarFolder =
 Application.Session.OpenSharedFolder(calendarUrl,
 folderName, Type.Missing, useDefaultTTL) as Outlook.Folder;
 Outlook.Explorer exp =
 Application.Explorers.Add(calendarFolder,
 Outlook.OlFolderDisplayMode.olFolderDisplayNormal);
 exp.Display();
}

Locating the SharePoint Sync URL

One of the more difficult parts of connecting to a SharePoint folder programmatically is deter-
mining the proper URL to create the sharing relationship. The stssync:// URL is not provided
in the SharePoint user interface for the folder. The format is documented, but constructing the
right URL can be painful. One easier way to obtain the right URL for a folder is to manually link
the destination folder into Outlook, and then use the following code to display the correct URL:

public void DisplaySharePointUrl()
{
 const string PROP_SYNC_URL =
 "http://schemas.microsoft.com/mapi/id/" +
 "{00062040-0000-0000-C000-000000000046}/8A24001E";

 Outlook.Folder folder = Application.ActiveExplorer()
 .CurrentFolder as Outlook.Folder;

 Outlook.Table table = folder.GetTable(Type.Missing,
 Outlook.OlTableContents.olHiddenItems);
 table.Columns.RemoveAll();
 table.Columns.Add("MessageClass");
 table.Columns.Add(PROP_SYNC_URL);

 StringBuilder sb = new StringBuilder();
 while (!table.EndOfTable)
 {
 Outlook.Row row = table.GetNextRow();

 string msgClass, spsUrl;
 msgClass = row["MessageClass"] as string;
 spsUrl = row[PROP_SYNC_URL] as string;

 if (msgClass == "IPM.Sharing.Binding.In")
 {
 sb.Append(spsUrl);

Chapter 9 Sharing Information with Other Users 289
 sb.Append("\r\n");
 }
 }

 if (sb.Length > 0)
 {
 System.Windows.Forms.MessageBox.Show(
 "The following SharePoint Folder URLs were found:\r\n" +
 sb.ToString());
 }
 else
 {
 System.Windows.Forms.MessageBox.Show(
 "No SharePoint URLs were found in this folder.");
 }
}

This example code block uses Outlook’s new Table object to look for the sharing binding
information in the current folder for the active Explorer window. If more than one binding
context is found, it will display the URLs for all available sharing contexts.

After running this code against a folder, you can copy and paste the URL and use it in your
solution to open that SharePoint folder again later.

Internet Calendars

Subscribing to a new Internet calendar is just a matter of calling the OpenSharedFolder method
with the correct URL for the Internet calendar. Similar to RSS feeds, when subscribing to an
Internet calendar you can provide an alternative title and specify if Outlook should download
attachments and respect the TTL of the calendar. The following function adds an example
Internet calendar, keeping the default calendar name provided but specifying that attach-
ments are downloaded and the TTL is respected. Once the folder is created, the function dis-
plays it to the user in a new Explorer window.

public void AddWebCalendar()
{
 string calendarUrl = "webcal://example.org/mycaledar.ics";
 Outlook.Folder calendarFolder =
 Application.Session.OpenSharedFolder(calendarUrl, Type.Missing, true, true)
 as Outlook.Folder;
 Outlook.Explorer exp =
 Application.Explorers.Add(calendarFolder,
 Outlook.OlFolderDisplayMode.olFolderDisplayNormal);
 exp.Display();
}

Important The OpenSharedFolder method requires that the correct protocol handler be
specified on the folder URL. For instance, you cannot use a URL that begins with http:// for
an Internet calendar; you must instead use the webcal:// protocol. Outlook cannot open
Internet calendars that require authentication unless NTLM authentication is available, and it
cannot load calendars from secure (SSL) locations.

290 Part III Working with Outlook Data
Using the SharingItem Object
The SharingItem object represents both sharing requests and sharing invitations, a new feature
of Outlook 2007. These sharing items enable users to easily request access to a shared folder
on an Exchange server or to notify other users of shared folder availability. Sharing invitations
can be sent for SharePoint folders, Exchange folders, RSS feeds, and Internet calendars. Shar-
ing requests only work to request access to default folders in an Exchange user’s mailbox. Fig-
ure 9-2 shows an example sharing invitation for an Exchange folder.

Figure 9-2 An example Exchange sharing invitation.

One benefit of sending a sharing invitation for an Exchange folder is that Outlook will gener-
ate the proper permissions for the recipients of the sharing invitation automatically. This fea-
ture enables developers to use the object model to add permissions to shared folders, which
previously was unavailable using the object model.

SharingItem objects are created differently from other item types in Outlook. To create a
SharingItem object, you need to use the NameSpace.CreateSharingItem method and provide
the context for the sharing item and, optionally, a provider to use. The context must be
either a Folder object or a URL string. If the provider is not specified, Outlook will use the
default provider for the context.

Although created differently, the SharingItem object inherits most of the behavior of the MailItem
object. You can work with a SharingItem object in much the same way as a MailItem object.
One exception to this inheritance is that using the CC or BCC properties or recipient types on
SharingItem objects using the Exchange provider will cause the item to fail to be sent. Only the
To property is supported with the Exchange provider.

Chapter 9 Sharing Information with Other Users 291
SharingItem Types

Each SharingItem object can represent a sharing invitation, a sharing request, or both. Sharing
invitations provide information to the user that a shared resource is available—either an
Exchange user’s folder, RSS feed, Web calendar subscription, or an iCalendar resource. Shar-
ing requests ask the user to share a default folder with another user, and are only available for
mailboxes on an Exchange server.

The Type property on the SharingItem object allows you to determine the kind of sharing
message. A SharingItem object can represent a sharing invitation (olSharingMsgTypeInvite),
a sharing request (olSharingMsgTypeRequest), a hybrid invitation and request
(olSharingMsgTypeInviteAndRequest), or a response from a sharing request
(olSharingMsgTypeResponseAllow or olSharingMsgTypeResponseDeny). When creating a new
SharingItem, you can set the Type property to the invite, request, or invite and request states,
but you cannot set the type as a response. To create a response sharing item, use the Allow or
Deny methods on a received SharingItem object.

Sharing a Folder with a Sharing Invitation

Sharing a folder on Exchange through the object model is a simple operation with Outlook
2007. To share a folder, you only need to create a new SharingItem object, address it to the
intended recipient, and then call the item’s Send method. When the SharingItem object is
sent, Outlook will assign appropriate permissions to the recipients of the message. Using a
SharingItem object to set permissions also has the benefit of notifying the recipients that
they now have permission to access a shared resource.

This method creates a new sharing invitation for the user’s default calendar folder, and sends
the item to another user on the same Exchange server:

public void SendInvitationForCalendar()
{
 Outlook.Folder myCalendar = Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderCalendar) as Outlook.Folder;

 Outlook.SharingItem sItem =
 Application.Session.CreateSharingItem(myCalendar,
 Outlook.OlSharingProvider.olProviderExchange);

 sItem.Recipients.Add("user@example.org").Resolve();
 sItem.Type = Outlook.OlSharingMsgType.olSharingMsgTypeInvite;
 sItem.Subject = "I'm sharing my calendar with you";
 sItem.Body = "Here, you now have access to read my calendar!";
 sItem.Send();
}

By default, Outlook will grant all the SharingItem object’s recipients Reviewer permissions
(read-only) when the item is sent. If you are sharing a nondefault folder and would like to

292 Part III Working with Outlook Data
specify that recipients have both read and write permissions to the folder, you can set the
AllowWriteAccess property.

 // Provide write access to the recipients
 sItem.AllowWriteAccess = true;

If any of the recipients are not Exchange users, the Send method will fail and the SharingItem
object will not be sent to any recipients. For calendar folders, you can use the
CalendarExporter class to send a copy of the calendar to the user. For more information, see
the section “Sharing a Calendar Through E-Mail” earlier in this chapter.

Requesting Folder Access with a Sharing Request

A SharingItem object can also be used to request access to a default folder in another user’s
mailbox on an Exchange server. When a user attempts to open a shared folder and fails
because of a lack of permissions, Outlook prompts the user to determine if the user wishes to
send a sharing request for that folder. If you are developing a custom solution that connects to
shared folders using NameSpace.GetSharedDefaultFolder, you don’t automatically get this
behavior, but it is easy to add to your solution. When the user receives a sharing request, he or
she can elect to allow or deny access to the shared folder, and a response can be sent back to
the requesting user in the form of a response sharing item.

The process of creating a sharing request works much like a sharing invitation. To create a
new SharingItem object, you make a call to NameSpace.CreateSharingItem and provide the con-
text of the sharing item. For a sharing request, because you do not yet have access to the user’s
shared folder, you provide a reference to the default folder in your mailbox of the same type
you are requesting. For example, if you are trying to access a user’s default task folder, you
would provide a reference to your default task folder, as shown here:

public void RequestTaskFolderAccess()
{
 // Provide your task folder as the context
 Outlook.Folder taskContext = Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderTasks) as Outlook.Folder;

 Outlook.SharingItem request = Application.Session.CreateSharingItem(
 taskContext, Outlook.OlSharingProvider.olProviderExchange);
 // Set to request access to the user's default task folder
 request.Type = Outlook.OlSharingMsgType.olSharingMsgTypeRequest;

 // Add recipient
 request.Recipients.Add("user@example.org").Resolve();

 // Set the subject and body
 request.Subject = "Please share your tasks with me";
 request.Body = "Would you please allow me to access your task folder";

 request.Send();
}

Chapter 9 Sharing Information with Other Users 293
If any of the recipients for the sharing request are not Exchange recipients, the call to Send will
fail with an error indicating that some of the recipients are invalid. Sharing requests are only
supported to Exchange recipients.

Processing a Sharing Item

A single SharingItem object in the Inbox can actually represent a number of different possibil-
ities, based on the Type property of the SharingItem object. It could represent an invitation to
access a shared folder, a request to share a folder, or a response from a previous request. Based
on the Type property, you can determine the correct course of action for the item and which
methods and properties are valid for that item. Hybrid sharing items, those that are both a
sharing invitation and a sharing request, should be handled in accordance with both sets of
guidelines.

Sharing Invitations

SharingItem objects that have a Type property equal to either olSharingMsgTypeInvite or
olSharingMsgTypeInviteAndRequest can be used to connect to a shared resource. To determine
the type of resource you have been invited to access, examine the properties on the SharingItem
object in Table 9-1.

To open the shared folder, you can call the OpenSharedFolder method on the SharingItem
object. This connects to the shared resource and returns a Folder object for the shared folder.
The folder is also added to the user’s Navigation Pane in the appropriate place.

An example of this in action is provided next. In this example, the code looks for all SharingItem
objects in the Inbox and enumerates them. For each SharingItem object, if it is a sharing invi-
tation or an invitation and request, it checks to see if the provider is RSS. If the provider is RSS,
it looks at the feed URL to see if it is on the blogs.msdn.com Web site. If these conditions are
met, it opens the folder, thereby importing the RSS feed.

Table 9-1 Important Properties on the SharingItem Object

Property name Description Example
SharingProvider Indicates the type of

resource being shared
The value determines the provider being used; for
example, olProviderExchange indicates that the
resource is a folder from an Exchange mailbox,
olProviderRSS indicates an RSS feed, and
olProviderWebCal indicates an Internet calendar
subscription.

RemotePath Provides the path to the
remote resource

For an Exchange provider, this will represent a value
to the folder, such as \\Mailbox - User\Calendar. For
RSS or Internet calendar providers, this is the URL
that contains the shared resource.

RemoteName The name provided to the
remote resource, typically
the name of the folder

If the sharing message is for the default contacts
folder from a user running an English version of
Outlook, this would return Contacts.

294 Part III Working with Outlook Data
public void AddMsdnRssFeeds()
{
 Outlook.Folder inbox = Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox) as Outlook.Folder;

 Outlook.Items sharingItems =
 inbox.Items.Restrict("[MessageClass] = 'IPM.Sharing'");
 foreach (object item in sharingItems)
 {
 Outlook.SharingItem sItem = item as Outlook.SharingItem;
 if (sItem == null) continue;

 if (sItem.Type == Outlook.OlSharingMsgType.olSharingMsgTypeInvite ||
 sItem.Type ==
 Outlook.OlSharingMsgType.olSharingMsgTypeInviteAndRequest)
 {
 // Accept incoming RSS feeds for MSDN blog feeds
 if (sItem.SharingProvider ==
 Outlook.OlSharingProvider.olProviderRSS &&
 sItem.RemotePath.StartsWith("http://blogs.msdn.com/"))
 {
 sItem.OpenSharedFolder();
 sItem.Delete();
 }
 }
 }
}

Sharing Requests

If the SharingItem object’s Type property is equal to either olSharingMsgTypeRequest or
olSharingMsgTypeInviteAndRequest, it can be considered a request to share the contents of a
folder in the current user’s mailbox. Before determining the action to take on the SharingItem
object, either allowing the request or denying it, you should examine the RequestedFolder
property to determine to which folder the new permissions will be applied.

The method provided here will look through the Inbox to find all sharing items, and then for
each sharing request look to see if the request is for the Tasks folder. If the request is for the
user’s Tasks folder, it will allow access and then delete the item.

public void ProcessSharingItems()
{
 Outlook.Folder inbox = Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox) as Outlook.Folder;

 Outlook.Items sharingItems
 = inbox.Items.Restrict("[MessageClass] = 'IPM.Sharing'");
 foreach (object item in sharingItems)
 {
 Outlook.SharingItem sItem = item as Outlook.SharingItem;
 if (sItem == null) continue;

Chapter 9 Sharing Information with Other Users 295
 if (sItem.Type == Outlook.OlSharingMsgType.olSharingMsgTypeRequest ||
 sItem.Type == Outlook.OlSharingMsgType.olSharingMsgTypeInviteAndRequest)
 {
 // Accept requests for the task folder automatically
 if (sItem.RequestedFolder == Outlook.OlDefaultFolders.olFolderTasks)
 {
 sItem.Allow();
 sItem.Delete();
 }
 }
 }
}

Sharing Responses

Sharing items that represent responses to a request are useful for informational purposes,
but cannot be acted on. These types of SharingItem objects can be identified by checking
the Type property to determine if it is equal to olSharingMsgTypeResponseAllow or
olSharingMsgTypeResponseDeny. You can combine this with the From property to understand
which recipient has responded to a previous request and how the recipient responded.

Summary
In this chapter, you’ve learned more about Outlook and the new concepts around sharing
introduced with Outlook 2007. You’ve also seen how to connect to RSS feeds, Internet calen-
dars, and SharePoint folders, and how to open and save individual items and calendar folders
to a file. For more information on working with the data in these shared folders once they are
connected, see Chapter 6, “Accessing Outlook Data.”

Chapter 10

Organizing Outlook Data
When you complete this chapter, you should have a good understanding of the following
areas:

■ Overview of organizing information in Microsoft Office Outlook 2007

■ Using categories and task flagging

■ Creating rules programmatically

■ Writing code to create a search folder

■ Customizing views with new View objects

How Outlook 2007 Helps to Organize Information
Outlook 2007 introduces several new features that help to organize the constantly growing
number of items that arrive in a user’s Inbox. Category colors and task flagging are easy to use
and provide a simple tool for getting organized. Organizational schemes for mailbox items are
almost as varied as the number of Outlook users. The focus of this chapter is not to prescribe
the best method of organizing Outlook data. Rather, you’ll learn how to use the Outlook
object model to implement organizational schemes programmatically. The good news for
developers is that the Outlook object model supports all the new organizational features of
Outlook 2007. By writing a few lines of code, you can add color categories to items, mark
items for follow-up, create rules, build custom search folders, or add views.

The Categories Collection and Category Objects
Outlook 2007 provides color categorization functionality in which Outlook items can be cat-
egorized and displayed by category. Multiple color categories can be applied to a single
Outlook item, and Outlook items can be grouped or sorted by color category. Shortcut keys
can be assigned to each color category to allow users to more easily categorize items. Color
categories are user defined, and can be created, deleted, and changed either programmatically
or by user action within the Outlook user interface.

The Category object represents a single user-defined color category in the master category list,
the list of color categories presented in the Outlook user interface and represented by the
Categories collection of the NameSpace object. Unlike previous versions of Outlook, Outlook
2007 stores the master category list in the default store so that it will roam by default in most
scenarios, as is the case with an Exchange mailbox. Category objects are identified with a glo-
bally unique identifier (GUID) when created, and this identifier cannot be changed. However,
297

298 Part III Working with Outlook Data
you can change the name, color, and shortcut key associated with a color category by setting
the Name, Color, and ShortcutKey properties of the Category object. The CategoryID property
can be used to retrieve the identifier of a Category object.

Outlook items are displayed based on the category name stored in the Categories property of
that Outlook item. The Categories property gets or sets a comma-delimited string of category
names. It does not return a Categories collection object. Because category names are stored as
part of the Outlook item, it is possible to add a category to an Outlook item that is not present
in the master category list. For example, a category might have been removed. To determine if
a category exists in the master category list, use the following CategoryExists method:

private bool CategoryExists(string categoryName)
{
 try
 {
 Outlook.Category category =
 Application.Session.Categories[categoryName];
 if (category != null)
 {
 return true;
 }
 else
 {
 return false;
 }
 }
 catch { return false; }
}

Note If the Categories property of an item contains a category name that does not exist in
the Categories collection of the Namespace object, then the category name associated with
that Outlook item is displayed, but without an associated color.

The following code sample enumerates the Category objects in the Categories collection and
writes the Name and CategoryID properties to the trace listeners in the Listeners collection:

private void EnumerateCategories()
{
 Outlook.Categories categories =
 Application.Session.Categories;
 foreach (Outlook.Category category in categories)
 {
 Debug.WriteLine(category.Name);
 Debug.WriteLine(category.CategoryID);
 }
}

Chapter 10 Organizing Outlook Data 299
Category Colors
The Category object exposes a Color property that lets you set or get an olCategoryColor
constant. If you need to reproduce the color in a custom control, you can use these read-
only properties of the Category object:

■ CategoryBorderColor

■ CategoryGradientBottomColor

■ CategoryGradientTopColor

These properties return an OLE_COLOR value, which is dependent on the Color prop-
erty of the Category object. For an advanced example of how to use CategoryBorderColor,
CategoryGradientBottomColor, and CategoryGradientTopColor, see ColorSwatchBuilder.cs
or ColorSwatchBuilder.vb in the PrepareMe sample add-in that accompanies this book.

Creating a Category

To create a category programmatically, you call the Add method of the Categories collection. If
the ISV category does not exist, the following code sample adds a category named ISV to the
master category list and assigns the dark blue color to this category. It also assigns Ctrl+F11 as
the shortcut key for the category.

private void AddACategory()
{
 Outlook.Categories categories =
 Application.Session.Categories;
 if(!CategoryExists("ISV"))
 {
 Outlook.Category category = categories.Add("ISV",
 Outlook.OlCategoryColor.olCategoryColorDarkBlue,
 Outlook.OlCategoryShortcutKey.olCategoryShortcutKeyCtrlF11);
 }
}

Assigning One or More Categories to an Item

To assign categories to an item, use the Categories property on the item. The Categories prop-
erty gets or sets a comma-delimited string that contains all of the categories assigned to the
item. This property can contain a maximum of 255 characters, including the commas and
spaces, to separate the category values. If you assign a category that is not in the Categories col-
lection of the Namespace object, that category will not display a color. The following code sam-
ple creates a restriction for items that contain “ISV” in the subject. This code sample uses a for
loop and the OutlookItem class to assign the ISV category to any item in the Inbox that con-
tains “ISV” in the subject. Notice that the code sample examines the string returned by

300 Part III Working with Outlook Data
item.Categories to determine if the Categories property is empty or already has been assigned to
the ISV category.

private void AssignCategories()
{
 string filter = "@SQL=" + "\"" + "urn:schemas:httpmail:subject"
 + "\"" + " ci_phrasematch 'ISV'";
 Outlook.Items items =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).Items.Restrict(filter);
 for(int i = 1; i<=items.Count; i++)
 {
 OutlookItem item = new OutlookItem(items[i]);
 string existingCategories = item.Categories;
 if(String.IsNullOrEmpty(existingCategories))
 {
 item.Categories = "ISV";
 }
 else
 {
 if (item.Categories.Contains("ISV") == false)
 {
 item.Categories = existingCategories + ", ISV";
 }
 }
 item.Save();
 }
}

Displaying the Categories Dialog Box

The Outlook object model also provides the ShowCategoriesDialog method on an item to dis-
play the Categories dialog box, shown in Figure 10-1. This dialog box lets the user pick one
or more categories that are assigned to the item. The user can also create new categories or
clear existing categories with this dialog box. In the following code sample from the sample
RulesAddin project that accompanies this book, a dummy mail item is created and the
ShowCategoriesDialog method is called on the item. In this case, the categories selected by
the user are displayed in an edit box and used to create a categories rule.

private void cmdCategory_Click(object sender, EventArgs e)
{
 try
 {
 //Create a dummy MailItem and display Categories dialog box
 Outlook.MailItem oMail = (Outlook.MailItem)m_olApp.CreateItem(
 Outlook.OlItemType.olMailItem);
 if (!string.IsNullOrEmpty(txtCategory.Text))
 {
 oMail.Categories = txtCategory.Text;
 }
 oMail.ShowCategoriesDialog();
 Application.DoEvents();

Chapter 10 Organizing Outlook Data 301
 if (!string.IsNullOrEmpty(oMail.Categories))
 {
 txtCategory.Text = oMail.Categories;
 chkCategory.Checked = true;
 }
 oMail = null;
 }
 catch(Exception ex)
 {
 LogMessage("cmdCategory_Click: "
 + ex.ToString() , EventLogEntryType.Error);
 }
}

Figure 10-1 Display the Categories dialog box programmatically.

Task Flagging
Outlook 2007 provides a new task flagging system in which certain Outlook items such as
mail items or contact items can be flagged for follow-up. Flagging an Outlook item for follow-
up displays information about that Outlook item, along with other task-based information, on
the To-Do Bar and Calendar navigation module in the Outlook user interface.

Controlling Visibility of the To-Do Bar

The To-Do Bar is displayed as a vertical pane in a typical configuration of the Outlook
Explorer window. It contains a date navigator control, upcoming appointments, and items
that have been flagged for follow-up. The To-Do Bar itself is not extensible, and configuration
options for the To-Do Bar can only be set through the Outlook user interface. You can pro-
grammatically change the visibility of the To-Do Bar using the ShowPane method of the
Explorer object.

302 Part III Working with Outlook Data
Creating To-Do Items That Appear in the To-Do Bar

Creating to-do items programmatically is covered in the section “Create a To-Do Item” in
Chapter 5, “Built-in Item Types.” Any item that is flagged for follow-up will appear in the To-Do
Bar. As an organizational technique, item flagging creates a well-defined scheme for prioritiz-
ing tasks and to-do items. You should understand how to mark a group of items for a specified
follow-up interval. The following code example processes all items in the user’s Inbox that are
from the user’s manager and flags all high-importance items for follow-up today. If the item’s
importance is normal, then the item is flagged for follow-up this week.

private void DemoTaskFlagging()
{
 const string PR_SENT_REPRESENTING_NAME =
 "http://schemas.microsoft.com/mapi/proptag/0x0042001E";
 const string PR_MESSAGE_CLASS =
 "http://schemas.microsoft.com/mapi/proptag/0x001A001E";
 Outlook.AddressEntry currentUser =
 Application.Session.CurrentUser.AddressEntry;
 if (currentUser.Type == "EX")
 {
 Outlook.ExchangeUser manager;
 try
 {
 manager = currentUser.
 GetExchangeUser().GetExchangeUserManager();
 }
 catch
 {
 Debug.WriteLine("Could not obtain user's manager.");
 return;
 }
 if (manager != null)
 {
 string displayName = manager.Name;
 string filter = "@SQL=" + "\""
 + PR_SENT_REPRESENTING_NAME + "\""
 + " = '" + displayName + "'" + " AND " + "\""
 + PR_MESSAGE_CLASS + "\"" + " = 'IPM.NOTE'";
 Outlook.Items items =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).
 Items.Restrict(filter);
 foreach(Outlook.MailItem mail in items)
 {
 if (mail.Importance ==
 Outlook.OlImportance.olImportanceHigh)
 {
 mail.MarkAsTask(
 Outlook.OlMarkInterval.olMarkToday);
 mail.Save();
 }
 if (mail.Importance ==
 Outlook.OlImportance.olImportanceNormal)
 {

Chapter 10 Organizing Outlook Data 303
 mail.MarkAsTask(
 Outlook.OlMarkInterval.olMarkThisWeek);
 mail.Save();
 }
 }
 }
 }
}

The Rules Collection and Rule Objects
Because they can operate either server-side or client-side, depending on the type of account
and rule, Outlook rules provide one of the most powerful Outlook features for organizing
information in a user’s mailbox. Users implement rules to enforce their own organizational
schemes. For example, some users like to create a hive of subfolders that contain unread mail
and read mail by subject area. Other users might create a subfolder hierarchy that corre-
sponds to the sender of the message. Still others categorize their mail and then use search
folders to aggregate the mail by category. As stated at the beginning of this chapter, users fol-
low a multiplicity of schemes when they organize the items in their mailboxes. The new Rules
object model in Outlook 2007 allows you as a developer to participate in the power of rules.
You can create rules programmatically to enforce a certain organizational scheme, create a spe-
cific rule that is unique to your solution, or ensure that certain rules are deployed to a group
of users.

The Rules object model supports the programmatic adding, editing, and deleting of rules. The
Rules collection and Rule objects allow you to access, add, and delete rules defined for a ses-
sion. The RuleAction and RuleCondition objects, their collection objects, and derived action
and condition objects further support editing actions and conditions.

Note The Rules object model provides partial parity with the Rules and Alerts Wizard in
the Outlook user interface. Although it does not support every single rule that you can pos-
sibly create using the wizard, it supports the most commonly used rule actions and condi-
tions. Just like any rule created using the Rules and Alerts Wizard, rules created
programmatically are applied to messages, which include mail items, meeting requests, task
requests, documents, delivery receipts, read receipts, voting responses, and out-of-office
notices.

Overview of Rules Programming

Creating one or more rules programmatically is straightforward once you understand the
architecture of the Rules object model. Figure 10-2 illustrates the basic architecture of the
Rules object model. Note that there is no separate collection that represents rule exception
conditions. Rule exception conditions are accessed through the Exceptions property of the
Rule object. The Exceptions property returns a RuleCollections object.

304 Part III Working with Outlook Data
Figure 10-2 Rules object model architecture.

Now that you understand the architecture of the Rules objects, it’s time to move on to practical
coding instructions. From a top-level perspective, follow these steps when you create rules
through the Outlook object model:

1. Obtain the Rules collection from the DefaultStore property of the Namespace object. Call
the GetRules method on DefaultStore to obtain the Rules collection. You should write this
code in a try…catch block because Outlook will raise an error if the user is offline or dis-
connected from the Exchange server.

2. Call the Create method on the Rules object to create an instance variable for a Rule object.
When you call the Create method, you specify a Name and a RuleType parameter. RuleType
determines whether the Rule object is a send or receive rule. Send rules operate on out-
going messages and receive rules operate on incoming messages. You cannot change the
RuleType property after the Rule object has been created. If you apply inappropriate con-
ditions to a Rule instance (such as a NewItemAlert action to a send rule), Outlook raises
an error when you call the Save method on the Rules collection.

3. Use the RulesActions and RuleConditions collections to enable actions, conditions, and
exceptions on the Rule object. Note that the Exceptions property on a Rule object returns
a RuleConditions collection, and any condition enabled in this collection is treated as a
rule exception condition. These collection objects represent static collections, meaning
that you cannot add additional built-in or custom actions or conditions to the collection.

4. For any given Rule action, condition, or exception to be operational, you must first set its
Enabled property to true. For some actions or conditions, this is all that you have to do.
For other actions or conditions, such as the MoveOrCopyRuleAction.Folder property, you
must set additional properties on the action or condition to save the Rule object without
an error.

Namespace

Store

Rules

Rule

RuleConditions

RuleActions

Chapter 10 Organizing Outlook Data 305

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

5. Finally, you call the Save method on the Rules collection to persist the created or modi-
fied rules to storage. Again, it is recommended that you enclose the Save method in a
try…catch block to handle exceptions.

Next you’ll see a detailed code sample that implements the steps just described. If the
CurrentUser property represents an ExchangeUser object, the CreateManagerRule procedure
obtains the ExchangeUser object for the manager of the CurrentUser property of the Namespace
object. The Rules object model is used to create a receive rule that moves received messages to
a subfolder of the Inbox if the message is from the user’s manager, the recipient is on the To
line of the message, and the message is not a meeting request or update. Additionally, the mes-
sage is marked for follow-up today.

Although this code sample is extensive, it provides you with a great start for understanding
how to use the Rules object model. It also illustrates appropriate error handling for conditions
that could raise an exception under certain conditions such as the user being offline or dis-
connected in cached Exchange mode. As you read through the code, notice that each of the
steps discussed earlier has been implemented in the code sample.

private void CreateManagerRule()
{
 Outlook.ExchangeUser manager;
 Outlook.Folder managerFolder;
 Outlook.AddressEntry currentUser =
 Application.Session.CurrentUser.AddressEntry;
 if (currentUser.Type == "EX")
 {
 try
 {
 manager = currentUser.
 GetExchangeUser().GetExchangeUserManager();
 }
 catch
 {
 Debug.WriteLine("Could not obtain user's manager.");
 return;
 }
 Outlook.Rules rules;
 try
 {
 rules = Application.Session.DefaultStore.GetRules();
 }
 catch
 {
 Debug.WriteLine("Could not obtain rules collection.");
 return;
 }
 if (manager != null)
 {
 string displayName = manager.Name;
 Outlook.Folders folders =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).Folders;

306 Part III Working with Outlook Data

 try
 {
 managerFolder =
 folders[displayName] as Outlook.Folder;
 }
 catch
 {
 managerFolder =
 folders.Add(displayName, Type.Missing)
 as Outlook.Folder;
 }
 Outlook.Rule rule = rules.Create(displayName,
 Outlook.OlRuleType.olRuleReceive);
 //Rule conditions
 //From condition
 rule.Conditions.From.Recipients.Add(
 manager.PrimarySmtpAddress);
 rule.Conditions.From.Recipients.ResolveAll();
 rule.Conditions.From.Enabled = true;
 //Sent only to me
 rule.Conditions.ToMe.Enabled = true;
 //Rule exceptions
 //Meeting invite or update
 rule.Exceptions.MeetingInviteOrUpdate.Enabled = true;
 //Rule actions
 //MarkAsTask action
 rule.Actions.MarkAsTask.MarkInterval =
 Outlook.OlMarkInterval.olMarkToday;
 rule.Actions.MarkAsTask.FlagTo = "Follow-up";
 rule.Actions.MarkAsTask.Enabled = true;
 //MoveToFolder action
 rule.Actions.MoveToFolder.Folder = managerFolder;
 rule.Actions.MoveToFolder.Enabled = true;
 try
 {
 rules.Save(true);
 }
 catch(Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 }
 }
}

Rules Collection

The Rules collection represents a set of Rule objects that are the rules available in the current
session.

Chapter 10 Organizing Outlook Data 307
Obtaining the Rules Collection

To obtain the Rules collection, you call the GetRules method on the DefaultStore property of the
Namespace object. For users connected to an Exchange server, calling GetRules can be an
expensive operation in terms of performance on slow connections.

The order of the Rule objects in the collection returned from GetRules follows that of
Rule.ExecutionOrder, with ExecutionOrder equal to 1 being the first Rule object in the collection
and Rule.ExecutionOrder equal to Rules.Count being the last Rule object in the collection.

Tip You should scope the lifetime of the Rules collection to the most constrained possible
scope. Outlook enforces “last writer wins” when the Rules collection is saved. If another add-
in or the Rules and Alerts Wizard modifies rules while your add-in holds onto an instance of
the Rules collection, you might see unexpected results after you call Rules.Save.

Creating a Rule Object

To create an instance of a Rule object, call the Create method on the Rules collection. Depend-
ing on whether you want to create a send rule or a receive rule, specify an appropriate
OlRuleType constant to the Create method. The RuleType parameter of the added rule deter-
mines valid rule actions, rule conditions, and rule exception conditions that can be associated
with the Rule object. Newly created rules are enabled by default. If you want to create the rule
and also leave it disabled, you must explicitly set its Enabled property to false. When a rule is
added to the collection, the Rule.ExecutionOrder value of the new rule is 1. The ExecutionOrder
value of other rules in the collection is incremented by 1. The newly created Rule object is not
persisted until you call the Save method on the Rules collection. However, you can call the
Execute method on the Rule object before you save the collection.

Enumerating Rules

Use the Indexer to enumerate rules in the Rules collection. Once you have obtained a Rule
object, you can enable or disable the rule by changing its Enabled property. You can also mod-
ify the existing rule actions, conditions, and exceptions. Finally, you can execute the rule by
calling the Execute method on the Rule object. The following code sample enumerates all the
rules in the Rules collection and writes the rule’s Name, IsLocalRule, and Enabled properties to
the trace listeners in the Listeners collection:

private void EnumerateRules()
{
 Outlook.Rules rules =
 Application.Session.DefaultStore.GetRules();
 foreach (Outlook.Rule rule in rules)
 {
 StringBuilder sb = new StringBuilder();
 sb.AppendLine("Name: "

308 Part III Working with Outlook Data
 + rule.Name);
 sb.AppendLine("Local: "
 + rule.IsLocalRule.ToString());
 sb.AppendLine("Enabled: "
 + rule.Enabled.ToString());
 Debug.WriteLine(sb.ToString());
 }
}

Note You can retrieve each rule in a Rules collection by indexing the collection using
Rules[Index], with Index being either the name of the rule (the default property Rule.Name),
or a value ranging from 1 through the total number of rules in the collection,
Rules.Count.Rule.ExecutionOrder indicates the order of execution of the rules in the collection
and is directly mapped with the numerical value of Index in Rules[Index]. For example, Rules[1]
represents a rule with Rule.ExecutionOrder being 1, Rules[2] represents a rule with
Rule.ExecutionOrder being 2, and Rules[Rules.Count] represents the rule with
Rule.ExecutionOrder being Rules.Count.

RSS Rules Processing

The Rules collection exposes an IsRssRulesProcessingEnabled property that controls whether
RSS rule conditions are evaluated for RSS items. To persist changes to this property, you must
call Rules.Save. The IsRssRulesProcessingEnabled property corresponds to the Enable Rules On
All RSS Feeds check box in the Rules And Alerts dialog box, shown in Figure 10-3.

Figure 10-3 Rules And Alerts dialog box.

Chapter 10 Organizing Outlook Data 309
If you set IsRssRulesProcessingEnabled to true, you can create RSS rules that operate in a differ-
ent manner than default RSS rules that move RSS items from a specific feed to a subfolder of
the RSS Subscriptions folder. If IsRssRulesProcessingEnabled is false, then no conditions about
RSS feeds will be evaluated during rules processing. To create a rule that operates on RSS
items, enable the FromRssFeed or FromAnyRssFeed rule conditions.

Deleting a Rule

To delete a Rule, call the Remove method on the Rules collection. Rules.Remove removes from
the Rules collection a Rule object specified by Index, which is either a numerical index into the
Rules collection or the rule name. You must call Rules.Save to persist the deletion.

Saving Rules

You do not save an individual Rule object. Instead you must call the Save method on the Rules
collection to save all the Rule objects in the collection. After you enable a rule, you must also
save the rule by using Rules.Save so that the rule and its enabled state will persist beyond the
current session. A rule is only enabled after it has been saved successfully.

If you set the ShowProgress argument of the Save method to true, Outlook displays a progress
dialog box. If you are saving rules on a slow connection to an Exchange server, Rules.Save is an
expensive operation in terms of performance. In this circumstance it is advisable to display
the progress dialog box; otherwise the user might believe that Outlook has hung.

Handling Errors During a Save Operation

Always place Rules.Save in a try…catch construct. The connection to the Exchange server can
go down, and you must be able to handle this exception. Exchange Server limits the maxi-
mum number of rules that can be supported by a store. The rules limit depends on the ver-
sion of Exchange Server. For Microsoft Exchange Server 2007, an Exchange administrator can
also control the rules limit per mailbox. Rules.Save returns an error when this limit is reached.
The limit is generally not an issue for users running against a Post Office Protocol 3 (POP3) or
Internet Message Access Protocol (IMAP) account, because all rules operate locally.

Saving rules that are incompatible or have improperly defined actions or conditions (such as
an empty string for TextRuleCondition.Text or MarkAsTaskRuleAction.FlagTo) will return an
error. Some combinations of RuleActions and RuleConditions are incompatible and will also
return an error.

If an error occurs during Rules.Save, the entire save operation is rolled back. Modified rules are
not saved and newly created or deleted rules are discarded. Unfortunately, the error that bub-
bles up to your code will not tell you exactly which rules or combination of RuleActions and
RuleConditions caused the error to occur.

310 Part III Working with Outlook Data
The Rule Object

The Rule object represents an Outlook rule. A Rule object has a RuleType property that indi-
cates whether the rule is a send or receive rule. RuleType is specified when the rule is created.
RuleType cannot be changed without deleting the rule and re-creating the rule with a different
RuleType property.

A rule can execute on the Exchange server or on the Outlook client, provided that the current
user’s mailbox is hosted on an Exchange server. If the rule executes on the server, Outlook
does not have to be running for the rule conditions to be evaluated and the rule actions to be
completed. If the rule executes on the client, meaning that the IsLocalRule property of the Rule
object returns true, then Outlook must be running for the rule to execute.

Executing a Rule

To cause a rule to execute immediately, call the Execute method on the Rule object. Use
Rule.Execute to apply a rule as a one-off operation regardless of whether Rule.Enabled returns
true. Use Rule.Enabled and then Rules.Save if you want to apply the rule consistently and per-
sist the rules beyond the current session. The following code sample executes the rule created
in the CreateManagerRule procedure shown earlier:

private void ExecuteManagerRule()
{
 Outlook.AddressEntry currentUser =
 Application.Session.CurrentUser.AddressEntry;
 if (currentUser.Type == "EX")
 {
 try
 {
 string managerName = currentUser.
 GetExchangeUser().GetExchangeUserManager().Name;
 Outlook.Rule managerRule =
 Application.Session.DefaultStore.GetRules()[managerName];
 if (managerRule != null)
 {
 managerRule.Execute(false, Type.Missing,
 Type.Missing, Type.Missing);
 }
 }
 catch(Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 }
}

Chapter 10 Organizing Outlook Data 311
The parameters to the Execute method are optional. If you do not specify any parameters, the
rule will be applied to all messages in the Inbox but not to the subfolders of the Inbox. The
default values for the optional arguments for the Execute method are shown in Table 10-1.

If ShowProgress is true and the user cancels the progress dialog box, rule execution is canceled
in the same manner as if the user had canceled rule execution through the Rules and Alerts
Wizard. Execute returns an error when the user cancels the progress dialog box.

If you plan to show a custom progress user interface instead of using the progress dialog box,
you should be aware that there are no events that indicate when rule execution starts and
stops.

Causing a Rule to Operate Locally

To cause a server-side rule to operate locally, enable the OnLocalMachine rule condition. For
some rule actions that must run on the client (such as displaying a new mail alert or playing
a sound), the OnLocalMachine condition will be enabled by default when you set the Enabled
property to true for a client-side only RuleAction object. For other rule actions that normally
run on the server, you can enable an OnLocalMachine condition that will force the rule to
run locally on the client. The following code sample illustrates how an OnLocalMachine
condition forces a server-side rule to run locally. Normally a Forward action and OnlyToMe
condition will operate on the server. In this case they operate as a client-side rule because
the OnLocalMachine condition has been enabled.

private void DemoOnMachineOnly()
{
 Outlook.Rules rules =
 Application.Session.DefaultStore.GetRules();
 Outlook.Rule rule =
 rules.Create("Demo Machine Only Rule",
 Outlook.OlRuleType.olRuleReceive);
 rule.Conditions.OnlyToMe.Enabled = true;
 rule.Actions.Forward.Enabled = true;
 rule.Actions.Forward.Recipients.Add("someone@example.com");
 rule.Actions.Forward.Recipients.ResolveAll();
 //Force the rule to execute locally
 rule.Conditions.OnLocalMachine.Enabled = true;
 rules.Save(true);
}

Table 10-1 Parameters for Rules.Execute

Parameter Default value
ShowProgress False
Folder Inbox
IncludeSubfolders False
RuleExecuteOption OlRuleExecuteOption.olRuleExecuteAllMessages

312 Part III Working with Outlook Data
Note The corollary of enabling the OnLocalMachine condition for a rule is that the
OnOtherMachine condition will be enabled when the same rule is examined from another
machine. You cannot programmatically enable or disable a condition of type
olConditionOtherMachine. This type of rule condition indicates that the rule can run only on a
specific computer that is not the current one. This happens when the rule is created on that
computer and the OnLocalMachine rule condition is enabled, indicating that the rule can run
only on that computer. When you run the same rule on another computer, the rule will show
that the OnOtherMachine rule condition is enabled.

The RuleActions Collection

The RuleActions collection contains a set of RuleAction objects or objects derived from
RuleAction, representing the actions that are executed on a Rule object. The actions exposed
on the RuleActions collection let you enable or disable the action programmatically by setting
the Enabled property of a given rule action. The number of rule actions in the RuleActions
object is fixed.

Although the RulesActions collection lets you determine the rule actions that are enabled for a
given Rule object, not all RuleAction objects are supported for programmatic creation of rule
actions. For example, you cannot enable a rule action in your code that assigns the Importance
property to an item. However, your code can recognize a rule action created through the Rules
and Alerts Wizard that enables an action that assigns the Importance property. In this case,
RuleAction.ActionType would return OlRuleActionType.olRuleActionImportance. You could write
code similar to the following to determine that such a rule action exists. Note that you cannot
determine the Importance value assigned by the rule action.

private void ParseImportanceRuleAction()
{
 Outlook.Rules rules =
 Application.Session.DefaultStore.GetRules();
 Outlook.Rule rule =
 rules["Importance Rule"];
 foreach (Outlook.RuleAction ruleAction in rule.Actions)
 {
 if (ruleAction.ActionType ==
 Outlook.OlRuleActionType.olRuleActionImportance)
 {
 Debug.WriteLine(ruleAction.Enabled.ToString());
 }
 }
}

Table 10-2 lists all rules actions listed by OlRuleActionType. From this table, you can determine
which rule actions are supported when creating a rule programmatically by looking at the
Valid When Creating New Rules with Code? column. You can also determine which rule
actions are valid for receive and send rules.

Chapter 10 Organizing Outlook Data 313
Table 10-2 Rule Actions by OlRuleActionType

Action
Constant in
OlRuleActionType

Valid when
creating
new rules
with code?

Valid for
receive
rules?

Valid for
send rules?

Assign the message to the
categories specified in the
Categories property.

olRuleActionAssignTo-
Category

Yes Yes Yes

Cc the message to the
recipient list specified in
the Recipients property.

olRuleActionCcMessage Yes No Yes

Clear all categories for the
message.

olRuleActionClear-
Categories

Yes Yes Yes

Copy the message to the
folder specified in the
Folder property.

olRuleActionCopyToFolder Yes Yes Yes

Run a custom action. olRuleActionCustomAction No Yes Yes
Defer the delivery by a
specified number of
minutes.

olRuleActionDefer No No Yes

Delete the message. olRuleActionDelete Yes Yes No
Permanently delete the
message.

olRuleActionDelete-
Permanently

Yes Yes No

Display a desktop alert. olRuleActionDesktopAlert Yes Yes No
Clear the message flag. olRuleActionFlagClear No Yes No
Flag the message with the
color specified.

olRuleActionFlagColor No Yes No

Flag the message for
action in days specified.

olRuleActionFlagFor-
ActionInDays

No Yes Yes

Forward the message to
the recipient list specified
in the Recipients property.

olRuleActionForward Yes Yes No

Forward the message as
an attachment to the
recipient list specified in
the Recipients property.

olRuleActionForwardAs-
Attachment

Yes Yes No

Mark the message with
the specified Importance
value.

olRuleActionImportance No Yes Yes

Mark message as a task for
follow-up using the FlagTo
and MarkInterval proper-
ties of the MarkAsTask-
RuleAction object.

olRuleActionMarkAsTask Yes Yes No

Mark as read. olRuleActionMarkRead No Yes No

314 Part III Working with Outlook Data
The RuleConditions Collection

The RuleConditions collection contains a set of RuleCondition objects or objects derived from
RuleCondition, representing the conditions or exception conditions that must be satisfied for
the Rule to execute. The conditions exposed on the RuleConditions collection let you enable or
disable the condition programmatically by setting the Enabled property of a given rule condi-
tion. The number of rule conditions in the RuleConditions collection is fixed.

Although the RuleConditions collection lets you determine the rule conditions that are enabled
for a given Rule object, not all RuleCondition objects are supported for programmatic creation

Move the message to the
folder specified in the
Folder property.

olRuleActionMoveToFolder Yes Yes No

Display the message spec-
ified in the Text property.

olRuleActionNewItemAlert Yes Yes No

Notify that the message
has been delivered.

olRuleActionNotifyDelivery Yes No Yes

Notify that the message
has been read.

olRuleActionNotifyRead Yes No Yes

Play the .wav file specified
in the FilePath property.

olRuleActionPlaysound Yes Yes No

Print the message to the
default printer.

olRuleActionPrint No Yes No

Redirect the message to
the recipient list specified
in the SendRuleAction-
.Recipients property.

olRuleActionRedirect Yes Yes No

Start a script. olRuleActionRunScript No Yes No
Mark the message with
the specified sensitivity.

olRuleActionSensitivity No No Yes

Have server reply using
the specified message.

olRuleActionServerReply No Yes No

Start an .exe file. olRuleActionStart-
Application

No Yes No

Stop processing more
rules.

olRuleActionStop Yes Yes Yes

Reply using the specified
template (.oft) file.

olRuleActionTemplate No Yes No

Unrecognized rule action. olRuleActionUnknown No Yes No

Table 10-2 Rule Actions by OlRuleActionType

Action
Constant in
OlRuleActionType

Valid when
creating
new rules
with code?

Valid for
receive
rules?

Valid for
send rules?

Chapter 10 Organizing Outlook Data 315
of rule conditions. See the earlier discussion of RuleActions for a method of determining which
conditions are enabled for a given rule.

Table 10-3 lists all rules actions listed by OlRuleConditionType. From this table, you can deter-
mine which rule conditions are supported when creating a rule programmatically by looking
at the Valid When Creating New Rules with Code? column. You can also determine which
rule conditions are valid for receive and send rules.

Table 10-3 Rule Actions by OlRuleConditionType

Condition
Constant in
OlRuleConditionType

Valid when
creating
new rules
with code?

Valid for
receive
rules?

Valid for
send rules?

Account is the account
specified in the Account
property.

olConditionAccount Yes Yes Yes

Message is assigned any
category.

olConditionAnyCategory Yes Yes Yes

Body contains words spec-
ified in Text property.

olConditionBody Yes Yes Yes

Body or subject contains
words specified in Text
property.

olConditionBodyOrSubject Yes Yes Yes

Message is assigned the
category or categories
specified in the Categories
property.

olConditionCategory Yes Yes Yes

Message has my name in
the Cc box.

olConditionCc Yes Yes No

Message was received
between x and y, where x
and y are Integer values.

olConditionDateRange No Yes Yes

Message is flagged for the
specified action.

olConditionFlaggedFor-
Action

No Yes Yes

Message uses the form
specified in the Form-
Name property.

olConditionFormName Yes Yes Yes

Sender is in the recipient
list specified in the Recipi-
ents property.

olConditionFrom Yes Yes No

Message is generated
from any RSS subscription.

olConditionFromAnyRss-
Feed

Yes Yes No

Message is generated
from a specified RSS sub-
scription.

olConditionFromRssFeed Yes Yes No

316 Part III Working with Outlook Data
Message has an attach-
ment.

olConditionHasAttach-
ment

Yes Yes Yes

Message is marked with
the specified level of
importance.

olConditionImportance Yes Yes Yes

Rule can run only on this
machine.

olConditionLocalMachine-
Only

Yes Yes Yes

Message is a meeting invi-
tation or update.

olConditionMeetingInvite-
OrUpdate

Yes Yes Yes

Message header contains
words specified in the Text
property.

olConditionMessage-
Header

Yes Yes No

Message does not have
my name in the To box.

olConditionNotTo Yes Yes No

Message is sent only to
me.

olConditionOnlyToMe Yes Yes No

Message is an out-of-
office message.

olConditionOOF No Yes No

Rule can run only on a
specific machine that is
not the current one.

olConditionOtherMachine No Yes Yes

Document property is
exactly, contains, or does
not contain specified
properties.

olConditionProperty No Yes Yes

Recipient address contains
words specified by the
Text property.

olConditionRecipient-
Address

Yes Yes Yes

Sender address contains
words specified by the
Text property.

olConditionSenderAddress Yes Yes No

Sender is in the address
list specified in the
Address property.

olConditionSenderIn-
AddressBook

Yes Yes No

Message is marked with
the specified level of sen-
sitivity.

olConditionSensitivity No Yes Yes

Sent to recipients (To, Cc)
are in the recipient list
specified in the Recipients
property.

olConditionSentTo Yes Yes Yes

Table 10-3 Rule Actions by OlRuleConditionType

Condition
Constant in
OlRuleConditionType

Valid when
creating
new rules
with code?

Valid for
receive
rules?

Valid for
send rules?

Chapter 10 Organizing Outlook Data 317
Get or Set Action or Condition Properties with an Array

Certain actions or conditions get or set an array that represents the conditions to be evaluated
or the actions to be completed. The most notable example is the Text property of the
TextRuleCondition. The Text property returns or sets an array of string elements that represents
the text to be evaluated by the rule condition. For the Text property, you must assign an array
with one string or multiple strings for evaluation. Multiple text strings assigned in an array are
evaluated using the logical OR operation. Properties that get or set an array are as follows:

■ AddressRuleCondition.Address

■ AssignToCategoryRuleAction.Categories

■ CategoryRuleCondition.Categories

■ FormNameRuleCondition.FormName

■ TextRuleCondition.Text

The following code sample shows you how to use arrays for some of these properties. In this
sample, a rule is created that assigns categories based on conditional evaluation of the words
“Office,” “Outlook,” and “2007” in the subject of the item. If the condition is satisfied, then the
categories of Office and Outlook are assigned to the item. Note that the code checks for the exist-
ence of these categories in the Categories collection using the CategoryExists method listed earlier
in this chapter. If the category does not exist, the category is added to the master category list.

private void CreateTextAndCategoryRule()
{
 if(!CategoryExists("Office"))

Message size is between x
and y in units of KB, where
x and y are Date values.
For example, “10;50” sets
the size condition
between 10 and 50KB.

olConditionSizeRange No Yes Yes

Subject contains words
specified in the Text
property.

olConditionSubject Yes Yes Yes

My name is in the To box. olConditionTo Yes Yes No
Message has my name in
the To or Cc box.

olConditionToOrCc Yes Yes No

Unrecognized rule
condition.

olConditionUnknown No Yes No

Table 10-3 Rule Actions by OlRuleConditionType

Condition
Constant in
OlRuleConditionType

Valid when
creating
new rules
with code?

Valid for
receive
rules?

Valid for
send rules?

318 Part III Working with Outlook Data
 {
 Application.Session.Categories.Add(
 "Office",Type.Missing, Type.Missing);
 }
 if(!CategoryExists("Outlook"))
 {
 Application.Session.Categories.Add(
 "Outlook",Type.Missing, Type.Missing);
 }
 Outlook.Rules rules =
 Application.Session.DefaultStore.GetRules();
 Outlook.Rule textRule =
 rules.Create("Demo Text and Category Rule",
 Outlook.OlRuleType.olRuleReceive);
 Object[] textCondition =
 { "Office", "Outlook", "2007" };
 Object[] categoryAction =
 { "Office", "Outlook" };
 textRule.Conditions.BodyOrSubject.Text =
 textCondition;
 textRule.Conditions.BodyOrSubject.Enabled = true;
 textRule.Actions.AssignToCategory.Categories =
 categoryAction;
 textRule.Actions.AssignToCategory.Enabled = true;
 rules.Save(true);
}

Rules Sample Add-In

The Rules Sample add-in is available in a Microsoft Visual Basic .NET version (RulesAddinVB)
and in a C# version (RulesAddinCS) in the sample code on this book’s companion Web site.

The Rules Sample add-in demonstrates how you can substitute a custom Microsoft Windows
Form dialog box for the default Outlook Create Rule dialog box that can be invoked from the
context menu for an item. Corporate developers can modify and extend this example to create
their own version of the Rules Sample add-in. The custom dialog box could promote the cre-
ation of rules that you want to deploy in your organization. Figure 10-4 shows the default
Outlook Create Rule dialog box.

Figure 10-4 Outlook Create Rule dialog box.

Chapter 10 Organizing Outlook Data 319
When you build and install the Rules Sample add-in following the instructions that accom-
pany the sample, you’ll find that the add-in has repurposed the Create Rule command on the
item context menu so that the custom Windows Form dialog box, shown in Figure 10-5,
appears in place of the default Outlook Create Rule dialog box. Due to space limitations, the
Rules Sample add-in is not discussed in detail here. Although this sample is relatively simple,
it is packed with great code samples for creating rules programmatically and repurposing
command bar and Ribbon commands.

Figure 10-5 Custom Windows Forms dialog box appears in place of the default Create Rules
dialog box.

Search Folders
Search folders provide another way to organize Outlook data. Think of a search folder as a vir-
tual folder that can contain items located across different folders in a given store. This section
shows you how to create search folders programmatically. You can create and persist search
folders so that they are visible in the Outlook folder hierarchy, or you can create searches
dynamically that are not saved. If the search folder is not saved, it will not appear in the folder
hierarchy. If a search folder is an integral component of your solution, you should consider
adding your solution search folder to the user’s favorite folders to promote its visibility. Later
in this chapter you’ll see how you can create a search folder programmatically and add that
search folder to the user’s favorite folders.

When to Use a Search Folder

A search folder provides a virtual folder that contains items that meet a set of search criteria.
If you want to use a search folder in your solution, you should understand the following
guidelines for search folders:

320 Part III Working with Outlook Data
■ Search folders are only supported for items in mail folders.

■ You can run multiple searches simultaneously by calling the AdvancedSearch method in
successive lines of code. A maximum of 100 simultaneous searches can be performed
using the Microsoft Outlook user interface and the Outlook object model.

■ You can only create the criteria for a search folder using a DAV Searching and Locating
(DASL) query. For additional information on DASL and Jet query languages, see Chapter
11, “Searching Outlook Data.” Note that you cannot use a Microsoft Jet query for the
Filter parameter of AdvancedSearch. If Instant Search is enabled on a store that contains
a folder specified in the Scope parameter, you can use Instant Search keywords to
improve the performance of your search. If you use Instant Search keywords and Instant
Search is not enabled, Outlook will return an error and your search will fail.

■ Creating search folders on Exchange Server can affect the server’s performance. For addi-
tional information on search folders and performance, see the section “Performance” in
Chapter 11.

■ Search folders can search in multiple folders and subfolders within a store. To specify
multiple folders for the Scope parameter, use a comma character between each folder
path and enclose each folder path in single quotes.

■ The Outlook object model does not allow you to modify search folder criteria dynami-
cally. If you create a search folder programmatically, the end user cannot modify criteria
for the search folder. If you need to modify the criteria for a programmatically created
search folder, you must delete the search folder programmatically and then re-create it.
The end user can modify the scope for a programmatically created search folder, but it
cannot be modified programmatically for an existing search folder.

■ Use the GetTable method of the Search object or the Search.Results object to enumerate items
returned by the search. When you obtain a Table object from the GetTable method, you can
add or remove table columns. However, you cannot call the Restrict method on the Table
object to modify the original criteria specified by the Filter parameter to AdvancedSearch.

■ Because the results of AdvancedSearch can be returned asynchronously, you should use
the AdvancedSearchComplete event of the Application object to obtain the results of the
search. Use the IsSynchronous property of the Search object to determine if the search is
synchronous or asynchronous.

■ Search folders cannot span stores.

■ Outlook 2007 does not support search folders for appointment, contact, task, and other
folder types.

Enumerating Search Folders

To enumerate search folders, you call the GetSearchFolders method on the Store object.
GetSearchFolders returns all the visible active search folders for the Store object. It does not return
uninitialized or aged-out search folders. GetSearchFolders returns a Folders collection object with

Chapter 10 Organizing Outlook Data 321
Folders.Count equal to zero (0) if no search folders have been defined for the store. Not all store
providers (the Exchange public folder store, for example) support search folders. If the store
provider does not support search folders, calling Store.GetSearchFolders will raise an error.

The following code sample enumerates the search folders on all .pst or .ost stores for the cur-
rent session and writes the search folder path to the trace listeners in the Listeners collection:

private void EnumerateAllSearchFolders()
{
 Outlook.Stores stores = Application.Session.Stores;
 foreach (Outlook.Store store in stores)
 {
 if (store.IsDataFileStore)
 {
 Outlook.Folders folders = store.GetSearchFolders();
 foreach (Outlook.Folder folder in folders)
 {
 Debug.WriteLine(folder.FolderPath);
 }
 }
 }
}

Note Although you can enumerate search folders programmatically, you cannot activate a
search folder using code. You also cannot determine the built-in or custom criteria for an
existing search folder.

Creating a Search Folder Programmatically

To create a search folder programmatically, you call the AdvancedSearch method of the Application
object and pass the Scope, Filter, SearchSubFolders, and Tag parameters. The AdvancedSearch
method returns a Search object. Once you have obtained a Search object, you can call the Save
method on the Search object to create a search folder that is visible in the Outlook user interface,
or you can examine the contents of the search programmatically without saving the search
folder. The GetTable method of the Search object allows you to enumerate items in the Search
object in a performant manner. Table 10-4 lists the parameters for the AdvancedSearch method.

Table 10-4 Parameters for the AdvancedSearch Method

Name Required? Data type Description
Scope Required String The scope of the search; for example, the folder

path of a folder. It is recommended that the folder
path be enclosed within single quotes. Otherwise,
the search might not return correct results if the
folder path contains special characters, including
Unicode characters. To specify multiple folder
paths, enclose each folder path in single quotes and
separate the single-quoted folder paths with a
comma.

322 Part III Working with Outlook Data
The following extensive code sample provides an end-to-end illustration of how to create a
search folder programmatically. The code creates a search folder that contains all items in the
Inbox and RSS Subscriptions folders and their subfolders that contain items with “Office” in
the subject. The search folder created by the sample code is shown in Figure 10-6.

Figure 10-6 Create the Office Search search folder programmatically.

The sample assumes that you are creating a search folder using an Outlook add-in. The
InitializeAddin procedure is called by the add-in’s OnConnection procedure.

private void InitializeAddin()
{

Filter Optional String The DASL search filter that defines the parameters
of the search. Do not prefix the DASL filter with the
@SQL= prefix.

SearchSubFolders Optional Boolean Determines if the search will include any of the
folder’s subfolders. If SearchSubFolders is true and
multiple folders are specified by scope, then the
subfolders of all folders specified in scope are
searched.

Tag Optional String The name given as an identifier for the search.

Table 10-4 Parameters for the AdvancedSearch Method

Name Required? Data type Description

Chapter 10 Organizing Outlook Data 323
 Application.AdvancedSearchComplete += new
 Outlook.ApplicationEvents_11_AdvancedSearchCompleteEventHandler(
 Application_AdvancedSearchComplete);
 CreateOfficeSearch();
}

private void CreateOfficeSearch()
{
 // Construct search filter
 // Only use ci_ keywords if Instant Search is enabled
 string filter;
 if (Application.Session.DefaultStore.IsInstantSearchEnabled)
 {
 filter = "urn:schemas:httpmail:subject"
 + " ci_phrasematch 'Office'";
 }
 else
 {
 filter = "urn:schemas:httpmail:subject"
 + " like '%Office%'";
 }
 // Construct search scope
 StringBuilder sb = new StringBuilder();
 sb.Append("'");
 sb.Append(Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).FolderPath);
 sb.Append("'");
 sb.Append(",");
 sb.Append("'");
 sb.Append(Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderRssFeeds).FolderPath);
 sb.Append("'");
 string scope = sb.ToString();
 // Call AdvancedSearch method
 Outlook.Search search =
 Application.AdvancedSearch(
 scope, filter, true, "My Office Search");
 // To save the search as a search folder,
 // you can call Search.Save()
 search.Save("Office Search");
 // Add the search folder to favorites
 Outlook.Folder folder =
 Application.Session.DefaultStore.GetSearchFolders()
 ["Office Search"] as Outlook.Folder;
 Outlook.NavigationPane pane =
 Application.ActiveExplorer().NavigationPane;
 Outlook.MailModule mailModule =
 pane.Modules.GetNavigationModule(
 Outlook.OlNavigationModuleType.olModuleMail)
 as Outlook.MailModule;
 Outlook.NavigationGroup mailGroup =
 mailModule.NavigationGroups.GetDefaultNavigationGroup(
 Outlook.OlGroupType.olFavoriteFoldersGroup);
 mailGroup.NavigationFolders.Add(folder);
}

324 Part III Working with Outlook Data
Each bullet in the following list discusses an important aspect of the sample code just shown:

■ The InitializeAddin procedure creates an event handler for the AdvancedSearchComplete
event on the Outlook.Application object and calls the CreateOfficeSearch procedure.
Because AdvancedSearch returns results asynchronously, you need to create an event
handler to determine when the search has completed.

■ CreateOfficeSearch creates instance variables named filter and scope, and then passes
those arguments to the AdvancedSearch method of the Application object. If Instant
Search is enabled and DefaultStore.IsInstantSearchEnabled is true, then filter contains the
ci_phrasematch keyword to create a phrase match search for “Office” in the item subject.
If Instant Search is not enabled and DefaultStore.IsInstantSearchEnabled is false, then filter
contains the like keyword to create a substring match search for “Office” in the item sub-
ject. Note that the filter does not impose an additional restriction for message class so
that all item types (including meeting requests in the Inbox that contain “Office” in the
subject) will be returned by the search. If you want to restrict by message class, you
should add additional conditions to the criteria. The scope string specifies multiple fold-
ers for the search, namely the Inbox and RSS Subscriptions folders.

■ CreateOfficeSearch calls the AdvancedSearch method of the Application object to return a
Search object named search. The optional SearchSubfolders argument is true so that sub-
folders of the target folders will be searched. Also the Tag argument is specified so that
the Tag property of the Search object will have the value My Office Search.

■ CreateOfficeSearch saves the Search object named search returned by AdvancedSearch. The
Save method is called on the search instance variable to persist the search as a search
folder. The name of the search folder is Office Search. Although the code does not illus-
trate this precaution, you might want to check the Folders collection returned by
DefaultStore.GetSearchFolders() to ensure that a search folder with same name does not
already exist.

■ Once the search folder has been saved, you can find the search folder in the Folders col-
lection returned by DefaultStore.GetSearchFolders(). In this case, the code returns a Folder
object that represents the newly created search folder.

■ Now that you have an instance variable representing the search folder, you can use
NavigationPane and related objects to add the newly created search folder to the user’s
favorite folders.

■ Finally, the AdvancedSearchComplete method will fire when the search is complete. In the
Application_AdvancedSearchComplete event procedure, the code checks that the Search
object passed to the event is the search named My Office Search. You then use the
GetTable method on the Search object and write the subject for every row in the table to
the trace listeners in the Listeners collection.

Chapter 10 Organizing Outlook Data 325
Outlook Views
Outlook 2007 allows you to create customizable views that allow you to better sort, group,
and ultimately view data of all different types within the View Pane of Explorer. You can also
customize built-in views programmatically. There are a variety of different view types that pro-
vide the flexibility needed to organize your solution’s data. For example, Microsoft Business
Contact Manager uses the custom view shown in Figure 10-7 to organize and present solution
data in the view named By Campaign Type in the Marketing Campaigns folder.

Figure 10-7 Custom By Campaign Type view in the Marketing Campaigns folder.

Objects That Derive from the View Object

Outlook 2007 supports the following objects that represent Outlook views. Table 10-5 lists
new Outlook 2007 view objects that derive from the View object. For a complete listing of all
the properties and methods of these view objects, see the Outlook Developer’s Reference.

Table 10-5 Outlook 2007 View Objects

Object name Description
BusinessCardView This object allows you to view data as a series of Electronic Business Card

images.
CalendarView This object allows you to view data in a calendar format.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

326 Part III Working with Outlook Data
Although you can use the View object to interact with the properties and methods common to
all views, you must cast the View object to one of the derived view objects, such as the CardView
object, to access certain properties, such as the HeadingsFont property of the CardView object.
Use the ViewType property of the View object to determine which type of view is represented
by that object. For example, the following code sample obtains the CurrentView object for the
Inbox. If the CurrentView represents a TableView object, then the code creates an instance of
the TableView and sets the AllowInCellEditing property to true. The code then calls the Apply
method to reflect the change to the view in the Outlook user interface.

private void DemoAllowInCellEditingForView()
{
 Outlook.View view =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).CurrentView;
 if (view.ViewType == Outlook.OlViewType.olTableView)
 {
 Outlook.TableView tableView = (Outlook.TableView)view;
 tableView.AllowInCellEditing = true;
 tableView.Apply();
 }
}

Adding or Removing a View Programmatically

You can define a new view by using the Add method of the Views collection for a Folder object.
Visibility for the view can be set either at the time of creation, by specifying an OlViewSaveOption
constant in the SaveOption parameter of the Add method, or any time after the view is created,
by specifying an OlViewSaveOption constant for the SaveOption property of the View object.
Adding a new view raises the ViewAdd event of the Views collection. For example, the follow-
ing code sample adds a new view named Meeting Requests to the user’s Inbox. The DASL
string supplied for the Filter property of the View object causes the view to display only items
that contain “IPM.Schedule” in the message class for the item.

private void CreateMeetingRequestsView()
{
 const string PR_MESSAGE_CLASS =
 "http://schemas.microsoft.com/mapi/proptag/0x001A001E";
 Outlook.Views views =
 Application.Session.GetDefaultFolder(

CardView This object allows you to view data in a series of cards.
IconView This object allows you to view data as icons, similar to a Windows folder or

Explorer.
TableView This object allows you to view data in a simple, field-based table.
TimelineView This object allows you to view data in a customizable linear time line.

Table 10-5 Outlook 2007 View Objects

Object name Description

Chapter 10 Organizing Outlook Data 327
 Outlook.OlDefaultFolders.olFolderInbox).Views;
 Outlook.TableView tableView = (Outlook.TableView)
 views.Add("Meeting Requests",
 Outlook.OlViewType.olTableView,
 Outlook.OlViewSaveOption.olViewSaveOptionThisFolderEveryone);
 tableView.Filter = "\"" + PR_MESSAGE_CLASS + "\"" +
 " like 'IPM.Schedule%'";
 tableView.Save();
 tableView.Apply();
}

If you need to remove a view from a folder, use the Remove method of the Views collection to
remove an existing custom view. If you attempt to remove a built-in view, Outlook will raise an
error. Removing a view raises the ViewRemove event of the Views collection.

Once a view is defined, you can customize the view programmatically by casting the View
object to one of the derived view objects and performing whatever changes are needed. Use
the Save method of the derived view object or the View object to save any changes to the view.

You can apply the view, once defined and customized, to the current Explorer object by using
the Apply method of the derived view object or the View object. Applying a view raises the
ViewSwitch event of the Explorer object.

Customizing Your View
There are a variety of methods for customizing a built-in or custom view. In previous versions
of Outlook, developers used the XML property of the View object to customize a view. In
Outlook 2007, you can use the first-class properties of the derived View object to customize
the view. Although the XML property of the View object is still available, you can achieve more
consistent and easier results by using new view objects such as ViewField, OrderField,
ColumnFormat, and AutoFormatRule.

Specifying Fields in a View

You can specify which Outlook item properties are displayed in a view by adding one or more
properties to the ViewFields collection of any of the following objects:

■ CardView

■ TableView

BusinessCardView, CalendarView, IconView, and TimelineView objects use other methods of
determining which Outlook item properties are displayed within the view. The fields dis-
played for the BusinessCardView object, for example, are determined by the Electronic Busi-
ness Card (EBC) layout associated with each displayed Outlook item.

328 Part III Working with Outlook Data
The ViewFields collection for those views can be retrieved by accessing the ViewFields property
of the appropriate View object. The Add method of the ViewFields collection is used to create a
ViewField object that represents the Outlook item property to be displayed in the view.

Note To add built-in fields to the ViewFields collection, the property must exist in the Out-
look field registry; otherwise Outlook will raise an error when you call the Add method. Use
the Field Chooser to determine if the field exists in the Outlook field registry. To add custom
fields to the ViewFields collection, the custom property must exist in the UserDefinedProperties
collection of the parent Folder object; otherwise Outlook will raise an error when you call the
Add method.

A ViewField object not only identifies an Outlook item property to display within the view, but
also describes how the values for that property should be displayed. You can change how indi-
vidual column properties are displayed in a view by modifying the ColumnFormat property of
the ViewField object.

The following code sample adds the Start and End fields to the Meeting Requests view. It also
changes the label for the From field to Organized By.

private void ModifyMeetingRequestsView()
{
 Outlook.TableView tableView = null;
 Outlook.ViewField startField = null;
 Outlook.ViewField endField = null;
 Outlook.ViewField fromField = null;
 try
 {
 tableView =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox)
 .Views["Meeting Requests"] as Outlook.TableView;
 }
 catch { }
 if (tableView != null)
 {
 try
 {
 startField = tableView.ViewFields["Start"];
 }
 catch{}
 if (startField == null)
 {
 startField = tableView.ViewFields.Add("Start");
 }
 try
 {
 endField = tableView.ViewFields["End"];
 }
 catch{}
 if (endField == null)
 {

Chapter 10 Organizing Outlook Data 329

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 endField = tableView.ViewFields.Add("End");
 }
 try
 {
 fromField = tableView.ViewFields["From"];
 }
 catch{}
 if (fromField != null)
 {
 fromField.ColumnFormat.Label = "Organized By";
 }
 try
 {
 tableView.Save();
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 }
}

Filtering Items in the View Object

Outlook items can be filtered in any view derived from the View object by specifying a valid
DASL filter expression in the Filter property of the View object. Do not prefix the DASL string
for the filter expression with @SQL= as you must for the Restrict method on the Table or Items
objects. For more information about creating a DASL filter expression to filter Outlook items,
see Chapter 11.

Warning Do not use ci_phrasematch and ci_startswith keywords in the filter expression for a
view. The performance of the view will not be optimized if you use these keywords. For a
view filter, use the = or like operators to construct your filter expression.

Sorting Items in a View

Items in a view can be sorted by adding one or more Outlook item properties to the
OrderFields collection of any of the following objects:

■ BusinessCardView

■ CardView

■ IconView

■ TableView

330 Part III Working with Outlook Data
Outlook items in a CalendarView or TimelineView object are displayed in chronological order,
depending on the values of the Outlook item properties specified for the StartField and
EndField properties of the view.

The OrderFields collection for those views can be accessed with the SortFields property of the
appropriate view object. The Add method of the OrderFields collection is used to create an
OrderField object that represents the Outlook item property to be sorted.

Specifying Properties for Sorting

You can add either built-in or custom Outlook item properties to the OrderFields collection.
The order in which the properties are included in the OrderFields collection determines the
order in which the properties are sorted, whereas the IsDescending property of the OrderField
object, which represents an Outlook item property, determines whether the values of that
property are sorted in ascending or descending order.

Specifying Built-In Properties for Sorting

The following guidelines should be used when specifying built-in Outlook item properties:

■ Built-in properties can be specified either by property name (for example, Subject) or by
namespace (for example, http://schemas.microsoft.com/mapi/proptag/0x0037001E).

■ Property names are not case-sensitive and cannot include spaces.

Namespace identifiers are case-sensitive, must follow URL encoding rules, and cannot be
enclosed in square brackets ([]). For more information about property namespace identifiers,
see Chapter 17, “Using the PropertyAccessor Object.”

Specifying Custom Properties for Sorting

The following guidelines should be used when specifying custom properties:

■ The custom property must be available in the UserDefinedProperties collection for the
parent Folder object.

■ Custom properties should be specified by property name (for example, [Shoe Size]).

■ Custom property names are not case-sensitive, can include spaces, and should be
enclosed in square brackets ([]) if they contain spaces.

The AutoFormatRules Collection

The new AutoFormatRules collection lets you add an AutoFormatRule object that represents a
formatting rule used by a View object to determine how to format Outlook items displayed
within that view.

Chapter 10 Organizing Outlook Data 331
Use the Add method or the Insert method of the AutoFormatRules collection to create a new
formatting rule for the following objects:

■ CardView

■ TableView

For views that support automatic formatting, Outlook provides a set of built-in formatting
rules that can be disabled but cannot be removed or reordered. Use the Standard property of
the AutoFormatRule object to determine whether a formatting rule is built-in or custom. You
cannot modify a built-in formatting rule. You can add or remove a custom formatting rule sub-
ject to the limitation that calling the Save or Apply methods will not persist AutoFormatRule.Filter
in the View object. If you want to add an AutoFormatRule object to your solution, you need to
add or remove the formatting rule dynamically.

The following CreateAutoFormatRule procedure creates a custom formatting rule named Can-
celed for the Meeting Requests view discussed earlier in this chapter. If the meeting item is a
meeting cancellation, a red font is used to display the item in the view. To remove the format-
ting rule when the user navigates away from the folder or Outlook shuts down, the
RemoveAutoFormatRule procedure deletes the Canceled formatting rule. The code sample
assumes that you’ve created a class-level instance variable named m_Explorer and lists all the
events necessary to make the dynamic formatting rule work correctly. For additional informa-
tion on handling Outlook events, see Chapter 8, “Responding to Events.”

private void InitializeAddin()
{
 m_Explorer = Application.ActiveExplorer();
 m_Explorer.BeforeViewSwitch += new
 Outlook.ExplorerEvents_10_BeforeViewSwitchEventHandler(
 m_Explorer_BeforeViewSwitch);
 m_Explorer.ViewSwitch += new
 Outlook.ExplorerEvents_10_ViewSwitchEventHandler(
 m_Explorer_ViewSwitch);
 Outlook.ExplorerEvents_Event explorerEvents =
 (Outlook.ExplorerEvents_Event)m_Explorer;
 explorerEvents.Close += new
 Outlook.ExplorerEvents_CloseEventHandler(m_Explorer_Close);
 m_Explorer.FolderSwitch += new
 Outlook.ExplorerEvents_10_FolderSwitchEventHandler(
 m_Explorer_FolderSwitch);
 if (m_Explorer.CurrentFolder.CurrentView.Name
 == "Meeting Requests")
 {
 CreateAutoFormatRule();
 }
}

void m_Explorer_FolderSwitch()
{

332 Part III Working with Outlook Data
 if (m_Explorer.CurrentFolder.CurrentView.Name
 == "Meeting Requests")
 {
 CreateAutoFormatRule();
 }
}

void m_Explorer_Close()
{
 RemoveAutoFormatRule();
}

void m_Explorer_ViewSwitch()
{
 if (m_Explorer.CurrentFolder.CurrentView.Name
 == "Meeting Requests")
 {
 CreateAutoFormatRule();
 }
}

void m_Explorer_BeforeViewSwitch(object NewView, ref bool Cancel)
{
 if (m_Explorer.CurrentFolder.CurrentView.Name
 == "Meeting Requests")
 {
 RemoveAutoFormatRule();
 }
}

private void CreateAutoFormatRule()
{
 Outlook.TableView tableView = null;
 Outlook.AutoFormatRule autoFormat = null;
 const string PR_MESSAGE_CLASS =
 "http://schemas.microsoft.com/mapi/proptag/0x001A001E";
 Outlook.Folder inbox = Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox) as Outlook.Folder;
 Outlook.Folder currentFolder =
 Application.ActiveExplorer().CurrentFolder
 as Outlook.Folder;
 if (Application.Session.CompareEntryIDs(currentFolder.EntryID,
 inbox.EntryID))
 {
 try
 {
 tableView =
 inbox.Views["Meeting Requests"] as Outlook.TableView;
 }
 catch{ }
 if (tableView != null)
 {
 try
 {

Chapter 10 Organizing Outlook Data 333
 autoFormat =
 tableView.AutoFormatRules["Canceled"];
 }
 catch{ }
 if (autoFormat == null)
 {
 autoFormat =
 tableView.AutoFormatRules.Add("Canceled");
 autoFormat.Filter = "\"" + PR_MESSAGE_CLASS +
 "\"" + " like '%Canceled%'";
 autoFormat.Font.Color = Outlook.OlColor.olColorRed;
 autoFormat.Enabled = true;
 // Save the view
 tableView.Save();
 }
 }
 }
}

private void RemoveAutoFormatRule()
{
 Outlook.TableView tableView = null;
 Outlook.AutoFormatRule autoFormat = null;
 Outlook.Folder inbox = Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox) as Outlook.Folder;
 Outlook.Folder currentFolder =
 Application.ActiveExplorer().CurrentFolder
 as Outlook.Folder;
 if (Application.Session.CompareEntryIDs(currentFolder.EntryID,
 inbox.EntryID))
 {
 try
 {
 tableView =
 inbox.Views["Meeting Requests"] as Outlook.TableView;
 }
 catch { }
 if (tableView != null)
 {
 try
 {
 autoFormat =
 tableView.AutoFormatRules["Canceled"];
 }
 catch { }
 if (autoFormat != null)
 {
 tableView.AutoFormatRules.Remove("Canceled");
 tableView.Save();
 }
 }
 }
}

334 Part III Working with Outlook Data
Summary
Outlook 2007 provides several features to help organize user or solution data. This chapter
shows you how to leverage these features programmatically. You can use category colors, task
flagging, rules, search folders, and views to organize or present data to the user. You learned
how you can take advantage of these features in your solution and tailor them to your specific
scenario.

Chapter 11

Searching Outlook Data
Searching provides relief from information overload. It can also help you build a solution that
locates items in folders and stores, and helps end users discover their data and become more
productive.

After reading this chapter, you should have a good understanding of the following topics:

■ Overview of programmatic search

■ Microsoft Office Outlook 2007 query languages

■ Entry points for search in the Outlook object model

Overview of Searching Data
Instant Search is one of the premiere features of Outlook 2007. In the past, search was difficult
and nonperformant both in the Outlook user interface and programmatically. That story has
changed with Outlook 2007. As a developer, you can participate in search in a first-class man-
ner by issuing queries that return results based on the content indexing engine that supports
Instant Search. Once your query has been processed, the results can be returned in a variety
of objects including the Table object, the Items collection, and the Search object. You can also
write code that uses the Advanced Query Syntax (AQS) offered by Microsoft Windows Desk-
top Search to drive the Instant Search pane, shown in Figure 11-1.

Figure 11-1 Instant Search pane.

Outlook Query Languages
Outlook 2007 supports three different query languages, each of which has appropriate sce-
narios and entry points. For programmatic search, there are also several different ways of
returning results from a search. Before learning how to implement programmatic search, it’s
335

336 Part III Working with Outlook Data
important for you to understand the query languages and their appropriate usage. The avail-
able query languages in Outlook 2007 are listed in Table 11-1.

Each query language has one or more entry points in the Outlook object model. Jet is the sim-
plest to use, but it also is less powerful than DASL or AQS. AQS is simple to use but extremely
powerful. However, its use is limited to the Search method of the Explorer object. It cannot be
used to provide a restriction for the Table or Items objects. Results returned by an AQS query
can be displayed only in the Outlook user interface. DASL is a difficult query language to write
and to master, but it does have significant power for driving both the Table object and Items
collection. For example, the following code sample displays all items that contain the exact
phrase “Office 2007” in the subject and that have been received in the last month. The scope
of the query is all mail folders in all stores where indexing is enabled. It then displays the
results of the search in a separate Explorer window.

private void DemoInstantSearch()
{
 if (Application.Session.DefaultStore.IsInstantSearchEnabled)
 {
 Outlook.Explorer explorer = Application.Explorers.Add(
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox)
 as Outlook.Folder,
 Outlook.OlFolderDisplayMode.olFolderDisplayNormal);
 string filter = "subject:" +
 "\"" + "Office 2007" + "\"" +
 " received:(last month)";
 explorer.Search(filter,
 Outlook.OlSearchScope.olSearchScopeAllFolders);
 explorer.Display();
 }
}

Table 11-1 Outlook 2007 Query Languages

Query language Description
AQS AQS is used by Windows Desktop Search and is the query language for the

Instant Search feature in Outlook 2007.
DASL DAV Searching and Locating (DASL) query language is based on the Microsoft

Exchange implementation of DASL in Outlook. DASL has been used in several
versions of Outlook. In Outlook 2007, DASL has new prominence because it
can be used to return results in the new Table object. DAV is an abbreviated
version of Web Distributed Authoring and Versioning (WebDAV).

Jet Jet query language, based on the Microsoft Jet Expression Service, has been
used in several versions of Outlook to provide a simple query language. Note
that the Jet query language has the same syntax as that supported by the
Microsoft Jet Expression Service, hence the name Jet query language. Jet is
used to create filter strings for the Restrict method of the Items and Table
objects.

Chapter 11 Searching Outlook Data 337
AQS

AQS is the query language for Windows Desktop Search. For an in-depth discussion of all
aspects of Windows Desktop Search, search MSDN at http://msdn.microsoft.com. AQS queries
cannot be submitted directly to methods such as Table.Restrict or Items.Restrict. You can sup-
ply an AQS query only to the Search method of the Explorer object. When you call this
method, search results are displayed in the Explorer window. You can call the Search method
on multiple Explorer objects, and each will display separate search results. Outlook uses AQS
to return search results.

The following discussion concentrates on AQS keywords that you can use to cause the Search
method of the Explorer object to display results in an Explorer window. Some of the keywords
are specific to a module such as Mail or Calendar, whereas other keywords are appropriate to
all modules.

Case Sensitivity

Keywords and search specifiers for AQS are case-insensitive. When results are returned, they
will also be case-insensitive. For example, subject:office or SUBJECT:OFFICE will both return
items that contain “Office,” “office,” or “OFFICE” in the subject.

Keywords and Locale

Keywords for AQS queries can be submitted based on the locale for the installed Windows
operating system. However, to make your life as a developer easier, you can submit the English
keywords shown in Tables 11-2 through 11-6 for any operating system locale and still return
the correct results. Rather than localize all AQS queries, the recommended best practice is to
create your queries using English keywords and then specify the search term in the language
of the installed Windows operating system.

Search Scope

If you do not specify a property keyword, the search defaults to all searched fields in a
default scope. The default scope is per module, meaning that all contact folders, for exam-
ple, use the same default scope. Keywords for fields that are searched within a default scope
are marked with an asterisk (*) in Tables 11-2 through 11-6. For example, if you specify
contactfirstname:lily, the search will return all items where the Contact first name starts with
“lily.” If you do not specify the contactfirstname keyword, the search will return all items
where any of the searched fields for the Contacts module starts with “lily”.

Keywords for All Modules

Table 11-2 lists some of the common keywords that can be used in any module with the excep-
tion of the Notes module, which only supports the subject, body, and categories keywords. For
additional information about the <string>, <date>, <bool>, and <systemsize> specifiers shown in

338 Part III Working with Outlook Data
the table, see the relevant specifier topic later. For information on keywords and symbols that
are valid for an AQS query, see the section “Keywords and Symbols” later in this chapter.

Note The folderpath keyword should only be used when you search all items in a
module. When you specify folderpath for a query, you should also specify the
OlSearchScope.olSearchScopeAllFolders value for the SearchScope parameter of the Search
method.

Keywords for Mail Module

Table 11-3 lists additional AQS keywords that can be used in the Mail module. This list is not
exhaustive.

Table 11-2 Keywords for All Outlook Modules

Search for Keyword Example
Attachment contains attachment:<string> attachment:office
Body* contents:<string> contents:office
Categories* category:<string> category:(oom AND isv)
Follow up* followupflag:<string> followupflag:completed
Has Attachments* hasattachments:<bool> hasattachments:true
Importance importance:

(low, normal, high)
importance:high

In Folder folderpath:<string> folderpath:(Sent Items)
Message size messagesize:<systemsize> messagesize:(>500kb <700kb)
Modified modified:<date> modified:(last week)
Read read:<bool> read:yes
Received received:<date> received:(last month)
Sensitivity sensitivity:

(normal, personal, private,
confidential)

sensitivity:private

Sent sent:<date> sent:this week –monday
Subject* subject:<string> subject:office

Table 11-3 Keywords for Outlook Mail Folders

Search for Keyword Example
Bcc* bcc:<string> bcc:(fadi fakhouri)
Cc* cc:<string> cc:(janet leverling)
Due Date due:<date> due:(11/1/06..12/1/06)
From* from:<string> from:Mark OR Dan
Received received:<date> received:(last month)

Chapter 11 Searching Outlook Data 339
Keywords for Calendar Module

Table 11-4 lists additional keywords that can be used in the Calendar module. This list is not
exhaustive.

Keywords for Contacts Module

Table 11-5 lists additional AQS keywords that can be used in the Contacts module. This list is
not exhaustive.

Sent sent:<date> sent:this week–today
Start Date start:<date> start:1/1/07
To* to:<string> to:(nancy davolio)

Table 11-4 Keywords for Outlook Calendar Folders

Search for Keyword Example
End end:<date> end:(<2/1/07)
Location* meetinglocation:<string> meetinglocation:36
Optional Attendees* optionalattendees:<string> optionalattendees:(ryan gregg)
Organizer* organizer:<string> organizer:(nancy davolio)
Recurring recurring:<bool> recurring:true
Required Attendees* requiredattendees:<string> requiredattendees:(randy byrne)
Resources* resources:<string> resources:(conf room 36/2731)
Show Time As freebusystatus:

(free, busy, tentative, out of office)
freebusystatus:tentative

Start start:<date> start:tomorrow

Table 11-5 Keywords for Outlook Contacts Folders

Search for Keyword Example
Business Address* businessaddress:<string> businessaddress:microsoft
Business Phone* businessphone:<string> Businessphone:("425")
City city:<string> city:redmond
Company* company:<string> company:Microsoft
Department department:<string> department:payroll
E-mail* emailaddress:<string> emailaddress:microsoft.com
First Name contactfirstname:<string> contactfirstname:nancy
Full Name fullname:<string> fullname:(peter allenspach)
Home Address* homeaddress:<string> homeaddress:17560

Table 11-3 Keywords for Outlook Mail Folders

Search for Keyword Example

340 Part III Working with Outlook Data
Keywords for Tasks Module

Table 11-6 lists additional AQS keywords that can be used in the Tasks module. This list is not
exhaustive.

Home Phone* homephone:<string> homephone:("425")
IM Address imaddress:<string> imaddress:lily
Job Title* jobtitle:<string> jobtitle:director
Last Name contactlastname:<string> contactlastname:"davolio"
Mailing Address mailingaddress:<string> mailingaddress:street
Mobile Phone* mobilephone:<string> mobilephone:("212")
Other Address* otheraddress:<string> otheraddress:way
PO Box pobox:<string> pobox:121
Primary Phone primaryphone:<string> primaryphone:("518")
State stateorprovince:<string> stateorprovince:ca
Street Address streetaddress:<string> street:("16255 NE 36th Way")
Title personaltitle:<string> personaltitle:ms
Web Page webpage:<string> webpage:msdn
Zip/Postal Code postalcode:<string> postalcode:98

Table 11-6 Keywords for Outlook Task Folders

Search for Keyword Example
Completed iscompleted:<bool> iscompleted:no
Date Completed datecompleted:<date> datecompleted:(last week)
Due Date due:<date> due:(last week)
Owner* taskowner:<string> taskowner:zoe
Priority priority:

(low, normal, high)
priority:high

Reminder Time remindertime:<date> remindertime:(next week)
Start Date start:<date> start:(next week)
Status taskstatus:

(in progress, completed, not started,
waiting on someone else, deferred)

taskstatus:in progress

Table 11-5 Keywords for Outlook Contacts Folders

Search for Keyword Example

Chapter 11 Searching Outlook Data 341
Keywords and Symbols

You can use various operators and symbols for queries that add power to the simplicity of
AQS. Keywords and symbols for queries are listed in Table 11-7.

String Specifier <string>

You can easily specify a variety of search conditions using a string specifier. Without addi-
tional operators such as those described in Table 11-7, a string search performs the equivalent
of a DASL ci_startswith comparison on the specified string. For example, specifying subject:off
for the query would find items that start with “off” in the subject. Possible results would
include off, office, official, and so forth. If you specified subject:“off” (the equivalent of a DASL
ci_phrasematch comparison) in the query, then only items that have the exact phrase “off” in
the subject would be returned.

Date Specifier <date>

To specify a date, use the property name followed by any one of the following:

■ A date literal such as sent:1/1/2007.

Table 11-7 Operators and Symbols for Specifiers

Operator/Symbol Example Results
– subject:fast –track Finds items where subject starts with fast,

but where any searched field in the default
scope does not start with track

+ category:"book" +"important" Finds items categorized with book and
important

> sent:>11/1/06 Finds items sent after 11/1/06
< received:<11/1/06 Finds items received before 11/1/06
.. sent:11/1/06..11/5/06 Finds items sent after 11/1/06 and before

11/5/06
AND category:(book AND dev) Finds items where category starts with book

and category starts with dev
NOT subject:(fast NOT track) Finds items where subject starts with fast,

but where subject does not start with track
OR subject:(fast OR track) Finds items where subject starts with fast or

where subject starts with track
Parentheses subject:(fast track) Finds items where subject starts with fast

and subject starts with track in any order
Quotation marks subject:"fast track" Finds items with subject containing the

exact phrase fast track

342 Part III Working with Outlook Data
■ A relative date specifier such as received:(last week) or sent:monday or due:june. Note that
you can use operators with relative date specifiers such as received:(last week) NOT
received:monday.

■ A date range specifier such as two consecutive periods (..) or using > and < symbols such
as the following: sent:10/1/06..10/4/06 or sent:>10/1/06 <10/4/06.

Boolean Specifier <bool>

To specify a Boolean property, follow the property name with a valid Boolean value such as
true, yes, false, or no. For example, both hasattachments:true and iscompleted:no are valid Bool-
ean specifiers.

Systemsize Specifier <systemsize>

A Systemsize specifier lets you query a property such as the size of an item. Typically you spec-
ify the size as a range using > and < or double periods. Use the kb and mb abbreviations (k and
m are also valid shortcuts) to specify kilobytes and megabytes, respectively. For example,
size:10kb..50kb and size:>1m are both valid Systemsize specifiers.

Keywords for Custom Properties

If you need to query custom properties in an AQS query, enclose the name of the custom
property in brackets as follows:

[Preferred Gift]:diamonds

The custom property must exist in the UserDefinedProperties collection for the Folder object
where you want to execute the search. You must search for a custom property in the folder
where the custom property exists. If you attempt to search for a custom property across all
folders by specifying the OlSearchScope.olSearchScopeAllFolders value for the SearchScope
parameter of the Search method, the custom property search will not return the correct
results. Custom property searches must be scoped to the current folder in the Explorer by
specifying OlSearchScope.olSearchScopeCurrentFolder.

DASL

DASL excels at retrieving property-based results for item-level searches in folders. Unfortu-
nately, DASL is cumbersome to write, and it would be an understatement to mention that the
property formats are opaque. That being said, DASL is the most versatile query language for
Outlook, so it’s worth the deep dive.

Property Specifiers

DASL uses namespace schema names to represent properties in its query syntax. For a com-
plete discussion of the namespace formats, see Chapter 17, “Using the PropertyAccessor

Chapter 11 Searching Outlook Data 343
Object.” Certain properties such as binary properties are invalid for use in a DASL query. To
learn more about invalid properties, see the section “Invalid Properties” later in this chapter.
All properties in DASL queries must be enclosed in double quotation marks. You can add a
simple routine like the addQuotes procedure to do the job for you.

/// <summary>
/// Adds double quotation marks to schema name
/// </summary>
/// <param name="schemaName"></param>
/// <returns>string</returns> private string addQuotes(string schemaName)
{
 return ("\"" + schemaName + "\"");
}

Note Namespace property specifiers are always case-sensitive. For example, urn:sche-
mas:contacts:givenName is a valid specifier but urn:schemas:contacts:givenname is invalid.
The only exception to this rule is for the representation of the Hex value in a Messaging
Application Programming Interface (MAPI) proptag specification. The following schema
names for PR_TRANSPORT_MESSAGE_HEADERS are both valid:

http://schemas.microsoft.com/mapi/0x007d001e

http://schemas.microsoft.com/mapi/0x007D001E

String Comparisons

The string comparisons that DASL filters support include equivalence, prefix, phrase, and
substring matching. Note that when you filter on the Subject property, prefixes such as RE:
and FW: are ignored.

Equivalence Matching DASL filters perform string equivalence comparison by using the
equal (=) operator. The value of the string property must be equivalent to the comparison
string, with the exception of prefixes RE: and FW: as mentioned earlier.

As an example, the following DASL query creates a filter for company name equals 'Microsoft':

string filter = "@SQL="
 + "\"" + "urn:schemas-microsoft-com:office:office#Company" + "\""
 + " = 'Microsoft'";

As another example, assume that the folder you are searching contains items with the follow-
ing subjects:

■ Question

■ Questionable

■ Unquestionable

344 Part III Working with Outlook Data
■ RE: Question

■ The big question

The following = restriction:

string filter = "@SQL="
 + "\"" + "urn:schemas:httpmail:subject" + "\""
 + " = 'question'";

will return the following results:

■ Question

■ RE: Question

Prefix, Phrase, and Substring Matching DASL supports the matching of prefixes, phrases,
and substrings in a string property using content indexer keywords ci_startswith and
ci_phrasematch, and the keyword like. If a store is indexed, searching with content indexer key-
words is more performant than with like. If your search scenarios include substring matching
(which content indexer keywords do not support), use the like keyword in a DASL query.

A DASL query can contain ci_startswith or ci_phrasematch, and like, but all string comparisons
will be carried out as substring matching.

ci_startswith The syntax of ci_startswith is as follows:

<PropertySchemaName> ci_startswith <ComparisonString>

where PropertySchemaName is a valid name of a property referenced by namespace, and
ComparisonString is the string used for comparison.

The keyword ci_startswith performs a search to match prefixes. It uses tokens (characters, word,
or words) in the comparison string to match against the first few characters of any word in the
string value of the indexed property. If the comparison string contains multiple tokens, every
token in the comparison string must have a prefix match in the indexed property. For example:

■ Restricting for “sea” would match “search.”

■ Restricting for “sea” would not match “research.”

■ Restricting for “sea” would match “Subject: the deep blue sea.”

■ Restricting for “law order” would match “law and order” or “law & order.”

■ Restricting for “law and order” would match “I like the show Law and Order.”

■ Restricting for “law and order” would not match “above the law.”

■ Restricting for “sea creatures” would match “Nova special on sea creatures.”

■ Restricting for “sea creatures” would match “sealife creatures.”

■ Restricting for “sea creatures” would not match “undersea creatures.”

Chapter 11 Searching Outlook Data 345
Using the same example in equivalence matching, assume that the folder you are searching
contains items with the following subjects:

■ Question

■ Questionable

■ Unquestionable

■ RE: Question

■ The big question

The following ci_startswith restriction:

string filter = "@SQL="
 + "\"" + "urn:schemas:httpmail:subject" + "\""
 + " ci_startswith 'question'";

will return the following results:

■ Question

■ Questionable

■ RE: Question

■ The big question

ci_phrasematch The syntax of ci_phrasematch is as follows:

<PropertySchemaName> ci_phrasematch <ComparisonString>

where PropertySchemaName is a valid name of a property referenced by namespace, and
ComparisonString is the string used for comparison.

The keyword ci_phrasematch performs a search to match phrases. It uses tokens (characters,
word, a or words) in the comparison string to match entire words in the string value of the
indexed property. Tokens are enclosed in double quotes or parentheses. Each token in the
comparison string must have an equivalence match, not a substring or prefix match. If the
comparison string contains multiple tokens, every token in the comparison string must have
an equivalence match. Any word within a multiple word property like Subject or Body can
match; it doesn’t have to be the first word. For example:

■ Restricting for “cat” would match “cat,” “cat box,” “black cat.”

■ Restricting for “cat” would match “re: cat is out.”

■ Restricting for “cat” would not match “catalog,” “kittycat.”

■ Restricting for “kitty cat” would match “put the kitty cat out.”

■ Restricting for “kitty cat” would not match “great kitty catalog.”

346 Part III Working with Outlook Data
Using the same example in equivalence matching, assume that the folder you are searching
contains items with the following subjects:

■ Question

■ Questionable

■ Unquestionable

■ RE: Question

■ The big question

The following ci_phrasematch restriction:

string filter = "@SQL="
 + "\"" + "urn:schemas:httpmail:subject" + "\""
 + " ci_startswith 'question'";

will return the following results:

■ Question

■ RE: Question

■ The big question

like The keyword like performs prefix, substring, or equivalence matching. Tokens (charac-
ters, word, or words) are enclosed with the % character in a specific way depending on the
type of matching: like '<token>%' provides prefix matching. For example, restricting for like
'cat%' would match “cat” and “catalog.” like '%<token>%' provides substring matching. For
example, restricting for like '%cat%' would match “cat,” “catalog,” “kittycat,” and “decathlon.”
like '<token>' provides equivalence matching. For example, restricting for like 'cat' would
match “cat” and “RE: Cat.”

Each token can match any part of a word in the string property. If the comparison string con-
tains multiple tokens, every token in the comparison string must have a substring match. Any
word within a multiple word property like Subject or Body can match; it does not have to be the
first word.

Using the same example in equivalence matching, assume that the folder you are searching
contains items with the following subjects:

■ Question

■ Questionable

■ Unquestionable

■ RE: Question

■ The big question

Chapter 11 Searching Outlook Data 347
The following like restriction:

string filter = "@SQL="
 + "\"" + "urn:schemas:httpmail:subject" + "\""
 + " like '%question%'";

will return the following results:

■ Question

■ Questionable

■ Unquestionable

■ RE: Question

■ The big question

Searching the Body of an Item

To search for items that contain a specific word in the body, use the ci_startswith,
ci_phrasematch, or like operator with the namespace representation of the body property,
urn:schemas:httpmail:textdescription. When you use a DASL query to search the item body, you
cannot determine where in the body the match was found. If you need to determine where the
word was found in the body, examine the Body property of the found item. The following code
sample creates a filter for items using the ci_phrasematch keyword, uses the filter for the Table
object, and writes the Subject property to the trace listeners in the Listeners collection:

private void DemoSearchBody()
{
 string filter;
 if (Application.Session.DefaultStore.IsInstantSearchEnabled)
 {
 filter = "@SQL=" + "\""
 + "urn:schemas:httpmail:textdescription" + "\""
 + " ci_phrasematch 'office'";
 }
 else
 {
 filter = "@SQL=" + "\""
 + "urn:schemas:httpmail:textdescription" + "\""
 + " like '%office%'";
 }
 Outlook.Table table = Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).GetTable(
 filter, Outlook.OlTableContents.olUserItems);
 while (!table.EndOfTable)
 {
 Outlook.Row row = table.GetNextRow();
 Debug.WriteLine(row["Subject"]);
 }
}

348 Part III Working with Outlook Data
Searching Attachments

To search for items in an indexed store that contain a specific word in an attachment, use the
ci_startswith, ci_phrasematch, or like operator with the PR_SEARCH_ATTACHMENTS property.
This property causes Outlook to evaluate the search criteria against the contents of item
attachments. Item attachments are represented by the Attachments collection of the parent
item. The indexer must be able to parse the contents of the attachment for the query to return
reliable results. When you use a DASL query to search item attachments, you cannot deter-
mine where in the attachment the match was found or in which attachment the match was
found (in the case of an item with multiple attachments). The following code sample creates
a filter for items using the ci_phrasematch keyword, uses the filter for the Table object, and
writes the Subject property to the trace listeners in the Listeners collection:

private void DemoSearchAttachments()
{
 string filter;
 const string PR_SEARCH_ATTACHMENTS =
 "http://schemas.microsoft.com/mapi/proptag/0x0EA5001E";
 if (Application.Session.DefaultStore.IsInstantSearchEnabled)
 {
 filter = "@SQL=" + "\""
 + PR_SEARCH_ATTACHMENTS + "\""
 + " ci_phrasematch 'office'";
 Outlook.Table table = Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).GetTable(
 filter, Outlook.OlTableContents.olUserItems);
 while (!table.EndOfTable)
 {
 Outlook.Row row = table.GetNextRow();
 Debug.WriteLine(row["Subject"]);
 }
 }
}

Boolean Properties in DASL Syntax

In DASL syntax, you must convert True/False to an integer value, where 0 represents False and
1 represents True; likewise for Yes/No and On/Off. The DASL filter to return unread items is as
follows:

string filter = "@SQL=" + "\"" + "urn:schemas:httpmail:read" +
 "\"" + "=0";

Keywords Properties

The following discussion uses the Categories property as an example, but can apply as well to
any multivalued string property. The Categories property is of Outlook-type keywords, which

Chapter 11 Searching Outlook Data 349
is designed to hold multiple values. In MAPI, a Keywords property corresponds to the type
PT_MV_STRING8. For additional information on MAPI property types, see Chapter 17.

To overcome the limitations of keyword restrictions using the Jet query syntax discussed later
in this chapter, use DASL syntax that allows different restriction types such as phrase match-
ing (ci_phrasematch keyword), starts with matching (ci_startswith keyword), or substring
matching (like keyword). The following criteria string will find all items that contain “Busi-
ness” as a category or as a word in a category, such as an item with the categories “Business”
and “Business Intelligence.” This filter string will succeed for all items that have “Business” as
an exact word in the category field, even if the category has “Business” as one of the words, or
the categories field contains more than one category:

string filter = "@SQL=" + "\""
 + "urn:schemas-microsoft-com:office:office#Keywords"
 + "\"" + " ci_phrasematch 'Business'";

If the multivalued property is added to the Columns collection of the Table object using a ref-
erence by namespace, the format of the values of the property is an array of strings. To access
these values, parse the elements in the array. Using the last example, this would also allow
you to obtain the items that contain exactly “Business” as a category.

Custom Properties in a DASL Query

In a DASL query, if the name of a custom property contains spaces, you must apply Uniform
Resource Locator (URL) encoding to each space character and replace the space with “%20”.
In general, URL encoding applies the same way to characters in a DASL query as in a URL.

Outlook custom properties can be added in the Outlook user interface through the Field
Chooser or added programmatically with the Add method of the UserProperties collection on
an item or the UserDefinedProperties collection on a Folder object. When you construct a DASL
query for an Outlook custom property, you must use the namespace globally unique identifier
(GUID) for Outlook custom properties in the following format:

http://schemas.microsoft.com/mapi/string/{GUID}/PropertyName

where {GUID} is the following GUID:

{00020329-0000-0000-C000-000000000046}

The following DASL query uses the content indexer keyword ci_phrasematch and retrieves all
contacts where the custom property named “Preferred Gift” matches “Diamonds”:

string filter = "@SQL=" + "\""
 + "http://schemas.microsoft.com/mapi/string/"
 + "{00020329-0000-0000-C000-000000000046}/Preferred%20Gift"
 + "\"" + "ci_phrasematch 'Diamonds'";

If the custom property you are searching for does not exist in the UserDefinedProperties collec-
tion for a folder, you must append a type specifier to the namespace representation of the

350 Part III Working with Outlook Data

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

custom property. This requirement only applies to a DASL filter for the Items collection, the Table
object, or the AdvancedSearch method. Only properties that use the String namespace require
appending the type specifier. For additional information about MAPI type specifiers, see “Type
Specifiers” in Chapter 17. For example, assume that you want to search for the Unicode string
property named MyProperty, and this property does not exist in the UserDefinedProperties
collection for a folder. The following DASL query appends the Unicode string type specifier
(/0x0000001f) to the String namespace representation of the property:

string filter = "@SQL=" + "\""
 + "http://schemas.microsoft.com/mapi/string/"
 + "{00020329-0000-0000-C000-000000000046}/MyProperty"
 + "/0x0000001f" + "\"" + " = '12-74440'";

Building DASL Queries

Fortunately, there is a quick way to build DASL queries without too much pain. You can use
an undocumented Registry key to display a Query Builder tab on the Filter dialog box associ-
ated with the View Summary dialog box (see Figure 11-2). After you use the Query Builder to
construct your query, you can then copy the Filter syntax displayed on the SQL page and
paste it into your code. Do not attempt to add the Query Builder page Registry setting unless
you are familiar with the Microsoft Windows Registry Editor.

Figure 11-2 The Query Builder tab of the Filter dialog box.

To display the Query Builder tab of the Filter dialog box, follow these steps:

1. Click Start and point to Run. In the Run dialog box, type Regedit, and then click OK to
launch the Windows Registry Editor.

Chapter 11 Searching Outlook Data 351
2. In the Registry tree, navigate to HKEY_CURRENT_USER\Software
\Microsoft\Office\12.0\Outlook.

3. From the Edit menu, select New, and then select Key.

4. In the Key edit box, type QueryBuilder. Regedit will suggest New Key #1, but you
should replace that key name with QueryBuilder.

To build a filter using the Query Builder tab of the Filter dialog box, follow these steps:

1. In Outlook, from the View menu, select Current View, and then select Customize Cur-
rent View.

2. In the View Summary dialog box, click Filter.

3. In the Filter dialog box, click the Query Builder tab.

4. Use the Query Builder interface to build your query. When you construct a filter, you actu-
ally build a WHERE clause without the WHERE keyword. Notice that you can use the log-
ical AND or logical OR operator to develop the query and move clauses up or down.

5. In the Filter dialog box, click the SQL tab shown in Figure 11-3 and clear the Edit These
Criteria Directly check box. Once you clear the check box, you can copy the query by
selecting it and pressing Ctrl+C to copy it to the Clipboard.

Figure 11-3 Copy a Filter string from the SQL tab of the Filter dialog box to construct a DASL
query.

6. Because you don’t want to modify the view, click Cancel to close the Filter dialog box.
Click Cancel again to close the View Summary dialog box.

Once you have constructed your filter string, the rest of the process is relatively straightfor-
ward. Paste the DASL string into the Microsoft Visual Studio code editor. If you are creating

352 Part III Working with Outlook Data
a filter for Table.Restrict or Items.Restrict, you need to concatenate the @SQL= prefix for your
query to operate correctly. For a filter that is passed to the AdvanceSearch method of the
Application object or used with View.Filter, you do not add the @SQL= prefix. Using the
Query Builder page is certainly easier than typing long DASL strings manually.

The Jet query syntax is the easiest to learn and use in your code, but it does not have the
power of DASL. Jet queries can create restrictions for most built-in and custom properties.
When you create a Jet query, be aware that there are certain computed and binary properties
that are invalid and will cause Outlook to raise an error. Jet query syntax also does not sup-
port the new content indexer keywords that leverage the Instant Search feature in Outlook
2007. Consequently, Jet queries will return results slower than DASL queries provided that
Instant Search is installed and enabled.

Property Specifiers

Jet property specifiers use the English name of the property enclosed in square brackets to
represent built-in properties in Jet queries. The English name of the property is identical with
the object model name of the property. Based on this convention, you can use [Subject] in your
Jet query independent of locale to create a restriction on the Subject property of an item. Cus-
tom properties use the locale-specific name of the property enclosed in square brackets.

Tip Don’t confuse the object model name of the property with the Field Chooser name of
the property, which is localized. For example, if French is the user interface (UI) language,
then the Field Chooser will display a field named Sujet that represents the Subject property of
a MailItem object. In a Jet equivalence query for “Office 2007” using the Subject property, the
filter would be [Subject] = 'Office 2007' whether the UI language is French or English. Be aware
that object model names for built-in properties have no spaces or special characters, whereas
the Field Chooser name can contain both spaces and special characters. For example, the
object model name for an assistant’s phone number is AssistantTelephoneNumber. In the Field
Chooser, this property is Assistant’s Phone. Always use the object model name in your Jet queries.

String Comparisons

The string comparison that Jet filters support is limited to equivalence matching as long as the
property is not a Keywords property. String comparisons for keywords properties use phrase
matching. See the section “Keywords Properties in a Jet Query” later in this chapter. You can
filter items based on the value of a string property being equivalent to a specific string, for
example, the LastName property being equal to “Davolio.” Note that the comparison is not
case-sensitive; in the last example, specifying “Davolio” and “davolio” as the comparison
string will return the same results.

When matching string properties, you can use either an apostrophe (') or double quotation
marks ("") to delimit the values that are part of the filter. For example, all of the following lines
function correctly when the property is a string:

Chapter 11 Searching Outlook Data 353
string filter = "[CompanyName] = 'Microsoft'";
string filter = "[CompanyName] = " + "\"" + "Microsoft" + "\"";

Note If the search string contains a single quote character, escape the single quote char-
acter in the string with another single quote character. Similarly, if the search string contains
a double quote character, escape the double quote character in the string with another dou-
ble quote character.

Boolean Properties in Jet Syntax

In Jet syntax, Boolean operators such as True/False, Yes/No, On/Off, and so on should be used
as is and should not be converted to a string. For example, to create a filter to return unread
items, create a filter as follows:

string filter = "[UnRead] = True";

Note If you convert the Boolean value to a comparison string by enclosing it in quotation
marks, then a Jet filter using any nonempty comparison string and filtering on a Boolean
property will return items that have the property True. A Jet filter comparing an empty string
with a Boolean property will return items that have the property False.

Custom Properties in a Jet Query

Custom properties are defined as properties that exist in the UserDefinedProperties collec-
tion for the folder that contains the item, and in the UserProperties collection for the item in
the folder. Custom properties can contain spaces in the property name. In a Jet query, as in
all property name references, simply enclose the custom property name in square brackets.
For example, the following Jet query retrieves all contacts where the custom property
named Preferred Gift is exactly “Diamonds.” For the query to succeed, the custom property
named Preferred Gift must exist in the UserDefinedProperties collection in the folder that con-
tains the custom contact items:

string filter = "[Preferred Gift] = 'Diamonds'";

Keywords Properties in a Jet Query

Keywords properties are defined as Outlook properties that can contain multiple values. Typ-
ically keywords properties are multivalued string properties such as the Categories property
on an item. In a Jet query, you only perform phrase matching on a keywords property. You
cannot perform starts with or substring matching with a Jet query. Use a DASL query for
starts with or substring restrictions. Consider the following criteria for Table.Restrict:

string filter = "[Categories] = 'Partner'";

354 Part III Working with Outlook Data
This Jet query will return rows for items where the Categories property for the item finds a
phrase match for “Partner.” It will return rows for items that are categorized as “Partner.” It will
also return rows for items that are categorized as “Partner” and “Important” and for items that
are categorized as “Tier1 Partner.” It will not return rows for items where the item category is
only “Partnership.”

Date-Time Comparisons
The following section covers date-time comparisons and filters for both Jet and DASL queries.
The important concept for these restrictions is that Jet filters are evaluated against local time,
while DASL filters are evaluated against Coordinated Universal Time (UTC). If you don’t
understand this distinction, you could return the wrong results from your date-time query
because the query is formulated incorrectly. For example, if you want to issue a DASL query
against a local date-time value, you must first convert the local time value to its equivalent
UTC date-time value for the query to operate correctly.

Filtering Recurring Items in the Calendar Folder

To filter a collection of appointment items that include recurring appointments, you must use
the Items collection. The Table object only returns rows that represent the master series appoint-
ment and does not support recurring items in a calendar folder. Use the Items.IncludeRecurrences
property to specify that Items.Find or Items.Restrict should include recurring appointments. If
IncludeRecurrences is True, you can filter recurring appointment items only on the Start and
End properties. Use a Jet query to specify the Start and End properties.

If you need to obtain a subset of filtered recurring appointments, use the Find and FindNext
methods or create a new restriction on an Items collection that contains recurrences. For
example, the following SearchRecurringAppointments procedure creates an Items collection that
contains recurring appointments between 8/9/2006 and 12/14/2006. It then uses the Find
and FindNext methods to find recurring appointments that contain “Office” in the subject. An
alternative, preferred method is to create a new Items collection by restricting the original
Items collection. The filter for the new Items collection uses the ci_startswith keyword to create
a subset of recurring items that start with “Office” in the subject.

private void SearchRecurringAppointments()
{
 Outlook.AppointmentItem appt = null;
 Outlook.Folder folder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderCalendar)
 as Outlook.Folder;
 //Set start value
 DateTime start =
 new DateTime(2006, 8, 9, 0, 0, 0);
 //Set end value
 DateTime end =

Chapter 11 Searching Outlook Data 355
 new DateTime(2006, 12, 14, 0, 0, 0);
 //Initial restriction is Jet query for date range
 string filter1 = "[Start] >= '" +
 start.ToString("g")
 + "' AND [End] <= '" +
 end.ToString("g") + "'";
 Outlook.Items calendarItems = folder.Items.Restrict(filter1);
 calendarItems.Sort("[Start]", Type.Missing);
 calendarItems.IncludeRecurrences = true;
 //Must use 'like' comparison for Find/FindNext
 string filter2;
 filter2 = "@SQL="
 + "\"" + "urn:schemas:httpmail:subject" + "\""
 + " like '%Office%'";
 //Create DASL query for additional Restrict method
 string filter3;
 if (Application.Session.DefaultStore.IsInstantSearchEnabled)
 {
 filter3 = "@SQL="
 + "\"" + "urn:schemas:httpmail:subject" + "\""
 + " ci_startswith 'Office'";
 }
 else
 {
 filter3 = "@SQL="
 + "\"" + "urn:schemas:httpmail:subject" + "\""
 + " like '%Office%'";
 }
 //Use Find and FindNext methods
 appt = calendarItems.Find(filter2)
 as Outlook.AppointmentItem;
 while (appt != null)
 {
 StringBuilder sb = new StringBuilder();
 sb.AppendLine(appt.Subject);
 sb.AppendLine("Start: " + appt.Start);
 sb.AppendLine("End: " + appt.End);
 Debug.WriteLine(sb.ToString());
 //Find the next appointment
 appt = calendarItems.FindNext()
 as Outlook.AppointmentItem;
 }
 //Restrict calendarItems with DASL query
 Outlook.Items restrictedItems =
 calendarItems.Restrict(filter3);
 foreach (Outlook.AppointmentItem apptItem in restrictedItems)
 {
 StringBuilder sb = new StringBuilder();
 sb.AppendLine(apptItem.Subject);
 sb.AppendLine("Start: " + apptItem.Start);
 sb.AppendLine("End: " + apptItem.End);
 sb.AppendLine();
 Debug.WriteLine(sb.ToString());
 }

}

356 Part III Working with Outlook Data
Date-Time Format of Comparison Strings

Date-time values are recognized according to the time format, short date format, and long date
format settings in Regional and Language Options in the Windows Control Panel.

Although dates and times are typically stored with a date format, filters using the Jet and DASL
syntax require that the date-time value be converted to a string representation. In Jet syntax,
the date-time comparison string should be enclosed in either double quotes or single quotes.
In DASL syntax, the date-time comparison string should be enclosed in single quotes.

To make sure that the date-time comparison string is formatted as Outlook expects, use the
constructor of the DateTime structure and the ToString method with the “g” format specifier,
which converts the DateTime value to a string that will be interpreted correctly by Outlook.
The following example creates a Jet filter to find all contacts modified before June 12, 2005, at
3:30 p.m. local time:

string filter = "[LastModificationTime] < '" +
 new DateTime(2005, 6, 12, 15, 30, 0).ToString("g") + "'";

Date-Time Literals for Outlook Date-Time Comparisons
Outlook evaluates date-time strings based on the date and time settings in the Regional
and Language Options in Windows Control Panel. Specifically, Outlook evaluates dates
according to the short date format and time according to the time format without seconds.
If you specify seconds in the date-time string, the query will fail to operate as expected.

The format used by Outlook corresponds to the General (short date and short time) pat-
tern in the DateTimeFormatInfo class. If you use the Parse method of the DateTime struc-
ture, you should be certain that the argument to the Parse method follows the short date
and short time format for the current locale. If you use the constructor for the DateTime
structure, you need to specify year, month, day, hour, minute, and second arguments and
then use the ToString method with the “g” format specifier to convert the date-time value
to the short date and short time string expected by Outlook. The date specifier argument
to the ToString method is case-sensitive, so be sure to use “g” as the format specifier. When
you use the DateTime constructor and the “g” format specifier in the ToString method, you
create a date-time literal that will be interpreted correctly by Outlook.

Time Zones Used in Comparison

When an explicit built-in property is referenced in a Jet query with its explicit string name, the
comparison evaluates the property value and the date-time comparison string as local time values.

Chapter 11 Searching Outlook Data 357
When a property is referenced in a DASL query by namespace, the comparison evaluates the
property value and the date-time comparison string as UTC values. For example, the follow-
ing DASL query finds all contacts modified before June 12, 2005, at 3:30 p.m. UTC:

string filter = "@SQL=" + "\"" + "DAV:getlastmodified" + "\"" +
 " < '" + new DateTime(2005, 6, 12, 15, 30, 0).ToString("g") + "'";

Conversion to UTC for DASL Queries

Because DASL queries always perform date-time comparisons in UTC, if you use a date literal in
a comparison string, you must use its UTC value for the comparison. You can use the
Row.LocalTimeToUTC helper function or Outlook date-time macros to facilitate the conversion.

Note You should use the local time to UTC conversion functions built into the Outlook
object model to perform conversions from local date-time values to UTC date-time values
rather than DateTime structure conversion functions such as ToLocalTime and ToUniversalTime.

LocalTimeToUTC

One way to facilitate local time to UTC conversion is to use the helper function, LocalTimeToUTC,
of the Row object. The following line of code uses this helper function to convert the value of
the LastModificationTime property (which is a default column in all Table objects):

DateTime modified = nextRow.LocalTimeToUTC("LastModificationTime");

Outlook Date-Time Macros

The date macros listed in Table 11-8 return filter strings that compare the value of a given
date-time property with a specified relative date or date range in UTC; SchemaName is any
valid date-time property referenced by namespace.

Note Outlook date-time macros can be used only in DASL queries.

For example, the DemoDASLDateMacro procedure creates a DASL query that filters for items
that were modified in the last month, creates a Table object with that filter, and then enumer-
ates rows in the restricted Table object.

private void DemoDASLDateMacro()
{
 string filter = "@SQL=" + "%lastmonth(" + "\"" +
 "DAV:getlastmodified" + "\"" + ")%";
 Outlook.Table table = Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).GetTable(
 filter, Outlook.OlTableContents.olUserItems);
 while(!table.EndOfTable)

358 Part III Working with Outlook Data
 {
 Outlook.Row row = table.GetNextRow();
 Debug.WriteLine(row["Subject"]);
 }
}

Integer Comparisons
You can compare an integer property with an integer value in a filter string using Jet or DASL
syntax. You can specify the integer value with or without quotation marks as delimiters. The
following Jet filter can be used to restrict on the condition that the Importance value is high:

string filter = "[Importance] = 2";

If you want to use a value from an integer enumeration, convert the value to a string and
append it to the filter string. The following filters are equivalent and test for items with Impor-
tance set to high:

string filter = "[Importance] = " +
 Outlook.OlImportance.olImportanceHigh.ToString();

Table 11-8 Outlook Date Macros for DASL Queries

Macro Syntax Description
today %today("SchemaName")% Restricts for items with SchemaName property

value equal to today
tomorrow %tomorrow("SchemaName")% Restricts for items with SchemaName property

value equal to tomorrow
yesterday %yesterday("SchemaName")% Restricts for items with SchemaName property

value equal to yesterday
next7days %next7days("SchemaName")% Restricts for items with SchemaName property

values in range equivalent to next 7 days
last7days %last7days("SchemaName")% Restricts for items with SchemaName property

values in range equivalent to last 7 days
nextweek %nextweek("SchemaName")% Restricts for items with SchemaName property

values in range equivalent to next week
thisweek %thisweek("SchemaName")% Restricts for items with SchemaName property

values in range equivalent to this week
lastweek %lastweek("SchemaName")% Restricts for items with SchemaName property

values in range equivalent to last week
nextmonth %nextmonth("SchemaName")% Restricts for items with SchemaName property

values in range equivalent to next month
thismonth %thismonth("SchemaName")% Restricts for items with SchemaName property

values in range equivalent to this month
lastmonth %lastmonth("SchemaName")% Restricts for items with SchemaName property

values in range equivalent to last month

Chapter 11 Searching Outlook Data 359
string filter = "@SQL=" + "\"" + "urn:schemas:httpmail:importance"
 + "\"" + " = 2";

Invalid Properties
Not every property can be used in a filter string for Items.Restrict or Table.Restrict. For both Jet
and DASL queries, you cannot restrict on a binary property such as EntryID. You also cannot
restrict for computed properties such as BodyFormat or RecurrenceState. There are some excep-
tions for DASL properties that are noted later.

Jet

The properties listed in Table 11-9 are invalid in a Jet restriction. Outlook will raise a “Condi-
tion is not valid” error if you attempt to use one of the properties listed here in a restriction
string.

DASL

If a schema name representation of the Jet property exists, using the schema name property in
a DASL restriction will also cause Outlook to raise an error. However, there are some excep-
tions to this rule. For example, you can use the schema name for plain text body to create a
restriction as follows:

string filter = "@SQL=" +
 "\"" + "urn:schemas:httpmail:textdescription" + "\"" +
 " ci_startswith 'Office'";

Table 11-9 Invalid Properties for a Jet Restriction

AutoResolvedWinner Body BodyFormat
Class Companies CompanyLastFirstNoSpace
CompanyLastFirstSpaceOnly ContactNames Contents
ConversationIndex DLName DownloadState
Email1EntryID Email2EntryID Email3EntryID
EntryID HtmlBody InternetCodePage
IsConflict IsMarkedAsTask LastFirstAndSuffix
LastFirstNoSpace LastFirstNoSpaceAndSuffix LastFirstNoSpaceCompany
LastFirstSpaceOnly LastFirstSpaceOnlyCompany MeetingWorkspaceURL
MemberCount NetMeetingAlias NetMeetingServer
Permission PermissionService ReceivedByEntryID
ReceivedOnBehalfOfEntryID RecurrenceState ReplyRecipients
ResponseState Saved Sent
Submitted TaskSubject VotingOptions

360 Part III Working with Outlook Data
Another notable exception is the IsMarkedAsTask property. You can use the schema name rep-
resentation of this property to create a filter for items that are marked as a task:

string filter = "@SQL=" + "\"" +
 http://schemas.microsoft.com/mapi/proptag/0x0E2B0003
 + "\"" + " = 1";

Comparison and Logical Operators
You can write queries that range from the simple Subject equivalence query in Jet to complex
DASL queries. The following sections list valid comparison and logical operators for both Jet
and DASL queries.

Comparison Operators

Table 11-10 lists valid comparison operators in filter strings using Jet or DASL syntax.

Logical Operators

You can use the logical operators And, Not, and Or in filter strings in Jet or DASL syntax. The
order of precedence of these operators, from the highest to the lowest, is Not, And, Or. You
can use parentheses to indicate specific precedence in a filter. Logical operators are case-
insensitive.

Not

Not performs a logical NOT on the condition. The following Jet query retrieves all contacts
with a first name of Jane who do not work at Microsoft:

string filter = "[FirstName] = 'Jane'" +
 " And Not([CompanyName] = 'Microsoft')";

Table 11-10 Comparison Operators

Operator Description
< Performs a less-than comparison
> Performs a greater-than comparison
<= Performs a less-than-or-equal-to comparison
>= Performs a greater-than-or-equal-to comparison
<> Performs a not-equal-to comparison
= Performs an equal-to comparison

Chapter 11 Searching Outlook Data 361
And

And performs a logical AND on the condition. The following Jet query retrieves all contacts
who work at Microsoft and have a first name of Marina:

string filter = "[FirstName] = 'Marina'" +
 " And [CompanyName] = 'Microsoft'";

Or

Or performs a logical OR on the condition. The following code returns all contact items that
have a first name of either Peter or Paul:

string filter = "[FirstName] = 'Peter' Or [FirstName] = 'Paul'";

Null Comparisons

To perform null comparisons, use the Is Null keywords in a DASL query. Is Null is invalid in a
Jet query. Is Null returns True if the property is null and False if the property is not null.

Is Null operations are useful to determine if a date property has been set or if a string property
is empty. If the date is null, the local time value of the date will be equal to 1/1/4501.

The syntax of Is Null is as follows:

[PropertyName] IS NULL

where PropertyName is the name of a property referenced by namespace.

You can combine the Is Null keywords with the Not operator to evaluate if a property is not
null. The following DASL query retrieves all contacts where the custom property Order Date is
not null and the CompanyName property is exactly Microsoft:

string filter = "(NOT(" +
 AddQuotes("http://schemas.microsoft.com/mapi/string/"
 + "{00020329-0000-0000-C000-000000000046}/Order%20Date")
 + " IS NULL) AND "
 + AddQuotes("urn:schemas-microsoft-com:office:office#Company")
 + " = 'Microsoft')";

Search Entry Points
The number of object model entry points for search has expanded significantly in Outlook
2007. Table 11-11 lists the entry points for search in the Outlook object model. This table pro-
vides a good overview of the search and filtering features of the Outlook 2007 object model.
Some of the features, such as the Search method of the Explorer object or the Filter property of
the View object, only return results in the Outlook UI. Other features, such as the Restrict

362 Part III Working with Outlook Data
method on the Items collection or the Table object, return results programmatically. Choose
the most appropriate entry point for your specific scenario.

Table 11-11 Search Entry Points

Entry point Action Comments
Application.Advanced-
Search

Returns a Search object using the
criteria specified by the Filter
parameter.

Use the AdvancedSearchComplete
event on the Application object to
determine when a given search has
completed.
Filter must be a DASL query with-
out the @SQL= prefix.

AutoFormatRule.Filter Applies a filter to an
AutoFormatRule object.

The Filter property is not persisted
when you save the View object. You
must re-create the filter dynami-
cally. See the code sample for
AutoFormatRule in Chapter 10,
“Organizing Outlook Data.” Filter
must be a DASL query without the
@SQL= prefix.

Explorer.Search Based on the Query parameter
passed to the method, performs a
programmatic content indexer
search that is analogous to a user
executing a search from the
Outlook UI.

Use the IsInstantSearchEnabled
property of the Store object to
determine if Instant Search is
installed and enabled for a given
Store object. The scope of the
search is determined by the
SearchAllItems parameter. If
SearchAllItems is True, the method
will search across all folders that
have the same folder type as the
current folder and all stores that
have been selected for search in
the Search Options dialog box.
If SearchAllItems is False, the
method will search only the
folder represented by
Explorer.CurrentFolder.Query can
be any valid AQS query. You can-
not use Jet or DASL syntax for the
Query parameter.

Folder.GetTable Returns a Table object containing
rows determined by the Filter
parameter.

Filter can be a Jet query or a DASL
query with the @SQL= prefix.

Chapter 11 Searching Outlook Data 363
Items.Find Searches for the first item in the
Items collection that satisfies the
specified Filter parameter and
returns an Object object represent-
ing the item.

Use the FindNext method to find
the next item that meets the crite-
ria established for the Find method.
You should cast the returned item
to the appropriate type. Filter can
be a Jet query or a DASL query with
the @SQL= prefix. If you use
ci_phrasematch or ci_startswith in
the filter for the Find method,
Outlook will raise an error.

Items.Restrict Filters a given set of items based on
the Filter parameter and returns
another Items collection.

Filter can be a Jet query or a DASL
query with the @SQL= prefix.

Search.GetTable Returns a Table object containing
rows determined by the Filter
parameter passed to Application.
AdvancedSearch.

You cannot filter the Table object
returned by Search.GetTable by
calling Table.Restrict.

Table.FindRow Searches for the first row in the
Table object that satisfies the speci-
fied filter and returns a Row object
representing the item.

Use the FindNextRow method to
find the next row that meets the
criteria established for the FindRow
method. Filter can be a Jet query or
a DASL query with the @SQL= pre-
fix. If you use ci_phrasematch or
ci_startswith in the filter for the
FindRow method, Outlook will raise
an error.

Table.Restrict Filters rows in the given table based
on a specified filter and returns
another Table object.

Filter can be a Jet query or a DASL
query with the @SQL= prefix.

View.Filter Sets a view’s filter without changing
the view’s XML value. Setting the Fil-
ter parameter for a View object only
changes the view in the user inter-
face and does not result in a filtered
Items collection.

Filter must be a DASL query with-
out the @SQL= prefix.

View.XML The XML property gets or sets the
XML for a view. Modifying the <Fil-
ter> node changes the view’s filter.
Setting the XML for a view only
changes the view in the UI and
does not result in a filtered Items
collection.

View.XML is no longer recom-
mended. Use the Filter property of
the View object instead of modify-
ing the <Filter> node in View.XML.

Table 11-11 Search Entry Points

Entry point Action Comments

364 Part III Working with Outlook Data
Search Considerations
So, you know your solution requires search, but you don’t know which type of search will
work best for your particular scenario. The following discussion provides some guidelines for
programmatic search in Outlook. Not every scenario is covered here, but you should be able
to save some time by reading this section with your specific scenario in mind.

Performance

The following guidelines are designed to help you decide how to code your search to achieve
the best possible performance. In part, the performance decision you make depends on
whether your search operates against Microsoft Exchange Server using online mode,
Exchange Server using cached mode, or a Personal Folders File (.pst) without Exchange. Mak-
ing your search operations perform as fast as possible is important for customer acceptance of
your solution and for the performance of Outlook in general. Consider all of the following
guidelines when you implement search for your solution.

If you need a persistent and long-lived aggregation of contents from multiple folders in a sin-
gle store, consider using the AdvancedSearch method. The AdvancedSearch method requires the
store to support search folders, which can degrade store performance, especially as the num-
ber of search folders grows. If the AdvancedSearch method is called against an Exchange Server
store, there are additional performance considerations. If you issue repeated restrictions using
the AdvancedSearch method of the Application object and restrict on different properties in the
restriction, the performance of Exchange Server could be affected. When you call the
AdvancedSearch method (regardless of whether you call Search.Save), a hidden search folder is
created on Exchange Server. If you find that Exchange Server performance suffers due to the
number of restrictions you issue against one or more folders, you should consider using the
Restrict method for the Table object instead of the AdvancedSearch method. For additional
details on performance degradation on Exchange Server, see the Microsoft Knowledge Base
article at http://support.microsoft.com/kb/216076.

If you only need contents from a single folder (excluding a folder that contains appointment
items), then the Restrict method or the FindRow method on the Table object should be the
default choice. The AdvancedSearch method introduces unnecessary overhead. The Restrict
method typically incurs one remote procedure call (RPC) each time the Restrict method is
called. Another approach is to use the Find and FindNext methods on the Items collection or
the FindRow and FindNextRow methods on the Table object. The find methods are appropriate
when you have sorted items or rows and then want to seek rows within the Table object.

In general, you should prefer the Table object over the Items collection except for the case
when you need to obtain recurring appointments. For cached Exchange mode and Post Office
Protocol 3 (POP3) or Internet Message Access Protocol (IMAP) accounts using a Personal
Folders File (.pst), using the Table object is almost an order of magnitude faster than using the
Items collection without calling the SetColumns method. The improved performance of the

Chapter 11 Searching Outlook Data 365
Table object is especially noticeable when you enumerate or filter folders that contain a large
number of items (more than 1,000). If your scenario requires that you use the Items collection,
use the SetColumns method to improve performance. For details on the use of the Items collec-
tion and the Table object, see Chapter 6, “Accessing Outlook Data.”

If you need recurring appointments for a Calendar folder, use the Items collection and set the
IncludeRecurrences property to True. For a Calendar folder, the Table object only returns rows
that represent the appointment series for recurring appointments. If you need to apply an
additional restriction to the returned Items collection in this case, use the Restrict method of
the Items collection to return a subset of recurring appointments. For complete details, see the
section “Use IncludeRecurrences to Expand Recurring Appointments” in Chapter 6.

If the ExchangeConnectionMode property indicates that the user is operating in online
Exchange mode, the Restrict method should generally be considered a relatively expensive
operation for the store. Search folders with restrictions can basically be considered a special
case of the Restrict method, although the longer life of a search folder does cut the perfor-
mance cost to some degree. In many cases, the Restrict method can be changed to the FindRow
and FindNextRow methods, possibly combined with client-side restriction evaluation. The
most common case is when you have a restriction that narrows the range of a sortable column
(for example, find all mail received in the past seven days). By sorting on the “key” of the
restriction, you can use the FindRow method to navigate to the first matching row and then
query rows until finding a nonmatching row. This approach is less cost-effective, though, if
the restricted set of rows are in multiple noncontiguous regions such that each call to the
FindNextRow method could potentially result in its own RPC, whereas the Restrict method
ensures that the matching rows are grouped together.

If the store is indexed (the IsInstantSearchEnabled property on the Store object returns True)
and the property you are searching is a string property and exists in the index, then use
ci_startswith or ci_phrasematch in a DASL query for the Restrict method on the Table object.

If you only want to display the search results in an Explorer window, choose an AQS query
and use the Search method on the Explorer object. You cannot programmatically obtain the
results from an AQS search.

Read-Only vs. Read/Write

If you need only to read information from a search, the Table object is the preferred method of
obtaining search results subject to the performance considerations discussed earlier. If you
need to span multiple folders, call the AdvancedSearch method and use the GetTable method
on the Search object.

If you need to perform write operations on the results of a search, you have a couple options:

■ Use the Table object for the search, ensure that the EntryID value is present in the Columns
collection, and use the GetItemFromID method of the Namespace object to obtain a full

366 Part III Working with Outlook Data
item. You can then perform read/write operations on the full item. Because the table’s
Columns collection can also return MessageClass, you can cast the item to the appropriate
type based on MessageClass.

■ Use the Items collection for the search and enumerate the items using a foreach construct.
You can perform read/write operations on the item. Remember that the Items collection
can contain items of different types. Use the OutlookItem helper class discussed in Chap-
ter 6 for read/write operations on common properties, or perform a cast to return the
correct type. Once you have an item, make appropriate changes and then save the item.

Searching Subfolders

If you need to search in multiple folders, you should consider the GetTable method of the
Search object. The AdvancedSearch method of the Application object returns a Search object.
The scope for the search can span multiple folders and their subfolders in a given store. The
scope for AdvancedSearch cannot span multiple stores. Coding Search.GetTable is a little more
complicated than writing basic Table object code, simply because you must hook up event
handlers for the AdvancedSearchComplete event on the Application object. See Chapter 10 for
more information on the Search object.

Windows Desktop Search

Another factor that affects performance is whether Windows Desktop Search is installed and
enabled for a given Store object. For Microsoft Windows Vista, Windows Desktop Search is an
integral component of the operating system. For Microsoft Windows XP, Windows Desktop
Search must be downloaded and installed as a separate component. Outlook will prompt the
user to install Windows Desktop Search if it is not installed. Use the IsInstantSearchEnabled
property of the Store object to determine if Instant Search is installed and enabled.

Important There is no way to determine programmatically that indexing is complete for a
given store. In a first-run scenario when it can take several hours for indexing to complete,
this can present a problem for content indexer searches. IsInstantSearchEnabled will return
True even when indexing has not completed for a given folder or store.

Your code should always check the IsInstantSearchEnabled property of the Store object. This
property will return False if Windows Desktop Search is not installed on Windows XP. It will
also return False if the user or group policy has disabled Instant Search on a given Store. If
IsInstantSearchEnabled returns False, you typically would create a like DASL restriction for
string properties. If IsInstantSearchEnabled returns True, you can create a ci_startswith or
ci_phrasematch DASL restriction for string properties. If you use a content indexer restriction
and IsInstantSearchEnabled is False, Outlook will raise an error.

Chapter 11 Searching Outlook Data 367
Summary
This chapter covered all the programmatic query languages for Outlook 2007: Jet, DASL,
and AQS. The use of a particular query language depends on your scenario. For most oper-
ations, DASL queries are performant and additionally can utilize the Instant Search feature
of Outlook 2007. Programmatic search and filtering are greatly improved in this version of
Outlook, and you will be able to create some innovative solutions using these new search
entry points in the Outlook object model.

Part IV
Providing a User Interface for Your
Solution

In this part:
Chapter 12: Introducing the Outlook User Interface 371

Chapter 13: Creating Form Regions . 391

Chapter 14: Form Region Controls. 435

Chapter 15: Extending the Ribbon. 453

Chapter 16: Completing Your User Interface . 471

Chapter 12

Introducing the Outlook User
Interface

The majority of Outlook integrations require some customization of the Microsoft Office
Outlook 2007 user interface (UI). Because it is composed of different windows, panes, and
form regions, the Outlook UI presents a complex UI model to the developer. This chapter
provides an introduction to the various components of the Outlook UI and helps you to get
acquainted with the terminology used by the object model to describe these various inter-
face components. This chapter also drills down into some of these elements to explain how
to work with them programmatically.

Decoding the User Interface
The Outlook UI can be daunting if you aren’t used to the terminology used in the object
model to reference the components of the UI. Outlook primarily consists of windows, panes,
and forms. There are two different window types in Outlook—Explorer windows and Inspec-
tor windows—and each of these windows contains panes and forms.

An Explorer window is typically the first window that Outlook displays when launched.
The Explorer window contains folder navigation components, the contents of the folder,
and other elements in several panes. The standard Explorer window features four panes:
the Navigation Pane, a View Pane, the Reading Pane, and the To-Do Bar. Users can also open
multiple Explorer windows at the same time to provide simultaneous views of the contents
of multiple folders, as when opening their calendar in one window while looking at their
Inbox in another.

When a user opens an item from a folder or composes a new item, Outlook displays an
Inspector window. Each Inspector window contains a form or forms associated with the item,
such as the built-in standard forms, and the form contains controls associated with the item.
Custom forms can also contain a custom form or form regions. These forms control which
fields are displayed on the form and how they are laid out for the user to work with. With cus-
tom task panes, the Inspector window can also include one or more custom panes that dis-
play information related to the item open in the window. The Inspector windows also feature
a Ribbon element across the top of the window, which provides an easier way to find and use
commands.
371

372 Part IV Providing a User Interface for Your Solution

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The Explorer Window (The Explorer Object)
The Explorer window is where most Outlook users spend a majority of their time inside
Outlook. Figure 12-1 shows the major components of the Explorer window viewed from the
platform perspective. This window is represented by the Explorer object and the Explorers
collection in the object model.

Figure 12-1 Components of the Outlook Explorer window user interface.

Each Explorer window is made up of several components, including the following:

■ Command bars Command bars include the menu bar, standard and advanced tool-
bars, and any custom toolbars added by add-ins. These toolbars typically are docked at
the top of the Explorer window, but can be docked to any edge of the window and can
also float above the window. Command bars can be customized by adding new controls
to an existing command bar, or creating a custom toolbar for new commands. Com-
mand bars support different types of controls, including buttons, drop-down boxes, and
text boxes.

■ The Navigation Pane The Navigation Pane allows the user to select different modules
in the Outlook interface, such as Mail or Calendar. Additionally, the Navigation Pane dis-
plays a list of folders for each module. Depending on the module, folders are displayed
either as a tree view (Mail and Folder List modules) or as groups of folders (Contacts,
Calendar, Tasks, Journal, and Shortcut modules). The object model includes support for

Navigation Pane Folder Contents/View Reading Pane To-Do Bar

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 12 Introducing the Outlook User Interface 373
switching modules, controlling which modules are displayed, and modifying the group-
ing of folders in modules that have folder groups.

■ Folder view The folder view displays the contents of the currently selected folder, sub-
ject to any applied filter or restriction. Outlook includes several different view types,
including Table, Timeline, Card, Business Card, Day/Week/Month, and Icon views. The
layout of the folder view can be controlled using the object model to define which view
type is used and, for some view types, which fields are displayed. Folder views can also
be replaced by folder home pages, which are discussed later.

■ Reading Pane The Reading Pane displays a read-only preview of the currently selected
item or attachment. Outlook 2007 provides the ability to customize the look of the pre-
view pane for both items and attachments. You can also use a form region to extend or
replace the look of the item in the Reading Pane, or a custom preview handler to control
the way an attachment is previewed in the Reading Pane.

■ To-Do Bar The To-Do Bar provides a quick summary of upcoming appointments and
tasks based on the data stored in the mailbox. Although object model support for cus-
tomizing the look of the To-Do Bar is limited, you can add items to the calendar or task
list and have them appear in the To-Do Bar.

■ Custom task panes Custom task panes provide you with an opportunity to add a new
pane to the Outlook Explorer window. A custom task pane can be docked on any edge
of the Explorer or Inspector window or can float above the window. Each custom task
pane hosts an ActiveX or WinForm user control, which allows you complete flexibility to
design the task pane for your solution.

■ Context menus The Explorer window also features a number of context menus that
can be customized, including context menus from items, folders, stores, views, and
shortcuts. Customizations for context menus are implemented in a way similar to that of
command bars, although the changes must be applied to each context menu just before
it is displayed to the user.

Programming the Explorer Object
Instances of the Explorer object cannot be created directly. Instead, you need to use the
Explorers collection to access existing instances or to create a new instance of the object. The
Explorers collection is available as a property of the Outlook Application object.

The Explorers Collection

The Explorers collection provides a way to enumerate the active Explorer instances and to cre-
ate a new instance of the Explorer object. The collection also provides an event that notifies
your add-in or solution when a new Explorer instance has been created.

374 Part IV Providing a User Interface for Your Solution
Creating a New Explorer Window

Creating a new Explorer window first requires that you obtain a reference to a Folder object
that represents the first folder displayed in the Explorer window. You can also customize the
appearance of the Explorer object by setting the optional second argument on the Add
method. After creating a new Explorer object, you need to call the Display method to show the
window to the user.

private void CreateExplorerWindow()
{
 // Get a folder to display in the Explorer
 Outlook.Folder inbox = Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox) as Outlook.Folder;

 // Create a new Explorer with this folder
 Outlook.Explorer inboxExplorer = Application.Explorers.Add(inbox,
 Outlook.OlFolderDisplayMode.olFolderDisplayNormal);
 inboxExplorer.Display();
}

In this example, the code creates a standard Explorer window. However, you can also use
OlFolderDisplayMode.olFolderNoNavigation to disable the Navigation Pane for that Explorer
instance. If you create an Explorer window using this flag, the Navigation Pane cannot be
enabled on that Explorer window. This is different than using the Explorer.ShowPane method
to turn off the Navigation Pane after the Explorer window has been created, which only hides
the Navigation Pane.

Accessing the Active Explorer

You can use the Explorers collection to enumerate and add Explorer windows, but there is a
shortcut to the active Explorer window on the Application object. You can use the ActiveExplorer
function to return an instance of the Explorer object for the last used Explorer window. If
there are no Explorer windows, this method returns null (Nothing in Microsoft Visual
Basic).

public void ShowActiveExplorer()
{
 Outlook.Explorer explorer = Application.ActiveExplorer();
 MessageBox.Show(string.Format("The active explorer window is '{0}'.",
 explorer.Caption));
}

Current Folder and Folder Change Events

In many cases you need to determine or change the current folder displayed by the Explorer
window. You can use the CurrentFolder property of an Explorer object to return the active
folder in the window. The following example shows the name and path of the currently
selected folder in a message box.

Chapter 12 Introducing the Outlook User Interface 375
public void DisplayActiveFolder()
{
 Outlook.Explorer exp = Application.ActiveExplorer();
 Outlook.Folder curFolder = exp.CurrentFolder as Outlook.Folder;

 MessageBox.Show(string.Format("The currently selected folder is '{0}'",
 curFolder.FolderPath));
}

In some situations your application might need to update internal state or otherwise
respond appropriately if the folder is changed in the Explorer object. For example, perhaps
you need to disable a button you added to a toolbar when the folder is not a calendar folder.
The Explorer object provides two events that notify your add-in when the folder is changing:
BeforeFolderSwitch and FolderSwitch.

BeforeFolderSwitch is raised before any folder change has occurred. This event notifies you
which folder the window is about to switch to, and allows your code to cancel that switch if
necessary through its parameters. FolderSwitch occurs after the folder has already changed,
providing an indication that the CurrentFolder property contains a different value than before
the event was raised.

The following example detects when the current folder has changed and displays a message
box indicating the new folder path:

public Outlook.Explorer explorer;
public void ListenForFolderSwitch()
{
 explorer = Application.ActiveExplorer();
 // Hook up events
 explorer.FolderSwitch +=
 new Outlook.ExplorerEvents_10_FolderSwitchEventHandler(
 explorer_FolderSwitch);
 ((Outlook.ExplorerEvents_10_Event)explorer).Close +=
 new Outlook.ExplorerEvents_10_CloseEventHandler(explorer_Close);
}
void explorer_FolderSwitch()
{
 MessageBox.Show(string.Format("The new folder is '{0}'.",
 explorer.CurrentFolder.FolderPath));
}

void explorer_Close()
{
 // Unhook the event handlers
 explorer.FolderSwitch -=
 new Outlook.ExplorerEvents_10_FolderSwitchEventHandler(
 explorer_FolderSwitch);
 ((Outlook.ExplorerEvents_10_Event)explorer).Close -=
 new Outlook.ExplorerEvents_10_CloseEventHandler(explorer_Close);
}

376 Part IV Providing a User Interface for Your Solution
In this example, you cast the Explorer object to the ExplorerEvents_10_Event interface to hook
up the Close event. The Explorer object has two members named Close, an event and a method.
Because C# will default to using the method, an explicit cast to the event interface is required
to use the Close event. It is important to always listen for the Close event on the Explorer win-
dow and unhook any event handlers from that object. For additional information on Outlook
events and event handlers, see Chapter 8, “Responding to Events.”

Determining the Selection Object in the Explorer Window

The Selection object enables you to enumerate the items that are actively selected in the
Explorer window. Unlike previous versions of Outlook, the Selection object in Outlook 2007
will return the particular instances of a recurring appointment or meeting on the calendar,
instead of the master appointment.

The following example retrieves the Selection object from the active Explorer object and dis-
plays a message box window with the count of items and the subject of the selected items:

public void ShowSelectedItems()
{
 Outlook.Explorer explorer = Application.ActiveExplorer();
 Outlook.Selection selection = explorer.Selection;

 StringBuilder sb = new StringBuilder();
 sb.AppendFormat("There are {0} items selected:\n", selection.Count);
 for (int i = 1; i <= selection.Count; i++)
 {
 OutlookItem selectedItem = new OutlookItem(selection[i]);
 sb.AppendFormat("\t{0}\n", selectedItem.Subject);
 }
 MessageBox.Show(sb.ToString());
}

Note The Selection object only shows items that are actually selected. In some folder views,
group headers can be selected. These group headers are not included in the Selection object,
nor are the items under that group header included.

Working with Panes

You can use the ShowPane method on the Explorer object to dynamically show and hide some
of the panes of the Explorer window. The following example code shows how to turn off the
To-Do Bar in the active Explorer window:

public void HideToDoBar()
{
 Outlook.Explorer explorer = Application.ActiveExplorer();
 if (explorer != null)

Chapter 12 Introducing the Outlook User Interface 377
 {
 explorer.ShowPane(Outlook.OlPane.olToDoBar, false);
 }
}

Note The To-Do Bar visible state is persisted per module. For instance, you can disable the
To-Do Bar in the Mail module, but still have it appear in the Contacts module. This is different
from the other panes, which are persisted globally across all modules.

The Inspector Window (The Inspector Object)
Inspector windows, which are represented by the Inspector object and Inspectors collection,
provide a window to compose new items and read or edit existing items. The term item
window is sometimes used to denote an Inspector window. For simplicity, in this chapter
we use the term Inspector window to denote the window that represents item data to the
user. Inspector windows include the new 2007 Microsoft Office system user interface and
can be customized using custom forms or form regions. Figure 12-2 shows the compo-
nents of the Inspector window.

Figure 12-2 Components of the Outlook Inspector window.

■ Ribbon. Instead of displaying toolbars and menu bars, Inspector windows in Outlook
2007 use the new Ribbon user interface. For more information on the Ribbon and cus-
tomizing the appearance of the Ribbon, see Chapter 15, “Extending the Ribbon.”

Office Menu Quick Access Toolbar Form

Ribbon

Adjoining Regions

378 Part IV Providing a User Interface for Your Solution
■ Item form. The Inspector window is the primary location for Outlook custom forms and
form regions. Using form regions, you can redesign the complete look of the item form,
add new fields, and change the layout to match the requirements of your solution. For
more information about form regions, see Chapter 13, “Creating Form Regions.”

■ Custom task panes. Custom task panes on the Inspector window provide you with an
opportunity to add a new pane to the Outlook item window. A custom task pane can be
docked on any edge of the Inspector window or can float above the window. Each cus-
tom task pane hosts an ActiveX or WinForm user control, which allows you complete
flexibility to design the task pane for your solution.

Programming the Inspectors Collection and
Inspector Object

Similar to the Explorer object, you cannot directly create a new instance of the Inspector object.
Instead, you need to use the Inspectors collection to either use an existing Inspector window or
create a new one. You can also quickly access an Inspector window from any of the Outlook
item objects by using the GetInspector property. The Inspectors collection is available via the
Inspectors property on the Application object.

The Inspectors Collection

The Inspectors collection provides a way to enumerate the existing instances of Inspector
objects and to create new instances of the Inspector object. The collection also provides an
event, NewInspector, to notify your add-in when a new Inspector window has been created.

Creating a New Inspector Window

There are a couple of different ways to create a new Inspector window for a particular item.
You can use the Add method of the Inspectors object, or you can access the GetInspector prop-
erty of the item to return an instance of the Inspector object. In both cases, if an Inspector object
already exists for the particular item, a new window will not be created.

This example looks through the Inbox default folder for the first mail item, then displays that
item in an Inspector window. If no mail item is found, no window would be displayed.

public void ShowInspector()
{
 Outlook.Folder inbox = Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox) as Outlook.Folder;

 // Find a mail item in the Inbox
 Outlook.MailItem mail = null;
 for (int i = 1; i <= inbox.Items.Count; i++)
 {
 mail = inbox.Items[i] as Outlook.MailItem;

Chapter 12 Introducing the Outlook User Interface 379
 if (mail != null) break;
 }
 if (mail != null)
 {
 Outlook.Inspector myInspector = Application.Inspectors.Add(mail);
 myInspector.Display(false);
 }
}

The parameter on the Display method can be used to show the Inspector window modally. If
you call Display with the parameter equal to False, the Inspector window is displayed non-
modally. If you call Display with the parameter equal to True, the Inspector is displayed mod-
ally. When an Inspector is displayed modally, the user must close the Inspector window
before he or she can use other parts of Outlook. It is not recommended that you display an
Inspector window modally because this might adversely affect certain aspects of the object
model or other solutions that integrate with Outlook.

Accessing the Active Inspector

Although you can use the Inspectors collection to enumerate all Inspector objects and look for
a particular window, it is often easier to use the ActiveInspector method on the Application
object when you know the window you are looking for is the active Inspector window. The
active Inspector window is the currently focused Inspector window or the last focused Inspec-
tor window if no other Inspector window has the focus. Because it is also possible that no
Inspector window is displayed, your code should determine if the Inspector object returned by
the ActiveInspector method is null (Nothing in Visual Basic).

public void ShowActiveInspector()
{
 Outlook.Inspector inspector = Application.ActiveInspector();
 if (inspector != null)
 {
 MessageBox.Show(string.Format("The active inspector is '{0}'.",
 inspector.Caption));
 }
}

Accessing the CurrentItem Property

There are several scenarios where it is useful and necessary to find out which item is currently
open in an Inspector window. For instance, when a Ribbon button is pressed, the callback
to your add-in will provide the context of the call by providing a window object. If you need
to perform an action on the item, it is important to know which item should be used. To this
end, the Inspector object provides a CurrentItem property, which always returns the item cur-
rently loaded in the Inspector. This property is read-only in the sense that you cannot assign
an item object to this property. However, you can get or set properties on the item returned
by the CurrentItem property and save changes if required by your scenario. The following

380 Part IV Providing a User Interface for Your Solution
code sample retrieves the current item from the active Inspector window and then displays a
message box with the subject of the current message. This example uses the OutlookItem class
so that the code doesn’t need to determine what type of item is loaded in the Inspector.

public void GetInspectorItem()
{
 Outlook.Inspector inspector = Application.ActiveInspector();
 if (inspector != null)
 {
 OutlookItem item = new OutlookItem(inspector.CurrentItem);
 MessageBox.Show(string.Format(
 "The current item's subject is '{0}'.",
 item.Subject));
 }
}

Working with the Navigation Pane
With Outlook 2007, you can now control some aspects of the Navigation Pane from the object
model. Although you can’t add a new module to the Navigation Pane, you can now customize
the way folders are arranged to better organize your solution data. You can also use the events
provided by the Navigation Pane objects to better determine the state of the Explorer window
and reflect this state in your own custom UI elements.

The main entry point for working with the Navigation Pane is the NavigationPane property on
the Explorer object, which returns a NavigationPane object. This object can be used to deter-
mine the current module, switch modules, and change which modules are displayed.

Making the Most of Navigation Modules

A lot of the Explorer UI changes depend on the actively selected module. For instance, toolbar
buttons are added and removed when a user switches between the Mail and Calendar mod-
ules. Using the Navigation Pane, you can use a similar design to display only the UI elements
that make sense in the current module. For example, you can determine what module is cur-
rently active by looking at the CurrentModule property on the NavigationPane object.

public void ShowTheCurrentModule()
{
 Outlook.Explorer explorer = Application.ActiveExplorer();
 Outlook.NavigationPane navPane = explorer.NavigationPane;
 Outlook.NavigationModule curModule = navPane.CurrentModule;
 Outlook.OlNavigationModuleType currentModule = curModule.NavigationModuleType;

 switch (currentModule)
 {
 case Outlook.OlNavigationModuleType.olModuleCalendar:
 MessageBox.Show("This is the calendar module.");
 break;
 case Outlook.OlNavigationModuleType.olModuleMail:

Chapter 12 Introducing the Outlook User Interface 381
 MessageBox.Show("This is the mail module.");
 break;
 default:
 MessageBox.Show(string.Format("This is the '{0}' module.",
 curModule.Name));
 break;
 }
}

You can also listen for the ModuleSwitch event on the NavigationPane object, which will be raised
when the current module has changed. This event can then be used to remove UI elements that
no longer are valid and add any UI elements that apply to the newly selected module.

public Outlook.Explorer explorer;
public Outlook.NavigationPane navigationPane;

public void ListenForChanges()
{
 explorer = Application.ActiveExplorer();
 navigationPane = explorer.NavigationPane;

 ((Outlook.ExplorerEvents_10_Event)explorer).Close +=
 new Outlook.ExplorerEvents_10_CloseEventHandler(explorer_Close);
 navigationPane.ModuleSwitch +=
 new Outlook.NavigationPaneEvents_12_ModuleSwitchEventHandler(
 navigationPane_ModuleSwitch);
}

void navigationPane_ModuleSwitch(Outlook.NavigationModule CurrentModule)
{
 MessageBox.Show(string.Format("Switched to module: {0}", CurrentModule.Name));
}

void explorer_Close()
{
 navigationPane.ModuleSwitch -=
 new Outlook.NavigationPaneEvents_12_ModuleSwitchEventHandler(
 navigationPane_ModuleSwitch);
 ((Outlook.ExplorerEvents_10_Event)explorer).Close -=
 new Outlook.ExplorerEvents_10_CloseEventHandler(explorer_Close);
}

Additionally, you can control the display and position of the eight Navigation Pane modules in
Outlook. For example, if you wanted to hide the Contact module as part of your solution, the
following code would hide the module from the Navigation Pane:

public void HideContactsModule()
{
 Outlook.Explorer explorer = Application.ActiveExplorer();
 Outlook.NavigationPane navPane = explorer.NavigationPane;
 navPane.Modules.GetNavigationModule(
 Outlook.OlNavigationModuleType.olModuleContacts).Visible = false;
}

382 Part IV Providing a User Interface for Your Solution
Note Hiding a module does not remove access to that module or otherwise prevent the
user from accessing information in folders of that module type. It merely hides the module
from the Navigation Pane. A user could later turn the module back on again using the Navi-
gation Pane options.

Adding Structure with Navigation Groups

One of the new features present in the Navigation Pane is the ability to create folder groups for
the Calendar, Contacts, Tasks, Notes, and Journal modules. These help to logically organize
folders into functional groups. By default, Outlook creates groups for your folders (for exam-
ple, My Calendars), other people’s folders (for example, People’s Calendars), and miscella-
neous other folders (for example, Other Calendars), as shown in Figure 12-3.

Figure 12-3 An example of the Navigation Pane grouping with the three default group types.

Leveraging this folder grouping mechanism for your solution can help the user logically iden-
tify with extra folders that are created by your solution. For example, if you were to connect to
a number of shared calendars, it might be useful to group these new calendar folders together
under a single group heading.

Creating a Navigation Group and Adding Folders

To organize folders together into a navigation folders group, you need to create a new group
on the Navigation module that represents the module in Outlook in which the folder will be
located. For instance, if you are creating contact folders, you need to use the ContactModule
object and the NavigationGroups property on that object. After you have created the group, you

Chapter 12 Introducing the Outlook User Interface 383
can add folders to it by calling the Add method on the NavigationGroup object. When a folder
is added to a new group, is it automatically removed from any previous group.

The following example creates a new contact folder as a child folder of the default Contacts
folder, and then creates a new group in the Contacts module and adds the newly created
folder to that group:

public void CreateNewContactGroup()
{
 // Create a folder
 Outlook.Folder contactFolder =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderContacts)
 as Outlook.Folder;
 Outlook.Folder myContactFolder =
 contactFolder.Folders.Add("Solution Folder 1",
 Outlook.OlDefaultFolders.olFolderContacts)
 as Outlook.Folder;

 Outlook.Explorer explorer = Application.ActiveExplorer();

 // Create a new group
 Outlook.ContactsModule contacts =
 explorer.NavigationPane.Modules.GetNavigationModule(
 Outlook.OlNavigationModuleType.olModuleContacts)
 as Outlook.ContactsModule;
 Outlook.NavigationGroup group =
 contacts.NavigationGroups.Create("Solution Contacts");

 // Add the folder to the group
 group.NavigationFolders.Add(myContactFolder);
}

Deleting a Navigation Group

Before you can delete a navigation group, you need to move or delete all of the folders from the
group because only empty groups can be deleted.

public void RemoveContactGroup()
{
 Outlook.Explorer explorer = Application.ActiveExplorer();

 // Locate a group
 Outlook.ContactsModule contacts =
 explorer.NavigationPane.Modules.GetNavigationModule(
 Outlook.OlNavigationModuleType.olModuleContacts)
 as Outlook.ContactsModule;
 Outlook.NavigationGroup group =
 contacts.NavigationGroups["Solution Contacts"];
 Outlook.NavigationGroup defaultGroup =
 contacts.NavigationGroups.GetDefaultNavigationGroup(
 Outlook.OlGroupType.olOtherFoldersGroup);

384 Part IV Providing a User Interface for Your Solution
 // Move the folders to a default group
 foreach (Outlook.NavigationFolder navfolder
 in group.NavigationFolders)
 {
 defaultGroup.NavigationFolders.Add(navfolder.Folder);
 }

 // Delete the group
 contacts.NavigationGroups.Delete(group);
}

Removing Folders

Due to the way the Navigation Pane works, only certain types of folders are removable. All
folders that reside in a connected store and are of the same folder type as the module are dis-
played in a group, and therefore cannot be removed. You can determine if a folder is remov-
able by checking the IsRemovable property on the NavigationFolder object. If this property is
True, the folder can be removed from the Navigation Pane without being deleted (for example,
a shared Microsoft Exchange folder). Otherwise the folder cannot be removed from the Navi-
gation Pane except by deleting the folder.

The following example code locates the folder group created in the previous section and then
either removes or deletes any folders in that group:

public void EmptyContactGroup()
{
 Outlook.Explorer explorer = Application.ActiveExplorer();

 // Create a new group
 Outlook.ContactsModule contacts =
 explorer.NavigationPane.Modules.GetNavigationModule(
 Outlook.OlNavigationModuleType.olModuleContacts)
 as Outlook.ContactsModule;
 Outlook.NavigationGroup group =
 contacts.NavigationGroups["Solution Contacts"];
 Outlook.NavigationGroup defaultGroup =
 contacts.NavigationGroups.GetDefaultNavigationGroup(
 Outlook.OlGroupType.olOtherFoldersGroup);

 // Move the folders to a default group
 foreach (Outlook.NavigationFolder navfolder
 in group.NavigationFolders)
 {
 if (navfolder.IsRemovable)
 {
 group.NavigationFolders.Remove(navfolder);
 }
 else
 {

Chapter 12 Introducing the Outlook User Interface 385
 navfolder.Folder.Delete();
 }
 }
}

Folder Views
The folder view, which displays the contents of a folder, can be customized using one of the
default view types. Outlook 2007 includes six view types: Table, Timeline, Card, Business
Card, Day/Week/Month, and Icon. Some of these views can be further customized to control
which fields are displayed and the formatting of the text in the view.

For more details about modifying a view programmatically, see Chapter 10, “Organizing
Outlook Data.”

The Reading Pane
The Reading Pane provides a read-only area in an Explorer window where the contents of an
item can be displayed. This pane allows users to get more work done inside the Explorer object
without opening individual Inspector windows for reading the contents of items (primarily
mail items, although the Reading Pane is functional for all item types).

The Reading Pane can be shown or hidden using the ShowPane method on the Explorer object.
For more information about using ShowPane in your solution, refer to the “Working with
Panes” section earlier in this chapter.

Customizing the Reading Pane

The Reading Pane offers two approaches for customization: one approach for customizing the
look of an item and another for customizing the look of a previewed attachment.

To customize the look of an item, you can use a form region to either extend the standard
reading pane representation of the item or replace this representation with your own. For
more information about form regions and the Reading Pane, see Chapter 13.

When Outlook previews an attachment in the Reading Pane or the Inspector window, it looks
for a registered preview handler for the file type of the attachment. If a preview handler is regis-
tered, the preview handler will be displayed in the Reading Pane, providing an in-line preview of
the attachment. Preview handler extensibility is beyond the scope of this chapter. More informa-
tion about writing a preview handler is available on MSDN by searching for IPreviewHandler.

386 Part IV Providing a User Interface for Your Solution
The To-Do Bar
The new To-Do Bar integrates tasks, e-mails flagged for follow-up, upcoming appointments,
and calendar information in one convenient place in the Outlook Explorer window. The To-Do
Bar provides users with a consolidated view of their priorities for the day so they do not have
to waste time checking multiple locations for this information. The object model provides
ways to add new items to the task list or the calendar display by flagging an item as a task or
by creating new appointments on the default calendar.

To hide or show the To-Do Bar, see the “Working with Panes” section earlier in this chapter.
Information on how to add items to the To-Do Bar and enumerate all the items that appear in
the To-Do Bar is available in Chapter 6, “Accessing Outlook Data.”

Command Bars
Outlook 2007 continues to use command bars in the Explorer window, whereas the Inspec-
tor window now displays the Ribbon instead of toolbars and menus. Both the command bars
and Ribbon are customizable through the object model. Detailed descriptions of both com-
mand bars and the Ribbon are provided in Chapter 15.

Context Menus
Outlook 2007 also includes a way to customize various context menus displayed in the
Explorer and Inspector windows. The mechanism to customize these menus relies on appli-
cation-level events that fire each time a context menu will be displayed. Because Outlook
builds each context menu dynamically when it is about to be displayed, a solution that cus-
tomizes the menu must add the customizations each time the menu is to be displayed.

Outlook provides individual events on the Application object to enable customizing context
menus on attachments, folders, items, shortcuts, stores, and views (see Figure 12-4). Each of
these menus can be customized by adding new command bar controls to the menu or by hid-
ing existing items. These customizations are not persisted beyond the scope of the event.

When you customize context menus, there are two key events you need to handle. The first
is the event for the context menu you are customizing; for instance, if you want to customize
the item context menu, you would need to handle the ItemContextMenuDisplay event on the
Application object. The second event is the ContextMenuClose event on the Application
object, which is used to clean up state information persisted previously.

When you customize the context menu, the customizations have a lifetime of only that
instance of the context menu. After the menu is closed, you need to clean up any state you
have persisted for the menu actions, which is where the ContextMenuClose event comes into
play. This event is always fired after the user has made a selection in the menu and the menu

Chapter 12 Introducing the Outlook User Interface 387
is closed. This is your opportunity to clean up state that you persisted during the context
menu display event.

Figure 12-4 A view of the Outlook Explorer window and the context menus that can be customized.

What follows is a simple customization of a context menu. For a more thorough look into how
to work with these events and richly customize the context menu, refer to Chapter 8. This
sample is split into four parts for simplicity. The first part is used to define the events we
want to listen for on the Application object. A good place to put this code is in the initialize
code for your add-in (either the InitializeAddin method, if you are using the add-in template
that accompanies this book, or the ThisAddIn_Startup method if you are using Visual Studio
2005 Tools for the 2007 Microsoft Office System [VSTO]). In this case, you add event han-
dlers to the ItemContextMenuDisplay and ContextMenuClose events. Remember to discon-
nect these event handlers when the add-in is disconnected or shut down; otherwise your
customizations might continue to appear, or Outlook could crash.

public void HookUpEvents()
{
 Application.ItemContextMenuDisplay +=
 new Outlook.ApplicationEvents_11_ItemContextMenuDisplayEventHandler(

Item/Selection Menu

View Menu

Attachment MenuFolder/Store Menu

388 Part IV Providing a User Interface for Your Solution
 Application_ItemContextMenuDisplay);
 Application.ContextMenuClose += new
 Outlook.ApplicationEvents_11_ContextMenuCloseEventHandler(
 Application_ContextMenuClose);
}

Next, you write the code for these two event handlers. You start with the ItemContextMenuDisplay
event handler. In this block of code, there are three instance variables defined: lastSelection,
lastItem, and button. These maintain the state information about what item is selected and pro-
vide the reference to the CommandBarButton object you add to the context menu. The actual
event handler checks to see if only one item is selected, and to make sure the item selected is
a MailItem. If these conditions are met, the code adds a new CommandBarButton object to the
context menu, sets the caption and visibility, and then adds a new event handler for the Click
event on the button object.

private Outlook.Selection lastSelection;
private OutlookItem lastItem;
private Office.CommandBarButton button;
void Application_ItemContextMenuDisplay(
 Office.CommandBar CommandBar, Outlook.Selection Selection)
{
 lastSelection = Selection;
 if (Selection.Count == 1)
 {
 lastItem = new OutlookItem(Selection[1]);
 if (lastItem.Class == Microsoft.Office.Interop.Outlook.OlObjectClass.olMail)
 {
 button = (Office.CommandBarButton)CommandBar.Controls.Add(
 Office.MsoControlType.msoControlButton,
 Type.Missing, Type.Missing, Type.Missing, Type.Missing);
 button.Caption = "Display Message Class";
 button.Visible = true;
 button.Click +=
 new Microsoft.Office.Core._CommandBarButtonEvents_ClickEventHandler(
 button_Click);
 }
 }
}

The second event you listen for on the Application object is the ContextMenuClose event. You
can use this event to clean up the variables that are maintaining the state information for this
context menu. In this example, the code sets lastSelection and lastItem to null, and then
removes the event handler on the button object before setting it to null.

void Application_ContextMenuClose(Outlook.OlContextMenu ContextMenu)
{
 lastSelection = null;
 lastItem = null;

 if (button != null)
 button.Click -=
 new Microsoft.Office.Core._CommandBarButtonEvents_ClickEventHandler(

Chapter 12 Introducing the Outlook User Interface 389
 button_Click);
 button = null;
}

The fourth part of this example is the code that executes when the user clicks the button we
added to the context menu. In this case, the code displays a message box that displays the
message class of the item selected.

void button_Click(Office.CommandBarButton Ctrl, ref bool CancelDefault)
{
 if (lastItem != null)
 {
 MessageBox.Show("The item's message class is " + lastItem.MessageClass);
 }
}

Because the ContextMenuClose event fires after the Click event on the CommandBarButton
object, you do not need to clean up any of the state variables that were created during the
ItemContextMenuDisplay event. These variables will be cleaned up immediately afterward
when the ContextMenuClose event fires.

Performance Considerations
Being able to customize context menus is a very powerful addition to the object model
in Outlook 2007. However, with this ability you need to be careful that you are not using
too many cycles during the context menu display events. Remember that the code in
these events is executed every time the user right-clicks in a location that causes the
menu to appear. You should avoid expensive operations, such as creating large objects,
initializing forms, or pinging remote data connections, as this will cause Outlook to
hang until the operation finishes, and frustrate the user who doesn’t know why Outlook
takes so long to display the context menu.

As a general rule, your add-in should not take more than a few milliseconds of time to
perform the tasks in the display event. With several add-ins customizing the same con-
text menu, even 50 milliseconds per add-in could add up to a noticeable delay in the
context menu appearing for the user.

Folder Home Pages
Folder home pages provide a means to extend views for application folders. Folder home
pages let you set a default view on a folder based on a home page Uniform Resource Locator
(URL) that points to a page on your Web server or locally on the disk. This page can contain
custom script to render a view in the Outlook view pane. Think of a folder home page as a
customizable Outlook Today page for a given folder or a hierarchy of subfolders. Another

390 Part IV Providing a User Interface for Your Solution
example of where folder home pages are used is the RSS Feeds folder, which displays infor-
mation about RSS feeds and provides a mechanism to subscribe to new feeds.

Changes for Outlook 2007
Outlook 2007 has made a change to the way folder home pages work to improve the
security of folder home pages. Folder home pages are available only in the default mail-
box of the running profile. If you attempt to create a folder home page in a store that is
not the default mailbox, the user will still see the standard folder view when selecting the
folder.

This change in behavior can be overridden via policy in an organization. For more infor-
mation on applying this policy, refer to the Office Resource Kit on Office Online.

Additionally, if you have written a custom Messaging Application Programming Interface
(MAPI) store provider and you would like to use folder home pages in your store, you
can set a flag on the provider that indicates it supports secure folder home pages. More
information about this flag is available in the Outlook 2007 Integration APIs.

Here are several important factors to consider when you are considering using a folder home
page in your solution:

■ Folder home page designs should look and behave like Outlook to avoid user confu-
sion. Using the Outlook View Control can help provide a view of data similar to the
view Outlook provides.

■ A folder owner or application designer might elect to display a folder home page, but an
individual user can override this setting and turn off the folder home page.

■ Using an add-in can help you ensure that a folder home page will always appear when a
user navigates to a folder.

■ Folder home page settings are established on a per-mailbox basis, independent of the
Exchange profile on a given machine.

■ Folder home pages can be made available offline as long as the folder home page resides
on a Web server.

Summary
This chapter provides an introduction to some of the UI components of Outlook, but there is
much more detail available in other chapters of the book. Here you learned how to work with
the Explorer and Inspector objects and some of the capabilities of the Outlook platform in cus-
tomizing the user experience. In the chapters to come you will learn more about how to custom-
ize the folder view, how to create form regions that customize the Inspector and Reading Pane
layout, and how to work with custom task panes and other UI elements.

Chapter 13

Creating Form Regions
In this chapter, you’ll find a high-level introduction to the form region design experience and
then a deep dive into creating a custom form solution using form regions in Microsoft Office
Outlook 2007. Form regions provide a custom user interface mechanism that allows you to
extend built-in forms in multiple ways or completely replace a built-in form with your own
custom interface. Through this deep dive, we’ll cover the following:

■ Form region scenarios

■ Designing a form region with Outlook

■ Programming a form region from an add-in

To facilitate our discussion, most of the scenarios and concepts explained in this chapter
revolve around the travel agency sample code available on the book’s companion Web site.
However, the detail level will be sufficient that you will not need the sample code to under-
stand the concepts explained in this chapter.

Introduction to Form Regions
This section provides a high-level overview of Outlook form region components and the dif-
ferences between form regions and custom forms using form pages. For the purposes of this
chapter, we use the following terminology:

■ Custom forms with form pages This refers to custom forms and their associated user
interface (UI) pages designed in the Outlook Forms Designer in Microsoft Outlook 97
through Outlook 2007 that can be published to a forms library such as the Organiza-
tional or Personal Forms Library, a Folder Forms Library, or embedded as a one-off
form.

■ Custom forms with form regions This refers to custom or built-in forms and their
associated UI regions designed in the Outlook 2007 Forms Designer and saved as .ofs
files. A custom form with form regions is made up of individual form regions registered
on the same message class.

■ Custom forms This refers to a collection of form pages or form regions that make up
one whole form. Each item in Outlook has either a standard or custom form associated
with it that Outlook will use to render the display of that item in the Inspector, the Read-
ing Pane, or both.
391

392 Part IV Providing a User Interface for Your Solution
Form Pages Compared with Form Regions

Outlook 2007 provides two different technologies for developing form solutions with Outlook.
Both of these customization techniques use the same Outlook Forms Designer, but form
regions provide many options and abilities that are lacking with form pages. Custom forms
with form pages that are designed for previous versions of Outlook will continue to work;
however, the new Ribbon command UI might change the way custom command bars and
controls appear on these custom forms. For new solutions that support Outlook 2007 and
future versions, custom forms with form regions are the preferred way to customize Outlook
forms. Table 13-1 provides a summary of the top features provided by custom forms and form
regions.

Form Region Types

Form regions can be displayed in four different styles, based on the needs of a solution.
Each type of form region is designed using the same experience and the same process with
the Outlook Forms Designer. The manifest file that defines a form region determines the
way Outlook displays the form region.

Table 13-1 Comparing Custom Forms and Form Regions

Feature/Area Custom forms with form pages Custom forms with form regions
Supported Outlook
versions

Outlook 97 through Outlook 2007 Outlook 2007

Visual appearance No support for Windows theming;
forms look like Microsoft Windows 95

Full support for Windows themes;
forms match Outlook visuals

Form layout Designed using Outlook Forms Designer Designed using Outlook Forms
Designer

Supported controls Standard form controls, ActiveX controls Enhanced form controls, Outlook
controls, ActiveX controls

Reading Pane Standard form is always displayed; if
there is script behind the form, Reading
Pane display is disabled

Adjoining and replacement form
regions can be displayed

Business logic Written in Microsoft Visual Basic Script-
ing Edition (VBScript) using Outlook
script editor

Written as Component Object
Model (COM) add-in in any
language

Deployment Published to a forms library Distributed with an add-in
Localization Separate form version required for each

localized language; difficult to maintain
and deploy

Integrated solution for localizing
form text and optional layout
changes

Chapter 13 Creating Form Regions 393
Adjoining Form Regions

Adjoining form regions are an additive option for an existing standard form or custom form.
Adjoining form regions, as shown in Figure 13-1, are displayed in a special region at the bot-
tom of the Inspector, the Reading Pane, or both, and are shown with a header that enables the
region to be expanded and collapsed. Adjoining form regions enable developers to add addi-
tional fields or related information to the first form page without customizing the entire form
body.

Figure 13-1 An example of an adjoining form region on a mail item.

Separate Form Regions

Separate form regions are another additive option for standard forms or custom forms. Sepa-
rate form regions are displayed as a new form page on a pre-existing form (either custom or
standard), as shown in Figure 13-2. The additional form page appears to be part of the form
and can be selected using an additional button in the Show group on the Ribbon. Several sep-
arate form region pages can be added to a replacement or replace-all form region to build a
multipage form.

394 Part IV Providing a User Interface for Your Solution
Figure 13-2 An example of a separate form region on a task item.

Replacement and Replace-All Form Regions

Replacement and replace-all form regions are a special type of separate form region that
causes default form pages to be removed from an item. A replacement form region will delete
the first page of the form pages and replace it with the form region (see Figure 13-3). A
replace-all form region will delete all the form pages and display only the replace-all form
region and other form regions registered with the item’s message class. To build up a multi-
page custom form with form regions, you combine a replace-all form region with several sep-
arate form regions.

Chapter 13 Creating Form Regions 395
Figure 13-3 An example of a replacement form region on an appointment item.

Standard Form Types

In addition to the types of form regions, there are also several types of forms in Outlook. Each
built-in form type describes one of the standard item types in Outlook. The built-in forms
include Message, Post, Task, Appointment, Journal, and Contacts. Using form regions, any
part of these built-in forms can be replaced and customized, so you should use the base form
type that most closely matches the type of item your form region solution provides. When cre-
ating a new form region, the designer does not provide a base template for that particular item
type.

Selecting the right base form can make it easier for you to design your form because the Field
Chooser will display a list of the most commonly used fields for that item type. However, just
because you started to design a form on a contact item, for example, does not mean that form
will not function on other item types. As long as the fields used on the form are defined on the
item, your form region can be displayed on any item type.

396 Part IV Providing a User Interface for Your Solution
Anatomy of a Form Region Solution

A solution built around form regions includes the following elements:

■ Form region manifest This file is an Extensible Markup Language (XML) file that pro-
vides details that define the form region, including how the form region is loaded, what
type of form region, and the display text for the form region and the controls. See the sec-
tion “Authoring a Form Region Manifest” later in this chapter for details on this manifest
format.

■ Form storage file The storage file is a binary file that describes the layout of the form.
This file can be created and edited using the Outlook Forms Designer.

■ Registry entries Each form region needs one or more registry entries that point to the
form region manifest. Each registry entry defines one message class that will use the
form region. See the section “Registering a Form Region” later in this chapter for more
details.

■ COM add-in (optional) If a form region needs business logic or other custom code
running with the form region, that logic is implemented in a COM add-in. The form
region manifest file indicates the ProgID or name of the add-in that will be called when
the form region is loaded. An add-in can also be used to supply Ribbon customizations
for form region items.

Becoming Familiar with Form Region Design
This section covers the components of forms in Design mode and discusses the parts of an
Outlook form region.

How Is a Form Opened?
Because of security work that went into Microsoft Office Outlook 2003 and Outlook
2007, Outlook no longer supports, by default, loading a form definition from an item.
This question then arises: If the form definition doesn’t travel with the item, how is the
form opened? The answer is that the form is launched by looking for a form that matches
the message class on the item in a few different locations. Each item includes a property
that indicates the message class of the form that was used to compose the item, such as
IPM.Contact. This message class provides an identifier that Outlook compares against
the identifier on a form or form region to determine if the form should be displayed.

Chapter 13 Creating Form Regions 397

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

When Outlook starts to look for a form with the matching message class, it first checks
to see if any form regions are registered for the message class of the item. If a form region
is registered and is a replacement or replace-all form region, Outlook stops the search
and loads the form regions. If no form region is registered or the form regions are adjoin-
ing or separate form regions, Outlook continues to look for a form to load.

If no form region is loaded, Outlook then looks to see if a custom form is published in
the same folder as the item. If no form is found in the folder, Outlook then looks to the
Personal Forms Library and then the Organizational Forms Library to see if a form is
available in that library.

If no form is located using the exact message class on the item, Outlook repeats the
check for the next class in common. For example, if IPM.Note.Myform.ThisForm does not
exist, Outlook tries to open IPM.Note.Myform. If that form definition does not exist,
IPM.Note loads and the user sees a standard message form. A form region can override
this behavior using a special value in the manifest file that tells Outlook that only items
that match the message class exactly should show the form region.

Designing a Form Region

Designing a new form region is very similar to working with a custom form. You can use the
same designer interface that Outlook provides for developing custom forms, although the
behavior of form regions is more advanced than custom forms. This section describes how to
access the Outlook Forms Designer, describes the implications of Design mode, and walks
you through creating a new form region.

Outlook Form Design Mode

The following elements (shown in Figure 13-4) are available when an Outlook form is in
Design mode:

■ Forms Designer window This shows the various pages of the form and the form prop-
erties and actions.

■ Toolbox This allows you to add new controls (such as buttons) to the form.

■ Field Chooser This allows you to select fields for the form.

■ Properties dialog box This allows you to modify a control or field.

■ Advanced Properties This is used to modify an advanced property of the form or
control.

398 Part IV Providing a User Interface for Your Solution
Figure 13-4 These elements are available when Outlook forms are in Design mode.

Entering Design Mode

To design a form region, you must start with a custom form. To enter Design mode for a cus-
tom form, follow these steps:

1. In the Outlook Explorer window, select the Tools menu, point to Forms, and click
Design A Form.

2. Select the base form type that matches the type of form region you will be designing, and
click Open. For this example, select Contact.

Outlook then opens a Contact custom form in Design mode. This form is a custom form that
contains form pages but does not yet contain a form region. To add a new form region to the
Outlook Forms Designer, on the Developer tab, in the Design group, click Form Region, and
then click New Form Region. A new tab with the name “(Form Region)” will appear with an
empty design surface. This is where you can design the layout of your new form region. Once
a form region is open in Design mode, you can adjust the layout of controls, add or remove
controls, and adjust the properties of controls on the form.

Important Form regions should only be designed using the standard DPI resolution in
Windows (96 dpi). Form regions include a feature to automatically scale a form region to the
appropriate resolution, but this feature only works one way. Designing your form at a high
DPI setting will cause unexpected behavior when the form is displayed or opened again in
the designer.

Chapter 13 Creating Form Regions 399
Renaming a Form Region Tab

To make it easier to keep track of multiple open form regions, you can rename the text that is
displayed in the tab strip in the Outlook Forms Designer. To rename the form region page,
click the Developer tab. In the Design group, click Page, and then select Rename Page.

The value entered for the page name is only used in the Forms Designer. To rename the text
used to represent a separate, replacement, or replace-all form region in the Show group of the
Ribbon when the form is running, you need to specify the <formRegionName> element in the
form region manifest, which is described later in this chapter.

Saving a Form Region

To save a form region as an Outlook Form Storage (OFS) file, click the Developer tab. In the
Design group, click Form Region, and then click Save Form Region As. This displays a Save
File dialog box that will let you select the path to save the form region. Form regions can only
be saved as .ofs files.

Important Do not use the Microsoft Office menu’s Save command to save a form region.
This will save the form as an item in an Outlook folder. Also, do not use the Microsoft Office
menu’s Save As command to save a form as an .msg or .oft file. Neither of these methods
persist the form region information. The form region must always be saved separately.

Adding Controls

Controls can be added to a form region in two different ways: using the Control Toolbox or
using the Field Chooser. These two methods for adding controls are explained in the follow-
ing sections.

The Control Toolbox

The Control Toolbox window displays the available controls that can be added to the form. To
access the Control Toolbox, on the Developer tab, in the Tools group, click Control Toolbox.
By default, this toolbox displays only the Microsoft Forms 2.0 controls that are available for
use on custom forms and form regions. For more information on adding the new controls dis-
cussed in Chapter 14, “Form Region Controls,” see the next section, “Adding Additional Con-
trols to the Control Toolbox.” Custom ActiveX controls can also be added to the Control
Toolbox and dropped onto a custom form or form region.

To add a control from the Control Toolbox to the form, click that control’s icon in the Control
Toolbox, and then click the location where the control should be created. If you click the con-
trol and then drag it to the form, the control will use a nondefault size. The recommended
practice for adding controls to a form region is to use the click and click method rather than
click and drag.

400 Part IV Providing a User Interface for Your Solution
Adding Additional Controls to the Control Toolbox

To add additional ActiveX controls, such as the Outlook 2007 form controls, to the Control
Toolbox, follow these steps:

1. Right-click the Controls tab of the Control Toolbox, and select Custom Controls. The
Additional Controls window opens, showing all the available controls.

2. Select the check box next to the ActiveX controls you want to display on the Control
Toolbox. Display names for Outlook 2007 form controls begin with “Microsoft Office
Outlook.”

3. Click OK to return to the Forms Designer.

Figure 13-5 shows an example of the Control Toolbox and Additional Controls dialog box
with the Outlook 2007 form controls selected.

Figure 13-5 Control Toolbox and Additional Controls dialog box with the Outlook 2007 form con-
trols selected.

Creating a Control Template

To increase your productivity during the form design phase, you can create a control template
by using the selection tool to select a group of controls and then dragging the selection back
to the Control Toolbox. Follow these steps to create a control template:

1. Select the controls you wish to use in the template with the selection tool.

2. Drag the selection to the Control Toolbox.

3. Outlook uses the default label New Group for the control template. If you want to
rename the control template, right-click the template in the Control Toolbox, and then
select Customize New Group.

Chapter 13 Creating Form Regions 401
4. Enter the correct template name in the Customize Control dialog box in the ToolTip
Text edit box. For example, you might create a label and edit box template (see Figure
13-6) and use Label/Edit Controls for the ToolTip text.

5. Click OK to accept the new ToolTip text for the control template.

When you use a control template, you can either click the control template and drag it from
the Control Toolbox to your form or you can select the control template in the Control Tool-
box and then click on the form design surface to insert a copy of the control template.

Figure 13-6 Creating a control template that contains a label and edit box.

Accessing Control Properties

After a control has been added to the custom form or form region, you can set the properties
of the control. Control properties determine what the control looks like and how it behaves
when the control is running on the form.

Each control added to a form region has the same set of basic properties, which can be set
using the Properties window (see Figure 13-7). To open the Properties window, select a con-
trol on the form. On the Ribbon Developer tab, in the Tools group, click Property Sheet. If no
control is selected, this button will be disabled.

402 Part IV Providing a User Interface for Your Solution
Figure 13-7 Properties window with the Display tab selected.

The Properties window has three or four tabs, depending on the type of control selected. If the
control supports Outlook data binding, you will see four tabs: Display, Layout, Value, and Val-
idation. If the control does not support Outlook data binding, you will see only three tabs:
Display, Layout, and Validation.

The Display tab of the Properties window displays basic properties that adjust the look of the
control. On this tab, you can set the name of the control, caption, font, foreground and back-
ground color, and whether the control is visible, enabled, read-only, sunken, or multiline.
Note that not all of these options are available on every control.

The Layout tab of the Properties window displays properties that adjust how the control is
positioned on the form. On this tab, you can adjust the top value, left value, height, and width
of the control, and set properties on how the control is automatically positioned on the form.
For more information on the automatic layout functionality of form regions, see the section
“Understanding Automatic Layout” later in this chapter.

The Value tab of the Properties window displays properties that enable data binding between
Outlook properties and the control. On this tab, you select a field from the Outlook item that
will be data bound to a property of the control. If you use the Field Chooser to create new con-
trols (see the section “Using the Field Chooser” later in this chapter), this information is auto-
matically populated according to the field you selected.

The Validation tab of the Properties window provides options for basic data validation on
some controls. Validation is only available if the control supports data validation, and the con-
trol is bound to an Outlook field on the Value tab. If the control does not support data bind-
ing or is not bound to a field, the controls on this tab are disabled.

Chapter 13 Creating Form Regions 403
Control Advanced Properties

Beyond the properties exposed through the Properties window, you can access more proper-
ties of a control, including properties that are specific to the selected control, by using the
Advanced Properties dialog box.

To display the Advanced Properties dialog box, on the Ribbon, on the Developer tab, in the
Tools group, click Advanced Properties. This displays the Advanced Properties dialog box
for the current control, as shown in Figure 13-8. Unlike the Properties window, the
Advanced Properties dialog box can stay open and automatically adjusts the list of proper-
ties for the currently selected control. If no control is selected, the properties for the form
container are displayed.

Figure 13-8 Advanced Properties dialog box for the Outlook Time Control.

Working with Fields

Nearly every form region solution will want to display some information that is stored on the
item the form region represents. The best way to accomplish this result is to use Outlook’s
data binding mechanism to bind the field (also known as an item property or user property)
to the control. You can accomplish this data binding by using the Field Chooser, by using the
Value tab of the Properties window, or via business logic (code). When a control is data
bound, the value of the field is automatically loaded into the control when the form region is
opened. The value is also automatically saved back into the field if the control is changed
while the form region is open.

404 Part IV Providing a User Interface for Your Solution
Using the Field Chooser

The Field Chooser is the easiest way to add a bound field to a form region. To open the Field
Chooser window, on the Ribbon, on the Developer tab, in the Tools group, click Field
Chooser. This displays the Field Chooser window shown in Figure 13-9. The Field Chooser
window has two components: a drop-down control that shows the field groups, and a list of
fields. There are also two buttons at the bottom of the window used to create or remove cus-
tom fields.

Figure 13-9 The default Field Chooser appearance for a Contact form.

To create a new control on the form data bound to a field, drag the name of the field to the
form design surface. This action automatically creates a label and control for the field.
Depending on the field type, the control will either be a text box, combo box, or other stan-
dard control. Dragging a control from the Field Chooser window will not create any of the
new Outlook-specific controls, like the Outlook Category Control or the Outlook Business
Card Control. To use these controls on your form, you must explicitly add them to the form
using the Control Toolbox as explained earlier in this chapter.

Binding Data with a Control

Instead of dragging a field from the Field Chooser to the form and allowing Outlook to auto-
matically configure the data binding properties, you can data bind a control already on the
form. If you are using a custom ActiveX control, you need to use this approach because the
Field Chooser will not create a new custom ActiveX control for a field.

To adjust the data binding properties, click a control and then on the Ribbon, on the Devel-
oper tab, in the Tools group, click the Property Sheet button. After the Properties window
opens, click the Value tab to view the data binding properties. Figure 13-10 illustrates what
these settings look like.

Chapter 13 Creating Form Regions 405
Figure 13-10 Data binding properties for a control in the Properties window.

To select the field with which the control will data bind, click Choose Field, and select a new
field using the menu that appears. The Type and Format values will automatically be updated
to the default for the type of field selected. For some field types, the Format property can be
changed to adjust the formatting used when displaying the contents of the property.

You can also use the Property To Use drop-down list to determine which property will be set
with the value of the field. If you are using a custom ActiveX control, you can assign the value
to a different property than the default Value property. For example, if you want the field data
to go into the Text property of the control, you can set Property To Use to be Text.

Creating Custom Fields

In addition to using the standard fields on the item, you can create custom fields known as
user properties. There are two ways to create custom fields, and the method of creating the
field determines how the field will roam with the form.

If you create a new user property using the Field Chooser, the field will be created in the
default folder for the type of form being designed. Fields that have the field definition stored
in the folder must be re-created in each folder when an item is copied into that folder for the
field to work properly and be available in the Folder Contents view. You will need to use an
add-in to make sure the field is properly created before opening an instance of the form in a
folder for the first time. See UserDefinedProperties in Chapter 6, “Accessing Outlook Data,” for
more information on creating a user property in a folder.

406 Part IV Providing a User Interface for Your Solution
If you create a new user property using the Value tab of the Properties window, the field defi-
nition will be stored in the form region file and will automatically be available on any item
after the form region has been loaded. In this case, you do not need to write an add-in to create
the user property in a folder each time an item is opened from a new folder. However, user
properties that are defined in the form region cannot be added to the view or used in a search
filter for the Restrict method of the Items collection or the Table object. Table 13-2 illustrates
how custom property creation for a form region determines the availability of the custom
property in a folder.

Polishing Your Form Region

Once you have completed the initial design of a form region, you should take some time to
polish the design of the form region to make sure that it fits with the standard Outlook look
and feel. Form regions support an advanced automatic layout system that will allow your form
to grow and shrink as the user resizes the window. Taking advantage of this system requires
understanding how it works and ensuring that your form is designed within the guidelines of
the system. If you choose not to use the automatic layout, you can control the layout of the
form manually by writing your own resizing code or using a third-party control.

Understanding Automatic Layout

Form regions provide a layout ability that works different from the Resize With Form option
that is available on custom form pages. The system used by form regions works similar to
what Outlook’s built-in forms use to automatically adjust the size of the form to fit the win-
dow as it is resized.

The form layout is calculated by fitting a table over the form design, where there is one control
per table cell. Each row and column of this layout table will pick up certain margins that keep

Table 13-2 Creating a User Property in a Form Region

Description
Custom property available
in folder

Custom property
available in View

Custom property
available for
Table.Restrict or
Items.Restrict

Created on Value tab of Con-
trol Properties window by
clicking New

Always Not available Not available

Created in Field Chooser by
clicking New

Must use add-in code to cre-
ate UserDefinedProperty in
any folder that contains the
item

Available Available

Chapter 13 Creating Form Regions 407
the controls spaced out as they were initially designed. When the user resizes the window dis-
playing a form region, this table is stretched to fit the new window, and the controls in each
cell of the table are adjusted as appropriate. This method is designed to help keep controls
aligned in their individual columns on the form so that a control’s label and the control itself
maintain alignment relative to other controls on the form.

However, there are some limitations to this method, including these:

■ Controls cannot overlap or intersect. Controls that do overlap or intersect will be
ignored when the layout is calculated.

■ Some controls might “snap” into their place and not stay exactly where they were posi-
tioned on the form.

To adjust the way controls are positioned on the form, there are several options on the Layout
tab of the Properties window for any control placed on a form region. Figure 13-11 shows an
example of these settings. There are five settings that pertain to the layout of the control on
the form:

■ Enable Automatic Layout For This Control This check box determines whether this
control is included in the automatic layout scheme or not. If this check box is cleared, the
control will not be automatically positioned on the form.

■ Horizontal The value chosen in this drop-down list box determines how the control is
aligned in the layout cell horizontally. If the value is Grow/Shrink With Form, then the
control will automatically grow or shrink to fit the available space. Otherwise the control
will align according to the selected value.

■ Minimum Width The value in this text box sets the smallest width to which the control
will automatically resize. This allows you to keep a control at a particular minimum size,
even as the form shrinks further.

■ Vertical The setting in this drop-down list box determines how the control is aligned in
the layout cell vertically. If the value is set to Grow/Shrink With Form, then the control
will automatically expand or collapse vertically to fit the available space. Other values
will keep the control aligned vertically without causing the control to resize.

■ Minimum Height The value in this text box sets the smallest height to which the con-
trol will automatically resize. This allows you to keep a control at a particular minimum
height, even as the form shrinks smaller.

408 Part IV Providing a User Interface for Your Solution
Figure 13-11 Options on the Layout tab of the Properties window for a control.

Layout Guidelines

Designing your form region solution to work in a way similar to Outlook’s built-in features
will make it easier for your users to understand your solution because it will work in a manner
with which they are already familiar. As part of designing a form region, you should attempt to
follow some of the form design guidelines used by the standard Outlook forms, including the
following:

■ Keep four pixels of padding between the edge of the form and any control.

■ Remember to add the Infobar and Category controls to a replacement or replace-all form
region. These controls show important information that might not be displayed in any
other way to the user. These controls should be arranged at the top of the form, with the
Infobar control above the Category control.

■ Use a one- or two-column layout to keep the controls organized.

■ Allow fields that might contain a large amount of text to resize with the form. Fields that
contain a small amount of text or a fixed length should not resize.

■ Configure the body/notes field to resize both vertically and horizontally.

■ Use additional form pages for less prominent controls.

■ Use the Ribbon instead of a command button for actions that are not associated with any
particular control on the form.

Chapter 13 Creating Form Regions 409
Fixing Layout Errors

Sometimes when a form region uses automatic layout, it might not appear as the designer
expected. This is usually due to a problem with the way the form was designed, violating a
limitation of the automatic layout logic. A special command exists to detect any controls that
might be in a conflict state so that the form developer can adjust the controls as necessary.

To find controls that are in an error state and will not be properly adjusted by the automatic
layout logic, on the Ribbon, on the Developer tab, in the Arrange group, click the Region Lay-
out button, and then click Select Controls With Layout Errors. This command selects any con-
trols that are in conflict. Figure 13-12 shows the Region Layout menu expanded. If no controls
are selected after clicking this command, everything should lay out properly. This same menu
also includes two other options, Recalculate Layout and Resize Layout With Form Designer.
These commands can be used to test how the layout will work when the form is run by
enabling automatic layout to be used in the designer. However, as a general rule, designing a
form with automatic layout enabled might not work as expected and should be avoided.

Figure 13-12 Commands in the Arrange group of the Developer tab that can help diagnose layout
problems with a form region.

Form Region Theme Support

To make it easier for a form region solution to look like it is a part of Outlook, form regions
automatically support the Outlook visual theme. All of the new Outlook form controls sup-
port the Windows themed appearance by default. There are also new Outlook form controls
that provide UI elements unique to Outlook 2007, such as the Business Card preview, new
colored category strip, and the Contact Photo Control. These controls can be used to ensure
a visual similarity between a form region and Outlook built-in forms.

Additionally, special values for some properties of the controls will be automatically adjusted
to display using the Outlook colors selected by the user. Table 13-3 explains which properties
and values can be used in this way.

410 Part IV Providing a User Interface for Your Solution
Making a Form Region Sendable

In some cases, you might want to make a custom form with form regions that can be sent via
e-mail to other recipients. In particular, if you wanted to customize the message or appoint-
ment forms in a particular way for a custom form type, you would still want to make sure
someone could send one of these messages in a way with which he or she is familiar.

With Outlook 2007, the Send button has moved onto the form page itself instead of being in
a toolbar or the Ribbon. To re-create this functionality in a form region, you need to add a com-
mand button that provides the same capability. To add a Send button to your form region, fol-
low these steps:

1. Open the Field Chooser window.

2. From the drop-down list of field collections, select All Mail Fields.

3. Find the Submit field in the list, and drag it to your form region. A new button will be cre-
ated with the label Submit.

You can also add a picture to the Send button by setting the Picture and PictureAlignment prop-
erties on the button. The large Send button on e-mail messages and appointment forms shows
an envelope icon centered and aligned above the text.

You should also add the Accounts button for users who have more than one account and need
to select which account should be used to send the message. To add the Accounts button, fol-
low these steps:

1. Open the Field Chooser.

2. From the drop-down list of field collections, select All Mail Fields.

3. Find the Accounts field in the list, and drag it to the form region.

Table 13-3 Theme Supporting Properties and Values

Control Property Values/Description
All Olk* controls, form
region

BackColor Button face is automatically adjusted to be the appropri-
ate background color for the form (usually white in the
Reading Pane, blue in the Inspector, and black in high-
contrast mode).

All Olk* controls, form
region

ForeColor Button Text is used to represent the standard text color
on the form (usually black in the Reading Pane and
Inspector and white in high-contrast mode).

OlkLabel UseHeaderColor True: The label will use the font color that represents
header values (usually blue in the Reading Pane and
black in the Inspector window).

Chapter 13 Creating Form Regions 411
4. Click the newly created Accounts button, and open the Advanced Properties dialog box
for the control.

5. Set the DisplayDropArrow property to True.

If your solution is running with an add-in behind the form that contains business logic, you
might want to hide the Accounts button if only one account is defined in the Outlook profile.
To determine the number of accounts available, you can use the NameSpace.Accounts.Count
property and adjust the visibility of the button accordingly.

Differences Between Custom Forms with Form Regions and
Custom Forms with Form Pages
For Outlook custom forms with form pages, Outlook automatically adds Send and
Accounts buttons to the default built-in Ribbon tab for the item type to allow legacy
forms that relied on Microsoft Outlook 2003 behavior to continue to work. These but-
tons will always be enabled and visible, even if VBScript for the custom form disables the
Send button on the legacy command bars. Form designers who want to disable the Send
button on custom forms in Outlook 2007 need to use Ribbon extensibility or convert
the forms to form regions to maintain this behavior.

Form Region End to End
Now that you’ve read more about the concepts around form regions and the form region
designer, you can move into creating a form region solution. In this example, you will see how
to build all the important pieces of an end-to-end form region solution, including creating a
form region, hooking that form region up to an add-in, registering the form region, and
deploying the solution.

All of the code mentioned in this section is available in the Travel Agency sample on this
book’s companion Web site. The scenario covered here is an extension to the standard Con-
tact form in Outlook that will provide a new form page with specific client fields, like frequent
flyer number, and a list of purchased itineraries.

Step 1: Creating a Form Region

Before you get started writing an add-in behind the form or otherwise working on business
logic and deployment, you need to have a form region design. To complete this step, use the
Outlook Forms Designer, and create the .ofs file that contains the layout information. Figure
13-13 shows the form region you are creating.

412 Part IV Providing a User Interface for Your Solution
Figure 13-13 Separate form region for a Contact item from the Travel Agency sample.

To design this form, follow these steps:

1. Start Outlook 2007.

2. On the main menu, point to Tools, click Forms, and then click Design A Form.

3. Select Contact, and then click Open, as shown in Figure 13-14.

Figure 13-14 Design Form dialog box with Contact selected.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 13 Creating Form Regions 413
4. In the Design group, click Form Region, and then click New Form Region. Figure 13-15
shows the form designer with a new empty form region.

Figure 13-15 Designing a new form region.

Outlook creates a tab in the Forms Designer titled (Form Region). This tab is now a new form
region design surface that you use to design the form region, saving it as an Outlook Form
Storage (.ofs) file. For this solution, you need three text boxes, three buttons, one Outlook
Business Card Control, one Outlook ComboBox Control, six labels, one Outlook Frame
Header Control, and one list box.

To add these controls to the form, follow these steps:

1. Display the Control Toolbox by going to the Design group of the Ribbon and clicking the
Control Toolbox button.

2. Right-click the Control Toolbox, and select Custom Controls.

3. Scroll through the list of controls, select the following controls, and click OK.

❑ Microsoft Office Outlook Command Button Control

❑ Microsoft Office Outlook List Control

❑ Microsoft Office Outlook TextBox Control

❑ Microsoft Office Outlook Frame Header Control

❑ Microsoft Office Outlook Business Card Control

414 Part IV Providing a User Interface for Your Solution
❑ Microsoft Office Outlook Label Control

❑ Microsoft Office Outlook ComboBox Control

4. Drag these controls to the form, and arrange them to look like Figure 13-13.

5. To adjust the properties of each control, including the control name and caption, right-
click each control, and select Properties. For each control, keep the default settings and
adjust the properties accordingly:

❑ Full Name text box

● Layout: Horizontal: Grow/shrink with form

● Value: bound to Full Name field

❑ Frequent Flyer text box

● Name: TextBoxFFN

● Layout: Horizontal: Grow/shrink with form

● Value: bound to FrequentFlyerNumber (new Text field)

❑ Seat Preference combo box

● Name: ComboBoxSeatPref

● Layout: Horizontal: Grow/shrink with form

● Value: bound to SeatPreference

● Value: List Type: Droplist

● Value: Possible values: Window;Aisle;Middle

❑ Preferred Airline text box

● Name: TextBoxPreferredAirline

● Layout: Horizontal: Grow/shrink with form

● Value: bound to PreferredAirline (new Text field)

❑ Last Purchased text box

● Name: TextBoxLastPurchase

● Layout: Horizontal: Grow/shrink with form

● Value: bound to LastPurchaseDate (new Date/Time field)

❑ Frame Header Control

● Name: FrameHeaderItineraries

● Caption: Itineraries

● Layout: Horizontal: Grow/shrink with form

Chapter 13 Creating Form Regions 415

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

❑ Itineraries list box

● Name: listItineraries

● Layout: Horizontal: Grow/shrink with form

● Layout: Minimum width: 100

● Layout: Vertical: Grow/shrink with form

❑ New Itinerary command button

● Name: ButtonNewItinerary

● Caption: &New Itinerary

❑ Edit Itinerary command button

● Name: ButtonEditItinerary

● Caption: &Edit Itinerary

❑ Delete Itinerary command button

● Name: ButtonDeleteItinerary

● Caption: &Delete Itinerary

6. To save the form region, on the Developer tab in the Design group, click Form Region,
and then click Save Form Region As.

7. Save the new form region in a folder as TravelAgencyRegion.ofs, and close the window.
When Outlook prompts you to save the changes to the item underlying the designer,
click No. We’ll import this file later into our add-in project.

Step 2: Writing Business Logic

Now that the design of the form region is complete, you need to craft the add-in that will run
in Outlook and provide the business logic for the form. First, you write the basic form region
hookup code, which involves implementing and handling an interface defined by Outlook. To
encapsulate the business logic for a form region, you will create a form region wrapper class
that maintains state for an instance of a form region.

Hooking Up a Form Region and an Add-In

To get started, you need to create a new add-in in Microsoft Visual Studio using either the
Shared Add-in template or the Outlook 2007 Add-in template provided on this book’s com-
panion Web site. For the purposes of this example, name the project TravelAgencyAddinCS.
After the project has been created, you should have a Connect.cs file that contains the Connect
class of your add-in.

Before you continue, you must add a few references to the project. If you are using the tem-
plate that comes with this book, you should already have references for the Outlook and

416 Part IV Providing a User Interface for Your Solution
Office type libraries. If you are using the Shared Add-in template, you must add these refer-
ences. You will also need to add a reference to the Microsoft Forms 2.0 type library (Fm20.dll)
in either case.

Inside the Connect class, you implement the FormRegionStartup interface, which is the inter-
face Outlook will use to communicate with the add-in about any form regions tied to the add-
in. This interface includes two methods: GetFormRegionStorage and BeforeFormRegionShow,
which are called when Outlook is requesting the OFS file for the form region and just before
the form region is displayed to the user, respectively. To implement this interface, change the
definition of the Connect class to look like this:

public partial class Connect : Outlook.FormRegionStartup

If you are using the Shared Add-in template, you need to create an alias for the Outlook
namespace to refer to the interface in this way by adding this line to the top of the file:

using Outlook = Microsoft.Office.Interop.Outlook;

Next, you should have Visual Studio generate the method prototypes for the interface. Right-
click the FormRegionStartup text, and select Implement Interface from the context menu.
Visual Studio then creates the prototypes for the two methods, and you can start writing the
code to handle these methods.

Implementing GetFormRegionStorage Because GetFormRegionStorage is called first, you
will start with this method. Outlook will accept a number of return values from this method,
depending on how your solution works. Outlook is looking for one of the following resources
to supply the form region storage:

■ An absolute file path (in the form of a string) to the OFS file

■ A byte array containing the contents of the OFS file

■ An IStorage instance that contains the contents of the OFS file

From managed code, the best mechanism to use is the byte array, because Visual Studio will
natively generate the appropriate code when the OFS file is added as a resource for the project.

To add the form region storage to the project as a resource, in the Project Explorer, right-click
the Project node, and select Properties to open the Properties window for the project. Click
the Resources tab, and create a new default resource file by selecting the hyperlink. Press
Ctrl+5 to switch to the File resources display, which should be empty at this point. Click Add
Resource on the toolbar, and then find and open the OFS file for the form region you designed
and saved in Step 1. Visual Studio automatically copies the OFS file into a Resources folder in
the project and creates a new resource variable for the file. Figure 13-16 shows what the
resource editor should look like after the file is added.

Chapter 13 Creating Form Regions 417
Figure 13-16 Visual Studio project resources with the form region file added as a resource.

Close the Properties window to return back to the source code for the Connect class, where
you can now return the resource during the GetFormRegionStorage method. To ensure that you
return the right resource for the right form region (or to handle multiple form regions), use a
switch statement to switch based on the FormRegionName property.

public object GetFormRegionStorage(string FormRegionName, object Item,
 int LCID, Outlook.OlFormRegionMode FormRegionMode,
 Outlook.OlFormRegionSize FormRegionSize)
{
 switch (FormRegionName)
 {
 case "TravelAgencyRegion":
 return Properties.Resources.TravelAgencyRegion;

 default:
 return null;
 }
}

Because Visual Studio automatically creates a new property for each resource added to the
project’s resources, and assumes that binary files should be returned as a byte array, no addi-
tional code is required in the GetFormRegionStorage method of the interface. To handle other
form regions, just add additional case statements to the switch block for each form region
name.

418 Part IV Providing a User Interface for Your Solution
Implementing a Form Region Wrapper Because Outlook can have multiple windows
open at a time, and each window could show an instance of the same form region type, you
need a wrapper class that will track the state of a particular instance.

Because several elements of the form region wrapper will be the same across different form
regions, you use a base class to implement these details, and then you can create another class
that derives from the base class to manage the business logic and variables for a specific type
of form region. To get started, create the base class, BaseFormRegionWrapper. Add a new class
file to the project, and type BaseFormRegionWrapper for the name of the class. To the top of
the class file, add using directives for the Outlook object model and the Microsoft Forms 2.0
object model.

using Outlook = Microsoft.Office.Interop.Outlook;
using Forms = Microsoft.Vbe.Interop.Forms;

Next, edit the class file to contain the following code. This code will create instance variables
to hold on to the FormRegion instance, hold on to the UserForm instance, and provide a Close
event that will be raised when the form region is closed. The class also implements IDisposable
to clean up the native code references for FormRegion and UserForm when the object is dis-
posed.

abstract class BaseFormRegionWrapper : IDisposable
{
 #region Instance Variables
 private bool disposed = false;
 protected object Item;
 protected Outlook.FormRegion FormRegion;
 protected Forms.UserForm UserForm;
 #endregion
 #region Constructor
 public BaseFormRegionWrapper(Outlook.FormRegion region)
 {
 this.Item = region.Item;
 this.FormRegion = region;
 this.UserForm = FormRegion.Form as Forms.UserForm;
 this.FormRegion.Close +=
 new Outlook.FormRegionEvents_CloseEventHandler(
 FormRegion_Close);
 }
 #endregion
 #region Events/Handlers
 /// <summary>
 /// Event is raised when the wrapped form region raises its close event
 /// </summary>
 public event EventHandler Close;

 /// <summary>
 /// Raises the close event on this class
 /// </summary>
 protected virtual void OnFormRegionClose()
 {

Chapter 13 Creating Form Regions 419
 if (Close != null)
 {
 Close(this, EventArgs.Empty);
 }
 }

 private void FormRegion_Close()
 {
 OnFormRegionClose();
 }

 #endregion
 #region IDisposable Members

 ~BaseFormRegionWrapper()
 {
 // call Dispose with false. Because we're in the
 // destructor call, the managed resources will be
 // disposed of anyway.
 Dispose(false);
 }

 public void Dispose()
 {
 // dipose of managed & unmanaged resources
 Dispose(true);

 // tell the GC that the Finalize process no longer needs
 // to be run for this object.
 GC.SuppressFinalize(this);
 }

 protected void Dispose(bool disposeManagedResources)
 {
 // process only if managed and unmanaged resources have
 // not been disposed of.
 if (!this.disposed)
 {
 if (disposeManagedResources)
 {
 // dispose managed resources
 Item = null;
 }

 if (FormRegion != null)
 {

System.Runtime.InteropServices.Marshal.ReleaseComObject(FormRegion);
 FormRegion = null;
 }
 if (UserForm != null)
 {

System.Runtime.InteropServices.Marshal.ReleaseComObject(UserForm);
 UserForm = null;

420 Part IV Providing a User Interface for Your Solution
 }

 disposed = true;
 }
 }

 #endregion
}

Now that you have the base class defined for the form region wrapper, you need to create a
class for your specific form region. In this case, you want to handle the form region state while
the form region is open and implement your business logic. To do this, add a new class file
named ContactFormRegionWrapper, which will contain the business logic implementation for
this form region.

Inside the ContactFormRegionWrapper class, you will create instance variables for every control
on the form and hook up those variables during the constructor for the class. You will then
implement some business logic around those controls and provide data for the list of itinerar-
ies from a data source.

To get started, you need to define variables for all the form controls on the form. To start with,
you should add namespace aliases, so insert the following lines at the top of the new class file:

using Outlook = Microsoft.Office.Interop.Outlook;
using Office = Microsoft.Office.Core;
using Forms = Microsoft.Vbe.Interop.Forms;

You also want to make sure that the new ContactFormRegionWrapper class derives from the
BaseFormRegionWrapper class that you wrote previously. This provides the basic functionality
around handling the closing of the form region. To derive from this class, change the class def-
inition to look like this:

class ContactFormRegionWrapper : BaseFormRegionWrapper

You will continue to define the rest of the methods in the ContactFormRegionWrapper class in
a bit, but first, to keep track of the itinerary state, you need to have a data class. In this case,
you create a new class named Itinerary and define properties for the fields that you want to
keep track of. In this case, you should create a simple data class with the following fields:
string DepartingAirport, string ArrivingAirport, DateTime DepartureDate, DateTime ArrivalDate,
string Airline, and string FlightNumber. You should consider overriding the ToString() method
of the class to provide a representative view of the data, as this is the way the item will be dis-
played to the user.

Now that you have a data class, you should switch back to working on the
ContactFormRegionWrapper class. To provide an easy reference to the form controls, define a
variable for each control on the form (or at least the controls that are important in the busi-
ness logic you will write). In this case, you’ll add variables for all the controls to the class.
You’ll also add another variable to maintain a list of available itinerary information.

Chapter 13 Creating Form Regions 421
private Outlook.OlkLabel LabelFFN;
private Outlook.OlkTextBox TextBoxFFN;
private Outlook.OlkLabel LabelPreferredAirline;
private Outlook.OlkTextBox TextBoxPreferredAirline;
private Outlook.OlkLabel LabelSeatPref;
private Outlook.OlkComboBox ComboBoxSeatPref;
private Outlook.OlkLabel LabelLastPurchase;
private Outlook.OlkTextBox TextBoxLastPurchase;
private Outlook.OlkCommandButton ButtonNewItinerary;
private Outlook.OlkCommandButton ButtonEditItinerary;
private Outlook.OlkCommandButton ButtonDeleteItinerary;
private Outlook.OlkListBox ListItineraries;
private List<Itinerary> Itineraries;

Next up is the constructor for this helper class, which will extend the base constructor pro-
vided in BaseFormRegionWrapper to actually initialize the member variables for this particular
form region. In the constructor you call two helper methods, one to initialize the control vari-
ables just defined and another to load itinerary information from the data source. The code
should look something like this:

public ContactFormRegionWrapper(Outlook.FormRegion region) : base(region)
{
 Itineraries = new List<Itinerary>();
 // Initialize controls
 InitializeControls();
 // Load data from persistence
 LoadItineraries();
}

Next, you need to write the helper function InitializeControls that will take the instances avail-
able on the user form and map them down to the instance variables and cast them to the
appropriate type. At the same time, you will wire up some event handlers that will handle the
events that you must listen for on these controls.

void InitalizeControls()
{
 try
 {
 // Locate control references
 LabelFFN =
 UserForm.Controls.Item("LabelFFN") as Outlook.OlkLabel;
 TextBoxFFN =
 UserForm.Controls.Item("TextBoxFFN") as Outlook.OlkTextBox;
 LabelPreferredAirline =
 UserForm.Controls.Item("LabelPreferredAirline") as Outlook.OlkLabel;
 TextBoxPreferredAirline =
 UserForm.Controls.Item("TextBoxPreferredAirline")
 as Outlook.OlkTextBox;
 LabelSeatPref =
 UserForm.Controls.Item("LabelSeatPref")
 as Outlook.OlkLabel;
 ComboBoxSeatPref =
 UserForm.Controls.Item("ComboBoxSeatPref")
 as Outlook.OlkComboBox;

422 Part IV Providing a User Interface for Your Solution
 LabelLastPurchase =
 UserForm.Controls.Item("LabelLastPurchase")
 as Outlook.OlkLabel;
 TextBoxLastPurchase =
 UserForm.Controls.Item("TextBoxLastPurchase")
 as Outlook.OlkTextBox;
 ButtonNewItinerary =
 UserForm.Controls.Item("ButtonNewItinerary")
 as Outlook.OlkCommandButton;
 ButtonEditItinerary =
 UserForm.Controls.Item("ButtonEditItinerary")
 as Outlook.OlkCommandButton;
 ButtonDeleteItinerary =
 UserForm.Controls.Item("ButtonDeleteItinerary")
 as Outlook.OlkCommandButton;
 ListItineraries =
 UserForm.Controls.Item("listItineraries")
 as Outlook.OlkListBox;
 Forms.Frame Frame2 =
 UserForm.Controls.Item("Frame2") as Forms.Frame;
 Frame2.BorderStyle =
 Microsoft.Vbe.Interop.Forms.fmBorderStyle.fmBorderStyleNone;
 Frame2.ScrollBars =
 Microsoft.Vbe.Interop.Forms.fmScrollBars.fmScrollBarsNone;
 // Hook up events
 ButtonNewItinerary.Click +=
 new Outlook.OlkCommandButtonEvents_ClickEventHandler(
 ButtonNewItinerary_Click);
 ButtonEditItinerary.Click +=
 new Outlook.OlkCommandButtonEvents_ClickEventHandler(
 ButtonEditItinerary_Click);
 ButtonDeleteItinerary.Click +=
 new Outlook.OlkCommandButtonEvents_ClickEventHandler(
 ButtonDeleteItinerary_Click);
 ListItineraries.DoubleClick +=
 new Outlook.OlkListBoxEvents_DoubleClickEventHandler(
 ListItineraries_DoubleClick);
 }
 catch (Exception ex)
 {
 Debug.WriteLine ("An error occured while hooking up Form Region controls: " +
ex.Message);
 }
}

Now that you have all that glue out of the way, you can actually start writing the business
logic. In this case, you’ll be using a file named Itineraries.xml to maintain information about a
given contact’s itineraries. This file will live as a hidden attachment on the contact. In a real-
world solution, you might use a database connection or Web service to retrieve this data from
a server, but the basic form region code would look similar.

The LoadItineraries method called in the constructor looks for an attachment on the Contact
with a particular filename (in this case Itineraries.xml) and then deserializes the contents of
that file back into an instance of a List class containing the itineraries. If the attachment does

Chapter 13 Creating Form Regions 423
not exist, an empty list will be created and the file will be created when the contact is saved if
any itineraries are added while the form region is open. This method can be downloaded as
part of the sample code available for the book and is not printed here.

Now that the form initialization code is finished, you can write the event handlers that you
wired up in the InitializeControls method previously. These events handle adding a new itiner-
ary, editing an existing itinerary, and deleting an itinerary. When the event fires, you display a
WinForm dialog box that allows the user to create or edit an itinerary object, which is added
back to the Itineraries List object after the user clicks OK. Because this code does not directly
affect the operation of the form region, it is not included here but can be downloaded from
this book’s companion Web site.

Each of these event handlers also saves the changes back to the attached XML file after mak-
ing the change to the list so that the file is always in sync with the displayed list of itineraries.
Because the file attachment is not saved if the user cancels making changes to the item, this
behavior is still consistent with the way Outlook behaves. If you are using a database or other
back-end store, you might want to wait for the Save event to occur on the item before persist-
ing the changes to the back-end store so that if a user cancels saving the item, the item remains
in a consistent state.

Step 3: Registering the Form Region

Once you have the business logic written and the form design complete, you can write the
manifest file and register the form region. The manifest file describes the form region to
Outlook and includes details about where to load the form region layout file, which icons to
display, and any custom actions that should be added to the item. After the manifest is cre-
ated, it is registered in the Windows registry under registry keys for each message class that
should load the form region.

Authoring a Form Region Manifest

The form region manifest file is a simple XML file described as the Form Region Manifest XML
Schema, which is available as part of the Office 2007 XML Reference on MSDN. The following
sections provide a quick overview of the important schema elements.

Manifest Basics Each form region manifest is composed of one document element, the
<FormRegion> element, which has several child elements that are mostly optional. Default val-
ues are assumed for any element that is not included in the manifest file, and these default val-
ues are defined in the XML schema for the manifest. If no <name> element is provided, the
name of the registry value for the form region will be used instead. The following is a relatively
simple manifest example, which provides a name, type, page name, accelerator key, add-in,
and an icon for the form region that appears in the Show group in the Ribbon:

<?xml version="1.0" encoding="utf-8"?>
<FormRegion xmlns="http://schemas.microsoft.com/office/outlook/12/formregion.xsd">

424 Part IV Providing a User Interface for Your Solution
 <name>TravelAgencyRegion</name>
 <formRegionType>separate</formRegionType>
 <formRegionName>Itineraries</formRegionName>
 <ribbonAccelerator>I</ribbonAccelerator>
 <showInspectorCompose>true</showInspectorCompose>
 <showInspectorRead>true</showInspectorRead>
 <showReadingPane>false</showReadingPane>
 <addin>TravelAgencyAddinCS.Connect</addin>
 <icons>
 <page>plane.png</page>
 </icons>
 <stringOverride file="TravelAgencyRegionCS.%langid%.xml" language="all" />
</FormRegion>

Optional Elements Each of the following elements is optional and will have the default
value assumed if it is not specified in the manifest XML. Each of these elements should be a
child of the <FormRegion> element if included, and should only appear once.

■ <name> The internal name of the add-in. This value is passed to the
GetFormRegionStorage and BeforeFormRegionStartup methods to identify this form region.
It can also be used in other form region <displayAfter> elements.

■ <title> The title of the form region, which is displayed in the Choose Form dialog box
and the Actions menu for replacement and replace-all forms. This title is also displayed
for adjoining form regions as the header name above the form region. <name> will be
used if this value is not included.

■ <formRegionName> The text displayed on the Show group on the Ribbon for this
form region (only valid for separate, replacement, and replace-all form regions). <title>
will be used if this value is not included.

■ <description> Text that describes the use of the form region, displayed in the Choose
Form dialog box.

■ <formRegionType> Specifies the type of form region. Must be separate, adjoining,
replace, or replaceAll.

■ <showInspectorCompose> Controls if this form region is displayed in the Inspector
window in compose mode for this item type. Default value is True.

■ <showInspectorRead> Controls if this form region is displayed in the Inspector window
in read mode for this item type. Not all item types have a read mode. Default value is True.

■ <showReadingPane> Controls if this form region is displayed in the Reading Pane for
this item type. Only affects adjoining, replacement, and replace-all form regions.

■ <hidden> Controls if the form region title is displayed in the Choose Form dialog box
and Actions menu. The default value is False. Only works for replacement and replace-all
form regions.

■ <exactMessageClass> Controls how the form region behaves on derived message
classes. Default value is False. When True, the form region will only be displayed on mes-

Chapter 13 Creating Form Regions 425
sage classes that match exactly how it was registered; otherwise, message classes that are
derived from the original registration will also display this form region.

■ <layoutFile> Specifies the OFS file that Outlook should load to display this form
region. This value is only used if <addin> is not specified.

■ <addin> Specifies the ProgID or identifier for the add-in that should be called for this
form region. The add-in must implement the FormRegionStartup interface to be called.

■ <displayAfter> Specifies the name of another form region that this form region should
be positioned after. This does not guarantee that the form region directly preceding this
one will be the one specified, based on load order and other form regions that might
have the same <displayAfter> value.

■ <contact> Specifies a contact name for the form region. This information can be used
for supportability of a form region.

■ <version> Specifies a version of the form region. This information can be used for sup-
portability of a form region.

■ <loadLegacyForm> This option determines if Outlook looks for a custom form with
form pages with the same message class if it finds a form region first. This value defaults
to False and, for performance reasons, should remain False unless you need to load form
pages and form regions at the same time.

■ <ribbonAccelerator> Specifies one to three characters that should be used as the hot
key for the form region’s Ribbon button. This value is ignored for adjoining form regions.

■ <icons> Specifies custom icons for the item type. For more information, see the sec-
tion “Custom Icons” later in this chapter.

■ <customActions> Specifies custom actions for the item type. For more information,
see the section “Describing Custom Actions” later in this chapter.

■ <stringOverride> Specifies localized strings that can be used for a particular language.
For more information on localizing form regions, see the section “Localizing a Form
Region” later in this chapter.

Custom Icons

Replacement and replace-all form regions can specify a range of custom icons that are shown
when items of the form region message class are displayed in the view. Additionally, separate
form regions can specify an icon that shows up in the Ribbon on the button to activate that
form region page. All of these icons are specified in the <icons> element of the <FormRegion>
element in the manifest. Table 13-4 lists custom icon elements.

If you include the <icons> element in your form region manifest, you should include at least
one child element. Each child element represents a particular icon visible to the user some-
where in Outlook. Each child element should contain either (a) a path to the icon file or (b) a

426 Part IV Providing a User Interface for Your Solution
path to a dynamic link library (DLL) and a resource number to load from the file. Relative
paths are resolved against the location of the manifest XML file. For example:

<FormRegion xmlns="http://schemas.microsoft.com/office/outlook/12/formregion.xsd">
 <icons>
 <!-- relative path -->
 <default>icons\default.ico</default>
 <!-- embedded resource -->
 <window>%SystemRoot%\system32\SHELL32.dll,102</window>
 <!-- relative path to bitmap -->
 <page>icons\plane.png</page>
 </icons>
</FormRegion>

Table 13-4 Custom Icon Elements

Element name Description
Supported
format Applies to

<default> An icon that will be used by default
when no other icon is provided,
except for the <page> icon

ICO only Replacement and replace-
all form regions only

<unread> An icon displayed in the Folder view
for unread items

ICO only Replacement and replace-
all form regions only

<read> An icon displayed in the Folder view
for read items

ICO only Replacement and replace-
all form regions only

<replied> An icon displayed in the Folder view
for items that have been replied to

ICO only Replacement and replace-
all form regions only

<forwarded> An icon displayed in the Folder view
for items that have been forwarded

ICO only Replacement and replace-
all form regions only

<unsent> An icon displayed in the Folder view
for items that are unsent, which are
typically found in the Drafts folder

ICO only Replacement and replace-
all form regions only

<submitted> An icon displayed in the Folder view
for items that have been submitted
for sending, but are not yet sent;
these are typically found in the
Outbox

ICO only Replacement and replace-
all form regions only

<signed> An icon displayed in the Folder view
for items that have been digitally
signed

ICO only Replacement and replace-
all form regions only

<encrypted> An icon displayed in the Folder view
for items that have been encrypted

ICO only Replacement and replace-
all form regions only

<window> An icon displayed for the item
Inspector window when the form is
open, displayed in the Windows
Taskbar and Alt+Tab dialog box

ICO only Replacement and replace-
all form regions only

Chapter 13 Creating Form Regions 427
Describing Custom Actions

Each form region can have custom actions included as part of the form as well. These custom
actions work in a manner similar to the built-in actions provided by the standard Outlook
forms (for example, Reply, Reply All, Forward). You can also use custom actions to disable the
built-in actions if they are not applicable to your custom form.

Custom actions are defined using the <customActions> element, which is always a child of the
<FormRegion> element. Under the <customActions> element, you can define individual actions
for the form or disable built-in actions. For example, if you wanted to create a new action titled
“Post Reply” that would create a new post item in the form of a reply to the current item, the
XML in your form region manifest would look like this:

<FormRegion xmlns="http://schemas.microsoft.com/office/outlook/12/formregion.xsd">
 <!-- Other elements would go here -->
 <customActions>
 <action name="postReply">
 <title>Post Reply</title>
 <targetForm>IPM.Post</targetForm>
 <addressLike>reply</addressLike>
 <body>user</body>
 <showOnRibbon>true</showOnRibbon>
 <method>open</method>
 <subjectPrefix>RE</subjectPrefix>
 </action>
 </customActions>
</FormRegion>

This action would then be available via the Actions collection in the object model and on the
Ribbon under the Custom Actions menu to allow the user to execute the action.

Each <action> element must have a name attribute that specifies an internal name for the
action. This value must be unique across the actions defined for a form region. This value can
be used to provide localized strings using the <stringOverride> element. Additionally, the fol-
lowing elements are defined as child elements for the <action> element:

■ <title> The display text for the custom action. This value will be shown in the Ribbon
and other locations where the action is displayed.

<recurring> An icon displayed in the Folder view
for items that are recurring items,
such as recurring tasks or appoint-
ments

ICO only Replacement and replace-
all form regions only

<page> An icon or bitmap displayed in the
Ribbon on the button to switch to
the form region

ICO or PNG Separate, replacement, and
replace-all form regions

Table 13-4 Custom Icon Elements

Element name Description
Supported
format Applies to

428 Part IV Providing a User Interface for Your Solution
■ <targetForm> Specifies the message class of the target form for the action. When the
action is executed, a new item will be created with this message class.

■ <addressLike> Specifies how the target form will be addressed. Possible values are
reply, replyAll, forward, replyToFolder, and response. For more information about the mean-
ing of these values, see the XML schema for form regions.

■ <body> Specifies how the body of the target form should be set. Possible values are
omit, attach, include, indent, prefix, link, and user. For more information about the mean-
ing of these values, see the XML schema for form regions.

■ <showOnRibbon> Boolean value that determines if the custom action is displayed on
the Ribbon in the Custom Actions menu.

■ <method> Specifies the method Outlook will use when creating the target form. The
value of this element should be either open, prompt, or send. For more information about
the meaning of these values, see the XML schema for form regions.

■ <subjectPrefix> Specifies the characters that will be prepended to the subject when
creating the target form. For a reply, this might be “RE.”

You can also disable any of the built-in actions by defining an action named with a particular
keyword. The keywords shown in Table 13-5 are the same regardless of the language in which
Outlook is running.

To disable the Reply All action for a form region, you could use the following XML in your
manifest file:

<FormRegion xmlns="http://schemas.microsoft.com/office/outlook/12/formregion.xsd">
 <!-- Other elements would go here -->
 <customActions>
 <action name="replyAll" disable="true"></action>
 </customActions>
</FormRegion>

Localizing a Form Region

Form regions include a built-in mechanism to enable localization of form region data (title,
description, and so on), as well as the strings displayed on a form region’s controls. All of this
information can be defined in the manifest file, or you can reference an external localization
manifest from the form region manifest where these values can be loaded.

Table 13-5 Custom Action Name Keywords for Built-in Actions

Name keyword Action name
Reply Reply
replyAll Reply All
forward Forward
replyToFolder Reply to Folder

Chapter 13 Creating Form Regions 429
Using String Overrides To localize a form region, you can use the <stringOverride> element
in the form region manifest file. This element contains child elements that redefine the dis-
played strings defined in the manifest file for a particular language. Each <stringOverride> ele-
ment has one required attribute, language, which contains a list of the Locale IDs (LCIDs) of
each language that should use the strings defined inside the element.

For example, to provide localized string information for U.S. English, you could add this XML
snippet to your form region manifest:

<FormRegion>
 <!-- other elements here -->
 <stringOverride language="1033">
 <title>US English Title</title>
 <formRegionName>US English Page Name</formRegionName>
 <description>US English Description</description>

 <control name="OlkLabel1">
 <caption>English Display Text</caption>
 </control>

 <action name="postReply">
 <title>English Post Reply</title>
 <subjectPrefix>US-FW</subjectPrefix>
 </action>
 </stringOverride>
</FormRegion>

The following elements are defined in the schema for use inside the <stringOverride> element:

■ <title> The title of the form region, which is displayed in the Choose Form dialog box
and the Actions menu for replacement and replace-all form regions. This title is also dis-
played for adjoining form regions as the header name above the form region. <name> will
be used if this value is not included.

■ <formRegionName> The text displayed on the Ribbon in the Show group for this
form region (only valid for separate, replacement, and replace-all form regions). <title>
will be used if this value is not included.

■ <description> Text that describes the use of the form region, displayed in the Choose
Form dialog box.

■ <control> Represents strings that will be used for a given control on the form region.
The name attribute is required on this element and should provide the value of the Name
property of the control referenced from the form region.

■ <caption> A child element of control, this element contains the text that will be set as
the Caption property of the control referenced by the name attribute.

■ <action> Represents strings that will be used for a given custom action on the form
region. The name attribute is required on this element and should be the value of the
name attribute on the custom action.

430 Part IV Providing a User Interface for Your Solution
■ <title> A child element of action, this element contains the text that will be used for the
localized title of the custom action.

■ <subjectPrefix> A child element of action, this element contains the text that will be
used for the localized subject preview of the custom action.

Additionally, instead of including all the localized resources in one file, you can use an
optional attribute on the <stringOverride> element to point Outlook to another file that con-
tains the resources. In the next example, the <stringOverride> element redirects all languages
to look for a file in a directory based on the LCID of the language.

<FormRegion>
 <!-- other elements here -->
 <stringOverride language="all"
 file="%LCID%\resources.xml"></stringOverride>
</FormRegion>

Outlook will replace the %LCID% value in the file attribute with the actual LCID for the lan-
guage being loaded. Outlook will look up relative paths based on the location of the manifest
XML file. In this case, to provide resources for U.S. English, you can create a subdirectory in
the same location as the manifest XML file named 1033. Inside this folder, you should have a
Resources.xml file that contains this XML:

<FormRegionStrings xmlns="http://schemas.microsoft.com/office/outlook/12/
formregionstrings.xsd">
 <title>US English Title</title>
 <formRegionName>US English Page Name</formRegionName>
 <description>US English Description</description>

 <control name="OlkLabel1">
 <caption>English Display Text</caption>
 </control>

 <action name="postReply">
 <title>English Post Reply</title>
 <subjectPrefix>US-FW</subjectPrefix>
 </action>
</FormRegionStrings>

Note The resource files use a document element named FormRegionStrings instead of
FormRegion. The child elements for <FormRegionStrings> are identical to the contents of the
<stringOverride> element in the form region manifest.

Registering a Form Region

Each form region has to be registered in the Windows registry before Outlook will load and
display the form region. The registration process is a simple matter of writing the correct reg-
istry key for the form region message class and specifying the location of the manifest file.

Chapter 13 Creating Form Regions 431
Form regions are registered under the key HKEY_CURRENT_USER\Software\Microsoft
\Office\Outlook\FormRegions, or HKEY_LOCAL_MACHINE\Software\Microsoft
\Office\Outlook\FormRegions. Most solutions should use the user-based key so that
administrative privileges are not required to install the solution. Under the FormRegions
key in the registry, you will need to create a key for each message class with which your
form region will be used. For example, to register a form region on IPM.Contact, you would
create HKEY_CURRENT_USER\Software\Microsoft\Office\Outlook\FormRegions
\IPM.Contact, and then create a new value under that key. To register a form region on a
custom message class, create a new key under the FormRegions key with the name of the
message class (see Figure 13-17).

Figure 13-17 Registry editor showing a form region registered on a custom message class.

The value for your form region should be the name of the form region (as defined in the
<name> element of the manifest) and the full path to the XML manifest file. The path name
can also use environment variables that will be expanded when the value is read; for example,
to specify a manifest file from the program files folder, you could use %ProgramFiles%\Solution
\MyManifest.xml as the value.

Replacing the Default Form for a Folder

For replacement or replace-all form regions, you can make a form region become the default
form for a folder. If the form region is the default form for a folder, the form region is displayed
to the user when he or she performs any of the following actions in the folder:

■ Clicks the New button on the Standard toolbar in the Explorer window.

■ Selects the New <Item> command on the New menu on the Standard toolbar in the
Explorer window, where <Item> represents the built-in item type for a folder. If the built-
in item type is Contact, then selecting New Contact on the New menu in the Explorer
window will display the form region.

■ Selects the New <Item> command on the View context menu in the Explorer window,
where <Item> represents the built-in item type for a folder.

■ Presses Ctrl+N to create a new default item for the folder.

432 Part IV Providing a User Interface for Your Solution

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

■ Clicks the “new item row” in a Folder view. To show the “new item row” in a view, set the
ShowNewItemRow property of the TableView object to True.

Note Changing the default form for a folder does not change the default form when the
user selects New <Item> from the Office menu in an Inspector window. If you want to ensure
that your replacement or replace-all form region appears when the user selects the New
<Item> command in an Inspector window, monitor the NewInspector and Item_Open events.
In the Item_Open event, you cancel the display of the built-in form and then create an
instance of the replacement or replace-all form region by calling the Add method of the Items
collection. For additional details on creating a custom item, see the section “Creating an
Item” in Chapter 5, “Built-in Item Types.”

Although the Folder object does not implement a method that lets you set the default form
for a folder directly, you can use the PropertyAccessor object to set the correct folder proper-
ties. The following code sample shows you how to set the default form for a folder. The
DemoSetDefaultFormForFolder method sets the default form for the current folder to “Shoe
Store” by calling the SetDefaultFormForFolder method. The message class for the “Shoe
Store” replacement form region is “IPM.Contact.Shoe Store.”

private void DemoCustomDefaultFormForFolder()
{
 Outlook.Folder folder =
 Application.ActiveExplorer().CurrentFolder as Outlook.Folder;
 SetDefaultFormForFolder(
 "IPM.Contact.Shoe Store", "Shoe Store", folder);
}

 private void SetDefaultFormForFolder(string defaultMessageClass,
 string defaultDisplayName, Outlook.Folder folder)
{
 const string PR_DEF_POST_MSGCLASS =
 "http://schemas.microsoft.com/mapi/proptag/0x36E5001E";
 const string PR_DEF_POST_DISPLAYNAME =
 "http://schemas.microsoft.com/mapi/proptag/0x36E6001E";
 if (folder == null)
 {
 throw new ArgumentNullException(
 "folder", "Parameter must contain a value.");
 }
 if(string.IsNullOrEmpty(defaultMessageClass))
 {
 throw new ArgumentNullException(
 "defaultMessageClass",
 "Parameter must contain a value.");
 }
 if (string.IsNullOrEmpty(defaultDisplayName))
 {
 throw new ArgumentNullException(
 "defaultDisplayName",
 "Parameter must contain a value.");
 }

Chapter 13 Creating Form Regions 433
 try
 {
 // Calling SetProperty sets the property without saving
 folder.PropertyAccessor.SetProperty(
 PR_DEF_POST_DISPLAYNAME, defaultDisplayName);
 folder.PropertyAccessor.SetProperty(
 PR_DEF_POST_MSGCLASS, defaultMessageClass);
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

To reset the default form for a folder, you call the SetDefaultFormForFolder method and pass
the DefaultMessageClass property for the Folder object as the defaultMessageClass argument.
The DefaultMessageClass property always returns the built-in default message class for a folder
rather than a custom message class such as “IPM.Contact.Shoe Store.” The following code
sample resets the default message class for the current folder:

private void DemoResetDefaultFormForFolder()
{
 Outlook.Folder folder =
 Application.ActiveExplorer().CurrentFolder as Outlook.Folder;
 SetDefaultFormForFolder(
 folder.DefaultMessageClass, " ", folder);
}

Advanced Form Region Methods

In addition to the methods described earlier in the FormRegionStartup interface, there are two
other methods provided on this interface: GetFormRegionManifest and GetFormRegionIcon.
Advanced form region developers can use these methods to let the add-in provide all of the
content Outlook needs for the form region: the manifest file, the icons, and the form storage.
This allows add-ins that cannot reliably know where files are installed to the disk to provide
form region solutions, and it also improves the reliability of the solution because all the asso-
ciated files can be stored as resources inside the compiled assembly.

Outlook will only call these advanced functions if the form region is registered in a special
way in the Windows registry. Instead of registering the form region with XML or a path to the
XML file as the setting value, add-ins must register their ProgID with an equal sign appended
to the front, such as =MyAddingProgID.Class. This indicates to Outlook that it needs to look for
this add-in and call the GetFormRegionManifest method on the FormRegionStartup interface to
find out more about the registered form region.

When manifest information is provided through GetFormRegionManifest, a few of the ele-
ments defined in the form region XML schema are treated differently. For example, the

434 Part IV Providing a User Interface for Your Solution
<name> element is ignored from the XML schema because Outlook is already using the reg-
istry setting name as the form region name. Additionally, both the <layoutFile> and <addin>
attributes are ignored because Outlook already knows which add-in should be contacted for
the form region. Finally, the children of the <icons> element cannot be used to refer to a loca-
tion on disk for the icons. If the child element exists and contains no value or the string
addin, then Outlook automatically calls GetFormRegionIcon for that icon. Icons that are com-
pletely omitted from the manifest XML will inherit the default icon and will not be
requested from GetFormRegionIcon.

Summary
In this chapter, you learned the basics of using the Outlook Forms Designer to create a new
form region solution. You’ve looked at how to design a form, how to hook up the business
logic for a form using an add-in in managed code, and how to write a form region manifest file
and register it with Outlook. You should now be able to use Outlook form regions to create
deeply integrated, rich solutions that really extend the power and usefulness of Outlook while
still feeling like an integrated part of the Outlook experience.

Chapter 14

Form Region Controls
One of the developer trouble spots for custom forms in previous versions of Outlook was that
it was difficult to establish parity with Outlook’s built-in forms in terms of visual appearance
and control behavior. With form regions in Microsoft Office Outlook 2007, the story is signif-
icantly improved. In addition to form regions supporting the Office and Windows themes,
Outlook includes a collection of controls that provide parity with the control used on built-in
Outlook forms.

In this chapter, you learn about standard controls for form regions and Outlook controls for
form regions. You get step-by-step instructions for adding controls in design mode. You also
learn how to add controls at run time. This chapter highlights all of the new controls included
with Outlook 2007 and discusses how to add these controls to your form and how to work
with the controls programmatically.

Standard Controls
Outlook provides replacements for the standard form controls that were previously provided
by the Microsoft Forms 2.0 library. These controls support the visual appearance of Windows
and Office themes and Outlook data binding support. Each of these controls should function
nearly identically to the Microsoft Forms 2.0 version of the control with a few exceptions,
which are detailed for those controls. Although the control should behave similar to the
Forms 2.0 version of the control, the interface might not match exactly in all cases.

The Outlook Check Box

The Microsoft Office Outlook Check Box Control provides a standard user interface concept
for a Boolean option, which is one that can be either selected or not selected. The control pro-
vides a label that appears next to a check box that indicates the selection status of the control.

The Outlook Combo Box

The Microsoft Office Outlook Combo Box Control provides a standard user interface control
that works like a combination of a text box and a list box control. Depending on the value of
the control’s Style property, the combo box allows users to type values or select values from a
drop-down list.

If the control is data bound to an Outlook built-in or custom field, you specify values for the
drop-down list at design time by using the Properties dialog box for the control. If the bound
property for the control is a keywords field, you specify the possible values for the field on the
435

436 Part IV Providing a User Interface for Your Solution
Values tab of the Properties dialog box in the Initial Values text box in the Outlook Forms
Designer. Separate each possible value in the Initial Values text box with a semicolon. For
example, for the bound custom keywords field named “Primary Color,” you type
Blue; Green; Red in the Initial Values text box.

If the control is not data bound, you add possible values at run time by calling the AddItem
method on an instance of the class. Unlike the Forms 2.0 version of the combo box control,
this control does not support setting the possible values using an array for the List or Column
properties. If you need to persist the selected item in the combo box and the control is not
data bound, write code to assign the ListIndex or Text property to a built-in or custom property
for the item. When the item is opened, read the value of the built-in or custom property, and
set the ListIndex property of the control to select the desired value in the control.

The Outlook Command Button

In addition to the standard interface members expected for a Microsoft Forms Command But-
ton, the Outlook version of this control has two additional features: support for displaying
images and displaying a drop-down arrow (see Figure 14-1). These additional properties are
available in the Advanced Properties dialog box for the OlkCommandButton control.

Figure 14-1 Use the Microsoft Office Outlook Command Button Control with pictures or drop-
down arrows.

The drop-down arrow is typically displayed when a menu will appear after the button is
clicked. This type of interface is used in several places throughout Outlook, most notably
the Contact form. When creating this type of button for your custom form, you should set
the DisplayDropArrow property equal to true.

Images are used on several buttons across the product, including the new Send button that is
displayed prominently on the default mail form in Outlook 2007. To re-create this button, use
the Picture and PictureAlignment properties to specify a bitmap image that should be displayed
on the button and how the picture should be aligned. Outlook will use the color of the top-left
pixel in the bitmap as the transparent color when rendering the image on the button.

Chapter 14 Form Region Controls 437
The Outlook Label Control

The Microsoft Office Outlook Label Control has one additional property that allows the con-
trol to take on the themed color for header elements as displayed on a form in the preview
pane and read Inspector windows.

When the UseHeaderColor property is set to true, the color used to display the label’s text will
be automatically set to the color specified by the Office theme used in the rest of Outlook.
When the UseHeaderColor property is set to false, Outlook will use the value of the ForeColor
property to determine what color will be used to draw the label’s text (see Figure 14-2).

Figure 14-2 Use the UseHeaderColor property to set label color.

The Outlook List Box

The Microsoft Office Outlook List Box Control provides a standard Windows list box, which
is displayed as a list of items that can be selected by the user. If the MultiSelect property is set
to 1, the user can select more than one item in the list using the Ctrl and Shift keys on the key-
board. When multiple selections are enabled, you use the GetSelected method to determine
which items in the list are selected and which are not.

Unlike the Forms 2.0 version of the List Box Control, this control does not support setting the
list values using an array for the List or Column properties or showing multiple columns of
data.

The Outlook Option Button

The Microsoft Office Outlook Option Button Control provides a standard user interface
concept for a value that is mutually exclusive in a group of option buttons. Each group of
option button controls can only have one option button control with a selected state. Select-
ing a different control automatically unselects other controls in the group. Grouping is
determined based on the parent container of the option button or by the GroupName prop-
erty of the control.

Label with
UseHeaderColor = true

Label with UseHeaderColor = false (default)

438 Part IV Providing a User Interface for Your Solution
This control is provided for use on Outlook forms with form regions and is designed to pick
up the Windows theme for this style of control. The control can also be data bound to
Outlook data using the Properties dialog box in the Outlook Forms Designer. This control
implements the most common set of properties, methods, and events provided by the Forms
2.0 Option Button control but does not implement the full interface provided by Forms 2.0.

The Outlook Text Box

The Microsoft Office Outlook Text Box Control provides a standard Microsoft Windows text
box, which provides functionality for editing or inputting string data. The Outlook Text Box
Control can display a single line or multiple lines by setting the MultiLine property to false or
true, respectively. The value of the control can be retrieved or set by using the Text property on
the control.

Outlook-Specific Controls
Outlook 2007 also includes a number of specific controls that are displayed on built-in item
forms. These controls provide the same functionality the user experiences on the Outlook
forms without the need to re-create the logic embedded in those controls. These controls are
only supported on form region style forms and should not be used on classic custom forms
because these controls will not work with previous versions of Outlook.

The Outlook Body Control

The Microsoft Office Outlook Body Control provides a rich editing and composing surface
that is used as the item body. This control is always automatically bound to the Body property
of the item and cannot be altered or changed. The control includes two properties: ReadOnly
and SuppressAttachments. The ReadOnly property enables the body control to appear read-only,
as it does when displayed in the preview pane or on a read-only item. SuppressAttachments can
be used to disable the attachment well that is also displayed inside the control for Hypertext
Markup Language (HTML) or plain-text formatted messages. Messages or items that use
Rich Text Format (RTF) formatting will display attachments inline regardless of the value of
SuppressAttachments.

The Outlook Business Card Control

The Microsoft Office Outlook Business Card Control shows a contact’s business card preview
and provides an entry point to editing a contact’s business card (see Figure 14-3). This control
can only be used on Contact items and automatically data binds to the underlying item. This
control also automatically sizes accordingly to fit the business card preview size and should
not be resized.

Chapter 14 Form Region Controls 439
Figure 14-3 The Outlook Business Card Control on a custom contact form.

The Outlook Category Control

The Microsoft Office Outlook Category Control displays the categories assigned to a partic-
ular item on the form in a visual representation that shows the category name and color for
each category assigned to the item (see Figure 14-4). This control is used at the top of all
built-in forms to visually represent the assigned categories for an item. The Outlook Cate-
gory Control automatically data binds to the underlying item and does not have any data
binding properties.

Figure 14-4 The Outlook Category Control on a custom task form.

440 Part IV Providing a User Interface for Your Solution
Note The Outlook Category Control should usually be positioned as the second topmost
control on the form, directly below the Microsoft Office Outlook InfoBar Control, which
should be the topmost control. This placement is consistent with the location of the Outlook
Category Control on all Outlook built-in forms.

The AutoSize property of the Outlook Category Control has special behavior that is different
from the standard AutoSize property behavior. When AutoSize is set to true, Outlook automat-
ically expands and collapses the control based on the number of categories assigned to the
item. If there are no categories assigned, the control will be hidden, and the space it uses on
the form can be used by other controls. If a category is added, the control expands and
becomes visible again. With AutoSize set to false, the control does not automatically resize and
displays “(none)” if no categories are selected on the item.

Note Setting the ForeColor property on this control has no effect. The color used for the
name of each category is determined by the category color and cannot be changed.

The Outlook Contact Photo Control

Previously, one of the biggest problems with creating a custom contact form in Outlook 2003
was that there was no way to replicate the functionality for viewing or assigning a contact
photo to the contact. For Outlook 2007, a control is provided that enables a form designer to
replicate this functionality without writing code. The Microsoft Office Outlook Contact Photo
Control has no properties to customize the appearance or behavior of the control and auto-
matically data binds to the contact picture of the contact represented by the form region (see
Figure 14-5).

Figure 14-5 Using the Outlook Contact Photo Control to display a contact photo on a custom con-
tact form.

Chapter 14 Form Region Controls 441
The Outlook Date Control

Outlook makes use of a custom date picker control on several built-in forms in Outlook, such
as the Task and Appointment forms. This Microsoft Office Outlook Date Control has a lot of
built-in parsing logic that can be difficult to replicate. For example, if the user types today or
two days from tomorrow, the control parses the language and sets the appropriate date. Pre-
viously, this type of behavior was difficult or impossible to replicate on a custom form.

For Outlook 2007, this control is wrapped as a custom control that can be used on any form
region. The Outlook Date Control can be bound using Outlook data binding to built-in date/time
fields or to a user-defined date/time field using the Value tab of the Properties dialog box for
the control. Figure 14-6 shows an example of this control in use on a form region.

Figure 14-6 The date picker, time picker, and time zone controls used on a custom form region.

The Outlook Date Control can also work in conjunction with the Microsoft Office Outlook
Time Control to set both the date and time for a particular field. Just bind both controls to the
same field, and each control will adjust the correct part of the value (date or time).

The Outlook Frame Header Control

Many of the built-in Outlook forms include a division between groups of controls. This divi-
sion is typically represented by a name for the group of controls and a themed horizontal line
separating the controls. Although this effect was previously accomplished using a Frame con-
trol from the Microsoft Forms 2.0 library, that effect did not support themes properly.

442 Part IV Providing a User Interface for Your Solution
For Outlook 2007, the Microsoft Office Outlook Frame Header Control wraps the functional-
ity displayed by the built-in forms into an easy-to-use control (see Figure 14-7). You can set the
Caption, Alignment, and ForeColor properties to customize the appearance of this control.

Figure 14-7 An example custom form region using the Outlook Frame Header Control to separate
form regions of controls into logical groups.

The Outlook InfoBar Control

The Microsoft Office Outlook InfoBar Control wraps the functionality of the Outlook InfoBar
as a control that you can use on your form region pages. The InfoBar displays additional infor-
mation about the item, such as when the user replied, or if the item is flagged for follow-up
(see Figure 14-8). Previously, this functionality was not possible for a custom form solution.

Chapter 14 Form Region Controls 443
Figure 14-8 The Outlook InfoBar Control used on a form region displayed in the Reading Pane.

The Outlook InfoBar Control should only be added to the default page of a form region, as
Outlook does not typically show this information on other pages of a built-in form. The
Outlook InfoBar Control should be the topmost control on the form and should span the
width of the form. On most forms, the Outlook Category Control should be immediately
below the InfoBar if any categories are assigned to the item.

The Outlook InfoBar Control does not have any properties that enable customization of the
appearance of the InfoBar. The color and other properties of the InfoBar text will be deter-
mined by Outlook based on the type of messages displayed. Because it only displays exist-
ing messages on the item, you cannot set the text of the InfoBar using the Outlook InfoBar
Control.

The Outlook Page Control

The Microsoft Office Outlook Page Control wraps functionality of built-in tabs provided on
Outlook forms into a control that allows these pages to be reused on form regions. For exam-
ple, if you were to create a custom meeting request form but wanted to provide the function-
ality of the Scheduling page, you could use the Outlook Page Control and a separate form
region to display this page with your custom form region. Figure 14-9 shows an example of
using this control to provide the scheduling grid on a custom Appointment form.

444 Part IV Providing a User Interface for Your Solution
Figure 14-9 An example of the Outlook Page Control used on a custom Appointment form.

The Outlook Page Control can be set to display two different form pages: the Scheduling page
and the Tracking page. Both of these pages are used on the Appointment form and can only be
used on Appointment items. You can use the Page property of the control to set which page is
displayed.

The Outlook Page Control is designed to take over the whole form region on which it is
placed. It should be designed so that it spans the entire width and height of the form region
and is set to grow automatically with the form in both height and width. The Outlook Page
Control also automatically provides an InfoBar if one is required on the page selected.

The Outlook Recipient Control

The Microsoft Office Outlook Recipient Control provides an equivalent control to the
addressing text box used in built-in Outlook forms. When a recipient address is entered in the
control, the control provides autocompletion for previously entered names, distribution list
highlighting and expansion, automatic name resolution, and presence information.

The Outlook Sender Photo Control

The Microsoft Office Outlook Sender Photo Control allows custom mail forms to duplicate
the Sender Photo feature of Outlook, which displays a contact’s photo in the headers of
received mail messages from that contact (see Figure 14-10).

Chapter 14 Form Region Controls 445
Figure 14-10 A custom form region shown in the preview pane displaying a sender contact photo
using the Outlook Sender Photo Control.

The Outlook Sender Photo Control does not automatically resize to fit the contact photo
because the control cannot understand the best way to resize for your form layout. If you
are writing a form region implemented by an add-in, you can use the PreferredHeight and
PreferredWidth properties of the control to determine the preferred size of the control and
adjust the layout of the control accordingly. If you are using the automatic layout for form
regions, after your program adjusts the size of the control, other controls should be moved to
accommodate the resized photo control. If PreferredHeight or PreferredWidth are equal to 0, the
contact photo could not be found or does not exist, and the control should not be displayed.

This control automatically data binds to a contact that represents the From address on the
mail item. This behavior cannot be altered when using this control.

The Outlook Time Zone Control

Outlook 2007 includes the new ability to control the time zone for the start and end time of
appointments and meetings through new time zone selector controls that are displayed when
the Time Zones button on the Ribbon is selected. The Microsoft Office Outlook Time Zone
Control enables a form region to use a similar control to provide a way to set the time zone
(see Figure 14-11) for times without implementing the behavior in the form logic.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

446 Part IV Providing a User Interface for Your Solution
Figure 14-11 Custom Appointment form uses the Outlook Time Zone Control to enable setting
the start and end time zones for the appointment.

The Outlook Time Zone Control does not support the standard Outlook data binding model
but can be used in conjunction with the built-in Start and End properties of an appointment
item by setting a property on the item. Setting the control’s AppointmentTimeField property
to either olAppointmentTimeFieldStart or olAppointmentTimeFieldEnd will bind the control
to the time zone used for the Start or End field’s date and time. You can also use the
olAppointmentTimeFieldNone value and then the SelectedTimeZoneIndex property to return
the selected TimeZone object from the Appointment.TimeZones collection. You can then use
the TimeZones.ConvertTime method to convert the displayed time to the appropriate local or
Coordinated Universal Time to set on a custom field.

The Outlook Time Control

Outlook makes use of a custom time control on built-in forms in Outlook like the Appoint-
ment form. This custom time picker control has a lot of built-in parsing logic that can be diffi-
cult to replicate. For example, if the user types three thirty or midnight, the control parses the
language and sets the appropriate time. Previously, this type of behavior was difficult or
impossible to replicate on a custom form.

For Outlook 2007, the Microsoft Office Outlook Time Control is available as a custom control
that can be used on any form region. The Outlook Time Control can be bound using Outlook
data binding to built-in date/time fields or to a user-defined date/time field using the Value
tab of the Properties dialog box for the control. Figure 14-6 shows an example of this control
in use on a form region along with the date control.

Chapter 14 Form Region Controls 447
The Outlook Time Control can also work in conjunction with an Outlook Date Control to set
both the date and time for a particular field. Just bind both controls to the same field, and each
control will adjust the correct part of the value (date or time).

The Outlook View Control

The Microsoft Office Outlook View Control can be used to display items from a folder on a
form. The control has properties that allow you to select which folder is displayed in the con-
trol and which view is applied to the items in the folder. You can also set a filter for the view.
This control can be used to re-create functionality similar to the Activities page of the Contact
form.

The Outlook View Control can be used on folder home pages and in custom forms with form
pages and custom forms with form regions.

Using Form Region Controls
By default, the new Outlook form region controls are not displayed in the Control Toolbox or
used when you drag a field from the Field Chooser. To use these controls, you need to add
them to the Control Toolbox or add them programmatically to a form region. Unless your sce-
nario requires controls to be dynamically added to the form, you should always add these con-
trols at design time using the Control Toolbox.

Adding Controls to the Control Toolbox

To access the new Outlook form region controls using the Control Toolbox, follow these
steps:

1. When you have a custom form or form region open in Design mode, on the Ribbon’s
Developer tab, in the Tools group, click the Control Toolbox button.

2. Right-click any of the icons for existing controls, and select Custom Controls from the
context menu.

3. Scroll down the list of custom controls to find controls that begin with “Microsoft Office
Outlook,” select the check box next to each of the controls, and then click OK.

After you have added the Outlook controls, your Control Toolbox should look like Figure
14-12. These controls can now be added to the form region you are designing.

448 Part IV Providing a User Interface for Your Solution
Figure 14-12 The form designer Control Toolbox with the Microsoft Forms 2.0 controls and
Outlook controls selected.

Automatic Control Replacement

For compatibility reasons, Outlook does not include the new form region controls in the tool-
box by default. However, if you use one of the old Microsoft Forms 2.0 controls on a form
region, the Outlook Forms Designer automatically substitutes the equivalent Outlook control
when it is placed on the form.

For example, if you drag and drop the default Text Box control from the Control Toolbox to a
form region, the control actually added to the form is the new Outlook Text Box Control. This
allows form regions to use the new themed controls by default, even if you do not add the new
controls to the Control Toolbox.

Adding Controls Programmatically

Each of the controls can also be programmatically added to the form region during run time.

Note Controls should be added to a form region during the BeforeFormRegionShow event
if they are going to use the automatic layout engine provided by Outlook. Controls added
after this event has completed will not be included in the layout.

To add controls to your form region at run time, you could use code similar to the following
code sample, which adds a new Text Box control named textbox1 to the form and then repo-
sitions it on the form:

public void BeforeFormRegionShow(Outlook.FormRegion FormRegion)
{
 if (FormRegion.InternalName == "MyFormRegion")
 {
 Forms.UserForm form = FormRegion.Form as Forms.UserForm;
 Outlook.OlkTextBox textbox1 =
 (Outlook.OlkTextBox)form.Controls.Add(
 "Outlook.OlkTextBox", "TextBox1", true);
 Forms.Control ctrl_textbox1 = (Forms.Control)textbox1;
 ctrl_textbox1.Move(150, 150, 100, 20, Type.Missing);

Chapter 14 Form Region Controls 449
 textbox1.Text = "This is the default";
 Outlook.OlkControl layout_textbox1 = (Outlook.OlkControl)textbox1;
 layout_textbox1.EnableAutoLayout = true;
 layout_textbox1.HorizontalLayout =
 Outlook.OlHorizontalLayout.olHorizontalLayoutGrow;
 layout_textbox1.VerticalLayout =
 Outlook.OlVerticalLayout.olVerticalLayoutAlignTop;
 }
}

If you have a solution that uses some controls that are prepositioned on the form region at
design time and other controls that will be dynamically added to the form at run time, you
should use a Frame control to contain the area where controls will be added at run time. This
type of scenario occurs most often when your solution enables some level of customization of
the available fields for your item types. Following this practice ensures that the automatic lay-
out preserves space for the controls and that your controls will position properly without
affecting the layout of the rest of the form.

To access all available properties for a given control on a form region, you might need to cast
the control to three different interfaces: the Olk* interface matching the ProgID of the con-
trol you have created, the MSForms.Control interface to access common properties among all
controls (like Top, Left, Width, Height, and Move), and the Outlook.OlkControl interface that
provides Outlook-specific common properties, like layout details and data binding informa-
tion. More details on these specific interfaces are provided in the following section, “Pro-
grammatic Access to Controls.”

Table 14-1 lists the ProgID values for all the Outlook form region controls and on which item
types these controls are supported. Adding a control to an unsupported item type can result
in unexpected behavior of the control.

Table 14-1 Control Names and Program IDs for Outlook Controls

Control name Program ID (ProgID) Supported items
Business Card Preview Control Outlook.OlkBusinessCard Contact
Category Control Outlook.OlkCategory All items
Check Box Control Outlook.OlkCheckBox All items
Combo Box Control Outlook.OlkComboBox All items
Command Button Control Outlook.OlkCommandButton All items
Contact Photo Control Outlook.OlkContactPhoto Contact
Date Control Outlook.OlkDateControl All items
Frame Header Control Outlook.OlkFrameHeader All items
InfoBar Control Outlook.OlkInfoBar All items
Label Control Outlook.OlkLabel All items
List Box Control Outlook.OlkListBox All items
Option Button Control Outlook.OlkOptionButton All items
Page Control Outlook.OlkPage Appointment

450 Part IV Providing a User Interface for Your Solution
Programmatic Access to Controls

To access the controls from an add-in running a form region, you need to access the Controls
collection on the UserForm object returned from the FormRegion.Form property. UserForm is
included in the Microsoft Forms 2.0 type library, which you will need to add to your add-in
project when working with form regions.

The Controls collection provides an enumeration and also direct access to the controls using
either the control ID or the index of the control on the form. For instance, to obtain a refer-
ence to a control named Label1, you might write the following code in your form region initial-
ization method:

Forms.UserForm form = FormRegion.Form as Forms.UserForm;
Outlook.OlkLabel label1 =
 (Outlook.OlkLabel)form.Controls.Item("label1");

All controls on the form are required to have a unique ID value, which you can use as the
parameter to the Item method on the Controls collection. If the control you are attempting to
access does not exist, an exception will be raised.

Using the Control Interface

All the Outlook controls (controls that begin with Olk in their class names) indirectly imple-
ment the MSForms.Control interface. However, because the Outlook type library does not have
a dependency on the Forms 2.0 type library, this interface is not visible using the Primary
Interop Assemblies or looking at the type library. To access members on this interface, you
need to explicitly cast the control to the Control interface or use reflection to query the type for
these members and invoke them.

The Control interface implements a number of common properties and methods that will be
necessary to set or use when working with controls. For instance, Control includes properties
for Top, Left, Width, Height, TabIndex, TabStop, Visible, and ControlTipText and methods like
Move, SetFocus, and ZOrder. For example, to set the width of the label from the previous exam-
ple, you would need to write code that looks like this:

Forms.UserForm form = FormRegion.Form as Forms.UserForm;
Outlook.OlkLabel label1 =

Sender Photo Control Outlook.OlkSenderPhoto Mail
Text Box Control Outlook.OlkTextBox All items
Time Zone Control Outlook.OlkTimeZone All items
Time Control Outlook.OlkTimeControl All items

Table 14-1 Control Names and Program IDs for Outlook Controls

Control name Program ID (ProgID) Supported items

Chapter 14 Form Region Controls 451
 (Outlook.OlkLabel)form.Controls.Item("label1");
((Forms.Control)label1).Width = 160;

If you will be performing multiple operations on the Control interface, it is more efficient to
store the object casted to the Forms.Control interface in another member variable. Just make
sure to release the reference as soon as you are finished using it.

Using the OlkControl Interface

All controls hosted on a form region surface are provided with an implementation of the
Outlook.OlkControl interface. Members in this interface are actually implemented by Outlook
and are transparently applied to any ActiveX control hosted on a form region so that callers
using the Controls collection can cast each object to this interface without error. The
OlkControl interface includes properties for configuring data binding information and layout
details for a control on a form region.

If you are adding a control at run time during BeforeFormRegionShow and you want to have the
control grow horizontally with the form, you could write the following code in your form
region initialization code:

Forms.UserForm form = FormRegion.Form as Forms.UserForm;
Outlook.OlkTextBox textbox1 = (Outlook.OlkTextBox)form.Controls.Add(
 "Outlook.OlkTextBox", "TextBox1", true);
((Outlook.OlkControl)textbox1).HorizontalLayout =
 Outlook.OlHorizontalLayout.olHorizontalLayoutGrow;

This code would set the control to automatically resize as the form grows and collapses
horizontally.

You can also use the OlkControl interface to configure data binding for Outlook controls.
In particular, if the control supports Outlook data binding, you can use ControlProperty,
ItemProperty, Format, and PossibleValues to determine how data binding functions. For more
information about these properties, refer to the Outlook Developer’s Reference.

Hooking Up Control Events

Events for controls are wired up in a way similar to that of other events in the Outlook object
model. If you need to listen to an event from a control on a form region, you should hook up
the event handler in the BeforeFormRegionShow method of FormRegionStartup. For each con-
trol where you will listen for events, make sure you hold onto a reference to the control such
that it will not go out of scope until the form is closed; otherwise, the event handler might not
be called. For an example of how to hook up events for controls on a form region, see the
Travel Agency sample provided on this book’s companion Web site.

452 Part IV Providing a User Interface for Your Solution
Summary
Previously, Outlook custom forms were restricted in a number of ways from appearing to be
part of the Outlook application. One of the largest problems in re-creating built-in forms was
a lack of controls that implemented similar functionality to the controls that appear on the
built-in forms. Outlook 2007 has added a number of controls that replicate the behavior of
the built-in Outlook controls, providing rich user interface elements that form designers and
developers can take advantage of to match the behavior of built-in forms from Outlook.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 15

Extending the Ribbon
The Microsoft Office Fluent user interface is the term used to describe the new user interface
(UI) for the 2007 Microsoft Office system. The Ribbon is a component of the Microsoft Office
Fluent user interface and the term used throughout this chapter to refer to the Ribbon com-
ponent. The Ribbon is unquestionably the premiere UI feature in the 2007 Microsoft Office
system. Microsoft Office Outlook 2007 uses the Ribbon in Inspector windows. This chapter
covers how you can customize the Ribbon for your Outlook solution. If your solution custom-
izes one or more Inspector windows using form regions, you might need to customize the Rib-
bon as well. In this chapter, you learn how Ribbon extensibility works within the context of
Outlook. The chapter covers the following topics:

■ Introduction to Ribbon extensibility in Outlook 2007

■ What happens with existing code that customizes Inspector command bars

■ Installing and running the Outlook RibbonX sample add-in

■ Understanding how to write RibbonX code in an Outlook add-in

Introducing Ribbon Extensibility
This chapter focuses on how you can customize the Ribbon in Outlook 2007. The Ribbon UI
(hereafter known as the Ribbon) provides a new and enhanced UI model for the 2007
Microsoft Office system. In comparison to other Office applications such as Microsoft Office
Word, Excel, and PowerPoint that rely exclusively on the Ribbon, Outlook 2007 uses both the
Ribbon and menus and toolbars.

In the main application window, Outlook displays the menu and toolbar UI that is familiar to
users of previous versions of Office. Programmatically, these elements are contained in the
CommandBars collection. In Inspector windows such as a mail message, where authoring is
the central user experience, Outlook uses the new Ribbon. To provide the best authoring
experience for end users, an Outlook Inspector window displays a Ribbon that is optimized
for a particular item type. From an object model perspective, an Outlook item window is an
Inspector object. If you have existing code that uses Inspector.CommandBars to customize com-
mand bars for built-in or custom items, you will learn what happens to your existing custom-
izations of command bars for an Outlook Inspector.

The main application window, represented by the Explorer object, still uses command bars
introduced in earlier versions of Office. For an Outlook Explorer window, developers will
continue to use Explorer.CommandBars to customize the Outlook application window. This
chapter makes the assumption that you know how to write code for the Office command
453

454 Part IV Providing a User Interface for Your Solution
bars object model and does not focus on the CommandBars object and related objects. If you
don’t know how to write code for Office command bars, there are numerous resources on
the Web that provide assistance.

The Ribbon has its own extensibility model known as RibbonX. This chapter discusses Rib-
bonX, but the main focus is on elements of Ribbon extensibility that pertain exclusively to
Outlook. There are extensive RibbonX blogs and technical resources on MSDN that cover all
aspects of RibbonX, including the schema for RibbonX markup, writing Ribbon Extensible
Markup Language (XML) for your custom Ribbon UI, supported controls for the Ribbon and
callback signatures, and a detailed discussion of Ribbon extensibility issues and best prac-
tices. Rather than duplicate this material, this chapter concentrates on Outlook-specific con-
cerns for RibbonX.

What Happens with Existing Code

If you’ve already written code to customize Inspector command bars in an Outlook add-in or
Outlook custom forms with form pages, you need to know what that code does in Outlook
2007 (see Table 15-1). Don’t be alarmed; your existing code will still work. However, your
Inspector command bars code will place your command bar customizations in the Add-Ins
tab on the Ribbon. This might be acceptable to you, or you might decide that the Add-Ins tab
experience is less than optimal for your command UI. In this case, you should consider updat-
ing your code to use Ribbon extensibility.

Table 15-1 Entry Points for CommandBar Customization in Outlook 2007

Entry point Outlook 2007 behavior
Explorer.CommandBars Existing code continues to work because Outlook 2007 uses command

bars in the Explorer window.
Inspector.CommandBars
to add custom
CommandBarControls
on a built-in menu

Existing code continues to work, but customizations appear in the
Menu Commands group on the Add-Ins tab. Menu customizations for
all add-ins that customize built-in menus appear together in the Menu
Commands group.

Inspector.CommandBars
to add custom
CommandBarControls
on a built-in toolbar

Existing code continues to work, but customizations appear in the
Toolbar Commands group on the Add-Ins tab. Toolbar customizations
for all add-ins that customize built-in toolbars appear together in the
Toolbar Commands group.

Inspector.CommandBars
to add a custom toolbar

Existing code continues to work, but customizations appear in the Cus-
tom Toolbars group on the Add-Ins tab. Custom toolbars for all add-ins
appear together in the Custom Toolbars group.

Chapter 15 Extending the Ribbon 455
Inspector Command Bars

Let’s take a look at an example of Inspector command bar customization in the Outlook Rib-
bonX Sample add-in. The RibbonX Sample add-in adds a Color Widgets custom command
bar to an Outlook contact item, but only if the contact has a mailing address. Figure 15-1
shows the Color Widgets custom command bar on the Add-Ins tab of the Outlook Contact
Inspector. Notice that the name of the Color Widgets command bar does not appear in the
Custom Toolbars group.

Figure 15-1 Color Widgets custom toolbar appears in the Custom Toolbars group on the Add-Ins tab.

Word.CommandBars to
add custom toolbars and
controls for WordMail in
Outlook 2000–2003

Existing code will not work. Word macros stored in Normal.dot or
Email.dot will no longer run, as WordMail in Outlook 2007 runs in the
Outlook process instead of the Word process. Prior to 2007, Word mac-
ros that added custom toolbars and controls executed from Word.
Existing code must be updated for Outlook 2007. If you have an exten-
sive library of WordMail macros, consider moving that code into an
Outlook add-in. Use the Inspector.WordEditor object to return a Word
Document object displayed in the current Inspector object. Because
WordMail is integrated into Outlook, all item types including Appoint-
ments, Contacts, and Tasks support Word’s rich editing environment.

Table 15-1 Entry Points for CommandBar Customization in Outlook 2007

Entry point Outlook 2007 behavior

456 Part IV Providing a User Interface for Your Solution
Due to space limitations, the sample code that creates the custom Color Widgets toolbar has
been omitted. In the sample Outlook RibbonX add-in, take a look at the CreateColorWidgets
and RemoveColorWidgets methods in the OutlookInspector class. The custom Color Widgets
toolbar is built using the events listed in Table 15-2.

Voting Options

Outlook 2007 continues to support voting options on messages. Voting options are used to
present a list of choices to message recipients and track their responses. If you create voting
options programmatically by setting a semicolon-delimited list of values for the VotingOptions
property of a MailItem, those voting options will appear in the Vote menu on the Respond
group of the Ribbon of a read note. A read note is the e-mail message that is received by the
recipient. For example, the following code creates voting options on a compose note:

private void OrderPizza()
{
 Outlook.MailItem mail =
 (Outlook.MailItem)Application.CreateItem(
 Outlook.OlItemType.olMailItem);
 mail.VotingOptions = "Cheese; Mushroom; Sausage; Combo; Veg Combo";
 mail.Subject="Pizza Order";
 mail.Display(false);
}

When the user sends the “Pizza Order” message to team members, the voting options appear
to recipients as shown in Figure 15-2. When the sender of the original message receives the
responses, recipient choices are tallied on the Tracking page of the message in the sender’s
Sent Items folder.

Table 15-2 Events Used for Color Widgets Toolbar

Event Description
Inspectors_NewInspector
in Connect class

If the Inspector object is not found in m_Windows, creates a new instance
of OutlookInspector and adds the instance to m_Windows.

ContactItem_Open in
OutlookInspector class

Adds the custom toolbar using the CreateColorWidgets method. If the
ContactItem has a nonempty BusinessAddress, HomeAddress, or
OtherAddress property, makes the custom toolbar visible.

ContactItem_Close in
OutlookInspector class

Removes the custom toolbar using the RemoveColorWidgets method.

Chapter 15 Extending the Ribbon 457
Figure 15-2 The Voting Options menu appears in the Respond group of a received message.

Custom Actions

Custom actions can also be created programmatically and appear on the Ribbon in the
Actions group on the Message tab. Custom actions can be added at design time using the
Outlook Forms Designer, specified in form region markup, or created programmatically by
calling the Add method on the Actions collection. The following code adds a custom action
named “Reply with Voice Mail” to the Inspector shown in Figure 15-3:

private void ReplyWithVoiceMail()
{
 Outlook.MailItem mail =
 (Outlook.MailItem)Application.ActiveInspector().CurrentItem;
 Outlook.Action action = mail.Actions.Add();
 action.Name = "Reply with Voice Mail";
 action.ReplyStyle = Outlook.OlActionReplyStyle.olUserPreference;
 action.ResponseStyle = Outlook.OlActionResponseStyle.olOpen;
 action.CopyLike = Outlook.OlActionCopyLike.olReply;
 action.MessageClass = "IPM.Post.Voice Message";
 mail.Save();
}

458 Part IV Providing a User Interface for Your Solution
Figure 15-3 The Custom Actions menu appears in the Custom Actions group.

Outlook RibbonX Sample Add-In
The Outlook RibbonX Sample add-in is a learning tool that will help you to understand how
to customize an item-level Outlook Ribbon using an add-in. The Outlook RibbonX Sample
add-in provides coverage of the following important new areas:

■ Provides Ribbon XML for an item based on the RibbonID passed in the
IRibbonExtensibility.GetCustomUI method.

■ Provides an understanding of how to use the IRibbonControl.Context object passed in
Ribbon callbacks. IRibbonControl.Context represents the Inspector object that is about to
be displayed in Outlook.

■ Uses the OutlookInspector class to track the state of multiple Inspector windows and to
track property change events on a given item displayed in its Inspector window.

■ After a state change in an item, calls IRibbonUI.InvalidateControl to invalidate the Ribbon
and cause callbacks to fire again.

The sample code included in this chapter uses C#. The code examples require any edition of
Microsoft Visual Studio 2005 and Outlook 2007. The sample code for this article is available
in the Outlook RibbonX Add-in, available in both a Visual Basic and C# version on the Web
site that accompanies this book. The inline code snippets provided here will help you to
understand how to customize the Ribbon in Outlook 2007.

Installation Instructions

1. Before you can run the Outlook RibbonX sample add-ins, you must download the sam-
ple code installation package. Once you have downloaded the sample code installation

Chapter 15 Extending the Ribbon 459
package to your hard disk, double-click the downloaded file to begin the setup process.
Follow the steps in the setup wizard to complete the installation.

2. The sample code installation package will install OutlookRibbonXCS, OutlookRibbonXVB,
OutlookRibbonXCS_VSTO, and OutlookRibbonXVB_VSTO to the following folder:

My Documents\Visual Studio 2005\Projects

Note The name of your personal documents folder depends on the operating sys-
tem installed on your computer. On Microsoft Windows Vista, your personal docu-
ments folder is named Documents. On Microsoft Windows XP, your personal
documents folder is named My Documents. You should adjust path specifications for
your personal documents folder according to your installed operating system.

Note If you are using Visual C# Express Edition or Visual Basic Express Edition to
open the sample add-ins, you will not be able to build the setup/deployment project
and install the sample add-ins.

Running the Sample Add-In

To run the sample add-in, follow these instructions:

1. Shut down Outlook 2007.

2. In the Visual Studio 2005\Projects\OutlookRibbonXCS folder under your Documents
folder, open the OutlookRibbonXCS solution.

3. In the Solution Explorer, select OutlookRibbonXAddinCSSetup.

4. From the Build menu, select Build OutlookRibbonXAddinCSSetup.

5. Once the build process has completed, from the Project menu, select Install to install the
solution.

6. Start Outlook to start the add-in in Run mode or press F5 to start the add-in in Debug mode.

7. To launch the add-in in Debug mode, in the Solution Explorer, select OutlookRibbonX-
AddinCS. From the Project menu, select OutlookRibbonXAddinCS Properties, click the
Debug tab, and under Start Action, select the Start External Program check box. Click .
. . and select Outlook.exe in the following folder: [Drive:]\Program Files\Microsoft
Office \Office12.

Modifying Your Code to Use RibbonX
This section assumes that you have an existing add-in that you want to update for Outlook
2007. If you are writing an add-in that exclusively targets Outlook 2007, you should definitely
use the Ribbon user experience for your solution.

460 Part IV Providing a User Interface for Your Solution
Ribbon customization in Outlook 2007 uses the add-in model for Ribbon extensibility, also
known as RibbonX. Outlook does not offer document-level customization of the Ribbon sim-
ilar to Word, Excel, or PowerPoint. The first question you should ask yourself is whether your
existing code requires modification to use RibbonX. If your existing code adds custom com-
mands to Inspector command bars, you should consider reworking your code for RibbonX. If
you do not modify your code and you modify Inspector command bars, your customizations
will appear in the global groupings of the Add-Ins tab in an Inspector window.

Because these groups do not identify the source of the command, user confusion will occur.
Aside from the user impact, the Ribbon offers a much wider range of controls in comparison
to the Office command bars object model. You can implement button, toggle button, check
box, combo box, drop-down, or gallery controls by writing Ribbon markup. I urge you to take
a close look at updating your existing code to utilize the control palette of the Ribbon. If you’re
designing a solution that runs only on Outlook 2007, your decision is a simple one: imple-
ment the Ribbon and take advantage of the rich programming model for RibbonX.

Next you’ll learn how the sample Outlook RibbonX add-in provides Ribbon customization for
an Outlook contact item. Figure 15-4 illustrates the Color Widgets toolbar transformed into a
Ribbon group. Unlike the behavior of command bar customizations on the Add-Ins tab, a
pop-up window identifies the add-in that has added the control to the Ribbon when you hover
your mouse over the control. In this case, the Color Widgets commands participate as first-
class citizens of the Ribbon.

Figure 15-4 The Color Widgets group on the Contact Inspector Ribbon.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 15 Extending the Ribbon 461
Authoring Ribbon XML

The first step in customizing the Ribbon is writing declarative XML markup that specifies the
tabs, groups, and controls for your customization. For a detailed list of all of the elements,
types, and groups included in the Ribbon for the 2007 Microsoft Office system, see the 2007
Office System XML Schema Reference on MSDN. In the case of the sample Outlook RibbonX
add-in, the Ribbon XML is contained in a resource in the Add-in project. Because Color Wid-
gets is a very simple example, the markup is simple as well. Here is the customUI.xml
resource from the sample:

 onLoad="Ribbon_OnLoad">`
 <ribbon>
 <tabs>
 <tab idMso="TabContact">
 <group id="ColorWidgetsGroup"
 getVisible="ColorWidgetsGroup_GetVisible"
 getLabel="ColorWidgetsGroup_GetLabel">
 <button
 id="ColorButton"
 getLabel = "ColorButton_GetLabel"
 getSupertip="ColorButton_GetSupertip"
 onAction ="ColorButton_Action"
 imageMso="ShadingColorsMoreColorsDialog"
 />
 <comboBox
 id="ColorCombo"
 onChange ="ColorCombo_OnChange"
 getText="ColorCombo_GetText"
 getItemCount ="ColorCombo_GetItemCount"
 getItemLabel ="ColorCombo_GetItemLabel"
 />
 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

This Ribbon markup specifies two controls, a button and combo box, for the Color Widgets
group. The Color Widgets group appears on the Contact tab, which is specified by its idMso
attribute of TabContact. The markup specifies several callbacks that will run when a contact
item is opened. These callbacks are used to execute an action, supply text for controls, specify
an image, or control visibility of the Color Widgets group. To keep things simple in the sample
code, this markup uses built-in images specified by imageMso rather than dynamically loading
an image using the GetImage callback for the Color button.

Because the RibbonX resources cited previously discuss the schema for Ribbon XML,
details on authoring Ribbon XML are not included here. If you need information on control
IDs for built-in controls for all Outlook Ribbons, please see the downloads area on the Web
site that accompanies this book or visit the Outlook 2007 Developer Portal at http://
msdn.microsoft.com/office/program/outlook/2007/.

462 Part IV Providing a User Interface for Your Solution
The important aspect of authoring Ribbon XML for Outlook is that different item types can
require a separate XML markup. If you need to customize an appointment and a contact item,
for example, you should consider adding two markup documents to your add-in resources.
You’ll understand this point better when the discussion focuses on the loading of Ribbon
markup in the IRibbonExtensibility.GetCustomUI procedure.

IRibbonExtensibility Interface

An Outlook add-in that customizes the Ribbon must implement this interface:

■ Office.IRibbonExtensibility

In the Outlook RibbonX sample add-in, this interface is implemented in the Connect class.
Once you have implemented the IRibbonExtensibility interface, you write code to return
your Ribbon markup in the IRibbonExtensibility.GetCustomUI method. Before you look at the
sample code for GetCustomUI, you must understand exactly how GetCustomUI is called in
Outlook 2007.

■ GetCustomUI does not get called until an Outlook Inspector is opened by a user or pro-
grammatic action.

■ Selecting an item in the Reading Pane does not call GetCustomUI. The item must be
opened in an Outlook Inspector.

■ GetCustomUI is called only once when the Ribbon is first loaded for a given RibbonID.

■ RibbonID is a unique string that identifies the type of Inspector. RibbonID correlates to
the item’s message class. However, different RibbonID values can be associated with the
same message class.

■ In some cases, such as a MailItem or PostItem object, GetCustomUI will be called once
when the first compose note is displayed where RibbonID is Microsoft.Out-
look.Mail.Compose and once when the first read note is displayed where RibbonID is
Microsoft.Outlook.Mail.Read.

The unique RibbonID values used by Outlook are listed in Table 15-3.

Table 15-3 RibbonID Values Returned in the GetCustomUI Method

RibbonID MessageClass
Microsoft.Outlook.Mail.Read IPM.Note.*
Microsoft.Outlook.Mail.Compose IPM.Note.*
Microsoft.Outlook.MeetingRequest.Read IPM.Schedule.Meeting.Request or

IPM.Schedule.Meeting.Canceled
Microsoft.Outlook.MeetingRequest.Send IPM.Schedule.Meeting.Request
Microsoft.Outlook.Appointment IPM.Appointment.*
Microsoft.Outlook.Contact IPM.Contact.*
Microsoft.Outlook.Journal IPM.Activity.*

Chapter 15 Extending the Ribbon 463
Note Sticky notes do not implement the Ribbon, so IPM.StickyNote is not listed in the table
of RibbonIDs and message classes.

You’ll notice that message class is represented as IPM.Type.* in most cases in the table. This
notation means that either the first instance of the base message class (for example,
IPM.Contact) or a custom message class (IPM.Contact.Foo) that appears in an Inspector will
cause GetCustomUI to be called. What does this mean to you if you are only interested in
customizing the Ribbon on Inspectors for your custom message class?

■ You should return Ribbon XML in GetCustomUI for the RibbonID that represents the
Inspector type for your custom message class such as IPM.Contact.Shoe Store.

■ If you are only controlling the visibility of your custom Ribbon tabs, groups, and con-
trols on your custom message class, call the InvalidateControl method on the IRibbonUI
object in the NewInspector event. In the NewInspector event, evaluate whether
Inspector.CurrentItem.MessageClass represents your custom message class. To improve
performance, only call the InvalidateControl method on appropriate tabs, groups, and
controls for your custom message class. Calling the InvalidateControl method in the
NewInspector event will cause GetVisible and other callbacks to be called each time an
Inspector displays for your custom message class. For example, the following code in
the NewInspector event illustrates this technique for the custom message class
IPM.Contact.Shoe Store:

private void Inspectors_NewInspector(Outlook.Inspector Inspector)
{
 try
 {
 OutlookItem olItem = new OutlookItem(Inspector.CurrentItem);
 // Make sure this is an "IPM.Contact.Shoe Store" item

Microsoft.Outlook.Task IPM.Task.* and IPM.TaskRequest.*
Microsoft.Outlook.DistributionList IPM.DistList.*
Microsoft.Outlook.Report IPM.Report.*
Microsoft.Outlook.Resend IPM.Resend.*
Microsoft.Outlook.Response.Read IPM.Schedule.Meeting.Resp.*
Microsoft.Outlook.Response.Compose IPM.Schedule.Meeting.Resp.*
Microsoft.Outlook.Response.CounterPropose IPM.Schedule.Meeting.Resp.*
Microsoft.Outlook.RSS IPM.Post.Rss.*
Microsoft.Outlook.Post.Read IPM.Post.*
Microsoft.Outlook.Post.Compose IPM.Post.*
Microsoft.Outlook.Sharing.Read IPM.Sharing.*
Microsoft.Outlook.Sharing.Compose IPM.Sharing.*

Table 15-3 RibbonID Values Returned in the GetCustomUI Method

RibbonID MessageClass

464 Part IV Providing a User Interface for Your Solution
 if (olItem.MessageClass == "IPM.Contact.Shoe Store")
 {
 m_Ribbon.InvalidateControl("ShoeSizeGroup");
 m_Ribbon.InvalidateControl("ShoeColorGroup");
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

■ If you are controlling the visibility of built-in Ribbon tabs, groups, and controls in addi-
tion to your custom Ribbon tabs, groups, and controls, call the Invalidate method on the
IRibbonUI object in the NewInspector event. In the NewInspector event, evaluate whether
Inspector.CurrentItem.MessageClass represents your custom message class before you call
the Invalidate method. Calling the Invalidate method is expensive in terms of perfor-
mance, so you should only call this method for the appropriate message class. Calling
the Invalidate method in the NewInspector event will cause GetVisible and other callbacks
to be called each time an Inspector displays for your custom message class.

■ Use GetVisible callbacks to control the visibility of your custom Ribbon tabs, groups,
and controls. The IRibbonControl.Context object passed in the callback represents an
Outlook Inspector object. Once you have an Inspector object in the callback, use
Inspector.CurrentItem.MessageClass to determine whether to return true or false in the
GetVisible callback.

If you need to customize the Ribbon on all or multiple Outlook message classes, a different set
of recommendations apply.

■ If you want to customize the first built-in tab on all Outlook Inspectors, you will have to
supply separate Ribbon XML for different RibbonID values because built-in first tabs do
not have the same name across all RibbonID values.

■ If you want to customize the Ribbon on multiple Outlook Inspectors, you might have to
supply separate Ribbon XML for different RibbonID values depending on the tab name.

Let’s take a look at GetCustomUI in the sample add-in that accompanies this chapter. You’ll
notice that customUI is stored as a resource in the Add-in project. If you need to supply Ribbon
markup for more than one RibbonID, you should name your resources appropriately and
return the correct resource in the GetCustomUI procedure. The following example returns the
Ribbon markup for Color Widgets:

public string GetCustomUI(string ribbonID)
{
 switch (ribbonID)
 {
 case "Microsoft.Outlook.Contact":
 //Return the RibbonX markup stored as a resource
 string xmlMarkup = Properties.Resources.customUI;
 return xmlMarkup;

Chapter 15 Extending the Ribbon 465
 default
 return String.Empty;
 }
}

Detecting Errors

The Ribbon markup that you return in the GetCustomUI call will usually contain callbacks
that run when an Inspector is about to be displayed. For each callback in your Ribbon
markup, you must add the callback to the add-in class that implements IRibbonExtensibility.
These callbacks must be declared as public procedures. If for some reason you omit a callback
or use an incorrect callback signature, your Ribbon customization will fail silently unless you
turn on error detection when you debug your solution.

To turn on error detection when your Ribbon markup is loaded, you should follow these steps
to display the Advanced Options dialog box shown in Figure 15-5.

Figure 15-5 The Advanced Options dialog box allows reporting of Ribbon markup errors.

To display custom user interface errors, follow these steps:

1. From the Tools menu in an Outlook Explorer window, select Options, and then click the
Other tab.

2. Click Advanced Options; then in the In All Office Applications frame, select the Show
Add-In User Interface Errors check box.

3. Click OK to save the changes.

Note If you select the Show Add-In User Interface Errors check box, you have turned on
error reporting for all Office applications.

466 Part IV Providing a User Interface for Your Solution
NewInspector Event

Once GetCustomUI is called and Ribbon markup is returned, your add-in should hook up the
NewInspector event so that your code can track the state of the Inspector window. The sample
add-in has a trivial example of state tracking. The Color Widget group has a combo box con-
trol where the user can select Red, Green, or Blue as a color. If the user clicks the Color button
control, a message box displays the currently selected color. Although this example is very
simple, it demonstrates a problem that is common to implementing Ribbon controls on
Outlook Inspectors. Outlook can display multiple Inspectors, and the user can switch con-
text between these windows. For example, let’s assume that for Inspector 1 the selected color
is green and for Inspector 2 the selected color is red. How can the sample code determine the
selected color for a given Inspector? The solution is provided by the NewInspector event in
combination with a wrapper class named OutlookInspector.

In the Visual Basic sample add-in, the InitializeAddin procedure instantiates the m_Inspectors
object dimensioned using the WithEvents keyword. In the C# sample add-in, you hook up the
NewInspector event on the m_Inspectors object. Here is the InitializeAddin method that is called
from the IDTExtensibility2_OnConnection method:

private void InitializeAddin()
{
 // Initialize variables
 m_Inspectors = this.Application.Inspectors;
 m_Windows = new List<OutlookInspector>();

 // Wire up event handlers
 m_Inspectors.NewInspector +=
 new Outlook.InspectorsEvents_NewInspectorEventHandler(
 Inspectors_NewInspector);
}

Besides hooking up the NewInspector event handler in InitializeAddin, an instance variable
named m_Windows is created that acts as a generic List class for instances of the OutlookInspector
class. A List class represents a strongly typed list of objects that can be accessed by index and
provides methods to search, sort, and manipulate lists.

Next let’s look at the NewInspector event procedure. Because the only relevant inspectors are
for contact items, the code first evaluates if Inspector.CurrentItem.Class equals olContact. If the
Inspector object represents a contact item, the FindOutlookInspector method attempts to find a
given Inspector window in the m_Windows List. If the existingWindow value is null, a new
instance of OutlookInspector is created for the Inspector object and that class instance is added
to m_Windows.

private void Inspectors_NewInspector(Outlook.Inspector Inspector)
{
 try
 {
 OutlookItem olItem = new OutlookItem(Inspector.CurrentItem);

Chapter 15 Extending the Ribbon 467
 // Make sure this is a contact item
 if (olItem.Class == Outlook.OlObjectClass.olContact)
 {
 // Check to see if this is a new window
 // we don't already track
 OutlookInspector existingWindow =
 FindOutlookInspector(Inspector);
 // If the m_Windows collection does not
 // have a window for this Inspector,
 // we should add it to m_Windows
 if (existingWindow == null)
 {
 OutlookInspector window = new OutlookInspector(Inspector);
 window.Close += new EventHandler(WrappedWindow_Close);
 window.InvalidateControl += new EventHandler<
 OutlookInspector.InvalidateEventArgs>(
 WrappedWindow_InvalidateControl);
 m_Windows.Add(window);
 }
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

OutlookInspector Class

The OutlookInspector class wraps an Inspector object. Each instance of this class allows you
to track the state of a given Inspector window. The following functions are provided by the
OutlookInspector class:

■ Wraps each instance of an Inspector object

■ Provides Open, Close, and PropertyChange events for the wrapped Inspector’s CurrentItem,
which in this case is a ContactItem

■ Exposes Properties so that callbacks in the Connect class can set or get properties such as
RibbonColor

Let’s look at a bit more of the business logic of the sample Outlook RibbonX add-in. The visi-
bility of the Color Widgets group is dependent on the existence of a mailing address in the
ContactItem item represented by the Inspector object. If a given contact has a business, home,
or other address, the Color Widgets group will appear on the Ribbon. If the contact has no
business, home, or other address, the Color Widgets group will not appear on the Ribbon. If
the state of the contact changes (for example, the user adds a business address to a new con-
tact), the PropertyChange event will detect that change and cause controls on the Ribbon to be
invalidated. Once the Ribbon control is invalidated, the callbacks for that control will be
called again.

468 Part IV Providing a User Interface for Your Solution
IRibbonUI Object

The IRibbonUI object represents all the Ribbon controls that are defined by your add-in. You
specify a callback in your Ribbon markup (see Ribbon_OnLoad in CustomUI earlier). This call-
back provides an IRibbonUI object that you can use to invalidate all controls defined by your
add-in or a single control specified by name. IRibbonUI is scoped to your add-in. The methods
of IRibbonUI are shown in Table 15-4. If you call the methods of IRibbonUI, they only apply to
your add-in rather than all connected add-ins in Outlook. Here is the Ribbon_OnLoad callback
in the sample add-in:

public void Ribbon_OnLoad(Office.IRibbonUI ribbon)
{
 m_Ribbon = ribbon;
}

For performance reasons, a best practice when using the IRibbonUI object is to call
InvalidateControl rather than Invalidate. If you call Invalidate, all Ribbon controls defined by
your add-in are invalidated and callbacks will occur on open Inspectors. Note that the
instance variable that represents IRibbonUI is m_Ribbon. This instance variable is defined in
the Connect class. To call m_Ribbon.InvalidateControl from the OutlookInspector class when the
PropertyChange event detects that the Color Widgets group requires invalidation due to an
address change, the RaiseInvalidateControl method is called in the OutlookInspector class. This
method fires the InvalidateControl event in the OutlookInspector class, which is handled by the
WrappedWindow_InvalidateControl event procedure in the Connect class.

private void RaiseInvalidateControl(string controlID)
{
 if (InvalidateControl != null)
 InvalidateControl(this, new InvalidateEventArgs(controlID));
}

IRibbonControl Object

The IRibbonControl object is passed in most of the callbacks available for Ribbon controls.
This object is especially useful for Outlook developers because it provides a Context object

Table 15-4 IRibbonUI Methods

Method Action Description
Invalidate() callback Marks all of the custom controls in your add-in for update
InvalidateControl(string
controlID)

callback Marks a specific control defined by controlID in your add-
in for update

Chapter 15 Extending the Ribbon 469
that represents the Outlook Inspector that is about to be displayed. Table 15-5 lists the prop-
erties of the IRibbonControl object.

To understand how to use the Context object and cast it to an Outlook Inspector object, code
examples are in order. First let’s look at the ColorWidgetsGroup_GetVisible callback in the
Connect class. This callback fires whenever a Contact Inspector window is created or an exist-
ing Inspector window is activated. Control.Context is passed to the FindOutlookWindow proce-
dure and ensures that the code examines the state of the correct ContactItem. Using our
simple business logic, the callback returns true if the item has an address or false if the item
does not have an address. Returning true makes the ColorWidgetsGroup control visible, and
returning False hides the control.

public bool ColorWidgetsGroup_GetVisible(Office.IRibbonControl control)
{
 Debug.WriteLine("ColorWidgetsGroup_GetVisible");
 OutlookInspector window = FindOutlookInspector(control.Context);
 if (window != null)
 {
 Outlook.ContactItem contact = window.CurrentItem;
 //Make the group visible only if an address exists
 if (String.IsNullOrEmpty(contact.BusinessAddress) &
 String.IsNullOrEmpty(contact.HomeAddress) &
 String.IsNullOrEmpty(contact.OtherAddress))
 {
 return false;
 }
 else
 {
 return true;
 }
 }
 return false;
}

When the Color button is clicked in the Color Widgets group, the ColorButton_Action call-
back defined for the ColorButton control is called. It’s also helpful to take a look at how the
IRibbonControl.Context object is used in this callback. In this callback, the FindOutlookWindow
procedure returns the Inspector object where the color button has been clicked. In the
ColorButton_Action method, window.RibbonColor returns the currently selected color for that
Inspector window and the currently selected color is displayed in a message box. How does
the RibbonColor property of the OutlookInspector class know the correct selected color in

Table 15-5 IRibbonControl Properties

Property Type Description
Context Object Read-only. Returns an object that represents the window where the Ribbon

is about to be displayed.
Id String Read-only. Returns a string that represents the ID attribute for the control.
Tag String Read-only. Returns a string that represents the tag attribute for the control.

470 Part IV Providing a User Interface for Your Solution
Color Widgets? When the ColorCombo_OnChange callback is called, window.RibbonColor is set
for a specific instance of the OutlookInspector class. ColorButton_Action and
ColorCombo_OnChange are in the following listing:

public void ColorButton_Action(Office.IRibbonControl control)
{
 try
 {
 Debug.WriteLine("ColorButton_Action");
 OutlookInspector window = FindOutlookInspector(control.Context);
 if (window != null)
 {
 MessageBox.Show(Properties.Resources.AlertMessage +
 window.RibbonColor,
 Properties.Resources.Ribbon_ColorWidgetsGroup,
 MessageBoxButtons.OK, MessageBoxIcon.Information);
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

public void ColorCombo_OnChange(Office.IRibbonControl control, string text)
{
 try
 {
 Debug.WriteLine("ColorCombo_OnChange");
 OutlookInspector window = FindOutlookInspector(control.Context);
 if (window != null)
 {
 window.RibbonColor = text;
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

Summary
The Ribbon offers a compelling new UI for Outlook 2007 Inspector windows. If your existing
Outlook solution uses command bar customizations in an Inspector, you should consider
modifying your code to support the enhanced controls of the Ribbon. RibbonX in Outlook
differs somewhat from other Office applications that extend the Ribbon by using an add-in.
Using the techniques demonstrated in the sample Outlook RibbonX add-in, you can imple-
ment the Ribbon so that state changes in an Outlook item are reflected in Ribbon controls.

Chapter 16

Completing Your User Interface
In this chapter, you learn about the final pieces of Outlook’s user interface customization
story. Microsoft Office Outlook 2007 provides two more user interface customization pieces:
custom task panes and custom property pages. Custom task panes can be added to both
Inspector and Explorer windows, providing a canvas for additional related information. Cus-
tom property pages allow you to extend the Tools Options or Folder Properties dialog boxes
with a custom property page. Typically, a custom property page exposes application- or folder-
level settings for your solution.

In this chapter, you learn how to create a custom task pane and display the task pane in an
Outlook window. You also learn how to design and display a custom property page with
theme support.

Custom Task Panes
Microsoft Office 2003 introduced the concept of Document Action task panes in Microsoft
Word and Excel. A task pane is a dockable window that provides additional contextual
assistance to users. For Microsoft Office 2007, the task panes model was extended to create
application-level task panes, and the supported applications were broadened to include
Outlook 2007.

Outlook’s custom task pane support provides an opportunity to add contextual information
to Inspector or Explorer windows in Outlook. Task panes can be docked to any edge of the
window or can be displayed floating above the parent window. Multiple task panes are dis-
played simultaneously at up to half the width of the window in which they are docked. For an
example, see Figure 16-1.
471

472 Part IV Providing a User Interface for Your Solution
Figure 16-1 The Prepare Me add-in task pane on an Outlook appointment item.

When to Use a Custom Task Pane

Custom task panes and form regions can be used in similar ways to add additional informa-
tion to be displayed to the user while working in Outlook. Before deciding on an implementa-
tion approach, it is important to consider the guidelines for using custom task panes and form
regions.

Form regions are best for displaying additional information that is specific to an item when
that information lives in the Outlook data store. For example, if you add custom properties to
a Contact to maintain details about shoe size or hair color, the recommended way to display
this to the user is through a form region on the Contact.

Custom task panes are best for displaying additional information that is specific to an item
that lives outside the Outlook data store. For example, you might display a custom task pane
that has information retrieved from a research Web service about the currently open Contact.
Custom task panes can also be used in scenarios where information about multiple items will
be displayed to the user. For instance, the To-Do Bar in Outlook 2007 is a good example of
task pane style functionality provided in Outlook. The included Prepare Me sample add-in is
also a good example of how information from multiple items in Outlook can be displayed in
a custom task pane.

Implementing a Custom Task Pane

Implementing a custom task pane solution is a two-step process. The first step is to build the
functionality that will be contained in the task pane as a Windows Forms UserControl. The

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 16 Completing Your User Interface 473

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

second step involves hooking up the control as a task pane and attaching it to an Outlook
window. Both of these steps will be covered using the Prepare Me example add-in available on
this book’s companion Web site. This sample shows information related to an open appoint-
ment or meeting such as previous e-mail messages from the attendees of the meeting, related
appointments from a user’s calendar, and an ability to access other data categorized with the
same categories as the appointment.

To build this task pane solution, you should create two projects inside a single Microsoft
Visual Studio solution. The first project will be used to implement the task pane control, and
the second project will be an Outlook add-in that will hook up the control as a task pane and
manage state.

Building a User Control Task Pane Implementation

The first step in building a task pane solution is to create the UserControl object that will be
hosted inside the custom task pane. This class should implement all of the logic necessary
to drive the task pane and should expect input from the Outlook add-in in the form of an
Outlook item or Inspector instance if the task pane is added to the Inspector window or an
Explorer instance if the task pane is added to an Explorer window. Because your add-in is ulti-
mately responsible for providing the input, you could choose to use any object as input for
your task pane, but using the window object or item is, in general, the best practice.

To begin, create a new Class Library project in Visual Studio, and add a new User Control class
named TaskPaneControl to the project. This User Control class will provide the implementa-
tion and user interface for the custom task pane. In the Prepare Me sample, the UserControl
hosts a single TreeView control, which will be used to display a hierarchy of information related
to the selected meeting. You can, however, use any Microsoft .NET Framework control that
can be hosted on UserControl and expect it to work.

Because the custom task pane will be created by Outlook and then handed back to your add-
in, you need to ensure the UserControl object only has a parameterless constructor. Otherwise,
when Outlook attempts to create the Component Object Model (COM) object representing
the UserControl, it will fail. If you want to pass objects or parameters into the custom task
pane, you can create your own initialize method on the UserControl object that your add-in
will call before displaying the task pane. For example, the Prepare Me add-in has the following
method, which is used to initialize the task pane and provide it with a reference to the meeting
with which it is displayed:

public void LoadAppointment(Outlook.AppointmentItem appointment)
{
 if (appointment == null)
 throw new ArgumentNullException("appointment");

 m_Appointment = appointment;
 m_Application = appointment.Application;

474 Part IV Providing a User Interface for Your Solution
 m_Appointment.PropertyChange +=
 new Outlook.ItemEvents_10_PropertyChangeEventHandler(
 m_Appointment_PropertyChange);

 LoadRecipients();
 LoadCategories();
 LoadMeetings();
}

The LoadAppointment method is then called by the add-in before it sets the task pane to be vis-
ible and passes in a reference to the AppointmentItem that is displayed in the Inspector win-
dow. The task pane control then uses this appointment item to listen for property changes
and to load information on the recipients, categories, and related meetings. The remainder of
the source code for the Prepare Me sample task pane control is not discussed here, as it is pri-
marily accessing data from the item and using search and other object model members to
retrieve and display that data.

Providing a Program ID

To make the UserControl object you just created available to be consumed in a custom task
pane, you need to make it COM visible and provide a Program ID and globally unique identi-
fier (GUID) for the class. Without these attributes, Outlook will be unable to create the task
pane.

Inside the source code file for the UserControl object you’ve created as a task pane,
you need to include three attributes on the class definition. These attributes are
GuidAttribute, ProgIdAttribute, and ComVisibleAttribute, which are part of the
System.Runtime.InteropServices namespace. First, you should include this namespace in
your code by adding a using statement to the top of the file.

using System.Runtime.InteropServices;
Next, define these attributes on the class:
[
Guid("DCC2C95E-4F16-42e7-A7CF-B76983144E14"),
ProgId("PrepareMeControlCS.TaskPaneControl"),
ComVisible(true)
]
public partial class TaskPaneControl : UserControl
{
 // Other code would be contained here
}

You should ensure that the value in GuidAttribute is a unique GUID. You can use the Immedi-
ate window in Visual Studio to programmatically generate a new GUID:

1. Press Ctrl+Alt+I to display the Immediate window.

2. Type System.Guid.NewGuid(), and then press Enter. A new GUID value will be printed
to the window. This value can be copied into GuidAttribute.

Chapter 16 Completing Your User Interface 475
Note If you are using Visual Basic, run guidgen.exe in a Visual Studio 2005 command prompt
window to generate a new Guid. Search for “Create Guid” in the Visual Basic documentation.

The value of ProgIdAttribute should be a unique program ID for this control. You should use
the format <ProjectName>.<ClassName> to configure the ProgID.

Adding ComVisibleAttribute with a value of true makes this class visible as a COM object. This is
necessary for it to be used as a custom task pane. Running RegAsm.exe on the compiled assembly
adds the necessary information to the registry to make this component available to COM clients.

Adding a Custom Task Pane in an Add-In

Now that you have implemented the custom task pane control, you need to have an add-in
that will tell Outlook about the custom task pane and display it. To accomplish this, you just
need to create a standard Outlook add-in, implement an additional interface for consuming
custom task panes, and hook up your custom task pane when the time is right.

To get started, create a new Outlook add-in project using the Outlook add-in template pro-
vided online, and add it to the existing solution. You should now have both the task pane con-
trol and the Outlook add-in project in the same solution.

Implementing Interfaces

To hook up a task pane to an Outlook window, you’ll need to implement the
ICustomTaskPaneConsumer interface on your add-in. This interface has one method,
CTPFactoryAvailable, which will be called to provide a factory object for creating new
custom task panes.

Implementing this interface on your add-in is simple. Open the Connect class of the add-in
project, and find the class definition. Extend the class to support the interface by editing the
class definition to look like this:

public partial class Connect : Office.ICustomTaskPaneConsumer
{
 // Other code should already be here
}

Next, you need to add the function defined by this interface to this class. Add the instance
variable and the CTPFactoryAvailable definition from the following code to your class. This
method will be called by Outlook sometime after the add-in is connected when a custom task
pane factory is available for your add-in to use.

private Office.ICTPFactory m_CtpFactory;

public void CTPFactoryAvailable(Microsoft.Office.Core.ICTPFactory CTPFactoryInst)
{
 m_CtpFactory = CTPFactoryInst;
}

476 Part IV Providing a User Interface for Your Solution
Once the custom task pane factory is available, your add-in can use it to create new custom
task panes on the Inspector or Explorer windows in Outlook.

Adding a Custom Task Pane to a Window

Once you have an instance of the custom task pane factory, adding a new custom task pane to
an Outlook window is as simple as calling a method on the factory object. However, depend-
ing on your solution, you might need to keep track of which windows have task panes added
and be able to show or hide those task panes based on property changes, clicking a button on
the Ribbon, or other user actions.

To add a custom task pane to a window, you can use the following code. Replace the parame-
ters on the CreateCTP method with the ProgID, title, and window object on which you want to
display the task pane.

Office.CustomTaskPane taskPane;
try
{
 taskPane = m_CtpFactory.CreateCTP("TaskPaneProject.TaskPaneClass",
 "My Task Pane", window);
}
catch (COMException ex)
{
 taskPane = null;
}

if (taskPane != null)
{
 taskPane.DockPositionRestrict = Microsoft.Office.Core
 .MsoCTPDockPositionRestrict.msoCTPDockPositionRestrictNoHorizontal;
 taskPane.DockPosition = Microsoft.Office.Core
 .MsoCTPDockPosition.msoCTPDockPositionRight;
 taskPane.Visible = m_ShowTaskPane;
}

Using the properties on the CustomTaskPane object, you can adjust how the task pane
behaves. The properties DockPosition and DockPositionRestrict can be used to determine where
the custom task pane is docked and where it can and cannot be docked by the user. Use the
Visible property control if the task pane is visible to the user.

In most scenarios, you will need to do something more than just let the CustomTaskPane
object created by the factory go out of scope. If you need to hide or show the task pane
based on changes in the item or the result of user action, you will need to hold onto the
CustomTaskPane object in a collection of some sort so that you can set the Visible property.
You can also listen for events on the object to determine if the user has changed where the
task pane is docked or if you want to remember the last position of the task pane so that it
can be shown in the same place next time. The Prepare Me add-in shows an example of how
to use a Ribbon button to show or hide a custom task pane on an Inspector window.

Chapter 16 Completing Your User Interface 477
Important You should use caution when adding task panes to Inspector windows in
Outlook. Sometimes Outlook recycles a window (in particular, MailItem windows), and any
custom task panes that were previously attached to that window will still be attached and
potentially displayed to the user. To ensure that a custom task pane is never duplicated, you
should call CustomTaskPane.Delete() when the Close event fires on the attached window.

Windows Theme Support in Custom Task Panes

Custom task panes, like other user interface elements provided by an add-in, are themed
according to the theme setup of the add-in that provides the user interface. By default,
Outlook does not display add-in user interface elements using the current Windows theme
and will instead use the default nonthemed controls (see Figure 16-2).

Figure 16-2 Example of a custom task pane with and without Windows theme support enabled.

To enable support for Windows themes for controls on a task pane, you need to enable visual
styles in the add-in initialization logic before any custom task pane or other form controls are
created. The best place to do this is at the top of the InitializeAddin() method in the provided
templates. To enable visual styles, you need to execute the EnableVisualStyles method on the
Application object in the System.Windows.Forms namespace. For example:

private void InitializeAddin()
{
 System.Windows.Forms.Application.EnableVisualStyles();
 // other initialize logic here
}

478 Part IV Providing a User Interface for Your Solution
You will need to make sure a reference to the System.Windows.Forms namespace is added to
the project. To add a reference to this namespace, follow these steps:

1. Select the project in the Solution Explorer pane of Visual Studio.

2. From the Project menu, select Add Reference.

3. Scroll down the list of .NET assemblies, select System.Windows.Forms, and then
click OK.

Custom Property Pages
Another method for extending the Outlook user interface is by adding a custom property
page to the Folder Properties or Tools Options dialog boxes. Figure 16-3 shows a sample cus-
tom property page for the Tools Options dialog box. This section walks you through creating
this sample property page, and you learn how to use a custom property page to persist user
settings for your add-in.

Figure 16-3 A sample property page in the Tools Options dialog box.

When deciding whether a custom property page is the right choice for your solution, you
should consider the scope and discoverability of the Options dialog box. For custom property
pages that are displayed in the Tools Options dialog box, the settings should be scoped to the
whole add-in solution. If your property page will display in the Folder Properties dialog box,
you should make sure those settings are scoped to the selected folder. You should also decide

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 16 Completing Your User Interface 479
if using the screen space in the Tools Options or Folder Properties dialog box is the most
appropriate way to display your settings, as these locations are often filled with many other
property pages and commands that display additional dialog boxes. If your settings are too
complex for a single property page, consider displaying your custom dialog box from your
custom property page. Be aware that both the Folder Properties and Tool Options dialog
boxes are application modal.

Designing a Custom Property Page

To get started building a custom property page, you need to start with an Outlook add-in
project. In this project, you create a new UserControl object that will contain the design of the
custom property page. To fully support the Windows theme in the dialog box, we need to add
a few more classes to provide the themed appearance for a property page in this user control.

To get started, create a new Outlook 2007 add-in, and open the class that contains the add-in
initialization method (for the template provided with this book, open the Connect class). In
the initialize method, you need to hook up an event handler for the appropriate event. If you
want to add a property page to the Tools Options dialog box, you want to listen on the
Application.OptionsPagesAdd event. For the Folder Properties dialog box, you want to listen
on the NameSpace.OptionsPagesAdd event. In either case, make sure the reference to the
object that contains the event is held in an instance variable so that the event handler isn’t
garbage collected unintentionally.

private void InitializeAddin()
{
 System.Windows.Forms.Application.EnableVisualStyles();
 Application.OptionsPagesAdd += new
 Outlook.ApplicationEvents_11_OptionsPagesAddEventHandler(
 Application_OptionsPagesAdd);
}

If you are using the Shared Add-in template or the Outlook 2007 Add-in Template from this
book, you need to make sure you call EnableVisualStyles in the initialize method as well; oth-
erwise, the visual appearance of controls on the user control will not take on the Windows
theme. Figure 16-4 illustrates the proper appearance of controls in the designer.

480 Part IV Providing a User Interface for Your Solution
Figure 16-4 Custom property page user control in the Visual Studio designer.

To add the property page to the Pages collection, inside the event handler for OptionsPagesAdd,
add a new instance of the UserControl object to the Pages collection. To add your custom prop-
erty page, your event handler method should look like this:

void Application_OptionsPagesAdd(
 Microsoft.Office.Interop.Outlook.PropertyPages Pages)
{
 OutlookOptionPageBase myPage = new CustomOptionPage();
 myPage.Title = "Backup";
 Pages.Add(myPage, string.Empty);
}

Additionally, you need to add two more class files to the project. These files provide some
“glue” around creating a themed property page in managed code. The first of these classes is
OutlookOptionPageBase, which implements the basic functionality of an Outlook property
page, including the ability for the page to tell Outlook a setting has changed, and a virtual
method that is called when Outlook asks each page to save changes. The class also defines
properties for the title of the page and what help file and context should be invoked if the user
requests help.

To create this file in your project, add a new UserControl in Visual Studio, and then add the
code listed here to the generated file. This way the Visual Studio Forms Designer will see the
class as a designable UserControl and allow visual design to take place.

// OutlookOptionPageBase.cs
using System;

Chapter 16 Completing Your User Interface 481
using System.Windows.Forms;
using System.Runtime.InteropServices;
using Outlook = Microsoft.Office.Interop.Outlook;
public partial class OutlookOptionPageBase
 : UserControl, Outlook.PropertyPage
{
 #region Instance Variables
 private bool m_Dirty; // dirty/clean state
 private Outlook.PropertyPageSite m_PropPageSite; // site information
 private string m_PageTitle; // Caption for the option page tab
 private string m_PageHelpFile;
 private int m_PageHelpContext;
 private bool m_isLoading = false;
 public event EventHandler Save;
 #endregion

 #region Constructors
 public OutlookOptionPageBase()
 : this(string.Empty, string.Empty, 0)
 {
 }

 public OutlookOptionPageBase(string title, string helpFile,
 int helpFileContext)
 {

 InitializeComponent();

 m_PageTitle = title;
 m_PageHelpFile = helpFile;
 m_PageHelpContext = helpFileContext;
 m_Dirty = false;
 }
 #endregion

 #region Virtual Methods
 /// <summary>
 /// This method is invoked when the user clicks the OK or Apply buttons
 /// in the Options dialog box. An add-in should use this method to persist
 /// settings displayed on the form. After this method finishes executing
 /// the Dirty state of the form is reset.
 /// </summary>
 protected virtual void OnSaveSettings()
 {
 if (null != Save)
 {
 Save(this, EventArgs.Empty);
 }
 }
 #endregion

 #region Outlook Property Page Helper Code
 /// <summary>
 /// Look up the property page site information so that we can inform Outlook
 /// when we become dirty.

482 Part IV Providing a User Interface for Your Solution
 /// </summary>
 private void GetPropertyPageSite()
 {
 try
 {
 System.Reflection.Assembly swf =
 System.Reflection.Assembly.GetAssembly(
 typeof(System.Windows.Forms.UserControl));
 Type unsafeMethods =
 swf.GetType(
 "System.Windows.Forms.UnsafeNativeMethods");
 Type oleObj = unsafeMethods.GetNestedType("IOleObject");
 System.Reflection.MethodInfo getClientSite =
 oleObj.GetMethod("GetClientSite");
 object objPropPageSite = getClientSite.Invoke(this, null);
 m_PropPageSite = (Outlook.PropertyPageSite)objPropPageSite;
 }
 catch (Exception ex)
 {
 System.Diagnostics.Debug.WriteLine(ex.ToString());
 }
 }

 /// <summary>
 /// Sets the local dirty flag to be true and informs the
 /// parent container that our status has changed
 /// </summary>
 private void PageDirty()
 {
 if (m_isLoading)
 return;
 if (m_PropPageSite == null)
 {
 GetPropertyPageSite();
 }

 if (m_PropPageSite != null)
 {
 m_PropPageSite.OnStatusChange();
 }
 }

 protected bool IsLoading
 {
 get { return m_isLoading; }
 set { m_isLoading = value; }
 }

 /// <summary>
 /// Return the display caption for the tab page
 /// </summary>
 [DispId(-518)]
 public string Title
 {
 get { return m_PageTitle; }

Chapter 16 Completing Your User Interface 483
 set { m_PageTitle = value; }
 }
 #endregion

 #region PropertyPage Members Called by Outlook

 public void Apply()
 {
 OnSaveSettings();
 m_Dirty = false;
 }

 public bool Dirty
 {
 get { return m_Dirty; }
 set
 {
 m_Dirty = value;
 if (m_Dirty)
 PageDirty();
 }
 }

 public void GetPageInfo(ref string HelpFile, ref int HelpContext)
 {
 HelpFile = m_PageHelpFile;
 HelpContext = m_PageHelpContext;
 }

 #endregion
}

The other new class you should create is PropertyPageBackgroundPanel. This file extends the
Panel control provided by the .NET Framework and paints the appropriate background gradi-
ent for the Windows theme for the background color. Although it might seem more reason-
able to paint this as part of the user control instead of a panel on the user control, you can’t
use a transparent background color on certain controls unless those controls are hosted on a
child control, like the Panel control. Without a transparent background, controls will have a
standard gray background behind text that will stick out from the page.

// PropertyPageBackgroundPanel.cs
using System;
using System.Windows.Forms;
using System.Windows.Forms.VisualStyles;
using System.Drawing;

class PropertyPageBackgroundPanel : Panel
{
 protected override void OnPaintBackground(PaintEventArgs e)
 {
 base.OnPaintBackground(e);

 // Draw the visual style in the background if necessary

484 Part IV Providing a User Interface for Your Solution
 if (VisualStyleRenderer.IsSupported)
 {
 VisualStyleRenderer render =
 new VisualStyleRenderer(VisualStyleElement.Tab.Body.Normal);
 render.DrawBackground(e.Graphics, this.ClientRectangle));
 }
 }
}

Both of these files will be used shortly when you create the custom user control that will actu-
ally be displayed to the user.

Creating a Windows Form User Control

Now that you have the basic framework for building a custom property page, you can get
started extending the base user control and designing the look of your custom property page.
However, before you can create the new inherited user control, you need to build the assembly
that contains the base user control. You might need to comment out the contents for the
OptionsPagesAdd event handler temporarily to get the assembly to build. Once the assembly
has built successfully, you should uncomment those lines again.

To create the inherited user control that will be used as your custom options page, follow
these steps:

1. Right-click the project node in Solution Explorer, select Add, and then select New Item.

2. Select Inherited User Control, type CustomOptionPage.cs for the name, and then
click OK.

3. When the Inheritance Picker dialog box appears, select OutlookOptionBasePage as the
component from which to inherit, and then click OK.

This new user control class will be displayed by Outlook in the Options dialog box of your
choice. To get started designing the page, first you need to add PropertyPageBackgroundPanel to
the user form. Open the Toolbox window in Visual Studio, and scroll to the top of the list where
controls defined in current projects are displayed. Drag the PropertyPageBackgroundPanel control
to the user control designer. You should also set the new panel control’s Dock property to Fill
so that the control will fill the entire user control. All of the controls you add to the user con-
trol should be added on this panel.

Some controls—in particular CheckBox, GroupBox, Label, LinkLabel, and RadioButton—will
need to have their BackColor property set to Color.Transparent for them to show the gradient
behind text on the control.

Dirtying the Page and Saving Changes

For your custom property page to behave like other pages, you need to tell Outlook when
the dirty state of the settings on your custom page has changed, and respond properly to

Chapter 16 Completing Your User Interface 485
requests to save changes from Outlook. Fortunately, this behavior is implemented for you
by the OutlookOptionPageBase class, which your custom property page has inherited.

When using an inherited user control from OutlookOptionPageBase, you can use the Dirty
property and the Save event on the control to notify Outlook about changes to the data and to
save those changes when the user clicks the Apply or OK button on the Options or Folder
Properties dialog boxes. For example, if you have a CheckBox control on the form, you should
wire up an event handler for the CheckedChanged event on the control and set the Dirty prop-
erty to true, indicating a change in the dirty state of your custom property page.

private void checkBox1_CheckedChanged(object sender, EventArgs e)
{
 this.Dirty = true;
}

Additionally, you should handle the Save event on the user control class and persist the set-
tings to where your add-in stores settings (using a StorageItem so that your settings roam is a
great solution for add-in settings). To handle the Save event, wire up an event handler for the
event, and write out your settings in this event handler.

public CustomOptionPage()
{
 InitializeComponent();
 this.Save += new EventHandler(CustomOptionPage_Save);
}

void CustomOptionPage_Save(object sender, EventArgs e)
{
 // Save the changes to my options here
}

You could choose to store your solution’s settings in the Windows registry, a configuration
file, or a StorageItem object. A StorageItem object is a hidden message in a folder that cannot be
accessed by a user. During the Save event you would just write the new settings to the appro-
priate configuration file and have the add-in reload the settings. The Prepare Me sample, ref-
erenced in other places in this book, uses StorageItem to maintain settings and provides a good
example for saving settings in this manner. For additional details on the StorageItem object, see
Chapter 5, “Built-in Item Types.”

Loading Settings

When your Folder Properties or Options dialog box is loading the settings, it might change
the values of the controls on the UserControl object, which could end up setting the dirtiness
of the custom property page incorrectly. The base class provided here includes a protected
property, IsLoading, which can be used to avoid this. By setting the IsLoading property to true
while you are loading values into the controls, and then setting it to false again after the load-
ing is complete, you can avoid an incorrect dirty state. The base class will ignore any attempts
to set the Dirty property to true while IsLoading is true.

486 Part IV Providing a User Interface for Your Solution
For example, the code used to load settings should look something like this:

private void LoadSettings()
{
 this.IsLoading = true;

 checkBox1.Checked = true;
 textBox1.Text = "Persisted Setting";

 this.IsLoading = false;
}

Just remember to set IsLoading back to False after the settings have been loaded from persisted
storage; otherwise, the custom property page will never report that the settings have been dirt-
ied, and the Apply button in the Options dialog box or the Folder Properties dialog box will
not be enabled.

Summary
In this chapter, you have learned a couple of additional ways that you can use to extend the
Outlook user interface to provide a rich and deeply integrated solution. Using custom task
panes to show related or associated information in the Inspector and Explorer windows can
be a powerful way to bring external information into the Outlook user experience. Likewise,
using custom property pages can really make your solution feel like part of Outlook because
the settings for your solution live alongside similar settings for the Outlook application.

However, you should take care in using both of these methods so that the user interface
doesn’t feel cluttered or overwhelming to the user. This is particularly true for both custom
task panes and custom property pages, because in some scenarios there are already several
panes or property pages displayed by Outlook, and adding additional panes or property pages
might make the user interface difficult for some users to operate.

Part V
Advanced Topics

In this part:
Chapter 17: Using the PropertyAccessor Object. 489

Chapter 18: Add-in Setup and Deployment . 509

Chapter 19: Trust and Security . 519

Chapter 17

Using the PropertyAccessor Object
The PropertyAccessor object has been added to the Microsoft Office Outlook 2007 object
model to provide parity with the Collaboration Data Objects (CDO) 1.21 Fields and Field
objects. Unlike the Field object in CDO, the PropertyAccessor object uses string representa-
tions of Messaging Application Programming Interface (MAPI) and named properties. To
enhance performance, the PropertyAccessor object also supports batch operations using the
GetProperties and SetProperties methods. Unlike CDO, the PropertyAccessor object is fully
supported for both native and managed code development.

In this chapter, scenarios for use of the PropertyAccessor object are discussed. You learn
about namespaces for the PropertyAccessor object and about PropertyAccessor methods and
helper functions. You also discover how error conditions are reported by method calls on
the PropertyAccessor object.

Scenarios for PropertyAccessor
For most property access on Outlook items, the PropertyAccessor object is not required.
Built-in properties in the Outlook object model allow you read-write access to both com-
mon and uncommon properties on Outlook objects. However, there are cases when the
Outlook object model does not expose the property you need to access. The canonical case
is PR_TRANSPORT_MESSAGE_HEADERS, which contains the message transport header.
You can use the PropertyAccessor object to access this property for use in your solution. In fact,
you can use the PropertyAccessor object to tunnel down to the “raw” properties on the under-
lying MAPI objects that contain Outlook data. A property is an attribute of a MAPI object.
Properties describe something about the object, such as the subject line of a message or the
address type of a messaging user. MAPI defines many properties, some to describe many
objects and some that are appropriate only for an object of a particular type. Consequently,
PropertyAccessor is a very powerful object that you should use with care. Outlook built-in prop-
erties encapsulate Outlook’s business logic and are the preferred means of implementing that
business logic programmatically. If you change a built-in property using the PropertyAccessor
object, you risk breaking Outlook’s business logic, and your solution might not act as
expected. The most risk-prone area is in the area of Appointment items, where use of the built-
in object model properties is always recommended to set recurrence patterns and appoint-
ment start and end times.
489

490 Part V Advanced Topics
More Info For more information regarding Microsoft’s support policy for scenarios using
PropertyAccessor and various other application programming interfaces (APIs) to access
MAPI-based data, please see http://support.microsoft.com/kb/266353.

 Another scenario for use of PropertyAccessor is when you want to decorate an item with cus-
tom properties that cannot be used in a view or are not visible in the Outlook Field Chooser.
Essentially, these are hidden custom properties on the item. Typically, custom properties are
added to items in form region Design mode or through the UserProperties collection. Custom
properties added through the UserProperties collection on an item (such as AppointmentItem
or ContactItem) or the UserDefinedProperties collection on a Folder object are visible in the
Outlook Field Chooser and can be added to a view. Custom properties added through the
SetProperty method of the PropertyAccessor object are named properties on the item that are
hidden from the Outlook user interface.

Objects That Implement PropertyAccessor
Objects that implement the PropertyAccessor property typically represent Outlook data,
such as a MailItem or AppointmentItem object. Table 17-1 lists the objects that implement
PropertyAccessor in Outlook 2007.

Table 17-1 Objects That Implement PropertyAccessor

AddressEntry AddressList
AppointmentItem Attachment
ContactItem DistListItem
DocumentItem ExchangeDistributionList
ExchangeUser Folder
JournalItem MailItem
MeetingItem NoteItem
PostItem Recipient
RemoteItem ReportItem
SharingItem Store
TaskItem TaskRequestAcceptItem
TaskRequestDeclineItem TaskRequestItem
TaskRequestUpdateItem

Chapter 17 Using the PropertyAccessor Object 491
PropertyAccessor Namespaces
PropertyAccessor supports several different namespace formats. You use a representation
of a specific property in a namespace to provide a SchemaName string for a method of
PropertyAccessor. Whether a format is supported depends on the parent object of the
PropertyAccessor object. Table 17-2 indicates which objects support a given namespace format.

Obtaining a Specific SchemaName String

Microsoft does not publish schemas for all objects that implement the PropertyAccessor object.
However, there are tools available that can help you determine the correct SchemaName string
to use for the SchemaName argument of various PropertyAccessor methods. The following
tools provide representations of the low-level MAPI properties that are available for use with
PropertyAccessor:

■ Microsoft Exchange Server MAPI Editor (formally known as MFCMapi) MAPI Editor
provides access to a wealth of MAPI information.

More Info See http://www.microsoft.com/downloads/details.aspx?familyid=55FDFFD7-
1878-4637-9808-1E21ABB3AE37&displaylang=en.

Table 17-2 Namespaces by Object

Namespaces Supported Outlook objects
http://schemas.microsoft.com/mapi
/proptag

Outlook item objects, AddressEntry, AddressList,
Attachment, ExchangeDistributionList, ExchangeUser,
Folder, Recipient, and Store objects

http://schemas.microsoft.com/mapi/id Outlook item objects; other objects depend on store
provider

http://schemas.microsoft.com/mapi
/string

Outlook item objects; other objects depend on store
provider

http://schemas.microsoft.com
/exchange

Outlook item objects

urn:schemas-microsoft-com:office:
office

Outlook item objects

urn:schemas-microsoft-com:office:
outlook

Outlook item objects

DAV: Outlook item objects
urn:schemas:calendar Outlook item objects
urn:schemas:contacts Outlook item objects
urn:schemas:httpmail Outlook item objects
urn:schemas:mailheader Outlook item objects

492 Part V Advanced Topics
■ Outlook Spy Outlook Spy is a third-party utility that displays MAPI properties for an
object in a separate window. Outlook Spy also provides windows for Outlook objects
and lets you quickly write scripts to test object model properties and methods.

More Info See http://www.dimastr.com/outspy.

Type Specifiers

Certain namespaces, such as the Proptag namespace, require that you provide the type of the
returned property in the lower order 16 bits of the property tag. If you need more information
about single-valued and multivalued MAPI property types, see the section entitled “About
Property Types” in the MAPI Software Development Kit on MSDN. Table 17-3 lists the com-
mon type specifiers used in the Proptag and ID formats.

The Proptag Namespace

The Proptag namespace is used to access properties in the MAPI namespace using the prop-
erty tag of a property. It supports only properties in the MAPI property range (that is, proper-
ties with a property identifier below 0x8000). If you use a property identifier above 0x8000,
Outlook raises an error. The following is the format to reference a property in this namespace:

http://schemas.microsoft.com/mapi/proptag/0xHHHHHHHH

HHHHHHHH represents a hexadecimal property tag value, with a unique property identi-
fier in the higher order 16 bits, and a property type in the lower order 16 bits. Every MAPI

Table 17-3 MAPI Type Specifiers

MAPI property
type Hex value

OLE variant
type Description

PT_BINARY 0102 VT_BLOB Binary (unknown format)
PT_BOOLEAN 000B VT_BOOL Boolean
PT_CLSID 0102 VT_CLSID OLE GUID
PT_CURRENCY 0006 VT_CY 8-byte integer (scaled by 10,000)
PT_OBJECT 000D VT_UNKNOWN Data object
PT_SYSTIME 0040 VT_DATE 8-byte real (date in integer, time in fraction)
PT_DOUBLE 0005 VT_R8 8-byte real (floating point)
PT_ERROR 000A VT_ERROR SCODE value; 32-bit unsigned integer
PT_SHORT 0002 VT_I2 2-byte integer
PT_LONG 0003 VT_I4 4-byte integer
PT_NULL 0001 VT_NULL Null (no valid data)
PT_FLOAT 0004 VT_R4 4-byte real (floating point)
PT_STRING8 001E or 001F VT_BSTR String

Chapter 17 Using the PropertyAccessor Object 493
property must have a property tag, regardless of whether the property is defined by MAPI,
Outlook, or a service provider. The hexadecimal value must follow the prefix 0x.

Note Schema names are case-sensitive. The only exception to this rule is that the hexa-
decimal characters that appear after 0x or in a globally unique identifier (GUID) are not case-
sensitive. 0x for Proptag format is case-sensitive.

For example, the following code sample obtains the MAPI property
PR_TRANSPORT_MESSAGE_HEADERS for the first item in the Inbox.
PR_TRANSPORT_MESSAGE_HEADERS uses the Proptag format and is not exposed
in the Outlook object model.

private void DemoProptagNamespace()
{
 Outlook.Items items =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).Items;
 //Sort by last modification time
 items.Sort("LastModificationTime",
 Outlook.OlSortOrder.olAscending);
 //Get first item in Inbox
 Outlook.MailItem oMail =
 items.Find("[MessageClass]='IPM.Note'")
 as Outlook.MailItem;
 //PR_TRANSPORT_MESSAGE_HEADERS
 string PR_TRANSPORT_MESSAGE_HEADERS =
 "http://schemas.microsoft.com/mapi/proptag/0x007D001E";
 //Obtain an instance of PropertyAccessor class
 Outlook.PropertyAccessor oPA = oMail.PropertyAccessor;
 //Call GetProperty using Try Catch block
 try
 {
 string Transport = (string)oPA.GetProperty(
 PR_TRANSPORT_MESSAGE_HEADERS);
 MessageBox.Show(this, Transport,
 "Transport Header: " + oMail.Subject);
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

Named Property ID Namespace

The ID namespace is used to access ID-named properties in a namespace identified by the
GUID of the namespace, using the identifier of the property. The following is the format to ref-
erence a property in this namespace:

494 Part V Advanced Topics
http://schemas.microsoft.com/mapi/id/{HHHHHHHH-HHHH-HHHH-HHHH-HHHHHHHHH-
HHH}/HHHHHHHH

{HHHHHHHH-HHHH-HHHH-HHHH-HHHHHHHHHHHH} represents the namespace GUID,
and HHHHHHHH represents the property tag.

For example, the following code sample obtains the named property Use_TNEF for the first
item in the Inbox. Use_TNEF uses the ID format and is not exposed in the Outlook object
model.

private void DemoIDNamespace()
{
 Outlook.Items items =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).Items;
 //Sort by last modification time
 items.Sort("LastModificationTime",
 Outlook.OlSortOrder.olAscending);
 //Get first item in Inbox
 Outlook.MailItem oMail =
 items.Find("[MessageClass]='IPM.Note'")
 as Outlook.MailItem;
 //Named property referenced by ID
 string UseTNEF =
 "http://schemas.microsoft.com/mapi/id/"
 + "{00062008-0000-0000-C000-000000000046}/8582000B";
 Outlook.PropertyAccessor oPA = oMail.PropertyAccessor;
 try
 {
 bool isTNEF = (bool)oPA.GetProperty(UseTNEF);
 if (isTNEF)
 {
 Debug.WriteLine("Uses TNEF");
 }
 else
 {
 Debug.WriteLine("Does not use TNEF");
 }
 }
 catch(Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

Named Property String Namespace

The String namespace is used to access string-named properties in an identified namespace.
The following is the format to reference a property in this namespace:

http://schemas.microsoft.com/mapi/string/{HHHHHHHH-HHHH-HHHH-HHHH-HHHHHHH-
HHHHH}/name

Chapter 17 Using the PropertyAccessor Object 495
{HHHHHHHH-HHHH-HHHH-HHHH-HHHHHHHHHHHH} represents the namespace GUID,
and name is the local property name defined as a string.

For example, the following code sample obtains the named property x-scanned-by for the first
item in the Inbox. x-scanned-by uses the String format and is not exposed in the Outlook object
model.

private void DemoStringNamespace()
{
 Outlook.Items items =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).Items;
 //Sort by last modification time
 items.Sort("LastModificationTime",
 Outlook.OlSortOrder.olAscending);
 //Get first item in Inbox
 Outlook.MailItem oMail =
 items.Find("[MessageClass]='IPM.Note'")
 as Outlook.MailItem;
 //Named property referenced by String
 string xScannedBy =
 "http://schemas.microsoft.com/mapi/string/"
 + "{00062008-0000-0000-C000-000000000046}/x-scanned-by";
 Outlook.PropertyAccessor oPA = oMail.PropertyAccessor;
 try
 {
 string scannedBy = (string)oPA.GetProperty(xScannedBy);
 if (!string.IsNullOrEmpty(ScannedBy))
 {
 Debug.WriteLine(scannedBy);
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

Office Namespaces

The PropertyAccessor object supports two Office subnamespaces:

The Office Namespace

The Office namespace is used to access properties of the DocumentItem object. The following is
the format to reference a property in this namespace:

urn:schemas-microsoft-com:office:office#name

where name is the local property name defined as a string.

496 Part V Advanced Topics

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The following are some examples that reference DocumentItem properties using the Office
namespace:

■ urn:schemas-microsoft-com:office:office#Author

■ urn:schemas-microsoft-com:office:office#Title

The following property uses the Office namespace and references the Categories property that
appears on almost all item types:

■ urn:schemas-microsoft-com:office:office#Keywords

The Outlook Namespace

This namespace is used to access Outlook item-level properties. Similar to other namespaces
that support property referencing, use this namespace to access Outlook properties that are
not explicitly exposed in the object model. The following is the format to reference a property
in this namespace:

urn:schemas-microsoft-com:office:outlook#name

where name is the local property name defined as a string.

The following example shows how to reference an Outlook item-level property using the
Outlook namespace:

urn:schemas-microsoft-com:office:outlook#remotemessagesize

DAV Namespaces

Distributed Authoring and Versioning (DAV) namespaces are used to access Outlook item-
level properties. A property in a DAV namespace is scoped using a Uniform Resource Identi-
fier (URI) namespace reference. The format is a concatenation of the namespace URI prefix
and the local property name expressed in a string, with the namespace URI being either a Uni-
form Resource Name (URN) or Uniform Resource Locator (URL).

The following are the DAV namespaces that the PropertyAccessor object supports:

■ DAV

■ urn:schemas:calendar

■ urn:schemas:contacts

■ urn:schemas:httpmail

■ urn:schemas:mailheader

Chapter 17 Using the PropertyAccessor Object 497
The following examples demonstrate properties being referenced by different DAV
namespaces:

■ DAV:getlastmodified

■ urn:schemas:httpmail:subject

■ urn:schemas:contacts:givenName

■ urn:schemas:contacts:organization

The PropertyAccessor Object
The PropertyAccessor object provides the ability to create, get, set, and delete properties on
objects. Set and Delete operations are dependent on the property type, the parent object, and
the store provider. The PropertyAccessor object only exposes methods such as GetProperty and
SetProperty. It does not expose properties or events. To enhance performance and reduce net-
work traffic in a Microsoft Exchange environment, PropertyAccessor provides methods such as
GetProperties and SetProperties that allow you to access multiple properties in a single call.

Note If untrusted code attempts to access the PropertyAccessor object, the Outlook object
model guard warning dialog box will appear. For more information regarding the Outlook
object model guard, see Chapter 19, “Trust and Security.”

The GetProperty Method

The GetProperty method returns an object that represents the value of the property specified
by SchemaName. Note that you must cast the returned object to a type that is appropriate to the
underlying MAPI property. To determine the type of the underlying MAPI property, see the
section “Type Specifiers” earlier in this chapter. Certain raw property types such as
PT_OBJECT are unsupported and will raise an error. If you require conversion of the raw prop-
erty type, for example, from PT_BINARY to a string, or from PT_SYSTIME to a local time, use
the helper methods BinaryToString and UTCToLocalTime. The following code sample returns
the normalized subject for MailItem passed to the method. The normalized subject is the sub-
ject of the item without the subject prefix such as RE: or FW:.

private string GetNormalizedSubject(Outlook.MailItem mail)
{
 const string PR_NORMALIZED_SUBJECT =
 "http://schemas.microsoft.com/mapi/proptag/0x0E1D001E";
 try
 {
 return(mail.PropertyAccessor.GetProperty(
 PR_NORMALIZED_SUBJECT) as string);
 }
 catch{return null;}
}

498 Part V Advanced Topics
The SetProperty Method

The SetProperty method sets the property specified by SchemaName to the value specified by
Value. If the property does not exist and the SchemaName contains a valid property specifier,
then SetProperty creates the property and assigns the value specified by Value. If the property
does exist and SchemaName is valid, then SetProperty assigns the property with the value spec-
ified by Value.

Important If the parent object of PropertyAccessor supports an explicit Save operation, you
must persist PropertyAccessor modifications with an explicit Save method call. For example,
you must call Item.Save to persist changes made with SetProperty or SetProperties. If the object
does not support an explicit Save operation, then the properties are saved to the object
when SetProperty is called.

The following code sample finds the first item in the Inbox, creates a custom property using
the String namespace, sets the value of the property to DW043733, and then calls the Save
method on the item:

private void DemoPropertyAccessorSetProperty()
{
 string myProp = "http://schemas.microsoft.com/mapi/string/"
 + "{FFF40745-D92F-4C11-9E14-92701F001EB3}/myCustomer";
 string myValue = "DW043733";
 Outlook.Items items =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).Items;
 //Sort by last modification time
 items.Sort("LastModificationTime",
 Outlook.OlSortOrder.olAscending);
 //Get first item in Inbox
 Outlook.MailItem oMail =
 items.Find("[MessageClass]='IPM.Note'")
 as Outlook.MailItem;
 //Obtain an instance of PropertyAccessor class
 Outlook.PropertyAccessor oPA = oMail.PropertyAccessor;
 //Set value with SetProperty call
 //If the property does not exist, then SetProperty
 //adds the property to the object when saved.
 //The type of the property is the type of the element
 //passed in myValue.
 try
 {
 oPA.SetProperty(myProp, myValue);
 oMail.Save();
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

Chapter 17 Using the PropertyAccessor Object 499
The GetProperties Method

The GetProperties method obtains the values of the properties specified by the one-dimensional
SchemaNames array. GetProperties returns an array of values, with each element corresponding
to the property specified in the SchemaNames array. The type of the array element returned by
GetProperties will be the same as the type of the underlying property. Certain raw property
types such as PT_OBJECT are unsupported and will raise an error. If you require conversion of
the raw property type, for example, from PT_BINARY to a string, or from PT_SYSTIME to a
local time, use the BinaryToString or UTCToLocalTime helper methods. If the property cannot
be found or an error occurs, then an error is returned in the element that corresponds to the
element specified in the SchemaNames array.

The following code sample uses a single GetProperties call to return the values for the proper-
ties PR_ATTR_HIDDEN, PR_ATTR_READONLY, and PR_ATTR_SYSTEM:

private void DemoPropertyAccessorGetProperties()
{
 Outlook.Items items =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).Items;
 //Sort by last modification time
 items.Sort("LastModificationTime",
 Outlook.OlSortOrder.olAscending);
 //Get first item in Inbox
 Outlook.MailItem oMail =
 items.Find("[MessageClass]='IPM.Note'")
 as Outlook.MailItem;
 const string PR_ATTR_HIDDEN =
 "http://schemas.microsoft.com/mapi/proptag/0x10F4000B";
 const string PR_ATTR_READONLY =
 "http://schemas.microsoft.com/mapi/proptag/0x10F6000B";
 const string PR_ATTR_SYSTEM =
 "http://schemas.microsoft.com/mapi/proptag/0x10F5000B";
 Object[] propNames =
 new Object[] { PR_ATTR_HIDDEN, PR_ATTR_READONLY, PR_ATTR_SYSTEM };
 Outlook.PropertyAccessor oPA = oMail.PropertyAccessor;
 try
 {
 //Call Get Properties
 Object[] propValues = (Object[])oPA.GetProperties(
 propNames);
 //Examine propValues
 for (int i = 0; i < propValues.Length; i++)
 {
 Debug.WriteLine(propValues[i].ToString());
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

500 Part V Advanced Topics
The SetProperties Method

The SetProperties method sets the properties specified by the one-dimensional SchemaNames
array to the values specified by the one-dimensional Values array. If the property specified by
the element in the SchemaNames array does not exist and contains a valid property specifier,
then SetProperties creates the property specified by the element in SchemaNames and assigns
the value of the corresponding element in the Values array. The type of the property will be the
type of the element passed in Values. The length of the SchemaNames array must be equal to
the length of the Values array. If the property does exist and the element in SchemaNames is
valid, then SetProperties assigns the property to the value of the corresponding element in the
Values array.

If no error occurs when the property represented by each element in SchemaNames is set or
created, an empty array is returned from the SetProperties call. If an error occurs for any of the
properties specified in SchemaNames, SetProperties returns an array with the same number of
elements as the SchemaNames array. Elements that did not generate an error return null. Ele-
ments that did generate an error return a MAPI extended error code. For additional informa-
tion on errors returned by the SetProperties, GetProperties, or DeleteProperties methods, see the
section “Detecting and Reporting Error Conditions” later in this chapter.

The following code sample finds the first item in the Inbox, creates a set of custom properties
using the SetProperties method, and then calls the Save method on the item:

private void DemoPropertyAccessorSetProperties()
{
 Outlook.Items items =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).Items;
 //Sort by last modification time
 items.Sort("LastModificationTime",
 Outlook.OlSortOrder.olAscending);
 //Get first item in Inbox
 Outlook.MailItem oMail =
 items.Find("[MessageClass]='IPM.Note'")
 as Outlook.MailItem;
 //Names for properties using the MAPI string namespace
 string prop1 = "http://schemas.microsoft.com/mapi/string/" +
 "{FFF40745-D92F-4C11-9E14-92701F001EB3}/mylongprop";
 string prop2 = "http://schemas.microsoft.com/mapi/string/" +
 "{FFF40745-D92F-4C11-9E14-92701F001EB3}/mystringprop";
 string prop3 = "http://schemas.microsoft.com/mapi/string/" +
 "{FFF40745-D92F-4C11-9E14-92701F001EB3}/mydateprop";
 string prop4 = "http://schemas.microsoft.com/mapi/string/" +
 "{FFF40745-D92F-4C11-9E14-92701F001EB3}/myboolprop";
 Object[] propNames =
 new Object[] {prop1, prop2, prop3, prop4};
 Object[] propValues =
 new Object[] { 1020, "111-222-Kudo",
 DateTime.Now.ToUniversalTime(), false };
 //Set values with SetProperties call

Chapter 17 Using the PropertyAccessor Object 501
 //If the properties do not exist, then SetProperties
 //adds the properties to the object when saved.
 //The type of the property is the type of the element
 //passed in propValues array.
 Outlook.PropertyAccessor oPA = oMail.PropertyAccessor;
 try
 {
 //Call Set Properties
 Object[] arrErrors = (Object[])oPA.SetProperties(
 propNames, propValues);
 //Examine arrErrors to determine errors
 for(int i = 0; i < arrErrors.Length; i++)
 {
 if (arrErrors[i] != null)
 {
 GetMAPIError((int)arrErrors[i], propNames[i].ToString());
 }
 }
 oMail.Save();
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

The DeleteProperty Method

The DeleteProperty method deletes the property specified by SchemaName. The caller must
have the permission to delete properties. The DeleteProperty method deletes only custom
properties; it does not delete any Outlook built-in property or any MAPI property. It also does
not delete custom properties of the DocumentItem object.

The DeleteProperties Method

The DeleteProperties method deletes the properties specified in the array SchemaNames. The
caller must have the permission to delete properties. The DeleteProperties method deletes only
custom properties; it does not delete any Outlook built-in property or any MAPI property. It
also does not delete custom properties of the DocumentItem object.

If no error occurs when the property represented by each element in SchemaNames is deleted,
then an empty array is returned from the DeleteProperties call. If an error occurs for any of the
properties specified in SchemaNames, then DeleteProperties returns an array with the same
number of elements as the SchemaNames array. Elements that did not generate an error return
null. Elements that did generate an error return a MAPI extended error code. For additional
information on errors returned by SetProperties, GetProperties, or DeleteProperties methods, see
the section “Detecting and Reporting Error Conditions” later in this chapter.

502 Part V Advanced Topics
Date-Time Properties

Although most Outlook date-time values are stored in Coordinated Universal Time (UTC) for-
mat, there is no guarantee that all properties of the MAPI type PT_SYSTIME will always return
UTC. Getting a PT_SYSTIME property will return a VT_DATE value. When setting a
PT_SYSTIME property, ensure that you are setting the property as a UTC value rather than a
local date-time value. The GetProperty, SetProperty, GetProperties, and SetProperties methods do
not perform time zone conversion. Use the helper methods PropertyAccessor.LocalTimeToUTC
and PropertyAccessor.UTCToLocalTime to perform explicit time zone conversion.

Warning [Due to the way that Outlook stores dates internally, date-time values returned
by PropertyAccessor methods such as GetProperty, LocalTimeToUTC, or UTCToLocalTime will
always be rounded to the nearest minute.

Multivalued Properties

A multivalued property (such as a PT_MV_STRING8 property) is stored as a one-dimensional
array that contains the same number of elements as there are values in the property.
Multivalued properties are also known as keywords properties. Getting a multivalued
property returns a VT_ARRAY value. When setting a multivalued property, pass a one-
dimensional array (VT_ARRAY) with one element for each value that you want to set for
the property. The following code sample uses PropertyAccessor to obtain the categories for
the ActiveInspector.CurrentItem object:

private void DemoMultiValuedProperty()
{
 const string categoriesSchema =
 "http://schemas.microsoft.com/mapi/string/" +
 "{00020329-0000-0000-C000-000000000046}/Keywords";
 if (Application.ActiveInspector() != null)
 {
 //Create an instance of OutlookItem
 OutlookItem myItem = new OutlookItem(
 Application.ActiveInspector().CurrentItem);
 Outlook.PropertyAccessor oPA = myItem.PropertyAccessor;
 try
 {
 Object[] categories =
 (Object[])oPA.GetProperty(categoriesSchema);
 for (int i = 0; i < categories.Length; i++)
 {
 Debug.WriteLine(categories[i].ToString());
 }
 }

Chapter 17 Using the PropertyAccessor Object 503
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 }
}

Helper Methods

PropertyAccessor implements several helper methods that make your life easier. For example,
Outlook stores certain properties such as an EntryID property as an array of bytes. To turn the
array of bytes into a string that is expected by Namespace methods such as GetItemFromID or
GetAddressEntryFromID, you use a helper method instead of developing your own conversion
routines.

The BinaryToString Method

The BinaryToString method converts an array of bytes to a string. Because Outlook stores
“raw” binary properties as an array of bytes, binary properties are returned from the
GetProperty method as an array of bytes. The following code snippet returns an AddressEntry
object and uses the BinaryToString method to convert an array of bytes to a string. The string
that represents the AddressEntry object is then passed to the GetAddressEntryID method of
the Namespace object to return an AddressEntry object that represents the sender of the
MailItem object passed to the procedure. Note that you must first call the GetProperty
method of PropertyAccessor to return the array of bytes that BinaryToString converts to a
string.

private Outlook.AddressEntry GetSenderAddressEntry(Outlook.MailItem mail)
{
 const string PR_SENT_REPRESENTING_ENTRYID =
 "http://schemas.microsoft.com/mapi/proptag/0x00410102";
 try
 {
 Outlook.PropertyAccessor pa = mail.PropertyAccessor;
 string entryID = pa.BinaryToString(pa.GetProperty(
 PR_SENT_REPRESENTING_ENTRYID));
 return Application.Session.GetAddressEntryFromID(entryID);
 }
 catch { return null; }
}

The LocalTimeToUTC Method

The LocalTimeToUTC method converts a date-time value from the local time format to UTC
format. The local time format is determined by the local time zone established in the Date and
Time item in Windows Control Panel and the Time and Date settings on the Regional Options

504 Part V Advanced Topics
page of the Regional and Language Options item in Windows Control Panel. Use this method
if you need to convert a local date-time value to a UTC date-time value and store the value
using the SetProperty method of the PropertyAccessor object. All date-time values on the under-
lying item storage are saved in UTC format. If you attempt to write a date-time value using the
SetProperty method and don’t convert from local time to UTC time, Outlook displays an incor-
rect date-time value.

The StringToBinary Method

The StringToBinary method converts a string to an array of bytes. Use this method if you need
to convert a string representation of a binary property to an array of bytes and store the value
using the SetProperty method of PropertyAccessor. All binary values on the underlying item
storage are saved as an array of bytes. If you attempt to write a string to a binary property using
the SetProperty method and don’t convert from a string to an array of bytes, Outlook raises an
error.

The UTCToLocalTime Method

The UTCToLocalTime method converts a date-time value in UTC format to the local time for-
mat. The local time format is determined by the local time zone established in the Date and
Time item in Windows Control Panel and the Time and Date settings on the Regional Options
page of the Regional and Language Options item in Windows Control Panel. Use this method
if you need to convert a UTC date-time value obtained by calling the GetProperty method to a
local date-time value. All date-time values on the underlying item storage are saved in UTC for-
mat. If you attempt to access a date-time value using the GetProperty method and don’t convert
from UTC time to local time, Outlook will display an incorrect date-time value. The following
code sample displays the local time for the date-time value property
PR_CLIENT_SUBMIT_TIME:

private void DemoUTCToLocalTime()
{
 const string PR_CLIENT_SUBMIT_TIME =
 "http://schemas.microsoft.com/mapi/proptag/0x00390040";
 Outlook.Items items =
 Application.Session.GetDefaultFolder(
 Outlook.OlDefaultFolders.olFolderInbox).Items;
 //Sort by last modification time
 items.Sort("LastModificationTime",
 Outlook.OlSortOrder.olAscending);
 //Get first item in Inbox
 Outlook.MailItem oMail =
 items.Find("[MessageClass]='IPM.Note'")
 as Outlook.MailItem;
 //Obtain an instance of PropertyAccessor class
 Outlook.PropertyAccessor oPA = oMail.PropertyAccessor;
 //Call GetProperty within Try Catch block
 try
 {

Chapter 17 Using the PropertyAccessor Object 505
 DateTime submitTime = oPA.UTCToLocalTime(
 (DateTime) oPA.GetProperty(
 PR_CLIENT_SUBMIT_TIME));
 MessageBox.Show(this, submitTime.ToString("g"),
 "Client Submit Time: " + oMail.Subject);
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

Detecting and Reporting Error Conditions
You should write try…catch blocks around all PropertyAccessor methods to handle error condi-
tions. There is no guarantee that a given property exists on an item when you perform read
operations. For set operations, Outlook raises an error if you attempt to call SetProperty on a
folder object or set a read-only property such as EntryID. The run-time error message for a
failed set operation is as follows:

The property ‘SchemaName’ does not support this operation

where ‘SchemaName’ is the actual namespace representation of the property.

Additional conditions that can cause a PropertyAccessor operation to fail are as follows:

■ The property is read-only, as some Outlook and MAPI properties are read-only.

■ The property referenced by the specified namespace is not found.

■ The property is specified in an invalid format and cannot be parsed.

■ The property does not exist and cannot be created.

■ The property exists but is passed a value of an incorrect type.

■ The property cannot be opened because the client is offline.

■ The size of the property is too large for a Set or Get operation.

Delete operations can also raise errors. For the most part, you should attempt to delete only
custom properties that you have created. Otherwise, you risk corrupting Outlook data or cre-
ating unexpected results due to problems with the custom properties and business logic of
another add-in.

When you call the SetProperties or DeleteProperties methods, the returned array can contain
a MAPI extended error code. If no error occurs during the method call, the returned array
is empty, meaning that it contains zero elements. If an error occurs for any of the elements
specified by SchemaNames, then the returned array has the same number of elements as the
SchemaNames array. If an error occurs when an element of the SchemaNames array attempts
to set or delete a property, then the corresponding element in the returned array contains a

506 Part V Advanced Topics
MAPI extended error code. The following GetMAPIError procedure will write the MAPI
error and the property that caused the error to the trace listeners in the Listeners collection:

private void GetMAPIError(int errorCode, string property)
{
 if (property == null)
 {
 property = "property is null";
 }
 switch (errorCode)
 {
 case -2147221233:
 Debug.WriteLine("MAPI_NOT_FOUND - " + property);
 break;
 case -2147221222:
 Debug.WriteLine("MAPI_E_COMPUTED - " + property);
 break;
 case -2147221246:
 Debug.WriteLine("MAPI_E_NO_SUPPORT - " + property);
 break;
 case -2147024891:
 Debug.WriteLine("MAPI_E_NO_SUPPORT - " + property);
 break;
 case -2147352571:
 Debug.WriteLine("DISP_E_TYPEMISMATCH - " + property);
 break;
 default:
 Debug.WriteLine("Unknown error - " + property);
 break;
 }
}

Table 17-4 lists the most common MAPI extended error codes that could be returned in an
element of the array returned by GetProperties, SetProperties, or DeleteProperties.

Property Size Limitations
The size of the property that can be accessed by the PropertyAccessor object is dependent on
the store that obtains the parent object. If you attempt to set or get a property that is larger
than the limitation imposed by a given store, Outlook raises an error. At the MAPI level, the
error is MAPI_E_NOT_ENOUGH_MEMORY. Unfortunately, when the error bubbles up to

Table 17-4 MAPI Extended Error Codes

Error Hex value Integer value
MAPI_E_NOT_FOUND 0x8004010F -2147221233
MAPI_E_COMPUTED 0x8004011A -2147221222
MAPI_E_NO_SUPPORT 0x80040102 -2147221246
E_ACCESSDENIED 0x80070005 -2147024891
DISP_E_TYPEMISMATCH 0x80020005 -2147352571

Chapter 17 Using the PropertyAccessor Object 507
Outlook, the reported error is misleading: “Out of memory or system resources. Close some
windows or programs and try again.”

Closing windows or programs and trying again will not solve the problem because you have
run into the size limitation imposed by the store. Table 17-5 lists the size limitation in bytes
for common store types. The size limitation depends on whether you are attempting to
access a PT_STRING8 or PT_BINARY property. If you need to set properties that are larger
than the size allowed by the store, consider adding an attachment to the item rather than
using the PropertyAccessor object.

Summary
In this chapter, you learned how to use the PropertyAccessor object. You should also under-
stand appropriate scenarios for use of PropertyAccessor; it is not a replacement for the built-in
properties exposed in the Outlook object model. You should now understand how to write
code that uses PropertyAccessor and how to provide error handling for this powerful object.
Use PropertyAccessor with care!

Table 17-5 Property Size Limitations for the PropertyAccessor Object

Store

Maximum property size in
bytes for GetProperty or
SetProperty calls when
property is PT_STRING8

Maximum property size in
bytes for GetProperty or
SetProperty calls when
property is PT_BINARY

Personal Folders File (.pst) 4088 4088
Offline Folders File (.ost) 4088 4088
Exchange Mailbox store (online
mode)

16372 4088

Exchange Public Folder store 16372 4088

Chapter 18

Add-in Setup and Deployment
Once you have worked through the steps of creating and testing your solution, you need to
deploy it to customers. Typically, you create a setup package to install your solution. You can
use Microsoft Visual Studio 2005 to create and build a setup package, or you can use a third-
party tool. Depending on how you create your add-in project, Visual Studio might add a setup
project to your solution. This chapter focuses on the registry keys required for a Microsoft
Office Outlook 2007 add-in. Depending on the features of your solution, you will have to cre-
ate certain registry keys for your add-in (and form regions, if applicable) to load successfully.
You also must ensure that certain prerequisites, such as the Microsoft .NET Framework ver-
sion 2.0, have been installed before the user attempts to run your setup project. Finally, you
must install required assemblies and other components into the application folder on a target
computer. Although most of the setup requirements are handled for you by Visual Studio,
there are numerous small details that you must attend to for your setup to complete success-
fully. This chapter covers the basic requirements for add-in setup and deployment. Once you
have read this chapter, you should have an understanding of the following topics:

■ An overview of setup and deployment

■ Creating a setup project using Visual Studio 2005

■ Writing required keys to the Windows registry

■ Determining required components for your setup package

Creating a Setup Project
Depending on how you create your add-in, the setup project might be created for you. The fol-
lowing types of add-in projects create a setup project automatically:

■ Shared Add-ins

■ Microsoft Visual Studio 2005 Tools for the 2007 Microsoft Office System (VSTO) add-ins

The following type of add-in project does not create a setup project automatically:

■ Add-ins created with the Outlook add-in template supplied with this book

If you use either the Shared Add-in template or VSTO to create your add-in project, all the
details of registering your add-in will be handled by Visual Studio. In general, you should
avoid using the Shared Add-in template for your add-in unless you plan to shim the add-in
with the Component Object Model (COM) Shim Wizard.
509

510 Part V Advanced Topics
If you use the Outlook Add-in Templates that accompany this book to create your add-in, you
will have to create a separate Visual Studio setup project and add that setup project to your
solution. Assuming that you also add a COM shim to your add-in project to provide applica-
tion domain isolation, the COM Shim Wizard handles the COM registration of the shim. You
can download the COM Shim Wizard from MSDN or use the link provided on the Web site
that accompanies this book. For additional details on creating a setup project for an add-in
created with the Outlook Add-in Template and the language of your choice, see the section
“Creating a Setup Project” in Chapter 3, “Writing Your First Outlook Add-in Using Visual
Basic .NET,” or in Chapter 4, “Writing Your First Outlook Add-in Using C#.”

Writing Required Keys to the Windows Registry
Certain keys and entry and value pairs must be written to the Windows registry for your add-
in to function correctly. The following sections discuss the location of registry entries and the
required entry and value pairs.

Installing to HKEY_CURRENT_USER

Installing to HKEY_CURRENT_USER (HKCU) is the preferred method of writing registry
keys for an Outlook add-in. Add-ins installed to HKCU are visible in the COM Add-Ins dialog
box, which is accessed through the Outlook Trust Center dialog box on the Add-Ins tab. To
display the Trust Center dialog box, on the Tools menu in an Outlook Explorer window,
select Trust Center.

Installing to HKEY_LOCAL_MACHINE

For the Microsoft 2007 Office system, installation to HKEY_LOCAL_MACHINE (HKLM) is
not recommended. Unlike previous versions of Office, an add-in installed to HKLM is visible
in the COM Add-Ins dialog box. Because the add-in is visible in the COM Add-Ins dialog box,
the user can disconnect the add-in if the COM Add-Ins dialog box has not been disabled
through policy and the user has administrative privileges on the machine. Finally, the 2007
Office system will not load a VSTO add-in that has been registered under HKLM. VSTO add-
ins can only be loaded from HKCU.

Registry Keys Required for an Add-In

The registry keys required for an add-in depend on whether you use VSTO, the Shared Add-
in template, or the Outlook Add-in Templates that accompany this book to create the add-in.

Add-ins that are created using VSTO require a set of registry entries on each computer that
runs the add-in. These registry entries point to the location of the application manifest and
provide additional information about the add-in. Add-ins that are not created with VSTO do
not require a manifest entry, for example, for the add-in to load. In either case, there is a cer-
tain minimum set of registry entries that are required for an Outlook add-in.

Chapter 18 Add-in Setup and Deployment 511
Table 18-1 lists the required and optional registry entries and values for an Outlook add-in. All
registry keys must be created under the following registry key:

HKEY_CURRENT_USER\Software\Microsoft\Office\Outlook\Addins\<ProgID>

The text <ProgID> represents a unique programmatic identifier (ProgID) for your add-in. Typ-
ically, ProgID represents the assembly name of the add-in or the ProgID attribute of your COM-
visible assembly. Note that there are additional registry keys and entries required to register
your add-in assembly for COM. These keys, typically listed under HKEY_CLASSES_ROOT or
HKEY_CURRENT_USER\Software\Classes, are not represented in this table.

The DWORD value in the LoadBehavior entry controls how Outlook loads the add-in. The typ-
ical setting is to load the add-in at startup, which corresponds to a DWORD value of 0x03.
Table 18-2 lists valid LoadBehavior settings.

Table 18-1 Required Registry Keys for an Outlook Add-In

Entry Type Value
CommandLineSafe REG_DWORD Optional. Indicates whether the add-in is safe for opera-

tions that do not support a user interface. A value of 1 indi-
cates the add-in is command-line safe, whereas a value of
0 (the default) indicates that it is not command-line safe.

Description REG_SZ Required. A brief description of the add-in. In add-ins for
the 2007 Microsoft Office system, this description is dis-
played when the user selects the add-in on the Add-Ins tab
of the Trust Center dialog box in Outlook.

FriendlyName REG_SZ Required. The friendly name of the add-in that is displayed
in the COM Add-Ins dialog box. The friendly name is also
displayed when the user selects the add-in on the Add-Ins
tab of the Trust Center dialog box.

LoadBehavior REG_DWORD Required. A value that determines when the add-in is
loaded. This value should be set to 3, which specifies that
the add-in is loaded at startup. For additional supported
values of LoadBehavior, see Table 18-2.

Manifest REG_SZ Optional. The full path of the application manifest for the
add-in. This must be a local path on the client computer.
The Manifest key is only required for add-ins created with
VSTO.

Table 18-2 Valid LoadBehavior Settings

Initial Load-
Behavior setting

LoadBehavior
DWORD Behavior description

None 0x00 (Disconnected)
or
0x01 (Connected)

The COM add-in is not loaded when Outlook boots. It
can be loaded in the COM Add-Ins dialog box or by
setting the Connect property of the corresponding
COMAddin object.

512 Part V Advanced Topics
Registry Keys Required for a Form Region

If your add-in implements a form region, you must ensure that your setup project writes the
correct keys to the registry. Form region registry keys can be written to HKCU or HKLM. Writ-
ing form region registry keys to HKCU is recommended. Writing registry keys for a form region
is covered in the section “Registering a Form Region” in Chapter 13, “Creating Form Regions.”

Required Installation Components
The following section discusses required installation components for an Outlook add-in built
with Visual Studio 2005. Additional components are required if you build your add-in with
VSTO.

.NET Framework Version 2.0

If you have created a managed add-in using Visual Studio 2005, target computers must have
the Microsoft .NET Framework version 2.0 installed before your add-in setup package runs. If
the .NET Framework is not installed, the installer for your setup will fail.

To obtain the .NET Framework 2.0 redistributable package, follow these steps:

1. Download the most recent version of Dotnetfx.exe from the MSDN Download Center or
the Microsoft Windows Update Web site.

2. If you need to direct users to the Internet to install the .NET Framework, do not post
Dotnetfx.exe. Instead, direct users to the Microsoft Windows Update Web site.

Startup 0x02 (Disconnected)
or
0x03 (Connected)

The add-in is loaded when Outlook boots. Once the
add-in is loaded, it remains loaded until it is explicitly
unloaded.

Load On Demand 0x08 (Disconnected)
or
0x09 (Connected)

The add-in is not loaded until the user clicks the but-
ton or menu item that loads the add-in, or until a pro-
cedure sets its Connect property to True. In most cases,
you won’t set the initial load behavior to Load On
Demand directly; you’ll set it to Load At Next Startup
Only, and it will automatically be set to Load On
Demand on subsequent boots of Outlook.

Load At Next
Startup Only

0x10 (Reverts to 0x09
on next boot)

After the COM add-in has been registered, it loads as
soon as the user runs Outlook for the first time, and it
creates a button or menu item for itself. The next time
the user boots Outlook, the add-in is loaded on
demand; that is, it doesn’t load until the user clicks the
button or menu item associated with the add-in.

Table 18-2 Valid LoadBehavior Settings

Initial Load-
Behavior setting

LoadBehavior
DWORD Behavior description

Chapter 18 Add-in Setup and Deployment 513
3. If you download the Microsoft .NET Redistributable Package from MSDN, you receive a
file named Dotnetredist.exe. This file contains Dotnetfx.exe. To extract Dotnetfx.exe,
double-click Dotnetredist.exe. You will be prompted to save the extracted file on your
computer. The extracted file is Dotnetfx.exe. Use Dotnetfx.exe for deployment purposes.

There are several options to install the .NET Framework 2.0 on a target computer. You should
understand that .NET Framework 2.0 must specifically be installed.

The following options are available for installation of Dotnetfx.exe:

■ Distribute Dotnetfx.exe using an electronic software distribution tool such as Microsoft
Systems Management Server or Microsoft Active Directory. See the topic “Distributing
Dotnetfx.exe Using an Electronic Software Distribution Tool” in the Visual Studio 2005
documentation.

■ Install Dotnetfx.exe from a network share or an intranet site. See the topic “Manually Install-
ing Dotnetfx.exe from a Share or Web Site” in the Visual Studio 2005 documentation.

■ Create a single setup project to install Dotnetfx.exe and your managed add-in. This
approach installs Dotnetfx.exe if required and then installs the assemblies and other
required files for your add-in. See the topic “Creating a Single Setup Project to Install a .NET
Framework Application and Dotnetfx.exe” in the Visual Studio 2005 documentation.

If you use Visual Studio 2005 to create your setup project, you can have the installation project
automatically check for the .NET Framework 2.0 and download it from Microsoft automati-
cally if the component is not already installed. To enable the setup project to check for and
download the .NET Framework 2.0, follow these steps:

1. Right-click the setup project in your project solution, and then select Properties.

2. In the Property Pages dialog box, select the Build page, and then click Prerequisites.

3. Select the Create Setup Program To Install Prerequisite Components check box.

4. In the Prerequisites To Install list, select .NET Framework 2.0.

5. Select Download Prerequisites From The Component Vendor’s Web Site.

6. Click OK twice to return to the project.

Visual Studio Tools for Office Runtime

You are required to install the Visual Studio Tools for Office runtime only if you have created a
VSTO add-in. The VSTO runtime is available for download from the MSDN Download Center.
You must install the .NET Framework version 2.0 before you install the VSTO runtime.

Note The user must be an Administrator on the target computer to install the .NET Frame-
work version 2.0 or the VSTO runtime.

514 Part V Advanced Topics
Primary Interop Assemblies

For the 2007 Office system, Primary Interop Assemblies (PIAs) are redistributable. You can
download the redistributable package (PrimaryInteropAssembly.exe) for the 2007 Office sys-
tem PIAs from the MSDN Download Center. Once you have extracted the package to your
hard disk, the redistributable installer (O2007pia.msi) is placed in a local folder. You can then
wrap the O2007pia.msi in another setup package through Visual Studio or another Windows
Installer-aware setup editor. By using the PIA redistributable, you ensure that all the required
PIAs are available on the target machine. You do not have to depend on whether the .NET
Programmability Support feature is configured to run from My Computer in the 2007 Office
system setup.

The following assemblies are installed by the PIA redistributable:

■ ADODB

■ DAO

■ extensibility

■ ipdmctrl

■ Microsoft.mshtml

■ Microsoft.Office.InfoPath.Permission

■ Microsoft.Office.Interop.Access

■ Microsoft.Office.interop.access.dao

■ Microsoft.Office.Interop.Excel

■ Microsoft.Office.Interop.Graph

■ Microsoft.Office.Interop.InfoPath

■ Microsoft.Office.Interop.InfoPath.SemiTrust

■ Microsoft.Office.Interop.InfoPath.Xml

■ Microsoft.Office.Interop.MSProject

■ Microsoft.Office.Interop.OneNote

■ Microsoft.Office.Interop.Outlook

■ Microsoft.Office.Interop.OutlookViewCtl

■ Microsoft.Office.Interop.PowerPoint

■ Microsoft.Office.Interop.Publisher

■ Microsoft.Office.Interop.SharePointDesigner

■ Microsoft.Office.Interop.SharePointDesignerPage

Chapter 18 Add-in Setup and Deployment 515
■ Microsoft.Office.Interop.SmartTag

■ Microsoft.Office.Interop.Visio

■ Microsoft.Office.Interop.Visio.SaveAsWeb

■ Microsoft.Office.Interop.VisOcx

■ Microsoft.Office.Interop.Word

■ Microsoft.stdformat

■ Microsoft.Vbe.Interop

■ Microsoft.Vbe.Interop.Forms

■ MSCOMCTL

■ msdatasrc

■ OFFICE

■ stdole

■ Policy.11.0.Microsoft.Office.Interop.Access

■ Policy.11.0.Microsoft.Office.Interop.Excel

■ Policy.11.0.Microsoft.Office.Interop.Graph

■ Policy.11.0.Microsoft.Office.Interop.InfoPath

■ Policy.11.0.Microsoft.Office.Interop.InfoPath.Xml

■ Policy.11.0.Microsoft.Office.Interop.MSProject

■ Policy.11.0.Microsoft.Office.Interop.Outlook

■ Policy.11.0.Microsoft.Office.Interop.OutlookViewCtl

■ Policy.11.0.Microsoft.Office.Interop.PowerPoint

■ Policy.11.0.Microsoft.Office.Interop.Publisher

■ Policy.11.0.Microsoft.Office.Interop.SmartTag

■ Policy.11.0.Microsoft.Office.Interop.Visio

■ Policy.11.0.Microsoft.Office.Interop.Visio.SaveAsWeb

■ Policy.11.0.Microsoft.Office.Interop.VisOcx

■ Policy.11.0.Microsoft.Office.Interop.Word

■ Policy.11.0.Microsoft.Vbe.Interop

■ Policy.11.0.Office

516 Part V Advanced Topics
Add-in Assembly and Other Required Components

You also need to ensure that the assembly for your add-in and any other required components
are installed to the application folder for your solution. Typically, you install the assembly and
other required components to the [ProductName] folder under the [Manufacturer] folder in the
Program Files folder. You control the location of your application folder in the File System Edi-
tor window for your setup project.

If you have developed your add-in using VSTO, the manifest for your assembly will also be
installed to the application folder. VSTO handles this requirement for you by adding the man-
ifest and the add-in assembly as components of the primary output for the add-in project. A
VSTO setup project installs both the add-in assembly and the add-in manifest to the applica-
tion folder.

Using a COM Shim

If you are using the COM Shim Wizard to add a COM shim to your project, you must ensure
that the output of the COM shim has been added to your setup project. The COM shim
should reside in the same application folder as your managed add-in assembly. See Chapter 3
or Chapter 4 (depending on whether you use Visual Basic or C# to create your add-in) for
additional instructions on creating the COM shim and adding it to your setup project.

When you run the COM Shim Wizard, you are prompted for the FriendlyName and
Description of your add-in. The COM Shim Wizard creates the necessary registry entries
in ConnectProxy.rgs to ensure that Outlook loads your add-in. If you need to modify the
registry entries created by the COM Shim Wizard, you can edit the registry entries in
ConnectProxy.rgs, which is located in your COM Shim project.

If you have added the output for the COM shim dynamic link library (DLL) to your setup
project, you should make the COM shim self-registering. To ensure that the COM shim self-
registers, click the Register property in the Properties window for the COM shim output, and
select vsdrpCOMSelfReg in the drop-down list box.

Writing Custom Actions

If you are writing a VSTO add-in, you must grant full trust to the assemblies in the application
folder. If you are writing an add-in that implements form regions and your setup creates sub-
folders of the application folder, you must also grant full trust to the subfolders of the appli-
cation folder in the security policy of each user or computer. By default, your VSTO add-in will
not load unless full trust has been granted explicitly. Only explicit changes made to the .NET
security policy enable managed code extensions to execute. Typically, you write a custom
action for your setup package to grant full trust to the appropriate folders.

Chapter 18 Add-in Setup and Deployment 517

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

More Info For a complete discussion of security for VSTO add-ins, including a sample
custom action, see the article “Deploying Visual Studio 2005 Tools for Office Solutions Using
Windows Installer” (a two-part article) on MSDN.

Deploying to Users Who Are Not Administrators
In the Microsoft Windows environments that support the 2007 Microsoft Office system,
default users have limited access to system areas of the computer. Limited access is especially
a concern on Microsoft Windows Vista, where a user can be an administrator on a computer
but still does not run with elevated privileges. Because your setup program writes to system
areas of the operating system and the Windows registry, a user must have administrative
rights on the local computer to install your solution.

To install your add-in on computers where users lack administrative rights, you must run
Setup in a context that provides it with administrative rights.

In organizations where users are not the administrators of their computers, there are three
methods of providing your solution setup with the appropriate rights:

■ Log on to the computer as an administrator, and install the solution.

■ Assign your solution to the computer using Group Policy Software Deployment.

■ Use a software management tool such as Systems Management Server in an administra-
tive context.

■ On Vista, log on to the computer as an administrator when prompted for credentials
after launching the installation package.

Summary
Setup and deployment help to deliver your solution to a customer’s computer. Although most
of the details of setup are handled for you by VSTO or the Shared Add-in Wizard, using the
COM shim requires that you follow extra steps to ensure that your setup package installs the
correct components on a target computer. If you follow the guidelines set forth in this chapter,
your add-in will be deployed successfully to your customers.

Chapter 19

Trust and Security
This chapter covers how Microsoft Office Outlook 2007 handles security for the object model
and other application programming interfaces (APIs) provided by Outlook. If you are not
familiar with the Outlook object model guard, you learn how Outlook enforces code and
attachment security. This chapter helps you understand which methods and properties are
protected by the guard and how you can write a trusted add-in that does not display security
prompts to the user. You also learn how administrator policy can trust add-ins in a locked-
down environment and how to control code security settings via policy. Specifically, this chap-
ter discusses the following:

■ What is the Outlook object model guard?

■ More about code security in Outlook

■ Code security changes made in Outlook 2007

■ Protected object model methods and properties and what happens when you access
those members in your code

■ Implications of the Component Object Model (COM) add-in trust model for managed
add-in developers

■ How to write a trusted add-in

■ How to administratively control the object model guard

Code Security for Outlook 2007
To prevent malicious programs and viruses from propagating through e-mail messages, later
versions of Outlook have included the object model guard to help protect against malicious
use of the Outlook object model. Outlook solutions that access these protected properties
and methods in the object model might invoke security warnings that the user must respond
to before the solution can continue. Outlook 2007 introduces several changes to the behavior
of the object model guard to improve the developer and user experience while helping to keep
Outlook secure.

The preferred method for extending and automating Outlook is through a trusted Outlook
add-in. Out of the box, Outlook considers all add-ins trusted and does not display security
prompts if the add-in is properly written. This behavior can be overridden by an administrator
using Group Policy to adjust the security settings and provide a list of explicitly trusted add-ins.

The object model guard in Outlook 2007 takes advantage of the status of antivirus software
installed on a computer to avoid burdening the user with unnecessary prompts. This change
519

520 Part V Advanced Topics
represents a departure from the way the object model guard worked in previous versions. If
Outlook is able to detect that antivirus software is running on the computer with an accept-
able status, Outlook disables security warnings for the user. This allows external applications
that previously needed to use Extended Messaging Application Programming Interface
(MAPI) or third-party libraries to avoid security prompts to use the object model directly if the
user is known to be running antivirus software. This new behavior helps keep Outlook secure
without overwhelming the user with excessive warning messages. Solutions that use simple
MAPI to automate Outlook will continue to show security prompts according to the security
policy applied to the machine, regardless of the state of antivirus software.

All out-of-process COM callers and add-ins run without security prompts if all of the following
conditions are true:

■ The client computer is running Microsoft Windows XP Service Pack 2 (SP2) or Microsoft
Windows Vista.

■ The antivirus software installed on the client computer is designed for Windows XP SP2
or Windows Vista.

■ The Windows Security Center (WSC) indicates that antivirus software on the computer
is in a “Good” health status. If the computer is joined to a domain, the health-status indi-
cator might not be visible, but it is still maintained.

■ Outlook 2007 is configured on the client computer in one of the following ways:

❑ Uses the default security settings

❑ Uses security settings defined by Group Policy and set to warn when antivirus soft-
ware is inactive or out of date

❑ Uses security settings defined by Group Policy but does not have a programmatic
access policy applied

Additionally, Outlook 2007 suppresses security warnings when it is configured to Never
Warn Me About Suspicious Activity (Not Recommended) through the Outlook Trust Center
or via Group Policy. Using this setting in Outlook effectively disables the object model guard
for COM add-ins and out-of-process callers, but it can be a security risk if other protection
measures are not in place.

Administrators can use the Trust Center in Outlook 2007 to manually adjust the policy
applied to Outlook’s object model guard as well, using the Programmatic Access tab of the
Trust Center. The selected value is used for all users of the computer, not just the currently
logged-in user. You must be running as an Administrator to change these settings; otherwise,
they appear to be disabled. Figure 19-1 shows an example of this page.

The Programmatic Access tab also displays the current antivirus status as detected by
Outlook. If the status is displayed as Valid, Outlook does not show security prompts if the
Warn Me About Suspicious Activity When My Antivirus Software Is Inactive Or Out-Of-Date
(Recommended) option is selected.

Chapter 19 Trust and Security 521
Figure 19-1 Programmatic Access settings in the Outlook 2007 Trust Center.

To detect the status of the antivirus software on client computers, Outlook 2007 depends on
the Windows Security Center (WSC). Currently, antivirus products that are compatible with
Windows XP SP2 and Windows Vista register status information with the WSC to indicate if
they are running and up to date. Outlook first checks for the current status of antivirus soft-
ware by querying the WSC. Microsoft Windows Server 2003 does not provide a WSC; there-
fore, Outlook is unable to detect the status of antivirus software and does not disable security
prompts except under policy settings.

For Outlook 2007 to disable security prompts, the antivirus software must report the follow-
ing three conditions to the WSC:

■ Software is installed and registered with the WSC.

■ Software is up to date.

■ On access (or real-time) virus scanning is enabled.

Outlook 2007 examines all of the antivirus products that are installed and registered with the
WSC. If at least one of those products meets the previous three conditions, Outlook turns off
the object model security prompts. Over each session of Outlook, the status of antivirus soft-
ware is continually monitored. At any point, if no antivirus product on the computer meets all
three conditions, Outlook enables the security prompts again. Later, if an installed antivirus
product returns to meeting all three conditions, Outlook disables the prompts again.

This new behavior applies to all programs that access Outlook 2007 through the Outlook
object model. These include add-ins and external COM callers. Programs that access Outlook
data through other APIs (for example, Collaboration Data Objects, Exchange Client Exten-
sions, or simple MAPI) are not affected by this change. Solutions using Extended MAPI are not
restricted by the object model guard.

522 Part V Advanced Topics
Guard Principles

The object model guard originated through a security update known as the Outlook E-Mail
Security Update for Outlook 98 and Outlook 2000. Since then, all shipping versions of
Outlook have included the object model guard. The guard was introduced in response to
damage wrought by e-mail viruses like Melissa and ILoveYou. Since the original introduction,
Windows and Office have become more secure, and the guard now acts as a defense-in-depth
measure to protect against viruses instead of a front-line defense.

Although Outlook 2007 defines new circumstances for untrusted callers to invoke security
warnings, it inherits the set of protected objects and members from the Outlook 2003 object
model guard. In addition, Outlook 2007 displays warnings for code that attempts to access
several new members added to the object model. Outlook raises warnings in five major sce-
narios, when untrusted code attempts to use the object model to retrieve data or execute cer-
tain methods:

■ Properties or methods that return address objects, including properties and members of
these objects:

❑ AddressEntry and AddressEntries

❑ Recipient and Recipients

❑ ExchangeDistributionList and ExchangeUser

❑ SelectNamesDialog

❑ PropertyAccessor

■ Properties of various objects that might contain addresses or address information, such as:

❑ Alias

❑ Address

❑ Body and HTMLBody

❑ ID

❑ WordEditor

■ Methods that allow writing items to a storage location outside of Outlook, such as:

❑ Item.SaveAs

❑ CalendarSharing.SaveAsICal

■ Entry points that provide access to properties using explicit, built-in property names or
references to namespaces, such as:

❑ UserProperties.Find

❑ ItemProperties.Item(“IMAddress”) and other protected properties

❑ Table.Columns.Add

Chapter 19 Trust and Security 523
❑ PropertyAccessor.GetProperties

❑ PropertyAccessor.GetProperty

■ Programmatic sending of an item:

❑ Item.Allow and Item.Send

❑ Action.Execute

Security Warning Types

The object model guard in all versions of Outlook consists of three different prompt messages.
These messages are displayed based on the action the untrusted code is attempting to execute.
For Outlook 2007, the prompt dialog boxes were updated to make them easier to understand
and to show a consistent security user interface (UI) with Windows XP and Windows Vista.

Address Book Warning

The address book warning is the most common prompt a user sees when an untrusted pro-
gram is accessing Outlook data. This prompt appears for members whose prompt type is
Address Book in the Protected Members List discussed later in this chapter. Generally, how-
ever, this prompt appears for any programmatic access of recipient data in Outlook.

This warning, shown in Figure 19-2, enables the user to allow or deny the action the
untrusted program is attempting. The user can also choose to allow access to this call and sub-
sequent calls for all solutions for a period of time indicated by the Allow Access For drop-
down list box. The time values in the dialog box cannot be changed via policy or other means.

Figure 19-2 Outlook 2007 address book access warning dialog box.

If the user clicks Deny, Outlook immediately blocks the call that invoked the warning and
returns MAPI_E_NOT_SUPPORTED as an error code for the call. Outlook does not return any
data for the call. If the program making the call does not handle the error properly, it can
crash or cause Outlook to crash. As a developer, you should expect that any call to a member
in the Protected Members List might throw an exception, and you should handle these excep-
tions accordingly.

If the user clicks Allow without selecting the Allow Access For check box, only the call that
generated the warning will be allowed. Because of the way the object model protects all levels

524 Part V Advanced Topics
of the object model and not just entry points to protected data, a single line of code can gen-
erate multiple warning prompts. Take this code snippet, for example, which attempts to print
the name of the first address entry in the first address list in the current Outlook session:

Application.Session.AddressLists[1].AddressEntries[1].Name

This statement actually generated three separate security prompt dialog boxes: one prompt
for accessing a specific address list from the AddressLists collection, one for accessing the
AddressEntries collection on the AddressList object, and another for accessing a specific
AddressEntry object from the collection. If you were accessing multiple properties from the
AddressEntry object, it would be better to hold a reference to the specific object so that the user
wouldn’t potentially see three prompts for each member you accessed, and would only see
those prompts once.

If the user clicks Allow after selecting the Allow Access For check box, the call that generated the
prompt, as well as future calls, will be allowed for the duration that the user has selected. During
this time period, all callers to the object model—not just the program that originally invoked
the security warning—are approved for address book access. After this time period expires, the
security warnings will reappear when a program attempts to access a blocked property.

Send Message Warning

The send message warning is invoked when an untrusted solution attempts to send an item
programmatically. This prompt appears for members whose prompt type is Sending Mail in
the Protected Members List discussed later in this chapter. This dialog box, shown in Figure
19-3, has a built-in timer that prevents untrusted add-ins from sending messages rapidly and
automatically. The user must wait 5 seconds before clicking Allow.

Figure 19-3 Outlook 2007 e-mail send message warning dialog box.

If the user clicks Deny, Outlook blocks the call that invoked the warning and returns the
MAPI_E_NOT_SUPPORTED error. Subsequent calls to send messages programmatically will
invoke the dialog box again. Your program should be written to handle this error code and
respond accordingly.

If the user clicks Allow, the call that invoked the warning, and only that call, is allowed to pro-
ceed. Subsequent calls from the same solution or other untrusted solutions to send messages
programmatically will continue to generate warnings.

Chapter 19 Trust and Security 525
Execute Actions Warning

The execute actions warning is invoked when an untrusted solution executes a custom action
from the Actions collection on an item. This prompt, shown in Figure 19-4, appears for mem-
bers whose prompt type is Custom Action in the Protected Members List discussed later in
this chapter. Outlook displays a message similar to the send message warning, indicating that
an action is being executed that might result in an e-mail being sent. The user must wait five
seconds before he or she can click Allow to execute the action.

Figure 19-4 Outlook 2007 execute actions warning dialog box.

If the user clicks Deny, Outlook blocks the call to the method that generated the prompt and
returns the MAPI_E_NOT_SUPPORTED error. Your code should handle this error code and
respond accordingly.

If the user clicks Allow, the call that invoked the warning, and only that call, is allowed. Sub-
sequent calls from the same solution or other untrusted solutions will invoke the warning dia-
log box again.

Detecting Trusted State

In Outlook 2007, a new member has been added to the Application object that enables an add-
in to determine if Outlook considers the Application instance to be trusted. Add-ins can query
the value of this property and evaluate whether or not the application will generate security
dialog boxes when it attempts to access a trusted member of the object model. The following
sample code illustrates how this works:

private void IsApplicationTrusted()
{
 bool isTrusted = Application.IsTrusted;
 if (isTrusted)
 {
 MessageBox.Show("Object is trusted and will not prompt.");
 }
 else
 {
 MessageBox.Show("Object is not trusted and may prompt.");
 }
}

526 Part V Advanced Topics
Although this method can be beneficial for an add-in to determine if it will not display
prompts, there are other mitigating factors that determine if object model guard prompts will
be displayed or not. For example, only trusted add-ins will ever have the IsTrusted property
return True. Out-of-process callers and untrusted add-ins will always see False for the property
value. However, if the object model guard has been disabled or administrator policy has dis-
abled certain prompts, the prompts will not appear, even though IsTrusted will return False.

Trapping Errors

If you make a call to a restricted object model property or method and the object model
guard is active, Outlook displays the appropriate warning prompt. If the user cancels the
restricted object model call by clicking Deny in the dialog box, your code will raise a
exception that you should catch. In managed code, the exception will be thrown as a
System.Runtime.InteropServices.COMException with an error code of -2147467260. It is worth
noting that this is a generic exception that does not map directly to the error you would see in
a native code add-in.

To trap the error, you need to wrap code that can generate the error in a try-catch block and
handle the error appropriately. In this example, a message box is displayed if the user clicks
Deny on the prompt that indicates the operation was not successful:

private void TrapGuardError()
{
 Outlook.AddressList firstList;
 try
 {
 // Do something that generates a prompt
 firstList = Application.Session.AddressLists[1];
 }
 catch (COMException ex)
 {
 if (ex.ErrorCode == -2147467260)
 {
 MessageBox.Show("Could not access data from Outlook. " +
 "You may have canceled the operation in Outlook.");
 }
 }
}

Restricted Properties and Methods

Table 19-1 lists the properties and methods that cause the object model guard warning to dis-
play in Outlook 2007, subject to the conditions outlined in the section “Guard Principles” ear-
lier in this chapter. Rows in the table where the member value is Everything indicate that all
properties specific to that object are protected. Everything does not include properties avail-
able on all objects, like Application, Class, Parent, and Session.

Chapter 19 Trust and Security 527
Table 19-1 Listing of Properties and Methods Protected by the Object Model Guard

Object/Interface Member Prompt type
Account SmtpAddress Address Book
Action Execute() Custom Action
AddressEntries GetFirst() Address Book
AddressEntries GetLast() Address Book
AddressEntries GetNext() Address Book
AddressEntries GetPrevious() Address Book
AddressEntries Add() Address Book
AddressEntries Item() Address Book
AddressEntry Address Address Book
AddressEntry ID Address Book
AddressEntry Manager Address Book
AddressEntry Members Address Book
AddressEntry Parent Address Book
AddressEntry GetExchangeDistributionList() Address Book
AddressEntry GetExchangeUser() Address Book
AddressEntry Update() Address Book
AddressEntry PropertyAccessor Address Book
AddressLists Item() Address Book
AddressList PropertyAccessor Address Book
AddressList AddressEntries Address Book
AddressList ID Address Book
AppointmentItem Body Address Book
AppointmentItem NetMeetingOrganizerAlias Address Book
AppointmentItem OptionalAttendees Address Book
AppointmentItem Organizer Address Book
AppointmentItem PropertyAccessor Address Book
AppointmentItem RequiredAttendees Address Book
AppointmentItem Resources Address Book
AppointmentItem Respond() Sending Mail
AppointmentItem SaveAs() Address Book
Attachment PropertyAccessor Address Book
CalendarSharing SaveAsICal() Address Book
Columns Add() Address Book
ContactItem Body Address Book
ContactItem Email1Address Address Book
ContactItem Email1AddressType Address Book
ContactItem Email1DisplayName Address Book
ContactItem Email1EntryID Address Book

528 Part V Advanced Topics
ContactItem Email2Address Address Book
ContactItem Email2AddressType Address Book
ContactItem Email2DisplayName Address Book
ContactItem Email2EntryID Address Book
ContactItem Email3Address Address Book
ContactItem Email3AddressType Address Book
ContactItem Email3DisplayName Address Book
ContactItem Email3EntryID Address Book
ContactItem IMAddress Address Book
ContactItem NetMeetingAlias Address Book
ContactItem PropertyAccessor Address Book
ContactItem ReferredBy Address Book
ContactItem SaveAs() Address Book
DistListItem Body Address Book
DistListItem GetMember() Address Book
DistListItem PropertyAccessor Address Book
DistListItem SaveAs() Address Book
DocumentItem Body Address Book
DocumentItem PropertyAccessor Address Book
ExchangeDistributionList Address Address Book
ExchangeDistributionList Alias Address Book
ExchangeDistributionList GetExchangeDistributionList() Address Book
ExchangeDistributionList GetExchangeUser() Address Book
ExchangeDistributionList GetMemberOfList() Address Book
ExchangeDistributionList GetExchangeDistributionListMembers() Address Book
ExchangeDistributionList GetOwners() Address Book
ExchangeDistributionList ID Address Book
ExchangeDistributionList Parent Address Book
ExchangeDistributionList PrimarySmtpAddress Address Book
ExchangeDistributionList PropertyAccessor Address Book
ExchangeDistributionList Update() Address Book
ExchangeUser Address Address Book
ExchangeUser Alias Address Book
ExchangeUser GetDirectReports() Address Book
ExchangeUser GetExchangeDistributionList() Address Book
ExchangeUser GetExchangeUser() Address Book
ExchangeUser GetExchangeUserManager() Address Book
ExchangeUser GetMemberOfList() Address Book

Table 19-1 Listing of Properties and Methods Protected by the Object Model Guard

Object/Interface Member Prompt type

Chapter 19 Trust and Security 529
ExchangeUser ID Address Book
ExchangeUser Parent Address Book
ExchangeUser PrimarySmtpAddress Address Book
ExchangeUser PropertyAccessor Address Book
ExchangeUser Update() Address Book
Folder GetCalendarExporter() Address Book
Folder PropertyAccessor Address Book
Inspector HTMLEditor Address Book
Inspector WordEditor Address Book
ItemProperties Any protected property for an item Address Book
JournalItem Body Address Book
JournalItem ContactNames Address Book
JournalItem PropertyAccessor Address Book
JournalItem SaveAs() Address Book
MailItem Bcc Address Book
MailItem Body Address Book
MailItem Cc Address Book
MailItem HTMLBody Address Book
MailItem PropertyAccessor Address Book
MailItem ReceivedByName Address Book
MailItem ReceivedOnBehalfOfName Address Book
MailItem Recipients Address Book
MailItem ReplyRecipientNames Address Book
MailItem SaveAs() Address Book
MailItem Send() Sending Mail
MailItem SenderEmailAddress Address Book
MailItem SenderEmailType Address Book
MailItem SenderName Address Book
MailItem SendOnBehalfOfName Address Book
MailItem To Address Book
MeetingItem Body Address Book
MeetingItem PropertyAccessor Address Book
MeetingItem SaveAs() Address Book
MeetingItem SenderName Address Book
MeetingItem Recipients Address Book
NameSpace CurrentUser Address Book
NameSpace GetAddressEntryFromID() Address Book
NameSpace GetRecipientFromID() Address Book

Table 19-1 Listing of Properties and Methods Protected by the Object Model Guard

Object/Interface Member Prompt type

530 Part V Advanced Topics
NameSpace SelectNamesDialog Address Book
NoteItem Body Address Book
NoteItem PropertyAccessor Address Book
PostItem Body Address Book
PostItem HTMLBody Address Book
PostItem PropertyAccessor Address Book
PostItem SaveAs() Address Book
PostItem SenderName Address Book
Recipient Everything Address Book
Recipient PropertyAccessor Address Book
Recipients Everything Address Book
RemoteItem Body Address Book
RemoteItem PropertyAccessor Address Book
ReportItem Body Address Book
ReportItem PropertyAccessor Address Book
SelectNamesDialog Recipients Address Book
SharingItem Allow() Sending Mail
SharingItem Bcc Address Book
SharingItem Body Address Book
SharingItem Cc Address Book
SharingItem HTMLBody Address Book
SharingItem PropertyAccessor Address Book
SharingItem ReceivedByName Address Book
SharingItem ReceivedOnBehalfOfName Address Book
SharingItem ReplyRecipientNames Address Book
SharingItem SaveAs() Address Book
SharingItem Send() Sending Mail
SharingItem SenderEmailAddress Address Book
SharingItem SenderEmailType Address Book
SharingItem SenderName Address Book
SharingItem SendOnBehalfOfName Address Book
SharingItem To Address Book
StorageItem Body Address Book
StorageItem PropertyAccessor Address Book
Store PropertyAccessor Address Book
TaskItem Body Address Book
TaskItem ContactNames Address Book
TaskItem Contacts Address Book

Table 19-1 Listing of Properties and Methods Protected by the Object Model Guard

Object/Interface Member Prompt type

Chapter 19 Trust and Security 531
Trusting Managed Code
As a writer of a managed code add-in, there are a few additional hurdles you need to deal with
to make sure your add-in can be trusted by an administrator in a controlled environment. This
is because the object model guard and ability to trust an add-in dates to before managed code
add-ins were possible. However, with a little extra work by the add-in developer, you can
ensure that your add-in is trustable and administrator-friendly.

The steps required to make sure that your add-in can be trusted by the object model guard
vary depending on the type of managed code add-in project you are using. If you are using a
Microsoft Visual Studio 2005 Tools for the 2007 Microsoft Office System (VSTO) add-in, you
do not need to do any additional work. The administrator just needs to add the add-in mani-
fest to the trusted add-ins list, and the add-in will be trusted. If you are using the Shared Add-
in templates from Microsoft Visual Studio or the templates provided on the Web site that
accompanies this book, the steps are a little more elaborate.

Trustable Shared Add-Ins

The ability to trust an add-in and avoid receiving object model guard prompts is tied closely to
a unique hash code generated for the add-in assembly or dynamic link library (DLL) that
Outlook references when it loads an add-in. When writing a COM add-in, this is not a problem

TaskItem Delegator Address Book
TaskItem Owner Address Book
TaskItem SaveAs() Address Book
TaskItem Send() Sending Mail
TaskItem StatusOnCompletionRecipients Address Book
TaskItem StatusUpdateRecipients Address Book
TaskItem PropertyAccessor Address Book
TaskRequestItem Body Address Book
TaskRequestItem PropertyAccessor Address Book
TaskRequestAcceptItem Body Address Book
TaskRequestAcceptItem PropertyAccessor Address Book
TaskRequestDeclineItem Body Address Book
TaskRequestDeclineItem PropertyAccessor Address Book
TaskRequestUpdateItem Body Address Book
TaskRequestUpdateItem PropertyAccessor Address Book
UserProperties Find() Address Book
UserProperty Formula Address Book

Table 19-1 Listing of Properties and Methods Protected by the Object Model Guard

Object/Interface Member Prompt type

532 Part V Advanced Topics
because Outlook directly references the COM add-in DLL and can properly validate that the
add-in about to be loaded is the add-in that was authorized by an administrator.

However, due to the way managed code handles COM interop, Outlook only sees the
Microsoft .NET Framework’s shim, Mscoree.dll, when it looks for which DLL will be loaded
for the add-in. If the administrator has added the managed code assembly to the trusted list,
Outlook will be unable to match the file loaded to the add-in that was authorized, and the
add-in will run untrusted. If instead the administrator chooses to trust Mscoree.dll, then all
managed code add-ins registered on the system will be allowed to run trusted, which is likely
an undesired mode of operation by the administrator.

To rectify this situation and ensure that an administrator can trust your managed code add-in
without trusting every other managed code add-in, you need to develop a COM shim for your
add-in project. This shim will effectively do the same thing that the .NET Framework file
Mscoree.dll does, except that it will be specifically created for your add-in. Outlook will find
the COM shim DLL, which can be trusted without trusting other managed code add-ins
installed, and allow your add-in to run trusted without requiring other add-ins to be trusted
as well.

Writing a COM shim is usually an exercise in C++ development and managed code interop,
which isn’t something most managed code developers want to deal with. However,
Microsoft has provided a utility that plugs into Visual Studio and automatically generates a
COM shim for managed code add-ins. The download for the COM Shim Wizard is also
available on the book’s companion Web site. With this utility, any managed code developer
can produce a trustable managed code add-in while using the Shared Add-in template in
Visual Studio. The sample add-ins that accompany this book use a COM shim to provide
application domain (AppDomain) isolation. An application domain is an isolated environ-
ment where code within a process runs. In this case, the add-in is running in process with
Outlook.exe. More information about the COM Shim Wizard and other benefits of using a
shim are available on MSDN at http://msdn.microsoft.com/library/en-us/dno2k3ta/html
/ODC_Office_COM_Shim_Wizards.asp.

Trust Center
The 2007 Microsoft Office system introduced a new user paradigm for Office trust settings—the
Office Trust Center. The Trust Center provides a common location for users to find and man-
age all trust, privacy, and security settings. In Outlook 2007, the Trust Center is used to man-
age most of the available user settings for application add-ins and extensions and combines
these settings in one location instead of scattered in Options dialog boxes across the product.
To open the Trust Center, in an Explorer window, select Tools and then select Trust Center.

Managing Add-Ins

One of the features of the new Trust Center is that all applications and extensions can be man-
aged from the Add-ins tab. On the Add-ins tab, a list of installed add-ins is provided along with

Chapter 19 Trust and Security 533
information about the state of the add-in. This tab also provides the entry point to enable or
disable a COM add-in or Exchange Client Extension and the ability to reenable a disabled
extension.

Exchange Client Extensions are not displayed in the list of add-ins shown in the Trust Center.
To see a list of installed Exchange Client Extensions, in the Manage list, select Exchange Client
Extensions and then click Go. Extensions can be loaded or unloaded by toggling the check
box next to the extension’s name and then clicking OK.

To manage the connected state of a COM add-in, use the Manage drop-down list box to select
COM Add-ins and then click Go. Outlook displays the COM Add-ins dialog box, which allows
COM add-ins to be connected or disconnected. If the check box for the add-in is selected, the
add-in is connected and running. An add-in without a selected check box is disconnected.

Add-ins can also be added to or removed from the list of COM add-ins from this dialog box.
However, using the Remove feature in this dialog box does not automatically uninstall the
add-in. Users should use an add-in’s uninstall feature instead of removing the add-in using
this dialog box. Figure 19-5 shows the add-in management interface in the Trust Center.

Figure 19-5 The Add-in tab of the Trust Center dialog box.

Macro Security

Outlook 2007 continues to use the same macro security levels that were used in previous ver-
sions of Outlook. Macro security operates independently of the object model guard and by
default does not affect COM add-ins (although this can be changed by selecting the Apply
Macro Security Settings To Installed Add-Ins check box on the Add-ins tab in the Trust Cen-
ter). Figure 19-6 illustrates the Macro Security tab of the Trust Center.

534 Part V Advanced Topics
Figure 19-6 Macro Security tab of the Trust Center dialog box.

Macro security settings determine what verification is performed by Outlook on the VBA
project file or the COM add-in when Outlook is loading the component. There are four secu-
rity level options that can be selected by the user:

■ No Warnings And Disable All Macros When this option is selected, the user will not
be able to use any macros from a VBA project file and will not see any warning indicating
that macros are available.

■ Warnings For Signed Macros; All Unsigned Macros Are Disabled When this option is
selected, Outlook displays a prompt indicating that a macro will be loaded and provid-
ing the user with the ability to disable the macro. If the macro is signed by an author who
is not listed in the trusted publishers list, the user must add the publisher to the trusted
list before the macro is allowed to run. The user must decide if the macro can run before
Outlook starts.

■ Warnings For All Macros When running with this option selected, Outlook displays a
prompt for all macros even if the macro does not contain a digital signature. The user
must choose to enable or disable the macro before Outlook starts.

■ No Security Check For Macros (Not Recommended) When Outlook is configured
with this option selected, all macros are allowed to run and the user is not prompted
about the existence of the macros. This setting is not recommended because all macro
code will be allowed to run without warning.

Programmatic Access

Outlook 2007 includes a new set of options that provide an administrator with the ability to
alter the behavior of the object model guard directly. The Programmatic Access tab in the

Chapter 19 Trust and Security 535
Trust Center allows an administrator or user to select which mode the object model guard
should use to operate Outlook. This tab also shows an indication of the antivirus status that
Outlook uses by default to determine when to show object model guard prompts.

The three options that can be used for the object model guard are as follows:

■ Warn Me About Suspicious Activity When My Antivirus Software Is Inactive Or Out-Of-
Date (Recommended)

■ Always Warn Me About Suspicious Activity

■ Never Warn Me About Suspicious Activity (Not Recommended)

By default, Outlook 2007 is configured to use the first setting, which uses the information
from antivirus software installed on the computer to determine when and if security prompts
are necessary. To revert to the behavior used by previous versions of Outlook, a user with
administrator permission can select the middle setting, Always Warn Me About Suspicious
Activity. A third option allows the administrator to disable the object model guard altogether,
and Outlook will never show object model guard prompts. Use of this last setting is not
recommended.

These settings apply to all users on the computer, not just the currently logged-in user. These
settings can only be changed when Outlook is running with the credentials of an Administra-
tor on the computer. On Windows Vista, you might need to run Outlook with elevated privi-
leges to be able to change these settings.

Administrative Options
In addition to the settings that are provided by default, administrators can use two methods in
Outlook 2007 to lock down the object model guard settings and alter the default behavior.

One big change from previous versions of Outlook is the policy key that Outlook uses to
determine the source of security configuration information. Previously Outlook would use
the CheckAdminSettings policy key that was version- independent and not directly associated
with the Outlook application. For Outlook 2007, this policy key has been changed to be more
consistent with other Outlook security policies. Administrators will need to redeploy this new
value when upgrading to the 2007 Microsoft Office system to ensure that Outlook 2007 cli-
ents continue to use any defined security policies.

Group Policy Security for COM Add-Ins

Outlook 2007 supports using Windows Group Policy settings to manage code security settings
in Outlook. When Outlook is configured to load security settings from Group Policy, it might
include a list of trusted add-ins. If this list is present, if Group Policy has been configured to
enable this list, and if a COM add-in matches the hash information provided in the trusted list,
Outlook provides a trusted Application object to the COM add-in. If an add-in is not in the list
or has been updated since it was added to the list, Outlook does not trust the add-in.

536 Part V Advanced Topics
Additionally, administrators can set how Outlook handles the security warnings generated by
the object model guard. Four options are available: Automatically Accept, Automatically Deny,
Prompt User, and Prompt User Based On Computer Security. These settings apply to all add-
ins not included in the list of trusted add-ins, and to external COM callers to the object model.

For more information about Group Policy and code security settings, see the topic “Manage
trusted add-ins for Outlook 2007” in the 2007 Office Resource Kit, available at http://
technet2.microsoft.com/Office/.

Exchange-Brokered Security for COM Add-Ins

Overall, there has been no change in the way Outlook 2007 trusts COM add-ins in a Microsoft
Exchange environment where security settings are obtained from the Exchange server. By
using the new AdminSecurityMode registry key discussed later in this chapter, you can still
configure Outlook 2007 to locate the Outlook security form in a public folder. When Outlook
is configured to load settings from this form, Outlook trusts, by default, only those add-ins
that are listed in the security form. Administrators can use Group Policy settings to override
this behavior and continue to trust all installed add-ins as necessary.

If Outlook 2007 is configured to use security settings from the security form, it does not lever-
age the status of antivirus software. In this scenario, there are only three prompt behaviors:
prompt user, never prompt and automatically allow, and never prompt and automatically
deny. To take advantage of the new code security behavior based on the status of antivirus
software, Outlook must be configured to use Windows Group Policy or the Outlook 2007
default security settings.

Configuring a Security Policy

Outlook 2007 ships with a strong set of security features enabled out of the box. However, sys-
tem administrators can choose to alter these security settings to match requirements for the
deployed environment. Part of writing a solution that works with Outlook involves under-
standing how Outlook works differently and how to make sure your solution continues to
work in different environments.

Outlook has two methods for setting security-related policies. Some policies are stored only in
policy registry keys that can be deployed as Group Policy objects. Another set of policies can
be deployed either via publishing an Outlook security form to an Exchange public folder, or
via Group Policy objects. Because the code security settings are maintained in the latter group,
this section focuses mainly on how to deploy these settings. For more information about
deploying all settings for Outlook, refer to the Office Resource Kit online.

Setting AdminSecurityMode

In a change from previous versions of Outlook, Outlook 2007 uses a new registry key to deter-
mine which security mode should be used across Outlook. This new key, AdminSecurityMode,

Chapter 19 Trust and Security 537
is located under HKEY_CURRENT_USER\Software\Policies\Microsoft\Office\12.0
\Outlook\Security. The value is a DWORD that can be set to one of four values, listed in
Table 19-2.

Outlook checks the value of this key each time the application starts and loads the appropri-
ate security policy. The value of the key is not checked once Outlook has started running, so
changes in policy types only occur when Outlook is shut down and restarted.

You can determine the mode in which Outlook is running by opening the About dialog box
from the Help menu of the Explorer window. The Security Mode string in the About dialog
box varies based on the type of security settings loaded. If AdminSecurityMode is set to load a
security form but no form is available, the default policy will be used and the dialog box indi-
cates the default policy.

Trusting an Add-In

By default, Outlook trusts all add-ins and provides a trusted Application object during the
OnConnection method of IDTExtensibility2. However, if the administrator has modified the secu-
rity policy and created a list of trusted add-ins, then only add-ins that are matched against entries
in the list are provided a trusted Application object. Add-ins that are not on the trusted list receive
an untrusted object and might generate security prompts when accessing guarded methods.

To add an add-in to the list of trusted add-ins for the Group Policy settings, you need to com-
pute the unique hash code for the particular add-in assembly. Depending on the type of add-
in, you might need to generate the hash for a file other than the main add-in assembly.

COM and Shared Add-ins with COM Shims

For native code COM add-ins and shared add-ins with a COM shim, you need to generate a
hash code for the native code COM component that will be loaded by Outlook first. If you are
unsure which file Outlook is using, you can use the Outlook Trust Center to determine which
file needs to be added to the trusted list.

Open the Trust Center in Outlook from an Explorer window by selecting Tools, Trust Center.
In the Trust Center, click the Add-ins tab, and then select the add-in you would like to have
trusted. The details of the selected add-in are displayed under the list of add-ins, and the Loca-
tion field contains the name of the file that Outlook will validate against the trusted list. Once

Table 19-2 Values for the AdminSecurityMode Policy Key

Value Description
0x0, Any value not
defined here

Use the default Outlook security policy.

0x1 Load the security policy from the Outlook Security Settings public folder.
0x2 Load the security policy from the Outlook 10 Security Settings public folder.
0x3 Load security policy from the registry.

538 Part V Advanced Topics
you know the file you need to add to the list, proceed to the section “Creating a Hash for a
Trusted Add-In.” Figure 19-7 shows an example of an installed add-in location as viewed in
the Trust Center.

Figure 19-7 The Trust Center displaying the location of an installed add-in.

Note For shared add-ins or managed code add-ins that are not written using VSTO, you
should always use a COM shim if the add-in needs to be trusted. Shared add-ins that do not
provide a COM shim will be listed in the Trust Center with Mscoree.dll in the Location field.
Trusting this file will result in all unshimmed managed code add-ins becoming trusted, which
is likely undesired behavior.

VSTO Add-Ins

Managed code add-ins written with VSTO are loaded in a different manner than shared add-
ins or native COM add-ins. These add-ins provide a manifest file that provides both the neces-
sary information on which assembly should be loaded and the context for loading the add-in.
Because the manifest controls which add-in is ultimately loaded, instead of adding the assem-
bly file to the trusted list you need to add the manifest file to the trusted list.

The Outlook Trust Center also enables you to find the location of the manifest file for an
installed add-in in the same manner used for shared add-ins. The Location field displayed
when a VSTO add-in is selected shows which manifest file is being used to load the add-in.

Creating a Hash for a Trusted Add-In

Previously, when using the Outlook security form to generate a trusted list of applications, an
administrator was able to use the Browse button to select an add-in file and automatically add
the file to the trusted list of add-ins. However, because these settings are now deployed using

Chapter 19 Trust and Security 539

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Group Policy tools, the process is a little more complicated. To add an add-in to the Group Pol-
icy–based trusted list, you need to first generate the appropriate hash code for the add-in. To
compute the hash value for a trusted add-in, follow these steps:

1. Download the hash calculation program—the Outlook 2007 Security Hash Generator
Tool—from the Microsoft Office Download Center.

2. Run the downloaded program and extract the contents to a known location (such as
C:\Hashtool\).

3. Run the command prompt (click Start, All Programs, Accessories, Command Prompt)
and change to the directory where the hash tool was extracted. In Windows Vista, you
should run the command prompt program as Administrator.

4. Type the command createhash.bat /register and press Enter to register the necessary
components (you need to do this only the first time).

5. Type the command createhash.bat <filename> replacing <filename> with the full path
and file name of the add-in file for which you are creating a hash.

6. Copy the hash value displayed on the screen to the Clipboard. This is the value you need
to add to the Group Policy Editor.

Specify a Trusted Add-in in Group Policy

After you have created the hash value for an add-in, you need to add this to the Group Policy
configuration. The easiest way to work with Group Policy settings is by using the Group Policy
tool and the Office Outlook 2007 template (Outlk12.adm) provided in the Office Resource Kit.

1. To launch the Group Policy Object Editor, click Start, click Run, type gpedit.msc, and
then click OK.

2. In the Group Policy Object Editor, load the Outlook 2007 template and go to User Con-
figuration\Administrative Templates\Microsoft Office Outlook 2007\Security\Security
Form Settings\Programmatic Security\Trusted Add-ins.

3. Double-click Configure Trusted Add-Ins, and then click Enabled.

4. Click Show.

5. In the Show Contents dialog box, click Add.

6. In the Add Item dialog box, in the Enter The Name Of The Item To Be Added field, type
a descriptive name for the add-in. This can be the file name or any other way you want
to refer to the add-in you are adding to the list.

7. In the Enter The Value To Be Added field, paste the hash value of the add-in that you cop-
ied when you ran the hash generator tool. Then click OK three times.

Now that the add-in has been added to the trusted list, if Outlook is configured to read secu-
rity settings from Group Policy, the add-in will be allowed to run without prompts for users
who use this security setting.

540 Part V Advanced Topics
Form Region Policy

Outlook form regions have a set of policy registry keys associated with them that allow admin-
istrators to control the behavior of form regions for users. Using these policies, form regions
can be disabled completely, or only certain types of form regions can be allowed to run.

Disabling Form Regions

Custom forms with form regions can be be controlled with three different states. By default,
all form region customizations are enabled and allowed to work. However, an administrator
can deploy policy to disable form region customizations registered as user-specific, or all form
regions can be disabled.

To prevent all form regions from loading, create a DWORD value under the registry key
HKEY_CURRENT_USER\Software\Policies\Microsoft\Office\12.0\Outlook\Addins
named DisableFormRegions. The value of this DWORD can be one of the values in Table 19-3.

Disabling Extensions on a Particular Message Type

It is also possible to adjust what types of solutions are allowed on a per-message class basis.
Administrators can use this policy to prevent or allow specific types of form region customiza-
tions on a message class. For example, if an organization has a custom form deployed and
does not want adjoining form regions to appear on that form, policy could be used to disable
all adjoining form regions on the form’s message class.

To determine if form regions should be disabled for a particular message class, Outlook
looks for a registry value under HKEY_CURRENT_USER\Software\Policies\Microsoft
\Office\12.0\Outlook\Addins\ExclusiveFormRegions for a DWORD type value with the
value name matching the message class value for the form, and one of the possible values
(listed in Table 19-4).

Table 19-3 Possible Values for DisableFormRegions Policy

Value Behavior
0x0 All form regions are enabled.
0x1 Only form regions registered in the local machine key are enabled.
0x2 All form regions are disabled.

Table 19-4 Possible Values for ExclusiveFormRegions Policy

Value Behavior
0x0 (default) Allow all form region customizations.
0x1 Disable adjoining form regions.
0x2 Disable replacement, replace-all, and separate form regions.
0x3 Allow only separate, replacement, or replace-all form regions.

Chapter 19 Trust and Security 541
Values defined on a message class in the ExclusiveFormRegions key apply only to the listed
message class and do not inherit to derived message classes. For example, if a policy is
deployed to block all form regions on IPM.Note.CompanyName, form regions would still be
allowed on IPM.Note.CompanyName.FormName.

Locking an Adjoining Form Region

An adjoining form region can be locked so that it is always visible and the user cannot collapse
the form region. This can be useful to ensure that the user always sees the content of the
adjoining form region, such as when the form region contains security information or other
important details.

To lock an adjoining form region, create a DWORD value under the registry key
HKEY_CURRENT_USER\Software\Policies\Microsoft\Office\12.0\Outlook\Addins
\LockedFormRegions. The name of the DWORD value should match the internal name of the
adjoining form region that should be locked. For example, if the manifest Extensible Markup
Language (XML) for the form region shows <name>AccountDetails</name>, then the value
should be named AccountDetails. Set the value of the key to 0x1 to indicate that the form
region should always be expanded. Any other value will allow the user to expand or collapse
the form region.

Folder Home Page Policy

New for Outlook 2007, folder home pages are blocked for all stores except the default store.
This behavior was implemented to increase the security of Outlook and make sure that unex-
pected script was not executed by default. This policy can be overridden by the administrator
using Group Policy to reenable folder home pages for all stores in Outlook.

To reenable folder home pages for all stores, administrators should create a registry key entry
under HEY_CURRENT_USER\Software\Policies\Microsoft\Office\12.0\Outlook\Security
named NonDefaultStoreScript as a DWORD type, with a value of 0x1. Administrators can also
use the policy templates provided as part of the Office Resource Kit to set this value and
deploy it to different organization units.

It is also possible for a solution that implements a custom MAPI store provider to enable
folder home pages for that particular store. For example, Microsoft Business Contact Manager
for Office Outlook 2007 enables folder home pages in the Business Contact Manager data
store to provide rich dashboard views on Business Contact Manager data types. For more

0x4 Allow only adjoining regions.
0x5 Don’t allow any form regions.

Table 19-4 Possible Values for ExclusiveFormRegions Policy

Value Behavior

542 Part V Advanced Topics
information on how to enable folder home pages for custom MAPI stores, see the Outlook
2007 Integration API reference on MSDN.

Summary
Now that you’ve read this chapter, you should have a good idea of what it takes to write a
trusted add-in that works with Outlook without generating the dreaded security prompt that
has been the scorn of Outlook developers in the past. You’ve also learned more about the
changes made to Outlook 2007 that reduce the likelihood of the security prompt appearing
even if you aren’t using a trusted add-in to integrate with Outlook.

This chapter also covered the available administrator options for locking down the security
model in Outlook and other policies that affect the way Outlook solutions work. These are
provided here both as a reference for administrators and as a reference for developers who will
need to understand the ways administrators can make Outlook behave so that your solution
will continue to work in a well-behaved manner when Outlook isn’t using the default settings.

Index
Symbols
;& (ampersand), 242
= (equal sign), 360, 433
> (greater-than sign), 360
< (less-than sign), 360
+= operator, 94
-= operator, 251, 253
() (parenthesis), 252, 253, 341, 345, 360
; (semicolon), 436, 456
[] (square brackets), 205, 330, 342, 352, 353

A
Account Management API, 51
Account object, 132, 173–174
accounts

e-mail, 131–132, 174, 176, 258
Exchange. See Exchange accounts
HTTP, 131–132, 171, 173
IMAP, 131–132, 171, 173
mailbox, 180
multiple, 410–411
POP3, 131–132, 171, 173
SendUsingAccount property, 131–132

Accounts button, 410, 411
Accounts collection, 173–174
Action object, 135
actions. See also custom actions

arrays, 317–318
built-in, 428
form regions, 427–428
naming, 427
properties, 317–318
Ribbon, 457–458
rules, 13–14, 312–314, 317
warnings, 525

Activate event, 262, 268
Active Directory, 50, 123, 215–216, 227
ActiveExplorer method, 374
ActiveInspector method, 379
ActiveX controls, 399, 400, 404, 405, 451
Add method

attachments, 128
custom items, 119, 121
folders, 180, 181, 382–383
views, 326–331
windows, 378–379

AddBusinessCard method, 136
AddBusinessCardLogo member, 160
AddHandler statement, 251
add-in assembly, 516
add-in model, 56–57
add-ins. See also COM add-ins

adding, 533
assemblies for, 514–516
building, xxxiv–xxxv
command bars, 31
creating in Visual Basic, 61–85
creating in Visual C#, 87–112
creating in Visual Studio, 63–74, 415–423, 509
custom actions, 516–517
custom task pane, 475–478
debugging. See Debug mode
errors, 73, 74
installation components, 512–517
installing, Visual Basic .NET, 81–82
installing, Visual C#, 108–109
Instant Search, 61–85, 87–112
limitations, 57
managed, 56, 74, 101–103, 512
managing in Trust Center, 532–533
naming, 63–64, 89–90
overview, 56–57
preferences, 31
registry keys required for, 510–512
removing, 533
running, xxxi, xxxiv, 82, 109
sample. See sample add-ins
security prompts, 520
setup projects, 509–510
shared. See shared add-ins
templates, 61–64, 88–90, 415
troubleshooting, 82–83, 109–110
trusted, 56–57, 519, 531–539
trusted state, detecting, 525–526
uninstall feature, 533
user access to, 517
VSTO, 510, 513, 516–517, 538
writing code for, 65–74, 91–101

Add-ins tab, 532–533, 537
address book providers, 28, 49–50, 215, 217
address books

Contacts folder, 217, 226–227
Exchange, 215, 216
Global Address List (GAL), 215–217, 225–226, 241
hierarchical, 216
MAPI, 49–50
offline address book (OAB), 50, 216–217
Outlook Address Book, 50, 217, 226–227, 243
Outlook Mobile Service (OMS), 50
overview, 215–217
warnings, 218, 523–524

address entries, 231–232
address list container, 216
address lists, 224–227, 243–244
AddressEntries collection, 227–229, 234, 236–240
543

544 AddressEntries property
AddressEntries property, 227, 228
AddressEntry objects, 227–235

availability information for, 232–234
determining type of, 228–229
displaying details, 231–232
finding, 229
improvements to, 11–12
obtaining ExchangeUser object from, 235–236
obtaining from sender, 229–230
obtaining SMTP addresses from, 227–228
overview, 227–228
sender display, 133–134, 212–213
vs. Recipient objects, 218

AddressEntryType property, 133
AddressEntryUserType property, 228–229
Addressing dialog box, 225
addressing text box, 444
AddressList object, 224–227, 243
AddressLists collection, 216, 217, 224–227, 243
AddressListType property, 224
AddStoreEx method, 175
administration

COM shim projects, 74
Exchange environment, 74, 102, 216, 235, 309
object model guard, 42–43, 535–542
security/trust issues, 519, 520, 526, 531–541
user access and, 517

administrator, running Visual Studio as, xxx–xxxi
AdminSecurityMode registry key, 536–537
Advanced Properties dialog box, 397, 403, 436
Advanced Query Syntax (AQS), 336, 337–342
AdvancedSearch method, 201, 254, 320–324, 364
AdvancedSearchComplete event, 254, 320, 324
AdvancedSearchStopped event, 254
aliases

Exchange, 219
namespaces, 416, 420

AllDayEvent property, 143–144
AllowWriteAccess property, 292
ampersand (&), 242
And operator, 351, 361
antivirus software, 42–43, 519–521, 535
APIs (application program interfaces), 40–53. See also

specific APIs
architecture, 40–41
Collaboration Data Objects (CDO), 14, 42, 52, 57
deprecated, 21, 52, 57
Exchange Client Extensions (ECEs), 10, 42, 52, 533
Exchange Server, 194
MAPI. See MAPI (Messaging Application

Programming Interface)
Outlook 2007 Integration API Reference, 51
Outlook object model, 41–43
replication, 27

unification, 42
AppDomain isolation, 54, 74, 101–102
AppDomain object, 54, 74, 101, 172
application folders, 179
Application object

classes, 248–249
context menus, 386–388
delegates, 248–249
events, 248–249, 254–259
interfaces, 248–249
trusted state, detecting, 525–526, 535, 537

application program interfaces. See APIs (application
program interfaces)

Application.DefaultProfileName property, 132
applications

connector/provider, 22
external, 6, 520
gadgets, 22–24
mail, 24
Web, 57
Windows service, 57

appointment attendees, 144–146
appointment items, 29, 489
AppointmentItem object, 140–154. See also

appointments
adding recipients, 220–221
all-day events, 143–144
appointment attendees, 144–146
described, 116, 140
recurring appointments, 146–154
reminders, 143
saving appointments, 284–285
time zones, 141–143
uses for, 141

AppointmentItem.End, 142
AppointmentItem.Start, 142
appointments. See also calendars; meetings

adding recipients, 220–221
associated with meetings, 154–155
attendees, 144–146
deleting, 153
forwarded, 145
multiple, 285
one-time, 141–143
recurring. See recurring appointments
saving to disk, 284–285
single appointment in series, 150–152
start/end times of, 141
time zone information, 141–143
vs. meetings, 144

AppointmentTimeField property, 446
AQS (Advanced Query Syntax), 336, 337–342
Array object, 203
arrays, 203, 212, 317–318

545calendars
arrows, drop-down, 436
Assign method, 163
Attachment object, 129
AttachmentAdd event, 270
AttachmentContextMenuDisplay event, 254
AttachmentRead event, 270
AttachmentRemove event, 271
attachments, 10, 128–131, 438
attendees, appointment, 144–146
authentication, 287, 289
Author role, 193
Auto-Discover Web service, 25
AutoDiscoverComplete event, 274
AutoDiscoverXml property, 274
AutoFormatRules collection, 330–333
AutoSize property, 440
availability information, 145, 232–234

B
Background Intelligent Transfer Service (BITS), 50
Basic language. See Visual Basic .NET
.bat extension, 129
Bcc keyword, 338
Bcc recipient, 220
Bccmms32.dll, 48
BeforeAttachmentAdd event, 271
BeforeAttachmentPreview event, 271
BeforeAttachmentRead event, 271
BeforeAttachmentSave event, 271
BeforeAttachmentWriteToTempFile event, 271
BeforeAutoSave event, 11, 271
BeforeCheckNames event, 272
BeforeDelete event, 272
BeforeFolderMove event, 9, 265
BeforeFolderSharingDialog event, 254–255
BeforeFolderSwitch event, 262, 375
BeforeFormRegionShow event, 416, 448, 451
BeforeGroupAdd event, 276
BeforeGroupRemove event, 276
BeforeItemCopy event, 262
BeforeItemCut event, 262
BeforeItemMove event, 9, 265
BeforeMaximize event, 262, 268
BeforeMinimize event, 262, 269
BeforeMove event, 263, 269
BeforeNavigate event, 276
BeforeReminderShow event, 279
BeforeShortcutAdd event, 276
BeforeShortcutRemove event, 276
BeforeSize event, 263, 269
BeforeStoreRemove event, 174, 277
BeforeViewSwitch event, 263
binary properties, 210, 503

BinaryToString method, 212, 213, 503
binding data, 36, 402, 404–405
BITS (Background Intelligent Transfer Service), 50
BlockLevel property, 129
Body Control, 438
body properties, 210, 438
Body property, 168, 210, 347, 438
body text, 123–128, 242
BodyFormat property, 127–128
bool (Boolean) argument, 154
bool (Boolean) values, 155
build rules, 216
building projects

Visual Basic .NET, 73–74, 81
Visual C#, 101–105, 108

built-in actions, 428
built-in items, 115–170. See also items

business logic, 29
creating, 118–122
introduction to, 115–122
message class, 117–118
Outlook item types, 116–117
templates, 120
vs. custom items, 118

Business Card Control, 438–439
business cards, 136, 160–161, 438–439
Business Contact Manager, 48
business logic, 29–30
BusinessCardLayoutXML member, 160, 161
BusinessCardType member, 160
BusinessCardView object, 325, 327
button controls, 436–438
bytes, 503, 504, 507

C
C# language. See Visual C#
CAB (Contacts Address Book). See Outlook Address

Book
Cached Exchange, 46
cached mode, 216
Calendar folder. See also appointments; calendars

default columns, 204
opening, 219
recurring items, 198–200, 354–355

Calendar Gadget for Windows Sideshow, 22–24
calendar items, 281–286
Calendar view, 162
calendars. See also appointments; iCalendar

displaying details, 188–189, 281–282
e-mailing, 282–283
Internet, 289
lunar, 29
non-Gregorian, 29

546 CalendarSharing object
saving to disk, 283–284
sharing, 13, 24, 188, 281–286
synchronizing, 22

CalendarSharing object, 13, 24, 188, 281–283
CalendarView object, 325, 327, 330
Caption property, 70, 242
CardView object, 326
categories, 297–301

color, 297, 299, 440
on custom forms, 439–440
items, 297–301, 439–440

Categories collection, 297–298, 317
Categories dialog box, 300–301
Categories property, 298–300
Category Control, 439–440
Category control, 408
Category objects, 297–301
CategoryExists method, 298, 317–318
Cc keyword, 338
Cc recipient, 220
CD, companion to book, xxxv
CDO (Collaboration Data Objects), 14, 42, 52, 57
Check Box Control, 435
Check Names dialog box, 221–223
CheckAdminSettings policy key, 535
CheckManagerResponseStatus, 157
child elements, 425–426, 428–430, 434
ci_ keywords, 8
ci_phrasematch keyword, 8, 324, 347, 348
ci_startswith keyword, 8, 329, 349, 354
classes

delegate, 248, 249
helper, 119, 195–196, 380
message, 117–118, 187–188, 464

ClearTaskFlag method, 139
clear-text body, 124
Click events, 72–73, 99–101
Close event, 263, 265, 269, 272, 376
CLR (Common Language Runtime), 54
code

debugging, xxxi, 84–85, 111–112
errors in, 73, 74, 101
hash, 531, 535, 537–539
managed. See managed code
modifying for RibbonX, 458–470
native, 55–56

code samples, xxx–xxxiv, xxxv. See also sample add-ins
code snippets, xxxiii–xxxiv
Collaboration Data Objects (CDO), 14, 42, 52, 57
collections

Accounts, 173–174
AddressEntries, 227–229, 234, 236–240
AddressLists, 216, 217, 224–227, 243
AutoFormatRules, 330–333

Categories, 297–298, 317
Columns, 203–205
Controls, 450, 451
DefinedProperties, 187
deleting items in, 196–197
Explorers, 259–262, 373–377
Folders, 178, 180–182, 184, 264
Inspectors, 265–268, 378–380
Items. See Items collection
Links, 159–160
Listeners, 164
NavigationGroups, 275
OrderFields, 329–330
Recipients, 144–145, 218–223, 245
Reminders, 278–279
removing items from, 129–131
RuleActions, 312–314
RuleConditions, 314–317
Rules, 13, 303–309
Stores, 174–175, 277–278
TimeZones, 141
UserDefinedProperties, 190–191, 198, 342
UserProperties, 158
ViewFields, 327–329
Views, 279–280, 326–327

color
categories, 297, 299, 440
label text, 437
notes, 168

Color Widgets toolbar, 455–470
columns, 7, 166, 178, 203–213
Columns collection, 203–205
COM (Component Object Model), xxvii, 178
COM add-ins, 56–57. See also add-ins

adding, 533
form regions, 396
managed, 56, 74, 101–103, 512
managing in Trust Center, 532–533
removing, 533
security, 520, 535–536
trusted, 531–532, 537–538
uninstall feature, 533

COM shim projects
creating in Visual Basic .NET, 74–78
creating in Visual C#, 101–105
self-registering, 516
setup projects, 510, 516
trust and, 532, 537–538

COM Shim Wizard, 74–75, 102, 516, 532
Combo Box Control, 435–436
command bars

customizing, 454–455
new features, 9
overview, 31, 372, 386

547controls
Command Button Control, 436
CommandBar object, 9, 97, 254, 255, 259
CommandBarControl object, 70, 97
CommandBarPopup object, 70, 97
CommandBars object, 453–454
Common Language Runtime (CLR), 54
CompanyName property, 158
CompareEntryIDs method, 157
comparison operators, 360
comparison strings, 344–347, 352–353, 356
CompleteFormat parameter, 232
Component Object Model. See COM (Component

Object Model)
compose MailItem, 123–132
compose messages, 123, 132
compose note, 124, 132–133, 456, 462–463
computed properties, 210
condition properties, 317–318
connector/provider applications, 22
Contab32.dll, 50
Contact Inspector, 37
contact items, 29
Contact Photo Control, 440
contact photos, 440, 444–445
ContactFormRegionWrapper class, 420–423
ContactItem object, 158–161. See also contacts

adding to Links collection, 159–160
appropriate uses of, 158–161
creating, 119–121
described, 116, 158
Electronic Business Cards, 160–161
message body for, 125–127
reminders, 139

contacts
business cards, 136, 160–161, 438–439
company of, 157–158
displaying address list for, 226–227
finding, 166
importing, 122
interface integration, 37
names, 157–158
phone numbers, 158–159
photos, 440
properties, 158–160
reminders, 139
synchronizing, 22

Contacts Address Book (CAB). See Outlook Address
Book

Contacts button, 160
Contacts folder, 166, 204, 217, 226–227
containers, 171–173, 216
content folders, 179
context menus, 386–389

cleaning up state information, 386–389

customizing, 386–389
described, 35, 373, 386
new features, 9, 10
performance and, 389
Visual Basic .NET, 70–71
Visual C#, 94–98

ContextMenuClose event, 386–389
described, 255, 386
Visual Basic .NET, 70–71
Visual C#, 94, 97–98

Contributor role, 193
Control interface, 449, 450–451
Control Panel, 75, 141, 356
Control Toolbox, 397, 399–400, 447–448
controls

ActiveX, 399, 400, 404, 405, 451
adding programmatically, 448–450
adding to Control Toolbox, 399–400, 447–448
adding to form regions, 399–403, 413–414
appearance of, 402
automatic replacement of, 448
Body Control, 438
Business Card Control, 438–439
button, 436–438
Category Control, 439–440
Check Box Control, 435
Combo Box Control, 435–436
Command Button Control, 436
Contact Photo Control, 440
data binding, 402, 404–405
data validation, 402
Date Control, 441, 447
date/time, 441, 446–447
designing, 399–403
errors, 409
events for, 451
form regions, 435–452
Frame Header Control, 441–442
InfoBar Control, 442–443
Label Control, 436
layouts, 406–409
List Box Control, 437
Microsoft Forms 2.0, 399, 435, 448, 450
Option Button Control, 437–438
Outlook-specific, 438–447
Page Control, 443–444
positioning, 402, 407–408, 414
program IDs, 449–450
programmatic access to, 450–451
properties, 401–403, 414–415
Recipient Control, 444
Ribbon, 468–470
Sender Photo Control, 444–445
standard, 435–438

548 Controls collection
templates, 400–401
Text Box Control, 438
Time Control, 441, 446–447
Time Zone Control, 445–446
View Control, 447
working with, 447–451

Controls collection, 450, 451
ConvertTime method, 141
corporate compliance, 24
Create method, 304, 307
Create Rule dialog box, 318–319
CreateItem method, 118–120, 123, 140
CreateItemFromTemplate method, 120
CreateManagerRule procedure, 305–306, 311
CreateOfficeSearch procedure, 323, 324
CreateRecipient method, 218–219
CurrentFolder property, 374–376
CurrentItem property, 379–380
CurrentTimeZone property, 141
CurrentUser property, 305
custom actions. See also actions

add-ins, 516–517
form regions, 427–428
Ribbon interface, 457–458

custom forms, 391–394, 411. See also form regions;
forms

custom icons, 425–427
custom items. See also items

creating, 118–122
introduction to, 115–122
message class, 117–118
templates, 120
vs. built-in items, 118

custom properties, 490, 498, 500–501, 505
Custom role, 193
custom store providers, 173
CustomAction event, 272
CustomPropertyChange event, 272
CustomTaskPane object, 475–477

D
DASL filters, 329, 343–344, 348, 354
DASL queries

comparison operators, 360
creating, 350–352
date-time comparisons, 354–358
filtering recurring items, 354–355
integer comparisons, 358–359
invalid properties, 211–212, 359–360
logical operators, 360–361
macros, 357–358
null comparisons, 361

DASL (DAV Searching and Locating) query language,
336, 342–352, 359–360

data, 113–368
access to, 171–214
binding, 36, 402, 404–405
categories, 297–301
in InfoPath forms, 38
locally cached, 27
offline, 27
organizing, 297–334
replicating, 28–29
rules for, 303–319
searching for. See searching
sharing. See sharing data
storage of, 27, 118, 168, 171–173
task flagging, 301–303
views. See views

Data Degradation Layer API, 51
data granularity, 28
data integration, 22–29, 51
data presentation, 30–37
data throttling, 28
data types, 40, 321–322
data validation, 30, 402
Date Control, 441, 447
date ranges, 200–201, 342, 357
dates. See also time

controls, 441, 446–447
display of, 141
due dates, 164–165, 338
end dates, 144, 199, 446
evaluating, 356–357
exceptions, 152–153
format, 356
on forms, 441, 447
items, 141–144
literals, 356
macros, 357–358
properties, 357, 502
start dates, 137–139, 144, 152, 339
storage of, 141, 502

date-time values
comparison strings, 356
local to UTC time, 212, 357, 502–504
UTC to local time, 504–505

DAV (Distributed Authoring and Versioning), 496–497
DAV namespaces, 496–497
DAV Searching and Locating query language. See DASL
DayOfWeekMask property, 148, 149
Deactivate event, 263, 269
Debug mode

launching, xxxi, xxxiv
Visual Basic .NET, 83–85
Visual C#, 110–112

debugging code, xxxi, 84–85, 111–112
DefaultItemType property, 187, 203

549equal sign
DefaultMessageClass property, 187–188
DefinedProperties collection, 187
delegate classes, 248, 249
delegates, 94, 98, 248–253
delegating tasks, 163
Delete method, 153
Deleted Items folders, 178
Deleted property, 153
DeleteProperties method, 501
DeleteProperty method, 501
deleting

appointments, 153
collection items, 196–197
custom fields, 404
folder items, 191
folders, 383–385
navigation groups, 383–384
properties, 501, 505
rules, 309

DemoApptsInRange procedure, 200–201
DemoGetArrayForTable procedure, 203
Design mode, 396–411

adding controls, 399–403
components of, 397–398
elements, 397–398
entering, 398
form regions, 397–399, 406–411
opening forms, 396–397
renaming form region tabs, 399
working with fields, 403–406

Details dialog box, 231–232
Details method, 231–232
Developer Reference, 16–17
development tools, 53–56
Dirty property, 484–485
discussion folders, 139–140, 179
disk

saving appointments to, 284–285
saving attachments to, 129–131
saving calendars to, 283–284
space requirements, xxxv

Display method, 120, 164, 195–196, 379
display names, 219
display requirements, xxxv
Display tab, 402
DisplayInstantSearchExplorer method, 71, 98–99
DisplayName parameter, 128
DistListItem object, 116, 159, 166–167
Distributed Authoring and Versioning. See DAV

(Distributed Authoring and Versioning)
DLLs (dynamic link libraries), 47, 76–77, 80, 105
DocumentItem object, 116, 495–496
Dotnetfx.exe file, 512–513
DPI resolution, 398

drive requirements, xxxv
Due Date keyword, 338
DueDate property, 164–165
Duration property, 148
dynamic link libraries (DLLs), 47, 76–77, 80, 105

E
ECEs (Exchange Client Extensions), 10, 42, 52, 533
Editor role, 193
Electronic Business Cards, 136, 160–161. See also

business cards
Electronic Forms Designer forms, 53
Electronic Messaging System Microsoft Database

(EMSMDB) provider, 48, 50
e-mail. See also items; messages

adding pictures, 410
InfoPath e-mail forms, 39
Microsoft Mail 3.0 forms, 51, 53
multiple accounts, 410–411
security issues. See Outlook object model guard;

security
send message warning, 524, 525
sendable form regions, 410–411
Sender Photo feature, 444–445
sharing calendars through, 282–283
synchronizing, 22
viruses/worms, 6, 519, 522

e-mail accounts, 131–132, 174, 176, 258
E-Mail Options dialog box, 134–135
EMSMDB (Electronic Messaging System Microsoft

Database) provider, 48, 50
Emsmdb32.dll, 48, 49
End property, 143–144
EndInEndTimeZone property, 142
EndTime property, 118, 148
EndTimeZone property, 141–142
EndUTC property, 142
entry identifiers, 157
EntryID column, 196
EntryID property, 133, 153, 184
EnumerateAllTasksFolder procedure, 177–178
EnumerateFolders procedure, 182
EnumerateFoldersInDefaultStore procedure, 181–182
enumeration

addresses, 227–228
folder items, 172, 194–214
folders, 177, 180, 181–182
rules, 307–308
search folders, 320–321
table items, 202
Table object vs. Items collection, 42

environment variables, 431
equal sign (=), 360, 433

550 error 4605
error 4605, 125
error conditions, 505–506
Error window, 73, 101
errors. See also Debug mode; troubleshooting; warnings

add-ins, 73, 74
code, 73, 74, 101
controls, 409
event handlers, 251–252
form layout, 409
forms/form regions, 409
MAPI, 505–507
memory, 506–507
property size, 506–507
Ribbon markups, 465
save operation, 309
trapping, 526
Visual Basic .NET, 73, 74, 83–85
Visual C#, 101, 110–112

event delegates, 94, 98, 248–253
event handlers, 247–253, 423
events, 247–280. See also specific events

all-day, 143–144
Application object, 248–249, 254–259
attachment, 10
Color Widgets toolbar, 455–456
controls, 451
described, 247
errors, 251–252
Explorer object, 262–264
Explorers collection, 259–262
Folder object, 264–265
Folders collection, 264
FormRegion object, 265
hooking up in Visual Basic .NET, 68–71
hooking up in Visual C#, 94–98
improvements to, 9–11
Inspector object, 268–269
Inspectors collection, 265–268
item-level, 270–274
Items collection, 269–270
managed code, 247–253
Namespace object, 274
NavigationGroups collection, 275
NavigationPane object, 275
new features, 9–11
Outlook 2007, 254–280
OutlookBarGroup object, 276
OutlookBarPane object, 275–276
OutlookBarShortcut object, 276
recurring, 148–149
Reminders collection, 259, 278–279
Stores collection, 277–278
SyncObject object, 278
triggered by folder changes, 374–376

Views collection, 279–280
Visual Basic .NET, 249–251
Visual C#, 251–253

Excel, 31
Exception objects, 140, 146, 151–153
exceptions

appointments, 115, 146, 151–153, 163
date/time, 152–153
overview, 13–14
rules, 303–307

Exceptions property, 163
Exchange 5.5 directory services, 216
Exchange accounts

address book provider, 50
aliases, 219, 416
data storage, 171–173
Global Address List (GAL), 215–217, 225–226, 241
sending items via, 131–132

Exchange Address Book provider, 215
Exchange Client Extensions (ECEs), 10, 42, 52, 533
Exchange contacts, 215–216
Exchange containers, 216
Exchange distribution list, 166, 231, 234, 238–240
Exchange folders, 43, 50, 290, 507, 536
Exchange Forms Designer forms, 53
Exchange mailboxes, 25, 234–238, 507
Exchange OLE DB (ExOLEDB) provider, 57, 194
Exchange Public Folder, 43, 50, 507, 536
Exchange Server

cached mode, 173–174, 216
data storage on, 171–173
online mode, 171–172
security and, 536
Unified Messaging add-in, 24–25

Exchange Server MAPI Editor, 491
Exchange stores, 48, 176, 507
Exchange users, 227–237, 292
Exchange Web services, 25
ExchangeConnectionMode property, 171–173, 217, 365
ExchangeDistributionList object, 12, 228, 238–240
ExchangeStoreType property, 176
ExchangeUser object, 234–238

availability information and, 231, 234
enumerating addresses, 227–228
new features, 12
obtaining from AddressEntry object, 235–236
overview, 12, 234
proxy addresses for, 238
sender name, displaying, 133–134
user information, displaying, 133, 215

ExchangeUser properties, 228, 234–235
.exe files, 84, 111, 129
execute actions warning, 525
Execute method, 135, 307, 310–311

551folders

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

ExOLEDB (Exchange OLE DB) provider, 57, 194
Expanded event, 265
Explorer object

creating instances of, 373–374
events, 262–264
Explorer window display, 372–377

Explorer window, 372–377
components, 371, 372–373
creating, 374
determining Selection object in, 376
enumerating items in, 376
overview, 30–31, 372–373
task panes, 373, 476–477

Explorers collection, 259–262, 373–377
Extended MAPI, 28, 51, 57, 505–506
Extensible Markup Language. See XML

F
Field Chooser, 27, 328, 352, 404–406
fields

adding to form regions, 403–406
adding to views, 327–329
custom, 405–406
data binding, 403, 404–405
layout guidelines, 408
removing, 404

file extensions, 129
FilePath property, 176
files

creating items from, 121–122
.exe, 84, 111, 129
.ics, 121, 283–286
.msg, 121, 128, 285
.ost, 48, 171, 172, 507
PRF, 47
.pst, 26, 48, 173, 175–176
templates for, 120
.vcf, 121, 122
XML, 396, 423–433

Filter parameter, 201
Filter property, 326, 329, 361–363
filters

Boolean property and, 353
DASL, 329, 343–344, 348, 354
recurring items, 198–199, 354–355
table rows, 164, 201, 210
view items, 329

Find method, 354, 364
finding items. See searching
FindNext method, 354, 363, 364
FindNextRow method, 363–365
FindRow method, 363, 364, 365
FirstName property, 158

folder home pages, 28, 389–390, 541–542
folder list, 180–182, 184
Folder object, 182–191

adding to folder list, 181
described, 178, 182
events, 264–265
GetStorage method, 169–170
permissions and, 194
user-defined properties for, 190–191
vs. MAPIFolder object, 182–183
working with, 183–187

Folder Properties dialog box, 35, 471, 478–486
folder views, 32, 372, 373, 385. See also views
FolderAdd event, 264
FolderChange event, 264
FolderContextMenuDisplay event, 255
FolderPath property, 182
FolderRemove event, 264
folders. See also specific folders

accessing, 183–187
accessing items in, 194–214
adding programmatically, 181, 183
adding to folder list, 181
adding to parent Folder object, 180
application, 179
changes to, 374–376
columns, 203–205
content, 179
creation of, 179
current, 374–376
default, 179, 183
default forms, setting, 428–430
default type items, 187
deleting, 383–385
designing, 179–180
discussion, 139–140, 179
displaying in Navigation Pane, 32
enumerating, 177, 180, 181–182
events triggered by changes, 374–376
Exchange, 43, 50, 290, 507, 536
form items, displaying, 447
groups of, 382–385
iterating through, 181–182
Journal, 187
location of, 180
message class for, 187–188
methods, 188–190
names, 181
navigation groups, 382–385
performance and, 194–195
permissions, 180, 191–194, 290–294
personal documents, xxx
placeholder, 179
properties, 187–191, 406

552 Folders collection
requesting access to, 290, 292–293
returning, 176–177
roles, 180
root, 180
RSS Feeds, 183
RSS Subscriptions, 179
search, 8, 177, 179, 319–324
shared, 123, 286–295
special, 177–178
subfolders, 181, 321–324, 366
synchronizing, 22, 278, 287
types of, 178–181, 187
user access to, 180
views, 32–33, 372, 373, 385

Folders collection, 178, 180–182, 184, 264
Folders property, 178, 181, 184
FolderSwitch event, 263, 375
foreach construct, 129, 196
foreach loop, 165
ForeColor property, 440
form definitions, 44, 52, 396, 397
form design, 396–411. See also Design mode

controls, 399–403
Electronic Forms Designer, 53
enhancing design, 406–408
Exchange Forms Designer, 53
fields, 403–406
fixing layout errors, 409
form regions, 397–399, 406–411
layout guidelines, 408
Outlook Forms Designer, 44, 391, 392, 411–415
renaming tabs, 399

form pages, 43–44, 391, 392, 411
form region manifest file, 396, 423–433
Form Region Manifest XML Schema, 423
form region wrapper, 418–423
form regions, 391–434. See also forms

actions, 427–428
adjoining, 45, 393
advanced methods, 433–434
automatic layout, 406–408
business card preview, 438–439
categories, 439–440
COM add-ins, 396
contact photos, 440, 444–445
controls. See controls
creating, 411–415
custom icons, 425–427
data binding, 402, 404–405
date/time controls, 441, 446–447
default folder form, replacing, 428–430
designing. See form design
disabling, 540–541
DPI resolution, 398

enhancing, 406–411
errors, 409
extensions, 540–541
fields in, 403–406
groups of, 441–442
hooking up, 415–423
labels, 437
layouts, 406–411
loading, 396–397
localizing, 428–430
locking, 541
new features, 4–6
Outlook Inspector window, 35–36
overview, 4–6, 43–45, 391–396
Reading Pane, 33–34
registering, 423–433
registry entries, 396
registry keys, 512
replace-all, 394–395
replacement, 394–395
saving, 399, 415
security, 540–541
sendable via email, 410–411
separate, 45, 393–394
solutions, 396
tabs, 399, 443–444
terminology, 391
text boxes, 437
themes, 409–410
types of, 45, 392–395
Unified Messaging add-in, 24–26
vs. form pages, 43–44, 392, 411
writing business logic for, 415–423

formatting
messages, 124–128
text, 125–128, 385, 438
views, 330–333

FormRegion object, 265, 418
FormRegion.Form property, 450
FormRegionStartup method, 265, 416, 424–425
FormRegionStrings element, 430
forms. See also form regions

actions, 427–428
controls. See controls
custom, 391–394, 411
designing. See form design
errors, 409
fields in, 403–406
folder items, displaying, 447
IMAPIForm, 52
InfoPath, 38–39
item form, 378
layout guidelines, 408
loading, 396–397

553IconView object
Microsoft Mail 3.0, 51, 53
one-off, 52
opening, 396–397
Outlook custom forms with form pages, 43–44, 52
recipient address, 444
templates, 39, 120, 133
terminology, 391
types of, 395–396

Forms Designer window, 397
Forward event, 273
Forward method, 134, 140, 145
ForwardAsBusinessCard member, 160
ForwardAsICal method, 282–283
Frame Header Control, 441–442
Free/Busy API, 51
From keyword, 338
functional integration, 24–26

G
gadgets, 22–24
GAL (Global Address List), 215–217, 225–226, 241
GetAddressEntryFromID method, 133–134, 229–231
GetArray method, 203, 212
GetAssociatedAppointment method, 154–156
GetAssociatedTask method, 164–166
GetCalendarExporter method, 188–189, 281–282
GetContactsFolder method, 226–227
GetDefaultFolder method, 177–178, 183, 226
GetDirectReports method, 236–237
GetExchangeDistributionListMembers method, 234, 239–

240
GetExchangeUser method, 235–236
GetExchangeUserManager method, 236
GetFolder procedure, 185–187
GetFolderFromID method, 184–185
GetFormRegionIcon method, 433–434
GetFormRegionManifest method, 433
GetFormRegionStorage method, 416–417
GetFreeBusy method, 232–234
GetGlobalAddressList method, 225–226
GetInspector property, 378
GetItemFromID method, 196
GetKeyContacts example, 186
GetMAPIError procedure, 506
GetMemberOfList method, 237–238, 240
GetNextRow method, 7, 202
GetOccurrence method, 150, 163
GetOwners method, 240
GetProperties method, 499
GetProperty method, 497
GetRecurrencePattern method, 146–149, 162–163
GetRootFolder method, 176–177, 180
GetRules method, 304, 307

GetSearchFolders method, 177, 320–321
GetSelectNamesDialog method, 240
GetSenderSMTPAddress procedure, 133–134, 229–230
GetSharedDefaultFolder method, 218
GetSMTPAddress method, 223, 238
GetSpecialFolder method, 177–178
GetStorage method, 169–170, 189
GetTable method, 201–203, 320, 321, 366
Global Address List (GAL), 215–217, 225–226, 241
GlobalAppointmentID property, 153–154
globally unique identifier (GUID), 297, 349, 474–475
greater-than sign (>), 360
Group Policy. See Windows Group Policy
GroupAdd event, 276
groups

folders, 382–385
form regions, 441–442
navigation, 382–385

GUID (globally unique identifier), 297, 349, 474–475

H
hard disk. See disk
hash code, 531, 535, 537–539
Help content, 16
Help viewer, 16
helper classes, 119, 195–196, 380
helper methods

OutlookHelper class, 119
PropertyAccessor object, 497, 499, 503–505
Table object, 212–213
TimeZones object, 141

hidden items, 168–170, 213–214
hierarchical address book, 216
HKEY_CURRENT_USER registry key, 510
HKEY_LOCAL_MACHINE registry key, 510
home pages. See folder home pages
HTML (Hypertext Markup Language), 124–125, 127,

438
HTMLBody property, 124–125, 127
HTTP (Hypertext Transfer Protocol), 171
HTTP accounts, 131–132, 171, 173
Hypertext Markup Language. See HTML (Hypertext

Markup Language)
Hypertext Transfer Protocol. See HTTP (Hypertext

Transfer Protocol)

I
iCalendar, 23, 24, 281–286. See also appointments;

calendars
iCalendar appointment (.ics) files, 121, 283–286
icons, 425–427, 434
IconView object, 326, 327

554 .ics
.ics (iCalendar appointment) files, 121, 283–286
ICustomTaskPaneConsumer interface, 475–476
ID namespace, 493–494
IDTExtensibility2 interface, 66, 77, 92, 104
images, on buttons, 410, 436
IMAP (Internet Message Access Protocol), 26, 173, 309,

364
IMAP accounts, 131–132, 171, 173
IMAPIForm (MAPI Form Server), 52
IMAPIProp interface, 42, 47
Importance property, 312
ImportContacts procedure, 122
IncludeRecurrences property, 198–200, 354, 365
Index operator, 129–130
indexes, 203, 205, 308, 309
InfoBar Control, 442–443
Infobar control, 408
InfoPath forms, 38–39
information. See data
InitialAddressList property, 243–244
InitializeAddin method, 65–67, 91–94
InitializeControls method, 421–422
Inspector object, 118, 268–269, 377–380
Inspector windows, 377–380

active, 379
command bar customization, 455–456
creating, 378–379
open items in, 379–380
overview, 35–36, 371, 377–378
Ribbon interface. See Ribbon extensibility (RibbonX)
task panes, 36–37, 378, 477
user interface (UI), 35–37, 371, 377–378

Inspector.CurrentItem property, 118
Inspectors collection, 265–268, 378–380
Inspectors property, 378
instance variables, 67–68, 93
Instant Search add-in

creating with Visual Basic, 61–85
creating with Visual C#, 87–112

Instant Search feature, xxxv, 8–9, 320, 335, 366
integer comparisons, 358–359
integration. See Outlook integration
Internet calendars, 289
Internet directory services, 217
Internet Message Access Protocol. See IMAP (Internet

Message Access Protocol)
interpersonal message (IPM), 116
Interval property, 149
IPM (interpersonal message), 116
IPM.Note message class, 167
IPM.Storage message class, 168
IRibbonControl object, 468–470
IRibbonExtensibility interface, 462–465
IRibbonUI object, 468

IsDataFileStore property, 176
IsInstantSearchEnabled property, 362, 365, 366
IsLoading property, 485–486
IsMarkedAsTask property, 137–139
IsReadNote method, 132–133
IsRecurring property, 146
IsRemovable property, 384
IsRssRulesProcessingEnabled property, 308–309
IsTrusted property, 526
item form, 378. See also forms
item window, 377. See also Inspector windows
ItemAdd event, 270
Item.Body property, 124
ItemChange event, 270
ItemContextMenuDisplay event

overview, 255–256, 386–388
Visual Basic .NET, 68–70
Visual C#, 94–98

item-level events, 270–274
ItemLoad event, 10–11, 256–257
ItemRemove event, 9, 270
items. See also built-in items; custom items

accessing in folders, 194–214
adding to Links collection, 159–160
attachments, 128–131
categories, 297–301, 439–440
ContactItem. See ContactItem object
creating, 118–122
dates, 141–144
deleting in collections, 196–197
DistListItem, 116, 159, 166–167
enumerating, 194–214
filtering. See filters
hidden, 168–170, 213–214
identifying, 118
journal, 167
JournalItem, 116, 167
MailItem. See MailItem object
MeetingItem. See MeetingItem object
NoteItem, 117, 167–168
PostItem. See PostItem object
removing from collections, 129–131
restricted, 198–199
returning in tables, 201–203
saving, 118, 119, 121
sending, 118, 119, 121
SharingItem. See SharingItem object
sorting. See sorting
StorageItem, 117, 159, 168–170, 189
TaskItem. See TaskItem object
templates, 120
to-do, 137–139, 302–303
viewing, 32–33

Items collection, 196–201

555MAPI namespace
deleting items, 196–197
described, 196
enumerating, 42
events, 269–270
folders and, 121
performance and, 194–198
recurring appointments, 198–201
searches and, 354, 361–366
vs. Table object, 194–195, 196

Items collection object, 178
Items.Add method, 118, 121, 140
ItemSend event, 257

J
Japanese phonetic rendering (yomigana), 234
Jet query language, 336, 352–361
Journal folder, 167, 187
journal items, 167
JournalItem object, 116, 167
.jpg format, 161

K
keywords. See also specific keywords

AQS, 337–342
ci_, 8, 344
custom action name, 428
DASL, 344–352
Jet, 352–353

Keywords property, 349, 452

L
Label Control, 436
language options, 352, 392, 428–430
LastModificationTime property, 202
LastName property, 158
Layout tab, 402
LCIDs (Locale IDs), 428–430
LDAP (lightweight directory access protocol), 216, 217
LDAP servers, 50, 217
less-than sign (<), 360
Level 1 attachments, 129
Level 2 attachments, 129
lightweight directory access protocol. See LDAP

(lightweight directory access protocol)
like operator, 329
Link items, 159
Links collection, 159–160
List Box Control, 437
Listeners collection, 164
LoadBehavior settings, 511–512
LoadItineraries method, 422
local time, 141, 354–357, 503–504

Locale IDs (LCIDs), 428–430
locale-independent Time Zone keys, 143
localization, 241–242, 392, 428–430
LocalTimeToUTC method, 212, 357, 502–504
logical operators, 360–361
logo pictures, 160

M
macros

date-time, 357–358
security, 533–534
Visual Basic for Applications (VBA) and, 54
warnings, 534
Word, 455

mail applications, 24
Mail folders, 122, 178, 187, 338–339
Mail function, 84, 111
mailbox accounts, 180. See also e-mail
mailboxes, Exchange, 25, 234–238, 297, 507
MailItem object, 122–139. See also messages

adding recipients, 123–124, 220
attachments, 128–131
composing messages, 123–132
Electronic Business Cards, 136
formatting messages, 124–128
overview, 116, 122, 123
read messages, 132–135
responding to, 134–135
sending messages, 131–132
to-do items, 137–139
vs. PostItem object, 139

MailItemCreate method, 119–120
MailItem.SenderEmail Address property, 133
MailItem.SenderName property, 133
managed code. See also code

Outlook 2007 and, 4
trusted, 531–535
vs. native code, 55–56
writing event handlers in, 247–253

MAPI (Messaging Application Programming Interface),
45–50

error codes, 505–507
Extended MAPI, 28, 51, 57, 505–506
Outlook data storage, 27
overview, 40, 45–46
properties, 206, 491–493, 497, 501
Simple MAPI, 51
vs. Outlook object model, 46

MAPI Address Book providers, 49–50
MAPI clients, 45
MAPI Editor, 491
MAPI Form Server (IMAPIForm), 52
MAPI namespace, 492–493

556 MAPI profiles
MAPI profiles, 26, 46–47
MAPI providers, 28, 45, 47–50, 390
MAPI store providers, 28, 47–49, 173
MAPI transport providers, 49
MAPI type specifiers, 492
MAPI_E_NOT_ENOUGH_MEMORY error, 506–507
MAPI_E_NOT_SUPPORTED error, 523, 524, 525
MAPIFolder object, 182–183
MapiLogonComplete event, 257
MAPI-MIME Conversion API, 51
Mapisvc.inf file, 47
MarkAsTask method, 137–139
Marshal.ReleaseComObject, 172
MaxRows parameter, 203
meeting requests, 29, 154–157, 326–328
MeetingAttendeesExample, 145
MeetingItem object, 116, 154–157. See also meetings
MeetingResponseStatus property, 145–146, 157
meetings. See also appointments

adding recipients, 220–221
attendees, 144–146
recurring, 140
retrieving appointments, 154–155
vs. appointments, 144

MeetingStatus property, 154
memory errors, 506–507
memory requirements, xxxv
menus, 70, 97. See also context menus
message classes, 117–118, 187–188, 464
message (.msg) files, 121, 128, 285
message store providers, 47–49
MessageClass property, 117–122, 366
messages. See also e-mail; items

adding recipients, 123–124, 220
attachments, 123–124, 128–131
composing, 123–132
determining sender, 133–134
discussions, 139–140
Electronic Business Cards, 136
formatting, 124–128
read, 132–135
recipient types, 220–221
responding to, 134–135, 140
sending, 131–132, 524, 525
SMS, 49, 50
text in. See text

Messaging Application Programming Interface. See
MAPI (Messaging Application Programming
Interface)

methods. See also specific methods
folders, 188–190
restricted, 526–531
running in Sample Add-in, xxxii–xxxiii
warnings, 522

MFCMapi. See MAPI Editor
Microsoft Active Directory, 50, 123, 215–216, 227
Microsoft Excel. See Excel
Microsoft Exchange. See Exchange
Microsoft Forms 2.0 controls, 399, 435, 448, 450
Microsoft Knowledge Base, xxxv
Microsoft Mail 3.0 forms, 53
Microsoft Office Outlook 2007. See Outlook 2007
Microsoft PowerPoint. See PowerPoint
Microsoft Visual Basic for Applications. See Visual Basic

for Applications (VBA)
Microsoft Visual Basic .NET. See Visual Basic .NET
Microsoft Visual C#. See Visual C#
Microsoft Visual Studio. See Visual Studio 2005
Microsoft Visual Studio Tools for Office. See Visual

Studio Tools for Office (VSTO)
Microsoft Windows Vista, 22, 63, 75, 102
Microsoft Word. See Word
MiddleName property, 158
MIME (Multipurpose Internet Mail Extensions), 46, 49,

51
MMS (Multimedia Messaging Service), 49
modules, 115, 372–373, 380–384
ModuleSwitch event, 275, 381
MonthNth recurrence, 149–150
MonthOfYear property, 149
MoveToStart method, 202
Mscoree.dll file, 532
MSDN Download Center, 512–514
MSForms.Control interface, 449, 450–451, 550
.msg (message) files, 121, 128, 285
Mspst32.dll, 48
MultiLine property, 438
Multimedia Messaging Service (MMS), 49
Multipurpose Internet Mail Extensions (MIME), 46, 49,

51
MultiSelect property, 437
multivalued properties, 209, 210, 502–503

N
Name argument, 181
Name property, 205
Name Service Provider Interface (NSPI), 50
Namespace object, 157, 274
NameSpace.Folders, 177
NameSpace.OpenSharedFolder method, 286–289, 290,

292
namespaces

aliases, 416, 420
DASL, 342–349
DAV, 496–497
MAPI, 492–493
PropertyAccessor object, 491–497

557objects
URLs, 330, 496
native code, 55–56
navigation groups, 382–385
Navigation modules, 380–384
Navigation Pane, 32, 372–373, 380–385
NavigationFolder object, 275, 384
NavigationFolderAdd event, 275
NavigationFolderRemove event, 275
NavigationGroups collection

events, 275
NavigationPane object, 275, 380–381
.NET Framework Version 2.0, 512–513
New Project dialog box, 63–64, 89–90
NewExplorer event, 259–262
NewInspector event, 125, 266–268, 378, 466–467
NewMail event, 258
NewMailEx event, 258
Newspace.CurrentProfileName property, 131–132
None role, 193
Nonediting Author role, 193
Not operator, 360
NoteItem object, 117, 167–168
notes, 132–133, 167–168, 462–463
Notes folder, 167, 187
NSPI (Name Service Provider Interface), 50
NT LAN (NTLM) authentication, 287, 289
NTLM (NT LAN) authentication, 287, 289
null comparisons, 361

O
OAB (offline address book), 50, 216–217
object model. See Outlook object model
object model guard. See Outlook object model guard
objects

Collaboration Data Objects (CDO), 14, 42, 52, 57
performance, 27, 42, 194–195
sharing, 12–13
views, 325–326

objects (listed by name)
Account, 132, 173–174
Action, 135
AddressEntry. See AddressEntry objects
AddressList, 224–227, 243
AppDomain, 54, 74, 101, 172
Application. See Application object
AppointmentItem. See AppointmentItem object
Array, 203
Attachment, 129
BusinessCardView, 325, 327
CalendarSharing, 13, 24, 188, 281–283
CalendarView, 325, 327, 330
CardView, 326
Category, 297–301

CommandBar, 9, 97, 254, 255, 259
CommandBarControl, 70, 97
CommandBarPopup, 70, 97
CommandBars, 453–454
ContactItem. See ContactItem object
CustomTaskPane, 475–477
DistListItem, 116, 159, 166–167
DocumentItem, 116, 495–496
Exception, 140, 146, 151–153
ExchangeDistributionList, 12, 228, 238–240
ExchangeUser. See ExchangeUser object
Explorer. See Explorer object
Folder. See Folder object
FormRegion, 265, 418
IconView, 326, 327
Inspector, 118, 268–269, 377–380
IRibbonControl, 468–470
IRibbonUI, 468
JournalItem, 116, 167
MailItem. See MailItem object; messages
MAPIFolder, 182–183
Marshal.ReleaseComObject, 172
MeetingItem, 116, 154–157
Namespace, 157, 274
NavigationFolder, 275, 384
NavigationPane, 275, 380–381
NoteItem, 117, 167–168
OutlookBarGroup, 276
OutlookBarPane, 275–276
OutlookBarShortcut, 276
PostItem. See PostItem object
PropertyAccessor. See PropertyAccessor object
Recipient, 218–223, 235, 242, 245
RecurrencePattern, 140, 146–153, 162–163
RemoteItem, 117
ReportItem, 117
Row, 178, 196, 201
Rule, 13–14, 303–312
Search, 8, 201, 254, 321, 324
Selection, 69–70, 376
SelectNamesDialog, 11–12, 240–246
SharingItem. See SharingItem object
StorageItem, 117, 159, 168–170, 189
Store, 174–178, 180, 277, 366
SyncObject, 278
Table. See Table object
TableView, 326
TaskItem, 117, 137, 162–163
TaskRequestAcceptItem, 117
TaskRequestDeclineItem, 117
TaskRequestItem, 117, 163–166
TaskRequestUpdateItem, 117
TimelineView, 326, 327, 330
TimeZone, 141–143, 446

558 Office menu
UserControl, 473–475, 479–482
UserForm, 450
UserProperties, 27
View, 325–331
WordEditor, 125

Office menu, 377, 432
Office namespace, 495–496
Office Outlook 2007. See Outlook 2007
Office Trust Center, 520, 532–535
offline address book (OAB), 50, 216–217
Offline Folder Files (.ost), 48, 171, 172, 507
Offline State API, 51
.ofs (Outlook Form Storage) file, 391, 411–414, 416, 425
.oft (Outlook form template) file, 120, 399
OlBlockLevelStatus values, 129
OLDefaultFolders constants, 181
OlDefaultSelectNamesDisplayMode values, 241–242
OlExchangeConnectionMode values, 172–173
OlItemType constants, 121
Olk* interface, 449, 550
OlkControl interface, 449, 451
OlMarkInterval constants, 137
OlMarkLater constant, 137
OlMarkNextWeek constant, 137, 138
OlMarkThisWeek constant, 137, 138
OlMarkToday constant, 137, 138
OlMarkTomorrow constant, 137, 138
OlMeetingRecipientType constant, 145
olRecursDaily property, 147
olRecursMonthly property, 147
olRecursMonthNth property, 147
olRecursWeekly property, 147
olRecursYearly property, 148
olRecursYearNth property, 148
OMS (Outlook Messaging Service), 217
OMS (Outlook Mobile Service), 41, 49–50
Omsxp.dll, 49, 50
OnConnection method, 66, 92
one-off forms, 52
OnError event, 278
online calendar. See Internet calendars
Online Meeting integration, 22
OnLocalMachine condition, 311–312
OnOtherMachine condition, 312
Open event, 125, 273
OpenSharedFolder method, 13, 286–290, 293–294
OpenSharedItem method, 13, 121–122
operators

Boolean, 353
comparison, 360
logical, 360–361
for specifiers, 341–342

Option Button Control, 437–438
Option Strict directive, 67

Optional attendee type, 144
OptionsPagesAdd event, 258, 274
Or operator, 351, 361
OrderFields collection, 329–330
OriginalDate property, 152
.ost (Offline Folder files), 48, 171, 172, 507
.ost store, 174, 176, 208, 321
Outlook 97-2003 forms. See Outlook custom forms

with form pages
Outlook 2007, 19–53

application integration. See Outlook integration
core functionality, 21
enhancements, 21
extensibility features, 3–4
goal of, 20
managed code and, 4
new features, xxvii, 3–17, 43, 390
offline capabilities, 19, 20
performance, 23–24, 42
shared data and, 281
shutting down cleanly, 84, 111
solutions for. See Outlook solutions
strengths, 19–20
user interface. See user interface (UI)

Outlook 2007 Integration API Reference, 51
Outlook Address Book, 50, 217, 226–227, 243. See also

address books
Outlook Calendar, 22–24, 339
Outlook Contact Inspector, 37
Outlook custom forms with form pages, 43–44, 52
Outlook data. See data
Outlook Developer Reference, 16–17
Outlook distribution list, 166
Outlook Explorer window. See Explorer window
Outlook Field Chooser, 27, 328, 352, 404–406
Outlook Form Storage (.ofs) file, 391, 411–414, 416, 425
Outlook form template (.oft) file, 120, 399
Outlook forms. See form regions; forms
Outlook Forms Designer, 44, 391, 392, 411–415
Outlook Inspector window. See Inspector windows
Outlook integration

APIs, 40–53
business logic, 29–30
data, 22–29, 51
development tools, 53–56
functional, 22–24
guidelines for, 21, 26–39
performance and, 23–24, 42
reasons for, 19–21
types of, 21–26

Outlook Messaging Service (OMS), 217
Outlook Mobile Service (OMS), 41, 49–50
Outlook namespace, 496
Outlook object model, 41–43

559profile files (PRF)
compatibility issues, 42
integration. See Outlook integration
performance, 42
unification, 42
vs. MAPI, 46

Outlook object model guard, 519–542. See also security;
trust

administrative options, 42–43, 535–542
antivirus software and, 6, 519–521, 535
changes to, 6–7
e-mail, 6, 519, 522
overview, 519–521
principles, 522–523
programmatic access, 520–521, 534–535
recipient considerations, 218
restricted properties/methods, 526–531
security prompts, 520–521, 524, 535, 537
security warnings, 42, 522–525, 536
trapping errors, 526
trusting managed code, 531–532

Outlook solutions
add-in model, 56–57
configuration options for, 35
deemphasized/phased-out components, 52–53
development tools, 53–56
managed vs. native code, 55–56
overview, 19–21

Outlook Spy, 492
Outlook Trust Center, 520, 537, 538
Outlook views. See views
OutlookBarGroup object, 276
OutlookBarPane object, 275–276
OutlookBarShortcut object, 276
OutlookHelper class, 119
OutlookInspector class, 467
OutlookItem helper class, 195–196, 380
Outlook.OlkControl interface, 449, 451
Owner role, 193

P
Page Control, 443–444
PageChange event, 269
Panel control, 483, 484
panes, 376–377. See also task panes
Parent property, 184
parenthesis (), 252, 253, 341, 345, 360
performance

context menus and, 389
data integration, 27–28
folders and, 194–195
Items collection, 194–198
managed vs. native code, 55–56
Outlook integrations, 23–24, 42

Outlook object model, 27
reflection and, 196
searches and, 364–365
sorting and, 194
Table object, 42, 194–195

Permission Denied error, 235
permissions

folder, 180, 191–194, 290–294
insufficient, 235
shared items, 290, 291–292, 294

Permissions tab, 192
personal documents folder, xxx
Personal Folders Files (.pst), 26, 48, 173, 175–176
phone numbers, 158–159
photos, contact, 440, 444–445
PIAs (Primary Interop Assemblies), 4, 247–249,

514–515
PickFolder method, 184–185
pictures, on buttons, 410, 436
placeholder folders, 179
.png (Portable Network Graphics) format, 161
POP3 (Post Office Protocol 3), 173, 217, 309, 364
POP3 accounts, 131–132, 171, 173
POP3 stores, 176
pop-up menus, 70, 97
Portable Network Graphics (.png) format, 161
Position parameter, 128
Post item, 30
Post method, 131, 140
Post Office Protocol 3. See POP3 (Post Office

Protocol 3)
PostItem object, 139–140

appropriate uses of, 123
creating, 140
described, 117, 123, 139
persisting, 140
responding to, 140
sending messages, 131
vs. MailItem object, 139

PowerPoint, 31
preferences, 31, 43, 134, 160
PR_EMS_AB_PROXY_ADDRESSES property, 235
Prepare Me sample add-in, 169, 472–474, 485
preview handlers, 33, 373, 385
PRF (profile files), 47
Primary Interop Assemblies (PIAs), 4, 247–249,

514–515
PrimaryInteropAssembly.exe file, 514
PrimarySMTPAddress property, 133, 134
PR_MESSAGE_CLASS, 118
problems. See troubleshooting
processor requirements, xxxv
productivity tools, 24
profile files (PRF), 47

560 profiles
profiles
configuring, 47
creation of, 131
described, 46, 131
MAPI, 46–47
multiple, 47
names, 132
number of, 131

ProgID (Program Identifier), 189, 449–450, 474–475
Program Identifier (ProgID), 189, 449–450, 474–475
Programmatic Access tab, 520–521, 534–535
progress dialog boxes, 309, 311
Progress event, 278
projects. See COM shim projects; setup projects
properties

action, 317–318
advanced, 397, 403, 436
binary, 210, 503
body, 210
computed, 210
condition, 317
contacts, 158–160
controls, 401–403, 414–415
creation of, 27
custom, 490, 498, 500–501, 505
data binding, 403, 404–405
date-time, 502
deleting, 501, 505
folder, 187–191, 406
ID-named, 493–494
invalid, 209–212, 359–360
MAPI, 206, 491–493, 497, 501
multivalued, 209, 210, 502–503
names, 205–207
obtaining, 497, 499
raw, 489, 497, 499
Recipients, 245–246
restricted, 526–531
returning objects, 210
setting, 498, 500
size, 506–507
sort, 330
strings, 208, 494–495
tasks, 137–139
user, 37, 190, 216, 405–406
warnings, 522–523

properties (listed by name)
AddressEntries, 227, 228
AddressEntryType, 133
AddressEntryUserType, 228–229
AddressListType, 224
AllDayEvent, 143–144
AllowWriteAccess, 292
Application.DefaultProfileName, 132

AppointmentTimeField, 446
AutoDiscoverXml, 274
AutoSize, 440
BlockLevel, 129
Body, 168, 210, 347, 438
BodyFormat, 127–128
Caption, 70, 242
Categories, 298–300
CompanyName, 158
CurrentFolder, 374–376
CurrentItem, 379–380
CurrentTimeZone, 141
CurrentUser, 305
DayOfWeekMask, 148, 149
DefaultItemType, 187, 203
DefaultMessageClass, 187–188
Deleted, 153
Dirty, 484–485
DueDate, 164–165
Duration, 148
End, 143–144
EndInEndTimeZone, 142
EndTime, 118, 148
EndTimeZone, 141–142
EndUTC, 142
EntryID, 133, 153, 184
Exceptions, 163
ExchangeConnectionMode, 171–173, 217, 365
ExchangeStoreType, 176
ExchangeUser, 228, 234–235
FilePath, 176
Filter, 326, 329, 361–363
FirstName, 158
FolderPath, 182
Folders, 178, 181, 184
ForeColor, 440
FormRegion.Form, 450
GetInspector, 378
GlobalAppointmentID, 153–154
HTMLBody, 124–125, 127
Importance, 312
IncludeRecurrences, 198–200, 354, 365
InitialAddressList, 243–244
Inspector.CurrentItem, 118
Inspectors, 378
Interval, 149
IsDataFileStore, 176
IsInstantSearchEnabled, 362, 365, 366
IsLoading, 485–486
IsMarkedAsTask, 137–139
IsRecurring, 146
IsRemovable, 384
IsRssRulesProcessingEnabled, 308–309
IsTrusted, 526

561Publishing Editor role
Item.Body, 124
Keywords, 349, 452
LastModificationTime, 202
LastName, 158
MailItem.SenderEmail Address, 133
MailItem.SenderName, 133
MeetingResponseStatus, 145–146, 157
MeetingStatus, 154
MessageClass, 117–122, 366
MiddleName, 158
MonthOfYear, 149
MultiSelect, 437
Name, 205
Newspace.CurrentProfileName, 131–132
olRecursDaily, 147
olRecursMonthly, 147
olRecursMonthNth, 147
olRecursWeekly, 147
olRecursYearly, 148
olRecursYearNth, 148
OriginalDate, 152
Parent, 184
PR_EMS_AB_PROXY_ADDRESSES, 235
PrimarySMTPAddress, 133, 134
PR_SMTP_ADDRESS, 133
PR_TRANSPORT_MESSAGE_HEADERS, 489, 493
PT_SYSTIME, 502
raw types, 489, 497, 499
ReadOnly, 438
Recipients, 218, 245–246
RecurrenceType, 147–149, 163
Regenerate, 163
Register, 516
Reminder, 138–139
ReminderMinutesBeforeStart, 143
ReminderSet, 138–139, 143
ReminderTime, 138–139
RemoteName, 293
RemotePath, 293
ResolutionOrder, 221, 225
Resolved, 218, 221
RuleType, 304, 307, 310
SelectedTimeZoneIndex, 446
SenderEmailType, 133
SendUsingAccount, 131–132
Sensitivity, 143
Sent, 132
SharingProvider, 293
ShowAsOutlookAB, 217
ShowNewItemRow, 432
ShowOnlyInitialAddressList, 243
Size, 132
Start, 143–144, 152

StartInStartTimeZone, 142
StartTime, 118, 148
StartTimeZone, 141–142
StartUTC, 142
Subject, 167
SuppressAttachments, 438
TaskCompletedDate, 137–139
TaskDueDate, 137–139
TaskStartDate, 137–139
TaskSubject, 137–139
Text, 317, 405, 438
ToDoTaskOrdinal, 137–139
Type, 145, 220, 242, 245
UseHeaderColor, 437
WordEditor, 125–127
XML, 327, 363

Properties dialog box, 79, 106–108, 274, 397
property pages, 35, 258, 478–486
PropertyAccessor object, 489–507

built-in properties, 489
custom properties, 168, 490
date-time properties, 502
DeleteProperties method, 501
DeleteProperty method, 501
error conditions, 505–506
folder properties, 187, 432
GetProperties method, 499
GetProperty method, 497
GetSenderSMTPAddress procedure, 133–134
GetSMTPAddress procedure, 238
helper methods, 497, 499, 503–505
MAPI objects and, 223, 489, 493
multivalued properties, 502–503
namespaces, 491–497
new features, 14–15
objects supported, 14, 490, 491
overview, 14, 489, 497
property size and, 506–507
sample code, 14–15
scenarios, 489–490
SetProperties method, 500–501
SetProperty method, 498

PropertyChange event, 273
PropTag namespace, 492–493
proxy addresses, 238
PR_SMTP_ADDRESS property, 133
PR_TRANSPORT_MESSAGE_HEADERS property, 489,

493
.pst (Personal Folders Files), 26, 48, 173, 175–176
.pst store, 27, 173–176, 208, 321
PT_SYSTIME property, 502
Publishing Author role, 193
Publishing Editor role, 193

562 query languages
Q
query languages, 335–353

AQS, 336, 337–342
DASL, 336, 342–352, 357–358
Jet, 336, 352–361

Quick Access Toolbar, 377
Quit event, 259

R
raw property types, 489, 497, 499
Read event, 273
read MailItem, 132–135
read messages, 132–135
read notes, 132–133
Reading Pane, 33–34, 373, 385
ReadOnly property, 438
Receive keyword, 338
Recipient Control, 444
Recipient object, 218–223, 235, 242, 245
recipient selector labels, 242
recipients

adding to messages, 123–124, 220
appointments/meetings, 157, 220–221
names, 218–223
obtaining SMTP addresses of, 223
resolving, 218, 220, 221–223, 225
types of, 220–221

Recipients collection, 144–145, 218–223, 245
Recipients property, 218, 245–246
recurrence exceptions, 115
RecurrencePattern object, 140, 146–153, 162–163
RecurrenceType property, 147–149, 163
recurring appointments, 146–154

creating, 146–148
date ranges, 200–201
deleting, 153
described, 29, 115, 140
exceptions, 115, 146, 151–153, 163
expanding in Calendar folder, 198–200
filtering, 198–199, 354–355
saving to disk, 284–285
setting recurrence pattern, 147–148
sorting, 198, 199
vs. recurring tasks, 162

recurring events, 148–149
recurring meetings, 140
recurring tasks, 162–163
reflection, 195, 196
Regenerate property, 163
Regional and Language Options, 356, 503–504
Register property, 516
Registry, 430–431, 510–512
registry entries, 396

registry keys, 350–351, 509–512
Reminder event, 259
Reminder properties, 138–139
ReminderAdd event, 279
ReminderChange event, 279
ReminderFire event, 279
ReminderMinutesBeforeStart property, 143
ReminderRemove event, 279
reminders

appointments, 143
contacts, 139
creating, 143
events, 259, 278–279
to-do items, 139

Reminders collection, 278–279
ReminderSet property, 138–139, 143
ReminderTime property, 138–139
RemoteItem object, 117
RemoteName property, 293
RemotePath property, 293
Remove method, 279, 309, 327
RemoveAttachmentsAndSaveToDisk procedure, 129
RemoveHandler statement, 251
RemoveStoreEx method, 175–176
replication, 27, 28–29, 51
Replication API, 27, 28–29, 51
Reply event, 273
Reply method, 134, 140
Reply to Folder Action object, 140
ReplyAll event, 273
ReplyAll method, 134
ReportItem object, 117
requests

meeting, 29, 154, 326–328
sharing, 290–295

Required attendee type, 144
ResetBusinessCard member, 160
ResetColumns method, 197–198
resolution, DPI, 398
resolution order, 225
ResolutionOrder property, 221, 225
ResolveAll method, 145, 220, 221
Resolved property, 218, 221
ResolveRecipient method, 222–223
resolving recipients, 218, 220, 221–223, 225
Resource attendee type, 144
resources, adding region file as, 416–417
Respond method, 155–156, 165
responses

creating, 134–135
sharing, 291, 295

Restrict method, 196, 198–200, 364, 365
Reviewer role, 193
Ribbon extensibility (RibbonX), 453–470

563security
command bar customization, 454–455
controls, 468–470
custom actions, 457–458
described, 21, 453
error detection, 465
introduction to, 453–458
item visibility, 463–464
modifying code for, 454–455, 458–470
Outlook Inspector window, 36
Unified Messaging, 25
Visual Basic for Applications (VBA) and, 54
voting options, 456–457

Ribbon Extensible Markup Language (XML), 454,
461–462

RibbonX Sample add-in, 458–470
Rich Text Format (RTF), 127–128, 438
roles, 180, 192–193
root folder, 176–177, 180
Row object, 178, 196, 201
rows, 178, 201–203, 362–365
RSS feeds, 183, 286–287, 293, 390
RSS items, 179, 308–309
RSS rules processing, 308–309
RSS Subscriptions folder, 179
RTF (Rich Text Format), 127–128, 438
Rule objects, 13–14, 303–312
RuleActions collection, 312–314
RuleConditions collection, 314–317
rules, 303–319

actions, 13–14, 312–314, 317
conditions, 314–318
creating, 13, 303–306, 307
deleting, 309
enumerating, 307–308
exceptions, 303–307
executing, 310–311
formatting views, 330–333
local operation, 311–312
overview, 13–14, 303
RSS items, processing, 308–309
saving, 305, 309

Rules and Alerts dialog box, 308
Rules and Alerts Wizard, 303, 307
Rules collection, 13, 303–309
rules programming, 303–306
Rules Sample add-in, 318–319
RuleType property, 304, 307, 310
runtime error 4605, 125

S
sample add-ins. See also add-ins

building, xxxiv–xxxv
debugging. See Debug mode

methods in, xxxii–xxxiii
Prepare Me, 169, 472–474, 485
RibbonX, 458–470
Rules, 318–319
running, xxxi, xxxiv
system requirements, xxxv
Visual Basic, xxxi, 61–85
Visual C#, 87–112

sample code, xxx–xxxiv, xxxv. See also sample add-ins
Save method, 118, 119, 121, 309
SaveAsFile method, 129
SaveAsICal method, 283–284
SaveBusinessCardImage member, 161
saving

appointments, 284–285
attachments, 129–131
calendars, 283–284
errors, 309
form regions, 399, 415
items, 118, 119, 121
rules, 305, 309

Schema Reference, 161
SchemaName string, 491–492, 498
SchemaNames array, 499–501, 505–506
schemas

names, 491–492, 493, 498
XML, 161, 423, 428, 434

scope, 250, 251–252
search folders, 8, 177, 179, 319–324
Search method, 8, 71, 98, 336–338
Search object, 8, 201, 254, 321, 324
searching, 335–367. See also query languages

AddressEntry objects, 229
AddressList objects, 225–226
considerations, 364–366
date-time comparisons, 354–358
entry points for, 361–363
improvements to, 8–9
Instant Search. See Instant Search feature
integer comparisons, 358–359
invalid properties, 359–360
Items collection and, 354, 361–366
null comparisons, 361
overview, 335
performance and, 364–365
read-only vs. read/write, 365–366
subfolders, 366
synchronous vs. asynchronous, 320, 324
Table object and, 354, 361–366
Windows Desktop Search, 8, 337, 366

Secure Sockets Layer (SSL), 287, 289
security, 519–542. See also Outlook object model guard;

trust
attachments, 129

564 security policies
COM add-ins, 520, 535–536
e-mail, 6, 24, 519, 522
Exchange environment, 527–529, 536
folder home pages, 390, 541–542
form regions, 540–541
macros, 533–534
new features, 4–6, 42–43
overview, 6–7, 42
preferences, 43
restricted properties/methods, 526–531
trapping errors, 526
Windows Group Policy, 57, 520, 535–536, 539
Windows Security Center (WSC), 520, 521

security policies, 57, 520, 535–540
security prompts, 57, 520–521, 524, 535
security warnings, 42, 522–525, 536
Select Names dialog box, 222, 223, 240–246
SelectedChange event, 275
SelectedTimeZoneIndex property, 446
Selection object, 69–70, 376
SelectionChange event, 264
SelectNamesDialog object, 11–12, 240–246
semicolon (;), 436, 456
Send button, 410, 411, 436
Send event, 273–274
send message warning, 524, 525
Send method, 118, 131, 165
sender display name, 133–134
Sender Photo Control, 444–445
SenderEmailType property, 133
sending

Electronic Business Cards, 136
items, 118, 119, 121, 131–132
messages, 131–132, 524, 525
with specific account, 131–132
task delegation messages, 163

SendUsingAccount property, 131–132
Sensitivity property, 143
Sent keyword, 339
Sent property, 132
service applications, 57
SetColumns method, 197–198, 206–207, 365
SetDefaultDisplayMode method, 241–242, 245
SetDefaultFormForFolder method, 432–433
SetProperties method, 500–501
SetProperty method, 490, 498
setup package, 509, 512, 514, 516
setup projects

COM shims, 510, 516
creating, 78, 105–106, 509–510
required components, 516
Visual Basic .NET, 78–82
Visual C#, 105–109
Visual Studio 2005, 509–510

shared add-ins

hooking up, 415–416
shim projects, 101–102
templates, 61–64, 88–90, 415
trusted, 531–532, 537–538

SharePoint folders, 287–289
sharing data, 281–295

calendars, 13, 24, 188, 281–286
folders, 123, 286–295
new features, 12–13
Outlook and, 281
overview, 281
RSS feeds, 286–287, 293
shared resources and, 293–294

sharing items, 290–295
sharing objects, 12–13
SharingItem object, 290–295

creating, 290, 291, 292
described, 13, 290
permissions and, 191, 194

SharingItem types, 291
SharingProvider property, 293
shim projects. See COM shim projects
Short Message Service (SMS), 49, 50
ShortcutAdd event, 276
ShortcutContextMenuDisplay event, 259
ShowAsOutlookAB property, 217
ShowBusinessCardEditor member, 161
ShowCategoriesDialog method, 300–301
ShowCheckPhoneDialog method, 158–159
ShowNewItemRow property, 432
ShowOnlyInitialAddressList property, 243
ShowPane method, 376–377, 385
ShowProgress argument, 309, 311
ShutdownAddin method, 65–66, 91–92, 98
SideShow, 22–24
Simple Mail Transfer Protocol (SMTP) addresses,

133–134, 219, 223, 228
Simple MAPI, 51
Size property, 132
SMS (Short Message Service), 49, 50
SMTP (Simple Mail Transfer Protocol) addresses,

133–134, 219, 223, 228
Snooze event, 279
Sort method, 199, 200, 202
sorting

performance and, 194
properties, 330
recurring appointments, 198, 199
in searches, 365
table rows, 194, 202
view items, 329–330

Source parameter, 128
special folders, 177–178
square brackets ([]), 205, 330, 342, 352, 353
SSL (Secure Sockets Layer), 287, 289

565TaskSubject property
Start Date keyword, 339
Start property, 143–144, 152
StartInStartTimeZone property, 142
StartTime property, 118, 148
StartTimer method, 167
StartTimeZone property, 141–142
Startup event, 259
StartUTC property, 142
status reports, 38
sticky notes, 463
StopTimer method, 167
StorageItem object, 117, 159, 168–170, 189
Store API, 51
Store object, 174–178, 180, 277, 366
store providers, 28, 47–49, 173, 208
StoreAdd event, 277–278
StoreContextMenuDisplay event, 259
StoreID parameter, 184
Store.IsInstantSearchEnabled, 172
stores

Exchange, 48, 176, 507
.ost, 174, 176, 208, 321
POP3, 176
.pst, 27, 173–176, 208, 321

Stores collection, 174–175, 277–278
string data, 438
String namespace, 494–495, 498
strings

comparison, 344–347, 352–353, 356
converting bytes to, 503
converting to bytes, 504
overrides, 428–430
properties, 208, 494–495
text, 317

StringToBinary method, 212, 504
stssync: protocol, 287–288
subfolders, 181, 321–324, 366
Subject property, 167
submenu Click events, 72–73, 99–101
subscribing

to Internet calendar, 289
to RSS feeds, 286–287, 293
to shared folders, 286–289

subtasks, 162
SuppressAttachments property, 438
surveys, 38
switch statement, 417
sync integration code, 26
SyncEnd event, 278
synchronization, 22, 26–28, 278, 287
SyncObject object, 278
SyncStart event, 278
system requirements, xxxv

T
Table object, 201–214. See also tables

changes to, 7–8
described, 7, 201
helper methods, 212–213
hidden folder items, 168, 213–214
invalid properties for, 209–212
obtaining instances of, 201–203
overview, 7–8
performance, 7, 42, 194–195
property value representation, 208–209
recurrences and, 198
searches and, 354, 361–366
vs. Items collection, 194–195, 196

TableContents parameter, 168, 201, 213
TableMultiValuedProperties procedure, 209
tables

columns, 7, 166, 178, 203–213
returning items in, 201–203
rows, 178, 201–203, 362–365

TableView object, 326
tabs, built-in, 443–444
Tag property, 70
task panes, 471–478

considerations, 31, 476–477
described, 8, 373, 378, 471
Explorer window, 373, 476–477
including as add-ins, 475–478
Inspector windows, 36–37, 378, 477
themes, 477–478
uses for, 471–472
Visual Basic for Applications (VBA) and, 54

task requests, 164–166
TaskCompletedDate property, 137–139
TaskDueDate property, 137–139
TaskItem object, 117, 137, 162–163. See also tasks
TaskRequestAcceptItem object, 117
TaskRequestDeclineItem object, 117
TaskRequestItem object, 117, 163–166
TaskRequestUpdateItem object, 117
tasks. See also to-do items

creating, 162–163
delegating, 163
flagging, 301–303
marked as complete, 162
multiple, 162
properties, 137–139
recurring, 162–163
regeneration of, 163
retrieving, 164–165
subtasks, 162

Tasks folder, 162, 164, 187, 204, 294
TaskStartDate property, 137–139
TaskSubject property, 137–139

566 templates
templates
add-ins, 61–64, 88–90, 415
controls, 400–401
forms, 39, 120, 133
items, 120
.oft (Outlook form template), 120, 399
Visual Basic .NET, 62–63
Visual C#, 62–63
VSTO, 54

text
body, 123–128, 242
color, 437
formatting, 125–128, 385, 438
label, 242
RTF (Rich Text Format), 127–128, 438

Text Box Control, 438
Text property, 317, 405, 438
themes

form regions, 409–410
task panes, 477–478

time. See also dates; time zones
comparisons, 354–358
controls, 441, 446–447
date-time format, 356
end time, 141, 142, 144, 446
exceptions, 152–153
literals, 356
local, 141, 354–357, 503–504
macros, 357–358
properties, 357, 502
start time, 141, 142, 144, 446
Univeral Time Coordinate. See UTC (Universal Time

Coordinate)
values. See date-time values

Time Control, 441, 446–447
Time Zone Control, 445–446
time zones

appointments and, 141–143
comparison strings, 356–357
conversions, 502
overview, 141–142
setting, 141–143, 445–446

TimelineView object, 326, 327, 330
time-to-live (TTL), 287, 289
TimeZone object, 141–143, 446
TimeZones collection, 141
To keyword, 339
To recipient, 220
To-Do Bar

creating to-do items, 137–139, 302–303
described, 31, 34, 373, 386
hiding/showing, 301, 376–377, 386
TaskItem object, 162

to-do items, 137–139, 302–303. See also tasks

ToDoTaskOrdinal property, 137–139
Tools Options dialog box, 35, 471, 478–486
transport providers, 49
trapping errors, 526
TravelAgencyAddinCS project, 415–423
troubleshooting. See also errors; warnings

add-ins, 82–83, 109–110
events, 251–252
memory problems, 506–507
in Visual Basic .NET, 82–83
in Visual C#, 109–110

trust. See also security
add-ins, 56–57, 519, 531–539
hash code, 531, 535, 537–539
managed code, 531–535
Office Trust Center, 520, 532–535
Outlook Trust Center, 520, 537, 538

trusted state, detecting, 525–526
try...catch blocks, 150, 305, 505
TTL (time-to-live), 287, 289
Type argument, 121, 181
Type parameter, 128
Type property, 145, 220, 242, 245

U
UI. See user interface (UI)
unification, 42
unified messaging, 24–26
Unified Messaging add-in for Exchange, 24–26
Unified Messaging Web service, 25
Uniform Resource Identifier (URI), 496
Uniform Resource Locators. See URLs (Uniform

Resource Locators)
Uniform Resource Name (URN), 496
Universal Time Coordinate. See UTC (Universal Time

Coordinate)
Unload event, 274
URI (Uniform Resource Identifier), 496
URLs (Uniform Resource Locators)

DASL queries, 349
folder home pages, 289, 389
Internet calendars, 289
namespaces, 330, 496
RSS feeds, 286–287, 293
SharePoint folders, 287, 288–289

URN (Uniform Resource Name), 496
UseHeaderColor property, 437
user access, 517
user control task pane, 473–477
user interface (UI), 371–390

command bars. See command bars
context menus. See context menus
context sensitivity of, 31

567Visual Studio Tools for Office (VSTO)
Explorer window, 371, 372–377
folder home pages, 28, 389–390, 541–542
folder views, 32, 372, 373, 385
Inspector window, 371, 377–380
integration, 30–37
Navigation Pane, 32, 372–373, 380–385
overview, 371
property pages, 35, 258, 478–486
Reading Pane, 33–34, 373, 385
Ribbon. See Ribbon extensibility (RibbonX)
task panes. See task panes
To-Do Bar. See To-Do Bar
views. See views

user properties, 37, 190, 216, 405–406. See also fields
UserControl object, 473–475, 479–482
UserDefinedProperties collection, 190–191, 198, 342
UserForm object, 450
UserProperties collection, 158
UserProperties object, 27
users

access issues, 517
assigning roles to, 193
availability information, 145, 232–234
disconnected, 217
Exchange, 227–237, 292
sharing information with, 281–295

UTC (Universal Time Coordinate)
converting local time to, 212, 357, 502–504
converting to local time, 504–505
DASL queries, 357–358
properties, 142
time zones and, 141–142, 357

UTCToLocalTime method, 212, 504–505
utilities, 24

V
validation, data, 30, 402
Validation tab, 402
Value tab, 402, 406
variables

cleaning up, 388, 389
environment, 431
form region wrappers, 418–421
instance, 67–68, 93

VBA (Visual Basic for Applications), 16, 53–54
VBAProject.otm file, 53
vCard (.vcf) files, 121, 122
.vcf (vCard) files, 121, 122
View Control, 447
view fields, 32–33
View objects, 325–331
View Pane, 32–33
ViewAdd event, 280, 326

ViewContextMenuDisplay event, 259
ViewFields collection, 327–329
ViewRemove event, 280, 327
views, 325–333

Add method, 326–331
adding fields, 327–329
adding programatically, 326–327
customizing, 327–333
described, 325, 385
filters. See filters
folder, 32–33, 372, 373, 385
formatting, 330–333
objects supported, 325–326
removing programatically, 327
sorts. See sorting

Views collection, 279–280, 326–327
ViewSwitch event, 264
viruses, e-mail, 6, 519, 522
Visual Basic for Applications (VBA), 16, 53–54
Visual Basic .NET, 61–85

building projects, 73–74, 81
code errors, 73, 74
Debug mode, 83–85
events, 249–251
hooking up events in, 68–71
installing add-ins, 81–82
Instant Search add-in, creating, 61–85
sample code, xxx–xxxiv, 61–85
setup projects, 78–82
shim projects, 74–78
templates for, 62–63
testing add-ins, 82–83
writing code, 65–74

Visual C#
building projects, 101–105, 108
code errors, 101
Debug mode, 110–112
events, 251–253
hooking up events in, 94–98
installing add-ins, 108–109
Instant Search add-in, creating, 87–112
sample code, xxx–xxxiv, 87–112
setup projects, 105–109
shim projects, 101–105
templates for, 62–63
testing add-ins, 109–110
writing code, 91–101

Visual Studio 2005
creating add-ins, 63–74, 415–423, 509
running as Administrator, xxx–xxxi

Visual Studio designer, 480
Visual Studio Tools for Office (VSTO)

add-ins, 510, 513, 516–517, 538
overview, 54–55

568 voice mail
templates, 54
VSTO runtime, 513

voice mail, 24–26, 457–458
voting options, 456–457
VSTO. See Visual Studio Tools for Office (VSTO)

W
warnings. See also errors; troubleshooting

actions, 525
address book, 218, 523–524
macros, 534
methods, 522
Outlook object model guard, 522–525
properties, 522–523
security, 42, 522–525, 536
send message, 524
suppressing, 520, 521, 534
suspicious activity, 520, 535

Web applications, 57
Web Distributed Authoring and Versioning (WebDAV)

protocol, 57, 194
Web sites

code samples on, xxx–xxxiv
companion to book, xxxv

WebDAV (Web Distributed Authoring and Versioning)
protocol, 57, 194

while construct, 130
windows, adding custom task pane to, 476–477
Windows Desktop Search, 8, 337, 366
Windows form user control, 484
Windows Group Policy, 57, 520, 535–536, 539
Windows Security Center (WSC), 520, 521
Windows service applications, 57
Windows SideShow, 22–24

Windows Vista, 22, 63, 75, 102
WithEvents keyword, 68, 250
Word, Microsoft, 31
Word Document object, 125, 455
Word documents, 116, 179
Word object model, 125
Word Selection object, 125
WordEditor object, 125
WordEditor property, 125–127
wrapper class, 248–249, 418–423
Write event, 274
WSC (Windows Security Center), 520, 521

X
XML (Extensible Markup Language)

attachments, 39
AutoDiscoverXml property, 274
converting to string, 189
Electronic Business Cards, 160–161
form region manifest, 396
GetStorage method, 189
manifest XML file, 423–425, 430, 433
properties, 39
Ribbon XML, 454, 461–462

XML document class, 161
XML files, 396, 423–433
XML payload, 39, 49
XML property, 327, 363
XML schema, 161, 423, 428, 434

Y
YearNth recurrence, 149–150
yomigana (Japanese phonetic rendering), 234

About the Authors
Randy Byrne

Randy Byrne is a Senior Program Manager for Outlook extensibility
at Microsoft. Prior to joining Microsoft, he worked in the field as a
consultant on a wide range of Outlook solutions. He has presented
at numerous conferences, including Microsoft Professional Devel-
oper’s Conference, Microsoft TechEd, Microsoft Office Developer’s
Conference, and the Microsoft Exchange Conference. He is the
author of three Microsoft Press books on Outlook development and
has written numerous articles on MSDN that focus on programming
the Outlook object model.

Ryan Gregg
Ryan Gregg works for Microsoft as a Program Manager on Office
Outlook, after being a developer outside of Microsoft for several
years. Ryan has written several MSDN technical articles and written
for MSDN Magazine. He has also developed Sidebar gadgets for
Outlook. When not working on new features, he blogs about Out-
look and programmability on MSDN. In his spare time, he enjoys
driving, occasional golf rounds, and Xbox 360 online.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	Cover
	Copyright Page

	Dedication
	Contents at a Glance
	Table of Contents
	Foreword
	Acknowledgments
	Introduction
	Why We Wrote This Book
	Who This Book Is For
	How This Book Is Organized
	Part I: Introducing Microsoft Office Outlook 2007
	Part II: Quick Guide to Building Solutions
	Part III: Working with Outlook Data
	Part IV: Providing a User Interface for Your Solution
	Part V: Advanced Topics

	Sample Code on the Web
	Code Snippets

	Building the Sample Add-Ins
	System Requirements
	Support for This Book

	Part I: Introducing Microsoft Office Outlook 2007
	Chapter 1: What’s New in Microsoft Office Outlook 2007
	Form Regions
	Security
	Table Object
	Improved Search
	Enhanced Events
	AddressEntry Enhancements
	SelectNamesDialog Object
	ExchangeUser and ExchangeDistributionList Objects

	Sharing Objects
	Rules Objects
	PropertyAccessor Object
	PropertyAccessor Sample Code

	Developer Reference
	Summary

	Chapter 2: Outlook as a Platform
	Why Integrate with Outlook?
	Different Types of Outlook Integration
	Data Integration
	Functional Integration

	Integration Guidelines
	Data Integration
	Business Logic
	User Interface Integration and Data Presentation
	InfoPath Forms

	APIs
	Architecture
	Outlook Object Model
	Form Regions
	MAPI as a Platform Component
	Outlook 2007 Integration API Reference
	Simple MAPI
	Deemphasized and Phased-Out Components

	Development Tools
	Visual Basic for Applications
	Visual Studio Tools for Office
	Managed Versus Native Code

	Add-In Model
	Summary

	Part II: Quick Guide to Building Solutions
	Chapter 3: Writing Your First Outlook Add-in Using Visual Basic .NET
	Introducing the Instant Search Add-In
	Install the Outlook Add-in Templates
	Creating the Instant Search Add-In
	Writing Code
	The InitializeAddin Method
	Turn Option Strict On
	Adding Instance Variables
	Hooking Up Events in Visual Basic
	ItemContextMenuDisplay Event
	ContextMenuClose Event
	The DisplayInstantSearchExplorer Method
	Writing Code for Submenu Click Events
	Building the Add-in Project

	Creating a Shim Project
	Creating a Setup Project
	Building the Setup Project
	Installing the Instant Search Add-In

	Testing the Instant Search Add-in Solution
	What to Expect
	Troubleshooting

	Debug Mode
	Debugging Code

	Summary

	Chapter 4: Writing Your First Outlook Add-in Using C#
	Introducing the Instant Search Add-In
	Install the Outlook Add-in Templates
	Creating the Instant Search Add-In
	Writing Code
	InitializeAddin Method
	Adding Instance Variables
	Hooking Up Events in Visual C#
	ItemContextMenuDisplay Event
	ContextMenuClose Event
	Cleaning Up Event Handlers
	DisplayInstantSearchExplorer Method
	Writing Code for Submenu Click Events
	Building the Add-in Project

	Creating a Shim Project
	Creating a Setup Project
	Building the Setup Project
	Installing the Instant Search Add-In

	Testing the Instant Search Add-in Solution
	What to Expect
	Troubleshooting

	Debug Mode
	Debugging Code

	Summary

	Part III: Working with Outlook Data
	Chapter 5: Built-in Item Types
	Introduction to Built-in and Custom Item Types
	Understanding MessageClass
	Built-in vs. Custom Types
	Creating an Item

	MailItem, PostItem, and SharingItem Objects
	Appropriate Uses of MailItem and PostItem
	Compose MailItem
	Read MailItem
	Adding an Electronic Business Card
	Create a To-Do Item

	PostItem Object
	Creating a PostItem
	Responding to a PostItem

	AppointmentItem Object
	Appropriate Uses of AppointmentItem
	One-Time Appointments
	All-Day Events
	Appointment Attendees
	Recurring Appointments

	MeetingItem Object
	ContactItem Object
	Appropriate Uses of ContactItem
	Working with Contact Properties
	Electronic Business Cards

	TaskItem Object
	Appropriate Uses of TaskItem
	Creating a Recurring Task
	Delegating a Task

	TaskRequestItem Object
	Working with Task Requests

	Other Item Types
	DistListItem Object
	JournalItem Object
	NoteItem Object
	StorageItem Object

	Summary

	Chapter 6: Accessing Outlook Data
	An Overview of Outlook Data Storage
	Exchange Server
	Personal Folder Files (.pst)
	Custom Store Providers

	Accounts Collection and Account Object
	Stores Collection and Store Object
	Stores Collection
	Adding or Removing a Store Programmatically
	Working with the Store Object

	Folders Collection and Folder Objects
	An Overview of Folder Types
	Folders Collection
	Folder Object
	Working with the Folder Object
	Folder Properties and Methods

	Folder Permissions
	Assigning Folder Permissions
	Assigning Roles
	Using the SharingItem Object to Assign Folder Permissions

	Accessing Items in a Folder
	Performance Considerations
	OutlookItem Helper Class
	Items Collection
	Table Object

	Summary

	Chapter 7: Address Books and Recipients
	An Overview of Outlook Address Books
	Exchange Global Address List
	Exchange Containers
	Offline Address Book
	Outlook Address Book
	Other Address Book Providers

	The Recipients Collection and Recipient Objects
	Outlook Object Model Guard Considerations
	The CreateRecipient Method
	Working with the Recipients Collection Object
	Obtaining the SMTP Address of a Recipient

	The AddressLists Collection and AddressList Objects
	Enumerating AddressList Objects
	The AddressListType Property
	Determining Resolution Order of Address Lists
	Finding a Specific AddressList Object
	Determining the Contacts Folder for a Contacts Address Book

	The AddressEntries Collection and AddressEntry Object
	The AddressEntryUserType Property
	Finding a Specific AddressEntry Object
	The GetAddressEntryFromID Method
	Displaying AddressEntry Details
	Getting Availability Information for a User

	The ExchangeUser Object
	Working with ExchangeUser Properties
	Obtaining an ExchangeUser Object from an AddressEntry Object
	The GetExchangeUserManager Method
	The GetDirectReports Method
	The GetMemberOfList Method
	Obtaining Proxy Addresses for an ExchangeUser Object

	The ExchangeDistributionList Object
	The GetExchangeDistributionListMembers Method
	The GetMemberOfList Method
	The GetOwners Method

	The SelectNamesDialog Object
	Using the SetDefaultDisplayMode Method
	Dialog Caption and Recipient Selectors
	Setting the InitialAddressList Property
	Displaying the Select Names Dialog Box
	Using SelectNamesDialog.Recipients

	Summary

	Chapter 8: Responding to Events
	Writing Event Handlers in Managed Code
	Hooking Up Events in Visual Basic .NET
	Hooking Up Events in C#

	Outlook 2007 Events
	Application Object Events
	Explorers Collection Event
	Explorer Object Events
	Folders Collection Events
	Folder Object Events
	FormRegion Object
	Inspectors Collection Event
	Inspector Object Events
	Items Collection Events
	Item-Level Events
	Namespace Object Events
	NavigationGroups Collection Events
	NavigationPane Object Event
	OutlookBarPane Object Events
	OutlookBarGroup Object Events
	OutlookBarShortcut Object Events
	Stores Collection Events
	SyncObject Object Events
	Reminders Collection Events
	Views Collection Events

	Summary

	Chapter 9: Sharing Information with Other Users
	Outlook and Shared Data
	Sharing in iCalendar Format
	Sharing a Calendar Through E-Mail
	Saving a Calendar to Disk
	Saving an Appointment to Disk
	Opening an iCalendar File

	Subscribing to Shared Folders
	RSS Feeds
	SharePoint Folders
	Internet Calendars

	Using the SharingItem Object
	SharingItem Types
	Sharing a Folder with a Sharing Invitation
	Requesting Folder Access with a Sharing Request
	Processing a Sharing Item

	Summary

	Chapter 10: Organizing Outlook Data
	How Outlook 2007 Helps to Organize Information
	The Categories Collection and Category Objects
	Creating a Category
	Assigning One or More Categories to an Item
	Displaying the Categories Dialog Box

	Task Flagging
	Controlling Visibility of the To-Do Bar
	Creating To-Do Items That Appear in the To-Do Bar

	The Rules Collection and Rule Objects
	Overview of Rules Programming
	Rules Collection
	The Rule Object
	The RuleActions Collection
	The RuleConditions Collection
	Get or Set Action or Condition Properties with an Array
	Rules Sample Add-In

	Search Folders
	When to Use a Search Folder
	Enumerating Search Folders
	Creating a Search Folder Programmatically

	Outlook Views
	Objects That Derive from the View Object
	Adding or Removing a View Programmatically

	Customizing Your View
	Specifying Fields in a View
	Filtering Items in the View Object
	Sorting Items in a View
	The AutoFormatRules Collection

	Summary

	Chapter 11: Searching Outlook Data
	Overview of Searching Data
	Outlook Query Languages
	AQS
	DASL

	Date-Time Comparisons
	Filtering Recurring Items in the Calendar Folder
	Date-Time Format of Comparison Strings
	Time Zones Used in Comparison
	Conversion to UTC for DASL Queries

	Integer Comparisons
	Invalid Properties
	Jet
	DASL

	Comparison and Logical Operators
	Comparison Operators
	Logical Operators
	Null Comparisons

	Search Entry Points
	Search Considerations
	Performance
	Read-Only vs. Read/Write
	Searching Subfolders
	Windows Desktop Search

	Summary

	Part IV: Providing a User Interface for Your Solution
	Chapter 12: Introducing the Outlook User Interface
	Decoding the User Interface
	The Explorer Window (The Explorer Object)
	Programming the Explorer Object
	The Explorers Collection

	The Inspector Window (The Inspector Object)
	Programming the Inspectors Collection and Inspector Object
	The Inspectors Collection

	Working with the Navigation Pane
	Making the Most of Navigation Modules
	Adding Structure with Navigation Groups
	Removing Folders

	Folder Views
	The Reading Pane
	Customizing the Reading Pane

	The To-Do Bar
	Command Bars
	Context Menus
	Folder Home Pages
	Summary

	Chapter 13: Creating Form Regions
	Introduction to Form Regions
	Form Pages Compared with Form Regions
	Form Region Types
	Standard Form Types
	Anatomy of a Form Region Solution

	Becoming Familiar with Form Region Design
	Designing a Form Region
	Adding Controls
	Working with Fields
	Polishing Your Form Region

	Form Region End to End
	Step 1: Creating a Form Region
	Step 2: Writing Business Logic
	Step 3: Registering the Form Region
	Advanced Form Region Methods

	Summary

	Chapter 14: Form Region Controls
	Standard Controls
	The Outlook Check Box
	The Outlook Combo Box
	The Outlook Command Button
	The Outlook Label Control
	The Outlook List Box
	The Outlook Option Button
	The Outlook Text Box

	Outlook-Specific Controls
	The Outlook Body Control
	The Outlook Business Card Control
	The Outlook Category Control
	The Outlook Contact Photo Control
	The Outlook Date Control
	The Outlook Frame Header Control
	The Outlook InfoBar Control
	The Outlook Page Control
	The Outlook Recipient Control
	The Outlook Sender Photo Control
	The Outlook Time Zone Control
	The Outlook Time Control
	The Outlook View Control

	Using Form Region Controls
	Adding Controls to the Control Toolbox
	Adding Controls Programmatically
	Programmatic Access to Controls

	Summary

	Chapter 15: Extending the Ribbon
	Introducing Ribbon Extensibility
	What Happens with Existing Code

	Outlook RibbonX Sample Add-In
	Installation Instructions
	Running the Sample Add-In

	Modifying Your Code to Use RibbonX
	Authoring Ribbon XML
	IRibbonExtensibility Interface
	Detecting Errors
	NewInspector Event
	OutlookInspector Class
	IRibbonUI Object
	IRibbonControl Object

	Summary

	Chapter 16: Completing Your User Interface
	Custom Task Panes
	When to Use a Custom Task Pane
	Implementing a Custom Task Pane
	Adding a Custom Task Pane in an Add-In

	Custom Property Pages
	Designing a Custom Property Page

	Summary

	Part V: Advanced Topics
	Chapter 17: Using the PropertyAccessor Object
	Scenarios for PropertyAccessor
	Objects That Implement PropertyAccessor
	PropertyAccessor Namespaces
	Obtaining a Specific SchemaName String
	Type Specifiers
	The Proptag Namespace
	Named Property ID Namespace
	Named Property String Namespace
	Office Namespaces
	DAV Namespaces

	The PropertyAccessor Object
	The GetProperty Method
	The SetProperty Method
	The GetProperties Method
	The SetProperties Method
	The DeleteProperty Method
	The DeleteProperties Method
	Date-Time Properties
	Multivalued Properties
	Helper Methods

	Detecting and Reporting Error Conditions
	Property Size Limitations
	Summary

	Chapter 18: Add-in Setup and Deployment
	Creating a Setup Project
	Writing Required Keys to the Windows Registry
	Installing to HKEY_CURRENT_USER
	Installing to HKEY_LOCAL_MACHINE
	Registry Keys Required for an Add-In
	Registry Keys Required for a Form Region

	Required Installation Components
	.NET Framework Version 2.0
	Visual Studio Tools for Office Runtime
	Primary Interop Assemblies
	Add-in Assembly and Other Required Components
	Using a COM Shim
	Writing Custom Actions

	Deploying to Users Who Are Not Administrators
	Summary

	Chapter 19: Trust and Security
	Code Security for Outlook 2007
	Guard Principles
	Security Warning Types
	Detecting Trusted State
	Trapping Errors
	Restricted Properties and Methods

	Trusting Managed Code
	Trustable Shared Add-Ins

	Trust Center
	Administrative Options
	Group Policy Security for COM Add-Ins
	Exchange-Brokered Security for COM Add-Ins
	Configuring a Security Policy
	Trusting an Add-In
	Form Region Policy
	Folder Home Page Policy

	Summary

	Index
	About the Authors

