

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

SECOND EDITION

Programming Entity Framework

 Julia Lerman

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo Download from Library of Wow! eBook <www.wowebook.com>

Programming Entity Framework, Second Edition

by Julia Lerman

Copyright © 2010 Julia Lerman. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our

corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Hendrickson and Laurel Ruma

Indexer: Ellen Troutman Zaig

Production Editor: Loranah Dimant

Cover Designer: Karen Montgomery

Copyeditor: Audrey Doyle

Interior Designer: David Futato

Proofreader: Sada Preisch

Illustrator: Robert Romano

Printing History:

February 2009:

First Edition.

August 2010:

Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Programming Entity Framework, the image of a Seychelles blue pigeon, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.

.NET is a registered trademark of Microsoft Corporation.

While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 978-0-596-80726-9

[SB]

1281106344

Download from Library of Wow! eBook <www.wowebook.com>

Table of Contents

Foreword . xxi

Preface . xxiii

1. Introducing the ADO.NET Entity Framework . 1

The Entity Relationship Model: Programming Against a Model,

Not the Database

2

The Entity Data Model: A Client-Side Data Model

3

Entities: Blueprints for Business Classes

6

The Backend Database: Your Choice

7

Database Providers

8

Access and ODBC

9

Entity Framework Features: APIs and Tools

9

Metadata

10

Entity Data Model Design Tools

10

Object Services

11

POCO Support

12

Change Tracking

12

Relationship Management and Foreign Keys

13

Data Binding

13

n-Tier Development

14

EntityClient

14

The Entity Framework and WCF Services

15

What About ADO.NET DataSets and LINQ to SQL?

15

DataSets

15

LINQ to SQL

16

Entity Framework Pain Points Are Fading Away

16

Programming the Entity Framework

17

2. Exploring the Entity Data Model . 19

Why Use an Entity Data Model?

19

iii

Download from Library of Wow! eBook <www.wowebook.com>

The EDM Within the Entity Framework

20

Walkthrough: Building Your First EDM

21

Inspecting the EDM in the Designer Window

24

Entity Container Properties

26

Entity Properties

26

Entity Property Properties

27

The Model’s Supporting Metadata

29

Viewing the Model in the Model Browser

31

Viewing the Model’s Raw XML

31

CSDL: The Conceptual Schema

33

EntityContainer

34

EntitySet

35

EntityType

36

Associations

38

Navigation Property

41

Navigation Properties That Return Collections

42

SSDL: The Store Schema

43

MSL: The Mappings

45

Database Views in the EDM

46

Summary

47

3. Querying Entity Data Models . 49

Query the Model, Not the Database

49

Your First EDM Query

50

Where Did the Context and Classes Come From?

51

Querying with LINQ to Entities

55

Writing Your First LINQ to Entities Query

55

Querying with Object Services and Entity SQL

57

Why Another Way to Query?

57

Entity SQL

58

The Parameterized ObjectQuery

60

Querying with Methods

61

Querying with LINQ Methods

61

Querying with Query Builder Methods and Entity SQL

64

The Shortest Query

66

ObjectQuery, ObjectSet, and LINQ to Entities

66

Querying with EntityClient to Return Streamed Data

68

EntityConnection and the Connection String

70

EntityCommand

71

ExecuteReader

71

Forward-Only Access to the Fields

71

Translating Entity Queries to Database Queries

71

Pay Attention to the .NET Method’s Impact on Generated SQL

72

iv | Table of Contents

Download from Library of Wow! eBook <www.wowebook.com>

Avoiding Inadvertent Query Execution

74

Summary

75

4. Exploring LINQ to Entities in Greater Depth . 77

Getting Ready with Some New Lingo

78

Projections in Queries

78

Projections in LINQ to Entities

79

VB and C# Syntax Differences

79

LINQ Projections and Special Language Features

80

Projections with LINQ Query Methods

84

Using Navigations in Queries

84

Navigating to an EntityReference

84

Filtering and Sorting with an EntityReference

86

Navigating to Entity Collections

86

Projecting Properties from EntityCollection Entities

87

Filtering and Sorting with EntityCollections

88

Aggregates with EntityCollections

88

Aggregates in LINQ Methods

89

Joins and Nested Queries

90

Joins

90

Nested Queries

91

Grouping

93

Naming Properties When Grouping

94

Chaining Aggregates

95

Filtering on Group Conditions

95

Shaping Data Returned by Queries

97

Limiting Which Related Data Is Returned

99

Loading Related Data

100

Controlling Lazy Loading

101

Explicitly Loading Entity Collections and Entity References

101

Using the Include Method to Eager-Load

103

Pros and Cons of Load and Include

106

Retrieving a Single Entity

107

Retrieving a Single Entity with GetObjectByKey

108

Finding More Query Samples

109

Summary

109

5. Exploring Entity SQL in Greater Depth . 111

Literals in Entity SQL

111

Expressing a DateTime Literal

112

Expressing a Decimal Literal

112

Using Additional Literal Types

112

Projecting in Entity SQL

113

Table of Contents | v

Download from Library of Wow! eBook <www.wowebook.com>

DbDataRecords and Nonscalar Properties

114

Projecting with Query Builder Methods

115

Using Navigation in Entity SQL Queries

115

Navigating to an EntityReference

115

Filtering and Sorting with an EntityReference

116

Filtering and Sorting with EntityCollections

116

Aggregating with EntityCollections

117

Using Entity SQL SET Operators

117

Aggregating with Query Builder Methods

118

Using Joins

118

Nesting Queries

119

Grouping in Entity SQL

120

Returning Entities from an Entity SQL GROUP BY Query

121

Filtering Based on Group Properties

121

Shaping Data with Entity SQL

122

Using Include with an ObjectQuery and Entity SQL

123

Understanding Entity SQL’s Wrapped and Unwrapped Results

124

Entity SQL Rules for Wrapped and Unwrapped Results

126

Digging a Little Deeper into EntityClient’s Results

126

Summary

127

6. Modifying Entities and Saving Changes . 129

Keeping Track of Entities

129

Managing an Entity’s State

130

Saving Changes Back to the Database

131

Inserting New Objects

134

Inserting New Parents and Children

135

Deleting Entities

137

Summary

139

7. Using Stored Procedures with the EDM . 141

Updating the Model from a Database

142

Working with Functions

143

Function Attributes

144

Mapping Functions to Entities

146

Mapping Insert, Update, and Delete Functions to an Entity

148

Inspecting Mappings in XML

152

Using Mapped Functions

153

Using the EDM Designer Model Browser to Import Additional

Functions into Your Model

155

Mapping the First of the Read Stored Procedures: ContactsbyState

156

Using Imported Functions

158

Avoiding Inadvertent Client-Side Processing

159

vi | Table of Contents

Download from Library of Wow! eBook <www.wowebook.com>

Mapping a Function to a Scalar Type

159

Mapping a Function to a Complex Type

160

Summary

163

8. Implementing a More Real-World Model . 165

Introducing the BreakAway Geek Adventures Business Model

and Legacy Database

166

Creating a Separate Project for an EDM

168

Inspecting and Cleaning Up a New EDM

168

Modifying the Names of Entities and Properties

170

Resolving Collisions Between Property Names and Entity Names

172

Cleaning Up Navigation Property Names

172

Setting Default Values

174

Mapping Stored Procedures

175

Using the Use Original Value Checkbox in Update Mappings

176

Working with Many-to-Many Relationships

178

Inspecting the Completed BreakAway Model

181

Building the BreakAway Model Assembly

182

Looking at the Compiled Assembly

183

Splitting Out the Model’s Metadata Files

184

Summary

185

9. Data Binding with Windows Forms and WPF Applications 187

Data Binding with Windows Forms Applications

187

Creating a Windows Forms Application

188

Using Windows Forms Data Sources

189

Creating an Object Data Source for a Customer Entity

190

Getting an Entity’s Details onto a Form

191

Adding Code to Query an EDM When a Form Loads

194

Binding Without a BindingSource

196

Adding an EntityCollection to the Form

198

Displaying the Properties of Related Data in the Grid

199

Allowing Users to Edit Data

201

Editing Navigation Properties (and Shrinking the Query)

202

Replacing the Navigation Property TextBoxes with ComboBoxes

204

Adding New Customers

208

Deleting Reservations

211

Data Binding with WPF Applications

213

Creating the WPF Form

213

Creating the WPF Project

214

Adding the Necessary Data Source Objects

215

Inspecting the XAML and Code Generated by the Automated

Data Binding

215

Table of Contents | vii

Download from Library of Wow! eBook <www.wowebook.com>

Adding Code to Query the EDM When the Window Loads

216

Customizing the Display of the Controls

218

Selecting an Entity and Viewing Its Details

219

Adding Another EntityCollection to the Mix

222

Editing Entities and Their Related Data

224

Using SortDescriptions to Keep Sorting in Sync with Data Modifica-

tions

225

Adding Items to the Child EntityCollection

226

The Last Task: Adding New Trips to the Catalog

227

Summary

230

10. Working with Object Services . 231

Where Does Object Services Fit into the Framework?

231

Processing Queries

233

Parsing Queries: From Query to Command Tree to SQL

234

Understanding Query Builder Methods

235

Analyzing a Query with ObjectQuery Methods and Properties

238

Executing Queries with ToList, ToArray, First or Single

241

Executing Queries with the Execute Method

242

Overriding a Default Connection with ObjectContext.Connection

242

Handling Command Execution with EntityClient

244

Materializing Objects

244

Managing Object State

246

Using EntityKey to Manage Objects

246

Merging Results into the Cache with MergeOptions

247

Inspecting ObjectStateEntry

248

Maintaining EntityState

249

Managing Relationships

252

Attaching and Detaching Objects from the ObjectContext

253

Taking Control of ObjectState

257

ObjectStateManager Methods

257

ObjectStateEntry State Methods for Managing State

258

ObjectSet State Methods

259

Sending Changes Back to the Database

259

ObjectContext.SaveChanges

259

Affecting SaveChanges Default Behavior

260

Overriding SaveChanges Completely

261

Data Validation with the SavingChanges Event

261

Concurrency Management

261

Transaction Support

262

Implementing Serialization, Data Binding, and More

263

Object Services Supports XML and Binary Serialization

263

Object Services Supports Data Binding

265

viii | Table of Contents

Download from Library of Wow! eBook <www.wowebook.com>

Summary

266

11. Customizing Entities . 267

Partial Classes

267

Using Partial Methods

269

The OnContextCreated Method

269

The On[Property]Changed and On[Property]Changing Methods

271

Using PropertyChanged to Calculate Database-Computed Columns

Locally

273

Subscribing to Event Handlers

274

The ObjectContext.ObjectMaterialized Event

275

The ObjectContext.SavingChanges Event

276

The EntityObject.PropertyChanging

and EntityObject.PropertyChanged Events

280

The AssociationChanged Event

282

Creating Your Own Partial Methods and Properties

284

Overriding the Object Constructor

284

Overriding ObjectContext.SaveChanges

285

Creating Custom Properties

286

Overloading Entity Creation Methods

289

Using Partial Classes for More Than Just Overriding Methods

and Events

290

Overriding Default Code Generation

291

Switching to a Template

292

Reading the Template

292

Modifying the Template

293

Customizing a Template for Major Class Modifications

295

Switching Between the Default Template and a Custom Template

295

Summary

296

12. Data Binding with RAD ASP.NET Applications . 297

Using the EntityDataSource Control to Access Flat Data

298

Creating the Hello Entities Project

298

Creating a GridView and an EntityDataSource Concurrently

299

Configuring an EntityDataSource with Its Wizard

299

Formatting the GridView

301

Testing the Web Application

303

Understanding How the EntityDataSource Retrieves and Updates

Your Data

304

EntityDataSource and Its Query

304

EntityDataSource and Its ObjectContext

305

EntityDataSource Context Events

306

EntityDataSource and ViewState

306

Table of Contents | ix

Download from Library of Wow! eBook <www.wowebook.com>

Accessing Foreign Keys When There Is No Foreign Key Property

308

Working with Related EntityReference Data

309

Using EntityDataSource.Include to Get Related Data

309

Displaying Data That Comes from EntityReference

Navigation Properties

310

Using a New EntityDataSource Control to Enable Editing

of EntityReference Navigation Properties

312

Editing EntityReferences That Cannot Be Satisfied

with a Drop-Down List

313

Binding an EntityDataSource to Another Control

with WhereParameters

314

Editing Related Data Concurrently with Multiple

EntityDataSource Controls

316

Working with Hierarchical Data in a Master/Detail Form

317

Setting Up the Web Application

317

Specifying Your Own Entity SQL Query Expression

for an EntityDataSource

318

Binding a DropDownList to an EntityDataSource Control

319

Creating a Parent EntityDataSource That Is Controlled

by the DropDownList and Provides Data to a DetailsView

320

Using the EntityDataSource.Where Property to Filter Query Results

321

Displaying Read-Only Child Data Through the Parent

EntityDataSource

321

Using a New EntityDataSource to Add a Third Level of Hierarchical

Data to the Master/Detail Form

323

Using the EntityDataSource.Inserting Event to Help with Newly

Added Entities

325

Testing the Application

326

Exploring EntityDataSource Events

327

Building Dynamic Data Websites

329

Summary

332

13. Creating and Using POCO Entities . 335

Creating POCO Classes

336

Creating an ObjectContext Class to Manage the POCOs

339

Change Tracking with POCOs

341

Understanding the Importance of DetectChanges

341

Loading Related Data with POCOs

341

Loading from the Context

342

Lazy Loading from a Dynamic Proxy

342

Exploring and Correcting POCOs’ Impact on Two-Way Relationships

342

Using the DetectChanges Method to Fix Relationships

343

Enabling Classes to Fix Their Own Relationships

344

x | Table of Contents

Download from Library of Wow! eBook <www.wowebook.com>

Using Proxies to Enable Change Notification, Lazy Loading,

and Relationship Fix-Up

345

Change Notification by Proxy

346

Lazy Loading by Proxy

346

Exploring the Proxy Classes

347

Synchronizing Relationships by Proxy

348

Using T4 to Generate POCO Classes

350

Modifying the POCO Template

354

Creating a Model That Works with Preexisting Classes

358

Code First: Using Entity Framework with No Model at All

359

Summary

359

14. Customizing Entity Data Models Using the EDM Designer . 361

Mapping Table per Type Inheritance for Tables That Describe

Derived Types

362

Mapping TPT Inheritance

363

Querying Inherited Types

365

POCO Classes and Inherited Objects

366

Inserting TPT Inherited Types

366

Specifying or Excluding Derived Types in Queries

368

Creating New Derived Entities When the Base Entity Already Exists

370

TPT with Abstract Types

371

Mapping Unique Foreign Keys

373

Mapping an Entity to More Than One Table

375

Merging Multiple Entities into One

376

Querying, Editing, and Saving a Split Entity

378

Mapping Stored Procedures to Split Tables and More

380

Splitting a Single Table into Multiple Entities

381

Filtering Entities with Conditional Mapping

383

Creating a Conditional Mapping for the Activity Entity

385

Querying, Inserting, and Saving with Conditional Mappings

385

Filtering on Other Types of Conditions

387

Removing the Conditional Mapping from Activity and Re-creating

the Category Property

388

Implementing Table per Hierarchy Inheritance for Tables That Contain

Multiple Types

389

Creating the Resort Derived Type

390

Setting a Default (Computed) Value on the Table Schema

391

Testing the TPH Mapping

392

Choosing to Turn a Base Class into an Abstract Class

393

Creating Complex Types to Encapsulate Sets of Properties

393

Defining a Complex Type

394

Reusing Complex Types

396

Table of Contents | xi

Download from Library of Wow! eBook <www.wowebook.com>

Querying, Creating, and Saving Entities That Contain Complex Types 397

Removing the Complex Types from the Model

398

Using Additional Customization Options

399

Using GUIDs for EntityKeys

399

Mapping Stored Procedures

399

Mapping Multiple Entity Sets per Type

399

Mapping Self-Referencing Associations

400

Summary

401

15. Defining EDM Mappings That Are Not Supported by the Designer 403

Using Model-Defined Functions

403

Using Model-Defined Functions to Return More Complex Results

407

Consuming the Complex Results

408

Reading the Results from a Complex Function

408

Mapping Table per Concrete (TPC) Type Inheritance for Tables

with Overlapping Fields

409

Using QueryView to Create Read-Only Entities and Other Specialized

Mappings

411

Finding a Common Use Case for QueryView

413

Creating a CustomerNameAndID Entity

413

Creating a QueryView Mapping for CustomerNameAndID

414

Testing the QueryView

416

Deconstructing the QueryView

416

Summary

417

16. Gaining Additional Stored Procedure and View Support in the Raw XML 419

Reviewing Procedures, Views, and UDFs in the EDM

419

Working with Stored Procedures That Return Data

420

Using Functions That Match an Entity Whose Property Names Have

Been Changed

420

Query Stored Procedures and Inherited Types

421

Composing Queries Against Functions

423

Replacing Stored Procedures with Views for Composability

423

Queries That Return Multiple Result Sets

424

Executing Queries on Demand with ExecuteStoreQuery

424

Querying to a Class That Is Not an Entity

424

Querying into an Entity

425

Adding Native Queries to the Model

426

Defining a Complex Type in the Model Browser

427

Adding Native Views to the Model

429

DefiningQuery Is Already in Your Model

429

Using DefiningQuery to Create Your Own Views

431

Implementing a DefiningQuery

433

xii | Table of Contents

Download from Library of Wow! eBook <www.wowebook.com>

Creating Associations with the New Entity

437

Using DefiningQuery to Solve More Complex Problems

438

Using Commands That Affect the Database

440

Executing SQL on the Fly with ExecuteStoreCommand

440

Using Functions to Manipulate Data in the Database

441

Mapping Insert/Update/Delete to Types Within an Inheritance Structure 444

What If Stored Procedures Affect Multiple Entities in an Inheritance

Structure?

445

Implementing and Querying with User-Defined Functions (UDFs)

445

Summary

447

17. Using EntityObjects in WCF Services . 449

Planning for an Entity Framework–Agnostic Client

450

Assessing the Pros and Cons of an Entity Framework–Agnostic

Consumer

451

Building a Simple WCF Service with EntityObjects

452

Creating the Service

453

Defining the Service Operations

454

Defining Extra Service Classes

455

Exposing Custom Properties

456

Implementing the Service Interface

457

Adding Graphs to ObjectContext

460

Deleting Objects

461

Updating the Object Graph

463

Client Rules for Identifying Changes in an EntityCollection

463

The UpdateCustomer Method

463

Handling New and Existing Reservations

465

Deleting Reservations

466

Building a Simple Console App to Consume an EntityObject Service

467

Enabling the Client Application to Receive Large Messages

from the Service

468

Creating Methods to Test the Service Operations

469

Analyzing the GetAndUpdateCustomer Method

473

Testing Out the Other Service Operations

474

Creating WCF Data Services with Entities

474

Putting WCF Data Services in Perspective

475

Creating a WCF Data Service

475

Filtering at the Service Level Using QueryInterceptor

480

Anticipating Exceptions

481

Exposing Related Data Through the Service

481

Preparing for WCF Data Services’ Limitations

483

Modifying Data Through a Service

484

Learning More About Creating and Consuming WCF Data Services

485

Table of Contents | xiii

Download from Library of Wow! eBook <www.wowebook.com>

Understanding How WCF RIA Services Relates to the Entity Framework 485

Summary

487

18. Using POCOs and Self-Tracking Entities in WCF Services . 489

Creating WCF-Friendly POCO Classes

490

Updating the POCO Classes Based on the Current BreakAway Model

490

Isolating the POCO Entities in Their Own Project

491

Adding Custom Logic to the POCO Entities with a Base Class

493

Following WCF Collection Rules

495

Preventing Properties from Being Marked As Virtual

496

Building a WCF Service That Uses POCO Classes

497

Implementing the Interface

498

Using the Service

500

Using the Self-Tracking Entities Template for WCF Services

503

Creating and Exploring the Self-Tracking Entities

503

Putting the Change-Tracking Logic Where It’s Needed

505

Creating a WCF Service That Uses Self-Tracking Entities

506

Watching Self-Tracking Entities Under the Covers

507

Inspecting the Generated Context Class and Extensions

513

Using POCO Entities with WCF Data and RIA Services

515

Preparing for WCF Data Services

515

Using POCO Entities in WCF RIA Services

517

Sorting Out the Many Options for Creating Services

519

Summary

520

19. Working with Relationships and Associations . 521

Deconstructing Relationships in the Entity Data Model

522

Understanding How the Entity Data Model Wizard Creates

the Association

523

Understanding Additional Relationship Items

525

Handling Nonessential Navigation Properties

526

Understanding the Major Differences Between Foreign Key Associations

and Independent Associations

527

Defining Associations in Metadata

528

Detecting Associations at Runtime

528

Deconstructing Relationships Between Instantiated Entities

529

Understanding Relationship Manager and the IRelatedEnd Interface

530

Late-Binding Relationships

530

Taking a Peek Under the Covers: How Entity Framework

Manages Relationships

531

Understanding Navigation Properties

534

Understanding Referential Integrity and Constraints

537

Implementing Deletes and Cascading Deletes

540

xiv | Table of Contents

Download from Library of Wow! eBook <www.wowebook.com>

Defining Relationships Between Entities

542

The CLR Way: Setting a Navigation Property to an Entity

543

Setting a Foreign Key Property

544

Setting an EntityReference Using an EntityKey

544

Loading, Adding, and Attaching Navigation Properties

545

Lazy Loading

545

EntityReference.Load and EntityCollection.Load

547

Loading from Detached Entities: Lazy and Explicit

547

Using EntityCollection.Add

548

Using Attach and Remove

549

Moving an Entity to a New Graph

550

Learning a Few Last Tricks to Make You a Relationship Pro

551

Using CreateSourceQuery to Enhance Deferred Loading

551

Getting a Foreign Key Value in an Independent Association

552

Summary

553

20. Real World Apps: Connections, Transactions, Performance, and More 555

Entity Framework and Connections

555

Overriding EntityConnection Defaults

556

Working with Connection Strings Programmatically

557

Opening and Closing Connections

560

Getting the Store Connection from EntityConnection

562

Disposing Connections

562

Pooling Connections

563

Fine-Tuning Transactions

564

Why Use Your Own Transaction?

564

Understanding Implicit Entity Framework Transactions

565

Specifying Your Own Read/Write Transactions

566

Specifying Your Own Read-Only Transactions

569

Rolling Back Transactions

570

Understanding Security

571

Guarding Against SQL Injection

571

Guarding Against Connection Piggybacks

573

Fine-Tuning Performance

574

Measuring Query Performance

575

Measuring Startup Performance

579

Reducing the Cost of Query Compilation

580

Caching for Entity SQL Queries

580

Precompiling Views for Performance

582

Precompiling LINQ to Entities Queries for Performance

585

Fine-Tuning Updates for Performance?

589

Lacking Support for Full Text Searches

590

Exploiting Multithreaded Applications

591

Table of Contents | xv

Download from Library of Wow! eBook <www.wowebook.com>

Forcing an ObjectContext to Use Its Own Thread

591

Implementing Concurrent Thread Processing

593

Exploiting .NET 4 Parallel Computing

596

Summary

596

21. Manipulating Entities with ObjectStateManager and MetadataWorkspace 597

Manipulating Entities and Their State with ObjectStateManager

598

Refreshing Your High-Level Understanding of ObjectStateEntry

599

Getting an ObjectStateManager and Its Entries

599

Building Extension Methods to Overload GetObjectStateEntries

600

Building a Method to Return Managed Entities

602

Using GetObjectStateEntry and TryGetObjectStateEntry

603

Mining Entity Details from ObjectStateEntry

604

Leveraging the ObjectStateManager During Saves

609

Using ObjectStateManager to Build an EntityState Visualizer

611

Retrieving an ObjectStateEntry Using an EntityKey

612

Reading the OriginalValues and CurrentValues of an

ObjectStateEntry

613

Determining Whether a Property Has Been Modified

614

Displaying the State and Entity Type

614

Getting ComplexType Properties Out of ObjectStateEntry

615

Modifying Values with ObjectStateManager

619

Working with Relationships in ObjectStateManager

620

Using the MetadataWorkspace

622

Loading the MetadataWorkspace

622

Clearing the MetadataWorkspace from Memory

623

Understanding the MetadataWorkspace ItemCollections

624

Retrieving Metadata from the MetadataWorkspace

625

Querying the Metadata with LINQ to Objects

628

Building Dynamic Queries and Reading Results

629

Building Entity SQL Queries Dynamically Using Metadata

629

Creating Queries on the Fly with CreateObjectSet and Query

Builder Methods

632

Reading the Results of a Dynamically Created Query

634

Creating and Manipulating Entities Dynamically

637

Creating EntityObjects Without Entity Classes

637

Creating Entities and Graphs Dynamically

640

Summary

643

22. Handling Exceptions . 645

Preparing for Exceptions

645

Handling EntityConnectionString Exceptions

647

xvi | Table of Contents

Download from Library of Wow! eBook <www.wowebook.com>

Connection String Can’t Be Found or Is Improperly Configured:

System.ArgumentException

648

Metadata Files Cannot Be Found: System.Data.MetadataException

648

Handling Connection String Exceptions

649

Handling Query Compilation Exceptions

649

Invalid LINQ to Entities Query Expressions:

System.NotSupportedException

649

Invalid Entity SQL Query Expressions: EntitySqlException

650

EntityCommandCompilationException Thrown by the Store

Provider

652

Creating a Common Wrapper to Handle Query Execution Exceptions

652

Handling Exceptions Thrown During SaveChanges Command Execution 654

UpdateException: Thrown When Independent Association Mapping

Constraints Are Broken

654

UpdateException: Thrown by Broken Constraints in the Database

655

Relying on Entity Framework to Automatically Roll Back When an

UpdateException Occurs

656

Gleaning Details from UpdateException

656

Planning for Other Exceptions Related to the Entity Framework

657

Handling Concurrency Exceptions

658

Summary

658

23. Planning for Concurrency Problems . 659

Understanding Database Concurrency Conflicts

660

Understanding Optimistic Concurrency Options in the Entity Frame-

work

660

Ignoring Concurrency Conflicts

661

Forcing the User’s Data to the Server (ClientWins)

661

Refreshing the User’s Data with Server Data (StoreWins)

661

Determining the Scope of Changes

662

Using rowversion (a.k.a. timestamp) for Concurrency Checks

662

Implementing Optimistic Concurrency with the Entity Framework

663

Flagging a Property for Concurrency Checking

664

How the Entity Framework Uses the ConcurrencyMode Property

665

Concurrency Checking Without a rowversion Field

666

Concurrency Checking on a Checksum in the Data Store

666

Concurrency Checks for EntityReference Navigation Properties

667

Concurrency Checks and Inherited Types

667

Concurrency Checks and Stored Procedures

668

Handling OptimisticConcurrencyExceptions

670

Using ObjectContext.Refresh

671

Using Refresh with ClientWins

671

Using Refresh with StoreWins

673

Table of Contents | xvii

Download from Library of Wow! eBook <www.wowebook.com>

Refreshing Collections of Entities

673

Refreshing Related Entities in a Graph

675

Rewinding and Starting Again, and Maybe Again After That

676

Reporting an Exception

678

Handling Concurrency Exceptions at a Lower Level

678

Handling Exceptions in a Granular Way Without User Intervention

678

Handling Multiple Conflicts

680

Handling Exceptions When Transactions Are Your Own

682

Summary

683

24. Building Persistent Ignorant, Testable Applications . 685

Testing the BreakAway Application Components

686

Getting Started with Testing

687

Writing an Integration Test That Hits the Database

687

Inspecting a Failed Test

689

Writing a Unit Test That Focuses on Custom Logic

689

Creating Persistent Ignorant Entities

693

Planning the Project Structure

695

Starting with the Model and Its POCO Entities

697

Building an Interface to Represent a Context

698

Modifying the BAEntities ObjectContext Class to Implement

the New Interface

699

Creating the IEntityRepository Interface

702

Creating the Repository Classes

703

Testing GetReservationsForCustomer Against the Database

706

Creating a Fake Context

708

Creating a FakeObjectSet Class

710

Completing the Fake Context

712

Building Tests That Do Not Hit the Database

714

Adding Validation Logic to the POCO Class

714

Adding Validation Logic to the Context

716

Providing ManagedEntities in the FakeContext

716

Hiding the Context from the Lower Layers with Unit of Work

718

Testing UnitOfWork Against the Database

720

Enabling Eager Loading in IContext

721

Leveraging Precompiled Queries in Your Repositories

722

Using the New Infrastructure in Your Application

723

Adding a UI Layer That Calls the Repository

723

Application Architecture Benefits from Designing Testable Code

724

Considering Mocking Frameworks?

725

Summary

725

xviii | Table of Contents

Download from Library of Wow! eBook <www.wowebook.com>

25. Domain-Centric Modeling . 727

Creating a Model and Database Using Model First

728

Creating a Conceptual Model in the Designer

728

Creating the Entities

730

Creating Association and Inheritance Hierarchies

734

Generating Database Schema from the Model

738

Creating the Database and Its Schema

744

Overriding the DDL Generation

745

Using the Feature CTP Code-First Add-On

747

Understanding Code-First Design

749

Installing the Feature CTP

751

Exploring Some Configuration Examples

751

Testing the Code-First Application and Database

753

Using SQL Server Modeling’s “M” Language

755

Using M Metadata in Entity Framework Applications

758

Summary

759

26. Using Entities in Layered Client-Side Applications . 761

Isolating the ObjectContext

762

Freeing Entities from Change Tracking

764

Enabling Change Tracking Across Tiers

766

Moving Other ObjectContext-Dependent Logic to the DataBridge

768

Ensuring That Lazy Loading Doesn’t Negatively Impact the Layered

Application

772

Noting Additional Benefits of the Layered Application

773

Separating Entity-Specific Logic from ObjectContext Logic

774

Working with POCO Entities

778

Providing EntityState

779

Providing Logic in Place of Other EntityObject Behavior

781

Summary

782

27. Building Layered Web Applications . 783

Understanding How ObjectContext Fits into the Web Page

Life Cycle

783

Return Results, Not Queries, from the DataBridge Class

785

Using Entities in Read-Only Web Pages

786

Exploring Options for Updating Entities in an ASP.NET Web Forms

Application

788

Comparing ASP.NET’s State Solutions to the Needs of the Entity

Framework

789

Building an N-Tier Web Forms Application

793

Designing the Application

794

Using the Existing Repositories

795

Table of Contents | xix

Download from Library of Wow! eBook <www.wowebook.com>

Building an Entity Manager to Act As a DataBridge

795

Retrieving Data for Display and for Future Updates

797

Making the Related Data Accessible to the Client

799

Getting Data from the Manager to the Client

800

Adding Lists for User Selection Controls

803

Allowing a User to Modify Related Data

805

Building an ASP.NET MVC Application

806

Replacing the Context with Repositories

813

Editing Entities and Graphs on an MVC Application

814

Creating a Repository for Payments

817

Interacting with the ReservationController

817

Summary

818

A. Entity Framework Assemblies and Namespaces . 821

B. Data-Binding with Complex Types . 825

C. Additional Details About Entity Data Model Metadata . 831

Index . 839

xx | Table of Contents

Download from Library of Wow! eBook <www.wowebook.com>

Foreword

I first met Julie Lerman (rhymes with “German”) while she was visiting the Microsoft

campus for a Software Design Review (SDR). An SDR is an event where we invite customers we trust to be representative of a much larger crowd. In this particular case,

I was new to the SQL Server division and trying hard to catch up on the raft of tech-

nologies Microsoft shipped in the data space for developers. Julie, on the other hand,

was a seasoned veteran and not only knew the answers to all of my Entity Framework

questions but had already written a book on the topic. That book, Programming Entity

 Framework, was the first edition of the book you’re now holding in your hands. Or, if you are a .NET programmer, you know it simply as “THE book on EF.”

As the months went on, I ran into Julie more and more. She was researching the second

edition of her famous EF book. And by “researching,” I mean “pointing out our mis-

takes.” Julie was not only invaluable for teaching customers the real-world ins and outs

of EF, she had a way of asking questions about alphas and betas that made us rethink

what we were doing in many cases to improve the version of EF that ships with .NET

4 as well as the supporting functionality in Visual Studio 2010. And she was so well

respected because of her first EF book that anything she said received extra attention

from the EF team in ways I don’t see for many senior architects, let alone lowly program

managers. Julie had become an ad hoc member of the EF team itself.

My most recent encounter with Julie was by far the most fun. At a talk at the 2010

TechEd in New Orleans, I had the privilege of being Julie’s “code monkey,” which

meant mostly that I fetched her coffee, carried her bags, and wrote her code while she

entertained and educated a packed room. In 60 minutes, she did a tour de force tour

through nearly all the new features in EF 4.0, driving me through one complete demo

every 4 minutes. Normally, this would make an audience’s heads spin, but she has such

a grasp of the material and such a clear way of presenting it that she had everyone’s

rapt attention.

It’s this same completeness and clarity that you’ll find in this book, in chapters ranging from the basics in the details you’ll need to write actual applications for your actual

business needs. If there is more material to lead you through the basics of the Entity

Framework and to be a continuing reference, I don’t know what it is.

xxi

Download from Library of Wow! eBook <www.wowebook.com>

During her presentation, Julie fielded questions on all manner of EF details and related topics, but the one that made me cringe under the weight of history is the one I always

get, too: “Why should we use EF when Microsoft has already given us so many other

data access technologies?” Julie’s answer came without hesitation: “Because it’s the

best!”

Now, as a Microsoft employee sensitive to the needs of a wide-range of customers across

a wide-range of needs, I have to say that officially you should use the technology that

best fits your specific business problem. I can also say that the Entity Framework is

the .NET technology against which we’re placing all of our future bets and making all

of our biggest investments, which means that it’s the technology that we hope meets

most of your needs now and will meet more of your needs in the future.

But, I have to say, I do like Julie’s answer a great deal.

—Chris Sells, SQL Server division, Microsoft Corporation

xxii | Foreword

Download from Library of Wow! eBook <www.wowebook.com>

Preface

In June 2006, I was invited to attend a meet-up for data geeks at Tech Ed North America.

As the meet-up was early enough not to compete with the many fun evening parties at

Tech Ed, I happily crossed the lovely bridge between the Convention Center and the

hotel where the meeting was to take place.

Little did I know I was about to see a new technology from Microsoft’s Data Programmability team that was going to be the focus of my attention for the next few years.

In addition to other geeky discussions about data access, Pablo Castro, Mike Pizzo,

and Britt Johnson (all from Microsoft) talked to us about a new technology that was

coming in the next version of ADO.NET. It would allow developers to create their own

views of their database and query against these views rather than against the database.

As usual, Tech Ed was overwhelming, so as interesting as this new way of working with

data looked to me, I had to put it in a back corner of my mind and let it simmer for a

few months. I finally downloaded the preview and began playing with it. What was

most fun to me when I started exploring this technology, called Entity Framework, was

the lack of serious documentation, which forced me to play with all of its knobs and

dials to figure out what was in there and how it worked.

Unlike many in-development technologies from Microsoft, the Entity

Framework did not start off with a cool name as did WCF (née Indigo)

and ADO.NET Data Services (Astoria). Although it is often hard to give

up these early technology nicknames for their final (and relatively bor-

ing) names, the Entity Framework has had its “grown-up name” since

the beginning.

Over this time, it also became clear how important the Entity Framework and its un-

derlying Entity Data Model are to Microsoft. They are a critical part of Microsoft’s

strategy for the data access that all of its products perform, whether this is the data that Reporting Services uses to enable us to build reports, the data that comprises Workflow,

data in the cloud, or data that we developers want our .NET applications to access.

xxiii

Download from Library of Wow! eBook <www.wowebook.com>

As the Entity Framework evolved and further CTPs were released, followed by betas, I became quite fond of working against a data model and no longer having to think

about the structure of the database I was working against. I began to peel away the top

layers of the Entity Framework and discovered that I could make it do nearly anything

I wanted as I gained a better understanding of how it worked. When I hit a wall, I asked

the Entity Framework team how to get past it, and if there wasn’t a way to do so, I

camped out on their virtual doorstep until they modified the framework or Designer

to enable me to do what I wanted and what I knew other developers would need.

During this time, I was excited to share what I was learning with other developers

through the MSDN forums, my blog, conference sessions, and articles. However, I

constantly felt restrained by the time or space allotted to me. Conference sessions are

generally 75–90 minutes long. Magazine articles tend to be 5–10 pages. I felt as though

I was going to self-combust if I couldn’t share all of this new information, and so I

contacted O’Reilly to ask whether I could write a book about the Entity Framework.

My editor on the first edition, John Osborn, was a bit taken aback because for years I

had shunned publishers, saying I would have to have lost my mind to write a book. It’s

not a simple undertaking. But I knew that if I didn’t write a book about ADO.NET

Entity Framework, I certainly would lose my mind. The time had come. I was so excited,

and of course, I had no idea what I was in for!

I spent almost a year writing the book that ended up at a little over 800 pages and more

than two pounds on the scale. When the book was released in February 2009, Microsoft

was already well underway on the next version of Entity Framework, which was going

through major changes. After spending some time with the early releases of what was

to become Entity Framework 4, and with some trepidation, I finally decided to revise

the book. This was after having enlisted many friends to “please, just shoot me” if I

ever talked about writing another book. Thankfully, nobody took me up on the request.

They admitted it was because they wanted a new version of my book targeted at the

new version of Entity Framework.

Once again, I had no idea what I was in for. This edition has been much more than a

revision. I have had to rethink every sentence in the book, throw out entire chapters,

add new chapters, rethink and rewrite most of the code samples, and of course, learn

about a slew of major features that have been added to Entity Framework. I spent over

nine months of constant effort writing this new edition, and now here it is.

Who This Book Is For

This book is written for developers who are familiar with .NET programming, whether

they are entirely new to the Entity Framework or have been using it and want to solidify

their current understanding as well as go deeper. Throughout the book, I highlight

notable changes for developers who have been using the first version of Entity Frame-

work. The first half of the book (Chapters 1–12) covers introductory topics, and the latter half (Chapters 13–27) dives under the covers to give you a deep understanding xxiv | Preface

Download from Library of Wow! eBook <www.wowebook.com>

of what you’ll find in the Entity Framework and how it works, as well as how to get

the most out of it.

The early walkthroughs, which demonstrate the use of the Entity Framework in a va-

riety of applications (Windows Forms, Windows Presentation Foundation, ASP.NET,

WCF services, and WCF Data Services), are written so that you can follow them even

if you have never created a particular application type before.

The goal of this book is to help developers not only get up and running with the Entity

Framework, but also be empowered to gain granular control over the model and the

objects that result through use of the core Entity Framework APIs. This second edition

focuses on the version of Entity Framework in Visual Studio 2010 and .NET 4.

Although the book will provide some guidance for using the Entity Framework in your

application architecture, it is not a book about architecture. Instead, the book attempts

to provide you with the information and knowledge you need to use the Entity Frame-

work to solve your specific domain problems.

Because of the vast scope of the Entity Framework, many topics on tools that leverage

the Entity Framework, such as WCF RIA Services (a.k.a. Astoria) and SQL Modeling,

are touched on but not covered in depth.

Some of the Entity Framework’s features are comparable to LINQ to SQL and other

object relational models such as NHibernate and LLBLGen Pro. Apart from a few

paragraphs in Chapter 1, this book does not directly position the Entity Framework against these object relational models.

All of the code samples in Programming Entity Framework, Second Ed-

ition, are provided in C#. Where there are significant syntax differences,

Visual Basic is included as well.

How This Book Is Organized

 Programming Entity Framework, Second Edition, focuses on two ways for you to learn.

If you learn best by example, you’ll find many walkthroughs and code samples through-

out the book; if you’re always looking for the big picture, you’ll also find chapters that dive deep into conceptual information. I have tried to balance the walkthroughs and

conceptual information I provide so that you will never get too much of one at a time.

The first half of the book is introductory, and the second half digs much deeper. Fol-

lowing is a brief description of each chapter:

Chapter 1, Introducing the ADO.NET Entity Framework

This chapter provides an overview of the ADO.NET Entity Framework—where it

came from, what problems it attempts to solve, and the classic “10,000-foot view”

of what it looks like. The chapter also addresses the most frequently asked

Preface | xxv

Download from Library of Wow! eBook <www.wowebook.com>

questions about the Entity Framework, such as how it fits into the .NET Framework, what databases it works with, what types of applications you can write with

it, how it differs from object relational models, and how it works with the rest of

ADO.NET.

Chapter 2, Exploring the Entity Data Model

The Entity Data Model (EDM) lies at the core of the Entity Framework. This chap-

ter explains what the EDM is, and teaches you how to create one using the EDM

Wizard and then manipulate your model using the Designer. You will also get a

walkthrough of the various parts of the EDM, viewing it through the Designer or

through its raw XML.

Chapter 3, Querying Entity Data Models

The Entity Framework provides a number of methods for querying against the

EDM—LINQ to Entities, Entity SQL with ObjectQuery, EntityClient, and a few

more. Each method has its own benefits. In this chapter, you will learn the basics

for leveraging the various query modes by requesting the same data using each

mechanism. You will also learn the pros and cons for choosing one method over

another, as well as gain an understanding of what happens behind the scenes in

between query execution and the creation of objects from the data that results.

Chapter 4, Exploring LINQ to Entities in Greater Depth

With the query basics in hand, you can now learn how to perform different types

of tricks with querying: projection, filtering, aggregates, and so forth. Because the

objects you are querying are related, you can also query across these relationships.

This chapter will walk you through a great variety of queries focusing on LINQ to

Entities. This is by no means an exhaustive depiction of every type of query you

can perform, but it will give you a huge head start.

Chapter 5, Exploring Entity SQL in Greater Depth

This chapter revisits the LINQ to Entities queries from Chapter 4 and shows how to express the same types of queries using Entity SQL. You’ll also learn some specific tips about working with Entity SQL in this chapter.

Chapter 6, Modifying Entities and Saving Changes

This chapter presents a high-level view of how the Entity Framework tracks

changes to entities, processes updates, and builds the final queries that are executed

at the database. By having a better understanding of the Entity Framework’s default

functionality, you will be better prepared to address common concerns regarding

security and performance. Additionally, understanding the default process will

make the following chapter on stored procedures much more meaningful.

Chapter 7, Using Stored Procedures with the EDM

This chapter is the first of two to dig into using stored procedures in the Entity

Framework. The EDM Designer provides support for one set of scenarios, and that

is what is covered in this chapter. Chapter 16 covers the set of scenarios that require more effort.

xxvi | Preface

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 8, Implementing a More Real-World Model

Up to this point in the book, you will have been working with a very simplistic

database and model so that you can focus on all of the new tools. This chapter

introduces a larger model and database that support the fictitious travel adventure

company BreakAway Geek Adventures and which you will use throughout the rest

of the book. With this model, you will get a better understanding of building and

customizing a model. Chapters 14 and 15 will go even further into customizing the model with advanced modeling and mappings.

Chapter 9, Data Binding with Windows Forms and WPF Applications

This chapter provides two walkthroughs for using the Entity Framework to per-

form data binding in Windows Forms and Windows Presentation Foundation

(WPF). In the course of these walkthroughs, you’ll learn a lot of tips and tricks that

are specific to doing data binding with Entity Framework objects, as well as expand

your knowledge of the Entity Framework along the way.

Chapter 10, Working with Object Services

The Entity Framework’s Object Services API provides all of the functionality be-

hind working with the objects that are realized from the data shaped by your Entity

Data Model. Although the most critical of Object Services’ features is its ability to

keep track of changes to entity objects and manage relationships between them, it

offers many additional features as well. This chapter provides an overview of all of

Object Services’ responsibilities, how it impacts most of the work you do with the

Entity Framework, and how you can use these features directly to impact how the

Entity Framework operates. Later chapters focus even more deeply on particular

areas within Object Services.

Chapter 11, Customizing Entities

So far, the objects you will have been working with are based on the default classes

that the Entity Framework generates directly from the model, but you don’t need

to be limited to what’s in the objects. There are plenty of opportunities for cus-

tomizing the code-generated classes. This chapter walks you through how to take

advantage of these extensibility points. It is also possible to completely avoid the

generated classes and use your own custom classes, an option we will cover in

Chapter 13.

Chapter 12, Data Binding with RAD ASP.NET Applications

It’s time to create another application with the Entity Framework. There are a lot

of hurdles to overcome when using the Entity Framework in an ASP.NET appli-

cation that allows users to edit data. The EntityDataSource control is part of the

family of ASP.NET DataSource controls that you can configure in the UI and that

will automate data access and updating for you. This chapter will show you how

to use this control. You’ll also get a chance to use ASP.NET Dynamic Data Controls

in this chapter. Later chapters will teach you what you need to know to overcome

these hurdles yourself, and Chapter 27 leverages this knowledge to address building layered ASP.NET applications rather than putting the logic in the UI.

Preface | xxvii

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 13, Creating and Using POCO Entities

A critical advancement to Entity Framework in .NET 4 is its support for Plain Old

CLR Objects (POCOs). The POCO support means that entity classes are not

required to inherit from Entity Framework’s EntityObject class. Building POCOs

opens the door for a more agile architecture, unit testing, repositories, and persis-

tence ignorance, all while continuing to benefit from the Entity Framework. This

chapter provides an introduction to Entity Framework’s POCO support. Later

chapters will leverage POCOs to show alternative patterns, build repositories and

tests, and consume the POCOs in a variety of application types.

Chapter 14, Customizing Entity Data Models Using the EDM Designer

One of the most important features of the Entity Data Model is the ability to cus-

tomize it to shape your data structure in a way that is more useful than working

directly against the database schema. This chapter walks through many of the ways

you can achieve this with the Designer, demonstrating how to implement a variety

of inheritance mappings, create an entity that maps to multiple tables, build com-

plex types, and more. If you are following along with the walkthroughs, most of

the modifications you make to the sample model in this chapter you will use for

applications you’ll build in later chapters.

Chapter 15, Defining EDM Mappings That Are Not Supported by the Designer

The Entity Framework model supports even more ways to map back to the data-

base but, unfortunately, not all are supported by the Designer. In this chapter,

you’ll learn about the most common types of mappings that you might want to use

but will have to open up the raw XML to implement. Among these are

DefiningQuery, QueryView, and even nonexistent database views and stored proce-

dures that you can define directly in the Entity Framework metadata.

Chapter 16, Gaining Additional Stored Procedure and View Support in the Raw XML

Chapter 7 covers the stored procedure scenarios that the Designer supports, but you can achieve much more if you are willing to crack open the model’s raw XML

and perform additional customizations. This chapter will walk you through adding

“virtual” store queries and stored procedures into the model, and taking advantage

of other features that will make the model work for you, rather than being con-

strained by the Designer.

Chapter 17, Using EntityObjects in WCF Services

Like ASP.NET, using the Entity Framework in web and WCF services provides a

number of challenges. In this chapter, you will learn how to build and consume a

WCF service that interacts solely with EntityObjects. If you have never created

services before, have no fear. The walkthroughs will help you with step-by-step

instructions. You will also create a WCF Data Service and get a quick look at WCF

RIA Services. This chapter is the first of two that address building services.

Chapter 18, Using POCOs and Self-Tracking Entities in WCF Services

The new POCO support in Entity Framework 4 makes building WCF Services a

lot simpler. This chapter enhances the POCO entities you built in Chapter 13 and

xxviii | Preface

Download from Library of Wow! eBook <www.wowebook.com>

uses them in a revised implementation of the WCF Services you created in Chap-

ter 17. You’ll also learn about some of the differences when building WCF Data Services and WCF RIA Services with POCOs.

The preceding chapters will have provided you with a solid base of understanding for

working with the Entity Framework. Starting with Chapter 19, you will learn about the Entity Framework’s advanced topics:

Chapter 19, Working with Relationships and Associations

The Entity Data Model is based on Entity Relationship Modeling, which is about

entities and relationships. Relationships are a critical part of the model and how

the Entity Framework performs its functions. To really understand and control the

Entity Framework and avoid hurting your head when the relationships don’t be-

have the way you might expect, you will benefit from a deep comprehension of

how relationships work in the model and your Entity Framework code. This chap-

ter will provide you with that understanding.

Chapter 20, Real World Apps: Connections, Transactions, Performance, and More

Up to this point, you have seen bits and pieces of code out of the context of real-

world applications. But how does the Entity Framework fit in with the everyday

concerns of software developers? This chapter will address some of the many ques-

tions developers ask after learning the basics about the Entity Framework. How

do you control connections? Is there any connection pooling? Are database calls

transactional? What about security? How’s the performance?

Chapter 21, Manipulating Entities with ObjectStateManager and MetadataWorkspace

This is another chapter where you get to dig even further into the APIs to interact

with your objects in the same way that many of the internal functions do. With the

two classes featured in this chapter, you can write code to generically work with

entities or raw data whether you want to create reusable code for your apps or write

utilities. There are some hefty samples in this chapter.

Chapter 22, Handling Exceptions

Hard as we try to write perfect code, things can still go wrong in our applications,

which is why we need exception handling. The Entity Framework provides a set

of its own exceptions to help you deal with the unique problems that may occur

when working with entities—poorly written queries, entities that are missing re-

quired related objects, or even a problem in the database.

Chapter 23, Planning for Concurrency Problems

This chapter follows up what you learned about exception handling in Chap-

ter 22 with details on a particular type of exception: the OptimisticConcurrencyEx ception. In addition to typical coding problems, data access highlights another

arena of issues regarding concurrency: when multiple people are editing and up-

dating data. The Entity Framework supports optimistic concurrency and uses this

exception to detect these problems. The chapter will show you how to prepare for

concurrency issues and take advantage of this exception.

Preface | xxix

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 24, Building Persistent Ignorant, Testable Applications

Chapter 13 introduced you to Entity Framework’s POCO support. Chapter 24

shows you where the POCO support really shines. Here you’ll get a chance to use

a pattern that leverages POCO support. You will create repositories and a Unit of

Work and build unit tests against your Entity Framework code. You’ll get to use

the repository in some applications in later chapters.

Chapter 25, Domain-Centric Modeling

You’ll find more new .NET 4 and Visual Studio 2010 goodness in this chapter as

well as a look to the future. You are no longer required to build database-first

models. The EDM Designer in Visual Studio 2010 supports model-first design.

Build your model in the Designer and then automatically create a database schema

from the model. In this chapter, you’ll learn a lot more about working with the

Designer. This chapter also takes a look at two not-yet-released technologies: En-

tity Framework’s code first and SQL Modeling’s “M.” Both of these technologies

let you use Entity Framework without depending on a physical XML-based model.

At this point in the book, you will have learned quite a lot about how the Entity Frame-

work functions and how to work with the objects and the model in a granular way. The

final two chapters focus on challenges and solutions for using the Entity Framework

in enterprise applications. The book concludes with three appendixes: one that serves

as a guide to the assemblies and namespaces of the Entity Framework, another that

highlights unexpected behaviors when data-binding complex types, and a third that

looks more deeply into the XML of the model’s metadata.

Chapter 26, Using Entities in Layered Client-Side Applications

The earlier client application walkthroughs (Windows Forms and WPF) focused

on simple architectures to get you started with data binding. Most medium to large

applications are not written in this way, but rather separate their logic and data

layers from the UI. This chapter will look at some of the specific features you can

take advantage of and challenges you might face when architecting Windows and

WPF applications to keep the data access and business logic out of the user inter-

face. The chapter focuses on a sample WPF application using the repositories from

Chapter 24.

Chapter 27, Building Layered Web Applications

Chapter 12 focused on building RAD ASP.NET apps using the EntityDataSource control to avoid some of the issues with change tracking across tiers in the Entity

Framework. Now that you have learned much more about working with entities,

it is time to address these challenges head-on and learn how you can build ASP.NET

application layers. This chapter begins by addressing the specific issues that the

ASP.NET Page life cycle poses for entities, and then walks through two solutions

that leverage the repositories from Chapter 24. The first is an ASP.NET Web Forms application that is built without the support of data source controls. The second

is an ASP.NET MVC application that focuses on keeping data access code out of

xxx | Preface

Download from Library of Wow! eBook <www.wowebook.com>

the controller. The samples in this chapter provide a first step toward concepts that will help you architect applications to fit your own domain model.

Appendix A, Entity Framework Assemblies and Namespaces

This appendix is a guide to the physical files that are part of the Entity Framework

and each namespace in the programming model.

Appendix B, Data-Binding with Complex Types

In Chapter 14, you learn how to create complex types in the model. Complex types have some interesting (and often unexpected) behavior in data-binding scenarios.

This appendix will prepare you for what to expect.

Appendix C, Additional Details About Entity Data Model Metadata

Chapter 2 goes into plenty of detail about the model’s metadata, but if you are hardcore and want to dig a little further into the raw XML, this appendix should

satisfy your cravings.

What You Need to Use This Book

This book focuses on the release of Entity Framework that is part of Microsoft Visual

Studio 2010 and .NET 4. You can use any of the Visual Studio 2010 versions, from

Express through Ultimate.

Although the Entity Framework can work with many database providers, the

SqlClient provider is part of Visual Studio 2010, and therefore all of the samples here

are based on SQL Server. You can use SQL Server Express or Standard, and although

the Entity Framework runtime will recognize versions 2000, 2005, and 2008, none of

the design tools will not work with SQL Server 2000. This book was written against

SQL Server 2008 Standard.

Following is a specific list of system requirements:

• Windows XP with SP2, Windows Server 2003, Windows Vista and SP1, or Win-

dows 7

• Microsoft SQL Server 2005, Microsoft SQL Server 2005 Express Edition, Microsoft

SQL Server 2008, or Microsoft SQL Server 2008 Express Edition

• Microsoft Visual Studio 2010

Preface | xxxi

Download from Library of Wow! eBook <www.wowebook.com>

This Book’s Website

Visit http://www.ProgrammingEntityFramework.com/ (also available at http://www

 .LearnEntityFramework.com/) for downloads, errata, links to resources, and other information. In the Downloads area, you will find:

• Scripts for creating the sample databases used in this book.

• The sample applications from the book. I will do my best to provide Visual Basic

versions of many of the book’s samples. Note that there are also hundreds of small

code samples in the book. In general, you will not find these small examples re-

plicated on the website, although I will provide some of them for varying reasons.

Conventions Used in This Book

The following typographical conventions are used in this book:

 Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,

directories, and Unix utilities

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions,

types, classes, namespaces, methods, modules, properties, parameters, values, ob-

jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,

or the output from commands

Constant width bold

Shows commands or other text that should be typed literally by the user

 Constant width italic

Shows text that should be replaced with user-supplied values

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

This icon indicates a Visual Basic code sample.

This icon indicates a C# code sample.

xxxii | Preface

Download from Library of Wow! eBook <www.wowebook.com>

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in

this book in your programs and documentation. You do not need to contact us for

permission unless you’re reproducing a significant portion of the code. For example,

writing a program that uses several chunks of code from this book does not require

permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

require permission. Answering a question by citing this book and quoting example

code does not require permission. Incorporating a significant amount of example code

from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Programming Entity Framework, Second

Edition, by Julia Lerman. Copyright 2010 Julia Lerman, 978-0-596-80726-9.”

If you feel your use of code examples falls outside fair use or the permission given here,

feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that lets you easily

search over 7,500 technology and creative reference books and videos to

find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.

Read books on your cell phone and mobile devices. Access new titles before they are

available for print, and get exclusive access to manuscripts in development and post

feedback for the authors. Copy and paste code samples, organize your favorites, down-

load chapters, bookmark key sections, create notes, print out pages, and benefit from

tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full

digital access to this book and others on similar topics from O’Reilly and other pub-

lishers, sign up for free at http://my.safaribooksonline.com.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

Preface | xxxiii

Download from Library of Wow! eBook <www.wowebook.com>

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at:

 http://www.oreilly.com/catalog/9780596807269

To comment or ask technical questions about this book, send email to:

 bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the

O’Reilly Network, see our website at:

 http://www.oreilly.com/

Acknowledgments

And now for the most rewarding writing task after completing over 800 pages of tech-

nical writing—thanking the Academy. My academy is a host of bright, generous, and

dedicated geeks (and a few nongeeks) who have helped make this book the best it can

be.

First nods go to the technical reviewers. These are the folks who were willing to read

the book in its roughest format and provide feedback to help me make it more useful

and comprehensible to you, the readers of the final version. The award for helping to

keep me from exposing myself to humiliation over my nascent C# skills goes to Wesley

Bakker, a Dutch developer who does code reviews for a living. I learned a lot from Wes

and am grateful for his patience and kid-glove handling of my poor ego. I also had a

number of EF and EF 4 newbies on board to help ensure that I didn’t make any leaps

without bringing them along. You who are new to EF should thank them as well: Camey

Combs, Suzanne Shushereba, Doug Holland, and John McConnell. Ward Bell’s bril-

liant architectural mind was displayed in comments that nearly exceeded my own text.

He kept me honest and kept me thinking. Everyone should email Ward and beg him

to write a book. I don’t care what the topic is. Ward has deep EF knowledge, as does

Per Okvist, whose feedback was also invaluable. Two database gurus were enormously

helpful: Bob Beauchemin and Anil Das. Their meticulous minds helped me in areas

that reached much further than discussions about database specifics.

I also brought in some big guns to look at particular chapters in their area of expertise.

Thanks so much to Greg Young, Bobby Johnson, Jarod Ferguson, and Mike Campbell

for helping me with my education in persistence ignorance and related topics and for

looking over the critical chapter on PI and testing to make sure that I had learned my

lessons well. I was close, but they helped guide me where I had strayed. K. Scott Alle-

nand Imar Spaanjaars, both ASP.NET gurus, provided some additional guidance and

a read-through of a number of chapters.

And then there was the real editing—the organization and flow of the text. John Os-

born, who was the editor on the first edition of this book, was engaged to edit this

edition as well. It’s hard for me to express my gratitude for the incredible dedication

xxxiv | Preface

Download from Library of Wow! eBook <www.wowebook.com>

and expertise he provided. Even though I thought myself much more experienced this time around, John took every chapter and reorganized it, clarifying its focus and flow.

He is an incredible editor and I was very lucky to have him work on my book again.

Along the way, of course, I had help from so many people at Microsoft on the Entity

Framework team and beyond. There is no way I can list them all, but here’s my best

shot (not in any special order): Danny Simmons, Elisa Flasko, Noam Ben-Ami, Diego

Vega, Kati Iceva, Srikanth Mandadi, Alex James, Jarek Kowalski, Jeff Derstadt, Rowan

Miller, Craig Lee, David Annesley-DeWinter, Adi Unnithan, Andrew Peters, Shyam

Pather, and Tim Laverty. Forgive me if I’ve neglected to mention someone.

You’ll find that I have used (and recommended) a few additional tools throughout the

book. The publishers generously provided me free licenses for which I’m grateful. The

recommendations are because they are great tools, not because I didn’t have to pay for

them. The tools include LINQPad, written by another O’Reilly author, Joseph Albahari; and ReSharper from JetBrains. ReSharper was my first line of defense for ensuring that my C# code wasn’t an embarrassment, while Wesley Bakker was my second. I

learned so much from both of them. Entity Framework Profiler is an awesome tool for keeping track of what’s going on in your database when using Entity Framework. I also

used two tools for producing images in this book. The first is Snagit from TechSmith,

which was completely invaluable for capturing and editing screenshots. The second is

Balsamiq Mockups, which enabled me to have a little fun creating mock-ups of application UIs in a number of chapters. Finally, thanks to Red Gate, a great company with many awesome tools. For this book, I used its .NET Reflector to inspect some assemblies, and I’ve used their SQL Packager for creating a simple-to-install version of the

sample databases for you to use.

My publisher has, as usual, provided great support for me. I had not one, but two

editors—this is not the job of editing the book, but of counseling me and holding my

hand throughout the process. Thanks to Laurel Ruma (who moved on to become

O’Reilly’s über–Government 2.0 guru), and Mike Hendrickson who brings years of

experience (not saying he’s old) for keeping me focused and helping me avoid being

taken away in a funny white coat. I was also lucky to have Audrey Doyle as my copy

editor again. She did an amazing job on the first edition, so I begged O’Reilly to contract her again. Lucky me, they did. (She is going to hate that last nonsentence; I dare you

to leave it in, Audrey.)

If you read the Preface of my first book, you’ll be happy to know that this time around

I have no heart-wrenching pet losses to report, so you can put away the tissues you may

have prepared yourself with. In fact, we adopted a teenage Newfoundland dog named

Sampson just as I began to write this edition. Thank goodness for his needed afternoon

walks and his constantly entertaining personality, without which I’d have gone com-

pletely mad during the time I have been writing this book. You can meet this silly boy

on my blog at http://thedatafarm.com/blog/tags/Sampson.

Preface | xxxv

Download from Library of Wow! eBook <www.wowebook.com>

Somehow I have managed to retain my patient husband, Rich Flynn, to whom I promised “don’t worry, never again” when I finished the first edition. He has just suffered

through another year of spaghetti, dirty dishes, ravaged potato chip supplies, and hav-

ing to cede a little more space in bed as my waistline expanded thanks to my life in the

computer chair (and all those potato chips).

And finally, thanks to all of the incredible support that has come from the .NET com-

munity. I’m very proud of the first edition of the book, and each private “thank you”

or complimentary public review on places like Amazon.com and your blogs has meant

so much to me. This truly kept me going through what my Twitter followers know only

too well was an arduous process in writing this second edition.

Oh, and to anyone who gave me chocolate…thanks!

xxxvi | Preface

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 1

Introducing the ADO.NET

Entity Framework

At Microsoft’s November 2009 Professional Developer Conference, the legendary Don

Box, a Distinguished Engineer at Microsoft, said, “If you’re a .NET developer Entity

Framework is where we’re going. We’re there. Get on board, it’s time.”

Yes, it’s time.

Developers spend far too much of their precious time worrying about their backend

database, its tables and their relationships, the names and parameters of stored proce-

dures and views, as well as the schema of the data that they return. For .NET developers,

Microsoft’s new Entity Framework changes the game so that you no longer have to be

concerned with the details of the data store as you write applications. You can focus

on the task of writing those applications, rather than accessing the data.

The ADO.NET Entity Framework has shifted into becoming Microsoft’s core data

access platform for building .NET applications. It was released in July 2008 as part of

the Visual Studio 2008 Service Pack 1 and .NET 3.5 Service Pack 1, two years after

Microsoft announced it at its TechEd 2006 Conference. As a version 1 product, Entity

Framework was greeted at first with skepticism, and its adoption was far from sweep-

ing. However, with the release of Visual Studio 2010 and .NET 4 in April 2010, a much

improved Entity Framework finally got the attention and excited responses of many

developers and .NET teams, who are now quickly jumping aboard.

Although ADO.NET retains its existing data access, as Microsoft’s core data access

strategy going forward the Entity Framework will receive the bulk of the innovation

and resources from the Business Platform Division (which owns all of the data pro-

grammability tasks at Microsoft). It’s an important technology for Microsoft, and one

that you should not ignore. Entity Framework is also being integrated into many of

Microsoft’s products, whether the product uses Entity Framework to support its own

features, such as with Commerce Server 2009’s Multi-Channel Commerce

1

Download from Library of Wow! eBook <www.wowebook.com>

Foundation,* or whether the product has support for interacting with the Entity Framework, such as with SQL Server Modeling.

Why do we need a new data access technology? After forcing developers to switch from

one data access technology to another—from DAO to RDO to ADO and then to

ADO.NET—with ADO.NET Microsoft seemed to have finally settled on a single tool

in which developers could invest. With each release of Visual Studio and the .NET

Framework, ADO.NET has been enhanced and added to, but has remained backward

compatible all along. Our investment has been safe.

And it remains safe, even though it will be stagnant. The Entity Framework is another

enhancement to ADO.NET, giving developers an added mechanism for accessing data

and working with the results in addition to DataReaders and DataSets.

But Microsoft went as far as it could with the DataSet paradigm. The next step was to

enable developers to focus on a domain model while .NET would automate the re-

dundant tasks of database interaction.

In this chapter, you will learn about the critical pieces of the Entity Framework, the

Entity Data Model, entity classes, the core .NET APIs, and Visual Studio design tools.

You will also learn about how Entity Framework fits in with ADO.NET’s DataSets and

LINQ to SQL. Finally, you will learn about many of the changes and additions to Entity

Framework in Visual Studio 2010 and .NET 4, and how so many of the pain points in

the first version have been eliminated.

The Entity Relationship Model: Programming Against a Model,

Not the Database

A central benefit of the Entity Framework is that it frees you from being concerned with

the structure of your database. All of your data access and storage is done against a

conceptual data model that reflects your own business objects.

With ADO.NET DataReaders and many other data access technologies, you spend a lot

of time writing code to get data from a database, read the results, pick out bits of data

you want, and push them into your business classes. With the Entity Framework, you

no longer query against the schema of a database, but rather against a schema that

reflects your own business model. As data is retrieved, you are not forced to reason out

columns and rows and push them into objects, because they are returned as objects.

When it’s time to save changes back to the database, you have to save only those objects.

The Entity Framework does the necessary work of translating your objects back into

the rows and columns of the relational store. The Entity Framework does this part of

the job for you, similar to the way an Object Relational Mapping (ORM) tool works.

* See http://msdn.microsoft.com/en-us/library/dd327929(v=CS.90).aspx.

2 | Chapter 1: Introducing the ADO.NET Entity Framework

Download from Library of Wow! eBook <www.wowebook.com>

The Entity Framework uses a model called an Entity Data Model (EDM), which evolved from Entity Relationship Modeling (ERM), a concept that has been used in database

development for many years.

The Entity Data Model’s Roots

Microsoft’s Entity Framework evolved from a methodology known as Entity Relation-

ship Modeling (ERM), which has been trapped on whiteboards for more than 30 years.

An ERM defines a schema of entities and their relationships with one another. Entities

are not the same as objects. Entities define the schema of an object, but not its behavior.

So, an entity is something like the schema of a table in your database, except that it

describes the schema of your business objects. Developers have drawn ERMs for years

to help us figure out how to transpose the structured tabular data of a database into

business objects we can program against.

No mention of ERM is complete without a nod to Dr. Peter Chen, who is credited with

the first definitive paper on ERM in 1976: “The Entity-Relationship Model—Toward

a Unified View of Data” (http://csc.lsu.edu/news/erd.pdf).

With a host of database gurus in its ranks, Microsoft Research began to devise a way

to automate the process of bridging a conceptual model and database schemas. And it

needed to be a two-way street so that developers could retrieve data from the database,

populate entities, and persist changes back into the database.

In June 2006, Microsoft Research published its first paper on the EDM, its answer to

ERM. The paper’s authors include database legend Jim Gray, who tragically disap-

peared while sailing off the coast of San Francisco Bay in 2007.

The Entity Data Model: A Client-Side Data Model

An Entity Data Model (EDM) is a client-side data model and it is the core of the Entity

Framework. It is not the same as the database model, which belongs to the database.

The data model in the application describes the structure of your business objects. It’s

as though you were given permission to restructure the database tables and views in

your enterprise’s database so that the tables and relationships look more like your business domain rather than the normalized schema that is designed by database

administrators.

Figure 1-1 shows the schema of a typical set of tables in a database. PersonalDetails provides additional information about a Person that the database administrator has

chosen to put into a separate table for the sake of scalability. SalesPerson is a table that is used to provide additional information for those who are salespeople.

Working with this data from an application requires queries that are full of inner joins

and outer joins to access the additional data about Person records. Or you will access

a variety of predefined stored procedures and views, which might each require a dif-

ferent set of parameters and return data that is shaped in a variety of ways.

The Entity Data Model: A Client-Side Data Model | 3

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 1-1. Schema of normalized database tables

A T-SQL query to retrieve a set of SalesPerson records along with their personal details

might look something like this:

SELECT SalesPerson.*, PersonalDetails.*, Person.*

FROM Person

INNER JOIN PersonalDetails

ON Person.PersonID = PersonalDetails.PersonID

INNER JOIN SalesPerson ON Person.PersonID = SalesPerson.PersonID

Imagine that a particular application could have its own view of what you wish the

database looked like. Figure 1-2 reshapes the schema.

 Figure 1-2. Person data shaped to match your business objects

4 | Chapter 1: Introducing the ADO.NET Entity Framework

Download from Library of Wow! eBook <www.wowebook.com>

All of the fields from PersonalDetails are now part of Person. And SalesPerson is doing

something that is not even possible in a database: it is deriving from Person, just as you would in an object model.

Now imagine that you can write a LINQ query that looks like this:

from p in People.OfType<SalesPerson> select p

In return, you will have a set of SalesPerson objects with all of the properties defined

by this model (see Figure 1-3).

 Figure 1-3. The SalesPerson object

LINQ exists only in the C# and Visual Basic languages. With the Entity

Framework there is another way to express queries, which not only al-

lows you to use other languages, but also provides additional benefits

that you can take advantage of as necessary. It’s called Entity SQL, and

you will learn much more about it and LINQ to Entities in Chapters 3

through 5.

This is the crux of how the Entity Framework can remove the pain of having not only

to interact with the database, but also to translate the tabular data into objects.

.NET is but one tool that uses an EDM. The next version of SQL Server will use an

EDM for Reporting Services and you will soon begin to see other Microsoft applications

that will adopt the EDM concept as well. In fact, you will find that model-driven de-

velopment in general is getting more and more attention from Microsoft.

When working with the Entity Framework, you will implement an EDM that is par-

ticular to the Entity Framework. In the Entity Framework, an EDM is represented by

a single XML file at design time that is split into a set of three XML files at runtime,

The Entity Data Model: A Client-Side Data Model | 5

Download from Library of Wow! eBook <www.wowebook.com>

only one of which represents a conceptual model. The other two provide metadata that enables Entity Framework to interact with a database. You’ll learn much more about

this metadata in Chapter 2.

Entities: Blueprints for Business Classes

The items described by an EDM are known as entities. Classes that are generated from the model entities, along with their instantiated object, are also referred to as entities but are often called entity classes or entity objects. The generated entity classes differ from typical business classes in that they have properties but no behavior apart from

methods to enable change tracking.

Figure 1-4 shows the class diagram for the Person and SalesPerson classes that the model shown in Figure 1-2 would generate automatically. Each class has a factory method (e.g., CreatePerson) as well as methods used to notify the Entity Framework when a

property changes.

With the classes the Entity Framework generates, you can add your own business logic,

pull the results into business objects of your own, and even link your business objects

to the EDM, replacing the generated classes. But by definition, the entity classes de-

scribe only their schema.

In addition to being able to reshape the entities in a data model as with the inheritance

hierarchy shown in Figure 1-2, you can define relationships between entities. Fig-

ure 1-5 adds a Customer entity to the model which also derives from Person as well as an Order entity. Notice the relationship lines between SalesPerson and Order, showing

a one-to-many relationship between them. There is also a one-to-many relationship

between Customer and Order.

When you write queries against this version of the model, you don’t need to use JOINs. The model provides navigation between the entities.

The following LINQ to Entities query retrieves order information along with informa-

tion about the customer. It navigates into the Customer property of the Order to get the

FirstName and LastName of the Customer.

from o in context.Orders

select new {o.OrderID,o.OrderNumber,o.Customer.FirstName,o.Customer.LastName}

Once that data is in memory, you can navigate through each object and its properties,

such as myOrder.Customer.LastName, just as readily.

The Entity Framework also lets you retrieve graphs, which means you can return shaped

data such as a Customer with all of its Order details already attached.

These are some of the major benefits to querying against a data model, rather than

directly against the database.

6 | Chapter 1: Introducing the ADO.NET Entity Framework

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 1-4. Class diagrams for the Person and SalesPerson entities

The Backend Database: Your Choice

You may have noticed that I have not mentioned the actual data store that owns the

data being queried. The model doesn’t have any knowledge of the data store—what

type of database it is, much less what the schema is. And it doesn’t need to.

The database you choose as your backend will have no impact on your model or your

code.

The Entity Framework communicates with the same ADO.NET data providers that

ADO.NET already uses, but with a caveat. The provider must be updated to support

the Entity Framework. The provider participates in reshaping the Entity Framework’s

The Backend Database: Your Choice | 7

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 1-5. SalesPerson and Customer entities, each with a relationship to Order entities queries and commands into native queries and commands. All you need to do is identify

the provider and a database connection string so that the Entity Framework can get to

the database.

This means that if you need to write applications against a number of different data-

bases, you won’t have to learn the ins and outs of each database. You can write queries

with the Entity Framework’s syntax (either LINQ to Entities or Entity SQL) and never

have to worry about the differences between the databases. If you need to take advant-

age of functions or operators that are particular to a database, Entity SQL allows you

to do that as well.

Database Providers

Microsoft’s SqlClient APIs that are included with Visual Studio 2008 SP1 and Visual

Studio 2010 support the Entity Framework. They will allow you to use SQL Server

2000, 2005, and 2008. You can use the full or Express version of SQL Server 2005 and

2008 and the full version of SQL Server 2000. Note that the Entity Data Model Designer

cannot interact with SQL Server 2000. This is not a limitation of Entity Framework’s

design tools but Visual Studio 2010 itself. None of Visual Studio’s tools recognizes SQL

8 | Chapter 1: Introducing the ADO.NET Entity Framework

Download from Library of Wow! eBook <www.wowebook.com>

Server 2000. However, the Entity Framework runtime can. SQL Server CE version 3.5

and 4 support the Entity Framework as well. Check out the July 7, 2010, blog post from

the SQL Server CE team about SQL Server Compact 4 at http://blogs.msdn.com/sqlser

 vercompact.

At the time of this writing, a host of other providers are available—and more are on

the way—that will allow you to use Oracle, IBM databases, SQL Anywhere, MySQL,

SQLite, VistaDB, and many other databases. The providers are being written by the

database vendors as well as by third-party vendors. Many of these providers were writ-

ten for .NET 3.5. There is only one critical feature that they will not support until they have been updated to .NET 4: a feature called model first, which you will learn about

in Chapter 25.

Microsoft lists providers on the “ADO.NET Data Providers” page of the

Data Developer Center at http://msdn.microsoft.com/en-us/data/

 dd363565.aspx.

Microsoft provides guidance for developers who want to build Entity

Framework support into their database providers. I will not be covering

this topic in this book. You can see EF team blog posts about writing

providers at http://blogs.msdn.com/b/adonet/archive/tags/sample+pro

 vider.

Access and ODBC

A provider that supports the Entity Framework needs to have specific knowledge about

the type of database it is connecting to. It needs to be aware of the available functions

and operators for the database, as well as the proper syntax for native queries. Open

Database Connectivity (ODBC) providers provide generic access to a variety of data-

bases, including Access, and cannot furnish the necessary database particulars to act

as a provider for the Entity Framework. Therefore, ODBC is not a valid provider for

the Entity Framework. Unless someone creates a provider specifically for Access, you

won’t be able to use it with Entity Framework applications. Microsoft does not have

plans to build an Access provider, because the demand is too low.

Entity Framework Features: APIs and Tools

In addition to the EDM, the Entity Framework provides a set of .NET runtime APIs

that let you write .NET applications using the EDM. It also includes a set of design

tools for designing the model. Following is a synopsis of the Entity Framework’s key

features.

Entity Framework Features: APIs and Tools | 9

Download from Library of Wow! eBook <www.wowebook.com>

Metadata

Although the Entity Framework is designed to let you work directly with the classes

from the EDM, it still needs to interact with the database. The conceptual data model

that the EDM describes is stored in an XML file whose schema identifies the entities

and their properties. Behind the conceptual schema described in the EDM is another

pair of XML files that map your data model back to the database. One is an XML file

that describes your database and the other is a file that provides the mapping between

your conceptual model and the database.

During query execution and command execution (for updates), the Entity Framework

figures out how to turn a query or command that is expressed in terms of the data model

into one that is expressed in terms of your database. It does this by reading the metadata.

When data is returned from the database, it uses the metadata to shape the database

results into the entities and further materializes objects from those results.

Entity Framework acquires the ability to use an in-memory model with a feature called

 code first that is part of the Entity Framework Community Technical Preview (CTP).

It is not yet part of Entity Framework and must be downloaded separately. Code first

allows you to work solely with classes, and the necessary XML metadata is generated

in memory on the fly at runtime. You’ll learn more about this feature in Chapter 25,

but be aware that at the time of this book’s publication, code first is still a CTP and is not yet fully developed.

Entity Data Model Design Tools

The screenshots in Figures 1-2 and 1-3 are taken from the EDM Designer. It is part of Visual Studio and provides you with a way to work visually with the model rather than

tangle with the XML. You will work with the Designer right away in Chapter 2, and you’ll learn how to use it to do some more advanced modeling, such as inheritance, in

Chapter 14 and “model-first” design in Chapter 25. You will also learn about the Designer’s limitations, such as the fact that it does not support all of the features of the EDM. With some of the less frequently used EDM features, you’ll have to work directly

with the XML after all. In Chapter 2, you will get a look at the XML and how it relates to what you see in the Designer so that when it comes time to modify it in Chap-

ter 15, you’ll have some familiarity with the raw schema files.

In Visual Studio 2010, the Designer supports many more features than

it did in Visual Studio 2008 SP1. However, as you will see in Chapters

14 and 15, there are still some things you will need to do manually.

10 | Chapter 1: Introducing the ADO.NET Entity Framework

Download from Library of Wow! eBook <www.wowebook.com>

The Designer also allows you to map stored procedures to entities, which you’ll learn about in Chapter 6. If you are coming from Visual Studio 2008 SP1, you’ll find that the Designer’s stored procedure support has been greatly improved in Visual Studio 2010.

Another notable feature of the Designer is that it will let you update the model from

the database to add additional database objects that you did not need earlier or that

have been added to the database since you created the model.

Database-first design

One of the EDM design tools is the Entity Data Model Wizard. It allows you to point

to an existing database and create a model directly from the database so that you don’t

have to start from scratch. Once you have this first pass at the model, you can begin to

customize the model in the Designer.

Model-first design

Not every development project begins with a legacy database. One of the new features

in Visual Studio 2010 is the ability to create a model directly in the Designer and then

generate database schema based on that model. Although we’ll focus on a model cre-

ated using database-first design through most of this book, you’ll get a chance to drill

into model-first design, as well as some additional Designer features, in Chapter 25.

Code generation

Once you have a model to define your domain entities, you’ll need classes to represent

them at runtime. The Designer automatically generates those classes for you from the

model. However, we’ve gained another critical feature in Visual Studio 2010. Rather

than using the proprietary code generator that was written for Entity Framework in

Visual Studio 2008 SP1, the classes are generated using Visual Studio’s Text Template

Transformation Toolkit (T4). Not only does this provide a more commonly known

mechanism for code generation, but also you can much more easily customize the provided templates to define exactly how you would like classes to be generated from

your model. You’ll learn about the code generation capabilities beginning with Chap-

ter 11 and work further with T4 customization in later chapters. There are some scenarios where you will be able to skip code generation completely and simply use your

own classes.

Object Services

The Entity Framework runtime’s most prominent feature set and that which you are

likely to work with most often is referred to as Object Services. Object Services sits on

top of the Entity Framework stack, as shown in Figure 1-6, and provides the functionality needed to work with objects that are based on your entities. Object Services pro-

vides a class called EntityObject and can easily manage any class that inherits from

EntityObject. This includes materializing objects from the results of queries against the

Entity Framework Features: APIs and Tools | 11

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 1-6. The Entity Framework stack

EDM, keeping track of changes to those objects, managing relationships between ob-

jects, and saving changes back to the database.

In between querying and updating, Object Services provides a host of capabilities to

interact with entity objects, such as automatically working with a lower level of the

Entity Framework to do all of the work necessary to make calls to the database and

deal with the results. Object Services also provides serialization (both XML and binary).

POCO Support

One of the most important runtime enhancements in .NET 4 is the ability for the Entity

Framework to manage entities that do not inherit from EntityObject. This is Entity

Framework’s new POCO (Plain Old CLR Objects) support, and you will learn much

more about this feature beginning with Chapter 13. POCO support is critical to enable a variety of different programming styles. With POCO entities, developers can more

easily build unit tests as well as persistent ignorant entity classes. These capabilities are crucial to developers who follow the coding patterns recommended by domain-driven

and agile development. These same developers were unable to use the Entity Frame-

work in .NET 3.5. Now Entity Framework embraces a wider population of the devel-

opment community.

Change Tracking

Once an entity object has been instantiated, either as a result of data returned from a

query or by instantiating a new object in code, Object Services can keep track of that

object. This is the default for objects returned from queries. When Object Services

manages an object, it can keep track of changes made to the object’s properties or its

relationships to other entity objects.

12 | Chapter 1: Introducing the ADO.NET Entity Framework

Download from Library of Wow! eBook <www.wowebook.com>

Object Services then uses the change-tracking information when it’s time to update the

data. It constructs Insert, Update, and Delete commands for each object that has been

added, modified, or deleted by comparing the original values to the current values of

the entity. If you are using stored procedures in conjunction with entities it will pass

the current values (and any original values specifically identified) to those procedures.

Relationship Management and Foreign Keys

Relationships are a critical piece of the EDM; however, in .NET 4, an important new

feature was added: foreign key support. In a classic Entity Relationship Model, foreign

keys are not exposed in the conceptual model. Entity Framework followed this para-

digm in .NET 3.5 SP1, but we developers still wanted access to those foreign key values

for many reasons. In fact, in the first edition of this book, I showed a variety of ways

to go “under the covers” to get and set foreign keys. Now Entity Framework supports

having the foreign keys in the conceptual model. However, for backward compatibility,

you can still use the former mechanism which, because of the lack of foreign keys,

instantiates relationships as objects.

I will not spend a lot of time focusing on the older style of building

relationships in this book as it is not the default and will be used mini-

mally. If you need in-depth guidance on how to work with relationships

when the foreign key is not available in the conceptual model, I recom-

mend that you read the first edition of this book.

As you will find, especially in Chapter 19, which dives deep into relationships, even with foreign keys, you will need to have a very good understanding of how relationships

work. Some of the rules of engagement when working with related data are not very

intuitive, and you can write code that will raise plenty of exceptions, or worse, will

return invalid results, if you break these rules. Chapter 19 will provide insight into relationships in the EDM so that you will be able to work with them in an expert manner.

Data Binding

You can use entities in many .NET data binding scenarios. In Windows Forms and

WPF, you can use entities as a data source for data-bound controls or as the data source

for BindingSource controls, which orchestrate the binding between objects and UI con-

trols on the form. Chapter 9 provides a well-informed walkthrough for using entities with BindingSource controls to edit and update data. Chapter 26 focuses on separating the data access and other business logic from the user interface to provide better architecture for your applications.

Entity Framework Features: APIs and Tools | 13

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 9 also provides a walkthrough for data-binding entities in Windows Presentation Foundation (WPF) applications. Visual Studio 2010 introduced a host of

enhancements for data binding in WPF, and you’ll benefit greatly from these when

data-binding with entities.

For ASP.NET, there is a DataSource control called EntityDataSource that works in a

similar way to the ASP.NET SqlDataSource and LinqDataSource controls, allowing you

to declaratively bind entity objects to your user interface. Chapter 12 is all about using EntityDataSource. You’ll also get a quick look at binding with ASP.NET Dynamic Data

in that chapter.

n-Tier Development

Entity Framework made significant advancements for n-tier development in .NET 4.

In .NET 3.5 SP1, it was just too hard; as such, in the previous edition of this book I

devoted a lot of pages to hacks and workarounds. Now we can benefit greatly from not

only the foreign keys but also a slew of state management methods that make working

across processes much simpler. Additionally, POCOs make n-tier development easier

to achieve as you’ll see in the final chapters of this book.

For layered applications, Chapter 24 and Chapter 25 focus on pulling all of the data access tasks out of the ASP.NET user interface, and you’ll see a WPF application, an

ASP.NET Web Forms application, and an ASP.NET MVC application using various

patterns to separate your logic.

EntityClient

EntityClient is the other major API in the Entity Framework, though one that you are

less likely to work with directly. It provides the functionality necessary for working with the store queries and commands (in conjunction with the database provider) connecting to the database, executing the commands, retrieving the results from the store, and

reshaping the results to match the EDM.

You can work with EntityClient directly or work with Object Services, which sits on

top of EntityClient. Not only is EntityClient able to perform queries, but it does this

on behalf of Object Services. The difference is that when you work directly with EntityClient, you will get tabular results (though the results can be shaped). If you are

working with Object Services, it will transform the tabular data created by

EntityClient into objects.

The tabular data returned by EntityClient is read-only. EntityClient is well suited for

reporting and moving data from one persistence mechanism to another. Only Object

Services provides change tracking and the ability to save changes back to the data store.

14 | Chapter 1: Introducing the ADO.NET Entity Framework

Download from Library of Wow! eBook <www.wowebook.com>

The Entity Framework and WCF Services

You can use the Entity Framework anywhere you can use ADO.NET, including web

services and WCF services. Chapters 17 and 18 walk you through the process of providing services for EntityObject entities and POCO entities.

In these chapters, we’ll also take a look at WCF Data Services, WCF RIA Services, and

a specialized POCO template called Self-Tracking Entities, which provides client-side

change-tracking capabilities to entities, thereby allowing a simpler way to send changes

to WCF services and then persist them to the database.

What About ADO.NET DataSets and LINQ to SQL?

The Entity Framework is only the latest addition to the ADO.NET stack. How does

that impact existing code that uses DataSets and DataReaders or LINQ to SQL? Can

you continue to write new code using these technologies?

DataSets

DataSets and DataReaders are not going away. All of your existing investment will con-

tinue to function and you can continue to use this methodology of retrieving data and

interacting with it. The Entity Framework provides a completely different way to re-

trieve and work with data. You would not integrate the two technologies—for example,

using the Entity Framework to query some data, and then pushing it into a DataSet;

there would be no point. You should use one or the other. As you learn about the Entity

Framework, you will find that it provides a very different paradigm for accessing data.

You may find that the Entity Framework fits for some projects, but not others, where

you may want to stick with DataSets.

The Entity Framework uses DataReaders as well in the form of an EntityDataReader,

which inherits the same DbDataReader as SqlDataReader. This is what a query with EntityClient returns. In fact, you’ll find that the code querying the EDM with EntityClient looks very similar to the code that you use to query the database directly

with ADO.NET. It uses connections, commands, and command parameters, and re-

turns a DbDataReader that you can read as you would any other DataReader, such as

SqlDataReader.

Some ADO.NET tools that are not available with the Entity Framework are query

notification and ASP.NET’s SqlCacheDependency. Additionally, ADO.NET’s

SqlBulkCopy requires a DataReader or DataSet to stream data into the database; there-

fore, you cannot do client-side bulk loading with the Entity Framework. The Entity

Framework does not have an equivalent to ADO.NET’s DataAdapter.BatchUpdate.

Therefore, when the Entity Framework saves changes to the database, it can send only

one command at a time.

What About ADO.NET DataSets and LINQ to SQL? | 15

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL

LINQ to SQL and the Entity Framework look similar on the surface. They both provide

LINQ querying against a database using a data model.

A frequently asked question is: why did Microsoft create two similar technologies?

LINQ to SQL evolved from the LINQ project, which came out of team working with

language development. The Entity Framework was a project of the Data Programma-

bility team and was focused on the Entity SQL language. By the time each technology

had come along far enough that it was being shown to other teams at Microsoft, it was

clear that Microsoft had two great new technologies that could target different scenar-

ios. The Entity Framework team adapted LINQ to work with entities, which confused

developers even more because LINQ to Entities and LINQ to SQL look so much alike.

LINQ to SQL eventually was brought into Microsoft’s Data Programmability team,

and in November 2008 the team announced that because the technologies target the

same problems, going forward they would focus on developing the Entity Framework,

which supports multiple databases and aligns with many of Microsoft’s upcoming

technologies through its use of an Entity Data Model. However, they will continue to

maintain and tweak LINQ to SQL. This is not a happy situation for many developers

who have made an investment in LINQ to SQL. Microsoft is committed to maintaining

LINQ to SQL in ADO.NET and has made no statements regarding deprecating it. It

has also promised to provide a migration path from LINQ to SQL to the Entity Frame-

work and will recommend the Entity Framework over LINQ to SQL in future pro-

grammer guidelines.

Entity Framework Pain Points Are Fading Away

In the first edition of this book, Chapter 1 listed two pages of pain points. Their section titles were “The Entity Framework Designer” (which focused on the lack of support

for stored procedures and other EDM features), “Challenges with Change Tracking

Distributed Applications,” “Domain-Driven Development,” and “Unit Testing.” I’m

very happy to have removed every one of these sections thanks to the great improve-

ments that have been made in .NET 4 and Visual Studio 2010.

There are still definitely a lot of nits to pick, however. The model would benefit from

support for things such as unique foreign keys, table-valued functions, enhanced many-

to-many relationships, and a problem that is much more than a nit: support for very

large models.

Entity Framework’s state management and relationship management still have a lot of

behavior that is not intuitive and will certainly bite you if you don’t study up on it. Take a look at Chapter 19 for a good study guide.

16 | Chapter 1: Introducing the ADO.NET Entity Framework

Download from Library of Wow! eBook <www.wowebook.com>

This book spends plenty of time looking into the depths of the Entity Framework runtime to show you how to get around some of these limitations, and attempts to point

out potholes, hiccups, and omissions.

Users of more mature ORM tools continue to have complaints about Entity Framework

as well, such as the difficulty of providing internal transactions (database transactions, however, are supported). But if you look around the marketplace, even Entity Framework’s staunchest competitors are getting on board and leveraging their experience to

provide advanced tools for working with Entity Framework. The principal player,

NHibernate, created a wonderful database profiling tool for Entity Framework, and LLBLGen Pro has built a powerful designer for Entity Framework that takes a very

different approach for managing an Entity Framework EDM and its metadata (http://

 www.llblgen.com).

Programming the Entity Framework

As you read through this book, you will gain experience in designing EDMs and using

the Entity Framework to write applications, as well as dig deep into the APIs to learn

how to manipulate entity objects and have granular control over much of their behavior.

A lot of functionality is very accessible, and there’s a lot of hidden power. You will learn what’s under the covers so that you can realize the true benefits of the Entity Framework.

Even as I wrap up this edition of Programming Entity Framework, I look forward to

future versions of the framework as it continues to evolve.

Programming the Entity Framework | 17

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 2

Exploring the Entity Data Model

An Entity Data Model (EDM) is the bridge between your application and your data

store. An EDM provides you with the ability to work with a conceptual view of your

data rather than the actual database schema. .NET APIs provided by the Entity Frame-

work use an EDM for every interaction with the data store, whether it is to retrieve or

to save data. The Entity Framework tools generate classes from this model that enable

you to work with objects described by the EDM.

In this chapter, you will create a simple EDM using the Entity Data Model Wizard, and

then you will inspect the model both in the Designer and by looking at its raw XML.

This chapter will stick to the basics of the model so that you can become familiar with

how an EDM is structured and how the most common elements relate to one another,

to your code, and to the database.

In Chapter 14, you will begin to explore the more complex aspects of the EDM, such as its different inheritance capabilities and how to customize models so that they can

better reflect your business logic.

Why Use an Entity Data Model?

Well-designed databases can pose a problem for developers.

In the data world, a database is designed for maintainability, security, efficiency, and

scalability. Its data is organized in a way that satisfies the demands of good database

design, yet provides challenges for the developer who needs to access that data.

19

Download from Library of Wow! eBook <www.wowebook.com>

Entity Data Model is a concept. The Entity Framework has a particular

implementation that is realized as the EDMX file at design time. At run-

time, the EDMX file is broken up into three separate XML files. For the

sake of clarity, this book will simply refer to the EDM or Entity Data

Model (or simply “the model”) when discussing the Entity Framework’s

implementation. But keep in mind that the EDM literally refers to the

concept of using some type of model to represent your entities in an

application.

The EDM follows the concept of Entity Relationship Modeling discussed in Chap-

ter 1, but in the Entity Framework, it moves the model into XML files that are used by the Entity Framework runtime.

With an EDM in place, developers can focus on their business objects even when re-

trieving data from the database or persisting it back to the database. You, the developer, will not have to worry about the structure of the database, the names of the tables or

views, or the names of stored procedures or their required parameters. Nor will you

have to create the objects necessary for making connections to the database, or be

concerned with the schema of the returned data and then transform the results into

objects to use in your code.

You will simply work against your conceptual model and the classes that represent the

model’s entities. And when you do so within the scope of the Entity Framework, the

Entity Framework runtime will handle database connections, database command gen-

eration, query execution, object materialization, and the details of persisting changes

back to the database.

The EDM Within the Entity Framework

In the Entity Framework’s implementation of the EDM, the primary XML file repre-

sents the conceptual model, which is the actual EDM. A second XML file represents

the database schema, and a third represents the mapping between the first two. At

design time, all three files are bundled into a single EDMX file. The build process splits the EDMX out into the three metadata files that are used at runtime. The Entity Framework then provides a framework that allows developers to write .NET applications

based on this model.

In Chapter 25, you will learn about alternatives to the XML schema that are included in future technologies coming from Microsoft that will enhance the Entity Framework.

20 | Chapter 2: Exploring the Entity Data Model

Download from Library of Wow! eBook <www.wowebook.com>

As long as the EDM provides the conceptual schema, a representation of the database,

a mapping file, and access to an Entity Framework-aware ADO.NET provider for the

target database, the Entity Framework doesn’t care what database is being targeted. It

provides a common means of interacting with the database, common query syntax,

and a common method for sending changes back to the database.

Although the Entity Framework provides a very rich set of features for developers, its

most important capabilities are the following:

• By default, it automatically generates classes from the model and updates those

classes dynamically anytime the model changes.

• It takes care of all of the database connectivity so that developers are not burdened

by having to write lots of code for interacting with the database.

• It provides common query syntax for querying the model, not the database, and

then translates these queries into queries that the database can understand.

• It provides a mechanism for tracking changes to the model’s objects as they are

being used in applications, and handles the updates to the database.

In addition, because the model’s classes are dynamically generated, minor changes to

the model need not have a major impact on your application. Furthermore, modifying

the model is much simpler than modifying your objects and the data access code on

which they rely.

All of the work you will do in this book will depend on an EDM, so in preparation for

this, we’ll create a simple model and then put it under a microscope so that you’ll have

a thorough comprehension of what the Entity Framework is working with.

Walkthrough: Building Your First EDM

Let’s start by creating a model from the sample database, ProgrammingEFDB1. This is

a simple database with only two tables, one view, and some stored procedures, and

therefore it’s a great place to begin. With an EDM in hand, you’ll be able to explore its

elements and their relationships, which we’ll do later in this chapter.

This walkthrough will use a custom SQL Server database, Program-

mingEFDB1, which you can download from the book’s website at http:

 //www.learnentityframework.com. Visual Studio 2010 provides Entity Framework connectivity to SQL Server. As mentioned in Chapter 1, you

can install additional providers to connect to other databases, such as

SQL Server CE, MySQL, Oracle, and VistaDB.

Walkthrough: Building Your First EDM | 21

Download from Library of Wow! eBook <www.wowebook.com>

1. Create a new Console Application project by choosing the Console Application

project template (see Figure 2-1). I’ve named mine Chapter2ConsoleApp.

Be sure that the project is a .NET Framework 4 project. You can see the

filter option at the top of the New Project window. Many of the features

throughout this book are not available in .NET 3.5 and you will find

yourself very confused!

 Figure 2-1. Creating a new Console Application project

2. Add a new item to the project by right-clicking on Chapter2ConsoleApp in the

Solution Explorer, clicking Add, and then clicking New Item.

3. Select ADO.NET Entity Data Model from the Templates list and click Add (see

Figure 2-2).

4. On the Choose Model Contents page, select the Generate from Database option

and click Next.

5. On the Choose Your Data Connection page, select ProgrammingEFDB1 from the

drop-down list of available connections.

If you do not have ProgrammingEFDB1 set up as a database connection

in Visual Studio, click New Connection to open the Connection Prop-

erties dialog and create a new connection to the database.

22 | Chapter 2: Exploring the Entity Data Model

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 2-2. Selecting ADO.NET Entity Data Model on the Add New Item page to create an EDM

6. At the bottom of this page, change the connection settings name from the lengthy

default of “ProgrammingEFDB1Entities” to “SampleEntities” and then click Next.

7. On the Choose Your Database Objects page, check the Tables and Views nodes.

This will select all of the tables and views in the database. Alternatively, you can

expand any of the nodes and select the specific objects you want. This database

has two tables (Contact and Address), one view (vOfficeAddresses), and six stored

procedures. For this demo, you’ll want only the tables and the view.

We are skipping over the Stored Procedures checkbox for now; we’ll

come back to stored procedures in Chapter 7.

8. At the bottom of this page, change the Model Namespace from its default to

“SampleModel” to align with the connection settings name.

9. Click Finish.

The new model will be displayed in the Designer window, and its file,

 Model1.edmx, will appear in the Solution Explorer (see Figure 2-3).

Walkthrough: Building Your First EDM | 23

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 2-3. Model1.edmx added to the project, and the model automatically opened in the Designer Beginning with Visual Studio 2010, the Entity Framework also supports

 model-first design, whereby you can build a model from scratch and then

create a database based on the model. We’ll cover model-first design in

Chapter 25.

Inspecting the EDM in the Designer Window

The Entity Designer window is useful for viewing a graphical representation of an EDM

and its members. Otherwise, you would have to dizzy yourself with lots of raw XML,

which you’ll get an opportunity to do later in this chapter, after you have had your

graphical introduction.

After you generate the model from the wizard, the model will be open in the Designer

view. If you have closed it, you can double-click on the EDMX file in the Solution

Explorer to reopen it. The designer view is the default view for an EDMX file.

The Designer display of Model1.edmx shown in Figure 2-3 depicts an EDM that consists of three entities: a Contact entity, an Address entity, and a vOfficeAddress entity. The

first two came from the tables in the database and the third came from the view. The

Designer also displays a line connecting Contact and Address that represents a one-to-

many relationship between them. Each entity has a number of scalar properties, and

the entities with relationships additionally have navigation properties.

 Scalar properties are properties whose values are literally contained in the entity. For example, the Contact entity is described by such things as ContactID, FirstName, LastName, and Title. These correspond with the table columns.

24 | Chapter 2: Exploring the Entity Data Model

Download from Library of Wow! eBook <www.wowebook.com>

 Navigation properties are pointers to related entities. The Contact entity has an Addresses property that will enable the application to navigate from a Contact to a set of Addresses related to that Contact. The Address entity has a Contact property that

allows you to navigate from an Address to the single Contact associated with the Address entity.

The lines that connect the related entities represent associations, which are the relationships between the entities. Be aware that the position of the association ends, which

in Figure 2-3 are nearest to Contact.LastName and Address.StateProvince, has no specific meaning. The association is only connecting the entities and is not implicating any

particular properties.

Navigations and Associations: What to What?

The two ends of a relationship are often described with shortcut syntax that defines

how many entities can be on each end. This is referred to as describing the multiplic-

 ity of the end. Multiplicity is also known as relationship cardinality, though you won’t see this term used much within the Entity Framework.

The multiplicity options are:

• 1 (One)

• * (Many)

• 0..1 (Zero or One)

The two ends are then combined to describe the relationship.

For example, “1:*” means “One to Many.” A canonical example of this is one order

and its many line items.

“0..1:*” means “‘Zero or One’ to Many.” An example of this is a relationship between

shippers and orders. One shipper may ship many orders, but only one shipper can be

related to an order. However, it’s possible that the shipper was not assigned to the order at first; therefore, it can be zero or one on the shipper end of the relationship.

Notice that the entity has both a scalar property for the ContactID as

well as a navigation property to the Contact entity referenced by the

ContactID. If you have been working with the previous version of Entity

Framework, the presence of the foreign key (ContactID) is new. It is

optional, but it is there by default. You’ll read more about this later in

the chapter.

When working in the Entity Designer, you can see more information about the con-

tainer, each entity, and each entity property in the Visual Studio IDE’s Properties window.

Inspecting the EDM in the Designer Window | 25

Download from Library of Wow! eBook <www.wowebook.com>

Entity Container Properties

The logical group of entities in a model is called an entity container.

Figure 2-4 shows the Properties window for the entity container with some of the sections collapsed. Here you can modify the names of the container and its namespace,

define the model’s pluralization rules, and more.

 Figure 2-4. The Properties window for the entity container

Entity Properties

Each entity and each association of an EDM, as well as the model itself, has properties.

Let’s look at some properties of the Contact entity in the model that you’ve created.

Select the Contact entity to view its Properties window (see Figure 2-5).

26 | Chapter 2: Exploring the Entity Data Model

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 2-5. Viewing the Properties window for the Contact entity

In the Properties window, you can see that the entity not only has the name “Contact,”

which it derived from the table name in the database, but also has an Entity Set Name property. If the table name in the database had been plural, e.g., Contacts, the

wizard would have still named the entity Contact because an entity name should be

singular.

An entity set is a container for a collection of entities of a single type. Therefore, the entity set named “Contacts” will contain a collection of Contact entities. By default,

the wizard pluralized the entity name when creating the entity set name. You can change

this behavior by unchecking the “Pluralize or singularize generated object names”

checkbox in the Entity Data Model Wizard.

Entity Property Properties

Figure 2-6 displays the properties of the Contact’s FirstName property. You can see, for example, that FirstName is a string (Type is String) that is not nullable (Nullable is

False).

Inspecting the EDM in the Designer Window | 27

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 2-6. The properties of the FirstName property

Properties that describe the schema of an entity property, such as Fixed

Length, are also known as attributes. Because it can be confusing to dis-

cuss “the properties of the properties,” I will frequently refer to them as

attributes.

The Unicode, Max Length, and Fixed Length properties are ignored by the Entity Frame-

work runtime. Do not expect the Entity Framework to automatically perform validation

based on these properties. These attributes are used by other consumers of the EDM,

such as ASP.NET MVC 2.0 and ASP.NET Dynamic Data Controls, and, as you will

learn in Chapter 25, for generating database scripts along with the StoreGeneratedPat tern property. You can use them yourself when working at a lower level with Entity

Framework; e.g., with MetadataWorkspace, which you will learn about in Chapter 21.

Although you can do much more with the Designer, it is time to open the model in its

raw format. You will find additional discussion of the raw XML in Appendix C. Be sure to save all of your work before moving on.

28 | Chapter 2: Exploring the Entity Data Model

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 2-7. The components of the Entity Framework’s model metadata

When building a model from scratch in the Designer in Chapter 25, you

will learn more about various features of working with entities, their

properties, associations, and more.

The Model’s Supporting Metadata

So far in the Designer you have seen only the conceptual portion of the model, but there

are more critical sections of the EDMX: StorageModels and Mappings.

There are, in fact, four sections in the EDMX file, but one of those four

contains instructions to the Designer for object placement. I’ll be ig-

noring that section in this discussion.

These additional parts of the metadata enable the Entity Framework APIs to translate

between the conceptual model and the actual data store. The StorageModels represent

the schema of the database objects that you selected for inclusion, and the Mappings

describe how to get from the entities and properties of the conceptual model to the

tables and columns described in the storage model (see Figure 2-7).

Why use the storage layer to represent the data store when you have the actual data

store to work with? There are a number of reasons to use this piece of the model. The

most important reason is that this provides loose coupling to the database; not every

object in the database needs to be in the model, and as you will learn in Chapter 16, it is possible to customize even the storage layer to suit the needs of the model.

Although the entire model is contained in a single file at design time, when the project

is compiled it will create three separate files—one for each of these sections. The con-

ceptual layer is saved to a file with a .csdl extension, which stands for Conceptual Schema Definition Language. The storage layer is saved to a file with an .ssdl extension (which stands for Store Schema Definition Language) and the mapping layer is saved

to a file with an .msl extension (which stands for Mapping Specification Language).

The Model’s Supporting Metadata | 29

Download from Library of Wow! eBook <www.wowebook.com>

These files are used at runtime, which is why they are contained in a section called

edmx:Runtime in the model.

By default, you will never see these physical files because they are em-

bedded into the project assembly when the project is compiled. This is

convenient for a lot of scenarios, though it is possible to change the

model’s Metadata Artifact Processing property to read “Copy to Out-

put Directory.”

A Schema by Any Other Name: Nicknames

The three parts of the model have a variety of descriptions that you will see used in

documentation, articles, training, and even this book. Here is a list of the various

“nicknames”:

Conceptual Schema Definition Language (CSDL)

• Conceptual layer

• Conceptual schema

• Conceptual model

• C-side

Store Schema Definition Language (SSDL)

• Store/storage layer

• Store/storage schema

• Store/storage model

• Store/storage metadata

• Store/storage metadata schema

• S-side

Mapping Specification Language (MSL)

• Mapping layer

• Mapping specification

• C-S mapping (referring to “conceptual to store”)

Each section is controlled by its own XML Schema Definition (XSD) file that lives deep

within the .NET Framework files. One schema file defines what the structure of the

CSDL should be, another defines the MSL, and yet another defines the SSDL. Visual

Studio’s IntelliSense uses these schema files to help you as you’re working directly with

the XML, pointing out errors and presenting you with options. Compiler errors will

also be displayed if the files don’t fall in line with their schema rules.

30 | Chapter 2: Exploring the Entity Data Model

Download from Library of Wow! eBook <www.wowebook.com>

Schemas for the Schemas

If you’re among the very curious you can take a look at the schema files that drive the

rules for the CSDL, SSDL, and MSL sections in the model. The schema files for Visual

Studio 2010 are located in C:\Program Files\Microsoft Visual Studio 10.0\xml\Schemas. If you are running a 64-bit O/S, check in the Program Files (x86) path instead.

The three files to look for are:

• System.Data.Resources.CSDLSchema_2.xsd

• System.Data.Resources.CSMSL_2.xsd

• System.Data.Resources.SSDLSchema_2.xsd

If you open these in Visual Studio, you will see that they are formatted as XML files

and are easy to navigate.

Viewing the Model in the Model Browser

The Entity Data Model Designer also provides another view of the metadata with the

Model Browser. You can access the Model Browser from the context menu of the

model’s design surface.

Figure 2-8 shows the Model Browser with a number of items expanded. The Model Browser lets you see an overview of the CSDL and SSDL items. From here you can

access the property window of various entities and properties. You can also navigate

to a particular entity or property by right-clicking and selecting Show in the Designer.

As your model gets more complex, the Model Browser is a convenient way to see an

organized view of the metadata.

Viewing the Model’s Raw XML

Now it’s time to get down and dirty with the EDM. Only a portion of the model is

visible in the Designer, which means you can learn a lot more by looking at it in its raw

format. In places where the model has a counterpart in the Designer, you’ll see both

views.

By default, the file will open in the Designer; therefore, you need to use a different

method to open it in its raw format. In the Solution Explorer, right-click the Model1.edmx file. From the context menu that opens, select Open With, and then choose XML Editor and click OK.

Visual Studio cannot display the model in Design view and in XML at the same time,

so you will see a message asking whether it’s OK to close the Design view of the model.

Click Yes.

Viewing the Model’s Raw XML | 31

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 2-8. The Model Browser

For those who have the common Fear-of-XML syndrome, this may look

at little daunting at first. Have no fear and just follow along. We won’t

go too deep, but if you are interested in the real plumbing, you’ll find

more details about the raw metadata in Appendix C.

Later in this book, you will be working directly in the XML to make some model cus-

tomizations that are not supported by the Designer. Additionally, you will write some

code that interacts directly with the raw model. When performing these tasks, you will

benefit from having had the interaction with the XML in the following pages and con-

tinued in Appendix C.

The EDMX file is composed of two main sections: the runtime information and the

Designer information. The runtime section comprises three additional sections: one

each for storage models, conceptual models, and mappings. The Designer section

specifies where the various model elements should be placed visually in the Designer.

32 | Chapter 2: Exploring the Entity Data Model

Download from Library of Wow! eBook <www.wowebook.com>

Collapse all of the main sections of the model. You can do this quickly by right-clicking

in the XML and choosing Outlining, then Toggle All Outlining. Now you will see only

the main node—edmx:Edmx. You can expand that until your view matches Figure 2-9.

 Figure 2-9. The main sections of the model

Now you can see the main sections of the model. The Designer element is

metadata that tells the Designer how to position the entities. Feel free to explore that

at a later time. The critical sections of the model are the runtime ConceptualModels,

StorageModels, and Mappings.

CSDL: The Conceptual Schema

Let’s begin by taking a closer look at the CSDL, the conceptual schema for the EDM.

In the XML, use the + icons to expand the ConceptualModels section until you have

exposed the Schema and the EntityContainer, as shown in Figure 2-10.

Sometimes the XML formatting is affected and a particular section

might lose all of its hard returns, resulting in one very long line of code

that is hard to decipher. To fix this, highlight the line and then, from

the Visual Studio menu, select Edit→Advanced→Format Selection. This

will make the XML formatting much more palatable.

CSDL: The Conceptual Schema | 33

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 2-10. Expanding the conceptual model, its schema, and the EntityContainer inside the schema Here you can see how the EntityContainer, EntitySets, and various EntityTypes that

we looked at previously in the Designer are defined in the metadata and contain the

various EntitySets.

Now we will take advantage of the structured XML to learn more about the different

elements of an Entity Data Model.

EntityContainer

Within the schema is an EntityContainer named SampleEntities (by default). Like the

namespace, this is the pattern for the default EntityContainer name using the database

name plus the word Entities. You can view and change this name in the model’s Properties window when you have the model open in the Designer.

The EntityContainer is a wrapper for EntitySets and AssociationSets. You may rec-

ognize the Contacts EntitySet from the Properties window in Figure 2-5. Association Sets reference the associations between the entities. We’ll come back to Association

Sets after we’ve discussed the Association elements.

As shown in Figure 2-11, the EntityContainer is the critical entry point for querying the model. It exposes the EntitySets, and it is the EntitySets against which you will

write your queries. The EntitySets, in turn, give you access to their entities.

34 | Chapter 2: Exploring the Entity Data Model

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 2-11. The relationship of the EntityContainer to its EntitySets and Entity objects EntityContainer has an attribute: annotation:LazyLoadingEnabled="true". Annotations exist only in the EDMX file, and are directions for the generation of code based

on the model and have nothing to do with the model itself. This setting is also available

in the model’s Properties window.

EntitySet

An EntitySet is a container for a type of entity. Its two attributes are Name and EntityType. EntityType defines which entity the set contains using its strongly typed

name. The entity’s strongly typed name includes the model’s namespace, as shown in

the following code snippet:

<EntitySet Name="Addresses"

EntityType="SampleModel.Address" />

<EntitySet Name="Contacts"

EntityType="SampleModel.Contact" />

It is through the EntitySet that you have access to the individual entities when querying

against the model. When you begin to query in the next chapter, you will see that you

use code that translates to “find some entities in the Addresses EntitySet.” The model

instructs your query to return Address entity types.

As you will learn later in the book, the Entity Data Model allows for

inherited types. Therefore, your model may have a Contact entity and a

Customer entity, where the customer is a type of Contact. In this case,

the Contacts EntitySet will serve as a wrapper for both the Contact

entities and the Customer entities.

CSDL: The Conceptual Schema | 35

Download from Library of Wow! eBook <www.wowebook.com>

EntityType

An EntityType is a data type in the model. You have already seen a Contact entity type

and an Address entity type.

In the XML schema, expand the Address entity type, which will look like Exam-

ple 2-1, to get a closer look at it. It contains a Key element and a list of Property elements.

 Example 2-1. The Address entity’s XML

<EntityType Name="Address">

<Key>

<PropertyRef Name="addressID" />

</Key>

<Property Name="addressID" Type="Int32" Nullable="false"

annotation:StoreGeneratedPattern="Identity" />

<Property Name="Street1" Type="String" MaxLength="50"

Unicode="true" FixedLength="true" />

<Property Name="Street2" Type="String" MaxLength="50"

Unicode="true" FixedLength="true" />

<Property Name="City" Type="String" MaxLength="50"

Unicode="true" FixedLength="true" />

<Property Name="StateProvince" Type="String" MaxLength="50"

Unicode="true" FixedLength="true" />

<Property Name="CountryRegion" Type="String" MaxLength="50"

Unicode="true" FixedLength="true" />

<Property Name="PostalCode" Type="String" MaxLength="20"

Unicode="true" FixedLength="true" />

<Property Name="AddressType" Type="String" Nullable="false"

MaxLength="10" Unicode="true" FixedLength="true" />

<Property Name="ContactID" Type="Int32" Nullable="false" />

<Property Name="ModifiedDate" Type="DateTime" Nullable="false" />

<NavigationProperty Name="Contact"

Relationship="SampleModel.FK_Address_Contact"

FromRole="Address" ToRole="Contact" />

</EntityType>

The Key element

The Key element defines which properties comprise the identity key for the entity. In

the Designer and at runtime you will see this represented as an EntityKey.The entity’s

key plays a critical role in the life cycle of an entity, enabling your application to keep track of an entity, perform database updates and refreshes, and more. You will learn

more about this in Chapter 10. In the Designer, you can specify the key in the Properties window of the entity.

The key for the Address entity uses only a single property, addressID. It is possible to

have keys composed of multiple properties. These are called composite entity keys and are similar to composite keys in databases. You’ll learn more about composite keys in

Chapter 10.

36 | Chapter 2: Exploring the Entity Data Model

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 2-12. The Address entity with its Street1 property selected and the Street1 details shown in the Properties window

The Property elements

Not only do the Property elements have names, but they are additionally defined by

their data type and a variety of “facets” that further describe them.

The data types that define these properties are called simple types. These are primitive types in the Entity Framework object model that closely line up with the data types in

the .NET Framework. The Entity Framework’s primitive types, however, are used only

to define the entity property. They do not have their own properties. They are truly

simple.

You can view and edit most of this information in the Properties window, as shown in

Figure 2-12.

You can also see properties in the Properties window that are not shown in the XML.

You cannot have both the XML and the Designer open at the same time.

To return to the Designer, close the XML view of the model and then

double-click on the EDMX file.

CSDL: The Conceptual Schema | 37

Download from Library of Wow! eBook <www.wowebook.com>

Properties that are set to their default values are not explicitly written out in the XML.

This is the case for a number of the properties of Address.Street1, including

ConcurrencyMode, Default Value, Getter, and Setter. The EntityKey property is not a

facet of Street1 but is used to create the EntityKey element described earlier. If you

look at the properties of addressID, you’ll see that its EntityKey property is True.

The Getter and Setter properties define the accessibility of each prop-

erty in the class that is generated from the model’s entity. By default, all

of the properties are public, allowing anyone to read or write to them.

Changing the values of Getter and Setter will impact the property dec-

larations. Chapter 23 digs further into concurrency, and there you will

learn about the ConcurrencyMode property.

The navigation properties

The navigation properties of the entities are tightly bound to the associations that are

represented by the lines between the entities, as you saw earlier in Figure 2-3. We’ll dig further into the subject of navigation properties after we discuss associations.

Associations

Associations define the relationships between entity types. The association doesn’t de-

fine the relationship completely, however. It defines the endpoints (i.e., the entities that are involved in the relationship) and their multiplicity.

In the example model, there is only one association, which is between the Contact entity

type and the Address entity type, telling us that there is a relationship between the two.

The name of this association was taken from the predefined relationship in the database

when the wizard first created the model. Like any other element in the model, you can

edit the name of the association if you prefer more readable names, or if you have

naming conventions that you need to follow.

Let’s first look at the association’s properties in the Design view. If you are following

along, close the XML and open the model in the Designer and click on the association.

Figure 2-13 shows the Properties window for the association between Contact and Address.

Download from Library of Wow! eBook

<www.wowebook.com>

38 | Chapter 2: Exploring the Entity Data Model

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 2-13. Association properties

The association lists both ends. End1 is the Contact entity type. It is assigned a role called

“Contact,” which acts as the name of End1 so that elements elsewhere in the model can

point to it. Additional End1 properties tell us more about this end of the association.

Multiplicity specifies that there will be only one contact in a relationship between

Contact and Address. Navigation Property shows that the Addresses property in the

Contact type leads us to the other end of the association. OnDelete, whose options are

Cascade and None, lets us know if any related Address entities in memory will be deleted

when the Contact entity is deleted.

The second end will be an Address entity type, and there can be many addresses in this

relationship. After “reading” the association, you can see that there is a one-to-many

relationship between Contact and Address. A single contact might have a home address,

a work address, and even other addresses. However, an address will only ever be as-

sociated with a single contact. In the real world, it is possible for an address to be

associated with multiple people—for example, family members or roommates or em-

ployees at a single organization. That would involve a many-to-many relationship, which we will explore in Chapter 8.

CSDL: The Conceptual Schema | 39

Download from Library of Wow! eBook <www.wowebook.com>

As with entities, an association defines the name of the AssociationSet that contains

this type of association. By default, it matches the name of the association. You could

also make this name plural, but doing so is not as critical as having plural EntitySet

names because you won’t be interacting with the AssociationSets in code.

Learn more about AssociationSet in Appendix C.

Finally, make note of the Referential Constraint property. In a model that contains

foreign keys in the entities, such as the ContactID property of Address shown in Fig-

ure 2-14, the Referential Constraint is critical. It defines any dependency between the related entities.

 Figure 2-14. Referential Constraint details

Every Address entity must point to a Contact. Referential constraints are checked when

you attempt to store data in the database.

For backward compatibility with version 1 models, it is still possible to

define the constraints with association mappings (more on these

shortly) when you have a relationship between two primary keys.

Including foreign key properties is the default mode for creating an Entity Data Model.

You can build models following the version 1 approach whereby entities do not include

40 | Chapter 2: Exploring the Entity Data Model

Download from Library of Wow! eBook <www.wowebook.com>

the foreign key. In this case, the Referential Constraint would not be used and the

dependency between the Contact and Address would be defined in the association’s

mappings. You will learn more about this alternative use in Chapter 19. The associations in this type of model are referred to as independent associations, whereas those in a model using foreign keys are called foreign key associations.

We will discuss associations in more detail later in this chapter, and in even greater

detail in Chapter 19, which focuses on relationships and associations.

Navigation Property

Finally, we can look at the navigation properties in the Address and Contact entity types.

Now that I’ve explained associations, navigation properties should be much easier to

comprehend.

Although it is easily possible for entities to have more than one navigation property, in

this particular model we have only one in each entity type. Figure 2-15 shows the Properties window for the Contact navigation property of the Address entity.

 Figure 2-15. The Contact navigation property of the Address entity

When you’re working with the Address in code, the Contact navigation property will

appear as just another property. Although the other properties are referred to as sca-

 lar properties, meaning that they are values, the navigation property describes how to navigate to a related entity.

CSDL: The Conceptual Schema | 41

Download from Library of Wow! eBook <www.wowebook.com>

A critical property of the navigation is its association. This tells the navigation property which association in the model contains information regarding how to navigate to the

related entity (or entities in the case of Contact.Addresses).

As I explained earlier, that association defines the relationship between the Address and

Contact entity types. The FromRole and ToRole attributes tell the Entity Framework that

when it looks at this association, it needs to navigate from the endpoint named Address to the endpoint called Contact. This, in turn, will allow you to navigate from the Address entity type to its associated Contact entity type in your code.

As with entities, the Designer shows some properties that are used for code generation:

Getter, Setter, and Documentation. Additionally, Multiplicity is linked to the multi-

plicity of that same end in the association. You can change it in the Navigation Property

properties or in the Association properties. The Contact’s multiplicity is “1 (One),”

telling you that when you navigate to Address.Contact, you will get an instance of a

contact (a single contact object). A navigation property that returns a single object is

referred to as a navigation reference. Return Type is a read-only property that is located in the Designer’s Properties window to help you to better understand the navigation.

When looking at this same navigation property in the XML you will not see these last

two properties, and because the Setter, Getter, and Documentation properties are using

the defaults, they are not listed either, as shown in the following code snippet:

<NavigationProperty Name="Contact"

Relationship="SampleModel.FK_Address_Contact"

FromRole="Address"

ToRole="Contact" />

Navigation Properties That Return Collections

The Contact property of an Address entity returns a single instance of a contact. What

about the Addresses property of a Contact entity? Figure 2-16 shows the Addresses property.

When navigating from Contact to Addresses, the Addresses endpoint defined in the

FK_Address_Contact association has a multiplicity of * (Many). Therefore, the Entity

Framework expects a collection inside the Addresses property. In the Designer, the

Return Type property of Addresses is a collection of Address types.

This type of navigation property is called a navigation collection.

In code, the Contact.Addresses property will return a collection of Address entities, even if there is only one address in the collection. If there are no addresses for a particular person, the collection will be empty.

The collection that is exposed in the Addresses navigation property is not a collection

from the System.Collections namespace, but rather an EntityCollection. The

EntityCollection is a completely unique class in the Entity Framework. So, although

it is simpler to say “a collection of addresses,” it is important to pay attention when

42 | Chapter 2: Exploring the Entity Data Model

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 2-16. The Addresses navigation property

you are working with an EntityCollection versus a type that implements System.Col

lections.ICollection, as they are not interchangeable.

It is important to note that in this simple model, the conceptual layer has not been

customized. It mirrors the schema of the database, which is a very good place to begin

to learn about the EDM. Later in the book, you will learn about customized models

and begin to leverage the real power of the EDM.

SSDL: The Store Schema

Continuing with our simple model, it’s time to look at another piece, the SSDL, which

you will need to understand before we discuss the MSL.

The StorageModels section of an EDMX file is a schematic representation of its associ-

ated data store. The elements of this file are similar to those of the CSDL file. Fig-

ure 2-17 shows the complete SSDL from the EDMX file, although not every section is

expanded.

The EDM design tools include a feature that allows you to update the

model from the database. It is available in the context menu that you

get when you right-click in the EDM Designer. You’ll work with this

feature in Chapter 7 to bring a database’s stored procedures into the

model.

SSDL: The Store Schema | 43

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 2-17. Expanded StorageModels section to explore the store layer of the model

For consistency, the tables and columns are called EntityType and Property. Frequently,

you will see these referred to in documentation as tables and columns, and even as such

in the visual tools.

Note the following ways in which the SSDL differs from the CSDL:

• Schema element:

— The namespace has “.Store” appended to it so that it’s clear that this schema is

for the data store, not the conceptual layer of the model.

— There is a ProviderManifestToken attribute. The value in the example represents

the simple expression of the version of SQL Server—for example, 2008—which

is the database being used for this model. The true version number of SQL Server

2008 is 10.0.1600.22. The Entity Framework relies on this bit of information,

so it is required. The values are determined by the provider that you are using

(in this case, SqlClient) and what values it exposes for the token.

44 | Chapter 2: Exploring the Entity Data Model

Download from Library of Wow! eBook <www.wowebook.com>

— The xmlns namespace indicates the namespace used for this section of the XML

file. Again, this particular parameter is static.

• Entity container:

— The name of the EntityContainer is “SampleModelStoreContainer,” which was

derived from the database name.

• Entity type:

— The entity type names are the actual names of the tables in the database.

— The property types are the data store data types—in this case, SQL Server data

types.

— The identity columns are attributed with StoreGeneratedPattern="Identity",

meaning that the value will be generated (e.g., by the database) when the row

is inserted and will not otherwise change. The other options are "Computed",

which specifies that the value will be generated on inserts and updates, and

"None", which is the default.

In Chapter 16, you will have an opportunity to work directly with the SSDL metadata.

You can find additional details about the SSDL metadata in Appendix C.

Pay attention to the database version specified in the ProviderMani

festToken. If you are moving from one version of SQL Server to another

(e.g., your development machine uses SQL Server 2008 but a client that

you work with uses SQL Server 2005), you will need to modify that value

manually in the XML.

MSL: The Mappings

The last section of the EDMX file to look at is the Mappings section. In the Entity Framework metadata, the mapping layer sits between the conceptual and store layers

and not only provides the map from the entity properties back to the tables and columns

in the data store, but also enables further customization of the model.

You can view the mappings in the Designer’s Mapping Details window. To follow

along, close the XML view of the model and open the model in the Designer by double-

clicking the model’s EDMX file in the Solution Explorer.

To see the Mapping Details window, right-click the Contact entity and select Table

Mapping from the menu. The Contact’s mapping information will be displayed in the

Mapping Details window, as shown in Figure 2-18.

MSL: The Mappings | 45

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 2-18. The Contact’s mapping information as displayed in the Mapping Details window

Figure 2-18 shows visually how the Contact entity maps to the Contact table in the store layer. This is defined by “Maps to Contact,” which refers to the table name in the SSDL.

In other words, the Contact entity maps to the Contact table. Because the Contact entity

has not been customized, the mapping is straightforward—there is a one-to-one map-

ping between the conceptual layer and the store layer.

Beneath the table selection for the Contact table, you can see that the columns from the

table (on the left) are mapped to the entity’s properties on the right. When you are

creating the mappings yourself rather than relying on the wizard, the Designer, by default, will match identical names to each other, which is a great help.

You can also see that the columns include the provider type (int, nchar, and

datetime from SQL Server), whereas the properties include the Entity Framework’s

primitive types (Int32, String, and DateTime).

You can use the “Add a Condition” and “Add a Table or View” placeholders to further

customize the model. We will cover this subject in Chapter 14.

Appendix C explores the XML representation of this entity mapping.

There’s more to come on associations and mappings in Chapter 19.

Database Views in the EDM

Something we haven’t yet explored in the EDM is the database view from the sample

database. The wizard pulled one view into the model and this resulted in the

vOfficeAddress entity. Database views are handled by the Entity Framework in essen-

tially the same way it handles tables.

46 | Chapter 2: Exploring the Entity Data Model

Download from Library of Wow! eBook <www.wowebook.com>

If you were to dig through the model, you would find that something in the SSDL,

called a DefiningQuery, contains the T-SQL from the database that defines the view.

When you originally built the model with the EDM Wizard, you may

have seen some warnings in the Error List window about this view. The

wizard will discover that there is no primary key for the view and will

infer an entity key from any non-nullable properties in the entity. The

warning message informs you of this and the same message is embedded

into the EDMX file.

The wizard cannot create an entity with no EntityKey. Therefore, if there

are no non-nullable values in the view, or in a table, for that matter, it

will completely skip entity creation for that object.

Chapter 16 will dig deeper into DefiningQuery. For now, remember that the view comes into the model as an entity and if the view is not updatabale, you can update it by tying

it to stored procedures, a feature called function mapping. You will learn about function

mapping in Chapter 7.

Keep in mind that any changes to the database tables, views, or other

objects will not automatically be updated in the model. You’ll learn

about updating the model in Chapter 7.

Summary

This chapter introduced you to the Entity Data Model and to a bit of the functionality

of the design tools. You created your first EDM and looked under the covers to gain an

understanding of its most common components. You explored the mappings in the

Designer and in the raw XML.

As explained previously, the EDM shines when you can begin to take advantage of the

fact that it is highly customizable. Now that you have a solid understanding of the

EDM, you are prepared to learn about advanced mappings and customization, which

we will explore in Chapters 14 through 16. But for now, this model provides enough to get started with querying, which you will begin in the very next chapter.

Summary | 47

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 3

Querying Entity Data Models

You can query Entity Data Models in a variety of ways. Some ways you will choose for

personal preference and others you will choose so that you can leverage particular benefits. You have likely heard of LINQ to Entities and Entity SQL. You can also use

special methods (some based on LINQ and others based on the Entity Framework’s

ObjectQuery class) to express queries. Each of these query styles will result in materi-

alized objects. There is a lesser-known means of querying using Entity Framework’s

EntityClient API, which allows you to stream raw data back to your applications.

In this chapter, you will get a chance to try out all of these different styles of querying.

You will repeat a few simple queries using the various mechanisms and look at the

results so you can see how the different query methods relate to one other.

By the end of this chapter, you will have gained a high-level understanding of all of the

query options and their basic uses. In further chapters, you will write more complex

queries; the foundation you will receive from this chapter will make that task much

easier. In addition, at the end of this chapter you’ll find a critical lesson on query execution.

Although the query examples in this chapter are presented within a console application,

you can use LINQPad to test the queries and see the results. Some of the guidance in

this chapter will also inspect the debugger, which you will not be able to do in LINQPad.

See the sidebar “LINQPad” on page 56 for more information about this tool.

Query the Model, Not the Database

In this chapter, you will learn how to construct queries against the EDM that you created in Chapter 2, and you will learn to let the Entity Framework take it from there. Here is where you will experience the difference between writing queries against

a data model and writing queries against the database. The Entity Framework will process your queries and will leverage the ADO.NET provider (in this case,

System.Data.SqlClient) to turn the EDM query into a query the target database will

49

Download from Library of Wow! eBook <www.wowebook.com>

comprehend. After the database has executed the query, the results will be turned into objects that are based on the entities in the model.

These returned objects are an important piece of the querying process, but surely you

want to start querying, so first we’ll query and then we’ll take a peek under the covers.

Your First EDM Query

In Chapter 2, you created an EDM inside a console application. Here you’ll create your first queries against that EDM. You can use that same project, so if you’ve closed it,

open it and let’s get started. The code in this section will execute the simplest form of

a query, which will return every Contact entity from the database, and then display the

results in a console window.

1. Open the Program.cs file.

2. Add the method in Example 3-1 beneath the Main method. IntelliSense will assist you as you type. After you’ve written a few basic queries, you’ll make the code a

little more efficient.

 Example 3-1. Querying Contacts and writing out their names

private static void QueryContacts()

{ using (var context = new SampleEntities())

{

var contacts = context.Contacts;

foreach (var contact in contacts)

{

Console.WriteLine("{0} {1}",

contact.FirstName.Trim(),

contact.LastName);

}

}

Console.Write("Press Enter...");

Console.ReadLine();

}

3. Add the following code into the Main method:

QueryContacts();

4. Press F5 to run this bit of code. When the code hits the ReadLine() method, all of

the names are listed in the console window.

You have just executed your first query against an EDM and seen the objects that

result.

5. Press the Enter key to finish running the app.

Now you’ll run the query again, but this time you’ll look at some of what’s going on:

1. Set a breakpoint at the end of the foreach block, which is at the closing brace (}).

50 | Chapter 3: Querying Entity Data Models

Download from Library of Wow! eBook <www.wowebook.com>

2. Press F5 to run the code again.

3. When the debugger reaches the breakpoint, hover your mouse pointer over the

contact variable in the foreach statement and you will see that it is a Contact entity

type (see Figure 3-1).

 Figure 3-1. The query results returning Contact entities at runtime

4. Next, hover your mouse pointer over the contacts variable in that same statement

and you’ll see that its type is a System.Data.Objects.ObjectSet of Contact types.

System.Data.Objects is the Entity Framework’s API for creating and managing en-

tity objects. The ObjectSet is what the Entity Framework returns when you make

a call to an EntitySet (e.g., Contacts). It derives from another important class called

ObjectQuery, which is used to construct and execute queries that will return objects.

Once the ObjectQuery has been executed, it contains results, which were all of the

contacts you saw listed in the console. The context took the data that was returned

and used it to create these Contact objects on your behalf.

Because you asked only for the Contacts and did not request any filtering, all of the

contacts were retrieved from the database when the query was executed.

Although this doesn’t really look like a query, it is a query—albeit a very simple

one. You’ll take a closer look at this after the next query.

5. You can continue the application or stop it by pressing Shift-F5.

Now that you know this query returns an ObjectSet you can rewrite the code that uses

implicit typing with the var keyword to explicitly declare the type. This way, you can

specify the type when the code (e.g., context.Contacts) does not make it obvious what

will be returned, which will make it easier for you or others to understand your code

at a later time.

ObjectSet<Contact> contacts = context.Contacts;

ObjectSet is in the System.Data.Objects namespace. Either specify that

in the code line or add the namespace to the beginning of the code file

(using System.Data.Objects; or for VB, Imports System.Data.Objects).

Where Did the Context and Classes Come From?

Since you just dove right into the code, you might have a few questions. For instance,

where did the Contact type come from? How did you go from an XML file (the EDMX

file) to strongly typed .NET objects? Why is context.Contacts a query unto itself, and

what is that context anyway?

Your First EDM Query | 51

Download from Library of Wow! eBook <www.wowebook.com>

One of the features of the EDM design tools is that the Designer automatically performs

code generation based on the model. The model’s Designer.cs file is attached to the

model in the Solution Explorer, as shown in Figure 3-2.

 Figure 3-2. The automatically generated code file attached to the model in Solution Explorer Expand the .edmx file in the Solution Explorer to see the generated code file. Open the file to see what’s in there.

Because the file is generated automatically, you don’t want to edit it

directly. You’ll learn how to customize the classes in this file in Chap-

ter 11.

The generator reads the conceptual layer of the model and creates from it an

ObjectContext class based on the EntityContainer, and then one entity class for each

entity in the model (see Figure 3-3).

 Figure 3-3. Generated ObjectContext and Entity classes based on the conceptual model

The generated code file contains four classes. Figure 3-4 shows these classes in Visual Studio’s Class Designer view. You can open a class in the Class Designer by right-clicking on the class in the Solution Explorer and then choosing View Class Diagram.

The first class (which I’ve expanded from its default view by clicking on the arrows in

the upper-right corner) is SampleEntities. This class has taken the model’s

EntityContainer name. The others are for each entity—Address, Contact, and

vOfficeAddresses.

52 | Chapter 3: Querying Entity Data Models

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 3-4. The four classes in Visual Studio’s Class Designer view

The ObjectContext class, SampleEntities

When you looked at the XML view of the model in Chapter 2, you saw an EntityContainer that contained the EntitySets and AssociationSets.

The SampleEntities class represents that EntityContainer and inherits from an

Entity Framework type called ObjectContext. This is why context is used for the variable

in the example. SampleEntities has three properties—Addresses, Contacts, and

vOfficeAddresses—which are the EntitySets defined in the model. The three AddTo

methods were created by the code generator to provide a means of adding new object

instances to the context, which will then be able to insert those into the database. These AddTo methods exist for backward compatibility with the .NET 3.5 version of Entity

Framework. In .NET 4, you should take advantage of the Add method provided by

ObjectSet, which you will learn about in later chapters.

My convention when coding Entity Framework is to always use “con-

text” as the variable name for ObjectContext instances.

Looking more closely at the Contacts property, you can see that it returns an ObjectSet of Contact types:

public ObjectSet<Contact> Contacts

Your First EDM Query | 53

Download from Library of Wow! eBook <www.wowebook.com>

For VB developers: if you are unfamiliar with the syntax for generics,

C# expresses the type in angle brackets, whereas VB uses parentheses

plus the keyword Of. The preceding code in VB would be as follows:

Public Property Contacts As ObjectSet(Of Contact)

An ObjectSet is the basis for our queries, whether you want the entire set of Contact

entities, as you requested in Example 3-1, or you request a subset, which you will do

in Example 3-2. You will write entity queries against the ObjectSet in much the same way that you would write a database query against a database table.

The entity classes

The three entities defined in the model are the source for the three entity classes. Each

class inherits from the Entity Framework’s EntityObject class and has properties based

on the properties defined in the model, including the Contact.Addresses and

Address.Contact navigation properties where necessary (see Figure 3-5).

 Figure 3-5. The entity classes in the Class Designer

But there’s something new in the Address class: ContactReference, which is another

way to access the Contact property. You’ll learn about EntityReference properties in

detail in Chapter 19. These classes have more members, but as they are not relevant to the querying you’ll do in this chapter, we will dissect them later in the book.

54 | Chapter 3: Querying Entity Data Models

Download from Library of Wow! eBook <www.wowebook.com>

Dig deeper: don’t be afraid to poke around in the generated code file, but remember

that any changes you make will be overwritten anytime the model is modified and

saved.

Querying with LINQ to Entities

The LINQ to Entities query syntax is easier to learn and to use than Entity SQL, and

it’s possibly already familiar to you if you have been using LINQ elsewhere. LINQ to

Entities will very likely cover a large portion of your query needs.

LINQ is a language enhancement that was added to Visual Basic and C# in .NET 3.5.

LINQ stands for Language INtegrated Query, and LINQ to Entities is one of its implementations.

Although F# does not natively support LINQ, the F# Power Pack (http:

 //fsharppowerpack.codeplex.com), created by the F# team, provides LINQ querying.

LINQ was originally written to provide an independent query language

that could be used across all CLR objects. There are now many imple-

mentations of it. You just used an implementation created to work with

entity objects. Visual Studio and the .NET runtime also include LINQ

to SQL, an implementation that queries directly against SQL Server da-

tabases. Many third parties are also writing LINQ providers.

It is possible to get very creative with LINQ queries, and you will easily

find a number of books devoted entirely to LINQ. When you’re starting

out it’s helpful to understand the basic structure.

Writing Your First LINQ to Entities Query

The preceding query used a shortcut that produced a query for you. But it didn’t really

feel like a query. Now you’ll write a LINQ to Entities query using LINQ operators.

Remove the breakpoint that you set in the previous steps. In the line of code that created the contacts memory variable, replace context.Contacts with the query in Exam-

ple 3-2, which retrieves a subset of the contacts.

 Example 3-2. A LINQ to Entities query in VB and C#

VB

Dim contacts=From c In context.Contacts

Where c.FirstName = "Robert"

C#

var contacts = from c in context.Contacts

where c.FirstName == "Robert"

select c;

Querying with LINQ to Entities | 55

Download from Library of Wow! eBook <www.wowebook.com>

You’ll find many differences between VB and C# syntax when writing

LINQ queries. Besides the casing, notice that VB does not require that

you explicitly use the Select operator, whereas C# does.

Run the application again and you will see that only a small number of contacts are

listed and they all have Robert as their first name.

The most obvious sign of integration in LINQ queries is that as you typed your query,

you had the benefit of IntelliSense assisting you—for example, providing FirstName as

an option for the c variable. That was because when you identified Contacts at the

beginning of the query, the compiler was able to determine that the items in that col-

lection are Contact items. When you typed c later in the query in the SELECT and WHERE clauses, IntelliSense was able to present a list of Contact properties in the IntelliSense suggestions.

Why Does LINQ Start with FROM?

LINQ queries begin with the FROM clause, rather than the SELECT clause that most of us

are familiar with in other query languages. When LINQ was being created, query state-

ments did begin with SELECT. However, the developers at Microsoft quickly realized

that identifying the type that is being used up front enabled IntelliSense to provide

meaningful suggestions as the rest of the query was constructed.

According to Microsoft’s Y. Alan Griver, who was very involved with the LINQ project

during its early stages, the Microsoft developers jokingly referred to this syntax as “Yoda speak” when they altered the syntax for the sake of IntelliSense.

In the query, c is just an arbitrary variable name that lets you reference the thing you are working with further on in the query. It’s referred to as a control variable. The control variable provides another means by which IntelliSense and the compiler are

able to make LINQ more productive for developers.

LINQPad

LINQPad is a wonderful tool written by fellow O’Reilly author, Joseph Albahari (LINQ

 Pocket Reference [http://oreilly.com/catalog/9780596519254/], C# 4.0 in a Nutshell

[http://oreilly.com/catalog/9780596800963/], and more). It was originally written to be used with LINQ to Objects, but over time, Joseph added support for LINQ to SQL and

Entity Framework (Entity SQL as well as LINQ to Entities). It is a great way of testing

your queries outside your application.

You can download LINQPad for free at http://www.linqpad.net. There’s an inexpensive (and well worth the nominal fee) upgrade to enable IntelliSense in the tool. On the

LINQPad website and in the download, you will find lots of great tutorial instruction

on how to use LINQPad and how to use it with the Entity Framework.

56 | Chapter 3: Querying Entity Data Models

Download from Library of Wow! eBook <www.wowebook.com>

Many of the examples in this chapter focus on only the query. These are great queries to test in LINQPad. Other examples involve additional tasks beyond the queries and

you may want to perform these in a console application as instructed.

Querying with Object Services and Entity SQL

Another way to create a query, instead of LINQ to Entities, is by using the Entity Framework’s Object Services (in the System.Data.Objects namespace) directly. You

can create an ObjectQuery directly combined with the Entity Framework’s T-SQL-like

query language, called Entity SQL, to build the query expression.

To see how this works, modify your example with the following steps:

1. Replace (or comment out) the line of code containing the LINQ to Entities query

with the code in Example 3-3.

 Example 3-3. Querying with Entity SQL

var queryString = "SELECT VALUE c " +

"FROM SampleEntities.Contacts AS c " +

"WHERE c.FirstName='Robert'";

ObjectQuery<Contact> contacts = context.CreateQuery<Contact>(queryString);

2. Run the app again, and the results will be the same as before.

In the first line of code, you created an Entity SQL expression. In the second, you created an ObjectQuery, passing in the expression that the query should use. The existing code

in your example then executes the query and returns results. If you have constructed

SQL queries before, the Entity SQL syntax you used in Example 3-3 looks familiar but not quite right.

The return type of this query at design time is an ObjectQuery <Contact>, which im-

plements IQueryable. But as you will learn later in this book, it is possible to cast the

LINQ to Entities IQueryable to an ObjectQuery and then access those properties and

methods. This means that even if you choose to use LINQ to Entities, you will still get

to benefit from these properties and methods.

Why Another Way to Query?

Why would you need another means of querying the EDM in addition to LINQ to

Entities? Microsoft did not plan in advance to confuse you with these two options. In

fact, Entity SQL was being created before LINQ existed, but now each serves its own

purpose. LINQ is obviously much easier to use because it is a query language you can

use throughout .NET, not just in Entity Framework, and its strong typing makes it

fairly easy to construct the queries. However, LINQ can’t be used for every scenario.

It is part of C# and Visual Basic but is not built into the other .NET languages. Addi-

tionally, you’ll learn later about streaming query results in DataReaders when you don’t

Querying with Object Services and Entity SQL | 57

Download from Library of Wow! eBook <www.wowebook.com>

need to materialize objects. This can be done only with Entity SQL expressions. As you

will see in Chapter 5 and later chapters, there are also some scenarios where being able to build Entity SQL strings is advantageous. Therefore, although you will most likely

do the bulk of your querying with LINQ to Entities, when you do encounter these less

common cases, you’ll be prepared.

Entity SQL

Entity SQL (ESQL) was actually the first syntax devised for querying entities. LINQ

was being developed as a language extension by the VB and C# language teams, and

eventually it became obvious that LINQ would be a fabulous addition to the Entity

Framework, which is how LINQ to Entities came to be.

Entity SQL has its roots in SQL because it makes sense to start with something that is

well known. However, because entities are different from relational data, Entity SQL

deviates from SQL to provide the necessary capabilities for querying the EDM.

How Is Entity SQL Different from T-SQL?

The Entity Framework documentation has a topic called “How Entity SQL Differs from

Transact-SQL.” It provides a list of differences with an extended explanation for each

difference. For example, Entity SQL supports the inheritance and relationships found

in an EDM, whereas in T-SQL you must use joins to work with relationships. Relational

databases do not even have the concept of inheritance; therefore, T-SQL doesn’t sup-

port that either.

Looking more closely at the Entity SQL query string you built earlier, you’ll notice that, like LINQ to Entities, it defines a variable for use in the query: c. In LINQ this is referred to as a control variable, but in Entity SQL it is just called a variable.

Figure 3-6 deconstructs the query string without the WHERE clause. The variable is defined using the AS keyword and is referenced in the SELECT clause. The VALUE keyword

specifies that you want to return a collection of single items; in this case, it will be

Contact entities.

 Figure 3-6. Deconstructing a simple Entity SQL query

58 | Chapter 3: Querying Entity Data Models

Download from Library of Wow! eBook <www.wowebook.com>

The VALUE clause is needed if you are selecting a single type, which can be an entity, a

single property, or even an entity collection, and that you want to return strongly typed

objects. This is shown in the following code snippet:

SELECT VALUE c FROM SampleEntities.Contacts ...

SELECT VALUE c.FirstName FROM SampleEntities.Contacts ...

SELECT VALUE c.Addresses FROM SampleEntities.Contacts ...

If you are selecting multiple items, you cannot use VALUE, as shown here:

SELECT c, c.Addresses FROM SampleEntities.Contacts

SELECT c.LastName,c.Title FROM SampleEntities.Contacts ...

If you forget to use VALUE, the strongly typed objects will be inside a wrapper, which

we will discuss in more detail momentarily. You will need to explicitly cast the results

back to the desired type or you could encounter an InvalidOperationException at runtime.

If you include VALUE with multiple items, an EntitySqlException will be thrown that

specifically tells you the following:

"SELECT VALUE can have only one expression in the projection list."

It will even tell you the line number and column number of the problem. But unfortu-

nately, because the Entity SQL string is not compiled until runtime, you won’t be aware

of this problem until then.

Chapter 22 delves deeper into Entity Framework exceptions.

Without the VALUE clause, the results will be wrapped in tabular rows and you will have

to dig into the rows and columns to get at the data. Similar to the LINQ query, you are

selecting FROM a collection. In this query, that collection is the entity set, Contacts, but it is necessary in Entity SQL to specify the EntityContainer as well. Again, c is a random variable name I used in the query used to represent contact items within the Contacts

entity set.

The WHERE clause in Entity SQL uses SQL-like syntax, as in the following:

WHERE c.FirstName='Robert'

Entity SQL canonical functions

The Entity SQL language is very robust and offers a lot of functionality. Although it

would be impossible to cover all of the operators and functions the language supports,

you will see many of them used throughout this book and you can get the full list by

looking at the Entity SQL documentation in the MSDN Library.

Querying with Object Services and Entity SQL | 59

Download from Library of Wow! eBook <www.wowebook.com>

Entity SQL supports a large set of canonical functions, which are functions that all data providers are required to support. It also enables data providers to include their own

specific functions. The .NET Framework provider for SQL Server, written by Microsoft,

offers approximately 75 specific functions that you can use in Entity SQL queries when

the target database is SQL Server; some of these overlap with the canonical functions.

The provider additionally offers the provider-specific primitive types and their facets

as well as the internal logic for mapping between the EDM and SQL Server. Other

providers that are written for the EDM will have their own lists of additional functions

and features that are supported.

Remember that one of the great benefits of querying in Entity Frame-

work is that it is database-agnostic. Therefore, you should be consider-

ate before adopting provider-specific elements in your Entity SQL

queries.

If you are familiar with T-SQL, you’ll be happy to know that one of the

canonical functions is Trim(), which means you won’t have to use the

silly LTRIM(RTRIM()) combo anymore.

The Parameterized ObjectQuery

ObjectQuery allows you to create parameterized queries. Similar to some other query

languages, you use an @ placeholder in the string, and then define its value in a parameter.

To use a parameterized query, you can add parameters to an ObjectQuery created with

the CreateQuery method of the ObjectContext or to one that you have instantiated ex-

plicitly, as shown in Example 3-4. You also need to pass the ObjectContext as a parameter when you instantiate an ObjectQuery.

You then add parameters to the ObjectQuery prior to execution. To see how this works,

you can rewrite the query you’ve been working with to enable dynamic changes to the

query, as in Example 3-4.

 Example 3-4. Adding an ObjectParameter to an ObjectQuery

qStr = "SELECT VALUE c FROM SampleEntities.Contacts AS c " +

"WHERE c.firstname=@firstName";

ObjectQuery<Contact> contacts = new ObjectQuery<Contact>(qStr, context);

contacts.Parameters.Add(new ObjectParameter("firstName", "Robert"));

60 | Chapter 3: Querying Entity Data Models

Download from Library of Wow! eBook <www.wowebook.com>

The namespaces in many of the examples are not spelled out

along with the classes. Be sure to reference the appropriate namespaces

at the top of your code files with Include for Visual Basic and using for

C#. For example, for the ObjectQuery class you’ll need the

System.Data.Objects namespace.

Although it may seem tempting, you cannot use parameters to replace property names

in the query string. In other words, if you tried to create the Entity SQL string SELECT

@myproperty FROM SampleEntities.Contacts AS c and you created a parameter that set

@myproperty to c.LastName, the ESQL that results would look like this:

"SELECT 'c.LastName' FROM SampleEntities.Contacts AS c"

This is invalid ESQL and will throw an error. You would need to use string concate-

nation with variables to build the ESQL:

"SELECT " + _propName + " FROM SampleEntities.Contacts AS c"

Because of security concerns, you should be extremely careful about

where the property names come from. You should not concatenate from

user input. Imagine someone enabling a query such as “Select Login,

Password from Contacts”.

Querying with Methods

So far, the LINQ to Entities and Object Services queries you have seen have been written

as standard query expressions. Both LINQ to Entities and Object Services provide a

way to write queries as methods, rather than as operators and functions (as in LINQ)

or as a string (as in Entity SQL).

Both query languages have a method syntax that you can use, but each exists for op-

posite reasons. The C# and Visual Basic implementations of LINQ sit on top of query

methods. Your LINQ expressions are translated into these query methods, but you can

use them directly if you like.

The Entity Framework processes Entity SQL directly; however, a method-based syntax

is available that will construct Entity SQL expressions for you.

Querying with LINQ Methods

Although Visual Basic and C# understand LINQ syntax, the CLR does not. One of the

first things to happen when the compiler compiles LINQ queries is that it translates

the query into a set of method calls on the collection being queried. All of the standard

query operators (WHERE, SELECT, JOIN, etc.) have associated methods in .NET.

Querying with Methods | 61

Download from Library of Wow! eBook <www.wowebook.com>

You can write your queries using the method syntax directly, if you prefer. Many de-

velopers do happen to prefer this, although many others would rather use the query

expression syntax. The MSDN documentation says, “In general, we recommend query

syntax because it is usually simpler and more readable; however, there is no semantic

difference between method syntax and query syntax.”* Therefore, using one over the

other is a matter of style and personal choice.

MSDN provides a list of LINQ methods and whether they are supported

by LINQ to Entities. The topic title is “Supported and Unsupported

LINQ Methods (LINQ to Entities)” and its URL is http://msdn.microsoft

 .com/en-us/library/bb738550.aspx.

To write method-based queries, you will need to leverage a feature introduced in .NET

3.5, called lambdas. Lambdas are inline methods with a very specific syntax. If you are new to LINQ and lambdas and have never used anonymous delegates, this will make

more sense after you’ve seen some examples.

Let’s use the Where clause to explore working with a method rather than an operator.

A standard Where clause is written as where LastName=="Hesse". The Where() method requires the condition LastName=='Hesse' as a parameter. You will write this lambda

very differently in C# and Visual Basic.

Wrapping Your Head Around Lambdas

There’s no question that lambda expressions are a little confusing at first; but once you

get the hang of them, they make perfect sense and can help you write some very efficient

code. Admittedly, my Visual Basic background prepared me a little less for lambdas

than if I had been programming in C++ or more frequently in C#. Some great articles

are available that can help you learn more about lambda expressions. For C# devel-

opers, the excellent MSDN Magazine article by Anson Horton, “The Evolution of LINQ

and Its Impact on the Design of C#” (http://msdn.microsoft.com/en-us/magazine/

 cc163400.aspx), has a great explanation of lambdas. For VB developers, the great MSDN Magazine article by Timothy Ng, “Basic Instincts: Lambda Expressions” (http:

 //msdn.microsoft.com/en-us/magazine/cc163362.aspx), puts lambdas into perspective.

Here we’ll take a look at the query you used in the previous examples, now written

using method-based queries. In Visual Basic, the expression begins with Function, to

indicate that you are performing a function on a control variable; then it states the

condition. The control variable, c in this example, is named on the fly:

Dim contacts = context.Contacts _

.Where(Function(c) c.FirstName="Robert")

* LINQ Query Syntax versus Method Syntax (C#): http://msdn.microsoft.com/en-us/library/bb397947.aspx.

62 | Chapter 3: Querying Entity Data Models

Download from Library of Wow! eBook <www.wowebook.com>

The C# LINQ to Entities query using the method-based syntax looks very different:

var contacts = context.Contacts

.Where(c => c.FirstName=="Robert");

C# lambda expressions begin by identifying the control variable, followed by => (the

lambda) and then the expression, [controlVariable].FirstName=="Robert".

When using LINQ methods in C#, you are not required to use a

Select command as you are with LINQ query operators.

In the Where clauses, the expression that returns a Boolean is called a predicate. The query will return all of the contacts for which the expression evaluates to True.

Try it out:

1. Replace your existing query with one of the method queries. You will see that

IntelliSense is helpful when writing the lambdas.

2. Press F5 to run the application. The results will be the same as before.

Chaining methods

You can combine LINQ query methods to build more useful expressions. This is re-

ferred to as chaining. To try this, add an OrderBy method to the previous query. Notice that the lambda expression for OrderBy does not need to evaluate a condition to see

whether it is true or false, as does the Where method. It only needs to return a property, as in Example 3-5.

 Example 3-5. Chaining LINQ methods

var contacts = context.Contacts

.Where((c) => c.FirstName == "Robert")

.OrderBy((foo) => foo.LastName);

When a method’s signature requests a predicate, as is the case with the

Where method, it is asking for an expression that returns a Boolean.

Otherwise, the lambda only needs to be a function, as in the OrderBy

method. You’ll see that in Visual Basic, the signatures of all methods

refer to this as a function. The C# methods specifically refer to predi-

cates in the methods that require an expression that returns a Boolean.

You can view the signatures of the various LINQ to Entities methods in

the MSDN documentation topic, “Supported and Unsupported Meth-

ods (LINQ to Entities).”

Querying with Methods | 63

Download from Library of Wow! eBook <www.wowebook.com>

Although you can easily use the same variable name throughout compound methods,

the variables don’t represent the same instance. In the preceding LINQ query, I named

the variables differently to highlight how the compiler evaluates the query.

LINQ actually evaluates the query one method at a time. First it evaluates context.Con

tacts. Then it applies the Where method to those results. Finally, it applies the OrderBy method to the results of the Where method. The c in the Where method refers to

the items returned by context.Contacts. The foo in the OrderBy method refers to the

IQueryable that is returned by context.Contacts.Where(....).

Evaluating one method at a time does not mean executing one query at a time. LINQ

to Entities will evaluate this query one method at a time and then will create a SQL

query based on the complete method, unless you are also using methods that must be

performed on the client side. It does not execute each method separately.

Here is the T-SQL that results from the preceding query:

SELECT

[Extent1].[ContactID] AS [ContactID],

[Extent1].[FirstName] AS [FirstName],

[Extent1].[LastName] AS [LastName],

[Extent1].[Title] AS [Title],

[Extent1].[AddDate] AS [AddDate],

[Extent1].[ModifiedDate] AS [ModifiedDate]

FROM [dbo].[Contact] AS [Extent1]

WHERE N'Robert' = [Extent1].[FirstName]

ORDER BY [Extent1].[LastName] ASC

Querying with Query Builder Methods and Entity SQL

It’s possible to use Entity SQL with method syntax as well, although a limited number

of methods are available: 13, in fact, including Where and Select. These methods are

called query builder methods. Query builder methods will do as their name suggests: build an ObjectQuery with the correct Entity SQL expression for you.

Although the query builder methods may look like some of the LINQ methods, they

are definitely different. The compiler can tell when you are using a query builder method

based on the parameter expression, which will contain either a lambda expression for

LINQ queries or an Entity SQL expression.

Since you have explored only WHERE and SELECT so far while learning

about the different ways to query, we’ll hold off on listing methods and

operators until the following chapter, which has many queries.

Example 3-6 shows the latest query using Entity SQL as the method parameters.

64 | Chapter 3: Querying Entity Data Models

Download from Library of Wow! eBook <www.wowebook.com>

 Example 3-6. Entity SQL query builder method

var contacts = context.Contacts

.Where("it.FirstName = 'Robert'")

.OrderBy("it.LastName");

The most common question regarding these expressions is “Where did it come from?”

it is the default alias for the control variable. There is no opportunity to define the

control variable as you have had to do with all of the other queries we have looked at

so far, though it is possible to define your own for nested queries, as you’ll see in

Example 3-8.

When debugging, you can inspect the CommandText property of the contacts Object

Query to see that the query builder did indeed build the Entity SQL for you as shown

in Example 3-7. It’s a little more complex than what you might have written yourself.

This is a result of the query builder’s need to be flexible. Additionally, it does not specify the EntityContainer name in the expression, something that you can’t get away with

when building the Entity SQL yourself.

 Example 3-7. The Entity SQL built by the query builder methods

SELECT VALUE it

FROM (SELECT VALUE it

FROM ([Contacts]) AS it

WHERE it.FirstName = 'Robert')

AS it

ORDER BY it.LastName

An interesting difference between query builder methods with Entity SQL and LINQ

methods with lambdas is that the Entity SQL expressions remove the need to worry

about any syntax differences between Visual Basic and C#.

Whether you use LINQ predicates or Entity SQL predicates, at compile time the Entity

Framework will be able to determine which query compilation path to choose by look-

ing at the predicate.

Specifying the control variable

As you can see in Example 3-8, you also can combine query builder methods. The Entity SQL control variable is always it by default for all new ObjectQuery instances. Once

you have an ObjectQuery instance, however, you can change the control variable name

by setting the name property. From there you could continue composing the query as

shown in Example 3-8.

 Example 3-8. Naming a control variable

var contactsQuery = context.Contacts;

contactsQuery.Name = "con";

var contacts = contactsQuery.Where("con.FirstName = 'Robert'")

.OrderBy("con.lastname");

Querying with Methods | 65

Download from Library of Wow! eBook <www.wowebook.com>

The preceding example demonstrated an additional feature, called composable queries. A query was defined (contactsQuery) and then another query was written against it. The first query is not executed separately. It is compiled into the second query,

contacts. When the contacts query is finally executed, the composed query is compiled

by Entity Framework and sent to the database.

LINQ to Entities queries are composable as well.

The Shortest Query

Remember the first query in this chapter?

ObjectSet<Contact> contacts = context.Contacts;

In this case, context.Contacts refers to the Contacts property of the SampleEntities.

If you look back at the code generated from the model, you can see that

context.Contacts returns the following query:

_Contacts = base.CreateObjectSet<Contact>("Contacts");

This is an ObjectSet of Contact types. When you pass in only the name of the EntitySet, the Entity Framework will do the rest of the work. You can use this shortcut

yourself as well, but it is no different from calling context.Contacts; it’s just longer.

Combining LINQ Methods and Query Builder Methods

Because their methods are evaluated incrementally, it is possible to combine LINQ

query methods and the query builder methods. Then you can get the variety of methods,

strong typing, and IntelliSense provided by LINQ, plus the ability to build dynamic

expressions and use provider functions, among other benefits of Entity SQL. However,

there’s a catch. You can add LINQ methods to an ObjectQuery or to query builder

methods, but the only query builder method that you can add to a LINQ expression is

Include.

ObjectQuery, ObjectSet, and LINQ to Entities

Simply requesting and then executing context.Contacts without building a query is

enough to allow the context to construct and execute a query to return the Contact

entities. You saw that effect in Example 3-1. That is possible because ObjectSet is a type of ObjectQuery. ObjectQuery is the class that provides all of the information the

context needs to execute the query. In addition to being a type of ObjectQuery, Object

Set also implements the IObjectSet interface, which provides collection-like function-

ality. This allows us to manipulate an ObjectSet (e.g., adding and removing entities).

Example 3-9 shows the class declaration for ObjectSet with the base class and interfaces that give ObjectSet its core functionality.

66 | Chapter 3: Querying Entity Data Models

Download from Library of Wow! eBook <www.wowebook.com>

 Example 3-9. ObjectSet declaration in VB and C#

VB

Public Class ObjectSet(Of TEntity As Class)

Inherits ObjectQuery(Of TEntity)

Implements IObjectSet(Of TEntity), IQueryable(Of TEntity), IEnumerable(Of

TEntity), IQueryable, IEnumerable

C#

public class ObjectSet<TEntity> : ObjectQuery<TEntity>, IObjectSet<TEntity>, IQueryable<TEntity>, IEnumerable<TEntity>, IQueryable, IEnumerable where TEntity : class

It’s important to recognize that an ObjectSet is not a LINQ to Entities query. LINQ to

Entities comes into play when you write LINQ queries against this ObjectSet.

However, as shown in Figure 3-7, both IObjectSet and ObjectQuery implement IQueryable (as well as other interfaces), which is a LINQ query type. IQueryable contains metadata about the query, such as the query expression and the provider being

used. ObjectQuery is an IQueryable with additional query details that are specific to

Entity Framework queries. By inheriting from ObjectQuery, ObjectSet gains the Entity

Framework-specific attributes as well.

 Figure 3-7. ObjectSet deriving much of its functionality from ObjectQuery, IObjectSet, and various IQueryable and IEnumerable interfaces

IQueryable is a common link between ObjectSet/ObjectQuery and LINQ to Entities

queries because a LINQ to Entities query is also an IQueryable.

Once a query has been executed, IQueryable exposes its query metadata as well as the

new query results.

The query results inside IQueryable are described as an “enumerable type,” based on .NET’s IEnumerable interface. An IEnumerable allows you to enumerate or iterate

ObjectQuery, ObjectSet, and LINQ to Entities | 67

Download from Library of Wow! eBook <www.wowebook.com>

through each item in the collection as you did in the preceding code sample (i.e., in foreach). An ICollection is an enhanced IEnumerable. Whereas an IEnumerable is readonly, the more familiar Collection class allows you to perform additional actions, such

as adding or removing items from the group.

Terminology: IQueryable and IEnumerable

It is important to be familiar with the terms IQueryable and IEnumerable because they are used frequently when discussing LINQ (not just LINQ to Entities) and Entity Framework queries. Although the phrase “this query returns a collection” is easier for

developers to understand, the phrase “this query returns an IQueryable/IEnumerable”

is more technically correct.

Querying with EntityClient to Return Streamed Data

There is still one additional way to query the EDM: via EntityClient. EntityClient

differs from LINQ to Entities and Object Services because it does not materialize ob-

jects. Instead, it streams data back to the requesting application as rows and columns

in an EntityDataReader, which implements DbDataReader.

If you have experience with ADO.NET, EntityClient is comparable to SqlClient,

OracleClient, and other client providers; these clients return SqlDataReader,

OracleDataReader, and so forth, which also inherit from DbDataReader.

A data reader represents data in rows and columns. With the familiar DataReaders, each

“cell” contains a scalar value—in other words, a primitive type such as a string or an

integer. For example:

Column 1

Column 2

Column 3

Row 1

1

John

Doe

Row 2

2

Jessica

Rabbit

Row 3

3

Cecil

De Mille

EntityDataReaders are designed to represent the entities and relationships that exist in

an EDM; therefore, scalar data is not enough. An EntityDataReader has the ability to

return data as shaped results. In an EntityDataReader, the cells in the preceding example

could contain not only scalar values, but also an entire DbDataReader, a DbDataRecord

(a single row from a DbDataReader), or even an EntityKey object. You saw EntityKey as

a property of an entity in the EDM you built in Chapter 2; the EntityKey class is a full class implementation based on that property, which you will learn more about in

Chapter 10.

68 | Chapter 3: Querying Entity Data Models

Download from Library of Wow! eBook <www.wowebook.com>

EntityClient uses Entity SQL for its query syntax and contains methods and properties

that will be familiar if you have worked with ADO.NET previously, including connec-

tions, commands, parameters, and transactions.

The next example will give you a chance to work with EntityClient. Following the

example is an explanation of the code.

1. Add the following namespace declarations to the beginning of the code file:

using System.Data.EntityClient;

2. Add the method in Example 3-10 to your existing code to perform the same query you wrote earlier with LINQ to Entities and Object Services. This time you will be

using the EntityClient provider.

 Example 3-10. Querying with EntityClient

static void EntityClientQueryContacts()

{ using (EntityConnection conn = new

EntityConnection("name=SampleEntities"))

{

conn.Open();

var queryString = "SELECT VALUE c " +

"FROM SampleEntities.Contacts AS c " +

"WHERE c.FirstName='Robert'";

EntityCommand cmd = conn.CreateCommand();

cmd.CommandText = queryString;

using (EntityDataReader rdr =

cmd.ExecuteReader(CommandBehavior.SequentialAccess |

CommandBehavior.CloseConnection))

{

while (rdr.Read())

{

var firstname = rdr.GetString(1);

var lastname = rdr.GetString(2);

var title = rdr.GetString(3);

Console.WriteLine("{0} {1} {2}",

title.Trim(), firstname.Trim(), lastname);

}

}

conn.Close();

Console.Write("Press Enter...");

Console.ReadLine();

}

}

3. Call this new method from the Main method.

You may want to comment out the call to QueryContacts so that only

the new method is run.

Querying with EntityClient to Return Streamed Data | 69

Download from Library of Wow! eBook <www.wowebook.com>

4. Press F5 to test the new method.

The result will be similar to the previous two queries.

There is a bit to explain regarding the code for calling the EntityCommand.

EntityConnection and the Connection String

With other client providers, the connection connects directly to the data store. How-

ever, the EntityConnection provides a connection to the EDM. When you created the

model with the ADO.NET Entity Data Model Wizard, you may remember seeing the

odd connection string in the wizard’s page where you selected the connection. An EntityConnection string consists of pointers to the EDM XML metadata files as well as

a database connection string.

The wizard wrote the EntityConnection string into the app.config file. You can open this file from the Solution Explorer and see that the ConnectionString named

SampleEntities is composed of three parts: the metadata, provider, and provider con-

nection string.

The metadata contains file path pointers to the three files that are created from the

model when the project is built. The data provider refers to the SqlClient provider that

is being used to connect to the SQL Server database in this example. And finally, the

provider connection string is a standard database connection string:

metadata=res://*/Model1.csdl|res://*/Model1.ssdl|res://*/Model1.msl;

provider=System.Data.SqlClient;

provider connection string=

"Data Source=MyServer;

Initial Catalog=ProgrammingEFDB1;

Integrated Security=True;

MultipleActiveResultSets=True"

The res://* in the metadata indicates that the files are embedded into

the assembly file of the project that contains the model and its classes.

This is the default, although you can specify that the files be saved to

the filesystem. You’ll learn more about this in Chapter 8.

EntityConnection provides an easy way to reference the connection string in the app.config file, which is to set a name property to the same name of the connection string: for example, "name=SampleEntities". As you saw in Example 3-10, the quotes are required.

70 | Chapter 3: Querying Entity Data Models

Download from Library of Wow! eBook <www.wowebook.com>

EntityCommand

Creating the EntityCommand is no different from creating any other provider command

and setting its CommandText. The CommandText here is the Entity SQL expression defined

in the variable, queryString.

ExecuteReader

With EntityClient, the SequentialAccess CommandBehavior is required for the

ExecuteReader method. With other DbDataReaders, rows must be accessed sequentially,

but the columns within the rows need not be. This rule exists to control memory con-

sumption. You can combine the SequentialAccess behavior with CommandBehav

ior.CloseConnection. CloseConnection is a commonly used (and highly recommended)

behavior to use with ADO.NET dbCommand as another assurance that an unused con-

nection does not inadvertently remain in memory.

Forward-Only Access to the Fields

DbDataReaders are streams of data and are, by definition, forward-only. This also means

that the columns must be read in this way, which made the code in Example 3-10 a little cumbersome.

In the string concatenation, you want to combine the fields to read Title FirstName

LastName. But this is not the order of the fields returned in the DataReader. Title is the fourth column in the row, whereas FirstName is the second column and LastName is the

third; therefore, you cannot read the Title data first, and instead must read the fields

in the order in which they are streaming.

That is why this method creates the variables prior to building the string—so the data

can be extracted in sequential order. Once the variables exist, you can build the string.

This is an important lesson to remember, regardless of how you plan to use the streamed

data returned by the EntityClient.

Translating Entity Queries to Database Queries

Although we will explore query processing in detail later in the book, you may already

be wondering what kind of query the Entity Framework is sending to your database.

The Entity Framework will break down the LINQ or Entity SQL query into a command

 tree and, with the help of the EDM and the database provider, will create another command tree that is specific to the database.

Translating Entity Queries to Database Queries | 71

Download from Library of Wow! eBook <www.wowebook.com>

Command trees will be familiar to hardcore database geeks and com-

puter science majors. If you don’t fit into either group, MSDN defines

it’s DbCommandTree class as “an abstract class that is used to represent

queries, Data Manipulation Language (DML) operations and function/

procedure invocations.”

You can imagine how flexible the API needs to be to pull this off no matter what query

you write. Although the examples so far have been simplistic, it is possible to write very complex LINQ to Entities or Entity SQL queries. The Entity Framework needs to be

able to deal with anything you throw at it. Therefore, the resulting store queries may

not look exactly the same as you might write them directly in your database’s query

syntax, because they are being constructed in a somewhat formulaic manner.

Sometimes the queries may look more complex but have no negative impact whatsoever

on performance. But don’t expect this to always be the case.

Here is the T-SQL rendered from the LINQ to Entities and Entity SQL queries that

returned Contacts named Robert:

SELECT

[Extent1].[ContactID] AS [ContactID],

[Extent1].[FirstName] AS [FirstName],

[Extent1].[LastName] AS [LastName],

[Extent1].[Title] AS [Title],

[Extent1].[AddDate] AS [AddDate],

[Extent1].[ModifiedDate] AS [ModifiedDate]

FROM [dbo].[Contact] AS [Extent1]

WHERE [Extent1].[FirstName] = 'Robert'

Both queries result in the same T-SQL because they are fairly simple queries.

Pay Attention to the .NET Method’s Impact on Generated SQL

In the end it is the actual ADO.NET provider—for example, System.Data.SqlClient or

perhaps a third-party provider such as FirebirdSql.Data.FirebirdClient—that builds

the actual query string to be executed by the database. The Entity Framework team put

a great deal of effort into improving the SQL generated from the .NET 4 version of this

product. If you are using the SqlClient provider that is part of .NET 4, it has been

enhanced to produce more efficient T-SQL.

A key improvement to look for in the T-SQL generated by System.Data.SqlClient is

smarter translation of queries that use StartsWith or Contains. In .NET 3.5, Contains

was not even supported. However, if you used StartsWith in a query—for example,

Contacts.Where(c=>c.LastName.StartsWith("T"))—the database query that resulted performed poorly in the database. Now StartsWith and its newly supported siblings,

EndsWith and Contains, all result in queries that leverage T-SQL’s LIKE operator, which

takes advantage of indexing in SQL Server.

72 | Chapter 3: Querying Entity Data Models

Download from Library of Wow! eBook <www.wowebook.com>

The previous version of Entity Framework generated queries that forced

the database to perform a full table scan, which brought pain to the

hearts of many database developers. The use of the LIKE operator

in .NET 4 will be a relief to many database professionals.

Entity Framework also has many opportunities to tune the performance of a query as

it moves along the query pipeline to the ADO.NET provider. Improvements in the

query pipeline benefit all of the database providers that support Entity Framework.

The August 5, 2009, ADO.NET Team blog titled “Improvements to the Generated SQL

in .NET 4.0 Beta1” lists the Beta 1 improvements and discusses changes that appeared

in the Beta 2 version of Visual Studio 2010. All of these changes are in the final release.

The URL for this post is http://blogs.msdn.com/adonet/archive/2009/08/05/improve

 ments-to-the-generated-sql-in-net-4-0-beta1.aspx.

The MSDN blogs were revamped in 2010. The original URLs should

automatically resolve to the new URLs. However, if you do have a prob-

lem getting to this or any other MSDN blog posts pointed to throughout

this book, you can specify the new locations by adding a “b/” to the

path between msdn.com/ and the specific blog. For example, if the

pointer is to http://blogs.msdn.com/adonet, you would change that to

 http://blogs.msdn.com/b/adonet.

It’s wonderful that the improvements have been made, but this doesn’t mean you are

off the hook. You should always pay attention to what’s happening in your applications

and in your database regardless of what tool or framework you are using for data access.

You have a number of options for watching the queries hit your database.

An Entity Framework method called ToTraceString allows you to look at some queries

at runtime. With ToTraceString, you can inspect some, but not all, queries and you

cannot see updates. You will learn more about ToTraceString in Chapter 10.

If you are using SQL Server Developer and later, you can watch SQL Profiler. Visual

Studio 2010’s new IntelliTrace feature will expose the queries and updates to the da-

tabase. However, IntelliTrace will not pick up queries generated by a feature called lazy loading. (Lazy loading is introduced later in this chapter.) Another option is a fantastic third-party tool called EFProf from Hibernating Rhinos.

Translating Entity Queries to Database Queries | 73

Download from Library of Wow! eBook <www.wowebook.com>

A Bit of Entity Framework Profiler History

I was elated that Oren Eini (a.k.a. Ayende Rahien), the author of NHProf and LINQ

to SQL Prof, wanted to create a version for Entity Framework, and I spent a bit of time

helping him out—but not in an office. The collaboration began at an after-conference

party at the Øredev Conference in Malmö, Sweden, then continued later that evening

in the back corner of a local bar. For the curious, some evidence of that is captured on

Steve Bohlen’s blog at http://unhandled-exceptions.com/blog/index.php/2009/11/10/trav

 elogue-oredev-2009-wrap-up/. I merely played the muse (and guide through the Entity Framework APIs) to Oren’s genius as he hammered out his solution.

What About SQL Injection Attacks?

SQL injection attacks can be used to insert commands into your queries that can display

data or impact your database by leveraging your connection to the database and any

permission your connection may have.

This is a common threat to database applications, and you can find plenty of informa-

tion in books and on the Web about how to avoid it.

Anytime a variable is used in a LINQ to Entities query, the generated store query will

be parameterized, thus avoiding SQL injection. In Entity SQL, most SQL injections

won’t even evaluate as correct Entity SQL syntax, and therefore they cannot be execu-

ted. However, someone could attempt to inject Entity SQL. ObjectParameters can help

avoid this problem. Chapter 20 addresses security in the Entity Framework, and you can read more about this topic there.

Avoiding Inadvertent Query Execution

You may have noticed when debugging some of the queries in this chapter that next to

the Results property it says “Expanding the Results View will enumerate the IEnu-

merable.” This is a very important behavior to be aware of and it impacts all LINQ

queries (including in-memory queries and LINQ to SQL) as well as ObjectQuery queries.

Whether you do it in debug mode or in code, every time you do anything to force the

enumeration or execution of a query, the query will be executed on the database again.

In the Entity Framework, this means that even if you have already done something to

enumerate the query (e.g., bound it to a control, run it through a foreach iteration,

called ToList() on the query, etc.), anytime you repeat one of these methods that forces

execution it will go back to the database, run the query again, bring back the results

again, and then merge the results into the cache that’s in memory.

74 | Chapter 3: Querying Entity Data Models

Download from Library of Wow! eBook <www.wowebook.com>

Once you have executed a query, you will most likely want to work with the results and no longer the actual query.

When querying for sets of data, I recommend calling ToList() to force

query execution and provide a variable to work with. That variable will be a

System.Collections.Generic.List<T> (List(Of T) in VB) of whatever type the query

returns. You can also use ToArray() if that better suits your needs. When returning a

single result, you should consider using the Single() or SingleOrDefault() method.

First() and FirstOrDefault() can also be used, but will additionally work when the

query might return multiple results but you wish for only the first one. We’ll look at

the Single and First methods in a little more detail in Chapter 4.

Another method to be aware of is ObjectQuery.Execute, which will also force execution.

Execute returns a System.Data.Objects.ObjectResult<T>. ObjectResult has some spe-

cial functionality that makes it the right choice for data-binding scenarios; you’ll see

ObjectResult in later chapters where you will be doing data binding in various appli-

cations. Execute takes a MergeOption parameter that specifies how the query results

should be merged into existing entities; you’ll learn more about MergeOption in Chap-

ter 10. But the ObjectResult from Execute is forward-only. You’ll learn more about the

limitations this creates in Chapter 9.

I use ToList and other methods throughout this book to avoid accidentally repeating

query execution. This is my practice in production applications as well.

Summary

In this chapter, you learned about the many different ways to query an EDM using

LINQ to Entities, the ObjectQuery with Entity SQL, LINQ methods, query builder

methods, and streaming data with EntityClient. Along the way, you learned about

many of the fundamentals that will make it easier for you to construct intelligent queries.

In Chapter 10, you will spend some time comparing how these queries are processed so that you can see the different paths the various query methods embark on as they

are resolved. Chapter 20 will cover the performance differences between the various query methods and will demonstrate ways to affect performance directly.

Although this chapter focused on a single simple query with a twist here and there, the

next two chapters will delve more deeply into querying, demonstrating ways to retrieve

more complex data using all of the methods you are now familiar with.

Summary | 75

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 4

Exploring LINQ to Entities

in Greater Depth

In Chapter 3, you wrote the same basic query over and over and over again. I hope you’ll agree that this was a great way to get exposure to the many different ways of

writing queries against the Entity Data Model.

There is a lot more to querying an EDM, however. You’ll need to learn about the flexibility you have for expressing complex queries, projecting data, combining and

nesting queries, and writing parameterized queries. There are also nuances regarding

what type of data is returned based on how you construct your queries. Sometimes you

will get objects, as you saw in the examples in Chapter 3, but other times you will get

unknown objects (anonymous types). It is also possible for Object Services queries to return rows and columns. You’ll need to know when to expect these varied forms of

data to be returned.

Covering all of this exhaustively would require hundreds of pages. Therefore, the goal

of these next two chapters on LINQ to Entities and Entity SQL is to teach you the

critical features and many of the possibilities, focusing on the most typically needed

query features. You will learn how to project specific values (rather than entire objects) in queries, how to query across relationships, how to write nested queries and joins,

and how to control when trips are made to the database. Along the way, I will introduce

and explain additional new concepts to help you truly understand the workings of the

Entity Framework.

This chapter will focus on LINQ to Entities and introducing new concepts. The queries

you build here will be demonstrated using Entity SQL in Chapter 5.

Throughout the rest of the book, you will see variations on queries that take advantage

of even more techniques as we use queries in real-world examples.

A number of resources provide many specific examples of queries. Here you will learn

some of the more common query tasks so that you will know enough to write queries

without constantly having to search online for the perfect example of what you are

77

Download from Library of Wow! eBook <www.wowebook.com>

trying to accomplish. It is also useful to check out resources such as the 101 LINQ

Examples on MSDN (for VB and for C#), the number of great books dedicated to

LINQ, and the Entity Framework Samples, which provide a great variety of query ex-

amples with helpful commentary.

Due to some syntax differences between VB and C# when creating LINQ expressions,

you will see a number of Visual Basic examples in this chapter along with the C#

versions when the difference is significant.

Getting Ready with Some New Lingo

Here is a list of terms used in this chapter (and throughout the book) that may be new

to you:

 Projection

Selecting specific properties or expressions in a query, rather than the entity being

queried. For example: from c in context.contacts select c.firstname + c.last

name, c.contactID.

 Eager loading

Requesting that related data be returned along with query results from the data-

base. For example: when querying contacts, eager-load their addresses. The con-

tacts and their addresses will be retrieved in a single query.

 Deferred loading

Delaying the loading of related data until you specifically request it. For example:

when working with query results for a particular contact, you can make a request

to retrieve that contact’s addresses from the database. When deferred loading hap-

pens automatically (implicitly), it is called lazy loading.

 Navigating

Moving from an entity to its related data. For example: navigate from a contact to

its addresses using the contact.Addresses property.

Projections in Queries

So far, the queries you have seen return an entire object, comparable to writing a SELECT SQL query requesting every column in a table. By returning an entire object in

your query, you will get all of the benefits associated with the entity classes—the most

important of which is the ability to keep track of changes to an entity class for database updates.

Often in SQL, you will select particular columns to return from a table (SELECT

Firstname, Lastname FROM Contact) or from a set of joined tables. This is referred to as

 projection. With LINQ or Entity SQL queries you can shape your results by picking

particular properties or expressions rather than entities. You can also select properties

from related data.

78 | Chapter 4: Exploring LINQ to Entities in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

In the Chapter 3 queries, you returned an entire object but used only the Title, FirstName, and LastName properties. You can rewrite those queries to return only these

three properties. As long as you won’t need to modify and update these results, a pro-

jection will suffice.

Projections in LINQ to Entities

To see how projections work, you can continue modifying the QueryContacts method

that you worked on in Chapter 3. Replace the latest version of the query with the query in Example 4-1. The difference from earlier LINQ queries is that rather than ending with select c to select the entire contact, you are selecting only a few properties.

 Example 4-1. Simple LINQ to Entities query with projection in VB and C#

VB

Dim contacts = From c In context.Contacts

Where c.FirstName= "Robert" _

Select New With {c.Title, c.LastName, c.FirstName}

C#

var contacts = from c in context.Contacts

where c.FirstName=="Robert"

select new { c.Title, c.FirstName, c.LastName };

Why are we back to using Dim and var again? You’ll see the reason shortly

in the section titled “Implicitly typed local variables” on page 81.

VB and C# Syntax Differences

You may have noticed the syntax differences between VB and C# projections. This is

not particular to LINQ to Entities, but it is common for all implementations of LINQ.

C# requires that you use select new {...} when projecting. Visual Basic is more le-

nient. The most explicit syntax for VB is Select New With {...} as in Example 4-1,

though you could write the Visual Basic query in this simpler format:

From c In context.Contacts _

Where c.FirstName= "Robert" _

Select c.Title, c.LastName, c.FirstName

There are plenty of other nuances to LINQ projections in both lan-

guages. For example, you can project into predefined types. In addition,

C# projections always create immutable (read-only) results, whereas

VB allows the creation of immutable and mutable results. You can learn

more about projecting with LINQ in the MSDN Library and from the

many great resources that focus on LINQ.

Projections in LINQ to Entities | 79

Download from Library of Wow! eBook <www.wowebook.com>

LINQ Projections and Special Language Features

A number of language and compiler features that were added to Visual Basic and C#

(in the VB 9 and C# 3.0 versions that were released along with Visual Studio 2008

and .NET 3.5) have made it easier for developers to implement LINQ projections. We’ll

examine several of these in this section, including anonymous types and implicitly typed

local variables.

If you hover your mouse pointer over the contacts variable, when the code is not run-

ning, the DataTip will show you what the query returns. It’s an IQueryable of an

“anonymous type,” rather than an IQueryable of contact types. The anonymous type

is a result of the projection in your query, which returned results that don’t match a

defined type. The DataTips and debuggers in Visual Basic and C# often show different

information. In this case, the difference is interesting, as you can see in Figures 4-1 and

4-2.

 Figure 4-1. The DataTip in Visual Basic, which shows the new contacts variable to be an IQueryable(Of <anonymous type>)

 Figure 4-2. The DataTip in C#, which shows even more details regarding the anonymous type Anonymous types

What is this anonymous type that the LINQ to Entities projection is returning?

The anonymous type is a language enhancement that was introduced in Visual Basic 9

and C# 3.0 that allows compilers to work with types that were not previously defined.

Anonymous types are generally used for on-the-fly types that won’t be used elsewhere

in the application. You cannot even pass them from one method to another. Anony-

mous types relieve you from having to define a class for every type, even if the type is

to be used only briefly. Yet an anonymous type returned by the query is still strongly

typed, which means you can easily interact with it in the code following its creation.

The sidebar “Wrapping Your Head Around Lambdas” on page 62 includes a link to an article by Anders Hejlsberg. The article contains a great introduction to anonymous

types. Anonymous types are a powerful feature that you can use throughout .NET, but

80 | Chapter 4: Exploring LINQ to Entities in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

they have special importance for LINQ queries because of their ability to allow pro-

jections that can return anything a developer can dream up.

So, the query in Example 4-1 returned an anonymous type that doesn’t have a name, but has the properties Title, FirstName, and LastName. If you are still modifying the

earlier query method, you can see a bit of .NET magic by removing the Console.Write

Line method and retyping it. The anonymous type is strongly typed and recognized by

IntelliSense. Pretty cool!

Anonymous Types and Updates

Although later chapters will introduce the concepts of tracking changes to entities and

performing updates to the database, it is important to keep in mind that this takes place

only with entities defined in your model. Anonymous types do not participate in change

tracking or updates. With any projections, it’s important to know whether the opera-

tion returns entities or anonymous types, because the result determines how the object

can be used.

Implicitly typed local variables

Another new compiler trick that you have been taking advantage of in some of the code

samples so far is the use of implicitly typed local variables. In C# you use them with a

new keyword, var, and in VB you use them with the existing Dim keyword. It is possible

to declare variables without identifying their types. They will infer the type based on

the value that is being set.

Hasn’t it always seemed redundant to say something like Dim str as String="this is

some text" or int MyInt=123? With implicitly typed local variables, Dim str="this is some text" and var MyInt=123 are enough. In the case of replacing int with var the

benefit is not very obvious. Had that type been MyCustomType<Myothercustomtype<T>>, suddenly var would look pretty convenient.

This shortcut is not always a good thing, as it removes some of the

explicitness of your code. I wrote a blog post on DevSource.com titled

“How Visual Studio 2008 made me even lazier” (http://blogs.devsource

 .com/devlife/content/net_general/how_visual_studio_2008_made_me

 _even_lazier.html). There is an interesting discussion in the comments about the pros and cons of implicit typing. Throughout the book, I will

attempt to declare types explicitly for the sake of clarity. However, in

cases where the type name is quite long, you may find a var in its place.

Where implicitly typed local variables really shine, however, is with LINQ query pro-

jections, because there’s no way to say “Dim contacts as a thing with a Title, a First-

Name, and a LastName.” Instead, you can write “Dim contacts (and just look at the

Projections in LINQ to Entities | 81

Download from Library of Wow! eBook <www.wowebook.com>

other side of the equals sign to figure out what this is).” In this context, Dim in VB and var in C# essentially translate to “thing,” or for some readers, “whatever.”

Run the application and you’ll see that, once again, the results are the same as they

were previously. You can modify the Console.WriteLine command to include the

Title property that is in the newest query.

In Chapter 10, you will learn more about Object Services and all of the functionality it provides to objects returned by queries against the EDM.

This will help you better understand the significance of returning anon-

ymous types rather than entire entity objects defined by the EDM.

Implicit and explicit anonymous type creation

You can project into anonymous types in a number of ways. For instance, it is possible

to give a name to the returned variable, such as ContactName in Example 4-2.

 Example 4-2. Naming a projected anonymous type in LINQ in VB and C#

VB

From c In context.Contacts _

Where c.FirstName = "Robert" _

Select ContactName = New With {c.Title, c.LastName, c.FirstName}

C#

from c in context.Contacts

where c.FirstName == "Robert"

let ContactName = new {c.Title, c.LastName, c.FirstName}

select ContactName

C# does not allow naming in the SELECT statement; it has another operator, LET, that

can be used for this purpose.

There are so many ways to do projection and use anonymous types in

LINQ queries. Here you are seeing just a small slice of what you can

achieve, so be sure to look to the dedicated LINQ resources to expand

your understanding.

Naming the anonymous type is more useful if this new type is a property of the projected

results. In Example 4-3, a projection is used to project much more than some strings.

It creates a new type with another anonymous type as the first property and the ad-

dresses of the contact as the second.

I’m projecting the Addresses property here to highlight the projection.

You’ll learn more about working with related data later in this chapter.

82 | Chapter 4: Exploring LINQ to Entities in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

When you name the anonymous type, the property that results will have the name

specified in the query. Notice that the property name is used later in the query for the

Order By operator and when working with the results.

 Example 4-3. Anonymous types as properties

var contacts =

from c in context.Contacts

where c.FirstName == "Robert"

let foo= new {

ContactName = new {c.Title, c.LastName, c.FirstName},

c.Addresses

}

orderby foo.ContactName.LastName

select foo;

foreach (var contact in contacts)

{ var name = contact.ContactName;

Console.WriteLine("{0} {1} {2}: # Addresses {3}",

name.Title.Trim(), name.FirstName.Trim(),

name.LastName.Trim(),contact.Addresses.Count());

}

Figure 4-3 shows the shape of the new range variable, foo. The first property is the ContactName anonymous type.

 Figure 4-3. A named anonymous type with a named anonymous type property

Unlike the ContactName anonymous type in this query, the Address en-

tities that this query returns will participate in the change tracking and

database updates.

Projections in LINQ to Entities | 83

Download from Library of Wow! eBook <www.wowebook.com>

Projections with LINQ Query Methods

To project using LINQ’s method-based query syntax, you would use the Select method

and then identify the properties you want in its parameter. The method-based query

syntax requires the syntax for creating an anonymous type in the lambda (see Exam-

ple 4-4).

 Example 4-4. Projecting using LINQ’s method-based syntax

context.Contacts

.Where(c => c.FirstName == "Robert")

.Select(c => new {c.Title, c.LastName, c.FirstName})

Using Navigations in Queries

One of the big benefits that the EDM lends to querying is that the relationships are

built into the model and you won’t have to construct joins very often to access related

data. Additionally, when using LINQ for the queries, the related data is presented via

IntelliSense, which makes it very discoverable.

Using the model, let’s take a look at some more queries, this time digging into associations.

The model has only one association, that which lies between Contact and Address. The

association provides two navigations—one from Contact to all of its related addresses

and one from Address to its related contact.

You can easily do projection, drilling into related entities, although drilling into a collection is different from drilling into a reference entity. For example, you can’t request Contact.Addresses.Street in a query. Contact to Addresses is a one-to-many relationship and Addresses is a collection, not a single entity. Street is not a property of the

Addresses EntityCollection. However, you could select Address.Contact.LastName,

because you would be navigating to a single entity. There is only one contact per ad-

dress; therefore, there is no question regarding from which entity the query should

retrieve the LastName.

Navigating to an EntityReference

Recall that navigating to the “one” end of a one-to-one or many-to-one relationship is

referred to as a navigation reference. The entity you are pointing to is referred to as an EntityReference, sometimes called an EntityRef.

Chapter 19 will drill further into EntityReferences and

EntityCollections, and how they are surfaced as navigation properties.

84 | Chapter 4: Exploring LINQ to Entities in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

The LINQ query in Example 4-5 returns an anonymous type containing an address and its related contact.

 Example 4-5. Projecting into an EntityRef with LINQ to Entities

var addresses = from a in context.Addresses

where a.CountryRegion == "UK"

select new { a, a.Contact };

Figure 4-4 displays the anonymous type that results in the debugger, where you can see that one property is the address record and the other is the contact.

 Figure 4-4. The query results, which contain a new type with the address and its contact When working with the results, you’ll have to drill into the new type’s properties (the

Address and the Contact) and from there you’ll have to drill into their properties, as

shown in Example 4-6.

 Example 4-6. Accessing the properties of an anonymous type

foreach (var address in addresses)

{ Console.WriteLine("{0} {1} {2}",

address.Contact.LastName, address.a.Street1,

address.a.City);

}

The first property is named a because it is using the variable name given

in the query. If you want to be sure the property is called Address you

can use that instead of the simpler a, or use LINQ syntax to rename the

property:

VB

Select New With {.Address = a, a.Contact}

C#

select new {Address= a, a.Contact };

Then you can work with address.Address in the data which results.

Although this may suit many scenarios in your applications, you may prefer to project

individual properties from the reference navigation. Example 4-7 shows such a query using LINQ to Entities. This projection returns a new type with three properties. The

first is an Address entity; the second and third are strings. Again, the property names

are based on the query defaults—a, FirstName, and LastName.

Using Navigations in Queries | 85

Download from Library of Wow! eBook <www.wowebook.com>

 Example 4-7. Combining properties from related entities

var addresses = from a in context.Addresses

where a.CountryRegion == "UK"

select new { a, a.Contact.FirstName,

a.Contact.LastName };

foreach (var address in addresses)

{ Console.WriteLine("{0} {1} {2} {3}",

address.FirstName, address.LastName,

address.a.Street1, address.a.City);

}

Filtering and Sorting with an EntityReference

You can filter and sort based on a property of an EntityReference whether or not you

are selecting the related data.

For example, you can select all addresses for contacts with a particular last name. The

LINQ to Entities query in Example 4-8 sorts by Contact.LastName and filters on the Contact.AddDate field even though AddDate is not part of the results.

 Example 4-8. Filtering and sorting on reference properties

from a in context.Addresses

where a.Contact.AddDate > new System.DateTime(2009, 1, 1)

orderby a.Contact.LastName

select new {a, a.Contact.LastName};

Navigating to Entity Collections

Querying with related data is straightforward when the related data is a single entity,

but what about when the navigation property is an EntityCollection such as

Contact.Addresses?

Let’s start with a simple scenario that you have seen a few times already in this chapter: returning a contact and its collection of addresses. To highlight the difference between

the original properties and the results, the EntityCollection in the new type is given a

random name, as shown in Example 4-9.

 Example 4-9. Projecting an EntityCollection with LINQ

var contacts = from c in context.Contacts

select new {c, Foos = c.Addresses};

This query creates a new anonymous type with two properties. The first is the Contact and the second is Foos, which is the EntityCollection of Addresses related to

that Contact.

You can enumerate through the results, and then, for each result, enumerate through

the collection of the Foos property, as shown in Example 4-10.

86 | Chapter 4: Exploring LINQ to Entities in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

 Example 4-10. Enumerating over shaped data that includes an EntityCollection

foreach (var contact in contacts)

{ Console.WriteLine("{0}: Address Count {1} ",

contact.c.LastName.Trim(), contact.Foos.Count);

foreach (var foo in contact.Foos)

{

Console.WriteLine(" City= {0}", foo.City);

}

}

Projecting Properties from EntityCollection Entities

If you wanted to select particular properties such as Street and City from each Address of each Contact, the method you should use to build the query depends on

what shape you want the results to be.

Shaped results

You could shape the data similar to the previous example, but instead of a set of com-

plete address entities as the Foos property, you can project some of the address prop-

erties. This would result in a set of anonymous types, named StreetsCities instead of

Foos, in the second property.

You can achieve this with a nested query, a feature we’ll look at more closely later in

the chapter. For now, you can see in the query in Example 4-11 that the third property, StreetsCities, contains the results of querying the Contact’s Addresses.

 Example 4-11. Projecting values from an EntityCollection

from c in context.Contacts

select new {c.FirstName, c.LastName,

StreetsCities = from a in c.Addresses

select new { a.Street1, a.City }

}

The anonymous type that is returned has the properties FirstName and LastName, along

with a collection of anonymous types with Street and City properties. The debugger

screenshot in Figure 4-5 displays the new type.

 Figure 4-5. The newly shaped anonymous type

Using Navigations in Queries | 87

Download from Library of Wow! eBook <www.wowebook.com>

Flattened results

Another way to project into the addresses is to merely turn the query around. That is,

query the addresses and their contact data to flatten the results, as shown in Exam-

ple 4-12, so that the data is no longer shaped.

 Example 4-12. Flattening the related data

var contacts =

from a in context.Addresses

orderby a.Contact.LastName

select new {a.Contact.LastName, a.Contact.FirstName, a.Street1, a.City};

This will result in a single type with four properties, but contacts with multiple ad-

dresses will appear multiple times, as you can see in this section of the results. For

instance, Katherine Harding and Keith Harris each have two results:

Hanson, John: 825 W 500 S, Bountiful

Harding, Katherine: 52560 Free Street, Toronto

Harding, Katherine: 25 Flatiron Blvd., Vancouver

Harrington, Lucy: 482505 Warm Springs Blvd., Fremont

Harris, Keith: 3207 S Grady Way, Renton

Harris, Keith: 7943 Walnut Ave., Renton

Harui, Roger: 9927 N. Main St., Tooele

Hass, Ann: Medford Outlet Center, Medford

Filtering and Sorting with EntityCollections

Although you can easily use related data in projections or for filtering, sorting, and

other operations, it is important to keep in mind that when the related data is in a

collection, you need to leverage operations that can be performed on a set of data. For

example, if you want to find contacts with addresses in the United Kingdom (repre-

sented as UK in the database), you can use the ANY method in LINQ to Entities (see

Example 4-13) or the EXISTS operator in Entity SQL (which you’ll see in the next chapter) to search the contact’s addresses. The LINQ query uses a predicate to provide the

condition for ANY.

 Example 4-13. Filter condition provided by an EntityCollection with LINQ

from c in context.Contacts

where c.Addresses.Any(a => a.CountryRegion == "UK")

select c;

Aggregates with EntityCollections

Aggregates perform calculations on a series of data. Aggregate methods include Count,

Sum, Average, Min, and Max. You may not want the entire collection of addresses, but

rather some aggregated information about that collection.

88 | Chapter 4: Exploring LINQ to Entities in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

Aggregates in LINQ to Entities

Aggregating data with LINQ is easyusing one of the aggregate methods such as Count;

simply append the method to the collection name. The Count method will return the

count of the items in the collection (see Example 4-14).

 Example 4-14. Using the Count aggregate method in LINQ to Entities

from c in context.Contacts select new {c.LastName, c.Addresses.Count};

Other types of aggregates, such as Max, require a specific value to aggregate. You can

supply that value using a lambda expression, as shown in Example 4-15.

 Example 4-15. Using an aggregate method with a lambda in LINQ

from c in context.Contacts

select new { c.LastName, MaxPC = c.Addresses.Max(a => a.PostalCode)};

It’s important to name the property returned by the aggregate function, because LINQ

is unable to derive one based on the method. If you forget to do this, both VB and C#

will give a compiler error explaining the problem.

Visual Basic has an Aggregate operator for LINQ that you can use in

place of FROM in your LINQ queries. Check the MSDN Library topic

“Aggregate Clause (Visual Basic)” for more information.

Aggregates in LINQ Methods

The LINQ aggregates are methods, not query operators. Therefore, they work very

naturally with the LINQ query methods. Example 4-16 uses the Max aggregate as one of two projected values to be returned.

 Example 4-16. A LINQ method syntax query using an aggregate

context.Contacts

.Select((c) => new { c.LastName,

MaxCode = c.Addresses.Max(a => a.PostalCode) });

This query does two interesting things with the lambdas. First it uses a lambda expres-

sion to specify what values should be projected: LastName and MaxCode. Once the vari-

able, c, has been declared, the function projects an anonymous type consisting of LastName as the first property and MaxCode as the second. MaxCode is defined by using

the Max aggregate on the Addresses collection of the contact.

Using Navigations in Queries | 89

Download from Library of Wow! eBook <www.wowebook.com>

Joins and Nested Queries

Although associations in the EDM minimize the need for joins in queries, sometimes

a relationship may exist but there is no association to represent the relationship. In

these and other cases, you can use nested queries or joins to bring the data together.

From the Source: Should You Even Use Joins?

Zlatko Michailov, former Entity SQL program manager at Microsoft, writes in his blog:

“A well defined query against a well defined entity data model does not need JOIN.

Navigation properties in combination with nesting sub-queries should be used instead.

These latter constructs represent task requirements much more closely than JOIN

does.”*

You may not always have the opportunity to define a model the way you’d like, because

of limitations in the database or your domain. What you should take away from Zlatko’s

quote is that using JOINs should not be your first stab at expressing a query. I’ve seen

clients using JOINs in queries simply because they don’t understand yet how to take

advantage of navigation properties in their queries.

LINQ to Entities provides a JOIN operator as well as GROUPJOIN. Entity SQL provides a

variety of options in the JOIN FROM clause, including inner joins, as well as left, right, and full outer joins. It also enables joining multiple collections separated by commas.

Joins

The vOfficeAddresses entity in the current model has all of the contact

properties except for the contact’s Title. Because there is no association

between vOfficeAddresses and Contact, you will need to use JOIN to combine the vOfficeAddresses entity properties with the Title property.

You could, of course, add the association to the model in this case, but

then there would be no lesson here, would there?

Example 4-17 shows the syntax of a LINQ JOIN.

 Example 4-17. JOIN syntax for LINQ

FROM [variableA] IN collectionA

JOIN [variableB] IN collection

ON variableA.commonproperty EQUALS variableB.commonProperty

SELECT

* http://blogs.msdn.com/esql/ (November 1, 2007).

90 | Chapter 4: Exploring LINQ to Entities in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

Example 4-18 shows how to combine data from Contact entities and vOfficeAddresses entities using the JOIN.

 Example 4-18. A LINQ to Entities query using a JOIN

from c in context.Contacts

join oa in context.vOfficeAddresses on c.ContactID equals oa.ContactID

select new { oa.FirstName, oa.LastName, c.Title, oa.Street1, oa.City,

oa.StateProvince };

This provides an inner join where only entities with matching ContactIDs are returned.

Any contacts with no match in the vOfficeAddresses will not be returned.

vOfficeAddresses with no match in Contacts will not be returned either.

Nested Queries

Both LINQ and Entity SQL provide the ability to nest queries, and you have already

seen some examples of this. When you write a query, anywhere a value is expected you

can use another query in its place, as long as that query returns an acceptable type. You

can use a nested query in place of an expression or a collection, as you will see in the

following examples.

The goal of the previous JOIN queries was to return properties from a Contact entity

combined with properties from the vOfficeAddresses entities where the ContactID

matches.

Using a nested LINQ query as a projection

Example 4-19 shows how to express the previous query in LINQ using a nested query instead of a JOIN. The query uses a nested query (highlighted) combined with the FirstOrDefault method in place of a projected value to return results from

vOfficeAddresses.

 Example 4-19. Nested query in place of a SELECT expression in LINQ

from oa in context.vOfficeAddresses

select new { oa.FirstName, a.LastName,

Title = (from c in context.Contacts

 where c.ContactID == oa.ContactID

 select c.Title).FirstOrDefault(),

oa.Street1, oa.City, oa.StateProvince;

}

There are a few notable twists to this query. The first should be familiar: an anonymous

type is not able to automatically name the return from the nested query. Therefore, it

is given the name “Title”. The second twist is that the subquery returns an IQueryable of

String, not just a string, which is why the FirstOrDefault method is appended to the

query.

Joins and Nested Queries | 91

Download from Library of Wow! eBook <www.wowebook.com>

Using a nested LINQ query as the collection to be queried

You can also use the nested query in place of the collection being queried. The nested

query merely returns another collection to be queried.

Let’s start with a basic example. Rather than querying all vOfficeAddresses, you could

create a subquery that returns only vOfficeAddresses in Ontario and then query against

that. Example 4-20 is simplistic and could easily be expressed without the nested query.

The technique can be useful when you are attempting to express queries that are much

more complex.

 Example 4-20. Nested query in place of a target collection in LINQ

var contacts = from add in

(from oa in context.vOfficeAddresses

where oa.StateProvince == "Ontario" select oa)

select ...

You can benefit from using nested queries to help with complicated queries by sepa-

rating the nested query from the main query.

On its own, this particular example doesn’t seem very useful, but imagine being able

to use subqueries to redefine the universe of vOfficeAddresses from which to query,

and then passing that into different methods which will perform additional queries on

that subset.

Example 4-21 ties a subquery to a variable and then uses that variable in another query.

The second query is complex enough, using another nested query to join

vOfficeAddresses back to Contact. Breaking up the query makes the code much more

readable. When the query is executed, the Entity Framework will create a single query

from the combined expressions.

Don’t forget the importance of knowing what is going on at the database

level by using some type of profiler, as suggested in Chapter 3.

 Example 4-21. Breaking a nested query out of the main query in LINQ

var universe = from oa in context.vOfficeAddresses

where oa.StateProvince == "Ontario"

select oa;

var query = from oa in universe

select new

{

oa,

contact = (from c in context.Contacts

where c.ContactID == oa.ContactID

select c)

92 | Chapter 4: Exploring LINQ to Entities in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

};

var AddressesWithContacts = query.ToList();

You can’t separate out a nested query that’s inside a projection, as in

Example 4-21, because its filter condition is dependent on the main query.

An Order operator in a subquery will be ignored. The main query con-

trols ordering.

Grouping

Both LINQ and Entity SQL provide operations for grouping data. You can use grouping

in connection with aggregates or to shape data.

LINQ to Entities has a Group operator (literally Group By in Visual Basic and Group in

C#) and a GroupBy method (with eight overloads). Entity SQL provides a GROUP BY

operator and a GroupBy query builder method.

The results of the grouping can use automatic naming, and in other cases can be ex-

plicitly named. In addition, an INTO GROUP clause is required in Visual Basic. C# has an

optional INTO clause.

The constructs for VB and C# are quite different and it’s easiest to explain them with

examples. Example 4-22 shows the simplest form of grouping in LINQ for both Visual Basic and C#.

 Example 4-22. Simple grouping in LINQ to Entities in VB and C#

VB

From c In context.Contacts Group By c.Title Into Group

C#

from c in context.Contacts group c by c.Title into mygroup select mygroup

The result of this query is an IQueryable of an Entity Framework class called Grouping; more specifically, System.Data.Objects.ELinq.InitializerMetadata.Group

ing<K,T>. In our example, it’s a Grouping<string,Contact>. This is something like a key/

value pair where the key is K (the string in our example) and the value is an IEnumera

ble of T (e.g., the group of Contact types).

The results, therefore, are a set of these key/value pairs. If we select one of the groupings,

as you can see in Figure 4-6, VB automatically names the property containing the title as “Title”.

Grouping | 93

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 4-6. The VB result, which contains a Title property and a Group property that contains three contacts

By default, C# uses the word Key as the name for the key of the grouping and doesn’t name the property that contains the grouped records, as you can see in Figure 4-7.

 Figure 4-7. Default C# grouping

VB allows you to specify the property name rather than use the default. In Visual Basic,

to change the Title property of the preceding query to MyTitle, you would use the

syntax Group By MyTitle=c.Title.

In VB, the Group property is available to access the group. You can rename this as well.

For example, Into MyGroup = Group renames the property to MyGroup.

Naming Properties When Grouping

The optional INTO clause in C# allows you to specify a group name, but this is not

exposed as a property. You specify the name with INTO so that you can perform further

functions on the group. Note that in C#, using the INTO clause requires that you also

use the SELECT clause. The Key property is then accessible as a property of the group.

With the group specified, it is now possible to explicitly name the properties in C#.

LINQ queries in Visual Basic will imply a SELECT statement if it is not used. In this case, the query will still return Title and MyGroup by default without specifying SELECT. Of

course, you can shape the data further by specifying your own output with an explicit

SELECT operator.

94 | Chapter 4: Exploring LINQ to Entities in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

Example 4-23 demonstrates these changes to the previous queries.

 Example 4-23. LINQ Group By with explicitly named groups and targets in VB and C#

VB

From c In context.Contacts _

Group By c.Title Into MyGroup = Group

C#

from c in context.Contacts

group c by c.Title into MyGroup

orderby MyGroup.Key

select new {MyTitle = MyGroup.Key, MyGroup};

Chaining Aggregates

Visual Basic provides a simple way to use aggregates in grouping queries, by specifying

one or more aggregates in the INTO clause separated by commas. In Example 4-24, your result will contain the properties Max and Count.

 Example 4-24. Chained aggregates in VB LINQ

VB

From c In context.Contacts _

Group By c.Title Into MyGroup = Group, _

Max(c.AddDate), Count()

In C#, you need to explicitly project these properties in the Select clause using methods

and predicates, as shown in Example 4-25.

 Example 4-25. Combining aggregates in C# LINQ

C#

from c in context.Contacts

group c by c.Title into MyGroup

orderby MyGroup.Key

select new {MyTitle = MyGroup.Key, MyGroup,

Max = MyGroup.Max(c => c.AddDate),

Count = MyGroup.Count()}

Filtering on Group Conditions

There is so much more that you can do with grouping in LINQ. For now, we’ll take a

look at one more variation: filtering on the grouping condition.

The Title fields in the sample data contain Mr., Mrs., Ms., Sr., and a few other titles.

Also, some contacts have no title. Perhaps you would like to group on title, but exclude

empty titles. To filter what is being grouped, such as “only group contacts with some-

thing in the Title field,” you can apply the filter to the control variable, Title, to make sure it contains a value.

You may, however, want to filter on a property of the Group. With LINQ you can continue to use the WHERE operator, as shown in Example 4-26.

Grouping | 95

Download from Library of Wow! eBook <www.wowebook.com>

 Example 4-26. Filtering on a Group property with LINQ

VB

From c In context.Contacts _

Group By c.Title Into MyGroup = Group, Count() _

Where (MyGroup.Count() > 150)

C#

from c in context.Contacts

group c by c.Title into MyGroup

where MyGroup.Count() > 150

select new { MyTitle = MyGroup.Key,

MyGroup,

Count = MyGroup.Count()};

In LINQ, you will also need to be aware of variables going out of scope, as in the Visual

Basic query shown in Example 4-27, which won’t compile. The a in Group by a.CountryRegion is out of scope because by this point in the query, you are working

with the anonymous type returned by the Select statement. And the Select does need

to go before the Group By.

 Example 4-27. An out-of-scope variable preventing this query from compiling

VB

From a In context.Addresses _

Select a.Contact.FirstName, a.Contact.LastName, a.CountryRegion _

Group By a.CountryRegion Into MyGroup = Group, Count() _

Where (MyGroup.Count() > 150)

You can avoid this problem by naming the anonymous type, and then grouping by a

field within the name, as shown in Example 4-28.

 Example 4-28. Naming variables to keep them from going out of scope

VB

From a In context.Addresses _

Select c = New With {add.Contact.FirstName,

a.Contact.LastName, _

a.CountryRegion} _

Group By c.CountryRegion Into MyGroup = Group

C#

from a in context.Addresses

let c= new {a.Contact.FirstName, a.Contact.LastName,

a.CountryRegion} group c by c.CountryRegion

into MyGroup where (MyGroup.Count() > 150)

select MyGroup;

Both the Visual Studio documentation and the ADO.NET Entity Framework docu-

mentation and samples can provide you with an astounding array of data shaping that

you can perform with Group By/groupby in LINQ, and even then there are still many

more.

See “Finding More Query Samples” on page 109 for links to these resources.

96 | Chapter 4: Exploring LINQ to Entities in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

Like everything else this chapter has covered so far, we have only skimmed the surface of GROUP BY in Entity Framework queries. You will see more uses throughout this book

and can find more details (and plenty of rules) in the documentation. The rest of this

chapter will explain some important concepts that have been exposed by the queries

you’ve seen so far.

LINQ Compiled Queries and Entity SQL Cached Queries

One of the expensive processes of executing queries is in the query compilation. This

is when the query is transformed into the proper query to be sent along to the database.

LINQ to Entities has a feature called precompilation whereby you can compile a query in advance and access that compiled version as needed. Even if some of the query parameters change, such as searching for LastName="Smith" and then searching for LastName="Holbert", the precompiled query will be used. This has a huge impact on performance, and Microsoft recommends that you use precompilation for any queries

that might be called repeatedly.

Entity SQL has the ability to cache its queries, and does this by default. The performance benefit is similar to that of using precompiled LINQ queries.

Chapter 20 explores both of these features.

Shaping Data Returned by Queries

Whether you write a query that returns entities, anonymous types, DbDataRecords, or

DbDataReaders, you can return shaped data. You’ve seen this in several of the previous

queries, with a variety of shaped results. How you use this data depends on how the

data is shaped. Let’s take a further look at the results of some of the earlier queries.

The LINQ and Object Services queries that returned entities defined in the model are

not shaped. They are purely a collection of individual entities.

For instance, Example 4-13 returned an IQueryable of Contact objects. Example 4-9,

however, returned an anonymous type with two properties. The first property was a

Contact entity and the second was a collection of Address entities related to that Contact. The code in Example 4-10 enumerated over that data, albeit in a somewhat boring way, to demonstrate what the data looked like. It showed the contacts and the

addresses but did not truly demonstrate the relationship between the two.

Example 4-29 executes the same query and then enumerates through the anonymous types that result. This time, however, the code accesses the Addresses as a navigation

property of the Contact.

LazyLoadingEnabled is set to false to ensure that the Count method does not impact the

results.

Shaping Data Returned by Queries | 97

Download from Library of Wow! eBook <www.wowebook.com>

 Example 4-29. LINQ query creating shaped results

context.ContextOptions.LazyLoadingEnabled=false;

var addressGraphs = from a in context.Addresses

where a.CountryRegion == "Canada"

select new { a, a.Contact };

foreach (var ag in addressGraphs)

{ Console.WriteLine("LastName: {0} # Addresses: {1} ",

ag.Contact.LastName.Trim(), ag.Contact.Addresses.Count());

foreach (Address address in ag.Contact.Addresses)

{

Console.WriteLine(".....{0}", address.City);

}

Console.WriteLine();

}

There’s a simpler way to express this particular query with the

Include method, which you will see next. But what differentiates this

from Include is that with it you can take the projection in Exam-

ple 4-29 a step further in a direction that you won’t be able to do with Include. I’ll discuss this after we look at the results of this example.

Let’s turn the query around a bit to see how this can work. Imagine you are querying

contacts and want to also return their addresses.

The WriteLine method doesn’t access the a property of the anonymous type, but instead

navigates to the addresses through the Contact property of the anonymous type.

As the Contact and Address entities are materialized, the Entity Framework recognizes

that they are related to each other and wires them up so that you can navigate between

them. The Address objects have a Contact object in their Contact property and the Contact objects have Address objects in their Addresses property. This is a very high-level explanation of an important function of the Entity Framework’s Object Services

API, which you will learn plenty about throughout the book.

There is an interesting thing to be aware of with respect to how the Entity Framework

connects the related entities in the scenario laid out in Example 4-29. If you look at the following sample of the output, you can see that two addresses belong to the contact

“Harding.” One is in Toronto and the other is in Vancouver. But the first instance says

that Harding has only one address. Not until the code has reached the second address

is the contact aware that two addresses exist in its Addresses navigation collection.

LastName: Garza # Addresses: 1

....Burnaby

LastName: Harding # Addresses: 1

....Toronto

98 | Chapter 4: Exploring LINQ to Entities in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

LastName: Harding # Addresses: 2

....Toronto

....Vancouver

LastName: Caprio # Addresses: 1

....Toronto

LastName: Blackwell # Addresses: 1

....Toronto

LastName: Hamilton # Addresses: 1

....Chalk Riber

The second address isn’t recognized initially because it hasn’t been materialized as an

object yet. As the code enumerates through the query results for the first time, the

objects are created from the query results as each contact or address is reached. Once

the second address is encountered and turned into an object, its relationship to the

contact is identified.

I had you disable lazy loading in order to see this because when you

requested Addresses.Count, lazy loading would have kicked in and gone

to the database to retrieve the contact’s complete Addresses collection.

For the sake of the demo, I did not want this behavior. You’ll learn more

about lazy loading further on in this chapter, and later in the book as

well.

We will explore the object life cycle more deeply in a later chapter, but this should give you some idea for now about what’s going on in this example.

Limiting Which Related Data Is Returned

At the end of the previous example, I mentioned that projections will allow something

that the upcoming Include method won’t allow. That is the ability to filter which related

data is returned.

If you were querying for contacts with their addresses, a projection would look like this: var contactGraphs = from c in context.Contacts

select new { c, c.Addresses };

You can modify the query to load all of the contacts, but only a subset of their addresses, as in Example 4-30.

 Example 4-30. Filtering related data in a query using projections

var contactGraphs = from c in context.Contacts

select new { c, c.Addresses.Where(a=>a.CountryRegion="UK")};

I’ll refer back to this example as we look at other means of loading related data.

Shaping Data Returned by Queries | 99

Download from Library of Wow! eBook <www.wowebook.com>

Loading Related Data

So far, all of the queries that involved returning related data have explicitly asked for

that data in the query itself. The Entity Framework will only return data that you ex-

plicitly ask for. If your query asks only for contacts, the Entity Framework will not make an assumption that just because contacts have addresses, it should return the addresses

anytime you query for contacts. Consider a typical model for sales information. A con-

tact is related to a customer; a customer has sales orders; each sales order has line items; each line item relates to a product; each product comes from a vendor and is also related

to a category. Can you imagine if you queried for contacts, and without expecting it,

the entire contents of the database were returned—because it was all related?

It is possible to get related data after the fact. For example, if you queried for a selection of contacts, as you work with those contacts in code you can request the contacts’

addresses without performing another complete query.

For developers coming from the first version of Entity Framework, there

is a big change to be aware of here. The implicit, automatic loading of

related data, controlled by the ObjectContext.ContextOptions.LazyLoa

dingEnabled property, is a new option in the Entity Framework. It is

enabled (i.e., set to true) by default, for newly created models. The

property will be false on existing models pulled into .NET 4 to prevent

breaking changes in your existing code.

This is referred to as deferred loading or implicit deferred loading, and is most commonly known as lazy loading.

As of .NET 4, Entity Framework performs lazy loading by default.

The LINQ to Entities query in Example 4-31 returns an ObjectSet of Contact entities.

As the code enumerates through the results, it also asks for information about the related Addresses. But the Addresses were not returned with the original query.

 Example 4-31. Implicitly loading related data after the fact

var contacts= from c in context.Contacts select c;

foreach (var contact in contacts)

{ Console.WriteLine("{0} #Addresses: {1}",

contact.LastName,contact.Addresses.Count());

}

Unlike the filtered projection in Example 4-30, lazy loading has no means of filtering the data being loaded.

However, each time the code hits a request for the address count of the current contact,

a new query will be executed on the server to retrieve the addresses for the current

contact. You should understand that this means that if there were 10 contacts in the

100 | Chapter 4: Exploring LINQ to Entities in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

original result, there will be 10 additional trips to the database as you iterate through the 10 contacts.

Controlling Lazy Loading

Lazy loading is surely convenient, but if you are not paying attention, you could be

abusing your server resources by unknowingly or even unnecessarily causing repeated

trips to the database. You can disable (and reenable) lazy loading as needed in code or

modify the default behavior for the context. There are other ways to load related data

when you need it even if you are not depending on lazy loading.

Disabling and enabling lazy loading programmatically

Lazy loading can be controlled through the ObjectContext’s ContextOptions.LazyLoa

dingEnabled property:

var context = new SampleEntities();

context.ContextOptions.LazyLoadingEnabled = false;

Once it is disabled, you can still explicitly load related data on demand if needed, or

even load the data along with the initial query. These two methods are covered in the

next few pages.

Changing the default behavior for lazy loading

In the default generated classes, the constructors for the ObjectContext (e.g.,

SampleEntities) set LazyLoadingEnabled based on an annotation in the EDMX. The

XML annotation was pointed out in the CSDL EntityContainer section of Chapter 2.

Models that are created in Visual Studio 2010 have this annotation with the value set

to true. Models that were created in Visual Studio 2008 SP1 do not have the annotation,

and therefore, if you are using an older model, by default, lazy loading will not be

enabled.

The Lazy Loading Enabled setting is exposed in the model’s Properties window in the

Designer, in the Code Generation section, where you can change the default behavior

for a particular model.

Explicitly Loading Entity Collections and Entity References

Let’s return to the query in Example 4-31:

var contacts= from c in context.Contacts select c;

When lazy loading is disabled, because the query does not explicitly request the ad-

dresses, the Addresses.Count for every single contact will be zero.

But you can explicitly tell the Entity Framework to get the addresses for the current

contact, as shown in the Example 4-32.

Loading Related Data | 101

Download from Library of Wow! eBook <www.wowebook.com>

 Example 4-32. Explicitly loading related data with the Load method

foreach (var contact in contacts)

{ contact.Addresses.Load();

Console.WriteLine(contact.Addresses.Count);

}

When Load is called, Object Services will execute a query to retrieve all of the addresses for that contact. In the preceding example, after Load is called, the value of Count will

be correct and all of the Address entities for that contact will be available.

Using Load is another case where you cannot filter the related data being loaded as you

can with the projection in Example 4-30.

In .NET 4, a new method was introduced to load from the context, not from the nav-

igation property. The method is ObjectContext.LoadProperty and it was created as part

of the support for classes that do not inherit from EntityObject. You’ll learn about

LoadProperty in Chapter 11.

Loading the EntityReference

You can also perform deferred loading for EntityReference navigation properties—for

example, Address.Contact. However, rather than load from the Contact property, you

must load from the additional property that was created by the code generation: Con

tactReference. The Entity Framework sees Address.Contact as merely a Contact entity,

and the Contact class does not have the Load method. It is the ContactReference property

that has the knowledge of how to load the related information. Each EntityReference

navigation property will have a related property with the word Reference appended to its name.

Example 4-33 shows how to load Contact data for particular addresses after the addresses have already been queried.

 Example 4-33. Loading the Contact using ContactReference.Load

var addresses = from a in context.Addresses select a ;

foreach (var address in addresses)

{ if (address.CountryRegion != null)

{

if (address.CountryRegion.Trim() == "UK")

{

address.ContactReference.Load();

}

}

}

102 | Chapter 4: Exploring LINQ to Entities in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

Performance considerations with deferred loading

There is a big performance consideration here. Whether you are lazy-loading or ex-

plicitly loading the related data for each contact, the code is forcing an extra round trip to the database, something many developers won’t realize unless they are profiling the

database activity. This can be extremely inefficient and might also get you into big

trouble with the IT pros in your company. With lazy loading disabled, you can have

some control over when the extra trip is made.

Load is a great choice in cases where you want to inspect the contacts and then load

addresses for only particular contacts. Perhaps you want to list all contacts, but for

contacts that were added after a particular date you need to see how many addresses

are in the database. The code in Example 4-34 demonstrates this scenario, where you may determine it is more efficient to make a small number of database trips rather than

preloading addresses for every contact.

 Example 4-34. Loading addresses for some of the contacts

foreach (Contact contact in contacts)

{ Console.WriteLine(contact.LastName);

if (contact.AddDate > System.Convert.ToDateTime("1/1/2008"))

{

contact.Addresses.Load();

}

}

With lazy loading enabled, this kind of granular control is a bit more difficult to achieve.

The benefit of having lazy loading enabled is that you won’t have to worry about re-

porting that there are no addresses for a contact when in fact there are a number of

them in the database because you forgot to, or didn’t know that you needed to, ex-

plicitly load those related addresses.

Using the Include Method to Eager-Load

In cases where you know you will need all of the addresses up front, it may be more

efficient to retrieve them as part of the original query. Although you have seen how to

do this with projection by including the addresses in the SELECT clause, the Include

method is another way to achieve this and may be preferable for a variety of reasons.

The most notable reason is that the resultant objects will be your entities, rather than

anonymous types with entities as their properties. However, Include does not allow

you to filter the related data as you can with a projection.

Include is a query builder method and you can apply it to an ObjectQuery or Object

Set (which, as you may recall, derives from ObjectQuery). Because context.Contacts is

an ObjectSet, you can use Include even within a LINQ query, as shown in Exam-

ple 4-35.

Loading Related Data | 103

Download from Library of Wow! eBook <www.wowebook.com>

 Example 4-35. The Include method in a LINQ to Entities query

from c in context.Contacts.Include("Addresses")

where c.LastName.StartsWith("J")

select c

The argument for Include is a string that is the name (or names) of the navigation

properties to bring back along with the contacts. This is referred to as eager loading or eager fetching.

You can use Include only when returning an ObjectQuery or ObjectSet of a single entity

type. You cannot use it with projections, and if you do project, Include will be ignored.

In the sample model, there is only one navigation property for contact, which is Addresses. Imagine a sales model with a number of entities and a variety of navigations.

You could query customers and eager-load the orders and all of the orders’ details by

querying Customers.Include("Orders.OrderDetails"). The string is called a query path because it defines the path that the query should navigate through the model. This will bring in both the Orders and OrderDetails. Additionally, you could eager-load the

orders and the customers’ addresses by chaining the Include methods like this:

Customers.Include("Orders.OrderDetails").Include("Addresses")

How is the data shaped with Include?

Data shaping is one of the interesting benefits of Include. The previous

Contacts.Include("Addresses") query returns a set of Contact entities. This does not have the same effect as projection, which would have to return DbDataRecords.

Figure 4-8 shows the query results in the debugger’s QuickWatch window. You can see that the results are strictly a set of Contact entities. Where are the addresses?

Figure 4-9 drills into one of the contacts, and you can see that both of this contact’s addresses are there. The Include brings in the related data, and unlike the issue you

saw in the results of Example 4-29 (not all addresses were being attached to Ms. Harding from Toronto until the addresses had been enumerated), all of these addresses are present as soon as you get to the contact.

Lazy loading will still be active when you are inspecting data in debug

windows such as the QuickWatch window in Figure 4-9. I disabled lazy

loading for the context prior to opening the QuickWatch window. You

can also watch a database profiler to ensure that the Addresses count

you are looking at is truly a result of eager loading and is not being

provided by way of lazy loading and an extra hit to the database.

104 | Chapter 4: Exploring LINQ to Entities in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 4-8. The result of the Include with no projections, which returns only the primary entity of the query

 Figure 4-9. The result of the Include with projections, with lazy loading disabled, which returns the contact’s related Addresses in the query

Loading Related Data | 105

Download from Library of Wow! eBook <www.wowebook.com>

Accessing properties from an Include in the query

You can use the properties of the Include entities in many of the same ways you can

use properties of any related data when querying.

Example 4-36 uses the CountryRegion field of Address to limit which contacts are retrieved. But be sure you are clear on the results. This will return contacts that happen

to have any of their addresses in the United Kingdom. If a contact has multiple addresses

and only one of them is in the United Kingdom, you will still get all of those addresses.

 Example 4-36. Limiting which contacts are retrieved

from c in context.Contacts.Include("Addresses")

where c.Addresses.Any((a) => a.CountryRegion == "UK")

select c

Although you can use the properties of the included data in your query,

you cannot filter or sort the included data. There’s no way to say “when

you return the addresses along with the contacts, please sort the ad-

dresses by city.” Additionally, as mentioned before, you can’t filter the

included data either.

Pros and Cons of Load and Include

You have some things to consider when choosing between the Load and Include meth-

ods. Although the Load method may require additional round trips to the server, the

Include method may result in a large amount of data being streamed back to the client

application and then processed as the data is materialized into objects. This would be

especially problematic if you are doing all of this work to retrieve related data that may never be used. As is true with many choices in programming, this is a balancing act that

you need to work out based on your particular scenario.

The documentation also warns that using query paths with Include could result in very

complex queries at the data store because of the possible need to use numerous joins.

As the model becomes more complex, the potential for trouble increases.

You could certainly balance the pros and cons by combining the two methods. For

example, you can load the customers and orders with Include and then pull in the order

details on an as-needed basis with Load.

The correct choice, or combination, will most likely change on a case-by-case basis.

106 | Chapter 4: Exploring LINQ to Entities in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

Retrieving a Single Entity

All of the queries so far have returned sets of data. What if you wanted to retrieve a

single entity or a single result? The queries return IQueryables or ObjectQuerys and you

need to dig into those to get at the actual data, which might be entities, anonymous

types, or DbDataRecords.

This is reasonable if you are returning multiple items, but what about cases where you

query for one particular item—for example, the contact whose ContactID is 63—and

you don’t want to have an IQueryable returned, but just the item?

LINQ to Entities has a pair of methods, First and FirstOrDefault, which will return

the first item in the result set. Additionally, Single and SingleOrDefault are useful when you are expecting only one item in the result set—for example, if you are querying for

a single contact. These methods are not specific to LINQ to Entities, but come from

LINQ and may be familiar to you already.

Example 4-37 shows two techniques for using these methods. In the first technique, a query is defined and then the Single method is called. This will cause the query to be

executed and the contact entity to be returned. The second technique appends the

Single method directly to the query. Even though Single is a LINQ method, you can

combine it with the query operator syntax by wrapping the query in parentheses. In

this case, the query is executed immediately and the contact is returned.

 Example 4-37. Querying with the Single method

IQueryable<Contact> contacts = from c in context.Contacts

where c.ContactID == 1

select c;

Contact contact = contacts.Single();

Console.WriteLine(contact.LastName);

Contact singleContact = (from c in context.Contacts

where c.ContactID == 2

select c).Single();

Console.WriteLine(singleContact.LastName);

There’s a potential problem here. If there are no items, First and Single will throw an

InvalidOperationException with the message “Sequence contains no elements.”

FirstOrDefault and SingleOrDefault protect you from the exception by returning the

default, which is generally a null (Nothing in VB). Additionally, if you use Single or

SingleOrDefault but the result set contains more than one item, an exception will be

thrown. In that case, you should be using First or FirstOrDefault.

Retrieving a Single Entity | 107

Download from Library of Wow! eBook <www.wowebook.com>

In Example 4-38, SingleOrDefault is used to avoid an exception being thrown.

Contact in this case will be Nothing/null after the query is executed.

 Example 4-38. Using SingleOrDefault to avoid an exception

var contact = (from c in context.Contacts

where c.ContactID == 7654321

select c).SingleOrDefault();

Another way to use these methods is to pass the predicate directly to them, rather than

using a where operator.

For example:

var contact = context.Contacts.Single(c => c.ContactID == 1);

Retrieving a Single Entity with GetObjectByKey

The ObjectContext.GetObjectByKey method and its counterpart, TryGetObjectByKey,

provide a way to query for an object without having to construct and execute a query.

However, this has a notable twist. The runtime will first look in the existing instantiated objects to see whether the object has already been retrieved. If it is found, this is what will be returned. If not, the query to the data store will be executed automatically and

the object will be returned.

GetObjectByKey takes an EntityKey type that defines what object to retrieve based on

its EntitySet, its key property name, and the value of that property. For example, EntityKey("SampleEntities.Contacts","ContactID",5) defines an object in the Contacts EntitySet with a ContactID value of 5. Once the EntityKey has been created,

GetObjectByKey(myEntityKey) will return the object either from memory or from the

database.

TryGetObjectByKey uses the .NET Try pattern to avoid returning an exception if the

object is not found in memory or in the database.

You will see both of these used many times in later chapters, and you will learn all about the EntityKey class in Chapter 10.

There is also a method for retrieving an entity by only looking in memory

and not checking the database, called GetObjectStateEntry. You'll learn

about this method in Chapter 10.

108 | Chapter 4: Exploring LINQ to Entities in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

Finding More Query Samples

This chapter is filled with many queries, but there are so many possibilities for querying with LINQ or Entity SQL that you will certainly benefit from checking these other great

resources:

 MSDN’s 101 C# LINQ Samples

 http://msdn.microsoft.com/en-us/vcsharp/aa336746.aspx

 MSDN’s 101 Visual Basic LINQ Samples

 http://msdn.microsoft.com/en-us/vbasic/bb688088.aspx

 MSDN’s Entity Framework Query Samples

 http://code.msdn.microsoft.com/EFQuerySamples

There are also a number of excellent books that are focused on LINQ or that contain

LINQ content. Some that I recommend are LINQ Pocket Reference by Joseph Albahari and Ben Albahari (O’Reilly), LINQ in Action by Fabrice Marguerie et al. (Manning

Press), and Essential LINQ by Charlie Calvert and Dinesh Kulkarni (Addison-Wesley).

Summary

In this chapter, you have learned a variety of ways to use LINQ to Entities to express

more complicated queries. You have used projections, queried across navigations, and

learned how to group. You have also learned about various ways to load related data,

whether through returning shaped results with the Include method, retrieving related

data after the fact with lazy loading or explicitly calling a Load method. With LINQ to

Entities, Entity SQL, Object Services, and EntityClient, the Entity Framework provides

myriad possibilities for querying data and shaping results. In the next chapter you will

see how many of the queries written in this chapter can be written with Entity SQL.

Although it would take a few hundred more pages to ensure that you have seen an

example of almost any type of query you may want to write, these past two chapters

should leave you very prepared to venture forth.

In Chapter 6, you will learn about updating the data you have queried and taking advantage of stored procedures. Then, beginning with Chapter 9, you will start to write some small applications and be able to leverage many of these types of queries.

Summary | 109

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 5

Exploring Entity SQL in Greater Depth

Chapter 4 introduced you to a number of new querying concepts and how to express those queries with LINQ to Entities. LINQ to Entities will most likely be the more

common form of querying in your applications. But there are still many scenarios where

you may find that Entity SQL gives you an advantage, such as with complex dynamic

query building. Outside of the MSDN documentation, you will find that the resources

for learning Entity SQL are few and far between. Therefore, in this chapter, we will run

through the same types of queries explored in Chapter 4 and I will demonstrate how to express them using Entity SQL. But we’ll begin with a look at some nuances for

expressing Entity SQL that don’t exist with LINQ to Entities.

Literals in Entity SQL

When writing queries in LINQ to Entities, you don’t have to be too concerned about

the data types that you are using for projections or filtering, but in Entity SQL there

are rules about including many of the types you may want in your query. As an example,

you must use special syntax with date types. Many SQL syntaxes require special han-

dling for date types. T-SQL is very forgiving, as it simply requires that you express the

date as a string.

Entity SQL, however, has specialized formatting for a number of literals. There is an

MSDN topic called “Literals (Entity SQL)” (http://msdn.microsoft.com/en-us/library/

 bb399176.aspx) that drills into these, but unfortunately it is very easy to miss the critical information in the document. I’ve done it myself, and so have many people who have

emailed me with questions about Entity SQL.

Therefore, I will highlight a few of these literals here. I won’t cover every literal type, but once you have the hang of it, you can refer back to the MSDN topic for the other

types.

Without the specific syntax, in some cases you will get an error message, in others it

won’t pose a problem, but in others still you will simply get inaccurate results.

111

Download from Library of Wow! eBook <www.wowebook.com>

Because you’ll be writing a lot of Entity SQL expressions in this chapter,

I am using a shorter container name, PEF (an abbreviation of Program-

ming Entity Framework), rather than SampleEntities. See the sidebar

“Simplifying the Container Name for Our Examples” on page 113 for

steps to do this yourself.

Expressing a DateTime Literal

To express a DateTime in Entity SQL, the value must be formatted minimally as DATETIME'YYYY-MM-DD HH:MM', as shown here:

SELECT c FROM PEF.Contacts as c

WHERE c.ModifiedDate>DATETIME'2009-01-01 00:00'

Even if you are using a SQL Server 2008 Date type, you need the DATETIME keyword.

You must also include the hours and minutes, but you can go further with seconds and

beyond if you like. Incorrect syntax with dates will generally cause an exception to be

thrown.

Expressing a Decimal Literal

Decimals are trickier. The following expression queries a model based on Microsoft’s

AdventureWorksLT sample database:

SELECT p FROM AdventureWorksEntities.Products as p

WHERE p.ListPrice=133

The ListPrice column in the database table is defined as a Decimal data type. The

expression uses an Integer (133) as a filtering value against this column, and the query

will return the expected results.

However, if you wanted to express a Decimal value and simply used WHERE

p.listprice=133.34, you would get an EntitySQLException stating “The argument types

‘Edm.Decimal’ and ‘Edm.Double’ are incompatible for this operation.”

The documentation tells you to follow the value with an uppercase M.

Here is the correct syntax for this query:

select p from AdventureWorksEntities.Products as p

WHERE p.listprice=133.34M

Using Additional Literal Types

There are a number of different value modifiers depending on the type. Single types

must be followed by a lowercase f; an Int64 (bigint) is followed by an uppercase L.

Examples of other types that use literal keywords in Entity SQL are Time, GUID, BINARY, and DATETIMEOFFSET.

Pay attention to these syntax requirements when constructing Entity SQL.

112 | Chapter 5: Exploring Entity SQL in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

Simplifying the Container Name for Our Examples

Since you will be writing a lot more Entity SQL expressions in this chapter, you may

want to modify the EntityContainer name so that you have something even simpler to

type. The Designer makes this easy to do.

Open the model in the Designer and click the background of the model. This will cause

the model’s properties to show up in the Properties window. Change the Entity

Container Name to PEF, the acronym of this book’s title.

This change will have an impact in three places in your application:

• PEF will be the new EntityContainer name for the model.

• PEF will be the new name of the EntityContainer class that you will instantiate to

perform queries.

• PEF will be the new name of the connection string in the app.config file.

You should double-check that the change was made in all three locations.

You will also need to change any existing code references that use this model from the

longer name to the new short name. If you are using Find & Replace, I recommend

using the Current Document option.

This new name is not a recommended naming convention, but a convenience for the

sake of writing numerous Entity SQL queries in this chapter.

Projecting in Entity SQL

You can use projections with Entity SQL queries in both Object Services and

EntityClient queries. Only LINQ queries can return anonymous types as you saw in

Chapter 4. This is not a concern with EntityClient queries as EntityClient does not attempt to materialize objects from the results.

When projecting with Entity SQL and Object Services, the query will return data re-

cords. These are the same System.Data.Common.DbDataRecords returned by Entity

Client queries, which you saw in Chapter 3.

First look at the code in Example 5-1 and then at the query results. I’ve added Sys tem.Data.Common to the using statements at the beginning of the class file.

 Example 5-1. Projection with Entity SQL

String query = "SELECT c.FirstName,c.LastName, c.Title " +

"FROM PEF.Contacts AS c " +

"WHERE c.FirstName='Robert'";

ObjectQuery<DbDataRecord> contacts = context.CreateQuery<DbDataRecord>(query); Projecting in Entity SQL | 113

Download from Library of Wow! eBook <www.wowebook.com>

Notice that in the Entity SQL string, the keyword VALUE is gone. That’s because the

projection is selecting multiple values. Also, note that the type being passed into the

CreateQuery method is now a DbDataRecord.

In the introduction to EntityClient in Chapter 3, you learned that a DbDataRecord represents a single item in a DbDataReader. Therefore, you will need to interact with these

results in the same way you did when using the EntityClient example.

There is one very nice difference, however. The results are not being streamed; they

have been materialized into the DbDataRecord. Therefore, you can access the column

data in any order you want. To highlight this, the query string selected FirstName, LastName, and then Title. When you build the code to display the results, shown in

Example 5-2, you’ll see that it’s OK to use Title first.

 Example 5-2. Enumerating through the DbDataRecord returned by an Entity SQL projection foreach (DbDataRecord record in contacts)

{ Console.WriteLine("{0} {1} {2}",

record["Title"].ToString().Trim(),

record["FirstName"].ToString().Trim(),

record["LastName"].ToString().Trim());

}

In Example 5-2, I used an alternative way of pulling data from a DbDataRecord. Item takes a string parameter (the column name) or an

integer (the column position), whereas the GetString, GetInt, and other

related methods take only an integer as a parameter. I’ve used the string

here for clarity; however, be aware that there is a slight performance

penalty for using the string instead of the integer.

DbDataRecords and Nonscalar Properties

Most of these examples project strings, though you saw one example with LINQ for

Entities where an anonymous type and an EntityCollection of Address types were pro-

jected. How would you interact with a DbDataRecord that contains an entity or another

object in its columns? The Entity SQL expression in Example 5-3 selects the entire Contact entity as the first property of the results and the contact’s addresses as the

second property.

 Example 5-3. Projecting objects with Entity SQL

String query = "SELECT c, c.Addresses " +

"FROM PEF.Contacts AS c " +

"WHERE c.FirstName='Robert'";

ObjectQuery<DbDataRecord> contacts = context.CreateQuery<DbDataRecord>(query); foreach (DbDataRecord c in contacts)

{ var contact = c[0] as Contact;

114 | Chapter 5: Exploring Entity SQL in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

Console.WriteLine("{0} {1} {2}",

contact.Title.Trim(),

contact.FirstName.Trim(),

contact.LastName);

foreach(var a in contact.Addresses)

{

Console.WriteLine(" {0}, {1}",

a.Street1.Trim(), a.City);

}

}

Remember, DbDataRecord is in the System.Data.Common namespace.

You’ll need that in a using/Imports statement in your code file.

In Example 5-2, you had to explicitly cast the items of the results to String types. In this case, because you know the first item will contain a Contact type, you can cast the

column to Contact and then work directly with that strongly typed object. You can do

the same with the collection of Address types in the second column.

Projecting with Query Builder Methods

Example 5-4 shows an example of using a query builder method to do projection. In the projection, you use the it alias to access the properties.

 Example 5-4. Using query builder methods to project data

ObjectQuery<DbDataRecord> contacts = context.Contacts

.Where("it.FirstName='Robert'")

.Select("it.Title, it.FirstName,

it.LastName");

Projection with query builder methods also returns DbDataRecords. You’ll need to access

the results through the data record’s items, as with Example 4-6 in Chapter 4.

Using Navigation in Entity SQL Queries

In Chapter 4, you saw LINQ to Entities queries that leveraged navigation properties whether for projecting, filtering, or performing other query tasks. Here we will look at

how to use navigations in Entity SQL.

Navigating to an EntityReference

Recall that navigating to the “one” end of a one-to-one or many-to-one relationship

is referred to as a navigation reference. The entity you are pointing to is an EntityReference.

Using Navigation in Entity SQL Queries | 115

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 19 will drill further into EntityReferences and EntityCollec

tions, and how they are surfaced as navigation properties.

Example 5-5 demonstrates how to query for a type (Address) along with an EntityReference navigation property (Address.Contact) using Entity SQL.

 Example 5-5. Projecting into an EntityRef with Entity SQL

SELECT a,a.Contact

FROM PEF.Addresses AS a

WHERE a.CountryRegion='UK'

This will return DbDataRecord objects. When working with these results you can cast

the data in the first position to an Address and the data in the second position to a

Contact, as you did in Example 4-7 in Chapter 4.

Filtering and Sorting with an EntityReference

You can filter and sort based on a property of an EntityReference even if you are not

selecting the related data.

The Entity SQL query in Example 5-6 sorts by Contact.LastName and filters on the Contact.AddDate field even though AddDate is not part of the results.

 Example 5-6. Filtering and sorting on reference properties

SELECT a,a.Contact.LastName

FROM PEF.Addresses AS a

WHERE a.Contact.AddDate>DATETIME'2009-01-1 00:00'

ORDER BY a.Contact.LastName

Filtering and Sorting with EntityCollections

In Chapter 4, we used the LINQ Any method to filter based on an object’s EntityCollection navigation property. The relevant Entity SQL EXISTS operator is not

as facile as the ANY method. You’ll need to pass a subquery into EXISTS so that it knows

what to search. Look closely at the subquery in Example 5-7. It is querying c.Addresses, which is the collection of addresses that belongs to the value being returned in the main query. The subquery is able to take advantage of the navigation from

a contact to its addresses.

 Example 5-7. Filtering across a navigation with Entity SQL

Select VALUE c

FROM PEF.Contacts as c

WHERE EXISTS(SELECT a from c.Addresses as a

WHERE a.CountryRegion='UK')

116 | Chapter 5: Exploring Entity SQL in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

Aggregating with EntityCollections

Working with aggregates in Entity SQL is not as simple as it is in LINQ to Entities. For

example, LINQ is able to count the elements in a collection and doesn’t care whether

the collection contains values or objects. But Entity SQL can perform aggregates on

only a set of values, and even then on only certain types of values. This behavior mirrors how SQL Server uses aggregates. Therefore, with Entity SQL you can’t write

Count(c.Addresses), but rather you need to pass a value, such as AddressID, in to the

Count function. To do this, you can use a subquery against c.Addresses that returns a

collection of AddressIDs. You can then COUNT the results of that query, as shown in

Example 5-8.

 Example 5-8. Using the Count aggregate function in Entity SQL

Select c, COUNT(Select VALUE a.AddressID FROM c.Addresses as a)

FROM PEF.Contacts as c

The other aggregates work in the same way. Example 5-9 shows the MAX query written with Entity SQL.

 Example 5-9. Using the MAX aggregate function in Entity SQL

SELECT c.LastName,

MAX(SELECT VALUE a.PostalCode FROM c.Addresses AS a)

FROM PEF.Contacts AS c

You can even use an aggregate in a subquery, as in Example 5-10.

 Example 5-10. An aggregate in a subquery

SELECT c.LastName,

(SELECT VALUE MAX(a.PostalCode) FROM c.Addresses as a)

FROM PEF.Contacts AS c

In this example, the second column of the query results does not contain the string

value of the PostalCode. It contains the results of a query, and therefore it is a collection of string values. If you want to read the PostalCodes, you can iterate through the collection or use a SET operator.

Using Entity SQL SET Operators

Like aggregates, SET operators work with a set of values. The ANYELEMENT operator is a

SET operator that will randomly pick an element from a collection. As shown in Ex-

ample 5-11, you can even use this with collections that contain only one element, such as the MAX PostalCode column.

Using Navigation in Entity SQL Queries | 117

Download from Library of Wow! eBook <www.wowebook.com>

 Example 5-11. Using the ANYELEMENT operator against a set of data

SELECT c.LastName,

ANYELEMENT(SELECT VALUE max(a.PostalCode)

FROM c.Addresses AS a) AS MaxPostal

FROM PEF.Contacts AS c

The results of this query will now contain a string in the second position, not a collection.

The SET operators in Entity SQL are ANYELEMENT, EXCEPT, FLATTEN, INTERSECT, EXISTS and

NOT EXISTS, IN and NOT IN, OVERLAPS, SET, and UNION. There is also an ELEMENT operator

that has not yet been implemented but is reserved. If you attempt to use it in the first

version of the Entity Framework, you will get an exception that explains that ELEMENT

cannot be used yet.

Take some time to explore these operators in the documentation and in

code to get a feel for where and when you might want to use them.

Aggregating with Query Builder Methods

The Entity SQL query builder methods do not provide aggregate methods. However,

you can use an Entity SQL query as the argument of the SELECT query builder method

to perform the aggregate.

Remember that the collection being queried in the subquery is based on the main query’s control variable, referred to with the it alias by default.

Example 5-12 uses the MAX aggregate as one of two projected values to be returned.

 Example 5-12. An Entity SQL query builder method using an aggregate

context.Contacts

.Select("it.LastName, " +

"(MAX(SELECT VALUE a.PostalCode FROM it.Addresses AS a))");

Using Joins

Example 5-13 shows the syntax of an Entity SQL JOIN.

 Example 5-13. JOIN syntax for Entity SQL

SELECT variableA, variableB

FROM collection as variableA

JOIN Collection as variableB

ON Property = Property

118 | Chapter 5: Exploring Entity SQL in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

Entity SQL has the ability to do cross joins. You can express them ex-

plicitly; however, a JOIN without an ON clause will implicitly become a

cross join, pairing every entity in the first collection with every entity in

the second collection. So, watch out!

Example 5-14 demonstrates a JOIN query expressed in Entity SQL.

 Example 5-14. An Entity SQL query using JOIN

SELECT c.Title,oa.FirstName, oa.LastName,

oa.Street1, oa.City, oa.StateProvince

FROM PEF.Contacts as c

JOIN PEF.vOfficeAddresses as oa

ON c.ContactID = oa.ContactID

Nesting Queries

Both LINQ and Entity SQL provide the ability to nest queries, and you have already

seen some examples of this. When you write a query, anywhere a value is expected you

can use another query in its place, as long as that query returns an acceptable type. You

can use a nested query in place of an expression or a collection, as you will see in the

following examples.

The goal of the previous JOIN queries was to return properties from a Contact entity

combined with properties from the vOfficeAddresses entities where the ContactID

matches.

With Entity SQL, the nested query works in the same manner as with LINQ to Entities,

using the query in place of an actual value, though there’s no need to name the property

it represents (see Example 5-15). Here you will also see the Entity SQL TRIM function in effect.

 Example 5-15. Nested query in place of a SELECT expression in Entity SQL

SELECT TRIM(oa.FirstName), oa.LastName,

ANYELEMENT(SELECT VALUE c.Title

FROM PEF.Contacts as c

WHERE c.ContactID=oa.ContactID),

oa.Street1, oa.City, oa.StateProvince

FROM PEF.vOfficeAddresses as oa

The query in Example 5-16 demonstrates replacing the queried collection with a nested query.

Nesting Queries | 119

Download from Library of Wow! eBook <www.wowebook.com>

 Example 5-16. Nested query in place of a FROM expression in Entity SQL

SELECT TRIM(oa.FirstName), oa.LastName

FROM (SELECT VALUE oa

FROM PEF.vOfficeAddresses AS oa

WHERE oa.StateProvince='Ontario')

AS oa

You can easily break this up for readability, because you are merely building strings,

and you can concatenate the queries, as shown in Example 5-17.

 Example 5-17. Breaking up a nested query in Entity SQL

string subQuery = "SELECT VALUE oa " +

"FROM PEF.vOfficeAddresses AS oa " +

"WHERE oa.StateProvince='Ontario'";

String queryString = _

"SELECT add.FirstName, add.LastName FROM (" + subQuery + ") as add";

Remember that an Order operator in a subquery will be ignored. The

main query controls ordering.

Grouping in Entity SQL

LINQ will spoil you with its grouping capabilities. Like SQL, Entity SQL comes with

a lot of rules so that you can convert queries into a command tree and then into the

provider’s query syntax.

For example, in SQL the most commonly encountered rule is that every expression in

the SELECT must either be accounted for in the GROUP BY clause or be wrapped in an

aggregate. The same is true in Entity SQL, which prevents you from being able to select

entire objects in the SELECT clause. However, it is still possible to return entire objects and shape data in Entity SQL by putting the GROUP BY operator into a nested query.

First take a look at Example 5-18, which shows some simple grouping in Entity SQL.

 Example 5-18. A simple GROUP BY example in Entity SQL

SELECT c.Title, COUNT(c.Title)

FROM PEF.Contacts as c

GROUP BY c.Title

The two projected expressions in the SELECT are covered by either the GROUP BY or an

aggregate (COUNT). The query returns the following:

[blank] 6

Mr. 255

Ms. 177

Sr. 3

Sra. 2

120 | Chapter 5: Exploring Entity SQL in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

To group on an expression that is evaluated, such as "Title" + c.Title, the grouping must be explicitly named and that name needs to be used as a projected expression.

Example 5-19 shows the Entity SQL syntax for creating an expression and grouping on it in the same query. The expression, EvalTitle, is built in the GROUP BY clause and

is used by name in the SELECT.

 Example 5-19. Grouping by a calculated expression

SELECT evalTitle,count(c.Title)

FROM PEF.Contacts as c

GROUP BY "Title: " +c.Title as EvalTitle

Returning Entities from an Entity SQL GROUP BY Query

Now, let’s take a look at how you can return full objects from Entity SQL when using

GROUP BY. The trick is in using nested queries.

To reproduce the LINQ query that grouped by Title and returned each title with its

collection of contacts, you can use a nested query as an expression in the SELECT state-

ment, as shown in Example 5-20. It seems as though the query does not have to follow the rule of being part of the GROUP BY clause or the target of an aggregate.

 Example 5-20. An Entity SQL GROUP BY query that returns entities

SELECT groupCon.Title,

(SELECT c FROM PEF.Contacts as c

WHERE c.Title= groupCon.Title)

FROM PEF.Contacts as groupCon

GROUP BY groupCon.title

The nested query returns a collection of contacts whose Title property equals the cur-

rent title being returned by the group. Although this looks like it might do some scary

things on the server with respect to the generated SQL, the SQL is similar to the SQL

created as a result of the first LINQ query in this section on grouping.

Filtering Based on Group Properties

You saw that LINQ uses the WHERE clause to filter within a group. In Entity SQL, you

can use the HAVING clause for this purpose, as shown in Example 5-21.

 Example 5-21. Entity SQL’s HAVING clause, which helps with filtering

SELECT groupCon.Title,count(groupCon.ContactID)

FROM PEF.Contacts as groupCon

GROUP BY groupCon.title

HAVING count(groupCon.ContactID)>150

Grouping in Entity SQL | 121

Download from Library of Wow! eBook <www.wowebook.com>

This returns only the title groups that contain more than 150 contacts. The results will

be as follows:

Mr. 255

Ms. 177

Shaping Data with Entity SQL

As you’ve seen already, projections in Object Services result in DbDataRecords, as opposed to the anonymous types that LINQ returns. However, even in these

DbDataRecords, you can still find complete entities and navigate through their

associations.

The query shown in Example 5-22 results in an ObjectQuery of DbDataRecords that are structured as rows and columns. Each row in this result has two columns (also called

 fields). An Address entity is contained in the first field and a Contact entity is contained in the second field.

 Example 5-22. Entity SQL resulting in addresses with their contacts

SELECT a,a.Contact

FROM PEF.Addresses AS a

WHERE a.CountryRegion='Canada'

Figure 5-1 shows the first column of one of the DbDataRecords in the results. The item is an Address entity. The second column contains a Contact entity. So, even though it

is a DbDataRecord, it still can contain known objects.

 Figure 5-1. The first column of each DbDataRecord result, which contains an Address entity The code in Example 5-23 inspects the Address entity in the first field and the Contact entity in the second field. As with the earlier LINQ example, the contacts will

not be aware of all of the related addresses until each address has been enumerated

over. With the strongly typed variables and the IntelliSense that results, it is easy to

work with the objects.

 Example 5-23. Enumerating through and reading the shaped data from an ObjectQuery

foreach (DbDataRecord item in addresses)

{

122 | Chapter 5: Exploring Entity SQL in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

var con = (Contact)item["Contact"]; //cast to Contact type

Console.WriteLine("LastName: {0} #Addresses: {1}",

con.LastName.Trim(), con.Addresses.Count());

foreach (Address a in con.Addresses)

{

Console.WriteLine("....." + a.City);

}

Console.WriteLine();

}

Using Include with an ObjectQuery and Entity SQL

How would you apply Include when creating an ObjectQuery directly rather than using

LINQ to Entities?

Include is a query builder method and you can use it in the same manner as other query

builder methods. You can add it to ObjectSets, CreateQuery methods, or to an Object

Query returned by a CreateQuery. Example 5-24 shows how to apply Include when using CreateQuery.

 Example 5-24. The Include method in an Object Services query with Entity SQL

String query = "SELECT VALUE c " +

"FROM PEF.Contacts AS c ";

ObjectQuery<Contact> contacts = context.CreateQuery<Contact>(query)

.Include("Addresses");

The same rule applies for projections when using Entity SQL with Include. If you project in your query, Include will be ignored. It is able to work only when complete

entities are involved.

Pay attention to JOIN queries. If you use Include in a query that also has

a JOIN, the Include will be discarded—no warnings, no compiler errors.

Try a nested query instead, but validate your results.

When using the Include method to eager-load entity references, use the navigation

property for that property name (Contact), not the EntityReference property

(ContactReference), as with the ObjectQuery in Example 5-25.

 Example 5-25. Eager loading an entity reference with an ObjectQuery

String query = "SELECT VALUE add " +

"FROM PEF.Addresses AS add";

ObjectQuery<Address> addresses = context.CreateQuery<Address>(query)

.Include("Contact")

Just as you saw when using Include to load entity collections, an entity object will be

returned, not a DbDataRecord, and the entity reference data is loaded.

Shaping Data with Entity SQL | 123

Download from Library of Wow! eBook <www.wowebook.com>

Understanding Entity SQL’s Wrapped and Unwrapped Results

There is one last concept to highlight before finishing this chapter and moving on:

understanding when Entity SQL queries will return rows containing values, or just

values.

By default, queries using Entity SQL (ObjectQuery and EntityClient queries) return

rows. The rows are contained in the ObjectQuery results, or in the EntityClient’s DbDataReader. When the data is pulled out of the row as part of the query process, this

is referred to as unwrapping. Then, rather than a row, the ObjectQuery and DbDataReader will contain the returned value.

Near the end of Chapter 4, you saw the First and FirstorDefault methods used to return a single object, rather than an IQueryable, which would then need to be enumerated through to get at the object. Conceptually, Entity SQL queries that unwrap results are doing the same.

Unwrapping is possible only when a single value is returned in the ObjectQuery or DbDataReader. An Entity SQL query will return rows with the same number of columns

as items listed in the projection, regardless of what type the item is—a string, an entity, or even a collection. Take, for example, a simple projection of names as shown in

Table 5-1, or a projection that returns shaped data. Table 5-2 shows rows, each containing three strings and an EntityCollection. Each row in the results of Table 5-3

contains an entity and an EntityCollection. Note that the rows in the tables represent

a DbDataRecord type.

 Table 5-1. A simple projection of names

Column 1

Column 2

Column 3

Row 1

Mr.

John

Doe

Row 2

Sr.

Pablo

Rojas

Row 3

Mrs.

Olga

Kolnik

 Table 5-2. Rows containing three strings and an EntityCollection

Column 1

Column 2

Column 3

Column 4

Row 1

Mr.

John

Doe

Address entity

Address entity

Row 2

Sr.

Pablo

Rojas

Address entity

Address entity

Row 3

Mrs.

Olga

Kolnik

Address entity

Address entity

124 | Chapter 5: Exploring Entity SQL in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

 Table 5-3. Rows containing an entity and an EntityCollection

Column 1

Column 2

Row 1

Contact entity

Address entity

Address entity

Row 2

Contact entity

Address entity

Address entity

Row 3

Contact entity

Address entity

Address entity

Because neither Object Services nor EntityClient can return anonymous types, the only

way to return these multicolumn rows is to wrap them in rows where the values are

contained in columns. Once you have the result set in memory, you can extract the

entities or values programmatically and interact with them as you have done in this

chapter and the previous chapter.

However, consider a query with only one value being returned in each row. By default,

you will still get a DbDataRecord, and that value will be the first and only column of the row (see Table 5-4).

 Table 5-4. Contact entities that are contained within rows

Column 1

Row 1

Contact entity

Row 2

Contact entity

Row 3

Contact entity

By adding the VALUE keyword (SELECT VALUE ...), you’re signaling that you want the

value to be unwrapped. With Object Services, this will result in an ObjectQuery of Contact entities. As you have seen, you must specify the proper type for the

ObjectQuery. This could be one of the EntityObject types defined in your model, or

some other type, such as a string or an integer. Look at the difference in how you need

to work with the results when the contact is wrapped (Example 5-26) and unwrapped

(Example 5-27). When it’s wrapped you still need to cast the value in the first column (Item(0)) to a contact before you can work with the contact, even though it’s the only

value in the result.

 Example 5-26. Wrapped Contact needs to be cast

String esql =

"SELECT c FROM PEF.Contacts AS c WHERE c.FirstName='Robert'";

var wrappedContacts = context.CreateQuery<DbDataRecord>(esql);

foreach (DbDataRecord record in wrappedContacts)

{

Understanding Entity SQL’s Wrapped and Unwrapped Results | 125

Download from Library of Wow! eBook <www.wowebook.com>

 Contact contact = (Contact)(record[0]);

Console.WriteLine(contact.LastName);

 Example 5-27. Unwrapped Contact does not need to be cast

String esql =

"SELECT VALUE c FROM PEF.Contacts AS c WHERE c.FirstName='Robert'";

var unwrappedContacts = context.CreateQuery<Contact>(esql);

foreach (Contact contact in unwrappedContacts)

Console.WriteLine(contact.LastName);

}

Entity SQL Rules for Wrapped and Unwrapped Results

Here are some rules to remember for Entity SQL queries:

• Use SELECT VALUE when projecting more than one type.

• When querying with SELECT, the ObjectQuery type must be a DbDataRecord.

• You can use SELECT VALUE when projecting a single value or entity.

• When querying with SELECT VALUE, the ObjectQuery type must be the same type as

the value being returned.

Breaking any of these rules will result in a runtime exception when the Entity Frame-

work attempts to generate the store’s SQL from the Entity SQL or when the data is

returned and the Entity Framework is trying to align the returned type with the type

defined for the ObjectQuery.

Digging a Little Deeper into EntityClient’s Results

Because EntityClient streams results and does not materialize records, you won’t get

entity objects. However, the data that results will be shaped based on the entity shape,

and therefore, as you saw in some of the earlier examples, you can cast the results back

to the appropriate entity. You can force the results to be wrapped or unwrapped.

Remember that DbDataRecords can contain nested DbDataRecords, or even nested

DbDataReaders, which is how it’s possible to shape the results.

Here are a variety of different queries and the results to expect in EntityClient:

• Query projecting two simple types:

SELECT c.FirstName,c.LastName FROM PEF.Contacts AS c

Each row of the DataReader that results is a DbDataRecord with two columns. Each

column contains a string.

• Query projecting a single value that is an entity without using the VALUE keyword:

SELECT c FROM PEF.Contacts AS c

126 | Chapter 5: Exploring Entity SQL in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

Each row of the DataReader that results is a DbDataRecord with one column. The

column contains an IExtendedDataRecord, which is a type of a DbDataRecord. The

DbDataRecord contains one column for every property in a Contact entity, filled with

the relevant values.

• Complex query projecting an entity and a collection of entities:

SELECT c, c.Addresses FROM PEF.Contacts AS c

Each row of the DataReader that results is a DbDataRecord. There are two columns:

the first contains an IExtendedDataRecord with one column for each property of the

Contact entity, and the second contains a whole DbDataReader that implements

IExtendedDataRecord. This allows the data to be cast to an EntityCollection of

address types.

• Query projecting a single entity using SELECT VALUE:

SELECT VALUE c FROM PEF.Contacts AS c

Each row of the DataReader that results is an IExtendedDataRecord. There is one

column for every property of the Contact entity, filled with the relevant data.

• Query projecting a single simple type using SELECT VALUE:

SELECT VALUE c.LastName FROM PEF.Contacts AS c

Each row of the DataReader that results is a string.

The ADO.NET documentation has a great example of reading a

DbDataReader and handling any of these data types as you hit them. Look

for the MSDN Library topic “How to: Execute an Entity SQL Query

Using EntityCommand (Entity Framework).”

Summary

In this chapter, you learned a variety of ways to express more complex queries in Entity

SQL and how to read the query results. You’ve also learned some of the nuances of

using Entity SQL.

Entity SQL is certainly the underdog for querying in Entity Framework. Although most

scenarios will be satisfied by LINQ to Entities queries, there will still be times when

Entity SQL will come to the rescue. The most obvious scenario is when you simply

want to stream data without materializing objects—for example, when writing reports.

In this case, EntityClient with Entity SQL expressions is the most favorable solution.

Summary | 127

Download from Library of Wow! eBook <www.wowebook.com>

I have clients who need to build very complex queries dynamically. These are cases where their users have many fields and a variety of options for constructing a search,

and in code, we need to build a query. Although LINQ to Entities is composable and

very flexible, there may be a point at which you begin to hit walls. Reverting to the

simpler task of building and concatenating string-based expressions (addressing any

possible security concerns) has solved this problem many times. There’s also another

option to consider: a PredicateBuilder class created by Joseph Albahari at http://www

 .albahari.com/nutshell/predicatebuilder.aspx.

128 | Chapter 5: Exploring Entity SQL in Greater Depth

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 6

Modifying Entities and Saving Changes

So far, we have focused on the many ways to query an EDM to retrieve data from the

database. This is only part of the Entity Framework story and the beginning of the life

cycle of an entity. Once you have retrieved entities you can modify them, delete them,

or even add new ones and then save all of these changes back to the database. In this

chapter, we’ll take a high-level look at the way in which the Entity Framework is able

to track these changes and get the necessary data back to the database. Then we’ll watch

updates, inserts, and deletions in action, not only in code samples, but also in terms of

what happens in the database in response.

Later chapters will focus on modifying the default behavior.

Keeping Track of Entities

In the previous chapters, you used an ObjectContext, the SampleEntities class (renamed

“PEF” in Chapter 5), which inherits from ObjectContext, to create and execute queries.

You also worked with the objects that were returned by those queries, whether they

were entities, anonymous types, or objects within a DbDataRecord. The nature of this

interaction was to iterate through the objects and extract a few properties to display in

a console window.

The context can also keep track of these entities once they’ve been returned by a query.

As your application logic modifies the objects, the context is notified and makes note

of changes. The context is responsible for managing the state of its entities, including

those that you create in memory.

Entity Framework takes a snapshot of an entity’s values when the ObjectContext first

becomes aware of the entity. This will happen by default when query results are being

materialized into objects. The context stores two sets of these values. The first set rep-

resents the original values and remains static. The second set represents the entity’s

current values, and these will change in response to edits being performed to the entity

properties.

129

Download from Library of Wow! eBook <www.wowebook.com>

Managing an Entity’s State

By default, as each entity is materialized from the query results, the ObjectContext creates an extra object behind the scenes, called an ObjectStateEntry. This is where the

snapshot—that is, the two copies of the object’s values—is stored.

Think of the ObjectStateEntry as the hidden twin of its companion EntityObject. Entity

Framework uses each ObjectStateEntry to keep track of any changes made to its rele-

vant entity. If you execute an additional query using the same context, Entity Frame-

work will create more ObjectStateEntry objects. The context will manage all of these

as well for as long as their related entity remains in memory, unless you indicate in your code using the Detach method that you would like the context to stop tracking the

changes. You’ll learn more about detached entities in Chapter 10.

The ObjectContext can track only entities. It cannot keep track of anonymous types or

nonentity data that is returned in a DbDataRecord.

ObjectStateEntry also has a State property whose value reflects the state of the entity

(Unchanged, Modified, Added, or Deleted). As the user modifies the objects, the Object

Context updates the current values of the related ObjectStateEntry as well as its State. As you learn more about the Entity Framework, you’ll discover how to locate

and inspect the details of an ObjectStateEntry.

The object itself also has an EntityState property, which it inherits from

EntityObject. As long as the object is being managed by the context, its EntityState

will always match the State of the ObjectStateEntry. If the object is not being managed

by the context, there is no ObjectStateEntry and the entity’s state is Detached.

Entities have three different types of properties: scalar properties, complex properties

(which contain more scalar properties), and navigation properties. ObjectStateEntry

keeps track of only the scalar values (including those inside the complex properties) of

its related entity.

You’ll learn more about complex types and complex properties in

Chapter 15.

The navigations are tracked in a very different way that is out of scope for this overview but that you will learn a lot about in Chapter 10 as well as in Chapter 19, which focuses on relationships and associations.

If you have been using version 1 of Entity Framework, you’ll be happy

to know that having the foreign key value as a scalar value in the entity

will make change tracking of relationships enormously simpler in Entity

Framework 4. You’ll see more about this in Chapter 19.

130 | Chapter 6: Modifying Entities and Saving Changes

Download from Library of Wow! eBook <www.wowebook.com>

As the scalar properties are changed—for example, Contact.LastName—the new value of LastName is stored in the ObjectStateEntry’s set of current values for that contact,

and if the ObjectStateEntry.State value was Unchanged at the time of the modification,

its value will be set to Modified.

Saving Changes Back to the Database

ObjectContext has a single method, SaveChanges, which persists back to the database

all of the changes made to the entities. A call to SaveChanges will check for any ObjectStateEntry objects being managed by that context whose State is not

Unchanged, and then will use its details to build separate Insert, Update, and Delete

commands to send to the database. We’ll start by focusing on entities that have come

into the context as a result of queries and have been modified.

Example 6-1 shows a simple ObjectQuery to retrieve the first contact from the Contacts EntitySet. Remember from Chapter 3 that context.Contacts is a method that will return an ObjectSet of Contact types. The example then uses the LINQ extension method

First to pull back only the first result.

The FirstName and ModifiedDate properties are given new values, and then

SaveChanges is called.

 Example 6-1. Querying for a contact, editing, and then saving back to the database

using (PEF context = new PEF())

{ var contact = context.Contacts.First();

contact.FirstName = "Julia";

contact.ModifiedDate = DateTime.Now;

context.SaveChanges();

}

Looking at the SQL Profiler, you can see the following parameterized Update command,

which was sent to the SQL Server database when SaveChanges was called:

exec sp_executesql N'update [dbo].[Contact]

set [FirstName] = @0, [ModifiedDate] = @1

where ([ContactID] = @2)

',N'@0 nvarchar(50),@1 datetime2(7),@2 int',@0=N'Julia',

@1='2009-11-30 09:27:20.3335098',@2=1

This command updates the Contact table, setting the FirstName and ModifiedDate

properties for the Contact whose ContactID is 1. The values are passed in via parameters,

and the last parameter, @2, shows the value used for the ContactID.

Saving Changes Back to the Database | 131

Download from Library of Wow! eBook <www.wowebook.com>

If the FirstName column in the database was a char or nchar rather than

nvarchar, Entity Framework would have padded the incoming value

(Julia) with enough spaces to match the length of the field. Using

nvarchar not only is more efficient in the database, but also results in

more efficient messages to the server.

When the context was notified of a property change, not only did it modify the current

value in the ObjectStateEntry, but it also set another tracking value that indicates that

the property was changed. During SaveChanges, the context then looks for those track-

ing values to determine which fields were changed. In our sample, the FirstName and

ModifiedDate properties had changed, and therefore those are the only values that it

sends into the command. It uses the value of the property that is marked as the EntityKey, ContactID, to identify which row to update.

Even if the property was modified using the same value as the original

value, the context will use that value in the update. It’s not comparing

the original and current values, but is depending on the knowledge that

the property was modified, regardless of what the modification was.

Let’s see what happens when we have more than one entity.

Example 6-2 queries for all contacts named Robert, along with their addresses, then returns a List of the entity graphs: Contacts with Addresses. The example then randomly selects one of these contacts and changes its FirstName to Bobby. Another contact

is selected and the Street property of the first Address is edited. Finally, SaveChanges is called.

 Example 6-2. Editing various entities and calling SaveChanges

var contacts = context.Contacts.Include("Addresses")

.Where(c =>c.FirstName=="Robert").ToList();

var contact = contacts[3];

contact.FirstName = "Bobby";

contact = contacts[5];

var address = contact.Addresses.ToList()[0];

address.Street1 = "One Main Street";

context.SaveChanges();

Initially, 12 contacts and 13 addresses were retrieved. Let’s look at the SQL commands

sent to the database when SaveChanges is called:

exec sp_executesql N'update [dbo].[Address]

set [Street1] = @0

where ([addressID] = @1)

',N'@0 nvarchar(50),@1 int',@0=N'One Main Street',@1=2424

exec sp_executesql N'update [dbo].[Contact]

set [FirstName] = @0

132 | Chapter 6: Modifying Entities and Saving Changes

Download from Library of Wow! eBook <www.wowebook.com>

where ([ContactID] = @1)

',N'@0 nvarchar(50),@1 int',@0=N'Bobby',@1=298

The first command sent to the database updates the single Address that was modified,

and only its Street value and identity, AddressID, are included. Next, the command to

update the contact was sent. None of the other entities was modified, so the

ObjectContext doesn’t bother to construct or send any commands for those entities.

The call to SaveChanges is very efficient in this aspect.

ObjectContext learned everything it needed to know to create these commands, not by

looking at the Contact and Address objects that it was managing but by looking at the

ObjectStateEntry objects that it was maintaining for each of the 12 Contact and 13

Address entities. ObjectContext first checked the State to see whether anything needed

to be processed. Because the State for the untouched entities was Unchanged, it ignored

them. For the two that were Modified, it checked its internal list of modified properties

to determine what properties needed to be included in the Update command.

When the update completes, the modified Contact and Address entities will be refreshed

so that their EntityState is Unchanged, and the original values will be set to match the

current values.

You’ll learn about alternatives to using SaveChanges’ default behavior in

Chapters 10 and 11.

From Entity Framework Command to Native Command

In between the call to SaveChanges and the execution of SQL commands in the database,

the Entity Framework did a lot of work under the covers to construct the command.

The process is similar to how the commands and queries are compiled and converted

into store queries.

As noted earlier, the first step in the process is to inspect all of the ObjectStateEntry

objects for the entities that the context is managing. Those that have a State of Unchanged are ignored. The Modified entities that you worked with earlier, as well as

any that are Added or Deleted, are processed by the context. As the commands are built,

the model’s metadata (conceptual, store, and mapping layers) is read and the mapping

information is used to translate the entities and their properties into table and column

names. The mappings also provide the knowledge to move from model relationships

to database foreign keys. The ADO.NET provider, such as SqlClient, does the final job

of constructing the appropriate native command.

You’ll look more closely at this process in later chapters.

Saving Changes Back to the Database | 133

Download from Library of Wow! eBook <www.wowebook.com>

Inserting New Objects

Now that you have an idea of how edits are handled, let’s look at how to insert data.

In Example 6-3, a new address is created in memory. Rather than use Address.CreateAddress, this code instantiates a new Address directly, because even if I had used the factory method, I still would have to set all of the string scalars. Then, after attaching the address to a contact that was queried from the database,

SaveChanges is called.

There are many different ways to link entities to one another based on

particular scenarios. You will learn about this in Chapter 19.

 Example 6-3. Creating a new address in memory

var contact = context.Contacts.Where(c => c.FirstName == "Robert").First();

var address = new Address();

address.Street1 = "One Main Street";

address.City = "Burlington";

address.StateProvince = "VT";

address.AddressType = "Business";

address.ModifiedDate = DateTime.Now;

//join the new address to the contact

address.Contact = contact;

context.SaveChanges();

When the newly created address is joined with the contact, because ObjectContext is

managing the contact the context will recognize that it needs to create a new ObjectStateEntry for the Address. Its State will be set to Added. When SaveChanges is

called, because the State is Added an Insert command is constructed and sent to the

database. Here is that command:

exec sp_executesql N'insert [dbo].[Address]([Street1], [Street2], [City],

[StateProvince], [CountryRegion], [PostalCode], [AddressType],

[ContactID], [ModifiedDate])

values (@0, null, @1, @2, null, null, @3, @4, @5)

select [addressID]

from [dbo].[Address]

where @@ROWCOUNT > 0 and [addressID] = scope_identity()',

N'@0 nvarchar(50),@1 nvarchar(50),@2 nvarchar(50),@3 nvarchar(50),

@4 int,@5 datetime2(7)',

@0=N'One Main Street',@1=N'Burlington',@2=N'VT',@3=N'Business',

@4=209,@5='2009-11-30 09:20:50.2291578'

This SQL command sent to the database by Entity Framework performs a number of

notable actions.

First, it has an Insert command that inserts a new address using the values of each

property of the entity. Notice that even though the code did not set all of the properties, 134 | Chapter 6: Modifying Entities and Saving Changes

Download from Library of Wow! eBook <www.wowebook.com>

the command uses all of the properties and inserts defaults, in this case null, where the

properties weren’t explicitly set in the code.

The fifth line down is the beginning of a Select command. In addition to inserting the

new address, the command will return to the application the primary key value that

the database generated for the new address. As part of the call to SaveChanges, the new

address in the application memory will receive its AddressID from the database so that

you can continue working with it in code if you wish.

When the insert completes, not only will the address in memory have its new

AddressID value, but like the update in the preceding section, the entity will be refreshed and its EntityState will be set to Unchanged.

You may have noticed that sometimes I use State, while others I use

EntityState. That’s because the ObjectStateEntry property for tracking

state is State, while the EntityObject property is named EntityState.

Inserting New Parents and Children

The preceding example inserted a new address to an existing contact. What if you

wanted to create a new contact with a new address? In typical data access scenarios,

you would have to first insert the new contact, retrieve its ContactID, and then use that

to insert the new address. SaveChanges does all of this for you when it sees that both

are new and that they are related. It also uses the model’s mappings to figure out which

is the dependent entity (in this case, Address) and needs the foreign key (ContactID).

With this information, it executes the database inserts in the correct order.

The code in Example 6-4 creates a new contact on the fly using the Contact class’s CreateContact factory method.

Recall that the model’s default code generator creates a factory method

for every EntityObject. The method uses all of the non-nullable prop-

erties as its arguments. I’m using an example of this, CreateContact, in

Example 6-4. In Chapter 10, we’ll create an overload to allow you to pass in a more logical set of parameters. The method exists only for our

own use and is not used internally by Entity Framework.

The example then creates a new address in the same manner as with Example 6-4. Next, it joins the new contact to the new address. At this point, the context has no knowledge

of these new entities; therefore, they need to be added to the context. Because the

entities are joined, you can add either entity, and it will bring along the rest of the graph.

So, in this case, the contact is added explicitly and the address is pulled into the context along with the contact.

Inserting New Parents and Children | 135

Download from Library of Wow! eBook <www.wowebook.com>

ObjectQuery has an AddObject method that is inherited by ObjectSet. It’s

easiest to use the ObjectSet.AddObject method (as in Example 6-4) as it requires fewer parameters. You’ll learn more about adding and attaching entities to the context and to each other in Chapter 19. You will also see a variety of examples of these methods in many of the samples

throughout the book.

Finally, SaveChanges is called.

 Example 6-4. Inserting a new contact with a new address

var contact = Contact.CreateContact

(0, "Camey", "Combs", DateTime.Now, DateTime.Now);

var address = new Address();

address.Street1 = "One Main Street";

address.City = "Olympia";

address.StateProvince = "WA";

address.AddressType = "Business";

address.ModifiedDate = DateTime.Now;

//join the new address to the contact

address.Contact = contact;

//add the new graph to the context

context.Contacts.AddObject(contact);

context.SaveChanges();

As the entities are added to the context, the context creates a new ObjectStateEntry for

each one and sets their State to Added. SaveChanges handles these as it did with the

previous insert, except that it also takes care of using the contact’s new ContactID when

inserting the address.

The following SQL is the result of the call to SaveChanges. There are two commands.

The first command inserts the new contact and performs a Select to return the new

contact’s ContactID.

The second command inserts the new address, and as you can see in the last line, the

@4 parameter has a value of 714. This is the new ContactID. This command also selects

the new address’s AddressID value to return to the application.

exec sp_executesql N'insert [dbo].[Contact]([FirstName], [LastName], [Title],

[AddDate], [ModifiedDate])

values (@0, @1, null, @2, @3)

select [ContactID]

from [dbo].[Contact]

where @@ROWCOUNT > 0 and [ContactID] = scope_identity()',

N'@0 nvarchar(50),@1 nvarchar(50),@2 datetime2(7),@3 datetime2(7)',

@0=N'Camey',@1=N'Combs',@2='2009-08-30 09:27:31.7449098',

@3='2009-11-30 09:27:31.7449098'

exec sp_executesql N'insert [dbo].[Address]([Street1], [Street2], [City],

[StateProvince], [CountryRegion], [PostalCode], [AddressType],

[ContactID], [ModifiedDate])

values (@0, null, @1, @2, null, null, @3, @4, @5)

136 | Chapter 6: Modifying Entities and Saving Changes

Download from Library of Wow! eBook <www.wowebook.com>

select [addressID]

from [dbo].[Address]

where @@ROWCOUNT > 0 and [addressID] = scope_identity()',

N'@0 nvarchar(50),@1 nvarchar(50),@2 nvarchar(50),@3 nvarchar(50),

@4 int,@5 datetime2(7)',

@0=N'One Main Street',@1=N'Olympia',@2=N'WA',@3=N'Business',

@4=714,@5='2009-11-30 09:27:31.7449098'

As you build more complex models later in the book, you will see how the insert can

handle various types of entities with data that is related through navigation properties.

In addition, with other types of mappings, such as inheritance, you will see entities that map back to multiple database tables and even entities in a many-to-many relationship.

Deleting Entities

The last type of modification to look at is deleting entities. The Entity Framework has a very specific requirement for deleting data: it must have an entity in hand in order to delete it from the database. ObjectContext has a DeleteObject method that takes

an EntityObject as a parameter—for example, an instance of a Contact. When

DeleteObject is called, the context sets the State of that object’s ObjectStateEntry to

Deleted. To be explicit, it does not delete the entity, but marks it as “to be deleted from the database. ” When SaveChanges is called, the context notes the Deleted State and

constructs a Delete command to send to the database.

If the entity has already been retrieved from the database, this will not pose a problem.

But sometimes you might want to delete data from the database that has not been

queried. Entity Framework does not provide a way to delete data in the database di-

rectly; however, as you will learn in Chapter 16, it is possible to pass commands directly to the database with the ExecuteStoreCommand method. You could use that to send a

delete command.

Example 6-5 demonstrates the scenario where the contact to be deleted has not yet been retrieved. It uses the GetObjectByKey method described in Chapter 4 to retrieve the contact.

Here you can also see how an EntityKey is constructed on the fly using the strongly

typed EntitySet name (which includes the name of the EntityContainer, PEF), the name

of the property that is the EntityKey, and the value of the key. Therefore, the EntityKey is for a Contact whose ContactID is 438.

The EntityKey, which is in the System.Data namespace, is passed into the GetObjectBy

Key method, which will first inspect the existing EntityObjects being managed by the

context to see whether that contact has already been retrieved. If it is not found there,

the context will create and execute a query to retrieve that contact from the data store.

The GetObjectByKey method returns an Object. If you wanted a Contact type, you would

have to explicitly cast the Object to Contact. But in this case, it is not necessary to cast Deleting Entities | 137

Download from Library of Wow! eBook <www.wowebook.com>

that to a Contact type, which is why a contact variable is declared with var in Exam-

ple 6-5.

Once the object is in hand, it is passed into the DeleteObject method, which marks it

for deletion by setting the EntityState to Deleted.

 Example 6-5. Retrieving and deleting a contact entity

System.Data.EntityKey contactKey =

new System.Data.EntityKey("PEF.Contacts", "ContactID", 438);

var contact = context.GetObjectByKey(contactKey);

context.DeleteObject(contact);

context.SaveChanges();

Here is the Store command that GetObjectByKey executed, as well as the Delete com-

mand that was executed as a result of the call to SaveChanges:

exec sp_executesql N'SELECT

[Extent1].[ContactID] AS [ContactID],

[Extent1].[FirstName] AS [FirstName],

[Extent1].[LastName] AS [LastName],

[Extent1].[Title] AS [Title],

[Extent1].[AddDate] AS [AddDate],

[Extent1].[ModifiedDate] AS [ModifiedDate]

FROM [dbo].[Contact] AS [Extent1]

WHERE [Extent1].[ContactID] = @p0',N'@p0 int',@p0=438

exec sp_executesql N'delete [dbo].[Contact]

where ([ContactID] = @0)',N'@0 int',@0=438

The Delete command simply passes in the ContactID to delete the appropriate data.

If you don’t already happen to have the object in memory and don’t want to retrieve it

from the database just for the sake of deleting it, there are some alternatives. One is to use a stored procedure that allows you to pass in the ContactID and then performs the

delete on your behalf. Another is to use Entity Framework’s new ExecuteStoreCom mand method. You will learn how to use both of these methods in Chapter 16.

An additional possibility, which is a bit of a hack, is to create an entity

in memory to delete. But you need to be careful not to indicate that it

is a new entity or Entity Framework will attempt to insert it into the

database. Alex James, from the Entity Framework team, discusses pros

and cons of this method in Tip 9 of his excellent blog series: http://blogs

 .msdn.com/alexj/archive/2009/03/27/tip-9-deleting-an-object-without

 -retrieving-it.aspx.

138 | Chapter 6: Modifying Entities and Saving Changes

Download from Library of Wow! eBook <www.wowebook.com>

The sample database has a constraint defined for the Address table’s ContactID column, called a cascading delete. This tells the database that when the contact with the matching ContactID is deleted from the Contacts table, it should delete any Addresses that have

the same ContactID value. You’ll learn more about cascading deletes in the database

and the model in Chapter 19.

Summary

In this chapter you saw how the Entity Framework creates the necessary Insert, Update, and Delete commands to store your changes to the database with a single call

to SaveChanges. This is the default behavior of the Entity Framework and one of its core

features.

However, you are not bound by this default behavior. It is possible to override this

mechanism to leverage your own stored procedures. The Entity Framework has a

number of ways to use stored procedures. The next chapter will introduce you to over-

riding the dynamic generation of Insert, Update, and Delete commands with your own

stored procedures, and show you how to use stored procedures to query data. You also

can work with stored procedures that the Designer does not support as easily. We will

cover these more advanced techniques in Chapter 16.

You will learn even more about object materialization, ObjectStateEntry, change track-

ing, and other subjects in great detail in Chapter 10. There are additional functions of database updates that are critical, such as transactions and concurrency. These are

advanced topics that we will cover in later chapters.

Summary | 139

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 7

Using Stored Procedures with the EDM

Many databases use stored procedures to perform predefined logic on database tables,

and many organizations have policies in place that require the use of these stored pro-

cedures. Although one of the key features of the Entity Framework is its ability to automatically build native commands based on your LINQ to Entities or Entity SQL

queries, as well as build the commands for inserting, updating, or deleting data, you

may want to override these steps and use your own predefined stored procedures. Al-

though the dynamically built commands are secure, efficient, and generally as good as

or better than those you may write yourself, there are many cases where stored proce-

dures already exist and your company practices may restrict direct use of the tables.

Alternatively, you may just want to have explicit control over what is executed on the

store and prefer to create stored procedures.

The sample database includes six stored procedures that we skipped in our discussion

of model creation in Chapter 2. In this chapter, you will update the model, pulling in those six stored procedures, implementing them in the model, and interacting with

them in some code.

In this chapter, you will override the Entity Framework’s command generation feature

for a particular entity and direct it to use your stored procedures instead when SaveChanges is called. You’ll also learn how to incorporate and use procedures that

return data. The chapter will also address the concept of combining entities that map

to database views with stored procedures to provide fully functional entities that com-

pletely avoid direct table access. See the sidebar “Protecting Tables by Using Views and

Stored Procedures” on page 147.

This chapter will focus on the stored procedures functionality that the Entity Data

Model (EDM) Designer readily supports. In Chapter 16, you’ll work with stored procedures that are not so easily implemented.

141

Download from Library of Wow! eBook <www.wowebook.com>

Updating the Model from a Database

When we originally created this model in Chapter 2, we brought in only the tables and view, and skipped over the stored procedures in the database. Now we will bring those

into our model.

The EDM tools provide a feature called Update Model from Database, which is avail-

able from the Designer context menu. You can use it to add previously skipped database

objects or those that have been added to the database since the time you originally

created the model. Update Model from Database can also recognize new fields added

to tables that have already been mapped in the database.

To bring these stored procedures into the model, start by right-clicking anywhere in

the Model Browser or the Designer and selecting Update Model from Database. This

will open the Update Wizard, which instructs you to Choose Your Database Objects.

In this case, you can expand only the Stored Procedures node because there are no

tables or views in the database that aren’t already in your model. The list of database

objects available in this view is not based on which entities you have created, but on

which tables, views, and other objects are represented in the Store Schema Definition

Layer (SSDL) portion of the model. Because you did not include the stored procedures

when you first built the model, they are not part of the SSDL, and therefore the Update

Model from Database tool sees them as being new.

If you had added new tables and views to the database, you would see

them listed here as well.

The Stored Procedures node will display user-defined stored procedures as well as user-

defined scalar-valued functions in the database.

Checking the Stored Procedures checkbox will automatically select all of the available

procedures. You can expand the node to see what’s there or to individually select the

objects you want to use. For this example, you’ll want all six procedures: AddressCount

ForContact, AddressTypeCount, ContactsbyState, DeleteContact, InsertContact, and

UpdateContact, as shown in Figure 7-1.

The wizard has two additional tabs that are read-only: Refresh and Delete. These tabs

will display which existing items in the model will be refreshed and which will be deleted (if the tables they map to have been deleted from the database).

Click Finish to add the stored procedures to the model. When the update is complete,

the model will not look any different when viewed in the Designer. Stored procedures

are not automatically added to the conceptual layer of the model. Instead, they have

been represented in the SSDL as function elements. It will be your job to define how

these functions should be implemented in the conceptual model using mapping.

142 | Chapter 7: Using Stored Procedures with the EDM

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 7-1. Selecting database objects that aren’t already contained in your model

Working with Functions

Stored procedures and user-defined functions (UDFs) in the database are represented

in the metadata as functions. Example 7-1 lists the six functions that were created in the SSDL to represent the six stored procedures you just brought in from the sample

database.

 Example 7-1. Functions created in the SSDL

<Function Name="AddressCountForContact" Aggregate="false" BuiltIn="false"

NiladicFunction="false" IsComposable="false"

ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo">

<Parameter Name="contactID" Type="int" Mode="In" />

</Function>

<Function Name="AddressTypeCount" Aggregate="false" BuiltIn="false"

NiladicFunction="false" IsComposable="false"

ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo">

Working with Functions | 143

Download from Library of Wow! eBook <www.wowebook.com>

 <Parameter Name="AddressType" Type="nvarchar" Mode="In" />

</Function>

Function Name="ContactsbyState" Aggregate="false" BuiltIn="false"

NiladicFunction="false" IsComposable="false"

ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo">

<Parameter Name="state" Type="nvarchar" Mode="In" />

</Function>

<Function Name="DeleteContact" Aggregate="false" BuiltIn="false"

NiladicFunction="false" IsComposable="false"

ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo">

<Parameter Name="contactid" Type="int" Mode="In" />

</Function>

<Function Name="InsertContact" Aggregate="false" BuiltIn="false"

NiladicFunction="false" IsComposable="false"

ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo">

<Parameter Name="firstname" Type="nvarchar" Mode="In" />

<Parameter Name="lastname" Type="nvarchar" Mode="In" />

<Parameter Name="title" Type="nvarchar" Mode="In" />

</Function>

<Function Name="UpdateContact" Aggregate="false" BuiltIn="false"

NiladicFunction="false" IsComposable="false"

ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo">

<Parameter Name="contactid" Type="int" Mode="In" />

<Parameter Name="firstname" Type="nvarchar" Mode="In" />

<Parameter Name="lastname" Type="nvarchar" Mode="In" />

<Parameter Name="title" Type="nvarchar" Mode="In" />

</Function>

Each of these six functions represents a different stored procedure in the database. The

first three return query results. The last three—the Insert, Update, and Delete procedures—perform the changes you would expect to the database.

Function Attributes

Most of the function attributes align with attributes that are common to database pro-

cedures. Because the SSDL is describing the data store, these attributes are applied in

the model so that the Entity Framework API will have a thorough description of the

procedures.

Aggregate, BuiltIn, and NiladicFunction are attributes that apply to UDFs, not stored

procedures. For stored procedures, they will always be false. Because these are optional

and false by default, they are not even required here. If you were adding functions to

the SSDL manually for stored procedures, you wouldn’t even need to use these, but the

wizard inserts them.

144 | Chapter 7: Using Stored Procedures with the EDM

Download from Library of Wow! eBook <www.wowebook.com>

What the heck does niladic mean anyway? Niladic is a mathematical

term meaning that the function takes no input parameters. SQL Server’s

GetDate() is an example of a niladic function.

IsComposable refers to whether you can use the results of the function in another query.

This must always be false for stored procedures. You’ll learn more about this in the

section “Avoiding Inadvertent Client-Side Processing” on page 159.

The ParameterTypeSemantics attribute refers to the input parameter, such as State in

the ContactsbyState function. The AllowImplicitConversion enum (which is the de-

fault) merely means that the data type input can be converted implicitly to a store

provider data type if necessary. For example, if an integer is passed into this parameter, the Entity Framework will just go ahead and convert it to a char when creating the

command to execute the stored procedure.

The Parameter element describes any input or output parameters. In the case of the

ContactsbyState function, there is only an input parameter, specified by Mode="In".

Additional mode options are InOut and Out. All three align with the stored procedures

flags to define parameters that are being sent to the procedure. Here is a description of

each mode option:

In

In parameters are read by the stored procedure.

Out

Out parameters are populated by the procedure and returned.

InOut

InOut parameters are read by the stored procedure and returned. The procedure

may or may not update this parameter before returning it.

You’ll notice that the parameter in the SSDL is nvarchar, whereas the parameter in the

database’s procedure is more explicit: nvarchar(50). Neither Entity Framework nor

SQL Server will complain if you pass in more than 50 characters; SQL Server simply

truncates the extra characters. The other Function attributes are explained in the documentation.

Notice that for this query function, the SSDL defines only what is nec-

essary to call the function. There is no indication of returned data. You’ll

learn more about how stored procedures are implemented from the

SSDL back to the Conceptual Schema Definition Layer (CSDL) later in

this chapter.

Now let’s take a look at a more complex function, UpdateContact. Here is the actual

stored procedure:

Working with Functions | 145

Download from Library of Wow! eBook <www.wowebook.com>

PROCEDURE UpdateContact

@contactid INT,

@firstname NVARCHAR(50),

@lastname NVARCHAR(50),

@title NVARCHAR(50)

AS

UPDATE Contact

SET [FirstName]=@firstname,[LastName]=@lastname,[Title]=@title,

[ModifiedDate]=GETDATE()

WHERE [ContactID]=@contactid

The UpdateContact function in the SSDL has the same attributes as the

ContactsbyState function, as well as parameter elements to represent the input param-

eters. You will see later in this chapter how you can use mappings to easily leverage the

Update, Insert, and Delete stored procedures when coding against the EDM. You’ll

also see how the query stored procedures are handled differently than the Data Ma-

nipulation Language (DML) functions that modify the database.

DML, CRUD, and CUD

DML is a frequently used acronym that stands for Data Manipulation Language, and

it most often refers to the three types of functions a data access technology must provide to manipulate data: Insert, Update, and Delete. Some interpretations include Select.

You will also frequently see the term CRUD used, which stands for Create, Read, Update, and Delete (Create is used rather than Insert since CRUD sounds much better than IRUD). Lastly, some people use the term CUD to refer to the same three DML

operations (Create, Update, and Delete). Unfortunately, CUD has a different meaning

for people who live in cow country, which may cause some developers to prefer DML

instead.

Mapping Functions to Entities

As you saw in Chapter 6, the default behavior of the Entity Framework is to construct the necessary Insert, Update, and Delete commands on the fly when you call

SaveChanges.

You can override this behavior for specific entities by using the SSDL functions (based

on the database stored procedures) instead. You can map these functions to specific

entities. Then, when SaveChanges is called, the Entity Framework will use the designated

stored procedures rather than generate commands. For entities that have no function

mappings, the Entity Framework will perform the default behavior of generating the

commands dynamically.

The ContactsbyState, AddressCountForContact, and AddressTypeCount stored proce-

dures are for reading data, not updating. You can link functions for “read” stored pro-

cedures to entities that match what the procedure returns, to a scalar value, or to a

special type, called ComplexType, when the procedure returns a unique set of columns.

146 | Chapter 7: Using Stored Procedures with the EDM

Download from Library of Wow! eBook <www.wowebook.com>

You can use these functions in the EDM in other ways, but the Designer supports only

these scenarios and these are the scenarios we will cover in this chapter. A later chapter will dig into working with store commands that are not as simple to implement.

You will find the terms stored procedures and functions used interchangeably throughout the metadata and the Designer. The model con-

sistently refers to functions, whereas the Designer, in an effort to use

familiar terminology, uses stored procedures in a number of places.

The single mapping rule that remains in place is that every input parameter of a function

must match a property in the entity. You can’t substitute your own data to use as an

input parameter. You only can use one of the entity’s properties.

If you have moved from Entity Framework version 1, you’ll be happy

to know that many of the former mapping function rules have been

relaxed. You are no longer required to map all three functions and you

no longer need to provide foreign key parameters for entity references

when mapping. The latter was an aggravating rule, because it meant you

needed to provide a foreign key for delete functions.

There is a known behavior with respect to the mapping function feature.

If you map an update function but no delete function, you will get an

error when attempting to delete these entities. Therefore, even though

the schema does not require that you map both, if you want users to be

able to delete a particular entity type and you are mapping its update

function, you should also map its delete function.

Protecting Tables by Using Views and Stored Procedures

There’s another great benefit to mapping the Insert, Update, and Delete functions, and

that is security.

If you are reluctant to expose your database tables for querying, you don’t have to.

Earlier in this book, I discussed database views in the model. Views come into the model

as entities, but because views are read-only, Entity Framework is not able to construct

commands to persist data back to the database when you call SaveChanges. That makes

sense because you don’t persist back to the views; you need to send the data to tables.

However, these entities still participate in change tracking just like any other entities

(with a caveat about EntityKeys that I’ll discuss momentarily). You can then map stored

procedures to these view-based entities in order to persist their data when

SaveChanges is called. This gives you a complete round trip to query and update data

without exposing your database tables.

The caveat with view-based entities is that views do not have primary keys. The Entity

Data Model Wizard relies on primary keys to create EntityKeys, and EntityKeys, in turn,

Mapping Functions to Entities | 147

Download from Library of Wow! eBook <www.wowebook.com>

are relied on for change tracking. When the wizard cannot find a primary key it con-

structs a composite EntityKey from all of the non-nullable values in the entity. You may

want to modify the defined EntityKey, removing all of the properties that you don’t

want included.

Mapping Insert, Update, and Delete Functions to an Entity

If you look more closely at the Mapping Details window, you will notice two icons in

the upper-left corner. Select the Contact entity in the Designer to display its mappings.

The icons will become active. Clicking the top icon causes the Mapping Details window

to display the table mappings. The lower icon is for displaying function, a.k.a. stored

procedure, mappings. You can also display function mappings by right-clicking an entity and choosing Stored Procedure Mapping.

In the Mapping Details window, you will see three placeholders for selecting an Insert function, an Update function, and a Delete function, as shown in Figure 7-2.

 Figure 7-2. The function or stored procedures view of the Mapping Details window

Click the first item, Select Insert Function, which will display an arrow to the right that represents a drop-down list. Click the drop-down arrow to see your options. The Designer will identify all of the functions in the store layer and present them in the drop-

down list. Select the InsertContact function. The Designer will discover the parameters

that are defined in the SSDL and will automatically map them to properties in the

Contact entity that have matching names. In this example, everything lines up perfectly,

as you can see in Figure 7-3.

The InsertContact stored procedure happens to return the new ContactID that was

generated when the contact was inserted:

ALTER PROCEDURE [dbo].[InsertContact]

@FirstName NVARCHAR(50),

@LastName NVARCHAR(50),

@Title NVARCHAR(50)

AS

148 | Chapter 7: Using Stored Procedures with the EDM

Download from Library of Wow! eBook <www.wowebook.com>

INSERT INTO [Contact]

([FirstName]

,[LastName]

,[Title]

,[AddDate]

,[ModifiedDate])

VALUES

(@Firstname,@Lastname,@Title,GETDATE(),GETDATE())

SELECT SCOPE_IDENTITY() AS NewContactID WHERE @@ROWCOUNT > 0

 Figure 7-3. The InsertContact function mapped to the Contact entity

You may recall from Chapter 6 that when the Entity Framework constructs its own Insert command, it selects the new identity value and automatically pushes it into the

entity object that was inserted. You can achieve the same effect by mapping the returned

NewContactID value directly to the entity’s ContactID property. That will mean it will

not be necessary to requery the database to acquire the ContactID for an inserted contact.

To map the returned value, type NewContactID over the text “<Add ResultBinding>”.

The ContactID will be automatically chosen as the property to map to because it is the

EntityKey for Contact, and therefore it is a very good first guess for the Designer to make for you. Output parameters are supported, but not for EntityKey properties. See the

note about this in the following section, “Concurrency checking with Use Original

Value and Rows Affected Parameter options” .

Select the DeleteContact and UpdateContact functions to map to the other two func-

tions. Notice that the contactid parameter in DeleteContact does not automatically

map to the ContactID property. That’s because the automatic mapping is case-sensitive.

Map this parameter yourself. There are no other return values, so you will not need to

apply a Result Column Binding for the update (see Figure 7-4).

Mapping Functions to Entities | 149

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 7-4. The function mappings for Contact after you’ve finished mapping the stored procedures functions

Concurrency checking with Use Original Value and Rows Affected Parameter options

There are two additional options to point out in the function mappings. The first is the

Use Original Value checkbox for the Update function. As you learned in Chapter 6, an

entity will have an original value and a current value stored in its ObjectStateEntry. If

the entity has been modified, the current value will be used for the update by default.

Here you have the ability to modify that behavior by forcing the original value to be

used as a parameter for the function. This is useful in scenarios where you want to

leverage particular fields to identify concurrency issues in the database. The original

property value will be compared to the current database value. If the values do not

match, an OptimisticConcurrencyException will be thrown. Figure 7-5 shows a timeline with two users editing the same piece of information and how using the rowversion

(timestamp in SQL Server 2005 and earlier) for concurrency checking causes a concur-

rency exception when the second update occurs. In SQL Server, rowversion types are

binary data. The figure uses simple strings for demonstration only.

For example, you may be using a SQL Server rowversion type to identify that a row has

been modified. Each time a row is modified, the rowversion field is automatically up-

dated. If a user pulls data from the database and edits it, it’s possible that someone else edited the same database row before the user called SaveChanges. In that case, the rowversion value in the user’s entity will be different from the rowversion in the 150 | Chapter 7: Using Stored Procedures with the EDM

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 7-5. Using a timestamp/rowversion to check for concurrency conflicts when multiple users edit the same record

database. This is a convenient way of identifying that data is being edited concurrently,

and you might want to act on that knowledge—for example, alert the user and ask if

he wants to overwrite the changes the other user made. If the update or delete stored

procedure requests the rowversion as a parameter, you can force the original value to

be used by checking the Use Original Value option. That way, you don’t have to worry

if the code changed the rowversion (which it shouldn’t have done).

You will learn much more about concurrency with function mapping

and in other scenarios, as well as handling the OptimisticConcurrencyEx

ception, in Chapter 23.

The Rows Affected Parameter option will be enabled for any parameters that are defined

as OUTPUT parameters in the stored procedure, and will return an integer. Your job will

be to know whether the stored procedure uses that output value to return a number

indicating how many rows were affected by the command. If this is the case, you should

check the Rows Affected Parameter option to let the Entity Framework know it should

use that return value to determine whether any rows were affected by the command.

If the number “0” is returned, that will indicate that no rows were affected, with the

assumption that this is unexpected and, therefore, an OptimisticConcurrencyException.

Mapping Functions to Entities | 151

Download from Library of Wow! eBook <www.wowebook.com>

An output parameter must be mapped to something. If it is not mapped to an entity’s

property through the Result Column Binding, the model will expect the parameter to

be marked as a Rows Affected Parameter. Otherwise, you will get an error when the

model is being validated.

You cannot map an EntityKey property to a stored procedure’s output

parameter. If, for example, your procedure uses an output parameter to

return the identity value of a newly inserted entity (e.g., ContactID), you

won’t be able to map it to the ContactID property of the Contact entity.

The Designer will allow the mapping, as will the compiler. You will only

discover the problem at runtime.

Inspecting Mappings in XML

Now it’s time to see how these mappings affect the Mapping Schema Layer (MSL)

section of the model in the raw XML.

Remember that you can get to the XML view of the metadata by right-

clicking on the EDMX file in the Solution Explorer, choosing Open

With, and then selecting XML Editor.

A second EntityTypeMapping section has been added within the EntitySetMapping sec-

tion for the Contacts EntitySet. The first is the one that defines the scalar property

mappings for Contact. The new EntityTypeMapping contains an inner element called

ModificationFunctionMappings. Within this element the three functions are mapped

out, as shown in Example 7-2.

 Example 7-2. Contacts EntitySetMapping with function mappings added

<EntitySetMapping Name="Contacts">

<!--PROPERTY MAPPINGS-->

<EntityTypeMapping TypeName="SampleModel.Contact">

<MappingFragment StoreEntitySet="Contact">

<ScalarProperty Name="ContactID" ColumnName="ContactID" />

<ScalarProperty Name="ModifiedDate" ColumnName="ModifiedDate" />

<ScalarProperty Name="AddDate" ColumnName="AddDate" />

<ScalarProperty Name="Title" ColumnName="Title" />

<ScalarProperty Name="LastName" ColumnName="LastName" />

<ScalarProperty Name="FirstName" ColumnName="FirstName" />

</MappingFragment>

</EntityTypeMapping>

<!--FUNCTION MAPPINGS-->

<EntityTypeMapping TypeName="SampleModel.Contact">

<ModificationFunctionMapping>

152 | Chapter 7: Using Stored Procedures with the EDM

Download from Library of Wow! eBook <www.wowebook.com>

 <DeleteFunction FunctionName="ProgrammingEFDB1Model.Store.DeleteContact">

<ScalarProperty Name="ContactID" ParameterName="contactid" />

</DeleteFunction>

<InsertFunction FunctionName="ProgrammingEFDB1Model.Store.InsertContact">

<ScalarProperty Name="Title" ParameterName="title" />

<ScalarProperty Name="LastName" ParameterName="lastname" />

<ScalarProperty Name="FirstName" ParameterName="firstname" />

<ResultBinding Name="ContactID" ColumnName="NewContactID" />

</InsertFunction>

<UpdateFunction FunctionName="ProgrammingEFDB1Model.Store.UpdateContact">

<ScalarProperty Name="Title" ParameterName="title"

Version="Current" />

<ScalarProperty Name="LastName" ParameterName="lastname"

Version="Current" />

<ScalarProperty Name="FirstName" ParameterName="firstname"

Version="Current" />

<ScalarProperty Name="ContactID" ParameterName="contactid"

Version="Current" />

</UpdateFunction>

</ModificationFunctionMapping>

</EntityTypeMapping>

</EntitySetMapping>

In Example 7-2, you can see that a second EntityTypeMapping element has been added to the Contacts EntitySetMapping. Each function is listed within this new section, and

based on everything you have already learned about reading this file, the elements should be familiar and the mappings should be logical. Notice in UpdateContact that

each ScalarProperty has a Version attribute. That is the notation that ties back to the

Use Original Version checkboxes, which are unchecked, therefore indicating that the

version is Current.

Using Mapped Functions

Once you’ve mapped the functions to entities, when you call SaveChanges the Entity

Framework will automatically use the functions to handle any entities that need to be

persisted to the database anytime you call SaveChanges. It does this only for the entities to which you have mapped the functions. Other entities will be dependent on their own

function mappings, otherwise they will be persisted using EF-generated commands.

That’s all there is to it. You won’t call these functions directly in your code.

If you have mapped only Insert, and not Update or Delete, Entity Framework will use

it where available but will revert to the default pattern of building commands on the

fly for the Update and Delete, which are not mapped.

Mapping Functions to Entities | 153

Download from Library of Wow! eBook <www.wowebook.com>

You can use one of the database profiling tools mentioned in Chap-

ter 3 to verify that stored procedures are being called for operations that you have indicated with the mappings.

Example 7-3 shows a method that retrieves an address and a contact, edits both of them, and then saves them back to the database with SaveChanges.

 Example 7-3. Testing the function mapping

private static void FunctionOverride()

{ using (PEF context = new PEF())

{

var contact = context.Contacts.Include("Addresses")

.Where(c => c.Addresses.Any()).First();

//make a change to contact

contact.LastName = contact.LastName.Trim() + "-Jones";

//make a change to the address

var address = contact.Addresses.First();

address.Street2 = "Apartment 42";

//call SaveChanges

context.SaveChanges();

}

}

When the SaveChanges method is called, the required updates are sent to the database.

Because you mapped the functions to the Contact entity, the change to this contact

object is manifested in the following command, which executes the UpdateContact

stored procedure:

exec [dbo].[UpdateContact]

@contactid=3,

@firstname=N'Donna ',

@lastname=N'Carreras-Jones',

@title=N'Ms. '

Notice that some of the parameter values are padded to 50 characters. They are the

properties that have not been edited since they arrived in the query results. Even though

the parameters for the char values are all nvarchar both in the definition of the table

and in the stored procedure parameters, the original values are sent in their full field

length.

The Address entity has no mapped functions; therefore, Object Services constructed

this Update command, which was sent to the database:

exec sp_executesql N'update [dbo].[Address]

set [Street2] = @0

where ([addressID] = @1)',

N'@0 nvarchar(50),@1 int',@0=N'Apartment 42',@1=2260

154 | Chapter 7: Using Stored Procedures with the EDM

Download from Library of Wow! eBook <www.wowebook.com>

The first line of the command contains the Update command. The second line defines

the parameters for the command while the third provides the filter. The last line passes

in the parameter values. 'Apartment 42' is the new value of Street2 and 2260 is the

addressID of the address to update.

You will learn a lot more about how the Entity Framework performs saves and how

you can impact them as you read through the book. For now, let’s continue to focus

on stored procedures.

Using the EDM Designer Model Browser to Import Additional

Functions into Your Model

The Entity Data Model Designer has a feature that we have not yet used: the Model

Browser. The Model Browser helps you navigate the objects in the conceptual layer

(entities, properties, and associations). The lower portion allows you to navigate the

items in the SSDL. Notice that in the Model Browser, these are referred to as Tables,

Views, and Stored Procedures and not by their SSDL schema names of Entity and Function.

To access the Model Browser, you need to right-click in the background of the model

in the Designer, and then select Model Browser from its context menu.

In Figure 7-6, a number of the model’s objects have been expanded. This view of the model gives you a great way to see the overall picture of the conceptual layer and the

store layer without all of the nitty-gritty XML.

Many of the features of the Designer are available in the context menu of the Model

Browser as well, such as validating the model or view mappings, and updating the

model from the database.

The Model Browser also provides a means for mapping the functions from the SSDL.

Although you can also map some of these from an entity’s Mapping Details window,

you can map functions that are for reading data from the store only from the Model

Browser.

Take a few minutes to explore the other capabilities of the Model

Browser that are displayed in the context menu.

Using the EDM Designer Model Browser to Import Additional Functions into Your Model | 155

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 7-6. Viewing the CSDL and SSDL in the Model Browser

Mapping the First of the Read Stored Procedures:

ContactsbyState

In addition to the stored procedures that insert, update, and delete data, you also pulled a few stored procedures into the metadata that read data from the database. Here we’ll

map the first of the read stored procedures, ContactsbyState.

1. Right-click the ContactsbyState stored procedure in the Model Browser and choose

Add Function Import from its context menu.

The Add Function Import dialog box will let you name the function import and

map it to an existing entity, scalar type (e.g., an integer, string, etc.), or complex

type; see Figure 7-7.

2. Change the Function Import Name to GetContactsbyState. By default, the function

name will be the same as the stored procedure. This is a nice advantage of the loose

156 | Chapter 7: Using Stored Procedures with the EDM

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 7-7. Mapping a stored procedure to an entity that will return a Contact entity

coupling between the model and the database. I can name the function in a way

that makes sense to my domain.

3. Click the Entities option, which will enable the Entities drop-down list. Select Contact from that list and then click OK.

The new function import will not be displayed in the model in the Designer, but you

can see it in the Model Browser if you open the first node (SampleModel) and drill first

into EntityContainer and then into Function Imports.

In the XML, you will find the following additions to the CSDL section inside the EntityContainer element:

Mapping the First of the Read Stored Procedures: ContactsbyState | 157

Download from Library of Wow! eBook <www.wowebook.com>

<FunctionImport Name="GetContactsbyState" EntitySet="Contacts"

ReturnType="Collection(SampleModel.Contact)">

<Parameter Name="state" Mode="In" Type="String" />

</FunctionImport>

Notice that the return type is not a single contact, but a collection of contacts. If only one contact is returned, you will end up with a collection containing a single item.

The mapping information is in a new FunctionImportMapping element in the MSL’s

EntityContainerMapping section. Unlike the Update, Insert, and Delete mappings, this

is not included as part of the contact’s EntitySet mappings, but rather stands alone:

<FunctionImportMapping

FunctionImportName="ContactsbyState"

FunctionName="ProgrammingEFDB1Model.Store.ContactsbyState" />

Using Imported Functions

After you map the function, a new method is added to the automatically generated

context class, PEF, called ContactsbyState. If you open the file containing the generated

classes (Model1.Designer.cs/ .vb), you will find a Function Import region in the PEF class, which contains not one, but two new methods. It’s worth taking a look at the function,

which, unlike the other context methods you’ve seen so far, returns a

System.Data.Objects.ObjectResult. ObjectResult implements IEnumerable, but not

IQueryable.

The method is a wrapper for a call to ObjectContext.ExecuteFunction, which you could

call directly if you prefer (see Example 7-4).

 Example 7-4. One of the two methods created for the GetContactsbyState function import public ObjectResult<Contact> GetContactsbyState(global::System.String state)

{ ObjectParameter stateParameter;

if (state != null)

{

stateParameter = new ObjectParameter("state", state);

}

else

{

stateParameter = new ObjectParameter("state",

typeof(global::System.String));

}

return base.ExecuteFunction<Contact>("GetContactsbyState", stateParameter);

}

The second method (not listed in the example) overloads the first with something called

a MergeOption which prescribes what to do when duplicate entities are being returned

from the database. You’ll learn more about MergeOption in Chapter 10.

You can call the method directly in your code using an instantiated context, as shown

in Example 7-5.

158 | Chapter 7: Using Stored Procedures with the EDM

Download from Library of Wow! eBook <www.wowebook.com>

 Example 7-5. Testing the function mapping

ObjectResult<Contact> results= context.GetContactsbyState("Washington");

This is not the same as creating and executing a query. The function will be executed

immediately when the function is called in code. The execution will not be deferred.

The return type will be a System.Data.Objects.ObjectResult<Contact> (in VB, an Objec tResult(Of Contact)), which you can enumerate through or bind to data controls.

You could also use one of the LINQ conversion methods to return a more common

type of IEnumerable. For example, you could return a list of Contact objects rather than

the ObjectResult, using the following code:

context.GetContactsbyState("Washington").ToList()

Avoiding Inadvertent Client-Side Processing

Because the function returns an IEnumerable (the ObjectResult), it is technically possible to use the function in a query, as shown in the following code:

var results =

from c in context.GetContactsbyState("Washington")

where c.LastName.StartsWith("S")

select c;

However, this is not a LINQ to Entities query, but a LINQ to Objects query—the query

will be performed on the results of the function. That means the function will be exe-

cuted on the server side and then the results will be filtered further in memory.

For example, if there are hundreds of contacts in Washington but only a small number

of them have last names that begin with S, every contact will be returned from the database into your application memory and then LINQ will pull out the small number

that you were really looking for.

Databases do not support the use of stored procedures as subqueries, which is why it

is not possible to compose a LINQ to Entities query using these functions. .NET and

the Entity Framework coordinate to break up the query into a function call and a sep-

arate LINQ to Objects query.

Therefore, you’ll want to avoid writing queries against these functions. There will be

no warnings or exceptions, but perhaps instead, you’ll receive a phone call from the

performance testers on your team.

Mapping a Function to a Scalar Type

Entities from your model are only one of the types that can be mapped to data returned

from a stored procedure. Now we will work with a stored procedure that returns scalar

types, AddressTypeCount. This takes a ContactID as a parameter and returns an int. You

saw in Example 7-1 that the function contains a Parameter element.

Mapping a Function to a Scalar Type | 159

Download from Library of Wow! eBook <www.wowebook.com>

Follow the same steps as you did before, except this time, map to the Scalars option

(indicating that each row in the result set contains only a single unit of data) rather than an entity. In the case of this function, the result set will contain only one row and that will contain a single piece of data. After you select the Scalars option, the Scalars drop-down list will be enabled so that you can define the type of the value. Select Int32 from

the drop-down list.

If you do not know the schema of the results returned by a function,

you can use the Get Column Information button to display the schema

of the results. You’ll learn more about this and the other button in the

Function Imports Wizard in the next section of this chapter.

The new AddressTypeCount method will be added to the Function Imports section of

the context class. You will find only one method. There is no need for the

MergeOption overload because the method returns a scalar value, not an entity.

The signature of the new method is notable:

public ObjectResult<Nullable<global::System.Int32>>

AddressTypeCount(global::System.String addressType)

Rather than simply returning an Int32, it returns a Nullable version of Int32. This

accounts for the possibility of the database returning nulls. You’ll need to honor the

Nullable when working with this function, as shown in Example 7-6.

 Example 7-6. Testing the function mapping for a scalar result

ObjectResult<int?> results = context.AddressTypeCount("Home");

int? HomeAddressCount = results.FirstOrDefault();

Here I’m pushing it to another Nullable<int> using the C# shortcut int? to define the type. If you want to use a regular int, you’ll need to test that the result has a value

(results.FirstOrDefault().HasValue) and then get the value (results.FirstOrDe

fault.Value).

Coming from Entity Framework version 1? Note that you can now call

the method directly from the context. Previously, the only way to exe-

cute this function was to use EntityClient.

Mapping a Function to a Complex Type

Entity Framework 4 supports a new function import mapping: mapping the results to

complex types.

Toward that end, the last stored procedure we’ll work with is AddressCountForCon tact, which returns data whose schema does not match an existing entity or a known

160 | Chapter 7: Using Stored Procedures with the EDM

Download from Library of Wow! eBook <www.wowebook.com>

scalar type. There is another type in the Entity Data Model that we haven’t explored

yet, called a ComplexType. A ComplexType has properties but does not have an

EntityKey and therefore cannot be managed by an ObjectContext. Complex types do

not display in the model designer view, but you can see and create them in the Model

Browser. There are a few uses for complex types. Here we will focus on using them to

capture the results of stored procedures. But another very important function of the

complex type is to encapsulate fields in an entity. You will learn more about this latter

purpose in Chapter 14.

Coming from Entity Framework version 1? Mapping to a complex type

using the Designer is one of the new features that I hinted at earlier in

the chapter.

When the EDM Wizard pulled this stored procedure into the metadata of the model,

it was only able to discover the procedure’s required parameters. However, in order to

capture the results of the procedure, we’ll need to define some type. This seems like a

possible opportunity for an anonymous type, but a complex type is more advantageous.

It provides consistency. Not only it is part of the model, but because it is really a type, you can pass it between methods—something you can’t do with an anonymous type.

The Function Import Wizard will help with this. Let’s see how it works.

Once again, right-click the AddressCountForContact procedure in the Model Browser

to activate the Function Import Wizard. Then follow these steps:

1. Rename the function to GetAddressCountForContact.

2. In the wizard, select Complex as the return type.

3. On the lower part of the window, the Get Column Information button is enabled.

Click that button to force the wizard to determine the schema of the results of this

stored procedure.

The Get Column Information feature accesses the database to get the

needed information.

4. Once the box below the button is populated with the column information, click

the Create New Complex Type button to create a complex type with the schema

of the discovered columns.

A new type will automatically be created and named using the name of the Function

Import with “_Result” appended to it, in this case GetAddressCountForCon

tact _ Result. This type will also be automatically selected as the return type for the function. You can rename the type to something more meaningful, which I have

Mapping a Function to a Complex Type | 161

Download from Library of Wow! eBook <www.wowebook.com>

done, as show in Figure 7-8. My new ComplexType will be named ContactAddress Count.

Because the returned columns become properties of the new complex

type, I cannot use either of those names for the name of the complex

type.

5. Click OK to finish.

Download from Library of Wow! eBook

<www.wowebook.com>

 Figure 7-8. Creating a complex type on the fly from a stored procedure

162 | Chapter 7: Using Stored Procedures with the EDM

Download from Library of Wow! eBook <www.wowebook.com>

Once you have finished, you will see the new function in the Model Browser as well as

in the SampleEntities class.

Because the complex type does not have an EntityKey, there is no need for the MergeOption overload. Therefore, you will see only one method for GetAddressCount

ForContact with the following method signature:

public ObjectResult<ContactAddressCount >

GetAddressCountForContact(Nullable<global::System.Int32> contactID)

This feature is a huge improvement over the cumbersome means of in-

corporating this type of stored procedure into the EDM in the first ver-

sion of the Entity Framework. There are still a few steps you need to

execute for each procedure, and it would be nice if these steps could be

executed automatically in a batch. But I’ll take this behavior over what

was available in the earlier version of Entity Framework.

Summary

Many database administrators rely (and insist) on stored procedures for a variety of

reasons, including consistency, security, and reliability, although many are starting to

gain confidence in ORMs. You also may already have a big investment in stored pro-

cedures that you don’t want to give up. Even though the Entity Framework composes

queries and commands automatically, you can override this default behavior by im-

plementing your own stored procedures in the model.

This chapter highlighted functionality that the Designer readily supports: mapping procedures to entities when the procedure’s input parameters and results line up with

existing entities and their properties, and mapping read queries to scalar or complex

types.

If you have been working with the first version of Entity Framework, you have seen

some significant improvements for stored procedure support.

Chapter 16 will dig further into additional ways to implement database stored procedures, and even to define commands and views directly in the model when they do not

exist in the data store.

Summary | 163

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 8

Implementing a More

Real-World Model

In the previous chapters, we discussed the core concepts of the Entity Framework,

including the Entity Data Model (EDM), querying, and other straightforward opera-

tions. We used a simple database and console application to illustrate key points and

keep you focused on the lessons. Now it’s time to look at some more real-world scenarios.

In this chapter, we’ll create a more realistic EDM based on a database of the kind you’re

more likely to encounter in your work. The model is based on a more complex

sdatabase—the BreakAway database—designed to support a fictional travel agency.

With a more complex database, you must typically tweak the EDM you create to resolve

naming conflicts and other issues. More complex databases are also likely to contain

many-to-many relationships and additional stored procedures, both of which you’ll

learn how to handle in this and later chapters.

We’ll build the model using the database-first approach as we did with the sample

model in Chapter 2.

Chapter 25 will teach you how to do model-first design, where you define an Entity Data Model from scratch and build a database from that

model, and code-first design, which leverages the Entity Framework

without using a designer-based model.

Finally, the model will be contained in its own assembly so that you can reuse it. We’ll

use the model and add to it throughout the rest of the book.

The model you will build here, though more realistic than the sample model of earlier

chapters, is still smaller than a typical enterprise model. This is intentional in order to prevent you from getting distracted from the various tasks at hand. You’ll find a brief

discussion of larger models at the end of Chapter 14.

165

Download from Library of Wow! eBook <www.wowebook.com>

Introducing the BreakAway Geek Adventures Business Model

and Legacy Database

The company for which we will be writing software is a fictional business named BreakAway Geek Adventures. This small company arranges adventure vacations for

hard-working programmers who need a break. Examples of vacations that can be

booked through BreakAway Geek Adventures include whitewater rafting in Belize and

bicycling in Ireland. The company has been in business for a number of years and has

an old application that uses a SQL Server database for its data store. Now it’s time to

write shiny new applications for this venerable firm in .NET, leveraging the Entity Framework.

You can download a script for creating this database from the book’s

website, http://learnentityframework.com. Look for the database named BreakAway. The script will work for both SQL Server 2005 and SQL

Server 2008.

Figure 8-1 shows the BreakAway database schema.

This example database was designed with two goals in mind. First, it’s structured in a

way that allows you to explore various features of modeling in this chapter and later in

Chapters 14 and 15. Second, the tables in this database track minimal information in an attempt to be a little less distracting from the main tasks throughout the book. For

example, you won’t find details such as email addresses or phone numbers for the

contacts.

Some contacts are customers. Customers make reservations for particular trips; how-

ever, the database doesn’t account for the possibility of a customer wanting to make a

reservation for multiple people—for example, family members or friends.

The database revolves around two core tables. The first is Contacts, which could be

anyone from a vendor to a potential customer to an actual customer. Contacts who are

customers have an additional record in the Customers table that includes information

such as their favorite two destinations and their favorite two activities.

The second core table is Events. Events (a.k.a. trips) are what the company sells. A trip

has a start date, end date, and price and it links to other tables that identify the trip

destination, a list of one or more activities, and lodging associated with that particular trip.

Customers make reservations for trips. Then they can make one or more payments to

pay for the reservation.

The schema allows us to perform a variety of modeling tasks as well as to create small

applications to enable employees of the company to perform some of their tasks (de-

fining trips, taking reservations, browsing customer information) as well as a few tasks

166 | Chapter 8: Implementing a More Real-World Model

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 8-1. The BreakAway database schema

that are targeted to customers, such as a web app where they can look up their trip

history and edit their addresses.

With this in mind, let’s begin building the BreakAway model that you will use going

forward.

Introducing the BreakAway Geek Adventures Business Model and Legacy Database | 167

Download from Library of Wow! eBook <www.wowebook.com>

Creating a Separate Project for an EDM

The first step is to create the new model. Rather than create the EDM directly in an

application, you will create a separate project for the EDM. This is a good start on your

way to planning for larger applications and being able to reuse the model.

1. In Visual Studio, create a new Class Library project named BreakAwayModel.

2. Delete the Class1 file that was automatically created.

3. Add a new ADO.NET Entity Data Model to the project. Change the default name

(Model1.edmx) to BAModel.edmx.

4. On the Choose Model Contents page, choose Generate from Database and then

select the BreakAway Data Connection if it has already been added to Visual Stu-

dio. If it hasn’t been added, create it on the fly using the New Connection button.

Leave the default connection settings name, BreakAwayEntities, alone for now and

go to the next page of the wizard.

5. On the Choose Your Database Objects page, check all three objects: Tables, Views,

and Stored Procedures.

If you have created any diagrams of your SQL Server database, there will

be an extra table and a number of stored procedures and functions that

you’ll want to keep out of your model. When the database contains a

diagram, the table that controls the diagram is listed (sysdiagrams).

Creating the diagram in SQL Server Management Studio also results in

seven stored procedures and one function being added for the sake of

diagramming. Their names begin with either fn_ or sp_ and contain the

word diagram. They won’t interfere with your model, but you may pre-

fer not to have them in there.

6. Leave the default model namespace intact. You’ll get a chance to change that shortly.

7. Wrap up model creation by clicking the Finish button.

The newly created model will open in the Designer window and should look something

like Figure 8-2.

Inspecting and Cleaning Up a New EDM

The first thing you should always do with a newly generated model is make sure the

Entity names and EntitySet names make sense. Thanks to the wizard’s pluralization

and singularization capabilities (added as of Visual Studio 2010), this chore has been

reduced immensely.

168 | Chapter 8: Implementing a More Real-World Model

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 8-2. The initial model created from the BreakAway database

The Entity Data Model Wizard’s ability to correctly singularize and

pluralize entity names, entity set names, and navigation property names

is limited to English words.

The Entity names should be singular (Contact, Address, Customer, etc.) and the

EntitySet names should be the plural form of the Entity names (Contacts, Addresses,

Customers, etc.).

Inspecting and Cleaning Up a New EDM | 169

Download from Library of Wow! eBook <www.wowebook.com>

However, there are a few table names that pose a challenge to the wizard and you should

manually fix these after the model has been created. For instance, the word equip-

 ment poses a challenge since the singular and plural versions are the same. The wizard made the entity set name Equipments, which has a bitter taste to me. Let’s change it.

If you look in the Properties window of the model, you will see there is a Boolean

property called Pluralize New Objects. If you created the model with the Pluralization/

Singularization settings checked, this was set to True when the model was created. As

you create new entities in the Designer, each entity’s EntitySet name will automatically

be created as a plural of the Entity name. If the entity name is plural, it will not be made singular. If this property is set to False, the EntitySet name will consist of the Entity

name with the word Set appended to it. We’ll follow the latter convention and use

EquipmentSet in this model. Although you can edit the Entity names right in the De-

signer, you can edit the EntitySet names only in the Properties window. You may find

it more efficient to edit both in the Properties window.

There are three ways to get an entity’s properties to display in the Prop-

erties window:

• Select the entity in the Designer.

• Select the entity in the Model Browser.

• Select the entity from the drop-down list of objects in the Properties

window.

Modifying the Names of Entities and Properties

The database has a table named Events that refers to the trips that BreakAway sched-

ules. The original name of this table was an unfortunate choice because the .NET word

 Event is a reserved keyword in both VB and C#. This normally isn’t a problem, but if you were to use Event as the entity name, the EntityObject named Event would create a conflict. With the EDM, you can rename the entity without having to rename the

database table. The term Trip makes more sense anyway, so renaming this will be a

bonus. As you fix the names of the Entity objects and EntitySets, rename the Events

entity to Trip. The entity will still map back to the Events table, so everything will stay in sync.

When you make this change, the EntitySet name will automatically change to Trips.

You should also change the EventID property name to TripID so that as you are working

with objects, you won’t be confused by an entity whose ID property doesn’t match the

name of the entity. Now you have a domino effect. EventID is also a foreign key in the

Reservation table. So, change that one as well, to TripID.

Do the same for the entity named Location, changing it to Destination. You’ll need to

change the LocationID and LocationName properties as well, to DestinationID and

Name. Don’t forget the foreign keys.

170 | Chapter 8: Implementing a More Real-World Model

Download from Library of Wow! eBook <www.wowebook.com>

Table 8-1 provides a recap of these changes.

 Table 8-1. Entity, EntitySet, and Property name changes in the model

Old name

New name

Entity

Event

Trip

Entity set

Events

Trips

Entity set

Equipments

EquipmentSet

Property

Trip.EventID

Trip.TripID

Property

Trip.LocationID

Trip.DestinationID

Foreign key

Reservation.EventID

Reservation.TripID

Entity

Location

Destination

Entity set

Locations

Destinations

Property

Location.LocationID

Destination.DestinationID

Property

Location.LocationName

Destination.Name

Navigation property

Destination.Events

Destination.Trips

Property

Lodging.LocationID

Lodging.DestinationID

If you completely delete and reenter the name of an entity, the entity set

name will not change. However, if you simply modify an entity name—

for example, change Equipment to EquipmentXYZ—the Designer will au-

tomatically rename the EntitySet using the pluralization feature. You

can turn off the pluralization by changing the Pluralize New Objects

property of the model to False.

There are some other properties that should be attended to. Some of the foreign key

properties in the database were poorly named and it’s difficult to identify them as foreign keys. Fix them up in the model using the changes listed in Table 8-2.

 Table 8-2. Fixing foreign key property names

Old property name

New property name

Customer.PrimaryDesintation

Customer.PrimaryDestinationID

Customer.SecondaryDestination

Customer.SecondaryDestinationID

Customer.PrimaryActivity

Customer.PrimaryActivityID

Customer.SecondaryActivity

Customer.SecondaryActivityID

Inspecting and Cleaning Up a New EDM | 171

Download from Library of Wow! eBook <www.wowebook.com>

Did you notice that the PrimaryDestination column was misspelled in

the database? In the previous application, the developers had to con-

stantly tangle with this field name. But with the EDM it will no longer

be a problem. Though a small detail, this is a really nice benefit of using

the data model. Changing the field name in the database could have a

big impact in the database schema, especially if that field name is used

in views, functions, or stored procedures. In the model, you can change

the property to whatever name you like without impacting the database.

Resolving Collisions Between Property Names and Entity Names

The wizard identified a conflict when it was building two of the entities from the da-

tabase. An entity cannot contain any properties that have the same name as the entity.

In the case of three entities, the wizard dealt with this conflict by appending the number

“1” to the property name. Check CustomerType, Equipment, and Activity. They contain

the properties CustomerType1, Equipment1, and Activity1. Modify the property names

as shown in Table 8-3.

 Table 8-3. Property name changes to be made

Old property name

New property name

CustomerType.CustomerType1

CustomerType.Type

Activity.Activity1

Activity.Name

Equipment.Equipment1

Equipment.Name

You may have other renaming preferences, but for the sake of aligning with examples

throughout the book, you’ll want to be sure that your model matches mine.

Cleaning Up Navigation Property Names

There is still a bit of cleaning up to do. Although the wizard properly named most of

the navigation properties (singular when pointing to an entity reference and plural when

pointing to an entity collection), there are some other navigations that confused the

wizard. These are navigations from an entity with multiple relationships to a single

entity.

Take a look at the Customer entity. It has those two funny pairs of navigation properties: Activity and Activity1, and Location and Location1. These property pairs will make

more sense if you check the Customers table in the database, shown in Figure 8-3.

BreakAway keeps track of each customer’s first and second preferences for destination

and activity. This is not an uncommon database scenario, but the wizard will always

create the names in this way, so let’s see how to add clarity to these names.

172 | Chapter 8: Implementing a More Real-World Model

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 8-3. The Customers table in the database, with two columns that relate to the Destination table (PrimaryDesintation—a database typo that BreakAway developers have had to live with for years—

 and SecondaryDestination) and two columns that point to the Activities table

The navigation property names are derived simply from the name of the table on the

other end of the relationship. Since there are two associations to one entity, the wizard

appended a “1” to the second navigation property.

Before you can rename these navigation properties, you’ll need to figure out which

foreign key fields the navigation properties belong to. For example, does

Customer.Activity refer to the PrimaryActivity or the SecondaryActivity?

You can do this by looking at the properties of each navigation property and seeing

which association it is bound to, and then looking at that association and seeing which

field is involved.

Let’s start with Activity. Click the Activity navigation property in the Customer entity.

In its Properties window, BreakAway.FK_Customers_Activities is the Association

property.

Use the Properties window drop-down (near the top of the Properties window) to select

that association. You can also get to the correct association by right-clicking the Navigation property and choosing Select Association from the context menu.

There are a number of ways to select an association in the model. The

Properties window drop-down is one way to select the association. You

can also select it in the Model Browser. An additional method is to right-

click a navigation property and to choose Select Association from its

context menu. Any of these methods will cause the association to be

highlighted in the Designer and its properties to display in the Properties

window.

Inspecting and Cleaning Up a New EDM | 173

Download from Library of Wow! eBook <www.wowebook.com>

In a model that uses foreign key associations, the actual properties are used by the referential constraints.

Click the ellipses next to the Referential Constraint property to see the details. It is

the PrimaryActivityID. Now you can rename the Activity navigation property to Pri

maryActivity and, by process of elimination, the Activity1 navigation property to SecondaryActivity.

You can do the same detective work for the Location and Location1 navigation prop-

erties to see which one should be named PrimaryDestination and which one should be

named SecondaryDestination.

You need to fix the other ends of these associations as well. The Activity entity has

two navigations back to the Customer entity. Going in this direction, the navigations

represent “Customers who have listed this activity as their primary activity” and “Cus-

tomers who have listed this activity as their secondary activity.” Rename Customers to

PrimaryPrefCustomers and Customers1 to SecondaryPrefCustomers. Make the same

changes to the Customers and Customers1 navigation properties in the Destination entity.

Because we changed the entity name of Event to Trip and of Location to Destination,

you’ll want to modify the navigation properties that reference these entities, as shown

in Table 8-4.

 Table 8-4. Fixing navigation property names related to Trip

Navigation property

New property name

Reservation.Event

Reservation.Trip

Destination.Events

Destination.Trips

Lodging.Events

Lodging.Trips

Lodging.Location

Lodging.Destination

Trip.Location

Trip.Destination

Activity.Events

Activity.Trips

Setting Default Values

The Entity Data Model allows you to set default values on scalar properties. This means

you can set a default CustomerType for customers. BreakAway customers can be Stand-

ard, Silver, or Gold. In the database, Standard is equal to 1. Modify the Customer.Cus

tomerTypeID foreign key property of the Customer entity by setting its Default Value to

1. You’ll see the effect of this in the next chapter.

174 | Chapter 8: Implementing a More Real-World Model

Download from Library of Wow! eBook <www.wowebook.com>

If you are moving from version 1 of Entity Framework, you might be

overjoyed at the ability to do this in the new version. Although you could

set defaults on scalars in the first version, because the foreign keys were

not exposed as scalar values, setting foreign key values was not simple

or obvious. It was certainly possible, but setting default foreign keys

meant even more work. Now it is this simple.

Unfortunately, you can’t easily set default date values. Although it is possible to enter

a specific date as a default value on a date property, there is no way in the model to

specify something akin to DateTime.Now. You will see ways to customize the classes

further on in the book, including enabling the class to take care of injecting the current date and time.

You can also set default values in your database, so why define defaults directly in the

model? The CustomerTypeID property is non-nullable. Not only is this defined in the

database, but it is also defined in the conceptual model. Because it’s non-nullable in

the conceptual model, you must provide a value for this property; otherwise, when you

call SaveChanges, a runtime exception will be thrown. Therefore, setting the default in

the model ensures that some value is provided even when the developer doesn’t spe-

cifically assign the property value.

Mapping Stored Procedures

The BreakAway database has a number of stored procedures, as is the case with most

legacy enterprise databases. For now, we’ll use function mapping to map the

InsertPayment, UpdatePayment, and DeletePayment stored procedures to the Payment en-

tity using the same technique you learned in Chapter 7. We’ll deal with other stored procedures in this database in later chapters.

Open the Stored Procedure Mappings window for the Payment entity and select the

appropriate functions for insert, update, and delete.

As a reminder, you can right-click on the Payment entity in the Designer

and select Stored Procedure Mapping.

When parameter names don’t match the property names of the entity because of the

casing you will need to manually map the properties.

Mapping Stored Procedures | 175

Download from Library of Wow! eBook <www.wowebook.com>

Notice that the InsertPayment function needs to know the ReservationID. Because our

model uses foreign keys, this is not a problem. If you were using a model without foreign

keys, you would have access to the navigation property in the mapping window, so you

can select Reservation.ReservationID to map to the required parameter.

The date parameter of the stored procedure is for the PaymentDate. The procedure itself

will apply the ModifiedDate when it inserts the new payment.

The InsertPayment function returns a newly generated PaymentID called NewPaymentID.

Be sure to map that to the Result Column Bindings item, as you did for the

InsertContact function in the preceding chapter. The insert mapping should look the

same as in Figure 8-4.

 Figure 8-4. Mapping the input parameters and the results of the InsertPayment stored procedure to properties in the Payment entity

Map the UpdatePayment stored procedure to the Update function. Again, you will need

to manually map the date parameter to the PaymentDate property.

Using the Use Original Value Checkbox in Update Mappings

Because of the way this stored procedure works, you can take advantage of the special Use Original Value column that exists only for the update functions.

The UpdatePayment stored procedure performs a concurrency check against the

RowVersion field. When a payment is updated, SQL Server automatically updates

the RowVersion field. If anyone edited the record in between the time the user retrieved

the record and when he attempted to save changes, RowVersion won’t match, the order

won’t be updated, and an OptimisticConcurrencyException will be thrown. You’ll learn

more about working with concurrency in Chapter 23.

176 | Chapter 8: Implementing a More Real-World Model

Download from Library of Wow! eBook <www.wowebook.com>

SQL Server Confusion: timestamp or rowversion?

SQL Server’s timestamp type is the same as the ISO standard rowversion type and its

name is a bit confusing. Microsoft changed the name of this type to rowversion in SQL

Server 2008, but SQL Server Management Studio and Visual Studio 2010 still use timestamp in the design tools. You will rarely see the rowversion type when working

with your databases, which makes the terminology confusing.

Here is the official statement in the MSDN documentation (http://msdn.microsoft.com/

 en-us/library/ms182776.aspx):

“The timestamp syntax is deprecated. This feature will be removed in a future version

of Microsoft SQL Server. Avoid using this feature in new development work, and plan

to modify applications that currently use this feature.”

In the BreakAway database, the columns that contain the timestamp/rowversion types

are named RowVersion, and I will refer to the rowversion type with an occasional nod

to the former type name, timestamp.

When a payment is updated, the database will automatically update the RowVersion

field. The UpdatePayment procedure returns the new value. Map that return value as

shown in Figure 8-5.

 Figure 8-5. The UpdatePayment and DeletePayment function mappings

Mapping the delete function is straightforward. Select the DeletePayment function; the

single parameter, PaymentID, will automatically align with the PaymentID property.

Mapping Stored Procedures | 177

Download from Library of Wow! eBook <www.wowebook.com>

Moving from Entity Framework version 1? There is a significant im-

provement in this mapping. Previously, the schema required that you

map all foreign keys. This meant you needed to have a ReservationID

parameter in both the Update and Delete stored procedures to map to

the ReservationID foreign key. In most cases, it makes no sense for the

Delete procedure to have this parameter, and it was aggravating to have

to add it. Thankfully, this restriction has been eliminated.

Since you have already done so much work on this model, we will leave the task of

performing more advanced customizations to Chapters 14 and 15.

Working with Many-to-Many Relationships

There is one more thing to point out about this model: the two many-to-many rela-

tionships. BreakAway Adventures’ database keeps track of which type of equipment is

needed for which activities. It also tracks which activities will be available on which

events (“trips” in the model). To accomplish this, an ActivityEquipment join table be-

tween Equipment and Activities defines many-to-many relationships between equip-

ment and activities, and an EventActivities join table between Activities and

Events defines many-to-many relationships between activities and events, as shown in

Figure 8-6.

 Figure 8-6. The database join tables, EventActivities and ActivityEquipment

178 | Chapter 8: Implementing a More Real-World Model

Download from Library of Wow! eBook <www.wowebook.com>

These tables did not appear in the model as entities. The EDM has the ability to represent many-to-many relationships while hiding the join in the mappings. But it can do

this only when the join table has just the relevant keys and no additional fields. These

two tables meet that criterion, as they have only the IDs of the items they are joining.

If the join tables had additional properties, such as DateCreated, the EDM would have

created entities for them.

Many-to-Many or Joins?

The criterion for the conceptual model to display many-to-many relationships by link-

ing the relationship ends together directly (as shown in Figure 8-7) is very limited. As explained in this chapter, the database table that joins to two ends must contain only the primary keys of the tables being joined. This does result in a very convenient relationship in the model, and with this type of many-to-many relationship, querying and

coding against the relationship is fairly simple.

However, it is more likely that your database join table does have additional fields and

you will end up with an extra entity (a.k.a. a join entity), a need to use “join” in your queries, and somewhat more complicated coding with the related objects.

Instead, the joins are controlled in mappings; in the conceptual layer the relationships

are expressed as navigation properties. Example 8-1 shows the mapping for the EventActivities association in the XML file. The mapping identifies the EventActivi

ties table as the target of the mapping, and then shows its ActivityID field wired up

to the ActivityID field of the EventActivities table. Meanwhile, its EventID field is

wired up to the EventID field of the Events table.

 Example 8-1. Many-to-many association mapping

<AssociationSetMapping Name="EventActivities"

TypeName="BreakAwayModel.EventActivities"

StoreEntitySet="EventActivities">

<EndProperty Name="Activities">

<ScalarProperty Name="ActivityID" ColumnName="ActivityID" />

</EndProperty>

<EndProperty Name="Events">

<ScalarProperty Name="EventID" ColumnName="EventID" />

</EndProperty>

</AssociationSetMapping>

As you can see in Figure 8-7, Activity and Equipment are joined in a many-to-many relationship. Each piece of equipment has activities and each activity has a collection

of equipment. Trip and Activity also have a many-to-many relationship.

Working with Many-to-Many Relationships | 179

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 8-7. Activity and Equipment joined in a many-to-many relationship

If you were expecting to see foreign key properties in the Activity or

Trip entity keep in mind that the foreign keys don’t exist in their tables,

but instead exist in the join table, which is not mapped to either entity.

There is also a many-to-many relationship between Activity and Trip.

It will be very convenient not to have to construct joins when traversing these rela-

tionships in queries. Because the join tables contain only the keys involved, the EDM

can easily represent the relationship without the aid of a join entity.

180 | Chapter 8: Implementing a More Real-World Model

Download from Library of Wow! eBook <www.wowebook.com>

This mapping not only enables a convenient association directly between the two en-

tities, but also manages querying, inserts, and updates across this join. You’ll see this

in action as you move through the book.

Inspecting the Completed BreakAway Model

Figure 8-8 shows the BreakAway model after all of the changes have been made. The few entities that are based on views are not shown in this screenshot.

 Figure 8-8. The BreakAway model that you will use in chapters that follow

Inspecting the Completed BreakAway Model | 181

Download from Library of Wow! eBook <www.wowebook.com>

I’ve ignored an entity in this discussion, and it is called

ContactPersonalInfo. Although it has a ContactID, the database does

not define a primary key/foreign key constraint between this table and

the Contact table. As a result, the wizard did not create an association

between them.

However, I have more interesting plans for the ContactPersonalInfo ta-

ble. In Chapter 14, you will learn about a model customization referred to as entity splitting. We will use this feature to combine the Contact

table fields and the ContactPersonalInfo table fields into a single entity.

The result will be that the Contact entity will contain fields from both

tables.

Building the BreakAway Model Assembly

Now it’s time to build the model into an assembly that you will be able to use in the

many projects you will be building in upcoming chapters.

Before you compile the model, you will want to change a few names so that when you

access the model and its classes from another project, you won’t have to work with

cumbersome names.

You will have to make references to the assembly namespace throughout the code of

your other applications that are using that namespace. Therefore, it will be handy to

have a nice, short name for the namespace. The acronym for BreakAway Geek Adven-

tures is BAGA, which is a good option.

1. Open the project’s Properties window, and on the first page, Application, change

the “Default namespace” (C#) / “Root namespace” (VB) to BAGA.

When you created the model with the Entity Data Model Wizard, you left the

default name for the EntityContainer as BreakAway.

2. Change that EntityContainer name to BAEntities. You can do this in the Designer.

Clicking anywhere in the background of the model will open the Properties window

for the model itself. Here you can change the entity container name.

When you change this name and save the model, the Connection

String name in the app.config file should change to BAEntities as

well. It’s not a bad idea to double-check that this happened by

looking in the app.config file.

Changing this name will make typing Entity SQL expressions easier, as you will

have to include this container name in every Entity SQL expression.

3. Change the model’s namespace so that it’s consistent with the container name, in

this case to BAModel.

182 | Chapter 8: Implementing a More Real-World Model

Download from Library of Wow! eBook <www.wowebook.com>

Looking at the Compiled Assembly

When a project containing an EDMX is compiled, the compiler extracts the

StorageModels, ConceptualModels, and Mappings sections of the EDMX file and creates

individual schema files from them. In this case, the files are BAModel.ssdl, BAModel.csdl, and BAModel.msl. By default, these files are embedded into the assembly that is built from the project.

Figure 8-9 shows the compiled assembly in Red Gate’s .NET Reflector tool, with the embedded files listed under Resources.

 Figure 8-9. The schema files embedded in the assembly by default

If you look at the metadata portion of the EntityConnection string that the Entity Data

Model Wizard inserted into the app.config file, you’ll see the following notation: res://*/BAModel.csdl|res://*/BAModel.ssdl|res://*/BAModel.msl

Much of the functionality in the Entity Framework depends on its ability to read the

schema files. The * in the metadata of the connection string indicates that you can find

the files in an assembly. Entity Framework will search all loaded assemblies until it

finds the one with these embedded files.

Building the BreakAway Model Assembly | 183

Download from Library of Wow! eBook <www.wowebook.com>

Splitting Out the Model’s Metadata Files

Having the model in the assembly is convenient when you don’t expect the model to

change often after it has been deployed. However, you may want to take advantage of

the model’s loose coupling at some point. For example, you or your database admin-

istrator might modify the database in a way that changes the schema, but introduces

nothing new that would impact the objects in the application. In this case, you would

need to update the metadata so that the database changes are reflected in the SSDL

schema. Then, because of this change, you would need to adjust some of the mappings

to be sure that the entities are mapped correctly to the SSDL. So, in this scenario, the

SSDL and MSL layers change, but no change is made to the conceptual layer.

You may not want to have to rebuild and redeploy the assembly. Doing so may also

affect the versioning of your application.

Although the files are embedded by default, there is an option to have the files exist

outside the assembly. The model has a property called Metadata Artifact Processing.

The property is available in the model’s Properties window, as shown in Figure 8-10.

 Figure 8-10. Changing how the model’s metadata files are deployed during the build process You can test the impact of changing this setting. Set the value to Copy to Output Directory and then rebuild the project.

Notice that the connection string has changed. The metadata no longer has a *

to indicate that the files are embedded. Instead, it shows the relative path of the files.

You will find them in the project’s output directory, which by default is in either the

 bin\debug or the bin\release folder in the project folder.

184 | Chapter 8: Implementing a More Real-World Model

Download from Library of Wow! eBook <www.wowebook.com>

If you have performed this test, be sure to set the value back to Embed in Output

Assembly and rebuild the project again.

What’s an Artifact?

The property that determines whether the runtime metadata files should be embedded

into the assembly or spit out as independent files is called Metadata Artifact Process

ing. The term artifact comes from the Unified Modeling Language. An artifact is a piece of data (e.g., a file) that is created as a stepping-stone or a final product of a particular process. So, the artifacts in this case are the three XML files (CSDL.xml, MSL.xml, and SSDL.xml) that are extracted from the EDMX file when the project is built.

Moving the schema files

If you do choose to use the metadata artifact files separately rather than embedding

them into the assembly, you can put them anywhere you want. However, you will need

to be sure that the connection string points to the correct path. If, for example, you

place the files in C:\EDMS, you’ll need to modify the metadata attribute to the following: metadata=C:\EDMS\BAModel.csdl| C:\EDMS\BAModel.ssdl| C:\EDMS\BAModel.msl

Although this chapter covered creating a model in a separate assembly,

it’s useful to be aware of a special case for the metadata attribute. If you

create an EDM inside an ASP.NET Web Site Project, because of the way

in which Web Site Projects are compiled, the path will be affected. The

entire metadata attribute will be metadata=res://*. This does not hap-

pen with Web Application Projects.

You can learn more about the EntityConnection’s metadata attribute in the MSDN Li-

brary documentation.

Summary

In this chapter, you went through the steps of creating an EDM from a more realistic

database, which you will be using throughout the rest of this book. Then you spent

some time cleaning up many of the automatically created entity and property names

so that they will be more logical when it comes time to use the model in your applications.

You have now prepared an assembly that can easily be referenced from a variety of

projects and used in other applications. Because the runtime schema files are embedded

into the assembly, it will be even simpler to reuse and share the model.

In the next chapter, you will write your first Windows applications using this model.

Summary | 185

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 9

Data Binding with Windows Forms

and WPF Applications

So far, you’ve seen how to interact directly with an EDM using snippets of code in a

console application. Although there is much more to learn about the Entity Framework,

at this point it’s time to see how you can use the Entity Framework as part of your

applications.

In this chapter, you will explore basic data-binding scenarios in Windows Forms and

Windows Presentation Foundation (WPF). You’ll see how the Entity Framework ob-

jects work with Visual Studio’s data-binding features in much the same way that DataTables and DataSets do, without having to explicitly set and retrieve the values of

each control. The data binding’s change notification mechanism works automatically

with the Entity Framework’s change tracking, so editing data that was queried through

the Entity Data Model does not require a lot of extra coding. In the examples here,

you’ll bind directly to the results of Entity Framework queries as you learn the concepts.

In Chapter 26, after you have learned much more about the Entity Framework, I will address n-tier applications and more robust patterns for enterprise applications.

The chapter will begin with data binding in Windows Forms and will then move on to

the WPF techniques.

Data Binding with Windows Forms Applications

To demonstrate data binding of an EDM in a Windows form, let’s build a small ap-

plication to let you view customers and their reservations as well as edit the customers

and add new reservations. Figure 9-1 shows a mock-up of this form, which uses a BindingSource and a navigation toolbar. As noted in the acknowledgments in the book’s

preface, this mock-up was created using Balsamiq Mockups.

187

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 9-1. The Windows Forms application you’ll be building

This chapter does not presume that you are familiar with Windows

Forms or with WPF data-binding techniques in the IDE. So, you’ll get

a step-by-step walkthrough to be sure that the UI tasks don’t trip you up.

You’ll be building the form in stages, adding a little more functionality in each stage

and then testing what you’ve built so far.

Creating a Windows Forms Application

The first task is to create a Windows Forms project. In our example, we’ll use the

BreakAwayModel project you created in Chapter 8. You should add this new Windows Forms project into the same solution that contains the BreakAwayModel project. In

that way, you can easily reference the model and make changes to it as needed.

188 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

If you did not follow the walkthroughs in Chapter 8, you can download

the completed BreakAwayModel project from the Downloads page of

the book’s website (http://learnentityframework.com). Both C# and Visual Basic versions are available, as well as the C# and VB versions of the

applications built in this chapter. As with previous examples, VB is

shown if the code difference is significant.

1. Add a new Windows Forms Application project to the solution and give it the name

BreakAwayWinForms.

The next three steps will be common for any application that needs to

use an EDM that is in a separate assembly.

2. Add a reference to the BreakAwayModel project. To do this, right-click the Break-

AwayWinForms project in the Solution Explorer and select Add Reference. In the

Add Reference dialog, select the Projects tab, then select BreakAwayModel and

click OK. This will allow the new application to use everything in the model as

well as the generated entity classes.

3. Add a reference to System.Data.Entity, which is under the .NET tab of Add

References.

When you created the model, the Entity Data Model Wizard automatically pulled

in the necessary references to the Entity Framework APIs. Your new project will

need this particular reference as well, which is why you need to add it manually.

4. Copy the app.config file from the BreakAwayModel project into the new Windows

Forms project. Overwrite the existing app.config if necessary.

You only need to copy the BAEntities connection string element from the model’s

 app.config to this project’s app.config. In this case, since the new project’s app.config has only minimal settings, you can cheat by just copying the whole file.

Using Windows Forms Data Sources

Data sources have been a feature of Windows Forms since Visual Studio 2005 and are

a very convenient way to perform data binding. They provide a bridge between your

data and the controls to which you are binding your data. There are three types of data

sources: those that bind directly to a database, those that bind to a service, and those

that bind to objects.

Data Binding with Windows Forms Applications | 189

Download from Library of Wow! eBook <www.wowebook.com>

In this application, you will be creating data sources that bind to objects—specifically,

to the entity classes that were dynamically generated from your EDM. An Object data

source won’t bind to the entire EntityContainer; it will bind to only one individual

class. Additionally, although a data source that is derived directly from a database (an

option you may have used in the past) will trigger the interaction with the database, an

Object data source will not. It provides the schema of the classes to the controls to

which you are binding data, and it provides the ability to interact with the objects. You

will still have to write the actual code that populates the data source at runtime.

Using data sources is a great example of how the EDM and the Entity Framework work

seamlessly with existing tools in Visual Studio.

This is not to say that the Entity Framework works with all of the existing

features of Visual Studio. You will find that some gaps still exist, such

as the inability of the Microsoft Report control to work with hierarchical

data that comes from the EDM.

Creating an Object Data Source for a Customer Entity

In the following walkthrough you will create an Object data source that binds to the

Customer entity. Then, using the properties that are exposed through the Data Sources

window, you will add controls to the form so that the controls are automatically bound

to these properties. After adding a simple query to the form’s code, you will be able to

run the application and scroll through the customer data. With a few more minor changes to the form, you will also be able to edit the data.

The first step is to create the data source that will help you to create the data-bound

controls on the form. The Object data source you will need is for the Customer class.

Here’s how to create it:

1. From the Visual Studio menu, select the Data menu item, and then select Show

Data Sources from that menu’s drop-down, to open the Data Sources window (see

Figure 9-2).

2. Click the Add New Data Source hyperlink to open the Data Source Configuration

Wizard.

3. Select Object in the Choose Data Source Type window, and then click Next.

4. The next window will present you with the available assemblies in the current

solution. Expand the BreakAwayModel assembly to reveal the BAGA namespace, and

then expand that to reveal the entity classes, as shown in Figure 9-3.

5. Select Customer and then click Finish.

The Customer data source will now display in the Data Sources window. Expand the

Customer data source to see its properties. Notice that the navigation properties are

190 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 9-2. The Data Sources window before the new data source has been created

there, including Reservations with its properties, as shown in Figure 9-4. Entity Framework classes are built to expose their navigation properties for data binding.

What’s interesting about the Customer entity and class is that the most critical infor-

mation—the customer’s name, address, reservations, and preferences—is not available

in its scalar properties. You need to navigate to other entities to get this data. Although the Customer entity represents contacts who are customers, it depends on the related

Contact entity to provide name information and to give you access to the contact’s

addresses. Customer relies on its relationship to Reservations to supply details about

what makes each customer a customer—all of the trips they have taken or are planning

to take. Even their Activity and Destination preferences are navigation properties.

If you were to create a DataGridView from the Customer data source, the only properties

that would display by default are the scalar properties. Instead, you’ll need to leverage

the related contact and reservations details to build a more useful form.

Getting an Entity’s Details onto a Form

Data sources allow for some very convenient drag-and-drop operations that make it

easy to specify which properties of an object are displayed on a form. You don’t want

to drag the entire Customer object, because, by default, that will result in a DataGrid

View with the scalar properties and the IDs of the entity reference properties. You could

Data Binding with Windows Forms Applications | 191

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 9-3. The classes from your model, available for creating a data source

change the default control used or drag the individual properties onto the form. But

let’s look at this from a different perspective.

Later in this chapter, you’ll see the problem of the default DataGrid

View when you data-bind to the EntityCollection. But if you are curious

now, nothing is stopping you from dragging the entire Customer object

onto the form so that you can see the effect.

In this example, we’ll want most of the customer’s contact details on the form, so let’s

use that rather than the Customer itself. You can select Contact from inside Customer

in the Data Sources window and drag it onto the form. Contact's default control should

be a Details view as you can see by the icon next to Contact in Figure 9-4 . Because Contact is a class unto itself, all of its details will come over to the form at once. The impact of dragging the properties onto the form is that a new navigation toolbar will

be created, as well as the appropriate controls for the various properties—TextBox con-

trols for the integers and strings, and DateTimePicker controls for the date properties.

Additionally, on the perimeter of the design window, you’ll see that a CustomerBinding

192 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 9-4. The Customer data source, which includes its navigation properties

Source and a CustomerBindingNavigator were added. These are components that work

hand in hand with the data sources in Windows Forms. The BindingSource will coor-

dinate the form fields with the data. The BindingNavigator coordinates the actions of

the toolbar (navigation, inserts, deletes, and updates) with the BindingSource. Remem-

ber that these are not Entity Framework features, but standard functionality in Win-

dows Forms.

You will also see, on the lower half of the form, fields representing all the scalar values of the Customer entity on the form. This is standard behavior when working with graphs

in Windows Forms data sources. Visual Studio infers the scalars of the parent data

source on the form. Delete all of the ID values from the lower part of the form, but you

can leave the InitialDate and Notes intact. InitialDate represents the first date the

contact became a customer, which is useful in case the person was on a mailing list for

a while before finally becoming a customer.

Next, expand the PrimaryActivity property and drag its Name to the form. You’ll need

to modify the label so that it reads “Primary Activity”. Do the same for the other preferences.

If you care to line up and organize the fields on the form, your form will look something

like Figure 9-5 after you have added these fields.

Data Binding with Windows Forms Applications | 193

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 9-5. The form with the first bits of data binding

Adding Code to Query an EDM When a Form Loads

You’ll need to execute a query when the form loads to retrieve the customers along

with their related data from the database. You will bind these query results with the

BindingSourceControl that was created for the Customer data source.

You’ll get to take advantage of eager loading, which you learned about in Chapter 4,

by using a number of Include methods in this query. This is because the form relies on

five navigation properties.

In the form’s Load event, add the code from Example 9-1.

194 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 9-6. The customer graph

 Example 9-1. Querying for customers in the form load

var context = new BAGA.BAEntities();

List<BAGA.Customer> customers=

context.Customers.Include("Contact")

.Include("PrimaryActivity")

.Include("SecondaryActivity")

.Include("PrimaryDestination")

.Include("SecondaryDestination")

.Include("Reservations.Trip.Destination")

.ToList();

customerBindingSource.DataSource = customers;

The query is written to ensure that all of the necessary related information is retrieved

from the data store. Each Customer in the results will be a graph shaped as shown in

Figure 9-6.

This particular query is not designed for efficiency, but rather to give you an idea of

how the Include method works and how the data binding implements related data.

Notice that the query does not even bother to filter the data. The SQL query that results

and the amount of data returned may make you gasp. So, although it’s very important

to be aware that this is not a best practice, it’s a handy query for this lesson based on

what you’ve learned so far.

Most of the related entities are small. Activity and Destination have only an ID field

and a Name field. Reservations and Trip don’t have a lot of fields, either. But a lot of

redundant data will be sent back to the application. For example, each customer who

Data Binding with Windows Forms Applications | 195

Download from Library of Wow! eBook <www.wowebook.com>

has Madagascar selected as her primary or secondary destination will cause that row

of data to be transmitted back to the application. If 100 people favor that locale, 100

copies of that row will be returned.

As Object Services materializes objects from those rows, it will recognize the redun-

dancy and will not create multiple copies of that particular object in memory, so on the

application side the query results will be efficient.

Later in this chapter, we’ll look at more efficient ways to return the related data without this redundancy.

Go ahead and run what you’ve built so far. As you use the navigation toolbar to move

from one customer to another, you’ll be able to see that all of the navigation properties

automatically change as well (see Figure 9-7).

 Figure 9-7. A customer’s details on display

Binding Without a BindingSource

When you bind query results to a BindingSource, the BindingSource will act as an agent

to coordinate the entities, the fields, and the navigation toolbar. The BindingSource will update the entities when a change is made in the form’s fields. In this example, when

196 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

it’s time to have the Entity Framework send the entity changes to the data store, all of

the change information will be available.

As you have seen so far, I prefer to force query execution and work with the results of

the query, not the query itself. This allows me to depend on explicit behavior. There-

fore, in Example 9-1, I am binding a List<Customer>, not the query, to the binding source.

There is another route to binding. I introduced the Execute method in Chapter 3, with

a teaser about using it in data binding. Execute returns an Entity Framework IEnumer-

able type called ObjectResult<T>. If I were to use it in this example, it would return an ObjectResult<Customer>.

Feel free to experiment with the Execute method in your Windows

Form, but I won’t be providing a walkthrough for testing it out.

Rather than binding directly to the query, you can use the Execute method on the query

to push results into an ObjectResult, and bind to that instead. ObjectResult is a stream

that can be read through only once. ObjectResult contains a dbDataReader, so this is

where it gets it’s forward-only streaming behavior. This is quite different from getting

a List, which allows you to move back and forth, iterating, identifying specific objects

with an indexer, and so forth.

Another big difference between List<T> and ObjectResult<T> is that ObjectResult inherits IListSource. IListSource provides the same data-binding and change-tracking

benefits without relying on the UI BindingSource component.

You can also combine it with the UI BindingSource as follows:

CustomerBindingSource.DataSource=context.Customers.Execute(MergeOption.AppendOnly)

But more importantly, you can bind the ObjectResult (or any IListSource) directly to

a data-bound control such as a DataGridView without losing the change-tracking ben-

efits. You can’t do this with List<Customer> because List does not implement IListSource and you would no longer have any coordination between the context and

the control. If you edited something in a control, the context would not be aware of it.

Therefore, if you are binding directly to controls without using a BindingSourceCon

trol in between, and you do not want to have to be responsible for the code that ensures

that changes to controls are tracked by the context, or if programmatic changes to your

objects are surfaced in the controls, you should use a type that inherits from IList

Source (with the caveat about binding directly to an ObjectQuery, which also inherits

from IListSource, because of the repeated execution).

Data Binding with Windows Forms Applications | 197

Download from Library of Wow! eBook <www.wowebook.com>

Microsoft’s Dinesh Chandnani wrote an informative blog post titled

“BindingSource – A Closer Look.” You can find it at http://blogs.msdn

 .com/dchandnani/archive/2005/03/15/396387.aspx. Be aware that it is dated, but the explanations are enlightening.

Diego Vega, from the Entity Framework team, wrote an in-depth post

on data binding with entities at http://blogs.msdn.com/diego/archive/

 2008/10/09/quick-tips-for-entity-framework-databinding.aspx.

Execute takes a MergeOption parameter. MergeOption specifies what to do if the query

results already exist in the context. It’s possible to execute many queries against the

same context (or even to execute one query multiple times). If duplicate data is pulled

down from the data store, you can control how those duplicates are handled. In this

case, the AppendOnly option (the default for queries that don’t use this method) tells the context to only add entities that don’t already exist in the context. In this way, you

won’t have to worry about overwriting changes you have made. You’ll learn more about

MergeOption in Chapter 10.

Adding an EntityCollection to the Form

Now it’s time to get the reservations onto the form. The Reservation entity presents

the same problem as the Customer entity in that the majority of the most useful infor-

mation is in its navigation property, Trip, and the Trip’s navigation property, Destination.

Start by dragging the Reservations property onto the form. Along with the new grid

Visual Studio will add a ReservationsBindingSource to the form. The default control,

DataGridView, will display the reservations as shown in Figure 9-8 when the application is run. This creates the same problem that I alluded to earlier regarding dragging the

entire Customer object onto the form. The control is not able to work out the navigations

to the Reservation’s Customer and Trip references, and therefore displays only the type

name for each. Even if you edit the DataPropertyName property of the Trip column to

be Trip.StartDate, Windows Forms will not be able to navigate into Trip to find its

StartDate. This problem is not specific to the Entity Framework, but a result of how

the DataGridView functions.

 Figure 9-8. Default grid for the Reservations navigation property

198 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

By default, the Timestamp column is included, but it causes a

DataGridView error to be thrown as each row is rendered, because the

grid is unable to figure out how to display the binary data. So, I have

already removed that column from the grid.

Displaying the Properties of Related Data in the Grid

There is a way to display properties of related objects in DataGridView, and you can take

advantage of that here. The grid will be useful if it displays the reservation date, the

start and end dates of the trip, and the destination of the trip. Destination comes from

a navigation property of the Trip entity, so first we’ll need to modify the columns in

the grid.

Edit the grid’s columns by making the following changes:

1. Make the ReservationID’s Visible property false.

2. Remove the TimeStamp, Customer, Trip, and Payments columns.

3. Remove the foreign key columns, ContactID and TripID, as well.

4. Add three new unbound DataGridViewTextBoxColumn columns named

tripStartColumn, tripEndColumn, and destinationColumn. Make sure their

ReadOnly property is True.

The trick to displaying the navigation properties is in the code. You must override the

individual cells as the grid is being rendered for display. A useful event for doing this

is the DataGridView.DataBindingComplete event. Example 9-2 shows how to do this.

In the previous edition of this book, I used the RowPrePaint event, but

have since discovered that this event is hit a great number of times while

the form is active.

In C#, you can access the DataGridView.DataBindingComplete event

from the Events page of the grid’s Properties window. In VB, you can

do the same or access the event in the code window by choosing

ReservationsDataGridView from the Class Name drop-down and then

DataBindingComplete from the Method Name drop-down.

 Example 9-2. Forcing the DataGridView to display navigation properties

private void reservationsDataGridView_DataBindingComplete

(object sender, DataGridViewBindingCompleteEventArgs e)

{ var gridView = (DataGridView)sender;

foreach (DataGridViewRow row in gridView.Rows)

{

if (!row.IsNewRow)

{

var reservation = (BAGA.Reservation)(row.DataBoundItem);

Data Binding with Windows Forms Applications | 199

Download from Library of Wow! eBook <www.wowebook.com>

var trip = reservation.Trip;

row.Cells[tripStartColumn.Index].Value = trip.StartDate.ToShortDateString();

row.Cells[tripEndColumn.Index].Value = trip.EndDate.ToShortDateString();

row.Cells[destinationColumn.Index].Value = trip.Destination.Name;

}

}

}

The trick shown in Example 9-2 is required because we are binding directly to the EntityObjects. In a more highly architected application,

you would likely be using patterns that would not force you to perform

this type of logic.

Now, run the application again and take a look at the result. Notice that you don’t have

to add any additional querying or binding code into the form’s Load event. The fact that

you have already bound the customers to the BindingSource is enough. The two

BindingSource controls will work out all of the relationships. In the form, as you nav-

igate from one customer to the next, that customer’s reservations will be displayed in

the grid (see Figure 9-9).

 Figure 9-9. The formatted reservations grid

The trip start and end dates were formatted in the DataBindingComplete event using

ToShortDateString. The ReservationDate was formatted using the Designer. I have

demonstrated both ways simply so that you can see each of them, but in a production

app, you’ll want to pick a single pattern for formatting your data. See the MSDN topic

“How to: Set Default Cell Styles and Data Formats for the Windows Forms DataGrid-

View Control Using the Designer,” at http://msdn.microsoft.com/en-us/library/

 95y5fz2x(VS.100).aspx.

Because of the convenient but inefficient query, all of the Customer ob-

jects with all of their reservations and related trip data are in memory.

So, in this example, the application does not need to return to the da-

tabase to retrieve additional data as you move from one customer to the

next. In a properly designed application, you will need to be more dili-

gent about retrieving only the data the user will need, and you’ll want

to be considerate about balancing the client-side resources with the trips

to the server and the amount of data being transmitted based on your

scenario.

200 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

Allowing Users to Edit Data

So far, you have been using the form to view data. What about editing or adding data?

BindingSource supports editing, but you’ll need to make a few small modifications to

the form and the code to get this functionality. We’ll start with editing, and in the next section we’ll enable adding.

By default, the navigation toolbar disables the Save button when the toolbar is first

created. Right-click the button and check the Enabled property in the context menu.

Before you can add the method to save data, you have to make an important change in

the existing code. Currently, you are instantiating the BAEntities ObjectContext in the

form’s Load event. This prevents the context from being available outside that particular

event.

As you saw in Chapter 6, whenWhen you query data with the context, by default the entities that result are managed by the context that keeps track of changes made to

those entities. You can then use the ObjectContext.SaveChanges method to save those

changes back to the data store. Although you will learn much more about this later in

the book, here you’ll need to be aware of the fact that only the context that is tracking

the changes is able to save them. You can’t instantiate a new context and expect it to

save changes to the entities that you’re working with in the form. It won’t know any-

thing about them.

Therefore, it is important to be sure that when you call SaveChanges, you are working

with the same context you used to retrieve the data.

To do this in the form, you need to declare the context in the form declarations, not

within a method. In this way, all of the form’s methods can work with the same context

and you will be able to call SaveChanges in the Click event of the Save button.

Just beneath the line of code that declares the form, add the following code to declare

the context, so that the code now looks like this:

public partial class Form1 : Form

{ BAGA.BAEntities _context;

Since I’m changing the context variable to a form variable, I’ve renamed

it _context to follow good coding practices. Be sure to fix up any use of

the variable accordingly.

In the form’s Load event, change the code that declared and instantiated the context so

that it instantiates the already declared context, as shown in the following code snippet: _context = new BAGA.BAEntities();

Data Binding with Windows Forms Applications | 201

Download from Library of Wow! eBook <www.wowebook.com>

Back in the form’s Design view, double-click the Save button to get to its Click event handler. Then add the SaveChanges code into the Click event, as shown in the following

code:

_context.SaveChanges();

That is the complete code for saving all of the entity changes! There is no connection

code, no need to build commands, and no need to worry about what entities are being

saved or what types of changes are being made. Object Services reads all of the change

information that it has kept track of for the entities that it is managing, works out the

proper commands (Insert, Update, or Delete), and then executes them.

If the model had any stored procedure mappings, Object Services would use stored

procedures to perform the changes on the entities that have functions mapped to them.

In its current state, you can test-edit a customer. Another tweak is necessary before you

can edit the navigation properties, though, and yet another before you can add a new

customer. So for now, try editing and saving the name fields of a customer.

Editing Navigation Properties (and Shrinking the Query)

The next stage of building up the functionality in this form is to make it possible to edit the other navigation properties.

You are already able to edit the Contact navigation property because it has a relationship with the customer. It is essentially an extension of the customer. The preference properties—PrimaryActivity, among others—are values selected from a list of possible

items. You’ll need two things to be able to change the selections. First, you will need

access to a complete list of the items (activities and destinations). Therefore, you’ll need queries in the code to retrieve these lists. Second, you’ll need some type of selection

control, for example, a drop-down list, on the form to display the lists and allow the

user to choose from them.

Activities and destinations are reference data. Each is a short list of options shared by

everyone. You’ll need the full lists in order to allow users to select different activity or destination options. Rather than retrieve them as part of the customer query, we’ll write

two independent queries to retrieve all of the activities and all of the destinations.

Providing independent lists will add a big performance benefit to the application. When

the activities and destinations are queried, you’ll store their objects in memory. More

specifically, they will be managed by the ObjectContext.

It won’t be necessary to include the activity and destination data in the Customers query; they'll already be in memory. The queried customers have the Activity and Destina

tion reference EntityKeys inside them; that will be all they need to acquire the related

Activity and Destination entities when we need them.

Figure 9-10 shows the PrimaryActivity and PrimaryActivityReference properties of a Customer that was queried without any of its related data. When the context creates the

202 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 9-10. PrimaryActivity and PrimaryActivityReference properties of a Customer that was queried without any of its related data

Customer object, if the Activity object with that same EntityKey is already in the context, the two will be hooked up. The same happens if you were to query the customers first

and then the activities.

As a reminder, an EntityReference property is generated from the model

as a supplement to any navigation property that points to an entity.

PrimaryActivityReference is the EntityReference property that supple-

ments the PrimaryActivity property of Customer. The PrimaryActivi

tyID property will be populated only if the database column is not null.

In order to get the true state of the entity in the debugger, I temporarily

set LazyLoadingEnabled=false. Otherwise, even the debugger would

cause the lazy load on the navigation properties in the visualizer. In order

to see these properties, I’ve debugged into the customers variable (a

List<Customer>) in Page_Load.

So, now you can add the two new reference data queries and remove the corresponding

Includes in the Customers query so that it doesn’t pull all of that extra data out of the

database and over to the application.

At the same time, you’ll create two new form-level variables to contain the activities

and destinations.

Add the new _activities and _destinations variables to the form declarations, as shown in Example 9-3.

 Example 9-3. Adding two new variables, _activities and _destinations, to hold the new lists public partial class Form1 : Form

{ BAGA.BAEntities _context;

List<BAGA.Activity> _activities;

List<BAGA.Destination> _destinations;

Data Binding with Windows Forms Applications | 203

Download from Library of Wow! eBook <www.wowebook.com>

Next, as shown in Example 9-4, add the new queries into the Form1_Load and modify the existing Customers query to remove the extraneous navigations. Notice that

Destination is also removed from the Reservations.Trip navigation path. Trip will also

be able to find its related destinations in the context after they are retrieved by the

Destinations query.

 Example 9-4. Querying for the list data

private void Form1_Load(object sender, EventArgs e)

{ _context = new BAGA.BAEntities();

_activities = _context.Activities

.OrderBy(a => a.Name).ToList();

_destinations = _context.Destinations

.OrderBy(d => d.Name).ToList();

var customers = _context.Customers.Include("Contact")

.Include("Reservations.Trip")

.ToList();

You can run the application again if you want to see that all of the ref-

erence properties are still intact.

Even if you were binding directly to the UI controls, ToList would be sufficient for

executing the queries and binding their results, rather than using Execute. The activities and destinations will be used only for pick lists and will not be edited directly, so you

don’t have to worry about an IListSource failing to pass along change information for

activities and destinations to the context.

Replacing the Navigation Property TextBoxes with ComboBoxes

Now that the data for the lists exists, you can change the controls for PrimaryActiv

ity and the other navigation properties to ComboBoxes so that it will be possible to edit

a customer’s preferences.

You can bind the ComboBox controls in code or in the UI. Since there are four properties

to change, I’ll have you use both methods so that you can learn each one.

Replace the TextBox controls for the PrimaryActivity and PrimaryDestination target

properties with ComboBox controls, giving them names to help you differentiate them.

The FillCombos method in Example 9-5 performs the standard bindings for a ComboBox and additionally binds them to the Customer’s PrimaryActivity and Primary

Destination navigation properties. Notice that the first argument for the new binding

is SelectedItem. You may be more familiar with using Text in that argument.

SelectedItem will cause the control to read the entire Activity object attached to the

Customer and will work out how to match it up with the items in the ComboBox.

204 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

 Example 9-5. Code for filling two of the ComboBoxes

private void FillCombos()

{ activity1Combo.DisplayMember = "Name";

activity1Combo.ValueMember = "ActivityID";

activity1Combo.DataSource = _activities;

activity1Combo.DataBindings.Add

(new Binding("SelectedItem",customerBindingSource,

"PrimaryActivity", true));

dest1Combo.DisplayMember = "Name";

dest1Combo.ValueMember = "DestinationID";

dest1Combo.DataSource = _destinations;

dest1Combo.DataBindings.Add

(new Binding("SelectedItem",customerBindingSource,

"PrimaryDestination", true));

}

Insert a call to the FillCombos method into the form’s Load event. You can put this line

at the end of the existing code. Run the application again if you want to see how the

ComboBoxes have been populated so far.

The other ComboBoxes will be bound in the UI. To do this, you will need to create one

new Object data source for the BAGA.Activity class and one for the BAGA.Destination

class. To create these, use the same steps as you did to add the Customer data source

at the beginning of this chapter. These new data source objects default as DataGrid

Views. Change them to ComboBox controls:

1. Open the form in Design view.

2. Click Destination in the Data Sources window.

3. Click its drop-down arrow.

4. Click Customize from the list.

5. Choose ComboBox from the Associated controls.

6. Click OK.

7. Drag Destination onto the form.

8. Click Activity.

9. Select ComboBox from its drop-down list.

10. Drag Activity onto the form.

You will now have two new ComboBox and BindingSource controls.

In the form load, add the following code to bind the new BindingSources to the list

variables, as shown in the following code:

activityBindingSource.DataSource = _activities;

destinationBindingSource.DataSource = _destinations;

Data Binding with Windows Forms Applications | 205

Download from Library of Wow! eBook <www.wowebook.com>

The order of the method calls in Form.Load will impact the UI. If you

perform this binding at the end of the Form.Load, the very first record

will not display the correct items until you move to another record and

back again in the UI. However, if you place these two lines of code prior

to the query that retrieves the Contact data, the combo boxes will be

correct right away.

Using the ComboBox Tasks window, you can see that three of the four properties for

each ComboBox were filled by the drag-and-drop operation. Because our model uses foreign keys, you can set the selected value to point to the CustomerBindingSource.Sec

ondaryActivityItemID, as shown in Figure 9-11.

Because the Tasks window cannot be expanded, you cannot see the

complete property name displayed in the screenshot.

 Figure 9-11. Binding properties through the ComboBox Tasks window

You also have the option of binding directly to the SecondaryActivity navigation prop-

erty, which you would be forced to do if you weren’t using foreign keys. If you want to

206 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

go this route, you can set the property in the Properties window, as shown in Fig-

ure 9-12.

 Figure 9-12. Alternatively, binding the ComboBox selection using SelectedItem, which is available in the ComboBox Properties window

Now you can view, edit, and save these properties along with the rest of the customer

data, as shown in Figure 9-13.

 Figure 9-13. Editing the navigation properties with pick lists

Data Binding with Windows Forms Applications | 207

Download from Library of Wow! eBook <www.wowebook.com>

If you are not familiar with Windows Forms data binding, it may be

helpful to understand that changes to a control’s value are not registered

until the user moves away from the control and selects another control.

Therefore, after you have made the last edit on the form, click any of

the other controls before you click the Save button. In a production app,

you would need to ensure that the user is not susceptible to this default

behavior.

Adding New Customers

We’ll take on one last task in this Windows form before moving on: adding new customers.

The data sources don’t handle the related entities quite as seamlessly when adding as

they do when editing, so we’ll have to add a little bit of code to make this work.

When you click the plus sign icon to add a new customer, a new customer is added to

the CustomerBindingSource. But because of the constraints of the model, you also need

a new Contact entity to be created at the same time. Remember that a Customer entity

merely extends a Contact. The BindingSource has an AddingNew event, but this occurs

before the new entity is created. The next event to fire is CurrentChanged as the BindingSource moves its pointer to the newly created Customer. In the CurrentChanged

event, you can add the new contact and set any other properties that are necessary.

Here you will have your first opportunity to see how to create new entities in code, to

create a relationship, and to be sure the new entity is being managed by the context.

We’ve established that clicking the plus sign icon adds a new Customer to the Binding

Source, and that the CurrentChanged event is your first opportunity to work with the

new Customer entity. But the CurrentChanged event is hit anytime the BindingSource

points to a different Customer. You’ll need a way to discern the newly added Customer

from those that already existed in the BindingSource.

One way might be to check the Customer’s ContactID, because it will not have

been created yet. But if the user has added a number of customers prior to saving,

ContactID=0 will not necessarily mean that the user just clicked the Add New icon.

Until you have more tools in your Entity Framework tool belt, the best way to determine

a newly added Customer at this point is to use a flag to identify that a new Customer is

being added to the BindingSource. We’ll employ a Boolean variable named adding for

the flag.

Once that is in place, you will need to do the following for new customers:

1. Create a new contact object.

2. Add the contact to the new customer.

3. Set necessary defaults on the contact.

208 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

4. Set necessary defaults on the customer.

5. Set the adding flag to false.

Let’s see how to implement these steps.

In Chapter 11, you will learn how to add business logic to entities and these types of steps won’t be necessary, especially not in the user

interface.

First we’ll add the code to ensure that new customers are created properly.

Add the Boolean variable in Example 9-6 to the form’s declarations.

 Example 9-6. Placing the adding variable into the form’s declarations

public partial class Form1 : Form

{ BAGA.BAEntities _context;

List<BAGA.Activity> _activities;

List<BAGA.Destination> _destinations;

bool _adding;

Using the Events view of the Properties window for the CustomerBindingSource control,

create new methods to respond to the AddingNew event and the CurrentChanged event.

Then, in the code view, fill out the new methods as described in the next two examples.

In the CustomerBindingSource.AddingNew event, set the adding flag to true, as shown in

Example 9-7.

 Example 9-7. Setting the adding flag to true

private void customerBindingSource_AddingNew

(object sender, AddingNewEventArgs e)

{ _adding = true;

}

In the CurrentChanged event, you will check the adding flag, as shown in Example 9-8.

If it is true, the code should perform the steps outlined earlier on the new Customer. If

adding is false, this logic will be skipped. In this example, CustomerBindingSource.EndE

dit is called prior to adding the related entities to the Customer. This method will trigger the BAEntities context to recognize the new Customer, and therefore the context will

also manage the new Contact entity properly. Without this method call here, you may

experience problems when it comes time to call SaveChanges.

 Example 9-8. Filling out the defaults for a new Customer

private void customerBindingSource_CurrentChanged

(object sender, EventArgs e)

{

Data Binding with Windows Forms Applications | 209

Download from Library of Wow! eBook <www.wowebook.com>

if (_adding)

{

customerBindingSource.EndEdit();

//TODO: Move "create new customer" logic out of the UI code

var newCust = (BAGA.Customer)customerBindingSource.Current;

if (newCust.Contact == null)

{

newCust.Contact = new BAGA.Contact();

newCust.Contact.ModifiedDate = DateTime.Now;

newCust.Contact.AddDate = DateTime.Now;

}

newCust.InitialDate = DateTime.Now;

_adding = false;

}

}

In the previous chapter, you were instructed to set a default value for

the CustomerTypeID in the model. If you hadn’t done that, you would

need to set it in the CurrentChanged method since it is a non-nullable

property.

You’ll need one last line of code for saving newly added customers. It’s not uncommon

for the BindingSource to leave its current item in the “edit state.” With entities, this

means that the changes in the UI won’t be pushed into the entities, and therefore SaveChanges will not see the need to do any updates to the database. BindingSource.EndE

dit will ensure that the UI changes are registered with the entities.

Add the method shown in Example 9-9 to the Save Item button’s Click event, just before SaveChanges is called.

 Example 9-9. Using EndEdit to ensure that BindingSource completes the current edit process private void customerBindingNavigatorSaveItem_Click

(object sender, EventArgs e)

{ customerBindingSource.EndEdit();

_context.SaveChanges();

}

EndEdit has been something of an enigma in Windows Forms data

binding. In some apps you’ll never need to use it; in others it solves some

strange problems related to updates and persisting to the database. This

has nothing to with Entity Framework.

Run the form again and add a new customer.

You’ll be able to enter name and preference information and save the record. You should see a new value pop into the ContactID field when you save. That’s a pretty good

210 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

indication that the insert was performed in the database because this is the new value returned by the insert operation.

Because the context is keeping track of additions and edits, it is possible to make changes to multiple records before clicking the Save button. When you do, all of the

changes you have made to the list of customers, whether they were additions or edits,

will be sent to the database. The best way to ensure that the code is working is to stop

the application after you have saved your changes, and then start it again. This will

force it to requery the database, and you can verify that the changes were definitely

persisted to the store.

Deleting Reservations

If you are new to data binding, it is essential to understand an important concept about

working with “child” data, such as the reservations in a grid control. The grid control

has the ability to allow users to remove rows. This requires that you check Enable

Deleting in the grid’s Task window, or set the AllowUserToDeleteRows property to True in the Properties window. With this enabled, a user can highlight a row, hit the

Delete key on his keyboard, and the row will disappear.

However, the term delete is misleading. In the case of this child data, the row is removed, but that piece of data will not be deleted from the database when a save is made. This

is not specific to Entity Framework. You’ll experience this with DataSets and custom

objects as well.

What happens is that the data is removed from the collection that contains it. In the

case of the reservations, the “deleted” reservation is removed from the Reservations

EntityCollection of the current customer. Now that Reservation has no Customer,

when you call SaveChanges you will get an exception because a constraint was defined

by the one-to-many relationship between the two (every reservation must have a

Customer). The save will fail.

It is best to handle the user action more explicitly rather than rely on the data binding.

If you truly want users to be able to delete a reservation by removing the row, you’ll

need to handle that event and ensure that the reservation is marked for database deletion.

The grid has a UserDeletingRow event and a UserDeletedRow event. In the first event,

you need to identify which reservation was just removed. In the second, you can delete

the reservation from the context. You can’t delete from the context in the first event

because the grid will get confused and remove the next item from the collection.

This two-step process requires that you first declare a class-level variable in the form

declarations, such as:

Reservation resToDelete;

Next, add the two events for the reservationsGridView and fill out their logic as follows: Data Binding with Windows Forms Applications | 211

Download from Library of Wow! eBook <www.wowebook.com>

private void reservationsDataGridView_UserDeletingRow

(object sender, DataGridViewRowCancelEventArgs e)

{ resToDelete = reservationsBindingSource.Current as BAGA.Reservation;

}

private void reservationsDataGridView_UserDeletedRow

(object sender, DataGridViewRowEventArgs e)

{ if (resToDelete != null)

{

_context.DeleteObject(resToDelete);

resToDelete = null;

}

}

Be aware that this particular example is not completely fleshed out. A Reservation

might have related Payments and you should take those into account when deleting a

reservation.

Not all of the form features will work. For instance, you will run into

problems if you attempt to delete a customer or a customer’s reservation

because of constraints in the database that we have not yet addressed.

In upcoming chapters, you will learn how to perform this and other

types of functions with your entities, how to add business logic, how to

write layered applications, and more.

You could add plenty of features to this form to make it even more functional, but it’s

time to move on to a different type of client-side data binding: data binding in WPF.

Data Binding and Separation of Concerns

The data binding that you have seen so far and the example you will build in the next

part of the chapter work directly with the ObjectContext in the user interface. If you are building small applications, this is a sufficient pattern. However, for enterprise applications, there are well-known patterns for keeping this type of logic out of the user

interface. The focus of many of these patterns is that UI code should be related to work

in the UI, not code that interacts with a database or performs business logic on objects.

Using the context directly in your UI for queries and calling SaveChanges is an example

of code that interacts, albeit indirectly, with the database. It has nothing to do with the UI itself. Applying default values to a newly created entity is also unrelated to the user interface.

212 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

Data Binding with WPF Applications

For the WPF data-binding example in this section, you’ll focus on interacting with trips

and their details: destination, lodging, and activities. You will also get a chance to see how many-to-many relationships work both for data retrieval and for updates.

We will continue providing our data in the form’s code, but read the “Data Binding

and Separation of Concerns” sidebar on this page for a short discussion of why this is acceptable for small applications, but not for large applications. Further on in the book

you will learn how to take these next steps with the Entity Framework. However, as

you work through the WPF example, bear in mind that the lesson is not about appli-

cation architecture, but about how data binding functions with WPF and Entity

Framework.

If you’ve never created a WPF application before, this will be a useful, albeit simple,

introduction. It will be a bit of a dive into the not-so-shallow end of the WPF pool, but

the code samples should provide sufficient buoyancy. If you are looking for tips on how

to make WPF perform its many shiny tricks, a data access book is not the place to look.

Quite a number of wonderful WPF books, articles, and other resources

are available—too many to list here. For a good first look at WPF, I

recommend MSDN’s “How Do I?” videos, at http://msdn.microsoft.com/

 en-us/bb629407.aspx#wpf/.

You may be happy to learn that data-binding controls for WPF were introduced in

Visual Studio 2010, which makes this example much simpler to achieve than in the

previous version.

Creating the WPF Form

The purpose of this form will be to edit trips that exist in the BreakAway catalog. Trips

are defined by a destination, a start and end date, a price, lodging, and a list of activities.

Figure 9-14 shows a mock-up of the form you will build.

A slew of controls are involved in this form. You’ll learn how to bind ListBoxes and

TextBoxes and how to have them interact with one another, as well as some tricks that

you’ll need to know for doing all of this with the Entity Framework.

WPF data binding has had some wonderful improvements in Visual Studio 2010. This

impacts binding to Entity Framework objects as well as other data sources. In this

example, you’ll do some of the binding manually and let the Designer handle some of

it for you.

Data Binding with WPF Applications | 213

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 9-14. Mock-up of a WPF form for managing BreakAway’s Trips catalog

Creating the WPF Project

We’ll begin by creating a new WPF project, adding the references to use the model,

and getting all of the controls onto the form:

1. Create a new WPF project in the same solution where you created the model and

the Windows Forms application.

2. Add a reference to the BreakAwayModel project and to System.Data.Entity as you

did for the previous application.

3. Copy the app.config file from the Windows Forms project into this project.

Remember, this is just a cheat to quickly get the ConnectionString into the current

application.

214 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

Adding the Necessary Data Source Objects

To begin, this form will need to use Trips, Destinations, and Lodgings as data sources.

1. Using the same method you did with the Windows Forms example, create three

new Object data sources—one for the Destination class, one for Lodging, and one

for Trip.

If your EDM were in the same project as the WPF window, the

EDM classes would automatically be available as data sources. You

wouldn’t have to explicitly add them. This is really handy for

building rapid applications.

The new data sources will have a DataGrid as the default control binding.

2. Change the control binding for Destination and Lodging to ComboBox, and then

change the control binding for Trip to ListBox. The WPF designer window needs

to be open in order to do this.

You will need to use the Customize option to add the ComboBox and ListBox to the

drop-down choices.

3. Drag Destination onto the window’s design surface and then Lodging and Trip. In

a few more steps, I’ll explain why it was important to drag Destination first.

They will be named destinationComboBox, lodgingComboBox, and tripListBox. Vis-

ual Basic will capitalize the first letters of the control names.

If you haven’t used WPF before, you might appreciate that the Name

property is at the top of the control’s Properties window.

You’ll be customizing these controls, but first we’ll look at how these data sources

appear in the window’s XAML and then we’ll write some code to get data that will

populate the controls.

Inspecting the XAML and Code Generated by the Automated

Data Binding

In addition to creating the controls, there are other notable changes that the data bind-

ing made to the XAML and to the code for this window. None of this is specific to the

fact that you are binding to Entity objects. This is the common behavior for WPF data

binding.

Data Binding with WPF Applications | 215

Download from Library of Wow! eBook <www.wowebook.com>

XAML data-binding elements

In the XAML, a new element was added, called Windows Resources. This element

contains three new CollectionViewSource elements, one for each object being used in

the window. These are comparable to the BindingSource used in Windows Forms. They

will act as the conduit between your data and the controls.

Look farther down at the Grid that wraps the three controls. The Grid defined a DataContext that points to the CollectionViewSource of the first object you dropped

onto the screen. Because you dropped the Destination data source first, the context

will be named destinationViewSource:

<Grid DataContext="{StaticResource destinationViewSource}">

The destinationComboBox will then default to the binding of its parent (the grid) using

the ItemsSource attribute. To do so, the ItemsSource says to use the Binding with no

additional details:

ItemsSource="{Binding}"

What about the other two controls? How do they bind to their CollectionView

Sources? The Lodging and Trip controls have additional information in the ItemsSource

Binding property, referring back to the CollectionViewSources that are defined in the

Windows.Resources element:

ItemsSource="{Binding Source={StaticResource tripViewSource}}"

This is the default behavior of the WPF Designer. You do not need to use Resources

and can bind directly in code. However, leveraging XAML’s composability is a good

and recommended practice. Additionally, if you plan to reuse a resource within a win-

dow, there is a performance gain at compile time. Again, this example is not meant to

be a primer on how to use WPF, so refer to more focused learning resources for further

details.

In the code-behind for the window, you will find two new lines of code for each CollectionViewSource that was added to the XAML. The first is to create a class instance

of these elements and the second is to bind some data to them. This latter line is com-

mented out. If the model had been inside the WPF project, you’d see a lot more code.

Check the sidebar “WPF and EDM: So RAD Together” on page 217 for more information about this.

Let’s create some data sources to hook up to these view sources.

Adding Code to Query the EDM When the Window Loads

Adding events to WPF is the same as for Windows Forms. In C#, you can use the

Events page of the Properties windows. In VB, you can do the same or use the Class

Name and Method Name drop downs in the Code window.

216 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

We’ll start by declaring variables for the form. As in the previous application, you’ll

need a context and some variables to contain the selection lists. You can add an Imports or using statement for the BAGA namespace so that you don’t have to type it

repeatedly. While you’re at it, add the System.Data.Objects namespace as well. This

will reduce the amount of typing you need to do later on. (See Example 9-10.) WPF and EDM: So RAD Together

An earlier note mentioned that if the EDM was in the same project as the WPF window,

the data sources would have automatically been created. Another RAD feature that you

would see if your EDM was in the same project is that after dragging the data sources

onto the window, Visual Studio would have created code to declare and instantiate a

context, defined and execute a query and bind the results to the control’s binding source. The result is that simply by dragging and dropping the data source on to the

form you would have a form that would run and display data without having to write

a single line of code. You can see a demonstration of this in a video I created that is on the MSDN Data Development Center as part of a series of EF4 Introductory videos at

 http://msdn.com/data/videos. The particular video is number 11 in the series: DataBinding with WPF and the Entity Framework.

 Example 9-10. Adding the necessary namespaces and variables for the form

using BAGA;

using System.Data.Objects;

using System.Collections.ObjectModel;

namespace Chapter_9_WPF

{ public partial class MainWindow : Window

{

private BAEntities _context;

private List<Activity> _activities;

private List<Destination> _destinations;

private List<Lodging> _lodgings;

private List<Trip> _trips;

In the Window_Loaded event handler, add the code for retrieving the trips as well as the

related selection lists (see Example 9-11).

Later on in the book, you’ll learn how to create a generic method that

you can use to query for any reference lists so that it won’t be necessary

to have separate queries for selection lists such as Destinations, Lodg-

ings, and Activities.

 Example 9-11. Querying for lists that will be needed by the form

private void Window_Loaded(object sender,RoutedEventArgs e)

{ _context = new BAEntities();

Data Binding with WPF Applications | 217

Download from Library of Wow! eBook <www.wowebook.com>

 _activities = _context.Activities

.OrderBy(a => a.Name).ToList();

_destinations = _context.Destinations

.OrderBy(d => d.Name).ToList();

_lodgings = _context.Lodgings

.OrderBy(l => l.LodgingName).ToList();

_trips = _context.Trips

.OrderBy(t => t.Destination.Name).ToList()

}

Now that you have some data, you can bind it to the view sources, which, in turn, will

feed the data to the controls.

1. Return to the code that was inserted when you dragged the controls onto the form,

and define instances for the three CollectionViewSource elements.

2. Uncomment each line that defines a data source.

3. Modify the code to apply the lists you created earlier to these view sources as follows:

tripViewSource.Source = _trips;

destinationViewSource.Source = _destinations;

lodgingViewSource.Source = _lodgings;

If you were to run this application at this point, you’d see that the form is now able to

display data, though it’s not quite ready for prime time. You’ll have to give the XAML

a bit more information regarding what to display.

Customizing the Display of the Controls

When the controls were created on the page, Visual Studio did its best job of defining

what to display in the controls. Each control displays the values of the first scalar property listed in the object and displays the property’s value using the DisplayMemberPath

attribute.

Now you will modify this to display the correct information.

In the ListBox, we want to display the name of the destination along with the date the

trip starts. DisplayMemberPath allows only a single value, so you’ll replace that with a

new element, an ItemTemplate that contains additional WPF controls.

Modify the ListBox so that it matches the XAML in Example 9-12. The changes you need to make are:

1. Delete the attribute DisplayMemberPath="DestinationID" from the ListBox element.

2. Remove the closing slash from the end of the ListBox element and add a closing

tag to the ListBox.

This will change from Width="120" /> to Width="120" > </ListBox>.

3. Add the ItemTemplate element shown in Example 9-12.

218 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

 Example 9-12. The ListBox and its ItemTemplate

<ListBox Height="136" HorizontalAlignment="Left" Margin="73,32,0,0"

Name= "tripListBox" VerticalAlignment="Top" Width="406"

ItemsSource="{Binding Source={StaticResource tripViewSource} }">

<ListBox.ItemTemplate>

<DataTemplate >

<StackPanel Orientation="Horizontal">

<TextBlock Width="200" Text="{Binding Path=Destination.Name}"/>

<TextBlock Text="{Binding Path=StartDate, StringFormat=MM/dd/yyyy}"/>

</StackPanel>

</DataTemplate>

</ListBox.ItemTemplate>

</ListBox>

The margins and other position settings that you see in the examples

are what happened to be set by the Designer as I was creating my own

WPF window for these samples, and are not necessarily values that you

will need to use.

You’ve got enough to see some action already. Run the form to see the trip destinations

and start dates listed in the ListBox.

The typing you’ve done in the XAML may result in some typos. Al-

though the consequences of some typos will be exceptions thrown at

runtime, often you won’t see the results you expect even if there are no

typos highlighted by IntelliSense in the code. If you’re testing the code,

and controls are empty when they shouldn’t be, ensure that you typed

in the correct control names and property names.

Selecting an Entity and Viewing Its Details

The next step is to view the trip details. On the form shown in Figure 9-15, you can see that the start and end dates appear in the (new to Visual Studio 2010) DatePicker controls on the form. The destination and lodging information is displayed in the combo

boxes that are already on the form. Eventually, you will use combo boxes for editing

trips as well.

WPF’s binding goes far beyond binding data to controls. You can also bind controls

to each other, creating dependencies between them. We’ll use this feature to link the

DatePicker and ComboBox controls to the ListBox. The controls will obtain their values

from the ListBox’s selected trip.

Let’s start with the ComboBox controls that are already on the form. They already are

bound to the lists that populate them, but now you want to ensure that they display

the information from whatever trip is currently selected in the ListBox.

As noted before, the destinationComboBox by default is using the DisplayMemberPath

attribute to display the DestinationID.

Data Binding with WPF Applications | 219

Download from Library of Wow! eBook <www.wowebook.com>

First, change the DisplayMemberPath target from DestinationID to Name.

The DisplayMemberPath and SelectedValuePath attributes refer to the properties of the

list of lodgings to which you bound the ComboBox in code. SelectedValue gets the LodgingID from the currently selected trip in the ListBox.

Now add a SelectedValue attribute that binds the ComboBox to the currently selected

item in the tripListBox. Example 9-13 shows the final XAML for the destinationCom boBox, which binds to the foreign key property, DestinationID, of the selected trip.

The ItemsPanel element was added by the Designer when you originally

created the control. It contains a VirtualizingStackPanel, which is there

to help with UI performance.

 Example 9-13. XAML for displaying the destination of the selected trip

<ComboBox DisplayMemberPath="Name" Height="23" HorizontalAlignment="Left"

ItemsSource="{Binding Source={StaticResource destinationViewSource}}"

Margin="89,238,0,0" Name="destinationComboBox"

SelectedValuePath="DestinationID"

SelectedValue="{Binding ElementName=tripListBox,

Path=SelectedItem.DestinationID}"

VerticalAlignment="Top" Width="120">

<ComboBox.ItemsPanel>

<ItemsPanelTemplate>

<VirtualizingStackPanel />

</ItemsPanelTemplate>

</ComboBox.ItemsPanel>

</ComboBox>

You should make similar modifications to the lodgingComboBox. Change the

DisplayMemberPath of the lodgingComboBox to LodgingName. Then add a SelectedValue

attribute to the ComboBox in order to bind the control to the tripListBox.

Example 9-14 shows the critical portion of the lodgingComboBox after these changes have been made.

 Example 9-14. XAML for displaying the lodging of the selected trip

<ComboBox DisplayMemberPath="LodgingName" Height="23" HorizontalAlignment="Left"

ItemsSource="{Binding Source={StaticResource lodgingViewSource}}"

Margin="254,238,0,0" Name="lodgingComboBox" SelectedValuePath="LodgingID"

SelectedValue="{Binding ElementName=tripListBox,

Path=SelectedItem.LodgingID}"

VerticalAlignment="Top" Width="120">

Now you should be able to witness the interaction between the controls. Run the app,

and as you select different trips from the ListBox notice that the combo boxes update

accordingly. You can also see that the combo boxes are populated with the appropriate

lists if you open them.

220 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

Next, you’ll add the trip dates to the form and bind them to the tripListBox as well.

From the Data Sources window, drag the StartDate and EndDate properties from the

Trip data source onto the form.

The default control binding for date types is the DatePicker control. The Designer will

create a small grid that contains the label and the DatePicker.

Because you are using properties, not entire classes, the Designer will not create new

view sources. The controls will be dependent on the existing TripViewSource for their

data.

If the Trip data source is the first one you added to the control, the parent grid is bound to the tripViewSource through its DataContext attribute. In this case, you will not need

to modify the DataContext of the DatePicker controls. By default, they will depend on

the parent’s DataContext using the syntax DataContext="{Binding}".

However, if the Grid’s DataContext is set to one of the other view sources, you will need

to specify the Binding as you have done previously.

Modify the DataContext attribute of the startDateDatePicker to match that in Exam-

ple 9-15.

 Example 9-15. XAML for displaying the destination of the selected trip

<DatePicker Grid.Column="1" Grid.Row="0" HorizontalAlignment="Left" Margin="3"

Name="startDateDatePicker"

SelectedDate="{Binding Path=StartDate}"

VerticalAlignment="Center"

DataContext="{Binding Source={StaticResource tripViewSource}}">

</DatePicker>

Now modify the DataContext attribute of the endDateTimePicker to also point to the

same binding source as startDateTimePicker.

Notice that I’ve set the SelectedDate binding differently than I did for

the SelectedValue in Example 9-14. In Example 9-15, I’m reading the StartDate value directly from the tripViewSource. In Example 9-14, I’m reading the LodgingID value from within the tripListBox control, which

is why I use the ElementName attribute. I could have used the same pattern

for the date control, reading from the tripListBox control’s SelectedI

tem when looking for the StartDate value. Both binding methods are

valid. A more targeted WPF resource could provide guidance on when

to use one pattern over the other.

Now your form is starting to get interesting. When you run the application, the Start

Date and End Date text boxes and the Destination and Lodging combo boxes should

sync up to whatever trip is selected in the ListBox, as shown in Figure 9-15.

Data Binding with WPF Applications | 221

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 9-15. The window with the selection functionality enabled

You still have three more tasks to complete: viewing the activities for a trip, editing trip details, and adding new trips.

Adding Another EntityCollection to the Mix

The Activities property is an EntityCollection and you need to display it in a control

that can display sets. For that, we’ll use another ListBox.

Working with a many-to-many relationship

Activities and trips are joined in a many-to-many relationship. Although the Entity

Framework can query across this type of relationship and coordinate inserts, updates,

and deletes without you having to work directly with the Join table, there is one thing

that the Entity Framework is unable to do with this type of relationship, which is ex-

plained in the following paragraphs.

In previous examples, you saw how Object Services can automatically wire up related

objects that are in the context. It will find entities that are related and build graphs

between them. You took advantage of this in the Windows Forms application earlier.

Because the activities and destinations were being returned in their own queries, you

were able to remove the Include paths to the Customer preference properties.

In the Window.Loaded event for this WPF form, you have a query that returns a list of

activities. You will use this as a pick list when you create a new trip. So, since those

activities are already in the cache, it would make sense that they will automatically be

wired up to the existing trips. But they aren’t, and that’s because of the many-to-many

relationship. This is expected behavior and you’ll need to either load the related data

222 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

with Include or Load, or manually attach the entities. In this example, you will use an

Include. You’ll learn more about this in Chapter 15.

Object Services can automatically wire related entities only when one

of the ends of the relationship has an EntityReference property that

points to the other end of the relationship. Because both the

Activities property of Trip and the Trips property of Activity are

EntityCollections, the relationship information that is needed to bind

them doesn’t exist within either entity. That is why you need to explicitly

create the graph with one of the Object Services methods for joining

related entities.

Modifying the code to eager-load the related activities

The bottom line is that you need to change the Trip query in the Window.Loaded event.

To do this, add an Include method to pull in the activities, as shown in the following

code:

trips = context.Trips.Include("Activities")

.OrderBy("it.Destination.Name")

.ToList()

Adding the Activities ListBox and binding it to the Trips ListBox

The next step is to change the binding control for the Activities property of the Trip

data source to be a ListBox. To do this, drag the Activities property onto the form.

Then change the new ListBox control’s default DisplayMemberPath from ActivityID to

Name.

Example 9-16 shows the modified ListBox with all of the data-binding attributes in place. Notice that the Binding Source was properly defined. You shouldn’t have to edit

it.

 Example 9-16. The modified ListBox

<ListBox DisplayMemberPath="Name" Height="100" HorizontalAlignment="Left"

ItemsSource="{Binding Source={StaticResource tripActivitiesViewSource}}"

Margin="50,271,0,0" Name="activitiesListBox"

SelectedValuePath="ActivityID"

VerticalAlignment="Top" Width="227" />

Although we are depending on the Designer to automate this data binding, don’t forget

that you can set some of these values in the Properties window for the control. Since

the goal here is to see the Entity Framework objects in action with WPF, not to become

a WPF guru, I will not delve into the many variations that WPF provides.

Data Binding with WPF Applications | 223

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 9-16. The WPF window with the Activities ListBox displaying an EntityCollection Testing the application again

Once you have the ListBox control configured, you should be able to see the effect of

having each trip’s activities displayed in this ListBox as you select different trips from the main ListBox. Figure 9-16 shows the application performing its newest trick.

Editing Entities and Their Related Data

Now it’s time for some editing.

In the Windows Forms application, the BindingSource coordinated user actions with

entities. If a user edited data on the form, the BindingSource automatically pushed that

change into the entity, even for the related entities.

WPF’s CollectionViewSource performs the same task. Therefore, as you make changes

in these controls that are wired up, the changes will be tracked all the way back to the

entity. Add a new button to the form and change its Content property to Save. Next,

double-click the button to get to the Click event handler, the button’s default event.

Finally, add a call to SaveChanges in the event handler, as shown in Example 9-17.

224 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

 Example 9-17. Enabling saves

private void button1_Click(object sender, System.Windows.RoutedEventArgs e)

{ context.SaveChanges();

}

Run the form and edit one of the trips, changing a date and the lodging, then click the

new Save button. Close the form and then run it again. Thanks to the new data-binding

features added in Visual Studio 2010, the edits were successfully saved.

If you followed the WPF example in the prior edition of this book using

Visual Studio 2008, you were required to do a lot more work to get this

sample to run.

Using SortDescriptions to Keep Sorting in Sync with Data Modifications

You might prevent destinations from being edited on existing trips, but you’ll still need

to use that ComboBox for new trips. If the user changes the trip’s destination, you won’t

see the change on the ListBox.

WPF provides a way to sort the items in a CollectionViewSource with a SortDescrip

tions collection. If you re-sort the list after the user selects a destination from the combo box, the list will be refreshed, the new destination name will appear, and the item will

be properly sorted using the new name.

WPF’s sorting features are very different from what you may be used to.

You can read more about SortDescriptions in the MSDN

documentation.

Although you can define SortDescriptions in XAML, you will do it in code in response

to a selection from the destinationComboBox. Not only will you sort by the trip’s desti-

nation name, but then any trips to a common destination will be sorted by their start

date. I suggest putting SortDescriptions into the control’s DropDownClosed event so that

it gets hit only when the user changes the selection.

1. Add System.ComponentModel to the Imports/using statements to use this feature.

2. Add a DropDownClosed event for the destinationComboBox.

3. Add the code from Example 9-18 into the DropDownClosed event.

 Example 9-18. Allowing the List to be sorted

tripListBox.Items.SortDescriptions.Add(new SortDescription("Destination.Name",

ListSortDirection.Ascending));

tripListBox.Items.SortDescriptions.Add(new SortDescription("StartDate",

ListSortDirection.Descending));

Data Binding with WPF Applications | 225

Download from Library of Wow! eBook <www.wowebook.com>

In order to make the sorting work even as a user is modifying data, you

need to add the SortDescription each time. Unfortunately, this means

compounding the number of SortDescription objects in the collection.

You’ll see in the downloaded code example for this chapter the addi-

tional logic that I added into this solution to avoid this problem. This

extra code is not included here as it is a bit out of scope and requires a

number of extra steps that detract from the focus of the sample.

Adding Items to the Child EntityCollection

Next, we’ll provide the ability to add activities to a trip. To do this, you’ll need a way to select a new activity to add. Since you won’t need two-way binding, we’ll do the data

binding in code this time.

Start by adding a new ComboBox to the form with the name activityComboBox. In the

Window.Loaded event, you have already queried for the list of activities. Now you need

to bind those results to this new ComboBox. Therefore, add the following binding code

to the end of the Window.Loaded event:

activityComboBox.ItemsSource = _activities;

The ComboBox needs to know which property to display and which to use as the value.

So, in the Properties window for the ComboBox, set SelectedValuePath to ActivityID and

DisplayMemberPath to Name.

The ComboBox has a SelectionChanged event, but it’s not useful for reacting to a user

selection because it is also hit when other code changes the selection. Instead, add a

button to the form so that the user can explicitly add the selected activity. Name the

button btnAddActivity.

All that’s left to do is to wire up the button’s Click event to read the selected item in

the activityComboBox and add it to the current trip’s Activities EntityCollection. The

ListBox that shows the activities will update automatically because of its bindings. Add

the code in Example 9-19 to the new button’s Click event.

 Example 9-19. Adding Activities to the selected trip entity

private void btnAddActivity_Click

(object sender, System.Windows.RoutedEventArgs e)

{ Activity selectedActivity = activityComboBox.SelectedItem as Activity;

if (selectedActivity != null)

{

var selectedTrip = tripListBox.SelectedItem as Trip;

if (selectedTrip != null)

{

selectedTrip.Activities.Add(selectedActivity);

}

}

}

226 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

This code ensures that an activity and a trip are selected before it tries to perform the main task. Notice how the new activity is added to the trip’s Activities collection with

the Add method. You will likely use the EntityCollection.Add method quite a lot in your

Entity Framework–based applications. Chapter 19 drills into this functionality in detail.

Testing the new feature for adding activities

Run the application, select a trip, and add some activities. You’ll see the Activities

ListBox react. You can save the changes with your Save button. Note that since the data

is not refreshed, again you may want to stop and start the application for proof that

the change was saved.

The Last Task: Adding New Trips to the Catalog

Adding new trips will take a bit more code to implement. Not only will you need to set

some defaults on the new trip entity, but you’ll also have to use a few tricks to make

the user interface flow properly.

Start by adding a new button to the form that will be the user’s New Trip button. That’s

all you need to do in the UI. In the button’s Click event, you’ll create a new trip and

set some defaults.

A few WPF tricks for a more interactive ListBox

Before modifying the new button’s Click event, you’ll need to make two changes that

are related to WPF’s data binding and are not specifically related to the Entity Framework.

WPF’s data source controls can inform a class of changes to its properties, however, it

cannot inform a regular collection such as a List when items have been added or re-

moved from a bound control. Instead, you’ll need to use a different type of .NET col-

lection called ObservableCollection. Without getting too sidetracked, if you use an

ObservableCollection of trips as the source for the Trip ListBox control, as you add

and remove items from this collection the ListBox will respond by adding or removing

the items from the display.

It’s worth the effort to use this rather than a List so that you won’t have to write the

extra code to stuff your new trip into the ListBox.

To pull this off, we can change the _trips variable from a List to an ObservableType,

as shown in the following code:

//private List<Trip> _trips;

private ObservableCollection<Trip> _trips;

Data Binding with WPF Applications | 227

Download from Library of Wow! eBook <www.wowebook.com>

Add the Collections.ObjectModel namespace to the Imports/using

statements to use this feature.

In the Window.Loaded event, modify the Trips query to return an ObservableCollec tion rather than a List:

//_trips = _context.Trips.Include("Activities")

// .OrderBy("it.Destination.Name").ToList();

_trips = new ObservableCollection<Trip>(

_context.Trips.Include("Activities")

.OrderBy("it.Destination.Name"));

Now when you add new trips to the collection, they will automatically pop into the

ListBox. But they’ll be at the bottom and will remain there until you run the application

again. That’s no good. You can copy the sorting code from the Destination ComboBox’s

DropDownClosed event into the Window.Loaded event to benefit from the sorting early on.

In this way, if you add a new trip before you hit the other location where the sort is

applied, the new trip will drop into the correct position in the ListBox. With the List

Box controlling the sort, you can remove the OrderBy method in the Trips query.

You’ll still need the sorting code in the ComboBox to trigger the refresh.

There may be a better way to trigger a refresh in the ListBox than adding

the SortDescription again. But this little trick will suffice for now.

Coding the Add New Trip feature

With that functionality in place, you can now add a new trip and have the form respond

in an expected manner.

The Click event of the New Trip button will add a new trip, set some default values,

and add the trip into the ListBox’s items (see Example 9-20).

 Example 9-20. The Click event of the New Trip button

private void btnNewTrip_Click

(object sender, System.Windows.RoutedEventArgs e)

{ //create a new Trip object with default System.DateTime values

var newTrip = new Trip();

newTrip.StartDate = DateTime.Today;

newTrip.EndDate = DateTime.Today;

//add a default destination. Sorting will fail if Destination == @null

newTrip.Destination = _destinations[0];

//add the trip to the context so that its changes will get tracked;

_context.AddToTrips(newTrip);

228 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

//add the new trip to the bound collection

_trips.Add(newTrip);

//select the new trip so that the bound controls will be tied to it

tripListBox.SelectedItem = newTrip;

}

Testing the final version of the WPF demo

Run the demo again and check out the new features. When you add a new trip, watch

how smoothly the bound Trip ListBox displays the new trip at the top of the

ListBox. When you change the default destination, the trip will reappear alphabetically

sorted in the ListBox, but still selected. Add some activities to the new trip. Save your

changes and restart the application to prove that it all really worked (see Figure 9-17).

 Figure 9-17. The final WPF window with all of its features in place

Data Binding with WPF Applications | 229

Download from Library of Wow! eBook <www.wowebook.com>

Summary

The Entity Framework has a number of levels of entry. In this chapter, you got a chance

to apply much of what you learned in previous chapters in creating two starter client-

side applications. The Windows Forms application leaned heavily on drag-and-drop

data binding, whereas the WPF application let you get your hands a little dirtier as you

interacted with the entities in code.

You learned a variety of ways to provide related data to the forms and allow users to

make changes. You worked with Lists, learned about ObjectResult, and worked with

the ObservableCollection, which is a critical class for WPF data binding.

Although not highly architected, the applications in this chapter went beyond typical

“Hello World” introductory demos and gave you an opportunity to learn some of the

nuances of data binding with entity objects. At the same time, you learned how to

perform some good data-binding tricks in Windows Forms and WPF that will make

life with entities a little easier.

This is a good start for data binding and a great way to whip together small applications.

In the next chapter, you will dive into a little more theory as we go into much more

detail regarding how Object Services manages entity objects.

230 | Chapter 9: Data Binding with Windows Forms and WPF Applications

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 10

Working with Object Services

Most of the work that you will do in the Entity Framework will involve the objects that

are based on the entities in your Entity Data Model (EDM). Object Services is the part

of the framework that creates and manages these objects. Although you have worked

with Object Services in earlier chapters, you haven’t yet seen the big picture. The API

has a lot of tools that you can access directly to take charge of your entity objects.

This chapter is devoted to giving you a better understanding of the Object Services API:

what it’s responsible for, what it does under the covers, and some of the ways that you

can take advantage of it. In this chapter, you’ll also get a closer look at the ObjectCon

text, the most important Object Services class.

You will learn about how queries are processed and turned into objects, how these

objects are managed during their life cycle, and how Object Services is responsible for

the way entities are related to each other. You will see how the ObjectQuery and the

new ObjectSet work and how they relate to LINQ to Entities queries under the covers.

This chapter will also give you a better understanding of how Object Services manages

an entity’s state, beyond what you learned in Chapter 6.

As you become more familiar with the purpose, features, and implementation of Object

Services, you will be better prepared to solve some of the challenges you will face as

you move from using the “drag-and-drop” application-building features that Visual

Studio provides to building enterprise applications where you need to have much more

control over how all of the pieces of the application interact with one another.

Where Does Object Services Fit into the Framework?

Object Services is at the top of the Entity Framework stack, and as the name suggests,

it works directly with instantiated objects. The namespace for this API is

System.Data.Objects, and it provides all of the necessary functionality for generating

and interacting with the objects that are shaped by the conceptual layer and are popu-

lated from a data store.

231

Download from Library of Wow! eBook <www.wowebook.com>

As shown in Figure 10-1, Object Services processes your LINQ to Entities and ObjectQuery queries, and materializes the query results as objects. Through its core

ObjectContext class, Object Services also keeps track of the state of those returned objects and their relationships, maintains the metadata needed to compose queries on

their properties, acts as a caching coordinator for those that are in-memory, and more.

 Figure 10-1. Object Services as it relates to the rest of the Entity Framework stack

One way to approach Object Services is to examine in turn each specific role it performs

on behalf of the Entity Framework and your applications. These fall roughly into the

following seven categories:

• Processing queries

• Materializing objects

• Managing objects

• Managing object relationships

• Managing object state

• Sending changes back to the database

• Implementing serialization, data binding, and other services

232 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

Processing Queries

Processing queries is arguably Object Services’ most visible role. As you’ve seen, there

are many ways to query data in the Entity Framework. All of Entity Framework’s query

mechanisms use Object Services except EntityClient, which is part of a lower-level

API. Object Services uses EntityClient’s functionality on your behalf.

At a high level, query processing in the Entity Framework involves translating LINQ

to Entities or Entity SQL queries into SQL queries that a data store can execute. At a

lower level, Object Services first parses your query into a command tree of LINQ or

Entity SQL query operators and functions, combined with the necessary entities and

properties of your model. The command tree is a format the various providers that have

been designed to work with the Entity Framework will be expecting. Next, the provider

API (implemented over Oracle, SQL Server, MySQL, and other databases) transforms

this tree into a new expression tree composed of the provider’s SQL-specific dialect,

operators, and functions, as well as the database’s tables and columns, and then works

out the specific query expression that will be recognized by the database.

Figure 10-2 shows the steps these queries take to get to the data store; a description of this process follows.

 Figure 10-2. How the various query styles get to the data store

Processing Queries | 233

Download from Library of Wow! eBook <www.wowebook.com>

Parsing Queries: From Query to Command Tree to SQL

LINQ to Entities leverages the LINQ parser to begin processing the query, whereas

ObjectQuery uses the Entity SQL parser. After each has gone through its first transition,

they both follow the same path. Let’s take a look at how each query is turned into the

data store command.

 Store command or native command refers to the command that the data

store uses—for example, a T-SQL command for SQL Server.

 From a LINQ to Entities query to a command tree

LINQ to Entities starts its journey in the LINQ APIs and is then passed to the

Object Services API. When you create a LINQ to Entities query, you are using

syntax that is built into Visual Basic and C# that has enhancements added by the

Entity Framework. LINQ converts this query into a LINQ expression tree, which

deconstructs the query into its common operators and functions. The LINQ ex-

pression tree is then passed to Object Services, which converts the expression tree

to a command tree.

 From Entity SQL and query builder methods to a command tree

The ObjectQuery class and the query builder methods that you’ve been using are

part of Object Services. When building a query with ObjectQuery, you provide an

Entity SQL string to express the query. If you use query builder methods, those

methods will build an Entity SQL expression and an ObjectQuery for you. The

ObjectQuery then passes the Entity SQL string to the entity client’s parser, and this

parser creates a command tree.

Whether a query began as a LINQ to Entities query or as an ObjectQuery with Entity

SQL, the command trees are the same. From this point on, both types of queries

follow the same processing path.

For the sake of comparison, when you query using EntityClient,

its Entity SQL expression is also parsed into a command tree, enters

the query path at this stage of the process, and is treated the same

as the command trees that were created from LINQ to Entities and

ObjectQuery queries.

 From command trees to data store commands

The newly created command tree is still expressed in terms of the entities in the

model’s conceptual layer. So at this point, the processor uses EDM mappings to

transform the terms of the command tree into the tables, columns, and other ob-

jects of the database. This process might run through the command tree a number

of times to simplify the demands made in the query before it comes up with an

234 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

equivalent of the database’s tables and columns. Once this new version of the tree has been created, it is sent to the store provider (e.g., SqlClient), which will know

how to convert the command tree into its native command text.

Entity Framework provider writers use the common schema of a command tree to

create their functionality for generating SQL from the command tree. For example,

the SqlClient provider will transform the tree into T-SQL that SQL Server can

execute; an Oracle provider will transform the tree into a proper PL/SQL

command.

Expression Trees and Command Trees

 Expression tree and command tree are terms you will see when discussing LINQ and the Entity Framework. An expression tree is a way to represent code in a data structure.

This is not limited to LINQ, but by creating an expression tree from a LINQ query,

your application can identify particular elements of the query and process them ac-

cordingly. A command tree is a form of an expression tree that is used in the Entity

Framework. It has a particular structure that can be depended on by the ADO.NET

providers, which will need to read that command tree in order to translate the command

into their native command syntax. If you’d like to learn more, see the MSDN docu-

mentation on expression trees at http://msdn.microsoft.com/en-us/library/bb397951

 .aspx and on command trees at http://msdn.microsoft.com/en-us/library/ms689768(v=

 VS.85).aspx.

Understanding Query Builder Methods

Writing Entity SQL is not always simple. Although the process is familiar to those who

already write store commands, it is different enough that it will probably take some

time before the syntax rolls naturally from your fingertips. Query builder methods can

be quite useful, as the methods are discoverable through IntelliSense and take away

some of the pain of remembering the exact syntax.

In Chapter 4, you built a variety of queries using the CreateQuery method with an Entity SQL expression as its parameter. You also used query builder methods. Take a look at

Examples 10-1 and 10-2 to refresh your memory.

 Example 10-1. CreateQuery with Entity SQL

var queryStr = "SELECT VALUE c " +

"FROM PEF.Contacts AS c " +

"WHERE c.FirstName='Robert'";

var contacts = context.CreateQuery<Contact>(queryStr);

 Example 10-2. Query builder method with Entity SQL parameters

var contacts = context.Contacts

.Where("it.FirstName = 'Robert'")

Processing Queries | 235

Download from Library of Wow! eBook <www.wowebook.com>

Both of the preceding examples define the same ObjectQuery (contacts), which searches for contacts whose first name is Robert. Neither will actually return results until something forces the query to be executed.

The query builder methods may still require that you write part of the expression, such

as the Where predicate it.FirstName='Robert' in Example 10-2, but they are still a great deal easier than using the CreateQuery method. More importantly, they can help steer

you away from some of the possible security pitfalls you might encounter when building

Entity SQL. You’ll learn more about security concerns in Chapter 20.

Query builder methods and EntitySets

Query builder methods are methods of ObjectQuery. How is it, then, that these methods

are available from context.Contacts? The classes generated from the model reveal the

answer to this question. The preceding queries are based on the first model you built

and used in Chapters 3 and 5. context is a variable that represents the PEF ObjectCon text, which is the wrapper class that serves up the EntitySets of the various classes in

the model. (In Chapter 3 this was called SampleEntities, but in Chapter 5 we simplified it to PEF.) Example 10-3 shows the declaration of this class in the classes generated from the model.

 Example 10-3. Declaration of the ObjectContext class

VB

Public Partial Class PEF

Inherits ObjectContext

C#

public partial class PEF : ObjectContext

This class has a property for each EntitySet—for example, Contacts. Each of these

properties returns an ObjectSet(Of T)/ObjectSet<T> of the entity type it wraps.

ObjectSet is a new type in Entity Framework and can be thought of as a strongly typed

EntitySet, which provides collection-like capabilities such as Add and Remove. The

Contacts property returns an ObjectSet of Contact entities, as shown in Example 10-4.

 Example 10-4. The ObjectContext.Contacts property

VB

Public ReadOnly Property Contacts() As ObjectSet(Of Contact)

Get

If (_Contacts Is Nothing) Then

_Contacts = MyBase.CreateObjectSet(Of Contact)("Contacts")

End If

Return _Contacts

End Get

End Property

C#

public ObjectSet<Contact> Contacts

{ get

{

if ((_Contacts == null))

{

236 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

 _Contacts = base.CreateObjectSet<Contact>("Contacts");

}

return _Contacts;

}

}

As I mentioned in an earlier chapter, ObjectSet inherits ObjectQuery, and therefore it

has the methods and properties of an ObjectQuery, including the query builder methods:

Select, Where, GroupBy, and so forth.

Even as you build LINQ queries, you are querying against these ObjectSets. Therefore,

you are able to leverage the ObjectQuery method, Include, within a LINQ to Entities

query. ObjectQuery, and therefore ObjectSet, also implements IEnumerable, which is

why you can append LINQ methods to it as well.

From query builder methods to Entity SQL expressions

Object Services uses the query builder methods and any expressions, such as what is

contained in a Where clause, to build an Entity SQL expression. The result is the same

as what you’d get had you explicitly created an ObjectQuery and typed in the Entity

SQL yourself. You can then use the expression to create an ObjectQuery in the same

way you would use a CreateQuery method.

How Can You Tell the Difference Between LINQ Methods

and Query Builder Methods?

LINQ’s method syntax looks very similar to the query builder methods, except for one

big difference: the parameters. The parameters of a LINQ method are lambda expres-

sions, whereas the parameters of the query builder methods are Entity SQL string ex-

pressions. A number of methods have the same name: Where, OrderBy, Select, and others. The compiler uses the parameters to determine which path to go down, in much

the same way that the .NET compiler handles overloaded methods anywhere else.

Combining LINQ methods and query builder methods

Query builder methods return an ObjectQuery. You can use a LINQ to Entities method

on an ObjectQuery. Therefore, it’s possible to compose a query such as the following:

context.Contacts.Where("it.FirstName='Robert'").Take(10)

The first part, context.Contacts.Where("it.FirstName='Robert'"), returns an ObjectQuery. Then, LINQ’s Take method is appended to that. Take returns an IQuerya

ble. The type of the query that results will be a System.LINQ.IQueryable—in other words, a LINQ to Entities query.

You can’t go the other way, though, adding query builder methods to a LINQ method.

For instance, context.Contacts.Take(10) returns a System.LINQ.IQueryable. You can

use query builder methods only on an ObjectQuery. If you wanted to append a query

Processing Queries | 237

Download from Library of Wow! eBook <www.wowebook.com>

builder method to this IQueryable, you would first have to cast the LINQ query to an

ObjectQuery and then append the method. Casting a LINQ to Entities query to

ObjectQuery is possible because ObjectQuery implements IQueryable, which is beneficial

in a number of scenarios, as you’ll see as you move forward in this chapter.

ObjectQuery implements more than just IQueryable. It also implements

IOrderedQueryable, IEnumerable, and IListSource.

Analyzing a Query with ObjectQuery Methods and Properties

You have already seen some of the members of ObjectQuery, such as the query builder

methods and the Include method. Additional methods and properties are available that

will help you better understand the role of ObjectQuery. Here are some that you can see

when inspecting an ObjectQuery in the debugger.

Figure 10-3 shows an ObjectQuery in debug mode with its properties and the Results View. Figure 10-4 shows a LINQ to Entities query in the debugger; as you can see, LINQ to Entities exposes the results directly, but also contains an ObjectQuery. The

only obvious evidence that it is a LINQ to Entities query is in the Type column (circled).

 Figure 10-3. The various properties of ObjectQuery as seen in debug mode

238 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 10-4. The circled IQueryable type, which tells us that this is a LINQ to Entities query Remember that if you want to get to ObjectQuery properties and methods from a LINQ to Entities query, you can cast the LINQ to Entities

query to ObjectQuery.

Let’s take a closer look at four especially helpful ObjectQuery methods.

ObjectQuery.ToTraceString

ToTraceString displays the native store command that will be created from your query.

Figure 10-5 shows some code that calls ToTraceString and the value the method returns at runtime.

Example 10-5 demonstrates casting a LINQ to Entities query to an ObjectQuery in order to call the ToTraceString method.

 Example 10-5. Casting a LINQ to Entities query to use ObjectQuery methods such as ToTraceString VB

Dim contacts = From c In context.Contacts

Where c.FirstName = "Robert"

Dim str = CType(contacts,ObjectQuery).ToTraceString

C#

var contacts = from c in context.Contacts

where c.FirstName == "Robert"

select c;

var str = ((ObjectQuery)contacts).ToTraceString();

If your query expression includes an executing method such as First or

Single, these won’t be included in the ToTraceString result but rest as-

sured, they will be part of the query executed on the server.

Processing Queries | 239

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 10-5. Viewing the native command that will be generated from an ObjectQuery using the ToTraceString method while debugging

ObjectQuery.CommandText

As with ADO.NET, CommandText refers to the query string being passed in for execution.

Because of the different ways in which you can build queries with the Entity Framework,

CommandText is represented in a variety of ways, as shown in Table 10-1.

 Table 10-1. CommandText values of various types of queries

Query method

Query

ObjectQuery.CommandText

ObjectQuery/ObjectSet

Context.Contacts

[Contacts]

ObjectQuery with Entity SQL

context.CreateQuery<Contact>

SELECT VALUE c

("SELECT VALUE c

FROM PEF.Contacts AS c

FROM PEF.Contacts AS c

WHERE

WHERE

c.FirstName='Robert'

c.FirstName='Robert'")

Query builder

context.Contacts

SELECT VALUE it

.Where("it.FirstName =

FROM (

'Robert'")

SELECT VALUE it

.OrderBy("it.LastName")

FROM (

[Contacts]

) AS it

WHERE

it.FirstName = 'Robert'

240 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

Query method

Query

ObjectQuery.CommandText

) AS it

ORDER BY

it.LastName

LINQ to Entities

from c in context.Contacts

(empty)

where c.FirstName ==

"Robert"

select c

ObjectQuery.Parameters

In Chapter 4, you saw how to build a parameterized query. Any parameters that you created then will be listed in the ObjectQuery’s Parameters property.

ObjectQuery.Context

The Context property refers to the instantiated ObjectContext from which the

ObjectQuery is being run. The ObjectContext not only coordinates the execution of queries and provides the mechanism for SavingChanges back to the data store, but it

also plays a much bigger role as the manager of objects in memory.

Executing Queries with ToList, ToArray, First or Single

So far, the query has been defined but no data retrieval has actually occurred. Query

execution occurs when the Entity Framework retrieves the data from the store. Queries

can be executed implicitly or explicitly.

In previous chapters, you enumerated over the results of a query (using VB’s

For Each or C#’s foreach). Enumerating over a query will force a query to execute

implicitly. You don’t need to specifically say “go get the data.” The fact that you are

attempting to work with the query results will cause the Entity Framework to do that

for you.

Another way to force execution is to append the ToList or ToArray LINQ method to a

query. Example 10-6 appends ToList to the CreateQuery method to execute the query immediately and return a list of Contact entities.

 Example 10-6. Executing a query with ToList

List<Contact> contacts = context.CreateQuery<Contact>(queryStr).ToList();

A big difference between using ToList or ToArray rather than enumer-

ating is that these methods will force the complete results to be returned

all at once. When enumerating, depending on what you are doing with

each result as you get to it, it may take awhile before you get to the end

of the results. Until that time, the database connection will remain open.

Processing Queries | 241

Download from Library of Wow! eBook <www.wowebook.com>

Like the ToList and ToArray methods, the Single and First methods will also force a

query to execute. Their counterparts, SingleOrDefault and FirstOrDefault, also cause

execution. You learned about the differences between these four methods in Chapter 4.

Executing Queries with the Execute Method

As you learned in Chapter 9, ObjectQuery has an Execute method, which you can also use to force execution, but it requires a parameter to define MergeOptions for the objects that result, as shown in the following code:

var contacts = context.Contacts.Execute(MergeOption.AppendOnly);

MergeOption is also a property of the ObjectQuery, so you can set the value directly even

when you’re not using the Execute method.

Four merge options influence how newly returned objects impact objects that may

already exist in memory and be tracked by the context.

AppendOnly is the default, and it will be used when you don’t set the option directly

while executing queries without the Execute method. However, with Execute, you must set this parameter, even if you just want the AppendOnly default.

You’ll see shortly how to use MergeOptions when you are executing

queries without using the Execute method.

Execute returns a type called ObjectResult. The ObjectResult streams the results to

whatever is consuming it. Using Execute is beneficial in some scenarios, but in others,

its limitations, such as the fact that you can enumerate over ObjectResults only once

because it is a stream, might be a problem.

Because MergeOption impacts what happens with the returned data, its purpose will

make more sense after we have discussed some additional topics. We’ll return to MergeOption in more detail later in this chapter.

Overriding a Default Connection with ObjectContext.Connection

By default, ObjectContext will use the EntityConnectionString defined in the

application’s app.config file that has the same name as the name of the context’s EntityContainer. For example, when the EntityContainer name is BAEntities, Object

Services will search for a connection string named BAEntities in the app.config file. If no matching connection string is found and no override is provided, an exception will

be thrown at runtime. The exception reads, “The specified named connection is either

not found in the configuration, not intended to be used with the EntityClient provider,

or not valid.”

242 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

The default generated context (BAEntities, in your case) has four constructor overloads

so you can designate a connection in a variety of ways. One way to override the default

is to supply a different connection string name in the constructor of the

ObjectContext. This string needs to be available in the app.config file as well. Exam-

ple 10-7 uses the name of the connection string named connStringName to create an ObjectContext.

 Example 10-7. Specifying which EntityConnection string to use for a context

var context = new BAEntities("Name=connStringName");

You can’t use the connection string, nor can you use the connection

string name on its own. You must include "Name=" with the connection

string name in the parameter.

Another way to override the default is to supply an EntityConnection object instead.

This is the same EntityConnection that is used with the EntityClient provider. By cre-

ating an explicit EntityConnection, you can manipulate that EntityConnection prior to

instantiating a context with it. Example 10-8 creates the EntityConnection but does not do anything special with it. You will learn a lot more about manipulating an Entity

Connection in Chapter 16.

 Example 10-8. Explicitly creating a new EntityConnection to use with a context

var econn = new EntityConnection("name=connStringName");

var context = new BAEntities(econn);

The EntityConnection gives ObjectContext three important pieces of information: the

model metadata location, database connection information, and the name of the

ADO.NET data provider. Example 10-9 shows the EntityConnection string for the BreakAway model used in the preceding chapter.

 Example 10-9. The EntityConnection string in app.config for the BreakAway model

<add name="BAEntities" connectionString=

"metadata=res://*/BAModel.csdl|res://*/BAModel.ssdl|res://*/BAModel.msl;

provider=System.Data.SqlClient;

provider connection string="Data Source=.;Initial Catalog=BreakAway;

Integrated Security=True;

MultipleActiveResultSets=True""

providerName="System.Data.EntityClient" />

Following are descriptions of each of the EntityConnection string attributes:

metadata

The metadata attribute, which points to the Conceptual Schema Definition Layer

(CSDL), Store Schema Definition Layer (SSDL), and Mapping Schema Layer (MSL)

files, tells the context where to find these files. They can be embedded into an

Processing Queries | 243

Download from Library of Wow! eBook <www.wowebook.com>

assembly (the default), or you can place them somewhere in the filesystem. The

context needs access to the metadata files to begin the process of transforming the

query into the store command.

provider

The provider element of an EntityConnection string is the name of the data provider

(e.g., System.Data.SqlClient). This tells the Entity Framework to which data pro-

vider to send the command tree to assist with query processing.

provider connection string

This is the database connection string. ObjectContext will pass this database con-

nection string onto the EntityClient layer so that it will be able to connect to the

database and execute the command.

ProviderName

ProviderName is not part of the EntityConnectionString, but rather is metadata for

the connection. By default, Entity Framework will use its own EntityClient API

to build the store queries and interact with the database. However, you can override

this with your own API by defining it dynamically in the connection metadata.

The ProviderName attribute is a useful extensibility point in the Entity

Framework. Jaroslaw Kowalski has a great blog post on this advanced

topic. The blog post also points to some fantastic samples on creating

a server-side tracing and caching provider on Microsoft’s Code Gallery

(see http://blogs.msdn.com/jkowalski/archive/2009/06/11/tracing-and

 -caching-in-entity-framework-available-on-msdn-code-gallery.aspx).

Handling Command Execution with EntityClient

So, what’s next? You’ve got your ObjectQuery all set. You know the ObjectQuery will

do all of the work to create a command tree. Somehow the command tree gets handed

off to the EntityClient provider along with the database connection string provided by

the ObjectContext. If you dig into the Entity Framework assemblies using a tool such

as Red Gate’s .NET Reflector, you will find that the ObjectContext calls on

EntityClient to do the job of creating the connection and executing the command on

the data store.

As you saw with the EntityClient queries in Chapter 3, EntityClient returns an EntityDataReader, not objects.

Materializing Objects

After EntityClient retrieves the database results into an EntityDataReader, it passes the

EntityDataReader back up the stack to Object Services, which transforms, or materi-

 alizes, the results into entity objects. The data in EntityDataReader is already structured to match the conceptual layer, so it’s just a matter of those contents being cast to objects.

244 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

If the query used a projection and there is no matching entity, the results are material-

ized into DbDataRecords (or anonymous types when a LINQ to Entities query was used)

instead of entity objects, as you saw in many of the queries you wrote earlier.

Most of what happens here goes on- under the covers, and therefore there is not much

to see. There is a single event, introduced in .NET 4, called ObjectContext.ObjectMat

eralized. This event gives you access to each entity just after it has been created from

the query results. You’ll learn about this event when customizing the entity classes in

Chapter 11.

Figure 10-6 demonstrates the path a query takes from the command tree to the database and then back to Object Services to be materialized into objects.

 Figure 10-6. The EntityClient providing the command execution functions for an ObjectQuery Materializing Objects | 245

Download from Library of Wow! eBook <www.wowebook.com>

Managing Object State

In Chapter 6, you learned that ObjectContext manages the state information for each of its objects. You were also introduced to the ObjectStateEntry classes that

ObjectContext maintains—one for each entity in its cache. When your associations are

defined without the benefit of foreign key scalar properties, Entity Framework reverts

to the .NET 3.5 way of defining associations and in that case it creates ObjectStateEn

tries to represent relationships as well.

When objects are returned from queries, ObjectContext creates these ObjectStateEn

try objects, in effect, caching references to the entities. In these state entries, ObjectContext not only keeps track of all of these entities, but also keeps track of other information regarding those entities, including their state, their original and current

values, and their relationships to one another.

This section focuses on the default behavior of the ObjectContext. In the

section “Taking Control of ObjectState” on page 257, you will learn

how to override this default behavior.

Using EntityKey to Manage Objects

The context uses the EntityKey as its link between the ObjectStateEntry and the entity.

EntityKey is a critical class for keeping track of individual entities. It contains the entity’s identity information, which could be from a single property, such as ContactID, or could

be a composite key that depends on a number of the entity’s properties. Figure 10-7

shows an EntityKey for a BreakAway Contact. It says that this entity belongs to the

BAEntities container and to the Contacts EntitySet, and that its key property is com-

posed of only one property, ContactID, whose value is 1.

The ObjectContext reads the EntityKey information to perform many of its functions.

For example, it is used when the context merges objects, locates entities in the cache,

or creates EntityReference values. The type information, e.g., Contact, is not included

in the EntityKey. Instead, the EntitySetName indicates to which EntitySet the object

with this key belongs, e.g., Contacts.

This little class is one of the most important classes in the Entity Framework. It acts as an object’s passport throughout the application’s runtime.

246 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 10-7. An object’s EntityKey, which includes critical identity information for each object Merging Results into the Cache with MergeOptions

By default, anytime the ObjectContext performs a query, if any of the returned objects

already exist in the cache the newly returned copies of those objects are ignored. The

EntityKeys are instrumental in enabling this to happen. The EntityKeys of the objects

returned from a query are checked, and if an object with the same EntityKey (within

the same EntitySet; e.g., Contacts) already exists in the cache, the existing object is left untouched. You can control this using an ObjectQuery property called MergeOption,

which was introduced briefly earlier in this chapter. The four possibilities for MergeOption are as follows:

AppendOnly (default)

Add only new entities to the cache. Existing entities are not refreshed with the data

returned by the query.

OverwriteChanges

Replace the current values of existing entities with values coming from the store,

even if the in-memory entity has been edited.

PreserveChanges

Replace original values of existing entities with values coming from the store. The

current values of existing entities are not refreshed from the database, and therefore

any changes the user makes will remain intact. This will make more sense after we

discuss state management later in this chapter. If you use it without fully compre-

hending its behavior, this option could have some subtle, but unwelcome, effects

on how updates are reasoned about when it is time to save changes to the database.

NoTracking

Objects returned by the query will not be managed by the context, will not have

their changes tracked, and will not be involved in SaveChanges. Again, this will

make more sense after we discuss state management.

Managing Object State | 247

Download from Library of Wow! eBook <www.wowebook.com>

There are two ways to define MergeOptions. The first is to use the MergeOption method

of ObjectQuery, as shown in the following code:

var contactsQuery = context.CreateQuery<Contact>(queryString);

contactsQuery.MergeOption = MergeOption.PreserveChanges;

The second way to define a MergeOption is as a parameter of ObjectQuery.Execute, as

you saw earlier in this chapter.

Developers often ask if the query takes into account the objects that

are already in memory. The answer is no. What this means is that if you

execute a query that returns 100 Contacts and then execute another

query that returns the same 100 contacts, Entity Framework will indeed

execute the query, pull back all of the results into an

EntityDataReader, and then decide whether or not to materialize the

objects as it reads through them and determines their EntityKeys. If the

MergeOption is AppendOnly, that’s a big waste of resources. You should

be aware of this as you are designing your applications and be consid-

erate of how and when queries are executed.

Remember that you can cast a LINQ to Entities query to an ObjectQuery and use ObjectQuery methods, including MergeOption, as you did with ToTraceString earlier in

this chapter:

var contactsQuery = context.Contacts.Where(c => c.FirstName == "Robert");

((ObjectQuery)contactsQuery).MergeOption = MergeOption.PreserveChanges;

var results = contactsQuery.ToList();

The context maintains ObjectStateEntry objects whether your entity is one that inherits

from EntityObject or one that is a simpler class that does not inherit from

EntityObject. You’ll learn more about how Entity Framework supports classes that do

not inherit from EntityObject in Chapter 13, which covers Plain Old CLR Objects (POCO) support.

Inspecting ObjectStateEntry

Let’s look more closely at the ObjectStateEntry classes that track the entity objects.

You can retrieve an ObjectStateEntry by passing an entity (again, this works with a

POCO object as well as with an EntityObject) or its EntityKey to the

ObjectContext.ObjectStateManager.GetObjectStateEntry method.

GetObjectStateEntry has a sibling method, TryGetObjectStateEntry. In

this chapter, you will get a high-level look at the ObjectStateManager

and ObjectStateEntry classes. Chapter 21 will dig much deeper into these classes.

248 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

Debugging the ObjectStateEntry won’t give you much insight into the object, however,

the C# debugger does allow you to look at many more of the private members of ObjectStateEntry than does the VB debugger. Figure 10-8 shows the watch window for the Contact whose ContactID is 6.

 Figure 10-8. The ObjectStateEntry for a Contact whose ContactID is 6

The more interesting information is returned from some of the methods of the entry:

CurrentValues and OriginalValues. These methods return an array of the values for

each scalar property. If you want to get a particular value, you will need to know the

index position of the property you are seeking; for example, you can return the original

value of FirstName by calling contactEntry.OriginalValues(1) in VB or

contactEntry.OriginalValues[1] in C#. The value will come back as an object; so,

depending on your goal, you may want to cast the return value to the desired type.

Metadata about the type is available from the ObjectStateEntry, so it is possible to find

values by using the property names. This will take a bit more effort, and you’ll learn

about navigating around these entries in Chapter 21.

Figures 10-9 and 10-10 use a custom utility to show the ObjectStateEntry information for an entity before and after some changes have been made. I call the utility the Ob-

jectStateEntry Visualizer and you will be writing it yourself in Chapter 21.

What is most important to understand right now is that CurrentValues and

OriginalValues are tracked, but it is the ObjectContext, not the entity, which maintains

this information.

Maintaining EntityState

In the preceding three figures, you may have noticed that the state of the entity was

displayed. In Figure 10-8, you can see the ObjectStateEntry’s State property in the debug view. In the custom viewer shown in Figures 10-9 and 10-10, the contact’s cur-

rent state is displayed. It begins as Unchanged, and then, after the contact has been edited, the state is Modified.

Managing Object State | 249

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 10-9. Inspecting information from an unchanged entity’s ObjectStateEntry

There are five EntityState enums that define the possible state of an entity:

Added

An entity that was (most likely) created at runtime was added to the context. When

SaveChanges is called, Object Services will create an Insert command for this entity.

Deleted

An entity managed by the cache and has been marked for deletion. When Save

Changes is called, Object Services will create a Delete command for this entity.

Detached

The ObjectContext is not tracking the entity.

Modified

The entity has been changed since it was attached to the context.

Unchanged

No changes have been made to the entity since it was attached to the context.

The ObjectContext changes the value of ObjectStateEntry.State based on notifications

from EntityObject. When we look at POCOs in Chapter 13, you’ll learn that the context has a way to discover information about entities that do have the ability to send

notifications. For now, we’ll focus on the EntityObject entities that you have been using

thus far.

EntityObject implements the IEntityWithChangeTracker interface, so the default enti-

ties that you are currently working with also implement this interface. Recall that the

PropertyChanging and PropertyChanged events in the generated model classes

represent part of the change-tracking functionality. When an object’s property is changed, the IEntityWithChangeTracker interface reports this change to the designated

250 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 10-10. The ObjectStateEntry of the same object shown in Figure 10-9 after changes have been made to the entity

ChangeTracker—that is, the current ObjectContext, which updates the appropriate

Current value of that object’s ObjectStateEntry. For this to work, the object inherits

internal functions from IEntityWithChangeTracker.

Objects Are Not Required to Be in the ObjectContext Cache

Objects can be in memory without being managed by the ObjectContext. That means

that although the object instance exists, the ObjectContext is not aware of the object.

You can have an EntityObject in application memory that is not being tracked by the

context, by doing any one of the following:

• Explicitly instruct the ObjectQuery to return objects without attaching thßm to the

cache. You can do this by setting ObjectQuery.MergeOption to the NoTracking

option.

• Use the ObjectContext.Detach method to explicitly detach an object from the

ObjectContext.

• Create a new object in memory. Unless or until you explicitly attach or add the

object to the ObjectContext or to an object that is already in the cache (e.g., adding

a Reservation to a Customer’s Reservation EntityCollection property or adding a

Customer as a Reservation’s CustomerReference), it is not part of the cache.

• Deserialize entities that were serialized. Although the act of serializing an entity or

entities does not detach entities from their ObjectContext, the entities that are in

Managing Object State | 251

Download from Library of Wow! eBook <www.wowebook.com>

the serialized package will not be attached to an ObjectContext when they are

deserialized.

The EntityState of an object that is not in the cache is always Detached.

Chapters 19 and 21 will provide much more insight into controlling the ObjectCon text and the effect that caching has on entities’ relationships and change tracking.

Managing Relationships

Although objects know how to traverse from one to another, it is the ObjectContext

that binds related objects together.

This may not be evident, even if you perform a query that explicitly retrieves a graph,

such as in the following:

context.Customers.Include("Reservations.Trip")

.Include("Reservations.Payments")

Figure 10-11 depicts the graph that results from this query.

 Figure 10-11. A Customer graph including Reservations and other related objects

In fact, although it may look like your query is shaping the returned data, the object

graph is shaped by the ObjectContext after the objects have been materialized and at-

tached to the context. The ObjectContext’s ability to identify and implicitly join related entities is referred to as its relationship span.

This chapter aims to give you a high-level understanding of relation-

ships. We will cover them much more thoroughly in Chapter 19.

You can explicitly combine related entities in code. Here’s an example of code that creates a new Reservation object and then adds it to a Customer’s Reservations

property. The Reservations property is an EntityCollection, so this code adds the new

Reservation not to the Customer, but to the collection:

252 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

var reservation = new BAGA.Reservation

{ ReservationDate = System.DateTime.Today,

TripID = 132 };

cust.Reservations.Add(reservation);

However, if you were to perform queries that returned Customers and Reservations

separately, the ObjectContext would identify those that are related and make it possible

for you to traverse through Customer.Reservations or Reservation.Customer with no

effort. The ObjectContext takes care of that for you through its relationship span capability.

EntityCollection properties, such as Addresses and Reservations, are essentially read-

only. Because of the way ObjectContext works, you can’t attach an EntityCollection

directly to an entity. In other words, if you had a collection of Addresses that belong to a contact, you can’t just call Contact.Addresses=myAddressCollection. Instead, you must add the Address entities to the Contact.Addresses entity collection one at a time

using context.Addresses.Add(myAddress).

The compiler will allow you to set an EntityCollection value; however,

at runtime, an exception will be thrown.

Chapter 19 is devoted to the ins and outs of relationships in the Entity Framework.

Attaching and Detaching Objects from the ObjectContext

I have mentioned the topic of attaching and detaching objects a number of times in this

chapter. Objects whose changes and relationships are being managed by the context

are considered to be attached to the context. EntityObject instances that are in memory but are not being managed by the context are considered to be detached, and their

EntityState value is Detached.

Attaching and detaching can happen implicitly thanks to the internal functionality of

the Entity Framework, or explicitly by calling methods to add, attach, or detach in your

code.

You have seen that an object that is attached to an ObjectContext has its state and its

relationships managed by that context. You also know that an object that is detached

has no state. And you have dealt with many objects in the coding samples that were

automatically attached to the ObjectContext as the result of executing a query; you even

added an object or two using the Add and Attach methods. Now you will look a little

more closely at explicitly attaching and detaching objects.

ObjectContext.AddObject and ObjectSet.AddObject

Use the AddObject method to add newly created objects that do not exist in the store.

The entity will get an automatically generated temporary EntityKey and its

Managing Relationships | 253

Download from Library of Wow! eBook <www.wowebook.com>

EntityState will be set to Added. Therefore, when SaveChanges is called, it will be clear

to the Entity Framework that this entity needs to be inserted into the database.

The preferred method is to use ObjectSet.AddObject, which is new to .NET 4. The

context needs to know which EntitySet the object belongs to. Since the ObjectSet is

an instance of the EntitySet, the necessary information is available.

context.Contacts.AddObject(contact);

ObjectContext.AddObject was the only option in .NET 3.5 and it exists mostly for backward compatibility. It requires that you pass in the EntitySet name as a string

because there is no other way to determine which EntitySet the object belongs to:

var contact = new Contact();

contact.LastName = "Lerman";

context.AddObject("Contacts",contact);

If you add an object which has an EntityKey, the context will set Enti

tyKeyValues of the EntityKey to null. This is different from the first ver-

sion of Entity Framework, which would throw an exception at runtime

when you attempted to add an object with an EntityKey. This change is

part of enhancements that simplify working with n-tier architectures.

Beware of added entities that are joined to other objects. Object Services

will attempt to add the related objects to the database as well. You’ll

learn more about this, and see an example of how to deal with this

behavior when building WCF Services with EntityObjects, in Chap-

ter 17.

ObjectContext.Attach and ObjectSet.Attach

Attach is used for entities that already exist in the database. Rather than setting the

EntityState to Added, which tells SaveChanges to create an insert command, Attach results in an Unchanged EntityState—that is, it has not changed since it was attached

to the context. Objects that you are attaching are assumed to exist in the data store. If

you modify the objects after they’ve been attached, when you call SaveChanges the value

of the EntityKey is used to update (or delete) the appropriate row by finding its matching ID (most often a primary key) in the appropriate table.

To attach an object to a context, use either the ObjectContext.Attach method or the

ObjectSet.Attach method. For example, in the following two lines of code, con

text.Attach is used to attach a contact object and then the Attach method of the Contacts ObjectSet, context.Contacts, is used for the same purpose:

context.Attach(contact);

context.Contacts.Attach(contact);

254 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

Similar to AddObject, when you use ObjectContext.Attach (which exists for backward

compatibility), if the object does not have an existing EntityKey, an exception will be

thrown since the context cannot work out with which EntitySet to associate the object.

ObjectSet.Attach handles keyless entities differently. It will create an EntityKey dynamically when it attaches the entity. The values from the properties flagged as EntityKey properties will be used to construct the EntityKey, even if the value is 0.

An object will have an EntityKey if it has come from the data store or if you explicitly

create the key.

Creating an EntityKey dynamically is new in Entity Framework 4. Pre-

viously, if there was no EntityKey, an exception would be thrown.

When you Attach to a context, a brand-new ObjectStateEntry is created. The property

values for the incoming object are used to populate the OriginalValues and Current

Values arrays of the ObjectStateEntry.

So, what becomes of an attached entity that you modified, then detached, and then

attached again? As I stated earlier, the newly attached entity will be Unchanged and all

of the change tracking (including original values) will be lost. In fact, the original values are lost the moment you detach the entity. This is expected behavior for the Entity

Framework, but to many developers who are new to working with the Entity Frame-

work, it is surprising behavior.

Remember that the object doesn’t own its state information; the ObjectContext does.

If you have an object that is being tracked and has changes, but then you detach the

object, the ObjectStateEntry for that object is removed from the context. All of the state is gone, including the original values. Poof!

ObjectContext.AttachTo

AttachTo is a method from the first version of Entity Framework that you shouldn’t

need to use thanks to the introduction of ObjectSet. With AttachTo, if an EntityKey

does not exist, you can specify the EntitySet, just as you do with ObjectContext.AddOb

ject. An object needs an EntityKey to be change-tracked and to be involved in rela-

tionships. If you need to attach an object that does not have an EntityKey, you can use

the AttachTo method, which also requires that you indicate to which EntitySet the

object belongs. With the name of the EntitySet, the Context can dynamically create an

EntityKey for the object. The following code shows how to use the AttachTo method,

where myContact is an already instantiated Contact entity object:

context.AttachTo("Contacts",contact);

Managing Relationships | 255

Download from Library of Wow! eBook <www.wowebook.com>

In some cases, an object may not have an EntityKey. For example, an EntityKey is generally an indication that the object has come from the data store and has some type

of a primary key field. Newly added objects are given temporary EntityKeys. But what

if you want to work with an object whose data exists in the data store, but you are

creating that object on the fly in memory without actually retrieving it first? In this case, this object will not have an EntityKey by default, and you’ll need to create one yourself.

However, it is much simpler and safer to use the ObjectSet.Attach rather than using a

string.

Creating EntityKeys On the Fly

With the introduction of foreign key support in the model and enhancements to

AddObject and Attach in .NET 4, you should find fewer scenarios where you might want

or need to create an EntityKey on the fly. When working with graphs and relationships,

Entity Framework still relies on the EntityKey of a reference entity even if the foreign

key exists as a scalar property. However, the ObjectContext will keep the EntityKey of

a ReferenceEntity in sync with the scalar property which maps to the relevant foreign

key, as well as with the navigation property.

If you are not using the foreign key scalars in your model, you will have more scenarios

where you may want to construct EntityKeys. Additionally, as you take advantage of

some of the more complex features of the Entity Framework, you will find instances

where creating an EntityKey on the fly will be helpful.

The simplest constructor for an EntityKey takes a qualified EntitySet name (the EntityContainer name plus the EntitySet name), the name of the property that holds

the key, and the value. Example 10-10 shows a new EntityKey being created for a CustomerType that is wrapped by the CustomerType EntitySet.

 Example 10-10. Creating a new EntityKey

var entityKey = new EntityKey("BAEntities.CustomerTypes",

"CustomerTypeID", 1);

When your EntityKey is composed of more than one property, you need to create a

KeyValuePair and then use that to build the key. There are no entities in the BreakAway

model that have composite keys, but Example 10-11 shows an example of such a key.

 Example 10-11. Creating a composite EntityKey

var eKeyValues =

new KeyValuePair<string, object>[] {

new KeyValuePair<string, object>("PropertyA", 12),

new KeyValuePair<string, object>("PropertyB", 103)

};

EntityKey ekey = new EntityKey("BAEntities.EntitySetName", eKeyValues);

There is also another option to be aware of: ObjectContext has a CreateEntityKey method. Here is an example of using this method while at the same time, using the

CreateObjectSet method to return the EntitySet name, rather than using a string as in

Example 10-10:

256 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

var destinationEntityKey =

_context.CreateEntityKey

(_context.CreateObjectSet<Destination>

().Name, dest);

Taking Control of ObjectState

With .NET 4, Entity Framework provides you with many more capabilities to impact

entity state than were available in the first version of Entity Framework. For now, let’s

take a quick look at the methods. As you dig further into Object Services later in the

book and then begin working with services and other disconnected applications, you

will see how valuable these methods can be.

ObjectStateManager Methods

Here is a list of the ObjectStateManager methods that allow you to directly impact the

state of entities:

ApplyCurrentValues<TEntity>

This is the renamed method that was ApplyPropertyChanges in .NET 3.5. It will

take the values of the provided detached entity and use its EntityKey to locate the

same entity in the context. Then it will replace the attached entity’s current scalar

values with the property values from the detached entity. The method requires you

to supply a string identifying the entity set that the entity belongs to. See the ObjectSet and ObjectStateEntry variations on this method for cleaner usage.

context.ApplyCurrentValues<Contact>("Contacts", myDetachedContact)

ApplyOriginalValues

This method is similar to ApplyCurrentValues, except that it replaces the attached

entity’s original values with the values from the detached entity.

AcceptAllChanges

AcceptAllChanges is not a new method. By default, the SaveChanges method calls

this method after it has performed the database modifications. AcceptAllChanges

pushes the current values of every attached entity into the original values and then

changes their EntityState to Unchanged. After this, the entities will appear as though

they had just been retrieved from the data store. If you are used to working with

ADO.NET, this is similar to the DataSet.AcceptChanges method.

ChangeObjectState

ChangeObjectState will allow you to change an entity’s state to Added, Deleted, Modifed, or Unchanged. This is an extremely powerful feature, but you should understand the impact of calling this. Not only will the EntityState change, but the

original and current values of the properties will be affected as well. We’ll take a

closer look at ChangeObjectState later in this chapter.

Taking Control of ObjectState | 257

Download from Library of Wow! eBook <www.wowebook.com>

ChangeRelationshipState and ChangeRelationshipState<TEntity> This pair of methods will be especially critical for working with n-tier applications when you don’t have the benefit of foreign key scalar values in your model. As you

have learned, the context owns all of the change-tracking information. Therefore,

when an entity or a graph is detached from one context and then attached to an-

other context, only the current state of the entities and relationships will be known

in the new context. As an example, you may have added a reservation for a cus-

tomer or changed which trip a particular reservation is for. The new context will

not detect that these are modifications and database changes need to be made.

Although you will be dependent on some other mechanism to discover the original

state, you can use ChangeRelationshipState to align the existing relationships in

such a way that the proper action is taken during SaveChanges.

The method signature needs to know which entities are involved (you can pass in

an object or just its EntityKey), which navigation property defines the relationship

to be changed, and what the new state should be. Here is an example of the method

in use:

context.ObjectStateManager.ChangeRelationshipState<Reservation>

(customer, reservation, c => c.Reservation, EntityState.Added);

ObjectStateEntry State Methods for Managing State

Many of the methods of the ObjectStateEntry class are the same as ObjectStateMan

ager methods. This gives you the flexibility to change state more simply if you are already working with an ObjectStateEntry.

AcceptChanges

This method is similar to ObjectContext.AcceptAllChanges, except that it will im-

pact only the specific entity. It is not new to .NET 4.

ApplyCurrentValues

If you are working with the ObjectStateEntry of the entity you wish to update, you

can use this version of the method, which does not require you to specify the type

or the EntitySet:

contactOSE.ApplyCurrentValues(myDetachedContact)

ApplyOriginalValues

This is a the same as ObjectStateManager.ApplyOriginalValues, but you can call it

directly when you are working with an ObjectStateEntry.

ChangeState

As with the other ObjectStateEntry methods, when you already have your hands

on the ObjectStateEntry, this is a simpler way to impact the state compared to

ObjectContext.ChangeObjectState. It performs the same function as the

ObjectContext method.

258 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

DetectChanges

This is used to force the context to inspect the entities and update their state. It is

not necessary when using EntityObjects, because they automatically notify the

context of changes. However, you will learn about POCO entities in Chapter 13,

which, by default, do not notify the context. In that case, you can force the context

to update the change-tracking information by calling DetectChanges.

ObjectSet State Methods

You can also impact the state of objects directly from an ObjectSet. Here are the state

methods for ObjectSet:

ApplyCurrentValues

This method emulates the ApplyCurrentValues method of the context, except that

you do not need to define the generic type or the entity set:

context.Contacts.ApplyCurrentValues(myDetachedContact);

ApplyOriginalValues

As with the ApplyCurrentValues method, this is a simpler variation on

ObjectContext.ApplyOriginalValues.

Sending Changes Back to the Database

Not only is Object Services focused on getting data from the database and managing

those objects, but it also manages the full life cycle of the objects, including persisting changes back to the database.

ObjectContext.SaveChanges

You spent a good deal of time learning about the ObjectContext.SaveChanges method

in action in Chapter 6. This is an important function of Object Services. Here we’ll take a look at a few more features of SaveChanges.

SaveChanges returns an integer

A little-known fact about the SaveChanges method is that it returns an integer repre-

senting the number of ObjectContext objects that were affected.

SaveChanges refreshes the state of tracked entities

After a successful SaveChanges call, all of the changes will be accepted in the ObjectCon

text and every object’s EntityState will become Unchanged. This is done, as you learned

earlier, because the SaveChanges method calls the AcceptAllChanges method and this is

the default behavior. So, whether that object is new, is deleted, has a scalar value Sending Changes Back to the Database | 259

Download from Library of Wow! eBook <www.wowebook.com>

change, or has a relationship change, it will be counted in the number returned by

SaveChanges.

Chapter 21 focuses on exception handling with Entity Framework.

There you will learn about what happens and what you can do when

SaveChanges fails.

Can Updates, Inserts, and Deletes Be Handled in Bulk?

As you saw in Chapter 6, each command generated by SaveChanges is sent to the database one at a time to be executed. Unfortunately, bulk processing of commands is not

something that the Entity Framework is able to perform intrinsically. However, Alex

James, a program manager on the Entity Framework team, has written a series of blog

posts about how to pull this off with the Entity Framework. See http://blogs.msdn.com/

 alexj/ for more information.

Affecting SaveChanges Default Behavior

As I stated earlier, SaveChanges calls AcceptAllChanges as well as DetectChanges (for

POCO classes, which you will learn about in Chapter 13). There are a number of ways to modify the default behavior. In Chapter 20, you will learn to take control of the transaction surrounding SaveChanges, and when you use your own transaction neither

AcceptAllChanges nor DetectChanges will be automatically called. You will be respon-

sible for it yourself.

When you call SaveChanges with no parameters, the following method overload is

executed:

public int SaveChanges()

{ return this.SaveChanges

(SaveOptions.DetectChangesBeforeSave | SaveOptions.AcceptAllChangesAfterSave);

}

Notice that the method calls the core SaveChanges method which takes SaveOptions

enums. The three options are DetectChangesBeforeSave, AcceptAllChangesAfterSave,

and None. The first option will cause the DetectChanges method to be called. The second

option will cause AcceptAllChanges to be called. If you pass in None, even combined

with one of the other enums, neither of those methods will be called.

DetectChangesBeforeSave is useful when you are using your own classes with Entity

Framework, rather than the automatically generated classes. You’ll learn more about

this in Chapter 13.

260 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

Overriding SaveChanges Completely

As of .NET 4, the SaveChanges method is virtual (overridable in Visual Basic), which means that you can completely override its internal logic when you have advanced

scenarios to implement. You could add logic, such as validation logic, to SaveChanges

and then call base.SaveChanges so that Entity Framework will perform its normal saving

routine.

Or you could completely avoid the base.SaveChanges logic and take total control over

what happens when SaveChanges is called. You would have to have deep knowledge of

the Entity Framework to do this successfully. I recommend starting with a look at the

internal code in the SaveChanges method, which you can do with Visual Studio’s Source

Server support or a tool such as Red Gate’s .NET Reflector.

Data Validation with the SavingChanges Event

ObjectContext has two public events: ObjectMaterialized (mentioned earlier) and

SavingChanges. The latter occurs when SaveChanges is called. You can place validation

logic here as an alternative to placing it in the virtual SaveChanges method.

The code you insert into SavingChanges will run before the API performs the actual

SaveChanges method.

In this single location, you can perform validation on any of the entities that the Object Context is managing.

You’ll learn how to implement SavingChanges and perform validation directly in that

method in Chapter 11, and then in later chapters you’ll learn how to use Saving Changes to trigger class-level validation code.

The difference between using the SavingChanges method and overriding SaveChanges is

that the former will continue on to the base.SaveChanges, while the latter gives you the

option to call base.SaveChanges or avoid it completely, either to abort the save or to use your own saving logic.

Concurrency Management

Data concurrency is the bane of any data access developer trying to answer the question

“What happens if more than one person is editing the same data at the same time?”

The more fortunate among us deal with business rules that say “no problem, last one

in wins.” In this case, concurrency is not an issue.

More likely, it’s not as simple as that, and there is no silver bullet to solve every scenario at once.

By default, the Entity Framework will take the path of “last one in wins,” meaning that

the latest update is applied even if someone else updated the data between the time the

Sending Changes Back to the Database | 261

Download from Library of Wow! eBook <www.wowebook.com>

user retrieved the data and the time he saved it. You can customize the behavior using

a combination of attributes in the EDM and methods from Object Services.

Chapter 23 will deal with this topic in depth, but here is a brief overview of the functionality provided.

Optimistic concurrency

The Entity Framework uses an optimistic concurrency model. Optimistic concurrency

is a fairly complex topic, but the essence is that you will not get record locking in the

database. This makes it possible for others to read and write data in between a user’s

retrieval and update.

ConcurrencyMode

In the EDM, the scalar properties of an entity have an attribute called Concurrency

Mode. By default, this is set to None. In a typical data application, a single field, such as a rowversion field (which we covered in previous chapters), is used to identify that a

database row has been modified. When you set the ConcurrencyMode of a particular

property (e.g., Contact.RowVersion) to Fixed, Object Services will use the value of that

property to alert you to concurrency conflicts in the database.

OptimisticConcurrencyException

When SaveChanges is called, if any of the flagged values in the database differ from the

corresponding original values in the entities, an OptimisticConcurrency exception will

be thrown. Chapter 22 will go into great detail about handling these exceptions.

Transaction Support

Object Services operations performed against the data store, such as queries or the

SaveChanges method, are transactional by default. You can override the default behavior

using System.Transaction.TransactionScope, EntityTransaction, or one of the other

System.Data.Common.DbTransaction classes, such as SqlClient.SqlTransaction. Entity

Transaction inherits from DbTransaction as well.

Entity Framework’s transaction support works only with operations

against the store, not with operations against entity objects.

By default, the last step of SaveChanges is to call AcceptAllChanges, as we discussed

earlier. This is especially important with respect to values that are generated on the

server, such as incremented primary keys or timestamps (a.k.a. rowversion). AcceptAll

Changes will use those returned values as well.

262 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

However, when SaveChanges is inside your own transaction, the changes don’t come back from the server until you call DbTransaction.Commit or TransactionScope.Com

plete. Because of this, you need to explicitly set AcceptChangesDuringSave, the Save

Changes argument, to False. Additionally, after the Commit or Complete is called, you

will need to manually call ObjectContext.AcceptAllChanges.

You’ll find more information on transactions in Chapter 20.

Implementing Serialization, Data Binding, and More

Object Services’ core features revolve around query processing and managing objects,

as you have seen. However, Object Services works with entity objects in other ways as

well. We’ll look at some of the more important of these features.

Object Services Supports XML and Binary Serialization

Data is serialized in order for it to be transmitted across boundaries and processes, most commonly with remote or message-based services.

Entity classes generated from the EDM are decorated with the Serializable and Data

ContractAttribute attributes, as shown in the following code:

[EdmEntityTypeAttribute(NamespaceName="BAModel", Name="Contact")]

[Serializable()]

[DataContractAttribute(IsReference=true)]

public partial class Contact : EntityObject

{}

System.Serializable enables the object to be binary-serialized and XML-serialized. Bi-

nary serialization is used implicitly in ASP.NET, though in some scenarios you may

want to explicitly code the serialization to persist or stream data. XML serialization is

most commonly used to send messages to and from web services. The DataContractAt

tribute enables serialization for exchanging data with Windows Communication

Foundation (WCF) services.

In addition, EntityKeys are serialized along with the object. This means the object can

be transmitted between applications and services, in some cases with very little effort

on the part of the developer.

ObjectContext, ObjectStateManager, and ObjectStateEntry are not serializable

It is very important to keep in mind that ObjectContext, ObjectStateEntry, and Object

StateManager are not serializable. This is one of the reasons I have emphasized the fact

that objects do not retain their own state information. Without writing your own cus-

tom code, you cannot serialize or transport the change-tracking or state information of

your objects. There is a new feature in Entity Framework 4, called self-tracking entities, which provides a big boost toward overcoming this limitation. You will learn more

about this, and how to handle state when crossing process boundaries, first in Chapters

Implementing Serialization, Data Binding, and More | 263

Download from Library of Wow! eBook <www.wowebook.com>

17 and 18, and later in Chapter 27. These chapters deal with WCF services and ASP.NET applications.

Automatic serialization

Anytime you pass an object or a set of objects as a parameter to a web or WCF service

operation, the object will automatically be serialized as it is sent to the service. When

it receives the serialized data, the service will automatically deserialize the object(s) and be able to work with it right away.

XML and DataContract serialization. XML serialization is used for ASMX Web Services and can also be used with WCF. WCF more commonly uses data contract serialization,

which does serialize into XML, but differently than XML serialization.

Aaron Skonnard compares the two in the MSDN Magazine article “Se-

rialization in Windows Communication Foundation” (http://msdn.mi

 crosoft.com/en-us/magazine/cc163569.aspx).

Whether you are using an ASMX Web Service or WCF, your entities are automatically

serialized into XML when they are transmitted between a service operation and a client

application.

You are getting only a quick overview of building and consuming web

services and WCF services here. Chapters 17 and 18 provide detailed walkthroughs of these processes.

In the following example of a WCF service contract, the GetContact operation signature

indicates that a ContactID must be sent from the client and that a Contact entity is

returned to the client:

[OperationContract()]

Contact GetContact(int contactID);

In the next code snippet, the function queries the EDM to retrieve the data, and then

returns the Contact:

using (var context = new BAEntities())

{ var cust = from c in context.Contacts.Include("Customer")

where c.ContactID == contactID

select c;

return cust.FirstOrDefault();

}

There is no code here for serialization. The act of serialization is an inherent function

of the service.

264 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

On the client side, again, no explicit deserialization is occurring. .NET knows the payload is serialized and will automatically deserialize it to a Customer object:

private void GetCustFromService()

{ var proxy = new BreakAwayCommonService.BreakAwayCommonServiceClient();

var cust = proxy.GetCustomer(21);

Console.WriteLine("{0} {1}", cust.FirstName.Trim(), cust.LastName.Trim());

}

In Chapters 17 and 18, you will build WCF clients and services and see more regarding how this works. You’ll also learn about the conflict between lazy loading and serialization in that chapter.

Binary serialization

In an ASP.NET website, ASP.NET uses binary serialization to store information in the

session cache or in the page’s ViewState. You can place objects directly into these ca-

ches, and extract them without having to explicitly serialize them since Object Services

handles the serialization automatically.

Serialization and object state

Since you are serializing only the objects and not the context, the state data stored in

the ObjectStateEntry is not included. The EntityState of the objects in the serialized

form is Detached; when you deserialize the objects they remain in a Detached state. If

you attach them to an ObjectContext, whether it’s a new ObjectContext or the same one

to which they were previously attached, their state will become Unchanged. Your starting

point with those objects is a snapshot of the values when the data was serialized.

Explicit serialization

You can also use methods in the System.Runtime.Serialization namespace to serialize

your objects explicitly. The Entity Framework documentation has a great sample of

serializing objects to a binary stream and then deserializing them again. This works no

differently than serializing any other types of objects, and therefore it is not specific to the Entity Framework. Look for the topic titled “How To: Serialize and Deserialize

Objects” in the Entity Framework MSDN documentation for more information.

Object Services Supports Data Binding

EntityCollection and ObjectQuery both implement IListSource, which enables them

to bind to data-bound controls. Because the objects implement INotifyProperty

Changed, you can use them in two-way binding, which means that updates made in the

control can be sent back to the objects automatically.

Implementing Serialization, Data Binding, and More | 265

Download from Library of Wow! eBook <www.wowebook.com>

In Chapter 9, you wrote a Windows Forms application that bound data to a Binding Source that in turn tied the data to various binding controls. You also performed data

binding with WPF objects. In both applications, when updating the form’s controls

those changes were automatically made in the objects. This occurred thanks to the

IListSource.

ASP.NET data-bound and list controls also support data binding. Because of the nature

of web pages, however, you’ll need to pay attention to postbacks and their impact on

change tracking. You can bind directly to the DataSource properties of the controls, or

use a client-side EntityDataSource control. Although LINQDataSource does support

read-only use of LINQ to Entities queries, it is more closely focused on LINQ to SQL

and doesn’t support everything in LINQ to Entities. Therefore, it’s best to use Entity

DataSource instead in cases where the client-side data binding is sufficient for your application’s architecture.

In the next chapter, you will focus on using the ASP.NET EntityDataSource to build

data-bound web pages. Some of the chapters appearing later in the book will demon-

strate how to use business layers with Windows Forms and ASP.NET applications.

Summary

In this chapter, you got an overview of the Object Services features. You’ve seen how

queries are processed, how the results are materialized into objects, and how Object

Services keeps track of those objects until it’s time to save any changes back to the

database. Object Services plays a critical role in getting those changes to the database.

The ObjectContext is the key agent in the Object Services API. You have already worked

with the context directly, but should now have a much better understanding of what

it has been doing in response to your actions.

Except for working with EntityClient, nearly everything you will learn in the rest of

this book will be dependent on Object Services. As I noted throughout this chapter,

many of the later chapters in this book will more thoroughly cover the individual topics

highlighted here.

It’s been many pages of theory, so now, with the next chapter, you can get back to

coding as you learn various ways to customize entities.

266 | Chapter 10: Working with Object Services

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 11

Customizing Entities

In previous chapters, we worked with entity classes and the context class that were

generated from the model. The methods and events available to you for these classes

were limited to the methods and events derived from their base classes: EntityObject

and ObjectContext, as well as those inserted by the code generation.

Because the purpose of entities is to provide data schema, they contain little in the way

of business logic. This is great for getting started, but many applications will need more.

The extensibility of the Entity Framework provides a number of ways to not only add

your own logic, but also use your own classes and plug them into an ObjectContext.

In this chapter, you’ll learn how to use partial classes to add new logic to entities or

override their existing logic. You will also learn how to change the rules for code gen-

eration and in doing so create classes from the model that are more to your liking.

In Chapter 13, you will learn how you can use your own custom classes in the Entity Framework.

Partial Classes

All of the classes that are generated from an Entity Data Model (EDM)—the class that

inherits from ObjectContext as well as the entities themselves—are partial classes. Par-

tial classes allow you to break a class into multiple code files, and they are especially

valuable when you want to make changes to generated code. Without partial classes,

modifications to generated code will be lost whenever the generation is performed again. Rather than making your changes directly in the generated code, you can make

them in a separate file that will not be touched when the code generator performs its

magic. As long as your class is declared a partial class, another class with the same name will not cause a conflict. During compilation, .NET merges the separate files into one

class.

267

Download from Library of Wow! eBook <www.wowebook.com>

For a great introduction to partial classes, the article “Implications and

Repercussions of Partial Classes in the .NET Framework 2.0” (http://

 www.code-magazine.com/article.aspx?quickid=0503021) by Dino Esposito is very informative.

For example, a quick look at the code that is generated for the BreakAway application

described in previous chapters reveals that the ObjectContext class and the application

entities are marked as partial classes, as shown in Example 11-1.

 Example 11-1. The ObjectContext and entities marked as partial classes

VB

Public Partial Class BAEntities

Inherits ObjectContext

Public Partial Class Trip

Inherits EntityObject

C#

public partial class BAEntities : ObjectContext

public partial class Trip : EntityObject

To add to any of these classes all you need to do is to create another file and declare

the same class, which you will see in the upcoming examples. It is not necessary to

mark the additional classes as Partial as long as you already have that specified else-

where. There are a few rules for implementing partial classes: you don’t need to repeat

inheritance or interface implementations; all of the partial classes for a particular class need to be in the same assembly; and you must not repeat any attributes. With regard

to that last point, if you try to state the attributes more than once, you will get a compiler error letting you know that this is a problem.

Creating and Naming Files That Contain Partial Classes

How you organize partial classes is a matter of coding style, and you or your develop-

ment team may already have a practice that you use for partial classes.

My pattern is to create a separate code file for each partial class that I implement.

Therefore, I have an Entities.vb/ .cs file for all of the additions to the class that implements the ObjectContext (e.g., BAEntities), as well as individual files for each entity—

 Customer.vb/ .cs, Trip.vb/ .cs, and so on.

You must always create these new files in the same assembly as the files that contain

the generated classes.

Visual Basic infers the assembly namespace when creating additional parts of a partial

class, whereas C# requires the namespace to be specified, as shown in Example 11-2.

268 | Chapter 11: Customizing Entities

Download from Library of Wow! eBook <www.wowebook.com>

 Example 11-2. Declaring additions to the partial classes

VB

Public Class BAEntities

End Class

C#

namespace BAGA //assembly namespace is required for C# partial classes

{ public class BAEntities

{

}

}

If you create a separate folder to contain the partial classes, as I do, pay

attention to a C# feature which will create a namespace based on the

folder name for classes created inside this folder. In my case, the folder

was named Partial Classes. When I create new classes in there, they are

wrapped in a namespace called BAGA.Partial_Classes. Because of the

different namespace, these won’t find their matching partial classes. Be

sure to edit the namespace so that it matches that of the other partial

classes, which in this example is simply BAGA.

Using Partial Methods

In addition to being able to split classes into multiple files, partial classes allow you to split methods across the files as well, using a technique called partial methods. The Entity Framework creates a few partial methods for its code-generated classes. These

methods are declared but not implemented in the generated class. You can then add

the method’s implementation in your partial class. These generated partial methods

include one that is called when an ObjectContext is instantiated, named OnContextCre

ated, and a pair of methods, Changed and Changing, for every property of every entity.

In the following sections we’ll look at each in more detail.

The OnContextCreated Method

The first partial method, ObjectContext.OnContextCreated, lets you add custom code

that will be executed at the time the context is instantiated. Here is how that is imple-

mented in the generated code.

At compile time, if the partial method is not implemented, it is not in-

cluded in the compiled assembly, which is a nice form of optimization.

The method is defined in the class that derives from ObjectContext (e.g., BAEntities).

As you can see in Example 11-3, VB and C# differ in their syntax.

Using Partial Methods | 269

Download from Library of Wow! eBook <www.wowebook.com>

 Example 11-3. The generated OnContextCreated partial method declarations VB

Partial Private Sub OnContextCreated()

End Sub

C#

partial void OnContextCreated();

OnContextCreated is called by the context object’s constructor and the constructor overloads, as shown in Example 11-4.

 Example 11-4. OnContextCreated being called in the generated context constructors

VB

Public Sub New()

MyBase.New("name=BAEntities", "BAEntities")

MyBase.ContextOptions.LazyLoadingEnabled = true

OnContextCreated

End Sub

Public Sub New(ByVal connectionString As String)

MyBase.New(connectionString, "BAEntities")

MyBase.ContextOptions.LazyLoadingEnabled = true

OnContextCreated

End Sub

Public Sub New(ByVal connection As EntityConnection)

MyBase.New(connection, "BAEntities")

MyBase.ContextOptions.LazyLoadingEnabled = true

OnContextCreated

End Sub

C#

public BAEntities() : base("name=BAEntities", "BAEntities")

{ this.ContextOptions.LazyLoadingEnabled = true;

OnContextCreated();

}

public BAEntities(string connectionString) : base(connectionString, "BAEntities")

{ this.ContextOptions.LazyLoadingEnabled = true;

OnContextCreated();

}

public BAEntities(EntityConnection connection) : base(connection, "BAEntities")

{ this.ContextOptions.LazyLoadingEnabled = true;

OnContextCreated();

}

By default, the OnContextCreated partial method contains no code, because in the gen-

erated classes, the partial methods are only being declared. In the partial class that you write, you can add your own code to the method.

To add code that you want to run when a context is instantiated, add the OnContext

Created() method to the partial class for the ObjectContext.

270 | Chapter 11: Customizing Entities

Download from Library of Wow! eBook <www.wowebook.com>

Visual Basic has properties, events, and methods available in drop-down boxes at the top of the code window. Select BAEntities in the Class Name drop down on the left,

and then select OnContextCreated from the Method Name drop down on the right.

This will automatically create the VB code shown in Example 11-5, which you could also just type in manually; in C#, you must type the method in manually.

 Example 11-5. The custom OnContextCreated method in your custom context class

VB

Private Sub OnContextCreated()

'add logic here

End Sub

C#

partial void OnContextCreated()

{ //add logic here

}

Now you can add whatever logic you might want to execute anytime the ObjectCon

text is instantiated.

The On[Property]Changed and On[Property]Changing Methods

Every scalar property of every entity has its own version of PropertyChanging and Prop

ertyChanged—for example, FirstNameChanged and FirstNameChanging. Like OnContext

Created, there is no default implementation for PropertyChanging and Property

Changed; only a declaration. This provides you the opportunity to execute custom logic

as the property is about to change (PropertyChanging) as well as just after the property

value has changed (PropertyChanged).

In the generated code, the methods are declared and then called in each property’s

setter. The following examples show what this looks like for the Name property of the

Activity entity in the generated code. First the two partial methods are declared (see

Example 11-6).

 Example 11-6. The generated property Changing and Changed method declarations

partial void OnNameChanging(string value);

partial void OnNameChanged();

Then the Name property calls those methods just before and after the value is changed

(see Example 11-7).

 Example 11-7. The generated class calling the Changing and Changed methods

public global::System.String Name

{ get

{

return _Name;

}

set

Using Partial Methods | 271

Download from Library of Wow! eBook <www.wowebook.com>

 {

OnNameChanging(value);

ReportPropertyChanging("Name");

_Name = StructuralObject.SetValidValue(value, true);

ReportPropertyChanged("Name");

OnNameChanged();

}

}

To implement the PropertyChanged and PropertyChanging methods, create a new code

file to contain custom code for the Activity entity, and name the file Activity.vb or Activity.cs. In the file, add the code shown in Example 11-8. Remember to fix the default namespace in the C# file, removing the folder name.

 Example 11-8. Defining a partial class for an entity

public partial class Activity

{}

Visual Basic’s event drop downs make the next steps a little simpler than in C#.

In VB, select Address from the Class Name drop down; this will cause the Method

Name drop down to populate with all of the property-changing methods. Choose

OnActivityNameChanging and OnActivityNameChanged, which will stub out the event

handler methods for you automatically.

In C#, IntelliSense will help you as you type the methods into your code, shown in

Example 11-9.

The value parameter of the Changing method is the value that is about to be applied to

the property.

In this method, we’ll supplement the Activity to restrict the length of the Activity

Name field in the OnActivityNameChanging method.

 Example 11-9. The partial method implementations

partial void OnActivityNameChanging (string value)

{ if ((value.Length) > 50)

throw new ArgumentException

("Activity Name must be no longer than 50 characters", "value");

}partial void OnActivityNameChanged()

{}

If you look at the signatures of the Changed and Changing methods for the individual

properties, you’ll see that the Changed method has no parameters at all and the Changing method receives the new value. Because you are coding within the entity’s

class, you have access to the entity, its properties and methods, and its related data.

This means you can interact with properties of the Activity entity in this business logic.

272 | Chapter 11: Customizing Entities

Download from Library of Wow! eBook <www.wowebook.com>

Using PropertyChanged to Calculate Database-Computed Columns Locally

Here’s an example of taking advantage of these methods. Many databases use compu-

ted columns to perform calculations on the fly. An example of this is in Microsoft’s

sample database, AdventureWorksLT. The LineTotal column of the SalesOrderDe

tail table is a computed column. Figure 11-1 shows the column properties in the database. You can see that the Computed Column Specification property formula calculates the LineTotal based on the UnitPrice, UnitPriceDiscount, and OrderQty

columns.

 Figure 11-1. The LineTotal column, a computed column in the AdventureWorksLT SalesOrderDetail table

You would likely want to know this value in your application as the order is being

created or modified, without depending on a trip to the database to get the LineTo

tal. Instead, you can create a method or read-only property in the partial class to com-

pute the LineTotal locally, and then call that method anytime the UnitPrice, UnitPri

ceDiscount, or OrderQty column is changed.

Using Microsoft’s sample AdventureWorksLT database for this exam-

ple is simply a convenience. No other demos in the book rely on it. I

mention it because I have had emails requesting the database. If you

wish, you can download it from http://msftdbprodsamples.codeplex

 .com/.

Because LineTotal is a computed column in the database, the value created on the client

side will not be sent to the server upon calling SaveChanges. Thanks to the default dynamic command generation capability, that LineTotal value will be replaced by the

value computed by the database when you call SaveChanges.

Using Partial Methods | 273

Download from Library of Wow! eBook <www.wowebook.com>

Computed columns are marked as StoreGeneratedValue in the model,

just as an identity column is. Therefore, SaveChanges will construct the

command to send the updates and return any properties that are Store

GeneratedValues.

The custom method or property gives you the ability to calculate that property locally

as needed and not relying on the database.

Although this computed property works very well for formulas in which the required

values are contained within the same entity, you have to be careful if you are calculating data from related entities. The SalesOrderHeader entity in AdventureWorksLT has a

SubTotal property that could be populated by summing up the LineTotal properties of

all related SalesOrderDetails. But this assumes that all of the related details have been

retrieved, and it may require a quick trip to the database to ensure that this is so.

Depending on your application’s architecture this could be a bad assumption to make,

so this is something to consider before depending on this type of calculation on the

client side.

EntityObject also has PropertyChanged and PropertyChanging events.

These are true events, unlike the partial methods. So, although you can

insert logic based on a specific property changing with the partial meth-

ods, you can also have logic that runs regardless of which property is

changed. We will discuss these events in the following section.

Extensibility Points

Suppose you want to do something whenever any property changes—without having

to write a partial method for each property individually. For this, Entity Framework

offers some “life cycle events.” Although EntityObject and ObjectContext expose some

partial methods, which let you jump in and add your own logic, it would be nice to

insert custom logic in a lot of other places as well. Later in this chapter, you’ll get an introduction to Entity Framework’s use of T4 code generation. This template-driven

approach to building classes based on the model’s XML provides you with great flex-

ibility to inject your own custom methods and other logic, as you’ll see in the sample

provided along with that discussion.

Subscribing to Event Handlers

You can subscribe to only a few Entity Framework events in your applications:

• ObjectContext.ObjectMaterialized

• ObjectContext.SavingChanges

274 | Chapter 11: Customizing Entities

Download from Library of Wow! eBook <www.wowebook.com>

• EntityObject.PropertyChanging

• EntityObject.PropertyChanged

• RelatedEnd.AssociationChanged

The ObjectContext.ObjectMaterialized Event

The ObjectMaterialized event is raised anytime data is returned from a query (whether

it’s one that you executed explicitly or one that is executed behind the scenes, as is the case with lazy loading) as the context is creating the entity objects from that data. The

event is raised just after the values are applied to scalar properties and reference prop-

erties, but prior to the EntityCollections being created.

ObjectMaterialized is new to Entity Framework 4.

This event is useful when you want to apply logic to any of the entity objects in your

model or perform a particular action anytime objects are materialized.

If you set property values in this event, they will override values that came from the

database.

If you have some logic that pertains to only a particular class, you should consider

executing that logic when the class is being instantiated, which you’ll see further on in

this chapter. The caveat to this is that when you insert values in the class constructor,

any properties which map back to the database will get overwritten during object ma-

terialization. Therefore, you’ll be better off performing some of these tasks in the ObjectMaterialized event handler.

If you want to apply common logic that pertains to any and every class, or even for a

group of classes, this is the place to do it.

To override the event, in VB you can implement the event using the class and event

drop downs in the editing window. In C#, you need to wire up the event handler in

the OnContextCreated method and then define the method elsewhere in the class, as

shown in Example 11-10.

 Example 11-10. Handling the ObjectMaterialized event in VB and C#

VB

Private Sub BAEntities_ObjectMaterialized

(ByVal sender As Object,

ByVal e As System.Data.Objects.ObjectMaterializedEventArgs)

Handles Me. ObjectMaterialized

Subscribing to Event Handlers | 275

Download from Library of Wow! eBook <www.wowebook.com>

 'apply logic here

End Sub

C#

partial void OnContextCreated()

{ ObjectMaterialized += BAEntities_ObjectMaterialized;

}public void BAEntities_ObjectMaterialized(object sender,

ObjectMaterializedEventArgs e)

{ //apply logic here

}

Later on in this chapter, you will see ObjectMaterialized in action in combination with

creating custom properties for entities.

The ObjectContext.SavingChanges Event

As I mentioned in the preceding chapter, SavingChanges provides an opportunity to

validate or affect data before it is persisted to the database. SavingChanges executes just prior to when the SaveChanges method builds the database Insert, Update, and Delete

commands. You’ll want to consider how you organize these validations.

You can perform them per entity type, or per EntityState.

You can build the validators into partial classes for the various entities, and call those from ObjectContext.SavingChanges. You’ll see some additional ways of organizing validation logic later in this book, and your own coding practices might suggest others yet.

Remember that you also have the option of overriding SaveChanges for any logic you

want to execute prior to (or instead of) the base SaveChanges method being executed.

GetObjectStateEntries: A critical method when validating entities from the context

There’s a method that you haven’t seen yet that is frequently used when handling the

SavingChanges event or overriding SaveChanges. GetObjectStateEntries is a method of

ObjectContext.ObjectStateManager that allows you to extract the ObjectStateEntry ob-

jects managed by the context so that you can perform logic such as validation on the

entities. You’ll be spending more time with the ObjectStateManager in Chapter 21.

GetObjectStateEntries is the only way to access the entities in SavingChanges or Save

Changes. This method returns an IEnumerable<ObjectStateEntry> of entries managed

by the context by filtering on a particular EntityState.

Once you have the ObjectStateEntry objects in hand, you can navigate from them to

the actual entity objects, as you will see in the code sample in Example 11-11.

You can pass in one or more EntityState enumerations (separated by VB’s Or or C#’s

|) to determine which group or groups of entities you want to work with. For instance,

GetObjectStateEntries(EntityState.Added) returns all of the new entities in the

276 | Chapter 11: Customizing Entities

Download from Library of Wow! eBook <www.wowebook.com>

context; GetObjectStateEntries(EntityState.Added | EntityState.Modified) returns all of the new entities as well as any that have been modified.

The only downside to this is that if you want to explore the entries in any way, not just

by EntityState, GetObjectStateEntries still requires that you use the enums. For ex-

ample, if you wanted to find all of the Trip entries in the ObjectStateManager, regardless of their state, you would need to pass in all of the possible EntityState options—Added,

Deleted, Modified, and Unchanged.

In Chapter 21, you will see some overloads that I’ve created to make it simpler to work with the GetObjectStateEntries method.

Then you can filter on the type of the entity referenced by these ObjectStateEntries,

as shown in Example 11-11, which uses LINQ to Objects to query the ObjectStateEntries.

 Example 11-11. Retrieving ObjectStateEntry objects from the context in VB and C#

VB

Dim TripEntries As List(Of ObjectStateEntry) TripEntries = _

From entry In ObjectStateManager.GetObjectStateEntries _

(EntityState.Added Or EntityState.Deleted _

Or EntityState.Modified Or EntityState.Unchanged) _

Where TypeOf entry.Entity Is Trip

C#

List<ObjectStateEntry> tripEntities =

from entry in ObjectStateManager.GetObjectStateEntries

(EntityState.Added | EntityState.Deleted |

EntityState.Modified | EntityState.Unchanged)

where entry.Entity is Trip

select entry;

There is one more EntityState enum that the preceding discussion has ignored:

Detached. Detached entities don’t exist in the ObjectContext, so there’s no reason to look for them here.

Implementing SavingChanges

Before you add an event handler to the SavingChanges event, you’ll need to extend the

partial class for the ObjectContext if you didn’t do so during the discussion of OnContextCreated. You can do this in the Entities.vb or Entities.cs code file.

Example 11-12 and Example 11-13 demonstrate subscribing to the SavingChanges event in the BreakAway context. The handler updates the ModifiedDate property for every

contact that is new or modified. The example first grabs every ObjectStateEntry that

is either Modified or Added. Then, it identifies any entries that represent Contact entities and updates the ModifiedDate field. Visual Basic is included in the example to demonstrate its particular syntax. In both examples, both the System.Data and

System.Data.Objects namespaces are added to the directives at the top of each code file.

Subscribing to Event Handlers | 277

Download from Library of Wow! eBook <www.wowebook.com>

 Example 11-12. Setting default values in SavingChanges in VB

VB

Private Sub BAEntities_SavingChanges _

(ByVal sender As Object, ByVal e As System.EventArgs) _

Handles Me.SavingChanges

Dim osm = ObjectStateManager

'get Added or Modified entries

For Each entry In osm.GetObjectStateEntries

(EntityState.Added Or EntityState.Modified)

If TypeOf entry.Entity Is Contact Then

Dim con = CType(entry.Entity, Contact)

con.ModifiedDate = Now

End If

Next

End Sub

As with the ObjectMaterialized event, in C# you have to perform an extra step to wire

up the SavingChanges event handler. You can do this in the OnContextCreated partial

method, as shown in Example 11-13.

 Example 11-13. Setting default values in SavingChanges in C#

C#

partial void OnContextCreated()

{ ObjectMaterialized += BAEntities_ObjectMaterialized;

SavingChanges += BAEntities_SavingChanges;

}public void BAEntities_SavingChanges (object sender, System.EventArgs e)

{ var osm =ObjectStateManager;

//get Added | Modified entries;

foreach (var entry in osm.GetObjectStateEntries

(EntityState.Added | EntityState.Modified))

{

if (entry.Entity is Contact)

{

var con = (Contact)entry.Entity;

con.ModifiedDate = DateTime.Now;

}

}

}

If the ModifiedDate field in the database table was automatically updated

with a database trigger, you could simply mark the ModifiedDate prop-

erty as a computed column (by setting the StoreGeneratedPattern at-

tribute to Computed), and therefore eliminate any need to update this

field manually.

278 | Chapter 11: Customizing Entities

Download from Library of Wow! eBook <www.wowebook.com>

Setting default foreign keys in SavingChanges when no foreign key scalar property exists The first version of Entity Framework did not support foreign keys in the model. You

can continue to create models without foreign keys or you may be working with a legacy

model. If you are using a model without foreign keys as entity properties, you will have

to deal with any foreign keys that are non-nullable and may not have been set elsewhere

in your code. A good example would be the CustomerType of a Customer. In our model,

we set the CustomerTypeID foreign key value to have a default of 1, representing Standard

customers. But what if you had only the CustomerType navigation property and the

CustomerTypeReference to work with? You can’t set defaults for those in the model.

In this case, there are two possible places to set the default foreign key reference: in the constructor of the Contact entity (discussed shortly) or during SavingChanges.

Otherwise, if you leave that value unassigned, you will get an UpdateEntityException

when you attempt to save.

Taking care of this constraint during SavingChanges by providing a default for the en-

tities so that the value is not null is a convenient way to solve the problem. Otherwise,

if the CustomerTypeID had been left empty, an exception would be thrown.

Adding the logic shown in Example 11-14 to the enumeration through Modified and Added entities would take care of this during SavingChanges.

 Example 11-14. Setting foreign keys when there are no foreign key properties

VB

If TypeOf entry.Entity Is Customer Then

Dim cust = CType(entry.Entity, Customer)

With cust

If cust.CustomerTypeReference.EntityKey Is Nothing Then

cust.CustomerTypeReference.EntityKey = _

New EntityKey("BAEntities.CustomerTypes", "CustomerTypeID", 1)

End If

End With

End If

C#

if (entry.Entity is Customer)

{ var cust = (Customer)entry.Entity;

if (cust.CustomerTypeReference.EntityKey == null)

{

cust.CustomerTypeReference.EntityKey =

new EntityKey("BAEntities.CustomerTypes", "CustomerTypeID", 1);

}

}

Subscribing to Event Handlers | 279

Download from Library of Wow! eBook <www.wowebook.com>

Enums Not Supported in Entity Framework

You’ll notice in Example 11-14 that an integer is assigned to the EntityKey value. This is a case where it might make more sense to predefine a set of enums that might be

identified as CustType.Standard, CustType.Silver, and CustType.Gold. In this way, there

would be no need for the developer to remember the actual value, 1, for the Standard

customer. Unfortunately, if you were to use an enum when building the EntityKey, for

example:

New EntityKey("BAEntities.CustomerTypes",

"CustomerTypeID", CustType.Standard)

an exception would be thrown indicating that the constructor requires an integer. That

is because the Entity Framework does not support enums as of .NET 4. Alternatively,

you could use constants, which are preferable to a number or string. I’ve used the integer

in Example 11-14 in order to highlight this problem.

The EntityObject.PropertyChanging

and EntityObject.PropertyChanged Events

In addition to the Changing and Changed methods for the individual properties of a class,

EntityObject has class-level PropertyChanged and PropertyChanging methods as well.

These two events are raised anytime any property in a particular entity class changes.

The order of the Changing/Changed events

If you subscribe to the class-level events as well as any of the specific property methods, both the method and the event will be hit when the particular property is modified.

Here is the order in which the events are hit:

1. Property-level On[Property]Changing method

2. Class-level PropertyChanging event

3. Class-level PropertyChanged event

4. Property-level On[Property]Changed method

PropertyChanged and PropertyChanging Events and Methods Fire During

Object Materialization

You may build the event handlers and methods we’ve discussed in this chapter with

the idea of using them whenever your custom code impacts the data in your entities.

But be aware that all of these methods and events will also be hit when an entity is being populated from a query. So, if you are querying for addresses, these events will be raised over and over again as each address is materialized. This may or may not be desirable.

Unfortunately, there is no built-in way to discern whether you are in the process of

materializing objects. However, you could set up a global Boolean variable that is set

280 | Chapter 11: Customizing Entities

Download from Library of Wow! eBook <www.wowebook.com>

to true just before you execute a query, check its value in the PropertyChanged/Proper tyChanging events, and then set it to false when the query is complete. You can find

another workaround by searching the MSDN forums for a thread titled “Property-

Changed during ObjectMaterialization” (which I started, as a matter of fact). As a re-

sponse to my question, Matthieu Mezil proposed a solution that reads the stack trace.

So, although there is always a way to solve these types of problems, the key is to be

aware of what your code is doing and what impact it may have on your application or

resources.

Event parameters

The Sender parameter of the PropertyChanged and PropertyChanging events contains the

entity in its current state. You’ll have to cast Sender back to the actual type to access

these values. The EventArgs for both events have a PropertyChanged property that is a

string that defines the name of the changing/changed property. Example 11-14 and

Example 11-15 (in the following subsection) demonstrate accessing that property.

Unlike the property-level method (e.g., AddressPropertyChanging), the PropertyChang

ing event does not provide the new value.

Subscribing to the class-level PropertyChanging and PropertyChanged events

Once again, the place to subscribe to the PropertyChanging and PropertyChanged events

is in an entity’s partial class.

Using the Address class as an example again, in the Address partial class, select Address

Events from the Class Name drop-down and then select OnPropertyChanged and On-

PropertyChanging from the Method Name drop down. The event handlers shown in

Example 11-15 will automatically be created.

 Example 11-15. Implementing PropertyChanged and PropertyChanging in VB

VB

Private Sub Address_PropertyChanged(ByVal sender As Object, _

ByVal e As System.ComponentModel.PropertyChangedEventArgs) _

Handles Me.PropertyChanged

Dim propBeingChanged As String = e.PropertyName

'add your logic here

End Sub

Private Sub Address_PropertyChanging(ByVal sender As Object, _

ByVal e As System.ComponentModel.PropertyChangingEventArgs) _

Handles Me.PropertyChanging

Dim propBeingChanged As String = e.PropertyName

'add your logic here

End Sub

In C#, you’ll need to manually subscribe to the event handlers as you did for the pre-

vious event overrides. You can do this by adding a constructor to the partial class, as

Subscribing to Event Handlers | 281

Download from Library of Wow! eBook <www.wowebook.com>

shown in Example 11-16. The PropertyChanged and PropertyChanging events expect your handlers to have the same signature as the PropertyChangedEventHandler delegate

from a different .NET namespace: System.ComponentModel, rather than that of the

System.EventHandler which you used for SavingChanges.

 Example 11-16. Implementing PropertyChanged and PropertyChanging in C#

C#

public partial class Address

{ //subscribe to the events inside the Address class constructor

public Address()

{

PropertyChanged += Address_PropertyChanged;

PropertyChanging += Address_PropertyChanging;

}

//create the methods that will be used to handle the events

private void Address_PropertyChanged(object sender,

System.ComponentModel.PropertyChangedEventArgs e)

{

string propBeingChanged = e.PropertyName;

//add your logic here

}

private void Address_PropertyChanging(object sender,

System.ComponentModel.PropertyChangingEventArgs e)

{

string propBeingChanged = e.PropertyName;

//add your logic here

}

}

The AssociationChanged Event

With foreign keys in the model—for example, Address.ContactID—you could leverage

the OnContactIDChanging and OnContactIDChanged methods when that relationship

changes (e.g., the address is associated with a different contact).

If you don’t have foreign keys (e.g., you are using a model created in Visual Studio 2008

SP1 and don’t want to shift that or your code to using foreign keys), you still have an

option. An AssociationChanged event will be raised for Address.ContactReference after

a change has been made to the EntityReference or the entity itself (Address.Contact).

Even if you have foreign keys, a change to an entity’s EntityCollection (e.g., Contact.Addresses) will not trigger an event. That’s because EntityCollection does not

implement INotifyCollectionChanged. You can use an AssociationChanged event on

Contact.Addresses to execute logic in this scenario.

Download from Library of Wow! eBook

<www.wowebook.com>

282 | Chapter 11: Customizing Entities

Download from Library of Wow! eBook <www.wowebook.com>

With the foreign key property methods you get both changed and

changing notifications and you are able to navigate to the related entity

or collection. The AssociationChanged event does not have the partner

event (AssociationChanging), but, unlike the foreign key method, you

do have the ability to place an event handler in the Contact class. If you

need to impact the Contact or the entire collection of Addresses for that

contact, you can do that from the Address class, but placing code related

to the Contact in the Address class may convolute your business logic.

You will need to assess the options based on your needs, your applica-

tion domain, and your coding practices and then choose your weapon.

You can create an AssociationChanged event handler for any navigation property of an

entity. There is no way to subscribe to an overall event to capture all association changes in an ObjectContext.

You’ll need to wire this up manually in VB and C#. Example 11-17 demonstrates cre-

ating an AssociationChanged event handler for the ContactReference property of the

Address. In the partial class for the Address, create a method (in the example it’s called ContactRef_AssociationChanged) to execute the desired logic; then in the class constructor, add code to wire up the event handler to this method.

The implementation is the same for EntityReferences as it is for EntityCollection.

Event arguments

Both the EntityReference and EntityCollection implementations have

CollectionChangeEventArgs in their parameters. This argument contains two

properties: Action and Element.

The Action property can be one of the CollectionChangeAction enums: Add, Refresh, or

Remove.

The Element property returns an object that is the entity on the other end of the rela-

tionship being changed. You can cast it back to the appropriate entity type if you want

to work with that entity.

Example 11-17 shows an AssociationChanged event handler for the CustomerRefer ence of the Address, followed by the opposite—an AssociationChanged handler for the

Addresses property of the Customer. Each method demonstrates how to access the re-

lated end in the association.

 Example 11-17. Implementing the AssociationChanged event

using System.ComponentModel;

namespace BAEntities

{ public partial class Address

{

public Address()

Subscribing to Event Handlers | 283

Download from Library of Wow! eBook <www.wowebook.com>

 {

ContactReference.AssociationChanged += Add_CustRefChanged;

}

private void Add_CustRefChanged(object sender,CollectionChangeEventArgs e)

{

CollectionChangeAction act = e.Action;

var custOnOtherEnd = (Contact)e.Element;

//add your logic here

}

}

public partial class Contact

{

public Contact ()

{

Addresses.AssociationChanged += Addresses_AssociationChanged;

}

private void Addresses_AssociationChanged

(object sender, CollectionChangeEventArgs e)

{

CollectionChangeAction act = e.Action;

var addOnOtherEnd = (Address)e.Element;

//add your logic here

}

}

}

Creating Your Own Partial Methods and Properties

With partial classes, you can do more than extend existing methods and handle events.

You can also create your own methods or properties.

Overriding the Object Constructor

You may have noticed in the generated classes that there is no constructor for the entity

classes. In other words, there is no specific code for when an entity is being instantiated.

This provides a great opportunity for you to implement custom logic for an entity’s

constructor. This constructor will impact entities that are newly created in memory as

well as entities that are being materialized as a result of a query.

With regard to the latter, be aware that the constructor is hit before the object materialization applies the resultant values. By default, you wouldn’t use this to set

property values that you do not want to be overwritten by object materialization. You

could, however, take advantage of the ObjectContext.ObjectMaterialized event to

avoid overwriting.

However, the benefit of this is that you can set property values for new objects without

affecting the values of queried objects.

284 | Chapter 11: Customizing Entities

Download from Library of Wow! eBook <www.wowebook.com>

For example, the Contact entity has an AddDate property to indicate when the entity

was created. The database does not automatically populate this value; therefore, it is

up to your application to do so. You can use the Contact’s constructor to insert the

current date and time when a new Contact is created.

To see how this works, create a new partial class for Contact. Remember in the C# class

to fix the namespace as you have done with the previous partial classes. Then, add a

class constructor with the code to affect AddDate, as shown in Example 11-18.

 Example 11-18. Overriding the constructor in VB and C#

VB

Public Sub New()

AddDate = DateTime.Now

End Sub

C#

public Contact()

{ AddDate = DateTime.Now;

}

In Chapter 17, you’ll learn about another new feature of Entity Frame-

work, called self-tracking entities. These entities benefit from the Object

Materialized event as can other Plain Old CLR Objects (POCO) entities

that you may create.

Overriding ObjectContext.SaveChanges

A new feature in Entity Framework 4 that I’ve mentioned a few times already is the

ability to override ObjectContext.SaveChanges, because it is now a virtual method. The

term virtual in C# is the same as overridable in Visual Basic. It allows you to replace the base method with your own in a class that derives (a.k.a. inherits) from another.

BAEntities inherits ObjectContext. By default, when you call BAEntities.SaveChanges

you will execute the ObjectContext.SaveChanges method. However, you can override

the logic of SaveChanges in the BAEntities partial class.

Here is the signature of SaveChanges:

public virtual int SaveChanges(SaveOptions options)

In the Entities.cs or Entities.vb class you can add the following methods which will

override the inherent SaveChanges method:

VB

Public Overrides Function SaveChanges _

(ByVal options As System.Data.Objects.SaveOptions) As Integer

Return MyBase.SaveChanges(options)

End Function

C#

public override int SaveChanges(System.Data.Objects.SaveOptions options)

{ return base.SaveChanges(options);

}

Creating Your Own Partial Methods and Properties | 285

Download from Library of Wow! eBook <www.wowebook.com>

In these examples, although the code overrides the base SaveChanges, it still calls base.SaveChanges, that is, the actual ObjectContext.SaveChanges method. You can add

logic to execute before or after base.SaveChanges is called, or even completely redefine

the logic for SaveChanges by eliminating the call to base.SaveChanges. You may also

have logic that determines whether or not to call base.SaveChanges. These are things

you can’t achieve in the SavingChanges handler.

You will want to have a deeper understanding of Entity Framework than

you do at this point before you start messing around with this method,

especially if you are considering a complete replacement of the existing

logic.

The impact of being able to override SaveChanges increases dramatically as you get into

more advanced features of Entity Framework, such as implementing POCO classes.

You’ll learn more about this in Chapter 13.

Creating Custom Properties

Custom properties are a way to provide computed properties (e.g., a FullName property

based on an existing FirstName and LastName) to entities.

Custom properties don’t necessarily need to be calculated from other existing proper-

ties. For example, you may have an investment application that would need to leverage

real-time stock prices. Rather than build a CurrentPrice property in the model, which

would be required to map back to the data store, you could create the property in the

partial class and then populate it during object materialization or on demand if you

don’t believe that every entity object will need to provide that information.

Another example would be to access some cached data. The BreakAway application

has a utility that grabs the next day’s forecast at each of the lodgings in the database.

This happens once per day and the results are stored in a local XML file.

My blog post, “Building an XML file with Google’s Weather and LINQ

to XML,” shows you how you can build the same type of file that is

accessed by the code in Example 11-19. You can find the post at http://

 blogs.devsource.com/devlife/content/net_general/building_an_xml_file

 _with_googles_weather_and_linq_to_xml.html.

Using Example 11-19, you can create a new TomorrowForecast custom property and populate it with the data in that local XML file (which has been loaded into memory)

after each Lodging entity has been materialized.

286 | Chapter 11: Customizing Entities

Download from Library of Wow! eBook <www.wowebook.com>

Precalculating the custom property for every entity being materialized

is useful when you know that the value will be accessed for all (or at

least most) of the entities being materialized. Otherwise, you should

consider calculating the property only as needed and not during object

materialization.

The logic for populating the forecast property is placed in the Lodging partial class as

an internal (Friend, in Visual Basic) method. This prevents developers from calling the

method. Only other classes in the model assembly are able to call it and that is what

the ObjectMaterialized method does in Example 11-19.

 Example 11-19. Populating a custom property with ObjectContext.ObjectMaterialized

//custom property in Lodging.cs

public string TomorrowForecast { get; set; }

//custom method in Lodging.cs

internal void Materialized()

{ if (_foreCastsXml == null)

{

if (System.IO.File.Exists("LodgingForecasts.XML"))

{

//read the file with xelement - move code to application logic

_foreCastsXml = XElement.Load("LodgingForecasts.XML",

LoadOptions.None);

}

else

{

throw new System.IO.FileNotFoundException

("The LodgingForecasts.XML file was not found");

}

}

//LINQ to XML query of the file

string f = (from item in file.Elements("Lodging")

where item.Attribute("ID").Value == LodgingID.ToString()

select item.Attribute("forecast").Value).FirstOrDefault();

if (f != null)

TomorrowForecast = f;

else

TomorrowForecast = "";

}

//ObjectMaterialized method in Entities.cs

void BAEntities_ObjectMaterialized(object sender, ObjectMaterializedEventArgs args)

{ if (args.Entity is Lodging)

{

Lodging lodging = (Lodging)args.Entity;

lodging.Materialized();

}

}

Creating Your Own Partial Methods and Properties | 287

Download from Library of Wow! eBook <www.wowebook.com>

You cannot use these custom properties in LINQ to Entities or Entity

SQL queries, but you can use them in client-side queries, which are just

LINQ to Objects queries.

Custom properties can also be useful when you want to define a function that relies on

CLR methods that are not available in the model. Example 11-19 leverages the Sys tem.String.Format method to create some properties that you will be able to use in a

number of samples as the book progresses. These properties display the details of a

Reservation. The Reservation entity does not contain much interesting information in

its scalar properties. The useful details are in the Trip navigation property (start and

end dates, trip cost) and in the Destination property of the Trip (the destination name).

Rather than reconstruct this information over and over again (as you did in Chap-

ter 8), you can create a property of Reservation that will give this to you already concatenated. The same information is convenient to concatenate from the Trip entity.

After adding a TripDetails property to the Trip entity, you can then add a

TripDetails property to Reservation that reads the Trip.TripDetails.

Later in the book, you will learn how to create model-defined functions

directly in the EDM. Model-defined functions do not provide you with

entity properties at runtime, but one of their benefits over custom prop-

erties, however, is that they can be used in queries where properties

cannot.

The Trip.TripDetails property in Example 11-20 won’t presume you are using lazy loading to ensure that the destination information has been loaded, and therefore tests

for nulls.

 Example 11-20. A custom property to provide a commonly needed concatenation in the BreakAway application

using System;

namespace BAGA

{ public partial class Trip

{

public string TripDetails

{

get

{

string tripCost = "";

string dates = "";

if (StartDate > DateTime.MinValue && EndDate > DateTime.MinValue)

{

dates = " (" + StartDate.ToShortDateString() + "-" +

EndDate.ToShortDateString() + ")";

}

288 | Chapter 11: Customizing Entities

Download from Library of Wow! eBook <www.wowebook.com>

 if (TripCostUSD.HasValue)

{ tripCost = string.Format(" ({0:C})", TripCostUSD.Value); }

if (Destination != null)

{

return Destination.Name.Trim() + dates + tripCost;

}

return "n/a";

}

}

}

public partial class Reservation

{

public string TripDetails

{

get

{

return Trip.TripDetails;

}

}

}

}

It’s possible to have custom properties with setters. As an example, perhaps your da-

tabase actually stores full names as “LastName, FirstName”. But you want to provide

a first and last name in your data entry forms to ensure that the first and last names go

into the database in the correct order without depending on the user to enter them

properly. You could create custom properties, FirstName and LastName. The getters for

these properties would return the relevant part from the Name property. In the setters,

you could update the Name property based on the incoming part. When SaveChanges is

called, the value of the Name property will get sent to the database in an update.

Using custom properties to perform calculations on child collections

In the BreakAway model, you could create custom read-only properties in the Reserva

tion entity for TotalPaid and PaidinFull that would be calculated based on the sum of

the payments for that reservation. As I mentioned earlier in the discussion of computed

columns, the data would be valid only if you could ensure that all of the payments are

accounted for. If there is a chance that some of the payments have not been retrieved

from the database, you shouldn’t depend on this.

Overloading Entity Creation Methods

The default code generation template creates a factory method* for each entity. The methods—which are static (Shared in VB)—all begin with the word Create and let

* http://en.wikipedia.org/wiki/Factory_method_pattern

Creating Your Own Partial Methods and Properties | 289

Download from Library of Wow! eBook <www.wowebook.com>

you quickly create a new entity. The parameter list for these factory methods consists

of all of the non-nullable properties in the class.

The entire set of non-nullable properties isn’t always the most desirable list of fields to populate when creating a new class. For example, in the BreakAway model classes, the

Contact.CreateContact factory method has the signature shown in Example 11-21.

 Example 11-21. Signature of the Contact.CreateContact factory method

public static Contact CreateContact

(int contactID, string firstName, string lastName,

global::System.DateTime addDate, global::System.DateTime modifiedDate)

In most cases, the ContactID will be 0, and in this case AddDate and ModifiedDate would

most likely be the current date. Why be forced to enter them when you create a new

Contact? You may also have some of the other values available, which means that after

calling CreateContact, you still have to set more properties.

Creating an overload of the method would be very convenient. You can request the

nonobvious values, such as FirstName and LastName, and then delegate out to the gen-

erated factory method to fill in the rest of the non-nullable values. You can place the

new version of the method in the Contact’s partial class. Example 11-22 shows a more useful CreateContact method.

 Example 11-22. Overriding the Create factory method

public static Contact CreateContact(string firstName, string lastName)

{ var contact = CreateContact(0, firstName, lastName,

DateTime.Now, DateTime.Now, new Byte[]{0});

return contact;

}

When you call the CreateContact method, two signatures will be available, as shown

in Figure 11-2.

 Figure 11-2. The new CreateContact overload as shown by IntelliSense

As you use the different methods that the entities inherit from EntityObject or Object

Context, keep your mind open to the idea of being able to enhance them to suit your

purposes.

Using Partial Classes for More Than Just Overriding Methods and Events

You can, of course, create all kinds of new logic in partial classes, whether the logic

pertains to properties or to methods.

290 | Chapter 11: Customizing Entities

Download from Library of Wow! eBook <www.wowebook.com>

For example, perhaps you want to perform some validation logic without saving changes, such as supplying default values for entities. You could place methods for this

within an entity’s partial class and then call that method as needed. If you like the idea of having validation performed on a number of entities at once, or even on a variety of

entity types (as SaveChanges can do), you could place the method in the ObjectCon text’s partial class. Keep in mind that only attached entities will be available at that

point.

Other than creating your own classes, the partial classes are the primary mechanism in

the Entity Framework for adding business logic to entities.

Overriding Default Code Generation

In the first version of Entity Framework, it was possible to override EDM code gener-

ation completely so that you can define what the generated classes look like. The code

generator was based on the System.Data.Entity.Design API, which you could use di-

rectly. However, it was a proprietary code generator written by the Entity Framework

team, was a lot of work, and required developers to learn yet another API.

In Visual Studio 2010, the Entity Framework now uses a code generator that was al-

ready a part of Visual Studio, known as Textual Transformation Template Toolkit or

T4. T4 was added to one of the Domain Specific Language (DSL) tools that appeared

in Visual Studio 2008. The essential function of T4 is to create a code file by trans-

forming a text file (e.g., your EDMX file) into another file (e.g., a class) using rules that you write in yet another file (a template file) with the T4 syntax. The beauty of using

T4 to generate classes from the EDMX is that T4 is a common tool that you can use

for many other code generation tasks. This way, you can use something you may already

be familiar with, or at least you will be using a transferable skill.

T4 can be used to generate code in whatever language you want. Entity Framework

provides templates to output C# and Visual Basic code files.

The default code generation that you have been taking advantage of thus far in this

book uses a T4 template file. If you want to change how the classes are generated you

can start with a copy of the default template and edit it. The default template is buried

deep within the file path of the Visual Studio 2010 installation. But the Designer can

easily make a copy for you that you can customize and use in your projects. Microsoft

provides a few templates for transforming EDMX files, and you will also find that there

are templates others have created as well. For your first stab at customizing the classes, we’ll start by modifying the default template.

Visual Studio 2010 does not have a T4 editor to help you with things such as syntax

highlighting, formatting, or IntelliSense. When you open a T4 file in Visual Studio it

will look like a simple text file. There are third-party tools that you can use, such as

Visual T4 from Clarius Consulting (http://www.visualT4.com) and T4 Editor from

Tangible Engineering (http://www.tangible.de).

Overriding Default Code Generation | 291

Download from Library of Wow! eBook <www.wowebook.com>

Visual Studio 2010 has a built-in Extension Manager that lets you easily

install extensions. See my blog post on using this feature to download

and install T4 Editor (http://blogs.devsource.com/devlife/content/net_gen

 eral/vs2010_vsx_and_t4_editor.html).

Switching to a Template

Rather than customizing the default, the Entity Framework Designer will make a copy

of the default for you to work with and place that in your project. Let’s see how that

works.

1. Open the Entity Data Model in the Designer.

2. Right-click in the Designer background.

3. From the context menu, choose Add Code Generation Item.

The Add New Item window will open displaying all available templates. You will

most likely have only the default template, ADO.NET EntityObject Generator,

and the ADO.NET Self-Tracking Entity Generator templates to begin with.

4. Select the ADO.NET EntityObject Generator template.

5. Change the default template name from Model1.tt to BreakAway.tt.

Now look in the Solution Explorer. You will notice a number of changes to the project:

• The code file attached to the EDMX is still there, but it contains nothing more than

a note indicating that the default code generation has been disabled.

• There is a new file, BreakAway.tt, in the project. This is the template that is now being used to generate the classes from the EDMX.

• The BreakAway.tt file has an attached code file, BreakAway.cs (or .vb). This is the new version of the generated file. If you open this file, you will see that it is exactly

the same as the previously generated class files. That’s because your current tem-

plate file is the same as the default.

The BreakAway.tt file is now responsible for generating the classes based on the model.

Reading the Template

Before editing the code, let’s take a quick look at a bit of the template syntax.

Open the BreakAway template file, BreakAway.tt.

Don’t miss the helpful notes that the Entity Framework team embedded

into the first 20 or so lines of the file.

292 | Chapter 11: Customizing Entities

Download from Library of Wow! eBook <www.wowebook.com>

Do a search for the word ObjectContext. The first instance of the word will be in a comment. The second one will be in this line of code at about line 110:

<#=Accessibility.ForType(container)#>

partial class <#=code.Escape(container)#> : ObjectContext

The line is not wrapped in the .tt file. It is wrapped here only to accom-

modate the margins of this book’s pages.

Code that is surrounded by <#= #> directives is processing instructions. Everything else is text that will go directly into the code file. Therefore, this particular line says to execute a processing method which will read the EntityContainer’s Accessibil

ity (defined by Entity Container Access in the EDMX) and output the value (Public or

Internal). Then it will directly write out the words partial class. Next, there is another processing directive, code.Escape(container), which is another internal T4 method.

This outputs the name of the EntityContainer. Finally, some more text is output: “:

ObjectContext”<# #>, enclosing processing instructions in templates.

When T4 processes this line of code against BreakAway.EDMX, it will output the following:

public partial class BAEntities : ObjectContext

Modifying the Template

Let’s make some minor changes to the template so that you can get a feel for using T4

and taking ownership of the generated classes.

Earlier in this chapter, you added the ObjectMaterialized event in the Entities partial

class and then a Materialized method, to be called by ObjectMaterialized, in the Lodging partial class. Now you will use T4 to inject the Materialized partial method

into each entity class

When planning a template customization, be careful not to insert actual business logic

into the template. During code generation, you do not know what logic you want to

be executed in ObjectMaterialized, so you don’t want to write that into the generated

class. You can at least provide a partial Materialized method for each entity class. This

way, the developer implementing the custom logic will use the common method name.

Inserting the Managed partial method in each entity class

Search for the term SummaryComment(entity) to find the beginning of the section which creates the entity class code. This section is executed for every entity discovered in the model.

Overriding Default Code Generation | 293

Download from Library of Wow! eBook <www.wowebook.com>

Approximately 15 lines farther down you’ll see a declaration that begins with if (!

entity.Abstract).

Just above the opening tag (<#) add the first three lines of code shown in Exam-

ple 11-23. The rest of the code, shown in bold in the example, is there to help clarify the position of the new code.

 Example 11-23. Overriding the Create factory method

#region <#=GetResourceString("Template_RegionPartialMethods")#>

partial void Materialized();

#endregion

<#

 if (!entity.Abstract)

 {

 WriteFactoryMethod(entity, code);

 }

When you save the file, the BreakAway class file will be regenerated. If you check the

generated classes you’ll see that the partial method is now declared in each class. The

beginning of the Address partial class is shown in Example 11-24.

 Example 11-24. Overriding the Create factory method

public partial class Address : EntityObject

{ #region Partial Methods

partial void Materialized();

#endregion

This particular modification doesn’t relieve you of the steps for adding the ObjectMate

rialized event handler and its method, or for creating the Materialized method in the

Lodging class. But it will help developers on your team by providing the proper common

method for them to implement in the class logic.

Other ways to create common methods or properties for all entities

In addition to customizing the code generation to add a common method or property

to entities, there are a few other ways you can get the same effect:

• Place the method into the ObjectContext’s partial class and pass the entity in as a

parameter. This will work only for entities that are attached to the ObjectContext.

• Create an extension method for EntityObject. This will then be an available

method for any class that inherits from EntityObject.

294 | Chapter 11: Customizing Entities

Download from Library of Wow! eBook <www.wowebook.com>

Customizing a Template for Major Class Modifications

The preceding example demonstrated a small change to the generated class. Many

developers will want to modify the template to remove their class’s dependency on the

Entity Framework APIs. The default template forces each entity to inherit from

EntityObject. The new support for POCOs will enable developers to remove that in-

heritance. The first step is to remove the template code which adds in the inheritance.

Rather than directly writing out EntityObject, you’ll find that the inheritance is created with the following syntax:

VB

Inherits <#=BaseTypeName(entity, code)#>

C#

: <#=BaseTypeName(entity, code)#>

Removing this simple bit of code will have a major impact on the classes, since you will

now lose the functionality provided by the EntityObject class. In Chapter 13, you will

learn about POCO classes, which are much lighter in weight than the generated Enti

tyObject classes. There is a Microsoft-provided T4 template for creating POCO classes.

Even if the provided template isn’t exactly what you need, it will likely be a much better starting point for generating your own simple classes than trying to whittle down the

default template.

One other T4 template is available in Visual Studio 2010 for Entity Framework: the

Self-Tracking Entities template. You will learn about self-tracking entities in Chap-

ter 17.

Switching Between the Default Template and a Custom Template

If you open the EDMX in the Designer after switching to your own code generation

template, you will find that the model’s Code Generation property in the Properties

window is None. The options, provided by a drop down, are Default and None.

Default will use the default template to generate the entity classes directly from the

model. When you created the custom template this value was switched to None. As a

result, you may recall that the class file attached to the model contains nothing but

some comments.

If you set the property back to Default, you can regenerate the classes from the model

itself by saving the model, or by forcing the default generation by right-clicking on the

EDMX file and choosing Run Custom Tool.

However, this will create a conflict, because the classes already exist in the file created from the template. If, for some reason, you want to revert to the default EntityObject

template, you need to prevent the custom template from generating classes. You can

do that by removing the template’s Custom Tool property. The name of the tool which

processes the template is TextTemplatingFileGenerator. When you delete the Custom

Tool’s property value, BreakAway.tt’s attached class file will disappear.

Overriding Default Code Generation | 295

Download from Library of Wow! eBook <www.wowebook.com>

Therefore, if you have the need, it is indeed possible to switch back and forth between

generating classes from the model to generating them from a custom template.

Look at how the T4 template handles the LazyLoadingEnabled annota-

tion in the CSD’s EntityContainer element for inspiration on how you

can add your own annotation into the EDMX’s XML, and then use T4

to generate code based on those annotations. I won't be writing about

this in this book.

Summary

In this chapter, you learned how to use partial classes generated by the Entity Frame-

work to insert your own business logic into entity classes and to the class that serves

as your context. You can subscribe to events, add code to partial methods, and even

add completely new methods and properties to the generated classes.

Although there are a lot of opportunities for customizing entities and the ObjectCon

text, sometimes you will find that these are not enough. The EntityObjects are designed

to encapsulate schema and relationships, not behavior. The lack of an opportunity to

tap into AssociationChanging when you do have access to AssociationChanged is an

obvious example.

If you still want more out of these classes, you should consider using POCO classes

instead, which we will cover in Chapter 13.

The next chapter, however, will give you a chance to build another application—this

time, a Rapid Application Development (RAD) ASP.NET application.

296 | Chapter 11: Customizing Entities

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 12

Data Binding with RAD ASP.NET

Applications

With the Entity Framework you can build both Rapid Application Development (RAD)

applications and highly architected applications. On the RAD end, the ASP.NET

EntityDataSource control enables quick declarative data binding that you can use in a

number of scenarios. Dynamic Data controls and templates build on the EntityData

Source to make RAD sites with Entity Framework even easier to create.

Using entities in web applications can be challenging because the ObjectContext does

not survive postbacks, and therefore cannot do its job of keeping track of changes to

your entities. The EntityDataSource control helps you resolve many of the challenges

in scenarios where you do not need to use a business or data access layer. Later in the

book, after you have learned about the Entity Framework in more detail, you will learn

about building layered ASP.NET applications.

In this chapter, you will build four RAD ASP.NET web applications using entities that

make use of the EntityDataSource control. The first application, Hello Entities, will

introduce you to the EntityDataSource. The second will add some more complexity by

working with entity reference data. The third example features hierarchical data as well

as greater interaction between the controls. After you build the examples, the chapter

will bring you on a tour of some of the more interesting features of the EntityData

Source control. Finally, you’ll build a quick ASP.NET Dynamic Data website so that

you can see how Dynamic Data simplifies some of the manual tasks you have to perform

when using the EntityDataSource directly. Both the EntityDataSource and Dynamic

Data templates are highly customizable. This chapter won’t delve too deeply into this

area, as you can learn much more about these in many ASP.NET resources.

297

Download from Library of Wow! eBook <www.wowebook.com>

Using the EntityDataSource Control to Access Flat Data

Although you can bind query results directly to any data-binding or list control in a

web application, updating entities is challenging due to the life cycle of an ASP.NET

Page class. As you expand your knowledge of the Entity Framework, you will be better

prepared to address these challenges, and you’ll leverage this understanding to build

two more web applications, in Chapter 27. In that chapter, we will also look closely at the life cycle of the ASP.NET Page class so that you understand why it presents such

difficulties for change tracking.

For now, it helps to know that there’s an easy way to use entities in web applications

when you are looking for a quick solution. The Entity Framework adds a new control

to the set of existing (and possibly familiar) ASP.NET DataSource controls (SqlData

Source, LinqDataSource, etc.), which simplifies data binding for read/write functional-

ity. You can configure the EntityDataSource control in the UI and it will handle all of

the grunt work for retrieving, inserting, updating, and deleting entities on your behalf.

Once you’ve defined an EntityDataSource control, you can bind it to any web control

that supports data binding.

Let’s start with a small and simple Hello Entities application so that you can get a feel

for how the control works. The following pages will walk you through the steps for

displaying and editing contacts from the BreakAway model. This will be flat data—no

related data will be used in the creation of this simple web page.

Creating the Hello Entities Project

You’ll begin by creating a new ASP.NET Web Application project for this example:

1. In the same solution you have been working with in previous chapters, create a

new Empty ASP.NET Web Application project.

There are two templates in Visual Studio 2010 for ASP.NET Web Ap-

plications. The default creates a predesigned site, while the other is an

empty site.

2. Add a reference to the BreakAwayModel project and System.Data.Entity.

3. Copy the connectionStrings section from the BreakAwayModel project’s app.con-

 fig file into the web application’s web.config file.

4. Save and build the application. This is an important step that allows the Entity

Data Source Wizard that you’ll be using to find the connection string information

in the web.config file.

5. Add a new web form to the project and open it in Design mode to begin adding

controls.

298 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

Creating a GridView and an EntityDataSource Concurrently

Although you can create the EntityDataSource control first and then create the binding

control and link them up, ASP.NET also lets you create an EntityDataSource control

in the wizard of the binding control that will consume the data, in this case a Grid

View. We’ll use this latter method.

1. Drag a GridView from the Data section of the Toolbox onto the web page.

2. From the GridView Tasks window, choose <New data source> from the Choose

Data Source drop-down list (see Figure 12-1).

3. In the Data Source Configuration Wizard that appears, select Entity from the

Choose a Data Source Type page, as shown in Figure 12-2, and click OK.

 Figure 12-1. The GridView Tasks window

Configuring an EntityDataSource with Its Wizard

The EntityDataSource will need to know where its entity comes from. The wizard will

walk you through the critical properties that need to be configured.

You can configure many more properties of the EntityDataSource

through its Properties window or directly in its markup. You will work

with these additional properties further on in the chapter.

The first page of the Data Source Configuration Wizard will allow you to select a named

connection from the connections that the wizard finds in the web.config file:

1. Select BAEntities in the Named Connection drop down.

The wizard finds the container name by looking in the Conceptual Schema Defi-

nition Layer (CSDL) file listed in the connection string you selected in the first drop

down. This should automatically be populated with BAEntities.

2. Click Next.

Using the EntityDataSource Control to Access Flat Data | 299

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 12-2. Defining the data source to be an EntityDataSource

3. On the Configure Data Selection page, choose Contacts from the EntitySetName

drop down.

Again, the wizard has inspected the model to discover the available EntitySets.

4. Leave Select All (Entity Value) checked.

By default, all of the properties will be used. If you choose specific properties, you

won’t get an entity object back. Instead, you will get a DbDataRecord, which cannot

be change-tracked, and therefore cannot be updated. Because of this, if you check

any of the properties, you will notice that the checkboxes for enabling automatic

inserts, updates, and deletes will be disabled.

5. Check the three boxes for enabling automatic inserts, updates, and deletes so that

you will be able to conduct a test edit with the EntityDataSource control. When

you’re finished, the page should look like Figure 12-3.

6. Click Finish.

Figure 12-4 shows the grid and EntityDataSource control as they are displayed on the page after you finish configuring the EntityDataSource. The EntityDataSource control

will not be displayed on the page at runtime.

300 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 12-3. Configuring the EntityDataSource to use the Customer entity type, and selecting all properties so that you can perform inserts, updates, and deletes

Formatting the GridView

Even though you configured the EntityDataSource control to support inserts, updates,

and deletes, you’ll need to specifically enable the GridView to allow the same function-

ality.

The EntityDataSource control also supports dynamic sorting and paging, but again,

you need to enable the features in the grid so that you can take advantage of them:

1. Select the GridView’s Smart Tag to open its Tasks window again.

A control’s Smart Tag becomes visible when the control is selected. You can see

the grid’s Smart Tag attached to the upper-right corner of the selected grid in

Figure 12-5.

2. Check the Enable Paging, Enable Sorting, Enable Editing, and Enable Deleting

checkboxes.

Using the EntityDataSource Control to Access Flat Data | 301

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 12-4. The design-time GridView after it has been hooked up to the EntityDataSource The ASP.NET GridView control does not support insertion even though

the EntityDataSource control does. There are ways around this, but a

solution is not something to get into in a Hello Entities demonstration.

We’ll discuss inserting in the next example.

The grid should look similar to Figure 12-5.

 Figure 12-5. The GridView with editing, deleting, sorting, and paging enabled

302 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

Dynamic Paging and Entity Framework Queries

ASP.NET data sources support server-side paging. Although the GridView controls the

actual paging settings, the DataSource needs to have its AutoPage property set to True

to support the feature (AutoPage is True by default).

With paging, rather than downloading and viewing all of the rows at once, the Data

Source can query for only a certain number of rows at a time to be displayed in the

GridView, and then can make another call to the database to get another subset of data

as needed. The default number of rows it can query is 10.

Depending on your application scenario, more calls to the database with less data to

manage may be preferable to fewer calls to the database and more data to manage.

See the “GridView Web Server Control Overview” topic in the MSDN documentation

for more information on working with GridViews and paging.

Testing the Web Application

There’s a lot more you will want to do to make this a nicely usable grid, such as hiding

the ContactID, formatting the date columns, and so forth. These are not Entity Frame-

work-specific tasks, so let’s just jump ahead to see the EntityDataSource in action. Set

the new web form as the Start page and run the application to test the paging, sorting,

and editing features, as shown in Figure 12-6.

 Figure 12-6. Editing a contact at runtime

If you attempt to delete a contact that has related data (addresses or a

customer record), you’ll get a Reference Constraint error. We’re not

going to worry about this in the Hello Entities application.

Using the EntityDataSource Control to Access Flat Data | 303

Download from Library of Wow! eBook <www.wowebook.com>

Understanding How the EntityDataSource Retrieves and

Updates Your Data

As you saw in the preceding example, the grid was populated by the EntityData Source without the need for you to write any code to define and execute a query. And

it seemed to magically handle the update for you. How did the data get to the form?

How did the changes get back to the database?

EntityDataSource and Its Query

At runtime, when the EntityDataSource needs to populate itself, it begins by reading

the EntityConnectionString, EntityContainer, and EntitySet properties you defined.

It then creates a new ObjectContext using the EntityConnectionString name, and an

ObjectQuery using the EntitySet. If you had chosen individual entity properties, such

as FirstName and LastName, it would build an Entity SQL string using the EntityCon

tainer name and the names of the selected properties. The query is built dynamically

based on the properties of the EntityDataSource.

The wizard that you walked through configured only the most elemental properties of

the EntityDataSource, but the control has many more properties, and some of those

allow you to further define the query. A subset of these additional EntityDataSource

properties mimic query builder methods: Where, GroupBy, Select, and OrderBy. At run-

time, the same query pipeline that creates a query from the query builder methods

creates a query based on these EntityDataSource properties. In fact, the EntityData

Source’s internal method uses the Entity SQL query builder methods to build its queries.

The EntityDataSource control also has an Include property that emulates the Object

Query.Include method. There’s an EntityTypeFilter property that internally leverages

Entity SQL’s OFTYPE ONLY operator to work with inherited entity types. You will learn

more about inheritance in the Entity Data Model in the next chapter.

By assigning values to the EntityDataSource properties, you can achieve the same results

as though you had built a query using query builder methods. For example, an Entity

DataSource with the property settings shown in Table 12-1 is equivalent to the Object Query created by the following query builder methods:

context.Contacts.Include("Addresses")

.Where("it.FirstName='Robert'").OrderBy("it.LastName")

 Table 12-1. EntityDataSource property settings to create the query

Property

Value

EntitySet

Contacts

Include

Addresses

Where

it.FirstName='Robert'

OrderBy

it.LastName

304 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

You’ll learn more about these various properties as you read through this chapter.

EntityDataSource and Its ObjectContext

In the previous example, you had a single EntityDataSource on the page to manage

Contact entities. As you’ll see later in the chapter, you can have multiple EntityData

Source controls on a page. By default, each EntityDataSource on a page creates its own

ObjectContext. If you have more than one EntityDataSource, you will get multiple ObjectContext objects and multiple connections to the database.

Every time a page posts back, the contexts that were created are dropped. When the

page is re-created, the EntityDataSource creates a new ObjectContext for itself. Because

the previous context is no longer being used, .NET’s garbage collector will eventually

remove it. Like any ObjectContext object, the EntityDataSource’s context does not hold

on to connections to the database once it has executed its command and retrieved the

requested data, so this is not something to worry about, yet it’s good to be aware of if

you are focused on resource usage.

Using your own context

You can override the creation of individual contexts and thereby have more control

over the entities.

One way to do this is to instantiate your own context in the form, and force the EntityDataSource to use that. The EntityDataSource has a ContextCreating event, which

fires just as the DataSource is about to create its own context. The signature of the event has a parameter that passes in the EntityDataSourceEventArgs, as shown in the following code:

EntityDataSource.ContextCreating(object sender,

System.Web.UI.WebControls.EntityDataSourceContextCreatingEventArgs e)

The EventArgs has a context property that represents the context for the data source.

When you set that context to your own context, your context becomes responsible for

the DataSource and the entities it returns. The following code sample assumes that the

context, myContext, has been instantiated elsewhere in the form and is declared as a

class-level variable:

protected void EDS_ContextCreating(object sender,

System.Web.UI.WebControls.EntityDataSourceContextCreatingEventArgs e)

{ e.Context=myContext;

}

Why use a single context for your EntityDataSource controls? Creating your own con-

text has many benefits. When you have multiple EntityDataSource controls with objects

that are related to one another, those objects are never connected, so you can’t build a

graph or update a graph. By creating a single context to manage multiple EntityData

Understanding How the EntityDataSource Retrieves and Updates Your Data | 305

Download from Library of Wow! eBook <www.wowebook.com>

Source controls, you would be able to work with graphs comprising the entities in the various EntityDataSource controls.

Relationships among entities will not be recognized unless the same ObjectContext is

managing the entities. Otherwise, even if you have customers and reservations that do

belong to one another, if separate contexts are managing them you will not be able to

traverse from customers to reservations or from reservations to customers. In other

words, Customer.Reservations would result in zero reservations and Reservation.Cus

tomer would return null or nothing.

Although you gain a resource usage advantage by sharing a context, the gain won’t

necessarily be large. The ability to control which ObjectContext is managing your en-

tities, however, is very powerful.

EntityDataSource Context Events

A number of events are related to the context for the EntityDataSource. Each event

offers an opportunity to have more control over the default context the data source

uses. Here are some of the more interesting details exposed during these events:

ContextCreating

e.Context provides a hook to the context before it even exists. As you saw earlier,

this is where you can tell the data source to use another context instead of creating

its own.

There is no Cancel argument in this event. There would be no point to canceling

the creation of a context for the data source as it would not function at all.

ContextCreated

The EventArgs of this event also returns the EntityDataSource’s context, whether

this is the default context or one that you substituted in the ContextCreating event.

You have an opportunity to work directly with this context in the page’s code-

behind.

ContextDisposing

e.Cancel allows you to stop the context from being disposed. You may need to use

this if you are managing the context and know it will need to do more work before

page creation is complete.

e.Context returns the context.

EntityDataSource and ViewState

Although there is an ObjectContext for creating and executing queries and for saving

changes to the database, an instantiated ObjectContext does not live across the many

postbacks your page will perform. Therefore, the context itself is not able to track the

changes to the objects. So, how does the ObjectDataSource control manage to send your

changes to the database?

306 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 27 will provide an in-depth look at how the life cycle of an

ASP.NET page impacts ObjectContext as you prepare to build a layered

web application with entities. EntityDataSource hides all of those con-

cerns from you.

The EntityDataSource control not only maintains the current values of its data, but also

(by default) keeps track of the original values as they were retrieved from the data store.

This is necessary for performing the updates to any modified data so that the DataSource knows exactly which fields were modified, as well as whether any of the

properties in the model have been flagged for concurrency checks. The original values

are critical.

The EntityDataSource maintains the state information by keeping the original and cur-

rent values, as well as any other critical values such as those that are being used for

concurrency checking, in the ControlState of the ASP.NET page. ControlState is a

special subset of ViewState that you cannot disable. The values are retained across

postbacks and are then available when it is time to perform an update.

You can modify this behavior with two properties of the EntityDataSource: EnableView

State and StoreOriginalValuesinViewState. Both properties are True by default. If you

are new to ASP.NET, you can learn more about ViewState in the MSDN documentation

as well as a variety of other resources.

As you will see shortly, even if you choose not to retain the original values in ViewState, you have opportunities to define original values prior to data updates in the

EntityDataSource.Updating event.

Taking Stock of the EntityDataSource’s Database Hits

EntityDataSource is a very convenient control. Because it is completely declarative, you,

the programmer, need to make only a small investment in providing data to your web-

site. But you should be aware of what it’s doing in the background.

The EntityDataSource makes a lot of hits to the database. If you have one EntityData

Source that retrieves contacts and you edit the contacts in a GridView, here is a rundown

of the events that will occur when you use the default settings:

 Page load

A single query is run to retrieve the set of entities required for the control. If it is a GridView that uses paging, the query will retrieve the number of records defined

by the page count. If it is a DetailsView or FormView, it will retrieve a single entity.

If the binding control does any type of paging at all, including DetailsView and

FormView, a query is run in advance that gets a count of how many records satisfy

the query before the paging records are selected.

This means that for most controls, two queries are run every time the page loads.

Understanding How the EntityDataSource Retrieves and Updates Your Data | 307

Download from Library of Wow! eBook <www.wowebook.com>

 User clicks Edit

This causes a page refresh. The initial query (or queries) is run again. If you are

binding to another DataSource—for example, the Activity EntityDataSource to

populate the drop-down list—its query is run as well. The queries are run sepa-

rately so that there will be a number of hits to the database.

A query is run against the database to retrieve a fresh copy of the entity to be edited.

 User clicks Cancel

This causes the page to refresh again so that the initial query (or queries) is run

again.

 User clicks Update

The page is refreshed. An Update command is sent to the database, and then the

initial query (or queries) is run again.

This does not represent every action on the page, but it should give you an idea of what’s happening on the server side.

Accessing Foreign Keys When There Is No Foreign Key Property

When foreign keys are used in the model, those scalar properties will be included in the EntityDataSource, but the navigation property is not. In other words, when you

build a data source from Customer, the PrimaryActivityID and other foreign key scalar

properties will be part of the data source, but the actual navigation entity,

PrimaryActivity, will not be there.

Most of this book focuses on using a model that includes foreign keys and foreign key

associations. The first edition of this book was focused on models without foreign keys

in the entities. In that version there was no foreign key support, and the associations

were defined in the mappings section of the metadata. These are called independent

 associations and were the only option.

Because you can continue to use independent associations with Entity Framework, it

will be useful to point out a new property in the EntityDatasource control: EnableFlat

tening, which is True by default.

When you create an EntityDataSource for an entity that has entity references—for ex-

ample, Reservation has Customer and Trip—the EntityDataSource is not able to repre-

sent those entities. Therefore, its default behavior is to “flatten” the relationship by

drilling into the navigation’s entity key.

Figure 12-7 shows flattened navigations for a Reservation that depends on independent associations. If EnableFlattening were set to false, the two navigation fields would not

be surfaced by the EntityDataSource. You would have only the ReservationID and

ReservationDate fields.

308 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 12-7. Flattened navigation properties where foreign keys are unavailable

There is one exception to the rule that the EntityDataSource uses for

flattening relationships. If the reference key is also a property of the

entity and a member of the entity’s EntityKey (when an EntityKey is a

composite key), it won’t be flattened.

You can see an example of this scenario if you create a model from

the AdventureWorksLT database. The SalesOrderID foreign key of the

SalesOrderDetail table is part of the table’s primary key, and in the

model, the SalesOrderID is a scalar property of SalesOrderDetail and

part of its composite EntityKey.

Working with Related EntityReference Data

The Hello Entities sample uses a single entity: Contact. What if you want to work with

Customers instead? As you have seen in some of the book’s earlier examples, most of

the customers’ relevant information lies in related EntityReference data: FirstName and

LastName are in Customer.Contact, and preferences are in Customer.PrimaryActivity and

the other preference properties.

You can access all of this information with a single EntityDataSource control, but you’ll

have to do some additional work to bring back the data related to a customer and to

be able to view and edit that data on the form.

Using EntityDataSource.Include to Get Related Data

The EntityDataSource.Include property, which you learned about earlier in this chap-

ter, works the same way as the ObjectQuery.Include method. Although EntityData

Source works most easily with the individual object you return, you can manually code

some of the markup and work directly in the code-behind to exert more control over

how the EntityDataSource functions, including how it handles the related data returned

by the Include property. There are some limitations to how this related data is realized

and what you can do with it, however.

Working with Related EntityReference Data | 309

Download from Library of Wow! eBook <www.wowebook.com>

You can eager-load related data using the Include property of the EntityDataSource.

This will add an Include method to the query that results, along with whatever navi-

gation path you define in the property.

If you set Include to PrimaryActivity, the related entity for each contact will be included in the returned data. But it will not automatically be bound to the data grid.

Once you have loaded related data, much of the work you will do in markup is similar

to that which is necessary for any type of related objects and is not specific to Entity

Framework.

Include is very handy for displaying read-only data with the EntityDa

taSource control. As you move through this chapter, you’ll find that

editing related data will most often require the use of additional Entity

DataSource controls.

Displaying Data That Comes from EntityReference Navigation Properties

By default, the individual columns in a GridView contain <asp:BoundField> controls.

However, you cannot access properties from the related entity with these BoundFields,

even if the related entity has been loaded. Instead, you need to use <asp:Template Field> controls, which provide you with more flexibility. You can easily convert Bound

Field controls to TemplateField controls in the UI if you don’t want to build the markup

by hand:

1. Set the Include property of the EntityDataSource control to PrimaryActivity. You

can do this by simply typing PrimaryActivity into the property value; no quotes

are necessary.

2. Change the EntityDataSource EntitySet Name property to Customers.

3. Refresh the EntityDataSource to reflect the Customers EntitySet by clicking the

Refresh Schema item in the EntityDataSource Tasks window.

4. Click Yes to answer the question about refreshing the grid layout.

5. Open the GridView Tasks window and select Edit Columns.

6. In the Available Fields listbox, expand the Bound Field node and double-click PrimaryActivity so that it moves to the Selected Fields list.

7. Move the field up so that it is positioned just after the PrimaryActivity.Activi

tyID field.

8. Edit the new field’s DataField property to read PrimaryActivity.Name.

If you attempted to run the form now, you would get an error because

the BoundData control is unable to resolve the PrimaryActivity.Name

property.

310 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

9. Change the PrimaryActivity’s ReadOnly property to True.

This is an important step. Otherwise, the EntityDataSource will not be able to

update the related entity properties and will throw an error.

10. Click the “Convert this field into a TemplateField” hyperlink.

11. Click OK.

You can see the TemplateField in the markup that’s generated, as shown in Exam-

ple 12-1.

 Example 12-1. The new TemplateField as seen in the page’s markup

<asp:TemplateField HeaderText="PrimaryActivity"

SortExpression="PrimaryActivity">

<EditItemTemplate>

<asp:Label ID="Label1" runat="server"

Text='<%# Eval("PrimaryActivity.Name") %>'>

</asp:Label>

</EditItemTemplate>

<ItemTemplate>

<asp:Label ID="Label2" runat="server"

Text='<%# Bind("PrimaryActivity.Name") %>'>

</asp:Label>

</ItemTemplate>

</asp:TemplateField>

Notice that because you changed the ReadOnly property to True before converting, the

EditItemTemplate is a Label, not a TextBox, and it won’t be editable.

When the wizard converted the bound field to a template, it may have

named both of the new labels “Label1”, which will cause a compile-time

error because they are not unique. You can edit the markup directly to

give those labels appropriate names.

When you run the application, you’ll see that the Activity.Name is displayed but is not

editable when you edit a row, and therefore will be blank. You’ll need to provide a

drop-down list containing all of the possible activities in order to edit the PrimaryAc

tivity property.

You may have noticed the TemplateField’s automatically generated

SortExpression property in Example 12-1. When binding to an Entity

DataSource, you can override this by specifying an Entity SQL expression

such as it.PrimaryActivity.Name to control how the data is sorted. This

will also impact the Eval expressions in the individual templates.

Working with Related EntityReference Data | 311

Download from Library of Wow! eBook <www.wowebook.com>

Why Do You Need to Use Include When LazyLoadingEnabled Is True?

The EntityDataSource control automatically disables lazy loading on the ObjectCon text, forcing you to use the Include property. Although this happens quietly in the

background and you may be surprised by the behavior, it is to your benefit. If you didn’t

use Include, simply populating the grid would cause numerous hits to the database in

order to display the related data. That is in the case of accessing the related data during page rendering. After the page has rendered, there’s no way to lazy load data from the

browser anyway so it’s best to just have it disabled and not be lulled into mistakenly

expecting it to work from the client side.

Using a New EntityDataSource Control to Enable Editing

of EntityReference Navigation Properties

To edit the PrimaryActivity fields you will need two elements. The first is a new Enti

tyDataSource control to provide a list of activities. The second is an <asp:DropDown List> control in the grid.

1. Add a new EntityDataSource control named ActivityDataSource to the form.

2. Rebuild this project so that the new data source will recognize the model.

3. Configure it to use BAEntities as its ConnectionString and EntityContainer.

4. Choose Activities for the EntitySetName. Leave Select All checked in the properties

box. Do not check the checkboxes for enabling inserts, updates, or deletes because

this will be used only for selection.

5. Complete the Data Source Wizard.

The Activity pick list will be more useful if it’s sorted. You can use the OrderBy property of the EntityDataSource control to sort the data. Remember that you will need to use

the same Entity SQL syntax you used with the query builder methods:

6. Change the OrderBy property to it.Name.

The property uses the same Entity SQL syntax that you use with query builder

methods, which is why you use the it reference variable. This task is not specific

to the EntityDataSource control, but rather is one that you would have to perform

regardless of the data source.

You can define the DropDownList in the Design view, but you need to handle some of

the binding in the Source view. You’ll begin by replacing the asp:Label inside the EditItemTemplate tags with an asp:DropDownList. You’ll see the effect of this in Exam-

ple 12-2.

The DataSourceID binds the DropDownList to the new ActivityDataSource, and the Data

TextField and DataValueField define which Activity fields to use for the display and

312 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

value. The SelectedValue property gives you two-way data binding back to the Pri

maryActivityID property of Customer, as shown in Example 12-2.

 Example 12-2. The modified EditItemTemplate now with a DropDownList

<EditItemTemplate>

<asp:DropDownList runat="server" ID="act1DDL"

DataSourceID="ActivityDataSource"

DataTextField="Name"

DataValueField="ActivityID"

SelectedValue=

'<%# Bind("PrimaryActivityID") %>'>

</asp:DropDownList>

</EditItemTemplate>

The Web Designer in Visual Studio makes navigating to markup easy.

In Design view, select the control whose markup you want to see. Then

click Source at the bottom of the Designer window. The Source view

will open and the markup for the control you selected in the Designer

will be automatically selected in the source.

Now you can edit a customer, select a new PrimaryActivity, and then update with ease.

You will find that some of the PrimaryActivity selections for customers

are null. This will cause a page error to be thrown when you attempt to

edit those customers. There’s a simple way to avoid the problem. Add

the AppendDataBoundItems=True parameter to the drop-down list and an

asp:ListItem as a child, as shown here:

<asp:DropDownList runat="server" id="act1DDL"

DataSourceID="ActivityDataSource"

DataTextField="Name"

DataValueField="ActivityID"

AppendDataBoundItems="True"

SelectedValue=

'<%# Bind("PrimaryActivity.ActivityID") %>'>

<asp:ListItem Value="">Select...</asp:ListItem>

</asp:DropDownList>

Editing EntityReferences That Cannot Be Satisfied with a Drop-Down List

The preference properties that you can now edit directly in the grid are not the only

flavor of EntityReference that a Customer entity points to. Customer has a relationship

to Contact, which supplies properties such as FirstName and LastName, as well as ac-

cesses other data that is related to Contact.

The BoundField control binding does not support navigating to or editing the Contact

properties either. But neither does the solution you used for the preference properties,

which was to embed a DropDownList into the grid.

Working with Related EntityReference Data | 313

Download from Library of Wow! eBook <www.wowebook.com>

You can view the related Contact data in the same way you were able to view the Name—

by adding Contact to the Include property so that the property now reads as

PrimaryActivity,Contact. Then you can create TemplateFields bound to Contact.Last

Name and Contact.FirstName. You can also make this column read-only by using a label

in the EditTemplate as you saw with the initial rendering of the Activity’s Name column.

But what about editing?

An EntityDataSource will update only the specific entity to which it is bound. If you

use Include to bring the additional Contact entity back from the database, it will be

ignored during updates. Instead, you’ll have to edit the Contact by creating an Entity

DataSource specifically for contacts and binding that EntityDataSource to the selected

item of the grid that displays the customers.

If you are following along in Visual Studio and have added Contact to

the Include property of the CustomerDataSource, remove Contact from

the Include property before performing the following walkthrough.

Binding an EntityDataSource to Another Control with WhereParameters

The WhereParameters element is not the same as the Where clause in a query. It’s a feature common to ASP.NET DataSource controls that enables filtering based on the values of

other controls. This will help solve the problem of editing Customer.Contact entities.

You’ll create an EntityDataSource for Contacts and filter it based on the ContactID of

the currently selected Customer in Customers.

You enter WhereParameters directly in the markup and it requires that the EntityData

Source.AutoGenerateWhereClause property be True. This will tell the EntityDataSource

to generate the query’s Where clause from WhereParameters. You can change this latter

property in the Properties window or directly in the markup:

1. Create a new EntityDataSource named ContactDataSource.

2. Change the AutoGenerateWhereClause property to True.

3. Modify the source of the control, adding WhereParameters, so that the markup now

looks like Example 12-3.

 Example 12-3. The WhereParameters element used to bind the EntityDataSource to a GridView’s SelectedValue

<asp:EntityDataSource ID="ContactDataSource" runat="server"

ConnectionString="name=BAEntities"

DefaultContainerName="BAEntities" EnableUpdate="True"

EntitySetName="Contacts"

AutoGenerateWhereClause="True">

<WhereParameters>

<asp:ControlParameter

ControlID="GridView1"

314 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

Name="ContactID"

PropertyName="SelectedValue"

DbType="Int32" />

</WhereParameters>

</asp:EntityDataSource>

WhereParameters is instructing the control to modify the query to look for

Contacts with a ContactID equal to GridView1.SelectedValue. However, the grid is

not able to provide a SelectedValue until you have specified which column should

be used. Additionally, you need to enable selection on the grid.

4. In the Properties window for GridView1, change the DataKeyNames property to

ContactID.

5. Using the GridView Tasks window, check Enable Selection.

Because most of the data-binding controls return their SelectedValue as a string, the

additional DbType attribute in WhereParameters ensures that this is passed in as an inte-

ger. This filter becomes part of the Entity SQL query that is translated and sent to the

database each time a new selection is made in the GridView.

So far, you have performed setup tasks. We still haven’t created a way to display or edit

the contact names. That comes next.

If you forget to set the AutoGenerateWhereClause to True, you will get an

exception message that says you can’t have WhereParameters when the

AutoGenerateWhereClause=False. Remember that AutoGenerateWhere

Clause=False plus the WhereParameters is an alternative to using the

Where property of the EntityDataSource.

Setting EntityDataSource Properties Programmatically

All of the values you have set through the EntityDataSource’s wizard or the

Properties window are parameters of the control that you can also set directly in markup

or programmatically.

Here is what the control currently looks like in the Source view of the web page:

<asp:EntityDataSource ID="ContactDataSource" runat="server"

ConnectionString="name=BAEntities"

DefaultContainerName="BAEntities"

EnableUpdate="True"

EntitySetName="Contacts"

AutoGenerateWhereClause="True"

>

</asp:EntityDataSource>

You can make changes directly in the markup and even use expressions to populate

the values as you can with any other ASP.NET or HTML control.

If you want the option to set any of the parameters at runtime, you can set them in the

code-behind as well. For example:

Working with Related EntityReference Data | 315

Download from Library of Wow! eBook <www.wowebook.com>

ContactDataSource.EntitySetName="Contacts"

This enables you to change any of the parameters dynamically if you won’t know the

values until runtime.

Editing Related Data Concurrently with Multiple

EntityDataSource Controls

Editing customers in the GridView and editing a customer’s contact information will

occur as separate actions. This is just the nature of the ASP.NET DataSource controls.

In the case of the EntityDataSource, this means it can create insert, update, and delete

commands for only a single entity, not for graphs.

There is just one more step to finish off this part of the example:

1. Drag a DetailsView onto the form and bind it to the ContactDataSource.

Run the form and you will see that as you select different customers, the contact details

change to reflect the contact information of the selected customer. You can edit the

contact information if you like.

This example demonstrated how data binding works between EntityDataSources and

data-binding controls. You can clean up the GridView and DetailsView by formatting

the columns, but more important to keep in mind about this example is that separation

of the customer’s information in the GridView and DetailsView is not a user-friendly

design. As long as Contact and Customer are in two separate entities, you won’t be able

to edit them as a single unit using the EntityDataSource control.

It’s still possible to make a logical UI, however. In the page shown in Figure 12-8, I’ve reversed the EntityDataSources so that the Customer’s WhereParameters defines a dependency on the ContactDataSource. The DetailsView that is bound to the Contacts has

paging and is used for navigation. As the user navigates from one contact to another,

the contact’s customer data, if any, is displayed in the second DetailsView. Given the

particular scenario, this makes more sense visually than using a GridView.

 Figure 12-8. A data-driven form that is defined declaratively with EntityDataSource and DetailsView controls—not a single line of code

316 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

The screenshot also shows ASP.NET 4’s new QueryExtender control in action. The

filtering on the page is done declaratively along with the rest of the data access; in other words, still there is not one line of code in the example. QueryExtender works with

EntityDataSource and LINQDataSource. The sample used for the screenshot is available

on the book’s download page, and you can read more about QueryExtender in the MSDN documentation at http://msdn.microsoft.com/en-us/library/dd537669(VS.100)

 .aspx.

In the next chapter, you’ll learn how to build inheritance into the model

to make Customer and Contact blend into a single entity. However, mod-

ifying your model is not the solution to making it easier to build your

UI. EntityDataSource is not going to be the solution for every scenario.

If you were using a business layer, as you’ll learn to do in Chapter 27, you won’t be tied down to the rules of the EntityDataSource and you

will have more flexibility in building your UI.

Working with Hierarchical Data in a Master/Detail Form

Many data-focused applications are used to present hierarchical data, so this next ex-

ample will focus on parent/child/grandchild data using EntityDataSource controls. As

the previous example allowed you to work with related EntityReference data, this ex-

ample will give you an opportunity to use EntityDataSource controls to work with related child entities.

In this example, you will use a variety of methods to populate controls on a web form

and take advantage of the EntityDataSource’s editing capabilities. This form, shown in

Figure 12-9, will let BreakAway employees view customers and their reservations as well as add payments. You will get a chance to work with a variety of relationships and

binding scenarios. And in the course of doing this, you will hit a few speed bumps and

learn how to get around them.

The form will use EntityDataSource controls; in addition, you will do some direct data

binding to query results.

Setting Up the Web Application

Now that you have an idea of the tasks that this application will teach you, let’s start

building it:

1. Add a new web form, named HierarchicalEDS, to the current Web Application

project that you are working with.

2. Add a reference to System.Data.Entity.

3. Build the project so that the EntityDataSource controls will be able to find the entity connection string in the web.config file.

Working with Hierarchical Data in a Master/Detail Form | 317

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 12-9. A mock-up of a web form that lets the user interact with hierarchical data 4. Drag a DropDownList onto the web form.

5. In the DropDownList’s TaskList, check the Enable AutoPostBack checkbox. This

will ensure the correct behavior each time the user selects an item from the list.

6. Create a new EntityDataSource named ContactNamesDataSource using BAEntities

and the Contacts EntitySet.

Specifying Your Own Entity SQL Query Expression for an EntityDataSource

The Entity Data Source Wizard only allows you to select entire entities or properties

from those entities. However, for this DropDownList you want to combine the Last Name and FirstName properties.

It’s possible to do this by using your own Entity SQL string, rather than letting the

query builder methods construct the string based on the various properties of the EntityDataSource.

318 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

Keep in mind that the results of these custom queries will be read-only.

The Entity SQL string shown here will return a ContactID field and a Name field that you

can bind to the drop-down list. It also returns only those contacts that have a Cus tomer record; therefore, you can be sure you’ll be working only with customers, as

noncustomer contacts do not have reservations, destination or activity preferences, or

other properties specific to a customer.

SELECT c.contactid, TRIM(c.lastname) + ", " + c.firstname AS Name

FROM BAEntities.Contacts AS c

WHERE c.Customer IS NOT NULL

ORDER BY Name

Using IS NULL or IS NOT NULL is useful for testing for the existence of an

EntityReference. To do this with an EntityCollection, you would use

EXISTS or NOT EXISTS, with a subquery into the collection to see whether

there are any items in the collection.

1. Enter the Entity SQL query into the CommandText property of the EntityDataSource.

EntityDataSource cannot have an EntitySet designated if you want to override the

query using the CommandText property. You selected it in the wizard because the

Finish button is inactive until you select something.

2. Remove Contacts from the EntitySet property.

If you forget to do this, an exception will be thrown that specifically says

you cannot have an EntitySet value if you also have a CommandText value.

Binding a DropDownList to an EntityDataSource Control

The last task for the first pass at this web page is to wire up the new EntityData Source to the DropDownList that you already added to the page, and then to check your

progress by running the application.

You might consider a few options for populating the drop-down list.

What’s useful to realize is that, by default, the DropDownList will use

ViewState to retain the values and display text for the items in the list.

If you use an EntityDataSource to populate this drop-down list, you

won’t have to worry about that query being called every time the page

is refreshed.

Working with Hierarchical Data in a Master/Detail Form | 319

Download from Library of Wow! eBook <www.wowebook.com>

1. In the DropDownList’s Tasks window, select the Choose Data Source option.

2. Be sure its data source is pointing to the new ContactNamesDataSource you created.

3. In the combo box that says “Select a data field to display in the DropDownList,”

enter Name, and in the box that says “Select a data field for the value of the DropDownList,” enter ContactID.

Because the properties are coming from the Entity SQL expression, the wizard will

not be able to detect the property names, and therefore they won’t be available in

the drop downs. Just type them in directly.

4. Run the application to test that the drop-down list works.

Creating a Parent EntityDataSource That Is Controlled

by the DropDownList and Provides Data to a DetailsView

The next step is to create a DetailsView that is dependent on the selection of the DropDownList. A new EntityDataSource will use the WhereParameters to bind to the SelectedValue of the DropDownList.

1. Drag a DetailsView onto the form.

2. Use its Tasks window to create a new EntityDataSource control named ContactDa

taSource.

3. Set the EntityDataSource’s ConnectionString and EntityContainer to BAEntities.

4. Select Contacts as the EntitySet.

When you complete the Entity Data Source Wizard, the DetailsView should au-

tomatically populate with the Contact properties.

5. In the Source view of the page, add the WhereParameters directly into the markup

to bind the new EntityDataSource control to the SelectedValue of the DropDown

List, as shown in Example 12-4.

Don’t forget to set the AutoGenerateWhereClause to True.

 Example 12-4. Defining the WhereParameters for an EntityDataSource

<asp:EntityDataSource ID="ContactDataSource" runat="server"

ConnectionString="name=BAEntities"

DefaultContainerName="BAEntities"

EntitySetName="Contacts"

AutoGenerateWhereClause="True">

<WhereParameters>

<asp:ControlParameter ControlID="DropDownList1" Name="ContactID"

PropertyName="SelectedValue" DbType="Int32" />

320 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

</WhereParameters>

</asp:EntityDataSource>

Now the DetailsView will update every time an item is selected in the DropDownList. In

Figure 12-10 a bit of formatting has been applied. Most notably, the DataFormat String for the two date fields in the DetailsView was changed to {0:d} to affect the

default display of the date values.

 Figure 12-10. The DetailsView displaying the customer selected in the DropDownList

Using the EntityDataSource.Where Property to Filter Query Results

Currently, we’re using the CommandText property of the ContactNamesDataSource to

project and to filter contacts to return only customers. There’s another way to filter

that you should be aware of. Similar to the OrderBy property, which you used in the

Hello Entities demo earlier, the Where parameter allows you to insert query logic that

will become part of the actual query the EntityDataSource builds. The value needs to

be in the Entity SQL format that you would use with query builder method parameters.

For example, if you wanted to start with the query that is called in the form load that

filters only on customers and then enhance it to return only those customers who have

reservations, you would first need to translate the query into a query builder method

using Entity SQL syntax:

BAEntities.Contacts.OfType<Customer>

.Where("it.Customer IS NOT NULL")

The where clause for this query is it.Customer IS NOT NULL. If you were using the Where property to filter, that is the expression you would put into the value of the Where property in the EntityDataSource Properties window.

Displaying Read-Only Child Data Through the Parent EntityDataSource

In this form, the user will be viewing, but not editing, reservations. Therefore, you can

take advantage of the Include property of the Contact DataSource and you won’t need

a separate EntityDataSource for the Reservation entities.

Working with Hierarchical Data in a Master/Detail Form | 321

Download from Library of Wow! eBook <www.wowebook.com>

We’ll use a ListBox to display the reservations:

1. Drag a ListBox control onto the form.

2. In the ListBox’s properties window, set the DataTextField property to TripDe

tails and the DataValueField property to ReservationID.

The model allows for navigation from Contact to Customer to Reservations to

Trip, and then to Destination. All of these relationships will make it possible to

display the detailed reservation information for each contact who is a customer.

Recall that we added the TripDetails custom property to Reservation in the pre-

vious chapter.

3. Add the following to the Include property of the ContactDataSource control:

Customer.Reservations.Trip.Destination

Because the ContactDataSource uses Include, all of the entities listed in the Include

path—the reservations, the trip, and the destination associated with the selected cus-

tomer—will be retrieved from the database when the contact query is executed. But

you still need to push the details into the ListBox, which you’ll need to do in code.

The EntityDataSource control’s Selected event is just the place to do this. The Selec

ted event provides an EntityDataSourceEventArgs object as the parameter, e. This, in

turn, provides you with a Results property that returns an object—in this case, a Contact entity. By casting that result to a Contact type, you can navigate to the customer’s reservations, trip, and destination details.

From the Events list in the ContactDataSource Properties window, double-click the Selected event. Because it is possible to select multiple items, the e.Results from the

EntityDataSourceSelectedEventArgs contains an IEnumerable of objects. To get the se-

lected contact, you’ll need to cast that collection to the correct entity type using the

LINQ Cast method and then extract the first item in the collection.

Once you’ve done that, you can use the TripDetails property you created in the pre-

ceding chapter to display useful information about the reservations. If you didn’t have

that already, you would be able to write a LINQ to Objects query against the reserva-

tions and shape the data as you want to display it in the ListBox.

Add the code shown in Example 12-5 to the Selected event method.

 Example 12-5. Using the EntityDataSource.Selected event to populate a listbox control

protected void ContactDataSource_Selected

(object sender, EntityDataSourceSelectedEventArgs e)

{ var contact = e.Results.Cast<BAGA.Contact>();

var res=contact.First().Customer.Reservations;

if (res.Count > 0)

{

ListBox1.DataSource = res.ToList();

ListBox1.DataBind();

ListBox1.SelectedIndex=0;

322 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

 }

else

{

ListBox1.DataSource = res.ToList();

ListBox1.DataBind();

}

}

Now, each time a customer is selected, the ListBox will update with a list of that cus-

tomer’s reservations. If the customer has no reservations, the list will be empty thanks

to the code in the else clause.

Using a New EntityDataSource to Add a Third Level of Hierarchical Data to

the Master/Detail Form

When a customer is selected and her reservations are displayed, the user’s next step is

to select a reservation and view its payments. You can enable this by combining a new

ListView with yet another EntityDataSource. The user will also be allowed to enter new

payments; that’s why the new EntityDataSource is necessary. We’re using the List

View in this example because unlike the GridView, the ListView control allows easy insertion. The new EntityDataSource will use WhereParameters to create a dependency

on the selected reservation from the ListBox.

1. Set Enable AutoPostBack on the ListBox that displays reservations.

This will force the page to respond to a user selecting an item in the ListBox.

2. Add a ListView to the form.

3. From the ListView Tasks window, create a new EntityDataSource control and name

it PaymentDataSource.

4. Set the EntityDataSource’s Connection and EntityContainer to BAEntities.

5. Set the EntityDataSource’s EntitySetName to Payments.

6. Check Enable Automatic Inserts.

The ListView will look much better if you do some formatting. If you haven’t used

a ListView before, you might be surprised that most of its formatting is performed

in the markup.

The ListView creates templates for Select, Insert, Edit, Alternate, and Empty views.

As you will need only Select and Insert views, you can delete the other sections.

Example 12-6 shows the markup for the ListView after it has been trimmed down.

 Example 12-6. Formatted ListView after deleting much of the default markup

<asp:ListView ID="ListView1" runat="server" DataKeyNames="PaymentID"

DataSourceID="PaymentDataSource"

InsertItemPosition="LastItem" Style="font-size: small">

<ItemTemplate>

<tr style="">

Working with Hierarchical Data in a Master/Detail Form | 323

Download from Library of Wow! eBook <www.wowebook.com>

 <td></td>

<td>

<asp:Label ID="PaymentDateLabel" runat="server"

Text='<%# Eval("PaymentDate","{0:d}") %>' />

</td>

<td>

<asp:Label ID="AmountLabel" runat="server"

Text='<%# Eval("Amount","{0:c}") %>' />

</td>

</tr>

</ItemTemplate>

<InsertItemTemplate>

<tr style="">

<td>

<asp:TextBox ID="PaymentDateTextBox" runat="server"

Text='<%# Bind("PaymentDate") %>' />

</td>

<td>

<asp:TextBox ID="AmountTextBox" runat="server"

Text='<%# Bind("Amount") %>' />

</td>

<td>

<asp:Button ID="InsertButton" runat="server"

CommandName="Insert" Text="Insert" />

<asp:Button ID="CancelButton" runat="server"

</td>

</tr>

</InsertItemTemplate>

<LayoutTemplate>

<table runat="server">

<tr runat="server">

<td runat="server">

<table id="itemPlaceholderContainer" runat="server"

border="0" style="">

<tr runat="server" style="">

<th runat="server">PaymentDate</th>

<th runat="server">Amount</th>

<th runat="server"></th>

</tr>

<tr id="itemPlaceholder" runat="server"></tr>

</table>

</td>

</tr>

<tr runat="server">

<td runat="server" style=""></td>

</tr>

</table>

</LayoutTemplate>

</asp:ListView>

324 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

Notice the formatting that’s been added to the ReservationDate prop-

erty. Date and currency formatting is controlled by culture info settings,

which you can control programmatically or in your application’s

 web.config file. Look for globalization topics in the MSDN documenta-

tion for more information on this.

7. Click the Payments EntityDataSource the wizard created.

8. Set the AutoGenerateWhereClause property to True.

9. Add the following WhereParameters to the Payments EntityDataSource markup in

the source of the page. This wires the data source up to the reservations listbox.

<WhereParameters>

<asp:ControlParameter Name="ReservationID"

ControlID="ListBox1" PropertyName="SelectedValue"

DbType="Int32"

DefaultValue="0" />

</WhereParameters>

The DefaultValue is set to 0 because even if there are no reserva-

tions, the Payments query will run. Without the default, all of the

payments in the database will be returned. The default forces the

query to search for payments whose ReservationID=0, which will

return no data.

Check the previous section on WhereParameters if you need a reminder of exactly

where this needs to be placed in the markup of the data source.

Using the EntityDataSource.Inserting Event to Help with Newly

Added Entities

The ListView has built-in functionality for inserting items, but one thing is missing.

You will need to manually add the ReservationID because the PaymentDataSource

doesn’t automatically know which Reservation is selected.

EntityDataSource has a number of events that you can take advantage of. The Insert

ing event gives you an opportunity to impact the entity that is about to be inserted into

the database. Here is where you can add the ReservationID to the new payment before

it goes to the database.

The EntityDataSourceChangingEventArgs exposed by the Inserting event (as well as

many of the control’s events) has an Entity property. In the Inserting event, the Entity property refers to the entity that is about to be sent to the database.

Example 12-7 shows the Payment.ReservationID being set. The value comes from the selected item in the ListBox.

Working with Hierarchical Data in a Master/Detail Form | 325

Download from Library of Wow! eBook <www.wowebook.com>

 Example 12-7. Defining the payment’s ReservationReference in the Inserting event

C#

protected void PaymentsDataSource_Inserting

(object sender, EntityDataSourceChangingEventArgs e)

{ var newPmnt = (BAGA.Payment)e.Entity;

newPmnt.ReservationID= Convert.ToInt32(ListBox1.SelectedValue);

}

Look how easy it is to assign the payment’s ReservationID now that

foreign keys are available in the model. In the first edition of this book,

I had to do a lot of work to perform this same task!

Testing the Application

Finally, it is time to test your handiwork. Press F5 to run the application, which should

look something like Figure 12-11. Select various customers and reservations. You can see how the hierarchical data is automatically presented as you change selections—and

all with a minimum of code, highlighting the RAD capabilities of the Entity Framework.

 Figure 12-11. Parent, child, and grandchild hierarchical data being served up by EntityDataSource controls

In Chapter 8, you mapped Insert, Update, and Delete functions to the

Payment entity.

Now, every time you create a new payment, the InsertPayment stored

procedure is executed in the database. If you were to look in SQL Server

Profiler, you would see the following command:

exec [dbo].[InsertPayment]

@date='2006-02-01 00:00:00:000',

@reservationID=90,@amount=250.0000

326 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

There is some fine-tuning to be done with respect to the data-binding actions that is not specific to Entity Framework. A more complete sample is available for download

on the book’s website.

Exploring EntityDataSource Events

EntityDataSource is a control that is packed with events you can use to exert granular

control over its behavior as well as its interactions with other entities in the application.

You have used only a few in this chapter, but here is an overview of the events that you

can take advantage of as you build your own applications with the EntityDataSource

control.

When a page with an EntityDataSource starts up, here is the order in which the Enti

tyDataSource and Page events fire:

1. Page BeginLoad

2. EntityDataSource Load

3. Page BeginPreRender

4. EntityDataSource.ContextCreating

5. EntityDataSource.ContextCreated

6. Page EndPreRender

7. EntityDataSource ContextDisposing

8. Page Unload

A number of additional events are related to data modification:

• Deleting and Deleted

• Inserting and Inserted

• Updating and Updated

• Selecting and Selected

All of these events represent opportunities to customize your control’s behavior. For

instance, in the preceding example you trapped the Inserting event to add an additional

value to an entity that was about to be inserted. Additionally, you used the Selected

event to determine which entity had been selected and then populated a ListBox with

its related data.

Each of these events provides relevant information through its EventArgs variable, e.

Here are the ones that are of the greatest interest:

Inserting

e.Entity returns the entity that is being inserted. If you want to work with this

entity, you will need to cast it to its proper type as you did in the sample you just

built.

Exploring EntityDataSource Events | 327

Download from Library of Wow! eBook <www.wowebook.com>

e.Cancel gives you an opportunity to cancel the insert. You would do this by setting the value of e.Cancel to True.

Inserted

This event fires after the item was inserted into the data store.

e.Entity returns the entity that was just inserted. This includes the new Entity

Key because the data store returned the necessary value.

Remember that if you are letting the Entity Framework generate the commands, it

will get the new key by default. If you are using your own stored procedure, as we

did for the payments, this value will be returned only if the procedure sends it back

and if you have wired it up in the mappings, which you did at the beginning of the

chapter.

e.Context gives you access to the context.

e.Exception and e.ExceptionHandled give you an opportunity to trap any problems

that may have occurred either by constraints in the model or by constraints in the

database.

Updating

e.Entity returns the entity in its current state. You will need to cast the NewEn tity to the correct entity type to interact with it in detail.

e.Cancel, e.Exception, and e.ExceptionHandled are available in this event.

Updated

The EventArgs provides the same properties as with Updating.

Selecting

e.DataSource provides a reference to the EntityDataSource and its properties so

that you can affect them at runtime if necessary. By changing the properties in the

Selecting event, you can redefine the DataSource prior to the retrieval of data from

the store. The properties you can access or change during this event are Command

Parameters, CommandText, OrderBy, OrderByParameters, Where, and WhereParameters.

e.SelectArguments provides you with an opportunity to tweak the properties of the

EntityDataSource control, including properties that define its query. It also exposes

some of the properties from the data-bound control (e.g., GridView) that the Enti

tyDataSource is bound to, such as MaximumRows, RetrieveTotalRowCount, SortEx

pression, StartRowIndex, and TotalRowCount.

You can cancel this event with e.Cancel if you need to.

Selected

e.Results provides an array of entities. You worked with this property in the second

example.

This event also provides access to the context, any exceptions that were thrown,

and SelectArguments.

328 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

Deleting

e.Cancel gives you an opportunity to cancel the delete. You would do this by setting

the value of e.Cancel to True.

Context.Entity and Exceptions are available in this event.

Deleted

This provides access to the context, the entity, and any exceptions.

Building Dynamic Data Websites

ASP.NET Dynamic Data is ASP.NET’s highly effective RAD offering for data-driven

websites. At a high level, you can just point this framework to a data model and it will

automatically create a website. The premise, made famous with Ruby on Rails, is that

there are a lot of assumptions that can be made about what a website should contain

based on its data. This is referred to as convention. If you start with these assumptions and then tweak the results to better meet your needs, this follows a design pattern called convention over configuration. That’s what Dynamic Data relies on.

By convention, you an create a new website with a Dynamic Data project template by

pointing it to an existing Entity Data Model or LINQ to SQL model. The project tem-

plate leverages lots of page and control templates. When you go the path of Entity

Framework, one of the critical pieces of the template is that it uses EntityDataSource

controls for all of the data binding.

To you, this means all of that extra configuration you had to do when building pages

with EntityDataSource is taken care of for you.

Given a Customer, for example, a dynamic website will display an editable list of cus-

tomers with links to drill into the customer’s related data. The default site will have

one page per entity type. So, if you begin with a customer, you could then click a link

and navigate to a page that lists that customer’s Reservations. You could navigate back

to the customer or farther in to another page with the customer’s payments. The site

emulates the navigation between entities in your Entity Data Model. You do not need

to expose the entire model, either. Through configuration, you can specify which en-

tities in the model should be exposed through the website.

There are so many introductory demos on using Dynamic Data that it may not make

sense to add yet another one to this book which is not about ASP.NET. However, one

of the new ASP.NET 4 Dynamic Data features works so beautifully with the Entity Data

Model’s many-to-many relationships that it’s worth spending a few minutes walking

through the following scenario.

Building Dynamic Data Websites | 329

Download from Library of Wow! eBook <www.wowebook.com>

Dynamic Data Videos and Demos Galore

Check out the official ASP.NET Dynamic Data website at http://www.asp.net/dynami

 cdata/, where you’ll find tons of information not only on getting started with Dynamic Data, but also on configuring your way to very customized sites with all of the data

pain taken away.

1. Start by creating a new Dynamic Data Entities Web Application project in your

existing solution.

2. Add a reference to the BreakAwayModel project and add the connection string

from that project into the new project’s web.config file.

3. After adding the reference, build the new project.

A critical step in creating a Dynamic Data application is to point to the data source,

which will be the Entity Data Model and classes provided in the BreakAway model.

This is done in the Global.asax file, which is opened by default after you create the new project. Global.asax contains a lot of notes and instructions because much of the site configuration happens in this file.

4. In the middle of the first section of comments, find the commented line that begins

with “DefaultModel.RegisterContext” and uncomment it.

5. Modify the code line to point to the BAEntities class in the BreakAway model

assembly, replacing “YourDataContextType”.

6. Change the value of ScaffoldAllTables to true:

DefaultModel.RegisterContext(typeof(BAGA.BAEntities),

new ContextConfiguration() { ScaffoldAllTables = true });

This last change will cause the website to expose every entity in the model. This is

not what you would do in production code. You can leave the value as false and

set an attribute on only those classes which you want to be used in the site. For

this quick walkthrough, we’re taking a few shortcuts and will make no more

changes to the site. We have enough in order to see how the site treats many-to-

many relationships.

7. Run the new web application.

You’ll see a list of all of the possible classes to view similar to Figure 12-12.

8. Select Trips.

Each page is built on the fly, dynamically, at runtime based on the site

configuration. There is no Trips page defined in the website solution.

There is a many-to-many relationship between Trip and Activity in the model.

330 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 12-12. Default page of Dynamic Data site displaying all BreakAway classes

Check out the last column, Activities, in the grid that lists the trips. Rather than use a separate list to display the activities for each trip, as we did for customers and reservations in the previous sample, the framework has worked out a list of linked activities

within the column! For example, in Figure 12-13, you can see that the first trip in the grid has three different activities listed.

And to make this even sweeter, each related activity is a hyperlink that allows you to

drill into its own edit page. That is not something I would have wanted to take the time

to code!

9. Now pick one of the trips and click its Edit link.

Figure 12-14 shows the default page for editing a Trip with the multiple option selection list generated by the Dynamic Data templates. And with no code at all, the framework

took care of the many-to-many relationship between trips and activities. Seeing this

definitely improved my perception of Rapid Application Development.

Because of the work that you did to create the drop-down lists earlier in this chapter,

there is one more thing to point out in this website before wrapping up this chapter.

Notice the Destination and Lodging drop-down controls on the page, again dynami-

cally created.

Building Dynamic Data Websites | 331

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 12-13. Multiple, linked activities displayed for each Trip in the Trips detail page This is not to say that you should forget working with the EntityDataSource manually.

There are different levels of RAD design, and in some cases Dynamic Data will suit your

needs, whereas in others the more granular control of working with the EntityData

Source directly will be appropriate.

Summary

In this chapter, you built three small applications using the EntityDataSource control,

which gave you a hands-on opportunity to see how you can use entities and query

results in some simple web application scenarios. Then you let the Dynamic Data tem-

plates create another application for you that relies on EntityDataSource controls.

The EntityDataSource control, used alone or within a Dynamic Data application, is

perfect for Rapid Application Development, and if you take advantage of its properties

and events, it provides you with a lot of control over its functionality.

EntityDataSource offers a convenient way to build quick web applications against an

Entity Data Model. Although it’s convenient, its use incurs some resource overhead

that you may not want. For more complex applications, which typically require

332 | Chapter 12: Data Binding with RAD ASP.NET Applications

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 12-14. Editing a many-to-many relationship with Dynamic Data templates

business layers, defining their data in the UI might not even be an option. In the second

half of this book, you’ll learn how to build ASP.NET sites that use business layers.

Before we embark on building any more applications, it’s time to learn about the Plain

Old CLR Objects (POCO) support in Entity Framework that I’ve been tempting you

with in many of the previous chapters. The next chapter will focus on POCOs, which

will allow you to use POCO entities in the upcoming sample applications as well as

EntityObjects.

Summary | 333

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 13

Creating and Using POCO Entities

When it was first released, Entity Framework was roundly criticized by agile developers.

These developers hold the tenets of domain-driven development and testability very

high. The classes generated from the Entity Data Model (EDM) are very tightly bound

to the Entity Framework APIs by either inheriting from the EntityObject or implement

interfaces that allow the classes to participate in change tracking and relationship management.

The problem with this is that it is extremely difficult to separate the concerns of your

application into smaller pieces of logic to make it more maintainable. Additionally, it

is difficult to write unit tests with EntityObjects. Many of the methods that need to be

tested perform some type of interaction with the database. In unit testing, you need to

emulate this persistence. In other words, instead of literally querying the database, a

test might supply some fake data to a class, or instead of sending data to the data store, a test might say “OK, let’s pretend that part just happened and we’ll move on now.”

In addition to the problems the dependent classes create for separation of concerns and

for testing, it also makes it difficult for developers to change their backend infrastructure if needed. For example, an application might be written using another object relational

mapping tool, such as NHibernate. If a developer wanted to switch to the Entity Framework, version 1 made it very difficult to just take the existing classes and put

Entity Framework behind. The developer would be required to make some major

changes to the classes, binding them tightly to Entity Framework.

The Entity Framework team listened to and learned from the agile community and

added a number of new mechanisms for supporting agile development.

One of these is support for Plain Old CLR Objects (POCO). POCOs are classes that

remain free from a backing infrastructure, such as Entity Framework. A POCO class

would not inherit from Entity Framework’s EntityObject. But as you’ve seen, the EntityObject performs all of the important work for providing relationship and change

tracking information to the context. In order to remove the dependency on

EntityObject, the Entity Framework gained some new functionality that allows the

ObjectContext to acquire relationship and change tracking information from classes

335

Download from Library of Wow! eBook <www.wowebook.com>

that do not inherit from EntityObject. In fact, as you’ll see, it can do so with classes that have no knowledge at all about the Entity Framework.

In addition to POCO support, the team added two other important features for devel-

opers who do not want to be tied up with the concerns of the database. One is support

for model-first development, which allows developers to begin a project with a model and use that model to create a database. The other is called code-first development.

You’ll learn more about model first and code first, as they are called, in Chapter 25.

Do be aware that code first is still a work in progress and is available as part of a separate download called the Entity Framework CTP.

In this chapter, you’ll learn the basics of how to create and work with POCOs in Entity

Framework. There are two avenues to the POCO support. You’ll begin with the sim-

plest form, which requires a bit of extra work on the part of the ObjectContext. Then

you’ll learn about another form of POCO support that let’s the POCOs behave similarly

to EntityObjects at runtime. Later chapters in the book will leverage POCOs as well

as classes that inherit directly from EntityObject. Chapter 24 is devoted to using Entity Framework POCO classes in a more flexible architecture using repositories and unit

testing.

Creating POCO Classes

POCO classes work in conjunction with a model in that they must mirror the entities

in the model.

To begin this discussion, we’ll return to SampleModel, the very simple model and data-

base that you used in the first few chapters of the book. Let’s create the model and then

the classes, as it will be helpful to point out how they relate to one another. It is just as likely that you will create the classes first or even that they will pre-exist.

Start by creating a new Console Application project. Then add a new Entity Data Model based on ProgrammingEntityFrameworkDB1. Name the EntityContainer

POCOEntities and select all tables. Now you are back to your simple model.

There are a few rules that you need to follow when creating classes that will interact

with Entity Framework. One is that the class and property names should align with the

model. Another is that every property in the model entity must be represented in the class, this includes scalar properties and navigation properties. For this example, we’ll

just follow the existing model to determine the names and structure of the classes.

Add two new class files to the project, called Contact.cs and Address.cs. Next, add properties to the Contact class for every property in the Contact entity.

Be sure to mimic the names as well as the types, with one caveat. The Addresses navi-

gation property returns an EntityCollection, which is a very constrained type. In your

class, use an ICollection to return the related collection. An ICollection will give you

ultimate flexibility when you consume the class.

336 | Chapter 13: Creating and Using POCO Entities

Download from Library of Wow! eBook <www.wowebook.com>

Figure 13-1 serves as a reminder of what the entities look like in the model.

 Figure 13-1. The simple model that we’ll use in the following examples

Building POCOs by Hand Versus Generating with a T4 Template

The POCO and related classes created in this chapter are built manually. If you are

starting with a model, it makes much more sense to use a T4 template to generate the

POCO classes from the model. You’ll get a chance to generate POCOs from a T4 tem-

plate later in this chapter.

Example 13-1 displays the code listing for the Contact class. Notice that it uses auto-implemented properties, which don’t require a backing variable to retain their values.

 Example 13-1. A simple Contact class

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Chapter13SimplePOCO

{ public class Contact

{

public int ContactID { get; set; }

public string FirstName { get; set; }

public string LastName { get; set; }

public string Title { get; set; }

public System.DateTime AddDate { get; set; }

public System.DateTime ModifiedDate { get; set; }

public ICollection<Address> Addresses { get; set; }

Creating POCO Classes | 337

Download from Library of Wow! eBook <www.wowebook.com>

}

}

Add properties to the Address class for every property in the Address entity. Again, be

sure to mimic the names as well as the types.

Example 13-2 displays the code for the Address class.

 Example 13-2. A simple Address class

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Chapter13SimplePOCO

{ public class Address

{

public int addressID { get; set; }

public string Street1 { get; set; }

public string Street2 { get; set; }

public string City { get; set; }

public string StateProvince { get; set; }

public string CountryRegion { get; set; }

public string PostalCode { get; set; }

public string AddressType { get; set; }

public System.DateTime ModifiedDate { get; set; }

#region FKs and Reference properties/value objects

public int ContactID { get; set; }

public Contact Contact { get; set; }

#endregion

}

}

For the purpose of introducing POCO classes into the Entity Framework, let’s leave

these classes as they are now without adding any additional business logic.

It is perfectly acceptable to have additional properties and methods in

the POCO classes. As long as you minimally include the entity proper-

ties, the classes will work within the Entity Framework.

Now that you have your own classes, there is no need for the model to generate classes.

You can turn off the code generation.

Open the model in the Designer. In the Properties window for the model, change the

Code Generation Strategy property from Default to None. As you learned in the previous

chapter, the class file attached to the model will still exist but will contain only a comment as a reminder that the code generation from the model has been disabled.

338 | Chapter 13: Creating and Using POCO Entities

Download from Library of Wow! eBook <www.wowebook.com>

Because the class and property names align exactly with the entity and property names,

Entity Framework will be able to work out the mapping between the classes and the

entities, but you’re not done yet.

Since these classes will not be able to rely on the EntityObject to communicate back

to an ObjectContext, or even know that there is such a thing as an ObjectContext, the

context will need another way to manage these classes so that it can perform its job of

executing queries, returning objects, persisting changes to the database, and so forth.

Creating an ObjectContext Class to Manage the POCOs

The Contact and Address classes have no knowledge at all about the Entity Framework.

This is a good thing, as it is the desired effect. However, we need to let the Entity

Framework be aware of the classes.

Recall that the default code generator not only created the entity classes, but also cre-

ated a class that inherited from ObjectContext. We don’t have one of those yet. The

next step is to create your own class that inherits from ObjectContext and let it know

about your custom classes. Once you have done this, the ObjectContext will do its job

of querying, materializing, and managing the custom classes.

For the sake of this simple demo, I am having you put everything into

a single project. This is not the proper way to architect this type of

solution, but is a simpler way to be introduced to the basic concepts.

We’ll separate things out properly in the next example.

Create a new class called Entities and add the code in Example 13-3, which emulates what you’ve seen in previous ObjectContext classes.

 Example 13-3. An ObjectContext class that works with the Contact and Address classes

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Data.Objects;

namespace Chapter13SimplePOCO

{ class Entities : ObjectContext

{

private ObjectSet<Contact> _contacts;

private ObjectSet<Address> _addresses;

public Entities()

: base("name=POCOEntities", "POCOEntities")

{

_contacts = CreateObjectSet<Contact>();

_addresses = CreateObjectSet<Address>();

Creating POCO Classes | 339

Download from Library of Wow! eBook <www.wowebook.com>

 }

public ObjectSet<Contact> Contacts

{

get

{

return _contacts;

}

}

public ObjectSet<Address> Addresses

{

get

{

return _addresses;

}

}

}

}

The Entities class inherits from ObjectContext just as the other Entities classes you

have seen thus far. The class constructor uses the signature of ObjectContext, which

takes in the name of the EntityConnection string in the app.config file as well as the name of the EntityContainer in the model. As with the other Entities classes, this class

contains read-only properties that return an ObjectSet of each type that you want to

work with. The fields for these ObjectSet properties are instantiated in the class con-

structor. Remember, this only defines the ObjectSet but does not execute a query.

Verifying the POCOs with a query

Now you can write your first queries to see how this all fits together.

In the application’s main module, add the code in Example 13-4, which will instantiate your new ObjectContext, query for all of the contacts, eager-load their addresses, and

then look at the addresses for a single contact.

 Example 13-4. Verifying that a query returns your POCOs

static void Main(string[] args)

{ using (Entities context = new Entities())

{

var query = from c in context.Contacts.Include("Addresses") select c;

var contactList = query.ToList();

int contactCount = contactList.Count;

Contact firstContact = contactList.Where(c => c.Addresses.Any()).First();

int addressCount = firstContact.Addresses.Count;

}

}

If you debug through this you’ll see that all of the contacts are returned to contactList and that the first contact has one address in its collection.

340 | Chapter 13: Creating and Using POCO Entities

Download from Library of Wow! eBook <www.wowebook.com>

Change Tracking with POCOs

There are a number of things to be aware of when you create your own POCO entities

rather than using EntityObjects.

Keep in mind that there are two ways to use POCOs. You are starting

here with the simplest form. Later in the chapter, you’ll see another that

has a very different way of interacting with the ObjectContext.

When you perform a query that results in POCO entities, the ObjectContext creates

ObjectStateEntry objects for each result just as it does with an EntityObject. However,

classes that inherit from EntityObject interact continuously with the ObjectContext,

and therefore the context is able to keep track of the state of the classes as well as their relationships to one another.

POCOs do not communicate back to the context. Therefore, the context needs at

some point to take a look at the POCOs and synchronize their data with the

ObjectStateEntry objects that represent them. The ObjectContext class has a method

called DetectChanges that satisfies this purpose.

Understanding the Importance of DetectChanges

It is important to instruct the context to detect changes prior to constructing the various SaveChanges commands when you want to send any changes made to your POCOs to

the database. Otherwise, the ObjectStateEntry objects that the context is managing

will not reflect the changes and no insert, update, or delete commands will be sent to

the data store.

You may recall from Chapter 6 that one of the SaveOptions parameters for SaveChanges is DetectAllChanges. That option will force the context to call DetectChanges prior to the

save logic. The default behavior for SaveChanges is that it will call DetectChanges, so you do not need to explicitly call the method or set the SaveOptions enum.

Loading Related Data with POCOs

In previous chapters, you have loaded related data explicitly with the

EntityCollection.Load method or the EntityReference.Load method or taken advant-

age of lazy loading to bring in related data without creating a new query. You won’t be

able to do that with the POCOs you have just built. The navigation properties are no

longer EntityCollections or EntityReferences so the Load method is unavailable. It is

also the EntityCollection and EntityReference class that provides Entity Framework

with its lazy loading capabilities. Without these types in your classes, you’ll need an-

other mechanism for loading data after the fact.

Loading Related Data with POCOs | 341

Download from Library of Wow! eBook <www.wowebook.com>

Loading from the Context

As mentioned earlier, much of Entity Framework’s POCO support is based on new

capabilities of ObjectContext. In .NET 4, ObjectContext has a new method called Load-

Property and this is how you can explicitly load data with your POCOs.

Rather than call Load on a navigation property (e.g., contact.Address.Load), you can

let the context perform the load with the following syntax:

_context.LoadProperty<Contact>(myContact, c => c.Addresses)

This overload uses generics to specify the type that will be loaded from (<Contact>) so that you can benefit from strong typing to use the lambda to specify which property

should be loaded (c.Addresses). Because of the strong typing, Intellisense will help you

build the lambda expression. There are a few other overloads for this method which

you can find at http://msdn.microsoft.com/en-us/library/dd382880.aspx. However, I prefer using the lambda.

Lazy Loading from a Dynamic Proxy

If you want to get lazy loading behavior for your POCO, you’ll need to leverage a trick

provided by the Entity Framework runtime. By marking a navigation property as vir

tual (Overridable in Visual Basic), at runtime, Entity Framework will create a wrapper

around that property that will turn it into either an EntityCollection or EntityReference

(as appropriate). Therefore, if you have lazy loading enabled, it will simply work as

expected. This topic will be covered in more depth in the section “Lazy Loading by

Proxy” on page 346.

Exploring and Correcting POCOs’ Impact on Two-Way

Relationships

In addition to syncing up the ObjectStateEntry objects, the context will force

EntityObject classes to be aware of any two-way relationships. With an EntityObject

class, if you add an address to the contact.Addresses EntityCollection, not only does

that impact the Addresses property, but you also automatically get the two-way

relationship fix-up. As a result, Address.Contact is also populated. The two-way relationship also works in the other direction. If you assign a contact instance to Address.Contact, that contact also recognizes that address in its Addresses EntityCol

lection.

However, this doesn’t automatically happen with the POCOs.

Let’s modify the earlier code to see what happens when you build relationships with

POCOs. Add the code in Example 13-5 below the last line of code in Example 13-4.

That line is included here for placement reference.

342 | Chapter 13: Creating and Using POCO Entities

Download from Library of Wow! eBook <www.wowebook.com>

 Example 13-5. Experimenting with two-way relationships

int addressCount = firstContact.Addresses.Count();

//new code begins here

Address newAddress = new Address

{

Street1 = "1 Main Street",

City = "Mainville",

StateProvince = "Maine",

ModifiedDate = DateTime.Now

};

firstContact.Addresses.Add(newAddress);

addressCount = firstContact.Addresses.Count;

Contact newAddressContact = newAddress.Contact;

//new code ends here

}

If you run the code now, you will find that newAddressContact is null because the POCO

classes don’t comprehend the two-way relationship. You added the address to the contact’s collection of addresses, but you did not add the contact to the address.

There are three ways to solve this problem. The first relies on the ObjectContext to fix

the relationship using the ObjectContext.DetectChanges method. The second is to give

the classes themselves the intelligence to automatically assign the alternate relationship at the time that you modify the property. The last involves virtual (overridable in VB)

properties and proxies, which will be explained on the following pages.

It’s possible that you do not want two-way relationships. In fact, you

may not want to be able to navigate from address to contact. You can

easily control this with the existence or accessibility of the setters and

getters in the POCO classes. For this example, you will support the two-

way relationship and automatic fix-up.

Using the DetectChanges Method to Fix Relationships

Modify the example by adding the following code just before the code line that assigns

newAddressContact:

context.DetectChanges();

Run the code again and you should see that the address is now aware of its contact.

Be careful how you use this method. You do not want to automatically call

DetectChanges anytime you assign a relationship, because it will process every entity

that is being tracked by the context. Implement it explicitly if you really need to be

aware of the two-way relationship anytime prior to saving changes.

You may prefer to put the onus on the classes themselves to do the fix-up.

Exploring and Correcting POCOs’ Impact on Two-Way Relationships | 343

Download from Library of Wow! eBook <www.wowebook.com>

Enabling Classes to Fix Their Own Relationships

The other fix-up path lets the classes be responsible for fixing their relationships.

There are varying definitions surrounding the purity of POCO classes.

Some developers would find it undesirable to have one POCO class

affect the properties of another, and therefore would not approve of this

method.

First we’ll attack the Contact class’s Addresses property. Unless you want to create a

new type of collection class, the simplest thing to do is to create an explicit method in

the Contact class, which you can call AddAddress.

Example 13-6 displays the pattern for this method. First you’ll need to instantiate the Addresses property if it has not yet been instantiated. Then you can add the new address

after verifying that it does not already exist in the collection. So far, this only adds the address to the Contact’s collection. Finally, it is time to “fix up” the relationship by

ensuring that the address will also know about its contact. The code comment about

the circular reference will make more sense after you modify the Contact class.

 Example 13-6. The Contact.AddAddress method to fix up a two-way relationship

public void AddAddress(Address address)

{ //instantiate Addresses if necessary

if (Addresses == null)

{

Addresses=new List<Address>();

}

//add the address if it is not already in the list

if (!Addresses.Contains(address))

{

Addresses.Add(address);

}

//set the contact property, but protect from circular reference

if (address.Contact != this)

{

address.Contact = this;

}

}

Next, you can modify the Address class so that it will also provide two-way relationship

fix-ups.

The current Contact property of the Address class uses an auto-implementer. Replace

that with the code in Example 13-7.

 Example 13-7. The modified Address.Contact property to fix up the two-way relationship private Contact _contact;

public Contact Contact

344 | Chapter 13: Creating and Using POCO Entities

Download from Library of Wow! eBook <www.wowebook.com>

{ get { return _contact;}

set {

_contact = value;

//explicit relationship fixup

_contact.AddAddress(this);

}

}

Notice that the property provides the alternate relationship by calling the AddAddress

method of the contact. This is why the AddAddress method checks the value of the

Address.Contact prior to setting the value; otherwise, you will trigger an infinite loop.

Now, back in the Main method, comment out the call to DetectChanges that you added

earlier, and run the application again. You’ll see that the newAddressContact does get

populated.

Finally, you can check the other direction of the relationship. Replace the line of code that reads firstContact.Addresses.Add(newAddress); again, this time with

newAddress.Contact=firstContact;. Now you are only setting the contact property of

addresses. The address class will provide the fix-up for the other direction. You should

find that this has caused the firstContact.Addresses.Count() to increase.

Using Proxies to Enable Change Notification, Lazy Loading,

and Relationship Fix-Up

As you read earlier, DetectChanges also forces the context to update the ObjectStateEn

try objects that it uses for change tracking. When you call DetectChanges, the context

takes a snapshot of the current state of the entities.

It is possible to force the entities to notify the context of changes so that you don’t have to wait until you (or the SaveChanges method) call DetectChanges.

You can do this by using a special feature of Entity Framework that enables classes to

be wrapped by a special proxy class at runtime. To use this, you must mark every

property in the class as virtual. In VB, this is Overridable. At runtime, Entity Frame-

work uses reflection to discover that you have marked the properties as virtual and it

will create a DynamicProxy class on the fly, then force it to inherit from your entity. This proxy will add functionality to the runtime POCO class that has many of the same

features as an EntityObject. But as you’ll see further on, it is not an EntityObject. It is something completely different.

Using proxies will automatically provide your classes with automatic relationship fix-

up. At the same time, you also gain (or regain, as it were) many of the same behaviors

provided by EntityObject, such as change notification and lazy loading.

Using Proxies to Enable Change Notification, Lazy Loading, and Relationship Fix-Up | 345

Download from Library of Wow! eBook <www.wowebook.com>

Change Notification by Proxy

As you learned previously, the EntityObject notifies the ObjectContext when a scalar

property has changed, enabling the context to keep track of the entity’s state.

When you make properties virtual, anytime you inspect the ObjectStateEntry objects

that the context is maintaining they will be current and there will be no need to call

DetectChanges.

Every scalar and navigation property in the class must be marked as virtual for this to

work. Example 13-8 shows a few of the scalar properties with the virtual/

Overridable keyword.

 Example 13-8. Enabling POCO classes to use a proxy for change tracking

VB

Public Overridable Property FirstName As String

Public Overridable Property LastName As String

C#

public virtual string FirstName {get; set;}

public virtual string LastName {get;set;}

Lazy Loading by Proxy

Entity Framework’s ObjectContext can perform lazy loading on any navigation prop-

erties that are virtual. If you have marked all of the properties as virtual in order to get change tracking, you will also get lazy-loading behavior. However, as mentioned earlier,

you can get lazy loading on navigation properties even if you do not set up the class to

enable change tracking.

If you are not marking every single property as virtual in order to get the

runtime change notification and relationship fixup, you can pick and

choose which navigation properties support lazy loading. You can do

this by marking just those navigation properties that should lazy load

as virtual properties.

There is one more rule for enabling lazy loading on the navigation properties. Naviga-

tion properties that point to collections must be an ICollection<T>. The

ObjectContext will take care of the rest of the work for you.

Example 13-9 shows the Addresses navigation property of the Contact class as a virtual property.

 Example 13-9. Enabling POCO classes to use a proxy for lazy loading

VB

Public Overridable Property Addresses() As ICollection(Of Address)

C#

public virtual ICollection<Address> Addresses {get; set;}

346 | Chapter 13: Creating and Using POCO Entities

Download from Library of Wow! eBook <www.wowebook.com>

Example 13-10 displays a method you can add to your console app to check three things for you. First, it verifies that the context recognizes you have modified the contact using the ObjectStateManager. Next, it will automatically load the Addresses. Finally, it saves

your changes to the POCO Contact back to the database.

 Example 13-10. Verifying change tracking

private static void VerifyVirtualChangeTracking()

{ using (Entities context = new Entities())

{

var contact = context.Contacts.First();

contact.LastName = "Zappos";

contact.FirstName = "Zelly";

int modifiedEntities = context.ObjectStateManager.

GetObjectStateEntries(System.Data.EntityState.Modified).Count();

ICollection<Address> addresses = contact.Addresses;

//break to verify that modifiedEntities is 1 and that addresses is not null

context.SaveChanges();

}

}

You can put a breakpoint on the last line of code (context.SaveChanges();); when it

breaks, you can check in the debugger to see what’s in modifiedEntities and

addresses just before SaveChanges is called, as noted in the comment.

Exploring the Proxy Classes

When debugging code that uses these new classes, it is eye-opening to take a closer

look at the classes.

Figure 13-2 shows the Contact that you queried and edited in Example 13-10.

 Figure 13-2. A high-level view of the proxy class at runtime

The first thing you should notice is that contact is not simply a Contact type. The

Value column tells us that it is a dynamically created type within the

System.Data.Entity.DynamicProxies namespace. The type name is a combination of

the simple type and a hash of the metadata type:

System.Data.Entity.DynamicProxies.Contact_

76D4E0337637681528F3B0B52EC17A15AA07781EFC8A3CF472468413B5BB6966

Using Proxies to Enable Change Notification, Lazy Loading, and Relationship Fix-Up | 347

Download from Library of Wow! eBook <www.wowebook.com>

In the Type column, the type is listed as:

Chapter13SimplePOCO.Contact {System.Data.Entity.DynamicProxies.Contact_

76D4E0337637681528F3B0B52EC17A15AA07781EFC8A3CF472468413B5BB6966}

One other notable listing in Figure 13-2 is the type of the Addresses property. Rather than the ICollection that is defined in the class, it has become an EntityCollection.

Because it is an EntityCollection, it will be able to perform the automatic two-way

relationship fix-up that we’re used to seeing in EntityObject entities.

Let’s look at the dynamic proxy’s impact on the Contact entity a bit more closely in

Figure 13-3.

 Figure 13-3. A closer inspection of the dynamic proxy

The key to the dynamic proxy is the EntityWrapper. This is where the change tracking

and relationship management features are provided to your POCO class. These are the

same features that allow an EntityObject to do its job. A dynamic proxy is able to tap

into the same set of services that the EntityObject has access to. The POCO class now

has access to these services and can therefore interact with the ObjectContext in a similar fashion to the EntityObject.

Synchronizing Relationships by Proxy

Finally, we can return to the third method of fixing up two-way relationships. With

proxies, this also benefits classes with both a foreign key and related navigation prop-

erty instance (e.g., Address.ContactID and Address.Contact) because the proxy will synchronize them. You may recall seeing EntityObjects do this in Chapter 10.

348 | Chapter 13: Creating and Using POCO Entities

Download from Library of Wow! eBook <www.wowebook.com>

First let’s look at a scenario where you are linking two existing entities. The following code queries for a random Contact and an Address and then joins them:

var address = context.Addresses.

Where(a=>a.City=="Winnipeg").FirstOrDefault();

var contact = context.Contacts.FirstOrDefault();

contact.Addresses.Add(address);

If you are not using the proxy behavior (i.e., the properties are not marked as virtual),

then after this code is run, address.Contact and address.ContactID will be null.

If you have enabled the proxy to work, address.Contact will point to the contact and

address.ContactID will have the correct value.

If you are creating new objects and you want the relationships to be fixed up there is

another important rule to know about.

You might just create a new address by instantiating it:

var address = new Address();

The context will have absolutely no clue about this address, and if you added it to

contact.Addresses, you would not get the fix-up behavior.

You need to let the context instantiate the object for you:

var address = context.CreateObject<Address>();

Then when you add this address to the collection, or set address.Contact to the existing

contact, the relationship and foreign key will be automatically fixed.

If you are joining two new objects that were created with CreateObject, you will still

get the fix-up behavior, but remember that the foreign key value (e.g., ContactID) will

be 0 since it is unassigned. But that is still different from null, which is what you would get when the fix-up is not occurring at all.

The Critical Rules for Getting Proxy Behavior with POCOs

I pointed out three critical rules in the previous text that are worthy of highlighting

along with some others that are equally important.

Rule 1: To get the proxy behavior for a POCO, every single property (scalar and navigation properties) must be made virtual and public using the C# virtual keyword or

the VB Overridable keyword.

Rule 2: To enable lazy loading on a navigation property to an EntityReference, the

property must be marked as virtual.

Rule 3: To enable lazy loading on a navigation that is pointing to a dependent collection, it must marked as virtual and be of the type ICollection<T>.

Rule 4: When instantiating new POCOs that you want to participate in the proxy

behavior (change notification, relationship fix-up, etc.) you must use

ObjectContext.CreateObject<T> to create the object rather than simply creating a new instance.

Using Proxies to Enable Change Notification, Lazy Loading, and Relationship Fix-Up | 349

Download from Library of Wow! eBook <www.wowebook.com>

Rule 5: The class cannot be sealed.

Rule 6: The class cannot be abstract.

Rule 7: The class must have a constructor that takes zero parameters. By default, a class with no explicit constructors already follows this rule. But if you create a constructor that has a parameter, you must also provide one that takes no parameters.

Rule 8: The navigation properties must not be sealed.

Using T4 to Generate POCO Classes

So far in this chapter you manually built POCO classes. Don’t forget about the T4

templates you learned about in Chapter 11. It’s a lot of work to strip down the default T4 template to force it to create simple objects. If you enjoy visiting the dentist, you

might be interested in doing this work yourself. However, Microsoft has created tem-

plates that build Entity Framework POCOs from the EDMX. You could start with one

of those and then tweak the template further to make it create classes that follow your

desired pattern.

Unfortunately, the POCO templates are not “in the box” when you install Visual Studio

2010 RTM, but they are extremely easy to add in. Microsoft has created two pairs of

POCO templates that are available from the Visual Studio 2010 Extension Manager. If

you search for POCO in the Extension Manager, the first pair “Microsoft ADO.NET

C# POCO Entity Generator” and “Microsoft ADO.NET VB POCO Entity Generator”

are the most commonly used. The second pair is specifically for websites and I won’t

be focusing on those. You can also go directly to http://www.visualstudiogallery.com/

to download Visual Studio extensions.

After you have installed a POCO Entity Generator extension, the ADO.NET POCO

Entity Generator template will be an option when you choose to Add a Code Generation

Item to your model. Selecting this template will, in fact, add two templates to your

project. One template, with the extension BreakAway.Context.tt, is specifically for generating the ObjectContext class. The other, BreakAway.tt, will generate the entity

classes. Figure 13-4 shows the two new templates in the Solution Explorer along with

their automatically generated entity classes.

You’ll notice that both the context and the entity template are in the

model project. If you are architecting to separate your application con-

cerns, you probably do not want the entity classes in the same project

with the model and persistence layer. In Chapter 24, you’ll learn how

to get the BreakAway.tt template into its own project that has no ties

whatsoever to the Entity Framework.

350 | Chapter 13: Creating and Using POCO Entities

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 13-4. The two templates added by the ADO.NET POCO Entity Generator and their generated classes

The POCO template creates fairly simple classes with all of their properties marked as

virtual, forcing them to use the DynamicProxy classes at runtime. Additionally, it adds

code to ensure that any foreign keys stay in sync with their related navigation property.

And finally, there is code in there to maintain two-way relationship fix-ups similar to

what you saw earlier in the chapter, although they use a class called FixUpCollection,

which you’ll find in BreakAway.cs.

Example 13-11 shows the complete listing for the generated Payment class. Notice the code in ReservationID that keeps the Reservation property in sync with the

ReservationID foreign key. Additionally, you can see the fix-up code that adds or re-

moves the Payment to the Reservation.Payments collection as necessary.

 Example 13-11. The Payment POCO class generated using the POCO T4 template

//--

// <auto-generated>

// This code was generated from a template.

//

// Changes to this file may cause incorrect behavior and will be lost if

// the code is regenerated.

// </auto-generated>

//--

using System;

using System.Collections;

using System.Collections.Generic;

Using T4 to Generate POCO Classes | 351

Download from Library of Wow! eBook <www.wowebook.com>

using System.Collections.ObjectModel;

using System.Collections.Specialized;

namespace BAGA

{ public partial class Payment

{

#region Primitive Properties

public virtual int PaymentID

{

get;

set;

}

public virtual Nullable<System.DateTime> PaymentDate

{

get;

set;

}

public virtual int ReservationID

{

get { return _reservationID; }

set

{

if (_reservationID != value)

{

if (Reservation != null && Reservation.ReservationID != value)

{

Reservation = null;

}

_reservationID = value;

}

}

}

private int _reservationID;

public virtual Nullable<decimal> Amount

{

get;

set;

}

public virtual System.DateTime ModifiedDate

{

get;

set;

}

public virtual byte[] TimeStamp

{

get;

set;

}

352 | Chapter 13: Creating and Using POCO Entities

Download from Library of Wow! eBook <www.wowebook.com>

 public virtual Nullable<int> ContactID

{

get;

set;

}

#endregion

#region Navigation Properties

public virtual Reservation Reservation

{

get { return _reservation; }

set

{

if (!ReferenceEquals(_reservation, value))

{

var previousValue = _reservation;

_reservation = value;

FixupReservation(previousValue);

}

}

}

private Reservation _reservation;

#endregion

#region Association Fixup

private void FixupReservation(Reservation previousValue)

{

if (previousValue != null && previousValue.Payments.Contains(this))

{

previousValue.Payments.Remove(this);

}

if (Reservation != null)

{

if (!Reservation.Payments.Contains(this))

{

Reservation.Payments.Add(this);

}

if (ReservationID != Reservation.ReservationID)

{

ReservationID = Reservation.ReservationID;

}

}

}

#endregion

}

}

Using T4 to Generate POCO Classes | 353

Download from Library of Wow! eBook <www.wowebook.com>

Taking a quick peek into the generated Customer class, you’ll find that the template also read the default value setting for CustomerID and applied it:

private int _customerTypeID = 1;

Modifying the POCO Template

Although this template is Microsoft’s default for creating a POCO class it doesn’t mean

it’s perfectly suited to your domain.

Following are two examples of modifying this template.

The first targets scenarios where you do not want the dynamic proxies. In that case,

you can modify the template to remove its insertion of virtual in front of properties.

If you do a quick search on the word virtual you can find the method that inserts that keyword. The method appends virtual to only nonprivate properties.

string PropertyVirtualModifier(string accessibility)

{ return accessibility + (accessibility != "private" ? " virtual" : "");

}

These are called when the properties are being created.

Here is the VirtualModifier being used as each primitive type is being declared:

<#=PropertyVirtualModifier(Accessibility.ForProperty(edmProperty))#>

<#=code.Escape(edmProperty.TypeUsage)#> <#=code.Escape(edmProperty)#>

The method is responsible for applying the accessibility (e.g., public or private) as well as the virtual keyword. Remove the PropertyVirtualModifier function that surrounds

the Accessibility.ForProperty method to insert only the accessibility and not the virtual keyword:

<#=Accessibility.ForProperty(edmProperty)#>

In Chapter 11, we modified the Activity class so that it will validate the length of the ActvityName field. We did this by manually adding code, along with the desired maximum length, in a partial class.

What’s frustrating is that the maximum length is defined in the database and available

in the SSDL, and in most cases (except when running the Update Model Wizard), the

property was brought forward to the conceptual model as well. But Entity Framework

doesn’t automatically validate against that property. You can modify the template to

read the Max Length attribute of String properties and build validation code when the

code is generated.

You can accomplish this with the addition of some new processor methods and then

calling those in during the code generation.

You can find the section of the template that contains the processing method near the

bottom of the template file. It is introduced by a set of comments surrounded by 354 | Chapter 13: Creating and Using POCO Entities

Download from Library of Wow! eBook <www.wowebook.com>

<auto-generated> tags. This is followed by the namespace, some using (or Include)

statements, 11 lines of code, and then finally the first processing method, WriteFooter.

I prefer to insert my custom processing methods before this first method so that I can

easily find them.

The two methods to include are the ones that get an attribute value given the name of

the attribute. For example, if you pass in Max Length it will read the metadata for that

property and return the value (say, 50) of the Max Length property.

The first method builds a setter for the given property that includes code to perform

validation on the length of the field. It calls the second method, which takes an attribute name (such as MaxLength) and reads the metadata to return the value of that attribute

(for example, 50) so that the setter can build the proper validation code as well as a

helpful error message.

Some of the code uses .NET Reflection, but some of it uses features of Entity Frame-

work’s MetadataWorkspace, which knows how to read the metadata files.

You will learn much more about the MetadataWorkspace in Chapter 21.

For example, the code to return the attrib value uses the MetadataWorkspace

TypeUsage method to find the MaxLength attribute. If the MaxLength attribute is found,

the code first checks for three possible problems. If the MaxLength is empty, is set to

SQL Server’s “Max” (e.g., varchar(Max)), or is a binary (Byte) field, the validation code

is not written. Otherwise, the method builds up a string that will test the value of the

property being set against the maximum length value. If the validation fails, an ArgumentException is thrown with a specific description of the problem. If MaxLength is

not found, an empty string is returned.

Example 13-12 shows the template function that will generate the validation code for you.

 Example 13-12. The T4 template code for generating MaxLength validation

string MaxLengthValidation(EdmProperty prop)

{ var attrib=prop.TypeUsage.Facets.FirstOrDefault(p=>p.Name=="MaxLength");

if (attrib != null)

{

string aVal=GetAttributeValue(attrib);

if (aVal == "Max" | aVal=="" | prop.TypeUsage.EdmType.Name == "Binary") return "";

else

{

return System.Environment.NewLine +

"if (value.Length > " + aVal + ") " + System.Environment.NewLine +

Using T4 to Generate POCO Classes | 355

Download from Library of Wow! eBook <www.wowebook.com>

 new ArgumentException(\"" + prop.Name +

" must be less than " + aVal +" characters\");" +

System.Environment.NewLine +

" else";

}

}

else

{

return "";

}

}

string GetAttributeValue(Facet attrib)

{ var aVal=attrib.Value;

return Convert.ToString(aVal);

}

The next step is to modify the template itself, and the first task is to ensure that the

property you are working with does, indeed, have a MaxLength attribute.

Locate the code near the beginning of the template that begins the iteration through

the properties. It should begin on or near line 34. Example 13-13 shows the section of code to look for.

 Example 13-13. Section of T4 template where you will be inserting code

foreach (EdmProperty edmProperty in entity.Properties.

Where(p => p.TypeUsage.EdmType is PrimitiveType && p.DeclaringType == entity))

{ bool isForeignKey =

entity.NavigationProperties.Any(np=>np.GetDependentProperties()

.Contains(edmProperty));

bool isDefaultValueDefinedInModel = (edmProperty.DefaultValue != null);

bool generateAutomaticProperty = false;

You’ll need to add one more bool to this set of code. This also uses the MetadataWork

space to read the metadata to discover whether there is a MaxLength attribute.

bool hasMaxLengthAttrib=

(edmProperty.TypeUsage.Facets.FirstOrDefault(p=>p.Name=="MaxLength") != null); Finally, the meat of the code goes in the place where the setter is defined. In the code

for the property, you’ll find nearly 100 lines devoted to foreign key properties. On or

near line 145 will be the getter and setter for nonforeign key properties. Here is the

section of code you should look for:

else

{ generateAutomaticProperty = true;

#>

<#=code.SpaceAfter(Accessibility.ForGetter(edmProperty))#>get;

<#=code.SpaceAfter(Accessibility.ForSetter(edmProperty))#>set;<#}#>

356 | Chapter 13: Creating and Using POCO Entities

Download from Library of Wow! eBook <www.wowebook.com>

Insert the code in Example 13-14 in between the line that injects the get and the line that injects the set. Those two preexisting lines of code are included in the example

and highlighted in bold for clarity.

 Example 13-14. Template code to add validation logic

<#=code.SpaceAfter(Accessibility.ForGetter(edmProperty))#>get;

<#if (hasMaxLengthAttrib)

{

#>

<#=code.SpaceAfter(Accessibility.ForSetter(edmProperty))#>

set

{<#=MaxLengthValidation(edmProperty)#>

{ <#=code.FieldName(edmProperty)#> = value;}

}<# }

else

{

<#=code.SpaceAfter(Accessibility.ForSetter(edmProperty))#>set;<#}#>

When T4 generates the new classes, if it determines that the MaxLength is needed, it will

write out a setter that includes the MaxLength validation; otherwise, the original setter

will be called. You’ll also need to make a small change a few lines lower, to ensure that

the field required by the validation is created—an if statement that already tests for

generateAutomaticProperty also must test hasMaxLengthAttrib.

Figure 13-5 shows the relevant section of the template after the changes from Exam-

ple 13-14 have been made as well as the change to check the value of hasMaxLengthAttrib.

Once you have the new code in place, the validation will automatically be part of your

generated class. Example 13-15 shows the addressID and Street1 properties of the Address class using the modified template. The addressID property was not impacted

because it does not have a MaxLength attribute, but the Street1 property now has vali-

dation code using the MaxLength value, 50, found in the metadata.

 Example 13-15. The validation for Address.Street1 as generated from the modified template public int addressID

{ get;

set;

}

public string Street1

{ get;

set

{

if (value.Length > 50)

{new ArgumentException("Street1 must be less than 50 characters");}

Using T4 to Generate POCO Classes | 357

Download from Library of Wow! eBook <www.wowebook.com>

else

{ _street1 = value;}

}

}

 Figure 13-5. Placement of template modifications for MaxLength validation

Using these patterns you can add validation for other property attributes in your model

as well. This is a much more convenient solution than manually creating predictable,

repetitive logic in partial classes.

Creating a Model That Works with Preexisting Classes

Many developers may be moving existing applications to the Entity Framework. If that

is your scenario, you may already have classes that you want to use in the new solution.

Along with existing classes, there’s also a good chance that you have an existing data-

base from which to generate a model.

358 | Chapter 13: Creating and Using POCO Entities

Download from Library of Wow! eBook <www.wowebook.com>

After you create the model (using the EDM Wizard to reverse-engineer the database), the entities in the model will probably not match up with your classes in a way that

allows the Entity Framework’s POCO support to work.

When you built the BreakAway model in Chapter 8, you made a number of simple modifications to the names of entities and properties. In that chapter, we discussed

only some of the many possible ways in which you can customize a model once it has

been created by the wizard. The Entity Data Model and the Designer support a variety

of scenarios, including various types of inheritance, combining tables into a single en-

tity, splitting tables into multiple entities, abstract entities, and more.

In Chapter 14, you will learn how to customize models without impacting their ability to work with your database. Then you will see that it is possible to reshape the entities

and the model to match your classes. You still may have to do a little bit of work on

your classes to get the proper alignment, but this is a strategy that you should consider

when migrating applications.

Code First: Using Entity Framework with No Model at All

The Entity Framework supports one additional scenario, and that is one that relies

solely on classes and doesn’t include the Entity Framework metadata. There is no EDMX file at design time, and there are no physical CSDL, MSL, or SSL files to work

with at runtime. This feature is called code-first development. It is not included in .NET

4 and Visual Studio 2010, but it is part of the Entity Framework Feature CTP that is

currently released as an “out of band” addition to Entity Framework. Chapter 25 contains a preview of using code first for your Entity Framework-based applications.

Summary

In this chapter, you learned about one of the most important features added to Entity Framework in .NET 4: support for classes that do not inherit from the

EntityObject class. You learned how to create simple classes that will still benefit from

the Entity Framework’s modeling, querying, change tracking, and relationship man-

agement features. The ObjectContext can manage these classes by taking snapshots of

their current state or by using proxy dynamic proxies to provide change notification

and relationship management on the fly. In later chapters, you will see POCO classes

used in application solutions. You will also see how they fit into more agile software

architectures and can be part of good testing practices.

Summary | 359

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 14

Customizing Entity Data Models Using

the EDM Designer

So far in this book, you have worked with models that closely match the database. You

also have made some simple changes to the names of entities and properties.

The Entity Data Model (EDM) offers enormous flexibility when it comes to customizing

models so that they are more than mere reflections of your database. This capability is

one of the main reasons many developers choose to use the Entity Framework.

In this chapter, you will learn about some of the many ways in which you can customize

an EDM, the benefits of these customizations, and when you would want to take advantage of them. Although most customization occurs in the Conceptual Schema

Definition Layer (CSDL), you can use additional mappings and even storage schema

modifications to create a model that truly describes your data in a way that fits well

with your vision of how the data should look.

Most customizations that are created in the conceptual layer are dependent on their

mappings back to the database to function properly. Because of this, the customizations

are more often referred to as mappings, as you will see throughout this chapter.

You will also learn how to build queries using the new mappings and interact with the

objects that are based on the various entities.

The great array of mapping capabilities is instrumental in setting the Entity Framework

apart from other ORMs. There are so many, in fact, that all of them are not covered in

this chapter. Chapter 15 shows you how to apply mappings that are not supported by the EDM Designer. You will spend much of your time in that chapter working directly

with the XML. In addition, many more modeling techniques are related to stored pro-

cedures and views. Chapter 16 will be devoted to that set of mappings.

Samples used throughout the rest of this book will be dependent on most of the model

changes that the mapping walkthroughs in this chapter describe. If you are following

the examples, be sure to perform the steps described in this chapter. A few of the walkthroughs at the end of the chapter are not used by later examples (these are noted).

361

Download from Library of Wow! eBook <www.wowebook.com>

Mapping Table per Type Inheritance for Tables That Describe

Derived Types

The BreakAway business has a number of different types of contacts. The Contact table

keeps track of the common information for all contacts, such as FirstName and

LastName. Some of those contacts are customers, and a separate table keeps track of the

additional information about these types of contacts—their preferences, notes, and the

date they first became customers. In the past few chapters, when working with cus-

tomers you have had to constantly go back to the Contacts entity to get the customers’

names.

In object-oriented programming, when one object is a type of another object you can

use inheritance to share properties so that the properties of a base type (e.g., Contact)

are exposed directly in a derived type (e.g., Customer). The EDM supports inheritance

as well. The inheritance mapping used to allow Customer to derive from Contact and

absorb Contact’s properties is called Table per Type inheritance. Let’s investigate this one first, and modify the model to simplify working with customers.

Table per Type (TPT) inheritance defines an inheritance that is described in the data-

base with separate tables where one table provides additional details that describe a

new type based on another table. Figure 14-1 depicts the concept of TPT inheritance.

 Figure 14-1. Database tables that can be used for TPT inheritance

Figure 14-1 shows a 1:0..1 (One to Zero or One) relationship between Contact and Customer in the database. This means a Contact could have a related Customer entity,

but it’s not required. It also means a Contact cannot have more than one related Customer entity. The Customer table provides additional information about a subset of

the contacts.

362 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

Mapping TPT Inheritance

Let’s replace the navigation that the Entity Data Model Wizard created between

Contact and Customer with an inheritance hierarchy that maps back to the database

tables.

1. Delete the association between Contact and Customer that the EDM Wizard created

when you originally created the model in Chapter 8.

You can do this by selecting the line that represents the association and deleting

it. Notice that when you do this, the navigation properties that used the association

are automatically removed.

The Designer provides two ways to add inheritance. You can select an inheritance

object from the Toolbox, click on the entity that is to serve as the base, and then

click on the entity that will be derived from the base. Alternatively, you can add it

from an entity’s context menu. Let’s use the context menu method.

2. Right-click the Contact entity. Choose Add and then Inheritance from the context

menu.

3. In the Add Inheritance window, select Contact as the base entity and Customer as

the derived entity, as show in Figure 14-2. Customer will inherit properties from Contact.

4. Delete the EntityKey (ContactID) from the derived type (Customer). Customer will

now inherit its EntityKey from Contact. You can do this be clicking the property

and hitting the delete key on your keyboard.

5. Change the name of the Customer’s RowVersion property to CustomerRowVersion.

6. Change the CustomerRowVersion’s ConcurrencyMode property to None.

7. Open the Mapping Details window for Customer.

8. Map the Customer’s new ContactID property (which now comes from the Contact

entity) to the ContactID column in the Customers table.

When the inheritance is set up, the Customer entity will have an arrow glyph at the top

that indicates it is inheriting from Contact. There is an inheritance line between the two

entities as well, with the arrow pointing to the base entity (see Figure 14-3).

Handling duplicate names and concurrency properties in an inheritance hierarchy

In the preceding steps, you made two changes to the Customer’s RowVersion property.

The first was to change its name. You can’t have properties in an inheritance hierarchy

with matching names. Since Contact already has a RowVersion property, Customer

cannot.

Derived entities cannot support concurrency checking; therefore, you don’t truly need

to have this property in Customer. If you define any concurrency for the base entity,

Contact, the concurrency checking will now include the Customer entity, or more Mapping Table per Type Inheritance for Tables That Describe Derived Types | 363

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 14-2. Defining an inheritance between Contact and Customer

 Figure 14-3. The new inheritance displayed in the model

specifically, the table that the Customer entity maps to—Customers—as well. You’ll learn more about concurrency in Chapter 23.

You could, in fact, simply delete the CustomerRowVersion property since in this hierar-

chy, Entity Framework has no use for it. If you have plans to use the field for other

purposes, then by all means, leave it in.

364 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

Fixing a potential constraint problem

Because the Customer’s ContactID was deleted so that it can now inherit from Contact,

I have seen occasions when the associations involving Customer.ContactID were broken.

Compile the model to verify that it validates.

If it doesn’t, you may need to make the following fix.

Look for two errors listed for BAModel.edmx. The first complains about the Principal in a constraint:

The element 'Principal' in namespace

'http://schemas.microsoft.com/ado/2008/09/edm'

has incomplete content.

List of possible elements expected: 'PropertyRef' in namespace

'http://schemas.microsoft.com/ado/2008/09/edm'.

The second error is almost the same, except that its complaint is about a dependent.

The problem is in the association between Customer and Reservation, since

Reservation has a foreign key that points to Customer.ContactID. When you deleted the

ContactID from Customer, the reference to ContactID was removed from the constraint.

You need to add it back in.

To fix the constraint problem:

1. Click the association line between Customer and Reservation.

2. In the Properties window, select Referential Constraint and then click the ellipses

to open the Referential Constraint dialog.

You’ll see that the Dependent Property is missing.

3. Change the Dependent Property to ContactID, as shown in Figure 14-4.

4. Rebuild the model’s project, and the errors in the Error List should go away.

Querying Inherited Types

As a result of the inheritance, the Customer object now inherits the Contact properties.

You no longer need to navigate to Contact to get the Customer’s LastName, FirstName, or

other Contact properties. You can also navigate directly to the Addresses EntityCollec

tion through the Customer.Addresses property.

In the model, this also means the Customers EntitySet is now gone and its strongly

typed ObjectSet will no longer be among the properties of BAEntities. Customer is now

served up from the Contacts EntitySet. When you request Contacts, those Contacts

that have a Customer entity will be returned as Customer types.

Mapping Table per Type Inheritance for Tables That Describe Derived Types | 365

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 14-4. Fixing the referential constraint between Customer and Reservations

To query for customers specifically, you will need to use the OfType method to specify

which type of contact you are seeking, as shown in the following code:

VB

From c in Contacts.OfType(Of Customer) Select c

C#

from c in Contacts.OfType<Customer> select c;

You’ll see many more examples of querying types in an inheritance hierarchy through-

out this chapter and the rest of the book.

POCO Classes and Inherited Objects

If you are using the Microsoft-supplied T4 template to generate POCOs from your

Entity Data Model, the inheritance will be recognized and reflected in the generated

classes.

The Customer class inherits from Contact:

public partial class Customer : Contact

The Contact properties such as FirstName and LastName are available directly from the

Customer class.

Inserting TPT Inherited Types

To test this new TPT inheritance, as well as the various customizations you will be

creating further on in this chapter, create a new Console Application project and then

follow these steps:

366 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

1. Set up the Console Application project to use the model, as you did with the previous projects:

a. Add references to System.Data.Entity and to the BreakAwayModel project.

b. Copy the app.config file from the model’s project into the new console appli-

cation project.

2. Open the project’s main code file (Module1.vb or program.cs).

3. Import the model’s namespace, BAGA, at the top of the code file.

4. Add the method in Example 14-1 to the module. This will query for contacts who are customers.

 Example 14-1. Querying a derived type

private static void TPTMap()

{ using (var context = new BAEntities())

{

var query =

from c in context.Contacts.OfType<Customer>()

select c;

Console.WriteLine("Customers: " + query.Count().ToString());

//query all Contacts

Console.WriteLine("All Contacts: " +

context.Contacts.Count().ToString());

Customer newCust = new Customer();

newCust.FirstName = "Noam";

newCust.LastName = "Ben-Ami";

context.Contacts.AddObject(newCust);

context.SaveChanges();

}

}

5. Call the TPTMap method from the module’s Main method.

6. Set a breakpoint at the line that instantiates newCust.

7. Run the application.

When debugging the Customer results, you can see that the Customer has inherited the

LastName and FirstName properties of Contact. When debugging the Contact results,

you can see that only the Contact properties are there, even for contacts who are Customers.

Finally, looking at the counts displayed in the output, you’ll find that the number of

queried customers is much smaller than the number of contacts, and is, in fact, a subset

of contacts.

Mapping Table per Type Inheritance for Tables That Describe Derived Types | 367

Download from Library of Wow! eBook <www.wowebook.com>

SaveChanges and newly added derived types

In Example 14-1, a Customer was created in memory, added to the context, and then saved to the database with context.SaveChanges. When SaveChanges is called, the Entity

Framework constructs commands to first create a new Contact record, and then, based

on the newly generated ID returned from the database, to create the Customer record.

Example 14-2 shows the two commands executed on the database as a result of the code in Example 14-1. The first inserts a contact and does a SELECT to return the new ContactID and RowVersion. The second inserts a new Customer using the new

ContactID, 735.

 Example 14-2. T-SQL commands created based on the new Customer created in the previous example exec sp_executesql

N'insert [dbo].[Contact]([FirstName], [LastName], [Title], [ModifiedDate])

values (@0, @1, null, @2)

select [ContactID], [AddDate], [RowVersion]

from [dbo].[Contact]

where @@ROWCOUNT > 0 and [ContactID] = scope_identity()',

N'@0 nvarchar(50),@1 nvarchar(50),@2 datetime2(7)',@0=N'Noam',

@1=N'Ben-Ami',@2='2009-14-10 19:57:31.7540626'

exec sp_executesql

N'insert [dbo].[Customers]([ContactID], [CustomerTypeID], [InitialDate],

[PrimaryDesintation], [SecondaryDestination], [PrimaryActivity],

[SecondaryActivity], [Notes])

values (@0, @1, null, null, null, null, null, null)

select [RowVersion]

from [dbo].[Customers]

where @@ROWCOUNT > 0 and [ContactID] = @0',

N'@0 int,@1 int',@0=735,@1=1

As a reminder, the Contact insert is returning the new ContactID as well as the two

computed columns, AddDate and RowVersion, to be pushed into the object. The

Customer insert has a value for CustomerTypeID. That’s coming from the default value

that you defined in the model for the CustomerTypeID property in Chapter 8.

The new Customer record is seen as both a Contact type and a Customer type. Therefore,

as SavingChanges tested for the entity type and populated values based on that, the new

Customer entity got the required values for Contact and for Customer.

Specifying or Excluding Derived Types in Queries

You can explicitly query for different types within an inheritance structure. To specify

a derived type of an ObjectSet, you can append the OfType method to the ObjectSet

being queried:

VB

context.Contacts.OfType(Of Customer)

C#

context.Contacts.OfType<Customer>()

368 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

You can use OfType when building LINQ queries against the ObjectSet. But there are other ways to filter by type in LINQ as well.

In Visual Basic, you can use the TypeOf operator for type filtering:

VB

From c In context.Contacts _

Where TypeOf c Is Customer Select c

From c In context.Contacts _

Where Not TypeOf c Is Customer Select c

In C#, you can do direct type comparison:

C#

from c in context.Contacts where c is Customer select c;

from c in context.Contacts where !(c is Customer) select c;

Entity SQL also has operators for working with types, and in fact, it can filter out types in a way that is not possible with LINQ to Entities.

The type operators you will use most commonly in Entity SQL are OFTYPE and IS [NOT]

OF. The following code snippets represent examples of how you could rewrite the pre-

ceding queries with Entity SQL. Note that you could do this by using query builder

methods, as well.

To return only Customer types:

SELECT VALUE c

FROM OFTYPE(BAEntities.Contacts, BAModel.Customer)

AS c

To return Contacts that are not Customer types:

SELECT VALUE c

FROM BAEntities.Contacts

AS c

where c IS NOT OF(BAModel.Customer)

There is an additional Entity SQL operator called TREAT AS that allows you to do type

casting directly in the Entity SQL expression.

The preceding two Entity SQL expressions will return results that are still shaped like

Contacts. To ensure that the results are shaped like the types that you are seeking, you’ll need to use TREAT AS. As with the OFTYPE operator, be sure to use the assembly namespace in the full name of the type you are casting to.

To return only Customer types that are type-cast as Customer types:

SELECT VALUE TREAT(c AS BAModel.Customer)

FROM OFTYPE(BAEntities.Contacts, BAModel.Customer)

AS c

As you can see, you can also use Object Services and EntityClient with Entity SQL to

build more complex queries around types.

Mapping Table per Type Inheritance for Tables That Describe Derived Types | 369

Download from Library of Wow! eBook <www.wowebook.com>

In LINQ, the safest way to do type filtering is to use the OfType method, because the rest of the query will know you are working with Customer and not Contact, allowing

you to do any further filtering or projection based on Customer properties.

When you place the type filter in the Where clause, the rest of the query is still based on the type being queried—in the preceding example, Contact. You won’t be able to do

projection or filtering on Customer properties.

Creating New Derived Entities When the Base Entity Already Exists

What if you have a contact that becomes a customer? This is an important business

rule for BreakAway Geek Adventures, and one that TPT inheritance doesn’t readily

support. This isn’t to say that the Entity Framework doesn’t support this scenario, but

TPT by definition doesn’t support it.

Let’s look at what may seem like logical options using the Entity Framework, and why

they won’t work. The counterpoints provide a lot of insight into the workings of Object

Services.

 Add a new Customer object

As you have seen, adding a new Customer object will cause a new Contact to be

created in the database. Therefore, you can’t just add a new customer for an existing

contact.

 Create a new Customer and populate its ContactID with the ContactID of the Contact If the Contact is not being managed by the context, the Entity Framework will still

see this as a new Customer and will try to add the Contact to the database.

 Get the Contact into the context and add a new Customer with the same ContactID

Both the Contact and the Customer are members of the Contacts entity set. You will

not be able to add the Customer to the context because a member of the Contacts

entity set with the same EntityKey already exists in the context.

 Detach the Contact from the context, set Customer.EntityKey=Contact.EntityKey and Customer.ContactID=Contact.ContactID , and then call SaveChanges

You would be getting closer to a solution with this. However, the Customer will be

seen as having no changes, and therefore nothing will happen when SaveChanges

is called. If you do something to make the Customer “modified,” the database com-

mand that results will be to update a nonexistent Customer record, and that too

would fail. In addition, that is a lot of steps to solve a simple problem.

 Delete the Contact and create a new customer (which in turn will create the Contact row in the database)

This would mean that the new Contact would get a new ContactID, breaking any

relationships to other entities, such as Addresses.

 Use Entity SQL’s TREAT operator to “upcast” the Contact to a Customer type Unfortunately, this won’t work either. The Entity Framework cannot cast from

one type to another.

370 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

Although you may want to continue banging your head against the wall with creative hacks, the reality is that the inheritance does not support this scenario, and even with

all of the other benefits that came along with having Customer inherit from Contact, this

is a big problem.

Locked into a Corner with Inheritance?

Early in the classic programming book Design Patterns (Addison-Wesley Professional), authors Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides discuss inheritance versus composition and conclude that one should “favor composition over

inheritance.” Composition uses building blocks. This would mean changing the model

so that the FirstName and LastName properties of Contact would be accessed from the

Customer type using Customer.Contact.FirstName. Inheritance is definitely more con-

venient for many reasons, but it also has its drawbacks. As you can see with TPT in-

heritance, the derived type is completely bound to the base type and there is no way to

separate the two. One example of a drawback is the inability to delete a Customer entity

without also deleting its Contact. In the BreakAway business, it could be necessary to

be able to do that.

Having Customer inherit from Contact is something you should consider prior to de-

signing your EDM. TPT inheritance may be perfect for your business model; it may

create some rare annoyances; or it may not be the right way to go at all. These are

decisions you’ll need to make.

Given the existing model, the best way to create a Customer for an existing Contact is

to use a stored procedure—not a stored procedure that is wired up to the Customer

entity through mappings, but a separate one that can be called explicitly from code.

This will allow you to have your cake (the convenience of the derived type) and eat it

too (perform functions that TPT inheritance does not support). We will discuss stored

procedures in Chapter 16, and at that time you’ll see how to leverage the EDM’s flexibility to solve this problem and how this stored procedure can be called as a method

of the BAEntities class.

TPT with Abstract Types

In the current inheritance model, the base type, Contact, is instantiated for some enti-

ties, and Customer is instantiated for others. It is possible to have base types that are

 abstract, which means they are there to help define the structure of entities that derive from them, but they will never be instantiated.

If you turned Contact into an abstract type, however, a few hundred contacts (those

that are not customers) will never appear in your application because they won’t have

an instantiated type to map to. You would have no way to access contacts who are not

customers.

To solve this you need to create derived entities to represent other types of contacts.

Mapping Table per Type Inheritance for Tables That Describe Derived Types | 371

Download from Library of Wow! eBook <www.wowebook.com>

What would a derived type that accesses the noncustomer contacts look like? Let’s

modify the model to see:

1. Open the model in the Designer and select the Contact entity.

2. In the Properties window, change the value of its Abstract property to true.

Now Contact is an abstract type.

3. Run the TPTMap method again.

4. When the breakpoint is hit, debug the results of the Contact query and you will see

that only customers are returned. The entire set of data for contacts who are not

customers is missing.

Now it’s time to create the new derived type:

1. In the EDM Designer, create a new entity and name it NonCustomer.

You can create a new entity by right-clicking in the design window and selecting

Add and then Entity, or by dragging an Entity from the Toolbox.

2. Select Contact from the “Base type” drop-down list. The other fields in the Add

Entity window will become disabled since they don’t pertain to a derived type.

3. Click OK.

That’s it. Because there are no additional fields in this new entity, there’s no need

to do any mapping.

Unfortunately, there is a bug in the EDM Designer that will cause

it to report that NonCustomer is not mapped. This will show up as

an Error in the Visual Studio IDE. Normally, errors prevent appli-

cations from compiling, but not this one. You’ll simply have to

ignore it; it will have no impact on your application.

If you were to look in the raw XML of the EDMX file, the only instance of

NonCustomer you will find in the XML (other than the Designer information) is this

element in the CSDL:

<EntityType Name="NonCustomer" BaseType="BAModel.Contact" >

</EntityType>

If any fields in the Contact entity were relevant to a NonCustomer but were

not relevant to a Customer, you could move them over to the new entity.

That scenario would require additional mapping. But in this case, ev-

erything you need for NonCustomer is already provided by the Contact

abstract type.

4. Run the application again and check out the Contact query results in the debugger

when you hit the breakpoint. All of the additional contacts are back as

NonCustomer types.

372 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

Because Contact is now abstract, the custom CreateContact method

added to the Contact partial class in Chapter 11 is no longer valid because you cannot instantiate a contact. You’ll need to delete or comment

out that method so that the model project will compile.

I cover additional types of inheritance that the EDM supports later in this chapter.

Mapping Unique Foreign Keys

Often, a foreign key in a database relationship must be unique. There is no such ex-

ample in the BreakAway database, but I’ll use the relationship between Contact and

Address to explain. Currently Contact has a one-to-many relationship with Address.

Address has a primary key of addresssID and another field, ContactID, which is a foreign

key in this relationship. A contact can have many addresses. You could enforce a rule

in the database that a contact can have only one address. In SQL Server Management

Studio, you can do this by creating a unique index on the Address table as shown in

Figure 14-5.

 Figure 14-5. Defining a unique index on a foreign key in SQL Server Management Studio

Now the challenge is to reflect this unique constraint in the model.

What seems to be the obvious solution is to change the 1:* association between Con

tact and Address in the EDM into a 1:1 association. However, the mapping will not

validate when you have a foreign key association between the two entities as in the

BreakAway model. The only way to map a unique foreign key association is by using

an independent association. This is the same type of association that you may be fa-

miliar with from using Entity Framework in .NET 3.5, where foreign keys were not

supported.

Mapping Unique Foreign Keys | 373

Download from Library of Wow! eBook <www.wowebook.com>

To turn the foreign key association into an independent association would mean re-

moving the ContactID foreign key from the Address entity and recreating the association

through mappings. When encountering this problem in your production applications,

you’ll have to decide which is more important to your model and your application logic:

the foreign key scalar (e.g., Address.ContactID) or being able to define a 1:1 association between one entity (Contact) and another (Address) when they are joined through a

foreign key (ContactID).

If you are using WCF RIA Services (see Chapter 17), be aware that they do not support independent associations; they support only relationships that are defined on scalar foreign key properties.

To make the change to the association, you’ll need to do the following:

If you practice these steps on the BreakAway model, please be sure to

revert to the original, foreign key association.

1. Delete the ContactID foreign key property from Address entity.

2. Select the Asscoation between Contact and Address.

3. In the Properties window for the association, open the Referential Constraints by

clicking the ellipses next to that property.

4. Delete the constraint by clicking the Delete button.

5. Right-click the association in the Designer and select Table Mapping from the context menu.

6. In the Mapping Details window, click the <Add a Table or View> element to ex-

pose the drop-down.

7. From the drop-down, select Address.

The mappings should populate automatically as shown in Figure 14-6.

8. Return to the Properties window for the association.

9. For the property called “End2 Multiplicity,” which currently has the value

* Collection of Addresses, change that property to 1 (One of Address) using its

drop-down list.

10. Validate the model by right-clicking the design surface and choosing Validate. You

should not see any error messages related to this mapping.

Now you have defined a unique foreign key relationship between Contact and

Address in the model.

374 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 14-6. Association mapping between Contact and Address

If you followed these steps, please remember to revert to the foreign key association

that was originally defined between these two entities.

Mapping an Entity to More Than One Table

 Entity splitting, also referred to as vertical splitting, allows you to map a single entity to more than one table. You can use entity splitting when tables share a common key, for

example, when a contact’s personal and business information is stored in separate tables. You can use entity splitting as long as the primary keys in the database tables

match.

The BreakAway model contains an entity that we have thus far ignored: ContactPerso

nalInfo, which has a ContactID property (see Figure 14-7 for the database representa-

tion and Figure 14-8 for the entity). The purpose of the database table from which the entity was created is to provide additional information about customers that might be

useful for BreakAway employees to be aware of when these customers participate in

trips. This table is the victim of poor database design. There is no primary key/foreign

key constraint between it and Contact or Customer.

One way in which you can link this new entity to a customer is to create a 1:1 association between Customer and ContactPersonalInfo using ContactID. That would make

Customer a navigation property of ContactPersonalInfo and vice versa. However, this

wouldn’t be very convenient, as you would always have to traverse the navigation to

get to the properties—for example, Customer.ContactPersonalInfo.BirthDate.

Wouldn’t it be nice to just call Customer.BirthDate? Entity splitting can solve this prob-

lem very easily, by mapping both the Customer table and the ContactPersonalInfo table

to the Customer entity.

Mapping an Entity to More Than One Table | 375

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 14-7. Two database tables that share a primary key and can be represented as a single entity Figure 14-8. The ContactPersonalInfo entity

Merging Multiple Entities into One

Thanks to the Designer’s copy-and-paste functionality, you can easily copy the

ContactPersonalInfo properties into the Customer entity. Once you have done that, all

that’s left is to map the Customer entity’s new properties back to the appropriate table.

1. Copy and paste all but the ContactID properties from ContactPersonalInfo into the

Customer entity.

2. Delete the ContactPersonalInfo entity from the model.

Since you will still need the table schema information, answer No to the dialog that

asks if you want to delete the table from the store model. See the sidebar “Adding

and Deleting Entities from the Model” on page 377 for more information about this step.

376 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

3. Open the table mappings for the Customer entity.

4. At the bottom of the property mappings, select Add a Table or View, which will

cause a drop-down arrow to display to the right of the column.

5. Click the drop-down arrow and choose ContactPersonalInfo from the list of avail-

able tables in the Store schema.

All of the column mappings should populate automatically, as shown in Fig-

ure 14-9.

6. Save the model.

 Figure 14-9. Mapping an entity to multiple tables

Adding and Deleting Entities from the Model

In Chapter 6, you used the Update Model Wizard to pull in the stored procedures from the database. As the current discussion is about modifying models, this is a good time

to revisit the Update Model Wizard and some related features of the Designer.

Although you used the wizard to add database objects that you skipped over when first

creating the previous model, you can also use the wizard to add objects that were created

in the database after you originally built the model.

For example, if a new table has been added to the database, the Update Model Wizard

will discover that the table is not already listed in the Store Schema Definition Layer

(SSDL) of the model and will display it in the Add page of the wizard. If you select this

new table, the wizard will add the table to the model and will create a new entity for

it. This is the same way that the Entity Data Model Wizard works when you are creating

new models.

The Update Model Wizard does not allow you to specify changes to existing objects—

for example, tables that were included in the model but have since been modified in

the database. The wizard will automatically apply those changes. If you have added

new columns to an existing table for which an entity exists in the model, those fields

Mapping an Entity to More Than One Table | 377

Download from Library of Wow! eBook <www.wowebook.com>

will come into the model and will be added to the entity automatically. Not all changes

will affect the conceptual model, however. For example, if you change the spelling of

a column name in the database, the wizard will not know to line it up with the existing

entity property and instead will create a new property. In this case, you would need to

remove the new property and modify the entity mappings so that the existing property

points to the correct column.

One Designer feature that you should pay attention to is what happens when you delete

entities from the design surface. The Designer asks a question that, at a quick glance,

might appear to be a simple confirmation: for example, “Are you sure you want to

delete the entity?” But if you look more carefully at the dialog, as shown in Fig-

ure 14-10, you’ll see that the question is more involved than this and you might want to think a moment before responding.

If you select Yes, the SSDL representation of the table will be removed. That means if

you run the wizard again, you will have a chance to add the entity back into the model.

If you choose No, the SSDL definition will remain in place and the entity will not show

up the next time you run the Update Model Wizard.

This confirmation when deleting entities is new to the EDM Designer in Visual Studio

2010. Previously, when you deleted an entity the SSDL representation was left intact,

which made it difficult to reintroduce a particular table into the model. This was a

source of confusion for many developers.

 Figure 14-10. The confirmation dialog when deleting entities from the model

Querying, Editing, and Saving a Split Entity

Now you can test the revised entity. In the following exercise, you’ll query the new

entity, modify the returned object, create a new entity, and then save your changes.

These actions will allow you to see how the Entity Framework handles an update and

an insert involving multiple tables.

1. Add the method in Example 14-3 to the project’s main code file.

378 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

 Example 14-3. Querying for and modifying a type that maps to multiple tables private static void EntitySplit()

{ using (var context = new BAEntities())

{

//query for a customer and modify a new property

var firstCust = (from c in context.Contacts.OfType<Customer>()

select c)

.First();

firstCust.BirthDate = new System.DateTime(1981, 1, 26);

var newCust = new Customer

{

FirstName = "Nola",

LastName = "Claire",

HeightInches = 68,

WeightPounds = 138,

DietaryRestrictions = "Vegetarian"

};

context.AddToContacts(newCust);

//save modified customer and new customer to db

context.SaveChanges();

}

}

2. Add code to call EntitySplit in the Main method.

3. If you are interested in seeing the results in the database and are using SQL Profiler, start a new trace.

4. Run the project.

A quick check in SQL Profiler shows that when querying for the first customer, an inner

join was used to include the values from the ContactPersonalInfo table.

The SQL Profiler screenshot in Figure 14-11 shows the commands that are executed when editing a Customer and when adding a new Customer. The first two commands

update the ModifiedDate field in Contact and the BirthDate field in

ContactPersonalInfo for the first Customer that was queried and edited. The newly added Customer results in the creation of a Contact, a ContactPersonalInfo record, and

finally, a new row in the Customers table.

The first insertion occurs because of the inheritance you created between Customer and

Contact, but the insertion to the ContactPersonalInfo table occurs thanks to the entity

splitting you just defined in the model. The Entity Framework is able to work out this

customization in the model and translate it into the correct commands in the database

without the developer having to worry about modification operations or about the fact

that a number of tables are involved in the query.

Mapping an Entity to More Than One Table | 379

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 14-11. A screenshot from SQL Profiler showing the commands that are executed when editing a Customer and adding a new Customer

Mapping Stored Procedures to Split Tables and More

The BreakAway database has a stored procedure called UpdateCustomerWithMapping,

which updates values in Customers, Contact, and ContactPersonalInfo. Now that the

Customer maps to columns in all three tables you could map this stored procedure to

the Customer entity. Figure 14-12 shows the mapped function.

This function mapping is just a sample to help you understand that it is

still possible to map stored procedures to complicated entities. How-

ever, it is not designed to be a permanent part of the BreakAway model.

If you do follow the step of mapping this function, please remove it

before moving on with this chapter.

380 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 14-12. Mapping a stored procedure to an entity that is derived from one entity and points to multiple tables

Chapter 16 provides some additional information about mapping

stored procedures in an inheritance hierarchy. See the section titled

“What If Stored Procedures Affect Multiple Entities in an Inheritance

Structure?” on page 445.

Splitting a Single Table into Multiple Entities

 Table splitting (a.k.a. horizontal splitting) allows you to create multiple entities from the properties of a single table. This is convenient for tables that have many columns

where some of those columns might not be needed as frequently as others.

A great use case for this is a scenario in which you want to load some properties for an

entity but defer loading other properties. Splitting the entity into one or more related

entities will allow you to do this. Lazy loading makes this even more interesting because

you will, in reality, be lazy loading select columns of your database table.

Consider entities that have fields containing large amounts of data, such as a blob or

an image. Loading these columns is expensive. By mapping to that column from a

separate, related entity, you can defer loading it until you explicitly need it.

The BreakAway model doesn’t present a great use case for table splitting, but I will use

the Address entity to demonstrate the technique. However, I will not save these changes

to the Address entity since I want it to remain in its current state.

Splitting a Single Table into Multiple Entities | 381

Download from Library of Wow! eBook <www.wowebook.com>

We’ll split the Address entity into two entities, creating a separate entity for the StateProvince, CountryRegion, and PostalCode properties. As I said, there’s no real use

case with this entity, but it’s good enough to show how it’s done.

1. Copy and paste the Address entity to create a duplicate entity that, by default, is

called Address1.

2. Rename this new entity AddressExtra.

3. Delete the three target fields (StateProvince, CountryRegion, and PostalCode) from

the Address entity.

4. Delete all but the addressID and three target fields from the AddressExtra entity.

The new entity did not retain its mappings when you created it.

5. Open the Mapping Details window for AddressExtra.

6. Map it to the Address table, as shown in Figure 14-13.

Next, create an association between the two entities.

7. Right-click on Address and choose Add Association.

8. Set up the association, as shown in Figure 14-14. Be sure to uncheck the option to add a foreign key property since you already have a matching key.

The next step is the secret sauce! Create a referential constraint between the two

entities.

9. Open the Properties window for the association and click on Referential

Constraint.

10. Click the ellipses for the Referential Constraint property and create the constraint

as displayed in Figure 14-15.

 Figure 14-13. Mapping the new entity

Now that you have split the Address table across multiple entities, you can interact with

them separately. You can work with AddressExtra directly without needing an

Address type and vice versa.

382 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 14-14. Defining an association

Remember to undo this change in order to move forward with this book.

You can easily reset the Address entity with the following steps:

1. Delete both the Address and AddressExtra entities from the model.

When asked if you want to delete the tables from the store model,

answer Yes.

2. Run the Update Model from Database Wizard and add the

Address table back into the model.

Filtering Entities with Conditional Mapping

The next area of customization to cover is conditional mapping. You can use condi-

tional mapping directly when mapping an entity to the data store, or in inheritance

scenarios. We’ll look at the first mapping in this section and the inheritance use later

in the chapter.

Conditional mapping places a permanent filter on an entity by defining that an entity

will be mapped to data in the database only under certain conditions. Therefore, if you

have a scenario in which you will need to filter data 100% of the time on a particular

value, rather than having to add this filter to every single query you can define it as part of the mapping.

Filtering Entities with Conditional Mapping | 383

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 14-15. Creating a referential constraint

As an example, imagine that BreakAway Geek Adventures’ owner decides that from

now on she will provide only water-related activities. However, she does not want to

delete historical data from the database. The model can use conditional mapping to

ensure that any time activities are requested, only water-related activities are brought

into the application, and that anytime a new activity is created it will automatically be

defined as a water activity.

As another example, rather than filtering by activity type, you can introduce a Boolean

field named Discontinued into the Activities table in the database. Then in the con-

ditional mapping, you can create a filter that allows only activities to be returned from

the database when Discontinued=0 or False.

It is possible to use conditional mapping in the following ways:

[value] Is Null

[value] Is Not Null

[integer value] (e.g., 1)

[string value] (e.g., Water)

The Designer supports conditional mapping, but in the Designer, you do not use the

quotations around the integer or the string. In the XML, those values will be surrounded

by quotations.

384 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

The Activity entity contains a Category property that is a string. In the following sec-

tion, we will walk through the first scenario: working solely with activities whose cat-

egory is “Water”.

Single Mappings Only, Please

With one exception, you can map a field in a table only once. Therefore, you can have

either a mapping to a property or a conditional mapping, but not both. The exception

is for conditions you set to Is NotNull. In that case, you must also map the column.

The model validation will be happy to let you know when you have broken these rules.

Creating a Conditional Mapping for the Activity Entity

The changes made to the model in this walkthrough will not be used

going forward. At the end of the walkthrough, you will be instructed to

undo this mapping.

Because you can map a database column only once, you must remove from the entity’s

scalar properties whatever property you will be using for a conditional mapping:

1. Select the Activity entity.

2. Delete the Category property from the entity.

3. Open its Mapping Details window.

4. Click <Add a Condition>, and then click the drop-down arrow that appears.

5. Select Category from the drop-down list.

6. In this mapping, use the default operator (=) for the value comparison.

7. Under Value/Property, type Water. Figure 14-16 shows what the settings should look like when you are finished.

The Is Null/Is Not Null Conditions

If you wanted the condition to test for null values, you can change the operator by using

the drop down and selecting Is. When you set the operator to Is, Value/Property be-

comes a drop down with the options Null and Not Null, as shown in Figure 14-17.

Querying, Inserting, and Saving with Conditional Mappings

You’ll see with the following exercise that the condition not only filters data coming

from the database, but also impacts data going into the database. This tests the Category

= Water condition in your mapping.

Filtering Entities with Conditional Mapping | 385

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 14-16. Adding a conditional mapping to the Activity entry indicating that only rows whose Category value is equal to Water should be returned when querying against this entity

1. Add to the test module the method shown in Example 14-4.

 Example 14-4. Querying, creating, and saving conditionally mapped entities

private static void ConditionalMap()

{ using (var context = new BAEntities())

{

var query =

from a in context.Activities

select a;

var activities = query.ToList();

var newAct = new Activity();

newAct.Name = "WindSurfing";

context.Activities.AddObject(newAct);

context.SaveChanges();

}

}

2. Call the ConditionalMap method from the module’s Main method.

386 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 14-17. Changing the condition operator to Is, which turns Value/Property into a drop-down list with the options Not Null and Null

3. You might want to comment out the previous method calls from Main.

4. Set a breakpoint on the code after query.ToList is called.

5. Run the application.

When you hit the breakpoint, look at the activities variable in the QuickWatch win-

dow. You will see that only activities in the Water category were retrieved.

The insert is even more interesting. Although the only property you set in code was the

ActivityName, look at the T-SQL that was generated and you will see that Water was

inserted into the Category field:

exec sp_executesql N'insert [dbo].[Activities]([Activity], [imagepath], [Category])

values (@0, null, @1)

select [ActivityID]

from [dbo].[Activities]

where @@ROWCOUNT > 0 and [ActivityID] = scope_identity()',

N'@0 nvarchar(50),@1 nvarchar(50)',@0=N'WindSurfing',@1=N'Water'

The condition was automatically used in the insert. The condition that all Activity

entities should have a category of “Water” also means that any newly created

Activity entities will also have a category of “Water”.

Filtering on Other Types of Conditions

What if you wanted to include any activity except water-related activities? Unfortu-

nately, it is not possible to map this directly in the model. There is no operator for “not equals” because the mapping tool won’t be able to automatically assign a value to the

database column. It is not possible to map a table column more than once except in

one case. See the sidebar “Single Mappings Only, Please” on page 385 for more details on that.

Filtering Entities with Conditional Mapping | 387

Download from Library of Wow! eBook <www.wowebook.com>

What you see in the Designer—an equals sign combined with an integer or string, Is

Null, and Is Not Null—is the full extent of what the model is capable of. This also

means that in conditional mapping, you can’t use operators such as greater than (>) or

less than (<), or filter on other types such as a date. However, deeper in the model there is still a way to achieve this, using a mapping element called QueryView. We will discuss

QueryView in detail in the next chapter.

If it’s an option, you may need to resort to adding a new column, such as WaterActiv

ity or DiscontinuedActivity, into the database table. Then you can easily create a con-

ditional mapping on the Boolean field. Yet another option is to create a view in the

database and use that rather than the activity table along with stored procedures for

inserting, updating, and deleting.

Removing the Conditional Mapping from Activity and Re-creating

the Category Property

You may not want to have this conditional mapping in place going forward, so feel free

to remove it. A bunch of Undos might do the trick. You could even delete Activity

from the model (allowing the wizard to delete the table and two related join tables from

the store schema), and then run the Update Model from Database Wizard to bring it

and the join tables back in.

Otherwise, you’ll need to manually add the Category property back into the Activity

entity and map it to the Category field in the Activities table.

1. Click the When Category mapping in the Mapping Details window.

2. Select <Delete> from its drop-down list.

3. Right-click the Activity entity in the Designer, and choose Add and then Scalar

Property from the context menu.

4. Fix up its properties: Name = Category, Type = String, Nullable = False, Fixed

Length = False, MaxLength = 50, and Unicode = False.

5. Return to the Mapping Details window and map the Category field of the

Activities table to the Category property.

I like to either validate the model (from the Designer’s context menu)

or rebuild its project whenever I’ve made modifications in case I’ve done

something wrong and have broken the model.

388 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

Implementing Table per Hierarchy Inheritance for Tables That

Contain Multiple Types

Another type of inheritance that the EDM supports is Table per Hierarchy (TPH). TPH

inheritance depends on conditional mapping. Rather than including only records that

match the condition, the condition is used to define records as different types.

Figure 14-18 displays the Lodging entity with the Resort Boolean to define lodgings that are resorts. You can use this Boolean to create a new type in your model: Resort, which

will inherit from Lodging. This is very different from the tables that provided for TPT

inheritance where the properties of the derived type were defined in a separate table.

 Figure 14-18. The Resort property of the Lodging entity, which suggests a new inherited type, Resort By default, the EDM Designer shows only the names of scalar properties.

However, the Designer context menu option, Scalar Property Format,

allows you to display property names along with their type, as you see

in Figure 14-18. Right-click in the Designer background to find the Scalar Property Format setting.

As you’ll see in the following walkthrough, TPH mapping uses conditional mapping

to help determine which data describes a lodging that is not a resort and which data

describes a resort.

Implementing Table per Hierarchy Inheritance for Tables That Contain Multiple Types | 389

Download from Library of Wow! eBook <www.wowebook.com>

Creating the Resort Derived Type

The BreakAway Lodging entity has a Boolean property called Resort. Let’s use this property to define Resort as a new type of lodging:

1. Right-click the background of the Designer.

2. From the context menu, choose Add and then Entity.

3. Change the entity name to Resort.

4. Select Lodging from the “Base type” drop down.

Notice that the EntitySet automatically becomes Lodgings and is disa-

bled so that you cannot modify it. Since Resort will inherit from

Lodging, it will be part of the Lodgings EntitySet.

Notice also that the section for the Key property has become disabled.

The Lodging entity will still control the entity key, even for derived types.

Now that you have the new type defined, how will the Entity Framework decide which

Lodging records go into the Lodging entity and which go into the Resort entity? The

answer is conditional mapping.

First, we’ll use conditional mapping to filter Lodging records into the base or derived

type:

1. Delete the Resort property from the Lodging entity.

As you learned when creating the conditional mapping earlier, you can’t

map a table column more than once. Since you will be using the

Resort property for conditional mapping, you can’t use it in the property

mapping. Therefore, there is no need for the Resort property.

2. Open the Mapping Details window for the Lodging entity and click <Add a

Condition>.

3. Select Resort from the Condition drop down and change the condition value to 0.

This condition states that records that are filtered into the Lodging entity will be

records whose Resort property equals 0 or False.

4. Select the Resort entity and open its Mapping Details window.

5. Map the entity to the Lodging table. Then create a condition for Resort = 1 (or True).

Next, we’ll move resort-specific properties to the Resort entity type:

6. The ResortChainOwner and LuxuryResort properties don’t make sense in the

Lodging entity. They belong in the Resort entity. So, cut and paste these two prop-

erties from the Lodging entity into the Resort entity.

390 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

7. Open the Mapping Details window for Resort, and map the ResortChainOwner and

LuxuryResort properties to the appropriate columns in the Lodging table.

When you’re done, the Lodging and Resort types should look as they do in Figure 14-19.

 Figure 14-19. Resort now inheriting from Lodging based on a conditional mapping

Setting a Default (Computed) Value on the Table Schema

If you try to run any code against Lodging at this point, you will encounter a problem.

The LuxuryResort field is a Boolean field. In the database, the field is non-nullable and

has a default value of 0. The EDM Wizard does not bring default values over to the

model’s SSDL. This creates a problem for the Lodging entity. The Lodging entity maps

to the Lodging table but does not map the LuxuryResort or ResortChainOwner column

because we removed the properties from the Lodging entity. Only the Resort entity maps

those fields. Because Lodging does not map those fields, the model will throw a runtime

exception telling you that Lodging doesn’t know how to deal with LuxuryResort because

it is non-nullable and has no default value. Therefore, the Entity Framework runtime

wants to populate this field, but because the properties don’t exist in Lodging, the field is not mapped, and therefore the Lodging entity is unable to modify the value.

There are two ways to correct this. Neither is pretty. Both solutions require that you

manually edit the SSDL’s XML. The first way to correct this is to use the StoreGenera

tedPattern attribute to let the Entity Framework know that the database will take care

of this value. You can do this by setting StoreGeneratedPattern to Computed:

<Property Name="LuxuryResort" Type="bit" Nullable="false"

StoreGeneratedPattern="Computed" />

Implementing Table per Hierarchy Inheritance for Tables That Contain Multiple Types | 391

Download from Library of Wow! eBook <www.wowebook.com>

Alternatively, you can set the column’s DefaultValue to false:

<Property Name="LuxuryResort" Type="bit" Nullable="false"

DefaultValue="false"

There is a StoreGeneratedPattern attribute available in the Properties

window for entity properties. This will not apply the setting in your

SSDL. This is used for model-first development (Chapter 25). You’ll also see there is a Default Value property. This is only to define defaults in

the conceptual model and won’t impact the SSDL. You really must edit

the SSDL manually to affect either of these settings for this mapping.

Remember that if you run the Update Wizard, manual changes to the

SSDL will be overwritten and need to be made again.

Testing the TPH Mapping

The following method will help you see the effect of the TPH mapping. You can query

for all lodgings, including any derived types, or for a specific derived type. This is similar to the tests you did against the TPT mapping. It’s a little trickier to query for a subset that is not a derived type.

The following queries are executed in unique contexts so that entities that are a result

of one query do not merge with entities of another query. In this way, you can more

easily see the full impact of each of the various queries.

1. Add the method in Example 14-5 to the test module.

 Example 14-5. Querying types in a TPH mapping

private static void TPHMap()

{ using (var context = new BAEntities())

{

var query =

from lodge in context.Lodgings

select lodge;

Console.WriteLine("All Lodgings: " + query.Count().ToString());

}

using (var context = new BAEntities())

{

var query =

from lodge in context.Lodgings.OfType<Lodging>()

select lodge;

Console.WriteLine("NonResort Results: " + query.Count().ToString());

}

using (var context = new BAEntities())

{

var query =

392 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

 from lodge in context.Lodgings.OfType<Resort>()

select lodge;

Console.WriteLine("Resort Results: " + query.Count().ToString());

}

}

2. Call the TPHMap method from the module’s Main method.

3. Run the application.

When you see the output of the console window, you may be surprised that the second

query, which you may have expected to return only NonResort lodgings, returned all of

the lodgings, regardless of the Resort filter:

All Lodgings Results: 101

NonResort Type Only Results: 101

Resort Type Only Results: 10

Why is this?

Even though you put a condition on Lodging that states Resort=0 (false), Lodging is a

base type. No matter what, Lodging will return itself and all types that derive from it.

With a simple query it is not easy to say “give me the base type but none of its derived

types.” So, even though the condition is there, you’ll continue to receive all of the Lodgings, even with Resort=1.

If you want an easy way to retrieve non-resort lodgings, you can create a second derived

type that inherits from Lodging to retrieve all of the Lodging entities that are not resorts.

In this case, the actual Lodging entity would become an abstract type because it will

never be instantiated. The Lodging entity itself cannot be instantiated and will never

return Lodging entities. Instead, the Lodgings EntitySet will return only those entities

that come from its derived types: Resort and NonResort.

To do this, follow the same steps that you did to turn Contact into an abstract type and

create the NonCustomer entity to represent all of the contacts who are not customers.

Choosing to Turn a Base Class into an Abstract Class

You’ve just seen a demonstration of how TPH inheritance works. If your business rules

define that you would never want to get the entire set of types (e.g., all of the lodgings at once), it makes sense to have the abstract class in the model and to use the derived

types to interact with the objects. If your business rules define that in many cases you

will want to work with all lodgings, regardless of type, using the base type without

defining it as an abstract class may be preferable.

Creating Complex Types to Encapsulate Sets of Properties

Complex types are a convenient way to encapsulate a set of properties. You may want

to do this when you have properties that are common among entities (e.g., different

entities that have properties to contain addresses). You may just want to use a complex

Creating Complex Types to Encapsulate Sets of Properties | 393

Download from Library of Wow! eBook <www.wowebook.com>

type to create a better structure in your entity. Imagine that your model has a Customer entity that contains address properties. You may prefer to navigate through

the contact with the address fields tucked inside a complex type.

Therefore, rather than having all of this to deal with when programming:

Customer

FirstName

LastName

Street

City

State

Zip

Phone

you could encapsulate those properties related to the address into a complex type called

Address, and then insert Address as a property into the Customer type:

Customer

FirstName

LastName

Address

Phone

Then, to get at the address information, you can drill further:

Customer.Address.City

Customer.Address.State

What’s really nice is that the complex types are still types, so you can instantiate them

and use them outside their parent entity. However, complex types are not

EntityObjects, but ComplexObjects. They don’t have EntityKeys and are not contained

in their own EntitySet; therefore, they cannot be queried directly or persisted into the

database on their own. As part of an entity object, you get all of the benefits—change

tracking, updates, and so forth—of the entity.

Defining a Complex Type

The EDM Designer provides a few ways to create complex types. We’ll focus for now

on the method that fits the scenario of encapsulating entity properties.

We’ll use the Address entity again as our guinea pig and then unwind the changes going

forward. We’ll encapsulate a piece of the address into a new complex type called Mail.

1. In the Designer, select the following properties from the Address entity: Street1,

Street2, City, and StateProvince.

2. Right-click on one of them and choose Refactor into New Complex Type from the

context menu, as shown in Figure 14-20.

As a result, the Model Browser will open with the new complex type highlighted.

Its default name is ComplexType1.

3. Rename this to Mail, as shown in Figure 14-21.

394 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 14-20. Creating a complex type from selected properties

 Figure 14-21. The renamed complex type in the Model Browser

In the entity, the four properties have been replaced by a new property named

ComplexProperty. Its type, as shown in Figure 14-22, is the new Mail type.

4. Rename the property to Mail.

Unfortunately, you can’t open the Mail subproperties in the Address entity in the De-

signer. You can see them only in the Model Browser.

In Figure 14-23, you will notice that there is no Nullable property in the ComplexProperty’s Properties window. That’s because complex types cannot be

nullable.

If you look at the mapping details for Address, shown in Figure 14-23, you can see that the wizard changed the mappings to point to the properties of the Mail complex type.

Creating Complex Types to Encapsulate Sets of Properties | 395

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 14-22. The property that houses the new complex type before it has been renamed Figure 14-23. Table columns mapped to complex type properties

Reusing Complex Types

Once you’ve created a complex type, you can use the same type in other entities that

have the same sets of fields. For example, in addition to the imaginary Customer entity

described at the beginning of this section, you might have another entity, such as 396 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

Vendor, in that same model that also contains Street, City, State, and Zip properties.

You could reuse the Address complex type that was created to encapsulate the

Customer’s address fields in the Vendor entity. The Vendor entity’s mappings for the complex type fields would point back to Vendor.Street1, Vendor.Street2, and so forth

in the database.

Complex Types Are Not EntityObjects

Looking at the generated class for AddressDetail you will see that it is not an EntityObject, but rather a ComplexObject:

public partial class Mail : ComplexObject

Although you can instantiate and use these types directly in code, they do not have

EntityKeys, cannot be queried directly, and cannot be persisted to the database.

ComplexObject does allow the properties of the ComplexType to be change-tracked along

with the other properties of its parent entity, though. You can look further at the gen-

erated class and even drill into the System.Data.Objects.DataClasses.ComplexObject

class in Visual Studio’s Object Browser or in another tool such as Reflector.

Complex Types in POCO Classes

Just as you don’t want your entities to inherit from EntityObject in a POCO class,

neither do you want a ComplexType to inherit from ComplexObject. To leverage a model’s

ComplexType types with POCO classes, simply create a class to represent the type. There

are two important rules for enabling the class to map with the ComplexType. The first is

that you must use a class to define a type—you cannot use a struct. The second is that

you cannot use inheritance with the complex type classes.

Querying, Creating, and Saving Entities That Contain Complex Types

The method in Example 14-6 shows the ComplexType in action where data is queried, modified, and persisted back to the database. The mappings take care of retrieving and

updating the values of the complex type properties.

 Example 14-6. Querying, creating, and saving entities that contain a complex type

private static void ComplexType()

{ using (var context = new BAEntities())

{

Contact contact = (from c in context.Contacts.Include("Addresses")

where c.Addresses.Any()

select c).First();

Address firstAddress = contact.Addresses.First();

Creating Complex Types to Encapsulate Sets of Properties | 397

Download from Library of Wow! eBook <www.wowebook.com>

Mail currentMail = firstAddress.Mail;

Console.WriteLine("Street: {0}, City: {1}, State: {2}",

currentMail.Street1, currentMail.City,

currentMail.StateProvince);

Mail newMail = new Mail();

newMail.Street1 = "1 Rue Cardinale";

newMail.City = "Montreal";

newMail.StateProvince = "Quebec";

firstAddress.Mail=newMail;

context.SaveChanges();

}

}

This method first queries the model for a single Contact entity, along with its addresses.

It then extracts the Mail from the first address and displays some of its properties,

demonstrating that you can create an instance of the complex type. Next, it instantiates

a new Mail type, and sets that instance as the Mail property of the first address. Finally, SaveChanges is called, which updates the address information for the contact.

Here is the T-SQL that was executed on the server. You can see that the change tracking

does take into account the property values of the complex type:

exec sp_executesql N'update [dbo].[Address]

set [Street1] = @0, [Street2] = null, [City] = @1, [StateProvince] = @2

where ([addressID] = @3)

select [TimeStamp]

from [dbo].[Address]

where @@ROWCOUNT > 0 and [addressID] = @3',

N'@0 nvarchar(50),@1 nvarchar(50),@2 nvarchar(50),@3 int',

@0=N'1 Rue Cardinale',@1=N'Montreal',@2=N'Quebec',@3=2513

Complex types do not always behave the way you might expect them

to in data-binding scenarios. See Appendix B to learn about the behavior of complex types when data-binding with Windows Forms Data Source

controls, the ASP.NET EntityDataSource control, ASP.NET Dynamic

Data, and more.

Removing the Complex Types from the Model

If you have followed along and modified the model, you may want to undo these changes so that you’ll be able to use the model while working through more sample

code in this book: there’s nothing wrong with the complex type technically, but this

particular one is not a strong use case.

You can use the same method that you used to refresh the Address entity at the end of

the table-splitting example. Alternatively, you could delete the Mail property and re-

create the four properties (Street1, Street2, City, and StateProvince) in the Address

entity and remap them.

398 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

Using Additional Customization Options

There are yet more ways to customize the EDM. This section details some interesting

ones to be aware of. In addition, the Entity Framework team created a tool called the

Entity Framework Mapping Helper, which is on their Code Gallery site at MSDN. It

can give you a good view of the various mappings. See http://code.msdn.microsoft.com/

 EFMappingHelper/.

Using GUIDs for EntityKeys

In .NET 4, the Entity Framework supports using GUIDs as EntityKey. There are a few

nuances you should be aware of. If your GUID is store generated, unfortunately, the

Entity Data Model Wizard neglects to note that when buildling the SSDL. You will

need to manually edit the SSDL section of the EDMX file and set that property’s Store

GeneratedPattern to Identity. This is a bug with the Designer. You can learn more

about dealing with the problem in a blog post by Lee Dumond who learned it the hard

way: http://leedumond.com/blog/using-a-guid-as-an-entitykey-in-entity-framework-4.

If you do not need store generated keys, it will be up to you to ensure that your code

provides new GUIDs before inserting new entities.

The Entity Framework team has a helpful blog post about using GUIDs as Entity Keys,

performance issues to be aware of and even some plans for the future. See this post at

 http://blogs.msdn.com/b/adonet/archive/2010/06/28/performance-impact-of-server-side

 -generated-guids-in-ef.aspx.

Mapping Stored Procedures

In addition to the function mapping you used earlier in the book, you can map stored

procedures manually using a number of other methods. This includes mapping those

that are already in your database and those that you can create directly in the model.

We’ll cover these in Chapter 16.

Mapping Multiple Entity Sets per Type

Multiple Entity Sets per Type (MEST) allows you to contain a single entity in different

types, which could allow you to have different views of the same type without using an

inheritance model. However, MEST gets tricky pretty quickly when you start to intro-

duce entities that have relationships with other entities. Alex James from the Entity

Framework team provides useful information about MEST and its gotchas in his May

16, 2008, blog post, “MEST—What is it and how does it work?” (http://blogs.msdn

 .com/alexj/archive/2008/05/16/mest-what-is-it-and-how-does-it-work.aspx).

Using Additional Customization Options | 399

Download from Library of Wow! eBook <www.wowebook.com>

Mapping Self-Referencing Associations

You can find a great example of self-referencing associations when building a model

against Microsoft’s sample Northwind database, where employees and their supervi-

sors (who are also employees) are contained in the same table. A field called ReportsTo points back to other employees in the table. When you use the EDM Wizard

to create a model from Northwind, you will see that an association has been created

that links the ReportsTo property back to the EmployeeID in the same table. By default,

the two relevant navigation properties were named Employees and Employees1. Fig-

ure 14-24 shows this association along with the details of the referential constraint behind the association.

 Figure 14-24. An example of a self-referencing association in the Employee entity, which is created from the Employees table in the Northwind database

Modeling Large Databases

Developers often ask what to do about large legacy databases. The Designer does not

handily support huge databases, for a few reasons. Most importantly, large models are

much too unwieldy and difficult to navigate around. There is no way to visually group

entities onto different design surfaces or even by color.

Some third-party tools are exploring better ways to handle large models. Developer

Matthieu Mezil has some experiments along these lines on his blog (http://msmvps.com/

 blogs/matthieu), and LLBLGen Pro v3.0 (http://www.llblgen.com) has an Entity Framework designer that takes a different approach to the model design that enables working

with large models in great detail.

400 | Chapter 14: Customizing Entity Data Models Using the EDM Designer

Download from Library of Wow! eBook <www.wowebook.com>

Additionally, there is a performance issue at design time with very large models, as the Designer chugs away trying to represent the entire thing visually.

But the real question concerns not Designer support, but practicality. Do you really

want all of those entities in a single model?

My recommendation is to break the model into smaller logical models. Foreign key

support makes it even easier to leap from one model to another in your applications.

Remember that you must use separate contexts in your application when working with

entities from separate models.

I have clients who are successfully following this path with both Visual Studio 2008

SP1 and Visual Studio 2010.

Diving into this discussion would extend the chapter enormously. Ward Bell, from

IdeaBlade, the company behind DevForceEF, has written a fantastic thesis on dealing

with large models. Ward reaches the same conclusion about breaking up the model as

I have. He also has created a video and sample application demonstrating this practice,

which I have recommended to many clients. You can find this content under the section

“Break Up Large Models” at “Ward’s Corner” on the IdeaBlade site: http://ideablade

 .com/WardsCorner/WardsCorner_home.aspx.

Summary

The real power of the EDM lies in its ability to go beyond the simplistic representation

of the database, providing you myriad ways to shape your data model so that it is much

better suited to your business and your applications. This chapter showed you how to

achieve and leverage many of the mapping capabilities: TPT and TPH inheritance, conditional mapping, entity splitting and table splitting, complex types, and more.

You can take advantage of these features in far more ways than I discussed here, so

don’t stop with this book. Keep your eyes open for blog posts and articles by the many

people who are learning more and more about the Entity Framework to expand your

understanding.

Although the Designer supports some of these advanced techniques, you can achieve

even more by working directly with the EDMX’s XML, which you will do in the next

chapter.

Summary | 401

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 15

Defining EDM Mappings That Are Not

Supported by the Designer

In Chapter 14, you learned many ways to customize the conceptual model using the Entity Model Designer (EDM). The model’s schema supports even more mappings

beyond those which you can achieve with the Designer.

In this chapter, you’ll learn how to modify the XML manually to benefit from the more

commonly useful of these additional features of Entity Framework: model-defined

functions, table per concrete type inheritance, and QueryView. How this impacts your

work depends on which unsupported customization you are using. Unsupported fea-

tures can affect the use of the Designer in the following ways:

• The feature does not appear in the Designer. This is the most common.

• The Designer goes into Safe Mode when you attempt to open the model in the

Designer. Safe Mode presents a message that indicates the model cannot be opened

in the Designer, and displays a link to open the model in XML view.

• The Mapping Designer goes into Safe Mode, but the CSDL Designer displays.

As we walk through the following mappings, I will indicate how each mapping is han-

dled (or not handled) by the Designer.

Using Model-Defined Functions

Model-defined functions are new to Entity Framework 4. In the previous version of

Entity Framework, you could create a new property based on other properties in a

model only if you created that new property as a class property. In Chapter 11, you created custom properties. Although they are convenient, they have two downsides.

The first is that class properties cannot be used in a LINQ to Entities query or an Entity SQL expression. The second is that if you want to share the model and you also want

those custom properties to be shared, you’ll have to share class files in addition to the

metadata.

403

Download from Library of Wow! eBook <www.wowebook.com>

Now it is possible to define functions directly in the conceptual model, although it’s

important to keep in mind that these are functions, not entity properties. You can benefit by combining the functions with properties, as you’ll see in this section.

It is also possible (and was in the previous version of Entity Framework)

to use user-defined functions from the database. That’s a different topic,

and we’ll look at it at the end of Chapter 16.

The basic mechanism for creating model-defined functions is to write Entity SQL in a

function element in the conceptual model. It’s fairly simple to use these functions in

Entity SQL query expressions, but for LINQ to Entities, a few extra steps are necessary.

Let’s start with a simple function, one that I wanted to create the first time I started

playing with Entity Data Models a number of years ago: FullName.

Most databases give us FirstName and LastName. You always have to concatenate them

into a full name—for instance, sometimes into a reverse name such as Lerman, Julie or

sometimes just as Julie Lerman.

With the custom properties, you can create a full name property and easily access that

property when working with the instantiated object, but you can’t use it in a query such

as:

from p in context.Person orderby p.FullName select p;

Entity Framework can build only store expressions from elements in the model. In this

case, you would still always have to use orderby p.LastName + p.firstName.

Now you can create a function in the model to accomplish this.

Because the Designer does not support model-defined functions, you need to do this

work directly in the XML.

The Entity SQL expression to create a Lastname, Firstname result is:

SELECT Trim(c.LastName) + ", " + c.FirstName FROM BAEntities.Contacts AS c

To build a function in the model, you embed the part of the expression that returns the

value (Trim(c.LastName) + ", " + c.FirstName) in a new CSDL element called Defi

ningExpression. DefiningExpression is a child of Function. Therefore, you need to first

create a Function element and place the DefiningExpression within it.

Model-defined functions are part of the conceptual model. Therefore, the function goes

in the Conceptual Schema Definition Language (CSDL) section of the XML file. The

function must be a sibling of the EntityTypes. I place my functions below the last EntityType in the XML:

<!-- CSDL content -->

<edmx:ConceptualModels>

<Schema...>

<EntityContainers> . . . </EntityContainers>

404 | Chapter 15: Defining EDM Mappings That Are Not Supported by the Designer

Download from Library of Wow! eBook <www.wowebook.com>

 <EntityType> . . . </EntityType>

<EntityType> . . . </EntityType>

<EntityType> . . . </EntityType>

<Function>

<DefiningExpression>

Trim(c.LastName) + ", " + Trim(c.FirstName)

</DefiningExpression>

</Function>

There’s more to the function. You’ll need to provide some attributes for it, such as

Name, but more importantly, you have to pass in a parameter on which to perform the

expression. In this case, the parameter will be a Contact type; more specifically, a BAModel.Contact. We’ll name it “c” to stay in line with the expression.

Example 15-1 shows the complete function.

 Example 15-1. A simple function defined in the conceptual model

<Function Name="FullNameReverse" ReturnType="Edm.String" >

<Parameter Name="c" Type="BAModel.Contact"/>

<DefiningExpression>

Trim(c.LastName) + ", " + Trim(c.FirstName)

</DefiningExpression>

</Function>

Now you can call this from an Entity SQL expression. Unfortunately, you need to call

the function by its full name, using the namespace of the model.

SELECT c FROM BAEntities.Contacts AS c ORDERBY BAModel.FullNameReverse(c)

You could also use the function to return results:

SELECT c.ContactID, BAModel.FullNameReverse(c) FROM BAEntities.Contacts AS c

If you already have a custom property in the Contact entity for FullNameReverse, it is

still useful to use the function in a projection in cases where you do not need to return

a complete entity or when you are using EntityClient to stream back data without

materializing objects. Remember that you can’t use the custom properties in queries,

but you can use the model-defined functions.

As I mentioned, calling the function from LINQ to Entities is a bit trickier. By default,

the function is not built into the generated classes, and therefore LINQ to Entities won’t have access to it. The function needs to be in a static class. I created a Functions class and placed it in the solution where the model is because model-defined functions rely

on the Entity Framework.

The trick to the function is that it uses an attribute (new to .NET 4) that ties it back to the model namespace and function. As shown in Example 15-2, there is no implementation in the method. In fact, to prevent developers from using the method

directly in code, it throws an exception. You’ll need the System.Data.Objects.Data Classes namespace for access to the EdmFunction attribute. Don’t confuse that with the

EdmFunction class in System.Data.Metadata.Edm.

Using Model-Defined Functions | 405

Download from Library of Wow! eBook <www.wowebook.com>

Notice that this is an extension method, as I have the keyword this as the first parameter.

 Example 15-2. Exposing a model-defined function for LINQ to Entities queries

namespace BAGA

{ public static class Functions

{

[EdmFunction("BAModel", "FullNameReverse")]

public static string FullNameReverse(this Contact c)

{

throw new NotSupportedException

("This function can only be used in a query");

}

}

}

Here’s a great example of how you might want to modify the T4 tem-

plate even if you are not creating POCO classes. You could instruct the

template to spit out these functions for you.

Now you can use the function within a LINQ to Entities query in projections, operators,

or methods:

from c in context.Contacts orderby c.FullNameReverse select c

or:

from c in context.Contacts orderby c.FullNameReverse

select c.ContactID, c.FullNameReverse

or:

context.Contacts.Select(c =>c.FullNameReverse)

If you hadn’t declared FullNameReverse as an extension method, but simply a method,

you would have had to use the function in this much less discoverable way:

from c in context.Contacts orderby Functions.FullNameReverse(c) select c

In the first of these queries, FullNameReverse was used for sorting, but the query returned Contact entities. Once you have a Contact entity in hand, you can then use its custom FullName property in your application. You cannot access the

FullNameReverse function from the entity. It is only available as part of a query.

406 | Chapter 15: Defining EDM Mappings That Are Not Supported by the Designer

Download from Library of Wow! eBook <www.wowebook.com>

Using Model-Defined Functions to Return More Complex Results

FullNameReverse is a simple example of a model-defined function that returns only a

string.

Model-defined functions can return more complex types than just a scalar value. You

can return entities, other types, and even collections from one of these functions. The

most challenging part is to understand Entity SQL in order to pull it off.

I’ll demonstrate defining a type in Entity SQL and then using a DefiningExpression to

return it.

What if we wanted to calculate a few different properties from Customer and return

them as a single type? For example, in addition to FullNameReverse (which we can also

build from Customer because it inherits Contact), say we’d like to calculate the person’s

age on the fly.

Example 15-3 displays a function that defines a type and then returns that type from the DefiningExpression.

 Example 15-3. A model-defined function that returns a new type

<Function Name="CalculatedDetails">

<ReturnType>

<RowType>

<Property Name="Age" Type="Double" />

<Property Name="FullName" Type="String"/>

</RowType>

</ReturnType>

<Parameter Name="c" Type="BAModel.Customer" />

<DefiningExpression>

Row(

DiffDays(c.BirthDate,CurrentDateTime())/365.255,

Trim(c.FirstName) + " " + c.LastName

)

</DefiningExpression>

</Function>

In the function displayed in Example 15-1, one of the Function attributes was ReturnType. In Example 15-3, ReturnType is now in its own element so that you can define the type to be returned, in this case a RowType. But what is RowType?

If you think back to the lessons in Chapter 5 about wrapped and unwrapped entities, it may help you understand the concept of an Entity SQL RowType. When results are

wrapped, they are contained in what is essentially a row. Therefore, in order to define

a type that can be returned as results, the type must be wrapped in a row— each prop-

erty is an item in the row. A type that is a row is represented in Entity SQL as a RowType.

Within the RowType you can then define properties.

Using Model-Defined Functions | 407

Download from Library of Wow! eBook <www.wowebook.com>

Like the FullNameReverse function, CalculatedDetails expects a parameter. This time

it’s a BAModel.Customer. And finally, the DefiningExpression calculates both the age and

the full name, and then returns those in a Row.

Consuming the Complex Results

Again, using the function in Entity SQL is not terribly challenging.

Because the function can work only on contacts of type Customer, we just need to be

careful to construct a query that returns only customers. You saw queries like this in

Chapter 14, in the section on TPH inheritance. Example 15-4 shows that using the more complex function is no different from calling the simpler FullNameReverse

function.

 Example 15-4. Using the new function in an Entity SQL expression

String esql= "SELECT VALUE BAModel.CalculatedDetails(c) " +

"FROM OFTYPE(BAEntities.Contacts, BAModel.Customer) " +

"AS c"

ObjectQuery<DbDataRecord> detailsQuery = context.CreateQuery<DbDataRecord>(esql); var detailsList = detailsQuery.ToList();

Reading the Results from a Complex Function

The results will be DbDataRecords, just as any other nonentity result set. You did a lot

of this in Chapters 3 and 5.

Figure 15-1 shows the results of the query expression in Example 15-4 displayed in LINQPad.

 Figure 15-1. LINQPad displaying the results of a query that uses the complex function

If you want to read the contents of detailsList, you have to drill into each item of each

result. To access the Age item in the results, you would ask for detailsList[0][0]. For

the name of the Age item, you would ask for detailsList[0][1].

408 | Chapter 15: Defining EDM Mappings That Are Not Supported by the Designer

Download from Library of Wow! eBook <www.wowebook.com>

Even if you created a function that is accessible from a LINQ query, the function must

return a dbDataRecord, as shown in Example 15-5.

 Example 15-5. Exposing a complex function for use in LINQ to Entities queries

[EdmFunction("BAModel", "CalculatedDetails")]

public static DbDataRecord CalculatedDetails(this Customer c)

{ throw new NotSupportedException

("This function can only be used in a query");

}

When I first attempted to write this function, even with my experience

with Entity SQL and Entity Framework, use of RowType and Row was not

intuitive to me. It took me a few hours to realize that I needed to wrap

the results of the calculations in a Row. Hopefully, these concepts will

help you go further and create even more complex functions if and when

the need arises.

As with so many other concepts, this is just the tip of the iceberg in terms of how you

can extend your model with model-defined functions. For some additional ideas, check

out my June 2009 blog post on this topic at http://thedatafarm.com/blog/data-access/

 ef4-model-defined-functions-level-1-amp-2/, as well as the Entity Framework team’s January 2009 blog post at http://blogs.msdn.com/efdesign/archive/2009/01/07/model-de

 fined-functions.aspx.

Mapping Table per Concrete (TPC) Type Inheritance for Tables

with Overlapping Fields

Another scenario where you can use inheritance mapping is when you have database

tables with overlapping fields. A classic example of this appears in Figure 15-2, where

a copy of the Reservations table was created to store old reservations that are rarely

accessed.

 Figure 15-2. Reservations split into two tables in the database

Mapping Table per Concrete (TPC) Type Inheritance for Tables with Overlapping Fields | 409

Download from Library of Wow! eBook <www.wowebook.com>

The inheritance implementation used for this mapping is called Table per Concrete

 Type or TPC inheritance. You can define the inheritance between the two in the Designer, but you will have to manually map the OldReservations entity to its table in the

XML.

To create the inheritance, you need to remove all of the overlapping properties from

the derived entity. In this case, that means every property. Figure 15-3 displays what the inheritance looks like in the EDM Designer.

 Figure 15-3. Base and derived entities in TPC inheritance mapping

You’ll find that none of the OldReservations table fields were mapped after you made

these modifications. You can map the ReservationID field to the ReservationID prop-

erty, but the rest must be mapped in the XML of the EDMX file.

Example 15-6 shows the mapping. The Reservation EntityTypeMapping contains one mapping for the Reservation entity and another mapping for the derived

OldReservation entity.

 Example 15-6. TPC mapping

<EntitySetMapping Name="ReservationSet">

<EntityTypeMapping TypeName=" BAModel.Reservation">

<MappingFragment StoreEntitySet="Reservations">

<ScalarProperty Name="ReservationID" ColumnName="ReservationID" />

<ScalarProperty Name="ReservationDate" ColumnName="ReservationDate" />

<ScalarProperty Name="ContactID" ColumnName="ContactID" />

<ScalarProperty Name="EventID" ColumnName="EventID" />

<ScalarProperty Name="RowVersion" ColumnName="RowVersion" />

</MappingFragment>

</EntityTypeMapping>

<EntityTypeMapping TypeName="BAModel.OldReservation">

<MappingFragment StoreEntitySet="OldReservations">

<ScalarProperty Name="ReservationID" ColumnName="ReservationID" />

<ScalarProperty Name="ReservationDate" ColumnName="ReservationDate" />

<ScalarProperty Name="ContactID" ColumnName="ContactID" />

<ScalarProperty Name="EventID" ColumnName="EventID" />

<ScalarProperty Name="RowVersion" ColumnName="RowVersion" />

</MappingFragment>

410 | Chapter 15: Defining EDM Mappings That Are Not Supported by the Designer

Download from Library of Wow! eBook <www.wowebook.com>

</EntityTypeMapping>

</EntitySetMapping>

With this mapping, you will be able to work with the OldReservations table when you

need to. Also with this mapping, you will get the OldReservations anytime you query

for Reservation without specifically excluding them. Therefore, you may want to con-

sider turning Reservation into an abstract type and creating another entity to represent

current reservations as you did to solve a similar problem with Lodging entities that are

not resorts in Chapter 14.

Although you can’t see the mapping in the Designer, you will still be able to use the

model in the Designer when TPC is implemented.

You won’t be doing anything further with OldReservations in the book

samples, so feel free to remove it and its mapping if you have followed

the steps in this section.

Using QueryView to Create Read-Only Entities and Other

Specialized Mappings

QueryView is a mapping that allows you to override the default mapping for an entity

set and return read-only data. QueryView is something you need to enter manually in

the XML, and it belongs in the mapping layer.

A QueryView is a query that is expressed using Entity SQL syntax. However, rather than

creating the Entity SQL expression against the conceptual layer of the model as you are

accustomed to, the target of the expression is the store (SSDL) layer. In other words,

when you construct the Entity SQL for a QueryView, the query is written against the

elements of the SSDL.

Entities from QueryViews Don’t Have to Be Read-Only

QueryView returns entities that are considered to be read-only. But they aren’t truly readonly because they are still change-tracked by the ObjectContext. They are considered

read-only because the Entity Framework is not able to automatically generate Insert,

Update, and Delete commands for these entities. Instead, you can always create function

mappings, as you did for the Payment entity. Then the entity that came from a QueryView will be persisted back to the data store by a call to SaveChanges.

In addition to returning read-only entities, another benefit of QueryView is that you can

overcome the limitations of conditional mapping. As you saw earlier, conditional map-

ping lets you filter using =, Is Null, and Is Not Null. Using a QueryView you can filter

with a much wider variety of operators, including > and <.

Using QueryView to Create Read-Only Entities and Other Specialized Mappings | 411

Download from Library of Wow! eBook <www.wowebook.com>

QueryView: All or Nothing?

As you can see in the list following this sidebar, there are a lot of caveats to using

QueryView. Essentially it can turn into an all-or-nothing mapping choice in your model

because of the requirement to use QueryView to map any entity that is related to another

entity that is mapped with QueryView. In a typical model most entities are related to at

least one other entity, so you will end up needing QueryView for a good percentage of

the entities in your model. This is something you will want to plan for in advance. You’ll learn in the next chapter how to build model-based views with a DefiningQuery that

pulls data directly from the database, rather than creating a view over the store metadata as QueryView does.

Before using QueryView, you should be aware of the following:

• QueryView is another mapping that the Designer does not support. The lack of

support in this case means you can only design the query view directly in the XML

of the model.

• If an EntitySet is being mapped with a QueryView, all related EntitySets and AssociationSets must be mapped with QueryViews as well.

This could get a little tricky in the BreakAway model, as every entity is related to

at least one other entity through associations. So, you need to plan ahead if you

want to take advantage of QueryViews.

For a nice example of adding QueryViews to a model with TPH inheritance, see the

blog post by Danny Simmons, of the Entity Framework team, titled “Mapping

Read-only Entities” (http://blogs.msdn.com/dsimmons/archive/2007/11/08/map

 ping-read-only-entities.aspx).

• As you’ve seen already, entities returned by QueryView are read-only. If you want

the entities that result to be updatable, you can use function mappings to map

stored procedures to the entity, as you did earlier in this book with the Payment

entity.

• In the EntitySetMapping, you need to remove the StorageSetName as well as the

property mappings.

• QueryViews impact other types of mappings in the model. As per the MSDN doc-

umentation, you need to pay attention to these scenarios as well:

— Many-to-many associations

— Inheritance hierarchies

• The syntax for writing a QueryView is a subset of the Entity SQL language. Functions

are not allowed, which means you can’t do something like create a FullName prop-

erty by concatenating FirstName and LastName. Of course, that was the first thing I

tried.

Here are the operators you can use with QueryView:

412 | Chapter 15: Defining EDM Mappings That Are Not Supported by the Designer

Download from Library of Wow! eBook <www.wowebook.com>

Cast, Case, Not, Or, And, IsNull, Equals, NotEquals, LessThan, LessThanOrEquals, GreaterThan, GreaterThanOrEquals, Project, NewInstance, Filter, Ref, Union,

UnionAll, Scan, FullOuterJoin, LeftOuterJoin, InnerJoin, EntityRef

Finding a Common Use Case for QueryView

As you can see, QueryView comes with a host of caveats. The scenario that makes QueryViews the most daunting is when they are used for entities that have some type of

relationship to any other entity, whether that is through an association or within a

hierarchy.

Using QueryView in a scenario where you must change the mappings for most of your

model’s entities to QueryViews is somewhat of an edge case. If you do want to see how

to deal with this situation, look for a download on the book’s website that contains a

short article and a walkthrough that comes from the first edition of this book.

For now, let’s focus on a use for QueryView that you can leverage in later chapters in

this book. Because an entity that comes from a QueryView is inherently read-only, this

is a great way to create new entities that are shaped for views of your data that can be

used for selection lists in your applications.

For example, a common need throughout the enterprise is to provide a list of customer

names and IDs. This can be used for customer selection elements, such as a drop-down

list, in your apps.

Of course, you can use projections to create this list, but then you will be dealing with

anonymous types, which you can’t pass around from one method to another, or

DbDataRecords, which are not always easy to work with.

With a QueryView, you can get the benefit of a projection, but return an entity. Not only

does this give you a result that is easy to work with, but the entity will be a known type in your model and your generated classes. The biggest benefit is that the entity can be

isolated from other entities in the model—no associations and no inheritance. There-

fore, you won’t have to worry about modifying related entities to map to QueryViews as

well.

Creating a CustomerNameAndID Entity

Before creating the QueryView, you’ll want an entity in the model that will encapsulate

the results of the QueryView.

1. Create a new entity in the model.

2. In the Add Entity dialog, name the new entity CustomerNameAndID and leave the

default Key Property settings intact.

Using QueryView to Create Read-Only Entities and Other Specialized Mappings | 413

Download from Library of Wow! eBook <www.wowebook.com>

3. Add two scalar properties to the new entity: FirstName and LastName. By default,

new scalar properties are of type String and are not nullable. You can leave the

default attributes for these new properties.

Having to use two properties in this new entity is a huge frustration for

me. I really want to expose only FullName. But as you’ll see, QueryView

does not allow the use of any type of function, including concatenation.

In fact, I have made a suggestion to the team to add this support in a

future version on Microsoft’s Connect website (https://connect.microsoft

 .com/data/feedback/details/557121/allow-esql-functions-when-defining

 -queryview).

Creating a QueryView Mapping for CustomerNameAndID

You’ll have to define the QueryView manually in the mapping layer in the XML of the

model file.

If the entity was mapped to something in the SSDL, there would already be an EntitySetMapping element for the CustomerNameAndIDs EntitySet. But in this case,

nothing is in the mapping layer for the new entity. You’ll need to create it manually.

1. Close the Designer and open the model in the XML editor.

2. Scroll down to the <edmx:Mappings> section.

3. Add a new EntitySetMapping for the CustomerNameAndIDs element above the

EntitySetMapping for Activities.

Example 15-7 shows what the beginning of the mapping section looks like with the new EntitySetMapping element inserted. I’ve used comments to highlight the

new element.

 Example 15-7. Inserting a new EntitySetMapping

<!-- C-S mapping content -->

<edmx:Mappings>

<Mapping Space="C-S" xmlns="http://schemas.microsoft.com/ado/2008/09/mapping/cs">

<EntityContainerMapping StorageEntityContainer="BreakAwayModelStoreContainer"

CdmEntityContainer="BAEntities">

<!-- New Mapping -->

<EntitySetMapping Name="CustomerNameAndIDs">

</EntitySetMapping>

<!-- End of New Mapping -->

<EntitySetMapping Name="Activities">

4. Inside the EntitySetMapping tags, insert the QueryView so that the

EntitySetMapping looks like Example 15-8.

414 | Chapter 15: Defining EDM Mappings That Are Not Supported by the Designer

Download from Library of Wow! eBook <www.wowebook.com>

 Example 15-8. The mapping with a QueryView

<EntitySetMapping Name="CustomerNameAndIDs">

<QueryView>

SELECT VALUE BAModel.CustomerNameAndID(c.ContactID, c.FirstName,c.LastName)

FROM BreakAwayModelStoreContainer.Contact AS c

JOIN BreakAwayModelStoreContainer.Customers AS cu

ON c.ContactID=cu.ContactID

</QueryView>

</EntitySetMapping>

Compare this EntitySetMapping to the one for Activities just be-

low it, which maps entity properties to database table columns.

BreakAwayModelStoreContainer is the SSDL’s EntityContainer name that the wizard

generated automatically. Just as you need to use the model’s EntityContainer name

when constructing regular Entity SQL queries, you need to use the store’s

EntityContainer name with the Entity SQL expressions you create for QueryViews.

The query joins Contact and Customers because it needs the name fields from the

Contact table but needs to limit the results to only those contacts that are in the Customers table.

What’s really nice here is that the Designer is able to validate the syntax of the

query, something you can’t get when you write Entity SQL strings in your

application.

5. To test the EDMX validation, remove AS c from the end of the query and build the

project.

The entire EntitySetMapping section will be underlined and in the Error List you

will see the following error:

Error 2068: The query view specified for the EntitySet 'CustomerNameAndIDs'

is not valid. The query parser threw the following error :

'c.ContactID' could not be resolved in the current scope or context.

Make sure that all referenced variables are in scope, that required schemas

are loaded, and that namespaces are referenced correctly.

Near member access expression, line 1, column 41

The cause of the error is that the c in c.ContactID can’t be resolved because you

removed the definition of c.

In some cases, you may have to open the model in the Designer to high-

light the QueryView errors.

6. Replace the as c and rebuild the project. The error message will go away.

Using QueryView to Create Read-Only Entities and Other Specialized Mappings | 415

Download from Library of Wow! eBook <www.wowebook.com>

Testing the QueryView

You can test the QueryView in LINQPad or in your program module.

Since you are querying entities, you can sort, filter, or use other methods to compose

queries against the CustomerNameAndID entities. For example:

context.CustomerNameAndIDs.OrderBy(c => c.LastName + c.FirstName)

.Take(30).ToList()

You can also do projections; however, that will defeat the benefit of returning a known

type that can be passed around.

Deconstructing the QueryView

The order of the projected columns in the preceding example is not random. Since you

no longer have any property mappings, the Entity Framework relies on the QueryView

to provide the values (more specifically, the correct types) in the order in which the

entity expects.

The following expression is different from those that you have written against the con-

ceptual layer:

SELECT VALUE BAModel.CustomerNameAndID(c.ContactID,c.FirstName,c.LastName)

FROM BreakAwayModelStoreContainer.Contact AS c

Using VALUE designates that you will be returning an object, as you have seen before.

Following that is a type constructor, similar to what you would use in .NET code.

In fact, you can see this in action if you return to the XML and modify the query. Moving

the ContactId to the last position in the list will throw a mapping exception when you

build the project that reads, in part, as follows:

Error 2068: The query view specified for the EntitySet 'CustomerNameAndIDs'

is not valid. The query parser threw the following error : The argument type

'Edm.String(Nullable=True,DefaultValue=,MaxLength=50,Unicode=True,

FixedLength=False)' is not compatible with the property 'Id' of formal type

'Edm.Int32(Nullable=False,DefaultValue=)'.

Entity Framework expected an Int32 in the first position but found a String instead.

We’ll take advantage of this new QueryView in an application example in Chapter 17

and elsewhere in the book.

416 | Chapter 15: Defining EDM Mappings That Are Not Supported by the Designer

Download from Library of Wow! eBook <www.wowebook.com>

Summary

Although the Entity Framework’s modeling capabilities are very sophisticated, un-

fortunately the Designer still has some catching up to do. Though these additional

mappings are not supported by the Designer, they are very useful and certainly worth

the effort of cracking open the EDMX in its raw form and applying these mappings

when they will benefit your model.

Keep in mind that what you’ve seen in this chapter is not an exhaustive list of the

mapping possibilities. There are even more, though not commonly used, mappings you

can achieve. For additional ideas, including how to combine different types of inheri-

tance, explore the EF Mapping Helper listed on the Entity Framework team’s page on

the MSDN Code Gallery at http://code.msdn.com/adonetefx. The EF Mapping Helper is listed under the section titled “Entity Framework Learning Tools.”

I look forward to seeing more innovation by developers to take advantage of the flex-

ibility offered by the new model-defined functions in Entity Framework. While many

people are daunted by the QueryView’s use of Entity SQL and its potential to force you

to use QueryViews for more entities than you intended, it is another mapping that offers

advanced flexibility so that you can solve more and more of your modeling quandaries.

The next chapter takes another perspective on working with the model by exploring

the many ways to use stored procedures in your model beyond the function mappings

and function imports that you created in Chapter 8.

Summary | 417

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 16

Gaining Additional Stored Procedure

and View Support in the Raw XML

In Chapter 7, you learned about function mapping and function imports to map stored procedures in the Entity Data Model (EDM). Mapping read, insert, update, and delete

stored procedures to entities is the simplest way to use stored procedures in the EDM.

Thanks to new Designer features that you worked with in that chapter, it is also now

fairly easy to work with stored procedures that return results that don’t map to an

entity—by returning complex types instead. There are still a number of scenarios in-

volving stored procedures that haven’t been addressed yet—those that require working

directly in the XML of the EDMX file.

This chapter will cover ways to implement stored procedures beyond the function mapping you already performed in the Designer. These additional implementations

will create functions that you can call directly in your code.

In addition to implementing stored procedures from your database, you’ll also learn

how to create native functions and views directly in your model.

The first part of the chapter will focus on stored procedures that are used for querying

the database. The latter part of the chapter will address stored procedures for perform-

ing inserts, updates, and deletes in your database. You’ll also learn a few more tricks

with respect to database views and user-defined functions along the way.

Reviewing Procedures, Views, and UDFs in the EDM

As you have learned in earlier parts of the book, the Entity Framework supports tables,

stored procedures, database views, and user-defined functions (UDFs). Stored proce-

dures and UDFs are realized in the SSDL as functions that you have to import into your

conceptual model, while views are surfaced in the conceptual model as entities that can

be updated through the use of function mapping.

419

Download from Library of Wow! eBook <www.wowebook.com>

You can map stored procedures to entities, as you have seen in previous chapters. Most stored procedures can’t be mapped to entities, but they can be mapped to scalar values

or complex types. You use these stored procedures by calling their functions directly

as methods of the ObjectContext, as you saw in Chapter 7.

You can define UDFs in the store layer of your EDM, and the Entity Data Model Wizard

and Update Model Wizard will pick them up. We’ll look at UDFs at the end of this

chapter.

Working with Stored Procedures That Return Data

In Chapter 7, you learned that the Entity Data Model Designer supports a number of scenarios for “read” stored procedures—that is, those that return data. You can use

the Function Import Wizard to map read stored procedures to entities, complex types,

or primitive types. The result of this mapping is a function in the CSDL that can also

be realized as a method of your generated ObjectContext, which you will get when using

the default code generation template.

These functions have some nuances that you should be aware of, and I’ll cover them

in this section.

Are Stored Procedures Second-Class Citizens in the Entity Framework?

It’s important to not lose sight of the EDM and the Entity Framework’s bigger benefits

when thinking about stored procedures. Two of the Entity Framework’s core features

are the ability it gives you to compose queries, and the command generation it can

perform for queries and updates. This is especially useful if you lack an experienced

SQL developer on your team and would otherwise be writing queries that start with

something such as SELECT * FROM. Admittedly, a code generator will not be as good at

composing commands as a seasoned developer. But the Entity Framework is good at

both tasks, regardless of your backend database. Another benefit, of course, is that it

lets you use an EDM to describe your data.

Yet stored procedures are a critical part of many organizations’ databases. Although

the Entity Framework supports the use of stored procedures in the EDM and API, those

stored procedures are treated as functions. As you have learned in earlier chapters, some

of these functions can be mapped to entities and used to override the SaveChanges be-

havior, while others can be called directly in your code.

Using Functions That Match an Entity Whose Property Names Have Been

Changed

As you learned in Chapter 7, if the schema of the return type matches up exactly with an existing type in your model, you are a few clicks away from mapping the function.

However, there is one caveat to this. The function truly expects an exact match. If you

420 | Chapter 16: Gaining Additional Stored Procedure and View Support in the Raw XML

Download from Library of Wow! eBook <www.wowebook.com>

have changed property names in entities and they do not match column names being returned, the function will fail.

One function in the model that demonstrates this problem is ActivitiesOnATrip. Ex-

ample 16-1 shows the database procedure for this function. The procedure returns all of the columns from Activities.

 Example 16-1. The select statement in the ActivitiesOnATrip stored procedure

SELECT Activities.ActivityID,

Activities.Activity,

Activities.imagepath,

Activities.Category

FROM dbo.Activities

WHERE Activities.activityid IN (

SELECT EventActivities.ActivityID

FROM dbo.EventActivities

WHERE EventActivities.eventid = @tripid)

In the model, the Activity entity has a direct mapping to the Activities table, so the

fields and properties line up exactly. The Activity entity has the same fields—or does

it? The field names in the Activities table are ActivityID, Activity, imagepath, and

Category. You may recall that when changing the original entity name from

Activities to Activity, there was a conflict with the property named Activity, so you

changed the property name to Name. Even this minor change causes the function to fail

when it attempts to match up the results of the returned data with the Activity entity.

You’ll be allowed to implement the mapping function in the model, but when you try

to execute the function you will get this error:

The data reader is incompatible with the specified 'BAModel.Activity'. A member of

the type, 'Name', does not have a corresponding column in the data reader

with the same name.

Because neither the model nor the Designer gives you an opportunity to define the

mapping between the results and Activity, you can’t provide the necessary information

to make this work.

One possible solution to this problem is to create a ComplexType for the function and

then coerce the results into Activity entities.

You could also leverage a DefiningQuery, which you will learn about a bit later in this

chapter.

Query Stored Procedures and Inherited Types

What about inherited types? If you have a procedure whose results match up with a

derived type, such as Customer is now, you can map the function in the Designer with

no problem. The CustomersWhoTravelledinDateRange stored procedure returns all of the

appropriate fields to match up with the Customer type. This includes fields from the

Working with Stored Procedures That Return Data | 421

Download from Library of Wow! eBook <www.wowebook.com>

Customer table, fields from the Contact table, and fields from the ContactPersonalInfo

table.

You will see the originally misspelled Customer table column,

PrimaryDesintation, in the stored procedure as a nice reminder that you

don’t have to live with these problems in your EDM.

PROCEDURE CustomersWhoTravelledinDateRange

--returns customer records with contact info for customers

@startdate DATETIME,

@enddate datetime

AS

SELECT Customers.ContactID, Customers.PrimaryDesintation as PrimaryDestinationID,

Customers.CustomerTypeID, Customers.InitialDate,

Customers.SecondaryDestination as SecondaryDestinationID,

Customers.PrimaryActivity as PrimaryActivityID,

Customers.SecondaryActivity as SecondaryActivityID,

Customers.Notes, Contact.FirstName,

Contact.LastName, Contact.Title, Contact.AddDate,

Contact.ModifiedDate, ContactPersonalInfo.BirthDate,

ContactPersonalInfo.HeightInches,

ContactPersonalInfo.WeightPounds,

ContactPersonalInfo.DietaryRestrictions,

Contact.TimeStamp as ContactTimeStamp

FROM Customers INNER JOIN Contact

ON Customers.ContactID = Contact.ContactID

INNER JOIN ContactPersonalInfo

ON Customers.ContactID = ContactPersonalInfo.ContactID

WHERE customers.contactid IN

(SELECT Customers.ContactID

FROM Customers INNER JOIN Reservations

ON Customers.ContactID = Reservations.ContactID

INNER JOIN Events ON Reservations.EventID = Events.EventID

WHERE events.startdate>=@startdate AND events.startdate<=@enddate

GROUP BY Customers.contactid)

You can use the Model Browser to create a function import for this stored procedure

and point the return type to the Customer entity. You can test the function with the code

in Example 16-2.

 Example 16-2. Calling a function that returns a derived type

using (var context = new BAEntities())

{ var customers = context.CustomersWhoTravelledinDateRange=

(new DateTime(2006, 1, 1), new DateTime(2006, 12, 31));

}

422 | Chapter 16: Gaining Additional Stored Procedure and View Support in the Raw XML

Download from Library of Wow! eBook <www.wowebook.com>

Composing Queries Against Functions

You can include functions in queries; however, only the UDFs are truly composable.

When the function is from a stored procedure only the procedure itself will be processed

on the server side. The rest of the query is processed on the client side in memory. This

is because in most databases, stored procedures are not composable.

For example, if you have a stored procedure that returns all orders for a particular

company, and you write a LINQ to Entities query adding an additional filter to it, such

as the following:

from o in context.OrdersForACustomer(12345)

where o.Total>10000 select o

the stored procedure will execute on the database, returning all orders for the customer;

then, in memory, LINQ will query all of those orders and return only the subset. This

is not a limitation of the Entity Framework, but the nature of stored procedures.

UDFs are composable, and therefore their EDM functions are composable as well.

Replacing Stored Procedures with Views for Composability

In the previous version of Entity Framework, there was no support in the model for

read stored procedures that returned randomly shaped results. A nice trick for getting

around that was to create a view in the database that returns data of the same structure

as the stored procedure, and then to use the view in place of the stored procedure.

Even though this is no longer necessary because the stored procedures can now be

returned into complex types, the trick is still quite useful.

The benefit is that a database view is composable, whereas the function derived from

the stored procedure is not. You can write queries against the view and those queries

will become native store commands, executed on the server. When using the function,

though, you can call the function and you can even use it in a query; however, the

function itself, as you saw in Chapter 7, will execute the stored procedure on the server, and then the results will be further manipulated on the client side by the rest of the

query operators. This could result in very inefficient queries if your stored procedure

returns many more entities than your query specifies.

If you have Insert, Update, and Delete procedures that align with the results of that

view, you can map them back to that new entity using function mapping and use it as

your object. If you do this, you’ll want to remove the entity that this is replacing so that you don’t have update collisions.

An additional benefit of using the view to create an entity for capturing the results of

the stored procedure is that you will receive an object that can be change-tracked and

that will have its relationships managed by the ObjectContext.

Working with Stored Procedures That Return Data | 423

Download from Library of Wow! eBook <www.wowebook.com>

Queries That Return Multiple Result Sets

The Entity Framework does not directly support queries that return multiple result

sets. However, Colin Meek, one of the members of the Entity Framework team, created

a project called EFExtensions that contains a method for using stored procedures that

return multiple result sets. The extensions were originally written for Entity Frame-

work’s .NET 3.5 version and have been updated for EF4. In its current iteration, each

result set can match up with an existing entity. You can find EFExtensions on the MSDN Code Gallery at http://code.msdn.microsoft.com/EFExtensions/. Colin wrote an in-depth explanation of how these extensions work, along with a walkthrough of his

sample application, on his blog, at http://blogs.msdn.com/meek/archive/2008/03/26/ado

 -entity-framework-stored-procedure-customization.aspx.

Executing Queries on Demand with ExecuteStoreQuery

ObjectContext.ExecuteStoreQuery is a handy addition to this new version of Entity Framework that allows developers to create and execute store queries on the fly.

ExecuteStoreQuery has a counterpart, ExecuteStoreCommand, which will

be discussed later in the chapter.

You can use ExecuteStoreQuery to return data into objects or entities. If you return

entities you can force those entities to participate in change tracking.

Since LINQ to Entities doesn’t readily support many datetime functions, let’s look at

this method to leverage a store’s datetime function. In this case, I’ll be using T-SQL

against my database, which is SQL Server.

For example, this LINQ query will compile, but it will fail at runtime because Entity

Framework is unable to translate the DateTime calculations into store functions:

var q=context.Contacts.OfType<Customer>().

Select(c=>new {c.FirstName,c.LastName,

Age=(c.BirthDate-DateTime.Today)/365.255});

You could write an Entity SQL statement, but many developers prefer not to mix Entity

SQL into their applications. And as you saw in Chapter 15, you could create a model-defined function to calculate age. But this might not be part of your model.

Querying to a Class That Is Not an Entity

You could create the T-SQL on the fly and execute it with the ExecuteStoreQuery func-

tion. This query, listed in Example 16-3, returns data into a class whose definition is also in the code listing.

424 | Chapter 16: Gaining Additional Stored Procedure and View Support in the Raw XML

Download from Library of Wow! eBook <www.wowebook.com>

 Example 16-3. Using ExecuteStoreQuery

string tsql =

"SELECT FirstName, LastName, " +

" DATEDIFF(Day,ContactPersonalInfo.BirthDate,GETDATE())/365.255 AS Age " +

"FROM Contact,ContactPersonalInfo " +

"WHERE Contact.ContactID=ContactPersonalInfo.ContactID";

List<MyClass> results=context.ExecuteStoreQuery<MyClass>(tsql).ToList();

class MyClass

{ public string FirstName { get; set; }

public string LastName { get; set; }

public int? Age { get; set; }

}

Like the ExecuteFunction method that you saw in Chapter 7, ExecuteStoreQuery returns a System.Data.Objects.ObjectResult—in this case, an ObjectResult<MyClass>, which I

have converted to List<MyClass>.

Querying into an Entity

You can also return results into an entity. Example 16-4 shows a T-SQL query that does another datetime calculation that you cannot perform in LINQ to Entities. It returns

all of the contacts who have made reservations less than 30 days prior to the start date

of a trip. Recall that in the database what we know as “Trips” is contained in the table

named “Events”.

 Example 16-4. Performing a datetime calculation in T-SQL

SELECT Locations.LocationID as DestinationID, MAX(Locations.LocationName)as Name

FROM Locations,

Events,

Reservations

WHERE Locations.LocationID = Events.LocationID

AND Reservations.EventID = Events.EventID

AND DATEDIFF(DAY, StartDate, ReservationDate) <= 10

GROUP BY Locations.LocationID

If you assign this query to a string, you can use it with ExecuteStoreQuery to return the

Destination entities defined in the model.

When creating the string to pass in as the query, you’ll need to take into account the actual field names of the target entity since the context will match the names of the

incoming results to the names of the entity properties in order to materialize the property.

By default, the entities returned will not be attached to the context and will not be

change-tracked. If you want these to participate in change tracking, you’ll need to use

the overload for ExecuteStoreQuery, supplying the name of the EntitySet and the Executing Queries on Demand with ExecuteStoreQuery | 425

Download from Library of Wow! eBook <www.wowebook.com>

desired MergeOption value. For this example, I’ll use the PreserveChanges option, which

will prevent any preexisting entities that have been modified from being overwritten.

List<Destination> results = context.ExecuteStoreQuery<Destination>

(tsql,"Destinations",MergeOption.PreserveChanges).ToList();

You can additionally pass in parameters, which is described further in

the reference documentation for ExecuteStoreQuery.

What you won’t see in the reference documentation is the host of caveats

for returning entities from this method. However, in the MSDN forums

there is a great thread titled “My discoveries with ExecuteStoreQuery,”

begun by Zeeshan Hirani with follow-up from Entity Framework team

member Diego Vega, which drills into additional details about the

method. The URL for this thread is http://social.msdn.microsoft.com/

 Forums/en-US/adonetefx/thread/44cf5582-63f8-4f81-8029

 -7b43469c028d.

Adding Native Queries to the Model

In addition to defining native queries on the fly in code, you can add native queries

directly into the model using the Function element. The store query text is embedded

in Function’s CommandText element.

As an example, it would be very convenient to query payments for a particular contact

rather than all contacts in a date range.

You can do this directly in the SSDL without adding a new stored procedure to the

database.

Remember that manual additions to the SSDL will be destroyed if you

run the Update Model Database Wizard.

If the procedure existed in the database, the following function would represent it in

the model:

<Function Name="PaymentsforContact" IsComposable="false">

<Parameter Name="ContactID" Type="int" Mode="In"/>

</Function>

The Function element has a child element called CommandText. You can enter native store

commands, such as a SQL Server T-SQL query, directly into the CommandText element.

Therefore, you can add the new query directly into the SSDL of the model.

The entire function would now look like Example 16-5.

426 | Chapter 16: Gaining Additional Stored Procedure and View Support in the Raw XML

Download from Library of Wow! eBook <www.wowebook.com>

 Example 16-5. A custom query manually embedded into the SSDL

<Function Name="PaymentsForContact" IsComposable="false">

<CommandText>

SELECT Payments.PaymentDate, Payments.Amount,

Reservations.ReservationDate, Contact.FirstName,

Contact.LastName, Events.StartDate, Events.EndDate,

Locations.LocationName

FROM Payments INNER JOIN

Reservations ON Payments.ReservationID =

Reservations.ReservationID INNER JOIN

Contact ON Reservations.ContactID = Contact.ContactID

INNER JOIN Events ON Reservations.EventID = Events.EventID

INNER JOIN Locations ON Events.LocationID =

Locations.LocationID

WHERE Contact.ContactID=@ContactID

</CommandText>

<Parameter Name="ContactID" Type="int" Mode="In"/>

</Function>

If you have any less-than (<) signs in your query, you’ll need to either

use the escaped notation (<) or surround the entire command with

a CDATA directive so that there is no conflict with the XML, which inter-

prets < as the beginning of a node. You’ll see both solutions in action in

“Implementing a DefiningQuery” on page 433.

In Chapter 6, you learned about the Function Import Wizard and its ability to create complex types on the fly for stored procedures. The wizard is able to do this with stored

procedures in the database, but unfortunately not with commands defined directly in

the SSDL functions. In this scenario, you would need to manually define the complex

type. Previously you created complex types either by building them from entity prop-

erties or by using the Function Import Wizard. You can also use the Model Browser to

manually define complex types. Here is a quick walkthrough to build the type that will

satisfy the results of PaymentsForContact, something you have not done yet.

Defining a Complex Type in the Model Browser

The query returns four datetime values, three char values, and one decimal. Let’s build

a complex type to match.

1. Open the Model Browser.

2. Under BAModel, right-click Complex Types and select Create Complex Type from

the menu.

A new complex type will appear in the Complex Types node.

3. Rename ComplexType1 to TripPayment.

4. Right-click TripPayment and choose Add, then Scalar Property, and then DateTime,

as shown in Figure 16-1.

Adding Native Queries to the Model | 427

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 16-1. Adding a scalar property to a complex type

5. Rename the newly created property PaymentDate.

Leave all of the other attributes set to the defaults, but note that you can define the

attributes just as you can for entity types.

6. Create a new scalar property, this time a Decimal, and rename it Amount.

7. Create scalar properties for the other return values projected in the earlier query.

In the end, you should have the following properties:

• PaymentDate (DateTime)

• Amount (Decimal)

• ReservationDate (DateTime)

• FirstName (String)

• LastName (String)

• StartDate (DateTime)

• EndDate (DateTime)

• LocationName (String)

For a shortcut, you can copy and paste the properties and then just rename the new

ones. Just be careful to use the correct types.

Now you can use the Function Import Wizard that you learned about in Chapter 7 to map the PaymentsForContact function to the TripPayment complex type. If you are using

428 | Chapter 16: Gaining Additional Stored Procedure and View Support in the Raw XML

Download from Library of Wow! eBook <www.wowebook.com>

the default code generation template, PaymentsForContact will be a method of the BAEntities ObjectContext.

List<TripPayment> payments = context.PaymentsforContact(569).ToList();

You may recall from Chapter 6 that the generated method uses the ObjectContext.Exe cuteFunction. If you are not using the default generation template and don’t have a

PaymentsForContact method, you can use the ExecuteFunction method directly, as

shown in Example 16-6. Note that the method takes an ObjectParameter.

 Example 16-6. Using ExecuteFunction

var contactIDParameter = new ObjectParameter("ContactID", 569);

ObjectResult<TripPayment> payments=

context.ExecuteFunction<TripPayment>("PaymentsforContact", contactIDParameter); Now that you have learned how to create complex types in the Model

Browser, I’ll let you in on a secret. There is a view in the database that

is represented in the model as vPaymentsforPeriod. The schema of this

view is the same as the PaymentsForContact procedure. Rather than cre-

ating the complex type, you can map the function to the vPaymentsfor

Period entity. The advantage of mapping to the view is that the data can

be change-tracked and updated with stored procedures if necessary.

Adding Native Views to the Model

In addition to being able to add your own stored procedures to the model, you can also

add views that don’t exist in the database. However, rather than using a function, you

use an element called DefiningQuery.

DefiningQuery Is Already in Your Model

A DefiningQuery is comparable to a database view. Like a view, a DefiningQuery cannot

take parameters or return multiple result sets, as a stored procedure can.

However, because a DefiningQuery is a virtual table, when you write LINQ or Entity

SQL queries against these views, query operators such as WHERE filters will be processed

on the server side. This is quite different from working with functions that are embed-

ded in the model. Queries written against functions will have filters performed on the

client side, which could be a problem for unsuspecting developers.

Download from Library of Wow! eBook

<www.wowebook.com>

Adding Native Views to the Model | 429

Download from Library of Wow! eBook <www.wowebook.com>

Native Objects in the Store Layer

One of the interesting features of the SSDL is that it does not have to be a perfect

reflection of your database. You can add objects into the SSDL that don’t exist in the

database; such objects are referred to as virtual.

When working with the DefiningQuery in this chapter you will create a virtual

table in the SSDL that does not exist in the database. You’ll do this because the DefiningQuery will actually perform the query in the database and return data. The data

must be returned to an entity. That’s not a problem, since you can create that entity in

the conceptual layer of the model. However, the EDM has a rule that every entity in

the Conceptual Schema Definition Layer (CSDL) must map to something in the SSDL.

The solution to this is to create a fake table in the SSDL to map to. The fake table must

have an EntitySet, so you will also create a virtual EntitySet. None of these things

actually exist in the database, and the model doesn’t care about that. The only problem

is that the current version of the Designer will overwrite any customizations of the SSDL

if you run the Update Model Wizard. So, keep a copy of these changes in a separate

file in case you need to re-create them.

You’ll get a step-by-step walkthrough for creating virtual tables later in this chapter.

If you open the BreakAway model in the XML Editor, you will find that you already

have two DefiningQuery elements. The EDM Wizard turned all of the database views

into DefiningQuery elements in the SSDL.

The first one is for vOfficeAddresses and contains a T-SQL query against the database’s

vOfficeAddresses view:

<EntitySet Name="vOfficeAddresses"

EntityType="BreakAwayModel.Store.vOfficeAddresses" store:Type="Views"

store:Schema="dbo" store:Name="vOfficeAddresses">

<DefiningQuery>

SELECT

[vOfficeAddresses].[FirstName] AS [FirstName],

[vOfficeAddresses].[LastName] AS [LastName],

[vOfficeAddresses].[addressID] AS [addressID],

[vOfficeAddresses].[Street1] AS [Street1],

[vOfficeAddresses].[Street2] AS [Street2],

[vOfficeAddresses].[City] AS [City],

[vOfficeAddresses].[StateProvince] AS [StateProvince],

[vOfficeAddresses].[CountryRegion] AS [CountryRegion],

[vOfficeAddresses].[PostalCode] AS [PostalCode],

[vOfficeAddresses].[AddressType] AS [AddressType],

[vOfficeAddresses].[ContactID] AS [ContactID],

[vOfficeAddresses].[ModifiedDate] AS [ModifiedDate]

FROM [dbo].[vOfficeAddresses] AS [vOfficeAddresses]

</DefiningQuery>

</EntitySet>

The EntitySet attributes are different from standard EntitySet definitions in the store

layer. For the sake of comparison, here is the EntitySet for the Payments table:

430 | Chapter 16: Gaining Additional Stored Procedure and View Support in the Raw XML

Download from Library of Wow! eBook <www.wowebook.com>

<EntitySet Name="Payments" EntityType="BreakAwayModel.Store.Payments"

store:Type="Tables" />

The DefiningQuery in the vOfficeAddresses EntitySet surfaces the results of the

vOfficeAddresses view as a SELECT query. Rather than just duplicating the SQL of the

existing view, it does a SELECT against the existing view. Since database views are most

often read-only, using this SELECT explicitly restricts the Entity Framework from at-

tempting to perform inserts, updates, or deletes against the view.

Because a database view has no primary key, the wizard infers an EntityKey by com-

bining the non-nullable fields of the view. In the SSDL, the wizard also inserts a comment indicating this action:

<!--Errors Found During Generation:

warning 6002: The table/view BreakAway.dbo.vOfficeAddresses'

does not have a primary key defined. The key has been inferred and the

definition was created as a read-only table/view.

-->

<EntityType Name="vOfficeAddresses">

<Key>

<PropertyRef Name="FirstName" />

<PropertyRef Name="LastName" />

<PropertyRef Name="addressID" />

<PropertyRef Name="AddressType" />

<PropertyRef Name="ContactID" />

<PropertyRef Name="ModifiedDate" />

</Key>

<-- Property Elements -->

</EntityType>

The fact that the EntitySet is defined with a DefiningQuery has no other impact on the

entity in the CSDL or the mappings. Figure 16-2 shows the entity in the model and its mappings back to the entity defined in the SSDL. The only difference from table-based

entities is the inability to persist changes to the database from the view-based entities

without using stored procedures for updating.

Using DefiningQuery to Create Your Own Views

DefiningQuery provides an ultimate escape hatch for cases where the mapping is too

complex to define in MSL.

—Mike Pizzo, principal architect on the Data Programmability team at Microsoft, in the

MSDN forums for the Entity Framework

DefiningQuery really is the ultimate escape hatch. Even with the incredible flexibility

that the model’s various mapping capabilities provide, there still may be some things

that you just cannot manage to pull off.

A DefiningQuery lets you add queries using the store’s native language—for example,

T-SQL or PL/SQL—directly to the store layer of the model. It’s the last step before

swallowing your modeling wizardry pride and asking the person in charge of your Adding Native Views to the Model | 431

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 16-2. The mappings for the view-based entity, which are the same as any other entity’s mappings

database to add another view or stored procedure to the database; or in cases where

modifying the database is not a possibility.

In addition to creating completely new database views with a DefiningQuery, there are

other uses for DefiningQuery. One example is to write a DefiningQuery that returns an

entity with properties that don’t exist in the database tables. While you can use model-

defined functions to create calculated entity properties, a DefiningQuery would give you

access to database operators and functions.

Be warned that when you create your own DefiningQuery, if the model does not already

have an entity that lines up with its results, you will have to create all of the model

elements yourself: the Entity and EntitySet in the CSDL, the Entity and EntitySet in

the SSDL, and the mappings. In the next walkthrough, along with creating a

DefiningQuery, you will see how to implement these additional necessary elements manually in the model.

A view that would be very useful for BreakAway’s team to have is one that returns

information about customers whose trips are starting within the next week.

Another option might be to create a QueryView, as you learned in the previous chapter.

There are pros and cons to choosing DefiningQuery over QueryView. One advantage is

that when you are writing the query with the native syntax, you can have more control

over how the query is executed on the database. Another is that if you want to create

432 | Chapter 16: Gaining Additional Stored Procedure and View Support in the Raw XML

Download from Library of Wow! eBook <www.wowebook.com>

a relationship between the results of a QueryView and another entity, you fall into the

trap of having to create QueryViews for every related entity. Additionally, there may be

queries you would like to express that use native SQL that has no equivalent in Entity

SQL. A DefiningQuery allows you to access the database features directly by embedding

a native query into your model.

Alex James, of the Entity Framework team, wrote a great blog post

comparing QueryView and DefiningQuery. You can find it at http://blogs

 .msdn.com/alexj/archive/2008/12/19/definingquery-versus-queryview

 .aspx.

Implementing a DefiningQuery

To create the DefiningQuery you’ll need the following elements in your model:

1. The native command to express the query defined in the SSDL

2. An Entity, and an EntitySet in the CSDL

3. A virtual table in the SSDL in the form of an Entity

4. An EntitySet in the SSDL to contain the DefiningQuery

5. A mapping between the entity and the virtual table

You can create items 2 and 5 in the preceding list using the Designer, whereas you must

create the others using the XML Editor.

If the store query simply returned results that match an existing view or

table and can map to an existing entity, you would not have to create

all of these elements in the metadata. However, I have chosen this par-

ticular use case in order to provide instruction on what to do when you

aren’t so fortunate as to have the existing objects.

The first step to implementing the DefiningQuery, which I’ll call TimeToFirstReserva

tion, is to work out the native database query. For SQL Server, that would look like

Example 16-7.

 Example 16-7. T-SQL query to calculate TimeToFirstReservation

SELECT Contact.ContactID,

Events.EventID AS TripID,

RTrim(Contact.LastName) + ', ' + Contact.FirstName AS Name,

Events.StartDate,

Locations.LocationName as Destination

FROM Reservations

INNER JOIN Events ON Reservations.EventID = Events.EventID

AND Reservations.EventID = Events.EventID

INNER JOIN Locations ON Events.LocationID = Locations.LocationID

Adding Native Views to the Model | 433

Download from Library of Wow! eBook <www.wowebook.com>

INNER JOIN Contact ON Reservations.ContactID = Contact.ContactID

WHERE DATEDIFF(Day, Events.StartDate, GETDATE()) <= 7

It’s quite possible that when you run this example query, the Trip data

in the sample database will be for dates too far in the past and you will

not get any results. Feel free to modify the DATEDIFF function if you want

to return data.

DefiningQuery Versus Stored Procedure

A DefiningQuery is comparable to a view in the database in that it does not take pa-

rameters. However, like other views in the model, you can query against the entity that

is mapped to a DefiningQuery and add additional filters that become part of the query

sent to the store. Additionally, since you are working with the resultant entity, you can

perform eager-loading or deferred loading with related data.

A stored procedure, on the other hand, is seen as a function, not an entity. You cannot

query a function. Also, a stored procedure is executed immediately; it is not deferred.

From a maintenance perspective, when using a stored procedure or view directly, the

database administrator can maintain the object in the database, and as long as the

parameters and result schema of the procedure don’t change, you’re good to go.

Changes to a view that is part of the model will be accounted for when you update the

model.

This DefiningQuery will be a permanent addition to the BreakAway model, not the test

model you used for QueryViews. Be sure to switch back to the BreakAway model when

making these changes.

1. Create a new entity in the Designer, named UpcomingTripParticipant, and name

its EntitySet UpcomingTripParticipants.

2. Add the following scalar properties, which match the result set of the query:

• ContactID (Type=Int32, Nullable=false, EntityKey=true)

• TripID (Type=Int32, Nullable=false, EntityKey=true)

• StartDate (DateTime, Nullable=false)

• Name (String, Nullable=false)

• Destination (String, Nullable=false)

Figure 16-3 displays the entity.

434 | Chapter 16: Gaining Additional Stored Procedure and View Support in the Raw XML

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 16-3. The manually created entity

3. Open the model in the XML Editor and scroll down to the EntityContainer

element of the SSDL section. This is where you will add the EntitySet with the

DefiningQuery.

4. Add the EntitySet and DefiningQuery element into the SSDL section:

<EntitySet Name="UpcomingTripParticipants" store:Type="Views"

EntityType="BreakAwayModel.Store.UpcomingTripParticipant">

<DefiningQuery>

</DefiningQuery>

</EntitySet>

The additional attributes that the vOfficeAddress EntitySet uses (i.e.,

store:Schema and store:Name) are not used here. Those attributes are

necessary so that when the Update Model Wizard is called, the Designer

knows how to resolve the views properly. Because the EntitySet you are

creating does not exist in the database, those attributes are not required.

5. Within the DefiningQuery tags, enter the stored procedure listed in Exam-

ple 16-7, with one exception. The XML will be confused by the <, so you will need to replace that character with an HTML-encoded version, < as shown here:

WHERE DATEDIFF(Day,Events.StartDate,GETDATE())<=7

Alternatively, you can use a cleaner and more readable approach, which is to sur-

round the entire command with a CDATA directive, as shown here:

<DefiningQuery>

<![CDATA[

SELECT Contact.ContactID,

Events.EventID AS TripID,

RTrim(Contact.LastName) + ', ' + Contact.FirstName AS Name,

Events.StartDate,

Locations.LocationName as Destination

FROM Reservations

INNER JOIN Events ON Reservations.EventID = Events.EventID

AND Reservations.EventID = Events.EventID

Adding Native Views to the Model | 435

Download from Library of Wow! eBook <www.wowebook.com>

INNER JOIN Locations ON Events.LocationID = Locations.LocationID

INNER JOIN Contact ON Reservations.ContactID = Contact.ContactID

WHERE DATEDIFF(Day,Events.StartDate,GETDATE())>=7

]]>

</DefiningQuery>

Next, you’ll need to create the virtual table to which the UpcomingTripPartici

pant entity will map.

6. In the section where EntityType elements are defined within the SSDL, add the

UpcomingTripParticipant virtual table:

<EntityType Name="UpcomingTripParticipant">

<Key>

<PropertyRef Name="ContactID"/>

</Key>

<Property Type="int" Name="ContactID" Nullable="false" />

<Property Type="int" Name="TripID" Nullable="false" />

<Property Type="datetime" Name="StartDate" Nullable="false" />

<Property Type="char" Name="Name" Nullable="false" />

<Property Type="char" Name="Destination" Nullable="false" />

</EntityType>

7. Save and close the model, and then open it in the Designer so that you can map

the entity to the virtual table you just created. The mapping should look like

Figure 16-4.

 Figure 16-4. Mapping the new entity to the new virtual table

Now you can use the new UpcomingTripParticipant entity and UpcomingTripPartici

pants entity set as you would any others. Here, for example, is a LINQ to Entities query:

from p in context.UpcomingTripParticipants orderby p.Destination select p

On the server, the following command will be executed:

SELECT

[Extent1].[ContactID] AS [ContactID],

[Extent1].[TripID] AS [TripID],

[Extent1].[StartDate] AS [StartDate],

436 | Chapter 16: Gaining Additional Stored Procedure and View Support in the Raw XML

Download from Library of Wow! eBook <www.wowebook.com>

[Extent1].[Name] AS [Name],

[Extent1].[Destination] AS [Destination]

FROM (

SELECT Contact.ContactID,

Events.EventID AS TripID,

(Contact.LastName) + ', ' + Contact.FirstName AS Name,

Events.StartDate,

Locations.LocationName as Destination

FROM Reservations

INNER JOIN Events ON Reservations.EventID = Events.EventID

AND Reservations.EventID = Events.EventID

INNER JOIN Locations ON Events.LocationID = Locations.LocationID

INNER JOIN Contact ON Reservations.ContactID = Contact.ContactID

WHERE DATEDIFF(Day, Events.StartDate, GETDATE()) <= 7

) AS [Extent1]

ORDER BY [Extent1].[Destination] ASC

Creating Associations with the New Entity

Now that you have the entity in the model, you can create an association back to the

Contact or Trip entity and tie right into the model and all of the other relationships.

This will be a great benefit because you will be able to provide additional details from

queries against UpcomingTripParticipant.

Although we know the relationship to be a One to Zero or One rela-

tionship, where there may be an UpcomingTripParticipant entity for a

particular Contact or Trip but never more than one, you should not

define the association as a 1:0..1. This “virtual” entity will create a

problem when you attempt to delete a related entity. The model con-

straints will expect you to delete an UpcomingTripParticipant as well.

With entities that are mapped to database tables, this is not a problem.

In this case you can avoid this problem by defining a one-to-many re-

lationship between Contact or Trip and UpcomingTripParticipant.

I’ll create a 1:* relationship from Customer to the new entity. Notice in Figure 16-5 that I eliminated the navigation from Customer to UpcomingTripParticipant and unchecked

the “Add foreign key” option.

It makes sense to navigate to Customer but not from Customer, and the foreign key is

unnecessary since I already have ContactID.

Finally, add a referential constraint to the association between the two entities (see

Figure 16-6).

Adding Native Views to the Model | 437

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 16-5. The association settings for relating the new entity to Customer

Testing the DefiningQuery in an association

Figure 16-7 shows a simple query of UpcomingTripParticipants, which eager-loads the related Customer entities. After executing the query and selecting one entity, you can

see, via IntelliSense, that the Customer and all of its related entities are available as well.

This makes UpcomingTripParticipant much more meaningful.

Don’t forget that SSDL modifications are overwritten by the Update

Model from Database Wizard. It’s a harsh reality that you need to be

prepared for. You might want to copy the SSDL modifications into a

separate file so that you can push them back in quickly if you do over-

write the new elements.

Using DefiningQuery to Solve More Complex Problems

DefiningQuery also allows you to solve more complex problems. Here is another quote

from Mike Pizzo, taken from the MSDN forums, describing the ability to create map-

pings that you cannot create with entities that map directly to tables:

438 | Chapter 16: Gaining Additional Stored Procedure and View Support in the Raw XML

Download from Library of Wow! eBook <www.wowebook.com>

…with DefiningQuery, you can map multiple entities to the same table outside of a type

hierarchy, or a single entity to multiple rows within a single table (I did a demo at TechEd where I mapped an “Activity” Entity to a Sharepoint schema in which the properties of

the Activity were actually mapped to different rows within a single “universal” table

according to a row ordinal). The list goes on... In fact, every time I think I’ve found a

mapping scenario that we don’t support in Entity Framework 1.0, I find a way to do it

using DefiningQuery.

 Figure 16-6. The referential constraint for the new association

 Figure 16-7. Navigating from the results of a DefiningQuery into other entities

Keep DefiningQuery in mind as a possible way to solve problems down the road that

you might not even be dreaming of right now.

Adding Native Views to the Model | 439

Download from Library of Wow! eBook <www.wowebook.com>

Using Commands That Affect the Database

So far, this chapter has focused on retrieving data from the database. In addition to the

many views and stored procedures for read operations that have been implemented for

your databases, you also probably have many Database Manipulation Language (DML)

procedures for performing updates, inserts, and deletes.

In Chapter 7, you learned how to use the simplest form of these in the model, by performing function mapping for the Insert, Update, and Delete functions of particular

entities and creating a function import to map read stored procedures to a entities,

scalars, and complex types. You also did this in Chapter 8 with the Payment entity. Yet you can use DML procedures in many other scenarios. Leveraging them in your model

and using them with the Entity Framework is possible, if not always pretty.

Executing SQL on the Fly with ExecuteStoreCommand

ExecuteStoreCommand is the last of the set of direct execution methods that are new to Entity Framework in .NET 4. You have already seen ExecuteFunction and

ExecuteStoreQuery.

In Chapter 6, you learned how to use ObjectContext.DeleteObject to delete data from the database. The downside to this method is that it requires the entity to be in memory.

This means that if you simply wish to delete data in the database, you first need to

query that data, and then delete it and save the changes back to the database. At that

time, I hinted at a simpler way to do this, and I was talking about ExecuteCommand.

With ExecuteCommand you could send a store delete command directly to the database

and have it executed immediately.

You’ll want to prevent possible SQL injection attacks, so always use parameters. There

are two ways to send parameters along with your commands. The first is to use the

substitution pattern that you may be familiar with for formatting strings:

context.ExecuteStoreCommand

("DELETE FROM ContactPersonalInfo WHERE ContactID={0}",contactid);

The second is to use DbParameters, such as System.Data.SqlClient.SqlParameter:

var param = new SqlParameter { ParameterName = "p0", Value = contactid };

context.ExecuteStoreCommand

("DELETE FROM ContactPersonalInfo WHERE ContactID=@p0", param);

Be mindful of the fact that if you use a specific provider’s parameter,

such as SqlClient.SqlParameter, your code will work only with that

provider. If you want to be more generic in case you switch databases,

consider using ADO.NET’s DbProviderFactory, which you can learn

about at http://msdn.microsoft.com/en-us/library/wda6c36e.aspx.

440 | Chapter 16: Gaining Additional Stored Procedure and View Support in the Raw XML

Download from Library of Wow! eBook <www.wowebook.com>

Both will result in the same parameterized store query, where the value of ContactID

was 241:

exec sp_executesql

N'DELETE FROM ContactPersonalInfo

WHERE ContactID=@p0',N'@p0 int',

@p0=241

Using Functions to Manipulate Data in the Database

With a function you can inject a simple command, perhaps a delete command that you

would like to be part of the model, or even complex commands, such as ones that

modify data in the database and also return data.

The BreakAway database has a stored procedure called CreateCustomerfromContact.

This is an important function for BreakAway’s business model. The company has many

contacts who are potential customers, yet they are not officially customers until they

book their first trip. That’s when BreakAway begins to track more details regarding the

customer with a row in the Customers table. Sometimes the company needs to create a

new Customer that does not already have a Contact record in the database, and the

inheritance in the model takes care of that.

But if the Contact record already exists and you want to create a new Customer record

to tie back to that Contact, inserting a Customer entity won’t work, because that will

attempt to insert a new Contact as well.

CreateCustomerfromContact solves this problem, and not only extends the Contact to

be a Customer but also passes back the newly created Customer so that it can be used

immediately. It takes a ContactID as a parameter, inserts a new row into the Customer

table using that ContactID, and then returns a complete Customer. Here is the T-SQL

for the procedure:

INSERT INTO customers (ContactID,customers.[InitialDate])

VALUES (@contactid,GETDATE())

INSERT INTO ContactPersonalInfo (ContactID) VALUES (@contactid)

SELECT Customers.*,

Contact.FirstName, Contact.LastName, Contact.Title, Contact.AddDate,

Contact.ModifiedDate, CPI.BirthDate, CPI.HeightInches,

CPI.WeightPounds, CPI.DietaryRestrictions

FROM Customers INNER JOIN

Contact ON Customers.ContactID = Contact.ContactID INNER JOIN

ContactPersonalInfo CPI ON Customers.ContactID = CPI.ContactID

WHERE Customers.ContactID=@contactID

The results map directly back to a Customer entity—almost. Unfortunately, we’ve

changed some of the property names in the entity and they don’t match up with the

column names of the Customers table in the database. If they did, you could simply

Using Commands That Affect the Database | 441

Download from Library of Wow! eBook <www.wowebook.com>

create the FunctionImport, map it back to the Customer entity, and then go ahead and execute the method from the BAEntities context, as shown in Example 16-8.

 Example 16-8. Calling function that updates the database and returns data

Customer newCust=context.CreateCustomerfromContact(contactID).SingleOrDefault();

But since the results don’t line up with the Customer entity, you’ll have a few options

to choose from. One is to modify the stored procedure in the database. The next option

is to create a complex type that matches the return of this procedure, but that would

mean the results would not be a customer unless you take the results and push them

into a customer.

A third option is to leverage the CommandText element of the existing Function element

that you learned about earlier in this chapter. You can embed your own version of the

command into the Function element, which the wizard created for this procedure, and

override the use of the stored procedure in the database.

Here is what the function looks like as defined by the wizard:

<Function Name="CreateCustomerfromContact" Aggregate="false" BuiltIn="false"

NiladicFunction="false" IsComposable="false"

ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo">

<Parameter Name="contactID" Type="int" Mode="In" />

</Function>

After you have modified the command to rename the columns so that they match

the Customer entity, Example 16-9 is what the function looks like with the new CommandText element.

 Example 16-9. Defining a complex command in the SSDL

<Function Name="CreateCustomerfromContact" Aggregate="false" BuiltIn="false"

NiladicFunction="false" IsComposable="false"

ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo">

<CommandText>

INSERT INTO customers(ContactID, customers.[InitialDate])

VALUES (@contactid, GETDATE())

INSERT INTO ContactPersonalInfo (ContactID)

VALUES (@contactid)

SELECT Customers.ContactID,CustomerTypeID,InitialDate,

PrimaryDesintation AS PrimaryDestinationID,

SecondaryDestination AS SecondaryDestinationID,

PrimaryActivity AS PrimaryActivityID,

SecondaryActivity AS SecondaryActivityID,

Notes,Customers.RowVersion AS CustRowVersion,

Contact.FirstName, Contact.LastName, Contact.Title, Contact.AddDate,

Contact.ModifiedDate, Contact.RowVersion, CPI.BirthDate, CPI.HeightInches,

CPI.WeightPounds,CPI.DietaryRestrictions

FROM Customers

INNER JOIN Contact ON Customers.ContactID = Contact.ContactID

INNER JOIN ContactPersonalInfo CPI ON Customers.ContactID = CPI.ContactID

442 | Chapter 16: Gaining Additional Stored Procedure and View Support in the Raw XML

Download from Library of Wow! eBook <www.wowebook.com>

WHERE Customers.ContactID = @contactid

</CommandText>

<Parameter Name="contactID" Type="int" Mode="In" />

</Function>

Now you can create a FunctionImport for this new function and set its return type to

Customer. Then you can call the function as shown earlier in Example 16-8.

You can also import functions for stored procedures that impact the

database and do not return any data. In the Function Import dialog,

select None as the return type for the function.

Changing from one derived type to another

There are a few things to consider when calling this method.

The first is to know whether the contact is already a customer. The stored procedure

could be modified to handle that logic. Currently, it is written with the assumption that

you are already confident that the incoming ID is for a contact who is not yet a customer.

That would require that your code has logic to verify the contact’s status prior to calling the function. If the contact is in memory, you can check its type easily enough. If it is

not in memory, you’ll have to query for it. It might be a lot easier just to have the stored procedure deal with the validation and return the already existing Customer record if

necessary.

The second consideration is if the contact that you are converting is in memory. If it is

in memory, you would have a conflict when the new customer is returned. That’s be-

cause the original contact would be a NonCustomer type of Contact. When you call the

function and it attempts to return a Contact with the same ContactID but of a different

type, you will get an exception. The Customer will have been created; the problem is

just a conflict when an attempt is made to add the newly returned Customer into the

context.

Both of these considerations require that you check the existing context for the Contact to be converted.

The second consideration then requires that if the Contact is indeed in memory, you

should remove it before doing the conversion. You can do this by first detaching the

Contact from the context (which rids the context of the relevant ObjectStateEntry) and

then setting the Contact to null, which removes it from memory completely.

Example 16-10 shows a method that does a few more checks and balances and retrieves the newly created customer.

Using Commands That Affect the Database | 443

Download from Library of Wow! eBook <www.wowebook.com>

When you are creating the function import, you can use the Get Column

Information feature to check the schema of the results, even though you

won’t be creating a complex type from that information.

Before the method executes the function, it first tests to ensure that the contact already exists in the database and that it is not already a customer.

 Example 16-10. Using a function to turn an existing contact into a customer

public static Customer ConvertContacttoCustomer(int contactID, BAEntities context)

{ ObjectStateEntry contactStub;

bool inMemory =

context.ObjectStateManager.TryGetObjectStateEntry

(new System.Data.EntityKey("BAEntities.Contacts", "ContactID", contactID), out contactStub);

if (inMemory)

{

//remove contact from the context and then from memory

Contact inMemContact = (Contact)contactStub.Entity;

context.Detach(inMemContact);

inMemContact = null;

}

//call the function which returns a customer

return context.CreateCustomerfromContact(contactID).SingleOrDefault();

}

Mapping Insert/Update/Delete to Types Within an Inheritance

Structure

One more rule regarding stored procedures in the EDM may come as a surprise,

whether you are using the Designer or implementing the stored procedures by hand.

When mapping stored procedures to base or derived types, you are also required to

map the stored procedures to any other type within the inheritance structure. There-

fore, if you map a function to a base type, you must also map a function to its derived

types. Conversely, mapping to a derived type, such as Customer, requires that you also

map functions to the base type (Contact) and any other derived types (NonCustomer). If

you forget this rule, the compiler will happily remind you with an error message. The

following error message, which results when you have mapped to the Customer entity

but not the Contact, is an example:

If an EntitySet mapping includes a function binding, function bindings

must be included for all types. The following types do not have function

bindings: BreakAwayModel.Contact.

444 | Chapter 16: Gaining Additional Stored Procedure and View Support in the Raw XML

Download from Library of Wow! eBook <www.wowebook.com>

Default Command Generation Versus Stored Procedures for Inherited Types When SaveChanges performs insert and delete operations on a Customer in the BreakAway model, it will create and execute three separate commands: one for the Contact

table, one for the Customer table, and one for the ContactPersonalInfo table. The com-

mand(s) created for an update depend on which properties have been modified. Using

a stored procedure, which internalizes the work on these three tables, you can reduce

Customer modifications to a single call to the database. For example, a single insert

stored procedure could contain the three Insert commands to insert into the three

relevant tables. That would mean one trip to the database instead of three.

On the other hand, an update stored procedure predefines which properties are passed

to the database for an update, regardless of which properties have changed. When the

Entity Framework creates the commands, the commands are more efficient because

only the modified properties are sent as parameters. Depending on how your stored

procedure is written, this could be seen as a benefit of using the Entity Framework’s

default query and command processing over stored procedures.

What If Stored Procedures Affect Multiple Entities in an Inheritance

Structure?

You can take a few approaches when working with stored procedures. The

procedures in the BreakAway database take the more standard route, which is to simply

perform the tasks at hand. The database contains stored procedures for performing

inserts, updates, and deletes on customers as well as contacts. InsertCustomer,

UpdateCustomer, and DeleteCustomer interact with the Customer, Contact, and Contact

PersonalInfo tables, and InsertContact, UpdateContact, and DeleteContact interact

with only the Contact table.

When the Entity Framework uses these stored procedures it will not overlap them.

When saving changes to Customers it will call only the Customer entity’s functions. When

saving changes to Contacts it will call only the Contact entity’s functions.

You can try to map these functions, or just be prepared for when you are defining your

own model with inherited entities and stored procedures.

Implementing and Querying with User-Defined Functions

(UDFs)

Many databases allow you to create your own functions, called user-defined functions,

or UDFs. In SQL Server, these can be table-valued functions, scalar functions, or array

functions. The Entity Framework’s EDM supports UDFs, with the exception of table-

valued functions.

Implementing and Querying with User-Defined Functions (UDFs) | 445

Download from Library of Wow! eBook <www.wowebook.com>

The EDM Wizard and the Update Model Wizard list UDFs along with stored proce-

dures in the Stored Procedures node. Like stored procedures, UDFs are resolved as

functions in the store layer of your model.

In the BreakAway database, because a customer’s weight is stored in U.S. pounds, a

function is defined to convert pounds into kilograms. It’s called ufnLBtoKG. If you were

to select this UDF in either of the wizards, you would find the following function in

the SSDL section of the EDMX file:

<Function Name="ufnLBtoKG" ReturnType="nvarchar" Aggregate="false"

BuiltIn="false" NiladicFunction="false" IsComposable="true"

ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo">

<Parameter Name="Pounds" Type="int" Mode="In" />

</Function>

Notice that the IsComposable attribute is true. This is different from the stored proce-

dures whose IsComposable attribute must be false. You can use UDFs as parts of queries.

Another big difference between UDFs and stored procedures is that you call UDFs

directly from the store layer rather than doing function mapping and calling them from

the conceptual model.

This means that by default the functions are not available in LINQ. You can access

them easily in Entity SQL statements, which you can then use with ObjectQuery or with

EntityClient. If you think back to how you created a LINQ query function for the

model-defined function in Chapter 15, you will discover that you can use the same EDMFunction attribute to allow using UDF functions in LINQ queries.

Example 16-11 uses the ufnLBtoKG function with Entity SQL. You will find that there is a surprising difference between this expression and those you wrote earlier. This is

because the function is only in the store.

The example will return a list of customer names, their weight in pounds, and their

weight in kilograms.

Because Customer is a derived type, you will need to use the TREAT AS

Entity SQL operator that you learned about in Chapter 14. Remember

that Entity SQL points back to the assembly namespace, not the model

namespace, when casting to derived types.

 Example 16-11. Querying with a UDF

var esql = "select TREAT(c as BAGA.Customer).WeightPounds," +

"BreakAwayModel.Store" +

".ufnLBtoKG(TREAT(c as BAGA.Customer).WeightPounds) " +

"from BAEntities.Contacts AS c where c is of(BAGA.Customer)";

var query = context.CreateQuery<DbDataRecord>(esql);

var weightList = query.ToList();

446 | Chapter 16: Gaining Additional Stored Procedure and View Support in the Raw XML

Download from Library of Wow! eBook <www.wowebook.com>

Remember that DbDataRecord is in the System.Data.Common namespace.

You’ll need a using or Imports statement for the namespace at the be-

ginning of your code file.

Notice how the function is called: BreakAwayModel.Store.ufnLBtoKG. It is using the full

name of the function in the store layer, not the CSDL.

In fact, if you use function mapping to map this function back to the conceptual layer,

at runtime you will get the following error when executing a query that uses the function:

"A FunctionImport is mapped to a storage function 'BreakAwayModel.Store.ufnLBtoKG'

that can be composed. Only stored procedure functions may be mapped."

The reason is that Entity Framework does not currently support mapping UDFs into

the model. This is why you must access it directly from the SSDL.

Summary

As you learned in this chapter, the Entity Framework supports stored procedures in

many more ways than the Designer-supported function mappings. And there’s not

much that you can’t pull off. You’ve seen how to execute stored procedures on the fly,

build them directly into the model, work with queries that return data or persist data

to the database, and so much more. The only drawback is that in some cases, much

more manual effort may be involved than you might want to employ.

For some read stored procedures, you may find that it is easier to create a view that returns a similarly shaped result and implement that in your model instead of the stored

procedure. You can also define native stored procedures directly in your model for

reading or writing to the database. Some of the functions that result from stored pro-

cedures can be called as a method of the ObjectContext, whereas others must be called

from EntityConnection.

For organizations that have an investment in stored procedures but want to leverage

the model and the change tracking of the Entity Framework, additional effort will be

required to get the best of both worlds.

Summary | 447

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 17

Using EntityObjects in WCF Services

Services are a critical part of today’s (and tomorrow’s) application environments. You

can use entities in service applications, and depending on your needs you can approach

the task of using the Entity Framework with services in a number of ways. You can

build your own Entity Framework logic into a Windows Communication Foundation

(WCF) service, or use a framework that leverages it, such as WCF Data Services or

WCF Rich Internet Applications (RIA) Data Services.

It is also possible to use entities in Active Server Method (ASMX) web

services, which are still supported in Visual Studio 2010. You can down-

load the ASMX sample created in the first edition of this book from the

downloads page of the book’s website. Note, however, that the sample does not benefit from any of the new features of Entity Framework, such

as foreign keys or POCO support.

In this chapter, we’ll take a look at all three scenarios. First, you will write a WCF

service that makes use of EntityObject-based entities and learn about some of the complications that arise (and their solutions) while you work across the tiers of a distributed application. Even if you don’t plan to write your services with EntityObjects,

you will find a lot of useful information in this chapter. We’ll also take a quick look at WCF Data Services and WCF RIA Services in order to get an understanding of how

they relate to the Entity Framework.

WCF Data Services and WCF RIA Services are Microsoft’s solutions for encapsulating

much of the logic that you would otherwise have to code manually (as you’ll be doing

in the next two chapters). Data Services provides the raw data from the model through

a queryable URL, while RIA Services is more familiar, providing service operations.

With RIA Services, much of the change tracking, authorization, and authentication are

handled automatically. If you do not need ultimate control over your service operations,

you should definitely consider both of these technologies. Although digging deep into

these topics is out of scope for this book, you’ll get a quick look at them in the next

two chapters and can find myriad resources to continue your education.

449

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 17-1. Client application consuming a WCF Service without a need for direct interaction with the Entity Framework

In the next chapter, you’ll get a chance to use POCOs in services as well as Entity

Framework’s new self-tracking entities, a specially designed set of POCO classes and

other supporting classes that were designed specifically for using entities in WCF.

Services are much easier to write using POCO classes, but because EntityObject is

inherited by the default classes generated from an Entity Framework Entity Data Model,

many developers will want to know how to work with EntityObjects in their services.

In addition to building services in this chapter, you’ll create a simple console application to consume the EntityObject-based service and then reuse it for the WCF data service

later in the chapter.

If you have never built a WCF service before, have no fear. The walk-

throughs will provide you with step-by-step details.

Planning for an Entity Framework–Agnostic Client

In this chapter, the samples depend on the Entity Framework on the server side only.

The clients that consume the services use a simplified version of the classes that the

services provide. The client will not perform any database connections, change track-

ing, relationship management, or anything else that depends on Object Services. This

means not only that your client does not have to install the Entity Framework APIs—

or your own model, for that matter—but also that you can build clients that are not

even written in .NET, as long as they follow the services’ rules. Figure 17-1 displays how the client application interacts only with the service.

450 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

You will use a .NET client in this chapter so that you can get some hands-on experience manipulating the objects returned by these services as well as interacting with the services themselves.

Unless you want to take advantage of Object Services on the client side, for the sake of

either change tracking or relationship management, there’s no reason to reference your

model assembly or the Entity Framework in the client at all. As you learned in Chap-

ter 10, the ObjectContext along with any ObjectStateEntry objects do not get serialized when your entities move from a service to a client or from a client to a service. Even if

you had Entity Framework on the client side to handle change tracking, you would still

lose any changes you make on the client when you send the objects back to the service.

Assessing the Pros and Cons of an Entity Framework–Agnostic Consumer

Without the Entity Framework APIs in the client application, you will be faced with a

few additional challenges that you should have some experience handling. You’ll find

in this chapter’s WCF example that the lack of references to the model and

System.Data.Entity is noticeable and educational.

For one thing, EntityCollections won’t exist on the client, as they are a class in the

System.Data.Entity assembly. As a result, the children of an object are contained in a

List rather than an EntityCollection. You’ll see how it is necessary to explicitly in-

stantiate the Reservations property of a new customer by calling Customer.Reserva tions = new List<Reservations>.

Another example is that you don’t automatically get two-way relationship navigation.

If you add a Reservation to a Customer, you will find that Reservation in Customer.Res

ervations, but Reservation.Customer will return null. If you needed to navigate in both

directions, you would have to explicitly bind them in both ways (e.g., additionally

calling Reservation.Customer=myCustomer). This is similar to the explicit two-way nav-

igation fix-up you looked at in Chapter 13 when building POCO classes.

This is not to say that excluding the references in the model assembly and

System.Data.Entity is a bad thing. In many scenarios your business rules may prevent

you from having the client depend on these things, so it’s very useful to see how to

build clients in this way. On the other hand, those references can be a welcome inclusion

in some situations. The relationship management will be simpler, and although you

will get change tracking on the client, keep in mind that the changes stored in the

ObjectStateEntry objects will be lost when transferring the objects back to the service.

Although you already learned about the ObjectStateEntry objects, you will learn more

about this problem, and solutions for it, in later chapters. My personal preference is to

keep the Entity Framework APIs out of the client.

Planning for an Entity Framework–Agnostic Client | 451

Download from Library of Wow! eBook <www.wowebook.com>

Returning EntityObjects from a Service: Good or Bad?

If you are using the default code generator for your model, your entity classes all inherit from EntityObject. Creating service operations that return and receive EntityObject

classes makes for simple programming, but is it recommended?

There’s an age-old debate along these lines about transmitting ADO.NET DataSets or

DataTables in services as well. The biggest reason not to send DataSets or DataTables is

because it makes your service difficult to consume by non-.NET clients.

I prefer not to pass EntityObjects between my service and client. As the needs of my

service or consumers of my service get more complex, it becomes more difficult to work

around the boundaries of EntityObjects.

With the advent of Entity Framework’s POCO support in .NET 4, I recommend to my

clients to use POCO classes for their WCF services rather than EntityObject classes.

As you work through the sample in this chapter where EntityObjects are used in the

service, and then samples in the next chapter where you’ll use POCO classes in WCF

services, you’ll see how the POCO classes simplify many of the tasks that become chores

with EntityObjects.

Serialized EntityObjects are also very fat. They have a lot of EntityObject- and Entity

Framework-specific schema information in them that you will have no use for on the

client side.

This is not to say that you should never use the EntityObject classes in services. It is

certainly supported and your needs may be satisfied with the EntityObjects. As you’ll

see in the first example, the most obvious use case would be if your service does not

need to support updates or at least updates that involve graphs.

If you are building a consumer in .NET, the Visual Studio proxy generator (result of

using the Add Service Reference feature) makes it simple to use the classes that are being returned from the service, even if the client is not using Entity Framework.

But in the end, when you want to have more control over the classes that are sent to

your client, you will find that using POCO classes is much simpler. You can construct

your own POCO classes, use the POCO template provided in the Entity Framework

Feature CTP, or use the template that builds the self-tracking entities (which are also

POCOs) and their supporting classes. The next chapter will be entirely devoted to POCOs in services.

Building a Simple WCF Service with EntityObjects

The WCF sample you’ll build in this section will work with graphs and deal with the

challenges introduced by performing updates on graphs that have come across a tier.

As your first foray into WCF with Entity Framework, this will be a simple CRUD service

with explicit operations exposed for read, insert, update, and delete for a single type,

452 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

Customer. However, within the operations, you will be dealing with a Customer graph

that contains Reservations and Trip details.

With the other options available for creating services in Entity Frame-

work 4 (POCOs or even self-tracking entities) you may never choose

EntityObjects for your service. As stated earlier, it is not my personal

preference, but you still may find it beneficial to see what it takes to

implement a service in this way. There will be scenarios where you sim-

ply want to use the out-of-the-box default classes, and therefore you

may be going this route with your service. If nothing more, it will give

you an appreciation for the simplicity of using POCOs or self-tracking

entities.

Creating a WCF service begins with defining a set of interfaces that represent contracts

for the necessary operations. Then you will implement those interfaces as methods in

a separate code file.

The goal of this service will be to allow the consuming application to create new res-

ervations for existing customers. It will need to have the following capabilities:

• Provide a list of customers for the end user to choose from.

• Provide a customer record for a single customer.

• Provide the existing reservations along with trip details for a single customer.

• Provide a list of upcoming trips so that new reservations can be created.

• Delete existing reservations.

• Update changes to the customer details.

Creating the Service

We’ll start by creating a WCF Service Application project:

1. Add a new WCF Service Application project from the Web tab of the Add New

Project dialog into the solution you’ve been working with. I’ve named mine Cus-

tomerWCFServiceApp.

Don’t forget to be sure you are targeting .NET Framework 4.0

when creating new projects in this chapter.

Note that the project has one file named IService1 and another named Service1.

Notice that Service1 is not a .vb or .cs file, but an .svc file. That is the actual service that your consuming application will interact with, and it needs a better name.

2. Rename Service1.svc to CustomerService.svc.

Building a Simple WCF Service with EntityObjects | 453

Download from Library of Wow! eBook <www.wowebook.com>

3. Rename IService1.cs/ .vb to ICustomerService.cs/ .vb.

You will use ICustomerService to describe what the service will do. It contains a

list of the operations, but doesn’t have the code for implementing them. This type

of file is referred to as an interface, which is a very common programming construct.

In WCF, this interface acts as a “contract,” or a promise, regarding what to expect

of the service. Also in this file, you can define additional data types that can be used

to send data to or from the service. These are referred to as data contracts.

4. Open the ICustomerService file and rename the IService1 interface to

ICustomerService. Be sure to follow the instructions in the comment at the top of

the file for renaming because Visual Studio needs to change the name in a number

of places for you. In Visual Studio 2010, renaming WCF interfaces and classes does

a more thorough job than previously.

5. Open the CustomerService file. You’ll see that the Service1 class now implements the renamed ICustomerService interface. Rename the Service1 class to

CustomerService.

6. Add project references to System.Data.Entity and to the BreakAwayModel project.

7. Copy the ConnectionStrings section from the BreakAwayModel project’s

 app.config file to the web.config file.

Defining the Service Operations

Operation contracts are defined in the interface, ICustomerService. Each method has

an OperationContract attribute to indicate that it is an operation that is part of the

contract for your service.

1. Open the ICustomerService file.

2. Delete the default (example) operations for GetData and GetDataUsingDataContract.

3. Add an Imports or using statement to the class for BAGA.

4. Add the OperationContract methods in Example 17-1 into the ICustomerService interface.

 Example 17-1. Defining the service operation contracts

[OperationContract]

List<CustomerNameAndID> GetCustomerPickList();

[OperationContract]

List<Trip> GetUpcomingTrips();

[OperationContract]

Customer GetCustomer(int customerId);

[OperationContract]

string UpdateCustomer(Customer customer);

[OperationContract]

454 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

string InsertCustomer(Customer customer);

[OperationContract]

string DeleteCustomer(int customerId);

Visual Basic attributes are contained in angle brackets, not square

brackets. The first method would look like this:

<OperationContract>

Function GetCustomerPickList As String

Defining Extra Service Classes

While most of the operations work with entity types (Customer, CustomerNameandID, and

Trip), there is one method that will need a special type. The UpdateCustomer method

currently expects a Customer to be returned. Since this service will be working with

Customer graphs that include Reservations, there is a special scenario that will require

UpdateCustomer to expect additional information.

WCF services allow you to define types that are particular to the service. As each ex-

pected operation is referred to as an OperationContract, each special type is called a

DataContract and is defined by a DataContract attribute.

With a DataContract, the contract will say, “Not only will I provide this set of opera-

tions, but I also will send and receive data that has the following schema.” By creating

classes that are DataContracts, the service can provide this information in the commonly

understood description of the service supplied by a Web Service Description Language (WSDL) file, and both the service and the client can use it easily. Each property you need to serialize is flagged as a DataMember.

Now to the special case. While we have an operation to delete a customer, what about

the scenario where an end user has deleted a Reservation from an existing customer?

That reservation to be deleted would need to be marked on the client side as “to be

deleted” and then returned as part of the Customer graph. That will take a bit of extra

coding in the consumer app. Instead, the service will allow the consumer to simply

return a list of ReservationIDs to be deleted along with the Customer graph that is re-

turned to the UpdateCustomer operation. That means we’ll need to create a type that

accepts a Customer graph and a list of integers to represent the ReservationID targeted

for deletion.

We’ll create a new type called CustomerUpdate with two properties to represent this

data. The first property will encapsulate the Customer object (which will be a graph

including the customer’s reservations and the trip details for each reservation). The

second property, ReservationsToDelete, is a List of integers.

Add the class in Example 17-2 to the ICustomerService file below the interface. There is a default CompositeType class that you can delete.

Building a Simple WCF Service with EntityObjects | 455

Download from Library of Wow! eBook <www.wowebook.com>

 Example 17-2. Creating the DataContract class

[DataContract()]

public class CustomerUpdate

{ [DataMember()]

public BAGA.Customer Customer {get; set;}

[DataMember()]

public List<int> ReservationsToDelete{get; set;}

}

Modify the UpdateCustomer operation so that it takes a CustomerUpdate type, as shown

in Example 17-3. I’ve also changed the variable name to customerUpdate.

 Example 17-3. Fixing the UpdateCustomer operation signature

[OperationContract]

string UpdateCustomer(CustomerUpdate customerUpdate);

Entity or DataContract? Leveraging the QueryView-based Entity from

Chapter 15

In Chapter 15, you created a new entity, CustomerNameandID, which was populated by a QueryView in the mapping layer. The GetCustomerPickList operation will return a list

of this special type to be used by the consuming application as a pick list. If the type

did not exist in the model, you could have created an additional DataContract type in

the service contract to represent this view of the Customer. Because it is in the model,

that isn’t necessary. But you’ll see another case later in the chapter where the additional DataContract is not an option and the fact that the entity is in the model is even more

beneficial.

Exposing Custom Properties

Although the code-generated entity classes and their properties are marked with

DataContract and DataMember attributes by default, the custom properties that you have

created in earlier chapters are not. The service will be more useful if it can provide the TripDetail property that you added to the Trip and Reservation classes in Chap-

ter 11. To make this property available as part of the WCF service payload, you’ll need to add the DataMember attribute.

When doing so, you have one more serialization rule to satisfy. DataMembers must have

both a getter and a setter to be serializable. Otherwise, you will get an error in the service that is using the class.

Open the Trip’s partial class in the model project and modify the TripDetails property

by adding the DataMember attribute and the set clause, as shown in Example 17-4.

456 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

 Example 17-4. Modifying the Trip in the partial class of the EDM

[System.Runtime.Serialization.DataMember]

public string TripDetails

{ get

{

//existing code

}

set{}

}

Do the same for the TripDetails property of the Reservation partial class so that you

can use Reservation.TripDetails on the client side.

Implementing the Service Interface

Now it’s time to add some logic to the operations that are based on the interface. You’ll

do this in the CustomerService class.

1. Remove the default methods (GetData and GetDataUsingDataContract).

2. Import the BAGA namespace into the class with using or Imports.

3. Implement the ICustomerService interface.

You’ll do this differently in VB and C#. In VB, place your cursor at the end of the

Implements ICustomerService line of code and press the Enter key. In C#, right-

click on ICustomerService in the class declaration, select Implement Interface from

the context menu, and select Implement Interface from that context menu’s sub-

menu. All of the methods defined in the interface will be stubbed out for you.

4. Add the code for GetCustomerPickList shown in Example 17-5. It will be up to consumers how to combine the FirstName and LastName properties in their logic

and UI.

 Example 17-5. Filling in the logic for the GetCustomerPickList method

public List<BAGA.CustomerNameAndID> GetCustomerPickList()

{ using (var context = new BAEntities())

{

return context.CustomerNameAndIDs

.OrderBy(c => c.LastName + c.FirstName).ToList();

}

}

Notice that the code in this method creates a new context and disposes it within

the scope of the method. This is the pattern you should always use for service

operations. See the following sidebar “Services Demand Short-Lived ObjectCon-

text” to understand why.

Implementing the Service Interface | 457

Download from Library of Wow! eBook <www.wowebook.com>

Services Demand Short-Lived ObjectContext

When executing queries in the web service, you want your context and connection to

be as short-lived as possible. You should create the context, execute the query (causing

the context to open the connection and then close it when the data has been retrieved),

and then get rid of the context immediately. With the possibility that many clients will

make many calls to your services, you don’t want to have any of those contexts or

connections hanging around in memory or they could cause unexpected results. Imag-

ine one user calling an update operation that calls SaveChanges on a context being used

by many users.

Therefore, each operation that needs a context should instantiate and dispose a new

context.

5. Supply the logic for the GetUpcomingTrips operation:

public List<Trip> GetUpcomingTrips()

{ using (var context = new BAEntities())

{

//Serialization will attempt to load navigation properties

// if lazy loading is enabled.

context.ContextOptions.LazyLoadingEnabled = false;

return context.Trips.Where(t => t.StartDate > DateTime.Today).ToList();

}

}

It is very important to disable lazy loading for services before returning

the resultant data. If lazy loading is on, while WCF is serializing the

results it will attempt to load every navigation property in each entity in

the result set. For example, a reservation will load its customer, and the

customer will load its preferences. The reservation will also load its trip,

the trip its destination, and so forth. If the context is unavailable to

execute the lazy loading (which it should be at the point the data is being

serialized) the serialization will fail. If you have allowed the context to

remain in scope by not disposing it, the lazy loading will occur but it

will be performed first for related entities, and then for their relation-

ships, and then for the relationships’ relationships, and so on.

6. Add the code for GetCustomer (see Example 17-6).

Here we return a Customer graph that includes the customer’s reservations, the trip

information for the reservations, and the location information for the trips. This

will satisfy the requirement for the consuming application to be able to view a

customer and the customer’s existing reservations.

 Example 17-6. Logic for the GetCustomer method

public Customer GetCustomer(int custID)

{

458 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

 using (var context = new BAEntities())

{

context.ContextOptions.LazyLoadingEnabled = false;

var cust =

from c in context.Contacts.OfType<Customer>()

.Include("Reservations.Trip.Destination")

where c.ContactID == custID

select c;

return cust.Single();

}

}

7. Add the code in Example 17-7 to the InsertCustomer method.

 Example 17-7. Code for the InsertCustomer method

public string InsertCustomer(BAGA.Customer cust)

{ if (cust.CustomerTypeID==0)

{ cust.CustomerTypeID = 1; }

try

{

using (var context = new BAEntities())

{

RemoveTripsFromGraph(cust);

context.Contacts.AddObject(cust);

context.SaveChanges();

}

return cust.ContactID.ToString();

}

catch (Exception ex)

{

string errorMessage="";

//TODO: construct a message to return to the client

return errorMessage;

}

}

There are a number of things to note about inserting new customers.

The first is that default values defined in the model for scalar properties are not serialized with EntityObjects. Therefore, you will not get the default value you defined for the

foreign key, CustomerTypeID. This property is non-nullable and required.

The next is the RemoveTripsFromGraph method. Thanks to the way the ObjectContext

works with related objects, adding the new Customer to the context also adds any reservations that are attached to it. However, if there are Trips attached to those Reservations, AddObject will fail because the Trip object will have a TripID but the Trip’s EntityKey will be null. If the consumer has defined the relationship by setting the Reservation.Trip property rather than Reservation.TripID, you’ll also find that

Reservation.TripID is null. The helper method, RemoveTripsFromGraph, which you’ll see

shortly, will fix this problem for us. This is another example of the type of problem you

will run into when depending on the EntityObjects generated by the default template.

Implementing the Service Interface | 459

Download from Library of Wow! eBook <www.wowebook.com>

Testing the WCF Services and Operations, and Viewing the Payload

You can verify that the service runs by viewing it in the browser. Although the .NET

SDK provides a WCFTestClient utility for testing operations without having to write

a consumer, it is unable to display responses that contain EntityObjects. Using Visual

Studio’s Unit Testing feature is complicated with WCF services. The console app that

I’ll use to interact with the services is the simplest way to go.

Another benefit of the WCFTestClient is that it displays the payload (the results) of the

operations that are sending data back to the caller. Without the WCFTestClient, you

can still see the payload by using WCF message logging. Be sure to set LogMessagesAt

ServiceLevel to true so that you can see the unencrypted response. To learn how to

use WCF message logging, see the MSDN documentation for the Configuration Editor

tool at http://msdn.microsoft.com/en-us/library/ms732009.aspx.

You’ll see an example of the unencrypted response further on in this chapter as you

consume this first service.

Adding Graphs to ObjectContext

The concept of relationship spanning and its rules may make it easy to add a graph to a context, yet it has a limitation. Because you are adding the new Customer,

everything in the graph will be treated as something to be added. That’s very handy for

Reservations, but what about Reservation.Trip? Reservation.Trip will also be treated

as a new object. Entity Framework will not make any assumptions about the state of

the entity based on existing properties (e.g., an identity key). This will cause the Add to fail because the Trip entity came from the database and has an EntityKey. When the

context attempts to add the trip, an exception will be thrown. The fact that it has an

EntityKey tells the context that it is not a new Trip, and therefore cannot be added.

How do you add some things from a graph and not others? You need to disassemble

part of the graph before it is added to the context, which is not an obvious task.

The best option is to simply set the TripID of the reservation. The reservation may come

back from the client with an attached Trip or with the TripID populated or both. The

helper method assures that the TripID is set and that there is no Trip entity attached.

Add the RemoveTripsFromGraph method to the CustomerService class, as shown in the

following code:

private void RemoveTripsFromGraph(Customer customer)

{ var query = from reservation in customer.Reservations

.Where(r=> r.Trip != null && r.TripID == 0)

select reservation;

foreach (var reservation in query)

{

reservation.TripID = reservation.Trip.TripID;

460 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

 reservation.Trip = null;

}

}

With a few checks and balances, the method ensures that there is no Trip attached and

that the TripID is populated if it wasn’t.

Deleting Objects

Deleting the Customer requires another involved piece of logic, as deleting the Customer means deleting the Customer’s Reservations. A referential constraint in the

BreakAway database says that every Reservation must be related to a Customer. If you

attempt to delete a customer that has reservations, the database will throw an error

because it won’t allow orphaned reservations.

In the meantime, the DeleteCustomer routine will need to explicitly delete all of the

related Reservations for the Customer object. Don’t forget that the Customer is derived

from a contact. The Customer record is only an extension of a Contact record. Therefore,

a business decision is involved here: will the Contact record be deleted? In the case of

BreakAway Geek Adventures, the rule is not to delete customers and reservation his-

tory, but for the sake of your education, we have permission to circumvent this rule in

this service.

You have a decision to make about the operation, since there are a number of ways to

define it.

1. You can receive the entity to be deleted and use the DeleteObject method. Re-

member that to call the DeleteObject method of ObjectContext, the object to be

deleted must be in the cache. So, the incoming object would first need to be at-

tached to the context and then be deleted before calling SaveChanges.

2. Another option is to send up only the identity key of the Customer, in which case

you could query for the Customer and its Reservations and then iteratively call DeleteObject on each of these entities.

3. Yet another option is to send the Customer’s identity key and then use ExecuteCom

mand to delete the Customer directly from the database. This still leaves the reser-

vations to be dealt with if you do not have cascading deletes defined.

I’ve chosen to use the second option. I will send only the ContactID to the service. This

minimizes the amount of data being sent from the client to the server. Then I will do a

quick query to grab the customer and reservations and delete them all using

DeleteObject, and then call SaveChanges. In a highly concurrent system (many users,

many possible conflicts) the cascade delete would be the most efficient and reliable

method. In the BreakAway enterprise the chance of a new reservation being made in

between the time of the query and the call to SaveChanges is so small that this method

will be sufficient.

Add the code in Example 17-8 to the DeleteCustomer method.

Implementing the Service Interface | 461

Download from Library of Wow! eBook <www.wowebook.com>

 Example 17-8. Code for the DeleteCustomer method

public string DeleteCustomer(int customerId)

{ try

{

using (BAEntities context = new BAEntities())

{

var customerToDelete = (from cust in context.Contacts.OfType<Customer>()

.Include("Reservations")

where cust.ContactID == customerId

select cust).Single();

var reservationsToDelete = customerToDelete.Reservations.ToList();

foreach (Reservation r in reservationsToDelete)

{

context.DeleteObject(r);

}

context.DeleteObject(customerToDelete);

context.SaveChanges();

return "Success";

}

}

catch (Exception ex)

{

string errorMessage = "";

//TODO: construct a message to return to the client

return errorMessage;

}

}

In addition to the pattern for deleting from the collection, you’ll notice that I don’t use an index directly from the Reservations property. Instead, I identify the item position

with custtoDelete.Reservations.ToArray()[i]. This is because EntityCollection does

support indexing; therefore, you must first cast the EntityCollection to something that

can be indexed.

What Exactly Is Being Deleted When You Delete Inherited Objects?

Although customers are in a separate database table from contacts, because they derive

from contacts in the model, when the Entity Framework sees an instruction to delete

a Customer it will delete the Contact record as well, even though this doesn’t make sense

in the database schema or even in the business logic—it would be handy to remove a

customer but to leave the contact information intact. If you did want to perform this

action, your best bet would be to use a function backed by a stored procedure, an

ExecuteCommand, or methods that you learned about in Chapter 16.

462 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

Updating the Object Graph

The last method to fill out is the UpdateCustomer method. Updating just the Customer

entity is simple. But this is not a single object; it is a graph. Not only will you need to update the customer, but you will also need to deal with its reservations. The reservations might be modified, new, or even deleted. So, although you are updating the Customer overall, you have a lot more logic to consider in this method.

Client Rules for Identifying Changes in an EntityCollection

The possible states for the reservations that need to be dealt with are newly added

reservations, preexisting reservations that have been modified, and reservations that

need to be deleted. However, the Reservation objects coming from the client will have

no idea about their state, which means the service will need to determine the state of

the Reservations based on a number of assumptions. These assumptions will require

that the consuming client follow some rules to ensure that the service will come up with

the correct conclusions about the state of each Reservation.

New Reservations do not need to be too challenging, as you can identify them by the

fact that their ReservationID has not been created yet, and therefore is equal to 0. As

long as the client does not populate the ID or does not remove the ID value from preexisting reservations, this assumption will work.

Reservations with a ReservationID value that is greater than 0 should be those that

preexisted. These will be either modified or unchanged.

The service won’t need to do anything with unchanged reservations, so

the client could remove these before returning the graph to the service,

thereby reducing the amount of data sent over the wire.

If a reservation is deleted, it will not be returned to the service and will therefore be

ignored. In this service, we will attack the deleted object problem by requiring that the

client send back a list of the IDs of objects that should be deleted. That is the purpose

of the ReservationsToDelete property of the CustomerUpdate class you defined in the

service interface.

The UpdateCustomer Method

We have two paths to choose from when updating a customer and any preexisting

reservations. The first involves querying for a fresh set of data and using the data from

the client to update those objects and then call SaveChanges. The second skips the ad-

ditional trip to the database and simply uses the ChangeState method to render the

Customer object that came from the client application as Modified. While the second

Implementing the Service Interface | 463

Download from Library of Wow! eBook <www.wowebook.com>

path will mean a less efficient update command (every field will be sent in the update),

it can still be better than the extra round trip to the database.

I have struggled with this choice—extra round trip to the database or

extra fields in the update command—since the first version of Entity

Framework. In the first edition of this book, I chose the extra database

trip. The method you choose depends on your understanding of the

performance consequences in your particular scenario. For some, just

choosing the simpler coding method is the way to go.

The UpdateCustomer first extracts the Customer object from the incoming CustomerUp

date type into the customer variable. Before you attach the graph, you need to call the

RemoveTripsFromGraph method that you created earlier. If you have any preexisting trips

attached to a new reservation, this conflicts with a referential constraint defined in the model, and the attach will fail.

Having access to the foreign keys can make this referential constraint a

nonissue. This is another great benefit of the foreign key support intro-

duced in .NET 4. As with the insert, if you can be absolutely positive

that the consuming application will simply assign the TripID rather than

the entire Trip entity to the Reservation, life gets much simpler. The

problem arises when you don’t have control over what happens on the

client side. Certainly, you can make developers of your consuming ap-

plications agree to a “contract” of rules that will enable them to suc-

cessfully interact with your service, but it’s still not a bad idea to have

additional protections, such as the RemoveTripsFromGraph method, to

help ensure success.

Enter the code in Example 17-9 into the UpdateCustomer method.

 Example 17-9. Code for the UpdateCustomer method, with placeholders

public string UpdateCustomer(CustomerUpdate customerUpdate)

{ try

{

var customer = CustomerUpdate.Customer;

using (var context = new BAEntities())

{

RemoveTripsFromGraph(customer);

context.Contacts.Attach(customer);

context.ObjectStateManager.ChangeObjectState(customer,EntityState.Modified);

//Code for Existing and New Reservations will go here;

//Code for Deleted Reservations will go here;

context.SaveChanges();

}

return "Success";

}

464 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

catch (Exception ex)

{

string errorMessage = "";

//TODO: construct a message to return to the client

return errorMessage;

}

}

EntityState depends on the System.Data namespace being declared at

the top of the code file.

Handling New and Existing Reservations

The first placeholder is for adding and updating reservations. When you attached the

customer, that included the entire graph (i.e., the reservations got attached as well).

But, when you called ChangeObjectState on the customer, it affected only the scalar

values. You will need to update any related data explicitly.

We’ll use ChangeObjectState to fix the attached Reservations.

Replace the “Existing and New Reservations” placeholder with the code in Exam-

ple 17-10.

 Example 17-10. Existing Reservations logic for the UpdateCustomer method

context.ContextOptions.LazyLoadingEnabled = false;

foreach (var res in customer.Reservations)

{ if (res.ReservationID > 0)

{ context.ObjectStateManager.ChangeObjectState(res, EntityState.Modified); }

else

{context.ObjectStateManager.ChangeObjectState(res, EntityState.Added); }

}

The preceding code iterates through all reservations coming in from the client and

marks them as either modified or added depending on the ReservationID. If you take

a look at customer.Reservations in debug mode, you’ll see that its IsLoaded property

is false. That will cause lazy loading to attempt to load the Reservations from the

database rather than just looking at what’s in memory. That’s why I’ve explicitly dis-

abled lazy loading.

It is possible that the consuming application did not filter out any reservations that

need to be deleted or those that were unchanged. In that case, wasted commands will

be sent to the database. Unchanged data will still get updated (using original values).

In the next step, we’ll be sure to remove any reservations that the user marked for

deletion. That way, no unnecessary update commands for those Reservations will be

sent to the database.

Implementing the Service Interface | 465

Download from Library of Wow! eBook <www.wowebook.com>

This is another reason I may consider doing the entire UpdateCustomer

method based on fresh data from the database, as I’m constantly eval-

uating whether it’s better to make the up-front trip or not. If you want

to see how that path works out, take a look at the code sample from the

first edition of the book, which is available on this book’s website.

Deleting Reservations

The last piece of the UpdateCustomer method deals with reservations the user deleted.

The client application must send a list of ReservationIDs that need to be deleted. The

list is contained in the ReservationsToDelete property of the CustomerUpdate type.

We’ve got a number of what-ifs to consider with the delete:

 What if the reservation was in the graph?

If so, it’s been marked as Modified and we simply need to change its state to Deleted.

 What if the reservation was not in the graph?

We could simply call ExecuteCommand along with a delete command since we have

the ID; however, that will not be in the same transaction as SaveChanges, and this

could cause problems (There’s more on transactions in Chapter 20.)

 What if payments are attached to the reservation?

In this case, we cannot delete the reservation or the customer. The database will

cause SaveChanges to fail; the entire transaction (all of the other updates and inserts)

will be rolled back. It would be good to clear this up before calling SaveChanges.

That means a well-spent trip to the database.

The TryGetObjectByKey method helps us with the first two points. It will first look in

the context for the reservation, and if it is not found it will get it from the database.

Then we’ll leverage lazy loading to check for the existence of any payments for each

reservation before deleting it.

I’ve encapsulated the logic for deleting reservations into a separate method, shown in

Example 17-11.

 Example 17-11. The DeleteReservations method

private static void DeleteReservations(BAEntities context,

List<int> reservationsToDelete)

{ var query = from reservation in context.Reservations

join reservationId in reservationsToDelete

on reservation.ReservationID equals reservationId

where reservation.Payments.Count == 0

select reservation;

foreach (var reservation in query)

{

context.DeleteObject(reservation);

466 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

 }

}

Now you can replace the DeleteReservations placeholder with the code in Exam-

ple 17-12.

 Example 17-12. Calling DeleteReservations in the UpdateCustomer method

List<int> deleteResIDs = cust.ReservationsToDelete;

DeleteReservations(context, deleteResIDs);

Once you’ve done that, we’ll build the client so that you can test the functionality of

this WCF service.

Forcing the WCF Service to Stay on the Same Port

If you are using Visual Studio’s default web development server to host the service, you

might want to prevent it from changing the port number that it lives on. Otherwise,

the consuming app might have a hard time finding it during testing if the port number

changes. You can do this in the project properties.

1. Open the properties of the WCF service.

2. Select the Web tab.

3. Under the Servers section of the Web page, click the option for “Specific port.”

Building a Simple Console App to Consume an EntityObject

Service

In order to interact with the service, we’ll build a simple console app and debug it to

see what’s going on.

1. Create a new Console Application project. I’ve called mine Chapter17ConsoleApp.

The console app needs only a reference to the service, but it’s a special type of

reference.

2. Right-click the new project and select Add Service Reference from the menu.

3. Click the Discover button, which will discover all services in your solution, in this

case the CustomerService.

4. Rename the namespace as shown in Figure 17-2.

5. Click the Advanced button.

6. Change the Collection type from System.Array to Generic List.

This will ensure that any collections returned by the service are returned as

List<type>.

7. Click OK and then click OK again to close the dialog.

Building a Simple Console App to Consume an EntityObject Service | 467

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 17-2. Adding a reference to the CustomerService

The result of this is that Visual Studio will create locally accessible classes representing all of the exposed classes in the service. These are referred to as proxy classes as they act as proxies to the classes in the service. Not only will the CustomerService class and

its methods be available, but you’ll also find the CustomerUpdate class and all of the

model classes that the service accesses through its reference to the BreakAwayModel

project.

Enabling the Client Application to Receive Large Messages

from the Service

There’s one last task to perform with respect to the service reference. The WCF service

has a lot of specialized configuration in its web.config file. The consuming application inherited some client-side configuration information for interacting with the service,

which was automatically inserted into its app.config file when you added the service reference. One of the options specifies the maximum size of messages that the client

app will accept from the service. Some of these operations will hit that boundary quickly, so you’ll need to increase it.

468 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

There is a WCF Configuration tool that you can use, but we’ll just go right to the source

and edit the config file manually.

1. Double-click the app.config file in the Solution Explorer to open it.

2. In the binding element, look for the attribute called MaxReceivedMessageSize.

3. Increase its value by adding a 0 to the end.

4. Do the same to the MaxBufferSize.

Both MaxReceivedMessageSize and MaxBufferSize need to be the same value as the de-

fault configuration.

Creating Methods to Test the Service Operations

Now you can write code against the service. We’ll create and debug a few methods in

the console application’s main module.

1. In the class file for the main module, add a reference to the CustomerService name-

space. The namespace will begin with the namespace of the console application

followed by the namespace you gave the service reference. For me that’s:

using Chapter17ConsoleApp.BAGAServices;

2. Add the first test method, to check out the GetUpcomingTrips operation shown in

Example 17-13.

 Example 17-13. Testing the service’s GetUpcomingTrips operation

private static void GetUpcomingTrips()

{ using (CustomerServiceClient proxy = new CustomerServiceClient())

{

List<CustomerService.Trip> results = proxy.GetUpcomingTrips();

}

}

You don’t need to strongly type the Trip type. I did so only to demon-

strate where it’s coming from.

3. Call GetUpcomingTrips from the Main method. If you set a breakpoint, you can debug

and step through the method and the service operation to watch things work.

The results should contain a set of Trip objects.

Building a Simple Console App to Consume an EntityObject Service | 469

Download from Library of Wow! eBook <www.wowebook.com>

As noted in earlier chapters, the sample data may be out of date by the

time you are building these samples, and in this case, no trips will be

returned. You might want to manually modify some of the data in the

BreakAway example database.

Each Trip has an EntityKey property and the scalar, navigation, and reference properties

so that it resembles the EntityObject class on which it’s based. Figure 17-3 shows one

of these objects in a debug window. TripID, StartDate, and EndDate are the scalar prop-

erties. Each of these is represented twice. Then, for the navigation properties that are

reference properties, you have the foreign key value (e.g., DestinationID), the entity

value (e.g., Destination), and the EntityReference (e.g., DestinationReference).

 Figure 17-3. A client-side Trip object in debug view

Another interesting piece of information to look at is the unencrypted XML that came

over the wire. Example 17-14 shows the XML for one of the trips that was sent across in the response. Keep this in mind when you’re looking at the response that contains

POCOs in the next chapter.

470 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

 Example 17-14. The XML for a single Trip EntityObject returned by the service

<d4p1:Trip z:Id="" xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/">

- <EntityKey xmlns:d6p1="http://schemas.datacontract.org/2004/07/System.Data"

z:Id="" xmlns="http://schemas.datacontract.org/2004/07/

System.Data.Objects.DataClasses">

<d6p1:EntityContainerName>BAEntities</d6p1:EntityContainerName>

- <d6p1:EntityKeyValues>

- <d6p1:EntityKeyMember>

<d6p1:Key>TripID</d6p1:Key>

<d6p1:Value xmlns:d9p1="http://www.w3.org/2001/XMLSchema"

i:type="d9p1:int">78</d6p1:Value>

</d6p1:EntityKeyMember>

</d6p1:EntityKeyValues>

<d6p1:EntitySetName>Trips</d6p1:EntitySetName>

i2

</EntityKey>

<d4p1:Activities />

- <d4p1:Destination z:Id="">

- <EntityKey xmlns:d7p1="http://schemas.datacontract.org/2004/07/System.Data"

z:Id="" xmlns="http://schemas.datacontract.org/2004/07/

System.Data.Objects.DataClasses">

<d7p1:EntityContainerName>BAEntities</d7p1:EntityContainerName>

- <d7p1:EntityKeyValues>

- <d7p1:EntityKeyMember>

<d7p1:Key>DestinationID</d7p1:Key>

<d7p1:Value xmlns:d10p1="http://www.w3.org/2001/XMLSchema"

i:type="d10p1:int">55</d7p1:Value>

</d7p1:EntityKeyMember>

</d7p1:EntityKeyValues>

<d7p1:EntitySetName>Destinations</d7p1:EntitySetName>

i4

</EntityKey>

<d4p1:DestinationID>55</d4p1:DestinationID>

<d4p1:Lodgings />

<d4p1:Name>Belize</d4p1:Name>

<d4p1:PrimaryPrefCustomers />

<d4p1:SecondaryPrefCustomers />

- <d4p1:Trips>

<d4p1:Trip z:Ref="">i1</d4p1:Trip>

</d4p1:Trips>

i3

</d4p1:Destination>

<d4p1:DestinationID>55</d4p1:DestinationID>

- <d4p1:DestinationReference xmlns:d6p1="http://schemas.datacontract.org/2004/07/

System.Data.Objects.DataClasses">

<d6p1:EntityKey xmlns:d7p1="http://schemas.datacontract.org/

2004/07/System.Data" z:Ref="">i4</d6p1:EntityKey>

</d4p1:DestinationReference>

<d4p1:EndDate>2011-02-07T00:00:00</d4p1:EndDate>

<d4p1:Lodging i:nil="true" />

<d4p1:LodgingID>245</d4p1:LodgingID>

- <d4p1:LodgingReference xmlns:d6p1="http://schemas.datacontract.org/

2004/07/System.Data.Objects.DataClasses">

- <d6p1:EntityKey xmlns:d7p1="http://schemas.datacontract.org/

2004/07/System.Data" z:Id="">

Building a Simple Console App to Consume an EntityObject Service | 471

Download from Library of Wow! eBook <www.wowebook.com>

<d7p1:EntityContainerName>BAEntities</d7p1:EntityContainerName>

- <d7p1:EntityKeyValues>

- <d7p1:EntityKeyMember>

<d7p1:Key>LodgingID</d7p1:Key>

<d7p1:Value xmlns:d10p1="http://www.w3.org/2001/XMLSchema"

i:type="d10p1:int">245</d7p1:Value>

</d7p1:EntityKeyMember>

</d7p1:EntityKeyValues>

<d7p1:EntitySetName>Lodgings</d7p1:EntitySetName>

i5

</d6p1:EntityKey>

</d4p1:LodgingReference>

<d4p1:Reservations />

<d4p1:StartDate>2011-02-03T00:00:00</d4p1:StartDate>

<d4p1:TripCostUSD>1572</d4p1:TripCostUSD>

<d4p1:TripDetails>Belize (2/3/2011-2/7/2011; $1,572.00)</d4p1:TripDetails>

<d4p1:TripID>78</d4p1:TripID>

i1

</d4p1:Trip>

In addition to providing the data for the Trip, the proxy has type defi-

nitions for things such as EntityKey, EntityObject, and many other types

that the client will need to be aware of. Overall, a lot of extra work is

being done just because we are serializing the EntityObjects rather than

simple types.

Let’s test some of the other functionality in the service. Rather than hit the operations

one at a time, we’ll build a small workflow in a single method in the console application.

The code in Example 17-15 will emulate how the service might be used.

For the sake of seeing all of the code together, I haven’t encapsulated or separated any

of the logic as you might in a production application. I’ll walk through the code after

the listing.

 Example 17-15. A client-side method to test various service operations

private static void GetandUpdateCustomer()

{ using (var proxy =

new CustomerServiceClient())

{

var custList= proxy.GetCustomerPickList();

int randomCustomerID = custList[7].Id;

var customer = proxy.GetCustomer(randomCustomerID);

//edit the customer

customer.Notes += ", new notes";

//retrieve a list of trips

List<Trip> trips = proxy.GetUpcomingTrips();

//create a new reservation

472 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

 var newRes = new Reservation();

newRes.ReservationDate = DateTime.Now;

//emulate selection of a trip

newRes.Trip = trips[8];

newRes.RowVersion = System.Text.Encoding.Default.GetBytes("0x123");

//instantiate Reservations list if necessary & add new reservation

if (customer.Reservations == null)

{

customer.Reservations = new List<Reservation>();

}

else

{

customer.Reservations.Clear();

}

customer.Reservations.Add(newRes);

//build CustomerUpdate to return to service

var customerUpdate = new CustomerUpdate

{ Customer = customer,

ReservationsToDelete = null };

string status=proxy.UpdateCustomer(customerUpdate);

}

}

Analyzing the GetAndUpdateCustomer Method

Here’s what the test does. First, it retrieves a list of names and IDs and then emulates

the following user actions. The user selects a customer and requests GetCustomer using

the ID of the selected customer. The user makes an edit to the customer’s Notes field.

In order to add a new reservation, you’ll need a list of the upcoming trips, so that request is made. Then a new Reservation is created using a randomly selected trip. The RowVer

sion field must be set because XML serialization requires that binary fields are not null.

The proxy classes do not understand two-way relationships. If you set the Reservation’s

Customer property to the Customer object and then pass the Customer object back to the

service, it will not know about the reservation. Therefore, you need to add the reser-

vation to the customer’s Reservations property. If there were no reservations for this

customer when it was retrieved from the service, this will be null and it will need to be

instantiated before you can add the reservation. Since this code is not editing any ex-

isting reservations, there’s no reason to send them back up to the service; that’s why

they’ve been cleared from the list.

Finally, it’s time to update the customer. Remember that UpdateCustomer takes a Cus

tomerUpdate object. So, you must first create a CustomerUpdate and feed it the customer.

Since this example hasn’t deleted any reservations, the ReservationsToDelete property

will simply be null.

Now you can run the console app. You’ll probably want to set a breakpoint near the

beginning to step through all of the code in the console application and the service.

Building a Simple Console App to Consume an EntityObject Service | 473

Download from Library of Wow! eBook <www.wowebook.com>

In addition to watching what’s happening in the debugger, you might find what’s hap-

pening in the database interesting as well.

Figure 17-4 shows all of the commands executed in the database as a result of this method.

 Figure 17-4. Commands sent to the database from the service

Testing Out the Other Service Operations

You can write additional console methods to test out the other operations in the service,

or download sample code for this chapter from the book’s website to see them in action.

But now we’ll move on to some other types of services.

Creating WCF Data Services with Entities

While most services provide service operations for consumers to request, WCF Data

Services literally exposes data. Additionally, WCF Data Services is provided directly

through HTTP—in other words, through a URL. You can use HTTP requests such as

GET (to retrieve data), PUT (to insert), POST (to update), and DELETE (yes, to delete). Going directly through HTTP is referred to as a REST (Representational State Transfer) architecture. You can even browse data in a web browser. A typical service serves oper-

ations, but a data service literally serves data.

WCF Data Services is also known by its early code name, Astoria (my

favorite, still), and by its .NET 3.5 name, ADO.NET Data Services.

You can create a WCF Data Service based on your Entity Framework model and, with

or without the addition of authentication and authorization to protect your data, allow

end users to query and even update the data directly through HTTP.

You can also create WCF Data Services based on LINQ to SQL classes

or custom classes that expose IQueryables.

474 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

Putting WCF Data Services in Perspective

WCF Data Services is a big topic that deserves its own book, and there are a number

of such books. Here I’ll provide a short overview and point you to some great resources

to learn more about it.

In addition to its RESTful capabilities, another benefit of WCF Data Services is that it

provides data based on a specification called OData* (Open Data Protocol). The name

for the specification is fairly new, though the results schema is the same one that has

been used for the data services since their first release. Having a common expectation

of how data will be provided simplifies the work for those who are consuming the

service. Every WCF data service will provide data in the same format, which is based

on a specification called AtomPub (Atom Publishing Protocol).

For the .NET developer, creating and consuming WCF Data Services is made easy with

tools in Visual Studio. There is a Data Service item template for creating services and

for building client applications, and there are two client .NET APIs that let you work

fairly easily with WCF Data Services. One is for standard .NET clients such as Windows

Forms or ASP.NET and the other is specifically for Silverlight clients. There are also

APIs for PHP, Java, and Ajax. But you don’t need a client API to interact with data

services. You can use any programming language that allows you to make HTTP re-

quests and receive HTTP responses to talk to these data services.

Microsoft is making a big investment in OData. Many products are being modified to

easily consume data supplied by WCF Data Services. SharePoint 2010 and Excel 2010

can import AtomPub, and therefore OData. OData is also recognized by Windows

Azure Table Storage. More integration is coming with Microsoft products. And it’s not

just Microsoft. IBM has a product called WebSphere eXtreme Scale REST Data Service

that implements WCF Data Services and more are coming.

Creating a WCF Data Service

In the following walkthrough, you’ll create a simple service from entities in the Break-

Away model, access it directly through a browser, and then tweak the service to see

how it impacts the available data. I will not provide examples of using the various client APIs to access the services, as that would take us a bit off track.

Your service needs to be hosted in some type of project. I generally start with an ASP.NET Empty Web Application, so create a new ASP.NET Empty Web Application.

I’ve named mine Chapter17DataService.

As you’ve done with the other applications that consume the Entity Data Model, add

a reference to the BreakAway model project and copy the ConnectionStrings section

from that project into the web.config file. Add a WCF data service to the project. You’ll

* http://www.odata.org

Creating WCF Data Services with Entities | 475

Download from Library of Wow! eBook <www.wowebook.com>

find this item template under the Web templates in the Add New Item dialog. I’m leaving the default name, WcfDataService1.svc, for mine.

The code view of the service will open as a result of creating the service, and you’ll find two different TODO items in the comments. The first is to let the service know what

data the service will be exposing. That is provided through the generated

EntityContainer, BAGA.BAEntities.

Replace the following line of code:

DataService< /* TODO: put your data source class name here */ >

with DataService<BAGA.BAEntities>.

The second TODO is related to security. If there was no security in the services, any-

body with network access to the endpoint would be able to read and write to your data

through the model.

An important concept to understand is that the service is not a direct pointer to your

database. Only that data that is exposed through your model is available to the service. The consumers will see the entities as we’ve defined them, not the database

tables.

By default, the service is completely locked down. Nobody will have access to read or

modify any data.

The second TODO lets you configure which entities (more specifically, which Entity

Sets) users have access to and what they can do to them (e.g., read, write, create, etc.)

using the SetEntitySetAccessRule setting.

For the sake of this demo, let’s start by opening all of the entities for read access.

Uncomment the following line:

// config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead);

In the MyEntityset placeholder you can specify individual EntitySets. For example, you

can create a rule just for the Contacts or one just for the Trips. You might want users

to view and edit Customers but only view Trips. You would set a different access rule

for each EntitySet. Here we will grant AllRead rights for the Contacts set by replacing

MyEntityset with Contacts.

config.SetEntitySetAccessRule("Contacts", EntitySetRights.AllRead);

That is the only configuration we’ll do for now.

The service is now ready to be consumed. So, save and build the project, then right-

click on the service (e.g., WcfDataService1.svc) in the Solution Explorer, and select

View in Browser.

Figure 17-5 shows the results of browsing the service, which is essentially a list of all of the entity sets that are available—in this case, only Contacts. The URL points to an

ASP.NET web development server on a random port of my computer.

476 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 17-5. The response to the service request

Now here is the fun part. It’s nice to know that there are Contacts in the service, but

that’s not data. Let’s look at the actual data.

In the browser’s address bar, change the URL to http://localhost:1179/WcfDataService1

 .svc/Contacts so that you tell the service to expose the Contacts. (Presuming your computer has selected a different port than mine, you’ll want to use the correct port

number, not 1179.)

Be sure that your browser is not configured to display RSS Feeds in feed-

reading view or you won’t see the raw response. For example, in Internet

Explorer 8, go to Tools→Internet Options→Content→Feeds and Web

Slices to change the setting.

The result will be a display of every contact exposed by your model, and since your

model doesn’t filter the contacts, this happens to be every contact in the database.

Figure 17-6 shows the beginning of this response.

The base format that you are looking at is AtomPub, a protocol that has been around since 2003. It made sense to Microsoft to use a recognized format rather than invent a

new one. AtomPub has its roots in blogging, which is why each item is called an entry

and the details of that item are stored in a content tag. Within the content tag, you are

seeing schema that is specific to the OData specification—m: for metadata, d: for data,

and so forth.

Notice also in the screenshot that the very first contact displayed happens to be a Customer. WCF Data Services understands that we’ve built inheritance in our model.

All of the properties of the Customer type are included.

In the same listing, a NonCustomer entity, which also inherits from Contact, is displayed

along with its properties, as shown in Figure 17-7.

Creating WCF Data Services with Entities | 477

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 17-6. The beginning of the response to requesting Contacts

Notice that the entry has an id element that contains a URL, http://localhost:1179/

 WcfDataService1.svc/Contacts(92). While that URL isn’t a hyperlink, it is the proper URL for specifically accessing the data for that single Contact. You could copy and paste

that URL into the browser address bar and retrieve that single piece of data.

478 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 17-7. A NonCustomer returned by WCF Data Services

In fact, there is an extensive URI syntax for querying the data exposed by the service.

The MSDN white paper titled “Using ADO.NET Data Services” contains a listing of

the various querying capabilities including filtering, sorting, and eager-loading of rela-

ted data. With the newer version of the data services, more capabilities, such as pro-

jection, were added; however, be aware that at the time of this writing the paper had

not been updated to reflect the .NET 4 version.

This simple filter limits the results to contacts with the first name “George”:

http://localhost:1179/WcfDataService1.svc/Contacts?$filter=FirstName eq 'George'

While the syntax is rich, considering that it can be used in a URI, it is certainly not as rich as what you can do with LINQ and other functionality in .NET. And this creates

a problem for .NET developers using the .NET Client APIs for WCF Data Services. The

Client API allows you to write LINQ queries against the proxy classes that represent

the data in the service. These LINQ queries are then transposed into the appropriate

URI so that the service can be called in the only way it understands: through HTTP.

So, it’s not uncommon to find that your very clever query throws an exception because

it is not supported by the URI syntax.

Because of this, you should further consider what the service is exposing to the client.

For example, you might only ever want the consumers of the service to access

Customers. You can configure this in the service itself without impacting the model.

Creating WCF Data Services with Entities | 479

Download from Library of Wow! eBook <www.wowebook.com>

Filtering at the Service Level Using QueryInterceptor

You can do a lot more in the data service’s code than specify EntitySet permissions. It

is possible to intercept requests, both for queries and for updates.

The QueryInterceptor attribute allows you to capture incoming requests to the service

and filter the results. The QueryInterceptor returns a lambda expression that will be

used in a Where clause when retrieving the requested data, as shown in Example 17-16.

 Example 17-16. Using a QueryInterceptor to filter all Contact queries

[QueryInterceptor("Contacts")]

public Expression<Func<Contact, bool>> OnQueryContacts()

{ return c => c is Customer;

}

The name of the method is not important; however, OnQueryContacts follows the pat-

tern that Microsoft has provided in all of its examples. This QueryInterceptor forces all

requests for Contacts to return only Customers. No matter what the incoming query

looks like, the service will append .Where(c=>c is Customer) to it.

QueryInterceptor is more commonly used for authorizing user access.

Example 17-17 shows an example where only authenticated users can access the Contacts.

 Example 17-17. Filtering based on authentication in a QueryInterceptor

[System.Data.Services.QueryInterceptor("Contacts")]

public Expression<Func<Contact, bool>> OnQueryContacts()

{ if (HttpContext.Current.User.Identity.IsAuthenticated == false)

{

throw new DataServiceException

(400, "Not authorized to access Contact information");

}

else

{

return c => true;

}

}

There is also a ChangeInterceptor attribute, which I’ll discuss along with

WCF Data Services’ update features later in this section.

480 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

Anticipating Exceptions

If something goes wrong in your WCF data service, it is can be very difficult to discover

the reason. There’s a config setting that will show you the errors, and it’s a good idea

to have it in your code when debugging.

In the service code’s InitializeService method, add the following:

config.UseVerboseErrors=true;

Exposing Related Data Through the Service

Let’s add a few more EntitySets to the service. Add the following to the

InitializeService method:

config.SetEntitySetAccessRule("Reservations", EntitySetRights.AllRead);

config.SetEntitySetAccessRule("Trips", EntitySetRights.AllRead);

Now take a look at the first Reservation in Figure 17-8. Be sure to replace my port number, 1179, with the one your service assigned:

http://localhost:1179/WcfDataService1.svc/Reservations?$top=1

 Figure 17-8. Returning a single Reservation through WCF Data Services

Notice the <link> tags in this response. In addition to the one that describes how to get directly to this reservation (Reservations(2)), there are two others. One indicates that

there is a Customer attached and that you can get to that customer by navigating further

Creating WCF Data Services with Entities | 481

Download from Library of Wow! eBook <www.wowebook.com>

into the Reservation (Reservations(2)/Customer). It’s similar to navigating through the

data structure in code. Additionally, there’s a link for Trip. Considering the model, we

know that there is also a Payments navigation property for Reservation. And if you look

back at the response for the earlier customer, it’s curious why there were no navigation

property links there.

The reason some navigation properties are displayed and others aren’t has to do with

which EntitySets you are exposing from the service. When you queried the Contacts

earlier, the Reservations and Trips weren’t included in the service. So they didn’t show

up. The Reservation in Figure 17-8 is showing Customer and Trip because their EntitySets are exposed by the services, while Payments is not.

In addition to navigating to the related entity, you can also eager-load it, similar to using the Include method in a query. The term in the URI syntax is expand.

Try to include the trip with:

http://localhost:1179/WcfDataService1.svc/Reservations?$top=1&$expand=Trip

Figure 17-9 shows the results.

 Figure 17-9. Returning shaped data using expand

The entire Trip was included inside its link tag. And the trip has a link back to the

related Reservations. You could expand the trip to show all of its related Reservations.

482 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

The Trip data highlights an important concept. In an earlier chapter,

you added a custom property to Trip called TripDetails, but that is not

listed in the properties of the Trip in Figure 17-9. WCF Data Services is reading the XML metadata and not your code when it is using your

entities in the background. It still leverages your classes for some of its

operations—for example, when dealing with navigation properties.

This will be evident when exposing models that are rendered as Entity

Framework POCO classes. We’ll take a quick look at this in the next

chapter.

Preparing for WCF Data Services’ Limitations

Be aware that WCF Data Services is not yet able to reflect your model as you are used

to seeing it in a regular application. For example, your model contains something that

is not supported by WCF Data Services. Now that we have the Reservations

EntitySet in the service, let’s go back to the customer we looked at earlier and see what

happens (Figure 17-10) when we try to retrieve that Customer again (Contacts(1)).

 Figure 17-10. WCF Data Services error

If you hadn’t set config.UserVerboseErrors to true, this error would

only say “An error occurred while processing this request.” No amount

of message logging, tracing, or inspection with a tool such as Fiddler

would enlighten you as to the cause of the problem.

Creating WCF Data Services with Entities | 483

Download from Library of Wow! eBook <www.wowebook.com>

In your model, Customer derives from Contact, and Customer has navigation properties.

This was not a problem when we were coding inside .NET, but, as you can see, it is a

big problem for WCF Data Services. We didn’t even attempt to expand any of the

navigation properties. In this case, only the Reservations navigation property is avail-

able because its EntitySet is part of the service. Just the fact that the navigation property exists in the service causes the failure.

The suggestion made in the error is to completely remove the reservations. That would

make it possible to query the Contacts again. But there will be no Reservations in the

service. Depending on the goal of your service, this may not be an acceptable compromise.

There’s no trick to fool WCF into accepting the inheritance/navigation in your model

at this level. You would literally have to modify your model (or create a separate model

just for the data service) to avoid the problem.

Modifying Data Through a Service

As a RESTful service, WCF Data Services allows other HTTP verbs (i.e., commands)

besides GET. PUT, POST, and DELETE are the most typical ones to be used besides GET.

If you were interacting with the service directly (e.g., through JavaScript), you would

need to know how to use these calls directly. Luckily, the client APIs hide the raw HTTP

calls behind an object model.

For example, the .NET Client API provides a DataServiceContext, which is similar to

the ObjectContext you have been working with. Using this special context, you can

query the service with LINQ and insert, update, and delete data that’s attached to the

context with a SaveChanges method.

In the service, you can expose or limit access to editing EntitySet data with the SetEntitySetAccessRule configuration. EntitySetRights has the following enums: None,

ReadSingle, ReadMultiple, AllRead, WriteAppend, WriteReplace, WriteDelete, Write

Merge, AllWrite, and All. You can combine rights to enable just the interaction you

desire on a specific EntitySet by setting the rights individually, as in Example 17-18.

 Example 17-18. Setting multiple access rules on a single EntitySet

config.SetEntitySetAccessRule("Contacts",EntitySetRights.AllRead);

config.SetEntitySetAccessRule("Contacts",EntitySetRights.WriteAppend);

config.SetEntitySetAccessRule("Contacts",EntitySetRights.WriteMerge);

You can further restrict updates using the ChangeInterceptor attribute similar to the

QueryInterceptor, as shown in Example 17-19.

 Example 17-19. Affecting updates to Contacts in a ChangeInterceptor

[ChangeInterceptor("Contacts")]

public void OnChangeContacts(Contact contact, UpdateOperations operations)

{

484 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

if (operations == UpdateOperations.Change

& HttpContext.Current.User.Identity.IsAuthenticated == false)

{

throw new DataServiceException

(400, "Unauthenticated users may not update contact information");

}

}

A ChangeInterceptor has the item to be changed and the type of change operation (Add, Change, Delete, or None) being requested. As with an ObjectContext.SaveChanges,

each item to be persisted to the database is handled one at a time. This interceptor

checks for any Change operations being performed by an unauthenticated user. In that

case, an error is thrown since only authenticated users can edit data.

Notice that you can’t prevent consumers of the service from coding the

unauthorized calls. You can only stop the call from being processed

through either the SetEntitySetAccessRules or the interceptors.

Learning More About Creating and Consuming WCF Data Services

These pages on WCF Data Services served merely as an introduction so that you can

see how important these data services are to Microsoft, and how entities fit into the

services. You can learn much more about WCF Data Services by starting at the MSDN

Developer Center for WCF Data Services (http://msdn.microsoft.com/en-us/data/

 bb931106.aspx).

Understanding How WCF RIA Services Relates to the Entity

Framework

WCF Data Services is a great way to make your data easily available to consumers.

However, for many enterprise applications, you need much more control over access

to the data and inside the service. You may not want to expose data, and instead provide

operations like other services, but without the effort that was required in the first part of this chapter.

WCF RIA Services is another type of WCF service implementation from Microsoft.

While this technology was originally created to simplify providing CRUD data opera-

tions for Silverlight, it can be used as the middle tier for other types of client applications as well, such as ASP.NET MVC applications.

RIA is a WCF-based service and leverages SOAP just as WCF does. It is not a RESTful

service like WCF Data Services. The RIA SDK and toolkit provide a set of APIs and

templates for you to create your services; and as long as you stick close to the prescribed guidance, they can provide a nice, simplified solution for dealing with CRUD at the

middle tier.

Understanding How WCF RIA Services Relates to the Entity Framework | 485

Download from Library of Wow! eBook <www.wowebook.com>

WCF RIA Services for Visual Studio 2010 requires that your model ex-

poses foreign keys. If you do not want to have foreign keys in your

model, you have to customize the domain service and expose the foreign

keys from the EntityReference.EntityKey, as you have seen in previous

chapters.

While RIA Services doesn’t depend on Entity Framework as its data layer, it has special

templates and tooling specifically for consuming an Entity Framework model. You can

also use LINQ to SQL or your own classes as the data layer.

RIA Services is not part of Visual Studio 2010, but was released in May 2010. It can be

used with Visual Studio 2008 or Visual Studio 2010. The Visual Studio toolkit includes

a project template and item templates. The project template ensures that your project

is set up properly with the correct APIs and follows other guidelines for creating a RIA

service. The templates create classes that follow the guidelines as well.

And finally, Visual Studio will create proxies to use on the client side that make it simple to call the service operations.

While the service class has explicit query, update, insert, and delete methods, it exposes operations and data contracts in such a way that data sent to the client contains properties to provide behind-the-scenes change tracking. One call to Submit from the client

side will execute all of your explicit and easily customizable insert, update, and delete

methods as necessary.

When you use an Entity Framework model as the data layer, RIA Services will use some

special classes and interfaces that can leverage Entity Framework’s functionality, and

the classes created by the templates will do this as well. Example 17-20 shows a domain service created from the Trip entity using Visual Studio’s Domain Service Class item

template.

 Example 17-20. A Domain Service class created from an Entity Data Model

[EnableClientAccess()]

public class DomainService1 : LinqToEntitiesDomainService<BAEntities>

{ public IQueryable<Trip> GetTrips()

{

return this.ObjectContext.Trips;

}

public void InsertTrip(Trip trip)

{

if ((trip.EntityState != EntityState.Detached))

{

this.ObjectContext.ObjectStateManager

.ChangeObjectState(trip, EntityState.Added);

}

else

{

486 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

this.ObjectContext.Trips.AddObject(trip);

}

}

public void UpdateTrip(Trip currentTrip)

{

this.ObjectContext.Trips.AttachAsModified

(currentTrip, this.ChangeSet.GetOriginal(currentTrip));

}

public void DeleteTrip(Trip trip)

{

if ((trip.EntityState == EntityState.Detached))

{

this.ObjectContext.Trips.Attach(trip);

}

this.ObjectContext.Trips.DeleteObject(trip);

}

}

The DomainService class, in this case the specialized LinqToEntitiesDomainService class,

provides the operations, methods, and logic that the consuming client will use, such

as Submit, which in turn calls the InsertTrip, UpdateTrip, and DeleteTrip methods as

needed. The GetTrips method is one that you would call directly from the client. You

are encouraged to customize the methods or even provide new query methods that

better suit your domain. You can also modify the Insert, Update, and Delete methods

as needed.

This template is a simple starting point. Many developers are injecting even more so-

phisticated architecture into the domain services—for example, to return classes that

are designed for the UI rather than simply the entities that are created as a result of the queries.

WCF RIA Services does not recognize many-to-many relationships in

an Entity Framework model. Additionally, only foreign key associations

in your model are recognized. Independent associations are ignored.

The WCF RIA Services landing page on the official Silverlight website is a great place to get started with this technology.

Summary

The most daunting challenges you’ll face when you work across tiers of a distributed

application is that although EntityObjects are serialized, the ObjectStateEntry objects

that contain the change tracking information are not. This leaves you with no state

information when your object reaches its destination. In the WCF service example in

this chapter, you solved this problem by explicitly changing the EntityState of objects

Summary | 487

Download from Library of Wow! eBook <www.wowebook.com>

prior to calling SaveChanges. This is one pattern for overcoming this problem, and you will learn more in later chapters.

WCF Data Services was built on top of Entity Framework and it provides a smooth,

though sometimes simplistic, way to expose your data directly for consumption

through HTTP. It certainly reduces the challenge for consumers who want to work

with your data, but it may not be the answer for big enterprise applications. WCF RIA

Services, which began as an attempt to make data consumption simpler in Silverlight

applications, provides a different perspective on simplifying the creation and consumption of WCF services in .NET and it has great support for Entity Framework as

a data layer.

In the next chapter, we’ll look at using POCOs in services, which changes the game

significantly for creating services using the Entity Framework. Some developers will

prefer leveraging the default EntityObjects in their applications, while others will prefer the simpler objects. Either way, when it comes to developing custom WCF services you

will find that some of the challenges we faced earlier in this chapter are greatly reduced when using POCOs.

Web services and WCF are big topics unto themselves, and wonderful books are de-

voted solely to these technologies. The samples in this chapter provided some patterns

that will be great for many scenarios, but not all. Later in this book you will learn more patterns, but more importantly, throughout the book you will gain the knowledge to

achieve whatever architecture you choose for your service-based applications.

488 | Chapter 17: Using EntityObjects in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 18

Using POCOs and Self-Tracking Entities

in WCF Services

In Chapter 17, you built a custom WCF service using entities that inherit from Enti tyObjects. While some of the new Entity Framework features introduced in .NET 4,

such as foreign key support and methods to change entity state, have made this much

easier to do than in the previous version of Entity Framework, it is still challenging and requires that you know a lot about manipulating entities.

Removing EntityObjects from the payload removes some of these challenges. In the

previous edition of this book, I demonstrated a common approach to building services

in .NET 3.5, which was to use Data Transfer Objects (DTOs) to carry the object’s data

between the client and the service. But the most time-consuming part of this task was

converting the EntityObjects to DTOs and back again. The DTOs, however, provided

two key benefits. The first was that they greatly reduced the complexity of the payload.

The second was that they enabled you to inject state properties directly into the classes

so that when the data came back to the service, you didn’t have to use extra logic to

determine what was inserted, updated, deleted, or left untouched.

Now that Entity Framework supports POCO classes, the need for using DTOs is greatly

reduced. You can do away with them completely if you want, although your architec-

ture may require them for different reasons unrelated to the Entity Framework, or simply because your architecture is designed to keep everything related to the Entity

Framework, including its classes, in a data access layer. Without the EntityObject, the

message is much smaller and much less complex and you can use your code generation

template to inject state properties into your classes.

In addition to using your own POCO classes in WCF services, Microsoft provides a

specialized POCO template that creates what are called self-tracking entities. This template creates enhanced POCOs, which include state properties and some other speci-

alized interfaces and functionality that allow state information to easily move between

the client and the server without the author of either the service or the client application having to work out the logic of maintaining state information.

489

Download from Library of Wow! eBook <www.wowebook.com>

Self-tracking entities are an important addition to the available options in Entity Framework. With little effort, you can easily use entities in services. If you are looking for an out-of-the-box solution, don’t have specialized needs for your entities, and know that

the client applications are .NET, self-tracking entities could very well be the only form

of entity that you’ll need.

In this chapter, you’ll begin by creating POCO classes based on the latest version of

the BreakAway model. The new POCO classes will reflect all of the modifications you

made in Chapters 14 through 16. Then you’ll apply some enhancements to these POCO

classes to make them friendlier for use in WCF services. You’ll then build a service that

makes use of these POCO classes, and finally you’ll build a service that uses self-tracking entities. I’ll also discuss the impact of using POCO entities in WCF Data Services and WCF RIA Services instead of EntityObjects, as you learned in the preceding chapter.

Creating WCF-Friendly POCO Classes

Before creating the services, you’ll need an appropriate set of POCO classes to work

with. Therefore, in this section you will walk through the following tasks:

• Using the T4 POCO template, you’ll update your POCOs to reflect all of the

changes made to the model in recent chapters.

• You’ll move the generated POCO classes into their own project and allow them to

be free of any dependency on the Entity Framework.

• You’ll create a simple base class to provide state information to the entities and

modify the template so that the entities automatically inherit from that class.

• You’ll modify the template one more time to remove the virtual keywords from

the generated entity properties. This will prevent the Entity Framework from cre-

ating dynamic proxies at runtime, helping you to avoid problems as entities are

being sent from the service to the client.

Updating the POCO Classes Based on the Current BreakAway Model

The last time you worked with the POCO classes was prior to the many changes you

made to the model in Chapters 14 through 16. You’ll need to re-create the POCO classes based on the current version of the model. You have a few paths to choose from to

accomplish this.

• If you have been using the same model from chapter to chapter, and your current

BreakAwayModel project still has the T4 POCO template that you created in

Chapter 13, just be sure you are letting the template generate your classes rather than having them generate from the model:

490 | Chapter 18: Using POCOs and Self-Tracking Entities in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

— Ensure that the Code Generation attribute in the model’s Properties window is

set to None. This prevents the model from using the default code generator,

which creates EntityObject classes.

— Verify that both of the template files (BreakAway.Context.tt and BreakAway.tt) in your project have their Custom Tool property set to TextTemplating

FileGenerator.

• If your newest model is in a project that has no POCO template in it, do the following:

— Add a new Code Generation Item to the model, selecting either the Microsoft

ADO.NET C# POCO Entity Generator or the Microsoft ADO.NET VB POCO

Entity Generator. Refer back to Chapter 13 to refresh your memory on how to do this.

• You may prefer to have a fresh project to work with:

— Create a new Class Library project and copy your latest BreakAway.EDMX file

into the project.

— Add a reference to System.Data.Entity.

— Copy the app.config from the model’s project into this new project. If you have

no intention of running the Update Model from Database Wizard, you can skip

this step.

— Add a new Code Generation Item to the model, selecting either the Microsoft

ADO.NET C# POCO Entity Generator or the Microsoft ADO.NET VB POCO

Entity Generator. Refer back to Chapter 13 to refresh your memory on how to do this.

Isolating the POCO Entities in Their Own Project

Placing the entities into their own project is a great first step for using POCO entities

in WCF, but it is also a good practice for any solutions where you are using the POCO

entities. By isolating the entity classes, you will ensure that they have absolutely no

dependency on the Entity Framework. Separating your logic into different projects also

sets you in the right direction for a cleaner application architecture and easier mainte-

nance. There are two ways to achieve this. You’ll walk through one method and then

I’ll provide you with a link to the other method. Here’s how to do that with the entity

template and its generated entity classes.

Further on in the book you will continue to benefit from this isolation

in other scenarios that do not involve WCF.

Creating WCF-Friendly POCO Classes | 491

Download from Library of Wow! eBook <www.wowebook.com>

1. Create a new Class Library project for the entity classes. I’ve called mine BreakAway Entities.

2. Move the BreakAway.tt template file that you created in Chapter 13 from its project into the new project.

Because the generated classes are bound to the template, they will automatically

come along with the template file.

You’ll also want the partial classes that go with the entities.

3. Create a folder in the new project, and name it Partial Classes.

4. Using the cut and paste feature in the Solution Explorer, move the partial classes

from the BreakAwayModel project’s Partial Classes folder that you first created in

Chapter 11 into the new Partial Classes folder.

Leave the Entities.cs partial class file and the Functions.cs file in the model project.

Those are dependent on the context and the Entity Framework APIs.

Directing a template back to a model

In the template that builds the entity classes, there is a path setting to the model file.

Now that the template and the model are in different locations, you’ll need to change

that path setting so that the template can find the model.

Open the template and locate the path for the model, which should be near the begin-

ning of the file:

string inputFile = @"BAModel.edmx";

Unless you specifically created the BreakAway Entities project in a different folder, its

folder should be contained in the same solution folder as the model’s project. Therefore,

you can use a relative path to the model’s folder and file.

Modify the path to the model file using the relative path shown here. Your folder name

may be different.

string inputFile = @"..\BreakAwayModel\BAModel.edmx";

Specifying the namespace of entity classes

By default, the template will use the namespace of the current project as the namespace

for the generated entities. I want my entities to continue to be in the BAGA namespace.

The T4 template properties allow you to specify a namespace.

Open the Properties window for the BreakAway.tt file, and set its Custom Tool Namespace property to BAGA.

Since you haven’t edited the template file, you need to force the code generation to run

again. So, rebuild the BreakAway Entities project.

You might want to verify the code generation. Open one of the generated files. Its

namespace should be BAGA.

492 | Chapter 18: Using POCOs and Self-Tracking Entities in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

An alternate way to generate the POCOs inside their own project is to

use a Visual Studio feature called linking. In the MSDN topic Walk

through: Serialize Self-Tracking Entities (Entity Framework), the step titled “To create the class library project that links to the self-tracking

types template” describes how to link the template. You can use the

same steps with the POCO template in your solution here.

Providing the ObjectContext with a reference to the entities

Remember that the ObjectContext, BAEntities, needs access to the classes. In the model

project, add a reference to the BreakAway Entities project. Then rebuild the solution.

Everything should build correctly.

Also remember that we have not added a reference to System.Data.Entity in the new

project. By moving the classes into their own project you have created a clear separation

between these classes and the Entity Framework.

Adding Custom Logic to the POCO Entities with a Base Class

The next step for preparing your entities for WCF involves providing them with some

critical functionality. One of the biggest challenges when working with entities across

processes is the loss of state information. In Chapter 17, you created explicit operations for inserting, updating, and deleting customers. For handling the reservations attached

to a customer, you had to make assumptions regarding each reservation’s state by checking if the ReservationID was equal to 0 (new) or was greater than 0 (existing).

Then, to handle deleted reservations, you created a somewhat kludgey solution by forcing the consumer to pass in a collection of the ReservationID values of each reservation to be deleted.

With the simple addition of a new state property to the entities themselves, all of this

unsettling code can be avoided. This new state property will have no dependence on

the state information that is managed by the context. You’ll have access to it in the

client application and have total control over its value.

Although we could modify the template yet again to insert the new property, a more

flexible solution is to create a class with state information that the entities can inherit from. If you need to add additional logic in the future, you can simply add it to this

base class and it will be inherited by the entities.

Creating your own base classes to provide additional logic to your

POCO classes remains in line with the goal of ensuring that your classes

are not tightly bound to or dependent on the Entity Framework.

The StateObject class provides a State property that each entity will inherit. I’ve chosen to handcode this class, but you could add code into your T4 template (or create an

Creating WCF-Friendly POCO Classes | 493

Download from Library of Wow! eBook <www.wowebook.com>

additional template) to have it automatically generated. The DataContract and DataMem ber attributes allow the object and property to be serialized by WCF.

I’ve created a separate project to contain the StateObject class so that I can reuse it in other applications.

Example 18-1 shows the class, which you’ll enhance further in a few pages.

 Example 18-1. A simple class for providing state to POCO entities

using System.Runtime.Serialization;

namespace POCO.State

{ [DataContract(IsReference = true)]

public class StateObject

{

[DataMember]

public State State { get; set; }

}

public enum State

{

Added, Unchanged, Modified,Deleted

}

}

Modifying the template to apply the inheritance

Currently the entities generated from the model inherit from other entities only if that

inheritance is defined in the model. For example, Customer inherits from Contact.

Example 18-2 shows the template code, which uses an existing method in the template, StringBefore, to add inheritance to entities when they inherit from another entity in

the model.

 Example 18-2. The code that the POCO template uses to inject inheritance into an entity

<#=code.Escape(entity)#><#=code.StringBefore(" : ", code.Escape(entity.BaseType))#> This ensures that the Customer class inherits from Contact, or that any derived entity

inherits from its base, in the generated code.

But we now want to have every entity inherit from the new StateObject class unless the

entities are already deriving from another base entity. In other words, Contact should

inherit directly from StateObject, while Customer continues to inherit from Contact (and

therefore indirectly inherits StateObject). To our good fortune, the EntityObject tem-

plate uses similar logic to have entities inherit either from EntityObject or from a base

entity. You can borrow from that template to get similar logic into our POCO template.

First, you’ll need to add the method, BaseTypeName, shown in Example 18-3, into the custom methods section of the template where you inserted the MaxLengthValidation

494 | Chapter 18: Using POCOs and Self-Tracking Entities in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

method in Chapter 11. This method came from the EntityObject template but has been modified to insert an inheritance to StateObject.

 Example 18-3. The BaseTypeName and MultiSchemaEscape methods to be used in the POCO

 template

string BaseTypeName(EntityType entity, CodeGenerationTools code)

{ return entity.BaseType == null ? "POCO.State.StateObject" :

MultiSchemaEscape((StructuralType)entity.BaseType, code);

}

string MultiSchemaEscape(StructuralType type, CodeGenerationTools code)

{ if (type.NamespaceName != ModelNamespace)

{

return code.CreateFullName(code.EscapeNamespace

(GetObjectNamespace(type.NamespaceName)), code.Escape(type));

}

return code.Escape(type);

}

Now you can modify the code shown in Example 18-2, where the entity declaration is made to call the BaseTypeName method. Instead, the entity will inherit from either State

Object or its base type as defined in the model.

<#=code.Escape(entity)#> : <#=BaseTypeName(entity, code)#>

Finally, if you placed the StateObject class in a separate project (as I did), you’ll need to be sure the entities can find the StateObject class. In the Entities project, add a

reference to the new project.

When all of these modifications have been applied to the template, the generated entity classes that do not inherit from another entity should now inherit from the StateObject, as shown here with the Activity class:

public partial class Activity : POCO.State.StateObject

Following WCF Collection Rules

The POCO template uses ICollection<T> to expose navigation properties that are col-

lections (e.g., the Reservations for a Customer is an ICollection<Reservation>). This allows the consuming application the flexibility to choose what variety of an

ICollection it would like to use. However, data contract serialization will coerce the

ICollection into a type that is not an interface and you cannot control the type that is

chosen.

See the MSDN document “Collection Types in Data Contracts” at http:

 //msdn.microsoft.com/en-us/library/aa347850.aspx for more details on collection serialization.

Creating WCF-Friendly POCO Classes | 495

Download from Library of Wow! eBook <www.wowebook.com>

On the client, you can force the collection to become a generic List<T> when creating the proxy using the Advanced configuration settings. However, when the data is coming

back to the service, you cannot control how the collection is deserialized. I have en-

countered scenarios where it is deserialized as an array that is immutable, and excep-

tions are thrown anytime my code attempts to add or remove items.

To avoid this problem, you should specify the collection type for these navigation properties. The POCO template creates and uses a class called FixupCollection, so you

can use this type. Here’s how to make that change.

In the template, there are two instances where ICollection is used. The first is to declare the navigation property and the second is to define the field used by the navigation

property. Search the template for ICollection and replace it with FixupCollection.

When you’re done, the property declaration should look like this:

[DataMember]

<#=Accessibility.ForReadOnlyProperty(navProperty)#>

FixupCollection<<#=code.Escape(navProperty.ToEndMember.GetEntityType())#>>

<#=code.Escape(navProperty)#>

The field declaration should look like this:

private FixupCollection<<#=code.Escape(navProperty.ToEndMember.GetEntityType())#>>

<#=code.FieldName(navProperty)#>;

Preventing Properties from Being Marked As Virtual

There is one last item to take care of in the template. By default, the template will mark all properties with the virtual keyword to force the use of the dynamic proxies at

runtime. This creates problems for serialization, and we don’t need the benefits of dynamic proxies—features such as lazy loading and change notification—in the

service.

The virtual keyword is applied using a template method called PropertyVirtualModi

fier. It is used when the properties are being declared. It is used in three instances in

the template and we need to remove them.

The first two occur when defining primitive (a.k.a. scalar) and ComplexType properties:

<#=PropertyVirtualModifier(Accessibility.ForProperty(edmProperty))#>

The third occurs when we define the navigation properties:

<#=PropertyVirtualModifier(Accessibility.ForReadOnlyProperty(navProperty))#>

Remove the PropertyVirtualModifier function that wraps the Accessibility function

in all three cases. Don’t forget to also remove its closing parenthesis. The two function

calls should now look like this:

<#= Accessibility.ForProperty(edmProperty)#>

<#= Accessibility.ForReadOnlyProperty(navProperty)#>

496 | Chapter 18: Using POCOs and Self-Tracking Entities in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

Don’t hesitate to save copies of the T4 templates as you modify them.

You may have a variety of templates that you’ll want to pick and choose

from depending on your needs.

The code generation will automatically be performed when you save the changes to

your template. Take a look at the generated code to admire your new classes.

Building a WCF Service That Uses POCO Classes

In Chapter 17, you built a WCF service to allow consuming applications to interact with Customers, Trips, and Reservations. Here we’ll build a service that satisfies the

same needs as the previous service, although we will design it to use the POCO entities

you just created. By rebuilding the service, you will be able to see the direct impact of

using the POCOs instead of the EntityObjects.

Begin by creating a new WCF Service Application project as you did in Chapter 17,

and rename the service interface to ICustomerService and the service class to

CustomerService.

In the previous service, you had explicit operations for update, insert, and delete to

specify the required action. Now that your entities contain a State property, all of the

guesswork for the required action has been removed. You can now use a single

SaveCustomer operation that will take a Customer type whether it is a sole entity or a

graph that includes Reservations and more.

Example 18-4 lists the operations for the new ICustomerService.

 Example 18-4. ICustomerService OperationContracts

[OperationContract]

List<CustomerNameAndID> GetCustomerPickList();

[OperationContract]

List<Trip> GetUpcomingTrips();

[OperationContract]

Customer GetCustomer(int customerId);

[OperationContract]

string SaveCustomer(Customer customer);

A big benefit is that you no longer need the complex CustomerUpdate type that you had

to use previously in order to keep track of deleted Reservations. The SaveCustomer operation simply takes a Customer now.

Building a WCF Service That Uses POCO Classes | 497

Download from Library of Wow! eBook <www.wowebook.com>

Implementing the Interface

Now you can implement this interface in the CustomerService class. Begin by using the

Visual Studio editor’s interface generation capability that allows you to automatically

create the various methods defined in the interface.

Check step 3 in the section titled “Implementing the Service Inter-

face” on page 457 in Chapter 17 if you need a refresher on how to do that.

At this point, you can fill in the logic for the various methods.

Example 18-5 lists the three query operations—GetCustomerPickList, GetUpcomingTrips, and GetCustomer—with their logic added. Because you are no longer

using the dynamic proxies with your entities (because you prevented the template from

making the properties virtual), there is no need to disable lazy loading as you did in

Chapter 17. Lazy loading works only when the navigation properties are virtual.

 Example 18-5. The service query operations

public List<CustomerNameAndID> GetCustomerPickList()

{ using (var context = new BAEntities())

{

return context.CustomerNameAndIDs

.OrderBy(c => c.LastName + c.FirstName).ToList();

}

}public List<Trip> GetUpcomingTrips()

{ using (var context = new BAEntities())

{

return context.Trips.Include("Destination")

.Where(t => t.StartDate > DateTime.Today).ToList();

}

}

public Customer GetCustomer(int customerId)

{ using (var context = new BAEntities())

{

var cust =

from c in context.Contacts.OfType<Customer>()

.Include("Reservations.Trip.Destination")

where c.ContactID == custID

select c;

return cust.Single();

}

}

498 | Chapter 18: Using POCOs and Self-Tracking Entities in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

Now you can add code to the SaveCustomer method. Let’s first take a look at what needs to go in the method.

Although each entity will have its State field populated by the consuming app, that

property will not allow SaveChanges to build the appropriate database commands. You

will need to add the incoming entity to the context and then set the EntityState prop-

erty to the correct state in order for SaveChanges to do its work.

An explicit approach would be to use a switch statement to modify the EntityState

based on State:

switch (customer.State)

{ case State.Modified:

context.ObjectStateManager.

ChangeObjectState(cust,System.Data.EntityState.Modified);

...

}

A nicer approach was used by Rowan Miller, from the Entity Framework team, in his

June 2009 blog post (http://romillerblog.wordpress.com/2009/06/26/ntier-with-ef4-beta

 -1/), where he encapsulates the switch statement into a StateObject helper method

within a static class, as shown in Example 18-6.

 Example 18-6. A method for replacing the POCO entity’s State property with the relevant EntityState public static class StateHelpers

{ public static EntityState GetEquivalentEntityState(State state)

{

switch (state)

{

case State.Added:

return EntityState.Added;

case State.Modified:

return EntityState.Modified;

case State.Deleted:

return EntityState.Deleted;

default:

return EntityState.Unchanged;

}

}

}

I’ve added this StateHelpers class to the project that contains the StateObject and I

suggest that you do the same. This lets you keep the state logic code out of your service

and simply call the method like this:

context.ObjectStateManager.ChangeObjectState(customer,

StateHelpers.GetEquivalentEntityState(customer.State));

In the SaveCustomer method, when iterating through the Reservations, remember that

they will already be attached to the context because you have attached the customer

Building a WCF Service That Uses POCO Classes | 499

Download from Library of Wow! eBook <www.wowebook.com>

graph of which they are a part. But you’ll still need to change the EntityState of each

Reservation based on its State property.

Example 18-7 lists the SaveCustomer method in its entirety.

 Example 18-7. The SaveCustomer method

public string SaveCustomer(Customer customer)

{ try

{

using (var context = new BAEntities())

{

context.Contacts.Attach(cust);

context.ObjectStateManager.ChangeObjectState(customer,

StateHelpers.GetEquivalentEntityState(customer.State));

foreach (var reservation in customer.Reservations.ToList())

{

context.ObjectStateManager.ChangeObjectState(reservation,

StateHelpers.GetEquivalentEntityState(reservation.State));

}

context.SaveChanges();

return "";

}

}

catch (Exception ex)

{

return ex.Message;

}

}

Compare this to the code you wrote in Chapter 17 to add, delete, and save customers and the additional logic required to handle reservations in their various states. This is

much simpler and the logic is far more comprehensible thanks mostly to the addition

of the state properties.

There is a possibility that a reservation being deleted might have pay-

ments in the database, which you may not want to lose. In a production

app, you’ll likely want some additional code to ensure that reservations

with payments are handled according to your business rules when the

client has requested that they be deleted.

Using the Service

As you did in Chapter 17, you’ll use a simple console application to hit the service and test out its various operations. In fact, you can use the same console application from

Chapter 17, with some modifications to perform this test.

500 | Chapter 18: Using POCOs and Self-Tracking Entities in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

The following steps are based on altering the existing application. If you

want to create a new project, you can copy the code from Exam-

ple 17-5 into the new project’s main module.

Begin by adding a reference to the new service. Your existing application already has a

reference to the service you built in Chapter 17. There’s no problem with adding more than one service reference to an application.

Using the steps from the section “Building a Simple Console App to Consume an En-

tityObject Service” on page 467, add a service reference to the new WCF service, giving it the name POCOCustomerService.

The modified version of the code will need a using statement pointing to the new proxy.

Replace the original with:

using Chapter17ConsoleApp.POCOCustomerService;

Example 18-8 lists the new version of the GetandUpdateCustomer method. There are only a few changes to note. The first is that you will explicitly set the State property of entities that you’re interacting with. The second is that if there are any existing reservations,

you’ll modify the first and delete the last. Finally, calling the SaveCustomer method is

simpler than the previous UpdateCustomer. Just pass in the customer graph, rather than

having to create the complex type and pass in the ReservationIDs for deleted

Reservations.

 Example 18-8. Testing out the POCO service

private static void GetandUpdateCustomer()

{ try

{

using (var proxy = new CustomerServiceClient())

{

var custList = proxy.GetCustomerPickList();

int randomCustomerId = custList[8].Id;

var customer = proxy.GetCustomer(randomCustomerId);

customer.Notes += ", new notes";

customer.State = State.Modified;

List<Trip> trips = proxy.GetUpcomingTrips();

var newReservation = new Reservation();

newReservation.ReservationDate = DateTime.Now;

//emulate selection of trip from list of trips

newReservation.TripID = trips[12].TripID;

//create a default value for binary field

newReservation.RowVersion = System.Text.Encoding.Default.GetBytes("0x123");

if (customer.Reservations == null)

Building a WCF Service That Uses POCO Classes | 501

Download from Library of Wow! eBook <www.wowebook.com>

{

customer.Reservations = new List<Reservation>();

}

else

{

customer.Reservations[0].State = State.Modified;

if (customer.Reservations.Count > 1)

{

customer.Reservations[customer.Reservations.Count - 1].State

= State.Deleted;

}

}

customer.Reservations.Add(newRes);

newRes.ContactID = customer.ContactID;

newRes.State = State.Added;

string status = proxy.SaveCustomer(customer);

Console.WriteLine("Status of SaveCustomer operation: " + status);

}

}

catch (Exception ex)

{

Console.WriteLine(ex.Message);

}

}

The interesting events happen in the service’s SaveCustomer method. When you debug

through that you can watch the EntityState of the objects being modified, and finally,

when profiling the database you can see the activity when SaveChanges is called.

In Figure 18-1, you can see that three update commands are related to the modification of the customer. Why three? Recall that in Chapter 10, you learned that changing the object’s EntityState to Modified renders every property as modified. The Customer inherits from Contact and maps to Customer and ContactDetails. Entity Framework is

updating all properties in all three tables.

 Figure 18-1. Database commands generated by the SaveCustomer method

The next Update command is updating the reservation that was marked as Modified.

Then you see the delete command being executed for the reservation we marked as

Deleted. Then finally the new reservation is added.

All of the modifications we made in the client application were easily identified thanks

to the simplicity of including a State property in our classes.

502 | Chapter 18: Using POCOs and Self-Tracking Entities in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

Additionally, the performance over the wire is greatly improved thanks to the mini-

mized payloads of serializing, transmitting, and deserializing data that is much smaller

because we are using POCO classes and not EntityObjects. Another benefit is realized

by consuming applications that are not using .NET. These developers will be much

happier to work with the simple data structures than to have to comb through the

payload generated by an EntityObject.

Using the Self-Tracking Entities Template for WCF Services

Microsoft has provided a specialized template that attempts to handle change tracking

for WCF services and their clients for the most typical scenarios. This Self-Tracking

Entities template creates POCO classes that encapsulate change tracking and notifica-

tion without leaning on the Entity Framework APIs.

This template is included in the Visual Studio 2010 installation, so you

will not need to download it as you did for the POCO template.

In addition to creating the classes, the template generates logic that you can use in the

service to update the state of every entity in a graph without having to specifically walk through it as we did in the previous example, first updating the customer and then

iterating through its Reservations collection.

The self-tracking entities are designed specifically for use with custom

WCF services. They are not meant for other types of applications or for

use in combination with other types of services, such as WCF Data

Services or WCF RIA Services, unless you customize the provided

templates.

Let’s regenerate the entity classes using this template.

To avoid confusion, I’ve created a new solution using a new project that contains a

copy of my current model. Then I removed artifacts of the previous use of the model

by doing the following:

1. Remove the existing template (BreakAway.Context.tt) from the project.

2. Remove the references to BreakAwayEntities and POCOState projects.

Creating and Exploring the Self-Tracking Entities

With the new model project in hand, you can generate the new classes. Open the model

in the Designer and add a code generation item from its context menu. This time, select

ADO.NET Self-Tracking Entity Generator from the template list.

Using the Self-Tracking Entities Template for WCF Services | 503

Download from Library of Wow! eBook <www.wowebook.com>

As a result, two templates will be added to your project, just as they were for the POCO

template: one template for the context and another for the entities.

Rather than looking at the templates, you’ll learn more by inspecting the generated

classes. First look at what is created from the entities template.

The interesting logic in the generated entities falls into two categories. One is related

to WCF’s data contract serialization and the other is related to change tracking.

On the change tracking side, each entity implements a pair of interfaces: IObjectWith

ChangeTracker and INotifyPropertyChanged.

public partial class Reservation: IObjectWithChangeTracker, INotifyPropertyChanged

These are not Entity Framework interfaces. The first, IObjectWithChangeTracker, was

created by the template in the generated class that was given the same name as the

template. In my case, I did not rename the default template, so it is called Model1.tt.

There is a class called Model1.cs that is among the entity classes generated by the model.

It contains a lot of specialized logic that the self-tracking entities depend on, including IObjectWithChangeTracker.

The second interface, INotifyPropertyChanged, is part of System.ComponentModel and is

frequently used for change notification behavior through .NET classes and in our own

custom classes.

Like the classes that inherit from EntityObject (created by the default template) each

property calls a local OnPropertyChanged method in its setter, as shown in Example 18-9.

 Example 18-9. A self-tracking entity property

[DataMember]

public string LastName

{ get { return _lastName; }

set

{

if (_lastName != value)

{

_lastName = value;

OnPropertyChanged("LastName");

}

}

}

Each class has its own OnPropertyChanged method as well as an OnNavigationProperty

Changed method.

The IObjectWithChangeTracker interface provides an ObjectChangeTracker property to

each entity. This property ties back to a class that is also defined in the Model1 class that has members such as State, OriginalValues, and ChangeTrackingEnabled properties.

The entity then adopts these same properties. For example, each entity will now have

an ObjectChangeTracker property that gives you access to its State property. To get the

504 | Chapter 18: Using POCOs and Self-Tracking Entities in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

State of Contact, you would call Contact.ObjectChangeTracker.State. The Original Values property is even more interesting, as it allows the entity to store its original values and carry them back and forth between the client and the service.

A lot of backing code is generated by the template to enable the entities to retain their

state and their original properties, and I will not walk you through the generated classes in detail. The meat of the self-tracking entities is in their change notification features which can automatically impact these properties that will make it easy to get changes

made on the client back to the service. Additionally, as you’ll see shortly, self-tracking entities nearly eliminate any effort needed in the service to persist those changes back

to the client.

Putting the Change-Tracking Logic Where It’s Needed

In the WCF service solutions you’ve already built, the client application was responsible

for providing the state information to the service. When it didn’t, the service had to

make its best guess as to the entity’s state, for example, by checking for an existing

ContactID. If the ID was 0, it must be new.

This responsibility doesn’t change. But to reap the full benefits of self-tracking entities, you must include them in the client applications. If you rely solely on the data contract

serialization to provide the entities to the client application, you will get the properties—even, for example, Contact.ObjectChangeTracker.State—but you will not

get the events and methods that provide all of the automated notification features.

Instead, the developer of the client application would need to set the State property

manually and push values into the ObjectChangeTracker.OriginalValues dictionary

manually. Even if you chose this path, in the service you would still benefit from a

special method generated by the Self-Tracking Entities template, the ApplyChanges ex-

tension method.

Interoperability with Self-Tracking Entities?

Self-tracking entities are a great solution for .NET 4 clients, but they are not so great

for consuming applications that are not using .NET. Why? All of the built-in change-

tracking and notification functionality requires that the generated classes be part of the client solution. The change tracking makes use of the NotifyCollectionChangedEven

tArgs class, which, in .NET 4, physically lives in System.dll, whereas in earlier versions of .NET it is in WindowsBase.dll. You would need to create a reference to that WindowsBase.dll assembly in your client app instead. You could not, however,

target .NET 2.0, since the class doesn’t exist anywhere in that version of the framework.

Without the entity classes, the developer of the client application will have to manually

set the object state, original values, and other important relationship change-tracking

information on the client side for the changes to be sent back to the service. This is

certainly possible to do. The entities will have access to State and OriginalValues properties and the service can still reap the benefit of the ApplyChanges method extension if the consuming application follows the rules carefully. But if you are building a

Using the Self-Tracking Entities Template for WCF Services | 505

Download from Library of Wow! eBook <www.wowebook.com>

service that must be interoperable, you will probably be better off using simpler POCO

classes that you can customize similarly to the example in the first part of this chapter.

In order to share the classes with the client, the classes need to be in a separate project so that you can compile them into their own assembly and provide that assembly to

the consuming applications. You can follow the same steps as you did in “Isolating the

POCO Entities in Their Own Project.” There is one additional step, which is to add a

reference to System.Runtime.Serialization to the new project so that the serialization

logic in the entities will be recognized.

Now you will be able to add a reference to this new project to the client application

when it’s time to build it. But first we will need to build the service and, when doing

that, we’ll also take a look at some of the special logic created in the generated context class and its extensions.

Creating a WCF Service That Uses Self-Tracking Entities

The new service will have a lot in common with the one you created for the POCO

entities. It differs only in how SaveCustomer is handled.

1. Create a new WCF Service application with references to both the model project

and the new entities project.

2. As with all of your previous services, copy the ConnectionStrings section from the

model project’s app.config file into the service project’s web.config file.

The service interface will define the same OperationContract methods as the pre-

vious service.

3. Add the OperationContract methods as listed in Example 18-4 to the service con-

tract interface.

4. Implement the three query methods exactly as you did in the previous service. Refer

to Example 18-5 for these implementations.

The SaveCustomer method will be quite different from before. There is a lot less code.

A method specific to the Self-Tracking Entities, ApplyChanges, makes all the difference.

Create the SaveCustomer method as listed in Example 18-10.

 Example 18-10. The SaveCustomer service method for self-tracking entities

public string SaveCustomer(Customer cust)

{ try

{

using (BAPOCOs context = new BAPOCOs())

{

context.Contacts.ApplyChanges(cust);

context.SaveChanges();

return "";

}

506 | Chapter 18: Using POCOs and Self-Tracking Entities in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

 }

catch (Exception ex)

{

return ex.Message;

}

}

After running some client code against the service, you'll learn more about this special

method and others that the Self-Tracking Entities templates has created in the context.

Watching Self-Tracking Entities Under the Covers

The most interesting part of implementing self-tracking entities is to watch them at

work. Let’s run some code and see what happens on the client side and then what

happens on the service side during the update.

I’m going to use a console app with logic that is almost identical to that in Exam-

ple 18-8. To follow along, you can create a new console app and copy the GetAndEditCustomer method from the previous example, or you can edit the code in the

existing console application.

The changes to the code are as follows.

Remove the code that explicitly sets the customer’s State property:

//customer.State = State.Modified;

Self-tracking entities have an impact on the collection type returned by collection nav-

igation properties such as customer.Reservations. This collection is specifically a TrackableCollection<T>, which is another custom class generated by the template.

Change the call to instantiate Reservations as follows:

//customer.Reservations = new List<Reservation>();

customer.Reservations = new TrackableCollection<Reservation>();

Replace the line of code that simply marks a Reservation as modified with code that

makes an actual modification:

//customer.Reservations[0].State = State.Modified;

customer.Reservations[0].ReservationDate =

customer.Reservations[0].ReservationDate.AddDays(1);

Remove the code that sets the new reservation’s State:

//newRes.State = State.Added;

One of the methods provided in the specialized change-tracking functionality of the

self-tracking entities is the MarkAsDeleted property. This is simpler than explicitly changing the State.

//customer.Reservations[customer.Reservations.Count - 1].State = State.Deleted;

customer.Reservations[customer.Reservations.Count - 1].MarkAsDeleted();

Using the Self-Tracking Entities Template for WCF Services | 507

Download from Library of Wow! eBook <www.wowebook.com>

Self-tracking entities also have MarkAsAdded, MarkAsModified, and MarkAsUnchanged

methods so that you can impact state directly if you want without having to use the

State property.

Debugging the client application

Now as the code executes, it is interesting to take a look at the effect on the State

properties and the OriginalValue properties of the entities being impacted.

After the customer.Notes field has been changed, take a look at the customer’s ChangeTracker property in the debugger shown in Figure 18-2. Remember that the ChangeTracker property exposes an ObjectChangeTracker object that is bound to that

particular entity instance.

The next stop in the debugger is after modifying an existing reservation’s Reservation

Date. Its State property becomes Modified. Nothing else interesting is happening there,

so let’s move on.

 Figure 18-2. The modified customer’s ChangeTracker

Notice that the _objectState field (which is exposed as the State property) is now

Modified, but that no other metadata has been altered, not even OriginalValues.

Self-tracking entities do not store the original values of every changed property. Instead, they store only the original values of properties critical to performing database modifications as follows:

• Properties that are part of the entity’s EntityKey

• Foreign key properties

• Any properties that you have marked in the model as ConcurrencyMode=Fixed

You can verify this by checking the generated entity classes, where you will find a call

to ChangeTracker.RecordOriginalValue in the setter of these types of properties, but not

in any of the other scalar properties.

508 | Chapter 18: Using POCOs and Self-Tracking Entities in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 18-3. The new reservation’s ChangeTracker

While this makes the message sent back to the service more efficient, it does have an

impact on the commands sent to the database, as you’ll see when we get back to the

service.

The next stop in the debugger is after the new Reservation has been instantiated. You

will find that its ChangeTracker is not instantiated until a property is set. In our case we are setting a foreign key value first, but the impact would be the same even if it were a

simpler scalar value such as ReservationDate. But the ChangeTracker is set up a bit differently than the Customer’s ChangeTracker. Compare the newRes.ChangeTracker displayed in Figure 18-3 to the customer.ChangeTracker earlier.

The State property (_objectState field in the screenshot) was set to Added, but more

interestingly, changeTrackingEnabled is set to false. That is so as properties continue

to be set or changed in this new Reservation, the change-tracking logic does not auto-

matically set the State to Modified.

Notice also that the _originalValues and _extendedProperties fields are null.

After hitting the next line of code, where the TripID foreign key is given a value, you’ll find that these two fields change to Count=0. That’s the result of executing the RecordOriginalValue method, which was triggered by the change to the foreign key.

However, there are still no items (e.g., no values in the _originalValues collection)

because an Added entity does not have original values.

The next point of interest is when a Reservation is deleted. Because the Reservation is

part of a collection it is removed from that collection. Customer.Reservations will have

one less item in it. The Reservation is still in memory, and if you created a variable

pointing to it before deleting, for example:

var resDelete = customer.Reservations[customer.Reservations.Count - 1];

resDelete.MarkAsDeleted();

you can take a look at the instance in debug mode. Figure 18-4 shows the deleted Reservation’s ChangeTracker in a watch window.

Using the Self-Tracking Entities Template for WCF Services | 509

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 18-4. A deleted Reservation’s ChangeTracker

As expected, the _objectState field is now Deleted. But you can finally see some original

values. The entity doesn’t simply store the ID, but has stored away entire related entities representing the relationships that are impacted at the same time the Reservation is

being deleted. This information will be used by the ApplyChanges method in the service.

What would happen if you had deleted the customer? Customer differs from

Reservation in two significant ways. It’s not a member of an entity collection for any

of the in-memory entities, and it has properties that contain collections. Figure 18-5

shows the ChangeTracker of the customer after it’s been marked as deleted.

 Figure 18-5. A deleted Customer’s ChangeTracker property

Notice that _originalValues contains no items, but there is a property we haven’t looked at before—_objectsRemovedFromCollections—that contains information.

When I deleted the Reservation earlier, entities that were related were stored in _originalValues. But with Customer, related entities that are part of a collection are

510 | Chapter 18: Using POCOs and Self-Tracking Entities in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

stored in _objectsRemovedFromCollections. Again, ApplyChanges will look at this infor-

mation when fixing up the states of everything in the graph.

If you really did delete the Customer, you would need to attend to the

related reservations as well. As it stands, you will get an exception when

calling SaveChanges if you don’t delete the reservations or attach them

to another customer. Even then there is still the slim chance that there

are more reservations in the database for this customer. The same issue

arises when deleting a Reservation without considering its Payments.

This problem is not particular to self-tracking entities, but a general

concern with Entity Data Models. In Chapter 21, you’ll learn about deleting related entities as well as model-defined and database-defined

cascading deletes.

Debugging the SaveCustomer service method

Now it’s time to look at what happens when this graph transfers back to the service’s

SaveCustomer method.

The message that is sent from the client back to the server has a lot of information in

it. It is too long to display here, as it would be nearly four pages. But its size is 7 KB and it contains 191 lines because of the inclusion of the change-tracking information. You

can view the message from the book’s downloads page at http://www.learnentityframe

 work.com/downloads or go directly to http://learnentityframework.com/downloadfiles/

 savecustomermessage.xml.

The ApplyChanges method fires off a lot of activity. It painstakingly adds all of the entities into the context, managing the relationships and states of each entity by reading through their ChangeTracker details. If you are interested in the process, you can debug

through all of the steps as they are executed.

Let’s take a look at some of the entities after ApplyChanges has finished its work.

First, you can see what’s in the ObjectStateManager using C#’s unique

debugger view of fields such as _addedEntityStore. Otherwise, you’d have to look at

GetObjectStateEntries for all of the EntityState enums. Figure 18-6 shows the debug view with the nonessential information grayed out.

The context identifies one Added entity, one Deleted entity, two Modified entities, and

four Unchanged entities. That coincides with the modifications we made on the client.

The Unchanged entities are the Trip and Destination entities that are attached to reser-

vations from the original graph. The client could remove unmodified entities from the

graph prior to returning it to the service for a more efficient message.

DanglingForeignKeys is interesting. It represents foreign keys that don’t have a coin-

ciding entity in memory. In this case, the keys are the various foreign keys in the graph

(e.g., the customer’s PrimaryActivityID).

Using the Self-Tracking Entities Template for WCF Services | 511

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 18-6. Looking at the critical entity state fields of the ObjectStateManager

Using the ObjectStateEntry Visualizer that was introduced in Chapter 10, Fig-

ure 18-7 displays the state of the Customer entity after ApplyChanges was called. As hinted at earlier, because ApplyChanges relies on the entity’s state (Modified) rather than the

actual original values, it changes the entire object to Modified, rendering every single

property as a modified property. Notice that the original and current values of the

Notes property are the same. The context doesn’t know that we edited the Notes prop-

erty or what its original value is.

And recall that the Customer is bound to not only the Customer table, but also the Contact and ContactPersonalInfo tables. Every field in all three of these tables will be

updated when SaveChanges is called. But as discussed previously when considering the

options for persisting changes to the database, in many cases this is still the most effi-

cient method when balancing the service message size, the amount of coding, and the

size and number of commands sent to the database.

As you can see, the self-tracking entities combined with the special context logic gen-

erated from the template makes the task of getting change information from a client

back to a WCF service very simple. On the service side, all of the hard work of preparing

those entities to be persisted to the database is handled by one method, ApplyChanges.

Self-tracking entities are a great solution when you want to reap the benefits of change

tracking in WCF services with minimal investment. But keep in mind that the client

512 | Chapter 18: Using POCOs and Self-Tracking Entities in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 18-7. The state of the Customer entity after ApplyChanges is called

must be .NET 3.5 or 4, the messages transferred across the wire are relatively large, and

modified entities will push every property back to the database for an update.

Regarding this last point, I have taken the same path of changing object state to modi-

fied and letting all of the properties get persisted to the database whether they’ve been

modified or not. However, in other solutions, you do have the option of using other

mechanisms, such as pulling fresh data from the data store, updating only the modified

values and letting SaveChanges build more efficient update commands.

Inspecting the Generated Context Class and Extensions

For a better understanding of how the self-tracking entities were able to do their job,

you may be interested in taking a closer look at the classes and extension methods that

were generated from the Self-Tracking Entities template.

The context template generated two files: the base context file, Model1.Context.cs, and a file containing extension methods, Model1.Context.Extensions.cs.The base context file is similar to the one generated from the POCO template but for two exceptions.

The first is that it permanently turns off the creation of dynamic proxies, although it

doesn’t accomplish this by removing the virtual keyword from the properties as we

did in the previous example. Instead, in the context’s Initialize method,

ObjectContext.ContextOptions.ProxyCreationEnabled is set to false. Additionally in

the Initialize method, the code wires up the ObjectMaterialized event, which you

learned about in Chapter 11, to a custom method, HandleObjectMaterialized.

Using the Self-Tracking Entities Template for WCF Services | 513

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 18-8. Class designer view of the specialized class generated by the Self-Tracking Entities template

This method performs three tasks to each entity being materialized during query exe-

cution. First, it ensures that the self-contained State property is set to Unchanged. Next, it enables the entity to participate in change tracking, and finally, it stores any key

values, which, as you have seen throughout this book, are critical for change tracking

as well as relationships.

Other than these method calls in the Initialize method, the context class is the same

as the one generated from the POCO template.

The Context.Extensions file is where the bulk of the critical logic exists, with five classes

and many methods, as shown in Figure 18-8.

There are more than 1,200 lines of code in this file, giving the ObjectContext the ability to work with the entities and graphs generically. The most important method for your

code is the ApplyChanges method. But ApplyChanges has the ability to fix up state and

relationships for any graph that you pass to it, as long as that graph contains self-tracking entities. This is a very difficult feat to pull off, which is why there is so much code in there.

If you think back to the SaveCustomer method in the POCO service and the

UpdateCustomer method from the service in the previous chapter, these methods ex-

pected a specific type (Customer) and then worked explicitly with its related objects.

514 | Chapter 18: Using POCOs and Self-Tracking Entities in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

You iterated through the Customer’s Reservations collection. These methods depend on our prior knowledge of the exact shape of the graph that will be returned from the

client. Therefore, you must write explicit update logic for every different graph that

your service accepts from the client. If the customer graph also contained payment

entities for each reservation, you would need additional code to explicitly work with

each payment.

Alternatively, the ApplyChanges method is completely generic and can be used for any

graph. This essentially makes it a universal method and the most valuable piece of logic

created by the template.

Thanks to ApplyChanges, the new SaveCustomer method becomes much simpler because

you no longer have to fix the EntityState or explicitly walk through the graph to fix

the state of each related entity.

Using POCO Entities with WCF Data and RIA Services

You can certainly use your POCO entities behind WCF Data Services and WCF RIA

Services. But there are a few things to be aware of.

First, I will repeat that self-tracking entities are not meant to be used with these tech-

nologies. They are for writing your own custom services. WCF Data Services and WCF

RIA Services have their own change-tracking mechanisms. Using self-tracking entities

will only weigh down the payloads and in some cases completely break the intended

functionality.

Preparing for WCF Data Services

If you want to create a WCF data service from the model, context, and entities you

created at the beginning of this chapter, there are some extra steps you’ll need to take.

First, your service project will need references not only to the project containing the

model and context, but also to the project containing the entities. If you placed the

StateObject into a separate assembly, as I recommended earlier, you’ll need a reference

to that as well.

Dealing with entities that live in a separate assembly

Having the entities in a separate assembly creates a problem for the service when it is

trying to read the metadata that describes your model. The problem isn’t about finding

the metadata files, since you will have copied the connection string into the service’s

 web.config. The issue is about finding the metadata in memory. You will learn more about metadata getting loaded into memory in Chapter 21, so for now I will show you how to get around the problem without providing a thorough explanation.

The problem will occur before the data service’s Initialize method is even hit, so you

can’t even debug into the problem. Unless you have configured the service to set its

Using POCO Entities with WCF Data and RIA Services | 515

Download from Library of Wow! eBook <www.wowebook.com>

IncludeExceptionDetailInFaults to true, you will only get an error message saying

“The server encountered an error processing the request. See server logs for more de-

tails.” The more detailed error will tell you that a null value was encountered, and some

further digging will let you know that this happened related to metadata.

To force all of the necessary metadata to be loaded into memory, you can override the

service’s CreateDataSource method. In your method, you can create the DataSource

yourself (the ObjectContext) and then force the metadata to load using a trick—calling

ToTraceString on a query. Example 18-11 shows the method that you should add to your service code.

 Example 18-11. Overriding CreateDataSource in a WCF data service

protected override BAPOCOs CreateDataSource()

{ var context = new BAPOCOs();

var workspace = context.MetadataWorkspace;

var tracestring = context.CreateQuery<Contact>("BAPOCOs.Contacts")

.ToTraceString();

return context;

}

ToTraceString will force the context to work out the store query, and in order to do

that, it needs to have the CSDL, MSL, and SSDL metadata in memory. It will load the

metadata into memory as needed.

Once the metadata is loaded into memory, it stays there for the lifetime of the appli-

cation process. However, WCF Data Services must explicitly unload the metadata from

memory, because each time CreateDataSource is run, the metadata is no longer avail-

able. That is why the example code does not test to see if the metadata is loaded before

calling ToTraceString.

Alternatively, you can use the MetadataWorkspace.LoadFromAssembly

method, which you’ll see in Chapter 21. LoadFromAssembly is more com-

plicated; however, it will give you better performance than the

ToTraceString method because it won’t have to compile the query.

Avoiding problems caused by dynamic proxies

In the self-tracking entities discussion earlier, I pointed out that the context generated by the template sets the context’s ContextOptions.ProxyCreationEnabled property to

false. The self-tracking entities are set up to create dynamic proxies at runtime because

each of their properties is marked as virtual. The entities take advantage of some of

the benefits of the virtual properties, but the dynamic proxies create problems with

serialization, so that functionality is turned off with the setting.

516 | Chapter 18: Using POCOs and Self-Tracking Entities in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

In the POCO entities you created at the beginning of the chapter, you explicitly removed the generation of the virtual keyword from the template. Those entities will not use

proxies and you did not need to worry about the proxy-related serialization issue.

If you use the entities you generated in the early part of this chapter, or others that do not create proxies, you will not have any issues with WCF Data Services.

However, if your entities are set up to create proxies, you’ll need to ensure that they do not get created as the entities are being serialized when being returned from the service.

The place to do this is in the same method used in Example 18-11, the CreateDataSource override. After you instantiate the context, you can disable the proxy

creation, as shown in Example 18-12.

 Example 18-12. Ensuring that entities with virtual properties do not create dynamic proxies in the data service

protected override BAPOCOs CreateDataSource()

{ var context = new BAPOCOs();

context.ContextOptions.ProxyCreationEnabled = false;

return context;

}

Take note that if you create any other methods in your service that depend on proxy

generation, such as a method that leverages lazy loading, you’ll need to enable the proxy

creation in that method but then disable it again at the end of the method.

Using POCO Entities in WCF RIA Services

When creating a domain service in WCF RIA Services, the template can create either

a simple DomainService class or one that inherits either from LinqToEntitiesDomainSer

vice or from LinqToSqlDomainService. If the wizard sees that the classes your service is

consuming are being controlled by an ObjectContext, it will implement the specialized

template that includes the LinqToEntitiesDomainService. Similar logic will apply to drive the selection of the template for LINQ to SQL classes.

In Example 17-20 in Chapter 17, you saw the default methods GetTrips, InsertTrip, UpdateTrip, and DeleteTrip created by the Data Services Class Wizard for the

EntityObject. Most of the logic in these methods is written so that it will work either

with an EntityObject or with an entity that does not derive from EntityObject. For

example, in InsertTrip, this.ObjectContext.Trips.AddObject can take an

EntityObject or a POCO class as its parameter.

However, both InsertTrip and UpdateTrip do rely on an EntityObject property,

EntityState. EntityObject.EntityState is formulated internally by reading the

ObjectStateEntry.State property of the related tracking object being maintained by

the ObjectContext.

Using POCO Entities with WCF Data and RIA Services | 517

Download from Library of Wow! eBook <www.wowebook.com>

Because the POCO entities do not inherit from EntityObject, they do not have this

property. Additionally, because the POCO entities are not aware of the context, they

do not have a way to get that information anyway.

In the data service class, however, you do have access to the context, so my solution is

to replace those two requests to the EntityState property with a custom method called

GetEntityState, added to the data service (see Example 18-13).

 Example 18-13. The custom method, GetEntityState, added to the domain service

private EntityState GetEntityState(object entity)

{ System.Data.Objects.ObjectStateEntry ose;

if (this.ObjectContext.ObjectStateManager

.TryGetObjectStateEntry(entity, out ose))

return ose.State;

else

return EntityState.Detached;

}

Typically, your WCF RIA Services application will have a number of

domain service classes, so rather than adding the method repeatedly to

each class, you should encapsulate it into another shared class where

each domain service class can benefit from it.

Now you’ll need to replace the use of trip.EntityState in the domain service with a

call to the new method, GetEntityState(trip). Example 18-14 does this to the two

methods originally shown in Example 17-20 in Chapter 17.

 Example 18-14. Using the GetEntityState method to determine an entity’s state

public void InsertTrip(Trip trip)

{

if ((GetEntityState(trip) != EntityState.Detached))

{

this.ObjectContext.ObjectStateManager

.ChangeObjectState(trip, EntityState.Added);

}

else

{

this.ObjectContext.Trips.AddObject(trip);

}

}

public void DeleteTrip(Trip trip)

{

if ((GetEntityState(trip)== EntityState.Detached))

{

this.ObjectContext.Trips.Attach(trip);

}

this.ObjectContext.Trips.DeleteObject(trip);

518 | Chapter 18: Using POCOs and Self-Tracking Entities in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

 }

}

At the time of this writing, WCF RIA Services was in a “Release Candidate” stage and

was not yet fully released. It is possible that the problem I’ve described will be corrected prior to its release, and in that case, the custom method would not be required.

Sorting Out the Many Options for Creating Services

In the preceding two chapters, you were presented with an array of options for building

services. Each option serves a different purpose. Now that you have worked with the

various options, let’s step back a bit and look at them from the perspective of which

solution(s) applies to your needs.

 POCO entities or EntityObject s?

EntityObjects are the “out of the box” class that your entities are based on. While

they provide a lot of useful automated change tracking and relationship manage-

ment, it is challenging to work with services that depend on EntityObjects and

transfer them across the wire. As you’ve seen, POCO entities remove many layers

of pain, especially concerning state management, when you are creating services

and making them easy for end users to consume.

 Custom service, data service, or RIA service?

There are three paths to choose for WCF services.

The first is to write your own service. This is where you have ultimate control over

the service operations and the other logic that they leverage, including handling

features such as security.

WCF Data Services is a more lightweight solution and allows you to provide your

data to a wide range of consumers. Unlike WCF services, which use SOAP to move

data across the wire, WCF Data Services exposes your data for access through URIs

over REST (i.e., directly through HTTP). There are also convenient client APIs

for .NET, Silverlight, PHP, AJAX, and other consumers. Many developers equate

this to putting your database on the Internet, which is not the case. What is exposed

is first defined by your model and further refined by settings in your service. You

do have some control over securing the data, but it is not the same control you can

exercise with your custom services.

WCF RIA Services attempts to bridge the gap between roll-your-own services and

WCF Data Services. Even though WCF RIA Services was originally designed to

help with the complexities of getting data into and out of Silverlight applications,

you can also consume RIA services from other applications as well, because in the

end, unlike WCF Data Services, WCF RIA Services is still a WCF service. RIA

services encapsulate some of the most common desired CRUD functionality and

use templates and runtime generation to make it simple to build and consume the

services. Again, if you want the ultimate in control, this may not be for you. But if

Sorting Out the Many Options for Creating Services | 519

Download from Library of Wow! eBook <www.wowebook.com>

you want to leverage a “canned” solution that is still highly customizable, you should take a look at WCF RIA Services.

 Self-tracking entities?

Self-tracking entities are essentially a replacement for using ADO.NET DataSets in

WCF services. They are not lightweight, and to get their true benefits, the con-

suming application must be a .NET 3.5 or 4 app that contains self-tracking entities.

Self-tracking entities are your simplest path to using entities in WCF services.

Do not mistake self-tracking entities as a great solution for all of your applications.

They are written specifically to be used with custom WCF services. They will not

work with WCF Data Services or WCF RIA Services, nor can you use them to solve

 n-tier issues in other applications, such as ASP.NET. You do have the option of

customizing the self-tracking entities templates, however, to make them suitable

for other uses. Keep an eye on the ADO.NET team blog where you may find some

guidance about this in the future.

Self-tracking entities are very different from other POCO classes, whether your

POCO classes are generated from the provided template, a customized version of

that template, or your own template.

Summary

WCF’s various flavors of services are an increasingly critical element in many solution

architectures. POCO entities, while not the default classes created by the Entity Frame-

work tools, provide greater flexibility, simplicity, and control for using entities in WCF

services.

The Microsoft-provided POCO template is not quite suited either for serialization or

for use in services, but with a few minor customizations, you can make it work very

nicely in your services.

For developers who are mourning the loss of the simplicity of using DataSets, self-

tracking entities provide an easy-to-use, comparable solution in your custom WCF

services.

You’ll also need to keep in mind some of the nuances of WCF Data Services and WCF

RIA Services when using your POCO entities in combination with these technologies.

Most importantly, understand what the different options are so that you can make the

right choice when exposing your entities through WCF.

520 | Chapter 18: Using POCOs and Self-Tracking Entities in WCF Services

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 19

Working with Relationships

and Associations

At this point in the book, you have worked extensively with entities that are related to

one another. You have also experienced a number of scenarios where it was necessary

to do extra work to an object because of its associations. You learned that if an EntitySet is mapped using a QueryView, every other related entity also needs to be mapped using a QueryView. In building a WCF service in Chapter 17, you had to do a little extra work to make sure that when inserting new Reservations, the context did

not also attempt to add a new Trip entity.

So much happens behind the scenes as the Entity Framework manages entities and

their relationships that unexpected behaviors and seemingly strange errors can some-

times result, unless you follow the rules designed to maintain these relationships.

In this chapter, you’ll learn how relationships and associations fit into the EDM and

how they work both inside and outside the ObjectContext. With this knowledge, you

will be better prepared to manipulate relationships between entities, adding or remov-

ing relationships between objects in the way that the Entity Framework expects; you

will be able to solve problems that arise because of relationships; you will even enhance

your ability to build more meaningful Entity Data Models. All the while, you’ll be able

to perform these tasks in the manner that Entity Framework expects. And if you happen

to break an Entity Framework rule, hopefully this knowledge will help you to quickly

see where you went wrong. You will also see this knowledge of working with relation-

ships pay off in a big way when you build n-tier applications.

The chapter will focus on foreign key associations, which are the default in .NET 4. If

you are not using foreign keys and need more information on independent associations,

read the sidebar “Understanding Independent Associations” on page 522.

The behaviors outlined in this chapter pertain to EntityObjects and POCOs that create

dynamic proxies. Otherwise, your POCOs will be dependent on whatever code you

included to handle their relationships.

521

Download from Library of Wow! eBook <www.wowebook.com>

The chapter is divided into two parts. The first part is devoted to teaching you how relationships and associations work in the Entity Framework, from the EDM to the

EntityObjects. The second part will teach you how to perform a number of critical

tasks relating to entity graphs as you work with sets of related entities.

Understanding Independent Associations

The introduction of foreign keys into the model in .NET 4 has removed many layers of

pain around relationships. While foreign key associations between entities are now the

default when creating models, you may be using independent associations where map-

pings defined the relationships because no foreign key is available. The previous edition

of this book covered independent associations in depth. You can find a copy of the

relevant chapter from the first edition, Chapter 9, on the book’s website at http://www

 .learnentityframework.com/downloads.

Deconstructing Relationships in the Entity Data Model

Many developers new to the Entity Framework have a lot of questions about relation-

ships as they attempt to build Entity Data Models and write code to interact with entities. Having a better understanding of the fundamentals of these associations and

how they work will allow you to create more powerful applications and better com-

prehend the Entity Framework’s behavior. First we’ll look at the model and then at

Object Services.

In the Designer, Associations are represented as lines between related entities. The

Designer displays the multiplicity between the entities. Multiplicity defines how many items a particular end can have. The multiplicity of an end can be defined in one of

three ways:

 One

The end must have one item, no less and no more. This is quite often what we

think of as a parent in a parent–child relationship.

 Many

The end can have many items. This is often a collection of children in a parent–

child relationship. It’s possible that no items (zero) exist in this collection.

 Zero or One

The end can have either zero items or one item but no more than one. Many of the

entity references you have worked with in the BreakAway model have Zero or One

ends. For example, the Customer.PrimaryDestination field may not have a desti-

nation defined, and therefore there will be zero items at that end. If a destination

is defined, there can be no more than one.

522 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

As you learned in Chapter 2, the common notations for these are 1 (One), * (Many), and 0..1 (Zero or One). The EDM Designer displays the relationships with this

notation.

When you hover your mouse pointer over a line representing an Association, you can

see some additional details of the Association, as shown in Figure 19-1.

 Figure 19-1. An association represented in the Designer

In the Properties window of the Association, shown in Figure 19-2, you can see even more details and make modifications if necessary.

By default, the AssociationSet has the same name as the Association. You may find it

helpful to change the name of the AssociationSet, as shown in Figure 19-2, so that when you’re looking at the EDMX in the XML Editor, it will be obvious whether you

are looking at the Association or the AssociationSet. It is not common, however, to

work with the AssociationSet directly in code, and therefore this is not a change that

I have ever made when customizing my own EDMs.

Understanding How the Entity Data Model Wizard Creates

the Association

The EDM Wizard created the FK_Reservations_Customers association shown in Fig-

ure 19-1 when it read the BreakAway database.

Figure 19-3 shows a portion of the database diagram for the BreakAway database. The diagram shows the Customers and Reservations tables as well as a visual representation

of the 1:* (One to Many) relationship between Customers and Reservations. On the

Contact side, the symbol for primary key is used because the primary key, ContactID,

is used in the definition of the relationship.

The ContactID field in the Reservations table is a foreign key. The relationship is known

as a primary key/foreign key relationship, which is often described and represented as Deconstructing Relationships in the Entity Data Model | 523

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 19-2. The Association’s Properties window

 PK/FK. This relationship is defined in a foreign key relationship of the Reservations table named FK_Reservations_Customers, as shown in Figure 19-4.

The Customers table has no knowledge of this relationship; the relationship and all of

its rules (known as constraints) are contained in the FK_Reservations_Customers key.

Figure 19-5 shows the details of this foreign key.

Although a cascading delete rule is not being used in this case, you could define such a rule so that anytime a contact is deleted all of its related Reservations records will be

deleted automatically. You might expect this to be defined in the Customers table, but

instead it is defined in the Reservations table’s foreign key. To use a cascading delete

rule in this case, you would change the Delete Rule in Figure 19-5 from No Action to Cascade.

Watch for a discussion later in this chapter about database-defined cas-

cade deletes and their relationship to model-defined cascade deletes.

The EDM Wizard reads all of this information, creates the FK_Reservations_Custom

ers association, and wires it up to the relevant items in the model.

524 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 19-3. A primary key/foreign key relationship defined between the Customers and Reservations tables in the database

 Figure 19-4. The relationship defined by the table that contains the foreign key

Understanding Additional Relationship Items

In addition to the association, a number of other items are created in the model as a

result of this relationship:

 Navigation properties

Navigation properties are the most visible properties that result from the relation-

ship, and you have used them extensively in this book already.

The navigation property itself doesn’t contain very much information, but it does

have a pointer back to the association, which enables the navigation property to

return the related entity or collection of entities.

AssociationSet s

An AssociationSet is prominent when you are using independent associations.

Like an EntitySet, an AssociationSet acts as a container for independent associa-

tions that have been instantiated as ObjectStateEntry types at runtime. If you have

three contacts in the ObjectContext along with one or more addresses for those

contacts, three instances of the FK_Reservations_Customers association will be in

the context as well.

Deconstructing Relationships in the Entity Data Model | 525

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 19-5. SQL Server Management Studio’s property editor for defining a relationship between tables

When using foreign key association, no ObjectStateEntry types are created for

relationships.

AssociationSet mappings

AssociationSet mappings are used only for independent associations. Foreign key

associations are defined as referential constraints in the conceptual model. In the

case of independent associations, the EntitySetMapping element in the model con-

tains no information about navigations or associations, a fact you can confirm by

viewing it. Only the scalar properties are mapped. All the relationship information

is contained in the AssociationSetMapping element for the association that is bound

to the entity. You have also seen that you can create or view these mappings in the

Designer.

Handling Nonessential Navigation Properties

Although an association is always bidirectional, navigating with properties doesn’t necessarily have to be. An interesting twist on relationships is that you are not required to have a navigation property in your model for every endpoint of a relationship.

As an example, the business logic of your application may define that you will fre-

quently need to navigate from a contact to its reservation, but that you will never have

526 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

to navigate from a reservation back to the contact, meaning Reservation.Customer will never be required, but Customer.Reservations will be useful.

In this case, you could simply delete the Customer navigation property from the Reservation entity in the model designer. This won’t impact the association between

the two entities, and in an edge case you can always dig into the ObjectStateManager

to get from the Reservation to the Customer. In fact, you could delete both navigation

properties from the related entities and leave the association intact. The plus side is

that when you’re coding or debugging, you won’t have the unnecessary Customer and

CustomerReference properties constantly in your face.

Understanding the Major Differences Between Foreign Key

Associations and Independent Associations

Foreign keys in the model have simplified so much with regards to relationships. If you

are moving from the .NET 3.5 SP1 version of Entity Framework to .NET 4, it will be

useful to understand how they differ at a high level.

Remember that foreign key scalar properties and entity references are not mutually

exclusive. By default, you will have both the scalar and navigation properties in the

model. In the generated class when you are inheriting from EntityObject, you will have

the scalar property, the navigation property, and the EntityReference property. With

POCO classes, if you are enabling proxy generation, you’ll get the EntityReference at

runtime.

Updating .NET 3.5 Models to Get .NET 4 Foreign Keys and Their Associations

If you have a .NET 3.5 EDM (with no foreign keys) and you want to benefit from the

foreign key support, the most pragmatic way to update the model is to recreate it from

scratch.

Of course, this really depends on how complex your model is. If you have not performed

a lot of customization on the conceptual model, recreating it with the VS2010 designer

(and targeting .NET 4) should not be very painful.

The reason that updating the model won’t work is that the foreign keys are already

represented in the SSDL. Therefore, when you update the model even if you select the

“Include foreign keys” option, the wizard will not rediscover the foreign keys from the

database and bring them into the model as scalars.

You could still recreate the association manually in the designer. I think the easiest path is as follows. For each existing independent association:

1. Delete the association. This also deletes the association mapping, which you can’t

use with a foreign key association.

2. Recreate the association and allow the Add Association wizard to create a new

foreign key scalar property.

Understanding the Major Differences Between Foreign Key Associations and Independent Associations |

527

Download from Library of Wow! eBook <www.wowebook.com>

3. Fix the name of the new scalar property if necessary.

4. In the table mappings window, map the new foreign key property back to the

database table’s foreign key property.

5. Verify that the Referential Constraint is set up correctly for the new association.

If you have lots of associations in your model, this one-time effort of manually recreating the associations will be worth it if you have a significant amount of model customization

that you don’t want to recreate.

Whichever method of updating you use, you should be sure to verify that all of your

code with respect to relationships still works. In fact, you may very well find areas in

your application where you can simplify code using the new foreign keys. I certainly

have!

Defining Associations in Metadata

Foreign key associations are defined in the conceptual model using a referential con-

straint that links the primary property of the principal entity (e.g., Customer.Contac

tID) to the foreign key property of the dependent entity (e.g., Reservation.ContactID).

Independent associations are defined in the mapping layer. Since the foreign key is not

exposed in the conceptual layer, the mapping layer hooks up the principal entity’s primary key property with the foreign key in the store entity (e.g., the database table)

that the dependent entity is mapped to.

Detecting Associations at Runtime

At runtime, the context is able to work out foreign key relationships by using the foreign key properties of the entity.

When you have independent relationships and no foreign key property, Entity

Framework creates an object instance, specifically an ObjectStateEntry whose

IsRelationship property is true, which can hold the necessary values defining the relationship.

Why Foreign Keys Were Brought into Entity Framework in .NET 4

Maintaining the independent association relationship objects created a lot of confusion

for developers in the first version of the Entity Framework. It is the reason behind

introducing foreign keys into the model in .NET 4 even though doing so caused the

model to step away from its origins in Entity Relationship Modeling.

While it is still possible to use independent associations and have to work with and

understand the relationship objects in .NET 4, it will be a much less common

scenario.

528 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

Deconstructing Relationships Between Instantiated Entities

When instantiated objects are joined together in a relationship they are referred to as

a graph, or an entity graph. The Entity Framework has some important rules about how graphs are maintained.

Relationship Span

The term relationship span is not an official term. You may not even find it in the EF

documentation. But it is often used to describe the rules by which the Entity Framework

handles related entities under the covers. When you create a query that traverses rela-

tionships, the Entity Framework will know not only how to construct the query, but

also how to materialize the related objects. The relationship span defines that the ObjectContext will automatically attach an entity when you have joined it to another

attached entity.

The fact that the context manages the relationships mandates that an object graph must

be completely in or completely out of the ObjectContext. For example, if you have a

customer graph that consists of a Customer with Orders and OrderDetails and for some

reason you detach the Customer from the ObjectContext, the Customer will be discon-

nected from the rest of the entities in the graph. Because the relationship objects that

involved that Customer were destroyed along with the ObjectStateEntry for that object,

this means you can no longer traverse from the customer, which is not in the context,

to the orders, which are in the context.

Conversely, if you have an entity that is not in the ObjectContext and you join it to an

entity that is in the ObjectContext, to follow the rule that the entire graph must be either in or out of the context the detached entity will automatically be attached to the context in order to be part of the graph.

You will see this behavior repeated throughout this chapter as you look at the features

and functionality regarding relationships.

Unmanaged Entities and Lazy Loading

When the context manages entities, it can ensure that the same entity is not duplicated

in the context. However, if an entity is in memory but is detached, not only can you

have multiple detached instances of the same entity, but also you can bring another

instance into the context, through either a query, explicit loading, or lazy loading. You

can use this to your advantage as easily as you can be surprised by finding multiple

instances of your object hanging around in memory.

Deconstructing Relationships Between Instantiated Entities | 529

Download from Library of Wow! eBook <www.wowebook.com>

Understanding Relationship Manager and the IRelatedEnd Interface

Along with ObjectStateManager, Object Services provides a relationship manager to perform the tasks pertaining to relationships between entities being managed by the

context. The relationship manager keeps track of how entities attached to the

ObjectContext are related to each other. It’s able to do this with the methods and prop-

erties that EntityCollection and EntityReference share through the IRelatedEnd inter-

face, which they both implement. IRelatedEnd’s methods include Add, Attach, and

Load, among others. When these methods are called, or when one entity is simply set

to another entity’s navigation property (e.g., myAddress.Contact=myContact), the rela-

tionship manager kicks in.

This may sound complex, but it is necessary so that Object Services has a dependable

way to manage the many relationships that could exist at any given time. As you create

and delete entities, attach and detach entities, and modify relationships, the relation-

ship manager is able to keep track of all of this activity. When it comes time to call

SaveChanges, the relationship manager plays a role that is just as important as that of

ObjectStateManager. All of those updates you witnessed, in which related objects were

taken care of automatically, were handled by the relationship manager. To have the

flexibility that the Entity Framework provides at the coding level, it is necessary to have this complexity at lower levels.

With an understanding of how things are working at the lower levels, interaction with

related objects should become much easier to comprehend, anticipate, and implement.

Remember that when you were working with the simpler POCOs in

Chapter 13 (those that did not acquire dynamic proxies at runtime), this behavior didn’t happen automatically. It was up to you to leverage some

of the new methods in ObjectContext, which would then be able to de-

tect what was going on in the classes with respect to properties and

relationships.

Late-Binding Relationships

One of the jobs of the relationship manager is to “serve up” related entities when they

are attached to the ObjectContext. When you navigate to a related entity—for example,

by requesting myAddress.Contact—the relationship manager will identify the existing

relationship between the Address and Contact entities, find the correct Contact entity

in the ObjectContext, and return it.

A related object that the ObjectContext is not managing is seen as any other property

in .NET. A call to myAddress.Contact when myAddress and its Contact are not attached

to the context will merely return the Contact as a property. This contact will not interact with the ObjectContext.

530 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

Each ObjectStateEntry has a RelationshipManager property, which provides that par-

ticular entity access to the entities with which it has relationships.

Figure 19-6 shows the RelationshipManager of the ObjectStateEntry for a Reservation. The RelationshipManager identifies three relationships. The first two are

for EntityReference properties that have not yet been loaded. The third is for an Enti

tyCollection<Payment> that has been loaded. If you were to expand that node, you

would be able to find references to each instantiated Payment entity belonging to this

Reservation.

 Figure 19-6. An ObjectStateEntry.RelationshipManager property

The Entity Framework uses an entity’s ObjectStateEntry.RelationshipManager to sup-

ply values to the navigation properties when you request them in your query or in your

code—for example, myReservationInstance.Payments. You can get the Relationship

Manager in code by passing the object whose relationship manager you’d like to ObjectContext.GetRelationshipManager(Object).

Opening the relationships even further would reveal an internally managed property

called IsLoaded. You’ll see further on in this chapter how the context uses this property

when deciding to lazy-load related data.

Taking a Peek Under the Covers: How Entity Framework

Manages Relationships

Here’s a geeky test that you can perform to see how some of the plumbing works.

Looking at this in detail will give you a better understanding of how the Entity Frame-

work manages relationships and why some of the rules that might not otherwise make

sense exist. In order to see what’s truly happening, you’ll need to disable lazy loading;

otherwise, it will automatically load related entities as you are inspecting results in the debugger.

Deconstructing Relationships Between Instantiated Entities | 531

Download from Library of Wow! eBook <www.wowebook.com>

Perform a query against the model that retrieves a single Reservation and then get a

reference to all of the newly retrieved (Unchanged) ObjectStateEntry objects from the

context, as shown in Example 19-1.

 Example 19-1. Retrieving a single entity

using (var context = new BAGA.BAEntities())

{ context.ContextOptions.LazyLoadingEnabled = false;

var res = context.Reservations.FirstOrDefault();

res.CustomerReference.Load();

}

Set a breakpoint on the last line of code that calls the Load. In debug mode, you’ll take

a look at the ObjectStateManager before and after loading the Customer.

When the Reservation is first loaded, the context is aware that the Reservation has

foreign keys (ContactID and TripID) that can be represented by entities but that those

entities are not yet known by the context. It creates EntityKeys for these two entities

and stores them in the private property _danglingForeignKeys, shown in Figure 19-7.

 Figure 19-7. Dangling foreign keys as placeholders for related data that is not yet loaded When CustomerReference.Load is called, a SQL query, shown in Example 19-2, is executed in the database to retrieve that customer data.

 Example 19-2. SQL executed by Entity Framework in response to calling Load

exec sp_executesql N'SELECT

''0X0X'' AS [C1],

[Extent1].[ContactID] AS [ContactID],

[Extent2].[FirstName] AS [FirstName],

[Extent2].[LastName] AS [LastName],

[Extent2].[Title] AS [Title],

[Extent2].[AddDate] AS [AddDate],

532 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

[Extent2].[ModifiedDate] AS [ModifiedDate],

[Extent2].[RowVersion] AS [RowVersion],

[Extent3].[CustomerTypeID] AS [CustomerTypeID],

[Extent3].[InitialDate] AS [InitialDate],

[Extent3].[PrimaryDesintation] AS [PrimaryDesintation],

[Extent3].[SecondaryDestination] AS [SecondaryDestination],

[Extent3].[PrimaryActivity] AS [PrimaryActivity],

[Extent3].[SecondaryActivity] AS [SecondaryActivity],

[Extent3].[Notes] AS [Notes],

[Extent1].[BirthDate] AS [BirthDate],

[Extent1].[HeightInches] AS [HeightInches],

[Extent1].[WeightPounds] AS [WeightPounds],

[Extent1].[DietaryRestrictions] AS [DietaryRestrictions],

[Extent3].[RowVersion] AS [RowVersion1]

FROM [dbo].[ContactPersonalInfo] AS [Extent1]

INNER JOIN [dbo].[Contact] AS [Extent2]

ON [Extent1].[ContactID] = [Extent2].[ContactID]

INNER JOIN [dbo].[Customers] AS [Extent3]

ON [Extent1].[ContactID] = [Extent3].[ContactID]

WHERE [Extent1].[ContactID] = @EntityKeyValue1',

N'@EntityKeyValue1 int',@EntityKeyValue1=607

Figure 19-8 shows the ObjectStateManager after the last line of code is called, which explicitly loads the related customer. There are now six danglingForeignKeys but the

one for the customer is gone. It is no longer “dangling” because the Customer entity and

its ObjectStateEntry now exist. The EntityKey for the related Trip is still in the array

of danglingForeignKeys as well as five new EntityKeys that are related to the Customer

that was just loaded. The EntityKey that had been there for the customer is now part

of an actual instantiated Customer entity.

 Figure 19-8. Dangling foreign keys for unloaded related data and keys for loaded related data Even if a related entity doesn’t exist in memory, the ObjectContext needs to be aware

of any relationships that an existing entity (the Reservation) might have. That’s because

of the rule (created to cover all scenarios) that states that when a reservation is deleted, Deconstructing Relationships Between Instantiated Entities | 533

Download from Library of Wow! eBook <www.wowebook.com>

the relationship to its contact must also be deleted. This makes sense when both entities have been pulled into the ObjectContext, but not when only the reservation is in there.

While designing the Entity Framework, its creators decided it was safer to have an all-

encompassing rule so that unexpected edge cases wouldn’t result in errors. However,

to satisfy the rule that the relationship must be deleted, the relationship must first exist.

The pseudoentities hiding in the danglingForeignKeys property were created during the

query so that the relationships could be created without developers having to pull down

additional data to satisfy the rule.

As you read through this chapter, this knowledge will help you better understand some

of the rules and behavior surrounding relationships.

Understanding Navigation Properties

On their own, navigation properties are almost meaningless. They are completely de-

pendent on an association to provide access to related data. The navigation property

does nothing more than define which association endpoint defines the start of the nav-

igation and which defines the end.

A navigation property is not concerned with whether the property leads to an entity or

an EntityCollection. The multiplicity in the association determines that, and the re-

sults are visible in the object instances where the navigation property is resolved. The

property is resolved either as an entity plus an EntityReference, as with the Contact

and ContactReference properties of the Address entity in Figure 19-9, or as an EntityCollection, as with the Addresses property of the Contact entity. You can also

see this by looking in the generated classes for the model. The Entity Framework still

needs to make this determination as it is materializing objects from query results, and

then populate the objects correctly.

EntityReference properties

Navigation properties that return Entity and EntityReference properties need to be

addressed together because they come as a pair, even though both may not be popu-

lated. When the navigation property points to the “one” or “zero or one” side of a

relationship, that property is resolved as two public properties. One property contains

the actual entity, and the other property contains a reference to the entity. This reference contains the related entity’s EntityKey, which is comparable to a foreign key in a database. The EntityKey provides just enough information about that entity to be able to

identify it when necessary. When you execute a query that returns addresses, the Con

tactID from the Addresses table is used to construct the EntityKey for ContactRefer

ence. Even if the contact does not exist in memory, the ContactReference property provides the minimal information about the Contact that is related to the Address.

534 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 19-9. Resolving navigation properties as entities, EntityReferences, and EntityCollections EntityReference.Value. The value object of an EntityReference shows up in two places.

The first is the navigation property (Address.Contact) and the second is within the

EntityReference property (Address.ContactReference). You can see this in Fig-

ure 19-10, where the Contact is loaded into the ObjectContext and therefore is hooked up with the Address entity.

 Figure 19-10. The Contact property (which is a Customer derived from Contact) of the Address entity as the actual property and as the value of the EntityReference property, ContactReference What if there is no EntityReference. In many scenarios, the “one” side of a relationship is required, such as the constraint in the BreakAway model that says a reservation can’t

exist without a related customer. However, in some relationships the target is 0..1,

meaning the related end isn’t required (e.g., if a customer’s preferred activity does not

Deconstructing Relationships Between Instantiated Entities | 535

Download from Library of Wow! eBook <www.wowebook.com>

need to be specified). In the case where there is nothing on that end, the navigation

property (Customer.PrimaryActivity) will be null. The EntityReference will exist, but

its EntityKey and Value will be null, as shown in Figure 19-11.

 Figure 19-11. An unpopulated EntityReference, which will have no EntityKey and Value

EntityCollection properties

The other type of IRelatedEnd is an EntityCollection. EntityCollection is a generic

class that is a container for entities of a particular type and is used by a navigation

property to point to the “many” end of an association. Contact.Addresses is an EntityCollection of Address types.

EntityCollection is not based on other Collection classes in .NET. In

fact, it implements an Entity Framework interface in the

System.Data.Objects.DataClasses namespace, called IRelatedEnd.

You have worked with EntityCollections in many of the examples in this book already.

Although you’ll probably work with EntityCollection most frequently through a nav-

igation property, it is also possible to instantiate an EntityCollection in memory and

work with it directly.

You cannot attach an EntityCollection to an entity through its navigation property—

for example, with:

MyContact.Addresses=myAddressEntityCollection

The EntityCollection is the navigation property (when the target is the “many” side of an association).

Unfortunately, the compiler will allow you to set a collection property;

you will get no warnings. However, at runtime an exception will be

thrown.

You need to insert items into the collection itself, which you can do explicitly or by

setting the EntityReference on the child object, which you’ll see next. You can also

remove items from the collection as needed.

536 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

Relationship Management in POCO Entities

Entity Framework will provide the same relationship behavior for dynamic proxies as

it does for EntityObjects. Therefore, when using POCO entities that are set up for

runtime proxy generation, everything I’ve described thus far will essentially be the same.

However, there are a few differences for entities that rely on the runtime dynamic proxies. The EntityReference properties that are generated for EntityObject classes will

not exist in the POCO entities unless you specifically add code into your T4 template

to create these properties, which would be an unusual thing to do.

Attach and Load, which are discussed later in this chapter, are methods of

IRelatedEnd; only EntityReference and EntityCollection derive from IRelatedEnd and

only the EntityObject classes will have properties that are based on these types. There-

fore, you won’t be able to use these methods with POCO entities.

POCO entities that are not virtualized will not have any of the automated relationship

management. None of the RelationshipManager infrastructure will exist. Whatever

logic you have defined for relationship fix-up in your classes is what your objects will

follow.

Understanding Referential Integrity and Constraints

It is possible to place constraints in both the database and the EDM to ensure the

integrity of the data. The point at which these constraints are checked in the pipeline

varies.

Many developers approach the Entity Framework with the assumption that these con-

straints will be checked when their code is manipulating the entities. For example, if

you delete an order, when you call ObjectContext.DeleteObject it would be nice to have

the Entity Framework tell you, “Hey, there are still line items for this order. You can’t

do that.”

Constraints that are not checked until they hit the database

Many constraint checks must be deferred to the database, because it is common for

some dependent data not to be loaded into your application. Even if the Entity Frame-

work did alert you to those details and you removed them as well, what if the database

contains more order detail data that you hadn’t loaded for some reason? This would

make you feel uncomfortable deleting the order and sending that instruction to the

database, which would throw an error anyway because of the other details that are still

present.

Other constraint checks that, for the same reason, can’t be made on the client side are

for uniqueness, primary keys, and foreign keys. An EntityReference might contain a

Deconstructing Relationships Between Instantiated Entities | 537

Download from Library of Wow! eBook <www.wowebook.com>

key value for data that is not loaded into the ObjectContext but that does exist in the

database, so only the database can provide that check.

In Appendix C, you can see how database constraints were specified in the SSDL portion of the model, which only declares the existence of the constraints in the database.

It is also possible to define constraints on the CSDL side. But even a referential con-

straint defined in the model (as you first saw in Chapter 2) is not checked at the object level. If you need the constraints to be checked while you are interacting with the objects, you will have to build your own validation logic to do so.

“Then why,” you may ask, “did I bother defining constraints in the conceptual model?”

In the conceptual model, the constraints exist to map the relationships. Without them

you wouldn’t be able to have associations and navigation properties to work with in

queries or code.

We’ll look closely at Entity Framework exception handling in Chap-

ter 22.

Checking for missing entity references with and without foreign keys

In the first version of Entity Framework, and when using independent associations

in .NET 4 (rather than foreign keys), SaveChanges was able to detect a missing (and

required) EntityReference.

For example, the 1:* relationship between Contact and Address means you can have one

and only one Contact related to an Address—not five and not zero.

It is possible to create a new Address in code without assigning a Contact, ContactID,

or ContactReference, as shown in Example 19-3. When you add the Address to the context, the Entity Framework can’t possibly know whether you plan to create a relationship, so it's not going to complain at that point.

 Example 19-3. Code that will not incur a constraint check

var address = new Address

{

Street1 = "1 Main Street",

City = "Burlington",

StateProvince = "VT",

AddressType = "Business",

ModifiedDate = DateTime.Now

};

context.Addresses.AddObject(address);

But when it comes time to call SaveChanges, after any custom SavingChanges logic has

been implemented, it’s pretty obvious that if there is no relationship by now, there

never will be.

538 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

If you are using independent associations, Entity Framework will validate this con-

straint for you. That’s when an UpdateException is thrown before the command is even

created to send to the database. The UpdateException provides the following explicit

message, which is great for debugging and for logging:

Entities in 'BAEntities.Addresses' participate in the 'FK_Address_ContactSet'

relationship.

0 related 'Contact' were found. 1 'Contact' is expected.

You should be able to catch a scenario like this before your code goes into production.

Otherwise, you’ll either want to check for this constraint yourself in business rules (e.g., in SavingChanges) or, as a last resort, catch the exception and either deal with the orphaned address or ask the user to do something about it.

However, with foreign key associations, the Entity Framework may not catch what you

know to be missing references, even though they are defined in the referential con-

straints. In the previous code example, even though the Contact was not assigned, Address has a ContactID property. ContactID is a non-nullable integer that, because integer is a value type, will have a default value of 0 if you have not explicitly defined a default value.

When SaveChanges is called, because the foreign key is populated (with 0), that is enough for the constraint check to pass. There’s a value that can be used to identify the

Contact. Entity Framework cannot assume that 0 is an invalid value for the ContactID.

It will send the insert command to the database, which will return an error because

(presumably) there is no Contact in the Contacts table with a ContactID of 0 and the

database will throw a foreign key constraint conflict error.

When using foreign key associations, it is your responsibility to validate

foreign key constraints that the runtime will not properly detect if you

do not want to make an unnecessary database call. Additionally, you

can define checks and balances in your database to sort out what is and

isn’t valid incoming data.

Where should you validate? For the same reasons used with the independent associa-

tion constraint validation, you’ll want to validate just prior to saving changes to the

database. If you are using EntityObjects and you don’t want to modify the template,

you can add validation code in SavingChanges or the SaveChanges override that you

added in Chapter 10. You might also want to consider letting each entity type provide its own presaving validation logic. For example, in the partial class for Address you

could have a method that updates the ModifiedDate property, forces something into

the non-nullable AddressType property, and then checks to ensure that a Contact has

been identified.

Such a method’s signature could look something like this:

internal bool ValidateAddress(out string invalidReason)

Deconstructing Relationships Between Instantiated Entities | 539

Download from Library of Wow! eBook <www.wowebook.com>

After fixing up the ModifiedDate and AddressType, if the Contact validates, the method would return true and invalidReason would be empty.

If there is no Contact or ContactID assigned, you would return false and populate invalidReason with text such as “Contact not assigned”.

Making this internal (or Friend in Visual Basic) means it can only be called from within

the same assembly. Because this is the default generated code, the ObjectContext class

is in the same assembly and you can add the code in Example 19-4 to the SavingChanges method. In the method you created in Chapter 10, there is a foreach clause that iterates over ObjectStateEntries that are Added or Modified. You’ll want to

apply your own rules to determine what you want to do if the address is, indeed, invalid.

 Example 19-4. Adding Address self-validation into the SavingChanges override

public void BAEntities_SavingChanges(object sender, System.EventArgs e)

{ var osm =ObjectStateManager;

foreach (var entry in osm.GetObjectStateEntries

(EntityState.Added | EntityState.Modified))

{

if (entry.Entity is Contact)

{

var con = (Contact)entry.Entity;

con.ModifiedDate = DateTime.Now; //replace with a db trigger?

if (con.AddDate == DateTime.MinValue)

{ con.AddDate = DateTime.Now; }

}

if (entry.Entity is Address)

{

string invalidReason;

if (((Address)entry.Entity).ValidateAddress(out invalidReason)==false)

{

//address is invalid, reason is contained in invalidReason

}

}

}

}

It would make sense to do the same for Contact: move it’s validation and other related

logic, such as setting defaults, into the Contact class.

If you are using a T4 template to create POCO entities, you might consider creating a

generic method that tests for 0 in any foreign key property that is non-nullable. We’ll

look at more validation logic for POCO entities in Chapter 24.

Implementing Deletes and Cascading Deletes

Most databases support cascading deletes, which are used to automatically (and un-

questionably) delete all of the children of a parent when that parent record is deleted.

Cascading deletes are supported in the Entity Framework as well, but with caveats.

540 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

The biggest caveat is that the Entity Framework can perform cascading deletes only on objects that are in memory, more specifically, objects that are in memory and being

managed by an ObjectContext. This could cause problems if a database constraint is

enforcing referential integrity, and if the database does not also have a cascading delete set up on the same set of data. In this case, if the database still contains children, an

error will be thrown when Entity Framework sends a command to delete the principal.

Cascading deletes in the database

Referring back to Figure 19-5, a cascading delete in the database is defined in the Key definitions of the “child” or dependent table. If data in the related table is deleted, all of the related rows of the dependent table will be automatically deleted.

The EDM Wizard can identify cascading deletes in a database. Microsoft’s sample database, AdventureWorksLT, defines cascading deletes in many relationships, including the relationship between SalesOrderDetails and its “parent,”

SalesOrderHeaders. The wizard recognizes and includes that cascading delete in the

Association definition, as shown in Example 19-5.

 Example 19-5. An Association’s OnDelete action set to Cascade as defined in the CSDL

<Association Name="FK_SalesOrderDetail_SalesOrderHeader_SalesOrderID">

<End Role="SalesOrderHeader"

Type="AdventureWorksLTModel.SalesOrderHeader" Multiplicity="1">

<OnDelete Action="Cascade" />

</End>

<End Role="SalesOrderDetail"

Type="AdventureWorksLTModel.SalesOrderDetail" Multiplicity="*"/>

<ReferentialConstraint>

<Principal Role="SalesOrderHeader">

<PropertyRef Name="SalesOrderID" />

</Principal>

<Dependent Role="SalesOrderDetail">

<PropertyRef Name="SalesOrderID" />

</Dependent>

</ReferentialConstraint>

</Association>

The wizard will automatically apply the same Cascade Delete rule to the association’s

SalesOrderDetails end (End1 OnDelete) in the conceptual model, as shown in Fig-

ure 19-12.

Anytime your code calls ObjectContext.DeleteObject on a SalesOrderHeader entity, any

related SalesOrderDetail entities being managed by the context will also be deleted

with DeleteObject. When SaveChanges is called, the delete commands for the

SalesOrderDetail entities will be sent to the database first, followed by the command

to delete the SalesOrderHeader. This database cascade delete rule will ensure that any

other SalesOrderDetails related to the order that are in the database are also deleted.

Deconstructing Relationships Between Instantiated Entities | 541

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 19-12. Cascade Delete in the conceptual model

Sending the related entity delete commands first prevents a conflict. If

the order was deleted first, the database would automatically delete all

of the detail records and the following delete commands for the detail

entities would fail because those records would already have been re-

moved from the database.

Recommendation: Cascade in both the model and the database, or in neither

Although you can define a cascade delete action to a model’s association when the

cascade is not defined in the database, this is not recommended. Doing so will create

incorrect expectations on the part of the developer, and unpredictable results. The

recommendation is to use the OnDelete action in the database as a reflection of its definition in the database. If it exists in the database, it should exist in the model. If it does not exist in the database, it should not exist in the model. You can, of course,

ignore the recommendations as long as your code is prepared for the possible

repercussions.

Defining Relationships Between Entities

Now that you have had a tour through the plumbing of how relationships work in the

Entity Data Model and in instantiated objects, it’s time to see how you can impact

relationships in your code.

542 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

Anytime you set one entity as the property of another (e.g., Reservation.Customer=aCus tomer) or add an entity to an EntityCollection property of an entity (e.g.,

Reservations.Payments.Add(aNewPayment)) you are defining a relationship.

The relationship will be noted in the RelationshipManager of each entity involved in the

relationship.

You can create relationships between entities in a number of ways. You have seen several of them in the applications you built in previous chapters.

The CLR Way: Setting a Navigation Property to an Entity

The simplest way to create relationships between entities is to create the relationship

the CLR way—by setting one entity as the property of another entity:

MyAddress.Contact = myContact

If you are starting with the child entity (e.g., MyAddress), this is pretty obvious. But if you are starting with the contact and you want to add the address to its collection,

there’s no reason not to switch your perspective and simply set the address’s Contact

property. It’s simpler and has the same effect.

This covers the most common scenarios, though you should be aware of the following

subtleties:

• If both objects are detached, the ObjectContext will not be involved at all. You are

simply setting a property the CLR way.

• If both objects are attached, the relationship manager will create the necessary

EntityCollection or EntityReference.

• If only one of the objects is attached, the other will become attached (thanks to

relationship span) and the EntityCollections and/or EntityReferences will be cre-

ated by the RelationshipManager. If that detached object is new, when it is attached

to the context its EntityState will be Added.

• As described in earlier chapters, the relevant foreign key property and

EntityReference.EntityKey will be updated to synchronize with the newly related

entity.

Download from Library of Wow! eBook

<www.wowebook.com>

Defining Relationships Between Entities | 543

Download from Library of Wow! eBook <www.wowebook.com>

Setting a Foreign Key Property

If you have access to the value of the related entity but not the entity itself, you can simply set the foreign key property (e.g., Reservation.TripID=3). The

EntityReference.EntityKey will be synchronized, and if the related entity is in the con-

text’s cache, the entity navigation property will also be synchronized. If the related

entity is not in the cache, setting the foreign key scalar property will not trigger a lazy load from the database.

Using Foreign Key Properties from Reference List Entities

It is possible that the foreign key points to an entity that is in memory but is not being change-tracked. For example, you may have a list of Trip entities that you queried using

the NoTracking MergeOption because the trips will only be used as a reference list and

are not being edited. When creating a new reservation, if you set the

Reservation.Trip navigation property to the desired Trip entity, relationship span will

cause that Trip entity to be pulled into the context and be change-tracked. Because the

Reservation is new, the Trip’s EntityState will be Added and give you extra work to do

to fix up the entity state before saving.

On the other hand, if you simply use the TripID of the selected Trip to set the new

Reservation’s TripID property, you won’t have to worry about the Trip entity being

managed by the context.

If you do not have a foreign key property, you can set the EntityReference.EntityKey

and still avoid forcing the related entity into the context.

Setting an EntityReference Using an EntityKey

If the relationship you are building is based on an independent association and no

foreign key property is available, you can create the EntityReference using only an

EntityKey. This requires that you know the key value of the related entity.

This allows you to create a foreign key for an entity without having the related data in

memory. Example 19-6 shows how to create and set the EntityKey when the key contains only a single property.

 Example 19-6. Defining an EntityReference with an EntityKey

var singleKey= new EntityKey("BAEntities.CustomerTypes", "CustomerTypeID", 1); cust.CustomerTypeReference.EntityKey = singleKey;

Example 19-7 shows how to define an EntityKey that comprises multiple values using an entity created from the SalesOrderDetail table in the AdventureWorksLT database.

The table has a composite primary key that results in the SalesOrderDetail entity having

an entity key comprising two properties, SalesOrderID and SalesOrderDetailID.

544 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

 Example 19-7. Defining a composite EntityKey

var compositeKeyValues =

new[] {

new KeyValuePair<string, object>("SalesOrderDetailID", 12),

new KeyValuePair<string, object>("SalesOrderID", 103)

};

var key = new EntityKey("AdventureWorksLTEntities.SalesOrderDetails",

compositeKeyValues);

Loading, Adding, and Attaching Navigation Properties

There are a number of ways to populate navigation properties using methods provided

by the IRelatedEnd interface, which EntityCollection and EntityReference implement.

Depending on the type (collection or reference) from which you call the methods, the

Entity Framework performs slightly different methods in the background to achieve

the goal.

As discussed in the sidebar “Relationship Management in POCO Entities” on page 537,

EntityCollection and EntityReference are specific to EntityObject types. These meth-

ods will not be available for POCO entities and you will need to depend on setting

navigation properties in the manner of standard CLR properties (e.g.,

myReservation.Trip=myTrip).

Lazy Loading

You first learned about lazy loading in Chapter 4, but here is a quick overview. Lazy loading causes related data to be retrieved from the database on demand. No query is

necessary. If you have a Customer instance that is being managed by the context, but

no Reservations, any reference to that Customer’s Reservations (e.g., myCust.Reserva

tions) will force a behind-the-scenes query to the database.

Lazy loading will always load the entire navigation property, regardless

of any filtering you may be applying. For example, if you called

myCust.Reservations.FirstOrDefault(), the Reservations property will

be loaded (retrieved from the database) and then the FirstOrDefault

method will be applied locally to return the first of those reservations.

Lazy loading depends on the IsLoaded property of IRelatedEnd to determine if it should

perform the lazy load or not. You used the IsLoaded property in the WCF service in

Chapter 17.

When IsLoaded is false, this indicates to the context that the related data has not been

loaded and the context will execute the lazy load. If IsLoaded is true, the context will

not perform the implicit loading.

Defining Relationships Between Entities | 545

Download from Library of Wow! eBook <www.wowebook.com>

The following events make IsLoaded true:

• Eager loading with Include

• Lazy loading

• Explicit loading with Load

When you load related data in a query projection, that related data will not be seen as

IsLoaded.

For example, the following query returns reservations and their payments. But the reservations’ payments are returned separately.

from r in context.Reservations

where r.Payments.Any()

select new {r, pmts=r.Payments}

Even though the context recognizes the relationship and you can navigate from the

reservation to those payments and from the payments to their reservations,

Reservation.Payments.IsLoaded is false.

The same is true when loading related data by performing a separate query.

If you queried for reservations and then executed a separate query for payments, res-

ervations and payments that are related will be hooked up through their navigation

properties,

but

Reservation.Payments.IsLoaded

will

be

false

and

Payment.Reservation.IsLoaded will also be false.

This is an example where lazy-loading support will cause unnecessary

trips to the database, and it’s another reason you should pay close at-

tention to how and when you are using this feature.

Remember that with POCO entities, navigation properties must be marked as

virtual for lazy loading to occur. Even if you aren’t marking every property as vir

tual, you can still benefit from marking the navigation properties as virtual to get the

lazy loading.

A side benefit to specifying virtual navigation properties in entities that

depend on snapshot notification (when POCO entities do not use dy-

namic proxies) is that you are able to control which navigation proper-

ties will lazy-load and which will not. Entity Framework defines lazy

loading at the context level. When using EntityObjects or dynamic

proxies, you don’t have control over which navigation properties are

lazy-loaded in the way that many other ORMs define this feature. But

with POCO entities, when you can pick and choose which navigation

properties are lazy-loaded you can emulate this practice.

546 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

EntityReference.Load and EntityCollection.Load

Examples:

Contact.Addresses.Load

Address.ContactReference.Load

Although I discussed the Load method earlier in the book, here I will dig

even deeper.

You can call Load from entities that are attached to the ObjectContext. Calling Load will

cause a query to be created and executed to retrieve the related data that Load requested.

As with the lazy loading, when loading a navigation that is a collection, the collection

cannot be filtered. If you have a Contact and call Contact.Addresses.Load, every address

belonging to that contact will be retrieved from the database.

Load has one overload. You can provide a MergeOption to control how the loaded data

is handled during object materialization.

Remember that simple POCO entities whose navigation properties

are not virtual will not benefit from lazy loading. Use the

ObjectContext.LoadProperty method as discussed in Chapter 13.

Loading from Detached Entities: Lazy and Explicit

One condition allows you to load related data from detached entities whether you let

lazy loading or the Load method do the job: when the entity was created as a result of

a NoTracking query. Example 19-8 calls Load on a Detached entity.

 Example 19-8. Calling Load on a detached entity

ObjectSet<Reservation> query = context.Reservations;

query.MergeOption= System.Data.Objects.MergeOption.NoTracking;

Reservation reservation = query.First();

reservation.CustomerReference.Load(); //<--succeeds

However, if you detach an entity from the context, calling Load will cause an exception

to be thrown, as shown in Example 19-9.

 Example 19-9. A failed attempt to call Load on a detached entity

ObjectSet<Reservation> query = context.Reservations;

Reservation reservation = query.First();

context.Detach(reservation);

reservation.CustomerReference.Load(); //<--InvalidOperationException

Defining Relationships Between Entities | 547

Download from Library of Wow! eBook <www.wowebook.com>

Frankly, I’m not sure why the “untracked” reservation is able to load

when the detached reservation is not. In both cases, all of the relation-

ships are intact when drilling into the reservation’s RelationshipMan

ager. But this anomaly has existed since the first version of Entity

Framework, and disassembling the methods reveals explicit code that

checks to see if an entity was loaded using NoTracking prior to executing

the load query.

Using EntityCollection.Add

Example:

Contact.Addresses.Add(myNewAddress)

You use Add to add items to an EntityCollection. You can use Add only on

EntityCollection. It isn’t valid (or really necessary) with EntityReference, as you can

set an EntityReference using its navigation property.

Again, depending on the state of an entity, you can use Add in one of several different

ways, as discussed in the following subsections.

Adding new entities that are detached

You can use Add to add a new entity that is not yet attached to the ObjectContext. Add

will first add the entity to the ObjectContext and will then add it to the EntityCollec

tion of the calling entity. This requires that the entity have no EntityKey; otherwise, it will throw an exception. Any entity with an EntityKey is presumed to have come from

the data store, and therefore it can’t be treated as a new record.

For instance, the code in Example 19-10 queries for a Customer from the database, creates a new Address in memory, and then adds the Address to the Customer’s

Addresses collection.

 Example 19-10. Adding a new, detached entity to another entity

using (var context = new BAEntities())

{ var contact = (from c in context.Contacts.Include("Addresses") select c)

.First();

var address = new Address

{

Street1 = "1 Main",

City = "Hamburg",

StateProvince = "NY"

};

con.Addresses.Add(address);

}

548 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

When this is complete, not only is the address part of the Addresses collection, but also address’s ContactID and Contact properties are populated and address.ContactRefer

ence is populated with an EntityKey and the Value. The address object instance is at-

tached to the context with a temporary EntityKey and an EntityState of Added.

Adding existing entities that are detached

If a detached entity originally came from the database, has its EntityKey properties (e.g., Contact.ContactID), and even has an EntityKey that is populated (for EntityObjects),

using Add to link it to another entity will change its EntityState to Added. Even though

it is a preexisting entity, SaveChanges will create an insert command for this entity.

Adding new or existing entities that are attached

You can use Add to add entities that are already attached to the ObjectContext, regardless of whether they are new. The EntityState of the entity being added will not be affected.

If you add a managed Address whose current EntityState is Unchanged, it will remain

Unchanged after calling Add. It is only the Detached entities that you need to be diligent about when using Add or Attach.

Adding entities to the EntityCollection of a detached object

If the calling entity is detached from the context, Add will be treated as a CLR method,

as shown in Example 19-11.

 Example 19-11. Adding to the EntityCollection of a detached entity

var reservation = context.Reservations.First();

context.Detach(reservation);

var payment = new Payment();

payment.Amount = 100;

reservation.Payments.Add(payment);

In this case, the payment entity will be added to the Payments collection and you’ll be

able to navigate from the Payment to the Reservation (newPayment.Reservation). In the

case of EntityObjects, because the ObjectContext is not involved, no relationships are

created, and therefore payment.ReservationReference.EntityKey will be null.

If you are using POCO entities, any fix-up logic that has been built into your entities

will drive whether the relationship is one-way or two-way.

Using Attach and Remove

Examples:

Contact.Addresses.Attach(myAddress)

Address.ContactReference.Attach(contact)

Defining Relationships Between Entities | 549

Download from Library of Wow! eBook <www.wowebook.com>

In addition to ObjectContext.Attach, an Attach method exists for IRelatedEnd, which

you can use for EntityCollections and EntityReferences.

Using the Attach method, you can define relationships between entities that already

exist in the ObjectContext but that have not been connected automatically.

EntityCollection.Remove is used to remove an entity from a collection. It will continue

to be managed by the ObjectContext, but will no longer be related to a parent in that

particular association. There is no Remove method for EntityReference.

When removing entities from an EntityCollection, be careful not to

orphan entities. If you leave a child entity without a required parent,

you will get an EntityReferenceException when you call SaveChanges.

Cases Where You Cannot Use Attach

You’ll encounter a lot of rules if you try to use Attach where it doesn’t belong. Here are a few places where you might think you want to use Attach, but you will run into

trouble. Most of these problems occur when you are not following the main purpose

of Attach, which is to connect entities that are already attached to the ObjectContext

and are not new.

• You cannot use Attach to attach another EntityCollection; however, it is possible

to attach an IEnumerable (discussed shortly). Otherwise, you need to attach one

entity at a time.

• You cannot use Attach when the EntityState of either end is Detached. ObjectCon

text is required to work out the relationship. Do an ObjectContext.Attach first.

• You cannot use Attach when the ends are in different contexts.

• You cannot use Attach to attach entities whose EntityState is Added. You’ll want

to use Add in this case.

• You cannot use Attach to attach entities whose EntityState is Deleted. It’s not

possible to create an IRelatedEnd for a deleted entity.

• You cannot use Attach to reassign entities to another graph.

Moving an Entity to a New Graph

Often you will want to move an entity from one graph to another, perhaps for the simple

reason that an end user applied a payment to the wrong reservation.

In such a case, you can simply reassign the Reservation property:

myPayment.Reservation=myReservation

or add the payment to the Payments EntityCollection of the new reservation:

myReservation.Payments.Add(myPayment)

550 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

The ObjectContext will resolve the existing relationship, and the foreign key property,

entity, and reference will all be synchronized. The change to the foreign key property

will force the EntityState to become Modified.

Remember that Attach will not work here. Attach is for creating a rela-

tionship in the context to reflect a relationship that already exists in the

database.

Learning a Few Last Tricks to Make You a Relationship Pro

If you spend any amount of time in the MSDN Forums for the Entity Framework, you

may recognize two questions that are asked frequently. The first is “How can I filter

the children that are returned when I use Load?” and the second is “How can I get the

foreign key value of a navigation property?” Thankfully, Microsoft solved the latter

issue by introducing foreign key support in .NET 4. However, if you are not using

foreign keys in your model, it’s a handy trick to have up your sleeve.

Now that you have learned so much about relationships in the Entity Framework, you

will be able to understand the solutions to both of these FAQs.

The first is solved with a little-known method called CreateSourceQuery. The second is

solved by digging down into the EntityReference to get at its properties. Here is how

to perform both tricks.

Using CreateSourceQuery to Enhance Deferred Loading

Not only can you attach an entity to an IRelatedEnd, but you can also attach an IEnumerable when you are calling EntityCollection.Attach. An EntityCollection is not

an IEnumerable, which is why you can’t just attach another EntityCollection. But if

you want to attach a number of entities at once, you can wrap them in something as

simple as a list or the results of another query.

Additionally, you can use this as an alternative to EntityCollection.Load because it will

give you some flexibility regarding what you are loading. You can use CreateSource

Query to create queries on the fly for an Attach method, though you’ll use it a bit dif-

ferently for EntityCollection.Attach and EntityReference.Attach.

The most efficient way to create an IEnumerable for attaching or loading entities into

an EntityCollection is to use the CreateSourceQuery method. Like the Load method,

CreateSourceQuery will take care of the query creation and execution for you, leveraging

the existing ObjectContext.

As an example, if you have a customer in the ObjectContext and you want to get that

customer’s reservations, you could call the following:

myCust.Reservations.Load()

This would load all of the reservations for that customer.

Learning a Few Last Tricks to Make You a Relationship Pro | 551

Download from Library of Wow! eBook <www.wowebook.com>

However, if you want to filter those reservations, you can use CreateSourceQuery in-

stead, as shown in the following code:

var customer=context.Contacts.OfType<Customer>().First();

var sourceQuery = customer.Reservations.CreateSourceQuery()

.Where(r => r.ReservationDate > new DateTime(2008, 1, 1));

customer.Reservations.Attach(sourceQuery);

The query will execute when the Attach method is called. Now only the subset of reservations for that customer will be retrieved from the database and materialized as

objects.

You can also use CreateSourceQuery to filter on types. In the following code, Attach is

being used with an EntityReference, which will not take IQueryable. Instead, you need

to pass in an object, which you can get using the FirstOrDefault query method. Since

Attach will throw an exception if you attempt to pass in a null, you need to test for null before calling Attach:

var addresses = context.Addresses.Take(5);

foreach (var a in addresses)

{ var sq = a.ContactReference.CreateSourceQuery()

.OfType<Customer>().FirstOrDefault();

if (sq != null)

a.ContactReference.Attach(sq);

}

With this code, only customers will be loaded.

Watch those resources. Just like Load, the preceding query will be run

whether the contact is a customer or not, so you may end up with a lot

of wasted trips to the database. Consider your data, your resources, and

your application’s needs. In some scenarios, you may find yourself bet-

ter off making one big query for customers and not doing this explicit

lazy loading.

Getting a Foreign Key Value in an Independent Association

With models created in Visual Studio 2008 or new models that do not use foreign keys,

you have only the navigation property to rely on to get to the foreign key value. Because

you can traverse relationships in the EDM without having to perform JOINs, the need

for foreign keys is greatly reduced. However, at times you may want to have access to

a foreign key value such as Address.ContactID.

Although the value is not exposed directly, if you have the entity or the

EntityReference, you can get to that value. For example, if the Address.Contact prop-

erty is populated, you can simply request Address.Contact.ContactID.

If the ContactReference property is populated, you could drill into the EntityKey and

extract the value. Don’t forget that an EntityKey is composed of a collection of key/

value pairs. Although a Contact entity may have only one key property (ContactID), in

552 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

plenty of cases multiple properties are combined to make an EntityKey, just as you can

use multiple fields in a database table to create a primary key.

Example 19-12 shows how to retrieve the ContactID from an Address entity.

 Example 19-12. Retrieving the ContactID from an Address entity

var contactId=address.ContactReference.EntityKey.EntityKeyValues

.Where(k=> k.Key == "ContactID")

You could encapsulate this logic in the Address’s partial class, providing a ContactID

property.

You can find examples of this in the previous edition of this book, as

well as in my August 2008 blog post “More on Foreign Keys in EF”

(http://thedatafarm.com/blog/data-access/more-on-foreign-keys-in-ef).

An extension method that can return a foreign key value for any EntityReference would

be handy here. A simple approach requires that the developer knows about the

EntityReference, and this particular method will presumptuously return the value of

the first key, as shown in Example 19-13.

 Example 19-13. Returning the foreign key value from an EntityReference property

public static class extension

{ public static int ForeignKey(this EntityReference entRef)

{

return (int)entRef.EntityKey.EntityKeyValues[0].Value

}

}

Now you can call the extension method like so:

address.ContactReference.ForeignKey()

Summary

Relationships are central to the EDM and to how the Entity Framework functions.

There are a lot of subtleties to understand, and some rules are critical. Having foreign

keys available as of .NET 4 removes a lot of pain, but there are still behaviors to be

aware of.

EntityObject and dynamic proxies for entities will automate much of the relationship

management and two-way fix-up for you.

The most important lesson is that you need to be watchful of how entity state is affected

by relationships. As you saw in Chapters 17 and 18, you can use the new Change State and ChangeObjectState methods to remedy this impact.

Summary | 553

Download from Library of Wow! eBook <www.wowebook.com>

You will continue to encounter complexities in your code where relationships are involved—unexpected rules regarding attaching entities to the context or other entities,

unexpected changes to state when relating entities, and having the onus of constraint

checking put on your code even though constraints are defined in the model. Having

this deep understanding of how relationships work and how they relate to the rest of

the Entity Framework means you have a lot of problem-solving tools at your disposal.

We will continue to cover relationships, and how to solve other challenges that occur

in various scenarios, throughout the remainder of the book.

554 | Chapter 19: Working with Relationships and Associations

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 20

Real World Apps: Connections,

Transactions, Performance, and More

By now, you must be wondering how the Entity Framework addresses the everyday

concerns of software developers who must build real-world applications. How do you

control connections? Is there any connection pooling? Are database calls transactional?

What about security? How’s the performance? This chapter will address these and many of the additional questions developers ask after learning the basics of the Entity

Framework.

You’ll learn more about working with entity connections and the database connections

that they create for you, and how to explicitly open and control those connections,

even when interleaving read and write operations to the database. You’ll also learn how

transactions work by default, as well as how to replace the default database transactions

that Entity Framework uses with .NET’s TransactionScope. For the security-minded,

I’ll show you where you should be taking extra cautions and where you might be able

to worry a little less. You’ll find a slew of ways you can improve performance in Entity

Framework, as well as the results of some performance comparisons I’ve done. Finally,

you’ll get to take a look at how to use Entity Framework in a few multithreading scenarios.

Entity Framework and Connections

A benefit of using the Entity Framework is that it takes care of writing the code to set

up a database connection. Given a connection string typically defined in the

EntityConnection defined in a .config file, the Entity Framework will automatically set up, open, and close the database connection for you. Compared to typical ADO.NET

code, which requires you to instantiate, define, and in many cases explicitly open a

connection; define, instantiate, and execute a command; and then explicitly close the

connection, letting the ObjectContext handle all of this in the background is certainly

convenient. But sometimes, as you’ll see shortly, you’ll want more control over how

555

Download from Library of Wow! eBook <www.wowebook.com>

and when connections are being made. To be able to do that, you first need to under-

stand how EntityConnection and DbConnection work together so that you can force

them to work the way you want when their default behavior doesn’t meet your needs.

Overriding EntityConnection Defaults

An EntityConnection is not a connection to a database. And EntityConnection does

include a database connection, but additionally it controls access to the model’s metadata as well as access to the specific ADO.NET provider used by the application.

This can be a big point of confusion. When you explicitly or implicitly open and close

an EntityConnection, it is the EntityConnection that in turn opens and closes a con-

nection to the database. Whether you use EntityClient directly or you let Object Serv-

ices execute your commands and queries for you, the EntityConnection is just a path

to the database connection.

An EntityConnection consists of four parts:

 Metadata

The pointer to the metadata files (CSDL, MSL, and SSDL).

 Provider connection

The database connection string.

 Provider name

The namespace of the database provider. This is the API that you will use to allow

Entity Framework to communicate with your database—for example,

System.Data.SqlClient to work with SQL Server.

 Name

The name of the connection string.

You can define the EntityConnection declaratively in the .config file. Example 20-1 lists the name of the connection string and then the EntityConnection string itself. Within

the connection string, you can see the metadata parameter, the provider connection

parameter, and the provider name.

See Microsoft’s ADO.NET Providers page (http://msdn.microsoft.com/

 en-us/data/dd363565.aspx) for an updated list of database provider APIs that support Entity Framework.

When the EDM Wizard builds this string for you, it replaces the quotes around the

provider connection string with an escaped quote ("), which is the XML encoding

for a quote. For readability, you can replace the escaped quotes with single quotes, as

in Example 20-1.

556 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

 Example 20-1. The EntityConnection string in an app.config or web.config file

<connectionStrings>

<add

name="BAEntities"

connectionString=

"metadata=res://*/BAModel.csdl|res://*/BAModel.ssdl|res://*/BAModel.msl;

provider=System.Data.SqlClient;

provider connection string='Data Source=.;

Initial Catalog=BreakAway;

Integrated Security=True;

MultipleActiveResultSets=True'"

providerName="System.Data.EntityClient"

/>

</connectionStrings>

By default, an ObjectContext will use the connection string from the .config file that matches the EntityContainer name within your model. You have taken advantage of

this in almost every code sample so far in the book, which is why you have not yet had

to work explicitly with connection strings.

The database connection string that is embedded into the EntityConnection string is

passed along to the database provider that eventually makes the actual connection to

the database.

Moving from a Development Database to a Production Database

When you’re moving from a development environment to a production environment,

pointing to a new database can be as simple as changing the provider connection string

parameter of the appropriate connection string in the .config file. You can also programmatically change the database connection string or modify connection strings on

the fly.

Working with Connection Strings Programmatically

EntityConnection is a class within the EntityClient namespace. In Chapter 3, you worked directly with this class when you used EntityClient for your queries. In the

following code, the name of the connection string in the .config file is passed as a parameter (along with the parameter key name=) in the EntityConnection constructor. The

connection in this case will be created from the details provided in the connection

string.

var conn = new EntityConnection("name=BAEntities");

You can use the preceding method to explicitly select a particular connection string

from the .config file when instantiating an ObjectContext, as shown in the code that follows:

var context = new BAEntities("name=MyOtherConnectionString");

Entity Framework and Connections | 557

Download from Library of Wow! eBook <www.wowebook.com>

Yes, it’s true. My development computer name is “honker64.” Some-

times I do hardcode that into my database connection strings, although

more often I use the “.” shortcut.

If you inspect the EntityConnection in the debugger after it has been instantiated, you’ll see that although the database connection object has been pulled into the

StoreConnection property, the other parameters of the EntityConnectionString are no-

where to be found, as shown in Figure 20-1.

 Figure 20-1. The EntityConnection object with no properties for the metadata or provider namespace attributes

The metadata and provider namespace parameters are not displayed as properties of

the EntityConnection class, and they won’t be accessed until the point in the query

pipeline when EntityClient needs to read metadata, and then again to determine which

provider (e.g., System.Data.SqlClient) to pass the request to for further processing.

If you do want to read the full connection string from the configuration file, you can

use one of the .NET methods, such as System.Configuration.ConfigurationManager.

Constructing connection strings on the fly with the EntityConnectionStringBuilder class Frequently, developers want to avoid embedding the connection string in the .config

file. Or they want more flexibility in pointing to databases or metadata that resides in

different locations.

You can programmatically construct an EntityConnectionString with the

EntityConnectionStringBuilder, which inherits from DbConnectionStringBuilder. For

example, you might want to store the location of your metadata files (.csdl, .msl, .ssdl) in a resource file and wish to programmatically change the EntityConnectionString to

point to this location. Or you may want to programmatically change the ADO.NET

DataProvider (e.g., System.Data.SqlClient) on the fly.

558 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

The code in Example 20-2 reads the connection string from the configuration file into a string, creates an EntityConnectionStringBuilder from that string, modifies the Metadata property, instantiates an ObjectContext with the newly configured

EntityConnectionString, and then executes a query against that context.

For this example, a string for the path to the metadata files has been

stored in the project’s settings as MetadataFilePath. Its value is:

F:\Models\BAModel.csdl|F:\Models\BAModel.ssdl|F:\Models\BAModel.msl

The files were created by setting the model’s Metadata Artifact Process-

ing property to Copy to Output Directory and then copying the output

files into the C:\Models folder.

 Example 20-2. Programmatically modifying an EntityConnectionString

var connectionString = ConfigurationManager

.ConnectionStrings["BAEntities"].ConnectionString;

var connectionStringBuilder= new EntityConnectionStringBuilder(connectionString);

connectionStringBuilder.Metadata = Properties.Settings.Default.MetadataFilePath;

var context = new BAEntities(connectionStringBuilder.ConnectionString);

var query =

from c in context.Contacts

where c.Addresses.Any(a => a.City == "Seattle")

select c;

var contacts = query.ToList();

The ConfigurationManager class can be tricky to find. You need to ref-

erence the System.Configuration namespace in your project; then you

can get to System.Configuration.ConfigurationManager.

Unfortunately, the Metadata parameter is a string, so there’s no strongly typed way to

construct it. Instead, you can use one of the common DbConnectionStringBuilder

classes, such as SqlConnectionStringBuilder, to programmatically construct the pro-

vider connection string (StoreConnection) of the EntityConnectionString.

Choosing and loading a model programmatically. One

of

the

overloads

for

the

EntityConnection constructor allows you to pass in a model that is in memory along

with a database connection. This allows you to work with models that may not be

stored in a particular file. For example, if you were to define different models and store those in a database, at runtime the code would determine which model to work with.

You could then load the model’s XML from the database into memory—for example,

into an XmlReader—and then create an EntityConnection with the XmlReader. Once this

connection has been instantiated, you can use it with an ObjectContext to query that

model.

Entity Framework and Connections | 559

Download from Library of Wow! eBook <www.wowebook.com>

The code-first design that is provided in the Entity Framework Feature

CTP takes advantage of using in-memory metadata. This will allow you

to use Entity Framework without having to create a model in advance.

We’ll take a look at code-first design in Chapter 25.

More is involved in this scenario because you will also need to have code that can

determine what is in the model at runtime. The Entity Framework’s

MetadataWorkspace allows you to do this, and as such create a completely dynamic application. See Chapter 21 for more about MetadataWorkspace.

Opening and Closing Connections

If they have not yet been loaded, EntityConnection.Open loads the model’s metadata

files (.csdl, .msl, and .ssdl) into the application memory. This method calls the database provider’s Connection.Open as well. EntityConnection.Close will, in turn, call the database connection’s close method.

When an ObjectContext executes a query internally it creates an EntityConnection and

an EntityCommand, and then executes the command. As soon as the data has been con-

sumed, whether you call a method such as ToList to read all of the data at once or you

iterate through the data and come to the end, the context will close the

EntityConnection, which in turn closes the database connection.

Opening and closing connections to the database is something that many developers

fret about because we want to make the most efficient use of available resources. You

may want to control when the open and close happen so that you can control how

resources are used.

Understanding the default connection usage

When working with EntityClient directly, you need to explicitly create and open an

EntityConnection before you can have your query executed.

When working with the ObjectContext, the default behavior is that the ObjectContext

opens and closes connections as needed and does so as efficiently as possible. It is

possible, however, to override that behavior and explicitly control when

EntityConnection is opened and closed.

You have a few options here. You can manually open the connection and let it be closed

implicitly when the context is disposed, or you can manually open it and manually

close it.

One of the advantages of opening and closing the connection yourself is that you can

prevent the connection from being opened and closed numerous times when you are

making a bunch of rapid-fire queries or performing a query followed by deferred loading.

560 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

You can see the difference in the following examples.

Default behavior 1: Many calls on a single connection. Example 20-3 performs a single query, iterates through the results, and calls Load and EntityCollection for some of the results.

Each call to Load hits the database on the same connection because the context hasn’t

finished reading through the query results.

 Example 20-3. The initial query and subsequent loads executed on the same connection

using (var context = new BAEntities())

{ var query =

from c in context.Contacts

where c.FirstName == "Jose"

select c;

foreach (var contact in query

.Where(contact => contact.AddDate <

new System.DateTime(2007, 1, 1)))

{

contact.Addresses.Load();

}

}

Only a single connection is used in this case because a connection is not closed until

the results have been consumed. Therefore, because you are iterating through the re-

sultant contacts, the connection remains open until you have reached the first contact.

In the meantime, the additional calls to the database to load the addresses use that same

connection. The MultipleActiveResultSets setting in the connection string allows

multiple streams to be read on the same connection.

MultipleActiveResultSets, also known as MARS, was introduced in

ADO.NET 2.0 and is specific to SQL Server. Unlike many other data-

bases, SQL Server does not support streaming multiple result sets on a

single connection by default. But MARS allows it to do this.

Default behavior 2: Multiple connections. The set of queries in Example 20-4 opens and closes a connection twice. It closes the first connection when contacts.ToList is called, because this forces the entire set of results to be consumed at once. Recall that a connec-

tion is disposed when its results have been fully consumed. Therefore, a new connection

needs to be created for the second query.

 Example 20-4. Two queries, each getting its own connection

using (var context = new BAEntities())

{ var contacts = (from c in context.Contacts

where c.FirstName == "Jose"

select c).ToList();

var allCustomers = context.Contacts.OfType<Customer>().ToList();

}

Entity Framework and Connections | 561

Download from Library of Wow! eBook <www.wowebook.com>

Forcing an explicit connection

To change the default behavior that happens in Example 20-4., you can force the connection to be reused by manually opening the connection, as shown in Example 20-5.

Then you can either explicitly close it or let the context automatically close it when the context goes out of scope, or let the garbage collector dispose it when the time comes.

 Example 20-5. Forcing queries to use the same connection

using (var context = new BAEntities())

{ context.Connection.Open();

var contacts = (from c in context.Contacts

where c.FirstName == "Jose"

select c).ToList();

var allCustomers = context.Contacts.OfType<Customer>().ToList();

context.Connection.Close();

}

Getting the Store Connection from EntityConnection

Although ObjectContext.Connection returns the EntityConnection, you can

drill deeper, as you saw in Figure 20-1, and get the actual database connection using EntityConnection’s StoreConnection property.

If for some reason you want to have very granular control over the database

connection—for example, by specifying a longer ConnectionTimeout to accommodate

a slow network—you can do so by working directly with the StoreConnection.

Disposing Connections

As with any data access performed in .NET, it’s important that you dispose database

connections. A database connection is not a managed .NET resource and the garbage

collector will not clean it up. Lingering database connections are a common cause of

excessive memory consumption. Again, when you rely on the Entity Framework’s de-

fault behavior, the database connection will be properly disposed. Disposing an

ObjectContext automatically closes the EntityConnection and will close and dispose the

database connection as well. You can either explicitly dispose the ObjectContext or wait

for the garbage collector to do the job. However, in the latter scenario, that means the

database connection is still hanging around until that time.

In common usage scenarios with the Entity Framework, the worst offense (holding a

database connection open) should not be an issue, because as you have seen, the con-

nection will be closed automatically. But if one of the triggers for closing a database

connection has not been executed—completing the consumption of query results,

calling EntityConnection.Close, or disposing the ObjectContext—you could unwit-

tingly be consuming extra resources.

562 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

ObjectContext’s Dispose method calls EntityConnection.Dispose if ObjectContext cre-

ated the connection. In turn, EntityConnection.Dispose will call the Dispose method

on the StoreConnection. The code behind ObjectContext.Dispose is shown in Exam-

ple 20-6 so that you can see just how it works.

 Example 20-6. The ObjectContext.Dispose method

protected virtual void Dispose(bool disposing)

{ if (disposing)

{

if (this._createdConnection && (this._connection != null))

{

this._connection.Dispose();

}

this._connection = null;

this._adapter = null;

}

}

An age-old debate in ADO.NET concerns whether you should close or

dispose database connections. In fact, DbConnection.Close calls

Dispose and DbConnection.Dispose calls Close. The methods make these

calls using logic that avoids an infinite loop. Close takes care of the crit-

ical connection resources, but the connection object itself is still there.

So, if you are using the defaults with LINQ to Entities or an ObjectQuery, the connection

will be disposed. If you want to be sure the connection is disposed right away, you need

to either explicitly make that call or be sure the ObjectContext is explicitly disposed. If you have created the EntityConnection explicitly, you have to either dispose it explicitly or wait for the garbage collector to dispose it; again, this in turn will dispose the database connection.

Pooling Connections

Spinning up a database connection is expensive in terms of resources. When a con-

nection is closed, it can be left in memory to be reused the next time a connection is

required, eliminating the cost of creating a new connection. This is called connection pooling.

Developers often ask whether the Entity Framework does connection pooling. Because

connection pooling is controlled by the database provider, the Entity Framework does

not explicitly impact or interact with how connection pooling works. Instead, it relies

on the provider’s connection pooling. For more information on connection pooling in

ADO.NET, a good starting point is the “SQL Server Connection Pooling (ADO.NET)”

topic in the MSDN documentation.

Entity Framework and Connections | 563

Download from Library of Wow! eBook <www.wowebook.com>

Fine-Tuning Transactions

Another question that is frequently asked about the Entity Framework is whether it

uses transactions. The simple answer is “yes,” but, naturally, there’s more to this answer.

A transaction defines a unit of work that can contain a number of actions, such as database updates. When all of the actions have completed successfully, the transaction

is committed. If any of the actions fail, the transaction is “rolled back,” which causes

all of the actions to roll back. Therefore, if you have actions that depend on each other

and one action fails, you don’t have to manually undo those that have already occurred.

Resources that provide the capability to process transactions, such as databases, can

have their transactions be enlisted—in other words, called into action—by .NET.

Whether you have a number of updates on a single database connection within a single

transaction, or you have a few of them combined with interactions on another database

and possibly combined with work in message queuing, you can coordinate all of those

individual transaction resource managers in a single transaction.

When performing a SaveChanges operation, the Entity Framework implicitly wraps all

of the commands in a database transaction such as SqlTransaction; however, you can

take control of transactions as well.

Why Use Your Own Transaction?

By default, Entity Framework uses DbTransaction (the base class for provider-based

transactions such as SqlTransaction and OracleTransaction) to take care of operations

on a single instance of a database connection.

There is another type of transaction in .NET. The System.Transactions.Transaction

Scope class can coordinate operations across a variety of processes that use resource

managers. Therefore, within a single transaction you could make calls to a database,

to the Message Queue (MSMQ), or even to another database using ADO.NET. If one

of those fails, System.Transaction will allow all of them to be rolled back together.

System.Transaction leverages the Windows Distributed Transaction Coordinator

(DTC) to make this happen, albeit with more overhead than a simple database trans-

action. But what is great about System.Transaction is that it will decide whether your

actions need only the individual transaction (such as SqlTransaction), or whether they

need to escalate to a DTC so that multiple transactions can be orchestrated. In that

way, you don’t needlessly waste resources with the DTC, but you also don’t have to

explicitly control it.

It’s important to understand that the Entity Framework can only lever-

age transactions with database interaction. You cannot use transactions

to control and roll back modifications to the ObjectContext itself—not

even the creation of entities when performing a query.

564 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

Understanding Implicit Entity Framework Transactions

The database constraint between Contact and Address in the BreakAway database

makes a good test case for demonstrating the implicit transactions in the Entity Frame-

work. An address cannot exist without a contact, yet no cascading delete is defined in

the database to delete related addresses when a contact is deleted. Therefore, an attempt

to delete a Contact entity without deleting its related addresses in code will cause the

database to throw an error when SaveChanges is called. Let’s take advantage of that and

write some code to see the transaction in action.

The code in Example 20-7 queries for a particular contact, deletes it from the ObjectContext, and then calls SaveChanges. To add a twist, the code also creates a new

payment for a reservation. Remember that when you attach the payment to the reser-

vation in the context, SaveChanges automatically pulls the payment into the context

and inserts it into the database.

 Example 20-7. An implicit transaction that will roll back

using (var context = new BAEntities())

{ var contact = context.Contacts.Where(c => c.ContactID == 5)

.FirstOrDefault();

context.DeleteObject(contact);

var reservation = context.Reservations.FirstOrDefault;

var payment = new Payment();

payment.Amount = "500";

payment.PaymentDate = System.DateTime.Now;

payment.Reservation = reservation;

context.SaveChanges();

}

The attempt to delete the contact from the database will fail because of the referential

constraint. Figure 20-2, a screenshot from SQL Profiler, shows what happens when SaveChanges is called.

 Figure 20-2. The Entity Framework automatically forcing a rollback if any of the commands to the database fail

A transaction was created, and because the delete failed, the transaction is rolled back

and the insert for the payment is not even bothered with.

On the client side, an exception is thrown containing the error from the database, which

offers a very clear description of the problem:

Fine-Tuning Transactions | 565

Download from Library of Wow! eBook <www.wowebook.com>

"The DELETE statement conflicted with the REFERENCE constraint

"FK_Address_Contact". The conflict occurred in database "BreakAway", table

"dbo.Address", column 'ContactID'. The statement has been terminated."

This highlights a good reason to be sure to include exception handling around

SaveChanges in cases where any constraints in the database are not constrained in ad-

vance in the model or in the application. Exception handling will be the focus of the

next chapter.

In this example, SaveChanges was attempting to execute two database commands—the

delete and the update. Even if SaveChanges created only one command, it would still

be wrapped in a database transaction.

Where did the transaction come from? A DbTransaction is created within

the SaveChanges method. If no exceptions are thrown during the actual

command execution, DbTransaction.Commit is called.

Understanding SaveOptions and AcceptAllChanges in a transaction

ObjectContext.AcceptAllChanges updates the object state of all of the entities being change-tracked. This will set the OriginalValues to whatever the current values are and

it will change the object’s EntityState to Unchanged.

During the SaveChanges process and after the default transaction has been committed,

AcceptAllChanges is automatically called, causing the ObjectContext to be up-to-date

and its entities to match the data in the database. You may recall that DetectChanges is

also called to accommodate for POCO entities that do not notify the context of their

changes.

As you learned in Chapter 11, you can override the behavior by passing in a SaveOptions enum when you call SaveChanges. This is especially useful when you’re

using your own transaction, since you may want to retry the save or just call Accept

AllChanges even when the transaction did not complete. Calling AcceptAllChanges in

this case would make the in-memory objects out of sync with the database. So, you

should do this only if you have specific logic that behaves accordingly.

If you are overriding the default transaction that is used inside the SaveChanges method,

you will most likely want to defer the AcceptAllChanges call until your own transaction

has completed, as you will see in the next example.

Specifying Your Own Read/Write Transactions

Just as you can override the default behavior with connections, you can also override

the default behavior of transactions. If you explicitly create your own transaction, SaveChanges will not create a DbTransaction. But when overriding the default transaction, you won’t create a System.Common.DbTransaction. Instead, you need to use a System.Transaction.TransactionScope object.

566 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

You can use a transaction for read and write activities in the database, which means

that this will work with both ObjectContext and EntityClient.

Remember that if you are using LINQ to Entities and you want to take

advantage of ObjectQuery behavior, you can cast the LINQ to Entities

query to an ObjectQuery, as you learned in Chapter 10.

Example 20-8 uses an explicit transaction to save a new customer to a database and, if the call to SaveChanges is successful, to add the customer’s name to a completely separate database. The application has references to two different projects with EDMs. If

something goes wrong with either database update, the TransactionScope will not be

completed and both updates will be rolled back.

You’ll need to add a reference in your project to System.Transactions

and add a C# using or VB Imports statement for this namespace at the

beginning of your code file.

 Example 20-8. Creating your own System.Transaction for SaveChanges

using (var context = new BAEntities())

{ var customer = new Customer

{ FirstName = "George",

LastName = "Jetson",

Notes = "A real space cadet",

BirthDate = new DateTime(1962, 1, 1)

};

context.Contacts.AddObject(customer);

using (var transactionScope = new TransactionScope())

{

try

{

context.SaveChanges(SaveOptions.None);

var altContext = new AltDbEntities();

var contact = new Contact

{Name = customer.LastName.Trim() + ", " + customer.FirstName};

altContext.Contacts.AddObject(contact);

altContext.SaveChanges();

transactionScope.Complete();

context.AcceptAllChanges();

altContext.AcceptAllChanges();

}

catch Exception ex

{

//TODO: handle database or Entity Framework exceptions

throw(ex); //TODO: remove this after proper handling is added

}

Fine-Tuning Transactions | 567

Download from Library of Wow! eBook <www.wowebook.com>

}

}

You can watch the transaction being promoted from a local transaction to a

distributed transaction in a few ways. For example, in SQL Profiler, you can see that

System.Transaction starts out by using a simple database transaction, but as soon as it

hits the call to SaveChanges to a different database, the transaction is promoted (see

Figure 20-3).

 Figure 20-3. SQL Profiler showing that a database transaction is used at first, but is then promoted when

 another

 database

 connection

 is

 made

 within

 the

 scope

 of

 a

 System.Transactions.TransactionScope

You can also add a variety of performance counters into the Windows Performance

Monitor that tracks the DTC, and you can see whether a transaction was created, completed, or even rolled back.

If you are testing on a development machine, you may not have the DTC

service started. When the code reaches the second SaveChanges

and .NET attempts to promote the transaction to use the DTC, if the

DTC is not started you will receive an exception telling you that the

DTC has not started on the system. One of the ways you can start this

service is through the Computer Management console in Windows.

The last way you can prove this is working is to force one of the updates to fail. You

can see the rollback in the Profiler, or even just look in the database to verify that the changes have not been made.

568 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

The MSDN documentation has a nice example of combining

SaveChanges with a message queue within a TransactionScope. You can

find this example at http://msdn.microsoft.com/en-us/library/

 bb738523(VS.100).aspx.

Specifying Your Own Read-Only Transactions

It is also possible to use a transaction on a read-only query using System.Transaction

or EntityClient.EntityTransaction. An EntityTransaction is merely a wrapper for the

database provider’s transaction, and calls EntityConnection.BeginTransaction to create

it, as shown in Example 20-9.

 Example 20-9. Using a transaction on a read to control whether the read will read data that is in the process of being modified in the database

using (var connection = new EntityConnection("name=BAEntities"))

{ connection.Open();

EntityTransaction transaction =

connection.BeginTransaction(IsolationLevel.ReadUncommitted);

var command = connection.CreateCommand();

command.CommandText = "SELECT c.contactID FROM BAEntities.Contacts AS c";

var dataReader = command.ExecuteReader

(CommandBehavior.SequentialAccess | CommandBehavior.CloseConnection);

while (dataReader.Read())

{

//do something with the data;

}

transaction.Commit();

}

At first glance, it may not make sense to have a transaction on a read, since you can’t

roll back a read. The purpose of performing a read within a transaction is to control

how to read data in the database that may be involved in another transaction at the

same time. Notice the IsolationLevel.ReadUncommitted parameter being passed in.

IsolationLevel lets you determine how your query should read data that some other

person or process is currently updating. The ReadUncommitted enum says that it is OK

for this query to read data that is being modified, even if it has not yet been committed

in the other transaction. The other possibilities are Serializable, RepeatableRead, ReadCommitted, Snapshot, Chaos, and Unspecified. IsolationLevel support is dependent

on which database you are using and is not specific to Entity Framework. You can check

the docs to learn more about these IsolationLevels.

Fine-Tuning Transactions | 569

Download from Library of Wow! eBook <www.wowebook.com>

Because the operation in Example 20-9 is a read operation, you could

get away without calling transaction.Commit because of the

IsolationLevel that is specified—ReadUncommitted. Additionally, if you

were not using pooled connections, it would also be OK to neglect the

Commit. However, there’s no harm in calling it, and it’s simply a good

idea in general to always call Commit. If you were using different

IsolationLevels in that transaction and didn’t call Commit (because you

were only doing a read anyway), you could actually get undesirable

behavior.

Although you can use EntityTransaction directly, it is recommended that you use System.Transaction.Transaction or TransactionScope, where you can also set the

IsolationLevel. For example, you could wrap the query (EntityClient, LINQ to En-

tities, or ObjectQuery) within a TransactionScope, just as in the previous example, which

used TransactionScope for SaveChanges.

Distributed transactions are more expensive to process, and often the

events that cause a transaction to be promoted do not really require the

extra cost of the DTC. Improvements were made in SqlClient so that

transactions are escalated more wisely when using SQL Server 2008.

Prior to SQL Server 2008, it helps to explicitly open the connection after

creating the transaction. To read more about this, see the ADO.NET

Team blog post, “Extending Lightweight Transactions in SqlClient,” at

 http://blogs.msdn.com/adonet/archive/2008/03/26/extending-light

 weight-transactions-in-sqlclient.aspx.

Rolling Back Transactions

People often ask about the ability to roll back changes to entities in the context. Un-

fortunately, Object Services does not have a mechanism to achieve this. If you want to

roll all the way back to the server values, you can use ObjectContext.Refresh to reset

specific entities or a collection of entities, but you cannot do a thorough refresh of

everything in the context. You’ll learn more about refreshing in Chapter 23. Alterna-

tively, you can dispose the context, create a new one, and requery the data. But still,

this is not the same as rolling back to a previous state of the entities; all you’re doing is getting fresh data from the store.

If you want to persist the state of your entities at any given point in time and then restore them into the context, you’ll need a better understanding of the ObjectStateManager,

which we will cover in detail in Chapter 21.

For now, I would recommend taking a good look at a caching provider written by

Jaroslaw Kowalski, a member of the Entity Framework team. You can find the provider

at http://code.msdn.microsoft.com/EFProviderWrappers.

570 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

Understanding Security

Security is an important issue to be concerned with, and it is the subject of frequently

asked questions regarding the Entity Framework, mostly due to database access.

If you were to look at the security topic in the MSDN documentation (see the topic

“Security Considerations [Entity Framework]”), you might find the lengthy list of items

covered to be daunting. But on more careful inspection, you would see that most of

the points are generic to programming or to data access, with only a few items pertaining

specifically to the Entity Framework.

The most frequently asked security topic in the Entity Framework concerns SQL in-

jection. Another security issue of interest is the fact that developers can piggyback onto the Entity Framework’s database connections. I will discuss these two scenarios in this

chapter. Check the aforementioned MSDN topic for additional security topics.

Guarding Against SQL Injection

SQL injection attacks are one of the most worrisome problems for data developers. An

injection occurs when an end user is able to append actual query syntax in data entry

form fields that can damage your data (e.g., delete table x) or access information by

piggybacking on the executed command.

Wikipedia has a handy tutorial on SQL injection if you want to learn

more. See http://en.wikipedia.org/wiki/SQL_injection.

SQL injection can occur when you build queries dynamically in your code. For example:

QueryString="select * from users where username='" & TextBox.Text & "'"

Therefore, it is always recommended that programmers avoid building dynamic quer-

ies. Instead, we use parameterized queries or leverage stored procedures in our data

access code.

Because we have been trained to have an inherent fear of dynamic queries, on the surface

the fact that the Entity Framework (and LINQ to SQL, for that matter) builds queries

for us raises a big red flag.

Taking precautions with dynamic queries

You can relax when using LINQ to Entities (or LINQ to SQL). When you use variables

in your LINQ queries, the store queries that eventually land in your data store for execution are parameterized queries, not dynamic ones. You’ve seen that throughout

this book.

Understanding Security | 571

Download from Library of Wow! eBook <www.wowebook.com>

And of course, you can always use stored procedures, which are the ultimate way to avoid SQL injection attacks, presuming that those procedures themselves don’t allow

for dynamic SQL.

You’ll need to be much more careful with Entity SQL. Entity SQL is broken down

differently than LINQ to Entities, and the queries that result are composed differently.

Let’s look at the difference between a few queries in which it might be possible to inject some debilitating SQL by way of a text box in a data entry form.

Here is a LINQ to Entities query:

from loc in context.Locations where loc.LocationName === textBox.Text

When the text box is populated with Norway, the T-SQL that results is parameterized:

SELECT

[Extent1].[LocationID] AS [LocationID],

[Extent1].[LocationName] AS [LocationName]

FROM [dbo].[Locations] AS [Extent1]

WHERE [Extent1].[LocationName] = @p__linq__1

@p__linq__1='Norway'

Similarly, when the text box contains a' OR 't'='t (a classic injection attack), the native query still puts this “value” into a single parameter, and the injection is unsuccessful:

SELECT

[Extent1].[LocationID] AS [LocationID],

[Extent1].[LocationName] AS [LocationName]

FROM [dbo].[Locations] AS [Extent1]

WHERE [Extent1].[LocationName] = @p__linq__1

@p__linq__1='a'' OR ''t''=''t'

However, the same query in Entity SQL looks like this:

SELECT VALUE loc FROM BreakAwayEntities.Locations AS loc

WHERE loc.LocationName='" & city & "'"

With Norway, the T-SQL is benign:

SELECT

[Extent1].[LocationID] AS [LocationID],

[Extent1].[LocationName] AS [LocationName]

FROM [dbo].[Locations] AS [Extent1]

WHERE [Extent1].[LocationName] = 'Norway'

but the injection succeeds. Here is the T-SQL:

SELECT

[Extent1].[LocationID] AS [LocationID],

[Extent1].[LocationName] AS [LocationName]

FROM [dbo].[Locations] AS [Extent1]

WHERE ([Extent1].[LocationName] = 'a') OR ('t' = 't')

Getting a list of all of the cities is still somewhat benign, but the point is that you have just lost control of your query.

572 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

These types of attacks are not as easy to pull off with Entity SQL as they are when

composing native queries in ADO.NET, because the injection needs to be valid Entity

SQL syntax and valid native SQL syntax at the same time. Therefore, an attack using

this method:

"a' ; SELECT * FROM LOGINS"

or even this one:

"a' UNION ALL (SELECT value log from entities.logins as log)"

will fail because the Entity SQL command text will be invalid in both cases.

Entity SQL injection

Injecting SQL that goes to the store is one problem. What about injecting Entity SQL

into an Entity SQL string? Again, this is possible. Imagine appending a JOIN clause to

your Entity SQL, followed by an Entity SQL expression that selects logins and pass-

words. The user only needs access to your EDM files to know the structure of the model

and to figure out what your queries might look like to append the right string to get at

the data she is looking for.

It may not sound very easy to do, but some people spend a lot of time figuring out how

to crack into our applications, and that is who you need to worry about.

Therefore, as with any other data access that is dependent on user input, you need to

validate all user input before inserting it into your queries; and you need to be very

thoughtful regarding where and when you concatenate strings to build Entity SQL

queries.

Remember that when using ObjectQuery, you can create ObjectParame

ters. And don't forget about the Entity SQL query builder methods,

which provide the safest way to create Entity SQL.

Guarding Against Connection Piggybacks

Although your model might limit what parts of your database a user has access to, it

does make a connection to the database, providing an open door to users who might

not otherwise have access to the database.

As you saw in “Getting the Store Connection from EntityConnection” on page 562, it is possible to get at the database connection through an EntityConnection; therefore,

a rogue developer writing queries against the model could easily execute his own com-

mands by using the existing connection. If the database has not been properly secured,

this could enable him to access data that is not even part of the model.

Consider the code in Example 20-10 where the developer uses the connection from the context to return the employee data from the database.

Understanding Security | 573

Download from Library of Wow! eBook <www.wowebook.com>

 Example 20-10. Using the EntityConnection to make an ADO.NET call to the database using (var context = new BAEntities())

{ var query = context.Contacts.Take(10);

var conn = context.Connection as EntityConnection;

var dbconn = conn.StoreConnection;

dbconn.Open();

var sqlcmd = new SqlCommand("Select * from HR.Employees",

dbconn as SqlConnection);

SqlDataReader dr = sqlcmd.ExecuteReader();

while (dr.Read())

{

Console.WriteLine(dr["SocialSecurityNumber"]);

}

}

Even worse, with the connection string, any type of command against the database can

be executed (as long as the identity has permissions), not just queries.

Although the developer may not necessarily have access to the connection string being

used for the EDM queries—for example, the connection string may be encrypted—he

can use this connection and any of the permissions associated with the login.

This type of abuse is not particular to the Entity Framework, but it’s important to be

aware that the Entity Framework doesn’t prevent it. As with any data access scenario,

applying permissions carefully in your database can help you avoid this situation.

Fine-Tuning Performance

“What about performance?” is another question asked by developers, and is a com-

pletely valid concern.

There’s no question that when you introduce layers into your application, performance

will be impacted. Using ADO.NET to stream data directly from the database into your

hands is certainly going to be faster than having a query interpreted and transformed

and then having the returned data transformed again. And not only does Entity Frame-

work materialize objects, but as you saw in the previous chapter, it does a lot of work

setting up relationships and additional infrastructure so that as you work with the instantiated object, everything “just works.”

When comparing query performance to a DataReader, keep in mind that while you pay

a little extra in performance up front (during query and materialization), you reap a

huge benefit for the rest of the process of working with and then persisting the data

back to the database.

You can do some things to help, and they can be hugely beneficial, but compared to

“classic” ADO.NET queries or even LINQ to SQL, you are definitely paying a price for

the benefits you gain when you use Entity Framework.

574 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

Measuring Query Performance

Following are some tests to give you a feel for the difference in performance (speed)

between the Entity Framework, classic ADO.NET, and LINQ to SQL, because that’s

an important comparison as well.

 Backyard benchmarks is my own term for identifying that these are sim-

ple tests that I conducted on my computer and that do not represent

any official benchmarks from Microsoft or follow any type of official

testing guideline, if any even exists. The numbers are meant only to

provide some relative comparisons between the Entity Framework,

ADO.NET, and LINQ to SQL.

Here are the specs of the computer used for these tests:

• Intel Core 2 Duo CPU, E4600 at 2.4 GHz

• 6 GB of RAM

• Windows 7 Ultimate 64-bit operating system

Each test presents the time it takes to run the following steps 100 times: execute a simple query of the AdventureWorksLT Customer table and create objects from its results. The

tests are designed so that the processes will be comparable. For example, with the DataReader test, the code performs 100 individual queries using a single open connection. In the LINQ to Entities and ObjectContext tests, the sample instantiates a new

context and performs 100 queries on that context. I’ve used MergeOption.Overwrite

Changes to ensure that the objects are materialized with each query to emulate the object

creation in the DataReader test. The fourth test performs the same query using LINQ

to SQL. I am using long-lived contexts for the Entity Framework and LINQ to SQL

queries.

In each test, the loop of 101 queries runs twice. The first time is to “prime the pump”

so that any performance advantages provided by repeated queries are evened out be-

tween the various tests. The second set of 101 tests is used to gather the timings. Then

the first test is removed, leaving 100 results to analyze. In each test, the results are

iterated through completely. The time quoted is not the time it took to perform a single

query. It is the time it took to perform 100 queries, opening and closing the connection

100 times.

Because working with DataReaders is so different from working with

Entity Framework or LINQ to SQL, you’ll never achieve a totally fair

performance comparison, so it’s important that you look at these tests

with an understanding that their purpose is to give you a general idea

of the differences. And keep in mind that there are many ways to impact

the Entity Framework queries, which you’ll see shortly.

Fine-Tuning Performance | 575

Download from Library of Wow! eBook <www.wowebook.com>

Table 20-1 compares the relative times for the different methods of querying. In the following section, I interpret the results as well as list the code used to generate the

results.

 Table 20-1. Comparison of relative times for different methods of querying with Entity Framework queries

Access type

100 queries

Diff from base

DataReader (populate field)

234 ms

−43%

DataReader (populate object)

407 ms

LINQ to Entities (short- running context)

1,044 ms

+156%

LINQ to Entities (long-running context)

972 ms

+139%

Precompiled LINQ to Entities (long-running context)

104 ms

−74%

ObjectQuery (short- running context)

791 ms

+94%

ObjectQuery (long-running context)

102 ms

−75%

LINQ to SQL

415 ms

+ 3%

It makes sense that the DataReader would be the fastest, as it has direct access to the

database. It reads data directly from the database and streams it out to the client ap-

plication. However, to make a fair comparison, the test with the DataReader reads through the results and materializes objects. This is comparable to what happens internally in the other tests.

LINQ to Entities goes through a number of transformations prior to hitting the data-

base, and the returned results need to be materialized along with their relationship

information (when the entity is being tracked), so this requires extra work. Ta-

ble 20-1 shows the difference between querying with a context that is instantiated specifically to run the query, as in websites and services and queries that share a long-running context, as you’ve used in client applications such as Windows Forms and

WPF.

I’ve included the very performant precompiled LINQ to Entities query

measurement, which you will learn about further on in the chapter.

A query written in Entity SQL has one less transformation to go through before hitting

the database, and you can see this in the shortened execution time, but whether you

start with LINQ to Entities or an ObjectQuery, a number of expensive tasks need to be

performed. The object materialization of the results incurs the same cost as using LINQ

to Entities. But there is something else at play here. Notice the long-running context is

only 102 ms. The query compilation is getting a built-in advantage from Entity SQL’s

query plan caching, which you will read about in the next section.

576 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

Finally, LINQ to SQL is added to the mix because it is another Microsoft ORM and it is not uncommon to wonder how it compares to Entity Framework on various levels.

LINQ to SQL maps directly to the database, so the query generation is much less expensive. For the same reason, part of the process of materializing objects is quicker

because there is no mapping to work out. And finally, LINQ to SQL handles relation-

ships much differently than Entity Framework, so much of the expense that you have

in Entity Framework to create the relationship information does not exist.

The code used for these performance tests is shown in Example 20-11.

 Example 20-11. Comparing query performance

private static void DataReaderTest(string connstring)

{ decimal testresults = 0;

var resultList = new List<decimal>();

string cmdText = "select CustomerID, NameStyle, Title, FirstName," +

"MiddleName, LastName,Suffix,CompanyName, " +

"SalesPerson, EmailAddress,Phone,PasswordHash, " +

"PasswordSalt, rowguid, ModifiedDate " +

"FROM SalesLT.Customer";

// start the timer

var sw = new System.Diagnostics.Stopwatch();

for (int i = 0; i < 2; i++)

{

// testresults.Clear();

var sqlCon = new SqlConnection(connstring);

sqlCon.Open();

resultList.Clear();

for (int j = 0; j < 101; j++)

{

sw.Reset();

sw.Start();

var cmd = new SqlCommand(cmdText, sqlCon);

var reader = cmd.ExecuteReader();

while (reader.Read())

{

//var lastItem = reader[14];

var cust = new Customer

{

CustomerID = (int)reader["CustomerID"],

NameStyle = (bool)reader["NameStyle"],

Title = (reader.IsDBNull(2) ? "" : (string)reader["Title"]),

FirstName = (string)reader["FirstName"],

MiddleName =

(reader.IsDBNull(4) ? "" : (string)reader["MiddleName"]),

LastName = (string)reader["LastName"],

Suffix = (reader.IsDBNull(6) ? "" : (string)reader["Suffix"]),

CompanyName = (string)reader["CompanyName"],

SalesPerson = (string)reader["SalesPerson"],

EmailAddress = (string)reader["EmailAddress"],

Phone = (string)reader["Phone"],

Fine-Tuning Performance | 577

Download from Library of Wow! eBook <www.wowebook.com>

 PasswordHash = (string)reader["PasswordHash"], PasswordSalt = (string)reader["PasswordSalt"],

rowguid = (Guid)reader["rowguid"],

ModifiedDate = (DateTime)reader["ModifiedDate"]

};

}

resultList.Add(sw.ElapsedMilliseconds);

reader.Close();

sw.Stop();

}

sqlCon.Close();

}

Console.WriteLine("DataReader query 1:{0}", resultList[0]);

Console.WriteLine("DataReader query 2:{0}", resultList[1]);

Console.WriteLine("DataReader query 3:{0}", resultList[2]);

resultList.RemoveAt(0);

Console.WriteLine("count: {0}", resultList.Count());

Console.WriteLine("Total last 100 queries: {0}", resultList.Sum());

Console.WriteLine("Avg last 100 queries: {0}", resultList.Average());

Console.WriteLine();

}

private static void EF_L2S_Tests(QueryType qType)

{ var sw = new System.Diagnostics.Stopwatch();

var resultList = new List<decimal>();

//do two loops for each query

for (int i = 0; i < 2; i++)

{

resultList = new List<decimal>();

switch (qType)

{

case QueryType.L2E:

ExecuteQueryLoop(new AWEntities(), null, resultList, QueryType.L2E,101);

break;

case QueryType.EntityObject:

ExecuteQueryLoop(new AWEntities(),

null,resultList,QueryType.EntityObject,101);

break;

case QueryType.L2S:

ExecuteQueryLoop(null, new AWL2SDataContext(),

resultList, QueryType.L2S,101);

break;

}

testresults = sw.ElapsedMilliseconds;

}

Console.WriteLine("{0} query 1:{1}", qType.ToString(), resultList[0]);

Console.WriteLine("{0} query 2:{1}", qType.ToString(), resultList[1]);

Console.WriteLine("{0} query 3:{1}", qType.ToString(), resultList[2]);

resultList.RemoveAt(0);

Console.WriteLine("Total last 100 queries: {0}", resultList.Sum());

Console.WriteLine("Avg last 100 queries: {0}", resultList.Average());

578 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

 Console.WriteLine();

}

private static void ExecuteQueryLoop

(AWEntities oContext, AWL2SDataContext dContext,

List<decimal> resultList, QueryType qType, int LoopCount)

{ for (int j = 0; j < LoopCount; j++)

{

var sw = new System.Diagnostics.Stopwatch();

sw.Start();

switch (qType)

{

case QueryType.L2E:

oContext.Customers.MergeOption = MergeOption.OverwriteChanges;

var customers = (from c in oContext.Customers select c).ToList();

break;

case QueryType.EntityObject:

oContext.Customers.MergeOption = MergeOption.OverwriteChanges;

var oqCusts = oContext.CreateQuery<Customer>("Customers").ToList();

break;

case QueryType.L2S:

var l2SCusts = (from c in dContext.L2SCustomers select c).ToList();

break;

}

sw.Stop();

resultList.Add(sw2.ElapsedMilliseconds);

}

}

Measuring Startup Performance

Table 20-2 shows a comparison of LINQ to Entities and ObjectQuery queries. Each is run in its own application; therefore, each will instantiate an ObjectContext and load

the metadata on the first query. In the previous tests, we avoided this expense by pre-

instantiating the ObjectContext and timing queries that used metadata already loaded

into memory.

 Table 20-2. A new set of tests comparing only the EDM queries

Access type

First EDM query in application

LINQ to Entities

2,426 ms

Entity SQL with ObjectQuery

3,114 ms

Why did these queries take so long?

In both queries, a lot of up-front expense occurs in query compilation—getting from

the original query to the native query.

Fine-Tuning Performance | 579

Download from Library of Wow! eBook <www.wowebook.com>

The first is something that happens only once during the lifetime of an application—

loading the EDM metadata into application process memory. Subsequent queries

throughout the application do not have to load the metadata again. Because each of

these tests is the first query in a newly running application instance, each of them incurs the cost of loading the metadata.

Additionally, with LINQ to Entities and ObjectQuery, other operations occur, such as

the creation of ObjectStateEntries for entities and their relationship information. As

objects are being materialized, the context must again read the metadata to map the

streamed data to the appropriate entities and properties. Even without the expense of

creating a context or loading the metadata, the query processing, state management,

and object materialization are investments that you benefit from as you interact with

the resultant data.

Reducing the Cost of Query Compilation

In an early 2008 blog post titled “Exploring the Performance of the ADO.NET Entity

Framework—Part 1” (http://blogs.msdn.com/adonet/archive/2008/02/04/exploring-the

 -performance-of-the-ado-net-entity-framework-part-1.aspx), Brian Dawson of the Entity Framework team breaks down query time by task. In his tests, 56% of the total

time for processing a query is devoted to “view generation.” View generation refers to the process of creating the native command from an Entity SQL ObjectQuery or a call

to SaveChanges. Fifty-six percent!

Here’s a quick refresher on what’s going on during this process. The Entity SQL is

broken down into a command tree comprising Entity SQL operators and functions

with entity names, properties, and relationships. This command tree is sent to the data

provider, which translates the Entity SQL operators and functions to native operators

and functions and uses the EDM to translate the entities and properties to tables and

columns. Because the original query might be too complex for the native query, a series

of simplifications is also performed on the tree. Finally, this newly created command

tree is sent to the database.

This is a lot of work. But it doesn’t necessarily need to happen on the fly at runtime.

Given the queries and the EDM, the native queries can be precompiled. You can take

advantage of query precompilation in two ways: precompiled views and precompiled

LINQ to Entities queries.

Caching for Entity SQL Queries

By default, compiled Entity SQL queries are stored in an application domain cache for

EntityClient queries and ObjectQuery queries as well as ObjectSets. As part of the query

pipeline, the cache will be checked for a matching Entity SQL query (parameters are

taken into account), and if a precompiled version of that query is available, it will be

used.

580 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

ObjectQuery.EnablePlanCaching is the property for enabling or disabling query plan

caching for ObjectQuery queries. You can set the Boolean EntityCommand.EnablePlan

Caching to true or false to enable or disable caching for EntityClient.

Given the previous advice about avoiding SQL injection attacks with

dynamic Entity SQL, Microsoft recommends that you disable query

plan caching if you are building Entity SQL expressions dynamically.

However, as discussed in the security section earlier, the best defense is

to simply avoid building dynamic queries.

The stored queries are case-sensitive, so if you have a query in which you type “select

value c ...” in one method and “SELECT VALUE c ...” in another, they won’t be con-

sidered matching queries, and not only will you lose the benefit of the cached query,

but the size of the cache will increase as a result of extra queries being stored.

Using tests similar to the previous performance tests, you can see the difference in query processing time when caching is enabled or disabled, as shown in the following code

and in Table 20-3:

SELECT VALUE c from AWLTEntities.EFCustomers AS c

 Table 20-3. Comparing average query times for materialized entities versus streamed data Query plan caching state

Enabled

Disabled

Entity SQL with Object Services

1.1 ms

3.23 ms

Entity SQL with EntityClient

4.1 ms

6.38 ms

Again, in this case the time for the cached query is significantly less than the noncached query.

This caching is why the second ObjectQuery in Table 20-1 was so fast. The query was only compiled on the first execution, and on the subsequent 100 queries, the store

query was pulled directly from the cache and no compilation was necessary.

Comparing EntityClient to Object Services

Although the difference between querying with and without the cache may not be surprising, the difference between querying with Object Services and EntityClient might be.

When running the test with a query that returns data of a more complex shape, the

difference shifts, as you can see in the following code and in Table 20-4: SELECT c.CompanyName,c.SalesOrderHeader,

(SELECT VALUE order.SalesOrderDetail

FROM c.SalesOrderHeader AS order)

FROM AWEntities.Customers AS c

Fine-Tuning Performance | 581

Download from Library of Wow! eBook <www.wowebook.com>

 Table 20-4. Average query times for shaped results

Query plan caching state

Enabled

Disabled

Entity SQL with Object Services

21.28 ms

42.51 ms

Entity SQL with EntityClient

17.05 ms

32.15 ms

Now the EntityClient and Object Services queries are more on par—with the

EntityClient being about 15% faster. Because EntityClient does not materialize the

objects, you would expect it to have some advantages. But why is the query itself im-

pacting the difference between the two methods of querying?

Although object materialization takes some time, so does the task of shaping the EntityDataReader and then pushing in the results. In the case of the simple query, object

materialization is very efficient in creating a Customer entity from data that maps exactly to the entity.

With the more complexly shaped data returned by the second query, once the

EntityDataReader is created the cost of pushing the data into that DataReader is a lot

less than the cost of materializing a lot of complexly shaped objects.

Precompiling Views for Performance

The EDM Generator, a command-line tool (EDMGen.exe), allows you to perform many

of the same tasks that the EDM Wizard performs, as well as some others.

The EDM Generator has five mode command-line switches to determine which type of

generation to perform:

/mode:FromSSDLGeneration

Generates CSDL and MSL EDM files from an existing SSDL file

/mode:EntityClassGeneration

Generates classes from a CSDL file

/mode:ValidateArtifacts

Validates an EDM

/mode:ViewGeneration

Precompiles queries from a specified project into a source code file

/mode:FullGeneration

Creates CSDL, MSL, and SSDL files from a database, and generates the object

classes and precompiled queries for each entity and relationship

Additionally, there are numerous other switches to specify metadata filenames, target

projects, whether to use pluralization or foreign keys when generating a model, and

more.

582 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

Try out FullGeneration on a database so that you can see what the out-

put looks like. It’s quick and painless. All you need to pass in is a con-

nection string and the project parameter to give it a name that will be

used for all of the created files:

C:\Program Files\Microsoft Visual Studio 9.0\VC>

edmgen /mode:FullGeneration

/c:"Data Source=127.0.0.1;

Initial Catalog=AdventureWorksLT;

Integrated Security=True"

/p:AWEDMGenTest

You can add other parameters, such as a Language parameter, to create

Visual Basic files.

Here are the files that result:

• AWEDMGenTest.csdl

• AWEDMGenTest.ssdl

• AWEDMGenTest.msl

• AWEDMGenTest.ObjectLayer.cs

• AWEDMGenTest.Views.cs

Pregenerating views for performance

Using the ViewGeneration mode to pregenerate model views impacts the performance

of the very first query run during the application process. Once the first query is exe-

cuted, all of the pregenerated views are loaded into memory and are used by the query

plan caching mechanism described earlier.

The runtime view generation in .NET 4 has seen many improvements over its prede-

cessor. Therefore, the pregenerated views will only give you a real advantage in cases

where your model is very large and has a lot of mappings (e.g., inheritance, table split-

ting, relationships) to deal with.

Pregenerating views in the full generation will create views for each EntitySet and as-

sociation. For example, the Views class for the FullGeneration example in the previous

note will create a view for dbo.Customers that will be used anytime a query is made that

involves customers. FK_SalesOrderHeader_Customer_CustomerID association also has a

view that will be used anytime that association is required. It contains the necessary

joins between the Customer table and the SalesOrderHeader table.

Example 20-12 shows a slice of a generated view file. The method constructs the store command for the Customer EntitySet so that the runtime ObjectContext doesn’t have

to go through this part of the process.

Fine-Tuning Performance | 583

Download from Library of Wow! eBook <www.wowebook.com>

 Example 20-12. Some of the pregenerated view code

viewString.Append(@"

SELECT VALUE -- Constructing Customer

[AWModel.Store.Customer](T1.Customer_CustomerID, T1.Customer_NameStyle,

T1.Customer_Title, T1.Customer_FirstName, T1.Customer_MiddleName,

T1.Customer_LastName, T1.Customer_Suffix, T1.Customer_CompanyName,

T1.Customer_SalesPerson, T1.Customer_EmailAddress, T1.Customer_Phone,

T1.Customer_PasswordHash, T1.Customer_PasswordSalt, T1.Customer_rowguid,

T1.Customer_ModifiedDate)

FROM (

SELECT

T.CustomerID AS Customer_CustomerID,

T.NameStyle AS Customer_NameStyle,

T.Title AS Customer_Title,

T.FirstName AS Customer_FirstName,

T.MiddleName AS Customer_MiddleName,

T.LastName AS Customer_LastName,

T.Suffix AS Customer_Suffix,

T.CompanyName AS Customer_CompanyName,

T.SalesPerson AS Customer_SalesPerson,

T.EmailAddress AS Customer_EmailAddress,

T.Phone AS Customer_Phone,

T.PasswordHash AS Customer_PasswordHash,

T.PasswordSalt AS Customer_PasswordSalt,

T.rowguid AS Customer_rowguid,

T.ModifiedDate AS Customer_ModifiedDate,

True AS _from0

FROM AWEntities.AWCustomers AS T

) AS T1");

QueryViews will not be included in the generated views, and the

 edmgen command-line tool will list a warning to let you know if it en-

countered any QueryViews. The generation will succeed, but will simply

skip generating views for any QueryViews.

Pregenerating views into an existing project

You can also target a project when pregenerating views. However, be aware that edmgen will not pregenerate any queries that are in the project. Only the model’s EntitySets get compiled. The purpose of targeting a project when pregenerating views

is so that the project’s namespace gets used in the generated code.

To generate the views into an existing project, you’ll need to select one of your projects that uses the BreakAway model.

The ViewGeneration option requires .ssdl, .msl, and .csdl files that you don’t currently have because you have been embedding them into the compiled assemblies. So, you’ll

need to go back to the BreakAwayModel project and generate these files:

1. Open the BreakAwayModel project if it’s not already open.

2. Open the EDMX file in the Designer.

584 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

3. Click the background of the model to open the model’s Properties window.

4. Change the Metadata Artifact Processing property to Copy to Output Directory.

5. Save the project. This will create the files.

6. Open the project’s output directory in Windows Explorer.

You can do this directly from the Solution Explorer by right-clicking the project

and choosing Open Folder in Windows Explorer, then navigating to the output

folder.

7. Copy the CSDL, SSDL, and MSL files from the bin folder to another location (e.g., c:\EDMs).

When you change the Metadata Artifact Processing property back to Embed in

Output Assembly, the files will be removed from the output directory.

Now you can generate the view file. Note in Example 20-13 that the quotes around the project are there only because of a space in the file path.

 Example 20-13. Using the EDM Generator command-line tool

C:\Program Files\Microsoft Visual Studio 9.0\VC>

edmgen /mode:ViewGeneration

/inssdl:c:\efmodels\BAModel.ssdl

/incsdl:c:\efModels\BAModel.csdl

/inmsl:c:\efmodels\BAModel.msl

/p: "F:\PEFBookSamples\Chapter20\Chapter20Samples.csproj"

The output code will be C# by default. You can specify VB with the additional switch, /language:VB.

You’ll find the newly generated file in the folder designated in the p (path) parameter.

Be sure to include the file in the project in the Solution Explorer. Again, it contains all the views that are represented in the model files. Now when you run this project, the

runtime will be able to skip the bulk of the query compilation tasks.

At TechEd North America 2010, Diego Vega and Tim Laverty said in

their session that the EF team was working on a T4 template for view pre-generation for a future version of EF.

Precompiling LINQ to Entities Queries for Performance

Although the view generation feature lets you create the native SQL for all of the model’s EntitySets and associations, there’s also a way to precompile the actual queries that

you create in your application and it has a much bigger impact on performance at

runtime. For LINQ to Entities queries, you can explicitly precompile your queries in

code using the CompiledQuery.Compile method.

Fine-Tuning Performance | 585

Download from Library of Wow! eBook <www.wowebook.com>

CompiledQuery.Compile allows you to compile a particular query, even one that takes

parameters, at runtime. Then, anytime you need to use that query, you can point to

the compiled version.

Query compilation is also available in LINQ to SQL, though the syntax

is a bit different.

Compiled queries can make a valuable performance improvement for queries that are

used repeatedly in an application. You will still pay the compilation cost the first time

the query is used, but subsequent uses of the query will avoid that part of the process.

The Entity Framework has a System.Data.Objects.CompiledQuery class, which lets

you precompile a query into a CompiledQuery object and then reuse that object.

CompiledQuery.Compile takes two parameters and a query in the form of a delegate:

Compile(args, ReturnType) (Delegate Query)

The first parameter is args and it is used to pass in any arguments. You’ll want to pass

in an instance of an ObjectContext and then any other variables that are used in the

query. For example, your query may perform filtering on an integer, so you’ll need to

have an integer variable as one of the arguments.

The second parameter is ReturnType—for example, an entity or an IEnumerable of a

particular type. The last, Delegate, will be a lambda expression whose function is a

LINQ to Entities query.

Example 20-14 is an example of a query that might be used a number of times during an application’s lifetime; it finds customers who have gone to a particular adventure

location.

 Example 20-14. A frequently used query that is a good candidate for precompilation

from Customer c in context.Contacts.OfType<Customer>()

where c.Reservations.FirstOrDefault().Trip.Destination.Name==dest

select c

To turn this into a compiled query, you will need a variable to represent the object

context, such as ctx. You will also need a variable for the location name. Construct a

lambda expression that processes these two variables in a LINQ to Entities query, as

shown in Example 20-15. VB examples are included where the syntax differences may be confusing.

586 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

 Example 20-15. A lambda expression of the query to be precompiled

VB

Function(ctx As BAEntities, dest As String) _

From cust In ctx.Contacts.OfType(Of Customer)() _

Where cust.Reservations.FirstOrDefault.Trip.Destination.Name = dest

C#

(BAEntities ctx,string dest) =>

from cust in ctx.Contacts.OfType<Customer>()

where cust.Reservations.FirstOrDefault().Trip.Destination.Name== dest

select cust

This lambda expression is used as a parameter of CompiledQuery.Compile.

Example 20-16 shows the CompiledQuery, which will take a BAEntities object and a string when it’s called, and will return an IQueryable<Customer>. Those are passed into the Compile generic method. Then the lambda expression follows, inside parentheses.

The query passes these parameters into the lambda expression.

 Example 20-16. The compiled LINQ to Entities query

VB

Dim compQuery = CompiledQuery.Compile(Of BAEntities, String,

IQueryable(Of Customer))

(Function(ctx As BAEntities, dest As String) _

From cust In ctx.Contacts.OfType(Of Customer)() _

Where cust.Reservations.FirstOrDefault.Trip.Destination.Name = dest

)

C#

var compQuery = CompiledQuery.Compile<BAEntities, string, IQueryable<Customer>> ((BAEntities ctx, string dest) =>

from Customer c in ctx.Contacts.OfType<Customer>()

where c.Reservations.FirstOrDefault().Trip.Destination.Name == dest

select c);

If you are creating the func as a class-level variable, it is important to

make the variable static (Shared in VB) so that it will remain in memory.

If you use the compiled query in a web application or service where the

variable will get reinstantiated frequently, the query would get recom-

piled each time, causing you to lose the benefit of the precompilation.

By marking the variable static, you can avoid unnecessary recompila-

tion. For more information and an example of how to use the precom-

piled query in this scenario, see my March 2009 blog post titled “Using

Pre-Compiled LINQ to Entities Queries in Web Apps and Services”

(http://thedatafarm.com/blog/data-access/using-pre-compiled-linq-to-en

 tities-queries-in-web-apps-and-services).

Once the CompiledQuery has been created, you can use it anytime you want to use the

query by implementing its Invoke method, as demonstrated in Example 20-17. Because you have a parameter for this query, you can change the value of the parameter anytime

you use the query, which makes the compiled query pretty flexible.

Fine-Tuning Performance | 587

Download from Library of Wow! eBook <www.wowebook.com>

 Example 20-17. Using the compiled LINQ to Entities query

var context = new BAEntities();

var loc = "Malta";

IQueryable<Customer> custs = compQuery.Invoke(context, loc);

var custlist = custs.ToList();

Now you can use the code in Example 20-18 to test the performance of the compiled query. The first query loads the metadata files into the application memory so that the

time for that task is not counted in the first run of the compiled query. You’ll learn

more about metadata files in Chapter 21. Subsequent queries (the example lists only some of them) will not require query compilation and will be faster.

 Example 20-18. A performance test of the compiled query

using (var context = new BAEntities ())

{ var cust = context.Contacts.FirstOrDefault();

}using (var context = new BAEntities ())

{ string destination = "Malta";

var custQuery = compQuery.Invoke(context, destination);

var custlist = custQuery.ToList();

}using (BreakAwayEntities context = new BAEntities ())

{ string destination = "Bulgaria";

var custQuery = compQuery.Invoke(context, destination);

var custlist = custQuery.ToList();

}

Notice that for each timed test, a completely new context is created that also creates a

new connection. The times shown in Table 20-5 are compared to performing the same test without using compiled queries. The times were collected by inserting a

StopWatch object into code in Example 20-18 and capturing the elapsed time.

 Table 20-5. Performance comparisons between compiled and noncompiled LINQ to Entities queries

Query 1

Query 2

Query 3

Using a compiled query

68 ms

6 ms

5 ms

Using a standard query

71 ms

17 ms

32 ms

You can see that once the query has been compiled, query processing takes only a

portion of the time it takes when repeating that particular task without the advantage

of precompilation.

Not every query will benefit from being turned into a precompiled query. If you care

about application performance, you should use a profiler to discover where it makes

sense to apply performance tuning in your applications. Visual Studio 2010 Ultimate

588 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

and Premium versions have built-in performance tools, and there are great third-party

tools as well, such as Red Gate’s ANTS Performance Profiler.

Fine-Tuning Updates for Performance?

Performance concerns with data access generally focus on querying because that is

typically the bulk of the data interaction that an application performs. However, it’s

worth taking a quick look at update performance.

Again, the Entity Framework will need to generate commands and transform the entity

structure into the database structure; thus, compared to working with ADO.NET,

where you would be working directly against the database, there will be a performance

hit.

In talking with one of the folks who focuses on performance for the Data

Programmability team, I learned that the performance for updating data

in the Entity Framework is very impressive when compared to other

technologies. Although that was proof enough for me, I still had to see

the performance benefits for myself!

For the following tests, I modified the previous tests to include updates and inserts,

and because this is much more intensive and time-consuming than just querying data,

there are only 10 iterations of the tests, not 100. Each test queries for the entire set of customers (approximately 450), iterates through those customers, and modifies a single

field in each one. Once those modifications are made, 10 new customers are added.

Finally, the appropriate update method is called (DataAdapter.Update, DataContext.Sub

mitChanges, or ObjectContext.SaveChanges).

To be fair, there are two tests for DataSet. The first uses the default Update, which sends one command at a time to the database. The second leverages UpdateBatch and sets the

batch to 100 commands at a time. The final times represent the average of performing

this entire operation 10 times.

Remember that these tests are meant only to be relative to one another.

I conducted them on my computer, which might not be as tricked out

as the average server. The tests are not meant to indicate the actual

potential of any of the tested technologies’ performance overall.

The results are interesting. The Entity Framework is faster than DataAdapter and LINQ

to SQL, as you can see in Table 20-6.

Fine-Tuning Performance | 589

Download from Library of Wow! eBook <www.wowebook.com>

 Table 20-6. Comparing DataAdapter UpdateBatch to Entity Framework and LINQ to SQL

Method

Average time

DataAdapter with UpdateBatch=1

289 ms

DataAdapter with UpdateBatch=100

233 ms

Entity Framework Object Services

97 ms

LINQ to SQL

987 ms

You can perform updates with “classic ADO.NET” in a variety of ways, and you may

achieve different results relative to the two newer technologies. But this at least gives

you an idea that something very smart is happening under the covers of the Entity

Framework when SaveChanges is called.

If you plan to do tests like these, don’t forget to turn off Visual Studio

2010’s IntelliTrace feature!

Lacking Support for Full Text Searches

Developers often ask about taking advantage of SQL Server 2008 and other databases’

full text searching capabilities. Entity Framework does not support full text searches.

The recommendation from Microsoft is to use stored procedures.

From the Horse’s Mouth: Performance Tuning Guidance for Entity

Framework

Danny Simmons, who is an architect on the Entity Framework team, gave this great

advice on a Channel 9 MSDN podcast he and I participated in together as we were

interviewed by Microsoft Sweden’s Dag Konig (http://channel9.msdn.com/posts/buzz

 frog/MSDN-Radio-31-Maj--Entity-Framework): I give the same recommendation about performance optimization with Entity

Framework that I give with any code. Which is: write your code the simplest,

easiest to maintain, most efficient possible way. And then profile it; find where

the problems are and start applying optimizations.

And when you do that, you typically will find that there are a set of things you can

do to improve performance still using the Entity Framework, and eventually some

very small set of cases you may find that the performance is very critical and even

after you apply your tricks with entity framework, you need to do something faster

than that. And then you can go to some of the extensibility mechanisms, like

writing a stored procedure with hand written sql or those kinds of things to really

optimize those few cases. And that mix allows you to have very rapid development,

590 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

easy to maintain code using the entity framework and then in a very few places

have very highly tuned code.

Exploiting Multithreaded Applications

Like much of .NET, the Entity Framework is not thread-safe. Developers often treat

this as though it was a major detriment, but as it is pretty common for .NET, this doesn’t highlight some horrible deficiency for Entity Framework. This means that to use the

Entity Framework in multithreaded environments, you need to either explicitly keep

individual ObjectContexts in separate threads, or be very conscientious about locking

threads so that you don’t get collisions.

Straight from the source (MSDN docs): “ObjectContext only supports

Single-Threaded scenarios.”

You should also be aware of the new parallel support in .NET 4, which will reduce the

number of scenarios where you will need to manually interact with threads. The next

section will address .NET 4’s parallel support as it is relevant to the Entity Framework.

Here are some examples of a few ways to use ObjectContext in separate threads.

Forcing an ObjectContext to Use Its Own Thread

Example 20-19 uses a separate class for managing the ObjectContext and performing the database interaction. The main program then creates a separate thread when it

needs the ObjectContext to do something. Delegates and callbacks are used so that it’s

possible for entities to be returned from the separate thread.

Notice that every time the ObjectContext is about to be impacted, a lock is placed on it.

If you are unfamiliar with threading and delegates, you are not alone.

It’s an advanced topic, and lots of resources are available to help you

get up and running on threading if you need to use it explicitly. The one

area where it is useful to understand, even if you have no plans to per-

form advanced threading work, is in keeping your UI responsive while

performing tasks such as making a call to the database, which might

take some time. Look for topics on the BackgroundWorker component,

which you can use in both Windows Forms and Windows Presentation

Foundation (WPF), and the Asynchronous Page features in ASP.NET.

Exploiting Multithreaded Applications | 591

Download from Library of Wow! eBook <www.wowebook.com>

 Example 20-19. Forcing an ObjectContext to use its own thread

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading;

using BAGA;

namespace Chapter20Console

{ public class MyThreading

{

// Delegate that defines the signature for the callback method.

public delegate void ContextCallback(List<Contact> contactList);

private static List<Contact> _contacts;

public static void Main()

{

var occ =

new ObjectContextClass(new ContextCallback(ResultCallback));

var t = new Thread(occ.GetCustomers);

t.Start();

t.Join();

Console.WriteLine("Retrieved: " + _contacts.Count.ToString());

Console.WriteLine(_contacts[0].LastName + _contacts[0].ModifiedDate);

_contacts[0].ModifiedDate = DateTime.Now;

Console.WriteLine(_contacts[0].LastName + _contacts[0].ModifiedDate);

t = new Thread(occ.SaveChanges);

t.Start();

}

public static void ResultCallback(List<Contact> contactList)

{

_contacts = contactList;

}

}

public class ObjectContextClass

{

private BAEntities _context;

private List<Contact> _conList;

// Delegate used to execute the callback method when the task is done.

private readonly MyThreading.ContextCallback _callback;

// The callback delegate is passed in to the constructor

public ObjectContextClass(MyThreading.ContextCallback callbackDelegate)

{

_callback = callbackDelegate;

}

public void GetCustomers()

{

if (_context == null)

{

_context = new BAEntities();

}

//put a lock on the context during this operation;

592 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

 lock (_context)

{

var contactquery = from c in _context.Contacts

where c.LastName.StartsWith("S")

select c;

_conList = contactquery.ToList();

}

if (_callback != null)

_callback(_conList);

}

public void SaveChanges()

{

lock (_context)

{

_context.SaveChanges();

}

}

}

}

It’s important to call out the locking of the context. Because of the way the ObjectContext manages state and relationships, and because of the merge possibilities

when new data is brought in, you need to be very careful so that two separate threads

do not affect the context at the same time. You should consider this use as an edge case,

and you should be sure that you really understand threading before you start spinning

your own threads and working with classes that are not thread-safe.

It’s much safer (though less practical in many cases) to keep individual

ObjectContexts on completely separate threads so that you don’t have to worry about

this as much.

The BackgroundWorker component, introduced in .NET 2.0, does alleviate some of the

complexities of working with multiple threads, but still, the Entity Framework does

not have any inherent features that make it easy to use in multithreaded applications.

Hopefully, future versions of the Entity Framework will make threading and asynchro-

nous programming simpler to work with.

Implementing Concurrent Thread Processing

Example 20-19 used a separate thread to host the ObjectContext. Example 20-20 shows another way to use worker threads to perform some concurrent processing on entities.

Because this example only performs reads on the entities, the concerns of Exam-

ple 20-19 are not present. This example sends entities off to a variety of methods that will merely read information from the entities and possibly send a form letter or email.

In this case, the code is writing some text out to the console only to demonstrate the

concept.

Exploiting Multithreaded Applications | 593

Download from Library of Wow! eBook <www.wowebook.com>

The query pulls back customers along with their reservation and trip information.

Then, based on the reservation status, the Customer entity is sent to a different method

to create the email. Because the process is being performed in different threads, the

emails can be written concurrently and there is no need in this case to wait for any type

of result.

When the text is written out to the console, the example also displays the ID of the

thread so that you can verify that different threads are being used.

 Example 20-20. Managing threads to get concurrent processing

using System;

using System.Linq;

using BAGA;

using System.Threading;

namespace Chapter20Console

{ class EmailThreads

{

public static void Main()

{

var emailThread = new EmailThreadClass();

using (var context = new BAEntities())

{

var custs =

from cust in context.Contacts.OfType<Customer>()

.Include("Reservations.Trip.Destination")

select cust;

foreach (var cust in custs)

{

if (cust.Reservations

.Any(r => r.Trip.StartDate > DateTime.Today.AddDays(6)))

{

//new thread for upcoming trip emails

var workerThread =

new Thread(emailThread.UpcomingTripEmails);

workerThread.Start(cust);

}

else if (cust.Reservations

.Any(r => r.Trip.StartDate > DateTime.Today

& r.Trip.StartDate <= DateTime.Today.AddDays(6)))

{

//new thread for very soon trip emails

var workerThread = new Thread(emailThread.NextWeek);

workerThread.Start(cust);

}

else //no future trips

{

//new thread for no upcmoing trips emails

var workerThread =

new Thread(emailThread.ComeBackEmails);

workerThread.Start(cust);

}

594 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

 }

Console.ReadKey();

}

}

}

public class EmailThreadClass

{

public void UpcomingTripEmails(object customer)

{

var cust = (Customer)customer;

var anytrip = cust.Reservations

.Where(r => r.Trip.StartDate > DateTime.Today.AddDays(6))

.First().Trip;

Console.WriteLine("Thread " + Thread.CurrentThread.ManagedThreadId);

Console.WriteLine(" Dear " + cust.FirstName.Trim() +

", Your trip to " + anytrip.Destination.Name.Trim() +

" begins on " + anytrip.StartDate +

". We look forward to seeing you soon.");

Console.WriteLine();

}

public void NextWeek(object customer)

{

var cust = (Customer)customer;

var anytrip = cust.Reservations

.Where(r => r.Trip.StartDate <= DateTime.Today.AddDays(6))

.First().Trip;

Console.WriteLine("Thread " + Thread.CurrentThread.ManagedThreadId);

Console.WriteLine(" Dear " + cust.FirstName.Trim() +

", Your trip to " + anytrip.Destination.Name.Trim() +

" begins in only a few days. Please let us know if " +

" you have any last minute questions.");

Console.WriteLine();

}

public void ComeBackEmails(object customer)

{

var cust = (Customer)customer;

Console.WriteLine("Thread " + Thread.CurrentThread.ManagedThreadId);

Console.WriteLine(" Dear " + cust.FirstName.Trim() +

", We haven't seen you in a while. We hope you'll consider" +

" BreakAway Geek Adventures for your next vacation.");

Console.WriteLine();

}

}

}

Exploiting Multithreaded Applications | 595

Download from Library of Wow! eBook <www.wowebook.com>

Exploiting .NET 4 Parallel Computing

.NET 4 brought a major advancement for parallel computing with API-level support

for parallel operations so that your applications can intelligently take advantage of multicore processors on your machine. The threading examples in this chapter will use

threads only on the main core. If you want to leverage multiple cores, you should take

a look at features in the Task class in the new System.Threading.Tasks namespace (http:

 //msdn.microsoft.com/en-us/library/system.threading.tasks(VS.100).aspx).

An additional feature of the parallel support is called Parallel LINQ (PLINQ), which

enables LINQ to split query processing across the cores by using a class called ParallelEnumerable. It is important to be aware that a query to a database cannot be

broken up, and therefore LINQ to Entities and LINQ to SQL do not support PLINQ.

Fortunately, if you do specifically use PLINQ with a LINQ to Entities or LINQ to SQL

query, even if you explicitly tell it to use more than one core, PLINQ will recognize that this can’t be done and will simply force the query to run on a single core. No exception

will be thrown and your query will just run on the single core without notifying you

that you are not getting the advantage of the multicore support.

Summary

This chapter looked at several important concerns of developers who are building real-

world applications—connections, transactions, security, performance, and threading.

You learned how these features are used by Entity Framework. You also learned many

ways you can change the default behaviors to your benefit—for example, ways to con-

trol when database connections are opened and closed and numerous ways to fine-tune

performance. You should now have a good understanding of not only how things work

under the covers, but also how you can take advantage of the Entity Framework’s flexibility to maintain control over your application.

There are many more angles you can look at with respect to performance and improving

it, whether it is specific to Entity Framework or even to the database you are connecting.

For example, Bob Beauchemin’s August 2009 MSDN Magazine article, “How Data

Access Code Affects Database Performance” (http://msdn.microsoft.com/en-us/maga

 zine/ee236412.aspx), provides some additional insights.

The topics covered in this chapter will enable you to write enterprise-level applications

while benefiting from using an EDM.

596 | Chapter 20: Real World Apps: Connections, Transactions, Performance, and More Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 21

Manipulating Entities with

ObjectStateManager and

MetadataWorkspace

It’s time to delve deeper into the Entity Framework and work directly with its core

components: the ObjectStateManager and MetadataWorkspace APIs.

These are truly the two workhorses of the Entity Framework. Under the covers, Object

Services uses the classes in these two APIs extensively to interact with objects at a granular level. Most of the classes and methods are public, so you can use

ObjectStateManager and MetadataWorkspace in your own applications to control and

manipulate entity objects.

Separately or together, these two classes not only allow you to manipulate entities, but

also enable you to write generic methods that you can use on various Entity Framework

object types, as well as dynamically create objects at runtime without depending on

the generated entity classes.

Along with learning the concepts of ObjectStateManager and MetadataWorkspace, you

will find many code samples in this chapter that you can use in your applications. For

example, you will find a set of extension methods to overload the GetObjectStateEn

tries method and a utility for inspecting in-memory entities at runtime.

You will learn how to interact with entities and entity state through the

ObjectStateManager and build the State Entry Visualizer that you saw in Chapter 10.

Then you will learn about interacting with the raw metadata using the MetadataWork

space.

Later in the chapter, you will build more samples that will give you great hands-on

experience working at this level. You will also get some ideas of what you can achieve

with ObjectStateManager and MetadataWorkspace. In fact, most of the object interaction

under the covers occurs using ObjectStateEntries and MetadataWorkspace. You have

direct access to the same capabilities.

597

Download from Library of Wow! eBook <www.wowebook.com>

There are many benefits to writing generic code for entity objects. With generic code

you can create reusable code that is able to work with any entity type—whether the

code is a method for validating entities prior to a database save, a utility to return

selection lists, or even, as you’ll see in this chapter, logic to dynamically create and edit entities.

Manipulating Entities and Their State with

ObjectStateManager

In Chapter 10, you got an introduction to ObjectStateEntry objects, which contain the value and state information for every object in the cache being managed by the context.

The context begins managing entities in two distinct ways: as the result of a query or

as the result of an explicit code instruction to add or attach an entity that is already in memory.

Anytime an entity begins being managed, the ObjectStateManager creates a state infor-

mation object called an ObjectStateEntry for that object, as shown in Figure 21-1.

 Figure 21-1. State information stored in ObjectStateEntries created by the ObjectContext for each entity it is managing

Anytime an entity leaves the context cache, its ObjectStateEntry is automatically de-

stroyed as well as any RelationshipEntry objects that are bound to that entity.

598 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

Refreshing Your High-Level Understanding of ObjectStateEntry

Because ObjectStateEntry is critical to most of what you will be learning in this chapter, it might be helpful to have a quick refresher on this class.

The information that an entity’s ObjectStateEntry exposes includes the following:

• An array of original values (the values when the entity was attached to the context)

• An array of current values

• An array of names of properties that have been modified

• A pointer back to the entity

• EntityKey

• State

• The EntitySet name

• ObjectStateManager

ObjectStateEntry also has an IsRelationship property to determine whether it’s an

EntityEntry or a RelationshipEntry.

Most of the ObjectStateEntry properties are null when the entry is a RelationshipEn

try. However, these properties are still relevant and will be populated:

• State

• EntitySet

• ObjectStateManager

The pointer back to the EntitySet is important because the EntitySet itself provides

all of the information regarding the two ends of the relationship.

You may recall that the debugger doesn’t show all of the ObjectStateEntry information.

You can access some of it only at runtime by calling properties that are not exposed in

the debugger.

After you spend a bit of time learning how to get your hands on the ObjectStateEn

try instances, you’ll get a chance to dig more deeply into what is exposed through this

type.

Getting an ObjectStateManager and Its Entries

Every ObjectContext has its own ObjectStateManager, which you can access using the

ObjectContext.ObjectStateManager property.

The ObjectStateManager itself doesn’t have properties. It only manages the

ObjectStateEntry objects; therefore, it has methods to return those entries.

Manipulating Entities and Their State with ObjectStateManager | 599

Download from Library of Wow! eBook <www.wowebook.com>

Getting groups of entries with GetObjectStateEntries

ObjectStateManager.GetObjectStateEntries returns an IEnumerable collection of en-

tries. As you learned in the brief introduction to GetObjectStateEntries in Chap-

ter 10, you must specify one or more EntityState enums to determine which types of entities to return. It won’t just return all entries by default.

For example, to get all Unchanged entries that are currently in the context, you can use

the code in Example 21-1.

 Example 21-1. Retrieving Unchanged ObjectStateEntry entries

context.ObjectStateManager.GetObjectStateEntries(EntityState.Unchanged)

You can specify multiple states by separating the enums with the or (|) operator, as

shown in Example 21-2.

 Example 21-2. Specifying more than one EntityState for GetObjectStateEntries

context.ObjectStateManager.GetObjectStateEntries

(EntityState.Added | EntityState.Unchanged)

Building Extension Methods to Overload GetObjectStateEntries

If you use GetObjectStateEntries frequently, you are sure to find the use of the EntityState parameters annoying. Sometimes you’ll want all of the entries and you’ll

need to type in each EntityState over and over. Other times you’ll want to find entries

of a certain type.

.NET’s extension methods allow you to add functionality to internal

classes. You can take advantage of this in many places with the Entity

Framework. If you want to learn more about extension methods, check

the MSDN topics for C# (http://msdn.microsoft.com/en-us/library/

 bb383977.aspx) and for Visual Basic (http://msdn.microsoft.com/en-us/

 library/bb384936.aspx).

The following examples represent a set of three extension methods to make the use of

GetObjectStateEntries more convenient. The extension method in Example 21-3 takes no parameters, and returns all of the entries regardless of EntityState.

In VB, extension methods are housed in modules and must have the

Extension attribute. The first parameter defines the class that the

method will extend. C# requires that the methods be static and be in a

static class. The extended class parameter is preceded with this.

600 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

 Example 21-3. GetObjectStateEntries overload to return all entries regardless of their EntityState VB

<Extension()> _

Public Function GetObjectStateEntries _

(ByVal osm As Objects.ObjectStateManager) _

As IEnumerable(Of Objects.ObjectStateEntry)

Return osm.GetObjectStateEntries(EntityState.Added Or EntityState.Deleted

Or EntityState.Modified

Or EntityState.Unchanged)

End Function

C#

public static IEnumerable<ObjectStateEntry>

GetObjectStateEntries(this ObjectStateManager osm)

{ return osm.GetObjectStateEntries(EntityState.Added | EntityState.Deleted

| EntityState.Modified | EntityState.Unchanged);

}

This definitely beats having to specify four entity state enums in the frequent cases

where you’ll want to do that.

The extension method in Example 21-4 returns all objects of a particular type by taking advantage of generics. It uses the overload from Example 21-3 to return all EntityStates and then filters those results further.

 Example 21-4. GetObjectStateEntries overload to return all entries of a particular entity type VB

<Extension()> _

Public Function GetObjectStateEntries(Of TEntity) _

(ByVal osm As Objects.ObjectStateManager) _

As IEnumerable(Of Objects.ObjectStateEntry)

Return osm.GetObjectStateEntries()

.Where(Function (entry) entry.Entity Is TEntity)

End Function

C#

public static IEnumerable<ObjectStateEntry>

GetObjectStateEntries<TEntity>(this ObjectStateManager osm)

{ return osm.GetObjectStateEntries().Where(entry => entry.Entity is TEntity);

}

Now you can get all entities of a particular type without having to build a LINQ query.

The following code demonstrates how to call the overload:

myObjectStateManager.GetObjectStateEntries<Customer>();

The extension method in Example 21-5 takes the EntityState parameters and filters on a particular type using generics again.

 Example 21-5. GetObjectStateEntries overload to return all entries of a particular entity type and EntityState

VB

<Extension()> _

Public Function GetObjectStateEntries(Of TEntity) _

(ByVal osm As Objects.ObjectStateManager, _

Manipulating Entities and Their State with ObjectStateManager | 601

Download from Library of Wow! eBook <www.wowebook.com>

 ByVal state As EntityState) _

As IEnumerable(Of Objects.ObjectStateEntry)

Return osm.GetObjectStateEntries(state)

.Where(Function(entry) entry.Entity Is TEntity)

End Function

C#

public static IEnumerable<ObjectStateEntry> GetObjectStateEntries<TEntity>

(this ObjectStateManager osm, EntityState state)

{ return osm.GetObjectStateEntries(state).Where(entry => entry.Entity is TEntity);

}

The code in Example 21-6 calls each new GetObjectStateEntries overload.

 Example 21-6. Calling all three GetObjectStateEntries overloads

//query for some contacts

var contacts = context.Contacts

.Where(c => c.Addresses.Any(a => a.CountryRegion == "UK"))

.ToList();

//Get all entries in the context

var allOses = context.ObjectStateManager.GetObjectStateEntries().ToList();

//Get all Customer entries

var custOses = context.ObjectStateManager

.GetObjectStateEntries<Customer>().ToList();

//Get only Modified Customer entries

var modifiedCustomerOses = context.ObjectStateManager

.GetObjectStateEntries<Customer>(EntityState.Modified)

.ToList();

Building a Method to Return Managed Entities

Building these extensions led me to create a method that I now use frequently in my

applications, a generic ManagedEntries<T> method. I commonly want to work with en-

tities that are being managed by the context and I prefer using a higher-level method.

The ObjectStateEntry.Entity property points back to the entity that the entry repre-

sents. Therefore, I can return a collection of entities rather than the ObjectStateEntry

types. This is convenient when you want to validate certain types during a call to SaveChanges.

Example 21-7 shows this method as an extension method of the ObjectContext class.

This method uses the extension method created in Example 21-4.

 Example 21-7. Returning entity objects that are managed by the context

public static IEnumerable<TEntity> ManagedEntities<TEntity>

(this ObjectContext context)

{ return context.ObjectStateManager.GetObjectStateEntries<TEntity>()

.Select(entry => (TEntity) entry.Entity);

}

602 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

Now when I want to work with a particular set of entities, such as all of the Customer objects that are managed by the context, I can easily grab them by calling

context.ManagedEntities<Customer>.ToList().

Using GetObjectStateEntry and TryGetObjectStateEntry

You can also retrieve a single entry from the ObjectStateManager using either

GetObjectStateEntry or its counterpart, TryGetObjectStateEntry. These methods will

look in the context to return an entry. They each have two overloads that let you use

either an entity or an EntityKey as a parameter. If you pass in the entire entity, the

method will extract its EntityKey and use that to find the entry. Example 21-8 uses an entity to find its related ObjectStateEntry, whereas Example 21-9 uses an EntityKey (created on the fly) to find an ObjectStateEntry.

 Example 21-8. Using an entity to find its related ObjectStateEntry

GetObjectStateEntry(myReservation)

 Example 21-9. Using an EntityKey to find an ObjectStateEntry

GetObjectStateEntry(new EntityKey("BAEntities.Reservations","ReservationID",10) If the entry cannot be found (meaning that the object doesn’t exist in the context), an

InvalidOperationException will be thrown.

TryGetObjectStateEntry is safer than GetObjectStateEntry. TryGetObjectStateEntry

emulates the TryParse and TryCast methods in the .NET Framework. Rather than

throwing an exception, it will return a Boolean if the entry is not found. You need to

create a variable in advance for the entry and pass that into the method to be populated.

Again, you can pass in either the entity or the EntityKey. You can then use the Boolean

to determine whether the operation succeeded or failed, and have your code smoothly

handle a failure, as shown in Example 21-10.

 Example 21-10. Using TryGetObjectStateEntry to avoid an exception

if (context.ObjectStateManager.TryGetObjectStateEntry(myReservation,out ose))

{// success logic

}

else

{// failure logic

}

Manipulating Entities and Their State with ObjectStateManager | 603

Download from Library of Wow! eBook <www.wowebook.com>

GetObjectStateEntry Versus GetObjectByKey

You may recall the ObjectContext.GetObjectByKey and TryGetObjectByKey methods

from Chapter 4. If you were to dig into these methods in Reflector, you would discover that they actually use the GetObjectStateEntry method to find the object. However,

there are two big differences between the GetObjectByKey methods and the

GetObjectStateEntry methods. First, GetObjectByKey returns an entity object, whereas

GetObjectStateEntry returns an ObjectStateEntry. More importantly, GetObjectByKey

queries the database if it is unable to find the object in the context, whereas GetObject

StateEntry only looks in the context for existing entries. It will not make a trip to the

database. Many times you only want to work with what is already in memory and you

do not want to bring additional data back from the database.

Mining Entity Details from ObjectStateEntry

Digging around in the ObjectStateManager, reading entity information, and tracking

down the related entities is a lot of work. Many developers won’t have a reason to go

to this trouble. But the fact that all of this information is exposed means you can create very dynamic features in your application, or even create dynamic applications,

whereby you can pass any Entity Data Model (EDM) and create objects and graphs on

the fly. Even if you are not building third-party tools, you can use the power of this

functionality to encapsulate a lot of reusable and generic functionality within and across your applications.

.NET developers have been performing such tasks using reflection since .NET 1.0.

Although you can also use reflection to work with entity types, using the ObjectState

Manager results in much better performance. When you add in the MetadataWorkspace

and reading the model, you can go even further with these capabilities.

Once you have an ObjectStateEntry for an entity in hand, you can view some of its

details in the debugger watch window. However, the debug view doesn’t show much

more than what you can already get from the entity itself (see Figure 21-2).

The real information comes through the methods and properties that are not exposed

in the debugger, although C#'s debugger does expose much more information than

VB’s debugger does.

Once you know what the methods and properties are, you can type them directly into

the debugger to see their results.

Reading and writing values

The CurrentValues property returns a CurrentValueRecord (an enhanced version of a

DbDataRecord), which is an ObjectStateEntryDbUpdatableDataRecord, and it contains

three members:

604 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

 Figure 21-2. An ObjectStateEntry for a Reservation in debug view

• An array of the property values for the entity

• A FieldCount property

• A DataRecordInfo object containing the metadata about the entity, such as the name

and type of each property

It is possible not only to read the current values of the object, but to write to them as

well using a method such as SetValue, SetString, or SetDateTime. You will see

SetDateTime in use in Example 21-12.

The OriginalValues property returns a DbDataRecord that contains the array of original

property values and a FieldCount property. It does not include a DataRecordInfo object.

Under the covers, this is an ObjectStateEntryDbDataRecord. Notice that the word Up-

 datable is missing from this type. You cannot write to the original values, only to the current values.

Entities in the Added state do not have any original values. In fact, calling

OriginalValues will throw an exception.

The value array contains scalar property values of the entity. If the property is a complex type, the value is a nested DbDataRecord.

Remember that the ObjectContext has a different definition of original

than you may have. Although the original values are typically the data-

base values, they are reset using the current values anytime you attach

the entity to the ObjectContext. So, if you have detached and reattached

an entity, there’s no longer a guarantee that the values are what origi-

nally came from the database.

Manipulating Entities and Their State with ObjectStateManager | 605

Download from Library of Wow! eBook <www.wowebook.com>

The way to access the values is through the Item property or one of the many casting methods such as GetString or GetByte. You can’t expand the array in the debugger, and

no property returns the entire array. If you are familiar with working with

DbDataReaders, the properties are exposed in the same way.

The code in Example 21-11 grabs an entry for a Customer that is in the context and displays its property values.

 Example 21-11. Reading the CurrentValues of an ObjectStateEntry

var objectStateEntry = osm.GetObjectStateEntry(customer.EntityKey);

var currentValues = objectStateEntry.CurrentValues;

for (var i = 0; i < currentValues.FieldCount; i++)

{ Console.WriteLine("Field {0}: {1}", i, currentValues[i]);

}

The example code returns the following:

Field 0: 1

Field 1: Alex

Field 2: Solzhenitsyn

Field 3: Mr.

Field 4: 1/7/2009 11:41:45 AM

Field 5: 2/27/2010 2:39:10 PM

Field 6: System.Byte[]

Field 7: 1

Field 8: 3/4/2008 12:00:00 AM

Field 9: 5

Field 10: 25

Field 11: 18

Field 12: 21

Field 13: He was lots of fun to have on our trip!

Field 14: 1/26/1981 12:00:00 AM

Field 15: 69

Field 16: 125

Field 17:

Field 18: System.Byte[]

Even if the reservations or other related data for the customer was in the context, it

won’t be listed here. No navigation properties are retained in an ObjectStateEntry for

an entity. However, it is possible to use the RelationshipManager for this entry, and

from there you can locate the related entities. In this way, you can identify or interact

with the graph, if you need to do so from this direction.

If this customer’s reservations are loaded, you can see them through the ObjectStateEn

try.RelationshipManager. Figure 21-3 shows the Reservations EntityCollection exposed through the RelationshipManager property of the customer’s ObjectStateEntry.

Since you can just get those reservations through the entry itself, this is interesting only when you are writing dynamic code and do not have access to the strongly typed navigation properties. We’ll be doing this further on in the chapter.

606 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

 Figure 21-3. Finding an EntityCollection through an ObjectStateEntry

The ObjectStateEntry Visualizer extension method you looked at briefly in Chap-

ter 10 takes advantage of inspecting an entity in a generic way using information from the ObjectStateEntry. Although it doesn’t inspect relationships, it does use an important feature of ObjectStateEntry, so let’s look at that before looking at the method

extension.

Accessing object metadata with CurrentValueRecord.DataRecordInfo

The DataRecordInfo that is returned by CurrentValues provides two important func-

tions. The first is that it enables you to access the metadata about the entity: property

names, EDM types, and more. Additionally, it allows you “back-door” access to edit

the entity objects. This is especially useful in scenarios where you don’t have specific

references to entities that are being managed by the context. You can grab an ObjectStateEntry from the context and then get the entity from there. This allows you

to work directly with the entity after all.

OriginalValues does not expose a DataRecordInfo property. You can see

OriginalValues.DataRecordInfo in the debugger, but you can’t access it in code. If you

need the metadata information, use CurrentValues to get the DataRecordInfo. Also, it’s

not possible to update the original values. The only time you would explicitly impact

the original values is if you call AcceptAllChanges on the ObjectContext, forcing the

original values to be updated with the current values.

Figure 21-4 displays the debug window for the CurrentValueRecord of a Reservation

entity. In Example 21-11, the values were retrieved by reading the CurrentValues. The FieldMetadata lists details for each field. The first is expanded a bit and highlighted.

Manipulating Entities and Their State with ObjectStateManager | 607

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 21-4. The FieldMetadata value of CurrentValues, which lets you discover plenty of information about each property

Notice that you can see the property name, ReservationID, here. Now you have a way

to align the value of the first item with the property name of the first field, and you can conclude that ReservationID=1 rather than just “the first field=1”.

The properties and methods of ObjectStateEntry give you direct access to some of the

metadata without having to use the MetadataWorkspace. This is the tip of the iceberg in

terms of what you can achieve when coding directly with the MetadataWorkspace.

Getting started with the FieldMetadata hierarchy

The metadata hierarchy goes even deeper, and as you will see in some of the following

examples, it can definitely be a worthwhile effort to uncover that data. Everything that’s described in the model’s metadata is accessible programmatically. But knowing where

the information is and how to access it is definitely a challenge. In the MSDN docu-

mentation, a topic called “Metadata Type Hierarchy Overview” contains a diagram

displaying the hierarchy of the EDM metadata.

608 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

To help you get started, here are some of the critical parts of the hierarchy:

CurrentValues.DataRecordInfo.FieldMetadata

This is an array of FieldMetadata objects for each scalar property (this

includes complex types) in the entity. Each item in the Metadata array is a

Metadata.Edm.MetadataProperty.

CurrentValues.DataRecordInfo.RecordType.EdmType

This contains the property settings of the entity; for example, Name, Abstract, and

NamespaceName.

CurrentValues.DataRecordInfo.RecordType.EdmType.EntityType

In addition to the same properties that are exposed directly from EdmType, in here

you can find the full metadata for each of the entity’s “members,” which means

not only the scalar properties, but also the navigation properties.

Each member is detailed either as an EdmProperty or as a navigation property.

Opening these will display the details of each property—the property’s name, its

facets, and its TypeUsage, which contains information regarding its type (String,

DateTime, etc.).

The KeyMembers property shows only those members that comprise the

EntityKey. The Members property lists all of the members.

As you begin to investigate the EntityType, it starts to become clear that everything you

did to define the entity, its properties, and its relationships is available here.

Additionally, the DataRecordInfo provides a variety of views. For example,

FieldMetaData is a subset of RecordType.EdmType.EntityType.Members.

So, you really can get at the metadata you are seeking in a variety of ways. You’ll get a

chance to take advantage of this in the next example.

Leveraging the ObjectStateManager During Saves

One of the most useful places to take advantage of the ObjectStateManager is when

saving changes, either by overriding the ObjectContext.SaveChanges method or in the

ObjectContext.SavingChanges event handler. You saw some examples of using the

SavingChanges event in Chapter 10, where you used GetObjectStateEntries to find Modified and Added entries, to do some last-minute work on particular types.

The other events, PropertyChanged/Changing and AssociationChanged,

do not have access to the ObjectContext or its ObjectStateManager, so

you won’t include this type of functionality in those event handlers.

Now that you have some additional tools at your disposal, you can create validators

that will generically work with entities, without knowing their type. Example 21-12

Manipulating Entities and Their State with ObjectStateManager | 609

Download from Library of Wow! eBook <www.wowebook.com>

locates any Added or Modified entries that have a ModifiedDate property and then updates that property with the current date and time.

This example handles two gotchas that you need to watch out for, but only if you are

using independent associations. The first is that if the entry is a RelationshipEntry, an

exception will be thrown when you try to read the metadata. Although you could use

IsRelationship to test this, another method will kill two birds with one stone: by testing to see whether the ObjectStateEntry has an Entity value, you not only filter out relationships, but also filter out the “stub” entries that exist only to provide an end for

EntityReferences when the entity is not in the context. This filter is used in the first

query that returns the entries variable. If all of your associations are defined with foreign keys, this extra where operator will be unnecessary.

The second gotcha is that it’s possible that a field named ModifiedDate is not a DateTime field. Never assume!

The LINQ query in the example drills into the CurrentValues of each entry. Then, using

the Any method, it looks at the names of each FieldMetaData item for that entry, picking

up only those whose name is ModifiedDate. You saw code similar to this when building

the visualizer earlier in this chapter. Next, the If statement verifies that the ModifiedDate property is a DateTime field; then it updates the field using

CurrentValues.SetDateTime.

 Example 21-12. Updating ModifiedDate fields during SavingChanges

internal void FixupModifiedDates()

{ var entries =

from ose in this.ObjectStateManager.GetObjectStateEntries

(EntityState.Added | EntityState.Modified)

where ose.Entity != null

select ose;

foreach (var entry in entries)

{

var fieldMetaData = entry.CurrentValues.DataRecordInfo.FieldMetadata;

FieldMetadata modifiedField = fieldMetaData

.Where(f => f.FieldType.Name == "ModifiedDate")

.FirstOrDefault();

if (modifiedField.FieldType != null)

{

string fieldTypeName = modifiedField.FieldType.TypeUsage.EdmType.Name;

if (fieldTypeName == PrimitiveTypeKind.DateTime.ToString())

{

entry.CurrentValues.SetDateTime(modifiedField.Ordinal,

DateTime.Now);

}

}

}}

610 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

You can call this method from within the SavingChanges event to be sure that any ModifiedDate field is automatically updated.

Importing the System.Data.Metadata.Edm namespace gives you access to

the PrimitiveTypeKind class.

This code takes advantage of a lot of the details exposed in the metadata. The foreach has filtered down to any entity that has a ModifiedDate property, but you still

need to know which property that is in order to call the SetValue/SetDateTime method.

This is why you see the line of code that finds the exact property and returns the ordinal that can be found in the metadata.

Using ObjectStateManager to Build an EntityState Visualizer

Now let’s look at the tool for visualizing an ObjectStateEntry, which you saw briefly

in Chapter 10. This tool reads information from the ObjectStateEntry and displays it on a Windows form. I have found it to be a handy tool to use when debugging Entity

Framework applications.

Building this tool will also provide you with hands-on experience in interacting with

the entries and entities in a variety of ways. In the end you will have not only a useful

tool for your application development, but also a much better understanding of how

to work directly with ObjectStateEntry objects.

The visualizer is an extension method of ObjectContext, which takes as a parameter the

entity you would like to inspect. This allows it to be used for EntityObject or POCO

entities.

For those who are familiar with debugger visualizers, introduced in Vis-

ual Studio 2005, the ObjectStateEntry visualizer is not a debugger vis-

ualizer. Debugger visualizers require the target object to be serializable

so that it can be moved to the debugger process. However, like

ObjectStateManager, ObjectStateEntry classes are not serializable. In

fact, if you do want to serialize them, you will need to deconstruct them

and reconstruct them using the tools you are learning about in this

chapter. Instead, this visualizer will be wrapped into an extension

method with an attribute that makes it available only during debugging.

Although the tool is handy to have, the lessons you will learn by writing this code will

be valuable. The code provides a practical demonstration of inspecting and extracting

details of an ObjectStateEntry using its properties and methods.

Using ObjectStateManager to Build an EntityState Visualizer | 611

Download from Library of Wow! eBook <www.wowebook.com>

You can download the code for the visualizer from the book’s website. If you want to

build it while walking through the explanation in this chapter, you’ll need to create a

new class library project with a reference to System.Data.Entity. In the primary code

file, add Imports or using statements for the following namespaces:

• System.Runtime.CompilerServices

• System.Data.Objects

• System.Data

• System.Data.Common

• System.Windows.Forms

Add a Windows form to the project. You’ll work on this after you have created the

extension method. Name the form debuggerForm.

Example 21-13 shows the method stub for the VisualEntityState method of the Visualizer class you will be building.

Remember that the VB extension will be in a method whereas the C#

is a method of a static class.

 Example 21-13. Base module and method for the Visualizer class

namespace EFExtensionMethods

{ public static class Visualizer

{

public static void VisualizeEntityState

(this ObjectContext context,object entity)

{

//code will go here

}

}

}

The entire code listing is displayed in Example 21-23 after the various parts have been explained.

Retrieving an ObjectStateEntry Using an EntityKey

VisualizeEntityState’s first task is to retrieve the ObjectStateEntry from the context.

If the entity is detached, there will be no entry in the context, so you should use TryGetObjectStateEntry to be safe. The code in Example 21-14 goes in the new method.

612 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

The visualizer displays its results in a Windows form; therefore, you

should already be in the correct environment for displaying a

MessageBox.

 Example 21-14. Getting the ObjectStateEntry

ObjectStateEntry ose = null;

/If object is Detached, there will be no Entry in the ObjectStateManager

if (!context.ObjectStateManager.TryGetObjectStateEntry(entity, out ose))

MessageBox.Show

("Object is not currently being change tracked " +

"and no ObjectStateEntry exists.", "ObjectState Visualizer",

MessageBoxButtons.OK, MessageBoxIcon.Warning);

else

{ ...

Reading the OriginalValues and CurrentValues of an ObjectStateEntry

If the entry exists, the next step is to retrieve the current and original values from the entry. However, there’s a potential problem with OriginalValues. As noted earlier, entities in the “Added” state do not have original values and the property will throw

an exception. Therefore, you’ll declare a variable to contain the OriginalValues and

populate it only if the state is not Added (see Example 21-15).

 Example 21-15. Getting the CurrentValues and OriginalValues

var currentValues = ose.CurrentValues;

DbDataRecord originalValues = null;

if (ose.State != EntityState.Added)

originalValues = ose.OriginalValues;

Next, create an array to store the data you’ll be collecting for each property. The vis-

ualizer will need to not only display the current and original values, but also retrieve

the property name by drilling into the metadata.

Iterate through the items in CurrentValues, picking up the value and the property as

well as its related item value in the OriginalValues array. The values are captured in a

number of variables and at the end will be pushed into the new array. Example 21-16

shows how DataRecordInfo is used to drill into the metadata to get the field names. For

added records, you’ll use a default of “n/a” in place of the nonexistent original value.

 Example 21-16. Reading through the value arrays

//walk through arrays to get the values

var valueArray = new System.Collections.ArrayList();

for (var i = 0; i < currentValues.FieldCount; i++)

{ //metadata provides field names

var sName = currentValues.DataRecordInfo.FieldMetadata[i].FieldType.Name;

var sCurrVal = currentValues[i];

Using ObjectStateManager to Build an EntityState Visualizer | 613

Download from Library of Wow! eBook <www.wowebook.com>

object sOrigVal = null;

if (originalValues == null)

sOrigVal = "n/a"; //this will be for Added entities

else

sOrigVal = originalValues[i];

Determining Whether a Property Has Been Modified

Although you could just compare original to current values to determine whether the

property has been modified, ObjectStateEntry has a method called GetModifiedProper

ties that returns an array of strings listing the names of any properties that have changed. Example 21-17 uses a LINQ to Objects query to check whether the current property is in that list.

 Example 21-17. Determining whether the value has changed

string changedProp = (from prop in ose.GetModifiedProperties()

where prop == sName

select prop).FirstOrDefault();

string propModified;

if(changedProp == null)

{propModified= "";}

else

{propModified="X";}

Finally, gather all of the information you just collected regarding that item and place it

into the array you created at the start (see Example 21-18).

 Example 21-18. Pushing the property information into the array

valueArray.Add(new { _Index = i.ToString(), _Property = sName,

Current = sCurrVal, Original = sOrigVal,

ValueModified = propModified });

} //this closes the for loop opened in Example 21-16

Displaying the State and Entity Type

When this is complete, the array is passed into a Windows form and is displayed in a

grid.

Two more pieces of data are sent along as well: the ObjectStateEntry.State and ObjectStateEntry.Entity.ToString properties. ObjectStateEntry.Entity.ToString returns the fully qualified name of the entity’s type (see Example 21-19). You can see the

results in Figure 21-5.

Example 21-19 assumes you have added the appropriate labels and a

DataGridView to the form. To access the controls from the class, you will

need to set their Modifiers property to Friend in Visual Basic and to

Internal in C#.

614 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

 Figure 21-5. The visualizer populated with ObjectStateEntry information

 Example 21-19. Pushing the values into the form

debuggerForm frm = new debuggerForm();

frm.dataGridView1.DataSource = valueArray;

frm.lblState.Text = ose.State.ToString();

frm.lblType.Text = ose.Entity.ToString();

frm.ShowDialog();

Getting ComplexType Properties Out of ObjectStateEntry

There’s one more twist that the preceding code doesn’t take into account: the possibility

of a complex type in your properties.

If the entity contains a complex type, the value of that item will be a DbDataRecord, not

a normal scalar value. Using the preceding solution, this will display in the grid as

System.Data.Objects.ObjectStateEntryDbUpdatableDataRecord. Instead, you’ll need to

read the array values of the complex type.

Your first step is to determine whether the property is a complex type. The simple way

to do this is to look for a DbDataRecord type using a type comparison, as shown in

Example 21-20.

Using ObjectStateManager to Build an EntityState Visualizer | 615

Download from Library of Wow! eBook <www.wowebook.com>

 Example 21-20. Testing to see whether a property is a complex type

VB

If TypeOf (currentValues(i)) Is DbDataRecord Then

C#

if (currentValues[i] is DbDataRecord)

No other property types will render a DbDataRecord, so this will do the trick.

Although it is not practical for this example, it is possible, as shown in Exam-

ple 21-21, to get much more granular by drilling even deeper into the entry where you can use the metadata to identify the complex type, or any other entity type, for that

matter.

You can compare the BuiltInTypeKind property to the

BuiltInTypeKind enumerator. You can use BuiltInTypeKind to identify

any one of 40 schema types in an EDM, beginning alphabetically with

AssociationEndMember.

 Example 21-21. An alternative way to check for a complex type

if (currentValues.DataRecordInfo.FieldMetadata[i].FieldType

.TypeUsage.EdmType.BuiltInTypeKind ==

System.Data.Metadata.Edm.BuiltInTypeKind.ComplexType)

Your code can then return the scalar item or, if it is a complex type, further process the item to extract its values. The visualizer uses a separate function, ComplexTypeString,

for that task.

ComplexTypeString takes the DbDataRecord and returns a string with the internal values

of the complex value, as shown in Example 21-22.

 Example 21-22. Finding a value in the complex type

private string ComplexTypeString(DbDataRecord record)

{ var stringBuilder = new StringBuilder();

for (var i = 0; i < record.FieldCount; i++)

{

if (record[i] == DBNull.Value)

{

stringBuilder.AppendLine("");

}

else

{

stringBuilder.AppendLine((String)(record[i]));

}

}

return stringBuilder.ToString();

}

You could take this a step further and find the property names of the complex type.

You probably don’t want to attempt to find these from within the DataRecordInfo. It

616 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

would be much simpler to use the MetadataWorkspace API directly to read the CSDL

and determine the property name of the complex type—in this case, AddressDetail.

You can discover that name through the same TypeUsage property you used earlier to

identify that this was a ComplexType:

currentValues.DataRecordInfo.FieldMetadata[i]

.FieldType.TypeUsage.EdmType.Name

Shortly, you’ll see how to perform the next steps with the MetaDataWorkspace API.

Figure 21-6 displays the results (without the additional property names of the complex type).

Download the visualizer’s complete code from the book’s website, http:

 //www.learnentityframework.com.

 Figure 21-6. An Address entity with a ComplexType property displayed in the visualizer by reading the ObjectStateEntry

Example 21-23 displays the complete code listing of the VisualizeEntityState method along with the ComplexTypeString method.

Using ObjectStateManager to Build an EntityState Visualizer | 617

Download from Library of Wow! eBook <www.wowebook.com>

 Example 21-23. The VisualizeEntityState and ComplexTypeString methods public static void VisualizeEntityState(this ObjectContext context,object entity)

{ ObjectStateEntry ose = null;

//If object is Detached, then there will be no Entry in the ObjectStateManager

//new entities that are not attached will not even have an entitykey

if (!context.ObjectStateManager.TryGetObjectStateEntry(entity, out ose))

MessageBox.Show("Object is not currently being change tracked " +

" and no ObjectStateEntry exists.",

"ObjectState Visualizer", MessageBoxButtons.OK, MessageBoxIcon.Warning);

else {

var currentValues = ose.CurrentValues;

//If Object is Added, there will be no Original values

//and it will throw an exception

DbDataRecord originalValues = null;

if (ose.State != EntityState.Added)

originalValues = ose.OriginalValues;

//walk through arrays to get the values

var valueArray = new System.Collections.ArrayList();

for (var i = 0; i < currentValues.FieldCount; i++)

{

//metadata provides field names

var sName = currentValues.DataRecordInfo.FieldMetadata[i].FieldType.Name;

bool isdbDataRecord = false;

var sCurrVal = currentValues[i];

object sOrigVal = null;

//test for complex type

if (currentValues[i] is DbDataRecord)

isdbDataRecord = true;

if (isdbDataRecord == false)

{//normal scalar data

sCurrVal = currentValues[i];

}

else

{

//complex type, anything else?

sCurrVal = ComplexTypeString((DbDataRecord)currentValues[i]);

}

if (ose.State == EntityState.Added)

sOrigVal = "n/a"; //this will be for Added entities

else

if (isdbDataRecord == false)

{//normal scalar data

sOrigVal = originalValues[i];

}

else

{

//complex type

sOrigVal = ComplexTypeString((DbDataRecord)originalValues[i]);

}

string changedProp = (

618 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

 from prop in ose.GetModifiedProperties()

where prop == sName

select prop).FirstOrDefault();

string propModified;

if (changedProp == null)

propModified = "";

else

propModified = "X";

valueArray.Add(new {Index = i.ToString(), Property = sName,

Original = sOrigVal, Current = sCurrVal,ValueModified = propModified });

}

var form = new VisualizerForm();

form.dataGridView1.DataSource = valueArray;

form.lblState.Text = ose.State.ToString();

form.lblType.Text = ose.Entity.ToString();

form.ShowDialog();

}

}private static string ComplexTypeString(DbDataRecord item)

{ var dbRecString = new StringBuilder();

for (var i = 0; i < item.FieldCount; i++)

{

if (item[i] == DBNull.Value)

{

dbRecString.AppendLine("");

}

else

{

dbRecString.AppendLine((String)(item[i]));

}

}

return dbRecString.ToString();

}

Modifying Values with ObjectStateManager

Because the CurrentValues property returns an updatable DbDataRecord, it is possible

to modify the values directly through the ObjectStateManager.

Like the various accessors for a DbDataReader and a DbDataRecord, CurrentValues allows

you to change a value using SetValue or one of the type-specific setters such as SetString, SetInt32, or even SetDBNull.

The signature for these methods is to pass in the value to be used for updating and the

index of the item in the array. Again, remember that you can do this directly only with

the scalar values. If you need to change relationships, more work is involved.

Example 21-24 shows the signature for CurrentValueRecord.SetBoolean.

Using ObjectStateManager to Build an EntityState Visualizer | 619

Download from Library of Wow! eBook <www.wowebook.com>

 Example 21-24. Changing a Boolean property with SetBoolean

ObjectStateEntry.CurrentValues.SetBoolean(3,false)

The plural SetValues lets you pass in an array to update all of the values, as shown in

Example 21-25. SetValues requires that you know the order and types of the properties.

There are two fields that you don’t want to change, however: the ContactID and TimeStamp values. Those fields will just have their current values passed back in.

 Example 21-25. Changing all of the values with SetValues

currentValues.SetValues(currentValues[0],"Pablo","Castro","Sr.", DateTime.Now,DateTime.Now, currentValues[6]);

Working with Relationships in ObjectStateManager

If you are using independent associations in your model and do not have direct access

to foreign key scalar properties, you may find yourself needing to work explicitly with

ObjectStateEntry types that have been instantiated to represent relationships.

Because this is outside the norm in Visual Studio 2010 and you are more

likely to have access to the foreign keys, the extended discussion of this

topic that existed in the first edition of this book is not repeated here.

You can download the relevant portion of the first edition chapter

(Chapter 17) from the downloads page of the book’s website, at http://

 www.learnentityframework.com.

With models that use foreign key associations, you can work directly with a foreign

key scalar when you want to interact with a foreign key relationship. However, if you

want to write dynamic code that handles related collections or instantiated foreign key

objects, you can use the RelationshipManager.

Building graphs directly with the RelationshipManager

It is possible to get your hands on an instance of the RelationshipManager to build

graphs on the fly, creating relationships directly in your code.

The RelationshipManager’s entry point is through an ObjectStateEntry. EntityObject

implements the IEntityWithRelationships interface, and any custom objects that you

build will need to implement it as well if you want to have relationships managed by

Object Services.

The entity does not need to be attached to an ObjectContext to get the Relationship

Manager.

To get the IEntityWithRelationships view of an existing entity, cast the entity to IEntityWithRelationships. From there, you can get a RelationshipManager associated

specifically with your entity.

620 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

Example 21-26 shows two ways to get the RelationshipManager. The first code line casts an EntityObject, customer, to IEntityWithRelationships and then gets its

RelationshipManager. The second, which will also work for POCO entities, uses an

ObjectStateEntry.

 Example 21-26. Two ways to get a RelationshipManager

var pmtRelMgr=((IEntityWithRelationships) myPayment).RelationshipManager;

//or

var pmtRelMgr = pmtObjectStateEntry.RelationshipManager;

Once you have the RelationshipManager, the next step is to get a reference to the other

end of the relationship that you want to add. To do this, you need to identify which

association and which end of the association you want to work with. Unfortunately,

you won’t be able to do this in a strongly typed way. You’ll have to use a string to specify the association’s name.

In Example 21-27, the goal is to add a Reservation to the Payment used in Exam-

ple 21-26, so you’ll need to work with the FK_Payments_Reservations association and add it to the “Reservations” end.

Some of the tricks that RelationshipManager performs do not require the

ObjectContext. This is handy to know if you are building generic code

without the aid of the ObjectContext. Check out the MSDN Entity

Framework forum post titled “Remove Associations from Entity,”

which shows how to use IRelatedEnd with reflection to strip related data

from an entity. (When reading this forum thread, which I started, you’ll

also see that I learned this lesson the hard way, too.)

RelatedEnd has an Add method, which is the final call you’ll need to make. Exam-

ple 21-27 shows how you can add the existing Reservation entity to the RelatedEnd.

This will create a new relationship between the Payment entity and the Reservation

entity.

 Example 21-27. Creating a relationship on the fly using the RelationshipManager created in

 Example 21-26

IRelatedEnd resRelEnd =

pmtRelMgr.GetRelatedEnd("FK_Reservations_Customers", "Reservations");

resRelEnd.Add(myReservation);

This method of building graphs works exactly the same as if you had called

pmt.Reservation=myReservation. That is because the navigation properties inherit from

IRelatedEnd as does the RelatedEnd type.

If neither object is attached to the context, you will still get a graph; however, no RelationshipEntry will be created in the context. If only one of the entities is attached

Using ObjectStateManager to Build an EntityState Visualizer | 621

Download from Library of Wow! eBook <www.wowebook.com>

to the context, the other one will be pulled in and given the appropriate EntityState

(Attached or Added).

Like navigation properties, RelatedEnd also has Attach, Remove, and

other methods that you have already been working with.

Using the MetadataWorkspace

At this point, you have interacted with the metadata—the raw XML that describes the

CSDL, MSL, and SSDL for your model—through the ObjectStateManager. You can also

work directly with the metadata through the MetadataWorkspace, which is in the

System.Data.Metadata.Edm namespace.

The MetadataWorkspace API is used internally throughout the Entity Framework. It is

the mechanism that reads the EDM. It can also read the generated classes, as you’ve

seen in this chapter’s examples thus far. In addition to being able to get metadata about

the entity types and other model objects, the EntityClient uses the metadata during

query processing. After the LINQ to Entities or Entity SQL queries are turned into

command trees using the conceptual model, these command trees are then transformed

into a command tree using the store schema. The conceptual, store, and mapping layers

of the model are read in order to perform this task.

You can use the MetadataWorkspace API to read and dissect each of the three layers, as

well as the entity classes that are based on the model. The power of the MetadataWork

space lies in its ability to let you not only write generic code, but also write code that can create objects on the fly. You could write utilities or entire applications that have

no knowledge in advance of the conceptual model.

Loading the MetadataWorkspace

In Chapter 20, you learned that if the metadata has not already been loaded into the application memory, an EntityConnection will load the metadata when the connection

is opened. Typically, it does this by loading the actual files (CSDL, MSL, and SSDL)

that the metadata attribute of the connection string points to. It is also possible to load these files into a memory stream and pass that memory stream in when you are instantiating an EntityConnection.

The MetadataWorkspace can work only with metadata that has already been loaded,

which happens when an EntityConnection is created directly or as a result of an ObjectContext being instantiated.

Example 21-28 demonstrates loading the MetadataWorkspace from an EntityConnection and then from an ObjectContext.

622 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

 Example 21-28. Accessing the MetadataWorkspace from an EntityConnection and an ObjectContext var connection = new EntityConnection("name=BAEntities");

var metadataWorskpace = connection.GetMetadataWorkspace();

BAEntities context = new BAEntities();

var metadataWorskpace = context.MetadataWorkspace;

Creating a MetadataWorkspace without an EntityConnection

You can also instantiate a MetadataWorkspace if you don’t need to make a connection,

by using the overload of the MetadataWorkspace constructor, which takes file paths and

assemblies.

You can point directly to the files or instantiate a System.Reflection.Assembly to use

this constructor. One enumerable that contains file paths and another enumerable that

contains assemblies are required; however, you can leave the enumerables empty.

Example 21-29 loads the conceptual and store metadata directly from files using syntax to create an array on the fly. Because no assembly is needed in this example, an empty

array is created for the second parameter.

 Example 21-29. Creating a MetadataWorkspace using EDM files

var mdw = new MetadataWorkspace

(new string[] { "C:\\EFModels\\BAModel.csdl",

"C:\\EFModels\\BAModel.ssdl" },

new Assembly[]{});

If the model is embedded in an assembly, you can use syntax similar to the metadata

property of an EntityConnection string to point to the files and then provide an assembly

that is a type loaded in through System.Reflection. This enables the Entity Framework

to inspect the assembly and find the embedded files. Example 21-30 shows one of many ways to load an assembly.

 Example 21-30. Creating a MetadataWorkspace from EDM files embedded in an assembly file Assembly assembly = Assembly.LoadFile("C:\\myapp\\BreakAwayModel.dll");

var metadataWorkspace = new MetadataWorkspace

(new string[] { "res://*/BAModel.csdl", "res://*/BAModel.ssdl" },

new Assembly[] { assembly });

If you need to use the MetadataWorkspace only to read the models, this is a nice option

to leverage.

Clearing the MetadataWorkspace from Memory

Remember that loading the metadata into memory is expensive, so you should leave it

in an application cache for the lifetime of the application. It is possible, however, to

clear it out and force it to be reloaded if you require it again, by calling MetadataWork

space.ClearCache.

Using the MetadataWorkspace | 623

Download from Library of Wow! eBook <www.wowebook.com>

Understanding the MetadataWorkspace ItemCollections

At runtime, the metadata can be found either as resources that are compiled into the

model’s assembly or in individual .csdl, .msl, and .ssdl files. The MetadataWorkspace contains five separate item collections, one for each of these different resources. Once

you have the MetadataWorkspace, you can start to drill into the metadata, but you always

need to specify which item collection to access by using a DataSpace enum: CSpace for

the conceptual model, SSpace for the storage model, OSpace for the object model, CSSpace for the mapping layer, and finally, OCSpace for a mapping between the conceptual layer and the object model.

When you’re reading about the Entity Framework, you will find that

developers who have been working with the Entity Framework for a

while sometimes use the words C-Space and O-Space, among other

similar terms, to refer to the DataSpace. This is how they differentiate

between the classes and the various parts of the model, since so many

of the terms cross over into all of these areas. Saying “the contact in the

 O-Space” makes it clear that you are talking about the object. “The

contact in the C-Space” means the contact specified in the conceptual

model, as opposed to “the contact in the S-Space,” which refers to the

Contact table from the database as it is described in the model’s store

layer.

These terms also appear in messages when the model can’t be validated

because of an error somewhere in the schema.

Although the compiler will allow you to combine the DataSpace enums

using operators such as And and Or, the enums are integers, not expres-

sions, and they are not meant to be combined in this way. You won’t

get an exception, but the returned values will be incorrect. Instead, per-

form the methods on one DataSpace at a time and then combine the

results. You can use LINQ’s Union operator for this purpose.

When the MetadataWorkspace is created as the result of an EntityCollection being in-

stantiated, not all of the item collections are loaded right away. For example, the metadata from the store layer isn’t loaded until the first time something is done that

requires the store layer—a query execution, for instance, or a call to the ToTrace String method.

If you attempt to extract metadata from an item collection that has not yet been loaded,

an exception will be thrown. Therefore, most of the methods for extracting metadata

(e.g., GetItem, GetFunctions) come paired with a method using the Try pattern

(TryGetItem, TryGetFunctions), which returns Booleans rather than risking an exception

being thrown if no data is returned.

624 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

When you use the MetadataWorkspace constructor with the file paths overload as shown

earlier, all of the designated models are loaded immediately.

Determining whether an ItemCollection has been loaded

You can also test to see whether an ItemCollection has been loaded prior to attempting

to get information from it, by using GetItemCollection and TryGetItemCollection. It

makes more sense to use the latter so that you don’t get an exception.

The code in Example 21-31 tests to see whether the SSpace is loaded.

 Example 21-31. Testing to see whether a DataSpace, specifically the SSpace, is loaded

ItemCollection collection = null;

if (metadataWorkspace.TryGetItemCollection(DataSpace.SSpace, out collection))

Other than triggering the model to load through query generation, as explained earlier,

there’s no other way to force a model to load to an existing MetadataWorkspace.

You’ll need to add the System.Data.Metadata.Edm namespace to your

using or Imports statements to get at these Edm members.

Retrieving Metadata from the MetadataWorkspace

You can pull information from these collections using a variety of methods.

Retrieving sets of items from the metadata with GetItems and TryGetItem

You can use GetItems or TryGetItems to find all items or items of a specific type in a

model. Example 21-32 will return a .NET generic collection type, ReadOnlyCollec tion, of every item defined in the model. The common base type for the items is GlobalItem.

 Example 21-32. Requesting an array of every item defined in the CSDL

ReadOnlyCollection<GlobalItem> items =

metadataWorkspace.GetItems(DataSpace.CSpace);

You’ll find in here not only the EntityType and AssociationType items that are defined

in your model, but also all of the PrimitiveTypes and FunctionTypes that the model

needs to be aware of. PrimitiveTypes are .NET, EDM, and store types. FunctionTypes

are built-in functions from the provider as well as the functions that are created from

stored procedures in the database. Most likely you will not need access to all of these

items; therefore, the GetItems overload shown in Example 21-33, which lets you specify which types to return, might be more useful and efficient.

Using the MetadataWorkspace | 625

Download from Library of Wow! eBook <www.wowebook.com>

 Example 21-33. Requesting an array of all EntityTypes in the CSDL

ReadOnlyCollection<EntityType> items =

metadataWorkspace.GetItems<EntityType>(DataSpace.CSpace);

The common base type for these items is EntityType and the method returns an array

of EntityType objects. Figure 21-7 expands the first of these, BAModel.Activity.

The details shown in Figure 21-7 may look familiar to you. CurrentValues.DataRecor dInfo.RecordType.EdmType.EntityType returns the same Edm.EntityTypes. In there, you

can find out anything you might want or need to know about the structure of an entity.

The Visual Basic debugger view is shown in Figure 21-7 because it displays the interesting information more succinctly. With C#’s debugger you’ll have to dig around a

lot more to discover all of these properties.

As with the other Try alternatives you have seen already, TryGetItems follows the .NET

Try pattern to avoid an exception if no matching items are returned.

 Figure 21-7. The VB debugger view of EntityType items returned from MetadataWorkspace.GetItems Notice again how the entity’s properties are grouped in a few different ways to make

it easier to access what you are looking for:

• KeyMembers returns only the properties that are used to build the EntityKey.

• Members returns all of the properties.

• NavigationProperties returns a subset of members.

• Properties returns only the scalar properties (including ComplexTypes).

626 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

The biggest benefit of being able to get at this information is the ability to write dynamic functionality in your application. Not only can you instantiate objects, as you’ll see in

a bit, but also this metadata is an optimal source for report design tools, just as other

schemas, such as the DataSet XSD files, are used for report design.

Retrieving specific items from the metadata with GetItem and TryGetItem

GetItem and TryGetItem allow you to pass in a string to specify the name of the item

you would like to get from the model, rather than returning an array. The name must

be fully qualified, not just the string used for the entity’s name property. Exam-

ple 21-34 shows how to call GetItem.

 Example 21-34. Getting EntityTypes that are Contacts from the CSDL

metadataWorkspace.GetItem<EntityType>("BAModel.Contact", DataSpace.CSpace); If you pass multiple DataSpace enums into this method and one or more

of them do not contain this particular item, an exception will be thrown.

Use TryGetItem as a precaution. In Example 21-34, you can assume that

the model to search is obvious, but if you are building generic methods

where you always have a number of models in the parameter, it is pos-

sible to run into this problem.

Retrieving functions from the metadata with GetFunctions and TryGetFunctions

GetFunctions and TryGetFunctions will return only functions, but they are different from just calling GetItems<EdmFunction>. Instead, you need to specify the name and the namespace of the function separately (as opposed to the fully qualified name requirement in GetItem), as well as the DataSpace.

The code in Example 21-35 returns the EdmFunction whose public properties are displayed in Figure 21-8.

 Example 21-35. Getting a specific function from the SSDL

metadataWorkspace.GetFunctions("UpdateContact", "BreakAwayModel.Store", DataSpace.SSpace); Compare this to the function’s description in the SSDL, shown in Example 21-36.

 Example 21-36. The UpdateContact function listing in the SSDL

<Function Name="UpdateContact" Aggregate="false" BuiltIn="false"

NiladicFunction="false" IsComposable="false"

ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo">

<Parameter Name="ContactID" Type="int" Mode="In" />

<Parameter Name="FirstName" Type="nchar" Mode="In" />

<Parameter Name="LastName" Type="nchar" Mode="In" />

<Parameter Name="Title" Type="nchar" Mode="In" />

</Function>

Everything you see in the schema is available through the MetadataWorkspace.

Using the MetadataWorkspace | 627

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 21-8. Debugging a function’s metadata

Querying the Metadata with LINQ to Objects

It’s also possible to perform standard LINQ queries (i.e., LINQ to Objects) against item

collections. As an example, the method query in Example 21-37 searches the store model’s ItemCollection to find any item that has Contact in the name.

 Example 21-37. Querying the items of the model with LINQ

mdw.GetItems<EdmType>(DataSpace.SSpace)

.Where(i => i.Name.Contains("Contact")).ToList();

From the BreakAway model, this query returns 10 items that represent the database

schema:

• Contact and ContactPersonalInfo EntityTypes (tables)

• FK_Address_Contact,

FK_Lodging_Contact,

and FK_Customers_Contact

AssociationTypes

• Five different functions (stored procedures) with Contact in the title

If you want to search across models, you can use LINQ’s Union query method, which

follows the pattern query1.Union (query2).otherMethods, as shown in Example 21-38.

 Example 21-38. Combining items from the CSDL and SSDL in one request

mdw.GetItems<EdmType>(DataSpace.CSpace)

.Union(mdw.GetItems<EdmType>(DataSpace.SSpace))

.Where(i => i.Name.Contains("Contact")).ToList();

628 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

This returns all of the items with the word Contact in both the conceptual and store models.

Building Dynamic Queries and Reading Results

Now that you have had a good look at the ObjectStateManager and the MetadataWork

space, you might be interested in what types of problems you can solve with these tools.

The following example will show you how to build queries dynamically, first using the

metadata and then using Entity Framework 4’s new CreateObjectSet method. While

the latter method is much simpler, you’ll see that the metadata scenario will give you

the flexibility to build more complex queries.

After these two samples, you’ll use the ObjectStateManager to read through the results

of the query even though at design time you won’t know what types are being returned.

Building Entity SQL Queries Dynamically Using Metadata

You can also use the metadata to build Entity SQL queries thanks to the fact that an

Entity SQL expression is simply a string.

The example in this section proposes what may seem to be an edge case,

but in doing so it will give you a much better understanding of inter-

acting with the MetadataWorkspace. There are also opportunities to

achieve this more simply thanks to the introduction of Entity Frame-

work’s ObjectSet in .NET 4.0. Look for additional examples that com-

bine an ObjectSet feature with query builder methods in the next section

of this chapter.

Imagine that you have a query that returns data from every navigation property (EntityCollections or EntityReferences):

Select contact, contact.Addresses,contact.Orders from MyEntities.Contacts

When the application is first written, Addresses and Orders comprise the only child

data for the contact. But perhaps another navigation property is introduced with ad-

ditional child data, such as PhoneNumbers. By writing the query dynamically using the

metadata, you’ll never have to modify the query manually. The application will always

be able to follow the rule of returning a contact with all of its child data without having to know what the definition of “all of its child data” is.

Building the query dynamically will also mean you won’t know exactly what is con-

tained in the results, and therefore you may also need to use the metadata to handle

the results.

Download from Library of Wow! eBook

<www.wowebook.com>

Building Dynamic Queries and Reading Results | 629

Download from Library of Wow! eBook <www.wowebook.com>

It’s a good idea to establish patterns in your model naming for many

reasons. Being able to construct generic code in this way is one of those

reasons.

The SingleEntityEsql method described on the next few pages will build the query

dynamically. Example 21-39 shows the signature of the method, which uses the generic

<TEntity> to specify what entity type the query will be based on a generic type. The method parameters are the entity’s key value and a reference to the context that will

be used to execute the query.

 Example 21-39. The SingleEntityEsql signature

private static string SingleEntityEsql<TEntity>

(Int32 entityID, ObjectContext context)

Next, you’re going to need the EntityContainer so that you can find the entity’s EntitySet name further on in the method, as well as the NamespaceName so that you can

use the GetItem method. You can find the NamespaceName within various types, but not

directly from the MetadataWorkspace, so the code in Example 21-40 grabs a random EntityType from the CSpace and gets the NamespaceName from there.

 Example 21-40. Finding the Container and Namespace names using the MetadataWorkspace

{ var metadataWorkspace = context.MetadataWorkspace;

var container = metadataWorkspace.GetItems<EntityContainer>

(DataSpace.CSpace).First();

var namespaceName = metadataWorkspace.GetItems<EntityType>(DataSpace.CSpace)

.First().NamespaceName;

Next, using the entity’s Name, you can find the name of its EntitySet as well as its EntityType. From the EntityType, you can find its navigation properties and then iterate

through the navigation properties, adding each name to a List (see Example 21-41).

 Example 21-41. Creating a list of navigation property names

var entityName = typeof(TEntity).Name;

var setName = container.BaseEntitySets

.First(set => set.ElementType.Name == entityName).Name;

var entityType = metadataWorkspace.GetItem<EntityType>

(namespaceName + "." + entityName, DataSpace.CSpace);

var propertyNames = entityType.NavigationProperties.Select(np => np.Name).ToList();

The KeyMembers property discussed in “Getting started with the FieldMetadata hierar-

chy” on page 608 will provide the name of the property or properties that contain the key field. The code in Example 21-42 assumes that only one property is used for the EntityKey and only one key value has been passed in (EntityID).

630 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

 Example 21-42. Getting the name of an entity’s key property

var propertyName = entityType.KeyMembers[0].Name;

For Reservation, this will return the string, ReservationID.

Now you can finally build the string using the names in propertyNames and the other

variables you have collected along the way (see Example 21-43).

 Example 21-43. Building the Entity SQL expression and closing the method

var stringBuilder = new StringBuilder().Append("SELECT entity ");

foreach (var name in propertyNames)

{ stringBuilder.Append(",ent." + name);

}stringBuilder.Append(" FROM " + container.Name.Trim() + "."

+ setName + " AS entity ");

stringBuilder.Append(" WHERE entity." + propertyName + " = " + entityId); return stringBuilder.ToString();

} //end of the method

Example 21-44 displays a method that calls the SingleEntityEsql method you’ve just built. Note that the query is explicitly executed so that you can work with the results,

not the actual query, and so that you don’t have to worry about inadvertently executing

the query again.

 Example 21-44. Testing the SingleEntityEsql method

private static void DynamicESQLTest()

{ using (BAEntities context = new BAEntities())

{

var eSql = SingleEntityEsql <Reservation>(90, context);

var query = context.CreateQuery<DbDataRecord>(eSql);

var results = query.Execute(MergeOption.AppendOnly);

//PLACEHOLDER: iterate through the results (Example 21-47)

}

Example 21-45 shows the Entity SQL expression created by the SingleEntityEsql method.

 Example 21-45. The Entity SQL expression that results

SELECT entity,entity.Customer,entity.Trip,entity.Payments,entity.UnpaidReservation

FROM BAEntities.Reservations AS entity

WHERE entity.ReservationID = 90

Building Dynamic Queries and Reading Results | 631

Download from Library of Wow! eBook <www.wowebook.com>

Creating Queries on the Fly with CreateObjectSet and Query

Builder Methods

The previous section went through a lot of steps to build an Entity SQL expression on

the fly. It also gave you an example that helped to deepen your understanding of work-

ing with the metadata. However, you can take advantage of the Entity SQL query builder methods to simplify some of the steps performed in that example.

If you recall working with query builder methods as early as Chapter 3 in this book, you’ll remember that these methods require a minimal amount of Entity SQL syntax

and will build the Entity SQL in the background for you as well as create an ObjectQuery that you must then execute.

Creating the queries in this manner does require an instantiated ObjectContext, whereas

building the Entity SQL using the example provided in the previous section could have

been built without an ObjectContext, although that method did use the context in order

to leverage the simplest way to get access to the MetadataWorkspace.

Much of the work with the MetadataWorkspace in the previous example is focused on

discovering the navigation properties, and you can’t avoid using the MetadataWork space for that purpose.

But in a scenario where the discovery is unnecessary—perhaps the method does not

need to do projections—or if the required properties are passed in for projection or

even for another purpose, such as filtering or ordering, you can the skip the Metadata

Workspace completely. Following are a few examples.

The first is a common scenario where you might want to return a set of entities with a

particular sort order.

Example 21-46 encapsulates logic in a method that can be called from an external method that is unaware of the ObjectContext. Notice that the method uses a variable

called localContext. That refers to a local property that either returns an already ex-

isting instance of an ObjectContext or instantiates a new one if needed. The

SortedEntityList method doesn’t care where the context comes from.

 Example 21-46. A generic method to return a sorted list of objects

private static List<TEntity> SortedEntityList<TEntity>(string sortProperty)

where TEntity : class

{ var query = (ObjectQuery<TEntity>)localContext.CreateObjectSet<TEntity>();

if (!string.IsNullOrWhiteSpace(sortProperty))

{

query = query.OrderBy("it." + sortProperty);

}

return query.ToList();

}

632 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

You can then call, for example, SortedEntityList<Customer>("LastName") from another layer in the application without it needing to know about the ObjectContext. This works

well for separation concerns whether you are working with POCOs or EntityObject

types.

The method uses CreateObjectSet to enable you to generically define the entity to query

for. This is cast to an ObjectQuery in order to allow the OrderBy composition. Notice

that OrderBy uses an Entity SQL predicate, indicating that it is a query builder method,

not a LINQ query. The method executes the query and returns the results in a List<T>. If the method were to return the query, it would force the calling code to have access to the context in order to execute the query—exactly what we are trying to avoid.

While the EntitySet name was not needed in this example, you can

easily get the EntitySet name by calling ObjectSet.EntitySet.Name as

opposed to the means of extracting it from the metadata that was used

in the previous example.

There are a few scenarios you should consider for this type of method. If you want to

do a projection in your query, you’ll be returning DbDataRecord types; therefore, the

calling code would pass in <DbDataRecord> as the generic type to be used and returned by the method.

In Chapter 15, you learned how to build model-defined functions. You can use these functions as well in a dynamic method; however, because the Entity SQL syntax is

different, you’ll need to account for that.

An expression that sorts with the FullNameReverse model-defined function could look

like this:

localContext.CreateObjectSet<Customer>().OrderBy("BAModel.FullNameReverse(it)") It would be a little trickier to write something that can handle this and a simple scalar

property at the same time. You’d have to either require the caller to pass in the model

namespace or go dig it out of the metadata, and you would need an indication that this

is a function so that your code will know to express the OrderBy differently.

Leveraging CreateObjectSet to return Entity SQL, not just a query

The method creates and executes a query, then returns results. What if you really want

the Entity SQL expression? As an example, you might be using EntityClient, which

requires Entity SQL.

You can still benefit from the simpler means of building the query.

Building Dynamic Queries and Reading Results | 633

Download from Library of Wow! eBook <www.wowebook.com>

Once the query has been created, rather than executing it, you can grab its

CommandText property using query.CommandText. The CommandText of the query created

in SortedEntityList<Customer>("LastName") is:

"SELECT VALUE it FROM ([BAEntities].[Contacts]) AS it ORDER BY it.LastName"

Reading the Results of a Dynamically Created Query

Iterating through the data without knowing what is in there might be a little tricky.

However, since this was an ObjectQuery, all of the data is in the ObjectContext. So, as

you iterate through the data, you can access ObjectStateEntries and use the tricks you

learned earlier in this chapter to find out about the entities using generic code.

You can replace the empty iteration used earlier with a new bit of code that will do the

following for each DbDataRecord returned by the query:

1. Cast the row to an IExtendedDataRecord, which will turn the DbDataRecord into a

record containing a DataRecordInfo object, a FieldCount property, and a list of items

representing the fields of the row.

Based on the query executed in Example 21-44, you should expect the row to contain the following:

• Field(0): A Reservation entity

• Field(1): A Customer entity

• Field(2): A Trip entity

• Field(3): EntityCollection<Payment>

2. Iterate through each field in the row.

3. Identify whether the field is an EntityType.

4. Pass the EntityKey of the entity to another method that will find the

ObjectStateEntry in the ObjectStateManager and list the name and value of each

field.

5. Identify whether the field is an EntityCollectionType.

6. Cast the field to an IEnumerable, and then iterate through the entities in that col-

lection and perform the same method on the EntityKey of each entity.

Casting to the IEnumerable is not a random act of coding. You need to

cast the field to something in order to access it, but the EntityCollec

tion surfaces as a generic List<Payment>, which causes a problem. Be-

cause this code is dynamic, you can’t specify the type. It would be nice

to cast it to a List<EntityObject>, but you cannot cast a generic

List<T> to another generic List<T>. Therefore, casting to a standard list

type, such as ICollection or IEnumerable, does the trick. Internally,

there are advantages to using IEnumerable, so this was the winning target

of the cast.

634 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

In Example 21-44, a line of code indicated a placeholder for iterating through the data.

Replace that placeholder with the code in Example 21-47, which drills deep into the FieldMetadata hierarchy. The routine calls out to another method, DisplayFields,

shown in Example 21-48.

 Example 21-47. Iterating through the results and determining whether the navigation properties are entities or EntityCollections

foreach (IExtendedDataRecord record in results)

{

var fieldMetadata = record.DataRecordInfo.FieldMetadata;

for (int i = 0; i < record.FieldCount; i++)

{

//If the navigation property is an Entity, list its fields.

switch (fieldMetadata[i].FieldType.TypeUsage.

EdmType.BuiltInTypeKind)

{

case BuiltInTypeKind.EntityType:

DisplayFields(((EntityObject)(record[i])).EntityKey, context);

break;

case BuiltInTypeKind.CollectionType:

{

var entities = (System.Collections.ICollection)(record[i]);

foreach (EntityObject entity in entities)

DisplayFields(entity.EntityKey, context);

}

break;

}

}

Console.ReadKey();

}

The DisplayFields method takes the EntityKey and the context, and then digs into the

ObjectStateManager to get the information it needs regarding the entity. Like the visu-

alizer, this method takes into account the possibility of complex types, as shown in

Example 21-48.

 Example 21-48. The DisplayFields method getting the field names and values from metadata private static void DisplayFields(EntityKey key, ObjectContext context)

{ var entry = context.ObjectStateManager.GetObjectStateEntry(ekey);

var fieldcount = entry.CurrentValues.FieldCount;

var metadata = entry.CurrentValues.DataRecordInfo.FieldMetadata;

Console.WriteLine(entry.CurrentValues.DataRecordInfo

.RecordType.EdmType.Name);

for (var i = 0; i < fieldcount; i++)

{

switch (metadata[i].FieldType.TypeUsage.EdmType.BuiltInTypeKind)

{

case BuiltInTypeKind.PrimitiveType:

Console.WriteLine(" " + metadata[i].FieldType.Name + ": " +

entEntry.CurrentValues[i].ToString());

break;

Building Dynamic Queries and Reading Results | 635

Download from Library of Wow! eBook <www.wowebook.com>

 case BuiltInTypeKind.ComplexType:

var complexType = entEntry.CurrentValues.GetDataRecord(i);

for (var j = 0; j <= complexType.FieldCount; j++)

Console.WriteLine(" " + cType.GetName(i) + ": " +

complexType[j].ToString());

break;

}

}

Console.WriteLine();

}

Example 21-49 shows the final output of the sample, using the dynamically built Entity

SQL query from Example 21-44 and the dynamically evaluated results.

 Example 21-49. The results of the generic query displayed using generic code

Reservation

ReservationID: 90

ReservationDate: 12/4/2005 12:00:00 AM

ContactID: 569

TripID: 32

RowVersion: System.Byte[]

Customer

ContactID: 569

FirstName: Cecil

LastName: Allison

Title: Mr.

AddDate: 1/10/2004 5:46:14 PM

ModifiedDate: 8/7/2008 8:27:07 AM

RowVersion: System.Byte[]

CustomerTypeID: 3

InitialDate: 10/21/2003 6:19:27 AM

PrimaryDestinationID: 48

SecondaryDestinationID: 51

PrimaryActivityID: 28

SecondaryActivityID: 4

Notes:

BirthDate: 4/13/1988 12:00:00 AM

HeightInches: 63

WeightPounds: 152

DietaryRestrictions:

CustRowVersion: System.Byte[]

Trip

TripID: 32

DestinationID: 34

LodgingID: 224

StartDate: 3/4/2006 12:00:00 AM

EndDate: 3/11/2006 12:00:00 AM

TripCostUSD: 1500

Payment

PaymentID: 8

PaymentDate: 4/1/2005 12:00:00 AM

636 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

ReservationID: 90

Amount: 300.0000

ModifiedDate: 4/1/2005 12:00:00 AM

RowVersion: System.Byte[]

Payment

PaymentID: 9

PaymentDate: 5/2/2005 12:00:00 AM

ReservationID: 90

Amount: 1200.0000

ModifiedDate: 5/2/2005 12:00:00 AM

RowVersion: System.Byte[]

This demonstrates the power you can access by combining the MetadataWorkspace and

the ObjectStateManager.

Zlatko Michailov’s blog post titled “How to Parse an EntityDataReader”

will give you the tools you need to iterate through the shaped results of

an EntityClient query, identifying whether the items contain scalar val-

ues, a single entity object, an EntityCollection, and more. The post is

at http://blogs.msdn.com/esql/ in the November 2007 archive.

Creating and Manipulating Entities Dynamically

Now, you will combine what you have learned in this chapter in these last two exam-

ples, which will let you use the MetadataWorkspace and ObjectStateManager along

with .NET’s Reflection API to create entities on the fly without previous knowledge of

their types. The second example will show you how to build not just an entity, but an

entity graph dynamically and then persist modifications back to the database.

If you need to build reusable, generic code, there are a lot of important lessons em-

bedded into these examples. If you do not anticipate building code like this, it is likely that you will find the capabilities exposed in these samples to be very educational with

respect to how much control the Entity Framework runtime can put in your hands.

Creating EntityObjects Without Entity Classes

Much of the metadata work done in the previous examples used metadata to inspect

existing classes that were created through an ObjectContext. What if you want to create

classes without the benefit of the generated entity classes? For example, you could have

an application that works with any Entity Framework EDM passed to it that has no

previous knowledge of the classes.

You can do this by combining the MetadataWorkspace API with System.Reflection.

Although many people are familiar with using System.Reflection for inspecting .NET

objects, you also can use it to instantiate objects using type information. You can Creating and Manipulating Entities Dynamically | 637

Download from Library of Wow! eBook <www.wowebook.com>

generate that type information through the MetadataWorkspace API and then let reflection create object instances for you.

For System.Reflection Newbies

Although System.Reflection sounds like a daunting topic (it certainly did to me at one

point), once you’ve used it a few times it’s not so scary. Types in .NET have classes that you can instantiate—for example, you just saw some code where an assembly object

was instantiated using an assembly file.

In the same way you have been investigating the metadata with the MetadataWork space API, System.Reflection allows you to open assemblies and read information

about modules, classes, parameters, events, and so forth. For example, Assembly has a

method called GetTypes, which returns all of the types defined in the assembly.

Also, Assembly has a CreateInstance method, which allows you to create an instance

of an object. Assembly.CreateInstance calls System.Activator.CreateInstance, which

you can also use directly.

You can do a lot of amazing things with System.Reflection. Look for the MSDN doc-

umentation topic titled “Reflection Overview” for more information.

Creating a new entity with CreateInstance

You can instantiate a new class using the CreateInstance method of either

System.Activator or System.Reflection.Assembly. Using Assembly.CreateInstance re-

quires that you have a type instance of an assembly. Internally, Assembly.CreateIn stance will eventually call Activator.CreateInstance.

There are reasons for choosing one over the other, but Assembly.CreateInstance suits

the needs of these examples since the sample will do some other things with the assembly.

ObjectStateManager and MetadataWorkspace Versus Reflection

You can see how similar reflection is to the MetadataWorkspace API by calling

Assembly.GetTypes:

Dim someTypes = myAssembly.GetTypes _

.Where(Function(t) t.BaseType.Name = "EntityObject")

So, why use one over the other?

Each API offers functionality that is not available in the other. For example, reflection

lets you create new instances of objects, whereas the ObjectStateManager doesn’t.

Furthermore, the ObjectStateManager has methods and properties that are specific to

entities, such as GetKeyMembers. However, some of the functionality overlaps, most no-

tably the ability to set values. Although doing this with reflection takes fewer steps,

setting values on EntityObjects using the CurrentValueRecord.SetValue and related

638 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

SetString, SetDateTime, and similar methods performs much better. So, it will not be

uncommon to mix the two APIs in a solution.

Getting a reference to an assembly. You can load an assembly into an Assembly type in a number of ways. One way is to use an existing object that comes from that assembly.

For example, if you have created a Customer object from the BreakAway model’s as-

sembly, you can use that object to get a handle to the assembly using the static method

Assembly.GetAssembly, as shown in Example 21-50.

 Example 21-50. Loading an assembly programmatically

var customer=context.Customers.First();

var assembly=Assembly.GetAssembly(customer.GetType);

Creating an entity from the assembly. Now you can use this assembly object to instantiate any class within the assembly. You can do this by passing in the strongly typed name of the

class, as shown in Example 21-51.

 Example 21-51. Instantiating a class in the assembly

var payment = assembly.CreateInstance("BAGA.Payment");

This will create a new Payment object instance.

You can see how using reflection can let you build dynamic code. You can create objects

just by passing in a string.

Notice that the strong name of the type does not use the model name,

as you are required to do when working with the metadata. Instead, it

needs the strongly typed name of the class as it is known to the assembly,

and in this example, the assembly’s namespace is BAGA.

Using System.Type to inspect the EntityType

The object in the preceding section is a Payment entity, which has only the methods and

properties of a Payment entity. That hasn’t gotten you very far with dynamic

programming.

However, you can additionally create a Type object, either directly from the assembly

or from the Payment instance. (See Example 21-52.)

 Example 21-52. Creating a Type object to be used with reflection

var typeInfo=assembly.GetType("BAGA.Payment");

A Type object allows you to do the same type of detective work on the Payment type that

you did on the metadata.

Creating and Manipulating Entities Dynamically | 639

Download from Library of Wow! eBook <www.wowebook.com>

System.Type also lets you set values. Although setting scalar values using an Entity Framework CurrentValueRecord provides better performance, you cannot modify any

other properties. System.Type will allow you to access and modify all of the properties

of the object, including navigation properties. You’ll do this in the next example.

Creating Entities and Graphs Dynamically

Now it’s time to try out some of these tricks. The following example is a culmination

of many of the techniques explained in this chapter, from using the MetadataWork space to dynamically creating relationships on the fly using the RelationshipManager.

The code enables you to create entities, build a graph, and save the graph data—all

with generic code that has no knowledge of the entity classes that it will work with.

The example in this section will do the following:

1. Receive information about an existing parent entity and the child to be created

dynamically. An array of KeyValuePairs will be used to provide field names and

values for populating the new object.

2. Query the model to retrieve the parent entity.

3. Create a new instance of the child.

4. Populate the child with the data.

5. Attach the child to the parent using the RelationshipManager shown earlier in this

chapter.

6. Save the new child to the database.

You will do all of this without any references to the actual entity types so that you can

use any parent and child with the method.

The method shown in Example 21-53 takes advantage of a few custom extension methods that are listed in the following example. The extension methods are handy for

a lot of MetadataWorkspace and ObjectStateManager scenarios.

Comments throughout the code explain what’s happening in detail.

 Example 21-53. Building an entity graph dynamically with database interaction

private static bool AddChildToParentObject<TEntity, TChildEntity>

(ObjectContext context,

KeyValuePair<string, int> parentId,

KeyValuePair<string, object>[] fieldValues)

where TEntity : class

where TChildEntity : class

{ var metadataWorkspace = context.MetadataWorkspace;

string childSetName = context.CreateObjectSet<TChildEntity>().EntitySet.Name;

string parentSetName = context.CreateObjectSet<TEntity>().EntitySet.Name;

ObjectQuery<TEntity> parentQuery =

640 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

 context.CreateObjectSet<TEntity>()

.Where("it." + parentId.Key + "=" + parentId.Value.ToString());

TEntity parentObject = parentQuery.FirstOrDefault();

if (parentObject == null)

{

return false;

}

var assembly = Assembly.GetAssembly(parentObject.GetType());

//System.Type of the child entity for type inspection

Type childType = assembly.GetTypes()

.First(t => t.Name == typeof(TChildEntity).Name);

var childEntity = Activator.CreateInstance(childType);

//association name to get the related end

//GetAssociationName is a custom extension method

var associationName = metadataWorkspace.GetAssociationName

(childSetName, parentSetName);

//this works for EntityObjects and POCOs, too

var parentRelMgr =

context.ObjectStateManager.GetObjectStateEntry(parentObject).RelationshipManager;

var parentRelatedEnd = parentRelMgr.GetRelatedEnd(associationName, childSetName);

parentRelatedEnd.Add(childEntity);

//modify child properties through ObjectStateEntry, _

//provides better performance in this case than with reflection

var childEntry = context.ObjectStateManager.GetObjectStateEntry(childEntity);

//iterate through FieldValues passed in to assign the properties

foreach (var item in fieldValues)

{

childEntry.CurrentValues.SetValue

(childEntry.GetOrdinalforProperty(item.Key), item.Value);

}

return true;

}

A lot is going on in this example, but you learned most of it earlier in the chapter. The

example serves two purposes. First, it demonstrates how to use reflection to create

entities dynamically, as well as how to build graphs dynamically. Second, it demon-

strates the combined power of the ObjectStateManager, the MetadataWorkspace, and

reflection to build dynamic code, whether it is an entire application that is purely dynamic or part of an application that needs to be dynamic.

Custom extension methods used by AddChildToParentObject

The AddChildToParentObject method leverages two custom methods. One is an exten-

sion method for MetadataWorkspace and the other is for ObjectStateEntry. Exam-

ple 21-54 lists these two methods.

Creating and Manipulating Entities Dynamically | 641

Download from Library of Wow! eBook <www.wowebook.com>

 Example 21-54. The GetAssociationName extension method

public static string GetAssociationName

(this MetadataWorkspace metadataWorkspace, string endA, string endB)

{ return (from a in metadataWorkspace.GetItems<AssociationType>(DataSpace.CSpace)

where a.AssociationEndMembers.Any(ae => ae.Name == endA)

where a.AssociationEndMembers.Any(ae => ae.Name == endB)

select a.Name).FirstOrDefault();

}public static int GetOrdinalByPropertyName

(this ObjectStateEntry ose, string propertyName)

{ var property = ose.CurrentValues.DataRecordInfo.FieldMetadata

.Where(f => f.FieldType.Name == propertyName).FirstOrDefault();

if (property.FieldType != null)

{

return property.Ordinal;

}

else {

throw new ArgumentOutOfRangeException("propertyName",

"No such property found: " + propertyName);

}

}

Calling the AddChildToParentObject method

The AddChildToParentObject method takes its parent and child types as generic types

and requires a number of values to be passed in as parameters, as listed here and shown

in Example 21-55, where the method is called:

• The key field name and value for the parent, which are bundled in a

KeyValuePair. This allows the method to query the database for the parent record.

The method assumes that only a single value is required for the key, which will

suffice for most cases.

• An array of KeyValuePairs, which take a string and an object. Each key/value pair

represents the field name and value of the fields that will be populated for the new

child entity.

 Example 21-55. Calling the dynamic method

Reservation res;

using (var context = new BAPOCOs())

{ var kvpParent = new KeyValuePair<string, int>("ReservationID", res.10); KeyValuePair<string, object>[] kvpChildValues = {

new KeyValuePair<string, object>("PaymentDate", DateTime.Now),

new KeyValuePair<string, object>("Amount", (Decimal) 400)};

if (

AddChildToParentObject<Reservation, Payment>

(context, kvpParent, kvpChildValues))

{

context.SaveChanges();

642 | Chapter 21: Manipulating Entities with ObjectStateManager and MetadataWorkspace Download from Library of Wow! eBook <www.wowebook.com>

 }

}

Out of context, this looks like a lot of work—even more work than just using classic

ADO.NET. But if you need to create dynamic functionality in your applications that

can handle any entity types you throw at it, this is definitely the way to go.

Summary

In this chapter, you investigated ObjectStateManager and MetadataWorkspace—the two

APIs that provide most of the internal functionality of the Entity Framework—and you

put them to work. Using the same classes and features that Object Services and EntityClient use to parse queries and materialize objects, you learned how to create a

variety of dynamic functionality and explored some useful scenarios for taking advant-

age of these features.

In addition to your new knowledge, you now have at your disposal a slew of methods

and utilities that you can use in your applications, such as:

• A set of handy overloads to extract ObjectStateEntries from the

ObjectStateManager

• A method to allow you to explore objects that are being managed by the context

• A number of methods for working with entities without knowing in advance what

their types will be

Although you might not be able to overcome some of the more sophisticated challenges

in your applications with a simple method that is already available in the Entity Frame-

work, access to these low-level tools enables you to build your own tools and func-

tionality. And keep in mind that you have the entire .NET framework at your disposal

to solve your application challenges. Don’t always expect to lean on the Entity Frame-

work runtime just because you are using entities.

Summary | 643

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 22

Handling Exceptions

Things can go awry in many ways when you’re querying or updating entities. You might

attempt to save entities to the database that are missing related data—a reservation

without a trip, perhaps, or a reservation without a customer. The database might have

a constraint that is not reflected in the model; if a user saves data that breaks the rule of the constraint, the database will throw an error. Or someone may have modified or

even deleted a record while another user was editing it.

The Entity Framework includes a specialized set of exceptions for capturing problems

like these that arise during query compilation and command execution.

In your application, you should embed each query execution or call you make to SaveChanges in some sort of mechanism for catching these. When one of these exceptions is raised, it is up to your code to handle it.

In this chapter, we’ll look at exceptions that are unique to the Entity Framework and how to handle them. Some exceptions are Entity Framework-specific exceptions,

and others are .NET exceptions caused by faulty operations when using the Entity

Framework.

You should strongly consider exception handling for any application

you write. If this is a new topic for you, plenty of resources are available

on the Web, in the MSDN documentation, and in a variety of books to

teach you accepted patterns and practices for implementing exception

handling in .NET.

Preparing for Exceptions

In Object Services, you can get exceptions from the moment you try to instantiate an

ObjectContext to the time you call SaveChanges. Use try/catch blocks around this func-

tionality to capture exceptions.

645

Download from Library of Wow! eBook <www.wowebook.com>

In these examples, I show the catch clause calling imaginary methods

such as MyExceptionHandler.

For instance, you can dispose the context in the finally clause in case it was instantiated

before the error occurred, as shown in Example 22-1.

 Example 22-1. Catching an exception and disposing the ObjectContext in finally

BAEntities context = null;

try

{ context = new BAEntities();

var res = context.Reservations.First();

return res;

}catch (Exception ex)

{ MyExceptionHandler(ex);

}finally

{

if (context != null){

context.Dispose();

}

}

When you employ the using block in the context’s instantiation, as shown in Exam-

ple 22-2, the context and any resources that it controls will be disposed at the end of the block. The using block is wrapped in a try/catch so that an exception can be handled—for example, with an imaginary MyExceptionHandler method.

When it sees a using block, the compiler actually creates a try/

finally block with a call to dispose in the finally.

 Example 22-2. Catching an exception when ObjectContext is automatically disposed

try

{ using (BAEntities context = new BAEntities())

{

var res = context.Reservations.First();

}

}catch (Exception ex)

{

646 | Chapter 22: Handling Exceptions

Download from Library of Wow! eBook <www.wowebook.com>

 MyExceptionHandler(ex);

}

Exceptions can occur when you’re creating connections and executing commands with

EntityClient. It’s equally important to capture those exceptions and be sure the con-

nections and DataReaders are properly disposed. Example 22-3 shows a using block being employed to ensure that these objects are disposed. The using block is wrapped

by a try/catch block so that exceptions thrown from inside the using block can be

caught and reported—for example, by the same imaginary MyExceptionHandler method

used in Example 22-2.

 Example 22-3. Catching an exception when using EntityClient

var eSql = "SELECT VALUE r FROM BAEntities.Reservations AS r";

try

{ using (var connection = new EntityConnection("Name = BAEntities"))

{

var command = connection.CreateCommand();

EntityDataReader dataReader = null;

command.CommandText = eSql;

connection.Open();

dataReader = command.ExecuteReader

(CommandBehavior.SequentialAccess | CommandBehavior.CloseConnection);

while (dataReader.Read())

{

//process results

}

connection.Close();

}

}catch (Exception ex)

{ MyExceptionHandler(ex);

}

The variables that were instantiated inside the using block—eConn, eComm, and

eReader—will all be disposed at the end of the block even if an exception is thrown

from within that block. Therefore, you don’t need to explicitly dispose them.

As an example, if there was a problem with the Entity SQL string, a

System.Data.EntitySqlException will be thrown from the using block and caught in

the catch block.

Handling EntityConnectionString Exceptions

A number of problems are the result of a missing, misinformed, or even malformed

EntityConnectionString. Let’s first look at what exceptions you might encounter and

then how to handle them.

Handling EntityConnectionString Exceptions | 647

Download from Library of Wow! eBook <www.wowebook.com>

Connection String Can’t Be Found or Is Improperly Configured:

System.ArgumentException

When you instantiate an ObjectContext, the context requires an EntityConnection,

which in turn depends on the EntityConnectionString.

If the default or specified connection string cannot be found either in the application’s .config file or in other locations that you’ve designated, a System.ArgumentExcep tion will be thrown that reads as follows:

The specified named connection is either not found in the configuration,

not intended to be used with the EntityClient provider, or not valid.

You will get this error if you are creating the EntityConnection directly and are passing

in a connection string name with the same problem.

This is easier to deal with during debug mode than at runtime. In debug mode, check

your entity connection string. If you are relying on the default in the .config file, make sure its name matches the EntityContainer name of your model. In our examples, the

EntityContainer is BAEntities and the connection string should have the same name:

<connectionStrings>

<add name="BAEntities" />

If that’s not the problem, check that the string doesn’t contain some type of invalid

formatting.

Metadata Files Cannot Be Found: System.Data.MetadataException

This is a problem that developers encounter frequently.

The metadata attribute of the connection string has the names and paths of the model

files (e.g., BAModel.csdl, BAModel.msl, BAModel.ssdl) hardcoded into it. The path could be a file path:

res:C:/BAModel.csdl|C:/BAModel.ssdl|C:/BAModel.msl

or a notation that indicates the files are embedded in an assembly:

res://*/BAModel.csdl|res://*/BAModel.ssdl|res://*/BAModel.msl

Many times in the ObjectContext life cycle these files need to be read. When you in-

stantiate the context, it looks for the files. If the files specified in the metadata tag cannot be found in the designated file path or in one of the referenced assemblies, a System.Data.MetadataException will be thrown.

If you have changed the name of the EDMX file in your solution, this can cause prob-

lems with the metadata attribute.

648 | Chapter 22: Handling Exceptions

Download from Library of Wow! eBook <www.wowebook.com>

Handling Connection String Exceptions

Example 22-4 shows how to prepare for possible exceptions the aforementioned problems can throw. It looks for the message related to a missing or invalid Connection

String as well as the MetadataException. You can handle the errors right in the code or

throw them to the calling code.

 Example 22-4. Catching a connection string problem in an ArgumentException

catch (ArgumentException ex)

{ if (ex.Message.Contains("specified named connection is either not found"))

{

MyBadConnectionNameExceptionHandler(ex);

}

else

{ MyArgumentExceptionHandler(ex);

}

}catch (MetadataException ex)

{ MyMetadataExceptionHandler(ex);

}catch (Exception ex)

{ MyExceptionHandler(ex);

}

It’s not easy to resolve these types of problems in your code, and your best resolution

in your exception handler is to exit out of the method elegantly, provide the end user

with some information, and log the error in such a way that an administrator or support

person can assist with the issue. The System.Data.MetadataException or System.Argu

mentException contains no special information other than the message itself. You will

benefit by using standard exception-handling methods, such as reporting the message

along with the connection string and where the message came from.

Handling Query Compilation Exceptions

If the connection succeeds, the next thing you will probably do that involves an Entity

Framework-related exception is to create and execute a query. Again, let’s first look at

the possible exceptions and then how to handle them, where possible.

Invalid LINQ to Entities Query Expressions:

System.NotSupportedException

LINQ’s syntax has the benefit of IntelliSense and compile-time checking, so it is less

prone to runtime errors. However, certain syntax will be valid to the compiler, but not

when it comes time to process the query.

Handling Query Compilation Exceptions | 649

Download from Library of Wow! eBook <www.wowebook.com>

A good example of this is the use of the .NET method ToShortDateString(). The fol-

lowing LINQ query passes through the compiler’s checks because ToShortDateString

is a valid method for a Date type:

from r in context.Reservations select r.ReservationDate.ToShortDateString()

But at runtime, when it attempts to compile the query into a native store command, it

will discover that ToShortDateString has no direct mapping to any function in the store.

Thus, the store command cannot be created, which results in a System.NotSupporte

dException with the following message:

LINQ to Entities does not recognize the method 'System.String ToShortDateString()'

method, and this method cannot be translated into a store expression.

You should be able to catch these during debug mode.

Invalid Entity SQL Query Expressions: EntitySqlException

EntitySqlException will probably be the most common exception you will encounter

as you are learning Entity SQL and debugging your applications. So, you might as well

make friends with it straightaway. Also, remember that the query builder methods can

help you with a good portion of your Entity SQL queries, even though they provide

only a subset of the operators and functions you can use when you write Entity SQL

directly.

EntitySqlException is thrown when your Entity SQL expression cannot be parsed or

processed. You should be testing every one of the Entity SQL expressions you write so

that you don’t have any runtime surprises. However, if you are building dynamic quer-

ies, chances are greater that bad syntax will sneak in. And there are always the “what

if” scenarios that you can’t even imagine until they occur, but that you might lie awake

worrying about at night. So, rather than lose sleep, you can hedge your bets by making

sure you catch any of the exceptions properly.

Don’t forget about using LINQPad to test your LINQ to Entities and

Entity SQL query expressions, which you were introduced to in early

chapters of this book. It’s a great help for testing queries and expressions

without having to constantly debug your code to do so.

Here’s an example of a malformed expression where the AS operator is missing (a com-

mon mistake). The expression should be using AS con after contacts; but with that

missing, the variable con used elsewhere in the expression has no meaning.

SELECT VALUE con FROM BAEntities.contacts WHERE left(con.Lastname,1)='S'

The exception passes back some very helpful information contained in its properties.

The exception details are as follows:

650 | Chapter 22: Handling Exceptions

Download from Library of Wow! eBook <www.wowebook.com>

Column= 61

In the preceding code, column 61 is where con.Lastname begins.

ErrorContext= multipart identifier

multipart identifier refers to the fact that multiple items (con and Lastname) exist

and the parser has an issue with one (or more) of them. If the expression had selected a single value (SELECT VALUE con), the ErrorContext would be a single-part

identifier.

ErrorDescription = "'con.Lastname' could not be resolved in the current scope

or context. Make sure that all referenced variables are in scope, that required

schemas are loaded, and that namespaces are referenced correctly."

Again, this is saying that the parser just can’t figure out what con.Lastname is, and

is listing all of the possible causes.

Another example occurs when you use incorrect functions or operators. Even the

provider-specific functions and operators will be checked here. For instance, the fol-

lowing expression will throw an error because it incorrectly uses SqlServer.AVERAGE

instead of the correct function, SqlServer.AVG:

SELECT VALUE SQLServer.AVERAGE(p.amount)

FROM BAEntities.Payments AS p

The exception’s message will read as follows:

'SqlServer.AVERAGE' cannot be resolved into a valid type constructor or function,

near function, method or type constructor, line 1, column 30."

The line break is not accounted for in the message. In addition, the parsing occurs long

before any attempts to touch the database are made.

Handling an EntitySqlException

Example 22-5 shows the newly added catch block to trap an EntitySqlException.

 Example 22-5. Adding a check for an Entity SQL problem

catch (EntitySqlException ex)

{ MyESqlExceptionHandler(ex);

}catch (ArgumentException ex)

{ if (ex.Message.Contains("specified named connection is either not found"))

{

MyBadConnectionNameExceptionHandler(ex);

}

else

{

MyArgumentExceptionHandler(ex);

}

}catch (MetadataException ex)

Handling Query Compilation Exceptions | 651

Download from Library of Wow! eBook <www.wowebook.com>

{ MyMetadataExceptionHandler(ex);

}catch (Exception ex)

{ MyExceptionHandler(ex);

}

EntityCommandCompilationException Thrown by the Store Provider

Command compilation occurs when the Entity Framework creates the command tree

to represent a store query. It’s possible that the provider compiling the query is causing a problem. In this case, an EntityCommandCompilationException will be thrown with the

following message, and no additional details:

An error occurred while preparing the command definition.

This is another tricky one to solve, although you won’t be able to solve it in your code.

The best you can do is to log the exception, inform the user if necessary, and gracefully

exit the method. In a more layered application you may desire different behavior in

response to the exception.

Creating a Common Wrapper to Handle Query Execution

Exceptions

If you have a defined system for handling or perhaps logging errors, you wouldn’t want

to rewrite that handling code for every query. Instead, you could build a set of wrappers

to execute queries and handle particular exceptions. Each wrapper method would take

either an ObjectQuery or a LINQ to Entities query as an argument and return either a

single object or some type of enumerable collection of objects. If the query execution

fails, the method could provide code to handle the different types of exceptions.

Here are the signatures of two methods, each with the two overloads for ObjectQuery

or LINQ to Entities queries. The first method returns a single entity and the second

returns a List of entities:

public TEntity GetFirstorDefault<TEntity>(ObjectQuery<TEntity> objectQuery)

public TEntity GetFirstorDefault<TEntity>(IQueryable<TEntity> L2EQuery)

public List<TEntity> GetList<TEntity>(ObjectQuery<TEntity> objectQuery)

public List<TEntity> GetList<TEntity>(IQueryable <TEntity> L2EQuery)

Each method executes the given query and returns the requested result. For example,

the first method would call return objectQuery.FirstOrDefault() to execute the query.

The two methods that take ObjectQuery parameters can take an ObjectQuery whether

it was created using context.CreateQuery, a new ObjectQuery, or a QueryBuilder

method. The methods that accept LINQ to Entities queries can take straight LINQ to

Entities queries or those that were created by invoking a CompiledQuery.

652 | Chapter 22: Handling Exceptions

Download from Library of Wow! eBook <www.wowebook.com>

Example 22-6 shows the first of these methods with all of its Exceptions stubbed out.

Remember that the ObjectQuery queries can throw EntitySqlExceptions, while the

LINQ to Entities queries can throw InvalidOperationExceptions.

 Example 22-6. The GetFirstOrDefault wrapper method for executing ObjectQuery queries

public TEntity GetFirstOrDefault<TEntity>(ObjectQuery<TEntity> objectQuery)

{ try

{

return objectQuery.FirstOrDefault();

}

catch (EntitySqlException ex)

{

MyESqlExceptionHandler(ex);

}

catch (ArgumentException ex)

{

if (ex.Message.Contains("specified named connection is either not found"))

{

MyBadConnectionNameExceptionHandler(ex);

}

else

{

MyArgumentExceptionHandler(ex);

}

}

catch (MetadataException ex)

{

MyMetadataExceptionHandler(ex);

}

catch (Exception ex)

{

MyExceptionHandler(ex);

throw(ex); //a single example of throwing

// the exception back to the calling code

}

}

Example 22-7 shows code that calls the GetList method overload to execute a LINQ

query.

 Example 22-7. Executing a LINQ to Entities query with the GetList method

var query = context.Contacts.OfType<Customer>()

.Include("Reservations")

.Where(c => c.Reservations.Any());

var custList = dal.GetList<Customer>(query);

If you want error handling in the calling code to handle particular scenarios, you will

need to throw the exceptions after handling them, demonstrated in the final catch block

of Example 22-6. But these query helper methods allow you to avoid repeating exception-handling code that you may want to repeat for every query. Note that you

Creating a Common Wrapper to Handle Query Execution Exceptions | 653

Download from Library of Wow! eBook <www.wowebook.com>

don’t necessarily need to return defined entities from the queries. You could return a DbDataRecord, a List<DbDataRecord>, or any other predefined class. The only thing that you can’t return would be an anonymous type that results from a LINQ to Entities

projection because anonymous types are designed only to work within the method that

creates them.

Handling Exceptions Thrown During SaveChanges Command

Execution

When it’s time to save changes back to the database you have another set of problems

to be aware of. The connection issues raised earlier in this chapter will come into play

if you are instantiating a new ObjectContext or EntityConnection to perform the update.

But the data itself causes other problems. The Entity Framework will catch some of the

problems and prevent the data from going to the database. The database will detect

others and will return an error to the application.

UpdateException: Thrown When Independent Association Mapping

Constraints Are Broken

This type of UpdateException is particular to independent associations where foreign

keys are not present. If you have violated a relationship constraint built into the model, an UpdateException will be thrown.

In a relationship without foreign keys, relationships are mapping constraints. If an association defines a 1:* (One to Many) relationship between two entities, any child in

that relationship that is being saved needs to have some evidence of a parent. Even if

the parent entity is not attached to the child, the EntityReference must have an EntityKey. Example 22-8 shows a new reservation being created in memory and added to the context, which then calls SaveChanges. But no Customer is associated with the

context, not even an EntityKey for the CustomerReference. As a result, this call to SaveChanges will fail.

 Example 22-8. A SaveChanges call that will fail because the new reservation has no Customer identified

var res = new Reservation();

res.Trip = myTrip; //this Trip instance exists in memory

res.ReservationDate = DateTime.Today;

using (var context = new BAEntities())

{ context.Reservations.AddObject(res);

context.SaveChanges(); //fails

}

With the independent association, SaveChanges throws an UpdateException with the

following message:

654 | Chapter 22: Handling Exceptions

Download from Library of Wow! eBook <www.wowebook.com>

Entities in 'BAEntities.Reservations' participate in the FK_Reservations_Customers'

relationship.

0 related 'Customers' were found. 1 'Customers' is expected.

The ObjectContext doesn’t do this type of validation when you add the reservation to

the context, because you might attach a Customer; set its CustomerID; or in the case of

entities that inherit from EntityObject, assign the CustomerReference.EntityKey, later.

Therefore, the only time it’s confident that you have no intention of identifying a Customer is when you are calling SavingChanges, and that’s when it does its check.

You should detect this type of problem before your code goes into pro-

duction. You can also employ your own business rules to perform these

types of checks before it’s time to call SaveChanges. You’ll find validation

code being executed as part of a SaveChanges command in later chapters

of this book.

For example, you could have specific rules in the Reservation class that

test to see whether a Customer is defined by checking for the presence of

the CustomerReference.EntityKey or by checking that the Customer prop-

erty is not null. The code behind SaveChanges uses the MetadataWork

space to read the model, identify the constraints, and then check the

entities in the cache to see whether they pass or fail the constraints. You

could write similar generic code to perform this type of function as well,

if it makes sense for you to do so.

UpdateException: Thrown by Broken Constraints in the Database

Unsatisfied relationships that are defined by foreign keys will also throw an

UpdateException, but the exception will most likely be the result of an error returned

by the database. I discussed this problem earlier in Chapter 19 in the section “Under-

standing Referential Integrity and Constraints” on page 537. Other constraints may not be defined in the mappings or handled by any business logic. If Example 22-8 were run against our current model where the relationship between reservation and customer

is defined using the Reservation.CustomerID, the UpdateException’s error will be dif-

ferent than in the previous case. The error message will be:

An error occurred while updating the entries. See the inner exception

for details.

The inner exception comes from the database provider—for example, a

System.Data.SqlClientException with the message:

The INSERT statement conflicted with the FOREIGN KEY constraint

"FK_Reservations_Customers". The conflict occurred in database

"BreakAway", table "dbo.Customers", column 'ContactID'. The statement

has been terminated.

Another common problem with a foreign key constraint occurs when the database does

not define a cascading delete. Such is the case with the BreakAway database, which will

Handling Exceptions Thrown During SaveChanges Command Execution | 655

Download from Library of Wow! eBook <www.wowebook.com>

not automatically delete all payments related to a reservation if that reservation is being deleted. Therefore, if an attempt is made to delete a reservation that would leave orphaned Payment records, the database will throw an error and will not execute the delete

command. That error is passed back to the client. If the client is the Entity Framework

and the error was a result of a SaveChanges call, an UpdateException will be thrown with

the following message:

The DELETE statement conflicted with the REFERENCE constraint

"FK_Payments_Reservations".

The conflict occurred in database "BreakAway", table "dbo.Payments",

column 'ReservationID'.

Relying on Entity Framework to Automatically Roll Back When an

UpdateException Occurs

In Chapter 20, you learned that SaveChanges is wrapped in an implicit transaction. If an UpdateException is thrown during the call to SaveChanges, this halts the entire SaveChanges method and causes any previously executed commands to be rolled back.

Entity Framework will not commit changes to the in-memory entities until the entire

transaction has succeeded.

Gleaning Details from UpdateException

UpdateException is part of the System.Data.Entity API and is an Object Services ex-

ception. It inherits from .NET’s DataException class and adds to it a valuable piece of

information: the ObjectStateEntry of the entity being processed when the error

occurred.

Figure 22-1 shows the UpdateException thrown by SaveChanges in Example 22-8, where the Reservation has no Customer.

 Figure 22-1. Exceptions from Object Services containing an ObjectStateEntry

656 | Chapter 22: Handling Exceptions

Download from Library of Wow! eBook <www.wowebook.com>

In the exception, you can see the StateEntries property. Multiple entries can appear

in this property; for example, if you have relationships to other entities being managed

by the context, the RelationshipEntry objects will be in this collection. But only the

primary entry will be displayed in the debug window. And in this window you can see

the ObjectStateEntry that is related to the Reservation, and that the entry has a pointer

back to the entity.

If you want to you can log this information or present it to the user.

Because the context might be tracking a number of entities, it’s not always going to be

obvious which entity caused the problem. By having this information returned in the

exception, you can handle the exception intelligently.

Planning for Other Exceptions Related to the Entity Framework

A number of other exceptions derive from the generic System.Data.EntityException.

Although some of these exceptions are internal, some may be raised simply as an EntityException.

For example, if there is a problem with the database server during command execution,

an EntityException with the following message could be thrown:

"An error occurred while starting a transaction on the provider connection.

See the inner exception for details."

The InnerException will contain the actual error from the database, such as the fol-

lowing error in which, for dramatic effect, the SQL Server service was paused on the

server:

"SQL Server service has been paused. No new connections will be allowed.

To resume the service, use SQL Computer Manager or the Services application

in Control Panel. Login failed for user 'domain\julie'. A severe error occurred

on the current command. The results, if any, should be discarded."

Although these are the exceptions you will most likely encounter, check

the documentation of the EntityException base class to learn about

some of the other exceptions that can occur during query and command

execution.

Not all exceptions that occur when working with entities occur during query or com-

mand execution. One example you may encounter is the System.InvalidOperationEx

ception. This will be thrown when, for instance, you try to detach an entity that is not

attached to the context.

InvalidOperationException is another exception you may want to plan for when work-

ing with entities.

Handling Exceptions Thrown During SaveChanges Command Execution | 657

Download from Library of Wow! eBook <www.wowebook.com>

Handling Concurrency Exceptions

Another important exception in the Entity Framework is the OptimisticConcurrencyEx

ception, which can be thrown when there are conflicts during database updates. The

next chapter is devoted to understanding how concurrency works in the Entity Frame-

work, how you can impact Entity Framework’s behavior, and how to handle the con-

flicts when they occur.

Summary

In this chapter, you saw that there are many opportunities for exceptions to be thrown

when querying or updating entities. You’ll need to catch these exceptions and do something about them, or you will have some very unhappy end users.

The various examples of handling these exceptions showed the handler within the code

where the exception occurred. Another common pattern is to raise exceptions to a

common ExceptionHandler that you can use throughout your application. This is not

specific to the Entity Framework, and you can find plenty of guidance on .NET excep-

tion handling in the documentation, articles, and other books that focus on handling

exceptions.

Now let’s learn about concurrency and how to handle exceptions that are specific to

problems related to database concurrency.

658 | Chapter 22: Handling Exceptions

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 23

Planning for Concurrency Problems

Concurrency issues are the bane of data access developers. In any sizable organization,

it is not uncommon for multiple users or services to be processing the same sets of

information. Not infrequently, different users may be updating the same piece of data

concurrently, and a conflict occurs. For instance, a salesperson could be modifying a

payment at the same time an accounting system is processing it. Or a scheduler might

delete a calendar item while another person in a different department was in the middle

of editing the same item.

These are two very different types of concurrency problems. In the first problem, you

need to consider whose changes are saved. Does the accounting system rule over the

salesperson, or vice versa? Do you simply take the last changes that were sent to the

database, overriding the changes that were just saved moments ago? In some organi-

zations, the focus is on a single record, whereas other organizations might get as gran-

ular as worrying about which fields in the record were updated by whom.

Another common type of concurrency problem occurs when a user tries to save changes

to data that no longer exists in the database. What do you do then? You might minimally

want to inform the user about the problem and give her an opportunity to take further

action, if she has the proper permissions.

It is a tangled web of conundrums and decision making on the part of the application

designer. Once your organization has devised the rules, it is up to the developer to

implement them.

In this chapter you’ll learn how to set up your model so that the Entity Framework will

alert you to conflicts when persisting data to the database, and then you’ll learn how

to capture and handle OptimisticConcurrencyExceptions.

659

Download from Library of Wow! eBook <www.wowebook.com>

Understanding Database Concurrency Conflicts

In the database world, there are two ways to deal with concurrency conflicts. One

involves pessimistic concurrency, where you expect the worst; the other is optimistic

concurrency, where you hope for the best.

With pessimistic concurrency the database row is locked when a user retrieves that

data and is then released when the user is finished working with that row. Nobody else

can touch that data until the row is unlocked. It greatly reduces the potential of con-

flicts, but it comes at a price. Pessimistic concurrency is not scalable, because it main-

tains open connections and it can cause excessive locking, long waits, or even deadlocks.

A number of data access technologies do not support pessimistic concurrency because

of the overhead involved. ADO.NET does not support it naturally (although it can be

simulated), nor does the ADO.NET Entity Framework. Therefore, this chapter will not

cover pessimistic concurrency, but will focus instead on optimistic concurrency.

Optimistic concurrency does not lock the database rows, and relies on you, the devel-

oper, to provide logic in your application to handle potential update conflicts.

Concurrency is an age-old problem for anybody who designs line-of-business applica-

tions, and there is no silver bullet solution. You need to understand your business rules, be aware that these scenarios will need to be considered, and build your business logic

to follow the rules you desire.

The Entity Framework does not magically solve the problem for you, either; however,

it does provide tools for you to implement your business logic.

Understanding Optimistic Concurrency Options in the Entity

Framework

With Entity Framework, what are your options when multiple people (or processes)

are concurrently editing data? First we’ll survey the lay of the land, and then we’ll dig

into implementation.

A few solutions are commonly used; however, a narrower field of applications will

process concurrency conflicts in a very granular way, which is not as common.

We’ll look at these options as they are generally used in software and then focus on

how the Entity Framework addresses them.

660 | Chapter 23: Planning for Concurrency Problems

Download from Library of Wow! eBook <www.wowebook.com>

Ignoring Concurrency Conflicts

Many small systems don’t even worry about these conflicts. When a user saves her

changes, they are written to the database regardless of what anybody else is doing or

has done.

The Entity Framework’s default commands play an interesting role here. Because an

Entity Framework update will update only the fields the user edited, it’s possible that

concurrent editing won’t even cause a problem. Imagine that User A retrieves a Customer record, and while she is editing that record User B edits the same Customer,

changing the BirthDate property. User B saves his changes. User A modifies the Cus

tomer’s Notes field and saves. The Entity Framework will write a command to update

the Notes field for that Customer. It won’t touch the BirthDate, so all of the edits by both users are safe.

When using stored procedures to update, however, this scenario won’t be so rosy.

Typically, a procedure will update every field regardless of its status. So, in that case, the original BirthDate value will be saved back to the database, and User B’s changes

will simply disappear.

Forcing the User’s Data to the Server (ClientWins)

In a system designed to alert you of conflicts, the system would alert you when User A

attempts to save her data, indicating that the record has been modified since the time

she initially retrieved it. In the Entity Framework, one possible response in this case is to force the current user’s updates to the database. This is also referred to as client wins. It’s different from ignoring the conflict, however, because it will update all of the values in the entity, even those that have not been edited. The impact in the scenario

described in the preceding section is that the BirthDate field and every other field in

the database record will be changed to reflect the user’s version of the data. It would

have the same effect as a stored procedure update.

Refreshing the User’s Data with Server Data (StoreWins)

In this second possible resolution, when the conflict is detected the user’s data is re-

freshed from the server. The entity that she has just modified in her application will be

updated to reflect the server’s current version of the data. Any edits she made will be

lost. That may sound malicious, but if this is the expected behavior of the application,

it shouldn’t be a problem. The application can alert the user and she can apply her edits

to the Notes field again (or the application can do that for her if, for example, the changes still exist in memory, or even in the Text value of a user control), and then she can save again. If a process that doesn’t involve a user is making the updates, you should apply

logic that doesn’t require the user interface.

Understanding Optimistic Concurrency Options in the Entity Framework | 661

Download from Library of Wow! eBook <www.wowebook.com>

Determining the Scope of Changes

You can discover whether data has changed on the server while a user is in the process

of editing the same data in a number of ways:

 Check for any change at all to the record

To do this, you would need to compare every field in the row to see whether that

row was edited. The Entity Framework supports this using a ConcurrencyMode

property that can be set to Fixed for any property that you want to check. Another

mechanism that developers use is a database function called checksum that com-

putes a hash value from all of the data in a particular row. The Entity Framework

doesn’t have direct support for checksum, but you can access it using Entity SQL,

because of the way Entity SQL allows you to use database functions.

 Check for particular field changes

Here you need to focus on only one or more specific fields that would indicate a

change has been made. Database rowversion (a.k.a. timestamp) fields are great for

this, although not every database supports this data type. But you may really be

interested in a few specific properties. For example, with an employee record, you

may determine that the only piece of data in which a conflict would create a prob-

lem is the Social Security number. Rather than using rowversion, which indicates

that something changed with no regard to which field that may have been, you

could specifically watch only the Social Security number field. If it was updated

during a concurrent operation, it’s time to raise a flag.

 Check to see whether the fields you are updating have changed

While the Entity Framework does this by checking the original and current values

of its entities, it will not build commands that will do this comparison in the da-

tabase. You would have to do additional queries to check in this way.

Using rowversion (a.k.a. timestamp) for Concurrency Checks

The simplest mechanism for detecting that anything in a database row has changed is

to use a rowversion field. A rowversion is a binary field that is automatically updated whenever changes are made to any columns in the row. Many databases have a specific

data type that is used for this. As noted earlier, SQL Server’s timestamp is actually an

alias for the rowversion field and does not contain a date time. (See the sidebar “The

Designer View of SQL Server 2008’s rowversion Data Type” on page 663.) With databases that do not have an explicit rowversion type, patterns are available for creating triggers to update fields in your database.

If you use rowversion fields in your database and they are surfaced as properties in your

entities, the Entity Framework will need to cause that single field to be checked to detect whether a change was made to the data in the data store.

662 | Chapter 23: Planning for Concurrency Problems

Download from Library of Wow! eBook <www.wowebook.com>

The Designer View of SQL Server 2008’s rowversion Data Type

Because the BreakAway database is a SQL Server database and uses the timestamp data

type, I will use that term frequently in this discussion. Microsoft will eventually dep-

recate the use of timestamp as an alias for rowversion. The database design tools in Visual Studio 2010 and SQL Server Management Studio still use the timestamp type and do

not appear to know about rowversion. The EDM Wizard will identify the store types

as timestamp which is still common for a number of databases. In SSDL, rowversion is

valid, but you would have to type that in manually and this change would be overwritten

by the Designer anytime you update the model from the database.

A number of entities in the BreakAway model have RowVersion properties, which map

to timestamp types in the database. Because the designers do not support the new type’s

name, rowversion, you will still see the name timestamp used for these fields’ type.

In the conceptual model, the RowVersion properties are non-nullable binary fields. In

the store schema in the EDMX, the field is also non-nullable (Nullable=false) and its

StoreGeneratedPattern is Computed, so the Entity Framework does not need to worry

about managing this field:

CSDL

<Property Name="RowVersion" Type="Binary" Nullable="false" MaxLength="8"

FixedLength="true" />

SSDL

<Property Name=" RowVersion " Type="timestamp" Nullable="false"

StoreGeneratedPattern="Computed" />

When working with disconnected data, a rowversion field—whether your database

inherently supports it or you have to use a binary field with triggers—is one of the most

important tools you have in your arsenal for dealing with concurrent systems. Other-

wise, if you want to identify that a change has been made to a table row, you may have

to consider a less efficient method of concurrency checking, such as checking every

single field in the row.

Implementing Optimistic Concurrency with the Entity

Framework

In the Entity Framework, there are two ways to enable optimistic concurrency. You

were introduced to the first in Chapter 7 when mapping stored procedures to entities.

The Update function allows you to flag fields to check for concurrency using any fields

that were marked with “Use Original Value” and then checking the returned Rows

Affected property.

Implementing Optimistic Concurrency with the Entity Framework | 663

Download from Library of Wow! eBook <www.wowebook.com>

See the section in Chapter 7 titled “Concurrency checking with Use

Original Value and Rows Affected Parameter options” on page 150 for

a refresher on that feature as well as an explanation of how the database

is involved in concurrency checking.

The second way to leverage concurrency checks with Entity Framework is done when

you are not using stored procedures for your updates. Using this feature requires two

steps:

1. Define which property or properties will be used to perform the concurrency check.

2. Handle the OptimisticConcurrencyException that is thrown when the check fails.

First we’ll look at the various methods and effects of identifying the properties for the

concurrency checks, and after that we’ll dig into the exception handling.

Flagging a Property for Concurrency Checking

Because concurrency is defined on a property-by-property basis in the Entity Frame-

work, the first step is to identify the property or properties that you will use for con-

currency checking. We’ll use the Contact entity’s RowVersion property.

ConcurrencyMode is used to flag a property for concurrency checking and can be found

in the Properties window. Its options are None, which is the default, and Fixed, as shown

in Figure 23-1.

 Figure 23-1. Setting a property’s concurrency mode

664 | Chapter 23: Planning for Concurrency Problems

Download from Library of Wow! eBook <www.wowebook.com>

By setting Concurrency Mode to Fixed, you ensure that the property value is included in the where predicate when an entity is updated or deleted during a call to SaveChanges.

How the Entity Framework Uses the ConcurrencyMode Property

Following is a closer look at the inner workings of ConcurrencyMode than you learned

in Chapter 10. When Object Services prepares an Update or Delete command, it uses any properties marked for concurrency checking as a filter in the command along with

the identity key(s).

With the ConcurrencyMode of Contact.RowVersion set to Fixed, anytime a Contact is updated, the Update command will look for the Contact using its EntityKey and its

RowVersion property.

For example, if Charles Petzold is knighted, as many of us think he should be, his

Title property will change from Mr. to Sir, as shown in Example 23-1.

 Example 23-1. Changing a property of an entity with a concurrency-checking property

using (BAEntities context = new BAEntities())

{ var contact = context.Contacts

.FirstOrDefault(c => c.LastName == "Petzold"

&& c.FirstName == "Charles");

contact.Title = "Sir";

context.SaveChanges();

}

When SaveChanges is called, the command shown in Example 23-2 will be sent to the database.

 Example 23-2. The T-SQL Update command when using a rowversion field for concurrency checking exec sp_executesql N'update [dbo].[Contact]

set [Title] = @0

where (([ContactID] = @1) and ([RowVersion] = @2))

select [RowVersion]

from [dbo].[Contact]

where @@ROWCOUNT > 0 and [ContactID] = @1',N'@0 nchar(3),@1 int,@2

binary(8)',@0=N'Sir',@1=850,@2=0x000000000000791A

That last value in Example 23-2 is the binary RowVersion field. The command is attempting to update a Contact record where ContactID=1 and RowVer

sion=0x000000000000791A, the original value of RowVersion when the contact was first

retrieved.

Notice that the command is designed to return the updated RowVersion value so that

the entity will get the new value.

If that RowVersion value had changed since the first query, due to someone else editing

that record, the Update command will not find a matching record and will return an

Implementing Optimistic Concurrency with the Entity Framework | 665

Download from Library of Wow! eBook <www.wowebook.com>

error to the client. The Entity Framework will report this as an OptimisticConcurren cyException.

This same type of concurrency check will also happen if the user is attempting to delete

the contact. It will add the RowVersion to the WHERE clause of the command. Every prop-

erty that is marked as ConcurrencyMode=Fixed in your entity will be incorporated into

the WHERE clause of Update and Delete commands in this way.

You’ll read more about OptimisticConcurrencyException after reviewing some other

options.

Concurrency Checking Without a rowversion Field

Although the rowversion concurrency checks are the most common methods develop-

ers use, you may not have that data type available as an option.

In that case, you can use the ModifiedDate DateTime properties in place of a

rowversion field, marking their ConcurrencyMode as Fixed, but you need to be sure they

are being updated. Although the SavingChanges customization example in Chap-

ter 11 ensures that a particular model’s ObjectContext always updates the ModifiedDate fields, this does not give you full coverage. You need to be sure that any

application, process, or even user accessing the database directly updates that field

every time, or the concurrency check will not detect a change.

Another method is to mark every property in the entity as FIXED. Although this does

the trick, it makes your commands less efficient because all of the properties’ original

values will become part of every WHERE clause.

Concurrency Checking on a Checksum in the Data Store

With the assumption that you are thinking about CheckSum because you are unable to

modify the database to use rowversion fields, a last resort is to use a QueryView or a SSDL

function, and to write store function queries (store queries written directly in the SSDL,

as you saw in Chapter 16) directly into your model.

If you have checksum functions in the data store or you are implementing them in the

SSDL, you still need to consider the actual act of performing the update so that you can

get a concurrency check. If the CheckSum value is directly in the data table, it is repre-

sented in your entity as a binary property. It can be marked as a Fixed field and used

for concurrency checks in the same way you use the RowVersion or any other property

in an entity.

If you have used QueryView or a store function to query data that includes a checksum

value, you will need to use stored procedures for the update and delete operations, and

these stored procedures will need to perform the concurrency checking.

666 | Chapter 23: Planning for Concurrency Problems

Download from Library of Wow! eBook <www.wowebook.com>

SqlServer.CHECKSUM Won’t Cut It for Concurrency Checks

SQL Server’s CHECKSUM function is included in the SqlClient and you can use it in Entity

SQL. However, because you can use only provider-specific functions with Entity SQL,

you cannot use this, or the checksum functions that other providers offer, with LINQ.

If you were to use CHECKSUM directly in T-SQL, you could write CHECKSUM(*), but the

Entity SQL version requires that the individual expressions be listed—in this case, properties of an entity.

SqlServer.CHECKSUM has a few limitations that prevent it from being useful in Entity

SQL as a way to do a concurrency check when you don’t have access to the server. The

first limitation is that it will take up to only three parameters, so you can’t pass in an entire list of properties. The second is that all of the values must be of the same type.

Concurrency Checks for EntityReference Navigation Properties

If an entity that contains a concurrency field is part of an independent association (no

foreign key) and the navigation property for that association points to a parent or “One”

side of a relationship, the concurrency check will still take place if that relationship

changes. In the database, a foreign key value represents the relationship. So, as long as

something changes that value and causes the RowVersion field to change, when your

application attempts to update the same row the change will be detected.

Concurrency Checks and Inherited Types

The Entity Framework does not support concurrency checks in derived types, period.

You will see this quickly if you attempt to change the ConcurrencyMode property of any

property in a derived type.

With inherited types, however, you may only use properties from the base type for

concurrency checks. If you set the ConcurrencyMode of any property in a derived type to

Fixed, you will get a validation error on the model that says that new concurrency requirements are not allowed for subtypes of base EntitySet types.

Given that you can’t perform concurrency checks on derived types, it’s important to

see what behavior you can expect if the base type has any concurrency properties.

When you edit an inherited type that has a concurrency check in its base type, con-

currency checking will happen, but only on the base type itself. Let’s take a closer look

at this.

In the BreakAway model, Customer inherits from Contact and Contact has a

RowVersion field that is now being used for concurrency checks. What happens when

a Customer entity is being edited and a field that is specific to Customer has been modi-

fied? (See Example 23-3.)

Implementing Optimistic Concurrency with the Entity Framework | 667

Download from Library of Wow! eBook <www.wowebook.com>

 Example 23-3. Modifying a derived entity whose base entity has a concurrency-checking property var customer = context.Contacts.OfType<Customer>.First();

customer.InitialDate = customer.InitialDate.Value.AddDays(1);

context.SaveChanges();

In this case, two commands will be sent to the database. The first will test to see whether anything in the Contact has changed. It is an update command that first declares a new

variable (@p) and then attempts to update it using the ContactID and RowVersion filter,

as shown in Example 23-4.

 Example 23-4. T-SQL checking for a change in the table related to the base entity before updating the derived entity

exec sp_executesql N'declare @p int

update [dbo].[Contact]

set @p = 0

where (([ContactID] = @0) and ([RowVersion] = @1))

select [RowVersion]

from [dbo].[Contact]

where @@ROWCOUNT > 0 and [ContactID] = @0',N'@0 int,@1

binary(8)',@0=1,@1=0x00000000000016B9

If Contact is not found, the command will throw an error back to the ObjectContext,

which will in turn throw an OptimisticConcurrencyException. However, if the first command succeeds, the context will send the next command, which is the one to update the InitialDate field in the Customer table, to be executed in the database.

There is a problem that you need to keep an eye on here. This mechanism assumes that

all updates are being made through this model and that anytime something in the Customer table is changed, the RowVersion field of the Contact table will be modified.

However, other applications may be using the same data, or even other EDMs that map

to this data where the Customer is not a derived type. If one of the Customer table fields in the database is modified, the concurrency check will not detect it.

In this case, if you do need the check to be performed, you may want to rely on stored

procedures for your DML commands.

Concurrency Checks and Stored Procedures

If you have mapped stored procedures to the insert, update, and delete functions of an

entity, any properties marked as Fixed in that entity will not automatically be used in

concurrency checks. However, you can define concurrency checking in the function

mappings; the stored procedure that the functions are based on needs to be designed

correctly.

668 | Chapter 23: Planning for Concurrency Problems

Download from Library of Wow! eBook <www.wowebook.com>

Defining a stored procedure to perform concurrency checking

If your stored procedure has one or more parameters that take in values to be used for

concurrency checking, when mapping to these parameters you can force the original

value to be sent to that parameter with the Use Original Value checkbox.

There is one other important requirement for the stored procedure and the mapping.

The database needs to return the new timestamp value to the entity. That way, if you

need to use the original value again, it will be the correct version.

Adding an additional SELECT statement after the UPDATE command will impact the pro-

cedure’s ability to return an error, because the SELECT statement will most likely suc-

ceed. Therefore, between the UPDATE command and the SELECT command, you will need

to test to see whether the update was successful. If it was, continue with the SELECT;

otherwise, the procedure will be finished and the error will be returned to your application.

The UpdatePayment stored procedure you already mapped to the Payment entity is written

for you to use in this way. Example 23-5 displays the stored procedure.

 Example 23-5. The UpdatePayment stored procedure

ALTER PROCEDURE [dbo].[UpdatePayment]

@PaymentID INT,

@date DATETIME,

@reservationID INT,

@amount MONEY,

@modifiedDate DATETIME,

@rowversion timestamp

AS

UPDATE payments

SET paymentdate=@date,reservationID=@reservationID,amount=@amount

WHERE

paymentid=@paymentid AND RowVersion=@rowversion

IF @@ROWCOUNT>0

SELECT RowVersion AS newRowVersion

FROM payments WHERE paymentid=@paymentid

In Chapter 8, when you mapped the UpdatePayment function, you selected Use Original Value next to the RowVersion property and you instructed the function to capture the

RowVersion value that the stored procedure returned.

If you want to see this in action, now you can test the concurrency checking with

Example 23-6, a short routine you can use to test the UpdatePayment procedure.

Implementing Optimistic Concurrency with the Entity Framework | 669

Download from Library of Wow! eBook <www.wowebook.com>

 Example 23-6. Testing for update conflicts with function mappings

using (var context = new BAEntities())

{ var payment = context.Payments.First();

if (payment.PaymentDate != null)

{

payment.PaymentDate = payment.PaymentDate.Value.AddDays(1);

}

var origRowVersion = payment.RowVersion;

try

{

context.SaveChanges();

var newRowVersion = payment.RowVersion;

if (newRowVersion == origRowVersion)

{

Console.WriteLine("RowVersion not updated");

}

else

{

Console.WriteLine("RowVersion updated");

}

}

catch (OptimisticConcurrencyException)

{

Console.WriteLine("Concurrency Exception was thrown");

}

}

You’ll see that the Payment entity’s RowVersion property is updated when the update is

successful. If you test the collision by editing the database manually at the suggested

breakpoint, an OptimisticConcurrencyException will be thrown.

Handling OptimisticConcurrencyExceptions

Now it’s time to look at the other piece of the concurrency puzzle: handling the ex-

ception that is thrown when a concurrency check fails.

When a check fails and a System.Data.OptimisticConcurrencyException is thrown, this

is where you can inject your business logic to determine how to deal with the issue.

The most common resolutions, as described earlier, are to force the client-side data to

the server, or to pull the server-side data to the client and lose the client’s edits. You can perform either of these actions using ObjectContext.Refresh. While many applications handle concurrency conflicts, it is more common to have a sweeping rule rather

than to have logic handle very narrow cases. We’ll look at both scenarios, but we’ll

spend more time on the more commonly used patterns.

670 | Chapter 23: Planning for Concurrency Problems

Download from Library of Wow! eBook <www.wowebook.com>

Using ObjectContext.Refresh

ObjectContext.Refresh allows you to refresh entities in the context from the database.

You can also use it in other places in your application. Here we’ll focus on using it to

handle OptimisticConcurrencyExceptions.

You can use Refresh to force either a ClientWins scenario or a StoreWins scenario with

your updates.

Refresh takes two parameters. The first is RefreshMode, which has the options

RefreshMode.ClientWins and RefreshMode.StoreWins. The second parameter is either a

single entity or an IEnumerable of entities. The IEnumerable can be something such as

a List or an Array, or even an IQueryable (LINQ to Entities query) or ObjectQuery:

context.Refresh(RefreshMode.ClientWins, aTrip)

If the RefreshMode is ClientWins, a query will be executed against the database to get

the current server values for the entity. Then it will push those values into the original values of the entity. That will make the entity think it started out with those server

values and it will build the update commands accordingly when SaveChanges is called

again.

StoreWins will replace all of the current and original values of the entity with the data

from the server. The user will lose her edits, and instead the cached data will be in sync with the database. Entities that are refreshed with StoreWins will have an Unchanged

state and will be ignored by SaveChanges until they are edited again.

To get your first look at this, let’s focus on a single entity and see what Refresh looks

like in a basic scenario.

Using Refresh with ClientWins

In Example 23-7, a simple query returns a single entity. If a conflict arises during a call to SaveChanges, that same entity is passed into the Refresh method.

 Example 23-7. A ClientWins refresh on a single entity

using (var context = new BAEntities())

{ var con = context.Contacts

.FirstOrDefault(c => c.LastName == "Petzold"

&& c.FirstName == "Charles");

con.Title = "Sir";

try

{

context.SaveChanges();

}

catch (OptimisticConcurrencyException)

{

//Refresh the contact entity,using ClientWins;

context.Refresh(RefreshMode.ClientWins, con);

Handling OptimisticConcurrencyExceptions | 671

Download from Library of Wow! eBook <www.wowebook.com>

//SaveChanges again;

context.SaveChanges();

}

}

Before SaveChanges is called, another user has edited the same contact, causing the

RowVersion field to be updated. An OptimisticConcurrencyException will be thrown

when SaveChanges is called.

To test the OptimisticConcurrencyException, you’ll need to emulate an

edit being made by another user or process. To do this, place a break-

point on context.SaveChanges. When the breakpoint is hit, open the

Contact table in the Solution Explorer and edit the matching record.

Figure 23-2 shows the state of that contact using the Entity State Visualizer (which you built in Chapter 21) before the Refresh is executed.

 Figure 23-2. The state of the Contact entity before calling ObjectContext.Refresh

The only changed fields are Title, with the current value of Sir and original value of

Mr., and the ModifiedDate field, which was altered in the SavingChanges event handler.

Next, Refresh(ClientWins) is called, which executes a query to retrieve the current

values of this entity in the database, including the new timestamp. Figure 23-3 shows the contact after Refresh has been called.

All of the original fields have been updated to reflect the latest server values, and you can see that on the server side some naughty person changed Mr. Petzold’s first name

to Chuck, causing the RowVersion field to be updated.

Because every property was modified in this entity, each property’s EntityState was

changed to Modified. That means when SaveChanges is called again, every value will be

672 | Chapter 23: Planning for Concurrency Problems

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 23-3. ObjectContext.Refresh with ClientWins refreshing all of the original values of the designated entities, even those that have not changed, leaving every property modified sent to the server for updating. This time the record will be found because you have

the new value of the RowVersion for the WHERE clause. The update succeeds and we now

have Sir Charles Petzold, which has quite a nice ring to it.

Using Refresh with StoreWins

Let’s take the same scenario and see what happens when you choose the StoreWins

option.

Figure 23-4 shows the state of the Contact entity after Refresh(StoreWins, con) has been called. The entity’s state is Unchanged and the Current and Original values have

been replaced with the server-side values. The local entity has lost its nice title of Sir and has acquired the nickname Chuck. When SaveChanges is called again, it will do

nothing because this entity is now Unchanged.

In this case, there is no need to call SaveChanges again, because you have done a StoreWins refresh on a single entity, which happens also to be the only entity in the

ObjectContext. However, if you are building a generic routine, it’s safer to call Save

Changes anyway, as you may have other entities in the ObjectContext that you need to

deal with. It doesn’t waste any resources if there is nothing to change.

Refreshing Collections of Entities

You also can use Refresh with a collection of entities. The easiest scenario with which

to use this overload is when you already have a set of entities encapsulated in a collec-

tion. For example, if you are working with a list of Contact entities, you can refresh the entire list at once. This makes an assumption that your business rules don’t require any

Handling OptimisticConcurrencyExceptions | 673

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 23-4. ObjectContext.Refresh with StoreWins refreshing the entities by completely synchronizing them with the database

granular decision making to determine whether this type of update is appropriate for

every entity in that collection.

Example 23-8 shows a simple query that changes any contact with a FirstName of Chuck to Charles. Then, if there is a concurrency exception, it uses the brute force of a

ClientWins refresh to ensure that this change is made to the database.

 Example 23-8. Doing a ClientWins refresh on a set of entities

using (var context = new BAEntities())

{ var contacts = context.Contacts.Where(c=>c.FirstName =="Chuck").ToList();

foreach (var contact in contacts)

contact.FirstName = "Charles";

try

{

context.SaveChanges();

}

catch (OptimisticConcurrencyException ex)

{

context.Refresh(RefreshMode.ClientWins, contacts);

context.SaveChanges();

}

}

In this case, we are passing the entire list of Contact entities to the Refresh method.

674 | Chapter 23: Planning for Concurrency Problems

Download from Library of Wow! eBook <www.wowebook.com>

As I explained earlier in the book, I recommend that you not work di-

rectly with the query unless you want to execute it again, and instead

that you create a set of results, such as a List. This is to avoid accidental

query execution. However, I did test to see what would happen if I

passed an ObjectQuery and a LINQ IQueryable directly into a Refresh

command. Did it wreak havoc? No. It made no attempt to execute the

query again. The behavior was no different from passing in the List, as

in Example 23-8.

Refresh builds a query to retrieve the current store contact data by placing the EntityKeys into one big WHERE clause so that it is a single query:

WHERE [Extent1].[ContactID] IN (218,219,222,228)

This is an improvement over the query that was built in Entity Framework in .NET 3.5,

which put the predicates into a series of ORs—for example, WHERE ([Extent1].[Contac

tID] = 218) OR ([Extent1].[ContactID] = 219), and so on.

This way, it is able to refresh all of the items in the collection at once.

Refreshing Related Entities in a Graph

If a modified entity is within a graph and it causes a concurrency exception, be cautious

about which entities you pass into the Refresh method.

Beware! Refresh does not impact graphs. It will only refresh the root

(parent) node of the graph.

For instance, in Example 23-9, addressGraph is a graph whose main entity is an address that contains a contact. If the contact’s update throws a concurrency exception when

SaveChanges is called, you might want to solve that by calling Refresh on the addressGraph.

 Example 23-9. Refreshing a graph—not the results you might expect

var addressGraph = context.Addresses.Include("Contact").First();

addressGraph.Contact.Title = "Dr.";

try

{ context.SaveChanges();

}catch (OptimisticConcurrencyException)

{ context.Refresh(RefreshMode.StoreWins, addressGraph);

context.SaveChanges();

}

Handling OptimisticConcurrencyExceptions | 675

Download from Library of Wow! eBook <www.wowebook.com>

But only the parent entity of the graph, the Address entity, will be refreshed. The contact will continue to cause the exception every time you save changes.

There is a way to attack this problem, however. Remember that the exception returns

ObjectStateEntry objects for the entity that was causing the problem.

This means that in the exception, you will have the ObjectStateEntry for the contact,

which contains a reference to the entity. You can extract that entry’s entity and call

Refresh on the contact, and then call SaveChanges again if necessary. Example 23-10

shows the code for this. Note that I’ve added the ex variable to the catch clause so that

I can use it.

 Example 23-10. Getting a graph child to refresh

catch (OptimisticConcurrencyException ex)

{ var contact = ex.StateEntries[0].Entity;

context.Refresh(RefreshMode.ClientWins, contact);

context.SaveAllChanges();

}

Rewinding and Starting Again, and Maybe Again After That

It’s important to realize that when handling these exceptions, SaveChanges won’t just

continue on its merry way, updating the next entity in the context. If you hit the ex-

ception, the SaveChanges method rolls back whatever it has already done and then halts.

In the exception handler you can call SaveChanges again. However, if that call fails, you

need to catch it again. If you are pushing a lot of changes in one SaveChanges call and

a number of exceptions are in there, each time you call SaveChanges you may have fixed

the last problem but you will then hit the next one.

So again, you need to trap that error, handle it, and call SaveChanges again. You may

end up with code that looks like the code in Example 23-11.

 Example 23-11. Catching a number of concurrency exceptions

try

{ context.SaveChanges();

}catch (OptimisticConcurrencyException ex)

{ //do some work, then try again

try

{

context.SaveChanges();

}

catch (OptimisticConcurrencyException ex)

{

//do some work, then try again

try

676 | Chapter 23: Planning for Concurrency Problems

Download from Library of Wow! eBook <www.wowebook.com>

{

context.SaveChanges();

}

catch (OptimisticConcurrencyException ex)

{

//do some work, then try again

try

{

context.SaveChanges();

}

catch (OptimisticConcurrencyException ex)

{

//and so on and so forth....

}

}

}

}

You will be better off taking advantage of the virtual SaveChanges method, overriding

it to apply your own exception-handling code. Then you can call the method recursively

as needed. Example 23-12 shows the overridden SaveChanges method, which I’ve added to the partial class for BAEntities.

 Example 23-12. Handling concurrency exceptions recursively in the overridden SaveChanges method public override int SaveChanges(System.Data.Objects.SaveOptions options)

{ //TODO: perform any validations

try

{

return base.SaveChanges(options);

}

catch (OptimisticConcurrencyException ex)

{

//handle concurrency exception, e.g. with ClientWins, here then try again

Refresh(RefreshMode.ClientWins, ex.StateEntries[0].Entity);

return SaveChanges(options);

}

catch (Exception ex)

{

MyEventHandler(ex);

throw ex;

}

}

You can find other ways to recursively call SaveChanges in the

MSDN documentation. One example, which is combined with a

System.Transaction.TransactionScope (more on transactions and ex-

ceptions later in this chapter), is in the topic titled “How to: Manage

Object Services Transactions (Entity Framework).”

Handling OptimisticConcurrencyExceptions | 677

Download from Library of Wow! eBook <www.wowebook.com>

Reporting an Exception

Using the details from the exception, you can create a log error or even a message to a

user that describes the conflict in detail. The client-side data is readily available to create this report. If you need even more details from the server, you’ll have to hit the server

to get details about what actually changed there, although this is not a common scenario.

Don’t forget about the EF Tracing and Caching Provider Wrappers by

EF team member Jarek Kowalski that I’ve pointed to earlier in this book.

They could be very helpful if you want to log the exceptions. You can

find the sample at http://code.msdn.com/EFProviderWrappers.

Reporting the exception could be as simple as alerting the user that there was a conflict

when updating this payment.

You can use the techniques you learned in Chapter 21 to access the property names and values in the ObjectStateEntry provided by the StateEntries property and then

build a string to report a message to the user or store that message in a logging system.

If a user modified a variety of data, knowing which specific piece of data was causing

the problem could be useful in letting the user decide whether her edits should be sent

to the server or whether she would rather have the latest data from the server.

The level of information to access is up to you. Do you want the exception handler to

retrieve the current store values as well? Should the user know who made that last

change and when? These are common decisions that have to be made for handling

concurrent data access, and again, they are not new to the Entity Framework.

Handling Concurrency Exceptions at a Lower Level

Although the generic ClientWins and StoreWins will suffice for many applications, in

some applications more granular exception handling is required. It’s difficult to come

up with rules for automating intricate exception handling, but because of the infor-

mation in the exception, if you do need to go to this level, many possibilities are open

to you. The rest of this chapter will explore some more heavy-duty exception handling.

Handling Exceptions in a Granular Way Without User Intervention

You may have your own concurrency rules that don’t require a user to get involved.

Perhaps for Payment entities, your rule is that if the client is editing the amount, the

client’s data should win; otherwise, refresh the payment information from the server.

You may decide that the client should update all contact data. You may not even place

a concurrency check on the contact for this reason, but you may have a best practice

that requires concurrency checks on every entity.

678 | Chapter 23: Planning for Concurrency Problems

Download from Library of Wow! eBook <www.wowebook.com>

Because the last suggested rule is that all contacts should get a ClientWins, it doesn’t make sense to hit them one at a time. So, on the first occurrence of a conflict with a

contact, the code will refresh all contacts in the ObjectContext. The ManagedEntities

extension method that you created in Example 21-7 in Chapter 21 will come in handy in this scenario.

Let’s see what the exception code looks like for these different scenarios. First, you can separate the logic for the various types into their own methods, as shown in Exam-

ple 23-13. The methods are designed to be in the BAEntities context class.

 Example 23-13. Subroutines for handling exceptions differently for payments than for contacts private void RefreshPayment(ref ObjectStateEntry entry)

{ //rule - if amount was changed locally, then clientwins, otherwise, storewins

if (entry.GetModifiedProperties().Contains("Amount"))

{

Refresh(RefreshMode.ClientWins, entry.Entity);

}

else

{

Refresh(RefreshMode.StoreWins, entry.Entity);

}

}

private void RefreshContacts(ref ObjectStateEntry entry)

{ //Contacts will always have a ClientWins refresh

//Refresh all of the contacts when the first Contact conflict occurs

var managedContacts = ManagedEntities<Contact>();

Refresh(RefreshMode.ClientWins, managedContacts);

}

If during the course of the call to SaveChanges another concurrency conflict arises with

a contact, all of the contacts will be refreshed again. However, this will refresh even

those contacts that have not been modified. When your entities inherit from

EntityObject, you can filter the managedContext variable using the entity’s EntityS

tate property:

var managedContacts = ManagedEntities<Contact>()

.Where(c=>c.EntityState==EntityState.Modified);

For POCOs, however, you’ll need to provide a version of the ManagedEntities method

to do the job in ObjectStateManager.

Example 23-14 shows an overload of a ManagedEntities extension method for ObjectContext, which filters by EntityState.

 Example 23-14. OverloadedManagedEntities extension, which filters by EntityState

public static IEnumerable<T> ManagedEntities<T>

(this ObjectContext context, EntityState entityState)

{

Handling Concurrency Exceptions at a Lower Level | 679

Download from Library of Wow! eBook <www.wowebook.com>

 var oses = context.ObjectStateManager.GetObjectStateEntries();

return oses

.Where(entry => entry.Entity is T)

.Where(entry=>entry.State==entityState)

.Select(entry => (T)entry.Entity);

}

Then you can populate the managedContacts variable as follows:

var managedContacts = ManagedEntities<Contact>(EntityState.Modified)

The updated exception code inside SaveChanges now farms out the Refresh call to the

appropriate method after it tests to be sure the entry is not a relationship, as shown in

Example 23-15.

 Example 23-15. Updated exception handling for calling subroutines

var conflictEntry = ex.StateEntries[0];

if (! conflictEntry.IsRelationship)

{ var entity = conflictEntry.Entity;

if (entity is Contact) //this will refresh customers, too

{

RefreshContacts(ref conflictEntry);

}

else if (entity is Payment)

{

RefreshPayment(ref conflictEntry);

}

else

{

Refresh(RefreshMode.ClientWins, conflictEntry);

}

}

You can use many variations of this once you’ve gotten into the exception and you

know how to drill into the details to make some decisions based on what you’ve found.

Handling Multiple Conflicts

The default method of conflict resolution in the Entity Framework has a few downsides.

The first is that none of the data in the context will be saved until every conflict has

been resolved. If you are updating a lot of records at once in a highly concurrent system, your SaveChanges operation may go through many loops before all of the commands

execute successfully. The user may or may not notice the delay, but the delay could

cause other conflicts.

Another downside is that you can’t easily gather a list of all of the conflicts to present to the user at a later time for resolution. You might want to give the user a list of the

conflicts, rather than giving the user one conflict at a time, with no indication of how

many more there might be. This is because you have to resolve the first conflict 680 | Chapter 23: Planning for Concurrency Problems

Download from Library of Wow! eBook <www.wowebook.com>

encountered before you can get a report of the next conflict; otherwise, that first conflict will keep coming back.

Separating the good from the bad and the ugly

One way to set the conflicting entities aside is to remove them from the context and

save all of the entities that don’t pose any conflicts. Then, as soon as the save is com-

plete, pull them back into the context in such a way that you can reconstruct their state.

This is not a simple task, but you have already learned the necessary steps to pull it off.

When all of the conflicting entries have been removed from the context, SaveChanges

will succeed and the other data changes will be applied to the data store. On the book’s

website, you can find a PersistedStateEntry class in both VB and C# that achieves this

pattern. This class takes advantage of many of the things you learned regarding MetadataWorkspace and ObjectStateManager. It also uses reflection because the Object

Context (and therefore the ObjectStateManager) are not available for setting properties.

There are two principal functions. The first is to store the state entry information. This is done by storing the main ObjectStateEntry’s EntityKey, original values, and entity

in the constructor and then adding the information for each RelationshipEntry that

also came back in the StateEntries. The second main function is performed by the

NewEntityfromOrig method, which reconstructs the object with its state and the

EntityReferences that were defined by the RelationshipEntries in the exception’s

StateEntries.

Along with the code for the PersistedEntry class on the book’s website, you will find

an example of a Save routine that uses the class. Essentially, the routine instantiates a

list of PersistedEntry objects, and anytime an OptimisticConcurrencyException is en-

countered, a new PersistedEntry is created from the ObjectStateEntry that caused the

problem. Its Entity is detached from the context and added into the list. The method

repeats this process until all of the exceptions are encountered, and then on a final call to SaveChanges, the valid updates are persisted to the database. The entities that were

persisted are reconstructed and reattached to the context along with their relationship

information. All of the information about the entity along with the exception’s message

and any inner exception information is available from the PersistedEntry class for building an informational UI for the end user, for logging the problems, or for any other

task you may want to perform as part of your exception handling.

This is one pattern for separating conflicting data from good data that not only allows

you to get the good data into the database more quickly, but also provides you an

opportunity to present all of the conflicts to a user at once.

Handling Concurrency Exceptions at a Lower Level | 681

Download from Library of Wow! eBook <www.wowebook.com>

Handling Exceptions When Transactions Are Your Own

When you allow the Entity Framework to provide its default transactions, rollbacks

and commits will occur automatically. In addition, ObjectContext.AcceptChanges will

be called at the end of a successful SaveChanges so that the state of the entities becomes Unchanged.

If, however, you are using your own transactions as described in Chapter 20, you will need to roll back and commit the transactions yourself depending on the success or

failure of the call to SaveChanges.

Depending on your application architecture and business rules, you may even choose

to commit changes that have already been sent to the database, rather than rolling them

back. You will also need to call AcceptAllChanges manually when the commands are

completed successfully. Example 23-16 shows a basic pattern for using your own transaction with an OptimisticConcurrencyException.

 Example 23-16. Handling an exception in a manual transaction

using (var tran = new System.Transactions.TransactionScope())

{ try

{

context.SaveChanges(SaveOptions.None);

//for snapshot POCOs, use SaveOptions.DetectChangesBeforeSave

tran.Complete();

context.AcceptAllChanges();

}

catch (OptimisticConcurrencyException ex)

{

//TODO: add code for handling exception

context.SaveChanges(SaveOptions.None);

tran.Complete();

context.AcceptAllChanges();

}

}

Although Complete and AcceptAllChanges won’t be executed anytime an exception is

thrown, you still may want to separate those calls from the SaveChanges loop.

Example 23-17 shows a pattern that allows you to shift the location of some of the logic.

 Example 23-17. Moving the transaction completion into a finally clause

bool success = false;

using (var tran = new System.Transactions.TransactionScope())

{ try

{

context.SaveChanges(SaveOptions.None);

success = true;

}

catch (OptimisticConcurrencyException ex)

682 | Chapter 23: Planning for Concurrency Problems

Download from Library of Wow! eBook <www.wowebook.com>

 {

//TODO: add code for handling exception

context.SaveChanges();

success = true;

}

finally

{

if (success)

{

tran.Complete();

context.AcceptAllChanges();

}

}

}

Summary

In this chapter, you learned how to prepare for concurrency conflicts and a variety of

ways to handle them when they occur.

Rules for handling concurrency problems vary among enterprises and applications.

Because it is difficult to even come up with rules for resolving these issues at a granular level, you’ll find that most commonly, the three sweeping solutions—client always wins

with no concurrency checks, client wins with a complete replacement of the server data,

and server wins with a complete replacement of the client data—are the ones chosen.

But you do have some options for handling exceptions in a more detailed way, and

hopefully you’ll find the patterns that I laid out in the final pages of the chapter both

interesting and useful.

Summary | 683

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 24

Building Persistent Ignorant,

Testable Applications

One of the significant additions to Entity Framework in .NET 4 is its support for sep-

arating concerns in your application architecture, which not only leads to cleaner ar-

chitecture and more maintainable code but also enables better testing practices. Entity

Framework now allows you to benefit from the Entity Framework without forcing every

part of your application to be aware of the Entity Framework, separating entities from

the infrastructure. You can create classes that can focus on their business rules without

regard to how they are persisted (where the data is stored and how the data gets back

and forth between your objects). You can also create unit tests for your applications

that don’t force you to interact with the ObjectContext and data store.

The POCO support that you learned about earlier in this book provides the foundation

for these capabilities. Together with this POCO support, the IObjectSet interface that

was introduced in .NET 4 enables you to separate the concerns of your various appli-

cation layers. You’ve already worked frequently with ObjectSet, which is the Entity

Framework’s concrete implementation of IObjectSet.

This chapter has two separate goals. The first is to provide information for developers

who are already designing applications in this way and are interested in bringing the

Entity Framework into the sphere of their development practices. The second is to

ensure that developers who are unfamiliar with testing and other agile coding practices

get to come along for the ride and receive an introduction to these methods while learning more about the Entity Framework. For those of you who are new to this world,

it will be important to keep in mind that this is only a narrow slice of agile programming, and there are many wonderful, expert resources where you can learn so much more.

685

Download from Library of Wow! eBook <www.wowebook.com>

Testing the BreakAway Application Components

Software testing is often lumped into a single category called unit testing, although unit testing is just one type of software test. The three most common types of tests are:

 Unit test

Tests a single piece of code in isolation from any external dependency

 Integration test

Tests code that hits external resources such as a database or a web service

 Interaction test

Tests the interaction between your own classes and other classes or APIs that they

collaborate with

We’ll be using Visual Studio’s testing tools, which refer to all of these as unit tests. All of the tests and other code you build in this chapter will use the POCO classes that you

created in Chapter 13 and then modified in Chapter 18 when using them in WCF

Services.

We’ll begin with simple tests that you could write against EntityObjects as well, and

then isolate our logic using some of the new Entity Framework 4 features to build tests

that will not engage Entity Framework’s data access or change-tracking functionality.

These first tests will verify that your POCO classes interact properly with the ObjectContext. Rather than testing the functionality of a single independent class, these

tests check how different classes and APIs work together.

 Interaction testing is used to verify that your own classes interact with

their collaborators. Integration testing involves external resources such

as a database. The tests you will be writing at the beginning of this

chapter combine interaction testing with integration testing.

Later in the chapter, you will create a new solution and organize it in a way that allows

you to test your entities and the objects that manipulate them without having to interact

with the database or depend on the ObjectContext. You will evolve the solution over a

number of steps in order to understand how all of the pieces work together. In the end,

not only will you have testable classes, but also you will discover a greater benefit.

Application layers such as the user interface will be able to exist with no dependency

at all on the Entity Framework. These become very reusable and easier to modify as

needed, and they and can then interact with any backend data provider with minimal

modification.

Throughout this book, we have used console apps for the purpose of understanding

how Entity Framework behaves. Tests are not for the type of discovery that you have

been doing with the console applications, but to verify that your code behaves as expected. You would normally create tests against methods that you have written. This

686 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

is quite different from using tests to explore, for example, if or how the Entity Frame-

work is doing its job.

As an example, writing a test to verify that the contact class fixes up the relationship

with the address class is a unit test. You are only testing your own code. Testing to see

if ObjectContext.DetectChanges does its job with your classes is an integration test be-

cause you are testing the behavior of the ObjectContext class that Microsoft wrote.

Writing tests to just see how Entity Framework works is a handy way to avoid all of

the little console applications, but you can test so much more!

Getting Started with Testing

If you’ve never created a Visual Studio test before, the following example will walk you

through the simplest way to create and run unit tests in Visual Studio. It’s a great habit to get into, and many developers will not program at all without these tests.

Writing an Integration Test That Hits the Database

This first small test will be an integration test, to verify that the ObjectContext is recognizing your POCO classes. It will mimic the first console application you built for

the same purpose.

In this particular case, you want to test the actual interaction with the database to

demonstrate that the POCOs really do work. In more typical tests, you would “fake”

the database interaction by creating representative objects in memory, and we’ll do that

later in this chapter. If you do need to test the database interaction, you should use a

local sample database and also consider patterns that will allow you to set the database

back to its original state. Such guidance is beyond the scope of what we’re doing in this

example, so let’s just move forward with a simple test that impacts our test database

directly.

The Unit Testing tools are available in Visual Studio Professional and

later versions. You will not find this feature built into Visual Studio

Express or Visual Studio Basic. There are third-party tools such as NUnit

(http://www.nunit.org) that integrate into Visual Studio. Otherwise, you may prefer to continue to use console apps to test your POCO classes

using the code in the following test examples.

Start by opening the Entities.cs code file. Then right-click on the declaration for the Contacts property, and from the context menu, select Create Unit Tests.

Expand the current project in the list of types and select Contacts inside the Entities

class. This is the Contacts property that returns an ObjectSet of Contact types.

Be sure that the Output project says “Create a new Visual C# test project...” or “Create

a new Visual Basic project” depending on the language you are using. Click OK.

Getting Started with Testing | 687

Download from Library of Wow! eBook <www.wowebook.com>

Enter POCOTestProject as the project name and click Create. If you get a warning message saying that your type is marked as Friend or Internal, select “No” in answer to the

question about changing the visibility of your type.

A new project will be created that has the appropriate references necessary to test your

Entities class. The project will create a new class file that contains your first test. The default name for this test is ContactsTest. Since the test will check that you can properly retrieve a contact and eager-load its addresses, rename it to Can_Get_A_Con

tact_With_Addresses_EagerLoad.

The test will be instantiating an ObjectContext and executing queries; therefore, it will

need access to the EntityConnection string. So, copy the app.config file from the main project into this unit test project, and then add the System.Linq namespace to the declarations (using/Imports) at the top of the code file. You’ll need System.Linq because

you’ll be executing LINQ queries in your test.

The default test will return the entire Contacts ObjectSet. Modify the test to perform

a similar test to what you did in the console application earlier. Note that the variable

named target is an instance of your Entities ObjectContext, which we have commonly

named “context”. There’s no need to change it if you don’t want to.

The core task of a test is to check the results of your operation. This is performed with

the Assert method. The modified Assert tests to validate that the contacts were indeed

returned and that addresses did in fact come along with those contacts.

Modify the default tests as shown in Example 24-1.

 Example 24-1. Simple test to ensure that you are getting graph data from the database

[TestMethod()]

public void Can_A_Contact_With_An_Address_EagerLoad()

{ var context = new BAEntities();

context.ContextOptions.LazyLoadingEnabled = false;

var contact = context.Contacts.Include("Addresses")

.Where(c=>c.Addresses.Any()).FirstOrDefault();

Assert.IsNotNull(contact);

Assert.IsTrue(contact.Addresses.Count>0);

}

Much of the code in this test is the same as the code you used in the console application

routine. However, I have disabled lazy loading to ensure that the addresses were re-

trieved because of the Include method.

Now it’s time to run the test. Unit tests can be run or debugged. First you will run it.

So, right-click on the Can_A_Contact_With_An_Address_EagerLoad declaration, and from

the context menu, select Run Tests.

The Test Results window should be automatically displayed, and if all went well, you

should see that the test passed, as shown in Figure 24-1.

688 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 24-1. Visual Studio’s Unit Testing Test Results window displaying a successful test Inspecting a Failed Test

A test failure could result from a failure in the method you are testing or from a bug in

your actual testing code.

It’s also possible to have a test incorrectly pass simply because the test

wasn’t written correctly. Therefore, it is common to initially design a

test so that it will fail and then modify it so that it passes, helping to

ensure that the test is actually testing what you intended.

There are a few ways to determine what caused your test to fail. An error message will

display any exception that caused your test to fail. For example, you may have forgotten

to include the app.config in your project or mistyped the Addresses string in the Include path. These will result in an exception. If the test failed because no addresses

were returned, meaning that there is probably something wrong in your entities, the

error message will tell you that Assert.IsTrue failed.

When a test fails, the hyperlink that says “Test run completed” in Figure 24-1 will say

“Test run failed.” You can also click on that hyperlink for more details. Finally, you

can debug the test. In this same figure, notice the Debug All Tests in Test Results toolbar item. That’s one of a number of ways you can debug the test rather than just running

it. You can put breakpoints in the test just as you would in regular code.

Writing a Unit Test That Focuses on Custom Logic

Another test you could write that has no dependency on the context or the database is

a simple unit test that tests only logic in the entity classes. You could write a test like this for EntityObject classes for logic that does not require an ObjectContext or database interaction just as easily as for POCOs.

A typical unit test might verify that validation logic in your classes is working correctly.

For example, you could add logic to the Contact class to ensure that it does not allow

the LastName property to comprise more than 50 characters, as seen in Example 24-2.

Getting Started with Testing | 689

Download from Library of Wow! eBook <www.wowebook.com>

If you are using the template customization from Chapter 13, which added in MaxLength validation, this code will already be part of your Contact class.

 Example 24-2. Validating the length of the LastName property

public string LastName

{ get { return _lastName; }

set

{

if (value.Length > 50)

{

throw new ArgumentException

("Last Name field is too long. Max length is 50.");

}

else

_lastName = value;

}

}

A test to verify that the ArgumentException is getting thrown when it should be would

look like that shown in Example 24-3, where the test leverages the ExpectedException attribute rather than an Assert.

 Example 24-3. A test method to ensure that the length validation throws an exception when it should

[TestMethod()]

[ExpectedException (typeof(ArgumentException),

"Last Name field is too long. Max length is 50.")]

public void Setting_LastName_To_Greater_Than_50_Chars_Throws()

{ new Customer {LastName = "x".PadLeft(51, '.')};

}

When you run this test, the LastName property will throw the ArgumentException. The

test will pass because the method threw the expected exception. You could have a

second test, such as the one displayed in Example 24-4, that ensures that you can assign a LastName property that is no longer than 50 characters.

 Example 24-4. A test method to ensure that the LastName property accepts valid data

[TestMethod()]

public void Can_Set_LastName_to_50_Chars_or_Less()

{ var expected = "x".PadLeft(40, '.'); //total length will be 40

var item = new Customer { LastName = expected };

Assert.AreEqual(expected, item.LastName);

}

These tests are not specific to the fact that you are working with Entity Framework,

but it is important to understand the difference between unit tests against your classes

and those that involve more complex operations.

690 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

Another method that would be convenient in an application for the BreakAway company would be one that lets you know if a reservation has been paid or not. Customers

are allowed to make installment payments for a reservation, and therefore a reservation

can have one of four statuses: Unpaid, Partially Paid, Paid in Full, or Overpaid. An

application might display the status in a UI or use the status to trigger other actions.

Rather than walking through this in its entirety, let’s contemplate the method and test(s) for this.

Example 24-5 shows what the method that returns the payment status might look like.

 Example 24-5. Calculating the status of payments for a reservation

public PaymentStatus GetPaymentStatus()

{ int tripCost = Trip.TripCostUSD.Value;

decimal? paymentSum = Payments.Sum(p => p.Amount);

if (paymentSum == 0)

{

return PaymentStatus.UnPaid;

}

if (tripCost > paymentSum)

{

return PaymentStatus.PartiallyPaid;

}

if (tripCost == paymentSum)

{

return PaymentStatus.PaidInFull;

}

return PaymentStatus.OverPaid;

}

The reservation first identifies the cost of the trip. If the trip has not been loaded, the method relies on lazy loading to get the trip information. Then the method gets the

sum of all of the payments that have been made. Again, lazy loading will be relied upon

in case the payments are not yet in memory.

Lazy Loading and Its Triggers

When you count on lazy loading to get related data for you, be sure you know when it

will and won’t do its job. Lazy loading is not persistent ignorant. It depends on the

underlying infrastructure.

With Entity Framework, lazy loading must be enabled, and with new models, it will

be by default. But even when it is enabled, it doesn’t trigger a database call anytime you ask for the related data. If you have already loaded the navigation property, either by

eager loading (include), lazy loading, or explicit loading (Load or LoadProperty), the

context will consider the navigation loaded. The next time you make a reference to

the navigation, the context will only read from memory. If, however, you have brought

the related data in through a separate query or in a projection, the context will not

consider the data loaded and will hit the database for lazy loading.

Getting Started with Testing | 691

Download from Library of Wow! eBook <www.wowebook.com>

One important factor to consider when you are depending on lazy loading is that if the navigation has been loaded and additional data has been added to the database, you

won’t be aware of it. For example, the PaymentStatus method could miss a new payment

that was entered and you might want to force the Payments property to load explicitly

before performing the calculation.

Finally, don’t ignore the fact that your class may not be connected to the context at the

time that the lazy loading is being requested. If you know it will be, it’s safe to depend on it, but otherwise it’s best not to.

So, what would you want to test here? Retrieving the reservation? Lazy loading the trip

and payments? No, what you want to test is that given the data (trip cost and payments),

the method returns the correct status. It doesn’t matter where the data comes from or

when it’s loaded. This is where a practice referred to as using test fakes (or test doubles) becomes a convenient pattern in testing, and you’ll see this in action shortly.

Creating a test from the method using the Visual Studio Create Unit Test Wizard that

you used before would result in the test shown in Example 24-6.

 Example 24-6. Default test that Visual Studio creates from the GetPaymentStatus method

[TestMethod()]

public void GetPaymentStatusTest()

{ Reservation target = new Reservation.PaymentStatus();

Reservation.PaymentStatus expected = new Reservation.PaymentStatus();

Reservation.PaymentStatus actual;

actual = target.GetPaymentStatus();

Assert.AreEqual(expected, actual);

Assert.Inconclusive("Verify the correctness of this test method.");

}

If the PaymentStatus method took parameters, you could just set the payment total and

trip cost values in the test. Unfortunately, it’s not quite that simple. The method de-

pends on the Reservation having access to the Trip and the Payments collection. So, you

will have to provide that. There are a few ways you could do this. You could just call

into the BAGAContext and grab data from the database.

But the goal is to avoid simply hitting the database during your tests. One reason is

because it’s much faster to run tests when you are not interacting with the database.

Another reason is that removing dependencies on external resources or APIs allows

your tests to focus solely on your classes. You could also just create the data on the fly in the test—instantiating a new reservation, a new trip, and some payments and attaching them all without involving the context. This makes the most sense for this

method. You would want to have one test for each status. Let’s create two of them here.

The first will be easy. We’ll verify that the method properly returns the Unpaid status.

That means we’ll need a reservation and a trip but no payments. You can satisfy that

by instantiating a new Reservation with a new Trip that costs $1,000. Then you should

692 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

check the status without adding any payments. Example 24-7 displays the PaymentStatus_Returns_UnPaid_When_No_Payments method that performs this test.

 Example 24-7. Test to ensure that the PaymentStatus method correctly calculates an Unpaid reservation

[TestMethod()]

public void PaymentStatus_Returns_UnPaid_When_No_Payments()

{ var reservation = new Reservation();

reservation.Trip = new Trip { TripCostUSD = 1000 };

Assert.AreEqual(reservation.GetPaymentStatus(),

Reservation.PaymentStatus.UnPaid);

}

Next, you can add in a single payment that does not fulfill the trip cost. This should

result in a PartiallyPaid status, as shown in Example 24-8.

 Example 24-8. Test to ensure that the PaymentStatus method correctly calculates a partially paid reservation

public void PaymentStatus_Returns_PartiallyPaid_When_Insufficient_Payments()

{ var reservation = new Reservation();

reservation.Trip = new Trip { TripCostUSD = 1000 };

reservation.Payments.Add(new Payment {Amount = 500});

Assert.AreEqual(reservation.GetPaymentStatus(),

Reservation.PaymentStatus.PartiallyPaid);

}

These are scenarios where you would be able to test the POCO without involving the

context or the database.

In a real application, it is possible that the method calls to reservation.Trip and reservation.Payments may trigger a database query, thanks to lazy loading, but the

method doesn’t actually care how the related data is provided. That is a mechanism of

the infrastructure concerns and the method doesn’t need to worry about how it’s im-

plemented. That is why it was OK to build the fake graph of Reservation with a Trip

and some Payments for the method to work with.

Creating Persistent Ignorant Entities

The preceding paragraph described a method that has no intimate knowledge of the

source of the data it consumes. This highlights the essence of persistence ignorance—

which is when your classes and many of our application layers around them don’t care

how the data is stored. In the .NET 3.5 version of Entity Framework, if you wanted to

use preexisting classes, you were required to modify them by forcing them to derive

from EntityObject. In .NET 4 this is no longer necessary. You don’t have to modify

your entities in order for them to participate in Entity Framework operations. This

allows us to build applications that embrace loose coupling and separation of Creating Persistent Ignorant Entities | 693

Download from Library of Wow! eBook <www.wowebook.com>

 concerns. With these coding patterns, your classes are only concerned with their own jobs and many layers of your application, including the UI, have no dependencies on

external logic, such as the Entity Framework APIs, yet those external APIs are able to

interact with our entities.

For a great read on separation of concerns, check out the article “Sep-

aration of Concerns: A Brownfield Development Series” from MSDN

 Magazine at http://msdn.microsoft.com/en-us/magazine/ee210417.aspx.

Attempting to build unit tests with entities quickly highlights some of the dependencies

as described earlier. For example, what if you built a method that contains a query plus

some additional logic, and it is the additional logic, not the query, that you wanted to

test?

A common example concerns validating incoming parameters, such as an ID that is to

be used for a query. You’ll want to test that the validation is doing its job, but you don’t want to execute the query. The current BAEntities ObjectContext won’t allow you to

separate the query from the query execution. The result is that in order to test that the

method is properly validating the incoming ID parameter, the method will run all of

its logic, including the query execution and hitting the database.

If BAEntities were persistent ignorant, we could separate query execution from data-

base interaction. Let’s see how to do that.

You will have many methods in your applications that involve a query. Unless you want

to test the query itself, there’s no reason to work with real data when testing; however,

you still have to have a mechanism for allowing the method to execute its query. This

is referred to as faking the data. The classes used for providing fake data and even fake methods such as SaveChanges are called fakes or test doubles.

Remember, these will be baby steps for unit testing, but hopefully that

will be enough to get testing pros the information they need regarding

how to test within Entity Framework, and at the same time enough to

get newbies started and, hopefully, encouraged to learn more.

On the following pages, you will restructure the example to make it flexible enough to

use test doubles. At the same time, you will invest in a much more agile architecture

for your application. You’ll start with the reorganization, and then, step by step, you’ll evolve the solution into one that is testable. Then you’ll build a new context that returns fake data and use that for your testing.

The method you will use as the basis for testing will simply return a customer given its

ID. The method must first check that the ID is valid before executing the query, and it

is this check that you will be testing, not the query itself.

694 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

While we’re on the topic of persistence ignorance, you might be inter-

ested in this great article by Jeremy D. Miller in the April 2009 issue of

 MSDN Magazine, “Persistence Patterns,” http://msdn.microsoft.com/en

 -us/magazine/dd569757.aspx.

Planning the Project Structure

When you first created POCO classes in Chapter 13, you created all of the puzzle pieces in a single project—the model, the POCO classes, the Entities class that provided an

ObjectContext, and even a little console app to bang on the classes a bit.

For this example, you’ll build a more realistic solution that separates the classes to

provide flexibility and reuse. There are a lot of working parts in this solution, so I will introduce them bit by bit.

An important design pattern for building agile software is called the Repository Pat-

 tern. A repository is a wrapper that lets us work with our entities as though they are part of a collection. The repository lets us add, update, and delete entities in the collection rather than being concerned with how to get those entities into and out of a

database or how to send and retrieve the entities from a web service. You don’t have

to call a stored procedure or, in the case of the Entity Framework, create an ObjectCon

text and execute queries.

There are a few ways to implement repositories. Some solutions will build a separate

repository for each “root” entity while others will build repositories that focus on a

particular group of concerns. In the following set of examples, we’ll build repositories

for each entity, although in some cases, an entity, such as a Customer, will bring back

related data, such as Reservations, as part of a graph making Customer the root of the

graph or aggregate root.

The Repository Pattern

You’ll find definitions of the Repository Pattern described in many resources. Eric Evans, author of Domain-Driven Design: Tackling Complexity in the Heart of Software (Addison-Wesley Professional), the canonical book on domain-driven design, defines a repository as:

…a mechanism for encapsulating storage, retrieval, and search behavior which

emulates a collection of objects.

Source: http://domaindrivendesign.org/node/123

Creating Persistent Ignorant Entities | 695

Download from Library of Wow! eBook <www.wowebook.com>

The model and the ObjectContext should be separate from your own queries that rely on the model and ObjectContext (e.g., GetReservationsForCustomer), and these will be

in the repositories. Once you have tackled the basic concept, you can fine-tune the

architecture even further.

A basic pattern to begin splitting up the logical pieces would be:

 Classes: Entity Classes (Class Library)

Your POCO classes go in here. No reference to System.Data.Entity is necessary.

 Model: Entity Data Model and ObjectContext (Class Library)

This project would have the EDMX and the class that inherits from

ObjectContext. The project will have a reference to System.Data.Entity and to the

project that contains the POCO classes.

 Repositories (Class Library)

For each entity class, you’ll build another wrapper class called a repository that

will be our means of interacting with the entities. Repository is a known program-

ming pattern that you’ll be leveraging. The repositories implement an

IRepository interface which is also in this project. See the sidebar “The Repository

Pattern” on page 695.

 Interfaces (Class Library)

This project will contain an important interface that will be for context classes.

 User Interface

In the case of a client-side application (e.g., console app, Windows form, or WPF),

you’ll need a reference to both the repository project and the classes project. The

UI will call into the repository and receive the classes. As you build larger appli-

cations, you will create more separation between your UI and the repository, but

for this sample, calling into the repository from the UI will be sufficient.

 Testing Project

Although the UI is necessary for the real application, it is the testing project that

will provide the interaction with the supporting layers as you validate them.

You will build this pattern in small steps. Note that test-driven developers design the

tests based on their domain needs first and then build the code to fulfill the tests. This walkthrough is aimed at developers who are new to testing. Therefore, we will build

the application pieces first and then create tests to validate them.

The first stage of these tests will hit the database. Then you will implement the fake

entities and enable tests that do not hit the database.

696 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

The following pages where you restructure the framework for testing

and then build the necessary classes for the purpose of building the test

doubles will cover a lot of ground. They will not make you an expert in

testing, but if you are new to testing and agile development, they should

provide a helpful start. However, you will need to be patient as you work

through the examples and explanations of new concepts. There are a

lot of pieces to this puzzle. But remember to follow up with further

resources to learn good practices in agile development.

If you are a seasoned agile developer and are looking for guidance on

what you need to do within the context of Entity Framework, you

should find what you need in the following examples. You can then

incorporate them into your own existing patterns.

Starting with the Model and Its POCO Entities

The goal for step 1 is to create the model, a model context, and the entity classes for

your solution. The entity classes must be in their own project, which has no references

to System.Data.Entity.

You’ve already done all of these things in previous chapters of the book. In fact, in

Chapter 18, you used a modified POCO template that removed all of the virtual keywords from the properties and forced each entity class to inherit from the

ObjectState class. While you won’t be leveraging the ObjectState class in this walk-

through, you can use these classes and the model for this walkthrough. This will require

an additional reference to the ObjectState’s project any time you reference the entities.

You’ll need to make two important (and very minor) changes to the template that builds

the ObjectContext. This is the BreakAway.Context.tt file that is in the same project as the model. We want the context methods to return IObjectSet rather than ObjectSet.

Using the more generalized interface is critical as we plan ahead for building in the

ability to switch from the real context to a fake context.

There are two places early on in the T4 template where you need to add the I.

Somewhere near line 92, you’ll find this code, which is a single line:

<#=Accessibility.ForReadOnlyProperty(entitySet)#>

ObjectSet<<#=code.Escape(entitySet.ElementType)#>>

<#=code.Escape(entitySet)#>

Change that ObjectSet to IObjectSet.

Make the same change to this next line of code, which should be only a few lines below

the first:

private ObjectSet<<#=code.Escape(entitySet.ElementType)#>>

<#=code.FieldName(entitySet)#>;

Creating Persistent Ignorant Entities | 697

Download from Library of Wow! eBook <www.wowebook.com>

Building an Interface to Represent a Context

Previously in this book, you have always used an ObjectContext to do your entity bid-

ding for you. Now that you are going to create persistence ignorance, you want to have

a more generic context that might be an ObjectContext in some scenarios and might be

some other type of context in other scenarios. Whichever context you use, it does need

to be particular to your domain. It will need to be able to expose your data (Custom

ers, Reservations, etc.) and allow you to perform critical tasks such as saving.

This will be best represented by an interface that the BAEntities context can implement.

Therefore, you’ll build the interface, IContext, with similar members as BAEntities.

First you need a new project. Create a Class Library project. I’ve named mine Interfaces

and the namespace of the assembly is BAGA.Repository.Interfaces.

The project needs the following references:

System.Data.Entity

This is so that the interface you’re building will have access to the IObjectSet interface.

BreakAwayEntities

This is the project that contains the entity classes generated from the model along

with their T4 template.

POCOState

This is another project you created in Chapter 18. The entities above each inherit from the StateObject class.

Now you can create the IContext interface, shown in Example 24-9, inside this project.

For the sake of brevity, this example interface does not expose every

EntitySet in the model.

 Example 24-9. The IContext interface

using System.Collections.Generic;

using System.Data.Objects;

using OBAGA;

namespace POCOBAGA.Repository.Interfaces

{ public interface IContext

{

IObjectSet<Contact> Contacts { get; }

IQueryable<Customer> Customers { get; }

IObjectSet<Trip> Trips { get; }

IObjectSet<Reservation> Reservations { get; }

IObjectSet<Payment> Payments { get; }

698 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

 string Save();

IEnumerable<T> ManagedEntities<T>();

bool ValidateBeforeSave(out string validationErrors);

}

}

The interface contains the IObjectSet properties for five of the EntitySets in your model. The fact that you can use IObjectSet rather than being limited to the Object

Set class will become an essential ingredient in your recipe for building testable code.

As you get further on in the sample, this will become clearer.

Notice that Customers returns an IQueryable, not an IObjectSet. That’s because there

is no Customers EntitySet in the model. Customer inherits from Contact and is part of

the Contacts EntitySet. But it’s a drag to always have to query for Contacts.OfType<Cus tomer>. The interface will let you simplify querying for the developers and uses an interface that, like IObjectSet, allows you to enumerate customers. As you build the

repository later on for Customer, you’ll revert to the Contacts IObjectSet to add and

remove items.

In addition to these and the Save method, there are two other members: a generic ManagedEntities property and a method for performing validation before saving. The

ManagedEntities is similar to the extension method that you saw in Chapter 21. However, that method was an extension to the ObjectContext class and depended on other

Entity Framework features. Now, we need it to be more generic in this solution, and

therefore you will create a special interface member that you can implement however

you want in classes that derive from it. This will be very useful when working with the

repositories.

You’ll see more about the validation method as you get further into this example.

Modifying the BAEntities ObjectContext Class to Implement

the New Interface

Now that you have an interface, the existing context, BAEntities, will need to imple-

ment it. At this point, you have the option to modify the T4 that generates it or create

your own independent class. In this case, I’m going to choose the latter and get rid of

the BreakAwayContext.tt file. It already has most of what I need thanks to the T4, but I want to make some changes and would rather make them directly in code than in the

template. Read the sidebar “T4 Templates and an Evolving Interface” for more details.

T4 Templates and an Evolving Interface

I plan to make more modifications to the IContext interface in Example 24-9 throughout this chapter and don’t want to have to continuously modify the T4 template for

the BAEntities ObjectContext class. It will be simpler for me to work directly with the

class, which is why I’m breaking the code generation. At some point, you will have a

solid interface and then it will make sense to go back to using the T4 template. A more

Creating Persistent Ignorant Entities | 699

Download from Library of Wow! eBook <www.wowebook.com>

interesting solution, but too complex for our purposes here, would be to enable the T4

template to ensure that the class it is generating automatically implements the interface

members.

Disconnecting the context class from the T4 template

You’ll find that you can’t just move the generated class that is attached to the T4 tem-

plate in the Solution Explorer. Instead, you’ll need to perform the following steps:

1. Create a new class file, BAEntitiesContext.cs.

2. Open the BreakAwayContext.cs file.

3. Copy and paste its contents into the new file in the same solution.

4. Delete the BreakAwayContext.tt file. The generated class file will automatically be deleted along with the template file.

Implementing the IContext interface

Currently, the BAEntities class inherits from ObjectContext. This will not change.

However, in addition to this, it should also implement the IContext interface.

1. Add a reference to the Interfaces project.

2. Modify the class declaration as follows:

VB

Public Partial Class BAEntities

Inherits ObjectContext

Implements IContext

C#

public partial class BAEntities : ObjectContext, IContext

While the context already implements many of the members of IContext (e.g.,

Activities and Contacts), there are some members that it still must implement. In fact,

you’ll get a compiler error that informs you of this.

Implementing the remaining interface members

One way to do this in C# is by right-clicking IContext in the class declaration and

selecting Implement Interface, and then from its submenu, Implement Interface. In

Visual Basic, pressing the Enter key after IContext will automatically implement the

remaining members.

The new members will be placed at the bottom of the code file, as shown in Exam-

ple 24-10.

 Example 24-10. IContext member implementation

#region IContext Members

public IQueryable <Customer> Customers

{

700 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

 get { throw new NotImplementedException(); }

}

public string Save()

{ throw new NotImplementedException();

}

public System.Collections.Generic.IEnumerable<T> ManagedEntities<T>()

{ throw new NotImplementedException();

}

public bool ValidateBeforeSave(out string validationErrors)

{ throw new NotImplementedException();

}

#endregion

Fill out the logic for Customers, Save, and ManagedEntities, as shown in Example 24-11.

 Example 24-11. Providing code for IContext members in the BAEntities implementation

public IQueryable<Customer> Customers

{ get { return _customers ?? (_customers =

CreateObjectSet<Contact>("Contacts").OfType<Customer>()); }

}private IQueryable<Customer> _customers;

public string Save()

{ string validationErrors;

if (ValidateBeforeSave(out validationErrors))

{

SaveChanges();

return "";

}

return "Data Not Saved due to Validation Errors: " + validationErrors;

}

public System.Collections.Generic.IEnumerable<T> ManagedEntities<T>()

{ var oses = ObjectStateManager.GetObjectStateEntries();

return oses.Where(entry => entry.Entity is T)

.Select(entry => (T)entry.Entity);

}

Customers now prefilters the Contacts entities for you. ManagedEntities does its job as

defined previously in Chapter 21, and leverages the GetObjectStateEntries overload from that chapter as well. Save will make a call to the ValidateBeforeSave method before

SaveChanges is called. You’ll provide the validations in the class repositories and then

flesh out the ValidateBeforeSave method after that.

Creating Persistent Ignorant Entities | 701

Download from Library of Wow! eBook <www.wowebook.com>

BAEntities is only the first class to derive from IContext. You’ll be creating some more

a bit later in this chapter, but unlike BAEntities, these will be classes that have no

knowledge at all about the Entity Framework.

Creating the IEntityRepository Interface

Before you can build the repositories, you’ll need to build the IEntityRepository in-

terface that they will all implement. The interface will go into a new project along with

the repository classes, which you will build after the interface is set up.

Remember that this is just one way to build the architecture. And I am

building it very explicitly so that you are able to see all of the working

parts. As more developers learn how to use these features of Entity

Framework, you will find a greater variety of patterns to learn from.

Jarod Ferguson is one such developer who is able to apply his architec-

ture expertise and existing patterns to build advanced architectures with

Entity Framework. Check out his December 2009 post “Unity Exten-

sion for Entity Framework POCO Configuration, Repository and Unit

of Work (http://elegantcode.com/2009/12/15/building-a-unity-extension

 -for-entity-framework-poco-configuration-repository-and-unit-of

 -work/), and keep an eye on his blog for updates.

Create a new Class Library project called Repositories. The repositories themselves

need not be ignorant of the persistence layer and will have references to the model

project.

The project needs references to the following:

• BreakAwayEntities

• BreakAwayModel

• Interfaces

• POCOState

Create a new interface project item called IEntityRepository. The interface will let you

map out expectations for the repository classes as described earlier.

Example 24-12 lists the code for the generic IEntityRepository<TEntity>.

 Example 24-12. The IEntityRepository class

using System.Collections.Generic;

namespace BAGA.Repository.Interfaces

{ public interface IEntityRepository<TEntity>

{

TEntity GetById(int id);

void Add(TEntity entity);

702 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

void Delete(TEntity entity);

IList<TEntity> All();

}

}

In addition to the methods and properties described earlier in the chapter (GetByID,

Add, Delete, and All), the repository has the ability to return an IContext with the read-

only Context property. We’ll use a constructor to set a context in each repository class,

allowing us to force the repository to use a particular context as a unit of work. With Entity Framework this is important because we will frequently be working with various

types but want them to be managed by the same context.

Creating the Repository Classes

Create a new class named ReservationRepository. Force the class to implement from

IEntityRepository using Reservation as the generic type. You will want to add a using/

Imports declaration to BAGA.Repository.Interfaces so that you don’t have to fully qualify the interface.

Be sure to change the class declaration of the new classes to public in

C#, as by default they will be internal.

After implementing the interface, the ReservationRepository class file should look like

the code in Example 24-13.

 Example 24-13. The ReservationRepository with IEntityRepository members

using System;

using System.Collections.Generic;

using BAGA;

using BAGA.Repository.Interfaces;

namespace BAGA.Repository.Repositories

{ public class ReservationRepository: IEntityRepository<Reservation>

{

#region IEntityRepository<Reservation> Members

public Reservation GetById(int id)

{

throw new NotImplementedException();

}

public void Add(Reservation entity)

{

throw new NotImplementedException();

}

Creating Persistent Ignorant Entities | 703

Download from Library of Wow! eBook <www.wowebook.com>

public void Delete(Reservation entity)

{

throw new NotImplementedException();

}

public IList<Reservation> All()

{

throw new NotImplementedException();

}

#endregion

}

}

Before filling out the logic for the interface members, we’ll add a constructor to allow

the developer to pass in an existing IContext when instantiating the ReservationRepo

sitory.

You could additionally add a parameterless constructor that presumes

that the class should instantiate a BAEntities ObjectContext if no con-

text is passed in. This will require a reference to System.Data.Entity.

Since it is the entity classes that are being designed to be persistent ig-

norant, not the repositories, it’s not a problem to have this reference.

You’ll also need a local variable to which to assign the context, shown along with the

constructor and the rest of the implementation in Example 24-14.

 Example 24-14. ReservationRepository

using System.Collections.Generic;

using System.Linq;

using BAGA.Repository.Interfaces;

namespace BAGA.Repository.Repositories

{ public class ReservationRepository: IEntityRepository<Reservation>

{

private readonly IContext _context;

public ReservationRepository(IContext context)

{

_context = context;

}

public Reservation GetById(int id)

{

return _context.Reservations

.FirstOrDefault(r => r.ReservationID == id);

}

public void Add(Reservation entity)

{

704 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

_context.Reservations.AddObject(entity);

}

public void Delete(Reservation entity)

{

_context.Reservations.DeleteObject(entity);

}

public IList<Reservation> All()

{

return _context.Reservations.ToList();

}

}

}

The ReservationRepository needs an additional method that is not part of the interface.

GetReservationsForCustomer, shown in Example 24-15, is an example of a method described earlier in the chapter. It validates the customerId passed in before executing the query. You’ll be writing a unit test for this shortly but will want to test this method

without hitting the database.

In a more advanced repository pattern, you might have an architecture

that would allow you to put logic that is not defined by the IReposi

tory interface in separate classes.

 Example 24-15. The ReservationRepository.GetReservationsForCustomer method

public IList<Reservation> GetReservationsForCustomer(int customerId)

{ if (customerId < 1)

{

throw new ArgumentOutOfRangeException();

}

return _context.Reservations

.Where(r => r.ContactID == customerId).ToList();

}

Most of the other repositories will look similar to the ReservationRepository. However,

the CustomerRepository implementation differs from the other repositories because the

Customer class inherits from Contact. In the model, this means that Customer is served

up not by a Customers EntitySet, but by the Contacts EntitySet. As a result, there is

no ObjectSet for Customers. Instead, you retrieve customer entities by filtering the Contacts ObjectSet.

Let’s see how to implement a repository for a derived entity.

The Add and Delete methods leverage the Contacts IObjectSet (of which Customer is a

part).

Creating Persistent Ignorant Entities | 705

Download from Library of Wow! eBook <www.wowebook.com>

Remember the special IEnumerable<Customer> property that you created in IContext and then implemented in the BAEntities class? You can now see the benefit of that

special property when implementing the All and GetById methods in CustomerReposi

tory. Both of these methods retrieve their results by using the Customers property.

The CustomerRespository is listed in Example 24-16.

 Example 24-16. CustomerRepository with logic added

using System.Collections.Generic;

using System.Linq;

using BAGA.Repository.Interfaces;

namespace BAGA.Repository.Repositories

{ public class CustomerRepository: IEntityRepository<Customer>

{

private readonly IContext _context;

public Customer GetById(int id)

{

return _context.Customers

.FirstOrDefault(c => c.ContactID == id);

}

public void Add(Customer entity)

{

_context.Contacts.Add(entity);

}

public void Delete(Customer entity)

{

_context.Contacts.Remove(entity);

}

public IList<Customer> All()

{

return _context.Customers.ToList();

}

}

}

Now that you have these repositories, you can build some tests against them, although

at this point these tests will test both interaction (with the Entity Framework) and

integration (with the database).

Testing GetReservationsForCustomer Against the Database

Before moving on with the classes and repositories, this is a good time to build a test

to verify the behavior of your GetReservationsForCustomer method. The test is not con-

cerned with the results of the query, but whether the method allows the query to be

executed. Since you haven’t built any fakes yet for testing, understand that if the 706 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

customerId is valid, you are going to hit the database. The purpose for testing at this

point is for the benefit of those of you who are new to building tests. Building and

testing with the fakes will make more sense once you have something to compare them

to.

1. Open the ReservationRepository class.

2. Right-click on the GetReservationsForCustomer method and choose Create Unit

Tests.

The Create Unit Tests Wizard should show this method checked with the Output

project as “Create a new Visual C# test project...” (or Visual Basic depending on

your code base).

3. Click OK.

4. In the New Test Project window, change the project name to POCOEFTests and

click Create.

If a dialog pops up asking if you want to add the

InternalsVisibleTo attribute to your classes, it means the classes

are private. Be sure to change them to public.

Because you are still testing the repository that hits the database, the test needs

access to the EntityConnection string.

5. Copy the app.config file from the Model project into the new test project.

You won’t simply test the method (as the automatically created unit tests will specify), but instead you’ll verify that the validation works. You’ll create one test

to make sure the method properly responds to bad IDs and another to correctly

respond to good IDs.

6. In the new test class, find the GetReservationsForCustomerTest and rename it to

Passing_ID_of_Zero_To_GetReservationsForCustomer_Throws.

7. Modify the test method (or just delete it and start from scratch) and then make and

modify a copy of it so that you end up with the two tests shown in Example 24-17.

 Example 24-17. Tests to verify that GetReservationsForCustomer checks the incoming ID

[TestMethod()]

[ExpectedException(typeof(ArgumentOutOfRangeException),

"GetReservations for Customer allowed an ID<1")]

public void Passing_ID_of_Zero_To_GetReservationsForCustomer_Throws()

{ var repository = new ReservationRepository(new BAEntities());

repository.GetReservationsForCustomer(0);

}

[TestMethod()]

public void Can_Pass_ID_Greater_Than_Zero_To_GetReservationsForCustomer()

Creating Persistent Ignorant Entities | 707

Download from Library of Wow! eBook <www.wowebook.com>

{ var repository = new ReservationRepository(new BAEntities());

Assert.IsNotNull(repository.GetReservationsForCustomer(1));

}

8. Right-click in the code window (but not on a test name) and choose Run Tests.

This will run all of the tests in the test class.

The first test expects an exception and does not bother with an Assert. The second

needs to verify that something is returned from the method call. Rather than checking

for the count of Reservations in the returned list, the test only asks if the list exists. It’s possible that we queried a customer that had no reservations, which would return a

list with no items.

Creating a Fake Context

Now that you see how the test works, let’s go to the next step of testing: creating a fake context that will not hit the database.

Only the tests will need the fake context, so you can create it inside the test project.

In projects that have a lot of tests, you might split the tests and various

components, such as the fakes, into different projects. For this example,

we will keep everything in one project.

The new fake context will implement the IContext, and in place of hitting the database,

the fake will create some test data on the fly. When you execute queries, this test data

will be returned in place of database data.

In the test project add a new class, FakeContext. At the top of the class, add the following namespaces to the using/Imports declarations:

using System.Data.Objects;

using BAGA

using BAGA.Repository.Interface;

Force the class to implement IContext and its members. After implementing the inter-

face, the class should look like Example 24-18.

 Example 24-18. FakeContext with the IContext members

class FakeContext:IContext

{ #region IContext Members

public IObjectSet<Contact> Contacts

{

get { throw new NotImplementedException(); }

}

public IQueryable<Customer> Customers

{

708 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

 get { throw new NotImplementedException(); }

}

public IObjectSet<Trip> Trips

{

get { throw new NotImplementedException(); }

}

public IObjectSet<Reservation> Reservations

{

get { throw new NotImplementedException(); }

}

public IObjectSet<Payment> Payments

{

get { throw new NotImplementedException(); }

}

public string Save()

{

throw new NotImplementedException();

}

public IEnumerable<T> ManagedEntities<T>()

{

throw new NotImplementedException();

}

public bool ValidateBeforeSave(out string validationErrors)

{

throw new NotImplementedException();

}

#endregion

}

In BAEntities, you have a constructor that enables lazy loading, which is a feature of

Entity Framework’s ObjectContext. Your fake context won’t be depending on lazy

loading. The fake repository is free to provide the related data any way that it pleases.

The classes that request the data don’t care how the repository acquires the data, just

as long as it passes that data along.

Keep that in mind; but for now, the next step is to force the Reservations property to

return some data.

Add a class scoped variable for the Reservations:

private IObjectSet<Reservation> _reservations;

Then add a new method, CreateReservations, which will build some new

Reservation objects for your test on the fly (see Example 24-19).

 Example 24-19. The CreateReservations fake data method

private void CreateReservations()

{ if (_reservations == null)

{

_reservations = new FakeObjectSet<Reservation>();

_reservations.AddObject(new Reservation

{ ReservationID = 1, TripID = 1, ContactID = 2 });

_reservations.AddObject(new Reservation

Creating Persistent Ignorant Entities | 709

Download from Library of Wow! eBook <www.wowebook.com>

 { ReservationID = 2, TripID = 2, ContactID = 2 }); _reservations.AddObject(new Reservation

{ ReservationID = 3, TripID = 1, ContactID = 3 });

}

}

We’ve created two reservations for one customer (ContactID 2) and one reservation for

another customer (ContactID 3).

Notice that you are instantiating a FakeObjectSet, not IObjectSet. You cannot instan-

tiate an interface. But you don’t want to instantiate an ObjectSet class. ObjectSet im-

plements ObjectQuery and you would then be back to being completely bound to the

Entity Framework’s querying mechanism. The goal here is to be lightweight and not

tangled up with someone else’s framework; no matter how much you may like that

framework.

Build It Yourself or Use a Mocking Framework

A number of third-party mocking frameworks, such as Moq, TypeMock Isolator, and

RhinoMocks, simplify the task of building fake contexts for your tests. Rather than

force you to depend on a particular third-party tool and to give you the benefit of seeing all of the pieces of this puzzle, we will take the longer route of creating our own classes so that you can see how it works.

Creating a FakeObjectSet Class

For the tests, you’ll need a class that, like ObjectSet, implements the IObjectSet inter-

face but, unlike ObjectSet, does not inherit from ObjectQuery. This is an important

piece of the puzzle and the reason the ObjectSet and IObjectSet were created for the

second version of Entity Framework. They provide a means for developers to write

more agile, testable code.

IObjectSet has only a handful of methods that need to be implemented: AddObject,

Attach, DeleteObject, and Detach. IObjectSet also implements interfaces that make it

possible to query—IEnumerable and IQueryable, along with their generic counterparts.

Here is the signature of IObjectSet:

public interface IObjectSet<TEntity>

: IQueryable<TEntity>, IEnumerable<TEntity>,

IQueryable, IEnumerable

where TEntity : class

The FakeObjectSet must also implement anything that is required by the additional

interfaces that IObjectSet implements. Finally, you’ll need to enforce the same con-

straint that the generic type passed in as a class. In the IObjectSet, this is defined by

where TEntity : class.

710 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

Create a new class in the test project and name it FakeObjectSet. Then add System.Data.Objects to the namespaces declared at the top of the class.

Force the class to accept a generic type with the constraint described earlier and inherit from IObjectSet.

VB

Public Class FakeObjectSet (Of T As Class)

Implements IObjectSet(Of T)

C#

class FakeObjectSet<T> : IObjectSet<T> where T : class

When you implement the interface, you will get the four methods listed earlier as well

as ElementType, Expression, Provider, and two GetEnumerator methods. These last five

methods come from the IEnumerable and IQueryable interfaces.

The FakeObjectSet needs a container to hold the classes in the set. You’ll use an IList (using the same generic type that is passed into the FakeObjectSet) for this. Then

the Add, Attach, Delete, and Detach methods will move objects in and out of that IList.

The other methods will contain standard code that is common to classes that imple-

ment those interfaces.

Example 24-20 shows what the FakeObjectSet should look like when it is fleshed out.

 Example 24-20. The FakeObjectSet class

class FakeObjectSet<T> : IObjectSet<T> where T : class

{

readonly IList<T> _container = new List<T>();

public void AddObject(T entity)

{

_container.Add(entity);

}

public void Attach(T entity)

{

_container.Add(entity);

}

public void DeleteObject(T entity)

{

_container.Remove(entity);

}

public void Detach(T entity)

{

_container.Remove(entity);

}

public IEnumerator<T> GetEnumerator()

{

return _container.GetEnumerator();

}

Creating Persistent Ignorant Entities | 711

Download from Library of Wow! eBook <www.wowebook.com>

 IEnumerator IEnumerable.GetEnumerator()

{

return _container.GetEnumerator();

}

public Type ElementType

{

get{return typeof(T);}

}

public System.Linq.Expressions.Expression Expression

{

get { return _container.AsQueryable<T>().Expression; }

}

public IQueryProvider Provider

{

get { return _container.AsQueryable<T>().Provider; }

}

}

Now you have something that you can instantiate that implements IObjectSet but does

not tie you to an ObjectQuery.

Completing the Fake Context

The method you built in Example 24-19, CreateReservations, will instantiate this new class.

The GetReservationsForCustomer method really only requires that you provide some

reservations in your fake context. But we’ll add some customers also in case you want

to do some additional testing.

Even though Customer inherits from Contact and does not have its own EntitySet, we

can still use an IObjectSet to contain the Customer objects in the FakeContext. Because

IObjectSet implements IQueryable, it will resolve properly when IContext.Customers

expects an IQueryable.

1. Add class-level field variables for a few other properties:

private IObjectSet <Customer> _customers;

private IObjectSet<Trip> _trips;

private IObjectSet<Reservation> _reservations;

private IObjectSet<Payment> _payments;

2. Add the additional create methods shown in Example 24-21. Notice that the values of the various methods are defined so that the objects will be related.

 Example 24-21. FakeContext methods

private void CreateCustomers()

{ if (_customers == null)

{

712 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

 _customers = new FakeObjectSet<Customer>();

_customers.AddObject(new Customer

{ ContactID = 1, FirstName = "Matthieu", LastName = "Mezil" });

_customers.AddObject(new Customer

{ ContactID = 2, FirstName = "Kristofer", LastName = "Anderson" });

_customers.AddObject(new Customer

{ ContactID = 3, FirstName = "Bobby", LastName = "Johnson" });

}private void CreatePayments()

{ if (_payments == null)

{

_payments = new FakeObjectSet<Payment>();

//create an incomplete payment for reservation 1 (a $1000 trip)

_payments.AddObject(new Payment { PaymentID = 1,

ReservationID = 1, Amount = 500 });

//create a full payment for reservation 2

_payments.AddObject(new Payment { PaymentID = 2,

ReservationID = 2, Amount = 1200 });

}

}private void CreateTrips()

{ if (_trips == null)

{

_trips = new FakeObjectSet<Trip>();

//one customer has two reservations, the other only has one

_trips.AddObject(new Trip

{ TripID = 1, DestinationID = 1,TripCostUSD=1000 });

_trips.AddObject(new Trip

{ TripID = 2, DestinationID = 2, TripCostUSD=1200 });

}

}

3. Modify the properties so that they call the creation methods if necessary and return

the local fields, as shown in Example 24-22.

 Example 24-22. The MockContext Customers properties

public IObjectSet<Customer> Customers

{ get

{ CreateCustomers();

return _customers; }

}

4. Do the same for the Trips, Reservations, and Payments properties.

Modify the tests to use the fake repository

Now that you have a fake repository to work with you can change the two tests to use

the fake, rather than the actual context that hits the database.

In each of the two tests, modify the code that instantiates a new context so that it uses

the FakeRepository class instead of BAGAContext.

Creating Persistent Ignorant Entities | 713

Download from Library of Wow! eBook <www.wowebook.com>

IBAGARepository context = new FakeRepository();

Rerun the tests

Go ahead and run the tests again. They should pass. You might want to debug the tests

so that you can watch what happens as the code steps through the FakeRepository and

FakeObjectSet.

Keep in mind that since our tests are designed to test the method validation and not

the functionality of Entity Framework, providing fake data does not affect the feasibility of the tests.

Building Tests That Do Not Hit the Database

In this next phase of the example, you will refactor the solution even more. The goal

here will test validation logic that is part of a save method without hitting the database.

You will introduce some class validation that needs to be performed prior to saving

changes back to the database. Then you will write tests to ensure that the validation is

doing its job correctly. You’ll tweak the repository in order to enable this, and in doing so, create even better separation between the various tasks in your application.

Adding Validation Logic to the POCO Class

The first task here is to add a class validation to the Reservation class—not to the

generated class but to a partial class that extends Reservation. This allows the class to

be responsible for validating itself. In order for a reservation to be saved to the database, it must have a ReservationDate, a Contact (or ContactID), and a Trip (or TripID).

Partial Classes for POCOs?

For those of you with more experience with persistence ignorance, repositories, and

designing for separation of concerns, you may be thinking “code smell” at this point.

Adding a partial class for a POCO seems to be outside the bounds of a POCO class.

But because we are using code generation for the POCOs, we’ll be stuck with having

to lean on the partial classes. A more advanced approach might use an IValidator<T>

interface. Take a look at the Validation Application Block in Microsoft’s Enterprise

Library for more information and ideas (http://msdn.microsoft.com/en-us/library/

 ff664356(v=PandP.50).aspx).

For a completely different approach, take a look at the code-first implementation that

is introduced in the next chapter. With code first, there is no model and no code gen-

eration. You can define your classes by hand and structure them as you wish.

If any of this critical data does not exist, the method will throw a System.ArgumentNul

lException along with the name of the invalid property.

714 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

Validating that the Reservation has a Customer and a Trip is a little tricky. TripID is

nullable, so it would be null if it hasn’t been assigned. However, the Trip property might have been assigned instead, so TripID can be null and valid at the same time.

ContactID is non-nullable and will always be at least 0, so testing for 0 is useless for that reason and also in the case that the Customer/Contact is new and does not yet have an

ID. Therefore, we test that one or the other (foreign key value or entity reference) has

been assigned.

The problem I have just described with validating that there is a Trip

attached to the reservation is the same problem that Entity Framework

runtime has when attempting to validate the foreign key constraint. See

the section “Checking for missing entity references with and without

foreign keys” on page 538 for a discussion of the runtime validation.

Example 24-23 lists the Validate method added to the Reservation class. It uses a parameter to notify the calling method which properties were invalid. You can see that

being constructed throughout the method.

 Example 24-23. The Reservation class’s Validate method

public bool Validate(out string validationError)

{ bool isvalid = true;

validationError = "";

if (TripID == null & Trip==null)

{

isvalid = false;

validationError = "Trip";

}

if (ContactID == 0 & Customer == null)

{

isvalid = false;

validationError += ",Contact";

}

if (ReservationDate == DateTime.MinValue)

{

isvalid = false;

validationError += ",Date";

}

if (validationError != "")

validationError = string.Format

("[ReservationID {0}: {1}]", ReservationID, validationError);

return isvalid;

}

This method will be called from the context’s ValidateBeforeSave method anytime the

application wants to save data back to the database.

Download from Library of Wow! eBook

<www.wowebook.com>

Building Tests That Do Not Hit the Database | 715

Download from Library of Wow! eBook <www.wowebook.com>

Adding Validation Logic to the Context

Now that you have some validation logic, you can call it from the ValidateBefore Save methods along with validations that you might create in any other classes. Exam-

ple 24-24 shows the code for the BAEntities.ValidateBeforeSave method. If there are multiple reservations with validation errors, those are combined in the validationEr

rors string, which is passed out to whatever method calls ValidateBeforeSave.

 Example 24-24. Validation in the context classes

public bool ValidateBeforeSave(out string validationErrors)

{ bool isvalid = true;

validationErrors = "";

foreach (var res in ManagedEntities<Reservation>())

{

string validationError;

bool isResValid = res.Validate(out validationError);

if (!isResValid)

{

isvalid = false;

validationErrors += validationError;

}

}

return isvalid;

}

Here you can also see the ManagedEntities<TEntity> property come into play. Valida-

tion is being done on only those reservations that are currently being change-tracked

(i.e., managed).

The FakeContext would have the same exact logic in its ValidateBeforeSave method,

giving you a way to test the context’s logic without hitting the database.

Providing ManagedEntities in the FakeContext

The FakeContext can create a fake collection of Reservations to represent what might

be currently managed by the context. This method, shown in Example 24-25, creates only a single reservation to place in the returned data.

 Example 24-25. Building the fake reservation data for ManagedEntities

public IEnumerable<T> ManagedEntities<T>()

{ if (typeof(T) == typeof(Reservation))

{

var newRes = new Reservation

{

ReservationID = 1,

ContactID = 1,

TripID = 1,

716 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

ReservationDate = new DateTime(2009, 08, 01)

};

var managedRes = new List<Reservation>{newRes};

return (IEnumerable<T>) managedRes.AsEnumerable();

}

return null;

}

But for testing purposes, something is missing. This is a valid reservation. The tests will need to verify that the validation correctly identifies valid reservations. However, they

also need to verify that the validation responds properly to invalid reservations.

How can you coerce the ManagedReservations property to provide data to test both

scenarios? This is where a mocking framework will alleviate a bunch of work, but again,

I want to work through all of the necessary parts in order to have a good understanding

of what’s necessary. One answer is to create another fake repository, one whose job is

to return bad data for testing purposes.

Another tactic rather than forcing various contexts to be responsible for

creating data is to create it in the test. I prefer not to do that because it’s

redundant code. By placing the data in the contexts, I have dependable

data. In an edge case, I can create the data on the fly in the test code.

Copy the FakeContext file to a new file called FakeContextBadData. I will only focus on the new method for returning bad data.

Change the name of the class in the new file to FakeContextBadData. Then modify the

ManagedEntities method by removing the code to assign the ContactID and TripID. It

should look like Example 24-26.

 Example 24-26. Fake data to return invalid managed reservations for testing

public IEnumerable<T> ManagedEntities<T>()

{ if (typeof(T) == typeof(Reservation))

{

var newRes = new Reservation

{

ReservationID = 1,

ReservationDate = new DateTime(2009, 08, 01)

};

var managedRes = new List<Reservation>{newRes};

return (IEnumerable<T>) managedRes.AsEnumerable();

}

return null;

}

Building Tests That Do Not Hit the Database | 717

Download from Library of Wow! eBook <www.wowebook.com>

You now have three classes that implement the IContext interface, which demonstrates the additional value provided by using an interface. You can use the different contexts

interchangeably thanks to the interface.

Now you can build two tests to ensure that the validation all the way down inside the

Reservation class is working properly (see Example 24-27).

 Example 24-27. Tests to verify the validation method

[TestMethod()]

public void Validators_Return_True_and_Empty_ErrorString_With_Good_Data()

{ var context = new FakeContext();

string validationErrors = "";

bool valid = context.ValidateBeforeSave(out validationErrors);

Assert.IsTrue(valid);

Assert.AreEqual(validationErrors, "");

}

[TestMethod()]

public void Validators_Return_False_and_NotEmpty_ErrorString_With_Bad_Data()

{ var context = new FakeContextBadData();

string validationErrors = "";

bool valid = context.ValidateBeforeSave(out validationErrors);

Assert.IsFalse(valid);

Assert.AreNotEqual(validationErrors, "");

}

The first test uses the FakeRepository to provide fake data. We know that it will give

us a valid reservation, so the expectation of this test is that the return from the ValidateBeforeSave method will be true. There is an extra Assert in there to ensure

that the validationErrors string is empty, which it should be if there are no problems

with the data.

The second test uses the repository that returns an invalid reservation. The expectation,

therefore, is that the valid variable will be false and there will be some text in the

validationErrors. A more fine-grained set of tests would ensure that the

validationErrors string is also correct in different scenarios.

Hiding the Context from the Lower Layers with Unit of Work

In the tests involving the repository thus far, the test methods have instantiated a con-

text and passed it into the repository’s constructor. This is convenient in the tests be-

cause it allows you to pick and choose which repository to pass in. If this were a UI, or

another layer close to the UI, it means the UI would also need to instantiate the context

after all the work that you’ve done to create separation in your application. The UI

should not be aware of the context. The repositories are there to protect the UI from

interacting directly with the context. You may even want another layer in between the

UI and the context, but let’s focus on this simpler scenario for now.

718 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

How can you have your cake and eat it too? You want to control which context gets used when testing, but you do not want the UI layer to be calling code to instantiate a

context.

One approach would be to allow the default constructor of each repository to instan-

tiate a BAEntities context. You could even then retrieve that context instance and share

it with other repositories thanks to the constructor that takes a context instance.

The repositories would then own the saving mechanism via:

ReservationRepository.Context.Save();

The problem with this is that you would be using the ReservationRepository to trigger

a save that might reverberate through different types—CustomerRepository,

PaymentRepository, and so forth—if they are all using the same context. Having the

Save be accessed from inside a repository, therefore, would be misleading since it ap-

pears that the call would only be saving the reservation data, which is not always the

case.

A solution is to create a class that represents a unit of work and would own the context

while providing a separation between the context and the UI layer.

The Unit of Work Pattern

Unit of Work is a recognized software development pattern. It is described in Martin

Fowler’s Patterns of Enterprise Application Architecture (P of EAA) (http://www.martin

 fowler.com/eaaCatalog/unitOfWork.html) as follows:

Maintains a list of objects affected by a business transaction and coordinates the

writing out of changes and the resolution of concurrency problems.

An ObjectContext is a Unit of Work for the Entity Framework. The UnitOfWork class

that you are building in this section is a wrapper for the IContext interface.

The new class could then instantiate a default BAEntities context if none were passed

in. When would you pass a context in? When calling the Unit of Work from a unit test.

Since this is a simple example, I’ll put my UnitOfWork class inside my Repositories project rather than creating another project to contain it. Example 24-28 shows the UnitOfWork class.

 Example 24-28. The UnitOfWork class

using BAGA.Repository.Interfaces;

namespace BAGA.Repository.Repositories

{ public class UnitOfWork

{

private readonly IContext _context;

Building Tests That Do Not Hit the Database | 719

Download from Library of Wow! eBook <www.wowebook.com>

 public UnitOfWork()

{

_context = new BAEntities();

}

public UnitOfWork(IContext context)

{

_context = context;

}

public string Save()

{

return _context.Save();

}

internal IContext Context

{

get { return _context; }

}

}

}

Like the repositories, this class lets you pass in the context instance; otherwise, it will instantiate one. It exposes a Save method that will call its context’s Save method.

Now your business layer or UI that needs to be able to retrieve and update entities can

do so only through the UnitOfWork.

But this means you’ll need to make a change to each of the repositories, which also

need to be aware of the UnitOfWork so that they can get access to its context for the

various methods that use the context.

Add a new constructor to each repository. The new constructor will take a

UnitOfWork class as a parameter and then set the local to that of the UnitOfWork.Con

text. The internal UnitOfWork.Context is accessible to the repositories because they are

in the same assembly (see Example 24-29).

 Example 24-29. UnitOfWork overload for a repository constructor

public ReservationRepository(UnitOfWork uow)

{ _context = uow.Context;

}

Testing UnitOfWork Against the Database

The following test, shown in Example 24-30, validates a few behaviors of UnitOfWork and does so with true database interaction.

The test checks that the UnitOfWork does, indeed, create the default context,

BAEntities. Next, it verifies that queries against the database are being performed as

expected using the single UnitOfWork. After this, it performs a database update and an

insert which depend on the UnitOfWork managing the various entities and their changes

720 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

via its internal context. Finally, a new UnitOfWork is created to requery the key data from the database and verify that it reflects the expected updates.

 Example 24-30. Testing UnitOfWork with the BAEntities context

[TestMethod()]

public void UoW_with_Default_Context_Saves_To_and_Retrieves_from_Database()

{ //let UOW create a default BAEntities context

var uow = new UnitOfWork();

var cRep = new CustomerRepository(uow);

var rRep = new ReservationRepository(uow);

var customer = cRep.GetById(20);

string newNotes = DateTime.Now.ToString();

customer.Notes = newNotes;

var resCount = rRep.GetReservationsForCustomer(20).Count;

var newRes = new Reservation

{

Customer = customer, TripID = 3,

ReservationDate = DateTime.Now

};

customer.Reservations.Add(newRes);

//single UOW manages all entities and updates

string result = uow.Save();

//use a new UOW to retrieve and verify db changes

uow = new UnitOfWork();

cRep = new CustomerRepository(uow);

rRep = new ReservationRepository(uow);

customer = cRep.GetById(20);

Assert.IsTrue(customer.Notes == newNotes);

Assert.IsTrue(rRep.GetReservationsForCustomer(20).Count == resCount + 1);

}

Enabling Eager Loading in IContext

Eager loading is an important feature of the Entity Framework’s querying capabilities,

but the method that enables it, Include, is a method of ObjectQuery. ObjectSet has an

Include method only because it inherits from ObjectQuery.

Now that you are generically using IObjectSet directly, you have lost access to Include and definitely need it back.

The easiest way to provide Include to IObjectSet is through an extension method. But

the extension will be for IQueryable, not IObjectSet. This allows not only the IObjectSet to benefit, but also the IQueryable that you are using for Customers. Add the

extension method listed in Example 24-31 to the EFExtensionMethods class in the model project.

 Example 24-31. Providing an Include method that will work with IContext

public static IQueryable<TSource> Include<TSource>

(this IQueryable<TSource> source, string path)

{

Building Tests That Do Not Hit the Database | 721

Download from Library of Wow! eBook <www.wowebook.com>

 var objectQuery = source as ObjectQuery<TSource>;

if (objectQuery != null)

{

return objectQuery.Include(path);

}

return source;

}

This will allow the true ObjectQuerys to continue to use Include; however, it will simply

strip the Include from queries using the fake contexts. The benefit is that your queries

won’t completely fail in your tests, but you have to be very careful about tests that

depend on the eager-loaded related data since it won’t be there as a result of this include.

Eager loading with a fake context

To test methods that contain eager-loading queries using Include, you should consider

creating a special fake context that returns shaped results—for example, a Customer

object with the Reservations populated since the Include method will simply be

ignored.

Leveraging Precompiled Queries in Your Repositories

In Chapter 20, you learned about precompiling LINQ queries for a major query performance improvement. You can continue to get this advantage even in your repository,

but you’ll have to write some extra code to do so. Not every query will need to be

precompiled. As mentioned in the earlier chapter, if the query is not reused, you will

end up paying an unnecessary price for the precompilation/invoke which is a bit more

expensive than simply executing a query.

The pattern I recommend is to have a separate set of repositories that are specifically

designed to maintain and invoke compiled queries. As an example, alongside the

CustomerRepository, you would have another class, CustomerPreCompiledRepository,

which would contain the static CompiledQuery functions and methods that would return

data as a result of invoking these various precompiled queries.

You can learn more about implementing this pattern from my December 2009 blog

post titled “Agile EF 4 Repositories Part 4: Compiled LINQ Queries” (http://thedata

 farm.com/blog/data-access/agile-ef-4-repositories-part-4-compiled-linq-queries).

Pay attention to the blog post’s explanation of additions to IContext, which allow you

to easily differentiate between IContext implementers that support precompiling and

those that don’t.

722 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

Using the New Infrastructure in Your Application

All of the database and ObjectContext interaction required by your application—

performing queries, inspecting objects in the ObjectStateManager, persisting data to the

database, and so on—will be encapsulated in various repositories, whether that is a

single class or a set of classes. In a more highly architected application, you will likely be breaking this logic up even further. For now we’ll stick with our simpler solution.

To see how this works, you’ll create a UI layer in the solution and have it retrieve and

save some data through the UnitOfWork and various repositories. This isn’t too different

from what you’ve already done in the test from Example 24-30, since that test used BAEntities and hit the database. The only real difference is that rather than performing

asserts, you would be displaying the data.

The reason for this last exercise is to highlight the fact that the UI will be completely

separated from Entity Framework thanks to the repositories and the persistent ignorant

classes.

Note that I’ve added a new method, displayed in Example 24-32, to the CustomerRepo sitory.

 Example 24-32. A new method for CustomerRepository

public Customer CustomerAndReservations(int id)

{ return _context.Customers.Include("Reservations")

.FirstOrDefault(c => c.ContactID == id);

}

We’ll call this method from our console app.

Adding a UI Layer That Calls the Repository

Start by creating a new Console Application project in the solution. Then, create a

reference to the following projects:

• BreakAwayEntities (the POCO classes)

• Repositories

• POCOState

• Interfaces

In the file that contains the Main method (program.cs or Module.vb) add a method to query the model, modify some data, and save it back to the database. This method,

shown in Example 24-33, is similar to the test against the UnitOfWork test from Exam-

ple 24-30.

Using the New Infrastructure in Your Application | 723

Download from Library of Wow! eBook <www.wowebook.com>

 Example 24-33. A simple console app using the new architecture

using System;

using BAGA;

using BAGA.Repository.Repositories;

namespace RepositoryUI

{ class Program

{

static void Main(string[] args)

{

RetrieveAndModifySomeData();

}

private static void RetrieveAndModifySomeData()

{

var uow = new UnitOfWork(); //defaults to BAEntities context

var cCust = new CustomerRepository(uow);

var customer = cCust.CustomerAndReservations(20);

Console.WriteLine(customer.LastName.Trim() + customer.FirstName);

foreach (var res in customer.Reservations)

{

Console.WriteLine(" Res. Date: {0}", res.ReservationDate);

}

string newNotes = DateTime.Now.ToString();

customer.Notes = newNotes;

var resCount = customer.Reservations.Count;

var newRes = new Reservation

{

Customer = customer,

TripID = 4,

ReservationDate = DateTime.Now

};

customer.Reservations.Add(newRes);

string result = uow.Save();

Console.WriteLine("ReservationID from DB: {0}", newRes.ReservationID);

Console.ReadKey();

}

}

}

Application Architecture Benefits from Designing Testable

Code

There are three notable points to make about this final example.

First, the UI project has no reference to the project that contains the model project

(which contains the model and ObjectContext), nor to System.Data.Entity. This means

your UI has no need to know anything about System.Data.Entity. Your UI and other

layers that consume the UnitOfWork and repositories are now completely independent

724 | Chapter 24: Building Persistent Ignorant, Testable Applications

Download from Library of Wow! eBook <www.wowebook.com>

of a backend framework. The classes are totally unconcerned with how their data is stored and retrieved.

Second, the method works without having to instantiate the context. That means the

repositories are doing their job.

Finally, thanks to the tests, most of the kinks in the backend of this application have

already been worked out. Putting it together meant, in my case, that everything worked

perfectly the first time I tried it.

Considering Mocking Frameworks?

You can do so much more with testing as your applications grow with your architecture,

but this should certainly get you started.

Don’t forget the earlier mention of third-party mocking frameworks. These will take

away some of the pain of creating the mock repository manually.

As mentioned in an earlier sidebar in this chapter, I have seen mocking frameworks

such as Moq, RhinoMocks, and TypeMock Isolator used successfully with the Entity

Framework. You can learn more about mocking frameworks from myriad resources.

Summary

If you have never built repositories or unit tests before now, congratulations on com-

pleting this chapter! But remember, this is just the beginning of properly testing and

designing your applications. Testing is an important part of application development,

and being able to build tests that can easily and continuously verify your application is

a great benefit to software development.

You’ve learned how the new POCO support and the IObjectSet enable you to create

persistent ignorant classes and use repository classes to take charge of all of the inter-

action with the ObjectContext. You’ve built a very loosely coupled and maintainable

architecture and implemented unit tests against methods that provide interaction with

the persistence layer without being forced to hit the database.

The goal of the chapter was to demonstrate how the Entity Framework can be used in

this type of development. The Entity Framework team put a great deal of effort into

providing support for POCOs, persistence ignorance, and testability in the .NET 4.0

version of Entity Framework. As you have seen, targeting this style of development

forces you to think carefully about your application architecture and can encourage

you to build more sustainable and loosely coupled applications.

Summary | 725

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 25

Domain-Centric Modeling

Visual Studio 2010 brought new approaches to modeling for Entity Framework. The

Sample and BreakAway models you have created and worked with thus far were re-

verse-engineered from existing databases. We call this type of modeling database first.

While basing an application on an existing corporate database is often necessary, many

developers are able to design the database behind their model, completely from scratch.

Other developers, such as those who follow Domain-Driven Development (DDD) pat-

terns, prefer not to begin with the database, but rather with a conceptual model of their

domain or simply with their own domain classes.

Beginning with Visual Studio 2010, the Entity Data Model Designer supports both of

these development styles in addition to database first.

You can begin by describing your application domain as an Entity Data Model and

then use that model to define a database. This is referred to as model first.

Alternatively, you can eliminate the EDMX model completely and focus on describing

your application domain through your classes. This feature is called code first and is a future feature that Microsoft is currently building for the Entity Framework.

While this is the only chapter in which I discuss these other approaches, I do not mean

to imply that they are less significant than database-first design. They are, in fact, very significant and if you are used to beginning with a database, you may find enlighten-ment as you explore these approaches, here in this introductory chapter and beyond,

in various other resources.

In this chapter, you will learn three new ways to build applications that do not begin

with the database. You’ll learn first how to use the new model-first feature. A side

benefit of designing a model from scratch is that you will learn about interacting with

the design tools. Then you’ll get a look at code first, which is included with Microsoft’s Entity Framework Feature Community Technical Preview (CTP). Finally, you’ll get a

short introduction to another future technology, SQL Server Modeling and its modeling

language, currently code-named “M.” Because these last two technologies are still in

727

Download from Library of Wow! eBook <www.wowebook.com>

development, I will limit discussion of them to a high level and point you to resources where you can keep up with them as they evolve.

Creating a Model and Database Using Model First

While the Entity Data Model Designer has always allowed you to build a model from

scratch, there was never an easy way to create a database or the store and mapping

metadata from that model. Even if a database already existed, creating the metadata

between a model of your own design and a database was a very difficult task.

Now the design tools have been enhanced so that you can successfully begin by de-

signing your model in the Designer and then let the tools build the appropriate metadata

and a database from your model.

The Entity Data Model Designer supports creating entities, relationships, and inheri-

tance hierarchies directly on the design surface. You have had some interaction with

these features already, but you will do a lot more designing in this chapter.

The code generation will continue to perform its job of creating classes based on the

model. But the conceptual model still needs a backing database along with the addi-

tional metadata—store schema and mappings—in order for the Entity Framework

runtime to do its job.

The Designer’s context menu has a Generate Database from Model option. But this is

a bit of a misnomer. This feature will create the necessary SQL to define tables and

constraints for a database. This is called the Database Definition Language, or DDL.

But it will not create a database and it will not automatically execute this SQL. It will

only build the DDL for you; it will be up to you to execute the DDL.

Additionally, the feature will create the model’s store schema (SSDL) and mappings

(MSL) based on the objects defined in the DDL.

There is a Visual Studio extension built by the Entity Framework team that allows you

to take some additional control over how the DDL and metadata generation is created.

You’ll get a look at that shortly.

Let’s start with a walkthrough to familiarize you with the basics and then follow up

with a look at some more advanced features.

Creating a Conceptual Model in the Designer

Since by now you might be a little tired of the BreakAway Geek Adventure application

and its data, you’ll create a new application designed to track information about a

developer conference. We can call it the ConferenceManager.

The ConferenceManager model will need conference tracks, speakers, and sessions,

which provides us with a variety of relationships to work with. Also, some sessions may

be workshops, which gives us an opportunity to build in an inheritance hierarchy.

728 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

On paper the model looks like Figure 25-1. Now you can build it in the Designer.

 Figure 25-1. The ConferenceManager model to be built in the Designer

1. Create a new class library project for your model.

2. Add an ADO.NET Entity Data Model item into the project.

3. On the Choose Model Contents page of the wizard, select Empty Model and then

click Finish.

And now you have a completely empty design surface.

The Empty Model option was available in Visual Studio 2008 SP1 also.

But unlike the Visual Studio 2010 Designer, there was no tooling to

generate a database schema from the model or the additional metadata.

I once tried to build a model from scratch and then create the metadata

to connect to a database, and finally just gave up in frustration. I have

never met anyone who managed to succeed at it.

There are two ways you can add items to the model’s design surface: from the Designer’s

Toolbox, shown in Figure 25-2, or from the Add item of the Designer’s context menu, shown in Figure 25-3.

In Figure 25-3, the Association and Inheritance items are inactive because this menu is being displayed in a brand-new, empty model. Once there are entities on the surface,

then it will be logical to add these items.

Adding items from the Toolbox simply places the item on the surface using defaults,

whereas adding items from the context menu opens a dialog for you to define the critical

attributes of that item.

Creating a Model and Database Using Model First | 729

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 25-2. The Toolbox for the Entity Data Model Designer

 Figure 25-3. Adding items to the model from the Designer’s context menu

For example, if you drag an entity from the Toolbox, the result will be a new entity

with a default name and a default property that is identified as an EntityKey, as shown

in Figure 25-4.

 Figure 25-4. A default entity created from the Toolbox

If you add a new entity from the context menu, you’ll get the Add Entity dialog, shown

in Figure 25-5, which allows you to have more granular control over how the new entity will be defined. The default settings match the defaults that are used when you create

an entity from the Toolbox.

Creating the Entities

For this walkthrough, I recommend using the context menu so that you can get the

dialogs. You’ll begin by creating a Speaker entity for your ConferenceManager model.

730 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 25-5. The Add Entity dialog from the Designer’s context menu

You will not be using this model for any further examples in the book,

so it is not critical that you create every property exactly as defined.

However, many of the steps are here to specifically point out particular

behaviors.

Start by creating a new entity from the context menu. In the Add Entity dialog, change

the name to Speaker. Notice that, by default, the Entity Set name automatically changes

itself to the plural form of the entity name.

You do want a key property, so leave that checked, but change the name from Id to

SpeakerId. The type, Int32, is correct.

Click OK and you’ll see the new entity on the Designer.

Now create some scalar properties. All of the properties for Speaker happen to be strings, which will make creating new properties a quick process, since string is the

default type.

You can add new properties in three ways: either from the entity’s context menu or by

pressing the Insert or Enter key on your keyboard. The Insert/Enter keys will work only

when a property or the Properties header is already highlighted.

Creating a Model and Database Using Model First | 731

Download from Library of Wow! eBook <www.wowebook.com>

New properties will be created with a default name of Property.

Pay attention to the attributes of a newly created property, as shown in Figure 25-6.

 Figure 25-6. Default attributes of a newly created property

New scalar properties begin as non-nullable String types. Because we are building a

model-first model, the Database Script Generation and Facet attributes will be im-

portant when it comes to generating the DDL for the database.

In fact, if you look at the properties for the SpeakerID you already created, you’ll see

that because it was set up as an identity key, its StoreGeneratedPattern was automati-

cally set to Identity.

Setting attributes of the entity’s properties

Now walk through the process of setting attributes of the entity’s properties. First,

change the name of the first property to FirstName. Then change the Max Length value

to 50.

Recall from earlier chapters that Max Length does not affect the length of the entity

property. Instead, it describes what the Max Length attribute of the database column

732 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

should be. In our previous models, the EDM Designer wizards read that information

from the database and provided it here. Now that you are doing model-first design,

this value will be used when creating the schema of the database.

Add the rest of the properties to the Speaker entity, as shown earlier in Figure 25-1.

In order to inspect some differences between Max Length and Fixed Length, be sure to

include the following attributes on these scalar properties:

• Title: Be sure to leave Max Length = (None)

• Bio: Max Length = Max and Nullable = True

• Country: Fixed Length = True and Max Length = 50

When you generate the DDL, you’ll get a look at how these settings affect the database

schema.

Add the Session and Track entities as shown in Figure 25-1 along with the identity keys that the dialog box settings will have you create. Feel free to change their names.

Add the scalar properties for the new entities, and for now just use the default attributes.

We’ll tweak some of these attributes after the fact to better understand their effect on

the model, your classes, and the generated database schema.

You can set the default value of the Session.Length property to 60, as in 60-minute

sessions, but with the understanding that this is only for the benefit of the Session class, not the database table that will be created.

See the sidebar “Understanding Entity Property Defaults Versus Data-

base Defaults and Model First” on page 743 to learn more about the

impact of setting defaults on entity properties.

Recall that by default, all new scalar properties are non-nullable String types. Not all

of our properties are meant to be Strings, such as the Session.Length property.

So, change the Session.Length to Int32, and change ConferenceTrack.MinSessions and

MaxSessions to Int32.

If you want to explore how some of the other types are translated to database types,

feel free to set other properties to those types.

Because you won’t be using this model going forward, I have not focused

on additional attributes of the entity properties.

Creating a Model and Database Using Model First | 733

Download from Library of Wow! eBook <www.wowebook.com>

Creating Association and Inheritance Hierarchies

Now you’ll define how the entities relate to one another. You’ll be defining a one-to-

many relationship and a many-to-many relationship in this small model, as well as

creating an inheritance between Session and the new entity.

Creating a one-to-many relationship

Begin with the simplest relationship, a one-to-many relationship between Session and

ConferenceTrack. Each track can have many sessions, but a session can belong in only

one conference track.

Again, you have the option to use the Toolbox (with default settings) or create the

relationship from the Designer’s context menu and apply the settings explicitly. The

latter approach is much more educational and preferable if you like to have more con-

trol over how things are defined, so I’ll have you use that.

You can start from the Designer background or an entity. If you begin with an entity,

the dialog will use that entity as the first end of the relationship. You can easily modify this.

Right-click the ConferenceTrack entity; select Add and then Association.

By default, the dialog will begin with ConferenceTrack as one end of the relationship,

and as you can see in Figure 25-7, it has automatically chosen Speaker as the other end.

A default 1:* relationship is defined.

Using the drop-down list, change the End Entity to Session. Notice that the Association

name gets automatically updated to reflect the new pair of ends.

The multiplicity on both ends is correct, since you want to define a one-to-many rela-

tionship between ConferenceTrack and Session.

By default, the dialog will create navigation properties in the entities.

ConferenceTrack will get a property named Sessions, which will act as a wrapper to the

collection of Sessions related to the ConferenceTrack. Session will get a new property

to point to the related ConferenceTrack.

Finally, the dialog box defaults to create any necessary foreign key properties in the

“child” entity, Session.

Figure 25-8 shows the effect of this new association on the entities.

As the image shows, there is a new scalar property in Session that is the foreign key

property to the conference entity. You might want to change the default name. The

association is in place along with the new navigation properties, ConferenceTrack and

Session.

What does this mean for the code generation? In addition to the new scalar property

becoming a column in the Session table, the referential constraint created for the 734 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 25-7. Defining a new association

association (shown in Figure 25-9) will be translated into a primary key/foreign key constraint in the database.

You’ll make one more change to this association’s properties and then follow up in a

bit to see the impact on the generated DDL. Here, you will define a cascade delete in

the model so that if a ConferenceTrack object is deleted in your application, all of the

associated Session objects will automatically be deleted. This is probably not something

you would want to happen in a real conference model, but the goal is to see how this

affects the DDL.

In this association, End1 is the ConferenceTrack. Change End1 OnDelete from None to

Cascade to ensure that all of a ConferenceTrack’s Sessions get deleted when the ConferenceTrack is deleted.

Recall that in Chapter 19, you first worked with the model’s OnDelete setting. Now you are able to see that this setting serves two purposes. The first is that it defines a cascade Creating a Model and Database Using Model First | 735

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 25-8. New properties created with the association

 Figure 25-9. The automatically created referential constraint

delete operation for in-memory objects. The second is that when generating DDL from

the model, it additionally instructs the DDL generator to define the database constraint

as a cascade delete.

736 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

Unfortunately, the model property designer is inconsistent in defining

model and database schema at the same time. In the case of OnDelete,

you are defining behavior for the model and for the generated database.

However, with other properties, such as Default, you are only defining

the model setting, and with still others, such as MaxLength, you are only

defining a database setting. This can be very confusing, and your only

recourse is to pay close attention and be aware of what you are impacting

with these settings.

Creating a many-to-many relationship

Here, you’ll create a many-to-many relationship between Speaker and Session, as it’s

possible for a session to have more than one speaker.

1. Right-click on an entity or the Designer background.

2. Select Add, then Association.

3. Define the association as shown in Figure 25-10.

Since both ends of this relationship are Many, there is no need for any foreign keys,

which is why the “Add foreign key” option is inactive.

4. Click OK and you’ll see the representation of the many-to-many association drawn

between the Speaker and Session entities.

 Figure 25-10. Association properties for a many-to-many relationship

Entities with a many-to-many relationship rely on a join table in the database. When

you created many-to-many relationships from the BreakAway database, you learned

that if the join table has more than just the foreign keys of the tables to be joined, the model must create a separate entity to map to that table. In that case, rather than having Creating a Model and Database Using Model First | 737

Download from Library of Wow! eBook <www.wowebook.com>

a many-to-many association between the two entities, those entities would be related to the join entity.

That rule still applies, just in reverse. The association you just created defines a *:*

directly between the entities. Therefore, the DDL will define a join table that only contains SpeakerId and SessionId columns. If you need more information in that join

table, you cannot use the *:* association. Instead, you should create another entity in

between the two target entities.

Creating an inheritance hierarchy

The last entity in this model will be a Workshop entity. In Figure 25-1, shown earlier, displaying the model, you can see that Workshop is defined as a special type of Ses sion. You’ll create the entity and force it to inherit from Session.

In Chapter 14, you created an inheritance between two existing entities. Here, you’ll define the inheritance at the same time we define the new Workshop entity.

1. Add a new entity to the model.

2. Name the entity Workshop.

3. Under Base Type, select Session.

Notice that as a result of selecting a Base Type, the EntitySet and Key Property

items of the dialog box become inactive. The new Workshop entity will be part of

the Sessions entity set, and therefore does not need an entity set. If you recall from

your earlier experience with defining inheritance, the derived entity will also inherit

the key property from its base. Therefore, Workshop will not need its own key prop-

erty either.

4. Click OK and the new entity will be created and will inherit from Session.

The completed model is shown in Figure 25-11.

By default, the Designer will translate model inheritance into a Table per Type (TPT)

hierarchy in the database, creating a second table to represent the derived entity. Fur-

ther on in this chapter, you will learn about a tool that will allow you to change this

default.

Generating Database Schema from the Model

As I said earlier in the chapter, the Generate Database from the Model option is a bit

misleading in its name. The database itself must exist before the Designer can generate

the DDL.

The database needs to exist in advance for two reasons. The first is that the DDL Gen-

eration Wizard will also create an entity connection string, which, as you know, in-

cludes a database connection string. Therefore, the wizard will ask you to select the

target database. The wizard, which is based on the same database selection wizard used

738 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 25-11. The final model

by many other database connection features in Visual Studio, provides an opportunity

to create a new database on the fly. The second reason is that the generated DDL will

not include script to create a database. The DDL script will only know how to create

schema.

If you don’t already have a database to work with, now is the time to

create it. The specific instructions for creating a new database differ

depending on what type of database server you are using. I am using

SQL Server; therefore, when I right-click on Data Connections, there is

a menu option to Create a New SQL Server Database. In its wizard I can

select my server and then provide the name for the new database, which

is Conferences.

As an alternative, you can select any available database when you gen-

erate the DDL. I have a dummy database for this purpose. Just be sure

your application has the correct database string at runtime.

Right-click on the Entity Data Model design surface and choose Generate Database

from the Model.

The wizard will first ask you to select a database so that it can create the connection

string. Select the appropriate database connection and click OK.

Creating a Model and Database Using Model First | 739

Download from Library of Wow! eBook <www.wowebook.com>

If you already have an available EntityConnection string for this model

(e.g., in a .config file in your project), the wizard will skip this step.

Next you’ll be presented with the generated DDL, as shown in Figure 25-12.

 Figure 25-12. The generated DDL script

Exploring the generated DDL

I’m using SQL Server as my database, so my DDL is T-SQL. You’ll notice that at the

top there’s a comment specifying that the script is for SQL Server 2005, SQL Server

2008, and SQL Azure.

740 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

Because model first is a new feature in Entity Framework 4, the third-

party providers that were written to support Entity Framework in .NET

3.5 are being updated by their creators to support this new feature. See

the Resources page on the book’s website where I try to keep an up-to-

date list of Entity Framework providers.

As you scroll down the script, you’ll first see SQL for dropping existing constraints and

tables. If you are regenerating an existing database, be aware that your data will be lost.

Later in this chapter I’ll point to a tool which will allow you to do incremental database updates from the model which you should consider using especially if your model is

already in production. Otherwise, you will want to back up your data before running

the script. I find Visual Studio’s Database Publishing Wizard helpful for making a snapshot of the data that can be imported into a newly created database.

As with code generation, the DDL generation is dependent on a T4

template. When we look at more advanced features later in this chapter,

you’ll see how it is possible to impact the DDL generation.

See the sidebar, “Extra! Extra! Entity Designer Database Generation

Power Pack” on page 747, to learn about an external toolkit that will

allow you to customize the DDL generation.

Next you’ll find the SQL for creating the tables. The Speakers table SQL is shown in

Example 25-1.

 Example 25-1. Generated T-SQL to create the Speakers table

CREATE TABLE [dbo].[Speakers] (

[SpeakerId] int IDENTITY(1,1) NOT NULL,

[FirstName] nvarchar(max) NOT NULL,

[LastName] nvarchar(max) NOT NULL,

[Title] nvarchar(max) NOT NULL,

[City] nvarchar(max) NOT NULL,

[Country] nchar(50) NOT NULL,

[Expertise] nvarchar(max) NOT NULL,

[Bio] nvarchar(max) NULL

);

The first thing to notice is that the table name is plural. It comes not from the name of

the Entity, but from the name of the EntitySet. SpeakerId is being defined as an auto-

incrementing IDENTITY field. This is thanks to the combination of the property’s EntityKey flag and the StoreGeneratedPattern set to Identity.

Remember setting the Bio’s max length to Max and leaving most of the other attributes

at None? Nvarchar(max) is the default, which is why the types are all the same except for

Country.

Creating a Model and Database Using Model First | 741

Download from Library of Wow! eBook <www.wowebook.com>

Country is an nchar rather than an nvarchar. That’s because you set its Fixed Length property to True.

SQL Server Data Types Versus Entity Framework Types

Here is a list of how the Entity Data Model Wizard interprets SQL Server data types

when it is creating entities. Note that Entity Framework has no way to represent some

of the types introduced in SQL Server 2008—geography, geometry, hierarchyid, and

sqlvariant.

This chart is equally helpful when you are building a model that will be used to generate

DDL for SQL Server.

SQL Server type

Entity type

SQL Server type (cont.)

Entity type (cont.)

bigint

Int64

numeric

Decimal

binary

Binary

nvarchar

String

bit

Boolean

nvarcharmax

String

char

String

real

Single

date (2008)

DateTime

smalldatetime

DateTime

datetime

DateTime

smallint

Int16

datetime2 (2008)

DateTime

smallmoney

Decimal

datetimeoffset

DateTimeOffset

sqlvariant (2008)

N/A

decimal

Decimal

text

String

float

Double

time (2008)

Time

geography (2008)

N/A

timestamp/rowversion

Binary

geometry (2008)

N/A

tinyint

Byte

hierarchyid (2008)

N/A

uniqueidentifier

Guid

image

Binary

varbinary

Binary

int

Int32

varbinarymax

Binary

money

Decimal

varchar

String

nchar

String

varcharmax

String

ntext

String

xml

String

These comparisons give you an idea of the type of impact you can have on the generated

database schema.

742 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

Looking at the result of the inheritance

Scrolling farther down you’ll see that a table named Sessions_Workshop was created

using the combination names of the base and derived entities from the inheritance you

defined. Because a separate table is used for the derived type, this is a TPT inheritance.

TPT is the default inheritance type supported by model first.

The table has SessionId as its property. This was defined thanks to the inheritance from

Session. Since you didn’t add any other properties to the Workshop entity, there are no

additional fields.

Noting the result of the many-to-many relationship

There’s one more table, SpeakerSession. This is the join table created to support the

many-to-many relationship we defined in the model. Notice that rather than naming

the fields SpeakerId and SessionID, it includes the name of the tables that those fields

point to.

Exploring the constraints

Below the table definitions you will find all of the constraints. This is where the primary keys and foreign keys are defined.

Notice that on the constraint for the relationship between ConferenceTrack and

Session, you can see ON DELETE CASCADE, which we defined in the association’s prop-

erties. The cascade delete will happen in memory as well as in the database. If you recall

from Chapter 19, it is recommended that you have cascade delete in both places or not at all; otherwise, you can create conflicts.

Understanding Entity Property Defaults Versus Database Defaults

and Model First

Entity properties have default values, and you interacted with them earlier in this book.

But it’s important to understand the difference between the default values that you can

set in the conceptual model and the database defaults. They are completely unrelated.

If you reverse-engineer a database that has default values set on columns, that default

will not get picked up in the store schema or by the entity itself.

If you define a default value for a property of an entity, the default EntityObject T4

code generation template and the default POCO Entities template will both set that

property’s default value in the generated class.

However, now that we are focused on building a model that will be used to generate a

database schema, it’s important to be aware that none of the default values you define

for an entity’s property will get pushed to the database.

Creating a Model and Database Using Model First | 743

Download from Library of Wow! eBook <www.wowebook.com>

Completing the generation of the DDL

When you click the wizard’s Finish button, a few events occur:

• The DDL is saved in a file and added to your project.

• An app.config file is created if it doesn’t already exist in your project.

• An EntityConnection string, including the database connection string, is added to

the .config file.

• The SSDL and MSL portions of your EDMX metadata file are created.

This last point is notable. While you worked on your model, all you were building in

the metadata was the CSDL. There was no database for which to provide a store schema, and therefore no mappings, either. Now that we have a store schema described

(in the DDL) that same information was used to define the SSDL and the mappings

between your model and that SSDL.

Feel free to open the model in the XML Editor to take a look.

Creating the Database and Its Schema

The last step in this walkthrough is to execute the script.

It is safe to run the script on your local machine against a sample test database, but

otherwise, tread carefully. See the sidebar “Run Database Scripts from Visual Studio?

Are You Kidding Me?” for more information.

Run Database Scripts from Visual Studio? Are You Kidding Me?

Giving developers to the ability to execute database scripts from Visual Studio is a

touchy subject in many enterprises. If you are in an enterprise, it’s likely that you have specific practices in place and security on the databases so that no unwanted accidents

occur. In a development environment, you wouldn’t (shouldn’t) dream of touching

your production database anyway. But messing with a local, test database isn’t such a

cause for alarm.

Double-click the new .sql file in the Solution Explorer. The file will open in Visual Studio’s Transact-SQL Editor window.

Learn more about the Transact-SQL Editor in the MSDN Library topic

“Editing Database Scripts and Objects with the Transact-SQL Editor,”

at http://msdn.microsoft.com/en-us/library/dd380721(v=VS.100).aspx.

The Transact-SQL Editor has its own set of commands. You can access them either

from the Data menu or from the window’s context menu.

744 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

Right-click in the editor to open the context menu for SQL, part of which is shown in

Figure 25-13.

 Figure 25-13. Part of the Transact-SQL Editor menu

The Transact-SQL Editor does not rely on the connection string in the app.config file to determine on which database server you’ll be executing the script. The database

name itself (e.g., Conferences) is part of the script (USE [Conferences];). If the connection has not yet been set for this script file, Execute SQL will first prompt you to set

the connection. Otherwise, you can change it explicitly from the Connection command.

This connection can work only with server databases, whether that’s

SQL Server or SQL Server Express. You won’t be able to connect to

database files directly as you are able to in many of the other “Add Con-

nection” dialogs in Visual Studio.

Once you have provided the connection information, the script will then execute. Vis-

ual Studio’s Messages window should open with the message “Command(s) completed

successfully.” Figure 25-14 shows the diagram of the newly generated database.

Now, working with this model will be no different from working with a model that was

created using the database-first method.

Overriding the DDL Generation

As mentioned earlier, the DDL is created using a T4 template that, like the T4 code

generation, reads the model’s XML and spits out T-SQL based on the template’s in-

structions. This means you have an opportunity to control the output.

If you look at the model’s properties, you’ll see a section called Database Script Gen-

eration. In there are properties related to Workflow, a Template, and Schema Name

(see Figure 25-15).

Creating a Model and Database Using Model First | 745

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 25-14. Diagram of the tables created from the DDL

 Figure 25-15. Properties to change how the DDL is generated

You can easily change the schema name used for the database objects by changing the

Database Schema Name property.

Database Generation Workflow refers to the .NET’s Workflow Foundation item that is

used when the generation is executed. If you are familiar with using WF, this allows

you to modify the steps that occur when you generate the DDL. Running the T4 tem-

plate is just one of those steps. The TablePerTypeStrategy workflow is the only one

included in Visual Studio 2010.

DDL Generation Template refers to the template being used. By default, SSDLToSQL10 is

the only template in Visual Studio 2010. It’s not as easy to customize as it was to customize the model’s code generation. You’ll have to manually copy that file in Windows File Explorer in order to use and modify another version.

You can find the template in <Program Files>\Microsoft Visual Studio 10.0\Com-mon7\IDE\Extensions\Microsoft\Entity Framework Tools\DBGen. You can make a new

copy.

746 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

I’ve simply copied and pasted the file (in Windows File Explorer, not in Visual Studio)

and left its default name. Now when I drop down the DDL Generation Template prop-

erty, the new file is an available option (see Figure 25-16).

 Figure 25-16. Selecting a new T4 template

Therefore, it’s possible to modify the template and customize how the DDL is built.

Extra! Extra! Entity Designer Database Generation Power Pack

Microsoft has already created a few additional templates and workflows as part of a

great toolkit that it is releasing on its Code Gallery site, called the Entity Designer Database Generation Power Pack. You can find this toolkit in the Online Gallery of the

Visual Studio Extensions and install it through the Extension Manager.

The Power Pack includes additional templates such as one to force Table per Hierarchy

(TPH) for inheritance (i.e., a condition field for filtering will be included in the Sessions table rather than a separate table).

The Power Pack also provides the capability to migrate an existing database when you

have made changes to your model, rather than completely overwriting the existing database schema (and data).

Most importantly, this tool is a starting point for creating your own workflows and

strategies around database generation from your model.

Once the Power Pack is installed, anytime you select Generate Database from Model

you will be presented with the Power Packs UI, shown in Figure 25-17.

You can learn more about many features of the Power Pack on its Visual Studio Gallery

page at http://visualstudiogallery.msdn.microsoft.com/en-us/df3541c3-d833-4b65-b942

 -989e7ec74c87.

Using the Feature CTP Code-First Add-On

So far, you’ve created models using database-first and model-first features of Visual

Studio. There is yet another way to use Entity Framework, and that is with a feature

called code first. With code first, you avoid working with a visual model completely.

You build your own POCO classes and continue to benefit from Entity Framework’s

querying, change tracking, and database update features.

Using the Feature CTP Code-First Add-On | 747

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 25-17. The Power Pack’s database generation wizard

When Entity Framework was first released, its core support was for database-first modeling. This was great for a huge swath of developers who work from the perspective

of the database and have legacy databases against which they must create software.

However, this approach left out developers who do not develop applications beginning

with the database. Developers who follow the path of Domain-Driven Design (DDD)

principles prefer to begin by coding their classes first and then generating the database

required to persist their data. The Entity Framework team sought the counsel of several

major players in the DDD field—including Jimmy Nilsson, Eric Evans, and Martin

Fowler—to help them better understand what DDD developers needed in an object

relational modeling tool and how to make Entity Framework more useful to them. You

can learn more about this Data Programmability Advisory Council in a blog posted by

Danny Simmons at http://blogs.msdn.com/dsimmons/archive/2008/06/03/dp-advisory

 -council.aspx.

Entity Framework’s runtime relies heavily on the metadata from the Entity Data Model

in order to do so much of its work—most importantly, the transformation of Entity

748 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

Framework queries into store queries and then the transformation of database-gener-

ated data into our entities.

The code-first runtime API will create that necessary metadata on the fly based on a

combination of what it finds in the classes you have designed and additional configu-

ration information that you provide. Code first follows the convention over configura-

 tion approach described in Chapter 12 when discussing Dynamic Data websites. It will infer a runtime model based on the assumption that your classes follow specific rules,

or conventions. Then, in any case where your classes divert from those rules, you can

use additional configurations to describe how Entity Framework should infer the

metadata.

Like model first, code first also has the ability to generate a database for you as needed.

But unlike model first, code first can literally create the database, not just a file con-

taining DDL script. You have control over whether this will happen.

Code first is still only in preview at the time of this writing. As it is not

part of.NET 4, be aware that anything in this section can change. The

goal of this discussion of code first is to provide you with a basic un-

derstanding of the concepts.

Entity Framework’s code-first feature is currently not supported directly in Visual Stu-

dio 2010 and .NET 4.0. It is an additional feature created by the Entity Framework

team that was not synchronized with .NET 4’s schedule. You will need to download

and install the Entity Framework Feature CTP from the MSDN Download Center.

Because the CTP will continue to evolve until it is part of the core .NET Framework,

the download link is difficult to provide in print. You can look on the team’s blog,

where they discuss future features, or on the Resources page of this book’s website for

a current link.

Understanding Code-First Design

It’s helpful to understand that you can think of your classes as a model, often referred

to as a domain model. It’s just not a model with the same type of metadata as the model

we’ve been working with until now. It is not visual and it is not described in XML, but

it is still a model.

However, because Entity Framework’s APIs were designed around the XML metadata

defined by the CSDL, MSL, and SSDL schemas, Entity Framework needs to “translate”

the domain model into metadata, which it knows how to use. At runtime, it reads the

definition of the classes, and then combines that with the knowledge that you provide

in the additional configurations (which can be code or declarative); then it creates an

in-memory representation of CSDL, MSL, and SSDL, as shown in Figure 25-18. The in-memory metadata is not the XML, but the objects from System.Data.Edm. In Chap-

ter 21, you did a lot of work with the MetadataWorkspace that read the XML metadata Using the Feature CTP Code-First Add-On | 749

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 25-18. How code first creates metadata for the Entity Framework runtime

and created metadata objects such as an EntityType. Code first creates these metadata

objects from the domain classes and works with them just as you did that chapter.

The configurations not only provide additional attribute details for the CSDL (e.g.,

default property values) and SSDL (e.g., StoreGeneratedPattern=Identity), but can also

help to determine if, for example, an inheritance defined in some classes should be

translated to TPT or TPH in the store schema. If your application includes the CTP

code for creating a database on the fly, the SSDL will be used as the basis for doing this.

As this feature is still evolving, this chapter will not go too deeply into its details, but will provide a small walkthrough to clarify some of the high-level concepts. While some

of the implementation details are likely to change, the overall process by which code

first uses either declaritive attributes or a a fluent configuration on top of specific patterns to infer a runtime model is highly unlikely to change.

Does This Make Entity Framework Truly Ready for Domain-Driven

Development?

Many domain-driven developers are quite excited about what they can now achieve

using Entity Framework and code first. Others are still skeptical and awaiting the con-

tinued evolution. My goal here is to provide you with the information you need to help

you to come to your own conclusion.

Like the POCO entities you have worked with, classes used with code first depend on

a separate context class to enable and execute queries, manage their state, and persist

data back to the data store.

What’s different is that the code first API provides a ModelBuilder class, which is where

the configurations can be defined and the metadata is created at runtime. Alternatively,

configurations can be defined with data annotations on the domain classes and their

properties. Data annotations are described using attributes as you’ll see in following

750 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

examples. However, using the ModelBuilder configuration allows you to keep all of the entity framework logic out of your domain classes.

The new API also takes advantage of new classes in the CTP that provide lighter weight

versions of the ObjectContext and ObjectSet classes. These are called DbContext and

DbSet. You have the option of using either pair. In Example 25-2, I’ll use the new classes.

So, for example, your context class (in its simplest form) would be similar to Exam-

ple 25-2.

 Example 25-2. A context created for code first

using CodeFirstClasses;

using System.Data.Entity;

using System.Data.Entity.ModelConfiguration;

namespace CodeFirst.Persistence

{ public class ConferenceModel : DbContext

{

public DbSet<Speaker> Speakers { get; set; }

public DbSet<Session> Sessions { get; set; }

public DbSet<ConferenceTrack> ConferenceTracks { get; set; }

protected override void OnModelCreating(ModelBuilder modelBuilder)

{

modelBuilder.Entity<Session>().Property(s => s.Title)

.HasMaxLength(100).IsRequired();

modelBuilder.Entity<ConferenceTrack>().HasKey(ct => ct.TrackId);

}

}

}

Installing the Feature CTP

If you are interested in installing the CTP, the CTP is an MSI installer file that you

execute in Windows as you would any other installer. Once you have installed the latest

version of the CTP, you won’t see a difference in the Visual Studio IDE. Code-first

support is provided by a single assembly, Microsoft.Data.Entity.Ctp.Dll, which gets installed into <Program Files>\Microsoft ADO.NET Entity Framework Feature CTPX

 \Binaries (where X is the version number of the CTP you have installed).

Now it’s only a matter of referencing this assembly in your projects where you are using

code first and using it with the System.Data.Entity namespace.

Exploring Some Configuration Examples

You are not bound to the assumptions that code first will make about your classes when

it attempts to infer the metadata at runtime. Here are some examples of how you can

provide additional configurations to further describe the metadata.

Using the Feature CTP Code-First Add-On | 751

Download from Library of Wow! eBook <www.wowebook.com>

The ConferenceTrack class has a property named TrackId that should be its key. The

convention of code first is that any field called Id or any field with a name that is the

combination of the class plus Id (e.g., ConferenceTrackId) will become a primary key

in the store schema and an EntityKey in the conceptual schema. TrackId does not fit

either convention, so you need to override that. Notice in Example 25-2 that this was

done in the OnModelCreating method using the following configuration code:

modelBuilder.Entity<ConferenceTrack>().HasKey(ct => ct.TrackId);

The ModelBuilder.Entity method allows you to add configurations to entities and their

properties.

The HasKey method allows you to identify which property should be used in the entity’s

EntityKey. This information is important for the conceptual model, not the database.

This will also result in the database field that is based on this property being set as a

auto-incrementing primary key.

As mentioned, you can alternatively use data annotations. Example 25-3 shows the ConferenceTrack class using the [Key] attribute on the TrackId property.

 Example 25-3. Using a data annotation to specify that TrackId is the key for the ConferenceTrack class using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

namespace CodeFirstClasses

{ public class ConferenceTrack

{

[Key]

public int TrackId { get; set; }

public string TrackName { get; set;}

public string TrackChair { get; set; }

public int MinSessions { get; set; }

public int MaxSessions { get; set; }

public ICollection<Session> Sessions { get; set; }

}

}

Speaker and Session both have identity names that fit the convention, so it is not nec-

essary to use the HasKey property.

Having seen these configurations, NHibernate users may agree with

other NHibernate users who compare this to Fluent NHibernate.

Example 25-4 shows the other domain model classes. Notice there is no additional configuration for these. Shortly, you’ll see how code first is able to build a database

752 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

using nothing more than the class definitions and the two additional configurations defined earlier.

 Example 25-4. Additional domain model classes

namespace CodeFirstClasses

{ public class Session

{

public int SessionId{ get; set; }

public string Title{ get; set; }

public string Category { get; set; }

public string Length

{

get { return _length; }

set { _length = value; }

}

private string _length = "60";

public string Level { get; set; }

public string Abstract { get; set; }

public ConferenceTrack ConferenceTrack { get; set; }

public ICollection<Speaker> Speakers { get; set; }

}

public class Workshop : Session

{

}

public class Speaker

{

public int SpeakerId { get; set; }

public string FirstName { get; set;}

public string LastName { get; set;}

public string Name

{

get { return FirstName.TrimEnd() + " " + LastName; }

}

public string Title { get; set;}

public string City { get; set;}

public string Country { get; set;}

public string Expertise { get; set;}

public string Bio { get; set;}

public ICollection<Session> Sessions { get; set;}

}

Testing the Code-First Application and Database

With all of this in place, Example 25-5 shows a method that runs the code-first classes, configuration, and context through its paces. But in fact, there’s not much in there

that’s any different than typical .NET code. The only special code in there is that which

Using the Feature CTP Code-First Add-On | 753

Download from Library of Wow! eBook <www.wowebook.com>

creates a new database from the model. In this particular example, the code completely deletes any existing database before creating the new one because it’s for testing, not

for production. Once the database has been built, the code then instantiates a number

of objects, builds relationships between them, saves the data to the database, and then

reads it back out again.

 Example 25-5. Putting the code-first features through their paces

private static void runCodeFirst()

{using (var context=new ConferenceModel())

{

context.Database.DeleteIfExists();

context.Database.Create();

var speaker = new Speaker {FirstName = "Julie", LastName = "Lerman"};

var session = new Session

{

Title = "Code First Design",

ConferenceTrack =

new ConferenceTrack {

TrackName = "Data",

TrackChair = "Rowan Miller",

MinSessions = 5},

Abstract = "tbd",

};

var session2 = new Session

{

Title = "From Sap to Syrup",

ConferenceTrack =

new ConferenceTrack {

TrackName = "Vermont",

TrackChair = "Ethan Allen"},

Abstract = "How maple syrup is made",

};

var speaker2 = new Speaker

{ FirstName = "Suzanne",

LastName = "Shushereba" };

context.Speakers.Add(speaker);

context.Speakers.Add(speaker2);

speaker.Sessions = new List<Session>();

speaker.Sessions.Add(session);

speaker.Sessions.Add(session2);

speaker2.Sessions = new List<Session>();

speaker2.Sessions.Add(session2);

context.SaveChanges();

Speaker dbSpeaker = context.Speakers.FirstOrDefault();

Console.WriteLine(dbSpeaker.Name);

foreach (var dbSession in dbSpeaker.Sessions)

{

Console.WriteLine(dbSession.Title);

foreach (var speakers in

dbSession.Speakers.Where(s=>s.SpeakerId!=dbSpeaker.SpeakerId))

{

754 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

 Console.WriteLine("Addtl Speaker: {0}", speakers.Name);

}

}

Console.ReadKey();

}

}

The database that is created is similar to the one we created in the model-first example,

except for an important difference. While model first defaults to TPT inheritance, code

first defaults to TPH inheritance. The Sessions table created in the earlier example has

a column called Discriminator that is used to identify the Workshop types in our appli-

cation. Code first figured out all of the relationships based on the class properties that point to each other, e.g., ConferenceTrack.Sessions. You can use configurations to override this as well.

There are many other features of code first, such as the ability to generate an EDMX

file based on the in-memory metadata, that I am not covering here because of the volatile

nature of the early version of code first. This section has given you an overview of what

to expect from code first and only a subset of the available configurations. What you’ve

seen here is based on the CTP4 that was released in July 2010. The syntax and imple-

mentation details are very likely to change as the CTP moves toward inclusion in Visual

Studio at a later date. I recommend following the Entity Framework team’s blog for updated information, walkthroughs, and guidance as the CTP evolves.

Using SQL Server Modeling’s “M” Language

In late 2009, Microsoft formalized work it was doing on a project formerly called Oslo

as SQL Server Modeling. SQL Server Modeling is made of three core components:

• A modeling language that is currently identified by its code name, “M”

• A visual tool, Quadrant, for interacting with relational data

• A set of services targeted at creating and managing large, enterprise-scale databases

Using SQL Server Modeling’s language, code-named “M,” you can define a model using

a simple syntax that you can add to dynamically. In the previous section, I hinted that

a model does not need to be specified in XML or viewed in a designer, such as the Entity

Framework metadata that includes a conceptual model. In code first, your model was

the set of domain classes you defined in .NET code.

With M, you can define a model using an even simpler syntax than one of the .NET

languages. SQL Server Modeling’s runtime can generate a SQL Server database directly

from what you describe using M. It can also generate an EDMX.

Because SQL Server Modeling is still a future technology, I will show only a very small

example of what a model might look like using M.

Using SQL Server Modeling’s “M” Language | 755

Download from Library of Wow! eBook <www.wowebook.com>

I’ll be basing this explanation on the November 2009 Release 2 of SQL

Server Modeling.

SQL Server Modeling has design tools that integrate with Visual Studio 2010. After you

install the SQL Server Model CTP, a new project item, the “Oslo” Modeling Class

Library, is available in Visual Studio. The version I am working with still has the original code name, Oslo, attached to the template, rather than “SQL Server Modeling.”

A new .m file is created as part of an Oslo Modeling Class Library project. The default .m file that the template creates for you is shown in Example 25-6.

 Example 25-6. The default .m file created by the template

module SqlModelingClassLibrary

{ type Model

{

Id : Integer32 => AutoNumber();

Field : Integer32;

}

Modelsamples : {Model*} where identity Id;

}

While the braces and semicolons may suggest C++ or C#, keep in mind that this is a

completely new language. It is a Domain-Specific Language (DSL). This means that,

unlike the .NET runtime, which has thousands of classes and rules, this language has

a small set of keywords, functions, and operators from which you can build a more

streamlined set of functionality specific to your domain.

Check out the SQL Server Modeling CTP Terminology page on MSDN

to get a better understanding of many of the terms, such as DSL and

 extent, which may be new to you (http://msdn.microsoft.com/en-us/li

 brary/dd819894(VS.85).aspx).

It defines a module, and within that a type (temporarily named Model), and specifies

what’s called an extent (Modelsamples) that describes the storage attributes for the model, including, for example, the types. In the model definition, the Id is defined as

an Integer32 which will auto-increment. The Field property is another Integer32.

Additionally, the extent instructs M’s compiler to make the Id property of the Model

type its identity property.

Example 25-7 modifies the default to define one of the types you’ve already used in this chapter, Speaker.

756 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

 Example 25-7. An M specification for a Speaker type and its extent, Speakers

type Speaker

{ SpeakerId : Integer32 => AutoNumber();

FirstName : Text;

LastName : Text;

}Speakers : {Speaker*} where identity SpeakerId;

Once you’ve designated the (existing) database to inject this model into using the project properties for M Deployment, as shown in Figure 25-19, I can deploy the project.

Deploy will only create the database schema. You’ll do more with Build

shortly.

 Figure 25-19. Specifying the database in which to create tables

As a result, a new table is created in the database, called Speakers (see Figure 25-20).

Using SQL Server Modeling’s “M” Language | 757

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 25-20. The Speakers SQL Server table created from M

What is shown in Example 25-7 is metadata. It looks a lot different from the XML-style metadata of an EDMX file.

Interestingly, when you continue evolving your M application, you will be coding against this metadata. This is called Model-Driven Development (see “Understanding Model-Driven Development” at http://msdn.microsoft.com/library/dd129514.aspx) and may take a bit of work to wrap your head around, which is out of the scope of this book.

Using M Metadata in Entity Framework Applications

Then why am I even showing you M? Because the types generated from the M metadata

by the design tool are EntityObject classes. When you build the project, a DLL is cre-

ated. Figure 25-21 shows that assembly in Visual Studio’s Object Browser.

 Figure 25-21. The Speaker class, deriving from EntityObject, shown in Object Browser

Notice the base type for the Speaker class. It’s an EntityObject.

When you use this library in your applications, you will write Entity Framework code.

Building the project also created a file with the extension .mx in the bin folder.

You can generate an EDMX file directly from the model using SQL Server Modeling’s

command-line tool, mex.exe, against that .mx file:

mex "F:\Chapter23\OsloWebApplication1\bin\OsloWebApplication1.mx"

/target:Edmx

This creates an EDMX file with the Speaker entity already in place, as shown in Fig-

ure 25-22. The store schema and mappings are also included in the EDMX.

758 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 25-22. The Speaker entity of the newly generated EDMX

You don’t need to generate an EDMX file to use your M metadata and classes in an

application, but I’ve shown you this step to help demonstrate the tight integration

between SQL Server Modeling and Entity Framework.

Because it is a future technology with many iterations to go before it is released, I will end the discussion of SQL Server Modeling here.

Summary

Throughout this book, we’ve worked mostly with a model that was generated from a

database. But in this chapter, you learned that there are other ways to create the model.

In fact, a very important concept of this chapter was that a model isn’t necessarily an

EDMX file. Entity Framework depends on the CSDL + MSL + SSDL metadata to do

its job. But you can create other types of models (e.g., classes or M models). As long as

there’s a way to coerce those models into Entity Framework’s required metadata, those

models are perfectly acceptable for the task. In fact, the CSDL is the only piece of the

metadata that is a model. It’s the conceptual model, and it, too, is only part of the

complete metadata required by Entity Framework.

Model first lets you create a model from scratch, and then a database from the model

is fully supported by Visual Studio 2010. While learning about model first, you also

learned a lot of new tricks with the Designer, such as the difference between creating

objects from the Toolbox versus creating them from the Designer’s context menu.

For developers who want only to design their classes and not to build and maintain a

visual model, there is the upcoming code-first feature. Code first lets you take advantage of Entity Framework’s querying, change tracking, and database update features by creating runtime metadata on your behalf. It will eventually become a first-class feature

of .NET 4.0, but until then, it will be developed and released “out of band.” Perhaps

we’ll see it become fully integrated in a Visual Studio 2010 Service Pack (in the same

way that Entity Framework version 1 was first wrapped into Visual Studio 2008 with

Service Pack 1) rather than waiting for the next version of Visual Studio. In the mean-

time, watch the ADO.NET team blog for new releases of the CTP and the impact on

code first.

Summary | 759

Download from Library of Wow! eBook <www.wowebook.com>

Finally, we took a quick look at SQL Server Modeling’s M language and how it extends the modeling capabilities for Entity Framework. SQL Server Modeling’s Visual Studio

design tools can build an Entity Data Model and EntityObjects from a model defined

with M. SQL Server Modeling is still a future technology, but not so far in the future

that you shouldn’t start looking at it now if it’s of interest. M is only one part of SQL

Server Modeling. You can learn more about it on the MSDN Data Developer Center at

 http://msdn.microsoft.com/data.

760 | Chapter 25: Domain-Centric Modeling

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 26

Using Entities in Layered

Client-Side Applications

In previous chapters, you have built client applications whose controls were bound

directly to EntityObjects managed by an ObjectContext, an approach favored in Rapid

Application Design (RAD). While this may be a reasonable approach for small appli-

cations, when it’s time to architect enterprise applications this tightly bound design

falls apart fairly quickly.

When you build large applications, it is prudent to separate your logic so that the UI

is responsible for UI tasks (e.g., responding to user actions), business logic is handled

by business classes, and data access is handled by classes designed specifically for data

access.

A client-side application such as Windows Forms or WPF does come with the benefit

of letting you use a long-running context to manage the entities while the user is work-

ing on them. This is different from disconnected client applications that consume serv-

ices, whether that it a Silverlight application or even a disconnected Windows Forms

or WPF application. The client-side applications this chapter focuses on are those which are not running in a disconnected environment.

In Chapter 24, you learned how to create persistent ignorant entities and use a repository to allow the UI to be completely ignorant of the Entity Framework. You could

certainly use these repositories in client applications, but in this chapter I won’t be

concerned with keeping Entity Framework out of the client. Instead, we’ll explore ways

in which you can disentangle the UI of a layered client application from its business

and data access logic while retaining certain key benefits of the Entity Framework.

You’ll learn how to take advantage of the repositories in the next chapter.

An important lesson in this chapter is that of keeping the data persistence code out of

the user interface even though it’s so easy to just slap an ObjectContext into your form’s code-behind. There are many ways to implement the separation, whether you use

761

Download from Library of Wow! eBook <www.wowebook.com>

simple layers (similar to what I did in the first edition of this book) or engage patterns such as Presentation View Model or Model View ViewModel (MVVM).

In Chapter 9, you built a Windows Forms application and a WPF application, both of which put every bit of application logic (with the exception of the model and its generated classes) in the code-behind of the user interface. In fact, you began with the UI

and wrote code to populate it.

In a layered application, the UI can be the last bit of code you might write in your

application. Think back to the chapter where you built the repository classes. The user

interface was almost an afterthought once you had the business logic worked out. This

lets you focus on building application logic based on your domain needs, not based on

the needs of a particular user interface.

In order to gain a clear understanding of which code does and does not belong in the

UI, most of this chapter will demonstrate restructuring the WPF application from

Chapter 9. A side benefit is that you will get to leverage the UI that you’ve already created rather than building a new one.

In the end, your application will have three logical tiers:

• User Interface

• DataBridge, which uses Entity Framework to retrieve data, track changes, and

persist to the database

• TripBridge, which provides Entity Framework-specific business logic for Trip

entities

You’ll work with EntityObject entities and then take a look at how using POCOs might

impact the design.

Isolating the ObjectContext

As a first look at structuring a layered client app, you’ll move all of the code that is not related to the UI out of the code-behind of the WPF application from Chapter 9. Most of this is code that interacts directly or indirectly with the ObjectContext.

Where you can move it to is a class in a new project that you’ll call DataBridge. It will

compound some data access and some business logic all into a single class. After this,

you’ll break this logic apart into more logical tiers, but for now the process of cleaning up the UI logic will be job number one.

You might be happiest creating copies of the folders that contain the previously used

projects to use in a new solution. The existing projects that you’ll need in this new

solution are the project that contains the Chapter 9 WPF application and the project which contains the latest version of your model with the default EntityObject classes.

There is no reason you can’t use the projects that you created with the POCO classes,

but this walkthrough will use the EntityObjects.

762 | Chapter 26: Using Entities in Layered Client-Side Applications

Download from Library of Wow! eBook <www.wowebook.com>

1. Create a new solution with these two projects.

2. Add a new Class Library project to the solution, named BAGABridge.

3. To this new project, add references to System.Data.Entity and the model project.

If you are using the POCO projects where the classes are in a separate project, make

a reference to that as well.

4. Delete the default class (Class1).

5. Create a new class called DataBridge and set its namespace to BAGA.Bridge.

The first chunk of code you’ll deal with is the initializers in the WPF form’s Window_Loaded event shown in Example 26-1.

 Example 26-1. Initializers in original WPF example

_context = new BAEntities();

_activities = context.Activities.OrderBy(a => a.Name).ToList();

_destinations = context.Destinations.OrderBy(d => d.Name).ToList();

_lodgings = context.Lodgings.OrderBy(l => l.LodgingName).ToList();

_trips = new ObservableCollection<Trip>(

context.Trips.Include("Activities")

.OrderBy("it.Destination.Name"));

6. Delete these five lines of code as well as the class declaration for the _context variable.

The WPF window will only be concerned with UI elements and user actions. You

do not want it to work directly with the context at all.

7. In the DataBridge class, add declarations for the context and the four variables, as

shown in Example 26-2.

 Example 26-2. Initializers in the new class

private BAEntities _context = new BAEntities();

private List<Activity> _activities;

private List<Destination> _destinations;

private List<Lodging> _lodgings;

private List<Trip> _trips;

Notice that here the _trips variable is a List<Trip>, not an ObservableCollec tion<Trip>, as in the UI. The WPF layer needs to work with an ObservableCollec tion<Trip>, but there might be other consumers of the DataBridge class that want a

List. So, you can use a List for all of these local variables. See the sidebar “Making

Generic Lists More Flexible” on page 764 for an example of how to provide a means to expose them as List<T> as well as ObservableCollection<T>.

Isolating the ObjectContext | 763

Download from Library of Wow! eBook <www.wowebook.com>

Freeing Entities from Change Tracking

In previous chapters, you saw different ways to write generic code to create lists of

entities. In this example, you’ll get a chance to ramp that up a notch in a few ways.

First, you will ensure that the lists are not change-tracked. Users won’t be editing the

values of entities in the lists, so there is no need to force the context to waste resources creating and maintaining ObjectStateEntries for them. Second, you should avoid requerying lists that already exist. To satisfy this goal, you will store lists in the variables declared in Example 26-2. You could make these static for the entire application, but since this is just a single windowed application, they’ll simply be local.

While you can create a generic method to return lists, you’ll need specialized getters

and setters to interact with the List variables.

Let’s first look at the generic method that can return a List of the requested type, shown

in Example 26-3.

 Example 26-3. A method to return untracked generic lists

public List<T> GetUnTrackedList<T>(Expression<Func<T, object>> sortExpression) where T : class

{ {

var storedList = GetStoredList<T>();

if (storedList == null)

{

var query = _context.CreateObjectSet<T>();

query.MergeOption = System.Data.Objects.MergeOption.NoTracking;

storedList = query.OrderBy(sortExpression).ToList();

SetStoredList<T>(storedList);

}

return storedList;

}

}

This method takes a function that will allow you to use a lambda expression to specify

a sort property. It also constrains the generic type to be a class. You don’t want to

constrain it to an EntityObject in case you’re using POCO entities.

The method calls GetStoredList<T>. If it’s null, a NoTracking query is executed and the variable is set with SetStoredList<T>.

Making Generic Lists More Flexible

To enable this class to be flexible enough to return plain Lists or to return Observable

Collections, you can add a wrapper to GetUntrackedList that returns an Observable

Collection:

public ObservableCollection<T>

GetUntrackedObservableCollection<T>

(Expression<Func<T, object>> sortExpression)where T : class

764 | Chapter 26: Using Entities in Layered Client-Side Applications

Download from Library of Wow! eBook <www.wowebook.com>

{

return GetUntrackedList<T>(sortExpression) as

ObservableCollection<T>;

}

This overload calls the method in Example 26-3 but then casts the results to an Observ ableCollection. You won’t use the method in the chapter’s example but might benefit

from it in your own applications.

Example 26-4 shows the SetStoredList and GetStoredList methods, two generic methods that I can use internally in my class to do the job.

 Example 26-4. SetStoredList and GetStoredList methods

private void SetStoredList<T>(List<T> newList)

{ string typeName = typeof(T).Name;

switch (typeName)

{

case "Activity":

_activities = newList as List<Activity>;

break;

case "Destination":

_destinations = newList as List<Destination>;

break;

case "Lodging":

_lodgings = newList as List<Lodging>;

break;

default:

throw new NotSupportedException

("You cannot make an UntrackedList from this type");

}

}private List<T> GetStoredList<T>()

{ string typeName = typeof(T).Name;

List<T> _list = null;

switch (typeName)

{

case "Activity":

_list = _activities as List<T>;

break;

case "Destination":

_list = _destinations as List<T>;

break;

case "Lodging":

_list = _lodgings as List<T>;

break;

default:

throw new NotSupportedException

("You cannot make an UntrackedList from this type");;

}

return _list;

}

Isolating the ObjectContext | 765

Download from Library of Wow! eBook <www.wowebook.com>

SetStoredList will take a List that was created elsewhere—for example, in GetUntrack edList—and set it to the appropriate variable once the method has determined which

entity type it’s working with. GetStoredList will return the appropriate list.

Trips are special since, as you experienced in the earlier WPF application, the Trip

entity relies on the Destination.Name to make it useful. The ObservableTrips property,

shown in Example 26-5, eager-loads Destination along with Trip as needed.

 Example 26-5. Returning graphs of trips in an ObservableCollection

public ObservableCollection<Trip> ObservableTrips

{ get

{

if (_trips == null)

{

var query = _context.Trips.Include("Destination");

query.MergeOption = MergeOption.NoTracking;

_trips = query.OrderBy(t=>t.Destination.Name).ToList();

}

return new ObservableCollection<Trip>(_trips);

}

}

This method also ensures that the trips are not change-tracked by using a NoTracking

query. This will be a benefit to resource usage. When it’s time to edit a Trip, just attach it to the context. You’ll see this shortly.

Now you have a mechanism for getting data into the WPF window without the UI code

Stouching the context.

The WPF form can simply instantiate the DataBridge class and then use the

GetUntrackedList methods to get generic lists and call the ObservableTrips property as

needed:

_bridge.GetUntrackedList<Destination>(d => d.Name);

_bridge.GetUnTrackedList<Activity>(a => a.Name);

_bridge.GetUnTrackedList<Lodging>(l => l.LodgingName);

Enabling Change Tracking Across Tiers

As a result of actions taken in the previous section, none of the data returned to the UI

is being change-tracked. This is OK for the drop-down lists, but you may recall that

this WPF app allows users to edit existing Trips and create new ones.

You need to attach the untracked entity to the context so that the context will keep

track of edits.

When the user decides it’s time to edit one of the trips in the list, you could signal the DataBridge to attach that trip to the current ObjectContext (_context). Here’s a method

you might add to the DataBridge to do this:

766 | Chapter 26: Using Entities in Layered Client-Side Applications

Download from Library of Wow! eBook <www.wowebook.com>

public void TrackChanges(Trip trip)

{ _context.Trips.Attach(trip);

}

But that’s too easy, and of course, there’s a catch—in fact, two. Once you’ve attached

a trip to the context, if you attempt to attach it a second time, the context will throw

an exception since it already has an ObjectStateEntry with the same EntityKey. You

can avoid this by wrapping an if statement around the Attach, like this:

if (trip.EntityState == System.Data.EntityState.Detached)

{ context.Trips.Attach(trip);

}

That was the first catch. The second is due to the fact that you eager-loaded the Desti

nation for each Trip. Therefore, the Trip is really a graph, and when you attach it, you’ll also be attaching its Destination.

BreakAway frequently repeats trips; therefore, you’ll find that many trips contain the

same Destination, and you have the ability to attach the same Destination to the con-

text that was attached along with a different trip graph. Since the Destination instances

are unique, you can’t test for EntityState.Detached as with the trip. Instead, you’ll need to look inside the ObjectStateManager for a matching ObjectStateEntry.

If that Destination is already being tracked, remove it from the trip graph before at-

taching it to the context. Example 26-6 shows the complete TrackChanges method.

 Example 26-6. Attaching a Trip graph to the context

public void TrackChanges(Trip trip)

{if (trip.EntityState==System.Data.EntityState.Detached)

{

//if attached destination is already managed,

//delete it from trip graph

ObjectStateEntry existingOse;

var currentDest = trip.Destination;

if (_context.ObjectStateManager.TryGetObjectStateEntry

(trip.Destination.EntityKey, out existingOse))

{

trip.Destination = null;

}

_context.Trips.Attach(trip);

}

}

Because this code is using EntityObjects, the trip still has an EntityReference for that

Destination and will be automatically related to the Destination that is already being

tracked. When using POCOs, you’ll need to write a little extra code to ensure that the

relationship remains intact.

Isolating the ObjectContext | 767

Download from Library of Wow! eBook <www.wowebook.com>

Moving Other ObjectContext-Dependent Logic to the DataBridge

In the WPF app, the user is allowed to set various properties of the trip being edited.

The start and end dates are scalar properties. When those are edited in the UI, it impacts the Trip directly. There’s no explicit code for doing that, so this doesn’t pose a concern.

However, there is explicit code for setting navigation properties and it needs to be

moved out of the UI.

In the btnAddActivity’s Click event, the line of code that adds the selected activity to

the trip’s collection of activities should be moved and enhanced because the

Activities are no longer attached to the context by default. Example 26-7 shows the AddTripActivity method in the DataBridge class.

 Example 26-7. Attaching an activity to a Trip

public void AddTripActivity(Trip trip, Activity activity)

{ if (activity.EntityState == EntityState.Detached)

{

//necessary because it's a Notracking entity

_context.Activities.Attach(activity);

}

trip.Activities.Add(activity);

}

There is a business rule that a Trip must be attached to the context before the user can

begin modifying it. Therefore, in this method, you can presume that the Trip is already

attached. However, the Activity may not be. Normally, you could simply add the activity to the attached Trip and relationship span would pull the Activity into the

context. But, because the activities were queried using NoTracking, relationship span

won’t work. That’s why you see the extra code for explicitly attaching the Activity.

There are three more chunks of non-UI logic in the WPF window. These are the features

that allow users to create new trips and to save trips.

You can create a new method in DataBridge, GetNewTrip, shown in Example 26-8, to move the “new trip” logic into. This will also return the newly created trip to the consumer.

 Example 26-8. Generating a new trip

public Trip GetNewTrip()

{ var newTrip = new Trip { StartDate = DateTime.Today, EndDate = DateTime.Today };

//add to context for change tracking

_context.Trips.AddObject(newTrip);

//add to observable collection of trips

_trips.Add(newTrip);

return newTrip;

}

768 | Chapter 26: Using Entities in Layered Client-Side Applications

Download from Library of Wow! eBook <www.wowebook.com>

Now you can replace those lines of code in the WPF window’s btnNewTrip_Click event with the call to GetNewTrip, as shown in Example 26-9. Because the ObservableCollec tion<Trip> is not a locally stored variable, you’ll need to refresh the tripViewSource, which populates the listbox. This does not reexecute the query for trips, but simply

uses the existing list of trips. Therefore, the trips that have been attached to the context are still attached along with any changes that have been tracked.

 Example 26-9. The UI’s trigger for creating a new trip

private void btnNewTrip_Click(object sender, RoutedEventArgs e)

{ Trip newTrip = _bridge.GetNewTrip();

ViewSource(ViewSources.tripViewSource).Source =_bridge.ObservableTrips;

tripListBox.SelectedItem = newTrip;

}

Finally, move the call to context.SaveChanges out of the UI and into the DataBridge, as

shown in Example 26-10. Along with this move, you can add some validation code for any new trips that were created before calling SaveChanges. This is similar to how the

IContext classes’ SaveChanges method performed validation logic in Chapter 24.

 Example 26-10. SaveChanges moving out of the UI

public bool SaveChanges(out string messages)

{

if (!PreSavingValidate(out messages))

{return false;}

_context.SaveChanges();

return true;

}

In Chapter 22, you added a Validate method to the Reservation class. Exam-

ple 26-11 shows a similar method as in Chapter 22 that I’ve added to DataBridge, except that it calls a (not yet defined) Validate method for the Trip entity.

 Example 26-11. Adding in some validation

private bool PreSavingValidate(out string validationErrors)

{ bool isvalid = true;

validationErrors = "";

foreach (var trip in ManagedEntities<Trip>())

{

string validationError;

bool isTripValid = trip.Validate(out validationError);

if (!isTripValid)

{

isvalid = false;

validationErrors += validationError;

}

}

Isolating the ObjectContext | 769

Download from Library of Wow! eBook <www.wowebook.com>

 return isvalid;

}

What’s left in the UI’s code-behind is only the code that interacts with the user interface elements and calls to the DataBridge to perform any business or data access interaction.

Example 26-12 shows the trimmed down code.

 Example 26-12. The full listing of the UI after removing non-UI code

public partial class MainWindow : Window

{ private Trip _currentTrip;

private readonly DataBridge _bridge = new DataBridge();

private IEnumerable<Activity> _activities;

private IEnumerable<Destination> _destinations;

private IEnumerable<Lodging> _lodgings;

public MainWindow()

{

InitializeComponent();

}

private void Window_Loaded(object sender, RoutedEventArgs e)

{

ViewSource(ViewSources.tripViewSource).Source = _bridge.ObservableTrips;

_destinations = _bridge.GetUntrackedList<Destination>(d => d.Name);

ViewSource(ViewSources.destinationViewSource).Source = _destinations;

_lodgings = _bridge.GetUntrackedList<Lodging>(l => l.LodgingName);

ViewSource(ViewSources.lodgingViewSource).Source = _lodgings;

_activities = _bridge.GetUntrackedList<Activity>(a => a.Name);

activityComboBox.ItemsSource = _activities;

EditSortDescriptions(SortAction.Add);

}

private void button1_Click(object sender, RoutedEventArgs e)

{

string saveMessages;

if (!_bridge.SaveChanges(out saveMessages))

{

MessageBox.Show(saveMessages);

}

}

private void btnAddActivity_Click(object sender, RoutedEventArgs e)

{

var selectedActivity = activityComboBox.SelectedItem as Activity;

if (selectedActivity != null)

{

_bridge.AddTripActivity(_currentTrip, selectedActivity);

activitiesListBox.ItemsSource = _currentTrip.Activities;

}

770 | Chapter 26: Using Entities in Layered Client-Side Applications

Download from Library of Wow! eBook <www.wowebook.com>

 }

private void btnNewTrip_Click(object sender, RoutedEventArgs e)

{

Trip newTrip = _bridge.GetNewTrip();

ViewSource(ViewSources.tripViewSource).Source = _bridge.ObservableTrips;

tripListBox.SelectedItem = newTrip;

}

private void tripListBox_SelectionChanged

(object sender, System.Windows.Controls.SelectionChangedEventArgs e)

{

_currentTrip = (Trip) e.AddedItems[0];

_bridge.TrackChanges(_currentTrip);

activitiesListBox.ItemsSource = _currentTrip.Activities;

}

}

Note the code to set the activitiesListBox.ItemsSource in the tripListBox_Selection

Changed and btnAddActivity_Click events. You’ll find an explanation for this at the end

of this section.

There are some additional helper methods, such as the ViewSource method and enums

which encapsulate the code for finding the CollectionViewSource XAML elements in

the window. These are displayed in Example 26-13.

 Example 26-13. Helper method and enums for CollectionViewSources

private CollectionViewSource ViewSource(ViewSources source)

{

return FindResource(source.ToString()) as CollectionViewSource;

}

private enum ViewSources

{

//enums are lower case to match control names

tripViewSource,

destinationViewSource,

lodgingViewSource

}

And finally, the WPF mechanism which we added into the previous WPF window to

apply UI-controlled sorting to the tripListBox and the destination combo is shown in

Example 26-14.

 Example 26-14. Providing sort capability in the UI

enum SortAction

{ Add = 1,

Delete = 2

}private void destinationComboBox_DropDownClosed

Isolating the ObjectContext | 771

Download from Library of Wow! eBook <www.wowebook.com>

 (object sender, EventArgs e)

{ EditSortDescriptions(SortAction.Delete);

EditSortDescriptions(SortAction.Add);

}

private void EditSortDescriptions(SortAction sortAction)

{ var sortDestination = (new SortDescription

("TripDetails", ListSortDirection.Ascending));

var sortDate = (new SortDescription("StartDate",

ListSortDirection.Descending));

switch (sortAction)

{

case SortAction.Add:

tripListBox.Items.SortDescriptions.Add(sortDestination);

tripListBox.Items.SortDescriptions.Add(sortDate);

break;

case SortAction.Delete:

if (tripListBox.Items.SortDescriptions.Contains(sortDate))

{

tripListBox.Items.SortDescriptions.Remove(sortDestination);

tripListBox.Items.SortDescriptions.Remove(sortDate);

}

break;

default:

break;

}

}

Now you have achieved the goal of pulling all of the data access and business logic out

of the UI as a first look at building a layered application using the Entity Framework.

Unlike the repositories you built in Chapter 24, this example is not ignorant of how the data is persisted. The Entity Framework is involved in every layer, even though

there is no Entity Framework-specific code in the UI. The objects returned from the

DataBridge to the UI are EntityObjects, and in some cases they are bound to the active

context.

Ensuring That Lazy Loading Doesn’t Negatively Impact the Layered

Application

As users select trips to work with in the UI, the context’s lazy loading will automatically hit the database to retrieve the Trip’s Activities. This happens thanks to the binding

defined on the Activities ListBox.

You may recall that in the earlier chapter you created a CollectionViewSource that was

bound to the tripViewSource and provided access to the Activities property of the

Trips:

772 | Chapter 26: Using Entities in Layered Client-Side Applications

Download from Library of Wow! eBook <www.wowebook.com>

<CollectionViewSource x:Key="tripActivitiesViewSource"

Source="{Binding Path=Activities,

Source={StaticResource tripViewSource}}" />

Then the ListBox itself was bound to that source:

<ListBox DisplayMemberPath="Name" Height="100" HorizontalAlignment="Left"

ItemsSource="{Binding Source={StaticResource tripActivitiesViewSource}}"

Margin="51,315,0,0" Name="activitiesListBox" SelectedValuePath="ActivityID"

VerticalAlignment="Top" Width="227" />

The binding triggers a request for the selected Trip’s Activities. Entity Framework’s

lazy loading feature, in turn, triggers a request to the database to retrieve those Activities if they haven’t already been loaded. This is a good example of Entity Framework still being very much involved at the UI level.

This worked nicely in Chapter 9, but because these entities are now NoTracking entities, this can create a conflict when adding an activity to a trip.

This is why I removed the ItemsSource parameter from the ListBox and set the

ItemsSource programmatically in the code-behind which you saw in code listed in

Example 26-12.

This is not to say that you shouldn’t have lazy loading in a layered client application.

This action was due to particular behavior of Entity Framework that you want to avoid.

In fact, there is still one more place where your UI is benefiting from lazy loading. Lazy loading is triggered by the UI’s EditSortDescriptions method, which forces the tri

pListBox to sort by the TripDetails property. The TripDetails property requires its

Destination navigation property. Although you have eager-loaded the Destination with

each Trip, the lazy loading will be used in certain cases involving trips that the user

creates on the fly.

The context is also keeping track of property changes made in the UI—for example, if

the user edits one of the dates, or selects a new Destination (DestinationID is bound)

or Lodging (LodgingID is bound).

Noting Additional Benefits of the Layered Application

While focusing on moving code around, you may not have noticed that in this whole

process, you never modified the XAML of the window, except for removing the List-

Box’s ItemsSource. The WPF app still works as it did in the earlier chapter, even with

all of the changes you’ve made to the code in this chapter.

However, in addition to making this application layered, you also applied a number of

other beneficial features thanks to many of the things you learned in the chapters be-

tween. You’ve reduced the memory usage and increased performance by executing

most of the queries as NoTracking queries. Because of this, it was unnecessary to create

all of the extra change tracking infrastructure for retrieved data. Additionally, the con-

text only needs to keep track of the few entities attached to it, rather than all of the

Isolating the ObjectContext | 773

Download from Library of Wow! eBook <www.wowebook.com>

Trips, Activities, Destinations, and Lodgings that were used to populate the various

lists.

Separating Entity-Specific Logic from ObjectContext Logic

Moving the logic out of the UI is a great start to building layered applications, but it is really only a start. If you want your application to be organized, you probably don’t

want to pile all of your various data access and business logic into one class, as with

the DataBridge. But you don’t necessarily have to go to the other extreme (and I’m not

using the term extreme in a negative way here) of the repositories and interfaces that you built in Chapter 24. There are a lot of ways that you can break your logic apart.

Most of them are not specific to Entity Framework, but because of Entity Framework’s

behaviors, there are nuances that you need to address when breaking up your logic.

I am looking forward to the future that Microsoft’s Nikhil Kothari en-

visions in his April 2010 tweet: “My goal – making MVVM mainstream,

in other words simple, common and there by default for the average

developer.” (Source: http://twitter.com/nikhilk/status/11763201393)

Considering the MVVM Pattern

One pattern that is very useful in WPF and Silverlight applications in the Model View

ViewModel (MVVM) pattern. There is a lot to learn in order to build MVVM, and

unfortunately, that would take us too far out of the scope of this book.

MVVM simplifies data binding to controls while maintaining a good separation of concerns when architecting your applications. Essentially, with MVVM you create new

ViewModels (i.e., classes) that are designed specifically for use in the user interface. These ViewModels are separate from your entities, but you populate them with values from

your entities. Be aware that there are many variations on the MVVM pattern.

The MSDN Magazine article, “WPF Apps With the Model-View-ViewModel Design

Pattern,” by Josh Smith (http://msdn.microsoft.com/en-us/magazine/dd419663.aspx), is frequently referenced as the ultimate resource for getting started with MVVM. Josh is

a recognized MVVM guru and blogs at http://joshsmithonwpf.wordpress.com.

This Channel 9 video from Microsoft’s Karl Schifflet is another great resource: http://

 channel9.msdn.com/shows/Continuum/MVVM/.

Microsoft’s Jesse Liberty offers his perspective on MVVM here, which I like because

it’s easier to grasp if you are totally new to the topic: “MVVM – It’s Not Kool-Aid*”

(http://jesseliberty.com/2010/05/08/mvvm-its-not-kool-aid-3).

This section will take the DataBridge one step further and extract logic where the code

interacts with the Trip class in a way that can’t be written generically for any entity. It 774 | Chapter 26: Using Entities in Layered Client-Side Applications

Download from Library of Wow! eBook <www.wowebook.com>

helps to encapsulate some of the Trip-related logic that the DataBridge is now per-

forming. You could do the same for other entity types as well.

In order to create this separation, you’ll need to constantly consider which layer is

interacting with which classes. It also requires making some additional changes to the

XAML window code-behind.

As you walk through this code, keep in mind that the focus is to highlight

the specific Entity Framework challenges that you will encounter as you

continue to break apart your logic. I am not suggesting that this code is

the perfectly architected application that you should copy and paste into

your enterprise applications.

The logic I will target for removing from the DataBridge is:

• TrackChanges which is designed specifically for a Trip

• ValidateTrips

• AddTripActivity

• GetNewTrip

• AddLodging

• AddDestination

• SetCurrentDestination

Because the current trip will be encapsulated in this wrapper, you will also have to

expose a few additional properties. The TripBridge class is shown in Example 26-15.

 Example 26-15. The TripBridge class designed for EntityObjects

using System;

using System.Collections.Generic;

using System.Data;

using System.Data.Objects;

using System.Linq;

using EFExtensionMethods;

namespace BAGA.DataLayer

{ public class TripBridge

{

private Trip _currentTrip;

private readonly BAEntities _context;

public TripBridge(BAEntities context)

{

_context = context;

}

public List<Activity> CurrentActivities

{

Separating Entity-Specific Logic from ObjectContext Logic | 775

Download from Library of Wow! eBook <www.wowebook.com>

 get { return _currentTrip.Activities.ToList(); }

}

internal Trip GetNewTrip()

{

var newTrip = new Trip

{

StartDate = DateTime.Today,

EndDate = DateTime.Today

};

//add to context for change tracking

_context.Trips.AddObject(newTrip);

_currentTrip = newTrip;

return newTrip;

}

public void TrackCurrent(Trip trip)

{

_currentTrip = trip;

if (_currentTrip.EntityState == EntityState.Detached)

{

//if attached destination is already managed, delete it from trip graph

ObjectStateEntry existingOse;

if (_context.ObjectStateManager

.TryGetObjectStateEntry(_currentTrip.Destination, out existingOse))

{

_currentTrip.Destination = null;

}

_context.Trips.Attach(_currentTrip);

}

}

public void AddActivity(Activity activity)

{

if (activity.EntityState == EntityState.Detached)

{

//if already another instance in context, use that instead

ObjectStateEntry existingOse;

if (_context.ObjectStateManager

.TryGetObjectStateEntry(activity, out existingOse))

{

activity = existingOse.Entity as Activity;

}

else //otherwise attach the untracked activity

{

_context.Activities.Attach(activity);

}

}

_currentTrip.Activities.Add(activity);

}

public bool ValidateBeforeSave(out string validationError)

{

bool isvalid = true;

validationError = "";

776 | Chapter 26: Using Entities in Layered Client-Side Applications

Download from Library of Wow! eBook <www.wowebook.com>

 foreach (var trip in _context.ManagedEntities<Trip>())

{

isvalid = trip.ValidateBeforeSave(out validationError);

}

return isvalid;

}

public void AddLodging(Trip trip, Lodging lodging)

{

_currentTrip.LodgingID = lodging.LodgingID;

}

public void AddDestination(Destination dest)

{

ObjectStateEntry existingOse;

//create entity key on the fly in case we're using POCOs

var destinationEntityKey = _context.CreateEntityKey

(_context.CreateObjectSet<Destination>().Name, dest);

if (!_context.ObjectStateManager

.TryGetObjectStateEntry(destinationEntityKey, out existingOse))

{

_context.Destinations.AddObject(dest);

}

_currentTrip.DestinationID = dest.DestinationID;

}

public void SetCurrentDestination(Destination dest)

{

_currentTrip.Destination = dest;

}

}

}

The TripBridge constructor requires that you inject the current context when the Trip

Bridge is instantiated. That allows you to keep logic related to attaching related entities in this layer.

One context-related function that stays in the DataBridge is the query and execution to

retrieve the trips. I chose to keep all of the context-specific tasks in the DataBridge.

There is a subtle difference between these direct calls to the context and the use of the

context in the TripBridge, and I chose to keep the explicit queries in the DataBridge.

There are some other minor changes, such as renaming a few of the methods so that

they make more sense within the context of the wrapper (e.g., TrackCurrent and AddActivity).

If you are following more specific design patterns, you might approach this very dif-

ferently. The preceding examples should highlight some particular Entity Framework

problems that you are likely to encounter along with the details you need to solve those

problems.

Separating Entity-Specific Logic from ObjectContext Logic | 777

Download from Library of Wow! eBook <www.wowebook.com>

The DataBridge now exposes a TripBridge property:

private readonly TripBridge _tripBridge;

public TripBridge TripBridge

{ get

{

return _tripBridge;

}

}

The DataBridge constructor instantiates the context and the TripBridge, passing the

new context into the TripBridge’s constructor:

public DataBridge2()

{ _context = new BAPOCOs();

_tripBridge = new TripBridge(_context);

}

The UI now must call some of the methods that were originally in the DataBridge,

through the DataBridge’s TripBridge property.

For example, in the Click event for btnAddActivity, you’ll rely on the TripBridge to add

the activity to the current trip and to return the entire list of current activities. Here’s the updated method:

private void btnAddActivity_Click(object sender, RoutedEventArgs e)

{ var selectedActivity = activityComboBox.SelectedItem as Activity;

if (selectedActivity != null)

{

_bridge.TripBridge.AddActivity(selectedActivity);

activitiesListBox.ItemsSource = _bridge.TripBridge.CurrentActivities;

}

}

You can download the entire modified solution from the book’s website at http://www

 .learnentityframework.com.

Working with POCO Entities

The code you have used so far in this chapter leverages EntityObjects. You can also

use POCOs, whether they are POCOs that are tied to dynamic proxies or POCOs that

are truly independent of the Entity Framework APIs.

I’ll highlight a few important differences in the DataBridge and TripBridge if you are

using snapshot POCOs rather than EntityObjects. The POCOs that use dynamic prox-

ies will, for the most part, behave the same as the EntityObjects. But the simpler POCOs

need some additional attention.

778 | Chapter 26: Using Entities in Layered Client-Side Applications

Download from Library of Wow! eBook <www.wowebook.com>

Providing EntityState

There are a few methods in the bridge layer that depend on an entity’s EntityState

property. EntityObject.EntityState exposes the EntityState of the entity’s

ObjectStateEntry managed by the context. A POCO entity won’t have access to this,

so you’ll have to make accommodate for it.

In Chapter 18, where you used RIA Services with POCO entities, you encountered the same problem. The Domain Service has some methods that depend on

EntityObject.EntityState. You can use the same solution here (as in Example 18-13)

by replacing the use of the EntityState property with a method that retrieves the EntityState directly from the context.

For example, in the method where you attach a Trip to the context so that you can edit

it (TripBridge.TrackCurrent and DataBridge.TrackChanges in the first iteration of the

solution), you first test to be sure that the trip is not already attached:

if (_currentTrip.EntityState == EntityState.Detached)

The snapshot POCO entity will not have the EntityState property which gets the state

from the context. Example 26-16 displays the GetEntityState method we created in the previous chapter.

 Example 26-16. Getting at EntityState without an EntityObject

private EntityState GetEntityState(object entity)

{ ObjectStateEntry ose;

if (_context.ObjectStateManager.TryGetObjectStateEntry

(entity, out ose))

{

return ose.State;

}

return EntityState.Detached;

}

With this method available, you can change calls such as the preceding one to:

if (GetEntityState(_currentTrip) == EntityState.Detached)

You might prefer this to be an extension method of the context. Example 26-17 shows the method rewritten as an extension method.

 Example 26-17. An alternative GetEntityState extension method

public static EntityState GetEntityState(this ObjectContext context,object entity)

{ ObjectStateEntry ose;

if (context.ObjectStateManager.TryGetObjectStateEntry(entity, out ose))

{

return ose.State;

}

return EntityState.Detached;

}

Working with POCO Entities | 779

Download from Library of Wow! eBook <www.wowebook.com>

Another problem you’ll run into concerns the code that checks to ensure that Destinations you are about to attach to the context as part of a Trip graph aren’t already represented in the context. Normally, you can use a POCO entity as a parameter just

as you would with an EntityObject.

Here is the line of code that will cause a problem:

if (_context.ObjectStateManager.TryGetObjectStateEntry

(_currentTrip.Destination, out existingOse))

GetObjectStateEntry and TryGetObjectStateEntry first look for an EntityKey in the object. If they find an EntityKey, they can easily check to see if there’s a matching

ObjectStateEntry. If there is no EntityKey, internally it will look through the existing

ObjectStateEntry objects, and then at the entities tied to those entries for the same

instance that was passed in.

And wherein lies the problem. Remember that you used eager loading to query the trips

and related destinations. When there are two trips that go to Nepal, you’ll have two

separate instances of the Nepal Destination object. So, when Entity Framework tries

to find “the matching instance” it will find none. The logic will fail. Seeing that the

destination is not already in the context, the code will attempt to attach the Trip graph

and will be greeted by an exception because, yes, that Destination is already there.

The solution to this is simpler than the explanation. Construct an EntityKey and let

TryGetObjectStateEntry perform its check using the EntityKey, as shown in Exam-

ple 26-18.

 Example 26-18. Creating an EntityKey to check for an ObjectStateEntry

var destKey = new EntityKey

("BAPOCOs.Destinations", "DestinationID", _currentTrip.DestinationID); if (_context.ObjectStateManager

.TryGetObjectStateEntry(destKey, out existingOse))

With so many strings, this code is not very flexible. Example 26-19 shows another extension method for the context. This one has you identify the type using generics

which lets you get the EntitySet. It also takes a lambda expression in place of the

property name string. Then it builds up the entity key and checks for the

ObjectStateEntry.

 Example 26-19. An extension method to check for an ObjectStateEntry when no object is available public static bool IsTracked<TEntity>(this ObjectContext context,

Expression<Func<TEntity, object>> keyProperty, int keyId) where TEntity : class

{ var keyPropertyName = ((keyProperty.Body as UnaryExpression).Operand as MemberExpression).

Member.Name;

var os = context.CreateObjectSet<TEntity>();

var entitySetName = os.EntitySet.EntityContainer.Name + "." + os.EntitySet.Name; var key = new EntityKey(entitySetName, keyPropertyName, keyId);

ObjectStateEntry ose;

if (context.ObjectStateManager.TryGetObjectStateEntry(key, out ose))

780 | Chapter 26: Using Entities in Layered Client-Side Applications

Download from Library of Wow! eBook <www.wowebook.com>

 {

return true;

}

return false;

}

Now, rather than include those two clunky lines of code, you can check for the ObjectStateEntry with this simpler code:

if (_context.IsTracked<Destination>(d => d.DestinationID,

_currentTrip.DestinationID))

Providing Logic in Place of Other EntityObject Behavior

Remember that with snapshot POCO entities there is no lazy loading. In the

TrackCurrent method (or TrackChanges in the first version of the DataBridge), you’ll

need to explicitly load Activities after you’ve attached the trip to the context. You can

do this using ObjectContext’s LoadProperty method:

_context.LoadProperty<Trip>(_currentTrip, t => t.Activities);

Finally, you also need to make up for the fact that, unless you have logic in your POCO

object to do fix-ups, assigning the foreign key IDs (e.g., Trip.DestinationID) won’t

automatically link the related object. When you create a new Trip, the UI presumes

that you will be providing a Destination name along with the Trip. When a user selects

a destination for a new trip, the UI automatically updates Trip.DestinationID thanks

to data binding. If you were using an EntityObject, it will synchronize with the Destination object if it’s in memory. But you can’t build this into the POCO entity’s

logic, as the POCO won’t have the ability to automatically find the Destination.

So, how can you achieve the same goal when using POCOs? One plan of attack would

be as follows.

1. First, check to be sure that the wiring is even necessary. If the Trip already has a

Destination and its ID matches Trip.DestinationID, there’s no need to go further.

2. Next, get the Destination from the context if it already exists. We’ll build an EntityKey to do this as we did in the previous section, and then grab the Entity

property of the returned ObjectStateEntry.

3. Finally, if the entity is not found, we want to get it from the List<Destination> that we created earlier.

This is a complicated path. I’ve listed it so that you can see what’s involved and un-

derstand why I’m going to select an easier route. Another possibility is to change the

binding attributes for the DropDown list, but I don’t want to deal with any possible re-

percussions from that. What I will do instead is expose a method in the DataBridge that

will allow the UI to pass in the selected Destination to be attached to the current Trip:

Working with POCO Entities | 781

Download from Library of Wow! eBook <www.wowebook.com>

public void SetCurrentDestination(Destination dest)

{ _currentTrip.Destination = dest;

}

Now in the Destination DropDown’s SelectionChanged event, I can easily call this method, as shown in Example 26-20.

 Example 26-20. Letting the UI set the selected Destination

private void destinationComboBox_SelectionChanged(object sender,

System.Windows.Controls.SelectionChangedEventArgs e)

{ if (e.AddedItems.Count > 0)

{

_bridge.TripBridge.SetCurrentDestination(e.AddedItems[0] as Destination);

}

}

These were the two barriers I encountered when replacing my EntityObject entities

with the snapshot POCO entities. After making these changes, everything continues to

work as expected.

Summary

In many client applications, you may want to leverage the benefits of the Entity Frame-

work throughout the layers of the application. In this chapter, you learned a number

of ways to benefit from the Entity Framework’s features, while at the same time, create

an application that also benefits from a logically tiered architecture. The chapter pro-

vided examples for building these applications. As a first step, you ensured that the

only logic in the UI was that related to user interface activity. You isolated data access and specific business logic into a separate class (the DataBridge). Then you took a second pass and separated entity-specific logic from the more generalized logic, moving

methods from the DataBridge class into a TripBridge class. Of equal importance, you

learned various strategies that you can benefit from no matter how your application is

architected.

Earlier in this book you learned a few ways to provide data to a client without the client

having any knowledge of the Entity Framework. In Chapters 17 and 18, you supplied data through various services. In Chapter 24, you learned how to create persistence ignorant entities that could be consumed by a client that requires no references to System.Data.Entity. These scenarios lend themselves easily to layered applications.

782 | Chapter 26: Using Entities in Layered Client-Side Applications

Download from Library of Wow! eBook <www.wowebook.com>

CHAPTER 27

Building Layered Web Applications

In Chapter 12, you learned how to create websites using Entity Framework’s ASP.NET

EntityDataSource control. While this approach is fast, it uses data access code that is

tied directly to the user interface. You’ve since learned a lot more about working with

the Entity Framework, so we’ll finish this book with a look at some better ways to use

entities in better architected web applications. Several of these techniques are new to

Entity Framework in .NET 4. The introduction of POCO support enables many new

possibilities, such as the use of the repositories you built in Chapter 24. Foreign keys and the new state modification methods (e.g., ObjectStateManager.ChangeState) provide more control when working with EntityObject or POCO entities.

In this chapter, you’ll first learn about the life cycle of web pages in a web application and how that impacts some of the choices you will have to make when planning to use

the Entity Framework as your data access layer in a tiered application. Then you will

build two very different types of web applications, though both will take advantage of

the repositories from Chapter 24.

The first will be an ASP.NET Web Forms application where you can take advantage of

ASP.NET’s Session and ViewState features to retain object data across postbacks.

The second will use classes in a simple ASP.NET Model-View-Controller (MVC) ap-

plication. Many introductory demos of MVC using Entity Framework place the Object

Context directly in the model classes. You’ll see how to separate the logic out using

similar methods as in the previous chapter. You’ll also learn a few tricks that are specific to entities in MVC applications.

Understanding How ObjectContext Fits into the Web Page

Life Cycle

Before you can put Entity Framework to work in a web application, it’s helpful to first

review the life cycle of an ASP.NET web page in order to grasp why it creates a problem

for the ObjectContext. This will provide you with the ability not only to understand

783

Download from Library of Wow! eBook <www.wowebook.com>

some of the guidance put forth in this chapter, but also to aid you in making decisions

when building your own web applications that use Entity Framework for their data

access.

The Page object itself exists only for as long as it takes ASP.NET to render the HTML.

Once the HTML has been created, the Page object is disposed along with any objects

that it contained (see Figure 27-1).

 Figure 27-1. ASP.NET page life cycle

Even if you did all of your work with the ObjectContext in the page’s code-behind, that

context, which the page instantiates, will be destroyed when the page is disposed. Any

objects, including entities, that were created in the page will be destroyed as well, which

is why web pages are considered stateless by nature (see Figure 27-2).

 Figure 27-2. ASP.NET page using an ObjectContext

784 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

Introducing a new layer into the mix continues to pose the problem of the disappearing

context. Consider a class similar to the DataBridge class from Chapter 26 that instantiates an ObjectContext and retrieves or updates data on behalf of the UI using it.

Now the web page’s .NET code can instantiate a new DataBridge class, which creates

an ObjectContext and some entities. When the page completes its life cycle, it is dis-

posed along with any objects that it owns, including the DataBridge object. When that

object is disposed, so is the ObjectContext that it owns, and finally, the entities are also destroyed (see Figure 27-3).

 Figure 27-3. Moving the ObjectContext out of the ASP.NET page and into a DataBridge class in the middle tier

All of this means that you can’t merely instantiate an ObjectContext, query for entities,

modify those entities, and then call SaveChanges after a postback occurs. You will never

be coming back to the same ObjectContext, and therefore change tracking will never

be performed and no changes will be persisted to the database.

In the following pages, you’ll find some basic guidance that will help prepare you for

overcoming these problems as you build the websites in this chapter.

Return Results, Not Queries, from the DataBridge Class

Although you can get away with binding a query when working directly in the code-

behind of an ASP.NET page, remember that the query’s job is to be executed and return

results. Query execution requires an ObjectContext. If you return the query itself from

a business class, it will be detached from the context as soon as the business object is

disposed (which in turn disposes the context).

Here’s an example of a method within a business class that returns an IQueryable of

customer objects:

public IQueryable<Customer> GetCustomer(int custID)

{ return _ctx.Customer.Where(c => c.CustomerID == custID);

}

Understanding How ObjectContext Fits into the Web Page Life Cycle | 785

Download from Library of Wow! eBook <www.wowebook.com>

In a web app, you might set the data source of a control to the results. Because you are

returning an IEnumerable, this will be allowed even though it contains only a single item: ListView1.DataSource=dal.GetCustomer(570);

The query will not be executed until the page begins to render the ListView control. By

then it’s quite possible that the business object will be long gone and the execution will fail.

So, in the business class, be sure to return results, not queries. That way, you don’t

have to worry about how the methods are used from the UI.

Many of the repositories I have seen developers build with the Entity

Framework contain methods that return IQueryables. The repositories

you built in Chapter 24 do not do this in order to avoid this same problem of returning a query that becomes disconnected from an ObjectCon

text. If it is simply a LINQ to Objects query and not a LINQ to Entities

query, you won’t encounter the problem of a query that needs to be

executed against a context and database, and you should be safe.

An additional benefit is that by executing the query and forcing the results to be iterated through using something such as First, ToList, or Execute, when the iteration is complete the EntityConnection and its database connection are disposed. Therefore, you

won’t have to think twice about the database connection, which is an unmanaged resource.

Using Entities in Read-Only Web Pages

The big challenges for working with objects in ASP.NET occur mostly in scenarios

where you need the user to update data, especially with a graph of entities, such as a

master/detail page.

If you are building pages that merely need to display data, things are much simpler.

You can return data of any shape to the page and use the page’s code-behind to populate

controls or bind data.

You could have a method that returns a full graph of information for a customer along

with her reservation information, payments for those reservations, and details regard-

ing the trips for which she made the reservations. You can grab all of this information

in a single query, as shown in Example 27-1.

786 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

 Example 27-1. Creating a deep graph to return to a web page for display

public Customer GetCustomerWithRelatedData(Int32 ContactID)

{ var custs = _commonContext.Contacts.OfType<Customer>()

.Include("Addresses")

.Include("Reservations.Trip.Destination")

.Include("PrimaryActivity")

.Include("SecondaryActivity")

.Include("PrimaryDestination")

.Include("SecondaryDestination")

.Where("it.Contactid=" + ContactID);

//important return the customer object, not the custs query;

return custs.FirstOrDefault();}

A web page could then instantiate the class, call GetCustomerWithRelatedData, and then

populate controls using the returned data, as shown in Example 27-2.

 Example 27-2. Retrieving entities from a separate class

protected void Page_Load(object sender, System.EventArgs e)

{ if (!IsPostBack)

{

var dal = new DataBridge();

var customer = dal.GetCustomerWithRelatedData(_custID);

populateTextBoxes(customer);

gridView_Addresses.DataSource = customer.Addresses;

gridView_Addresses.DataBind();

gridView_Reservations.DataSource = customer.Reservations;

gridView_Reservations.DataBind();

}

}

Because the default behavior of the controls is to save their display values in view state, it is not necessary to retrieve the data each time the page posts back.

Keep in mind that Example 27-2 is showing a query that will be expen-

sive from the perspective of the database because of the numerous

Includes. The purpose of this example is only to demonstrate the sim-

plicity of displaying data that is not being edited. In that case, you should

also consider turning off ASP.NET’s viewstate as there’s no need to

cache the read-only data.

A class similar to the one you created for the WPF application that provides methods

for retrieving data can do the trick. The web page can instantiate that class, request

data, and then dispose the class.

As long as the user will not be editing any data, things are pretty straightforward.

Understanding How ObjectContext Fits into the Web Page Life Cycle | 787

Download from Library of Wow! eBook <www.wowebook.com>

Exploring Options for Updating Entities in an ASP.NET Web Forms

Application

The need to update data is where the complexities lie—especially if you want to use

ObjectContext to track and save changes.

Single or batch updates?

It would be pragmatic to first determine whether you need to be able to update one

entity (or graph) at a time, or more than one. This can make a big difference in how

you approach the updates.

In web applications, it is common for a user to work with one object at a time and

perform a save to the database before moving on to another object. This is the simplest

scenario to implement and all of the ASP.NET data source controls use it, including

EntityDataSource.

In some applications, having batch edits and update scenarios is desired. An example

of this is editing a number of rows in a grid, and then performing an update when the

user has completed all of his edits. This also introduces more potential concurrency

conflicts if a user is holding onto modifications for a longer period of time. Implement-

ing this scenario has always been a challenge, and the problems regarding persisting

large amounts of data to enable batch updates in ASP.NET are not new. The Entity

Framework merely adds a few more irons to the fire.

Persist entities or use independent values?

It’s easiest to make a call to SaveChanges when you have a long-running ObjectCon text. But that is not a feasible option in the web scenario.

What about Global.asax? Although it is technically possible to spin up

an ObjectContext in Global.asax when the web application starts up on

the server and to use that as a global cache for entities, this would wreak

havoc on your web server. That single context will attempt to coordinate

every user’s queries and updates.

Without the long-running context, there are a few possible paths to take:

1. The first involves persisting the entities in memory on the server—most likely in

the user’s session. When the user wants to update you can attach those entities to

a new context and update them using the new values coming from the controls on

the page, then call SaveChanges. As long as you don't have a lot of concurrent ses-

sions, this is a reasonable solution. Although you will run into trouble if you are

spreading your app across a server farm where a user can’t count on returning to

the same server which is retaining the user’s session information.

788 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

2. A potential compromise to storing the full graph is to store only the entity values, but you would need to store the relationships as well, and since the entities don’t

have much more information in them than their values, you won’t reduce the

amount of data that is being persisted. At the same time, walking through a graph

and extracting the properties, as well as those of all of the related entities, and then

rebuilding them will be quite an intensive process.

3. Another path for allowing SaveChanges to do its job would entail performing the

query again prior to saving. You can then update the newly queried entities with

the values coming from the client.

4. Finally, you can leverage the new state management methods just as you did in the

WCF Services examples earlier in this book.

In the Web Forms example later in this chapter, I’ll use the first pattern which will

allow me to minimize hits to the database and reduce the amount of data that I’m

sending.

Before you consider whether to persist the data in memory, you will need to understand

ASP.NET’s mechanisms for storing data in memory and how those mechanisms are

impacted when using entities.

Comparing ASP.NET’s State Solutions to the Needs of the Entity

Framework

ASP.NET provides a number of mechanisms for maintaining the state of objects after

a Page object is destroyed. Let’s take a look at three of them—view state, application

cache, and session state—and see how they work for the entities.

View state

View state creates an encrypted binary stream of data representing objects or other data

that it adds to the HTML of the page. Many ASP.NET controls use view state as a way

to retain the contents of the control even if the page is posted back. For example, the

text in a Label or the values in a GridView can automatically be stored in view state.

When the page posts back, ASP.NET reads the view state and uses what it finds to help

render the new HTML.

View state is a user interface mechanism and not something you would use outside the

ASP.NET Page class. If you don’t have a lot of experience with ASP.NET, there are

things about view state with respect to the Entity Framework that you should be aware

of.

You can actually see the view state data if you view the source of an ASP.NET page in

your web browser. The contents of view state can easily bloat the HTML and create

performance problems if you use it without care. The biggest abuser of view state is

Understanding How ObjectContext Fits into the Web Page Life Cycle | 789

Download from Library of Wow! eBook <www.wowebook.com>

generally a GridView, which could contain many rows and many columns’ worth of data that it is trying to save across postbacks.

Although many of ASP.NET’s controls and features can automatically read and write

to view state, it is also possible for a developer to explicitly store objects into view state and retrieve them again when needed using a key to identify the data being stored (see

Example 27-3). You’ll need to cast the view state data back to its correct type when you retrieve it.

View state is a good place to persist small bits of data such as entity key information or TimeStamp values, but it is not advisable to use view state to persist entire entity objects, graphs, or even collections of entities. And keep in mind that viewstate can store only

items that are serializable. You’ll see shortly that ObjectContext fails this rule.

 Example 27-3. Explicitly storing and retrieving a small piece of data in view state

Page.ViewState["myKey"] = myCustomer.EntityKey;

custkey = (EntityKey)(ViewState["custKey"]);

The EntityDataSource control uses view state behind the scenes to retain entity values;

most importantly, the original values of the entity being edited so that when it’s time

to call SaveChanges, the context has access to Original and Current values and is able

to build update commands based on them.

Although the focus of this chapter is on pulling the ObjectContext out of the UI layer,

you may be curious about pushing entities into view state. ObjectContext is thankfully

not an option, because it is not serializable.

Figure 27-4 shows the source for a simple page where a single Customer entity is being retrieved and put into view state. The only control on the page is a TextBox to serve as

a basis for measuring view state and a button to provide a way to force a postback on

the page. The figure shows a screenshot of only half of the source of the page. The other

half is filled with the view state as well.

When the customer is not being stored in view state, the size of the page is about 1,000

bytes. With the single customer stored in view state the size of the page grows to nearly

11,400 bytes. That is a pretty significant amount of data. And you can see in Ta-

ble 27-1 how it could easily grow even larger. You need to watch out for this with any objects that you persist in view state, such as data sets, not just entities.

 Table 27-1. Impact of Customer entities on view state

Customer entities in view state

Size of page (bytes)

0

1,038

1

11,380

20

44,588

50

97,676

790 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 27-4. Half of the view state for a page that contains only a single Customer entity This gives you a good idea of the potential impact of storing entities in view state. As

the view state increases, the time it takes to deliver the page to the browser also in-

creases. The first entity stored in view state has additional data included in it. After

that, the additional Customer entities are only about 1,750 bytes each. You may not

want to incur this additional cost in your applications.

Application cache and session state

The most common alternative to retaining objects in memory is to store them in the

server’s memory using either the application cache or ASP.NET session state.

Application cache is used to retain data that is accessed frequently but does not change

frequently. More importantly, application cache is shared across all active sessions of

a web application. It does not provide unique storage of memory for each user. Instead,

every user would be working with the same set of data. You could use application cache

for read-only data that you want to share among users, and you’ll see a pattern for doing

this further on in this chapter. However, if that data needs to participate in relationships with data that the users are editing, which would require them to be managed by the

same ObjectContext, this wouldn’t be feasible. Finally, you probably do not want to

Understanding How ObjectContext Fits into the Web Page Life Cycle | 791

Download from Library of Wow! eBook <www.wowebook.com>

consider editing data that is being retained in the application cache unless you have a

very specific need and are confident that you will have precise control over the interaction.

With session state, however, ASP.NET preserves a cache of memory on the server for

every user currently accessing your website using a class called Session. Not only is

session state a great way to retain information in memory, but as a user moves from

page to page in your web application, the session state remains available. When the

user ends her session with your website, that chunk of memory is disposed after the

configured session timeout, which is 20 minutes by default. Session state is most com-

monly accessed through a Page class, but you can also use it from a business layer.

Like view state, session state can only store objects that are serializable, and like view state it can grow out of control if you are not paying attention, but in a way that can

be worse than an individual user’s view state.

Although view state offloads this information to the browser, session state puts all of

the stored information for every user hitting the website on the server. If 10 people are

using your website, the server needs to store the session state for those 10 people in

memory. If 1,000 people are using your website, imagine how much of the server’s

memory you might need to store all of their session state information. If you are con-

cerned with scalability, you should use session state wisely.

For websites that scale out dramatically, to the extent that multiple

servers are used, session state can become problematic as a user may

not hit the same server after a postback, unless you are employing logic

to ensure what’s called sticky sessions. In this case, where you aren’t

using sticky sessions to ensure that the user returns to the same web

server, your options will be to hit the database (using a ClientWins

Refresh or requery) or to use one of the other session state solutions

available for ASP.NET. The latter is a topic to be researched in the many

resources and books that are dedicated to ASP.NET and website

performance.

Another important thing to realize regarding session state is that a lot of effort is re-

quired for ASP.NET to move objects in and out of Session.

In the long run, session state is a very tempting place to store data, but you should use

it for storing only small amounts of information as it comes with a lot of baggage.

ASP.NET provides another option which is a reasonable balance between achieving a

high-end n-tier architecture and getting the job done without a huge amount of complexity: the ObjectDataSource control.

792 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

Why Not Use the ObjectDataSource Control?

In the previous edition of this book, I used EntityObjects with a series of ASP.NET

ObjectDataSource controls. Although this remains a perfectly viable choice, I will not

be repeating that in this chapter. However, I want to point out that the new foreign key

support reduces the amount of code—and confusion—caused by the HTML markup’s

need to access foreign keys in a variety of scenarios. Look on the Downloads page of

the book’s website for a sample Visual Studio 2010 project that uses EntityData Source controls.

In the long run, your best bet is to approach a web application from the perspective of

a disconnected application using short-lived contexts and performing simple updates

rather than worrying about change tracking and trying to send large amounts of data

or sets of graphs to the server from the client. The repository you built in Chapter 22

sets you up very nicely to achieve this. Like the EntityDataSource, the ObjectData Source works with a single record at a time when updates are performed, and doesn’t

depend on Entity Framework to provide change tracking information from the client.

The new state management methods such as ChangeObjectState which you used in the

WCF services will enable you to use entities in applications that use Web Forms in their

front end.

Let’s take a look at how you might construct a simple Web Forms application using

many of the tools we’ve learned about in previous chapters. Because the real challenge

is generally encountered with master-details forms, the example will add that into the

mix but sticking with EntityObjects. The MVC example that follows uses POCOs and

the repositories from Chapter 24.

Building an N-Tier Web Forms Application

The bridge layers you built in the previous chapter were not designed for general-pur-

pose use, regardless of the style of application. Those classes were built with a depend-

ency on a long-running ObjectContext to track changes made to objects in the UI. This

tactic will not work in a web application which will require a short-lived context. Some

of the concepts you applied in the WCF Service will work well for a web application,

except for the ability to receive graphs from the client.

The user interface can populate its controls using data that is presented in graphs, but

once the page is rendered those objects no longer exist unless you start wrestling with

the session. All the UI has are values in the HTML. The code-behind of the UI should

not be in the business of constructing objects to pass back to the data tier.

Building an N-Tier Web Forms Application | 793

Download from Library of Wow! eBook <www.wowebook.com>

There are a variety of alternatives in ASP.NET Web Forms when allowing users to edit data and then persisting that data back to the database.

You could simply read the values from the various controls on the page and pass those

values to a method which will then handle the object creation and updates.

As discussed previously, using session or view state comes with its price. If you are not

a fan of this price, you will probably prefer to work with ASP.NET MVC and will be

happier with the example in the latter portion of this chapter.

You’ll take advantage of session state for this Web Forms solution so that you can see

how the additional layers differ from those used in the client app, and at the same time,

how they resonate with the WCF Services. If your web application ends up distributed

across many servers you will have to replace the session state with a different caching

mechanism. See the sidebar “Caching in Scaled-Out Web Applications” for pointers to information on this advanced topic.

Caching in Scaled-Out Web Applications

Session state is a reasonable choice for applications that do not need to scale. However,

if you have lots of users/usage and need to push your apps onto multiple web servers,

you will quickly run into problems as users post back, expecting to find their session

data, but arrive at a different server. At this point, you should consider using a more

advanced form of caching. One solution to this would be to use ASP.NET’s State Server

Mode (http://msdn.microsoft.com/en-us/library/ms178586.aspx). Additionally, you could use a caching solution. A common caching solution for web applications is the

popular open source (and free) Memcached (http://memcached.org/). Microsoft’s Windows Server AppFabric (http://msdn.microsoft.com/en-us/windowsserver/ee695849

 .aspx) includes advanced caching capabilities. AppFabric was originally known by its code name, Velocity. It also has the option of being integrated with Windows Azure

which is part of the Windows Azure Platform (http://www.microsoft.com/windowsa

 zure/appfabric).

Another route is to build the caching into Entity Framework using a custom provider.

Jarek Kowalski, from the Entity Framework team, has created a sample implementation

of tracing and caching providers for Entity Framework which you can find at http://

 code.msdn.microsoft.com/EFProviderWrappers.

Designing the Application

You’ll base this example on a web app that allows customers to log in and manage their

profile. In addition, they can see a list of their trips along with balance due information.

Figure 27-5 displays a mock-up of this application.

Notice that the customer information is editable and contains drop-down lists. Addi-

tionally, addresses can be edited, deleted, or modified. The form presents a variety of

challenges thanks to the desires of BreakAway’s consumer relations department.

794 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 27-5. The consumer profile management web page

Using the Existing Repositories

Because you already have your nice repositories from Chapter 24, you can easily leverage these for your web application. If you want to use EntityObjects you can build a

similar repository architecture with a unit of work and individual repositories. You will

only be missing the persistence ignorance and the ability to run unit tests without hitting the database.

But the web page will not talk directly to the repositories. That would put too much

logic in the hands of the web page. Instead, as you did with the WPF application, you’ll

build a class that will go between the UI and, in this case, the repositories and unit of

work, as shown in the diagram in Figure 27-6.

I’ve added some new repositories to the mix, as you’ll see in the next pages.

Building an Entity Manager to Act As a DataBridge

In order for your web application to interact with the unit of work and repositories,

you can add a server-side class into your solution that will be responsible for managing

the entities. Then the code-behind of your web pages can work with that class, just as

the WPF window code in the previous chapter worked directly with the DataBridge

class. In both cases, your UI will be sheltered from the context.

Building an N-Tier Web Forms Application | 795

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 27-6. Adding the repositories and unit of work into the web application architecture Here are the goals of the entity manager:

1. Retrieve data from the database.

2. Store the original entities in the session cache.

3. Capture updated data sent from the user interface.

4. Retrieve original data from the session cache.

5. Attach original data to a new context.

6. Apply changed values from the client.

7. Save the data to the database.

For operations that retrieve data to be displayed in Web Forms, you can instantiate

your repository and return the necessary data. But before the data is returned to the

form, you can store it away in your caching mechanism. Again, you’ll be using ASP.NET

session state for caching.

Because the manager will rely on the current session to cache data, you’ll create this

class in the same project as the web form.

Example 27-4 shows the shell for the class along with the declarations for the UnitOfWork and CustomerRepository that the class will use frequently.

 Example 27-4. The shell of the EntityManager class

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using BAGA.Repository.Repositories;

using BAGA;

namespace Ch27WebForm

796 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

{

public class EntityManager

{

readonly UnitOfWork _uow = new UnitOfWork();

CustomerRepository _cRep ;

}

}

Retrieving Data for Display and for Future Updates

The data needed for display is different from that needed for performing updates, and

therefore you will handle them separately. Considering the main profile section, you

would need to query the customer but also include the four references to the favorite

activities and destinations. Because you can’t lazy-load once you are in the UI, this

means you would have to eager-load the related data. Thanks to the improvements

in .NET 4, the query generated from multiple Includes is not so bad. However, this

approach would require you to deal with shaped data in the UI or to build some type

of wrapper in the manager.

Instead, I’ve chosen to add a QueryView to the model to return flattened data. The new

entity, ProjectedCustomer, is shown in Figure 27-7.

The QueryView that maps data to this entity is shown in Example 27-5.

 Example 27-5. A QueryView to provide flattened data

<EntitySetMapping Name="ProjectedCustomers">

<QueryView>

SELECT VALUE BAModel.ProjectedCustomer(

c.ContactID, c.FirstName,c.LastName,c.Title,

cu.PrimaryDesintation,cu.SecondaryDestination,

cu.PrimaryActivity,cu.SecondaryActivity,

cu.Notes,cp.BirthDate,cp.HeightInches,cp.WeightPounds,

cp.DietaryRestrictions,

D1.LocationName,D2.LocationName,A1.Activity,A2.Activity)

FROM BreakAwayModelStoreContainer.Contact AS c

JOIN BreakAwayModelStoreContainer.Customers as cu ON c.ContactID=cu.ContactID

JOIN BreakAwayModelStoreContainer.ContactPersonalInfo as cp

ON c.ContactID=cp.ContactID

INNER JOIN BreakAwayModelStoreContainer.Locations as D1

ON cu.PrimaryDesintation=D1.LocationID

INNER JOIN BreakAwayModelStoreContainer.Locations as D2

ON cu.SecondaryDestination=D2.LocationID

INNER JOIN BreakAwayModelStoreContainer.Activities as A1

ON cu.PrimaryActivity=A1.ActivityID

INNER JOIN BreakAwayModelStoreContainer.Activities as A2

ON cu.SecondaryActivity=A2.ActivityID

</QueryView>

</EntitySetMapping>

Building an N-Tier Web Forms Application | 797

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 27-7. The ProjectCustomer entity supplied by a QueryView

I’ve added the method shown in Example 27-6 to the CustomerRepository which will return this entity.

 Example 27-6. CustomerRepository.ProjectedCustomer method

public ProjectedCustomer ProjectedCustomer(int id)

{ return _context.ProjectedCustomers.FirstOrDefault(c => c.ContactID == id);

}

That satisfies the data for displaying. You’ll also pull back a true Customer entity to use for any modifications that need to be saved to the database.

You may recall that if an entity is mapped with a QueryView, any related entities must

be as well. Therefore, the ProjectedCustomer is isolated. However, the form also needs

reservations and addresses for the customer. You can return those along with the cus-

tomer entity. That means in addition to the existing GetById method, you’ll need a

specialized method in my repository to bring back the graph.

Finally, this example calls for storing the data in a cache so that on postbacks, the app

won’t have to return to the database again, as it would if you were using an 798 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

EntityDataSource. Example 27-7 shows the method which does this retrieval and caching along with the public method that the UI will call to trigger the data retrieval and

return the necessary data to the UI.

 Example 27-7. Manager methods to get customer data from the database, into the cache, and back to the client

internal ProjectedCustomer GetProjectedCustomer(int contactId)

{ var cust = HttpContext.Current.Session

["ProjectedCust" + contactId] as ProjectedCustomer;

if (cust==null)

{

RetrieveAndStoreCustomerGraph(contactId);

cust = HttpContext.Current.Session

["ProjectedCust" + contactId] as ProjectedCustomer;

}

return cust;

}

private void RetrieveAndStoreCustomerGraph(int contactId)

{ _cRep = new CustomerRepository(_uow);

var cust = _cRep.CustomerAndReservationsAndAddresses(contactId);

HttpContext.Current.Session["Cust" + contactId] = cust;

HttpContext.Current.Session["CustAddresses" + contactId] =

cust.Addresses.ToList();

HttpContext.Current.Session["CustReservations" + contactId] =

cust.Reservations.ToList();

var projectedCust = _cRep.GetProjectedCustomerById(contactId);

HttpContext.Current.Session["ProjectedCust" + contactId] = projectedCust;

}

Notice that I’m using the contactId as part of the key for each session

item. This sets me up for a future time when I need to move to a more

scalable means of caching data and I might need to distinguish which

customer’s data to retrieve from the cache.

So far all of the data is coming from the Customer repository. It is providing me with a

customer, with a special view of a customer, and with some related data, addresses,

and reservations. We’ll shake things up a bit when it’s time to save data from the client

side.

Making the Related Data Accessible to the Client

I’ll also provide methods to retrieve the address and reservation collections from the

cache. If for some reason they have not been stored yet, the method fires off the RetrieveAndStoreCustomerGraph. If the customer simply had no addresses or reservations, the list will exist with no data as opposed to being null (see Example 27-8).

Building an N-Tier Web Forms Application | 799

Download from Library of Wow! eBook <www.wowebook.com>

 Example 27-8. EntityManager methods to return addresses and reservations to client internal List<Address> GetCustomerAddresses(int contactId)

{ var addList = HttpContext.Current.Session["CustAddresses" + contactId];

if (addList == null)

{

RetrieveAndStoreCustomerGraph(contactId);

addList = HttpContext.Current.Session["CustAddresses" + contactId];

}

return addList as List<Address>;

}

internal List<Reservation> GetCustomerReservations(int contactId)

{ var resList = HttpContext.Current.Session["CustReservations" + contactId];

if (resList == null)

{

RetrieveAndStoreCustomerGraph(contactId);

resList = HttpContext.Current.Session["CustReservations" + contactId];

}

return resList as List<Reservation>;

}

Getting Data from the Manager to the Client

At this point the manager has everything needed for the client to display the data.

My UI code can instantiate the EntityManager class and call the exposed methods, as

shown in Example 27-9.

 Example 27-9. Web form code-behind retrieving data from the EntityManager

public partial class _Default : System.Web.UI.Page

{ private readonly EntityManager mgr = new EntityManager();

protected void Page_Load(object sender, EventArgs e)

{

if (!IsDataBound)

{

BindCustomer();

BindAddressesAndReservations();

}

}

public bool IsDataBound

{

get

{

object o = ViewState["IsDataBound"];

if (o == null) return false;

else return (bool) o;

}

set

{

800 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

 ViewState["IsDataBound"] = value;

}

}

private void BindCustomer()

{

var cust = mgr.GetProjectedCustomer(currentId);

//returns customer and addresses and reservations

CustomerDetailsView.DataSource = new List<ProjectedCustomer> { cust };

CustomerDetailsView.DataBind();

IsDataBound = true;

}

private void BindAddressesAndReservations()

{

ReservationsListView.DataSource = mgr.GetCustomerReservations(currentId);

ReservationsListView.DataBind();

AddressesListView.DataSource = mgr.GetCustomerAddresses(currentId);

AddressesListView.DataBind();

IsDataBound = true;

}

}

The form will allow users to edit customers and addresses. Additionally, they will be

able to add and delete addresses. The EntityManager will use the CustomerRepository

to send updates for the customer and the new AddressRepository to enact inserts, up-

dates, and deletes on the addresses.

The manager will also be in charge of the UnitOfWork. Notice that the UnitOfWork is

instantiated every time the EntityManager is instantiated. And the EntityManager will

be instantiated every time the Page class is instantiated. So, each UnitOfWork will be

short-lived. You won’t attempt to track changes across postbacks, but thanks to the

cached entities, you’ll still be able to perform efficient updates without extra trips to

the database.

For updating customers, the EntityManager class has a method called UpdateCustomer

Profile. Its signature is shown in Example 27-10.

 Example 27-10. EntityManager.UpdateCustomerProfile signature

internal void UpdateCustomerProfile(int contactId, string title, string lastName,

string firstName, DateTime birthday, int height, int weight,

string restrictions, int primaryDestinationId, int primaryActivityId,

int secondaryDestinationId, int secondaryActivityId)

By designing the UpdateCustomerProfile method to receive values rather than an object,

you won’t force the UI developer to worry about building an object to send back.

Within the method, the manager will retrieve the original customer object from the

cache, and attach it to the repository. Once it’s attached, the context will track any

changes made to the object, so next you can apply the changed property values. With

this pattern, the update command sent to the database will only contain changed Building an N-Tier Web Forms Application | 801

Download from Library of Wow! eBook <www.wowebook.com>

properties, rather than every property regardless of whether the user has edited it, as you’ve done in previous chapters. The method is shown in Example 27-11.

 Example 27-11. UpdateCustomerProfile in the EntityManager

internal void UpdateCustomerProfile(int contactId, string title, string lastName,

string firstName, DateTime birthday, int height, int weight,

string restrictions, int primaryDestinationId, int primaryActivityId,

int secondaryDestinationId, int secondaryActivityId)

{

_cRep = new CustomerRepository(_uow);

var origCust = HttpContext.Current.Session["Cust" + contactId] as Customer;

_cRep.Attach(origCust);

//TODO: test for origCust==null and handle if necessary

//update only fields changed by client

if (title != origCust.Title)

origCust.Title = title;

if (lastName.Trim() != origCust.LastName)

origCust.LastName = lastName.Trim();

if (firstName != origCust.FirstName)

origCust.FirstName = firstName;

if (birthday != origCust.BirthDate)

origCust.BirthDate = birthday;

if (weight != origCust.WeightPounds)

origCust.WeightPounds = weight;

if (height != origCust.HeightInches)

origCust.HeightInches = height;

if (restrictions != origCust.DietaryRestrictions)

origCust.DietaryRestrictions = restrictions;

if (primaryDestinationId != origCust.PrimaryDestinationID)

origCust.PrimaryDestinationID = primaryDestinationId;

if (primaryActivityId != origCust.PrimaryActivityID)

origCust.PrimaryActivityID = primaryActivityId;

if (secondaryDestinationId != origCust.SecondaryDestinationID)

origCust.SecondaryDestinationID = secondaryDestinationId;

if (secondaryActivityId != origCust.SecondaryActivityID)

origCust.SecondaryActivityID = secondaryActivityId;

_uow.Save();

RetrieveAndStoreCustomerGraph(origCust.ContactID);

}

After the changes have been made, call the UnitOfWork’s Save method and then com-

pletely refresh all of the cached data from the database.

When the web page refreshes, it will call the GetCustomer method and update the display.

802 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

Adding Lists for User Selection Controls

When the user edits the customer profiler, the UI will need access to the Destination

and Activity lists.

These lists will change infrequently, so there’s no need for each customer to cause a hit

to the database. Therefore, you can place them in the application cache for efficiency.

I’ve leveraged some code that you’ve seen earlier in this book to build a class, shown

in Example 27-12, for providing cached drop-down lists. These lists are queried using the NoTracking MergeOption. Thanks to the foreign key support in Entity Framework,

the consuming application can simply use the keys to identify the related entity without

attaching these references and having to deal with the related entities’ state. See the

sidebar, “Forcing Consumers to Set Foreign Keys” on page 806.

Although its methods are generic, the Lists class gives you explicit control over what

types of lists are allowed. Each list is a static variable so that it will get reused. If it does not yet exist, a query will be executed to create the list. This class currently supports

lists of Activity types and Destination types.

 Example 27-12. A class for providing static lists

using System;

using System.Collections.Generic;

using System.Data.Objects;

using System.Linq;

using System.Linq.Expressions;

namespace BAGA.Repository.Repositories

{ public static class Lists

{

private static List<Destination> _destinations;

private static List<Activity> _activities;

public static List<T> UntrackedList<T>

(Expression<Func<T, object>> sortProperty) where T : class

{

var uow = new UnitOfWork();

var storedList = GetStoredList<T>();

if (storedList == null)

{

var query = ((BAEntities)uow.Context).CreateObjectSet<T>();

query.MergeOption = MergeOption.NoTracking;

storedList = query.OrderBy(sortProperty).ToList();

SetStoredList(storedList);

}

return storedList;

//TODO: exception handling

}

private static List<T> GetStoredList<T>()

{

Building an N-Tier Web Forms Application | 803

Download from Library of Wow! eBook <www.wowebook.com>

 string typeName = typeof(T).Name;

List<T> list;

switch (typeName)

{

case "Activity":

list = _activities as List<T>;

break;

case "Destination":

list = _destinations as List<T>;

break;

default:

throw new NotSupportedException

("You cannot make an UntrackedList from this type");

}

return list;

}

private static void SetStoredList<T>(IEnumerable<T> newList)

{

string typeName = typeof(T).Name;

switch (typeName)

{

case "Activity":

_activities = newList as List<Activity>;

break;

case "Destination":

_destinations = newList as List<Destination>;

break;

default:

throw new NotSupportedException

("You cannot make an UntrackedList from this type");

}

}

}

}

Now the EntityManager class can easily expose these lists for the consuming application,

as shown in Example 27-13.

 Example 27-13. Providing access to drop-down lists in the EntityManager

internal List<Activity> GetActivities()

{ return Lists.GetUntrackedList<Activity>(a => a.Name);

}

internal List<Destination> GetDestinations()

{ return Lists.GetUntrackedList<Destination>(d => d.Name);

}

And the consuming application can use these to bind to drop downs when customers

edit their profile, allowing them to modify their choices for preferred activities and

destinations.

804 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

Allowing a User to Modify Related Data

As mentioned earlier, customers will have the ability to edit their addresses. The ad-

dresses are originally provided for display as part of a graph supplied by the Customer

Repository. Editing, however, will be done using the AddressRepository. Like the UpdateCustomer method, the method signatures for modifying, inserting, and deleting

Addresses will accept scalar values, rather than an object, as its parameters. These three methods are shown in Example 27-14.

 Example 27-14. Methods to update, insert, and delete Address entities

internal void UpdateAddress(int id, string street1, string street2, string city,

string state, string country, string postal,

string type, int contactId)

{ var aRep = new AddressRepository(_uow);

var addresses = GetCustomerAddresses(contactId);

var origAddress = addresses.First(a => a.addressID == id);

aRep.Attach(origAddress);

if (origAddress == null) return;

//update only changed fields

if (street1 != origAddress.Street1)

origAddress.Street1 = street1;

if (origAddress.Street2 != street2)

origAddress.Street2 = street2;

if (country != origAddress.CountryRegion)

origAddress.CountryRegion = country;

if (state != origAddress.StateProvince)

origAddress.StateProvince = state;

_uow.Save();

}

internal void InsertAddress(string street1, string street2, string city,

string state, string country, string postal,

string type, int contactId)

{ var aRep = new AddressRepository(_uow);

var address = new Address

{

Street1 = street1,

Street2 = street2,

City = city,

StateProvince = state,

CountryRegion = country,

ContactID = contactId,

PostalCode = postal,

AddressType = type

};

aRep.Add(address);

_uow.Save();

RetrieveAndStoreCustomerGraph(contactId);

}

internal void DeleteAddress(int id, int contactId)

Building an N-Tier Web Forms Application | 805

Download from Library of Wow! eBook <www.wowebook.com>

{ var aRep = new AddressRepository(_uow);

var addresses = GetCustomerAddresses(contactId);

var origAddress = addresses.First(a => a.addressID == id);

aRep.Delete(origAddress);

_uow.Save();

RetrieveAndStoreCustomerGraph(contactId);

}

Now you have all of the methods that the EntityManager needs for not only retrieving

and displaying data, but also updating various types within a relationship hierarchy.

A single repository is responsible for providing the display data, while explicit type

repositories handle updates.

There are many ways to define repositories, and the important lesson here was not the

repository architecture, but the use of the EntityManager to keep the concerns of the

user interface completely separate from the concerns of the business objects and their

persistence in a Web Forms application.

Forcing Consumers to Set Foreign Keys

Don’t forget about the Getter and Setter properties in the Entity Data Model Designer.

You can use these to avoid complications that result from developers assigning entities

as references (such as those entities being marked as Added if they are attached to new

entities). Set the Setter Code Generation attribute of the navigation property (e.g., Customer.PrimaryActivity) to something other than the default, Public. Choose Inter

nal/Friend, Private, or Protected based on your application’s needs. This way, the

developer will not be able to set the reference, but will be forced to use the foreign key instead.

Building an ASP.NET MVC Application

ASP.NET MVC is an alternative to using ASP.NET Web Forms to develop web

applications. While Web Forms attempts to work around the lack of state in web ap-

plications by providing features such as view state, ASP.NET MVC embraces the state-

lessness. MVC depends only on whatever data is available in the markup (e.g., the

current value of the Text or Label control) combined with specific methods defined in

the application to carry values across postbacks or use them for database updates or

elsewhere. MVC does not change what you have learned so far in this chapter about

using the ObjectContext in web applications. You will continue to work with a short-

lived context. But because MVC is designed with no expectations of state (your own

or that maintained by the ObjectContext) across postbacks, you won’t be tempted to

depend on the ObjectContext for change tracking.

ASP.NET MVC will not be every developer’s cup of tea since there is more to learn and

more coding involved. But in the end, those who love MVC are extremely passionate

806 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

about the advantages it gives them at the cost of more explicitly coding an architecture

than is necessary with some Web Forms applications.

MVC? What About Web Forms?

While MVC is the “hot new kid” in ASP.NET development, it is not replacing Web

Forms. Rather, MVC provides an alternative style of ASP.NET development for devel-

opers who were frustrated with the complexities introduced as Web Forms attempts

to make web applications stateful, even though is not in their inherent nature. See the

excellent article by Dino Esposito, “Comparing Web Forms and ASP.NET MVC,” from

the July 2009 issue of MSDN Magazine (http://msdn.microsoft.com/en-us/magazine/

 dd942833.aspx).

Now comes the challenge of describing MVC briefly for those who have no experience

with it. I do highly recommend that if you are new to MVC, you follow up with some

more dedicated MVC resources. You can start with http://www.asp.net/mvc/. In fact, you might want to look at some of those introductory materials before reading this

section as I will not be providing a thorough introduction to MVC.

MVC stands for Model View Controller. MVC is a pattern that has been around for a

while and has been adopted recently by Microsoft for ASP.NET development. The goal

of MVC is to enable separation of the various types of logic in your web applications.

As you have seen in earlier chapters, a model is not necessarily this XML metadata that

we have been using in our Entity Data Model. A model can also be a description of a

class. We looked at models like this in Chapter 25 that discussed code first and SQL

Server Modeling’s M. In MVC, the M refers to whatever provides schema of the data

to be used in the user interface. It does not explicitly refer to our Entity Data Model.

Similar to the way that the DataBridge and TripWrapper classes exposed our Entity Data

Model classes to the WPF UI in the previous chapters, the MVC model will act as a

part of the bridge between our Entity Data Model and our UI.

And this is where I want to deviate from the typical MVC introduction. ASP.NET MVC

doesn’t care what your model is. There are many types of models. MVC’s model could

be an Entity Data Model and its context. It could be a business object, or something

else yet.

See K. Scott Allen’s blog post series, “Putting the M in MVC.” Here is

a link to the third post which has links to the earlier ones: http://odeto

 code.com/Blogs/scott/archive/2009/04/06/putting-the-m-in-mvc-part-iii

 .aspx. Because of this blog series, I was thrilled to introduce Scott to Trygve Reenskaug, the originator of the MVC pattern, when we were

all at the same conference in late 2009.

But that’s only one part of MVC. What about the V (View) and C (Controller)? The view is the UI. And contrary to what you might presume here, the view does not talk

Building an ASP.NET MVC Application | 807

Download from Library of Wow! eBook <www.wowebook.com>

directly to the model. This is where the controller comes in. The controller matches up

the models and the views at runtime. A controller is associated with a particular view.

By default, MVC associates views and controllers that have matching names.

Here you can take a quick look at the default for creating an MVC app using an EDM

as the model.

Start by creating a new MVC2 Web Application project. After adding a reference to the

BreakAway model project, which contains the generated EntityObject classes, you can

add a new Controller for working with Contact entities into the project. The Add Con-

troller Wizard, shown in Figure 27-8, allows you to create a Controller that exposes methods for adding, updating, and deleting Contacts.

 Figure 27-8. The Add Controller Wizard

The controller is simply a class. From within the class Visual Studio lets you create the

views you need for each action: one for viewing Contact details, another for editing a

contact, and another for creating a contact. There’s also an Index view and you can use

this one to display a list of Contacts from which to perform any of the other actions.

Right-click the Index method declaration (public ActionResult Index()) and you’ll see

Add View from the context menu. Choose this to add a new Index view of Contact.

The wizard, shown in Figure 27-9, lets you create a view from the Contact class. I’ve indicated that I want a List of Contact types displayed in the View content drop down.

This, in turn, generates a new Contact folder in the Views folder of the MVC project and an Index.aspx page, as shown in Figure 27-10.

The .aspx page has markup for displaying the list and explicitly populating it from the controller’s methods. A lot of dynamic activity occurs behind the scenes in MVC, which

I won’t be explaining here. Much of that is dependent on the naming of views, con-

trollers, methods, and actions by default.

Looking back at the Index method in the Controller class, nothing has changed. If you

run the app and navigate to this page, you’ll get an error. When a user requests the

Contact/Index, the controller responds by returning a view. By default, it looks for the

808 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 27-9. MVC’s Add View Wizard

 Figure 27-10. Folders created for each controller in the MVC app solution

view matching the method name. The method is Index, and therefore it will look for

the Index.aspx page, but the code is incomplete:

public ActionResult Index()

{ return View();

}

Since the Index.aspx page expects data to be passed into it, you need to supply data to this View. You can do that by returning the data as a parameter of the View method.

Where does the data come from? It comes from the model.

Building an ASP.NET MVC Application | 809

Download from Library of Wow! eBook <www.wowebook.com>

The View itself is not aware of the model. The view simply takes whatever the controller

provides. The controller uses the model to provide the data which the view will display.

Here is where you’ll begin with the simplest route, the one that is commonly demon-

strated, as shown in Example 27-15, using the context directly.

 Example 27-15. An Index method to return a list of Contacts

public ActionResult Index()

{ using (context = new BAGA.BAEntities())

{

return View(context.Contacts.ToList());

}

}

Frankly, most of the demos won’t even call ToList, and instead will just send back the

query, forcing the view to execute the query. You know by now that even if it works,

it’s not a very good practice.

With no additional work in the code or the markup, the Index page now displays a list

(and a long one at that, because you haven’t done any paging or filtering) of Contacts,

as shown in Figure 27-11.

Download from Library of Wow! eBook

<www.wowebook.com>

 Figure 27-11. An unadorned Index view of Contact entities

810 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

Next, you can provide some data to be returned in the Details view. The controller has a method that will be called when the user clicks on Details, shown in Example 27-16.

 Example 27-16. The default code in a Details action

public ActionResult Details(int id)

{ return View();

}

The Index page will have MVC call the Controller's Details method when you click

on the Details link.

Right-click on the method and add a new Details view. Then give the method some

code to return the selected Contact, as in Example 27-17.

 Example 27-17. The Details action fleshed out with logic

public ActionResult Details(int id)

{ using (context = new BAGA.BAEntities)

{

var contact = context.Contacts.SingleOrDefault(c => c.ContactID == id);

return View(contact);

}

}

Notice that this method instantiates the context again. This is a web application and

the context will not stick around across postbacks. You have to create a new one on

each call. This is important to keep in mind when dealing with inserts and updates,

which you’ll see when we switch to the more layered implementation.

And, with the default formatting, you can click on Details from the Index view and

return a Details view of the selected contact, shown in Figure 27-12.

This works nicely and simply has logic separation thanks to the MVC pattern. There

is no reliance on all of the mechanisms that Web Forms uses to emulate a stateful client

application. But I find it deeply unsatisfying. The Controller interacts directly with the context, and as your solutions get more complex, this tight binding to the context and

the entire set of classes exposed by it will make your life more difficult. Also, you have seen how much you can do directly with the Entity Framework to exert more control

over its behavior. Do you really want to have to do all of that work directly in the

controllers? That is not really the job of the controller.

Building an ASP.NET MVC Application | 811

Download from Library of Wow! eBook <www.wowebook.com>

 Figure 27-12. A simple Details view

For those of you who are brand-new to MVC there are other controller

actions and views. For example, you can create a view for editing, and

then one controller method will return the view with the entity to be

modified, and another controller method will capture a postback from

that view and save data back to the database. Similarly, you can have a

pair of methods to create an insert view and then capture the insert

view’s postback to save to the database. You can easily find many ex-

amples of all of this functionality, so I won’t repeat it here.

You’ll be much better off if you do not use the EDM and context directly as the MVC

model. Instead, create models that are more focused on the needs of each domain. That

way, the interaction between the controllers and those models can be simple and the

complexities of interacting with the context and entities can be behind the models.

In Chapter 26, you built a layer that was suited for client applications, but it was not focused on being a one-layer-fits-all to be used in various architectures. That layer was

designed to leverage a long-running context.

812 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

You could absolutely build one or more layers for your MVC model using EntityObjects, but I’m going to go down a different path here.The repository you used

earlier in the Web Forms application is very well suited for use in an MVC application.

You can bring the repository into this solution so that you can see the repository in

action in MVC.

Replacing the Context with Repositories

There’s not much to do to make the switch, which highlights the beauty of MVC.

Remove the references to the BreakAway model and add references to the various projects created in Chapter 24, including:

• BreakAwayEntities

• Interfaces

• POCOState

• Repositories

Be sure to clean the solution and rebuild to make sure there are no references remaining

to the previous model project.

You can also remove the reference to System.Data.Entity from the MvcApplication

project since it is no longer bound to the Entity Framework.

With the references in place, it’s simply a matter of modifying the code to use the

repositories.

Note that I have added a Contact repository to my repositories:

public class ContactController : Controller

{ private UnitOfWork uow = new UnitOfWork();

private ContactRepository cRepository;

public ActionResult Index()

{

cRepository = new ContactRepository(uow);

return View(cRepository.All());

}

public ActionResult Details(int id)

{

cRepository = new ContactRepository(uow);

return View(cRepository.GetById(id));

}

UnitOfWork gets instantiated in the class declarations so that you don’t have to repeat

that call in each method.

Building an ASP.NET MVC Application | 813

Download from Library of Wow! eBook <www.wowebook.com>

You should consider making your repository classes implement IDis

posable, which would allow you to not only dispose them but use them

in a construct as you’ve done with the context in previous examples.

If you run your app again, the Index and Details pages work just as they did earlier.

Editing Entities and Graphs on an MVC Application

So far this MVC application is pretty simplistic. It is reading and displaying entities

directly out of the store. Let’s add some editing and graphs as well.

You should have not one, but two, Edit ActionResult methods in the controller. The

first is similar to the Details ActionResult. It returns an Edit view of the selected contact.

Add a View to this controller method. Be sure to bind it to the BAGA.Contact and select

Edit from the View content drop down so that the wizard will build an edit form for

you. You can fill out the method so that it looks like Example 27-18.

 Example 27-18. The Edit action method which returns an Edit View for Contact

public ActionResult Edit(int id)

{ cRepository = new ContactRepository(uow);

return View(cRepository.GetById(id));

}

One pattern you should pay attention to is that we are not storing the

contact data across postbacks. Every method returns to the repository

to get data. In this case, because the repository then goes to the database,

it is hitting the database over and over to get the same record as the

application performs various actions on the data. If you wanted to add

in some type of caching mechanism, it would be the responsibility of

the repository (or an additional layer behind the repository) to manage

that, not the MVC application.

The second is marked with an HttpPost attribute. This handles the postback when the

user submits the Edit view. This method takes the ID of the current entity and a FormCollection which will contain the values of the entity. You can also change the

parameter to receive the data as the target entity and MVC will automatically create

the new entity from the collection data. However, you can’t do that with Contact be-

cause in the BreakAway model, Contact is an abstract class. You can create an overload

to handle each of the derived types.

By default, the view will send those values back to the controller. It’s your job to add

in the logic to perform the update.

814 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

The initial method takes an MVC FormCollection as its parameter:

[HttpPost]

public ActionResult Edit(int id, FormCollection collection)

{ try

{

returnRedirectToAction("Index");

}

catch

{

returnView();

}

}

You can dig into the FormCollection to extract the values you need for updating the

entity, or you can change the signature to accept the entity as an object. MVC will create the object for you.

Now there’s a little hiccup to deal with. As mentioned earlier, you won’t be able to

instantiate the abstract Contact class. Since I’m unconcerned with the properties of the

Customer derivative of Contact, I’ll just use the NonCustomer type instead in the method

displayed in Example 27-19.

 Example 27-19. The Edit action which responds to a postback from the Edit view

[HttpPost]

public ActionResult Edit(int id, NonCustomer contact)

{ try

{

_cRepository = new ContactRepository(_uow);

_cRepository.Attach(contact);

_uow.Save();

return RedirectToAction("Index");

}

catch

{

return View(contact);

}

}

This code uses the repository Attach method which, if you recall from Chapter 24, will Attach and then fix the state of the entity to be Modified so that SaveChanges will properly create the update command.

Now you can edit the contacts from your MVC application.

So far, all of this has been pretty simple thanks to the fact that the repository has been built already. The nice thing about the repositories is that not only do they not care

about what the backend is, but they also don’t care what the front end is.

As you learn more about working with MVC, you may leverage tricks such as creating

master detail forms whether they are for data entry or not.

Editing Entities and Graphs on an MVC Application | 815

Download from Library of Wow! eBook <www.wowebook.com>

You won’t find lots of master detail examples for MVC. The reason is that it’s not a

typical MVC pattern. Because of its stateless nature, MVC is generally used for working

with explicit types per transaction. So in MVC, a more common master–detail scenario

would have the master object on one page (e.g., reservations for a customer), then the

user would click a link (“see payments for this reservation”) to bring her to a separate

page with the child details (payments for a single reservation).

But your clients don’t necessarily think in the MVC pattern, and you may find yourself

in a scenario where you need to not only display master details on a single page, but

enable editing as well.

In addressing this, I will focus more on the controller interaction with the repositories

than the views which involve a few tricks that use AJAX. You can download a full

example from the book’s website to see how all of the pieces fit together.

This app begins with a view that lists customers. Upon selecting a customer, you get

to the view page displayed in Figure 27-13 which lists the customer’s reservations. For each reservation, there is a link to display payments. Clicking the Payments link engages

ASP.NET AJAX to display the payments in an MVC view control. As you will see in

the code example to follow, ASP.NET AJAX provides the benefit of executing logic and

rendering only a portion of a form while leaving the rest of the form’s markup intact.

This means that you don’t have to worry about re-retrieving data displayed in other

portions of the form.

 Figure 27-13. A details view that uses AJAX to display and edit hierarchical data

816 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

Creating a Repository for Payments

The original set of repositories you created in Chapter 24 did not include a repository

for payments. I’ve added a new PaymentRepository class which is similar to the others.

It has one additional method to return the payments for a particular reservation. This

method, shown in Example 27-20, mimics the GetReservationsForCustomer method of the ReservationRepository.

 Example 27-20. The GetPaymentsForReservation method of PaymentRepository

public IList<Payment> GetPaymentsForReservation(int reservationId)

{ if (reservationId.Value < 1)

{

throw new ArgumentOutOfRangeException();

}

return _context.Payments

.Where(r => r.ReservationID == reservationId).ToList();

}

Interacting with the ReservationController

The application also has a controller for Customers and another for interacting with

Reservations and Payments.

When the user selects the link to display the reservations for a particular customer, the

link routes the request to an action in the ReservationController, passing in the identity key of the customer and the customer’s name so that it can be displayed in the next

page. The ActionLink is displayed in Example 27-21.

 Example 27-21. Markup in the Customer view calling a view in a different controller

<%= Html.ActionLink("Reservations",

"../Reservation/Index",

new {customerId=item.ContactID,name=item.LastName + ", " +item.FirstName})

%>

The ReservationController.Index action shown in Example 27-22 uses the ID to query for the customer’s reservations, places the list of reservations along with the customer

name into a controller’s ViewData, and returns the Reservation’s View. Because there is

no incoming parameter, this ViewData will be used to construct the view.

 Example 27-22. The Reservations index action retrieving multiple parameters

public ActionResult Index(int customerId,string name)

{ _rRepository = new ReservationRepository(_uow);

ViewData.Add("Model", _rRepository.GetReservationsForCustomer(customerId));

ViewData.Add("custname", name);

return View();

}

Editing Entities and Graphs on an MVC Application | 817

Download from Library of Wow! eBook <www.wowebook.com>

The ReservationController is also responsible for returning the reservation’s payments through an action named ReservationPayments (see Example 27-23), which uses the PaymentRepository to provide its results.

 Example 27-23. The ReservationPayments action of the ReservationRepository

public ActionResult ReservationPayments(int reservationId)

{ _pRespository = new PaymentRepository(_uow);

return View(_pRespository.GetPaymentsForReservation(reservationId));

}

In the Reservation View page, the AJAX method which responds to the user’s request

to see payments calls this action method and returns the results in the Payments view

which is an .ascx control rather than an .aspx page. That way, the control can be used within the Reservation page.

The critical piece of the AJAX function calls the ReservationPayments, passing in the

ID of the selected Reservation, and loads those results into an element defined else-

where in the markup:

[element to display payments].load

('<%= Url.Action("ReservationPayments") %>',

{ ReservationId: this.id })

Because the action is named ReservationPayments, by default MVC will look for a view

named ReservationPayments to return from the action. The .ascx control for displaying payments is named ReservationPayments, so that’s what will be used.

You can also wire up the Edit, Delete, and New links to actions which let the user edit

the payments. This might be done by routing to a PaymentController which returns

explicit payment views and works further with the PaymentRepository.

There’s so much more to learn about working with MVC, but you have now seen how

you can ensure that the context is not part of the UI in this setup, whether you are

working with one type at a time or multiple types as in the master–detail scenario.

Summary

In this chapter, you were able to put to use many of the lessons you learned in this book

to see how Entity Framework can be used in more advanced enterprise web applica-

tions. While we didn’t combine every feature of Entity Framework that you learned

about in one example, the samples in this chapter deal with scenarios that provide

numerous challenges. Thanks to the many enhancements in Entity Framework in .NET

4.0, such as POCO support, IObjectSet, and state management methods, we are able

to design n-tier applications that use entities without too much difficulty.

818 | Chapter 27: Building Layered Web Applications

Download from Library of Wow! eBook <www.wowebook.com>

While it would be much easier to design a Web Forms application with the ObjectDa taSource controls, you will be constrained by the requirements of ObjectDataSource.

Both the Web Forms example in the first half of this chapter and the ASP.NET MVC

example in the second half took approaches that involve more manual labor, but give

you more control over the design of your classes and application architecture. Both

examples demonstrate solutions to the many problems you will encounter when build-

ing web applications with entities.

While I chose to use the previously built POCO repositories in both examples, this

does not mean you can’t do the same with EntityObjects. You have the tools you need

to do this as well.

Don’t forget the variety of additional functionality you learned about, such as measures

to improve performance, capture exceptions, control transactions, and more.

Summary | 819

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

APPENDIX A

Entity Framework Assemblies

and Namespaces

This appendix will provide you with a high-level overview of the assemblies and name-

spaces of the Entity Framework. You will learn about the files that are used for the

Entity Framework and the namespaces of the Entity Framework and their purpose.

Unpacking the Entity Framework Files

You’ll find the physical DLL files that contain the Entity Framework APIs in the fol-

lowing directory:

• <system drive>:\Program Files\Reference Assemblies\Microsoft\Framework\.NET-

 Framework\v4.0, which contains:

— System.Data.Entity.Design.dll

This file contains functionality related to the design tools, such as the Designer,

the mapping details, and the model viewer.

— System.Data.Entity.dll

This file is the root of the Entity Framework. It contains all of the namespaces

and classes for programming against the Entity Data Model (EDM).

Exploring the Namespaces

The Entity Framework lives within the System.Data namespace of the .NET Frame-

work. New functionality (classes, properties, and methods) has been added to existing

namespaces in the System.Data hierarchy, along with a number of new namespaces that

begin with the term System.Data.Entity. The System.Data.Entity.dll assembly provides

all of the namespaces, as shown in Figure A-1.

821

Download from Library of Wow! eBook <www.wowebook.com>

 Figure A-1. Namespaces provided in System.Data.Entity.dll

Existing Namespaces That Include Entity Framework Classes

and Functionality

A number of existing namespaces have classes and functionality added to them to sup-

port the Entity Framework:

822 | Appendix A: Entity Framework Assemblies and Namespaces

Download from Library of Wow! eBook <www.wowebook.com>

System.Data

System.Data is the namespace in the .NET Framework that provides all of .NET’s

data access functionality. Some functionality is contained directly in System.Data,

and much more exists in its subnamespaces.

The Entity Framework adds Exception classes directly to this namespace, as well

as EntityKey, which provides a durable reference to an entity.

System.Data.Common

System.Data.Common provides base classes that are common to all of the data pro-

viders written for .NET. For example, DbDataReader is the base of SqlDataReader,

OleDbDataReader, OracleDataReader, and more. The Entity Framework adds a few

high-level DbProvider members into this namespace, along with DataRecordInfo to

expose query results in the form of a DbDataRecord and EntityRecordInfo which

provides access to the metadata of an entity.

System.Data.SqlClient

The provider information that allows the ADO.NET Entity Framework to com-

municate with Microsoft SQL Server is added into the System.Data.SqlClient class

through additional classes added into the System.Data.Entity assembly.

System.Linq.Expressions

System.Linq.Expressions adds LINQ to Entities query functionality to the

System.Linq.Expressions namespace.

Entity Framework-Specific Namespaces

All of the functionality that you will use directly or indirectly when working in the Entity Framework lives in the following namespaces:

System.Data.Common.CommandTrees

System.Data.Common.CommandTrees adds logic for building Entity Framework com-

mand trees from LINQ to Entities and Entity SQL expressions. Each provider that

is written to work with the Entity Framework will have the ability to turn these

command trees into store queries.

System.Data.Entity

System.Data.Entity does not contain any classes or methods; it is the base for a

hierarchy of other namespaces—namely, System.Data.Entity.Design and

System.Data.Entity.Design.ASP.NET (discussed shortly).

System.Data.EntityClient

System.Data.EntityClient is a standard ADO.NET managed provider supporting

access to the data described in the EDM. This namespace is comparable to

System.Data.SqlClient or System.Data.OracleClient and provides classes such as

EntityConnection, EntityCommand, and EntityDataReader.

Exploring the Namespaces | 823

Download from Library of Wow! eBook <www.wowebook.com>

System.Data.Mapping

System.Data.Mapping provides logic for performing view generation from query

expressions.

System.Data.Metadata.Edm

System.Data.Metadata.Edm contains the types that are represented in the concep-

tual, mapping, and store schemas that define and support the EDM. Using these

types directly, it is possible to programmatically work with the metadata of the

model.

System.Data.Objects

System.Data.Objects is the most important namespace in the Entity Framework.

It provides the classes for querying, change tracking, relationship management,

and updating the data store through the EDM. The functionality provided by

System.Data.Objects and its child namespace, DataClasses, is referred to as “Object

Services.”

System.Data.Objects.DataClasses

System.Data.Objects.DataClasses contains the classes and interfaces that allow

types described in the EDM to be instantiated as objects. With these classes you

can programmatically interact with the data that is provided as a result of querying

the EDM.

System.Linq.Expressions

System.Linq.Expressions adds the necessary expressions for performing LINQ to

Entities queries.

System.Data.Entity.Design

System.Data.Entity.Design provides functionality for generating an EDM as well

as performing the code generation to create classes from the EDM.

System.Data.Entity.Design.ASP.NET

System.Data.Entity.Design.ASP.NET provides the build providers used in the build

environment for ASP.NET.

System.Data.Query.InternalTrees

System.Data.Query.InternalTrees provides the tools for converting query expres-

sions to command trees that are executed against the Entity Framework. This is

very low-level and all of the members in this namespace are sealed.

System.Data.Query.PlanCompiler

System.Data.Query.PlanCompiler is another namespace filled with low-level func-

tionality for processing queries.

System.Data.QueryResultAssembly

System.Data.QueryResultAssembly, the third subnamespace in System.Data.Query,

is also low-level and sealed. When data is returned from the data store, it needs to

be transformed into objects. This namespace contains the tools that are used in-

ternally to perform this transformation.

824 | Appendix A: Entity Framework Assemblies and Namespaces

Download from Library of Wow! eBook <www.wowebook.com>

APPENDIX B

Data-Binding with Complex Types

In Chapter 14, you learned how to create complex types and use them to encapsulate properties in an entity. As an example, you temporarily encapsulated a number of properties (Street1, Street2, City, and StateProvince) of the Address entity into a complex type called Mail, as shown in Figure B-1.

 Figure B-1. The Address entity with its Mail complex property

The chapter looked briefly at data binding when an entity contains a complex type.

Complex types may not behave the way you would expect them to in data binding.

Therefore, this appendix will take a look at a number of specific data-binding scenarios

that you may encounter in your applications.

Using Complex Types with ASP.NET EntityDataSource

When you use complex types with the EntityDataSource, the EntityDataSource “flat-

tens” the properties within the complex type to make them easily accessible. When

configuring the EntityDataSource, you will see the type, but not the properties.

825

Download from Library of Wow! eBook <www.wowebook.com>

However, when binding controls to the data source, the properties of the complex type

appear as though they were simply properties of the parent type. You can see this in

the screenshot in Figure B-2.

 Figure B-2. The complex type properties automatically flattened

This flattening of the properties is a feature of the EntityDataSource, though it will occur only under specific conditions. For details, see the blog post “EntityDataSource: To

wrap or not to wrap” by Diego Vega, EntityDataSource program manager at Microsoft

(http://blogs.msdn.com/b/diego/archive/2008/05/13/entitydatasource-to-wrap-or-not-to

 -wrap.aspx).

Be aware that Dynamic Data templates do not recognize complex types.

Therefore, you will not be able to use complex types in a web application

built with the Dynamic Data controls.

Identifying Unexpected Behavior When Binding Complex

Types

Whether in ASP.NET, Windows Forms, or other applications, when you attempt to

perform data binding against query results where complex types are involved without

the aid of DataSource controls, you won’t have such easy access to the properties.

For example, the following code in an ASP.NET page will fail, with a message saying

that Address does not contain a property with the name Mail.City:

var addresses = context.Addresses.ToList();

dropDownList1.DataTextField = "Mail.City";

dropDownList1.DataValueField = "addressID";

dropDownList1.DataSource = addresses;

dropDownList1.DataBind();

Attempting a similar binding to a ComboBox in a Windows form will have a different

effect. In the following code, the addressID will be displayed in the drop-down list,

rather than the ComplexType property that is used for DisplayMember:

var addresses = context.Addresses.ToList();

comboBox1.DataSource = addresses;

826 | Appendix B: Data-Binding with Complex Types

Download from Library of Wow! eBook <www.wowebook.com>

comboBox1.DisplayMember = "Mail.City";

comboBox1.ValueMember = "addressID";

Yet, if you were to debug into the results of the query and request the properties from

the complex type, you would see that they are definitely available, just not for these

data-binding scenarios.

In a Windows form, if you bound the results of a query programmatically, such as in

the following code:

dataGridView1.DataSource = context.Addresses.ToList();

the Mail property would be represented incorrectly as a single column.

You’ll get the same effect even if you create a Windows Forms DataSource and bind to

that.

Even if you explicitly bind properties to the columns in this way:

DataGridView1.Columns[1].DataPropertyName = "Mail.Street1";

the binding will fail, with the columns that result being empty.

So, how can you get at these properties in these scenarios? The following sections will

provide some patterns.

Successfully Using Binding to Complex Types in ASP.NET Without Data

Source Controls

With ASP.NET, you have three paths to follow: list controls, data-bound controls, and

templated controls. With each, you will need to take a different route for using a com-

plex type.

List controls

DropDownList is not actually a data-bound control. It is a list web server control. Other

controls in the category are ListBox, CheckBoxList, RadioButtonList, and BulletedList.

Instead of returning the objects that contain complex types (which can’t be displayed),

your best bet is to use projections to flatten the properties yourself. As an example, here is a LINQ query that returns a list of distinct cities. You can bind this to a drop-down

list and, upon selection, query for contacts from the selected city:

var uniqueCities =

(from a in context.Addresses select a.Mail.City)

.Distinct().ToList();

DropDownList1.DataSource = uniqueCities;

DropDownList1.DataBind();

Identifying Unexpected Behavior When Binding Complex Types | 827

Download from Library of Wow! eBook <www.wowebook.com>

Data-bound controls

GridView and FormView are bound controls and have the same limitation as list controls.

If you are not able to use the EntityDataSource, you will need to do projection to flatten the ComplexType properties. With projection, you lose your ability to do updating, so

you may want to consider the EntityDataSource for this scenario.

Templated controls

With templated controls, such as ListView, you can access the ComplexType properties

using inline script.

Reverting back to the query:

context.Addresses.ToList()

you can bind directly to the results with the following markup in a ListView (see Ex-

ample B-1).

 Example B-1. Formatting the markup of a ListView to display complex type properties

<asp:ListView runat="server" ID="ListView1">

<LayoutTemplate>

<table runat="server" id="table1" >

<tr runat="server" id="itemPlaceholder" ></tr>

</table>

</LayoutTemplate>

<ItemTemplate>

<tr runat="server">

<td id="Td1" runat="server">

<%-- Data-bound content. --%>

<asp:Label ID="NameLabel" runat="server"

Text='<%#Eval("Mail.Street1") %>' />

</td>

<td id="Td2" runat="server">

<%-- Data-bound content. --%>

<asp:Label ID="Label1" runat="server"

Text='<%#Eval("Mail.City") %>' />

</td>

</tr>

</ItemTemplate>

</asp:ListView>

Windows Forms DataSource and Complex Types

Like the EntityDataSource, data sources in Windows Forms let you work fairly easily

with entities and their properties that are complex types.

Figure B-3 shows an Object data source created from the revised Address entity.

You can use the complex type in a Windows form, which is displayed and updated

along with the rest of the entity. You can see in the simple form shown in Figure B-4

that the complex type properties blend in as though they were scalar properties of

828 | Appendix B: Data-Binding with Complex Types

Download from Library of Wow! eBook <www.wowebook.com>

 Figure B-3. Windows Forms data source reading complex type properties such as the Mail property of Address

Address. The fields displayed are the result of dragging the Address data source onto

the form prior to doing any UI clean-up.

Example B-2 demonstrates that with the binding source, you won’t need to make any

special accommodations to work with the complex type.

 Example B-2. Querying for entities with a complex type—which is no different from entities without a complex type

public partial class Form1 : Form

{ BAEntities _context;

public Form1()

{

InitializeComponent();

}

private void Form1_Load(object sender, EventArgs e)

{

_context = new BAEntities();

var query = from a in _context.Addresses select a;

addressBindingSource.DataSource = query;

}

private void addressBindingNavigatorSaveItem_Click

(object sender, EventArgs e)

{

_context.SaveChanges();

}

}

Identifying Unexpected Behavior When Binding Complex Types | 829

Download from Library of Wow! eBook <www.wowebook.com>

 Figure B-4. The Mail complex type provided among the default fields of the Address data source 830 | Appendix B: Data-Binding with Complex Types

Download from Library of Wow! eBook <www.wowebook.com>

APPENDIX C

Additional Details About Entity Data

Model Metadata

In Chapter 2, you created your first Entity Data Model and inspected it in the Entity Data Model Designer as well as looking at the raw XML.

There are some portions of the metadata that you might never need to work with and

they were not included in that chapter. Those details are listed in this appendix in case

you have a need for them.

Seeing EDMX Schema Validation in Action

The EDMX file leverages schema files for validation. To see a schema’s rules in action,

try editing the XML manually. For example, start entering a new <Property> element

inside the Address EntityType. IntelliSense will provide a list of options within the

property. Alternatively, you can intentionally break something! For example, change

the spelling of an element name—perhaps change EntityType to ElephantType. The

XML will provide visual clues to indicate that something is amiss, and the Errors List

will list warnings regarding any invalid elements. Don’t forget to undo these changes!

Additional Conceptual Model Details

Schema

The outer element, Schema, defines the name of the entire model’s namespace, which

in this case is SampleModel. The namespace is defined by default to have the name of

the database from which the model is derived, plus the word Model. The schema also defines an Alias, which by default is Self. This is just a nickname for the model and

you can name it anything you like. There is also an xmlns namespace URI, which defines

the origin of Microsoft’s schema file.

831

Download from Library of Wow! eBook <www.wowebook.com>

You can also see and modify the model’s namespace in the model’s

Properties window when the model is open in Design view.

XML Representation of an Association

Example C-1 shows the XML for the model’s FK_Address_Contact association, which provides the same elements as you see in the Properties window displayed in Fig-

ure 2-13 in Chapter 2. The only difference is that in the XML, the Contact and Address types are strongly typed—for example, SampleModel.Address.

 Example C-1. The association between Contact and Address

<Association Name="FK_Address_Contact">

<End Role="Contact" Type="SampleModel.Contact" Multiplicity="1">

<OnDelete Action="Cascade" />

</End>

<End Role="Address" Type="SampleModel.Address" Multiplicity="*" />

<ReferentialConstraint>

<Principal Role="Contact">

<PropertyRef Name="ContactID" />

</Principal>

<Dependent Role="Address">

<PropertyRef Name="ContactID" />

</Dependent>

</ReferentialConstraint>

</Association>

AssociationSet

Along with EntitySets, the EntityContainer contains AssociationSets. Just as the Enti

tySet is a container for entity types, the AssociationSet is a container for an association.

Therefore, it should not surprise you to see that the association in the following code

snippet is a container for the FK_Address_Contact association:

<AssociationSet Name="FK_Address_Contact"

Association="SampleModel.FK_Address_Contact">

<End EntitySet="Contacts" Role="Contact" />

<End EntitySet="Addresses" Role="Address" />

</AssociationSet>

Although it makes sense to have a container for an entity because you could have many

contact entities to work with, how would there be a collection of associations? If you

have a single contact with multiple addresses in memory, there would be one

FK_Address_Contact association object for each relationship. How the associations are

realized depends on whether you have foreign keys in your entities. Figure C-1 shows

two association objects that are used to define relationships between a single contact

and two addresses.

832 | Appendix C: Additional Details About Entity Data Model Metadata

Download from Library of Wow! eBook <www.wowebook.com>

 Figure C-1. Two association objects defining relationships between a single contact and two addresses Notice that the XML description of the AssociationSet binds each endpoint of the association (by referencing the role) to the EntitySet. This

now creates a thread through the model so that the APIs will be able to

move through an EntitySet and discover various entities that are related

to each other.

When I first realized how the role was being used in the Association

Set metadata, something finally clicked for me and I was able to see the

big picture of the model. It was almost as though the last piece of the

puzzle had just been put into place and I could see the clear image for

the first time.

Additional SSDL Metadata Details

SSDL Association and AssociationSet Elements

You’ve seen the Association and AssociationSet elements in the CSDL, but they exist

in the SSDL as well.

In Example C-2, the SSDL Association and AssociationSet have been expanded and you can see a pattern that is similar to that of their CSDL counterparts. The Associa

tion description displays how the database defines the primary key/foreign key rela-

tionship between Contact and Address.

 Example C-2. SSDL Association and AssociationSet

<Association Name="FK_Address_Contact">

<End Role="Contact" Type="SampleModel.Store.Contact"

Multiplicity="1">

<OnDelete Action="Cascade" />

</End>

<End Role="Address" Type="SampleModel.Store.Address"

Multiplicity="*" />

<ReferentialConstraint>

<Principal Role="Contact">

<PropertyRef Name="ContactID" />

</Principal>

<Dependent Role="Address">

<PropertyRef Name="ContactID" />

Additional SSDL Metadata Details | 833

Download from Library of Wow! eBook <www.wowebook.com>

</Dependent>

</ReferentialConstraint>

</Association>

<AssociationSet Name="FK_Address_Contact"

Association="SampleModel.Store.FK_Address_Contact">

<End Role="Contact" EntitySet="Contact" />

<End Role="Address" EntitySet="Address" />

</AssociationSet>

The generic term Association in the SSDL is referring to the relationship defined in the

database. Figure C-2 shows the origin of this in the database’s Address table.

 Figure C-2. The primary key/foreign key relationship between Address and Contact in the database The Entity Data Model Wizard infers an AssociationSet for each SSDL Association.

Each SSDL AssociationSet, like its CSDL counterpart, acts as a wrapper for an

Association.

The first version of Entity Framework did not support building associations using for-

eign key scalar properties in an entity. Instead, you built independent associations with

mappings that depended on the SSDL AssociationSets. Although foreign key associa-

tions are the default in Visual Studio 2010, it is still possible to define independent

associations or use ones that are brought forward from an application built with Visual

Studio 2008 SP1.

ReferentialConstraint

The ReferentialConstraint element is similar to its CSDL counterpart. It specifies the

direction of the relationship between the tables in the database using the Principal and

Dependent role elements. In the example, Address is dependent upon Contact. This also

translates to defining the primary key/foreign key relationship. If you have chosen to

build a model that does not incorporate foreign keys, the SSDL ReferentialCon

straint plays a critical role in defining the associations at the model level. You learned more about this alternative in Chapter 19. Finally, we see the foreign key in the Address table identified: it is the ContactID.

834 | Appendix C: Additional Details About Entity Data Model Metadata

Download from Library of Wow! eBook <www.wowebook.com>

The last purpose of the ReferentialConstraint element is to stipulate that a row in the Address table cannot exist without a reference to a row in the Contact table. This rule

exists in the database, but because of the ReferentialConstraint, the Entity Framework

will also check this rule. The Entity Framework APIs will check to see whether the data

passes this rule before any attempt is made to send the data to the database. If your

code creates an address without associating it with a person and then tries to save this

change to the database, the data will fail the constraint check. The check happens when

the code attempts to save changes back to the database.

Other rules and constraints in the database can be described in the store schema, such

as noting whether the database will perform a cascading delete. Don’t confuse this with

the CascadeDelete which you can define in the conceptual model to affect in-memory

objects.

Additional MSL Metadata Details

To explore the XML representation of the Contact entity mappings described in Chap-

ter 2, open the SampleModel in the XML Editor again and expand the <edmx:Mappings> section; you’ll see that there is one big difference in how the mapping is described under the covers. The mapping, as shown in Example C-3, is being made from the Entity Set, not the actual entity. When you add inherited types into the mix, you may also be

mapping Customer entities which are a type of Contact. When you map the EntitySet

you cover all of the entity types in an inheritance hierarchy. Therefore, the mapping

needs to be done to the EntitySet, not a specific entity.

 Example C-3. The XML view of the Contact entity mapping to the Contact table

<edmx:Mappings>

<Mapping Space="C-S" xmlns="http://schemas.microsoft.com/ado/2008/09/mapping/cs">

<EntityContainerMapping

StorageEntityContainer="ProgrammingEFDB1ModelStoreContainer"

CdmEntityContainer="SampleEntities">

<EntitySetMapping Name="Contacts">

<EntityTypeMapping TypeName="SampleModel.Contact">

<MappingFragment StoreEntitySet="Contact">

<ScalarProperty Name="ContactID" ColumnName="ContactID" />

<ScalarProperty Name="FirstName" ColumnName="FirstName" />

<ScalarProperty Name="LastName" ColumnName="LastName" />

<ScalarProperty Name="Title" ColumnName="Title" />

<ScalarProperty Name="AddDate" ColumnName="AddDate" />

<ScalarProperty Name="ModifiedDate" ColumnName="ModifiedDate" />

</MappingFragment>

</EntityTypeMapping>

</EntitySetMapping>

... additional EntitySetMapping elements

</EntityContainerMapping>

</Mapping>

</edmx:Mappings>

Additional MSL Metadata Details | 835

Download from Library of Wow! eBook <www.wowebook.com>

The MSL Elements

Let’s back up a bit and take a look at the Mappings section before drilling deeper into

the mapping for the Contact entity.

We’ve inspected the CSDL and SSDL already, so you’ll notice that the MSL has ele-

ments that look familiar, though they are specific to mapping.

Mapping

The first thing to notice in Example C-3 is that the parent element isn’t a Schema but a Mapping, with its own xml namespace and a Space attribute of C-S, telling you that it is

mapping from C (the conceptual layer) to S (the store layer).

You’ll find that when discussing mapping, authors and presenters will sometimes use

the terms C-side and S-side. They are referring to the conceptual end of the mapping and the store end of the mapping, respectively.

EntityContainerMapping

All of the mappings are within the EntityContainerMapping element. This element de-

scribes which SSDL and CSDL will be used for the mapping by identifying the same

container names that the SSDL and CSDL listed previously: SampleModelStoreCon

tainer and SampleEntities.

Next, the mappings are grouped by EntitySet. Because this is a very simple model, the

mappings are easy to read.

EntitySetMapping

You had a look at the EntitySetMapping already. Its elements are described as follows.

EntityTypeMapping. The mapping for each EntityType is defined in an EntityTypeMap ping element that defines which EntityType is being mapped. There is an additional

attribute not seen in this example, IsTypeOf(), which takes the fully qualified name of

the type. IsTypeOf is a .NET Framework method. In this particular example,

IsTypeOf is not required. Chapter 14 provided examples of entity inheritance and showed how IsTypeOf can impact the meaning of mappings.

MappingFragment. The EntityType mapping element contains a MappingFragment. This

doesn’t seem logical with our example, but as you saw in Chapter 12, it is possible to

do something called entity splitting whereby one entity is composed of properties that map to columns in multiple tables. In that case, each table that you are mapping to will

be represented within a single MappingFragment. The StoreEntitySet refers to the Enti

tySet for the table listed in the SSDL.

836 | Appendix C: Additional Details About Entity Data Model Metadata

Download from Library of Wow! eBook <www.wowebook.com>

ScalarProperty. The ScalarProperty mappings map the property name of the entity type in the CSDL to the column name of the table. In the case of our simple model, the

property names and the field names are identical, which makes this particular mapping

pretty straightforward.

AssociationSetMapping

This model does not have AssociationSetMapping elements. These are used in models

which do not include foreign keys. When the foreign key is not available in the entity,

the model needs a way to define how one entity is connected to another. To enable

backward compatibility with models from the first version of Entity Framework, you

can choose between association mappings or model-level referential constraints when

the relationship defines a primary-key-to-primary-key relationship.

Additional MSL Metadata Details | 837

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

Index

A

in LINQ methods, 89

using query builder methods in Entity SQL,

abstract types

118

TPT inheritance with, 371

using with EntityCollections, 88

turning base class into, 393

AJAX, using in ASP.NET MVC application,

AcceptAllChanges method, 682

816, 818

ObjectContext class, 263, 566

AllowImplicitConversion enum, 145

ObjectStateManager class, 257

annotations, 35

AcceptChanges method, ObjectStateEntry

anonymous types, 77, 80

class, 258

implicit and explicit, creation of, 82

Access database, 9

as properties, 83

Accessibility.ForProperty method, 354

ANY method, 88

Activator objects, CreateInstance method, 638

ANYELEMENT operator (Entity SQL), 117

Add Controller Wizard, 808

app.config files

Add method, EntityCollection class, 226, 548

ConnectionString name in, 182

adding entities to EntityCollection of

EntityConnection string, 70

detached entity, 549

ApplyChanges method, self-tracking entities,

adding existing detached entities, 549

505, 511

adding new detached entiries, 548

SaveChanges versus, 512

adding new or existing attached entities,

ApplyCurrentValues method

549

ObjectSet class, 259

Add View Wizard, 808

ObjectStateEntry class, 258

AddChildToParentObject method

ApplyCurrentValues<TEntity> method,

calling, 642

ObjectStateManager, 257

custom extension methods used by, 641

ApplyOriginalValues method

AddObject method, 135, 710

ObjectSet class, 259

ObjectContext and ObjectSet classes, 254

ObjectStateEntry class, 258

ADO.NET

ObjectStateManager class, 257

data providers, 8

ArgumentException, 648

DataSets, 15

catching connection string problem in, 649

LINQ to SQL, 16

testing whether it’s thrown at proper times,

Aggregate attribute, 144

690

aggregates

artifacts, 185

chaining in grouping queries, 95

AS keyword, 58

in Entity SQL, using EntityCollections, 117

ASP.NET

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

839

Download from Library of Wow! eBook <www.wowebook.com>

binding to complex types without data

splitting out EDM metadata files from, 184

source controls, 827

Assembly objects

building layered web applications, 783–

CreateInstance method, 638

793

GetTypes method, 638

how ObjectContext fits into web page

loading an assembly into, 639

life cycle, 784

Assert method, 688

returning results, not queries from

AssociationChanged event, 282

DataBridge class, 785

event arguments, 283

state solution in ASP.NET, how they

associations, 25, 26, 38, 522

work for entities, 789

(see also relationships)

updating entities in Web Forms

Association element in CSDL, 832

applications, 788

AssociationSet element in CSDL, 832

using EntityObjects in read-only web

AssociationSetMapping element, 837

pages, 786

creating, 734

building layered Web Forms application,

many-to-many relationship, 737

793–806

one-to-many relationship, 734

adding lists for user selection controls,

creating for DefiningQuery entity, 437

803

creation by EDM Wizard, 523

allowing user to modify related data,

defining for split table, 382

805

detecting at runtime, 528

building EntityManager to act as

foreign key versus independent associations,

DataBridge, 795

527

designing the application, 794

independent, 308

getting data from EntityManager to

getting foreign key value in, 552

client, 800

many-to-many association mapping, 179

making related data accessible to client,

OnDelete action set to Cascade, 541

799

representation in Designer, 522

retrieving data for display and future

self-referencing, mapping, 400

updates, 797

SSDL Association and AssociationSet

using existing repositories, 795

elements, 833

building MVC application, 806–814

AssociationSets, 34, 40

replacing context with repositories, 813

defined, 525

editing entities and graphs in MVC

mappings, 526

application, 814–818

naming of, 523

interacting with (example), 817

AssociationTypes, 625

EntityDataSource (see EntityDataSource

Asynchronous Page features in ASP.NET, 591

controls)

AtomPub (Atom Publishing Protocol), 475,

State Server Mode, 794

477

assemblies, 182

Attach method, 550, 710

building EDM into an assembly, 182

cases where it cannot be used, 550

creating an entity from, 639

ObjectContext and ObjectSet classes, 254

creating MetadataWorkspace from EDM

testing for null before calling, 552

files in assembly, 623

using CreateSourceQuery to create queries

DLL files containing Entity Framework

for, 551

APIs, 821

AttachTo method, ObjectContext class, 255

entities in separate assemblies, 515

attributes, 28

looking at compiled assembly, 183

function, 144

namespaces provided in

setting for entity properties, 732

System.Data.Entity.dll, 821

automatic serialization, 264

840 | Index

Download from Library of Wow! eBook <www.wowebook.com>

B

in the database, 541

in the model, 541

benchmarking performance, 575

recommendation for, 542

binary serialization, 265

chaining LINQ methods, 63

BindingSource objects, 13, 187, 193

aggregates in grouping queries, 95

AddingNew event, 208

change tracking, 12, 129, 503

CurrentChanged event, 208

(see also SaveChanges method; self-tracking

data binding without, 197

entities)

EndEdit method, 209

enabling across tiers in client application,

BoundField controls, converting to

766

TemplateField, 310

freeing entities from in layered client

BuiltIn attribute, 144

application, 764–766

BuiltInTypeKind, 616

IEntityWithChangeTracker interface, 251

bulk processing of commands, 260

managing entity state, 130

business classes, entities as blueprints for, 6

with POCO entities, 341

POCOs using proxy for, 346

C

saving changes back to database, 131–134

C#

verifying for POCO entities, 347

anonymous types, 80

ChangeInterceptor attribute, 484

generics in, 54

ChangeObjectState method,

grouping in LINQ to Entities, 93

ObjectStateManager class, 257

information on lambdas for developers, 62

ChangeRelationshipState method, 258

LINQ Group By with explicitly named

ChangeRelationshipState<TEntity> method,

groups and targets, 94

258

LINQ to Entities query, 55

ChangeState method, ObjectStateEntry class,

using method-based syntax, 63

258

naming of projected anonymous types, 82

ChangeTracker property, 508

ObjectMaterialized event handler, 275

for deleted customer (example), 510

ObjectSet class declaration, 66

RecordOriginalValue method, 508

projections in, 79

ChangeTrackingEnabled property, 504

| (logical OR) operator, 277

checksums, concurrency checking on, 666

cached queries in Entity SQL, 97

client-side layered applications, using entities,

caching

761–782

application cache and session state in

enabling change tracking across tiers, 766

ASP.NET, 791

freeing entities from change tracking, 764–

caching provider on Microsoft Code

766

Gallery, 244

isolating ObjectContext, 762

Entity SQL queries, 580

moving ObjectContext-dependent logic to

comparing EntityClient to Object

DataBridge, 768–772

Services, 581

preventing negative impact from lazy

lists for reuse, 764

loading, 772

manager methods to get data into cache,

separating entity logic from ObjectContext

Web Forms application, 799

logic, 774–778

objects not required to bin in ObjectContext

working with POCO entities, 778–782

cache, 251

providing EntityState, 779

results of ObjectContext queries, 247

providing logic for other EntityObject

in scaled-out web applications, 794

behavior, 781

canonical functions (Entity SQL), 60

client-side processing (inadvertent), avoiding,

cascading deletes, 540

159

Index | 841

Download from Library of Wow! eBook <www.wowebook.com>

ClientWins (RefreshMode), 671

Community Technical Preview (see CTP, Entity

refreshing a set of entities, 674

Framework; CTP code-first add-on)

using Refresh method with, 671

compilation

code first, 10, 359

handling query compilation exceptions,

convention over configuration approach,

649–652

749

leveraging precompiled queries in

understanding code first design, 749

repositories, 722

using CTP code first add-on, 747–755

precompiling LINQ to Entities queries for

code generation, 11, 52

performance, 585

overriding default, 291–296

precompiling views for performance, 582

properties used for, 42

reducing cost of query compilation, 580

CollectionChangeAction enumeration, 283

compiled queries in LINQ, 97

collections

CompiledQuery objects

child collections, calculations using custom

Compile method, 585

properties, 289

compiled LINQ to Entities query, 587

LINQ nested query as collection to be

performance test of compiled LINQ to

queried, 92

Entities query, 588

returned by navigation properties, 42

using compiled LINQ to Entities query,

WCF rules for, 495

587

Collections.ObjectModel namespace, 228

Complete method, 682

CollectionViewSource elements, 216, 224

complex properties, 130

helper methods and enums for, 771

complex types, 394–398

SortDescriptions collection, 225

creating to encapsulate entity properties,

columns, 44

394

ComboBox controls

data binding with, 825–829

linking to ListBox control, 219

EntityDataSource, 826

replacing navigation property TextBoxes

identifying unexpected behavior, 826

with, 204

Windows Forms DataSource, 828

command trees

defining in Model Browser, 427

conversion of queries to, 234

EntityObjects versus, 397

conversion to data store commands, 235

getting properties of complex type from

defined, 235

ObjectStateEntry, 615–619

CommandBehavior, 71

mapping functions to, 160

commands

querying, creating, and saving entities that

bulk processing of, 260

contain, 397

compilation exception thrown by store

removing from EDM, 398

provider, 652

returning using model-defined functions,

conversion from Entity Framework to native

407

commands, 133, 234

reusing, 397

default generation versus stored procedures

ComplexType objects, 146, 161

for inherited types, 445

composable queries, 66

handling execution with EntityClient, 244

composite EntityKeys, 256

overriding generated commands with stored

composition versus inheritance, 371

procedures, 146

computed columns in databases, 273

sent to database from WCF service, 473

Conceptual Schema Definition Language (see

CommandText element, 426

CSDL)

defining a complex command in SSDL, 442

concurrency, 659–683

CommandText property, 71, 634

checking, 150

ObjectQuery class, 65, 240

842 | Index

Download from Library of Wow! eBook <www.wowebook.com>

concurrency checking on checksum in data

examples from CTP code first add-on, 751–

store, 666

754

concurrency checking without rowversion

connection pooling, 563

field, 666

connection strings

concurrency checks and inherited types,

ConnectionString in app.config file, 70

667

ConnectionString name in app.config file,

concurrency checks and stored procedures,

182

668

metadata attribute of EntityConnection

concurrency checks for EntityReference

string, 183

navigation properties, 667

working with programmatically, 557

ConcurrencyMode property, use in Entity

connections, 555–563

Framework, 665

default, overriding with

flagging property for concurrency checking,

ObjectContext.Connection, 242

664

disposing of, 562

handling concurrency exceptions, 658

Entity Framework and, 556

handling exceptions at lower level, 678–

EntityConnection, providing connection to

681

EDM, 70

granular handling without user

getting store connection from

intervention, 678–680

EntityConnection, 562

handling multiple conflicts, 680

guarding against connection piggybacks,

handling exceptions for your own

573

transactions, 682

opening and closing, 560

handling optimistic concurrency

default connection usage, 560

exceptions, 670–678

forcing explicit connection, 562

management of, 261

many calls on single connection, 561

optimistic concurrency options in Entity

multiple connections, 561

Framework, 660

overriding EntityConnection defaults, 556

determining scope of changes, 662

set by Transact-SQL Editor for script file,

forcing user’s data to server, 661

745

ignoring concurrency conflicts, 661

working with connection strings

refreshing user’s data with server data,

programmatically, 557

661

constraints, 537

using rowversion for concurrency

checking for missing entity references with

checks, 662

and without foreign keys, 538–

understanding database concurrency

540

conflicts, 660

checks deferred to database, 537

ConcurrencyMode property, 262, 664

exploring for model first conceptual model,

attemmpting to change on derived types,

743

667

fixing referential constraint problem, 365

use by Entity Framework, 665

containers

conditional mappings, 383–389

entity container properties, 26

creating for an entity, 385

entity sets, 27

filtering on other types of conditions, 387

EntityContainer in SSDL, 45

querying, inserting, and saving with, 385

EntityContainer, relationship to its

removing, 388

EntitySets and Entity objects, 34

ConfigurationManager class, 559

simplifying names, 113

configuring code first classes

context, 51, 688

convention over configuration, 749

(see also ObjectContext class)

building interface to represent, 698

Index | 843

Download from Library of Wow! eBook <www.wowebook.com>

completing fake context class, 712

CreateQuery method, Entity SQL expression as

created for code first, 751

parameter, 235

creating fake context class, 708

CreateSourceQuery method, 551

hiding from lower layers, 718

creation methods for entities, overriding, 290

modifying class to implement new interface,

CRUD operations, 146

699

CSDL (Conceptual Schema Definition

ObjectContext instances, 53

Language), 30, 33–43, 145

providing managed entities in fake context,

additional details about, 831

716

associations, 38

context class generated by self-tracking entities

creating conceptual model in Designer, 728

template, 513

differences from SSDL, 44

context events, EntityDataSource controls,

EntityContainer objects, 34

306

EntitySet class, 35

Context property, ObjectQuery class, 241

EntityType data type, 36

ContextBuilder objects, 754

model-defined functions in, 404

ContextCreated event, EntityDataSource, 306

navigation properties returning collections,

ContextCreating event, EntityDataSource, 305

42

ContextDisposing event, EntityDataSource,

NavigationProperty element, 41

306

requesting array of all EntityTypes in, 625

ContextOptions.ProxyCreationEnabled, 513

requesting array of every item in, 625

control variables

viewing in EDM Designer Model Browser,

it control variable, 65

155

specifying name for ObjectQuery instances,

CTP (Community Technical Preview), Entity

65

Framework, 10, 728

controllers (MVC)

CTP code first add-on, 747–755

Add Controller Wizard, 808

configuration examples, 751

Details method, 811

Entity Framework team's blog, 755

interacting with (example), 817

installing, 751

controls

testing application and database, 754

binding to each other in WPF application,

understanding code-first design, 749

219

CTP SQL Server Model, 756

changing in Windows Form application,

CurrentValueRecord objects, 604

204

DataRecordInfo property, 607

customizing display in WPF application,

SetBoolean method, 619

218

CurrentValues property, 604

data binding to, support by Object Services,

changing values, 619

265

FieldMetadata, 608

WPF tricks for more interactive ListBox,

ObjectStateEntry class, 249

227

reading for an ObjectStateEntry, 606

ControlState, ASP.NET page, 307

reading for ObjectStateEntry, 613

convention, 329

customization of entities, 267–296

convention over configuration, 329, 749

creating your own partial methods and

Count aggregate method, using in LINQ to

properties, 284–291

Entities, 89

overriding default code generation, 291–

Create Test Unit Wizard, 692

296

CreateDataSource method, overriding in WCF

partial classes, 267

data service, 516

partial methods, 269–274

CreateInstance method, 638

subscribing to event handlers, 274–284

CreateObjectSet method, 632

844 | Index

Download from Library of Wow! eBook <www.wowebook.com>

D

inspecting XAML and code from

automated data binding, 215

danglingForeignKeys property, 532, 534

selecting entity and viewing its details,

data binding, 13, 187–230

219

with complex types, 825–829

using SortDescriptions, 225

ASP.NET EntityDataSource, 826

data bridge classes

identifying unexpected behavior, 826

building entity manager to act as, 795

Windows Forms DataSource, 828

for EntityObjects (example), 775–778

late-binding relationships, 530

moving ObjectContext out of ASP.NET

with RAD ASP.NET applications, 297–333

page into DataBridge, 785

building Dynamic Data websites, 329–

moving ObjectContext-dependent logic

332

into, 768

EntityDataSource events, 327–329

returning results, not queries from, in

how EntityDataSource retrieves and

ASP.NET application, 785

updates data, 304–309

data contract serialization, 264

using EntityDataSource control to access

Data Definition Language (see DDL)

flat data, 298–304

Data Developer Center, ADO.NET Data

working with hierarchical data in master/

Providers page, 9

detail form, 317–327

Data Manipulation Language (DML), 146,

working with related EntityReference

440

data, 309–317

Data Programmability Advisory Council, 748

support by Object Services, 265

Data Services (WCF), 449, 490, 519

with Windows Forms applications, 187–

(see also WCF services)

213

Data Source Configuration Wizard, 299

adding EntityCollection to the form,

data sources, 189

198

adding to WPF form, 215

adding new entities, 208–211

and complex types in Windows Forms,

allowing users to edit data, 201

828

without a BindingSource, 197

creating object data source for an entity,

changing navigation property controls,

190

204

overriding CreateDataSource in WCF data

creating object data source for an entity,

service, 516

190

paging support, 303

displaying properties of related data in

data transfer objects (see DTOs)

grid, 199

data types

editing navigation properties, 202

complex, mapping functions to, 160

getting entity’s details onto a form, 192

EntityType element, 36

querying EDM when form loads, 194

nchar and nvarchar, 741

users deleting data, 211

SQL Server versus Entity Framework, 742

using data sources, 189

data-bound controls, 828

with WPF applications, 213–230

DataAdapter.Update method, 589

adding another EntityCollection, 222

database connections, 556

adding data source objects, 215

(see also connections)

adding items to child EntityCollection,

database first, 727

226

Database Generation Power Pack, 747

adding new entities, 227

database model versus Entity Data Model

code to query EDM when window loads,

(EDM), 3

216

database views, 47

customizing display of controls, 218

(see also views)

editing entities and related data, 224

Index | 845

Download from Library of Wow! eBook <www.wowebook.com>

in the EDM, 46

DbDataRecord objects

databases

containing array of original property values,

BreakAway database schema (exmple), 166

605

choosing your backend, 7

projecting with Entity SQL, 114

creating database and its schema in model

using to test if property is complex type,

first, 744

615

creating the model from the database, 11

DbParameter objects, 440

entity property defaults versus database

DbProviderFactory, 440

defaults, 743

DbTransaction class, 262, 564

generating database schema from model,

DDD (Domain-Driven Design), 727

738–744

using CTP code-first add-on, 747–755

modeling large databases, 400

DDL (Data Definition Language)

queries against, translation of entity queries

completing generation of, 744

to, 71

exploring generated DDL, 740

saving changes to, 131

generating DDL script, 738

schema of normalized database tables, 3

generating with model first, 728

DataBindingComplete event, 199

overriding DDL generator, 745

DataContext attribute, 216, 221

debugger visualizers, 611

DataContext.SubmitChanges method, 589

decimal literals in Entity SQL, 112

DataContract attribute, 455, 456

deferred loading, 78, 100

DataContract classes, defining in WCF, 455

(see also lazy loading)

DataContract serialization, 264

performance considerations with, 103

DataContractAttribute attribute, 263

DefiningExpression element, 407

DataException class, 656

DefiningQuery, 47, 429–439

DataGridView, 192

creating associations with new entity, 437

DataBindingComplete event, 199

implementing, 433–437

displaying properties of related objects,

QueryView versus, 433

199

stored procedures versus, 434

problems when binding to EntityCollection,

using to create your own views, 431

198

using to solve more complex problems,

DataMember attribute, 455, 456

438

DataReaders, 15

Delete command, 138

comparing query performance to, 574

Delete function, mapping to an entity, 148

forward-only access to fields, 71

Deleted event, EntityDataSource, 329

performance measures for queries, 576

DeleteObject method, 137, 440, 461

scalar data, representation of, 68

IObjectSet interface, 710

DataRecordInfo objects, 605

deletes

DataRecordInfo property, 607

and cascading deletes, implementing, 540

DataServiceContext objects, 484

DeleteCustomer method (example), in

DataSets, 15

WCF service, 461

DataSource controls, 14, 298

deleting inherited objects, 462

DataSpace enums, 624

mapping delete stored procedure to

DatePicker controls, 219, 221

inherited types, 444

DateTime literals, 112

mapping delete stored procedures to

DbConnectionStringBuilder class, 558

entities, 146

DbDataReader class, data readers inheriting

method for, in Web Forms application,

from, 68

805

DbDataReader objects, 15

Deleting event, EntityDataSource, 329

forward-only access to fields, 71

Designer, 10

846 | Index

Download from Library of Wow! eBook <www.wowebook.com>

code generation based on model, 52

entity reference with ObjectQuery, in Entity

Database Generation Power Pack, 747

SQL, 123

Mapping Details window, 45

related entity in WCF data service, 482

unsupported features, effects on, 403

using Include method, 103–106

Update Model from Database, 142

Edit ActionResult methods in MVC controller,

using Model Browser to import functions,

814

155

EditItemTemplate with DropDownList, 312

viewing model in Model Browser, 31

EDM (Entity Data Model), 2, 3, 19–47

viewing the EDM, 24

adding and deleting entities, 377

Detach method, 710

bringing stored procedures from database

detached entities

into, 142

adding existing, 549

choosing and loading programmatically,

adding new, 548

559

adding to EntityCollection of, 549

connections to, 70

loading from, lazy and explicit, 547

creating, 21, 165–185, 694–714

DetailsView control, 316

building model into assembly, 182–185

creating parent EntityDataSource for, 320

cleaning up navigation property names,

data to be returned in, ASP.NET MVC

172

application, 811

inspecting new EDM, 168

DetectChanges method

mapping stored procedures, 175

ObjectContext class, 341, 566

modifying entity and property names,

fixing relationships, 343

170

ObjectStateEntry class, 259

resolving collisions in property and entity

Dim keyword (VB), 81

names, 172

DisplayMemberPath attribute, 219

separate project for EDM, 168

Dispose method, 562

setting default values for scalar

DML (Data Manipulation Language), 146,

properties, 174

440

working with many-to-many

domain service classes, 517

relationships, 178

Domain-Driven Design (see DDD)

creating to work with preexisting classes,

Domain-Specific Language (DSL), 291, 756

358

DropDownList control

customizing with EDM Designer, 361–401

binding to EntityDataSource, 319

additional options, 399

defining, 312

creating complex types to encapsulate

EntityDataSource controlled by, 320

sets of properties, 394–398

DTOs (data transfer objects), 489

filtering entities with conditional

Dynamic Data websites, 329

mapping, 383–389

dynamic proxies

mapping an entity to multiple tables,

preventing creation of by self-tracking

375–381

entities, 496

mapping TPT inheritance, 362–373

preventing creation of in WCF data service,

splitting a table into multiple entities,

516

381

providing EntityObject-type behaviors for

TPH inheritance for tables with multiple

POCO classes, 347

types, 389–393

database views in, 46

E

defining mappings not supported by

Designer, 403–417

eager loading, 78, 194

TPC inheritance mapping, 409–411

enabling in IContext, 721

Index | 847

Download from Library of Wow! eBook <www.wowebook.com>

using model-defined functions, 403–

tracking, critical role of EntityKey class,

409

246

using QueryView, 411–416

entity classes, 6

design tools provided by Entity Framework,

entity containers, 26

10

Entity Data Model (see EDM)

within Entity Framework, 20

Entity Data Model Wizard, 11

inspecting in Designer window, 24

Entity Framework, 1–17

metadata, additional details about, 831–

database, choosing for backend, 8

837

design tools for EDM, 10

querying model, not database, 50

EDM in, 6, 20

querying with LINQ to Entities, 55

LINQ to SQL and, 16

reasons to use, 19

metadata, use of, 9

relationships in, 522–527

Object Services, 231

EDM Generator, 582

pain points, improvements in, 16

pregenerating views for performance, 583

query samples, 109

pregenerating views into existing project,

translating entity queries to database

584

queries, 71

EdmFunction attribute, 405

WCF services and, 15

EdmFunction objects, 627

Entity Framework Feature Community

EDMX files, 19, 20

Technical Preview (CTP), 10, 728

annotations in, 35

entity graphs, 529

Mappings section, 45

Entity objects, 6

project containing, compilation of, 183

modifying names in new EDM, 170

runtime information and Designer

names, 168

information, 32

Entity property of ObjectStateEntry, 599

schema validation in action, 831

Entity Relationship Model (ERM), 3

StorageModels and Mappings sections, 29

entity sets, 27

StorageModels section, 43

entity splitting, 375–381

EFExtensions project, 424

mapping stored procedures to split tables,

ElementName attributes, 221

380

ElementType method, 711

merging multiple entities into one, 376

EnablePlanCaching property, 581

querying, editing, and saving split entity,

entities

378

adding and deleting in EDM, 377

Entity SQL, 8, 58, 111–128

creating and manipulating dynamically,

building dynamic queries using metadata,

637–643

629–632

deleting, 137

cached queries, 97

duplicate, returned from database, 158

caching of queries, 580

editing entities and related data in WPF

canonical functions, 60

application, 224

conversion of query builder methods to

freeing from change tracking, 764

Entity SQL expressions, 237

mapping functions to, 146–155

conversion of query to command tree, 234

method to return managed entities, 602

documentation, 59

names of, resolving collisions with property

grouping in, 120

names, 172

guarding against SQL injection, 572

resolving navigation properties as, 534

injection into an Entity SQL string, 573

scalar and navigation properties, 24

invalid query expressions, 650

splitting single table into multiple entities,

JOIN FROM clause, 90

381

joins, 118

848 | Index

Download from Library of Wow! eBook <www.wowebook.com>

leverating CreateObjectSet to return, 633

projecting properties from, in LINQ to

literals in, 111

Entities, 87

model-defined function in Entity SQL

Remove method, 550

expression, 408

resolving navigation properties to, 534,

nesting queries, 119

536

with ObjectQuery, startup query

EntityCommand objects, 71

performance, 579

EnablePlanCaching, 580

projections, 113

EntityCommandCompilationException, 652

query expression for EntityDataSource,

EntityConnection objects, 70, 556

318

accessing MetadataWorkspace from, 622

querying using query builder methods, 64

BeginTransaction method, 569

shaping data, 122

components of, 556

type operators, 369

creating MetadataWorkspace without, 623

use as parameter for CreateQuery and query

disposing connections, 563

builder methods, 235

explicitly creating to use with context, 243

using navigation in queries, 115–118

guarding against connection piggybacks,

wrapped and unwrapped results, 124–127

573

EntityClient, 14, 68–71

metadata portion of connection string, 183

caching for Entity SQL queries, 581

opening and closing connections, 560

catching an exception when using, 647

StoreConnection property, 562

EntityTransaction objects, 569

string attributes, listed, 243

explicit creation and opening of

working with connection strings

EntityConnection, 560

programmatically, 557

handling command execution with, 244

EntityConnectionString objects

query performance comparison with Object

constructing programmatically, 558

Services, 581

exceptions, 647

EntityCollection class, 43

EntityConnectionStringBuilder class, 558

EntityCollection objects, 252, 530, 545

EntityContainer objects, 34

Add method, 226, 548

finding name using MetadataWorkspace,

adding items to child EntityCollection in

630

WPF form, 226

SampleEntities class (example), 53

adding to ListBox control in WPF

simplifying name, 113

application, 222

EntityContainerMapping element, 836

adding to Windows Form, 198

EntityDataReader objects, 15, 68, 582

aggregates with, 88

EntityDataSource controls, 14, 297

aggregating with, in Entity SQL, 117

accessing foreign keys without foreign key

AssociationChanged event handler, 282

property, 308

client rules for identifying changes in WCF

context events, 306

service, 463

ContextCreating event, 305

CreateSourceQuery method as alternative to

database hits, 307

Attach and Load methods, 551

in Dynamic Data websites, 329–332

filtering and sorting with, in Entity SQL,

events, 327

116

ObjectContext for, 305

filtering and sorting with, in LINQ to

property settings to create query, 304

Entities, 88

setting properties programmatically, 315

finding through an ObjectStateEntry, 606

using complex types with, 826

Load method, 547

using to access flat data, 298–304

navigating to, in LINQ to Entities, 86

configuring EntityDataSource with

wizard, 299

Index | 849

Download from Library of Wow! eBook <www.wowebook.com>

creating GridView and EntityDataSource

EntityKey property, 38

concurrently, 299

client-side object in WCF service, 470

formatting GridView, 301

inability to map to stored procedure's output

testing web application, 303

parameter, 152

ViewState and, 306

EntityManager class (example), 795

working with hierarchical data in master/

making related data accessible to client,

detail form, 317–327

799

adding third level of hierarchical data,

providing access to drop-down lists in, 804

323

UpdateCustomerProfile method, 801

binding DropDownList, 319

web form code-behind retrieving data from,

DetailsView controlled by

800

DropDownList, 320

EntityObject class, 12, 250

displaying read-only child data, 321

complex types versus, 397

filtering query results with Where

EntityState property, 779

property, 321

inheritance from, removing, 295

specifying Entity SQL query expressions,

PropertyChanging and PropertyChanged

318

events, 280

testing the application, 326

EntityObjects

using Inserting event, 325

creating without entity classes, 637–640

working with related EntityReference data,

data service methods created for, 517

309–317

POCO classes and, 335

binding to another control with

POCO entities versus, in WCF services,

WhereParameters, 314

519

displaying navigation properties data,

providing logic in place of, for POCOs in

310

layered client application, 781

editing data concurrently with multiple

replacement by POCO classes in WCF

controls, 316

services, 489

editing EntityReferences beyond

returning from service, pros and cons of,

DropDownList, 313

452

editing navigation properties, 312

separating entity logic from ObjectContext

using Include property, 309

logic, 775–778

EntityException, 657

using in read-only web pages, 786

EntityKey class, use in managing objects, 246

using in WCF services, 449

EntityKey objects, 137

building console application to consume

adding object that has an EntityKey to

service, 467–474

ObjectContext, 254

building simple WFC service, 453

attaching object not having EntityKey to

EntityReference objects, 54, 530, 545

ObjectContext, 255

AssociationChanged event handler, 282

composed of collection of key/value pairs,

checking for missing, with and without

553

foreign keys, 538–540

constructing to check for ObjectStateEntry,

creating using an EntityKey, 544

780

EntityDataSource working with related

contained in EntityRefernce properties,

data, 309–317

534

EntityKey property, 544

creating, 256

explicitly loading in LINQ to Entities, 102

creating an EntityReference with, 544

filtering and sorting with, in Entity SQL,

defined without primary key, 148

116

loading of related entities and, 533

filtering and sorting with, in LINQ to

retrieving ObjectStateEntry with, 612

Entities, 86

850 | Index

Download from Library of Wow! eBook <www.wowebook.com>

Load method, 547

EntityTransaction objects, 569

navigating to, in Entity SQL, 115

EntityType objects, 36

navigating to, in LINQ to Entities, 84

inspecting with System.Type, 639

EntityReference properties, 527

Key element, 36

and concurrency checks for, 667

navigation properties, 38

resolving navigation properties as, 534

Property elements, 37

returning foreign key value from, 553

requesting array of all in CSDL, 625

unpopulated, 536

EntityTypeMapping element, 152, 836

Value object, 535

enumerable types, IEnumerable and, 68

EntitySet objects, 34

enums, not supported in Entity Framework,

adding to WCF data service, 476, 481

280

creation of EntityKey from, by

ERM (Entity Relationship Modeling), 3

ObjectContext, 255

ESQL (see Entity SQL)

defined with DefiningQuery, 430

events, 274–284

modifying names in new EDM, 170

AssociationChanged, 282

Name and EntityType attributes, 35

EntityDataSource context events, 306

names of, 168

EntityDataSource controls, 327

passing as parameter to

EntityObject.PropertyChanging and

ObjectContext.AddObject, 254

EntityObject.PropertyChanged,

pointer to, in ObjectStateEntry, 599

280

query builder methods and, 236

ObjectContext.ObjectMaterialized, 275

setting access rules in WCF Data Service,

ObjectContext.SavingChanges, 276–280

484

exceptions, 645–658

EntitySetMapping element, 152, 836

anticipating in WCF Data Services, 481

QueryView inserted in, 414

catching an exception when using

EntitySqlException, 650

EntityClient, 647

handling, 651

catching and disposing the ObjectContext

EntityState

in finally clause, 645

Added value, 134

catching when ObjectContext is

Deleted value, 137

automatically disposed, 646

Detached value, 252

creating common wrapper to handle query

enumerations, 249

execution exceptions, 652–654

for GetObjectStateEntries method, 600

handling EntityConnectionString

GetObjectStateEntries overload to return

exceptions, 647

entries of particular state, 601

handling for your own transactions, 682

getting EntityState without EntityObject,

handling optimistic concurrency

779

exceptions, 670–678

getting for POCO entities in WCF RIA

handling query compilation exceptions,

service, 517

649–652

managing, 130

thrown during SaveChanges command

Modified value, 502

execution, 654

passing to GetObjectStateEntries method,

Execute method, 197

277

executing queries with, 242

setting for POCO entities in WCF service,

ObjectQuery class, 75

499

defining MergeOption as parameter,

Unchanged and Modified values, 133

248

visualizer for, building using

ExecuteFunction method, ObjectContext

ObjectStateManager, 611–622

class, 158, 429

EntityTransaction class, 262

ExecuteReader method, 71

Index | 851

Download from Library of Wow! eBook <www.wowebook.com>

ExecuteStoreCommand method, 138, 440

foreign key associations, 41

ExecuteStoreQuery method, 424–426

foreign keys

querying a class that is not an entity, 424

access by EntityDataSource controls

querying into an entity, 425

without foreign key property, 308

execution, query execution exceptions, 652–

accessing values of, 13

654

changing name in new EDM, 170

explicit anonymous types, creating, 82

checking for missing entity references with

explicit loading

and without, 538–540

from detached entities, 547

danglingForeignKeys property, 534

EntityCollections and EntityReferences,

forcing consumers to set, 806

101–103

foreign key versus independent associations,

explicit serialization, 265

527

Expression method, 711

getting value in independent association,

expression trees

552

conversion to command trees, 234

introduction into Entity Framework, 528

defined, 235

as placeholders for related data not yet

extension method, 600

loaded, 532

extent, 756

primary key/foreign key relationship, 524

setting default without foreign key scalar

F

property, 279

setting foreign key property, 544

fakes

Form.Load method, 205

completing fake context class, 712

FormCollection objects, 814

creating fake context, 708

FROM clause

creating fake ObjectSet class, 710–712

beginning LINQ queries, 56

modifying tests to use fake repository, 713

nested query in place of, in Entity SQL,

providing ManagedEntities in fake context,

119

716

full text searches, not supported, 590

faking the data, 694

Function element, 426

FieldCount property, 605

embedding your own version of command

FieldMetadata, 608

in, 442

metadata hierarchy, 608

Function Import Wizard, 420, 427

filtering

mapping function to complex type, 429

based on EntityReference property, 86

FunctionImportMapping element, 158

filter condition provided by

functions, 143

EntityCollection with LINQ, 88

attributes, 144

on group conditions in LILNQ to Entities,

canonical functions in Entity SQL, 60

95

implementing and querying with user-

related data in query using projections, 99

defined functions, 445

using conditional mapping to filter entities,

imported into EDM, using, 158

383–389

importing using EDM Designer Model

using QueryInterceptor in WCF data

Browser, 155

service, 480

mapping to complex type, 160

finally clause, 646

mapping to entities, 146–155

First method, 75, 107

Insert, Update, and Delete functions,

FirstOrDefault method, 75, 107

148–153

flattened results, projecting properties from

inspecting mappings in XML, 152

EntityCollections, 88

testing function mapping, 153

flattening relationships, EntityDataSource,

mapping to entities in new EDM, 176

308

852 | Index

Download from Library of Wow! eBook <www.wowebook.com>

mapping to scalar type, 159

GridView control

model-defined, 403–409

after hookup to EntityDataSource, 300

exposing for use in LINQ to Entities

binding EntityDataSource using

queries, 406

WhereParameters, 314

reading results from complex function,

creating concurrently with

408

EntityDataSource, 299

using in Entity SQL expression, 408

formatting, 301

using to return more complex results,

Group property (VB), 94

407

grouping

representing native query in EDM, 426

in Entity SQL, 120

retrieving from metadata, 627

filtering on group properties, 121

using to manipulate data in database, 441–

returning entities from GROUP BY

444

query, 121

FunctionTypes, 625

in LINQ to Entities, 93–97

chaining aggregates, 95

G

filtering on group conditions, 95

naming properties, 94

GetEnumerator methods, 711

GROUPJOIN operator, 90

GetFunctions method, 627

GetItem method, 627

GetItems method, 625

H

GetObjectByKey method, 108, 137

HAVING clauses, 121

GetObjectStateEntry method versus, 604

hierarchical data, 814

GetObjectStateEntries method, 600

(see also graphs)

extension methods to overload, 600

with EntityDataSurce control, 317–327

code calling overloads, 602

in MVC applications, 816

returning all entries of particular entity

in Windows Forms, 190

type, 601

horizontal splitting, 381

returning all entries of particular entity

HttpPost attribute, 814

type and EntityState, 601

validation of entities from the context, 276

GetObjectStateEntry method, 248, 603

I

GetObjectByKey method versus, 604

ICollection interface, 336

Getter and Setter properties, EDM Designer,

ICollection<T> interface, 495

806

IEnumerable and, 68

GlobalItem objects, 625

IContext interface, 698, 700, 708

graphs, 529

modifying ObjectContext class to

(see also relationships)

implement, 699–702

adding to and detaching from

IEntityWithChangeTracker interface, 251

ObjectContext, 460–463

IEntityWithRelationships interface, 620

building directly with

IEnumerable interface, 68

RelationshipManager, 620

casting a field to, 634

creating dynamically, 640–643

implementation of, to attach or load entities

editing in ASP.NET MVC application, 814–

into EntityCollection, 551

818

IListSource interface, 197, 265

moving entity to new graph, 550

implicit deferred loading (see lazy loading)

refreshing related entities in, 675

implicit transactions, 565

returning for entities in

implicitly typed local variables, 81

ObservableCollection, 766

In parameters, 145

updating object graph, 463

Include method, 103–106

Index | 853

Download from Library of Wow! eBook <www.wowebook.com>

data shaping with, 104

method for, in Web Forms application,

eager-loading multiple navigations, 103

805

Load method versus, 106

overriding insert with stored procedure,

providing for IContext, 721

146

using with ObjectQuery and Entity SQL,

integration tests, 686

123

writing test that hits the database, 687

Include property, EntityDataSource, 304, 309

IntelliSense

independent associations, 41, 308, 522

in LINQ queries, 56

foreign key associations versus, 527

interaction tests, 686

mapping constraints broken, causing

interfaces

UpdateException, 654

building interface to represent a context,

Index method, Controller class, 809

698

Index.aspx page, 809

creating interface for repository classes,

inheritance

702

applying in POCO template, 494

INTO clause, 93, 94

composition versus, 371

aggregates in, 95

concurrency checks and inherited types,

INTO GROUP clause, 93

667

InvalidOperationException, 653, 657

creating inheritance hierarchy, 738

IObjectSet interface, 66, 710

creating new derived entities when base

changing context methods to return, 697

entity exists, 370

providing Include method for, 721

deleting inherited objects, 462

IObjectWithChangeTracker interface, 504

mapping stored procedures to types within

OjbectChangeTracker, 504

structure, 444

IQueryable interface, 57, 67

TPC, mapping for tables with overlapping

LINQ to Entities queries, 237

fields, 409–411

IRelatedEnd interface, 530

TPH

Attach method, 550

default for code first, 755

IsLoaded property, 545

implementing for tables with multiple

using methods to populate navigation

types, 389–393

properties, 545

TPT (Table per Type), 362–373

Is Not Null condition, 384, 385

mapping, 363

mapping field to table, 385

in model first, 743

Is Null condition, 384, 385

InnerException, 657

IS [NOT] OF operator (Entity SQL), 369

INotifyCollectionChanged interface, 282

IsComparable attribute, for user-defined

INotifyPropertyChanged interface, 504

functions, 446

InOut parameters, 145

IsComposable attribute, 145

input parameters (function), mapping to entity

IsLoaded property, 531, 545

properties, 147

IsolationLevel enumeration, 569

Insert command, 134

IsRelationship property, 599

Insert function

it control variable (Entity SQL), 65

mapping to an entity, 148

item collections in MetadataWorkspace, 624

mapping to entity in new EDM, 176

determining if loaded, 625

Inserted event, EntityDataSource, 328

ItemPanel element, 220

Inserting event, EntityDataSource, 325, 327

ItemsSource attribute, 216, 771

inserts

removing from ListBox in layered client

with conditional mapping, 387

WPF application, 773

mapping insert stored procedure to types

ItemTemplate element, 218

within inheritance structure, 444

854 | Index

Download from Library of Wow! eBook <www.wowebook.com>

J

LINQ to Entities, 6, 55, 77–109

aggregates in, 89

JOIN FROM clause (Entity SQL), 90

casting query to ObjectQuery to use its

JOIN operator, 90

methods, 239

joins, 90

conversion of query to command tree, 234

LINQ to Entities, JOIN syntax, 91

exposing complex function for use in

LINQ, JOIN syntax, 90

queries, 409

many-to-many relationships versus, 179

exposing model-defined function for

using in Entity SQL, 118

queries, 405

grouping, 93–97

K

invalid query expressions, 649

Key element, 36

joins and nested queries, 90–93

KeyMembers property, 609, 630

navigation in queries, 84–89

performance measurement for startup

L

query, 579

performance measures for queries, 576

lambdas, 62

precompiling queries for performance, 585

query to be precompiled, 586

projections in, 79

using aggregate method with, in LINQ, 89

queries, IQueryable interface, 67

Language INtegrated Query (see LINQ)

query execution exceptions, wrapper to

late-binding relationships, 530

handle, 652–654

layered applications, 14, 761

query samples, 109

(see also client-side layered applications,

query, IQueryable type, 238

using entities)

querying with LINQ methods, 61–64

layered Web Forms application (see Web

reloading related data, 100–107

Forms application (layered),

retrieving a single entity, 107

building)

shaping data returned by queries, 97–99

layers (application)

writing your first query, 55

logical tiers in client application, 762

LINQ to Objects

lazy loading, 78, 100, 545

query determining if property value

controlling, 101

changed, 614

from detached entities, 547

querying metadata with, 628

enabling POCOs to use proxy for, 346

LINQ to SQL, 16

enhancing using CreateSourceQuery

DataContext attribute, 216, 221

method, 551

DataContext.SubmitChanges method, 589

for POCOs, from dynamic proxy, 342

performance measure for queries, 576

performance considerations with, 103

LinqDataSource controls, 14, 266

preventing problems from in client layered

LINQPad, 49, 56

WPF application, 772

displaying results of query using complex

triggers of, 691

function, 408

unmanaged entities and, 529

list controls, using binding to complex types,

LET operator (C#), 82

827

LINQ (Language INtegrated Query), 55

ListBox controls

compiled queries, 97

binding to another ListBox, 223

LINQ methods versus query builder

ItemTemplate element, 218

methods, 237

linking DatePicker and ComboBox controls

methods, combining with query builder

to, 219

methods, 66, 237

using EntityDataDource.Selected event to

Parallel LINQ (PLINQ), 596

populate, 322

type filtering in, 370

Index | 855

Download from Library of Wow! eBook <www.wowebook.com>

WPF tricks for more interactive controls,

M

227

lists

M (modeling) language, SQL Server Modeling,

adding for user selection controls in Web

755–759

Forms, 803

using M metadata in Entity Framework

making generic lists more flexible, 764

applications, 758

method to return untracked generic lists,

managed entities

764

method to return managed entities, 602

using ObservableCollection rather than list

state information in ObjectStateEntries,

in WPF, 227

598

ListView control, 323–325

many-to-many relationships, 39, 178

literals in Entity SQL, 111–113

association mapping, 179

LLBLGen Pro, 17, 400

configuring with CTP code first add-on,

Load method, 547

752

attempting to call on detached entities, 547

creating, 737

explicitly loading related data, 101

in data-bound WPF, 213, 222

Include method versus, 106

in Dynamic Data websites, 329

initial query and subsequent loads on same

in WCF RIA services, 487

connection, 561

join table created from model first, 743

SQL executed by Entity Framework after

joins versus, 179

calling Load, 532

Mapping Specification Language (see MSL)

using CreateSourceQuery as alternative,

MappingFragment element, 836

551

mappings, 29, 45, 133, 361

LoadFromAssembly method, 516

AssociationSet, 526

loading

conditional, filtering entities with, 383–389

code to query EDM in WPF application

defining EDM mappings not supported by

when window loads, 216

Designer, 403

from detached entities, lazy and explicit,

read-only and specialized mappings,

547

411–416

eager loading of related data in WPF form,

TPC inheritance, 409–411

223

using model-defined functions, 403–

lazy loading and its triggers, 691

409

querying EDM when Windows Form loads,

entity to multiple tables, 375

194

functions to entities, 146–155

using CreateSourceQuery to enhance

independent association mapping

deferred loading, 551

constraints broken, 654

loading related data, 100–107

Mapping element, 836

choosing between Load and Include

MEST (Multiple Entity Sets per Type), 399

methods, 106

MSL metadata details, 835–837

controlling lazy loading, 101

self-referencing associations, 400

eager loading, using Include method, 103–

splitting single table into multiple entities,

106

381

explicitly loading EntityCollections and

stored procedures to entities in new EDM,

EntityReferences, 101

175

with POCOs, 341

stored procedures to types within

LoadProperty method, 102, 342, 547

inheritance structure, 444

logging WCF messages, 460

TPH inheritance for tables with multiple

types, 389–393

TPT inheritance for tables describing

derived types, 362–373

856 | Index

Download from Library of Wow! eBook <www.wowebook.com>

MarkAsDeleted property, 507

clearing from memory, 623

MARS (MultipleActiveResultSets), 561

creating queries with CreateObjectSet and

master/detail forms

query builder methods, 632

in ASP.NET WebForms application, 317–

item collections, 624

327

LoadFromAssembly method, 516

editing in ASP.NET MVC application, 815

loading, 622

materializing objects, 245

creating without EntityConnection, 623

MaxLength attribute, T4 template code for

querying metadata with LINQ to Objects,

validation of, 355–358

628

MergeOption property, 158, 247

reflection versus, 638

Execute method parameter, 198

retrieving metadata from, 625

NoTracking option, 251, 803

getting specific items with GetItem and

message logging (WCF), 460

TryGetItem, 627

MEST (Multiple Entity Sets per Type), 399

retrieving functions, 627

metadata, 133

using with ObjectStateManager and

accessing with

Reflection API, 637–643

CurrentValueRecord.DataRecord

methods

Info, 607

aggregate, 88

code first creation for Entity Framework

chaining, 63

runtime, 750

combining LINQ and query builder

defining associations in, 528

methods, 66

EDM, additional details about, 831–837

custom, creating for all entities, 294

Entity Framework's use of, 10

LINQ aggregates, 89

EntityConnection string, 183

LINQ versus query builder methods, 237

EntityConnection string attribute, 244

partial methods, 269–274

exception caused by failure to find metadata

querying with LINQ methods, 61–64

files, 648

querying with query builder methods and

extracting from item collections, 624

Entity SQL, 64

FieldMetadata hierarchy, 608

mocking frameworks, 725

pointer to metadata files in

model (see EDM)

EntityConnection, 556

Model Browser, 31, 155

problems with entities in separate

defining complex type in, 427

assemblies, 515

model first, 9, 727

retrieving from MetadataWorkspace, 625

creating model and database, 728

splitting out EDM metadata files from

associations and inheritance hierarchies,

assembly, 184

734

supporting the EDM, 29

creating conceptual model in Designer,

type metadata available from

728

ObjectStateEntry, 249

creating database and its schema, 744

using M language metadata in Entity

creating entities, 730

Framework applications, 758

generating database schema from model,

viewing in EDM Designer Model Browser,

738–744

31

overriding DDL generator, 745

Metadata Artifact Processing property, 30,

Model-View-Controller applications (see MVC

184

applications)

MetadataException, 648

Model-View-ViewModel (MVVM) pattern,

MetadataWorkspace, 355, 597, 622–629

774

building Entity SQL queries dynamically

Model.edmx file (example), 24

using metadata, 629–632

ModelBuilder class, 751

Index | 857

Download from Library of Wow! eBook <www.wowebook.com>

modeling, 749

resolving collisions between property and

(see also code first; database first; EDM)

entity names in EDM, 172

SQL Server Modeling's M language, 755–

namespaces, 821–824

759

adding for WPF form, 217

models (MVC), 807

assembly, 182

ModificationFunctionMappings element, 152

database provider, 556

ModifiedDate fields

Entity Framework-specific, 823

updating during SavingChanges, 610

existing, with classes and functionality to

using for concurrency checking, 666

support Entity Framework, 822

MSDN

finding name using MetadataWorkspace,

Entity SQL documentation, 59

630

literals in Entity SQL, 111

referencing in code, 61

query samples, 109

specifying namespace of POCO entity

MSL (Mapping Specification Language), 30, 45,

classes, 492

152

SSDL, 44

additional metadata details, 835–837

native queries, adding to model, 426–429

elements, 836

native views, adding to the model, 429

Multiple Entity Sets per Type (MEST), 399

navigation, 78

MultipleActive ResultSets (MARS), 561

using in Entity SQL queries, 115–118

multiplicity, 25, 39, 42, 522

aggregating with EntityCollections, 117

multithreaded applications, 591

aggregating with query builder methods,

forcing ObjectContext to use its own thread,

118

591

filtering and sorting with

implementing concurrent thread

EntityCollections, 116

processing, 593

filtering and sorting with

MVC (Model-View-Controller) applications,

EntityReference, 116

783

using Entity SQL SET operators, 117

building in ASP.NET, 806–814

using in LINQ to Entities queries, 84–89

replacing contex with repositories, 813

aggregates in LINQ methods, 89

editing entities and graphs, 814–818

aggregates with EntityCollections, 88

resources for further information, 807

filtering and sorting with

MVVM (Model View ViewModel) pattern,

EntityCollections, 88

774

filtering and sorting with

EntityReference, 86

N

navigating to EntityCollections, 86

navigating to EntityReference, 84

n-tier development, 14

projecting properties from

n-tier logical client-side applications (see client-

EntityCollections, 87

side layered applications, using

navigation collections, 42

entities)

navigation properties, 25, 38, 525

Name property, 630

in Address and Contact entity types

names

(example), 41

changing for properties, entities, and entity

cleaning up names in new EDM, 172

sets in new EDM, 170

client-side object in WCF service, 470

Entity and EntitySet, checking in EDM,

concurrency checks for EntityReference

168

properties, 667

navigation property, cleaning up in new

creating list of names, 630

EDM, 172

determining if they are entities or

projected anonymous types in C# and VB,

EntityCollections, 635

82

858 | Index

Download from Library of Wow! eBook <www.wowebook.com>

in EDM bound to Windows Forms

controlling ObjectState, 257

application

data binding support, 265

changing navigation property controls,

managing object state, 246–252

204

managing relationships, 252–257

editing and shrinking the query, 202

materializing objects, 245

exposure for data binding, 191

persisting changes to database, 259–263

flattened, where foreign keys are

place in Entity Framework, 231

unavailable, 308

processing queries, 233–244

in EDM bound to Windows Forms

command execution with EntityClient,

application

244

forcing DataGridView to display, 199

default connection override with

lazy loading by proxy, POCO entities, 346

ObjectContext.Connection,

nonessential, handling, 526

242

OnNavigationPropertyChanged method,

executing queries with Execute method,

504

242

populating using methods of IRelatedEnd,

executing queries with ToList or

545

ToArray, 241

returning collections, 42

query builder methods, 235–238

setting to an entity, 543

using ObjectQuery methods and

understanding, 534–537

properties, 238–241

virtual, 546

query performance comparison to

navigation reference, 84

EntityClient, 581

nchar and nvarchar data types, 741

querying with, 57

nested queries, 91–93

serialization, 263–265

breaking out of main query in LINQ, 92

UpdateException, 656

in Entity SQL, 119

ObjectChangeTracker objects, 504, 508

LINQ nested query as collection to be

ObjectContext class, 53, 252–257

queried, 92

AcceptAllChanges method, 263, 566, 682

LINQ nested query as projection, 91

accessing MetadataWorkspace from, 622

.NET

adding graphs to context, 460

APIs provided by Entity Framework, 9

AddObject method, 254

extension methods, 600

Attach method, 254, 550

lambdas, 62

attaching and detaching objects, 253

parallel computing in version 4.0, 596

AttachTo method, 255

NHibernate, 17

building an interface to represent a context,

NiladicFunction attribute, 144

698

normalized database tables, schema for, 3

modifying ObjectContex to implement,

NotSupportedException, 649

699–702

null values

Connection property, 242, 562

Nullable Int32, 160

ContextOptions.ProxyCreationEnabled,

testing for, 384, 385

513

testing for before calling Attach method,

creating context for persistent ignorant

552

entities, 697

nvarchar data type, 145, 741

creating fake context, 708

creating for POCO entities, 339

O

creation of ObjectStateEntry, 130

CurrentValues and OriginalValues for

object constructor, overriding, 284

entities, 249

Object Relational Mapping (see ORM)

DeleteObject method, 137, 440, 461

Object Services, 12, 231–266

Index | 859

Download from Library of Wow! eBook <www.wowebook.com>

Detach method, 251

short-lived ObjectContext for WCF

DetectChanges method, 341

services, 458

Dispose method, 562

state information in ObjectStateEntries for

EDM in Windows Forms application, 201

all managed entities, 598

for EntityDataSource controls, 305

testing interaction of POCOs with, 686

EntitySets for classes in EDM, 236

tracking changes to entities, 129

ExecuteFunction method, 158, 429

TryGetObjectByKey method, 108, 604

ExecuteStoreCommand method, 440

use of EntityKey, 246

ExecuteStoreQuery method, 424

ObjectDataSource controls, 792

extension method to return managed

ObjectMaterialized event, 245, 275

entities, 602

handlers for, 277

forcing to use its own thread, 591

Materialized partial method, 293

GetObjectByKey method, 108, 604

populating custom property with, 287

GetRelationshipManager method, 531

ObjectQuery class, 51

information managed by, 246

AddObject method, 135

LoadProperty method, 102, 342, 547

avoiding inadvertent query execution, 74

moving out of ASP.NET page and into

CommandText, 240

DataBridge class, 784

Context property, 241

in layered client WPF application

EnablePlanCaching property, 581

isolating, 762

Execute method, 242

moving logic dependent on to

interfaces implemented by, 238

DataBridge, 768–772

MergeOption property, 247

separating entity-specific logic from,

ObjectSet and, 66

774–778

parameterized queries, 60

object graphs in, 529

Parameters property, 241

ObjectMaterialized event, 245, 275

properties, 238

populating a custom property, 287

ToTraceString method, 239

objects not managed by, 251

ObjectQuery objects

ObjectStateManager property, 599

eager loading with Include method, 103

OnContextCreated method, 269

performance measures for queries, 576

opening and closing connections, 560

startup query performance measurement,

original values, 605

579

partial class inheriting from, 267

using Include with, in Entity SQL, 123

providing with reference to POCO entities

wrapper to handle query execution

in WCF service, 493

exceptions, 652–654

queries performed by, merging results in

ObjectResult objects, 158

cache, 247

binding to, rather than to the query, 197

Refresh method, 570, 671

ObjectSet class, 50, 51, 66, 236

relationship management, 252

AddObject method, 135, 254

replacing with repositories in ASP.NET

Attach method, 254

MVC application, 813

creating fake ObjectSet class, 710–712

SaveChanges method, 131, 259

declaration in VB and C#, 66

affecting default behavior of, 260

eager loading with Include method, 103

overriding, 285

Include method, 721

performance comparison for updates,

state methods, 259

589

ObjectStateEntry class, 599

SavingChanges event, 261, 276–280

Entity property, 602, 610

serialization, 264

Entity.ToString property, 614

GetModifiedProperties method, 614

860 | Index

Download from Library of Wow! eBook <www.wowebook.com>

RelationshipManager property, 620

reading results of dynamically created

state methods, 258

query, 634–637

State property, 517, 614

reflection versus, 639

ObjectStateEntry objects, 130, 248

serialization, 264

creation for POCO entities, 341

TryGetObjectStateEntry method, 603

CurrentValues and OriginalValues

using to build EntityState visualizer, 611–

properties, 249

622

exceptions from Object Services containing,

modifying CurrentValues of

656

ObjectStateEntry, 619

extension method to check for when no

working with relationships, 620

object available, 780

using with MetadataWorkspace and

getting ComplexType properties from, 615–

Reflection API, 637–643

619

ObjectStateManager objects, 532

information about entity before and after

examining self-tracking entity state fields,

changes, 249

511

mining for entity details, 604–609

after loading related entity, 533

accessing object metadata, 607

ObservableCollection objects, 227, 763

finding EntityCollection, 606

returning graphs of entities in, 766

reading and writing values, 604

ObservableType objects, 227

reading CurrentValues, 606

OData (Open Data Protocol), 475, 477

original entity value as parameter for Update

ODBC (Open Database Connectivity)

function, 150

providers, 9

reading OriginalValues and CurrentValues,

OfType method, 368

613

OFTYPE ONLY operator, 304

RelationshipManager property, 530

OFTYPE operator, 369

removal for objects detached from

OnContextCreated method, ObjectContext,

ObjectContext, 255

269–271

retrieving using an EntityKey, 612

setting default values in SavingChanges

returned by optimistic concurrency

event, 278

exception, 676

OnDelete action, Association object, 541

serialization, 264

one-to-many relationships, 6, 39

State property, 249

creating, 734

using in exception reporting, 678

OnNavigationPropertyChanged method, 504

ObjectStateEntry Visualizer, 512, 607

OnPropertyChanged method, 504

ObjectStateManager class, 597, 598

Open Data Protocol (OData), 475

building method to return managed entities,

operation contracts for WCF services, 454

602

operations, testing in WCF service, 469–474

GetObjectStateEntries method, 276, 600

optimistic concurrency, 262

extension methods to overload, 600

implementing in Entity Framework, 663–

GetObjectStateEntry method, 248, 603

670

getting ObjectStateManager and its entries,

OptimisticConcurrencyException, 150, 262,

599

658

leveraging during saves, 609

handling, 670–678

methods directly impacting state of entities,

using your own transaction with, 682

257

OrderBy property, EntityDataSource control,

mining entity details from ObjectStateEntry,

312

604–609

OriginalValues property, 505, 605

ObjectStateEntry class, 599

ObjectChangeTracker objects, 505

ObjectStateEntry class, 249

Index | 861

Download from Library of Wow! eBook <www.wowebook.com>

reading for ObjectStateEntry, 613

persistent entities versus using independent

OritinalValues property, 566

values, 788

ORM (Object Relational Mapping), 2

persistent ignorant entities, creating, 694–714

limitations of Entity Framework, 17

building interface for repository classes,

Out parameters, 145

702

Overridable keyword, 346

building interface to represent context, 698

creating repository classes, 703–706

P

fake context class, 708

fake ObjectSet class, 710–712

Page events, 327

modifying ObjectContext class to

Page objects, 784

implement interface, 699–702

paging, 301

moving POCOs to own project, 695

parallel computing in .NET 4, 596

starting with model and POCO entities,

Parameter element, 145

697

parameterized queries with ObjectQuery, 60

testing method against database, 707

Parameters property, ObjectQuery class, 241

PLINQ (Parallel LINQ), 596

ParameterTypeSemantics attribute, 145

POCO (Plain Old CLR Objects) support, 12,

partial classes, 267

248

additional uses of, 290

POCO entities

creating and naming files for, 268

rules for getting proxy behavior with, 349

declaring additions to, 268

TPT inheritance, 366

for POCOs, 714

using proxies to enable change notification,

partial methods, 269–274

346

creating your own, 284

POCO Entity Generator, 350

overloading entity creation methods,

POCOs (Plain Old CLR Objects), 335–359,

290

489, 521

overriding object constructor, 284

adding validation logic to POCO classes,

inserting managed partial method in entity

714

classes, 293

change tracking with, 341

OnContextCreated, 269

creating classes for persistent ignorant

On[Property]Changed and

entities, 697

On[Property]Changing, 271

creating classes for WCF services, 490–497

pass-through queries, 424–426

adding custom logic with base class,

ExecuteStoreCommand method, 440

493

ExecuteStoreQuery method, 424–426

following WCF collection rules, 495

performance tuning, 574–591

isolating POCO entities in own project,

caching for Entity SQL queries, 580

491

code used to measure query performance,

preventing marking of properties as

577–579

virtual, 496

guidance from Entity Framework team

updating classes for current model, 490

member, 590

creating model to work with preexisting

measuring query performance, 575

classes, 358

measuring startup performance, 579

creating ObjectContext class to manage,

precompiling LINQ to Entities queries,

339–340

585

creating POCO classes, 336–339

precompiling views, 582

entities in layered client-side applications,

reducing cost of query compilation, 580

778–782

updates, 589

providing EntityState, 779

PersistedStateEntry class, 681

862 | Index

Download from Library of Wow! eBook <www.wowebook.com>

providing logic in place of other

using LINQ query methods, 84

EntityObject behavior, 781

LINQ nested query as, 91

impact on two-way relationships, 342–345

projecting into EntityReference with Entity

loading related data with, 341

SQL, 116

moving POCO classes to own project, 695

properties from EntityCollections, 87

POCO entities versus EntityObjecs in WCF

in queries, 78

services, 519

query using, filtering related data in, 99

relationship management in POCO entities,

properties

537

accessing for anonymous types, 85

testing interaction with ObjectContext,

anonymous types as, 83

686

association, for many-to-many relationship,

using Entity Framework with no model,

737

359

association, for one-to-many relationship,

using POCO classes with WCF services,

734

452

changing names in new EDM, 170

using POCO entities with WCF Data and

combining from related entities, 85

RIA Services, 515

complex type, getting from

POCO entities in RIA services, 517–519

ObjectStateEntry, 615–619

preparing for WCF Data Services, 515

creating custom properties, 286–289

using proxies for change notification, lazy

custom, creating for all entities, 294

loading and to fix relationships,

determining whether property has been

345–350

modified, 614

using T4 to generate classes, 350–354

entity, 26

WCF service that uses POCO classes, 497–

entity property defaults versus database and

503

model first, 743

implementing the interface, 498–500

entity property properties, 27

using the service, 500–503

entity, mapping to function input

pooling connections, 563

parameters, 147

Power Pack (Database Generation), 747

from EntityCollection entities, projecting,

precompilation, 97

87

precompiling queries (see compilation)

EntityDataSource, setting

predicates, 63

programmatically, 315

pregenerating views, 583

flagging for concurrency checking, 664

primary key/foreign key relationships, 524

names of, collisions with entity names in

primary keys

EDM, 172

use in creating EntityKeys, 148

naming when grouping in LINQ to Entities,

PrimitiveTypeKind class, 611

94

PrimitiveTypes, 625

original values stored by self-tracking

profilers, 73

entities, 508

projections, 78

renaming foreign key properties in EDM,

in Entity SQL, 113

171

in LINQ to Entities

scalar and navigation, 24

syntax differences in C# and VB, 79

self-tracking entity, 504

Include method results, with and without

setting attributes for, 732

projections, 104

types of, 130

in LINQ to Entities, 79–84

viewing information about, 25

projecting into an EntityReference, 85

Property elements, 37

special language features in C# and VB,

PropertyChanging and PropertyChanged

80–84

events, EntityObject, 251, 280

Index | 863

Download from Library of Wow! eBook <www.wowebook.com>

event parameters, 281

projecting with, in Entity SQL, 115

subscribing to class-level events, 281

query methods (LINQ), projections with, 84

PropertyChanging and PropertyChanged

query operations, WCF service using POCOs,

methods, 271

498

calculating database columns locally with

QueryExtender control, 317

PropertyChanged, 273

querying

PropertyVirtualModifier method, 496

using EntityClient to return streamed data,

provider connection string, 244

68–71

Provider method, 711

using LINQ to Entities, 55

ProviderManifestToken attribute, 44

using methods, 61

ProviderName attribute, EntityConnection

using Object Services and Entity SQL, 57–

string, 244

60

providers

QueryInterceptor attribute, filtering at service

available providers for Entity Framework,

level, 480

8

QueryView, 388, 411–416

generation of SQL from command trees,

cautions when using, 412

235

creating mapping for entity encapsulating

information about, in EntityConnection

results, 414

string, 244

deconstructing, 416

information on, 556

DefiningView versus, 433

programmatically changing ADO.NET

entity in model to encapsulate results, 413

DataProvider, 558

entity provided by, in Web Forms

proxies

application, 797

dynamic proxies created at runtime, 496

finding common use case for, 413

POCOs using for change notification, lazy

providing flattened data for entity in Web

loading, and fixing relationships,

Forms, 797

345

testing, 416

POCOs using for lazy loading, 346

POCOs using to synchronize relationships,

R

348

problems created by dynamic proxies,

RAD ASP.NET applications, data binding with,

avoiding, 516

297–333

proxy classes, 347

building Dynamic Data websites, 329

rules for getting proxy behavior with

creating ASP.NET Web Application project,

POCOs, 349

298

EntityDataSource events, 327

Q

hierarchical data in master/detail form, 317–

327

queries

how EntityDataSource retrieves and

adding native queries to the model, 426–

accesses data, 304–309

429

related EntityReference data, 309–317

avoiding inadvertent execution of, 74

using EntityDataSource control to access

entity, translating to database queries, 71

flat data, 298–304

resources for more sample queries, 109

Rapid Application Development (RAD)

query builder methods, 64, 235–238

applications, 297

aggregating with, in Entity SQL, 118

(see also RAD ASP.NET applications, data

combining with LINQ methods, 66, 237

binding with)

conversion to command tree, 234

read-only database views, 46

conversion to Entity SQL expressions, 237

read-only entities, creating using QueryView,

EntitySets and, 236

411

864 | Index

Download from Library of Wow! eBook <www.wowebook.com>

RecordOriginalValue method, ChangeTracker,

in the EDM, 522–527

509

additional relationship items, 525

reference properties, client-side object in WCF

associations, creation by EDM Wizard,

service, 470

523

Referential Constraint property, 40

nonessential navigation properties, 526

referential constraints

foreign key versus independent associations,

automatically created, for association, 735

527

creating, 382

getting foreign key value in independent

defining for split table, 382

association, 552

ReferentialConstraint element in SSDL,

between instantiated entities, 529

834

deletes and cascading deletes, 540

reflection

how Entity Framework manages

combining System.Reflection with

relationships, 531

MetadataWorkspace, 637–640

late-binding relationships, 530

instantiating an assembly, 623

navigation properties, 534–537

ObjectStateManager and

referential integrity and constraints, 537

MetadataWorkspace versus, 638

relationship manager and IRelatedEnd

Refresh method, 570, 671

interface, 530

refreshing related entities in a graph, 675

management by ObjectContext, 252–257

using with ClientWins, 671

management in POCO entities, 537

using with collection of entities, 674

management of, 13

using with StoreWins, 673

POCOs’ impact on two-way relationships,

RefreshMode, 671

342–345

RelatedEnd objects, 621

enabling classes to fix relationships, 344

relationship cardinality, 25

fixing relationships with DetectChanges

relationship manager

method, 343

and IRelatedEnd interface, 530

synchronizing by proxy for POCOs, 348

getting in code, 531

using CreateSourceQuery to enhance

relationship span, 252, 529

deferred loading, 551

RelationshipEntry, 610

working with, in ObjectStateManager, 620

RelationshipEntry objects, 599

Remove method, 550

RelationshipManager objects, 640

repository classes

building graphs directly with, 620

adding into Web Forms application, 795

RelationshipManager property,

building interface they will implement, 702

ObjectStateEntry, 530, 606

creating, 703–706

relationships, 521–554

leveraging precompiled queries in, 722

defining between entities, 542

modifying tests to use fake repository, 713

CLR way, setting navigation property to

payment repository in ASP.NET MVC

an entity, 543

application, 817

lazy loading, 545

replacing context with, in ASP.NET MVC

Load method, 547

application, 813

loading from detached entities, lazy and

using in your application, 723

explicit, 547

adding UI layer that calls repository,

loading, adding, and attaching

723

navigation properties, 545

Repository Pattern, 695

moving entity to new graph, 550

REST (Representative State Transfer), 474

setting foreign key property, 544

RESTful service, WCF Data Services, 484

using Attach and Remove methods, 549

ReturnType attribute, 407

using EntityCollection.Add, 548

Index | 865

Download from Library of Wow! eBook <www.wowebook.com>

RIA (Rich Internet Application) Services

setting default foreign keys without foreign

(WCF), 449, 485, 490, 520

key scalar property, 279

(see also WCF services)

scalar properties, 24

using POCO entities in, 517

client-side object in WCF service, 470

rollbacks, 565

ConcurrencyMode attribute, 262

changes to entities in context, 570

defined, 41

Rows Affected Parameter Option, 151

ScalarProperty mapping element, 837

RowType element, 407

setting default values in new EDM, 174

rowversion fields

scalar types, mapping functions to, 159

concurrency checking without, 666

scalar values, representation by DataReaders,

using for concurrency checks, 662

68

rowversion type, 151, 177

ScalarProperty element, Version attribute, 153

schema files, 30

S

schemas

BreakAway database (example), 166

SaveChanges method, 131–139

changing database schema name, 746

affecting default behavior of, 260

Conceptual Schema Definition Language

ApplyAllChanges versus, 512

(see CDSL)

catching concurrency exceptions, 676

creating database schema, 744

creating your own System.Transaction for,

generating database schema from model,

566

738–744

default transaction within, 565

Store Schema Definition Language (see

deleting entities, 137

SSDL)

EDM bound to Windows Forms

Visual Studio 2010 schema files, 30

application, 201

scope, variables out of, in LINQ, 96

enabling saves in WPF form, 224

security, 571–574

exceptions thrown during execution, 654–

guarding against connection piggybacks,

657

573

inserting new parents and children, 135

guarding against SQL injection, 571

insetting new objects, 134

Entity SQL injection, 573

integer returned by, 259

precautions with dynamic queries, 571

moving out of UI in client-side WPF

mapping functions to entities, 147

application, 769

SELECT clause, 56

overridden, handling concurrency

FROM clause preceding SELECT in LINQ,

exceptions recursively, 677

56

overriding, 285

VALUE keyword, 58

overriding completely, 261

SELECT expressions, nested query in place of,

performance comparison for updates, 589

in Entity SQL, 119

refreshing state of tracked entities, 260

SELECT statements

SavingChanges versus, 261

Entity SQL GROUPBY query returning

using with newly added derived types, 368

entities, 121

SaveOptions enumeration, 260, 566

SELECT VALUE, 125

DetectAllChanges value, 341

Selected event, EntityDataSource, 322, 328

SavingChanges event, 276–280, 276

SelectedValue, GridView control, 315

data validation with, 261

SelectedValuePath attribute, 220

implementing, 277

Selecting event, EntityDataSource, 328

leveraging ObjectStateManager during,

self-referencing associations, mapping, 400

610

self-tracking entities, 503–515, 520

overriding to include validation code, 540

classes and extension methods, 513

866 | Index

Download from Library of Wow! eBook <www.wowebook.com>

creating and exploring, 503, 505

SortDescriptions collection, 225

creating WCF service that uses, 506

sorting

interoperability with, 505

based on EntityCollections, 88

putting change-tracking logic where needed,

based on EntityReference property, 86

505

providing sort capability for UI in WPF

watching them at work, 507–513

client application, 771

debugging client application, 508

split entities (see entity splitting)

debugging SaveCustomer service

SQL (Structured Query Language)

method, 511

conversion of queries to, 235

SequentialAccess behavior, 71

Entity SQL, 58

Serializable attribute, 263

executing with ExecuteStoreCommand,

serialization, 263–265

440

automatic, objects as parameters to web or

query executed by Entity Framework after

WCF service operations, 264

calling Load, 532

binary, 265

SQL injection, guarding against, 74, 571

deserialization of objects attached to

EntitySQL injection, 573

ObjectContext, 252

precautions with dynamic queries, 571

explicit, 265

SQL Server, xxxi, 21, 740

object state and, 265

data types versus Entity Framework types,

objects stored in view state and session state,

742

792

rowversion type, 151

XML and data contract, 264

timestamp versus rowversion, 177

server-side tracing and caching provider, 244

versions and ProviderManifestToken, 45

session state (ASP.NET), application cache

versions, use with Entity Framework, 9

and, 791

SQL Server Modeling CTP Terminology page,

SET operators in Entity SQL, 117

756

SetStoredList<T> and GetStoredList<T>

SQL Server Modeling, M language, 755–759

methods, 765

SqlClient, 9

Setter and Getter properties, EDM Designer,

SQLClient

806

SqlParameter, 440

SetValue method, 619

SqlClient.SqlTransaction class, 262

SetValues method, 620

SqlDataReader objects, 15

shaped results

SqlDataSource controls, 14

average query times for, 581

SqlServer.CHECKSUM function, 667

projecting properties from EntityCollection

SSDL (Store Schema Definition Language), 30,

entities, 87

43, 142

returning using expand in WCF data service,

adding and deleting entities, 377

482

additional details of metadata, 833

shaping data returned by queries, 97–99

custom query manually embedded into,

with Entity SQL, 122

426

using Include with ObjectQuery, 123

defining complex command in, 442

Include method, 104

differences from CSDL, 44

limiting related data returned, 99

functions representing stored procedures,

LINQ query returning shaped results, 97

142

Silverlight applications, 774

getting functions from, 627

Single method, 75, 107

native objects in, 430

SingleOrDefault method, 75, 107

user-defined function in, 446

SOAP, WCF RIA Services, 485

viewing in EDM Designer Model Browser,

Solution Explorer, 31

155

Index | 867

Download from Library of Wow! eBook <www.wowebook.com>

startup performance, measuring for queries,

StoreWins (RefreshMode), 671

579

using with Refresh method, 673

state management methods, 793

streaming data

State property, 493, 517

EntityClient queries returning streamed

ObjectStateEntry class, 249, 614

data, 68–71

POCO entities in WCF service, 497, 499

System.ArgumentException, 648

self-tracking entities in WCF service, 505,

System.Collections.Generic.List<T>, 75

507, 509

System.Configuration namespace, 559

State Server Mode (ASP.NET), 794

System.Data namespace, 823

StateEntries property, 657, 678

System.Data.Common namespace, 823

static methods, 290

System.Data.Entity namespace, 189

sticky sessions, 792

System.Data.EntityException, 657

storage model, 29

System.Data.Metadata.Edm namespacce, 622

StoreConnection property, 558, 562

System.Data.Metadata.Edm namespace, 611

stored procedures, 141–163, 419–447

System.Data.MetadataException, 648

adding native queries to the model, 426–

System.Data.Objects, 51

429

System.Data.Objects namespace, 231, 751

adding native views to model, 429–439

System.Data.Objects.DataClasses namespace,

bringing into EDM from database, 142

405

concurrency checks and, 668

System.Data.Objects.ObjectResult<T>, 75

DefiningQuery versus, 434

System.Data.SqlClient namespace, 50, 823

executing queries on demand with

System.InvalidOperationException, 657

ExecuteStoreQuery, 424

System.Linq namespace, 688

functions created in SSDL to represent, 143

System.Linq.Expressions namespace, 823

implementing and querying with user-

System.NotSupportedException, 649

defined functions, 445

System.Reflection, 637–640

mapping first of read stored procedures

System.Runtime.Serialization namespace, 265

using imported functions, 158

System.Serializable attribute, 263

mapping function to complex type, 160

System.Threading.Tasks namespace, 596

mapping function to scalar type, 159

System.Transaction, 564

mapping functions to entities, 146–155

System.Type, 639

mapping read stored procedures, 156–159

mapping to entities in new EDM, 175

T

mapping to split tables, 380

using commands that affect the database,

T-SQL, 740

440–444

Entity SQL versus, 58

working with stored procedures which

generated by SqlClient, improvements in,

return data, 420

72

functions matching entity with changed

generated to create table (example), 741

property names, 421

query example, 4

queries against functions, 423

T4 (Text Template Transformation Toolkit),

queries returning multiple result sets,

11

424

T4 (Text Transformation Template Toolkit),

querying stored procedures and

291

inherited types, 422

(see also templates)

replacing stored procedures with views,

T4 (Textual Transformation Template Toolkit)

423

modifying POCO template, 354–358

StoreGeneratedPattern attribute, 278

using to generate POCO classes, 350–354

Identity, 741

Table per Hierarchy inheritance (see TPH

inheritance)

868 | Index

Download from Library of Wow! eBook <www.wowebook.com>

Table per Type inheritance (see TPT

moving POCOs to own project, 695

inheritance)

starting with model and POCO entities,

table splitting, 381

697

Tasks class, 596

testing method against database, 707

templated controls, 828

inspecting failed test, 689

TemplateField controls, 310

writing integration test that hits the

templates, 291

database, 687

customizing for major class modifications,

writing unit test focusing on custom logic,

295

689–693

DDL Generation Template, 746

Text Template Transformation Toolkit (T4),

evolving interface and, 699

11

modifying, 293

TextBox controls

POCO classes, directing to model, 492

navigation property, replacing with

POCO template, code to inject inheritance

ComboBoxes, 204

into an entity, 494

threads

reading, 292

forcing ObjectContext to use its own thread,

switching between default and custom

591

templates, 295

implementing concurrent thread

switching to, 292

processing, 593

T4 template for generation of DDL, 745

using ObjectContext in multithreaded

using self-tracking entities template for

environments, 591

WCF services, 503–515

tiers (application)

test doubles, 694

enabling change tracking across, 766

testing, 685–725

timestamp type (SQL Server), 177, 662

application architecture benefits from

ToArray method, 75

testable code, 724

executing queries with, 241

building tests that don't hit database, 714–

ToList method, 74

722

executing queries with, 241

adding validation logic to context, 716

ToTraceString method, ObjectQuery class, 73,

adding validation logic to POCOs, 714

239, 516

enabling eager loading in IContext, 721

TPC (Table per Concrete) inheritance,

hiding context from lower layers, 718

mapping, 409–411

precompiled queries in repositories, 722

TPH (Table per Hierarchy) inheritance, 389–

providing managed entities in fake

393

context, 716

code first default to, 755

testing unit of work class against

setting default value on table schema, 391

database, 720

testing TPH mapping, 392

creating persistent ignorant entities, 694–

turning a base class into abstract class, 393

714

TPT (Table per Type) inheritance, 362–373,

building interface to represent context,

738

698

with abstract types, 371

creating fake context, 708

default inheritance type for model first,

creating interface for repository classes,

743

702

fixing constraint problem, 365

creating repository classes, 703–706

inserting TPT inherited types, 366

fake context class, 712

mapping, 363

fake ObjectSet class, 710

duplicate names and concurrency

modifying ObjectContext to implement

properties, 363

interface, 699–702

POCO classes and inherited objects, 366

Index | 869

Download from Library of Wow! eBook <www.wowebook.com>

querying inherited types, 365

UnitofWork class in ASP.NET MVC

tracing provider, server-side, 244

application, 813

TrackableCollection<T>, 507

UnitOfWork objects in Web Forms

Transact-SQL Editor, 744

application, 801

transactions, 564–570

Save method, 802

handling exceptions for your own

Unit of Work Pattern, 719

transactions, 682

UnitOfWork class (example), 719

implicit Entity Framework transactions,

testing against database, 720

565

unit testing, 686

reasons to use your own, 564

writing test that focuses on custom logic,

rolling back, 570

689–693

specifying your own read-only transactions,

unwrapped results in Entity SQL, 124–127

569

rules for, 126

specifying your own read/write

Update command, 131

transactions, 566

Update function

support by Object Services, 262

mapping to an entity, 148

TransactionScope class, 262, 564

mapping to entity

TransactionScope objects, 566

concurrency checking, 150

TREAT AS operator, 369

mapping to entity in new EDM, 176

TRIM function, 119

mappings of, Use Original Value checkbox,

try/catch blocks, 645–647

176

TryGetFunctions method, 627

Update Model from Database feature, 142

TryGetItem method, 627

Update Model Wizard, 377

TryGetItems method, 625

Updated event, EntityDataSource, 328

TryGetObjectByKey method, 108, 466

UpdateException, 539

TryGetObjectStateEntry method, 603

automatic rollback by Entity Framework,

Type objects, 639

656

type operators in Entity SQL, 369

gleaning details from, 656

TypeOf operator, 369

independent association mapping

TypeUsage property, 609, 617

constraints broken, 654

thrown by broken constraints in database,

U

655

updates

UDFs (user-defined functions), 419, 445

affecting with ChangeInterceptor in WCF

attributes, 144

Data Service, 484

in database, representation as functions in

entities in ASP.NET web forms application,

EDM, 143

788

querying with, 446

fine-tuning for performance, 589

UI (user interface), 761

mapping update stored procedure to

(see also persistent ignorant entities,

inherited types, 444

creating)

method for, in Web Forms application,

code for WPF layered client application

805

using entities, 770–772

retrieving data for, in Web Forms

isolating ObjectContext from in layered

application, 797

client application, 762

update commands in WCF service using

UI layer that calls repository, 723

POCOs, 502

Union query method, 628

UpdateCustomer method (example), in

unit of work

WCF service, 464–467

adding to Web Forms application, 795

CustomerUpdate object, 473

870 | Index

Download from Library of Wow! eBook <www.wowebook.com>

updating customers by EntityManager class

view generation, 580

in Web Forms, 801

view state

using rowversion field for concurrency

defined, 789

checking, 665

objects persisted in, page size and, 790

Updating event, EntityDataSource, 328

storing small pieces of data in, 790

Use Original Value parameter option, 150

views, 147, 419

user selection controls in Web Forms, adding

adding native views to model, 429–439

lists for, 803

creating your own with DefiningQuery,

users

431

editing data in Windows Forms, 201

database views in EDM, 46

modifying related data in Web Forms

MVC applications, Add View Wizard, 808

application, 805

MVC applications, Edit view, 814

precompiling for performance, 582

V

pregenerating for performance, 583

pregenerating into existing project, 584

validation

replacing stored procedures with, 423

adding to client-side WPF application form,

ViewState

769

EntityDataSource control and, 306

adding validation logic to context classes,

virtual keyword, 346

716

entities with virtual properties, preventing

adding validation logic to POCO classes,

creation of dynamic properties,

714

517

EDMX schema validation, 831

marking navigation properties to enable lazy

using GetObjectStateEntries method, 276

loading, 546

Validation Application Block, Microsoft

preventing application to properties in

Enterprise Library, 714

POCO template, 496

VALUE clause (Entity SQL), 59

virtual tables, 430

VALUE keyword, 125

creating for mapping to DefiningQuery

var keyword (C#), 81

entity, 436

variables

VirtualizingStackPanel element, 220

adding for WPF form, 217

Visual Studio

naming ro prevent going out of scope, 96

support for Entity Framework, 9

out of scope, 96

Visual Studio 2010

VB (Visual Basic)

DatePicker controls, 219

Aggregate operator for LINQ, 89

Extension Manager, 291

anonymous types, 80

POCO Entity Generator, 350

generics in, 54

IntelliTrace feature, 73

grouping in LINQ to Entities, 93

schema files, 30

information on lambdas for developers, 62

Text Template Transformation Toolkit

LINQ Group BY with explicitly named

(T4), 11

groups and targets, 95

Visual Studio Gallery page, Database

LINQ query samples, 109

Generation Power Pack, 747

LINQ to Entities query, 55

visualizers, building EntityState visualizer using

naming of projected anonymous types, 82

ObjectStateManager, 611–622

ObjectMaterialized event handler, 275

ObjectSet class declaration, 66

Or operator, 277

W

projections in, 79

WCF (Windows Communication Foundation)

TypeOf operator, 369

Data Services, 449

vertical splitting (see entity splitting)

RIA Services, 449

Index | 871

Download from Library of Wow! eBook <www.wowebook.com>

serialization in, 264

pros and cons of, 451

WCF services, 15, 449–488, 489–520

resources for information on WCF Data

building console application to consume

Services, 485

EntityObject service, 467–474

using POCO entities with WCF Data and

enabling client to receive large messages,

RIA Services, 515

468

preparing for Data Services, 515

methods to test service operations, 469–

using POCOs in RIA services, 517–519

474

using self-tracking entities template, 503

building service using POCO classes, 497–

change-tracking logic, 505

503

classes and extension methods of

implementing the interface, 498–500

entities, 513

using the service, 500–503

creating self-tracking entities, 503

building simple service with EntityObjects,

creating service, 506–513

453–457

watching self-tracking entities at work,

creating the service, 453

507

defining extra service classes, 455

WCFTestClient utility, 460

defining service operations, 454

web applications (layered), building, 783–819

exposing custom properties, 456

ASP.NET MVC application, 806–814

creating POCO classes for, 490–497

editing entities and graphs, 814–818

creating WCF Data Services with entities,

replacing context with repositories, 813

474–485

comparing ASP.NET state solutions to

anticipating exceptions, 481

needs of Entity Framework, 789

creating a Data Service, 475–479

how ObjectContext fits into web page life

exposing related data through service,

cycle, 784

481

returning results, not queries from

filtering at service level with

DataBridge class, 785

QueryInterceptor, 480

updating entities in ASP.NET web forms

limitations of WCF Data Services, 483

application, 788

modifying data through service, 484

using EntityObjects in read-only web pages,

forcing to stay on same port, 467

786

how WCF RIA Services relate to Entity

Web Forms application (layered), building,

Framework, 485

793–806

implementing service interface, 457

adding lists for user selection controls, 803

adding graphs to ObjectContext, 460

allowing user to modify related data, 805

client rules for identifying changes in

building EntityManager to act as

EntityCollection, 463

DataBridge, 795

deleting objects, 461

designing the application, 794

deleting reservations fin

getting data from EntityManager to client,

UpdateCustomer method,

800

466

making related data accessible to client,

new and existing reservations for

799

UpdateCustomer method,

retrieving data for display and future

465

updates, 797

UpdateCustomer method (example),

using existing repositories, 795

464

Web Forms applications

updating object graph, 463

comparison to MVC, 807

options for creating services, 519

web pages

planning Entity Framework-agnostic client,

ObjectContext in ASP.NET page life cycle,

450

784

872 | Index

Download from Library of Wow! eBook <www.wowebook.com>

website for this book, xxxii

editing entities and related data, 224

websites

inspecting XAML and code from

building ASP.NET Dynamic Data websites,

automated data binding, 215

329

selecting entity and viewing its details,

WHERE clause, 56, 59, 62

219

Where clauses

using SortDescriptions, 225

type filtering in, 370

layered client application using entities

WHERE operator, 95

enabling change tracking across tiers,

Where property, EntityDataControl, 321

766

WhereParameters, EntityDataSource, 314,

freeing entities from change tracking,

320, 325

764–766

Window.Loaded event, 222

isolating ObjectContext, 762

Windows Distributed Transaction Coordinator

preventing problems from lazy loading,

(DTC), 564

772

Windows Forms, 187

layered client-side application using entities

BackgroundWorker component, 591

moving logic from ObjectContext to

creating an application, 188

DataBridge, 768–772

data binding

wrapped results in Entity SQL, 124–127

adding EntityCollection to form, 198

rules for, 126

adding new entities, 208–211

allowing users to edit data, 201

X

binding without a BindingSource, 197

code to query EDM when form loads,

XAML

194

data-binding elements, 215

displaying properties of related objects in

selecting entity and viewing its details, 220

DataGridView, 199

XML

editing navigation properties, 202

inspecting mappings in, 152

getting entity details onto a form, 192

model-defined function in CSDL section,

object data source for an entity, 190

404

user deleting data, 211

viewing EDM's raw XML, 31

using data sources, 189

XML files

data sources and complex types, 828

EDM, database schema, and mapping

using data sources, 189

between, 20

Windows Presentation Foundation (see WPF)

XML serialization, 264

workflow, 745

XSD (XML Schema Definition) files, 30

WPF (Windows Presentation Foundation),

187–213

BackgroundWorker component, 591

data binding with, 213–230

adding another EntityCollection, 222

adding data source objects, 215

adding items to child EntityCollection,

226

adding new entities, 227

code to query EDM when window loads,

216

creating WPF form, 213

creating WPF project, 214

customizing display of controls, 218

Index | 873

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

About the Author

Julia Lerman is the leading independent authority on the Entity Framework and has

been using and teaching the technology since its inception in 2006. She is well known

in the .NET community as a Microsoft MVP, ASPInsider, and INETA Speaker. Julie is

a frequent presenter at technical conferences around the world and writes articles for

many well-known technical publications, including the Data Points column in MSDN

 Magazine.

Julie lives in Vermont with her husband, Rich, and gigantic dog, Sampson, where she

runs the Vermont.NET User Group. You can read her blog at http://thedatafarm.com/

 blog/ and follow her on Twitter @julielerman.

Colophon

The animal on the cover of Programming Entity Framework is a Seychelles blue pigeon (Alectroenas pulcherrima). Also known as a Seychelles blue fruit dove, this medium-size pigeon is approximately 10 inches long and inhabits the woodlands of the Sey-

chelles archipelago. Its wings, underbody, and tail are dark blue, while its head and

breast are a silvery-gray or a pale blue. It has a characteristic patch of crimson skin that runs from its forehead to its crown. Its diet consists mostly of fruit.

The cover image is from Riverside Natural History vol. IV. The cover font is Adobe ITC

Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad

Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

Document Outline

	Table of Contents

	Foreword

	Preface

	Who This Book Is For

	How This Book Is Organized

	What You Need to Use This Book

	This Book’s Website

	Conventions Used in This Book

	Using Code Examples

	Safari® Books Online

	Comments and Questions

	Acknowledgments

	Chapter 1. Introducing the ADO.NET Entity Framework

	The Entity Relationship Model: Programming Against a Model, Not the Database

	The Entity Data Model: A Client-Side Data Model

	Entities: Blueprints for Business Classes

	The Backend Database: Your Choice

	Database Providers

	Access and ODBC

	Entity Framework Features: APIs and Tools

	Metadata

	Entity Data Model Design Tools

	Database-first design

	Model-first design

	Code generation

	Object Services

	POCO Support

	Change Tracking

	Relationship Management and Foreign Keys

	Data Binding

	n-Tier Development

	EntityClient

	The Entity Framework and WCF Services

	What About ADO.NET DataSets and LINQ to SQL?

	DataSets

	LINQ to SQL

	Entity Framework Pain Points Are Fading Away

	Programming the Entity Framework

	Chapter 2. Exploring the Entity Data Model

	Why Use an Entity Data Model?

	The EDM Within the Entity Framework

	Walkthrough: Building Your First EDM

	Inspecting the EDM in the Designer Window

	Entity Container Properties

	Entity Properties

	Entity Property Properties

	The Model’s Supporting Metadata

	Viewing the Model in the Model Browser

	Viewing the Model’s Raw XML

	CSDL: The Conceptual Schema

	EntityContainer

	EntitySet

	EntityType

	The Key element

	The Property elements

	The navigation properties

	Associations

	Navigation Property

	Navigation Properties That Return Collections

	SSDL: The Store Schema

	MSL: The Mappings

	Database Views in the EDM

	Summary

	Chapter 3. Querying Entity Data Models

	Query the Model, Not the Database

	Your First EDM Query

	Where Did the Context and Classes Come From?

	The ObjectContext class, SampleEntities

	The entity classes

	Querying with LINQ to Entities

	Writing Your First LINQ to Entities Query

	Querying with Object Services and Entity SQL

	Why Another Way to Query?

	Entity SQL

	Entity SQL canonical functions

	The Parameterized ObjectQuery

	Querying with Methods

	Querying with LINQ Methods

	Chaining methods

	Querying with Query Builder Methods and Entity SQL

	Specifying the control variable

	The Shortest Query

	ObjectQuery, ObjectSet, and LINQ to Entities

	Querying with EntityClient to Return Streamed Data

	EntityConnection and the Connection String

	EntityCommand

	ExecuteReader

	Forward-Only Access to the Fields

	Translating Entity Queries to Database Queries

	Pay Attention to the .NET Method’s Impact on Generated SQL

	Avoiding Inadvertent Query Execution

	Summary

	Chapter 4. Exploring LINQ to Entities in Greater Depth

	Getting Ready with Some New Lingo

	Projections in Queries

	Projections in LINQ to Entities

	VB and C# Syntax Differences

	LINQ Projections and Special Language Features

	Anonymous types

	Implicitly typed local variables

	Implicit and explicit anonymous type creation

	Projections with LINQ Query Methods

	Using Navigations in Queries

	Navigating to an EntityReference

	Filtering and Sorting with an EntityReference

	Navigating to Entity Collections

	Projecting Properties from EntityCollection Entities

	Shaped results

	Flattened results

	Filtering and Sorting with EntityCollections

	Aggregates with EntityCollections

	Aggregates in LINQ to Entities

	Aggregates in LINQ Methods

	Joins and Nested Queries

	Joins

	Nested Queries

	Using a nested LINQ query as a projection

	Using a nested LINQ query as the collection to be queried

	Grouping

	Naming Properties When Grouping

	Chaining Aggregates

	Filtering on Group Conditions

	Shaping Data Returned by Queries

	Limiting Which Related Data Is Returned

	Loading Related Data

	Controlling Lazy Loading

	Disabling and enabling lazy loading programmatically

	Changing the default behavior for lazy loading

	Explicitly Loading Entity Collections and Entity References

	Loading the EntityReference

	Performance considerations with deferred loading

	Using the Include Method to Eager-Load

	How is the data shaped with Include?

	Accessing properties from an Include in the query

	Pros and Cons of Load and Include

	Retrieving a Single Entity

	Retrieving a Single Entity with GetObjectByKey

	Finding More Query Samples

	Summary

	Chapter 5. Exploring Entity SQL in Greater Depth

	Literals in Entity SQL

	Expressing a DateTime Literal

	Expressing a Decimal Literal

	Using Additional Literal Types

	Projecting in Entity SQL

	DbDataRecords and Nonscalar Properties

	Projecting with Query Builder Methods

	Using Navigation in Entity SQL Queries

	Navigating to an EntityReference

	Filtering and Sorting with an EntityReference

	Filtering and Sorting with EntityCollections

	Aggregating with EntityCollections

	Using Entity SQL SET Operators

	Aggregating with Query Builder Methods

	Using Joins

	Nesting Queries

	Grouping in Entity SQL

	Returning Entities from an Entity SQL GROUP BY Query

	Filtering Based on Group Properties

	Shaping Data with Entity SQL

	Using Include with an ObjectQuery and Entity SQL

	Understanding Entity SQL’s Wrapped and Unwrapped Results

	Entity SQL Rules for Wrapped and Unwrapped Results

	Digging a Little Deeper into EntityClient’s Results

	Summary

	Chapter 6. Modifying Entities and Saving Changes

	Keeping Track of Entities

	Managing an Entity’s State

	Saving Changes Back to the Database

	Inserting New Objects

	Inserting New Parents and Children

	Deleting Entities

	Summary

	Chapter 7. Using Stored Procedures with the EDM

	Updating the Model from a Database

	Working with Functions

	Function Attributes

	Mapping Functions to Entities

	Mapping Insert, Update, and Delete Functions to an Entity

	Concurrency checking with Use Original Value and Rows Affected Parameter options

	Inspecting Mappings in XML

	Using Mapped Functions

	Using the EDM Designer Model Browser to Import Additional Functions into Your Model

	Mapping the First of the Read Stored Procedures: ContactsbyState

	Using Imported Functions

	Avoiding Inadvertent Client-Side Processing

	Mapping a Function to a Scalar Type

	Mapping a Function to a Complex Type

	Summary

	Chapter 8. Implementing a More Real-World Model

	Introducing the BreakAway Geek Adventures Business Model and Legacy Database

	Creating a Separate Project for an EDM

	Inspecting and Cleaning Up a New EDM

	Modifying the Names of Entities and Properties

	Resolving Collisions Between Property Names and Entity Names

	Cleaning Up Navigation Property Names

	Setting Default Values

	Mapping Stored Procedures

	Using the Use Original Value Checkbox in Update Mappings

	Working with Many-to-Many Relationships

	Inspecting the Completed BreakAway Model

	Building the BreakAway Model Assembly

	Looking at the Compiled Assembly

	Splitting Out the Model’s Metadata Files

	Moving the schema files

	Summary

	Chapter 9. Data Binding with Windows Forms and WPF Applications

	Data Binding with Windows Forms Applications

	Creating a Windows Forms Application

	Using Windows Forms Data Sources

	Creating an Object Data Source for a Customer Entity

	Getting an Entity’s Details onto a Form

	Adding Code to Query an EDM When a Form Loads

	Binding Without a BindingSource

	Adding an EntityCollection to the Form

	Displaying the Properties of Related Data in the Grid

	Allowing Users to Edit Data

	Editing Navigation Properties (and Shrinking the Query)

	Replacing the Navigation Property TextBoxes with ComboBoxes

	Adding New Customers

	Deleting Reservations

	Data Binding with WPF Applications

	Creating the WPF Form

	Creating the WPF Project

	Adding the Necessary Data Source Objects

	Inspecting the XAML and Code Generated by the Automated Data Binding

	XAML data-binding elements

	Adding Code to Query the EDM When the Window Loads

	Customizing the Display of the Controls

	Selecting an Entity and Viewing Its Details

	Adding Another EntityCollection to the Mix

	Working with a many-to-many relationship

	Modifying the code to eager-load the related activities

	Adding the Activities ListBox and binding it to the Trips ListBox

	Testing the application again

	Editing Entities and Their Related Data

	Using SortDescriptions to Keep Sorting in Sync with Data Modifications

	Adding Items to the Child EntityCollection

	Testing the new feature for adding activities

	The Last Task: Adding New Trips to the Catalog

	A few WPF tricks for a more interactive ListBox

	Coding the Add New Trip feature

	Testing the final version of the WPF demo

	Summary

	Chapter 10. Working with Object Services

	Where Does Object Services Fit into the Framework?

	Processing Queries

	Parsing Queries: From Query to Command Tree to SQL

	Understanding Query Builder Methods

	Query builder methods and EntitySets

	From query builder methods to Entity SQL expressions

	Combining LINQ methods and query builder methods

	Analyzing a Query with ObjectQuery Methods and Properties

	ObjectQuery.ToTraceString

	ObjectQuery.CommandText

	ObjectQuery.Parameters

	ObjectQuery.Context

	Executing Queries with ToList, ToArray, First or Single

	Executing Queries with the Execute Method

	Overriding a Default Connection with ObjectContext.Connection

	Handling Command Execution with EntityClient

	Materializing Objects

	Managing Object State

	Using EntityKey to Manage Objects

	Merging Results into the Cache with MergeOptions

	Inspecting ObjectStateEntry

	Maintaining EntityState

	Managing Relationships

	Attaching and Detaching Objects from the ObjectContext

	ObjectContext.AddObject and ObjectSet.AddObject

	ObjectContext.Attach and ObjectSet.Attach

	ObjectContext.AttachTo

	Taking Control of ObjectState

	ObjectStateManager Methods

	ObjectStateEntry State Methods for Managing State

	ObjectSet State Methods

	Sending Changes Back to the Database

	ObjectContext.SaveChanges

	SaveChanges returns an integer

	SaveChanges refreshes the state of tracked entities

	Affecting SaveChanges Default Behavior

	Overriding SaveChanges Completely

	Data Validation with the SavingChanges Event

	Concurrency Management

	Optimistic concurrency

	ConcurrencyMode

	OptimisticConcurrencyException

	Transaction Support

	Implementing Serialization, Data Binding, and More

	Object Services Supports XML and Binary Serialization

	ObjectContext, ObjectStateManager, and ObjectStateEntry are not serializable

	Automatic serialization

	XML and DataContract serialization

	Binary serialization

	Serialization and object state

	Explicit serialization

	Object Services Supports Data Binding

	Summary

	Chapter 11. Customizing Entities

	Partial Classes

	Using Partial Methods

	The OnContextCreated Method

	The On[Property]Changed and On[Property]Changing Methods

	Using PropertyChanged to Calculate Database-Computed Columns Locally

	Subscribing to Event Handlers

	The ObjectContext.ObjectMaterialized Event

	The ObjectContext.SavingChanges Event

	GetObjectStateEntries: A critical method when validating entities from the context

	Implementing SavingChanges

	Setting default foreign keys in SavingChanges when no foreign key scalar property exists

	The EntityObject.PropertyChanging and EntityObject.PropertyChanged Events

	The order of the Changing/Changed events

	Event parameters

	Subscribing to the class-level PropertyChanging and PropertyChanged events

	The AssociationChanged Event

	Event arguments

	Creating Your Own Partial Methods and Properties

	Overriding the Object Constructor

	Overriding ObjectContext.SaveChanges

	Creating Custom Properties

	Using custom properties to perform calculations on child collections

	Overloading Entity Creation Methods

	Using Partial Classes for More Than Just Overriding Methods and Events

	Overriding Default Code Generation

	Switching to a Template

	Reading the Template

	Modifying the Template

	Inserting the Managed partial method in each entity class

	Other ways to create common methods or properties for all entities

	Customizing a Template for Major Class Modifications

	Switching Between the Default Template and a Custom Template

	Summary

	Chapter 12. Data Binding with RAD ASP.NET Applications

	Using the EntityDataSource Control to Access Flat Data

	Creating the Hello Entities Project

	Creating a GridView and an EntityDataSource Concurrently

	Configuring an EntityDataSource with Its Wizard

	Formatting the GridView

	Testing the Web Application

	Understanding How the EntityDataSource Retrieves and Updates Your Data

	EntityDataSource and Its Query

	EntityDataSource and Its ObjectContext

	Using your own context

	EntityDataSource Context Events

	EntityDataSource and ViewState

	Accessing Foreign Keys When There Is No Foreign Key Property

	Working with Related EntityReference Data

	Using EntityDataSource.Include to Get Related Data

	Displaying Data That Comes from EntityReference Navigation Properties

	Using a New EntityDataSource Control to Enable Editing of EntityReference Navigation Properties

	Editing EntityReferences That Cannot Be Satisfied with a Drop-Down List

	Binding an EntityDataSource to Another Control with WhereParameters

	Editing Related Data Concurrently with Multiple EntityDataSource Controls

	Working with Hierarchical Data in a Master/Detail Form

	Setting Up the Web Application

	Specifying Your Own Entity SQL Query Expression for an EntityDataSource

	Binding a DropDownList to an EntityDataSource Control

	Creating a Parent EntityDataSource That Is Controlled by the DropDownList and Provides Data to a DetailsView

	Using the EntityDataSource.Where Property to Filter Query Results

	Displaying Read-Only Child Data Through the Parent EntityDataSource

	Using a New EntityDataSource to Add a Third Level of Hierarchical Data to the Master/Detail Form

	Using the EntityDataSource.Inserting Event to Help with Newly Added Entities

	Testing the Application

	Exploring EntityDataSource Events

	Building Dynamic Data Websites

	Summary

	Chapter 13. Creating and Using POCO Entities

	Creating POCO Classes

	Creating an ObjectContext Class to Manage the POCOs

	Verifying the POCOs with a query

	Change Tracking with POCOs

	Understanding the Importance of DetectChanges

	Loading Related Data with POCOs

	Loading from the Context

	Lazy Loading from a Dynamic Proxy

	Exploring and Correcting POCOs’ Impact on Two-Way Relationships

	Using the DetectChanges Method to Fix Relationships

	Enabling Classes to Fix Their Own Relationships

	Using Proxies to Enable Change Notification, Lazy Loading, and Relationship Fix-Up

	Change Notification by Proxy

	Lazy Loading by Proxy

	Exploring the Proxy Classes

	Synchronizing Relationships by Proxy

	Using T4 to Generate POCO Classes

	Modifying the POCO Template

	Creating a Model That Works with Preexisting Classes

	Code First: Using Entity Framework with No Model at All

	Summary

	Chapter 14. Customizing Entity Data Models Using the EDM Designer

	Mapping Table per Type Inheritance for Tables That Describe Derived Types

	Mapping TPT Inheritance

	Handling duplicate names and concurrency properties in an inheritance hierarchy

	Fixing a potential constraint problem

	Querying Inherited Types

	POCO Classes and Inherited Objects

	Inserting TPT Inherited Types

	SaveChanges and newly added derived types

	Specifying or Excluding Derived Types in Queries

	Creating New Derived Entities When the Base Entity Already Exists

	TPT with Abstract Types

	Mapping Unique Foreign Keys

	Mapping an Entity to More Than One Table

	Merging Multiple Entities into One

	Querying, Editing, and Saving a Split Entity

	Mapping Stored Procedures to Split Tables and More

	Splitting a Single Table into Multiple Entities

	Filtering Entities with Conditional Mapping

	Creating a Conditional Mapping for the Activity Entity

	Querying, Inserting, and Saving with Conditional Mappings

	Filtering on Other Types of Conditions

	Removing the Conditional Mapping from Activity and Re-creating the Category Property

	Implementing Table per Hierarchy Inheritance for Tables That Contain Multiple Types

	Creating the Resort Derived Type

	Setting a Default (Computed) Value on the Table Schema

	Testing the TPH Mapping

	Choosing to Turn a Base Class into an Abstract Class

	Creating Complex Types to Encapsulate Sets of Properties

	Defining a Complex Type

	Reusing Complex Types

	Querying, Creating, and Saving Entities That Contain Complex Types

	Removing the Complex Types from the Model

	Using Additional Customization Options

	Using GUIDs for EntityKeys

	Mapping Stored Procedures

	Mapping Multiple Entity Sets per Type

	Mapping Self-Referencing Associations

	Summary

	Chapter 15. Defining EDM Mappings That Are Not Supported by the Designer

	Using Model-Defined Functions

	Using Model-Defined Functions to Return More Complex Results

	Consuming the Complex Results

	Reading the Results from a Complex Function

	Mapping Table per Concrete (TPC) Type Inheritance for Tables with Overlapping Fields

	Using QueryView to Create Read-Only Entities and Other Specialized Mappings

	Finding a Common Use Case for QueryView

	Creating a CustomerNameAndID Entity

	Creating a QueryView Mapping for CustomerNameAndID

	Testing the QueryView

	Deconstructing the QueryView

	Summary

	Chapter 16. Gaining Additional Stored Procedure and View Support in the Raw XML

	Reviewing Procedures, Views, and UDFs in the EDM

	Working with Stored Procedures That Return Data

	Using Functions That Match an Entity Whose Property Names Have Been Changed

	Query Stored Procedures and Inherited Types

	Composing Queries Against Functions

	Replacing Stored Procedures with Views for Composability

	Queries That Return Multiple Result Sets

	Executing Queries on Demand with ExecuteStoreQuery

	Querying to a Class That Is Not an Entity

	Querying into an Entity

	Adding Native Queries to the Model

	Defining a Complex Type in the Model Browser

	Adding Native Views to the Model

	DefiningQuery Is Already in Your Model

	Using DefiningQuery to Create Your Own Views

	Implementing a DefiningQuery

	Creating Associations with the New Entity

	Testing the DefiningQuery in an association

	Using DefiningQuery to Solve More Complex Problems

	Using Commands That Affect the Database

	Executing SQL on the Fly with ExecuteStoreCommand

	Using Functions to Manipulate Data in the Database

	Changing from one derived type to another

	Mapping Insert/Update/Delete to Types Within an Inheritance Structure

	What If Stored Procedures Affect Multiple Entities in an Inheritance Structure?

	Implementing and Querying with User-Defined Functions (UDFs)

	Summary

	Chapter 17. Using EntityObjects in WCF Services

	Planning for an Entity Framework–Agnostic Client

	Assessing the Pros and Cons of an Entity Framework–Agnostic Consumer

	Building a Simple WCF Service with EntityObjects

	Creating the Service

	Defining the Service Operations

	Defining Extra Service Classes

	Exposing Custom Properties

	Implementing the Service Interface

	Adding Graphs to ObjectContext

	Deleting Objects

	Updating the Object Graph

	Client Rules for Identifying Changes in an EntityCollection

	The UpdateCustomer Method

	Handling New and Existing Reservations

	Deleting Reservations

	Building a Simple Console App to Consume an EntityObject Service

	Enabling the Client Application to Receive Large Messages from the Service

	Creating Methods to Test the Service Operations

	Analyzing the GetAndUpdateCustomer Method

	Testing Out the Other Service Operations

	Creating WCF Data Services with Entities

	Putting WCF Data Services in Perspective

	Creating a WCF Data Service

	Filtering at the Service Level Using QueryInterceptor

	Anticipating Exceptions

	Exposing Related Data Through the Service

	Preparing for WCF Data Services’ Limitations

	Modifying Data Through a Service

	Learning More About Creating and Consuming WCF Data Services

	Understanding How WCF RIA Services Relates to the Entity Framework

	Summary

	Chapter 18. Using POCOs and Self-Tracking Entities in WCF Services

	Creating WCF-Friendly POCO Classes

	Updating the POCO Classes Based on the Current BreakAway Model

	Isolating the POCO Entities in Their Own Project

	Directing a template back to a model

	Specifying the namespace of entity classes

	Providing the ObjectContext with a reference to the entities

	Adding Custom Logic to the POCO Entities with a Base Class

	Modifying the template to apply the inheritance

	Following WCF Collection Rules

	Preventing Properties from Being Marked As Virtual

	Building a WCF Service That Uses POCO Classes

	Implementing the Interface

	Using the Service

	Using the Self-Tracking Entities Template for WCF Services

	Creating and Exploring the Self-Tracking Entities

	Putting the Change-Tracking Logic Where It’s Needed

	Creating a WCF Service That Uses Self-Tracking Entities

	Watching Self-Tracking Entities Under the Covers

	Debugging the client application

	Debugging the SaveCustomer service method

	Inspecting the Generated Context Class and Extensions

	Using POCO Entities with WCF Data and RIA Services

	Preparing for WCF Data Services

	Dealing with entities that live in a separate assembly

	Avoiding problems caused by dynamic proxies

	Using POCO Entities in WCF RIA Services

	Sorting Out the Many Options for Creating Services

	Summary

	Chapter 19. Working with Relationships and Associations

	Deconstructing Relationships in the Entity Data Model

	Understanding How the Entity Data Model Wizard Creates the Association

	Understanding Additional Relationship Items

	Handling Nonessential Navigation Properties

	Understanding the Major Differences Between Foreign Key Associations and Independent Associations

	Defining Associations in Metadata

	Detecting Associations at Runtime

	Deconstructing Relationships Between Instantiated Entities

	Understanding Relationship Manager and the IRelatedEnd Interface

	Late-Binding Relationships

	Taking a Peek Under the Covers: How Entity Framework Manages Relationships

	Understanding Navigation Properties

	EntityReference properties

	EntityReference.Value

	What if there is no EntityReference

	EntityCollection properties

	Understanding Referential Integrity and Constraints

	Constraints that are not checked until they hit the database

	Checking for missing entity references with and without foreign keys

	Implementing Deletes and Cascading Deletes

	Cascading deletes in the database

	Recommendation: Cascade in both the model and the database, or in neither

	Defining Relationships Between Entities

	The CLR Way: Setting a Navigation Property to an Entity

	Setting a Foreign Key Property

	Setting an EntityReference Using an EntityKey

	Loading, Adding, and Attaching Navigation Properties

	Lazy Loading

	EntityReference.Load and EntityCollection.Load

	Loading from Detached Entities: Lazy and Explicit

	Using EntityCollection.Add

	Adding new entities that are detached

	Adding existing entities that are detached

	Adding new or existing entities that are attached

	Adding entities to the EntityCollection of a detached object

	Using Attach and Remove

	Moving an Entity to a New Graph

	Learning a Few Last Tricks to Make You a Relationship Pro

	Using CreateSourceQuery to Enhance Deferred Loading

	Getting a Foreign Key Value in an Independent Association

	Summary

	Chapter 20. Real World Apps: Connections, Transactions, Performance, and More

	Entity Framework and Connections

	Overriding EntityConnection Defaults

	Working with Connection Strings Programmatically

	Constructing connection strings on the fly with the EntityConnectionStringBuilder class

	Choosing and loading a model programmatically

	Opening and Closing Connections

	Understanding the default connection usage

	Default behavior 1: Many calls on a single connection

	Default behavior 2: Multiple connections

	Forcing an explicit connection

	Getting the Store Connection from EntityConnection

	Disposing Connections

	Pooling Connections

	Fine-Tuning Transactions

	Why Use Your Own Transaction?

	Understanding Implicit Entity Framework Transactions

	Understanding SaveOptions and AcceptAllChanges in a transaction

	Specifying Your Own Read/Write Transactions

	Specifying Your Own Read-Only Transactions

	Rolling Back Transactions

	Understanding Security

	Guarding Against SQL Injection

	Taking precautions with dynamic queries

	Entity SQL injection

	Guarding Against Connection Piggybacks

	Fine-Tuning Performance

	Measuring Query Performance

	Measuring Startup Performance

	Reducing the Cost of Query Compilation

	Caching for Entity SQL Queries

	Comparing EntityClient to Object Services

	Precompiling Views for Performance

	Pregenerating views for performance

	Pregenerating views into an existing project

	Precompiling LINQ to Entities Queries for Performance

	Fine-Tuning Updates for Performance?

	Lacking Support for Full Text Searches

	Exploiting Multithreaded Applications

	Forcing an ObjectContext to Use Its Own Thread

	Implementing Concurrent Thread Processing

	Exploiting .NET 4 Parallel Computing

	Summary

	Chapter 21. Manipulating Entities with ObjectStateManager and MetadataWorkspace

	Manipulating Entities and Their State with ObjectStateManager

	Refreshing Your High-Level Understanding of ObjectStateEntry

	Getting an ObjectStateManager and Its Entries

	Getting groups of entries with GetObjectStateEntries

	Building Extension Methods to Overload GetObjectStateEntries

	Building a Method to Return Managed Entities

	Using GetObjectStateEntry and TryGetObjectStateEntry

	Mining Entity Details from ObjectStateEntry

	Reading and writing values

	Accessing object metadata with CurrentValueRecord.DataRecordInfo

	Getting started with the FieldMetadata hierarchy

	Leveraging the ObjectStateManager During Saves

	Using ObjectStateManager to Build an EntityState Visualizer

	Retrieving an ObjectStateEntry Using an EntityKey

	Reading the OriginalValues and CurrentValues of an ObjectStateEntry

	Determining Whether a Property Has Been Modified

	Displaying the State and Entity Type

	Getting ComplexType Properties Out of ObjectStateEntry

	Modifying Values with ObjectStateManager

	Working with Relationships in ObjectStateManager

	Building graphs directly with the RelationshipManager

	Using the MetadataWorkspace

	Loading the MetadataWorkspace

	Creating a MetadataWorkspace without an EntityConnection

	Clearing the MetadataWorkspace from Memory

	Understanding the MetadataWorkspace ItemCollections

	Determining whether an ItemCollection has been loaded

	Retrieving Metadata from the MetadataWorkspace

	Retrieving sets of items from the metadata with GetItems and TryGetItem

	Retrieving specific items from the metadata with GetItem and TryGetItem

	Retrieving functions from the metadata with GetFunctions and TryGetFunctions

	Querying the Metadata with LINQ to Objects

	Building Dynamic Queries and Reading Results

	Building Entity SQL Queries Dynamically Using Metadata

	Creating Queries on the Fly with CreateObjectSet and Query Builder Methods

	Leveraging CreateObjectSet to return Entity SQL, not just a query

	Reading the Results of a Dynamically Created Query

	Creating and Manipulating Entities Dynamically

	Creating EntityObjects Without Entity Classes

	Creating a new entity with CreateInstance

	Using System.Type to inspect the EntityType

	Getting a reference to an assembly

	Creating an entity from the assembly

	Creating Entities and Graphs Dynamically

	Custom extension methods used by AddChildToParentObject

	Calling the AddChildToParentObject method

	Summary

	Chapter 22. Handling Exceptions

	Preparing for Exceptions

	Handling EntityConnectionString Exceptions

	Connection String Can’t Be Found or Is Improperly Configured: System.ArgumentException

	Metadata Files Cannot Be Found: System.Data.MetadataException

	Handling Connection String Exceptions

	Handling Query Compilation Exceptions

	Invalid LINQ to Entities Query Expressions: System.NotSupportedException

	Invalid Entity SQL Query Expressions: EntitySqlException

	Handling an EntitySqlException

	EntityCommandCompilationException Thrown by the Store Provider

	Creating a Common Wrapper to Handle Query Execution Exceptions

	Handling Exceptions Thrown During SaveChanges Command Execution

	UpdateException: Thrown When Independent Association Mapping Constraints Are Broken

	UpdateException: Thrown by Broken Constraints in the Database

	Relying on Entity Framework to Automatically Roll Back When an UpdateException Occurs

	Gleaning Details from UpdateException

	Planning for Other Exceptions Related to the Entity Framework

	Handling Concurrency Exceptions

	Summary

	Chapter 23. Planning for Concurrency Problems

	Understanding Database Concurrency Conflicts

	Understanding Optimistic Concurrency Options in the Entity Framework

	Ignoring Concurrency Conflicts

	Forcing the User’s Data to the Server (ClientWins)

	Refreshing the User’s Data with Server Data (StoreWins)

	Determining the Scope of Changes

	Using rowversion (a.k.a. timestamp) for Concurrency Checks

	Implementing Optimistic Concurrency with the Entity Framework

	Flagging a Property for Concurrency Checking

	How the Entity Framework Uses the ConcurrencyMode Property

	Concurrency Checking Without a rowversion Field

	Concurrency Checking on a Checksum in the Data Store

	Concurrency Checks for EntityReference Navigation Properties

	Concurrency Checks and Inherited Types

	Concurrency Checks and Stored Procedures

	Defining a stored procedure to perform concurrency checking

	Handling OptimisticConcurrencyExceptions

	Using ObjectContext.Refresh

	Using Refresh with ClientWins

	Using Refresh with StoreWins

	Refreshing Collections of Entities

	Refreshing Related Entities in a Graph

	Rewinding and Starting Again, and Maybe Again After That

	Reporting an Exception

	Handling Concurrency Exceptions at a Lower Level

	Handling Exceptions in a Granular Way Without User Intervention

	Handling Multiple Conflicts

	Separating the good from the bad and the ugly

	Handling Exceptions When Transactions Are Your Own

	Summary

	Chapter 24. Building Persistent Ignorant, Testable Applications

	Testing the BreakAway Application Components

	Getting Started with Testing

	Writing an Integration Test That Hits the Database

	Inspecting a Failed Test

	Writing a Unit Test That Focuses on Custom Logic

	Creating Persistent Ignorant Entities

	Planning the Project Structure

	Starting with the Model and Its POCO Entities

	Building an Interface to Represent a Context

	Modifying the BAEntities ObjectContext Class to Implement the New Interface

	Disconnecting the context class from the T4 template

	Implementing the IContext interface

	Implementing the remaining interface members

	Creating the IEntityRepository Interface

	Creating the Repository Classes

	Testing GetReservationsForCustomer Against the Database

	Creating a Fake Context

	Creating a FakeObjectSet Class

	Completing the Fake Context

	Modify the tests to use the fake repository

	Rerun the tests

	Building Tests That Do Not Hit the Database

	Adding Validation Logic to the POCO Class

	Adding Validation Logic to the Context

	Providing ManagedEntities in the FakeContext

	Hiding the Context from the Lower Layers with Unit of Work

	Testing UnitOfWork Against the Database

	Enabling Eager Loading in IContext

	Eager loading with a fake context

	Leveraging Precompiled Queries in Your Repositories

	Using the New Infrastructure in Your Application

	Adding a UI Layer That Calls the Repository

	Application Architecture Benefits from Designing Testable Code

	Considering Mocking Frameworks?

	Summary

	Chapter 25. Domain-Centric Modeling

	Creating a Model and Database Using Model First

	Creating a Conceptual Model in the Designer

	Creating the Entities

	Setting attributes of the entity’s properties

	Creating Association and Inheritance Hierarchies

	Creating a one-to-many relationship

	Creating a many-to-many relationship

	Creating an inheritance hierarchy

	Generating Database Schema from the Model

	Exploring the generated DDL

	Looking at the result of the inheritance

	Noting the result of the many-to-many relationship

	Exploring the constraints

	Completing the generation of the DDL

	Creating the Database and Its Schema

	Overriding the DDL Generation

	Using the Feature CTP Code-First Add-On

	Understanding Code-First Design

	Installing the Feature CTP

	Exploring Some Configuration Examples

	Testing the Code-First Application and Database

	Using SQL Server Modeling’s “M” Language

	Using M Metadata in Entity Framework Applications

	Summary

	Chapter 26. Using Entities in Layered Client-Side Applications

	Isolating the ObjectContext

	Freeing Entities from Change Tracking

	Enabling Change Tracking Across Tiers

	Moving Other ObjectContext-Dependent Logic to the DataBridge

	Ensuring That Lazy Loading Doesn’t Negatively Impact the Layered Application

	Noting Additional Benefits of the Layered Application

	Separating Entity-Specific Logic from ObjectContext Logic

	Working with POCO Entities

	Providing EntityState

	Providing Logic in Place of Other EntityObject Behavior

	Summary

	Chapter 27. Building Layered Web Applications

	Understanding How ObjectContext Fits into the Web Page Life Cycle

	Return Results, Not Queries, from the DataBridge Class

	Using Entities in Read-Only Web Pages

	Exploring Options for Updating Entities in an ASP.NET Web Forms Application

	Single or batch updates?

	Persist entities or use independent values?

	Comparing ASP.NET’s State Solutions to the Needs of the Entity Framework

	View state

	Application cache and session state

	Building an N-Tier Web Forms Application

	Designing the Application

	Using the Existing Repositories

	Building an Entity Manager to Act As a DataBridge

	Retrieving Data for Display and for Future Updates

	Making the Related Data Accessible to the Client

	Getting Data from the Manager to the Client

	Adding Lists for User Selection Controls

	Allowing a User to Modify Related Data

	Building an ASP.NET MVC Application

	Replacing the Context with Repositories

	Editing Entities and Graphs on an MVC Application

	Creating a Repository for Payments

	Interacting with the ReservationController

	Summary

	Appendix A. Entity Framework Assemblies and Namespaces

	Unpacking the Entity Framework Files

	Exploring the Namespaces

	Existing Namespaces That Include Entity Framework Classes and Functionality

	Entity Framework-Specific Namespaces

	Appendix B. Data-Binding with Complex Types

	Using Complex Types with ASP.NET EntityDataSource

	Identifying Unexpected Behavior When Binding Complex Types

	Successfully Using Binding to Complex Types in ASP.NET Without Data Source Controls

	List controls

	Data-bound controls

	Templated controls

	Windows Forms DataSource and Complex Types

	Appendix C. Additional Details About Entity Data Model Metadata

	Seeing EDMX Schema Validation in Action

	Additional Conceptual Model Details

	Schema

	XML Representation of an Association

	AssociationSet

	Additional SSDL Metadata Details

	SSDL Association and AssociationSet Elements

	ReferentialConstraint

	Additional MSL Metadata Details

	The MSL Elements

	Mapping

	EntityContainerMapping

	EntitySetMapping

	EntityTypeMapping

	MappingFragment

	AssociationSetMapping

	ScalarProperty

	Index

index-588_1.png
;\§

index-775_2.png
‘Add Association

Assaciation Name:

SpeakerSession

End End
iy iy

[Speker 5|~ 5
Multipiciy: Multipiciy:

[+ oty <] [ovany -]

Navigation Property

Sessions

Navigation Property

Speakers

index-586_1.png
;\§

index-775_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-590_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-777_2.png
o speaker ®

= Properties
i speaketd
F Firstame.
F Lasthame
Tt

EXY
3 Couny
Feperise
Foio

= Novigation Propertis
% Sessions.

. ConferenceTrack

. session

= Propertes

= Properties ¥ Trackid
9 Sessionld TrackName
T TrackChair
5 Category & MinSessions
& Length 5 MaxSessions
FLevel = Navigation Propertes
ot & sesions
5 ConferenceTrackTrackid

= Navigation Properties
& ConfrnceTck

5 Speakers

& 3 Session. 2

= Propeties
= Navigation Properties

index-589_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-777_1.png
;\§

index-773_1.png
‘Add Association

Assaciation Name:

ConferenceTrackSession

- -
iy iy

o = 9
Wlpliy: Wlpliy:

[rono [ty 3

9] Navigatin Praperty:

Sessions

9] Navigatin Praperty:

ConferenceTrack

9] Add foreign key properties to the ‘Sessian’ Entity

ConferenceTrack can have * (Many) instances of Session. Use
ConferenceTrack.Sessions to access the Session instances

Session can have 1(One) instance of ConferenceTrack, Use
Session.CanferenceTrack to access the CanferenceTrack instance

ok

Cancel

index-585_2.png
;\§

index-774_2.png
Referential Constraint

Principa

KonferenceTrack oK

Dependent

Session Delete
Cancel

Principal Key Dependent Property

Trackld

ConferenceTrackTrackid

index-585_1.png
;\§

index-774_1.png
4 ConferenceTrack

0p
- = Properties

© properties 9 Trackid
e /| S,
e H TrackChai
Fcategory . 1] Minsessons

F Cength 2 MarSessons
E S Novigation pp‘/
£ abstnct) Sesions

2 ConferenceTrackTrackd —

 Navigation Propeties
=] ConferenceTrack

index-770_1.png
Propertie:
ConferenceModel.Speaker.Property Property

B =

Getter Public
Setter Public

StoreGeneratedPattern None

Fixed Length (Nane)
MaxLength (Nane)
Unicade (None)

ConcurrencyMade Nane
Default Value (None)
Documentation

Entity Key False
Name Property
Nullable False

Type String

Name.
The name of the praperty.

index-769_2.jpg
eyl

Key Property
7 Crste ke propery.
Propey

index-771_2.png
;\§

index-771_1.png
;\§

index-768_2.png
Toolbox

4 Entity Framewark

Ferx

Painter
Assaciation

Entity

Inheritance

index-768_1.png
. Entity1

 propertes

Y

 Navigaion Properties

index-769_1.png
;\§

index-768_3.png
Add

Diagram
Zoom

Grid

Scalar Property Eormat
Select All

& Mopping Detais
B Mool Brosear

N

S| ssociton
| bt
o| W oo
v -

index-767_2.png
;\§

index-767_1.png
1/ Conference Track
r TrackName

TrackChair

Speaker

MinSessions
MaxSessions

FirstName:
LastName
Title

Gty
Country
Expertise
Bio

Workshop (is Se

Days
Indudeslabs

index-755_1.png
;\§

index-745_1.png
;\§

index-743_1.png
;\§

index-753_1.png
;\§

index-746_1.png
;\§

index-740_1.png
;\§

index-736_1.png
;\§

index-42_2.png
Person
@ Persond
Firsthiame
Lasthame

Tt

fea=e=

PersonalDetails
@ Persond
BirthDate
E=
Martalstatus
Toterélias

SalesPerson
@ Persond
Terrary
CommissiorRate

index-742_1.png
;\§

index-42_1.png
4 person 2 salesperson

> Person
 properties properties
5 PersoniD S Teritory
5 Firsthlame 5 CommissionRate
P LastName. = Navigation Properties
2 Title)
' BirthDate
=]

F MaritalStatus
2 Tuitterélins

= Navigation Praperties

index-741_1.png
;\§

index-43_2.png
;\§

index-43_1.png
Person ID:

Comnission Rle:
it Name:

st Nae:

il

ik Date:
aital Staus
s

Tentary

Twitter Alias:

%
wily

Laman

M
annsn
Maried
00112222
YT

willLoman

index-46_1.png
2 Customer
 Persan

. pesson © properties . order

“ Accounthlumber

B properties 2 Customertypeld B properties
¥4 PersoniD ModifiedDate. 5 OrderD
F Firstame S TimeStamp 1| F Ordeiumber
= Lasthiame Emr— = Orderdite
it R o A SalesPersonlD
4 BirthDate 5 CustomerdD
Y 4 OnlineOrder
5 MaritalStatus 5 SessionMinutes
5 Twitterdlias F ModifiedDate

= Navigation Properties

%] Customer
] SoesPerson

= Navigation Properties

. salesperson
= Person

@

 properties
S Teritory
5 CommissionRate
 Navigation Properties
% Orders

index-735_1.png
;\§

index-45_1.png
Person ®
Class
+ EntityObject

 Fields

= Properties
BirthDate
Firstharme
Lasthame
MaritalStatus
PersonlD
ssn

Title
Twitterdlias
= Methads

@ CrestePerson
4% OnBithDateChanged
49 OnBirthDateChanging
% OnfirstNameChanged
39 OnfirstNameChanging
4% OnLastNameChanged
49 OnlastNameChanging
5% OnMarialSatusChanged
59 OnMarialSatusChanging
4% OnPersonDChanged
4% OnPersonlDChanging
4% OnSNChanged

5% OnSSNChanging

4% OnTiteChanged

5% OnTitleChanging

49 OnTwiterisChanged
5% OnTuitterAliasChanging

SalesPerson ®
Class
+ Persan

= Fields

& _Commisionfats
Tertory
& propertes
8 CommissonRats
Tertory
= Methods

@ Crstasslsperson
4% OnCommissionfateChangzd
4% OnCommissionfateChanging
5% OnTeritoryChiangedt
4% OniTantoryChanging

index-63_1.png
;\§

index-62_2.jpg
Foy
| St
Feomegen
Frvemaose
Suisesone

Sasieipe
gmenropenes = orve
% s e
S s Pt
2 ot

index-65_1.png
SampleModelContact EntiyType
m =)
ey

Access
Base Type

» Documentation

index-64_1.png
Properties

SampleModel ConceptualEntityModel
B =l

Entity Container Access

Entity Container Name SampleEntities
Namespace SampleModel
Pluralize New Objects True
Transform Related Text Te True

Validate On Build True

index-66_2.png
;\§

index-66_1.png
SampleModelContact Fistame Property -
GLE

Concunency Mode Nene

Default Value (None)

Docomentation

Enity Koy ase

Focd Length rase

Geter publc

Ve Length 50

[T S risvme
v [N
e i
st e

index-67_2.png
;\§

index-67_1.png
;\§

index-61_2.jpg
Add New e - Chapter2ConsoleApp. |
It Templstes Sonby Nomesscending <] (1) | somch e Tempites
gy . -
g [B, 00 oy s savmconens (7 7 VIR
= P s
General Database Unit Test Visual C# lems !
%
I s N
P i e
o |
i, il
e

index-61_1.png
;\§

index-62_1.png
;\§

index-51_1.png
;\§

index-58_2.png
;\§

index-58_1.png
;\§

index-60_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-59_1.png
;\§

index-60_3.png
;\§

index-60_2.jpg
New Project

)

NG ekt S otk 2] e

ned Tt
S i o —
i
e B e
Gotsois
by) vorsopcien
e =
T 8) e sommcsopicin
e
Vorston Conipaion
G s ——
Database L) "
Vet B i
e}

Cpreaconsoisort
B

Progammngiriyfamerak

Visice

Viaice

Visice

Visice

Visice

Visice

et Temy 2|

Type: vaice

Aprcector cesing s command-ne

g e
FlCmia e o i
psstoruce o

index-47_2.png
;\§

index-47_1.png
;\§

index-50_1.jpg
SRS
T

index-48_1.png
;\§

index-78_1.png
;\§

index-77_1.png
Properties

=

Association Set Name
Documentation

End Mutiplicity

Endl Navigation Property
End1 OnDelete

Endl Role Neme

End2 Mutiplcity

End2 Navigation Property
End2 OnDelete

End2 Role Name

Name.

Referential Consti

index-78_3.png
;\§

index-78_2.png
Referential Constraint

Principal Key Dependent Property
ContactiD. ContactiD.

index-81_1.png
;\§

index-79_1.png
Properties

‘SampleModel Address.Contact NavigationProperty

m =)

Association
Documentation
From Role.
Getter
Mutiplicity
Name.

Return Type
Setter

ToRole

FK_Address_Contact

Address
Public

1(0ne)

Contact

Instance of Contact
Public

Contact

Name

index-82_1.png
by e smplenadl. Store Adress” storesTypseTables Schesadbs 1>

Centtyse omamcontace EnttyTypesnpletodel St Contact” torerTypsTables Schemss e />

T T e e

Chsociationet tameTK Addrss Contact” AssocisticnsSnplaodl Stor. 1K e Contact™>
oo RelerConace” EnitysetCantact >
oot Belerress iyt st 5
<isacintionsets
iyt

S ot nmeuenns
ropertyt tomeestress1o 5

e

roperty Nossabir eI Tpes"int” Wllablesalse” StoreeneateiPatierneLbentity” />

Progerty - SErest Typemarchar” faciengiherso”

roperty osmstrest Typermarcha haviergeneso” /s

Property oas"City” ypecemarcnar” vsiangthSe 1>

Progerty - SEALPrOMIRCE Typer ATCRA oL en gt />

Progerty Nae-"CoumyRegion” Types"marcaur” Faiengthse” /2

roperty NamsPustalode” Typeremuarchr” Haxangierse >

index-81_2.png
Properties

SampleModel Contact Addresss NaigatonPropery
m =)

Association
Documentation

From Role. Contact

Getter Public

Muliplicity * (Many)

Name. Addresses

Return Type Collection of Address
Setter Public

ToRole Address

Name

index-84_1.png
el Ll

Column
4 Tables

4 [Mapsto Contact
1 <Add s Condition>
£ Column Mapping:

] ContactiD: int

FirstName: varchar

LastName: nvarchar
Title: varcher
AddDate: datetime
ModifedDate:datetime.
3 <Add a Tableor View>

Oper...

E2E2E 2R 2R 2K 2

Value/ Property.

5 ContactiD : Int32

5 FistName: String

2 LastName : String.

R Title: String

5 AddDate: DateTime

5 ModifiedDate : DateTime

index-83_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-76_1.png
;\§

index-70_1.png
;\§

index-71_1.png
<haml version="1.6" encoding="utf-8"%>

S cednx: Edmx Version="2.6" xulns:edax="http://schesas microsoft. con/ado/2008/10/ednx">
| <t tF Runtise content >

<fedme:Runtine>
EF Designer content (00 NOT EDIT WANALLY BELOM HERE)

index-70_2.png
Model Brow:

Type here to search

4 [d ModelLedmx
4 [£) SampleModel
4 3 Entiy Types
% Address
4 % Contact
3 ContactiD
2 AddDate
2 FirstName
2 LastName
2 ModifiedDate
R Tide
Addresses
% vOfficeAddress
3 Complex Types
4 [Associations

(& ety ContainersSampleenities
4+ (3 SompleNtogalstore
4 [Tables / Views
3 Adcress
4 [Contact
3 Contoct
AddDate
FisiName
Lostiame
NodifedDate
Tite
(2 vOfficeAddresses
{5 Stored Procedures
[Constraints

index-72_1.png
Modell.edmx"
1 CsoL content >
<edmcConceptualodels>
<Schens Nanespaces"Sanpletiodel” Aliss="self
enlns:annotations"hetp: schenas aicrosoft con/ade/1903/62/sde/amnatation”
xlnse"h119:/schemas. aicrosoft, con/ado/2098/63/cdn”>
<entityContainer Nane-"SampleEntities” amnotation: LozyLoadingEndblede"true”>
<Entltyset Nose="ddresses” EntieyTypas"Sasplenodel address® />
<Entityset. Nose="Contacts" EntityTypes"Sampleidel Contact” />
<Entityset Noses"VOfFicesddresses” EntityTypes"SomplaNode] vOFFicesddress” />
Associationset lase="FK_Address, Contact" Associations"Sampleidel FI Address_Contact*>
<End Role-"Contace” EntityseceCantacts” />
CEnd Rele"address” Entitysetsaddresses” />
<associationsets
entizycontatners
EntieyType tlames Adires=">. - FEntity iz

KEntityType Tame-"Contact™> - /EntityTypes]
KEntityType omevoricendiress™s . Jentityryper

[hszociation Namer"FE Address Cont™s-..</Azzociation]
</schens>
</edex;Conceptusiiodels>

index-71_2.png
;\§

index-73_2.png
;\§

index-73_1.jpg
Entity
Container

index-75_2.png
Properties
‘SampleModel Address Street1 Property
i =)

Concurrency Mode None

Default Value (None)
Documentation

Entty ey Fale
Fixed Length Fabse

F StateProvince Geter Public

' CountryRegion Max Length 50

I PostalCode Name Street1
O AddressType Nullable (None)
5 ContactD Setter Public
& ModifiedDate StoreGeneratedPatter None
& Navigation Properties. Type String
Contact Unicode True

index-75_1.png
;\§

index-68_1.png
;\§

index-67_3.png
Conceptual Model Storage/Logical Model

Enity Data Database
Model Objects
Schema Schema

index-92_2.png
Address
Class

+ EntityObject

* Fields

 properties
adressD
AddressType
Gy
Contact
Contactid
ContactReference
CountryRegion
ModifedDate
PostalCode
StateProvince
Stretl.
Stree2

Methods.

=
-
-

o o

Class
+ EntityObject

* Fields

 properties
AddDate
Addresses
ContactiD
Firsthame
LastName
ModifedDate
Tite

Methods.

vOfficeAddress
Class

+ EntityObject

* Fields

 properties
adressD
AddressType
Gy
Contactid
CountryRegion
Firsthame
LostName
ModifedDate
PostalCode
StateProvince
Stretl.
Stree2

Methods.

=
=
=

oy o

index-92_1.png
;\§

index-93_2.png
;\§

index-93_1.png
;\§

index-96_1.png
Collection to be evaluated
Variable reference (e.g, EntityContainer . EntitySet)

SELECT FROM AS

Returns an object, not a row. Defining variable
Used when only a single item is
selected.

index-94_1.png
;\§

index-98_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-97_1.png
;\§

index-99_1.png
;\§

index-98_2.png
;\§

index-85_1.png
;\§

index-85_3.png
;\§

index-85_2.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-89_2.png
;\§

index-89_1.png
cont:

index-90_2.png
;\§

index-90_1.png
4 4 Modell.edmx

%3 ModellDesigner.cs

index-91_1.png
;\§

index-90_3.jpg

index-91_2.jpg
SampleEntities
Class
= ObjectContet

il

P Adiresses

& _Contacts

@ vOfficeAddresses
& Properies

2 Addresses

P \OfficeAddresses
 Methods

@ AddToAderesses

@ AddToContacts

6 AddTovOfficehddresses
OnContextCrested
SampleEnties (+ 2 over

Class
 EntityObject

Class
 EntityObject

Class

 EntityObject

index-117_1.png
;\§

index-111_2.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-118_1.png
Dim contagts = From c In context.Contacts

Dim contacts As System.Ling.IQueryable(OF <anonymous type>)

index-117_2.png
;\§

index-119_1.png
;\§

index-118_2.png
foreach (var contact in contcts)

¢ (16cal variable) Tqueryablec'as contacts
Console briteLine(" (0
cont| Anonymous Types:
cor "a is new { string Title, string Firstliane, string Lasthiane }

index-120_2.png
;\§

index-120_1.png
;\§

index-121_1.png
foo
(Anonoymous Type)

ContactName EntityCollection<address>
(Anonoymous Type)

<Title

“FirstName

~LastName

index-120_3.png
;\§

index-99_2.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-101_1.png
;\§

index-100_1.png
;\§

index-102_1.png
;\§

index-101_2.png
;\§

index-107_1.png
;\§

index-105_1.png
LINQ. Collections.
IQueryable |Enumerable

LINQ. Collections.
IQueryable<T> |Enumerable<T>

index-110_1.png
;\§

index-108_1.png
;\§

index-111_1.png
;\§

index-230_2.png
Data Source Configuration Wizard

[P Ep—

Expandth eerence asmbisand namespaces oslectyourabjects. I o abject s mising rom 3 refrenced
s3embl,canceth wiard and e th projet tht contin the bject.
Whatabjects do you want to bind to?
+ 10 reakbwayWinfoms
4+ 13 BreskAwoyModel
2010 Baca
[E1% Activity
1% Addrss
1% sagries
[Contact
(14 ContactPeronatno
1% Customer
1% Customersnpastrear
[£1% CustamerType
1% Destinston -

Add Refernce.

91 Hide systern sssemblies

index-230_1.png
;\§

index-231_1.png
Data Sources

ad
4 0 BAGA
4 A Customer
»] Contact
ContactD
»] CustomerType
CustomerTypelD
2 InitialDate
Notes
»] PrimeryActivity
PrimaryActivitylD
» E PrimanyDestination
PrimaryDestinationiD
» 2 Reservations
S Rowversion
» [SecondaryActiity
SecondaryActivityD
»] SecondaryDestination
SecondaryDestinationlD

index-227_2.png
;\§

index-227_1.png
;\§

index-229_1.png
Your project currently has no data
Sources associated with it. Add a new
data source, then data-bind items by

dragging from this window onto forms
or edsting controls.

‘Add New Data Source.

index-228_1.png
;\§

index-223_1.png
;\§

index-226_2.jpg
[BreakAway Geek Adventures Contacts
ADO® +X sae

Title s

Fiest Name: [Wina 1
Lost Name: [Fintsene
Madified Date [2/472010 Add Date: [27472010

Primary Activty [ConboBox 7] secondary Activiy [ConboBox

Primary Destination [Conbogx ‘Sacondary Destination [CanboBox]

Notes: [Same 1ot
4 secand ln

Reservations
Res. Date | Start Date | End Date | Destination
21172010 | 47272010 | 41272010 | peru

index-226_1.png
;\§

index-220_2.png
;\§

index-220_1.png
;\§

index-222_1.png
BAModel ConceptualEntityModel

m =)

Code Generation Strategy Default
Connection String metadata=res://*/BAModel.csdllrd
Database Generation Workflow TablePerTypeStrategy.xaml (VS)
Database Schema Name. dbo

DDL Generation Template SSDLToSQLIO. (VS)

Dy et e [Pk
B Gt |BEegie
TG e Oupu Asebly
Nemespce oot Ot i
P e s [t e
Tondfom R et Tl

index-221_1.png
@ Red Gate's .NET Reflector =8 = |

File View Tools Help

I I R

-3 System Data Entity
-3 mscorlib
-3 System Data
-3 System Transactions
-3 System
-3 System Core
5 -3 BreakAwayModel
I BreakAwayModel.dil
& [Resources
[BAModelcsdl
= BAModelms!
[BAModelsdi

// Assembly BreakAwayModel, Version 1000 _
Rl ———

index-218_1.png
;\§

index-216_2.png
Equipment
9 Equpmentid

Equprent
Activities
9 ActivityD
activty [-
ActivityEquipment

ActiviyD
Equpmentd

Events
¢ Eventid
LacationlD
LadgingID
StartDate

EventActivities
EventiD
ActiviyD

EndDate

index-219_1.png
[
e

e s
K rimoucen.
N o
iy
i

index-218_2.jpg
o e

= Properties
4 TrpD
#F DestinationlD
F Lodgingld
F StarDate
*EndDate
S TripCostUsD
= Navigation Properties
2 Destnaton
% Lodging
| Reservations
=, Actiities

= Properties
ActuiyD
F Name
Fimsgepath
5 Category

= Navigation Properties.
% PrimanyPrefCust
= SecondaryPreiC.
=, Equipments
% Tips

= Properties
3 Equipmentd
S Name

1= Navigation Properties
=) Activities

cover.jpeg
Building Data-Centric Apps with
the ADO.NET Entity Framework

Entity ~
Framework

O'REILLY*® Julia Lerman

i o ol B i Sl b

index-216_1.png
;\§

index-215_1.png
Parameter/ Colomn Use Orig._Rows Afected
[Fncions T
"] s Ui e ayment
+ 3 Update Using UpdatePayment
3 Poametes
@ Paymentd:int
@ dae: dueime

5 Paymentd 32
3 PoymentDate : DateTime.
B resevationd: nt F Resenstontd: n32
@) omount: maney 5 Amount: Decimal
@] modfiedDate: dotetine- 3 ModifedDate: DteTime
@ timesamp: timestamye= 3 TimeStamy
4 Resut Colomn indings
B <Add Resuk Binding>
4 2] Delete Uing DeetePayment
4 Parameters
@1 PaymentiD: int 5 PaymentiD: Int32

clefele [efe]

index-211_2.png
Customers
? Contactin
CustomerType
IntialDate.
PrimaryDesintation
SeconderyDestination
PrimaryActivty

Secondaryaciviy

index-334_1.png
;\§

index-211_1.png
;\§

index-331_1.png
;\§

index-213_2.png
;\§

index-337_1.png
GridView Tasks
Auto Format...

Choose Data Source: |(None) =

Edit Columr
Add New Column...

Edit Templates

index-213_1.png
;\§

index-336_1.png
;\§

index-208_1.png
;\§

index-328_1.png
var newContact=Contact.(CreateContact(])

A 10f2 ¥ Contact Contact.CreateContact(string firstName, string lastName)

index-207_2.jpg

index-326_2.png
;\§

index-210_1.png
;\§

index-330_2.png
;\§

index-209_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-330_1.png
;\§

index-214_1.png
Mapping Details - Payment

Parameter / Column

+ Functions
4] nsert Using InsertPayment
1 Porameters
@ date: datetime +
@) reservationD:int +—
@) amount: money +~
2 Result Column Bindings
NewPoymentd -
<Add Result Binding>
(] <Select Update Function>
2] <SelectDelete Functon>

5 PaymentDate: DateTime
5 ReservationID : Int32
5 Amount : Decimal

99 PaymentiD : In22

index-207_1.png
;\§

index-326_1.png
;\§

index-325_1.png
;\§

index-201_1.png
;\§

index-321_1.png
;\§

index-200_2.png
Edit Function Import

Function Import Name:
GethddressCountForCantact

Stored Procedure Name

AddressCountFarCantact

Returns a Collection Of
Nane

Scalars

© Complex: |ContactAddressCount

Update

Entities

Stored Procedure Calumn Information

Get Calumn Information

Name EDM Type Db Type
Name String
AddressCount Int32 int

Nullable

nvarchar true

true

Masength Precision Scale

m

Create New Complex Type

ok

Cancel

index-316_1.png
;\§

index-204_1.png
;\§

index-324_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-203_1.png
;\§

index-323_1.png
;\§

index-199_1.png
;\§

index-312_1.png
;\§

index-198_2.png
;\§

index-311_2.png
;\§

index-200_1.png
;\§

index-313_1.png
;\§

index-199_2.png
;\§

index-312_2.png
;\§

index-206_1.png
;\§

index-205_1.png
CustomerTypes Activities

)

Customers =
¥ Canacio Cusonartice Aty
Cutamertoe et

ActivityEquipmer
3 awap -

3 Easnenrn ~

i3
Equipment
7 Easpr

EventActivities
7 e
7 Ay

ContactPersonalInfo
9 contoi>
sacue
Hecptibes
werptronds
Detayhositons

index-324_2.png
;\§

index-311_1.png
B (General) |
(Name)
Hlow il
Data Type
Defaut ValueorBing
scde
B Table Designer
Cotation
Conputed Cokamn Specicaton
Condensed Data Type

LineTotal
o

=

<database default>
Gsnull[UnitPrice]*((1.0[UnitPriceDiscount)y [0rderQty], (0.0)

index-190_2.png
;\§

index-302_1.png
;\§

index-449_1.png
;\§

index-190_1.png
;\§

index-300_1.png
;\§

index-448_1.png
43 Reservation

15 OldReservation
 Resenvation

= Propertes b— & properties
5 Reservationld = Navigation Propertes
2 ReservationDate
F ContactlD
5 EventD
5 Rowersion

B Novinafinn Drnmartine

index-193_1.png
;\§

index-306_1.png
;\§

index-453_1.png
;\§

index-192_1.png
;\§

index-302_2.png
;\§

index-452_1.png
;\§

index-188_1.png
2 [parameter/ Colarmn Opera..Propery Use Orig.. Rows Affectsd

 [Fancions 1
+] et ing rsertContet
+ a Porometers
@ Fistome s marchar ¢~ 28 Fistome : ting
@ Lotome rwarchar ¢ Lastlame : ting
@ Tresmarchar O Tie: ting
4 8 Result Colum Bindings
@ NewConsctd > 99 ContactD o2
@ <Add ReukEinding>
4 (2] Uptite Using UpdsteContact
4 Parametes
@ Comsetdiint ¢ 0 ConactD 2
@ Fishome i miarchar ¢~ 28 Firstame : Sing
@ Lasthame : varchar 2 Lasthame : ting
@1 Title: nwarchar - 5 Title : Sting
4 (3 Result Colum Bindings
<Add Resu inding>
[0 Delete Using DeletsContact
+ 6 Parametes
@l contactint

index-292_2.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-446_1.png
(211
##1

=)

28

Alex Solzhenitsyn

20

Keith Harris

31

Rosemary Carroll

16,

Dominic Gash

null|

Kathleen Garza

35

Johnny Caprio

26

John Beaver

42

Jean Handley

index-292_1.png
;\§

index-444_1.png
;\§

index-189_2.jpg
vy

CustiD 123

(TimeStamp reset to Z498)

index-298_1.png
;\§

index-447_2.png
Reservations
@ Reservationld
ReservationDate
ContactD
EventiD
Rowversion

OldReservations
@ Reservationld
ReservationDate
ContactD
EventiD
Rowversion

index-189_1.png
;\§

index-293_1.png
;\§

index-447_1.png
;\§

index-195_1.png
‘Add Function Import

Function Import Name:
GetContactsbyState

Stored Procedure Name

ContactsbyState

Returns a Collection Of
Nane

Scalars

Complex:

Stored Procedure Calumn Information

Get Calumn Information

Ok,

Click an "Get Calumn Information" above to retrieve the stored
procedure’s schema. Once the schema is available, click on "Create New
Complex Type" below to create a compatible complextype. You can
als0 always update an existing complex type to match the retured
schema. The changes will be applied to the model once you click on

ok

Cancel

index-307_2.png
;\§

index-194_1.png
Model Brow:

Type here to search

4 [d ModelLedmx
(2 samplebodel
4 B Entity Types
% Address
4% Contact
3 ContactiD
2 AddDate
2 FirstName
2 LastName
2 ModifiedDate
R Tide
Addresses
% vOfficeAddress
(2 Complex Types
1 Assocition:
@ EntityContainer: SampleEniities
4 [3 sampleModelStore
4 [Tables / Views
1 Address
 Contact
T vOffceAddresses
4 [Stored Procedures
[Z] AddressCountForContact
(] AddressTypeCount
] Contactsbystate
2] DeleteContact
TnsertContact
ZlUpcateContact
[Constraints

index-307_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-453_2.png
;\§

index-198_1.png
;\§

index-1_1.jpg
Building Data-Centric Apps with
the ADO.NET Entity Framework

Entity” -
Framework

O'REILLY*® Julia Lerman

index-25_1.png
;\§

index-2_1.jpg
NS Programming/NET

Programming Entity Framework ~/Sthissamecompleteness
andarity hatyoulfind

Gt thoroush introduction to Microsoft' core frameork for ..in chaplersranging from
ot o o e e o s e bebaseto b detais youtl
ofthe btest ADONET ity Framework (EF4) verson i Visual needlowriteactual appl-
Studio 2010 and NET Framenork 4 Not only will you leam how — cations for your aciial

10 use EF in 2 varity of applications, youllaso gan a decp. i

understanding of ts architecture and APIs. busintssrends — s
Weiten by Jula Leman, the kading independent suthority on the Q1 Serverdivisio,
ramesork, Progranming Enty Framercork coves i sll—Trom MiaosotCorporaton

the ity Data Model and Object Servics 10 WCF Services, MVC
Apps, and unit testng, This book highlightsimportant changes for * ulie’s advice on using

cxpenineed developers amilar i he el yersion. ‘BFis inaliable. Lieep
recommending ber book
u :'n::‘wandmep‘;ore:‘muwiwun!mwmi‘t‘m”““* lo people wanting to learn
nyour sppications
ah . maeant about EF—and EFf isa
= Lesmtoquery yourdat using either UNQ o Eniesor :
o = welcomed update.
m Create Windows Forms, WPF, ASPNET Web Forms, and kit
% Getorof LA NET
ASPNETMYC applicatons A CLEEL
= Bl and consume WCF Services, WF Data Sevics, and
WCF A Servies
 Use Object Services to work directly with your entity objects Juu Y “M‘;"‘:} the
n Cratepersstent ignorant enties,repiores,and wte o s
unittess in the NET communiy 25 o

= Delve nto model customization, elatioship management, IiLhoe Mol
change tracking,data concurrency,and more it S
m Get scores o reusable examples—witten n C# (with notes technical conferences around
on VisualBasic syntax)—that you can implement rght away. the workd and wrics aicks for
severaltechnical publications.

O'REILLY*

Prviousprogromming experieces ecommended. oreilly.com

usssaon cmsssse
15BN 978-0-596-00726-5
4 Free online edition

Y i Safari” s,

7805961807269 e e bk, Dot o it page

index-34_1.png
;\§

index-442_1.png
;\§

index-27_1.png
;\§

index-34_3.png

index-34_2.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-34_4.png

index-183_1.png
;\§

index-287_1.png
J[5

Value

B g ose

{System Data. Objects EntityEntry}

& [5ystem Data. Objects EnttyEntry]

{System Data. Objects EnttyEntry}

{BAGA.Contact)

“EntitySet=Contacts; ContactiD=6"

{Contacts}.

false

{5ystem Data. Objects CbjectStateManager

{5ystem Data. Objects DataClasses RelationshipManager}

Unchanged

index-433_2.jpg
Resort
> Lodging

= Properties
5 ResortChainOuner
5 LuxunyResort

= Navigation Properties

5

(4 Lodging @)

&

= Properties
5 Lodgingd
= LodgingName
= Contsctld
= Locationld
 Navigaton Propertis
=, Contact
= Trips
= Destination

index-181_1.jpg
135 Stored Procedures
V1] AddressCountForContact (dbo)
[91] AddressTypeCount (dbo)
[YI2] ContactbyStae (dbo)
DeleteContact (dbo)
V1] InsertContact (dbo)
[712] UpdateContact (dbo)

7] Plurlize or singulaize generated object names.

7] Include forign key colums nthe model

Select items to add to the model.

N P)

index-286_2.png
;\§

index-433_1.jpg
a

= Properies
5 LodgingID: Ini32
5 Lodginghame : Sring
5 ContactlD: Int32
F LocationlD: In32
FResort: Boolean
F ResortChainOuner: Sring
F LuxuryResort: Boolean
= Navigation Properties
% Contact
= Tips

| Destination

index-185_1.png
;\§

index-289_1.png
(Caml

s

1/6/2005 93553 P
17242009 31629 PM
System Btel]

index-434_2.png
Type here to search

4 [d BAModel.edmx
3 BaModel
SeyTos
4 4 Complex Types
<%
2 City
2 StateProvince
2 Streetl
5 Street2
3 Asociations
& EntityContainer, BAEriites
4 [BreskAwayModelStore
5 Tables / Views
53 Stored Procedures
1 Constrains

index-183_2.png
;\§

index-288_1.png
a1 ObjectStateEntry Visualizer

Object Type

BAGA. Contact

Curtent Object State Unchanged

_index | _Propety. | Orgral | Curert. | ValueModed
» o (Contactid 5 5

1 Frathame. Rosmane Rosmane

2 Lasthame =1 =

3 e s s

4 AddDate TVB/20553553PM | 11/6/2005 93553 PM

5 ModfedDate | 8/7/200882707AN | /7200882707 AW

g TineSiamp. System Byte] System Byte]

index-434_1.jpg
4, Address

= Properties
79 addressiD

eacissie Mew Gemplorlype
cut

Copy

T Cawntofeg) o poo
 PostalCode
2 AddressType
F Contsctld Updste Model from Database...
F ModiiedDsf Generste Databsse from Mode...
F TimeStamp

= Navigation Prof

% Contact

Delete.

Add Code Generation Item..
Validate

Properties

ctrex
ctisC
ctisv
Del

AltsEnter

index-284_1.png
;\§

index-429_1.png
& [

Column
4 Tables
4 (2 Mapsto Activiies
5 When Category
& <Add s Condition>
4 4 Column Mappings
1 ActiitD:int
Actvity s nchar
imagepath nvarchar
Categorys nchar
3 <Add s Tsbleor View>

Opera... Value/ Property.

1ttt
ugq
i

index-428_2.png
;\§

index-180_1.png
;\§

index-286_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-430_2.png
;\§

index-176_1.png
;\§

index-285_1.png
“EntitySet=Contacts;ContactiD=6"

BAEnttes”

{System Data. EntitykeyMember (11}

{[ContactD, 6}

“ContactiD”

index-430_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-185_3.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-290_2.png
;\§

index-438_1.png
Properties
2o v) | oAModetAderesscomplexproperty Poperty
S|

= Properties
5 adresd
= CountryRegion
F PoslCods

= AddressType
ey Concurtency Mode

F ModiizdDate Documentation
2 TimeStamp Neme
&' Complexroperty Type

Getter
Setter

index-185_2.png
;\§

index-290_1.png
Customer

Reservation

Reservation

Tip
Payment

Payment

T

Payment

index-436_1.png
;\§

index-187_1.png
Parameter/ Column
+ [Functions
4) Inset Using nseiContact
4 Parameters

@ Fistlame: archar
@) LastNome : nvarchar
@ Tite:mvarchar

4 (3 Resuk Colum Bindings
BB <Add Resut Binding>

index-186_1.png
Mapping Details

2 [parameter/ Cotumn

4 Functons.
] <Select nset Function>
] <Select Updae Function>

) <SelectDelte Function>

index-291_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-168_2.png
;\§

index-277_3.png
;\§

index-424_1.png
‘Add Association

Associston Name:
Addresshdaressbra
end end
ntity: ntity:
[hderes [Addresiam 5
Mutipliciy: Mutipliciy:
[£one [r Many) 5]

Navigation Property:
AddressExras Address

1) Add foreign key properties tothe ‘Addressbtrs Entity

‘Address can have * (Many) instances of AddressEtra. Use. =
‘Address.AddressExtras to access the AddressEtra instances.

Addressbxtra can have 1 (One) instance of Address. Use AddressExtra Address.
to access the Address instance.

oK Cancel

index-580_1.png
;\§

index-168_1.png
;\§

index-277_2.png
;\§

index-423_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-577_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-170_2.png
;\§

index-279_1.png
;\§

index-426_1.png
;\§

index-583_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-170_1.png
;\§

index-278_1.png
var contacts0Q = context.Contacts.where(1t.Lastlame LIKE 5%
string str = contacts0Q.ToTracestring();

Text Viualzer =

Expression:
Value:

Becec
[Extenta]. [ContactID] AS [Contacti0],
[Extenta]. [Firsthane] S [Firsthiane],
[Extenta]. [Lasthane] AS [Lasthiane],
[Extenta] . [Title] A5 [Title],
[Extenta] . [AddDate] AS [AddDate],
[Extenta] . [ModifiedDate] A5 [Modifiedbate],
[Extenta]. [Tinestamp] AS [Tinestanp]

FRoM [dbo] . [Contact] A5 [Extent1]

\HERE [Extent1]. [Lastliane] LIKE 'S%"

index-425_1.png
Referential Constraint

Principal Key
addressiD

Dependent Property
addressiD

ik

index-580_2.png
Referential Canstraint

Assaciation Set Name
Documentation

End1 Multiplcity

End1 Navigation Property
End1OnDelete

End1 Role Name

End2 Multiplicity

End2 Navigation Property
End2 OnDelete

End2 Role Name.

FK_SalesOrderDetail SalesOrderHed

1(One of SalesOrderHeader)
SalesOrderDetails

Cascade

SalesOrderHeader

* (Collection of SalesOrderDetail)
SalesOrderHeader

Nane

SalesOrderDetail

[T F SolesOrderDetai SalesOrderHed

index-421_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-574_2.png
;\§

index-574_1.png
5 PrimaryActivity
F PrimaryéctiiyD

null
nul

E S PrimaryActvityReference

{System.Data.Objects. DataClasses EntityReference <BAGA, Activity>]

5 0 base
& o base

{System.Data.Objects.DataClasses EntityReference <BAGA. Actiity >}
{System.Data.Objects.DataClasses EntiyReference <BAGA, Actiity >}

@ S entiykey
& Non-Public mermbers

nul

F value

ull

index-165_1.png
;\§

index-277_1.png
Volue
e Dot O, Qe BAGA Cortc)

st 0ot Copct. Gty BAGA Conta)

T a-
A)

| yson oo s CecwaneieCocin)

o e e e v st e s
a-

Eiponing e Renis Ve o et e st

index-422_1.png
& [

Column
4 Tables
4 (3 Mops o Address
& <Add s Condiion>
4 62 Column Mappings
sdress sint
SreetL: mvarchar
Sreet2: mvarchar
City: marchar
StateProvince : nvrchar
CountryRegion; nvarchar
PostalCode marchar
AdaressType s mvrchar
Contactl int
MordfiedDate : datetime
Rowkersion: imestamp
2 <add Tl o Views

Operator Value / Property

trrrrrrree

5 adresid 32

StateProvince : String
CountryRegion : String
PastalCade : String

e e e)

index-576_1.png
;\§

index-276_2.png
Value

{System.Data. Objects.ObjectQuery <BAGA.Contact>}

{System Data. Objects.ObjectQuery <BAGA.Contact>}

"SELECT VALUE ty\"FROM (v n[BAEntites]. Contacts])

{BAGA BAEnities}

rue

‘Appendorly

{5ystem Data. Objects.ObjectparameterCollcton).

Expanding the Results View il enumerate the [Enumerable

it

Expanding the Results View il enumerate the [Enumerable

index-421_2.png
Update Using UpdateCustomerit
4 [Parameters

@1 Contact s nt - 5 Contactid 32
@) CustomerTypelD int 2 CustomerTypelD : Int32

@) IntislDate s datetime S IntislDate : DiteTime

@) rimanyDesintation s nt. S PrimanDesintation I3
@1 SecondanyDestination it~ 2 SecondanDestination 132
@ primayictityint S Primayctivty In32

@ Secondarybctitysint S SecondaryBctivity: nt32
@1 Notes svarchar - 5 Notes s Sring

@ Firsthame s marchar S Fistame : Sting

@ Lastame s mvarchar S Lustame s Sring

@1 Tite s moarchar - S Tte s Sring

@ AddDste detime 5 AddDste : DateTime

@1 ModifisdDate:datetme 5 ModifisdDate : DsteTime
@ BirtDste dteime 5 BirthDste : DateTime

@ Heightinches ine S Heightinches In32

@ WeightPounds int S WeightPounds Int32

@1 DistaryRestictions svarcte— 5 DistaryRestictions s Sring
@) CustTimeStammp stimestat— S CustRowersion: Binary

@] ContactTimeStamp : imet— B RowVersion : Binary

index-574_3.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-174_1.png
;\§

index-172_1.png
;\§

index-281_1.png
;\§

index-427_2.png
;\§

index-584_2.png
;\§

index-171_1.png
;\§

index-280_1.png
;\§

index-427_1.png
& [

Column
4 Tables
4 (2 Mapsto Activiies
5 When Category
& <Add s Condition>
4 4 Column Mappings
1 ActiitD:int
Actvity s nchar
imagepath nvarchar
Categorys nchar
3 <Add s Tsbleor View>

Opera... Value/ Property.

1ttt
ugq
i

index-584_1.png
;\§

index-173_2.png
;\§

index-283_1.png
i I

o~

Results

index-173_1.png
;\§

index-282_1.png
;\§

index-428_1.png
;\§

index-150_1.png
;\§

index-266_1.png
;\§

index-415_1.png
Customers
? Contactid

CustomerTypelD
IntialDate.
PrinaryDesintation
SeconderyDestination
PrimaryActivty
Secondaryacivty
Notes
Rowversion

ContactPersonalInfo
? Contactid
BirthDate
HeightInches
weightPounds
DietaryRestrctons

index-568_1.png
;\§

index-146_1.png
;\§

index-264_1.png
;\§

index-414_2.png
Property
4 Association

4 (2 Maps to Address
4+ Contact
5 Contactid 32 ContactD s int
4 Address
5 addresslD 32] addresd sint

index-564_1.png
ooy et | e

Selected Relationship:

Editing propertes fo exsting relationship.

P Reservations Events

& (General)
Check Eisting Data O Creation Or Re-£ne Yes

8 Tables And Columns Specification

B Database Designer

Enforce For Replication e
Enforce Foreign Key Constaint e =
8 INSERT And UPDATE Specification
Delete Rule No Acton
Updte Rule No Acton
B Mentity U
(Nome) FK Resencations Customers

Add Delte [Cowe]

index-153_1.png
;\§

index-267_1.jpg
Goding
[viton etz

Actites

Add Actvityto Trip.

index-418_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-570_1.png
(5pom 0t s Copcrstamianagr)
{51 0ta etaistaEdm tdsaSpS)

Sy o e, Syt ColctonsGorar et (5 Ot Cocs EntnEnny)
(S D e, Syt ColctonsGora oot (o te.Copes Entnenny 1]

(S Collctin Gare o CEal Copare <SS Dt)
St St=Coriacs Cortc B0

et Trpa TR0

o=z

index-152_1.png
;\§

index-266_2.png
;\§

index-416_1.jpg
2 ContactPersonallnfo

5

= Properties

¥4 Contactip

4 BirthDate

™ HeightInches

% WeightPounds

" DietaryRestrictions
= Navigation Properties

index-569_1.png
© L RelationshipManager ___ | {System.Data.Objects.DataClasses.RelationshipManager}
© 4 NorvPublic mermbers

_rockyiied e

& 9 _owner {BAGA Reservation}

© 2 relatorshps Caunt=3
ERAG) (System Data.Objects DataClasses EnitReference < BAGA Customer)
ERA0) {System Data,Objects.DataClasses EntifyReference <RAGA.Trip>}.
R0 {5ystem.Data.Objects DataClasses EntiyCollection <BAGA Payment>).
© 0 Raw View

© @ _wrappedOwner {System.Data.Objects.Internal LightweightEntityWr apper <BAGA Reservation>}
F HasRelatorships | true.
5 NodkVsied flse

7 Ralatorships Cort=3

@ 1% Wrappedowner

{System.Data,Objects. Internal.LightweighiEntityWrapper <BAGA Reservation>)

index-562_2.png
Properties

BAModel FK Reservations Customers Association

=
£

al

eferential Canstraint.

Assaciation Set Name
Documentation

End1 Multiplcity

End1 Navigation Property
End1OnDelete

End1 Role Name

End2 Multiplicity

End2 Navigation Property
End2 OnDelete

End2 Role Name

Name

Referential Constraint

Customer -> Reservation

FK Reservations_Customers

1(One of Customer)
Reservations

Nane

Customers

*(Collection of Reservation)
Customer

Nane

Reservations

FK Reservations_Customers

index-263_2.png
;\§

index-414_1.png
Table name:
Indes name:

Inclex ype:

ricue

I key columns:
Name
{ EortaciiD

[Address

UriqueFKForContact

SotOider DataType Size

Ascending it 4

Add

Remave

Mave Up

Mave Down

index-563_2.png
= [dbo.Reservations
& (2 Colurnns
B 0 Keys
9 PK Resenvations
? FK Resenvations_ Customers
9 FK Reservations_Events

index-413_1.png
Property
4 Association

4 (2 Maps to Address
4+ Contact
5 Contactid 32 ContactD s int
4 Address
5 addresslD 32] addresd sint

index-563_1.png
Customers
? Contactid

CustomerTypelD
IntialDate.
PrinaryDesintation
SeconderyDestination
PrimaryActivty
Secondaryacivty
Notes
Rowversion

Reservations
@ Reservationld
ReservationDate
ContactD
EventiD
Rowversion

index-161_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-160_1.png
Value

{ProgrammingEntityFramenork.Chapter 4 Address}.

{ProgrammingEntityFramenork.Chapter 4 Address)

2267

FHome *
@ Gty “Burnaby N
' ContactiD ©

“, CountryRegon | “Canada

index-276_1.png
;\§

index-156_1.png
;\§

index-271_1.jpg
Query
Builder
I

Entty QL Queres only
Y

index-419_1.png
;\§

index-573_1.png
® 3 Contact
¥ ContactiD

& 2 ContacReference
© 0 base
% value

{BAGA Customer}

570

{System Data.Cbjects.DataClasses EntityReference <BAGA Contact>}
{System Data.Objects.DataClasses EntitRefererce <BAGA Contact>}
{BAGA.Customer} <

index-154_1.png
;\§

index-270_1.jpg
o

O
1P

1
| :
EntityClient provider

() T 0

11}

Data

Store

index-418_2.png
Colurn Oper... Value /Property
3| 4 Tbles
4 (3 Maps o Customers
& <Add Condition>
4 (4 Column Mappings
€0 Contacd s int o 89 Contact: I
T CustomerTypeld int €» 5 CustomerTypelD :Int32
IntislDatedatetime € 8 InifalDate : DateTime
2] PrimaryDesintation: int > 58 PrimaryDestinatioD :nt32
T SecondanyDestinston simes SR SecondaryDestinationlD : Int32
Primaryhctivitysint 5 PrimayAetiviyD In32
Secondanctivtytint ¢ SecondarybctiitD In32
Notes varchor(mas) 45 75 Notes Sving
T Rowlersion timestamp €5 5 CustRowVersion : Binary
4 (3 Maps to ContactPersonallnfo
& <Add Condition>
4 (4 Column Mappings
4 ContactiD:int
BithDate : datetime

99 ContactD Int32
5 BirthDate : DateTime
3 Heightinches :int 5 Heighiinches : Int32
WeightPounds int 5 WeightPounds 1nt32
T DietaryRestrictons :varche» 5 DietayRestrictions:Sring
[<Add 2 Table or View>

Tttt

index-571_1.png
& 5 ObjectStateManager {System.Data. Objects.ObjectStateManager}
" 5 MetadataWorkspace {System.Data Metadata Edm MetadataiWiorkspace}
4 Static members.
=4 NonrPublic members

Count =6

"EntitySet=Trips; TripiD=40"
ctivties; ActivityID:
ctivities; ActivityID:
Ustomer Types;Customer TypelD=3"
estinations;DestinationiD=50"
"EntitySet=Destinations;DestinationiD=62"

@ Raw View

index-158_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-272_2.png
;\§

index-420_1.png
[EEEE

B
sp_executesal
sp_executesal
sp_executesal
sp_exccutesal

e L e e
N'update [abo). [Contactrersonalinfo] set [3irtroate] = 80 where ([Contactid) = @3
N'insert [abo). [Contace] ([Firsthame], [Lascnane], [Ticle], DiodiFiedace]) values
N'insert. [dbo). [Contactrersonalinfo) ([Contactio), [sircroate], [Meightinches], [vei
Ntinsert (dbo]. [customers) ({contactmD], [custonerTypemD], (znicialoate), [Prinaryoe

index-157_1.png
;\§

index-272_1.png
;\§

index-419_2.png
Delete Unmapped Tables and Views L2

“The following tables and views in the stare model will no longer be mapped. Do you
want them deleted?

Contactpersanallnfo

Ve Non) (e

index-573_2.png
Address Entity

Street 1Rue Main
City Paris
Country France
Contact

Contact Enti
123 e

Henri
Toulouse
etc,

ContactiD 123
ContactReference EntityReference<Contact>
e

Contact Entity

ContactiD 123
FirstName Henri
LastName Toulouse

Addresses ("ot Collection <Address>
Count
IsLoaded
IsReadOnly

!
et‘L-

index-132_1.png
Ms. -

Expanding the Results View wil enumerate the [Enumerable

{ProgrammingEntityFramenork.Chapter4.Contacty

{ProgrammingEntityFrameork. Chapter,Contacty

{ProgrammingEntityFrameork. Chapter,Contacty

{ProgrammingEntityFrameork. Chapter,Contacty

{ProgrammingEntityFramework, Chapter4 Contact}

index-255_1.png
;\§

index-402_2.png
. contact

= Propeties
5 ContactiD
5 FirstName
F Lasthlame
it
F AddDate
5 ModiizdDate
5 Rowiersion
 Navigation Propeties
=] Addresses
= Lodgings

;. Customer

> Contact
= Propeties
2 CustoreTypeld
F InitialDate
2 PrimaryDestinstionld
2 SecondanDestinationld
S primayictiviyD
S Secondarybctinid
5 Notes

2 CustomerRowVersion
= Navigation Properies
] Primaryacivy
] Secondaryacivity
] Customertype
=] PrimaryDestination
] SecondaryDestination
=] Reservations

index-550_1.png
Name

Value

= & contetObjectstateManager

© 4 _sddedentityStore

5 “eadRemonSore B
T g Coi =3
5 “aeedintigore Comt—1
5 iR B
% _modifiedEntityStore Count=2
5 neangestniy e Comi=d
o anhancdditanpSiore i

index-725_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-253_2.png
;\§

index-402_1.png
==

Select the base and derived entities to create a new inheritance relationship.

‘Add Inheritance.

Select a base entity:
Contact -
Select a derived entity:

Customer -

index-549_1.png
;\§

index-724_1.png
;\§

index-134_1.png
;\§

index-257_2.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-410_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-552_1.jpg
S Methods

9, ApplCranges Tentiy> (+ 1 overose)

5% ApplyCrangerTendependenisioci.

5% CrangetntyStteBasedOnCbiecate

3 CroneteterncekeyLookun

59 Creneielstcnship

g ——

9 Enumerstese stasnces

2, GetCspaceEntitType

i GetCumentintney

i GetintitySethiame

2. Getvigatonpropery
GeOrginataleiecord

i GetRelstedEnd

R ——

Gavelve

% HandieDeletedénty

39 Handietnty

39 Hendicrdionsipkers

i 1sDependentindOfReferentislConstr...

9 MoreSnesiterncatey

B setvaive

3 Streheerencekepisives

i ToGetObjectStatetntry

3% UpdiateOriginaValues (+ 1 overlose)

L4

index-727_2.png
| @5 juie@HonKeRs4 2011-03-22 20 || % Run = b9 Debug = i |y = 3|
Testrun completed Results: 1/1 passed; Item(s) checked: 0

Resute TestName Project Eror Message
409 Pased ComatWthaddresesTest TestPojectt

index-132_2.png
Titie="Sr.

Count =3

{VBModelsamplePEF. Contact)

{VBModelSamplePEF. Contact)

{VBModelsamplePEF. Contact)

index-257_1.png
;\§

index-404_1.png
Principal Key Dependent Property
ContactiD. ContactiD.

index-551_1.png
Index

Property.

[oo

1

1"
12

13

FistName
Lasthame

Tite

AddDate

ModfiedDate
FowVersian
CustomerTypelD
InifaiDate
FiinayDestiationlD
SecondanyDestinationlD
PrimanéctiviyiD
SecondanctiviylD

Notes

Original
0

Ramana
Antin

M.

11/20/2004 111
2520103031
System Bytel]

2

5/25/2008 658
50

5

18

2

new noles 232 PM

Current
0

Ramana
Antin

M.

11/20/2004 111
2520103031
System Bytel]

2

5/25/2008 658
50

5

18

2

new noles 232 PM

ValueModified

<33 X %% % X[X% K %[%X

index-727_1.png
;\§

index-713_2.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-400_1.png
Contact

? Contactid
Firsthiame
Lasthame
Tt
Addate
ModfiedDate
Rowversion

feo———esf

Customers
? Contactid

CustomerTypelD
IntialDate.
PrinaryDesintation
SeconderyDestination
PrimaryActivty
Secondaryacivty
Notes
Rowversion

index-548_2.png
{BAGA.ObjectChangeTracker}

Count =0

false

Count =0

Count =1

{[Reservations, BAGA ObjectList]}

“Reservations”

Count =2

(BAGA Reservation]

(BAGAReservation]

Count=2

index-716_1.png
;\§

index-548_1.png

index-715_1.png
;\§

index-143_2.png
{System Data. Cbjects.DataClasses. Enti
{5ystem Data. Objects DataClasses EntityCollcton

{2/19/2008 %0% 10 PN},
.

index-263_1.png
;\§

index-143_1.png
QuickWatch

o {ProgrammingEntiyFramenork Chapteré,Contact)
{ProgrammingEntityFramenork. Chapteré, Contacty
{ProgrammingEntityFramenork. Chapteré, Contacty
{ProgrammingEntityFramenork. Chapteré, Contacty
{ProgrammingEntityFramenork. Chapteré, Contacty
{ProgrammingEntityFramenork. Chapteré, Contacty
{ProgrammingEntityFramenork. Chapteré, Contacty
{ProgrammingEntityFramenork. Chapteré, Contacty
{ProgrammingEntityFramenork. Chapteré, Contacty
{ProgrammingEntityFramenork. Chapteré, Contacty
{ProgrammingEntityFramenork. Chapteré, Contacty
{ProgrammingEntityFramenork. Chapteré, Contacty
{ProgrammingEntityFramenork. Chapteré, Contacty
{ProgrammingEntityFramenork. Chapteré, Contacty
{ProgrammingEntityFramenork. Chapteré, tacty
e P

ellciiSfalafies]

oo |o|e|e/o/oe o/o/e/e/o|o/e o]

AEEEEE

]

index-262_1.jpg

index-412_2.png
;\§

index-144_1.png
;\§

index-137_1.png
;\§

index-259_1.png
;\§

index-411_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-556_1.png
;\§

index-732_2.png
;\§

index-136_1.png
;\§

index-258_1.png
;\§

index-410_2.png
;\§

index-554_1.png
;\§

index-732_1.png
;\§

index-142_1.png
;\§

index-261_1.png
;\§

index-412_1.png
;\§

index-562_1.png
;\§

index-138_1.png
;\§

index-260_1.jpg

index-411_2.png
Table name:
Indes name:

Inclex ype:

ricue

I key columns:
Name
{ EortaciiD

[Address

UriqueFKForContact

SotOider DataType Size

Ascending it 4

Add

Remave

Mave Up

Mave Down

index-561_1.png
7. Customer)

St

= properties .
F CustomerTypelD. B oo]
FnitialDate
S prmanestinatonD = Froperies
' SecondanyDestinatioriD B ResenationD
5 PrimaryActivitylD F ReservationDate
T Secondanaciibid F Contactd
F Notes 1 I} - TripD
E m"

Source: Customer (1) _pertis|
Target: Reservation (*)

F Heightinches
WeightPounds
W DintarRestricons

index-733_1.png
;\§

index-245_1.png
b (ApplicationSettings)
4 (DataBindings)
(Advanced)

customerBindingSource - SecondaryAcivity [<]

SelectedValue (none)
Tag (none)
Tet (none)

index-381_1.png
;\§

index-536_1.png
;\§

index-702_1.png
;\§

index-379_1.png
;\§

index-535_1.png
;\§

index-695_1.png
;\§

index-122_1.png
;\§

index-246_1.png
;\§

index-384_1.png
;\§

index-539_1.png
;\§

index-710_1.png
;\§

index-121_2.png
;\§

index-245_2.png
of21t [> M [X

AddDate Mondey . Januay 22.2007 (v
Contscti: 1
FistNane: Aksandie

LostName: Sobherdan

ModfedDate: Fidsy . May 28,2010 [Nol:Aciviy/Desinsian
TenBores vere o on fom s0

Tl St you can see them in action
Pinsphcivy, Hoserdm = Secondaphcivy DoaSleddin
Primary Destination: Mowooo v Secondary Destiation:

Indial Date: Monday . Januay 22,2007 D+

Notes: owos bt f oo on o ek s . some AT

7
Foavaimons St T Senion
v vemw w e was
sz tavaws wans |sanPeremiindon
o0 lovaws o lmea

index-382_1.png
;\§

index-538_1.png
;\§

index-702_2.png
Properties

BAModel.Contact RowVersion Praperty

=
£

=l

StoreGeneratedPatterr Computed

Fixed Length True
Max Length

Default Value
Documentation
Entity Key
Name

Concurrency Made

5 Proper. W Team,

B Model

index-533_1.png
;\§

index-694_1.png
(o)

Value.
{n error occurred while updating the entres, Se the i -
{*n error occurred while updating the entries, See the i -
{n error occurred while updating the entres, See the i -
Cont=1

{System Data.Objects EntityEntry)

& [System Data.Objects EntiyEntr {System,Data Objects EntitEntry)

& A Entiy {BAGA Resenvation) €——
& 7 Entityey “EntitySet-Reservatior
& 7 Entityset {Reservations}

F IsRelatorship fabe

7 ObjecttateManager

{System Data.Objects ObjectotateManager)

& 7 Relatonshiptianager

{Gystom Data.Objects DataClasses Relationshiphanager)

ot

Added a——

index-693_1.png
;\§

index-130_1.png
;\§

index-252_1.jpg
Manage Trips

—O%]

Trip fo Start Date
Alaska 1/5/2010

7/24/2008

71072009

2/1/2008
6/8/2007

tot ore [ST72010] b [F7Z97297]

Create New Trip |

Save Trip |

Destination Lodging
[Australia Tn and Outback Tnn
Activities on this trip

Trem One
Item Two
Ttem Three

Activiti

Horseback Riding v]
Add Actiity to Trip |

index-396_1.png
142, else

143 f
148 generatenstonatichzoperey = trues

s B

146 @code. Spacehtoer (Recesaibilicy. ForGerter (ednPropercy)) Boecs

1471 //code o inciude max lengeh validevion begins here

148 [

149 [

150 B

151, EiEcode. Spacehtoer (Accessibilicy. ForSevcer (sdnProperey)) B

152 =

1534 § engenvalidacion (eanpropercy) B

154 © SHScode. Fielaene (eanropercy) 83 = value:)

15[3

156 -

157 else

138 ‘

1359

1601 //code co include max lengeh validacion ends here

161 Ecode. Spacehtoer (Accesaibilicy. ForSercer (sdnPropersy)) e G
162

o] @

168)

65 B

el)

167

165|| //added ") hashaxiengehAcerib® <o che it statement

163 if (‘generaceAucomaticPropercy | hasMaxlengtRACEEib)

170 f

B

172 privace @fcode.Escape (ednbropercy. Typevsage) §§ @ficode. Fieldlame (eanPrope

173

index-128_1.png
;\§

index-251_1.png
;\§

index-393_1.png
;\§

index-547_1.png
Value
{BAGA Reservation]

false.
null
false

54 neaRes

) _changeTrackingEnabled

7 objectsRemovedFromCollections

index-131_2.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-131_1.png
;\§

index-253_1.png
;\§

index-123_2.png
;\§

index-248_1.png
;\§

index-386_1.png
Name | Value \
& o comtt 15ptem ot ety Dymamichros Conac TEORSTEISTIFOOBSECITA
=0 (5yemOnt ity OymomicPrsiesContac 14 (e Ost sty OymamicProsesContctTOMEISTEELS 0 OBSZECIA
5 0'bur 15t ot ety ymamichrsis Contae TEOUEOTTEYIGSIFOBSACII
@ 5 Adibte T2 aoiat oy
@ S Addeses 1ystemDataObjcts Dl By Colcon <Chaptr 3SmplePOCO Ad
 Contacd 1y
o Ty £
S omtome “Tappor” a
@ odieddate 12727200 15556 2
e . - T
5 entipwigper 15tem 0t Objctsntemsl &by Wrppe Wi toshis <5t Dot
& bme {5t ots.bjctsntemsl nts Wrppe WibAelstoships <Sstem Ot
@ 0 b 15t Ot Objcts sl nt hsppe W Relstoships Syt Dt
© by 15t ot ey ymamichrosis Contac TEORSTENSISEIFOBSCII
@ Ereney “EniySe=Contact CortactD=1"
5 RequresanChongeTocing e
5 RequresCompleChongeTrcing |t
S RequiresSaChangeTncking | fobe
© S Typedennty 15 Ot ey Oy Conac TRORSTENA ST OB ECTI

G s b
55 Non-Pubie member
5 Cammensiphansger

e

5 RequiresRelabonshipChangeTracking

index-541_1.png
;\§

index-711_1.png
B ity s vowoic

Object Type BAGA. Customer

Curent Object State_ Modified
Index Propety [Dignal Curert.
ContsctD 2 2

Feaiame Chuck. Chates
LastNane. Pezold Peizold

Tt [s

AddDate W2/2005508 .| 8/20/2005 50
[Modfeddse 20088270, | svz0i0211

SystemBytel] | Sysem Bpel]

index-123_1.png
1 /;"p“?-“....._m‘nq Contct = GrogrammngEnstyramevork Chapter 4 Contct)

H]

index-247_1.png
;\§

index-385_1.png
| Name Value | Type.
5 combct_[5ytem Dot iy DyrmicProses Contc JOISSTSTASHFSBABS ChapteSSimplebOCO Contot System ot
& Tt e st G S OO S ot Dt s 00
ddOe | 15200 60610 Sptem eTine
o T i [mamun O 3 oo g SO0 oo el g
o |1 S
S rittame | Ty <[y
Hlastire [T 3l sng
15 3 Modedove| 1222008 053560 DT
EL e = rer

index-540_1.png
sp_executesql
sp_executesal
sp_executesal
sp_executesal
sp_executesal
sp_executesql

N'update
N'update
N'update
N'update
N'delete
Ntinsert

[dbo].
[dbol.
[dbol.
[dbol.
[dbol.
[dbo].

[contact] set [FirstName] = eo...
[Contactpersonalinfo] set [Bir...
[Customers] set [CustomerTypel...
[Reservations] set [Reservatio...
[Reservations] where ([Reserva...
[Reservations] ([ReservatiomDate. . .

index-710_2.png
B ity s v

Object Type BAGA. Customer

Current Object State_ Modified

I [Popety | Oignal Conert
> Conact 2 2
atane Chates Chates

LasName. Pezold Peizold

THe 0 s
AddDa G50 B0
Nodbedbse B7Z0RE20. | SASAMOZ1
[Rowessen | Systemyte] | SysemBytel]

———" N

index-127_1.png
;\§

index-250_1.png
;\§

index-389_1.png
>[4 BAModel.edmx
. B Breskhway.Contecttt
%) BreakAway.Contedt.cs]
. B Breskhuay
4] Activity.cs
) Address.cs
) Breakviay.cs
] Contactcs
) ContactPersonsilnfo.cs
) Customercs
) CustomersinPastearc
) CustomerTypecs
4] Destinstion.cs
4] Equipment.cs
) Lodging.cs
) Payment.cs
4] Resenvation.cs
) Trips
4] vOfficeAddress.cs
9] vPaymentsforPeriod.cs

index-546_1.png
Value
{BAGA.Customer}
{BAGA.Customer}
{11/20/2004 11:10:27 PM}

index-713_1.png
;\§

index-125_1.png
{Streeti = "32075 Grady Way *, Gity = Renton
{Streett = 7943 Wabnut Ave /Gty = Renton

index-248_2.png
;\§

index-388_1.png
;\§

index-541_2.png
;\§

index-712_1.png
RS C

Object Type BAGA Customer

Cunent Object State_ Unchanged
_index | _Piopery. T Gignal T Carent [VakeModied
ContectD 2 2

FesiNane Chuck Chuck
Lasthane. Petld Petzod
Tile . e

AddDate 872072005 509... | 8/20/2005 508,
Modleddale 8/772008827.0..|8/772008 82710,
Rowerson Systembyel] | SystemBytel]

CunomerTypelD g 1
P PP Pr—

index-364_1.png
;\§

index-521_1.png
;\§

index-671_1.png
;\§

index-520_1.png
/schemas.microsoft.com/ado/ 2007/08/ dataservices/refated/Trip”

Trip’ href-"Reservations(2)/Trip'>

Zeentry>
<d>http:/ /localhost:1179/ WciDataService1.svc/ Trips(40) </id>
<title type="text’ />
<updated>2010-01-20T14:36:542 </updated>

- cauthor>
<name />
<Jauthor>
‘edit” ttle="Trip" hrei="Trips(40)" />

rel="http:/ /schemas.microsoft.com/ado/ 2007/08/ dataservices/related/Reservations"
type="application/atom-+xmi;type=feed" titie=Reservations' hief="Trips
(40)/Reservations" />
<category term="BAModel.Trip"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
- <content type="application/xmi">
- <m:properties>
<d:TripID mtype="Edm.Int32'>40</d: TrpiD>

<diEndDate m:type='Edm.DateTime">2009-09-20T00:00:00 /d:EndDate>
<d:TripCostUSD m:type="Edm. Int32">1500</d: TripCostUSD>
</m:properties:>
</content>
<Jentry>
<minine>
<fink>

index-668_1.png
;\§

index-238_3.png
;\§

index-364_3.png
;\§

index-521_3.png
;\§

index-675_1.png
;\§

index-238_2.png
ReservatiorDate Start End Destination
» 1505 471572008 412272008 Costa Fica
11/16/2008 11/27/2008 127472006 India

index-364_2.png
Allison
M.
1/10/2008
8/7/2008

Paymants for Selected Reservation
PaymentDate Amount
1172006 5130000

(inset.| [Ciear

index-521_2.png
<#xmiversion="1.0" encoding="utf-i

standalone=Tyes’ 7>

- <error xmins="http:/ /schemas.microsoft.com/ado/2007/08/dataservices/metadata">
<code />
<message xml:lang="en-US">An error occurred while processing this request.</message>
- dinnererror>

<message>Navigation Properties are not supported on derived entity types. Entity Set
*Contacts' has a instance of type ‘BAModel.Customer’, which is an derived entity type
and has navigation properties. Please remove all the navigation properties from type
‘BAModel.Customer. </message>

<type>System.InvalidOperationException</type>
<stacktrace>at
System.Data.Services.Serializers. SyndicationSerializer. WriteObjectProperties
(IExpandedResult expanded, Object customObject, ResourceType resourceType, Uri
absoluteuri, String relativeuri, SyndicationItem item, DictionaryContent content,
EpmSourcePathSegment currentSourceRoot) at
System.Data.Services.Serializers. SyndicationSerializer. WriteEntryElement
(IExpandedResult expanded, Object element, ResourceType expectedType, Uri
absoluteuri, String relativeuri, SyndicationItem target) at
System.Data.Services. Serializers.SyndicationSerializer. WriteTopLevelElement
(IExpandedResult expanded, Object element) at
System.Data.Services.Serializers. Serializer. WriteRequest(IEnumerator queryResults,
Boolean hasMoved) at System.Data.Services.ResponseBodyWriter. Write(Stream
stream) </stacktrace>
<finnererror>
Jerrors

index-672_1.png
;\§

index-667_1.png
;\§

index-244_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-376_1.png
;\§

index-531_2.png
;\§

index-242_1.png
;\§

index-375_1.png
%, contact

 properties
3 Contactid
S isame
S Lastame

Tt 2 CountryRegion
F postalCode

5 ModifedDate B AddressType
 Navigaton Properties F Contsctld

1 ModifiedDate

& Navigation Properties
Contact

index-531_1.png
;\§

index-688_1.png
;\§

index-244_3.png
"/ ComboBox Tasks

Data Binding Mode
DataSource | activityBindingSource
Display Member |Name =

Value Member [ActivitylD =

Selected Value | customerBindingSource]

Use Data Bound ltems

k]

S None 3
4 8 customerBindingSource
(3 ContactlD
3 CustomerTypeld
(3] InitialDate
3] PrimaryDestinationiD
3 SecondanyDestinationld
a ryActivitylD
[SecondaryActivtyD)

0 Notes g
7 Add Project Data Source.. I
Selecting » BindingSource property binds

tothe corresponding property of the st ..

index-244_2.png
;\§

index-377_1.png
;\§

index-241_1.png
;\§

index-369_1.jpg
DYNAMIC DATA SITE

« Bk to home e
My tables

Table Name.

R——
-

oty

index-524_1.png
;\§

index-683_1.png
;\§

index-239_1.png
;\§

index-368_1.png
;\§

index-523_1.png
;\§

index-677_1.png
;\§

index-241_3.png
|| Name Value
© 5 ntabate /472008 12:00:00 M)
o N T e of e o .. one e ™ -
S prmaryAchiy il
= prmaryacoutyd s
5 % PrivaryAchviyeference | (System Dot Objects DataCasses EniyReference SAGAACIYS)
5 obee ystem Oat Objcts DotaClsces EniyRefrence <BAGA Acity>)
© @ base \ {System.Data.Objects.DataClasses EntityReference <BAGA ACEVity>)
& o ey EnsiySet=AchitesACHIDID=S"
T @ NonPublc members

index-371_1.png
tdit entry from table Tnps

StartDate 2/3/2008 12:00:00 AM

Endbate 2/7/2008 12:00:00 A

TripCostusp 1572

index-529_1.png
;\§

index-684_2.png
;\§

index-241_2.png
;\§

index-370_1.png
Trips

Destination [Al

Lodging (Al

N
N
N
N
N
N
N
N
N
N

Delete
Delete
Delete
Delete
Delete
Delete
Delete
Delete
Delete

Delete

I (Page 1 ofts b M

1
Detals /320
1
Detals 3202)
Detais 5/17/2:
Detals 117271)
Detals s/m/z:
Details u/zgﬂl
Detals sy
ousts 2y
Details 3,
Detals 11730
[}
1

+ Insert new item

Activities
Sking Road Cycing e\suvf Deep Sea Fisting

sking
Sking ScubaDiving

walking Tours

Kayaking Canaing Horse rdng
Road Cycing -Lesre

Mountain Bking

Road Cycing -Lesre

Road Cycing - Chalenging
Mountain Bking

Resu per pace: 10 [<]

index-525_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-684_1.png
;\§

index-238_1.png
;\§

index-510_1.png
;\§

index-658_1.png
;\§

index-655_2.png
sl Entity State Visualizer

Object Type BAGA Address
Current Object State_Unchanged
Index | Propety | Digial Curent ValueModiied
> _ addressD 2260 2260
1 Cowniyfiegion | Urited Sates Unied Staes
2 FostalCode) 011
3 AddressType | Home Home
n ContectlD 5 E3
|5 Modiedbale | 2192008 40831 PM | 2/19/2008 40831 PM
6 Rowerson | SysemByel] System Bstel
7 Stieet 8714 Yosemite CU 8714 Yosemie Ct
0 Stuect2
9 ciy Botel Bothel
10 SteleProvice | Washinglon ‘Wastingon

index-872_1.png
3 1§ ProgrammingEFDBL
3 Datsbsse Diagrams
3 Tables
o 3 System Taes
5 O dbodddes
&3 Colirs
=
7 PR Addresses
¢ R
&3 Comtrarts
& 03 Tiagers
& 3 ndexe
& 3 Seistics
= M dbo.Contact

index-232_1.png
K40 o0} b W% X

Nonday _ November 23,2009 3+

index-356_1.jpg
BreakAway Geek Adventures

Reservation Payments

Select a Custamer Customer's Reservations

Einstein, A. E. Manaco (9/13/2009 - 9/20/2009; $1,500)
Australia (3/14/2006 - 3/21/2006: $1,500)
— TE Australa (271272008 ~ 272A7200% $1.300)

LostNane | Einstein

Title Mr.

Paynents for Selected Reservation
Adddate 1/10/2004

Paynent Date | Anount
Last Modified | 8/1/2009

2/1/2006 | $300.00
2/15/2006 | $1200.00

[Pz |

index-512_2.png
;\§

index-660_1.png
;\§

index-355_1.png
;\§

index-512_1.png
SELECT [Projecti]. [Contacti) AS [Contactm], ([Projecti].(Firstuame] AS [Firstuame], ([Projecti].(Lastname] AS

o enecutesal NSELECT | (projects. (Contactios A5 (Contactnl, (Progecea). [onkaceIon) A5 (contaction,
So_executesal NSELECT (extent). (Evento) A5 (Svnein), (Exeanes) LacaeioniD) A5 (Locationi), {extes
spxecutesa) Neupdsce (dhe. Concact] set (Firstaane = 90, (Lastnane = 1, (TFE1) = rull, (haace] = 82,
Lo enecutesal Nupdste (450, (Contactrersonalnde] set (4rit0ate] = rall, (Heioneinehes) = ol (neionros
o enecutesal Nupdate (450, (Customars] et (Customaryeis] = 00, InE\NIOREE) = o1, (primarsOesintation)
e e et e e e Y P

index-659_1.png
;\§

index-871_2.png
FK_Address_Contact

Object #1 s
) Workadiress

FK_Address_Contact
Object #2

(ontact —
Arnold Bly Home add

index-236_3.png
D ResevatonOate CortoctlD _TrplD. Csoner __Tio
vaansa i " A G [BRGATE

™ s 1 & e -
Ed b B A G| BIGATE

index-359_1.png
Bailey, James

LastName
Title
AddDate
ModifiedDate

Bailey
Mr

9/13/2007
8/7/2008

index-518_1.png
;\§

index-666_1.png
v]

{BreakAwayModel.Store.UpdateContact}

F AguregateAtbute fabe
57 Bultinaty buts fabse
5 BulinTypekind EdrFunction
5 CommandTextAtibute nul
S EntitySet ull
5 Fullame “BreakAwayhodsl Store. UpdateContact”
57 HasUserDefinedoc) fabe
57 IsComposableatrbute fabe
5 1sFromProvideranifest fabe
7 NiadicFunctionatbute fabse

& 2 Parameters Count = 4
ERA0] {Contactin}
B0 {Frstiarme)
ER0] {LastNarme}
@ e {Title}
&9 Raw View

i Parameter TypeSemanticsAtrbute

AllowlmplicitConversion

) 5F Returnparameter rull
o schema “doo*
8 StoreFunctionNameAttr bute Tl

index-236_2.png
;\§

index-358_1.png
;\§

index-517_1.png
- <entry>
<id>http:/ /localhost:1170/ WelDataService1 sve/ Contacts(92) </id>
<title type="text' />
<updated>2010-01-19T20:22:487 </updated >
- <author>
<name />
<Jauthor>
<ink rel="edit" titls="Contact” hvef="Contacts(92)" />
<category term="BAModel.NonCustomer”
Scheme=http:/ /schemas.microsoft.com/ado/2007/08/dataservices/scheme' />
- <content typs="application/xmi">
- <miproperties>
<d:Contactid m:type="Edm.Int32">92</d:Contactin>
<d:FirstName xmi:space="preserve*>Jovita </d:FirstName>
pace="preserve’>Carmody </d:LastName>
<d:Title xmi:space=preserve">Ms. /d:Titie>
<d:AddDate m:type="Edm.DateTime'>2007-01-21T20:35:35.95 </d:AddDate>
<d:ModifisdDate m: type~"Edm.DateTime'>2008-08-07T08:27:07.033 </d: ModifidDate>
<4 TimeStamp m:type=Edm.Binary">AAAAAARAKOE = </d: TimeStamp>
</m:properties>
<Jcontent>
<Janby>

index-665_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-237_2.png
;\§

index-363_2.png
;\§

index-237_1.png
;\§

index-363_1.png
;\§

index-519_1.png
- <entry>
<id>http:/ /localhost:1179/WcDataService1.svc/Reservations(2) </id>
<title type="text’ />
<updated>2010-01-20T14:23:14Z </updated>

- <author>
<name />

it tite~"Reservation" href="Reservations(2)" />
ttp:/ /schemas. microsoft.com/ado/2007/08/ dataservices/related/Customer’
type="application/atom +xmijtype=entry’ title=Customer’ href~"Reservations
(2)/Customer /-
ik fel="http:/ /schemas. microsoft.com/ado/ 2007 /08 dataservices / related Trip
type="application/ atom +xml;type=entry’ title="Trip" href-"Reservations(2)/Trip’ />
<category term~BAModel.Reservation”
<cheme="http:/ /schemas. microsoft.com/ado/ 2007/08/ dataservices/scheme’ />
- <content type="application/xmi">
= amiproperties>
<d:ReservationId m:type="Edm.Int32">2/d:Reservationi0>
<d:ReservationDate m:type="Edm.DateTime’>2006-09-
02T16:00:13.513</d:ReservationDate>
<diContactiD mitype="Edm.Int32">607 </d:Contactio>
<A TrpID m:type="Edm.Int32">40/d:TrpID>
<d:TimeStamp m: type="Edm. Binary'>AAAAAARADCL= </d: TimeStamp>
miproperties>
eontents
<Jentry>

index-234_1.png
8 Forml (2|6
W1 oms o F]
AddDat Toesdsy . Mach 04,2008)+
Cotact i
Fst Name: Rex
Last e Sothentsm
Modfed Dt Trrsdey . Joruay 22,209 v
The .
PimryActvty. Py P Seconday Actvty. Dog Seddng
Pimay Destnston: orosca Seconday Destrston: Fussa
Bocome o Cutomer._Tomsdey . Mach 04,2008 5+
Notes: st o have o i Gret et e oo o
souma

index-357_2.png
;\§

index-515_1.png
;\§

index-662_2.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-233_1.png
Customer
Contact
Primary Activity
Secondary Activity

Primary Destination

Secondary Destination

Trip }—{_ Destination)

(Reservation

Reservation

index-357_1.png
;\§

index-512_3.png
;\§

index-662_1.png
;\§

index-236_1.png
;\§

index-357_4.png
;\§

index-516_1.png
s

hitp/localhost1179 WelDataSenvcel sve/ Contacts
<2xmi version="1.0" encoding="utf-8"

- <feed xmi:base="http:/ /localhost:1179/ WcfbataService1.svc/"
xmins:d="http://schemas. microsoft.com/ado/ 2007/08/ dataservices"
xmins:m="http://schemas.microsoft.com/ado/ 2007/08/ dataservices/metadata"
anins "http:/ / www.w3.0rg/ 2005/ Atom">
<title type="text’>Contacts</title >
<d>http:/ /localhost:1179/ WcfDataService1.svc/ Contacts</id>
<updated>2010-01-19T20:22:487 </updated>
<ink rel="self" tite="Contacts" hraf="Contacts’ />
- <entry>
<d>http:/ /localhost:1179/ WcfDataService1.sve/ Contacts(1) </id>
<title type="text’ />
<updated>2010-01-19T20:22:48Z </updated>
- <author>
<name />
</author>
ik rel="edit" title="Contact" href="Contacts(1)" />
<category term="BAModel.Customer”
scheme ="http://schemas.microsoft.com/ado/ 2007/08/dataservices/scheme’ />
- <content type="application/xmi">
- cm:properties>
<d:ContactiD m:type="Edm.Int32">1</d:ContactiD>
<d:FirstName xml:space="preserve">Alex</d:FirstName>
<d:LastName xml:space ~"preserve’>Solzhenitsyn</d:LastName>
<d:Title xmi:space="preserve'>Mr.</d:Title>
idDate m: type="Edm.DateTime">2000-01-07T11:41:45 </d: AddDate>
<d:ModifisdDate m: type="Edm.DateTime">2000-12-02719:59:37.723 </d: ModiiedDate:>
<d:Timestamp m:type="Edm.Binary’ >AAAAAAAALNI= </d: Timestamp:>
<d:CustomerTypeID m:type="Edm.Int32">1</d: CustomerTypeID>
<d:nitialDate m:type='Edm.DateTime" >2008-03-04T00:00:00</d: ntiaDate>
<d:PrimaryDestinationiD m: type="Edm.Int32">5</d:PrimaryDestinationiD>
<d:SecondaryDestinationlD m: type="Edm.Int32">25</d: SecondaryDestinationID>
<d:PrimaryActivityID m:type="Edm.Int32">18.</d:PrimaryActivityID>
<d:SecondaryActivitylD m:type="Edm.Int32">21</d: SecondaryActivityID>
<d:Notes>He was lots of fun to have on our tript </d:Notes >
d:BirthDate m: type~"Edm.DateTime">1981-01-26T00:
<d:Heightinches m: type="Edm.Int32">69.</d:Heightinches>
<d:WeightPounds m: type="Edm.Int32">125</d: Weightpounds>
<d:DietaryRestrictions xml:space="preserve"></d:DistaryRestrictions>.
<d:CustTimeStamp m:type="Edm.Binary">AAAAAAAAUgK= </d: CustTimeStamp>.
</miproparties>
</content>
<fentry>
- <entry>
<d>http://localhost:1179/WcfDataService1.svc/Contacts(2) </id>

index-664_1.png
{BAModel Actvity} A ~ System.Data Metadata Edm EnttyType

Fake ook
Heworips Hothing Syt Dt stadat Edm Edriypa
FeultTypeked EnttyTye (14) St Dsta stacata Edm Bt ypskind
T Cacricontry ol Actty” avisrm
FHermpe Hoting Spsemype

3 ColbctorkicFacebescrpton _ (Collctorkre). 2+ Syt Dt stadat i FaceDaser o

FFostaspare Copacs () St Dsta Vetadst Eom Dsaspace

3 CofauabeFacsDesorpton | (Dofaulvals) 2+ Syt ta Mstact Ecm FaceDasrpion

“Foocumentaton Noting Syt Dsta Vetadss Eom Documentaten

o eomProveninfest Sy Cta ettt Sytem Dt etacta £ Ecinfroven st

Feultame S ven

sy v

ey o

ket anes £

o et System.0ata eiadat Edm ReadorivetadaCol

o vt et ta etacs i ReadonetaEtacol

o veraroperes System0ata Metadat Edm Readorivetadaacol

e Ay

Err Aeveg

& Fnavgaterropertss System ata etadat Edm Reador eI aCol

& STl acepescr pion Ouisbe) 3+ Sysem aa Metadt € FceDescrpon

Y EdiType=(WIType}, Facets Count=2_ Spstem Dataetacata . TypeUsage

& “Heropertes Co=4 Syt 0ta Metadat Edm RaadorEIETICOl

© T Rauvstadiaoptes (System.Cata Mot Edm G Spsem Dat itadta 4 MEtadsaColcton -
iew (@aodsl Contac). 4./ Sytom Dt tacata £ EnttyType.

XY (BAModeLOusomerTYpe) Q| System.Data,Metadata. Edm.Entiy Type

index-235_1.png
;\§

index-357_3.png
;\§

index-515_2.png
& hitpy/localhost 1179/ WeDataServicel sve/

<2xml version="1.0" encoding="utf-g" standalone="yes" 7>
- <service xml:base="http://localhost:1179/WcfDataService1.svc/"
/www.w3.0rg/2005/ Atom"

xmins="http://www.w3.0rg/2007/app">
- <workspace>
<atom:title >Default</atom: title>
- <collection href="Contacts">
<atom:title >Contacts </atom:title>
</collection>
</workspace>
</service>

index-663_1.png
;\§

index-354_1.png
9132004 872008
6202008 572008
6142004 872008
3102003 872008
5302007 872008
152006 872008
12202004 872008

Nots
Primary Dest Aard siands]
Primary Activity [Deep SeaFisbng -}

Updte Cancel

index-647_1.png
;\§

index-854_1.png
Reservations for: Alll

Payments

Payments

Payments

on , Cecl

ReservationDate TripDetails

8/18/2008 Monaco (3/13/2009-8/20/2008; $1,500.00)
12/4/2005 Australia (3/4/2006-3/11/2008; $1,500.00)
Collapse

PaymentDate Amount ModifiedDate
Edit | Delete 4/1/2005 300.00 4/1/2005

Edit | Delete 5/2/2005 1200.00 5/2/2005
Create New

4/28/2005 Australia (2/4/2006-2/11/2008; $1,300.00)

index-852_2.png
;\§

index-347_2.png
ReservationID ReservationDate Customer.ContactID Trip. TripID|
11/30/2009 12:00:00 AM 0 0

11/30/2009 12:00:00 AM 1
11/30/2009 12:00:00 AM 2
11/30/2009 12:00:00 AM 3
11/30/2009 12:00:00 AM 4
EntityDataSource - EntityDataSourcel

B
ESEEIe

index-501_1.png
;\§

index-649_2.png
;\§

index-863_1.png
4, Address

= Properies
5 addresD
F CountryRegion
F PostalCode
S ddressType
F ContactlD
5 ModifiedDate
5 Rowiersion
= Mail

= Navigation Praperties

index-496_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-649_1.png
;\§

index-860_1.png
= Wb System.Uata.Entity.dll
) i References
B0 -
@ () System
@ € SystemData
& €} System.Data.Common
@ €} System.Data.Common CommandTrees
& €} System.Data.Common CommandTrees. ExpressionBuilder
& €} System.Data.Common CommandTrees.ExpressionBuilder nteml
& €} System.Data.Common CommandTrees.Internal
& €} System.Data.Common EntitySal
& €} System.Data.Common EntitySql.AST
@ €} System.Data.Commonlntemal
@ €} System.Data.Common.ntemal Materialzation
& €} System.Data.Common QueryCache
@ €} System.Data.Common.Uils
& €} System.Data.Common Uil Baolean
@ () System.Data Entity
@ €} System.Data EntityClient
& €} System.DataEntityModel.SchemaObjecthodel
@ €} System.Data.Mapping
& €} System.Data Mapping.Update ntermal
@ €} System.Data.Mapping ViewGeneration
& €} System.Data.Mapping ViewGeneration. CqlGeneration
@ €} System.Data Mapping ViewGeneration. QueryRewriting
@ €} System.Data Mapping ViewGeneration.Structures
& €} System.Data.Mapping ViewGeneration.Litls
@ €} System.Data Mapping ViewGeneration Valdation
@ €} System.Data Metadata Edm
@ €} System.Data.Objects
& €} System.Data.Objects DataClasses
@ €} System.Data.Objects ELing
& () System.DataObjects Intenal
@ €} System.Data ObjectsSqlClient
B O SystemDits.QuerylntemalTrees
@ O SystemDits.Query.PlanCompiler
& €} System.Data.Query.ResultAssembly
@ €} System.DataSalClient
@ €} System.Data.SqlClient.SqlGen
@ {} System.Ling Expressions

index-351_2.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-507_1.png
;\§

index-654_1.png
;\§

index-871_1.png
;\§

index-351_1.png
;\§

index-506_1.png
AddSenvceReference

To see a it of avalable sevices on a specific zervr,enter »senvice URL and click Go. To browse for available
senvices, lick Discover.

Adaress:
itp/localhost 1389/ CustomerSenvice svc. - [(Go] | [Discover |
Services: Operations:

© @ Cutomersendcec
) Customerseniice
5° ICustomerService

Select a senice contractto view it operations,

1 senice(s)found at address hitp//localhost1389/ CustomerService.sve-

index-653_1.png
s

Object Type BAGA. Customer

Curent Object State _ Modified

ndes T Progery Oigina Canent Vauiodied
> ContactD 1 1

1 Feaame. erande Alarcee

B Loitone Sotentsn_ sanpin X

B it 5. B

0 dise 1202007 1181172272007 14185

s Vodiedoas 5282010525, | 52020109252

10 RowVerson SystemBytel] | System Bytel]

7 Cutonatypdd |1 i

s oDae 1227207 1200, | 172272007 12000
- Pinsyposinsio. |5 5

o SecondayDesiin.. |25 %

i Prinsyhctivld | 18 ®

2 Secondayctivt. |21 2

i os ol | Hewer o oifnto

i sose 175581 1200 1287150 20000

Ly Heiohilches £q £a

index-870_1.png
;\§

index-353_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-508_2.png
Name Value

5 5 results(o] {ChapterlICansoleApp CustornerService Trip}
5 @ base {ChapterlTCansoleApp CustornerService Trip}
BN {ChapterlTCansoleApp CustornerService Trip}
) 5 EntityKey {ChapterlTConsalepp CustomerService EntityKey]
5 o EntityKeyField {ChapterlTConsalepp CustomerService EntityKey]
5 R Activiies Count =0
5 ActiviiesField Count =0
) F Destination {ChapterlTCansoleApp CustomerService Destination]
% Destinationfield {ChapterlTConsoleApp CustomerService Destination]
5 Destinationld 55
DestinationIDField 55
) F DestinationReference {ChapterlTCansoleApp CustomerService EntityReference OfDesti
% 2 DestinationReferencefield | [ChapterlCansaleApp.CustamerService EntityReferenceOfDesti
) 5 EndDate {2/1/2011 20000 A}
© 2 EndDateField {2/1/2011 1220000 AN}
F Lodging nul
LodgingField ul
F LodginglD 25
LodgingIDField 215
5 F LodgingReference {ChapterlTCansoleApp CustomerService EntityReferenceOfLodg
© LodgingReferenceField | [ChapterlCansaleApp.CustamerService EntityReferenceOfLodg
) F Reservations Count =0
5 ReservationsField Count =0
5 F StartDate {2/3/2011 20000 A}
© StortDateField {2/3/2011 120000 AN}

e e

index-352_1.png
;\§

index-508_1.png
;\§

index-655_1.png
;\§

index-348_2.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-502_2.png
;\§

index-650_2.png
;\§

index-864_2.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-348_1.png
;\§

index-502_1.png
;\§

index-650_1.png
;\§

index-864_1.png
 ModifiedDate TimeStamp Mail Mail Street] Mail Street2 Mail City Mail StateProvince Contact

1232009
12000047 ¢ jbe fibe e e e e
1232009

120000aM ¢ e e e e e e
1232009 e abe abe abe s abe abe

12:00:00 AM

index-349_2.png
;\§

index-504_1.png
;\§

index-652_1.png
;\§

index-868_1.png
o2 UsingBindingSource
Wodjo o>

address ID:
Address Type:

Cortact ID:

Corry Region:

Modfied Date: Frday.
Postal Code:

Add Date: Faday
Cortact D
Frt Name:
Last Nae:

Modfied Date: Frday.

State Province:
Street1
Strest2:

M X

‘December 04,2003 [F+

‘December 04,2003 [F+

‘December 04,2003 [F+

index-349_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-503_1.png
;\§

index-651_1.png
;\§

index-867_1.png
4 5 Address
addressiD
AddressType

» [Contact
ContactlD
CountryRegion

4 B Mail

city
StateProvince
Streett
Street2

T ModiiedDate

PostalCode

© Timestamp

index-347_1.png
;\§

index-345_1.png
;\§

index-493_1.png
;\§

index-836_1.png
4 ProjectedCustomer

= properties
9 Contactd
S Firstiame
B LastName
S Title
2 primaryDestinationd
' secondaryDestinationlD
B primaryActivitylD
' SecondaryActivitylD
= Notes
“F girthDate
4 Heightinches
' weightPounds
R DietaryRestrictions
R primaryDestinationName
“ SecondaryDestinationhiame
R primaryadtivityName
4 SecondaryadiiityName
=/ Navigation Properties

»

index-481_1.png
;\§

index-629_2.png
;\§

index-845_1.png
;\§

index-629_1.png
;\§

index-837_1.png
;\§

index-340_3.png
.
ContactID FirstName LastName Title AddDate ModifiedDate

0 abe abe abc 112812009 12:00:00 AM 11/28/2009 12:00:00 AM|
1 abe abe abe 11/28/2009 12:00:00 AM 11/28/2009 12:00:00 AM
2 abe abe abe 11/28/2009 12:00:00 AM 11/28/2009 12:00:00 AM
3 abe abe abe 112812009 12:00:00 AM 11/28/2009 12:00:00 AM
4 abe abe abe 11/28/2009 12:00:00 AM 11/28/2009 12:00:00 AM

index-488_2.jpg

index-643_3.png
o) | SByetem Dots Chjocts. Bttyinry}

0 (Spsm et Cocs Enitenty] {System at Copcts Enthyeni)

&g care {Systom Oata Copcts Copc)

% Zomngsat {Ressraters)

2 s Unchangea

& iy (@A Reservator)

@ S enniey “Enttysat-heservters esaateniD=2"

© Semneat {Roseraters)

oy oo

svelatonshp. e

5 Modeceropertes -

& 2 cbpcrtanager (Sysiemoat Cojcts Copc i)

& 3 Relatershpianager {Systom Oat CoctsDatalasos Rlatersipanager)

Fson Uncharged

E Systomata Erttysateen ey oo

i Syt Data ity StaeEny Modieceroperies -

£ SysBm0st Erutyssensy SataManager (Sysiem0a Cojcs CopcBtng)
 Syster.Data Objects. DataClasses.IEntityChange Tradker EntityState |Unchanged

index-850_2.jpg
| @ Details - Windows Internet Explorer

My MVC Application

Details

Fields

Edt | Back to List

index-340_2.png
ContactID FirstName LastName Title| AddDate ModifiedDate
112872009 120000 AM 11282009 12:00:00 AM
11/28/2009 120000 AM 11282009 12:00:00 AM
11282009 120000 AM 11282009 12:00:00 AM
11282009 120000 AM 112812009 12:00:00 AM
11282009 120000 AM 11282009 12:00:00 AM
11/28/2009 120000 AM 11282009 12:00:00 AM]
11282009 120000 AM 112812009 12:00:00 AM
11282009 120000 AM 112812009 12:00:00 AM
11/282009 120000 AM 11282009 12:00:00 AM
11/28/2009 120000 AM 112812009 12:00:00 AM

FEEEEEEERY
FEEEEEEREE

index-488_1.png
;\§

index-643_2.png
;\§

index-850_1.png
;\§

index-341_2.png
;\§

index-491_2.png
;\§

index-646_1.png
st Data Common EntiyRecordinto)

Cont =

{Systom.Data Common Fisetadsta)
{Reservatin)
o

{Reservation)
& [System Data Metadata Edim EdrmProperty] {Reservation)
© o basn {ReservationD).
_menberGeter il
 _menberseter il
FauitinTypekind Ednproperty
S ostautvake rull
@ 4 EntiyDeclaringType {5ystem RuntimeTypeHande).
2 Nullable false
© o PropertyGetierHandie {System Runtimetvethockande)
© o PropertySetirhiande {System Runtimetethockancle}
7 VakeGetter rul
S VakeSetter rul
© 4 base {Reservationio)
© 5 dechrigtype {BAPOCONodel Reservation)
rame ReservatoniD"
© 9 _typelsage EdmType=(Edm.int32}, Facets.Count=2
& = DeclrngType {BAPOCONodel Reservation}
7 identty ReservatoniD"
7 IsStoreGeneratedComputed folse
7 IsStoreGeneratedienty folse
Fame ReservatoniD"
F Typelsage EdmType={Edm.na2), Faces Count=2
= ordnal o
B0 {System.Data.Commen Fieldetadata)
ER2] {System.Data.CommanFieldMetadata)
ERI0] {System.Data.CommanFieldMetadata)
EXI01 {System Data.Common.FieldMetadata)

index-341_1.png
Title. AddDate ModifiedDate
82009 LTS AN 12220093524 P
2032003 82301 PM 872008 82707 AM
22008 SSLSSPM 872008 82707 AM
6112004 31010PM 872008 82707 AM
162008 113912 3 872008 82707 AM
WS PU SN ZTOT AN
11102008 613497 872008 $2707 AM
9262006 25T4SAM. $72008 82707 AM
392004 LIZSTRM 872008 82707 AM
2152003 4909 AN 872008 82707 AM

EFEEFIFEFEF

index-491_1.png
;\§

index-645_1.png
| Name
5 3 feceropertes
& ¥ Copcsttottanager

Value
ol

{SystomData Cbjecs CoecSiattiarager)
{5ystom0ata Objects DataClsses Rolatonshitianacer)

¥ rolaorshianager
 _rodsvered e
59 owrer {each Custrmer)
© 9 rolatorships Count=5
BN) {5ystom 0ata Cbjecs DaaClsses EniyCollcton <BAGA Reservaton>)

5 [5ystem 0t Gbcs GataCaese.En Systom.0ta Objoct. 03aC1sses EnIColeCton <BAGA Resanatons)

BT

{SystomData Cbjects ataClasses EnyCollction <BAGA Resenaton)

 _ondssocatonthangadrObisetirul

© 9 olamEnttes

© 1 wrappedRelateEnites

oot
3 countternal
ishoadonly

s
s
sk

37 Systom Comporeniviodel L sSaur ke

S S wrappecolsucnttes

Cori=5

Sem ([BAGA Rosorvatin, Sysom Oat.Cecs InernalL i woghEnY ¥ apper 1
o ey (84GA Rosorvaton)
g {84GA Resarvaton)
o Svme {5ystom0ata Cbjecs InmalL ghtweih ity irapper GAG Reservatons)

15 [5ytem 03t Objocs e (ystom.0ta Cbjects. InmalL Ghwe h Eniyragpesr <DAG Reservatons)

o oot
L. [

(eacasaenttos)
N —

index-852_1.png
;\§

index-338_1.jpg
E) Choose a Data Source Type

Where will the application get data from?

B & B & O

Access Datsbase [EIE] LNQ Object Site Map
Database

%

XML File

‘Connect to an ADO.NET Entity Framework Model.

Specify anID for the data source:
EntityDataSourcel

index-484_1.png
;\§

index-638_1.png
;\§

index-847_1.png
Add View

View name:

Index

1) Creste 3 il view (350

Create a strongly-typed view

View data classi
BAGA Contact

View content;

List

Select master page.

~iews/Shared/Site.Master

ContentPlaceHlder ID:

MainContent

Add Cancel

index-337_2.png
;\§

index-482_1.png
;\§

index-636_1.jpg
Detail Object
Detail Object

Detail Object

Detail Object

ObjectContext

index-846_1.png
Add Controller =2

Controller Name:

ContactCantraller

Add action methods for Create, Update, and Detals scenarios

Add Cancel

index-340_1.png
;\§

index-487_1.png
;\§

index-643_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-848_1.png
#8 Index - Windows Intemet Explorer
@0 2 s cona lefo]x]

Fortes | e

My MVC Application

Contactip Firstame Lasthame Tiie AddDate Mo
Detais 1 e — w. 700 111
atals 2 atn s "

a6 Rosemary ol v

EEEEEEEE
£

atals 1 ara s
utals o i
Detais seaver e
Detais 2 Handie .-

index-339_1.png

index-485_1.png
;\§

index-638_2.png
;\§

index-847_2.png
4 G Views
Account
4 [Contact

[Indexaspx
4 [Home
About.aspx
[Indexaspx
Shared

index-478_1.png
;\§

index-477_2.png
var query

Trom p in context.UpcomingTripParticipants.Includel
orderby p.Destination select p;

var list - query.Tolist();
UpcomingTripparticipant up = list[e];
up.Customer.,

F|AddDate b B
F Addresses.

F BirthDate

F ContactlD

F CustomeType

F CustomerTypeld

F CustomeTypeReference
F CustTimeStamp

| DietaryRestrictions.

index-628_1.png
;\§

index-619_1.png
;\§

index-822_2.png
Browser New Page Class

Create ObjectContext

Build HTML using Data
and ASPNET Markup

Destroy Page
and Dependents.

Request page

Return HTML

=

index-822_1.png
New Page Class

Request page
I e
qet data for page

Build HTML using Data

and ASPNET Markup

Return HTML Destroy Page
b and Dependents.

index-476_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-625_1.png
;\§

index-830_1.png
;\§

index-475_1.png
;\§

index-624_1.png
;\§

index-829_1.jpg
e names_IBSTATE” 10" viBSTATE

vpes .
o e et ove kst s mme e
G ey
e R R e e e e e
R e R e i e e
R e
AT s s SO o B T AoV AN CEAGS

G iz gty
Rt AL S w e R e e A
g SR CAAAG SR G ROAMAAGE TLAAATF By AL A
e e e e e
Bt G S O St ot gt ast gt gt gt gt gt gt gt gt I DTG
Bt ot ot i St ot gt ot gt sy At Bt ot gt gt gt G it
e TS i e i A et ottt
e e SR e e e e
i VR i DL
B Kt oo RSt 3 g s Ao o100
Ak T AR S s SA ST Sy T 108
N O S e A A e s
Ay e sy I e A e iy)
1o et i o0 e A3 LS oy
e A L i b AL LT f{:v"’u‘?
B e e RS AT WSS
e e R T e p
e e e e e it e P
oo e e
e R e D S e
R e NS Pl e e
e e A S e Al e e S
P Ce Al A e e S I e S A S o

o G ey oS e e]
e S M Ve e R it
L ettt) P s EAbAchissasentss

e e o e e e
S R e e e B e

e e s Sy B3t s o S AL
s
s et e o A Ao T ST 2SR WL Ao Seae,
e e e S e e
v.mmr,.mm..,y Ry o, e GoL 0 ORVE L1 Stk cemiralr SR AU s st

e O AT A AN AR VAN A0
R AL NS o RS] O SRS DAk 3 et A DEARSORIORE

e e e s S G T e S Loy
e Mvwmmvx»mnmiwmmmwmn.musn.nss T0e0) Tont 15 B vt erkd
N T e R e

R St A e R el

index-477_1.png
Referential Constraint

pa:
Customer - oK
Dependent:

UpcomingTripParicipant

Principal Key Dependent Property
ContactiD. ContactiD.

index-627_2.png
;\§

index-834_1.jpg
New Page Databridge Data Layer
m Class Class
i)
DataBiidge ObjectContext s
4 Entity Framework
BuildTML

Response

4
Destroy Page

index-476_2.png
‘Add Association

Association Name:

‘CustomerUpcoming TripParticipant

End
Enti

[UrcomingTrpparipant

Multiplicity:

[(vany)

7] Navigation Propert: Navigation Property:

UpcomingTripPartcipants Customer
(] Add foreign key propertis to the UpcomingTripPartcipant” Entity
‘Customer can have * (Many) instances of Upcoming TripParticipant.

UpcomingTripParticipant can have 1 (One) instance of Customer. Use:
UpcomingTripPartcipant Customer to access the Customer instance.

index-627_1.png
;\§

index-833_1.jpg
Wradk Auey Gesk Adventures Guwtemer Prefile

Ll B A et o e ————— |)
Customer: Eliott Fisk THe.
e - T o
1412000 | g e e
Frotine -
10572010 | iy b | 31000
Lrone e
[veenons
s i e
- id Street: 1 Cardinal Lane || Street: 325 Rue Loblanc || Street:]
b =, Street2: Street2: Street2;
[SE—-—
ey whese Ee— oy
o [So—

St Qubes. [staeroice: Qe | stteprovce
comtrymegen: consta | comrymegn crod |y
e ot A8 263 el o 18 260 o ot
s Ty e Addes e Offcs [s pe: L]
wostias 51972008 | masties: 10112005 | e

UX =

204 P Actity
Forte Detiatin [At
20d Fareite best

X

index-473_1.jpg
“; UpcomingTripParticipant

= Propertes
#3 ContactD: Int32
P TrpID: 132
S StartDate: DateTime
S Name: Sting
5 Destination : String
= Navigation Properties

index-621_2.png
;\§

index-824_1.png
;\§

index-472_1.png
;\§

index-621_1.png
;\§

index-823_1.jpg
New Page Class

Instanate Databridge
3
Build HTML
Destroy Page:

index-474_1.png
=3

Column
4 Tables
4 3 Maps to UpcomingTripParticipar
2 <Add » Condition>
4 (2 Column Mappings
) Contactld: int
& TegD: int

[Destination: char
(3 <Add 3 Table or View>

Oper...

1ttt

Value / Property.

99 ContactiD: Int32
5 Tipi: 32

5 StartDate: DateTime
5 Name: String

5 Destnation: Sting

index-623_1.png
;\§

index-826_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-473_2.png
;\§

index-622_1.png
;\§

index-825_1.png
;\§

index-471_1.png
;\§

index-614_1.png
;\§

index-470_1.png
[l

Column Oper...

4 Tables
+ 3 MapstovOffceaddresses
21 <Add s Condition>
4 (@ Column Mappings
& Fisthame : nchar
] LastName : nchar

@] AddressType: nchar

] Contactl :int

] ModiiedDate: datetime
3 <Add a Table or View>

33[3[2[3[38||2|2[2s

Value / Property

3 Satebrovince: Sting
5 CountryRegion: Sring
5 PostalCode: Sting
5 AddressType
5 ContactiD: 32

5 ModifedDate: DateTime

index-613_2.png
;\§

index-813_1.png
;\§

index-471_2.png
;\§

index-790_1.png
;\§

index-465_1.png
;\§

index-609_1.png
;\§

index-796_2.png
4 {) SqlModelingClassLibrary 4| 9 createSpeakertint, string, string)

. @ Speskerd)
4 [B Types S Firsthiame
% EntityObject F Lasthiame

3 Derived Types F Speakerld

%2 SgiModelingClassLibrarContainer

index-464_2.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-608_2.png
;\§

index-796_1.png
= SqlModelingClasslibrary.Speakers
= (3 Columns
? Speakerld (PK,int,not nul)
FirstName (nvarchar(mad) not nul)
LastName (nvarchar(mad). not null

index-467_1.png
;\§

index-613_1.png
;\§

index-812_1.png
;\§

index-466_1.jpg
Type bret0sech

todsiean -

2) eavoser
iy Tyoes

Updte Mol o Ot
[SEA i
0 AddCode Gnentanben..
e vaidute

index-611_1.png
;\§

index-797_1.png
;. Speaker

 propertes

5 Speakeld 32
F Fisthame : Sting
S Lasthlame s Sring

 Navigaion Propertes

index-460_1.png
;\§

index-606_2.png
;\§

index-794_2.png
;\§

index-606_1.png
Audit Login
: Begin Tran starting
H: Begin Tran completed
ReCicompleted
ReC:Completed
ReC:Completed

Audit Login

TH: Promote Tran starting
: Promote Tran completed
ReC:Completed

TH: Commit Tran starting
T commit Tran completed
Aaudit Locout

~-- network protocol: LPC
BEGIN TRANSACTION

BEGIN TRANSACTION

exec sp_executesq] N'insert
exec sp_executesq] N'insert
exec sp_executesql N'insert
- network protocol: TcR/1P

exec sp_executesq] N'insert
COMMIT TRANSACTION
COMMIT TRANSACTION

set quote...

[dbo]. [...
[dbo]. [...
[dbo]. [...

set qu...

[dbo]. [...

index-794_1.png
;\§

index-464_1.png
;\§

index-608_1.png
;\§

index-795_2.png
Applcton
s

Dabug
Resoues
senics
setngs
Reteence Pt
Saring
Moepleyment

Code Analysis

Databse Comecion Sing

02t Souce. i CldogeM TesDatabase legited Secusy=Tre.

CJ

index-462_1.png
;\§

index-607_1.png
;\§

index-795_1.png
;\§

index-605_1.png
;\§

index-788_1.png
Design Time

index-604_1.png
;\§

index-787_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-605_2.png
;\§

index-601_1.png
;\§

index-784_2.png
Database Generation Workflow TablePerTypeStrategy.cam (VS)
Database Schema Name dbo
DDL Generation Template SSDLTOSQLL0E (vS)

index-599_1.png
;\§

index-784_1.png
Speakers
@ Speakerld

Firsthome
Lasthiame
Tite

city
Country
Expertse
Bio

Sessions
¥ Sessiorld
Tite

Categary
Length

Level

Abstract
ConferenceTrackTrackid

ConferenceTracks

? Trcld
TrackName.
TrackChair
MinSessions

MaxSessions

SpeakerSession

® Sessionld

@ Speskers_Speakerid
@ Sessions Sessionld

index-603_1.png
BEGIN TRANSACTION
exec sp_executesql N'delete [dbo].[Contact] where ([Conta...
ROLLBACK TRANSACTION

index-786_1.png
Database Generation Workflow Manager v1.1

ERTZ T T

Syne Database Project
Generate T-5QL Via T4 TPT)
Generate T-S0L Via T4 (TPH)
Generate Migration T-5QL

Generate Migration T-SQL A.

Strategy

Table per Type

Table per Hierarchy

Saipt Generation

Generate DacPac

Generate DacPac And Deplay.

Nene.
Simple T-5QL
Migration T-5QL

Syne Database Project

Generate DacPac

Deployment

None.

Deploy Migration Script

Deploy Dachac

Nest>

Workflow Name: | TebieperTypesiateay

index-602_1.png
o / Y
> \\\\\\\\ \\
\ 4
\

" \/‘I

index-785_1.png
SSDLToSQLL0 (VS)

SSDLTGSQLIN - Copy:tt (VS)

index-597_1.png
;\§

index-782_1.png
;\§

index-779_2.png
;\§

index-598_1.png
;\§

index-783_2.png
;\§

index-597_2.png
;\§

index-783_1.png
& cu

G cop

A pase
Connection

Insert Srippet.
Brecute SOL
Validate SQL Syntax

Cancel Query Execution

Ctrlx
ctlvc
ctl v

Ctri+k, Clx
Crl+shift+E
Cri+F5
Alt+Break

index-594_1.png
;\§

index-778_2.jpg
ALCTP3Work\Book Sarmples Second Edtion
\Chapter2\Chapter2\ ContaranceModelecmc

SET QUOTED IDENTFIER OFF;
Y
USE [Conferences)

@
F SCHEMA ID(N dbo') IS NULL EXECUTE(VCREATE SCHEMA [dbol;
E3

Dropping sising FOREIGN KEY constrants

index-591_1.png
;\§

index-778_1.png
;\§

index-596_2.png
| Name

Value

5 ¢com {System Data EntityClint EntityCormection):
@ 0 base {System Data EntityClient ntityConnection.
 ConnectionSring T"name=pAniitis"
 ConnectionTimeout 15
F Database. ™
DataSource horkersa”

@ 3 Serverversion

‘conn ServerVersion' threw an exception of type ‘System.Inz

Closed

) StoreConnection

{Systern Data.SqlClient SqlConnection}

&% Static members.
@ @ Non-Public members

index-596_1.png
;\§

index-779_1.png
;\§

