

Programming Google Cloud

Building Cloud Native Applications with GCP

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Rui Santos Costa and Jasen Baker

 Programming Google Cloud

 by
 Rui
 Santos
 Costa and
 Jasen
 Baker

 Copyright © 2023 Rui Santos Costa. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc.
 , 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (
 http://oreilly.com
). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com
 .

 	
 Editors:
 Michele Cronin and Jennifer Pollock

 	
 Production Editor:
 Katherine Tozer

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 	
 January 2022:
 First Edition

 Revision History for the Early Release

 	
 2020-08-10:
 First Release

 	
 2020-10-12:
 Second Release

 	
 2021-01-27:
 Third Release

 	
 2022-06-01:
 Fourth Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781492089032
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 Building Cloud-Native Applications on Google Cloud, the cover image, and
 related trade dress are trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the author, and do not
 represent the publisher’s views. While the publisher and the
 author have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 author disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-492-08896-7

 Chapter 1. Our Use Case and Framework

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the 1st chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com.

 This book is a journey; each chapter builds on itself. You can skip to the chapter of most interest, but to fully grasp Cloud Native applications running on Google Cloud it’s best to understand the use case and follow along through each chapter. We have designed the framework for you and now we will learn all the associated Google Cloud services of the framework that will be applied to our use case. We recommend that you revisit this chapter often to re-read the use case as it will allow you to grasp why certain services were chosen.

 Let’s begin by describing our fictional use case.

 Fictional Use Case

 Pigeon Travel is an online travel agency. Pigeon Travel’s website and mobile application are used to book airline tickets, hotel reservations, and car rentals. They also have a large call center to provide support for their customers. The agents in the call center support their customers via live chat and call-in support.

 For measuring customer satisfaction and calculating their Net Promoter Score, they provide the user with a survey at the end of the call or chat. A Net Promoter Score is a measurement used to answer the question: Will the customer recommend our product or service to a friend? Customers who respond 9 to 10 are called promoters, responses from 7 to 8 are called passive and responses from 0 to 6 are called detractors. The small percentage of users that leave feedback, the feedback provides for an overall low customer satisfaction and Net Promoter Score. Issues customers have raised are:

 	
 Call Availability: Long hold times before speaking or chatting with a customer representative

 	
 High Handling Rates

 Pigeon Travel also noticed a high abandonment rate which correlates to the call availability issue listed by their customers.

 The business has asked you as the lead developer to put a plan together and a prototype on how Pigeon Travel can increase the Net Promoter Score, increase customer satisfaction, and provide the following metrics to the business:

 	
 Customer Sentiment

 	
 Call Topics (Why are users calling?)

 	
 Understanding Trending Topics

 	
 Understanding call quality including Silence Scores, Call Duration and Call Escalation Paths.

 Business Objectives

 We can meet some objectives of the business by taking a potentially biased and inefficient manual approach which would require analysts to randomly select calls to collect the key performance indicators. However, the framework which we will cover in a few will allow us to use Google Cloud services to meet the goals and analyze all recorded calls to get insights in near real-time. These insights can include:

 	
 Overall call sentiment.

 	
 Sentence-by-sentence sentiment.

 	
 Insight into which agent quality metrics to track (such as call silence, call duration, agent speaking time, user speaking time, and sentence heatmaps).

 	
 Insights on how to reduce call center volume by analyzing keywords in transcripts.

 Now that we know the business objectives, we need to define the framework. How we can define a framework without knowing the services available from Google Cloud? The rest of the chapters in the book do just that. For now, I have defined a framework for you that will guide you through the book, and Figure 1-1 shows the architecture we will work through.

 [image: Framework Diagram]
 Figure 1-1. Framework Diagram

 The Framework

 The framework presented in this book uses Google Cloud AI services such as Speech-to-Text and Cloud Natural Language API. The framework also employs Pub/Sub, a messaging system, and Dataflow, a data processing framework, used for data streaming and transformation. The resulting framework consists of a cloud-native and server-less job running in Google Cloud. To implement the framework, you don’t need any machine learning experience, and all the data infrastructure needs, such as storage, scaling, and security, are managed by Google Cloud. While we have chosen Google Cloud as the platform, you have many choices such as Amazon Web Services and Azure. They both have similar offerings to Google Cloud that will allow you to translate the Framework components to their offerings to fully a working framework. However, we wanted a wide partner ecosystem of Business Intelligence Tools, as well as have Google scale querying for the large amounts of data that will be created from our transcription of the audio files thus Google Cloud is the best fit for our requirements.

 Throughout the book, cloud-native applications are loosely defined as an approach to building applications that take advantage of cloud computing resources. It is often associated with public clouds, but can also be used with on-prem clouds. Cloud native applications are defined by how they are deployed, rather than where they are deployed. A cloud-native application will leverage the perceived limitless resources available. For Google Cloud, a cloud-native application can scale up and down as needed, the application is built to use and release resources based on the rules defined.

 A cloud-native application leverages the framework of the cloud computing platform of choice. The methodology of designing and building the application needs to take into account the services provided by the chosen cloud provider. For our application, we have chosen Google Cloud. We need to take into account the following considerations for our framework:

 	
 Our application needs to be abstracted from the cloud infrastructure.

 	
 We need a method of Continuous Integration and Continuous Delivery.

 	
 Our application has to be able to scale up and scale down as needed.

 	
 How will our application manage failures?

 	
 The application needs to be globally accessible as our fictional business Pigeon Travel operates multiple call centers globally.

 	
 Our framework needs to be based on a microservice architecture.

 	
 How will our application be secured?

 As you think about these considerations, review Figure 1-1, and try to map each consideration to a section of the diagram. There are several steps to cover, but let’s begin with the first step: storing audio recordings.

 Storing Audio Recordings

 The first step is getting the files to Google Cloud. For the upload we will use a tool called gsutil, which is a Python application that lets you access Google Cloud Storage from the command line. The basic idea is when the audio file is finished recording a job running on-prem would upload the file to Cloud Storage. When the audio file is uploaded to the bucket, we will use custom metadata that can identify the recording with categories like caller ID, customer ID, and other metrics collected from the contact center. To add custom metadata to a Cloud Storage object, you use the x-goog-meta prefix in the header with the -h flag. The following command shows an example:

 Do this from an account that has only Google Cloud Storage Object Creator role so that it can’t accidentally delete files.

 gsutil -h x-goog-meta-agentid:55551234 -h cp [FILENAME].flac gs://[BUCKET]

 Figure illustrates a sample of the metadata written with the gsutil command.

 [image: add caption]

 You can retrieve the metadata programmatically which allows you to associate a file with multiple key:value pairs. As an example, below is how we can extract the custom metadata value for the agentid key.

 let agentId = object.metadata.agentid === undefined ? \
'undefined' : object.metadata.agentid;

 Hopefully, you’re seeing how practical this can be. Programmatically we can list the files in a bucket and extract the custom metadata to know that the audio file is associated with an agent or customer. For our framework, we will include the caller ID, customer ID, and other metrics to allow us to perform joins in BigQuery. We will cover BigQuery in detail in a later chapter, but for now, BigQuery is a fully-managed serverless data warehouse service provided by Google Cloud. Our data is analytical in nature, we need to query large amounts of data quickly to provide insights to our users and BigQuery fills this requirement. A join will allow our framework to join two datasets and use the customerID as the key field. This will allow us to show the metrics for a recorded call as well as the customer information.

 Processing Audio Recordings

 In the framework design, you configure a Cloud Function to be triggered when you upload an audio file to the bucket. Cloud Functions is a service to create single-purpose functions that respond to events without requiring to manage the underlying infrastructure. Google Cloud functions have the following event methods:

 	HTTP

 	
 You can invoke Cloud Functions with an HTTP request using the POST, PUT, GET, DELETE, and OPTIONS HTTP methods.

 	Cloud Storage

 	
 Cloud Functions can respond to change notifications from Google Cloud Storage. These events can include object creation, deletion, archiving and metadata updates.

 	Cloud Pub/Sub

 	
 Cloud Functions can be triggered by messages published to Pub/Sub topics.

 	Cloud Firestore

 	
 Cloud Functions can handle events in Cloud Firestore such as create, update, delete, and write.

 Figure 1-2 provides an example of the usefulness of a Cloud Firestore event method. In the image, we have a write event to a Firestore document that triggers a user-defined cloud function. This user-defined function leverages the Firebase SDK to push a message to a device using Firebase Cloud Messaging. This notification can be used to notify a user that they have a new follower.

 [image: Firestore Write Trigger Event]
 Figure 1-2. Firestore Write Trigger Event

 In our framework we will leverage the Cloud Storage event method. Within this event method we have multiple trigger type values:

 	
 google.storage.object.finalize

 	
 google.storage.object.delete

 	
 google.storage.object.archive

 	
 google.storage.object.metadataUpdate

 We will leverage the google.storage.object.finalize trigger, once the audio file is created within a specified Cloud Storage bucket the function will be triggered. The function then sends the audio file to the Google Cloud Speech-To-Text API to be processed. The Speech-To-Text API response will be a job name that we will capture and send to Cloud Pub/Sub. The message will await in Pub/Sub until “something” pulls the message to be processed.

 [image: Framework Workflow]
 Figure 1-3. Framework Workflow

 Our function does a little more than send the audio file to Pub/Sub, and you will get to see the code in an example. If you are curious to know more, check out the repo: https://github.com/GoogleCloudPlatform/dataflow-contact-center-speech-analysis

 Before we move on, it would be helpful to understand what Google Cloud Pub/Sub is. Cloud Pub/Sub is a fully-managed real-time messaging service that allows you to send and receive messages between independent applications. Imagine having a bucket between two people (Figure 1-3), one person puts a note in the bucket and the other person retrieves the note from the bucket. You have now passed a message between two people and the bucket was the transport mechanism.

 [image: Cloud Pub Sub]
 Figure 1-4. Cloud Pub/Sub

 Gather Data from the Audio File

 At this point, we have an uploaded audio file, we have a function that was triggered and a message sitting in Pub/Sub. Cloud Pub/Sub is an asynchronous messaging service that allows applications to share data. This message contains a few key:value pairs, but one of the key values is the Speech-To-Text job name. To transcribe long audio files we used the asynchronous speech recognition method, which does not return the result of the transcription but rather the job name allowing us to check the status for when it completes the process of transcribing.

 How do we take the note from the bucket and read its content? Cloud Dataflow will allow us to build a pipeline that will read the message from Pub/Sub and enrich or transform the data as defined by the developer. Cloud Dataflow is a fully managed service for executing Apache Beam pipelines within Google Cloud. Apache Beam is an open-source model for executing batch and streaming pipelines. Figure 1-5 illustrates the pipeline that will be used in our framework.

 [image: Cloud Dataflow Pipeline]
 Figure 1-5. Cloud Dataflow Pipeline

 Cloud Dataflow is a powerful tool to perform ETL operations on our data (Cloud Dataflow is covered in more detail in Chapter XYZ]. Cloud Dataflow is a core component of the framework as it pulls the messages from Pub/Sub enriches the data by calling additional APIs within the pipeline and finally writes the data to BigQuery allowing us to visualize the metrics collected from the audio file.

 Cloud Dataflow pipelines can be written in Python or Java. For our framework, we have chosen Python as it is easier to read and understand even if you don’t have a programming background. As an example, review the code snippet below and try to determine what those lines of code are doing.

 def stt_output_response(data):
 from oauth2client.client import GoogleCredentials
 from googleapiclient import discovery
 credentials = GoogleCredentials.get_application_default()
 pub_sub_data = json.loads(data)
 speech_service = discovery.build('speech', 'v1p1beta1', credentials=credentials)
 get_operation = speech_service.operations().get(
 name=pub_sub_data['sttnameid'])
 response = get_operation.execute()
 # handle polling of STT
 if pub_sub_data['duration'] != 'NA':
 sleep_duration = round(int(float(pub_sub_data['duration'])) / 2)
 else:
 sleep_duration = 5
 logging.info('Sleeping for: %s', sleep_duration)
 time.sleep(sleep_duration)
 retry_count = 10
 while retry_count > 0 and not response.get('done', False):
 retry_count -= 1
 time.sleep(120)
 response = get_operation.execute()

 If you think it’s polling the Speech-To-Text API, you’re right!

 Cloud Dataflow will perform the following tasks in this order:

 	
 Pulls the message from Pub/Sub

 	
 Polls Speech-To-Text to determine if the job is completed

 	
 Sends the completed transcript to Cloud Natural Language

 	
 Receives the response from Cloud Natural Language

 	
 Enriches the data with custom-defined functions

 	
 Matches the data values to the BigQuery schema

 	
 Finally writes the data to BigQuery

 Once Cloud Dataflow completes its pipeline successfully you will have your data available in BigQuery. Figure 1-6 illustrates how the data will be represented in BigQuery.

 [image: BigQuery Nested Repeated Fields Preview]
 Figure 1-6. BigQuery Nested Repeated Fields Preview

 In Figure 1-6 you will notice that rows are nested within rows; we will cover this in detail in the BigQuery chapter.

 Visualization of the Enriched Data

 Part of the Cloud Dataflow pipeline as described is to leverage the Speech-To-Text and Natural Language APIs to enrich the data. Enriching the data is the process of providing additional data points that our use case calls for. As an example, determining call silence time. We can use Cloud Dataflow to run custom algorithms to formulate the call silence per audio file.

 Determining the speaker, talk time, and silence time

 The following code snippet is an example of how you can process long audio files. It employs speaker diarization, a feature that detects when speakers change and add a numbered label to the individual voices detected in the audio.

 You can use the speaker diarization and word timestamps feature to determine the speaker, speaker talk time, and call silence. You can also create a sentiment heatmap for more details.

 const audioConfig = {
 encoding:"FLAC",
 sampleRateHertz: 44100,
 languageCode: `en-US`,
 enableSpeakerDiarization: true,
 diarizationSpeakerCount: 2,
 enableAutomaticPunctuation: true,
 enableWordTimeOffsets: false,
 useEnhanced: true,
 model: 'phone_call'
 };
 const audioPath = {
 uri: `gs://${object.bucket}/${object.name}`
 };
 const audioRequest = {
 audio: audioPath,
 config: audioConfig,
 };
 return spclient
 .longRunningRecognize(audioRequest)
 .then(data => {
 const operation = data[0];
 return operation.promise();
 })

 Call center leads can see the progression of the call, including how the call started and ended. In addition to the visual progression, they can also drill into each square to view the sentence sentiment.

 [image: Framework screenshot from our Frontend built with React.js]
 Figure 1-7. Framework screenshot from our Frontend built with React.js

 Extracting sentiment from the conversation

 We will use the Natural Language API to extract overall transcription sentiment, sentence sentiment, and entities. With this data available for the transcribed audio file, you can create heatmaps and sentiment timelines. You can also build word clouds.

 The following example shows a code snippet to capture sentence sentiment:

 client
 .analyzeSentiment({document: document})
 .then(results => {
 const sentences = results[0].sentences;
 sentences.forEach(sentence => {
 pubSubObj.sentences.push({
 'sentence': sentence.text.content,
 'score': sentence.sentiment.score,
 'magnitude': sentence.sentiment.magnitude
 })
 });

 Figure 1-7 is a sample of what we will build to address the use case, we are giving the business users access to a sentence heatmap that allows them to drill into each audio file and understand the progression of the call.

 For the user visualization and APIs, the application will be deployed on Google Kubernetes Engine (we’ll cover this in more detail later). The GitHub repo for this book includes an API built with Express.js that leverages the BigQuery Node.js SDK to run SQL statements to retrieve data. The SQL commands are invoked in response to a user clicking on the visualization. This Express.js application will be deployed on Google Kubernetes Engine alongside the user interface.

 Remember that our source of truth will be BigQuery. We will visualize this data to the user through a web browser, and our application for visualization will be developed using the React Framework and Node.js.

 The following sample query looks for all the words in the transcript that are currently stored as a nested repeated field. The query statement is executed using the BigQuery SDK, which gets all the words from the relevant record. This is a sample of our Express.js API, this response is received by the web application.

 const sqlQueryCallLogsWords = `SELECT
 ARRAY(SELECT AS STRUCT word, startSecs, endSecs FROM UNNEST(words)) words
 FROM \`` + bigqueryDatasetTable + `\`
 where fileid = \'` + queryFileId + `\'`

 Securing the Application

 We covered a wealth of information, stay with me a bit longer.

 For the final component of the framework, we need to implement authorization allowing access to the application to who with deem. Keeping in mind authorization is only one component of security; we also have to take into consideration items as encryption and securing sensitive data. For now, let’s focus on authentication. Google Cloud provides a service called Identity-Aware Proxy (IAP). IAP works by verifying the identity of the user and the context of the request to either allow or deny access to the application. I like to think about it as a proxy managed by Google Cloud that sits in front of our application that intercepts requests and authorizes users on our behalf.

 Why is IAP revolutionary? IAP abstracts the developer from having to build a backend authentication system, it allows the developer to focus on the core functionality of the application. Basically IAP allows us to go to the market quicker. Our application will have no authorization code, that is right no code to authorize the users. Meaning no SDK from third parties for validating tokens or any other complex code to get and validate a JSON Web Token. All our application will do is focus on its core role of providing insights to users on the audio files we have transcribed and enriched.

 IAP also supports a range of provider types:

 	
 Email and password

 	
 OAuth (such as Google, Facebook, Twitter, and more)

 	
 SAML

 	
 OIDC

 	
 Phone number

 	
 Custom

 	
 Anonymous

 We can secure the application while going to market quicker, providing a wide range of authentication providers, and simplify access to the user by not requiring a VPN client to access the application.

 Cloud Native Checkpoint

 Now that you have a full understanding of the use case and framework we will use to meet the use case requirements, let’s revisit the considerations we listed for our cloud native architecture:

 	
 Our application needs to be abstracted from the cloud infrastructure.

 	
 We need a method of Continuous Integration and Continuous Delivery.

 	
 Our application has to be able to scale up and scale down as needed.

 	
 How will our application manage failures?

 	
 The application needs to be globally accessible.

 	
 Our framework needs to be based on a microservice architecture.

 	
 How will our application be secured?

 Abstracted from the Cloud Infrastructure

 Abstraction from the cloud infrastructure can be a misleading term. When I first started learning about cloud native frameworks I always considered this a method of being cloud-agnostic: Build an application and deploy it to any cloud provider. However, abstraction from the cloud infrastructure is the decoupling of the application from the underlying infrastructure. But if decoupled it can we not run it on any cloud provider including on-prem? This where cloud native can be interpreted differently by the individual. We build cloud native applications as a method to provision resources, automate the application lifecycle, and be scalable and secure. However, there will always be a dependency on the cloud provider and their core requirements to build cloud-native applications. We need to take these into account when building our cloud-native application which we will throughout this book. But keep in mind that this book is about running cloud-native applications on Google Cloud, and for that we will focus on building a scalable and secure application with their services as much as possible.

 Continuous Integration and Continuous Delivery

 One core component of cloud native applications is Continuous Integration (CI) and Continuous Delivery (CD) architecture. In our framework, we will use GitLab CI/CD services to create our deployment pipeline. We have ventured outside of Google Cloud for this service but we are still within the cloud native application framework. We are still meeting the core requirements of having a pipeline to build, test, and validate the new code prior to merging the changes within your GitLab repository, as well as ensuring that our validated code has an application deployment pipeline once the CI pipeline has successfully passed all tests.

 [image: CI CD Pipeline]
 Figure 1-8. CI/CD Pipeline

 Scalability

 Another core component of applications is the ability to scale up and scale down. We achieve this with microservices where the state of the application is stored externally to the container. This allows instances to come up and down as required. This also allows each instance to work independently where each instance can service a request.

 Note

 If you want to learn more about Cloud Native Computing or get engaged in the community, visit The Cloud Native Computing Foundation (CNCF) website https://www.cncf.io/.

 This sounds awesome--creating microservices that are stateless, can come and go and can service requests independently of each other. The downside is the management of such an approach. How can we manage these services, secure them, set declarative statements for their state, and orchestrate this workflow? Kubernetes (k8s) fills this requirement. Kubernetes is an open-source container-orchestration application to manage the deployment, scaling, security and much more. Here are some key features of Kubernetes:

 	
 Horizontal scaling

 	
 Self-healing

 	
 Automated rollouts and rollbacks

 	
 Service discovery and load balancing

 	
 Secret and configuration management

 Kubernetes is an open source project originally developed at Google and released as open source in 2014. I will say Kubernetes is a difficult concept to initially grasp, and when I first started learning about it and heard terms as pods I was ready to scream. However, Google Cloud has provided us another solution: Google Cloud introduced the Google Kubernetes Engine which abstracts much of the complexity of managing a Kubernetes cluster. It provides Kubernetes as a managed service, no clustering software installs, no worries about confirming monitoring, basically a fully managed cluster by the company that created Kubernetes.

 I will cover Google Kubernetes Engine in greater detail in the future chapters. But for now, it’s worth covering a few high-level concepts as it will allow you to understand why Kubernetes engine fits nicely with cloud native applications.

 Application Reliability

 Even though Google Cloud provides service-level agreements (SLAs) and has mechanisms in place to provide reliability, things to do fail. We need to consider how our application will handle failures in these situations. In the scalability section, I touched briefly on Kubernetes which alone would provide some form of fault tolerance as our cluster at a minimum would have three nodes. But if a Google Cloud region fails, our cluster would fail as well. Many of the Google Cloud services provide for regional failures as BigQuery others do not. We have to be mindful of each service and their respective fault-tolerance features.

 We can’t cover all the components in a single sitting, but each chapter will have a section on a cloud native checkpoint that will make sure we address the cloud native framework which includes application reliability. Besides large failures as a zonal or regional we also have to consider potential sources of failures like bugs in our code, human errors, and others when building our cloud native application.

 It also is a good idea to know Google Cloud regions and zones to start us thinking about how to manage those failures.

 	Google Cloud Zone

 	
 Zones have high bandwidth and low-latency between other zones in the same region. A zone is an isolated location with a region

 Zones should be considered a single failure domain within a region

 	Google Cloud Region

 	
 Regions are collections of zones. It is recommended to deploy applications across regions for high availability

 Regions are independent geographic locations

 Within regions tend to have round-trip network latencies of under <1ms on the 95th percentile

 	Zonal Resources

 	
 Zonal resources operate within a single zone

 If a Google Cloud zone becomes unavailable, all the zonal resources in that zone are unavailable

 	Regional Resources

 	
 Regional resources are redundantly deployed across all the zones within a region Certain Google Cloud services like App Engine are a regional resource

 	Multiregional Resources

 	
 A few managed services provided by Google Cloud are distributed across regions. The following have multiregional deployments options:

 	Datastore

 	Cloud Key Management Service

 	Cloud Storage

 	BigQuery

 	Cloud Spanner

 	Cloud Bigtable

 	 Cloud Healthcare API

 To build applications that can withstand zone failures, use regional resources, or build your application with resiliency across zones. To build applications that can withstand a loss of the entire region, use multiregional resources, or build resiliency with your applications.

 Globally Accessible

 We did not cover this in the framework, but our application needs to be globally accessible as we will have users using the platform from different global regions. We need the users to ingress to Google Cloud as close as possible to their location and access the application nearest to their global region. We are in luck, Google Cloud provides us a managed service for load balancing with a global IP address. As stated on Google’s website “Worldwide autoscaling and load balancing”.

 [image: Global Cloud Load Balancing]
 Figure 1-9. Global Cloud Load Balancing

 Security

 We covered security at a high-level IAP which allows us to authenticate and authorize users. That is one element of what we need to consider when designing a cloud native application. Other elements we need to consider are:

 	
 Key Management

 	
 Audit Logs

 	
 Identity Access Management

 Each component of our framework will need to take these key elements into consideration as each component might provide different methods of securing it. You should also take note that security concerns require a dedicated book. While I cover as much as I can in this book (per the service provided by the framework), I recommend reading some of the documentation for the respective services for additional information.

 Key Management

 Google Cloud encrypts data sitting on disk, and manages the keys, including rotation. I would say most customers leverage the default setting, but other customers want a little more flexibility. Google Cloud offers the following services for key management:

 	
 Google Managed Keys

 	
 Customer Managed Keys with Cloud Key Management Service

 	
 Customer Managed keys with a third-party key management system

 The easiest option is to allow Google Cloud to manage the keys. However, if you choose to manage your keys, here is a simple process to create and assign keys leveraging the Cloud Key Management System.

 Create a keyring named pigeonkeyring, and a key named pigeonkey.

 gcloud kms keyrings create "pigeonkeyring" \
 --location "global"
gcloud kms keys create "pigeonkey" \
 --location "global" \
 --keyring "pigeonkeyring" \
 --purpose "encryption"

 You can use the list option to view the name and metadata for the key that you just created.

 gcloud kms keys list \
 --location "global" \
 --keyring "pigeonkeyring"

 Let’s store some text to be encrypted in a file called “pigeonsecret.txt”.

 echo -n "My super-secret message is encrypted" > pigeonsecret.txt

 Now, let us encrypt the data with created key information, specify the name of the plaintext file to encrypt, and specify the name of the file that will contain the encrypted content:

 gcloud kms encrypt \
 --location "global" \
 --keyring "pigeonkeyring" \
 --key "pigeonkey" \
 --plaintext-file ./pigeonsecret.txt \
 --ciphertext-file ./pigeonsecret.txt.encrypted

 You now have your message encrypted in the file, with your key and Cloud KMS. So how do I read the contents of the encrypted file? To decrypt the data with gcloud kms decrypt, provide your key information, specify the name of the encrypted file to decrypt, and specify the name of the file that will contain the decrypted content:

 gcloud kms decrypt \
 --location "global" \
 --keyring "pigeonkeyring" \
 --key "pigeonkey" \
 --ciphertext-file ./pigeonsecret.txt.encrypted \
 --plaintext-file ./pigeonsecret.txt.decrypted

 You have successfully encrypted and decrypted the contents of the sample file!

 Audit Logs

 An important component of the framework is logging. In a security context, we want to know who did what and when. Google Cloud Audit Logs records every administrative activity. The logs are stored in a protected storage area, resulting in an immutable log, and highly durable audit trail.

 Cloud Audit Logs maintains three audit logs for each Google Cloud project, folder, and organization:

 	Admin Activity

 	
 Admin Activity audit logs contain log entries for API calls or other administrative actions that modify the configuration or metadata of cloud resources.

 	Data Access

 	
 Data Access audit logs contain API calls that read the configuration or metadata of resources, it also captures user-driven API calls that create, modify, or read user-provided resource data.

 	System Event

 	
 System Event audit logs contain log entries for administrative actions that modify the configuration of resources.

 Identity Access Management

 Identity Access Management (IAM) is a framework that implements policies for ensuring users and services have the proper access to resources. Google Cloud provides us a service to manage these Identity Access Management called Cloud IAM, simple and to the point name. Cloud IAM has three main components:

 	
 Member

 	
 A member can be a Google Account user, a service account, a Google group, or a G Suite or Cloud Identity domain that can access a resource.

 	
 Role

 	
 A role is a collection of permissions, permissions determine what is allowed on a resource.

 	
 Policy

 	
 A policy binds members to a role.

 Let’s touch on permissions to give you a little bit of background about why IAM is important. (We’ll cover security for our framework in detail in later chapters). In the Google Cloud IAM world, permissions are represented in the form of service.resource.verb. This can become very complicated and confusing when we build our application with least privilege. To simplify the process of assigning permissions we use the concept of a role which is a collection of permissions. Google Cloud offers users lots of flexibility, you can use custom roles, or predefined roles. To make the process of managing permissions easier again we try to stay within the predefined roles Google Cloud provides us. For example, the predefined role Pub/Sub Publisher (roles/pubsub.publisher) provides access to only publish messages to a Pub/Sub topic.

 Besides IAM,cover user authentication will be covered in a future chapter, where we will leverage IAM, user authentication, logs and encryption to build a secure cloud native application.

 Summary

 At this point, you should have a good understanding of the use case, our framework, and how we will leverage a cloud native approach to meet the business requirements. We covered many topics in this chapter and I promise it will get easier as each chapter will build on itself.

 I also want to point out that the use case used in this book is as a means to apply the learnings to a practical application. However, you can apply what you learn to any cloud native application as all will require the similar methods discussed in this chapter. As we move on, a cloud native checkpoint will be placed at the end of each chapter to validate that we are meeting the requirements.

 Chapter 2. Getting Data into Google Cloud

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the 2nd chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com.

 This chapter is meant to focus on getting data into Google Cloud for our cloud native application. However, it would benefit everyone to cover how you get data into Google Cloud in the context of our application. Our data, as you remember from our use case, will be external to Google Cloud is the raw audio files from our call center. You need to process these audio files in near real-time so our users have access to the metrics collected from our pipeline. Google Cloud provides the following storage options:

 	
 Zonal standard persistent disk and zonal SSD persistent disk

 	
 Regional standard persistent disk and regional SSD persistent disk

 	
 Local SSD for high-performance local block storage

 	
 Cloud Storage buckets: Object storage.

 	
 Filestore: High-performance file storage

 There are a few choices for storage, but which would you choose for storing the audio files? Let’s review the requirements:

 	
 Our call center processes 5,000 calls a day

 	
 Each call is an average of 30 minutes long

 	
 Each file is an average of 57 MB in size

 	
 5,000 * 57 = 285 GB

 You will need approximately 8.5 TB per month of storage and approximately 102 TB per year. You can eliminate persistent disks as they have limits that would impact scalability, see Table 2-1.

 	Storage Type
 	Zonal standard persistent disks
 	Regional standard persistent disks
 	Zonal SSD persistent disks
 	Regional SSD persistent disks
 	Local SSDs
 	Cloud Storage buckets

 	Minimum capacity per disk
 	10 GB
 	200 GB
 	10 GB
 	10 GB
 	375 GB
 	n/a

 	Maximum capacity per disk
 	64 TB
 	64 TB
 	64 TB
 	64 TB
 	375 GB
 	n/a

 	Capacity increment
 	1 GB
 	1 GB
 	1 GB
 	1 GB
 	375 GB
 	n/a

 	Maximum capacity per instance
 	257 TB
 	257 TB
 	257 TB
 	257 TB
 	3 TB
 	Almost infinite

 As you can see from the list, we are somewhat limited with persistent disks. Even if we choose to use zonal standard persistent disks and create an instance to store the audio files, our costs would be quite high. At the same time we start to move away from our cloud native approach as now we would need to manage a compute instance, attached persistent disks and we would need a way to monitor the storage for events as file creation to trigger a cloud function. At the time of this writing, a cost analysis:

 	
 Zonal Standard Persistent Disks

 	
 Disk One 64 TB: Total Estimated Cost: USD $2,621.44 per 1 month

 	
 Disk Two 64 TB: Total Estimated Cost: USD $2,621.44 per 1 month

 	
 Approximate Total per Month for 128 TB, USD $5,242 per 1 month

 	
 Cloud Storage Bucket

 	
 Approximate Total per Month for 128 TB, USD $2,621.44 per 1 month

 This cost analysis doesn’t account for the storage operations per month on the cloud storage or the compute instance cost for mounting the standard persistent disks. These numbers for storage are set for one year, but you have to consider what happens at year two, three, etc. Our persistent disk solution becomes complicated and expensive hence it makes the most sense to go the route of cloud storage buckets.

 You might be wondering about storage operations in Cloud Storage. An operation is an action that makes changes to or retrieves information about buckets and objects. Cloud Storage operations are divided into three categories: Class A, Class B, and free. Table 2-2 was cited from the Google Cloud Storage documentation at https://cloud.google.com/storage/pricing#price-tables; I would recommend visiting the documentation to confirm Class A, B and Free operations have not changed since the publication of this book:

 	API or Feature
 	Class A Operations
 	Class B Operations
 	Free Operations

 	JSON API
 	storage.*.insert storage.*.patch storage.*.update storage.*.setIamPolicy storage.buckets.list storage.buckets.lockRetentionPolicy storage.notifications.delete storage.objects.compose storage.objects.copy storage.objects.list storage.objects.rewrite storage.objects.watchAll storage.projects.hmacKeys.create storage.projects.hmacKeys.list storage.*AccessControls.delete
 	storage.*.get storage.*.getIamPolicy storage.*.testIamPermissions storage.*AccessControls.list storage.notifications.list Each object notification
 	storage.channels.stop storage.buckets.delete storage.objects.delete storage.projects.hmacKeys.delete

 	XML API
 	GET Service GET Bucket PUT POST
 	GET Bucket GET Object HEAD
 	DELETE

 Let’s take a step back, and cover file storage, block storage, and object storage.

 File Storage

 File storage stores data in a hierarchical structure. The data is saved in files and folders, and it is presented identically whether from the system serving the view or from the system retrieving data view. File storage is accessed traditionally via the Network File System protocol or Server Message Block protocol.

 Block Storage

 Block storage is presented as either Storage Area Networks or locally attached disks. Block storage is usually mounted on an operating system as if the block device was locally attached storage. Once mounted locally, the user can create a file system to be used by the operating system: application or databases.

 Object-Based Storage

 Object-based storage is accessible programmatically versus block storage which can only be accessed via an operating system. Object-based storage is also flat in nature; it does not have the hierarchical structure of file systems. Cloud Storage has no notion of folders, a folder is an object that happens to have “/” character in its name. Each object contains the data as well as the associated metadata which is distributed across multiple hardware systems to provide scalability and reliability.

 Options for Getting Data to Cloud Storage

 Note

 You can practice along now or at a later time using Qwiklabs. The Qwiklabs Quest for this book is coming available soon.

 The Cloud Console to manage cloud storage is a great option to perform management tasks. Typical management tasks include:

 	
 Creating and deleting buckets

 	
 Uploading, downloading, and deleting objects

 	
 Managing Identity and Access Management policies such as allowing allUsers access to a bucket that provides public access to an object

 As mentioned earlier object-based storage uses a flat namespace to store your data. The key functionality of the Cloud Console interface is that it translates this flat namespace to replicate a folder hierarchy. Cloud Storage has no notion of folders.

 [image: Console Storage Folder Screenshot]
 Figure 2-1. Console Storage Folder Screenshot

 Figure 2-1 is a screenshot that displays a bucket called sample-42892, a folder called folder, and a file within this folder called image.png. As mentioned, a file and a folder is an object and it’s contained within a flat namespace. Figure 2-2 and Figure 2-3 show the gsutil command-line replicating the screenshot in Figure 2-1.

 [image: Command Line Usage of gsutil]
 Figure 2-2. Command Line Usage of gsutil

 [image: Command Line Usage of gsutil]
 Figure 2-3. Command Line Usage of gsutil

 Review Figure 2-2 and 2-3. What is different between the two? Not much except their content-type. gsutil displays a hierarchical file structure but the underlying Cloud Storage is a flare namespace. To the service, the object gs://sample-42892/folder/image.png is just an object that happens to have “/” character in its name. There is no “folder” directory; just a single object with the given name. If we try to run gsutil stat gs://sample-42892/folder, what would happen? It would fail, since we did not include “/” in the name, see Figure 2-4.

 [image: Command Line Usage of gsutil]
 Figure 2-4. Command Line Usage of gsutil

 Create a Bucket in the Cloud Console

 To create a bucket:

 	
 Open the Cloud Storage browser in the Google Cloud Console:

 	
 Click Create bucket:

 	
 Enter your bucket information and click Continue:

 	
 Enter a unique Name for your bucket

 	
 Choose Region for Location type

 	
 Choose Standard for default storage class

 	
 Choose Uniform for Access control

 	
 Click Create:

 Congratulations you created your first bucket!

 Upload a File in the Cloud Console

 	
 In the Cloud Storage browser, click on the name of the bucket that you created.

 	
 Click the Upload files button in the tab:

 	
 In the file dialog, navigate to a file that you want to upload and select it.

 	
 After the upload completes, you should see the file name and information about the file.

 Download the file in the Cloud Console

 To download the image from your bucket:

 	
 Click the drop-down menu associated with the file. The drop-down menu appears as three vertical dots to the far right.

 	
 Click Download.

 That is it, you have created a bucket, uploaded a file, and downloaded it!

 Using the gsutil Tool

 The gsutil is a Python application that lets you access Cloud Storage from the command line. You can use gsutil to do a wide range of management tasks including:

 	
 Creating and deleting buckets.

 	
 Uploading, downloading, and deleting objects.

 	
 Listing buckets and objects.

 	
 Moving, copying, and renaming objects.

 	
 Editing object and bucket Access Control Lists (ACL).

 	
 ACLs allow you to set restrictions such as reading, writing or deleting objects.

 You will need to install the gsutil if you choose to run it locally on your desktop. You can visit the following link to learn how to install the gsutil application: https://cloud.google.com/storage/docs/gsutil_install

 Create a Bucket with gsutil

 Run the following command to create a bucket, keeping in mind the following flags:

 	
 -p: Set the project id for your new bucket

 	
 -c: Set the default storage class of your bucket

 	
 -l: Set the location of your bucket. For example, US-EAST1.

 	
 -b: Enable uniform bucket-level access for your bucket.

 gsutil mb gs://[BUCKET_NAME]/

 Upload a File with gsutil

 The following command will upload a file to the respective bucket location.

 gsutil cp [LOCAL_OBJECT_LOCATION] gs://[DESTINATION_BUCKET_NAME]/

 Download the File with gsutil

 The following command will download the object from the location set in the command line to the local location specified.

 gsutil cp gs://[BUCKET_NAME]/[OBJECT_NAME] [SAVE_TO_LOCAL_LOCATION]

 Note

 You will notice we did not use the -p flag, which states which project to create the bucket. You can avoid using the -p flag if you have your default project set with gcloud as follows:

 gcloud config set project PROJECT

 Using Client Libraries

 To integrate the ability to perform management tasks as well as user tasks within your application you will need to use client libraries. Google Cloud provides client libraries for C++, C#, Go, Java, Node.js, PHP, Python, and Ruby. Our framework will leverage the client libraries for Node.js. When an audio file is uploaded to Cloud Storage it will trigger the google.storage.object.finalize event which executes our cloud function(see Figure 2-5).

 [image: Cloud Storage Object Trigger]
 Figure 2-5. Cloud Storage Object Trigger

 Follow along with instructions using client libraries

 Note

 You can practice along now on your local workstation or at a later time using Qwiklabs. The Qwiklabs Quest for this book coming available soon.

 To follow along within your own Google Cloud Project, follow the directions below.

 	
 Create a Cloud Platform project

 	
 Enable billing for your project

 	
 Enable the Google Cloud Storage API

 	
 Set up authentication with a service account so you can access the API from your local workstation

 	
 In the Cloud Console, go to the IAM & Admin > Service Accounts

 	
 From the Service account list, select New service account.

 	
 In the Service account name field, enter a name.

 	
 From the Role list, select Project > Owner.

 In a production environment, you would want to go with the least privilege, and you do not want to assign a service account Project Owner.

 	
 Click Create. A JSON file that contains your key downloads to your computer.

 	
 We will use this JSON to authorize our sample code access to the Cloud Storage API.

 Create a Bucket

 The below code provides a sample of how to use the Node.js cloud storage client library to create a bucket. It will create a bucket in the location that the developer defines. In this code snippet, the bucket name is defined as “my-bucket” (Line 1).

 const bucketName = 'my-bucket';
// Imports the Google Cloud client library
const {Storage} = require('@google-cloud/storage');
// Creates the client
const storage = new Storage();
async function createBucket() {
 const [bucket] = await storage.createBucket(bucketName, {
 location: 'US-CENTRAL1',
 regional: true,
 });
 console.log(`Bucket ${bucket.name} created.`);
}
createBucket().catch(console.error);

 Starting on line 7, you will notice the second argument is an object that contains metadata that we are passing to the storage client which tells the storage client to create our bucket in the respective location. You can also pass the object as follows:

 const bucketName = 'my-bucket';
// Imports the Google Cloud client library
const {Storage} = require('@google-cloud/storage');
// Creates the client
const storage = new Storage();
const metadata = {
 location: 'US-CENTRAL1',
 regional: true
};
async function createBucket() {
 const [bucket] = await storage.createBucket(bucketName, metadata);
 console.log(`Bucket ${bucket.name} created.`);
}
createBucket().catch(console.error);

 In this code block, we create a variable line 6 to hold the parameters we want to pass to the storage client. Line 11 now includes the metadata object created on line 6 which will be passed to our create bucket request. Below is a table of the metadata options you can use during the create bucket request:

 	Name
 	Type
 	Description

 	archive
 	boolean
 	Storage class as Archive

 	coldline
 	boolean
 	Storage class as Coldline

 	dra
 	boolean
 	Storage class as Durable Reduced Availability.

 	multiRegional
 	boolean
 	Storage class as Multi-Regional.

 	nearline
 	boolean
 	Storage class as Nearline.

 	regional
 	boolean
 	Storage class as Regional.

 	standard
 	boolean
 	Specify the storage class as Standard.

 One important option when creating the bucket is choosing the class as well as if it will be multiRegional. Let’s review the storage classes available for Google Cloud as this will be an important choice from a cost perspective and will also make sure you’re choosing the appropriate class for your data access profile.

 The table below was taken from the Google Cloud storage documentation. This is current at the time of writing, but we recommend checking the Google Cloud documentation to confirm none of the SLAs have changed since the published date of the book:

 	Storage Class
 	Minimum storage duration
 	SLA

 	Standard Storage
 	None
 	>99.99% in multi-regions and dual-regions 99.99% in regions

 	Nearline Storage
 	30 days
 	99.95% in multi-regions and dual-regions 99.9% in regions

 	Coldline Storage
 	90 days
 	99.95% in multi-regions and dual-regions 99.9% in regions

 	Archive Storage
 	365 days
 	99.95% in multi-regions and dual-regions 99.9% in regions

 The minimum storage duration is a key metric to consider when choosing the class. Note that all classes perform the same from a latency perspective; what you need to consider is the access profile. In our framework, our files will be accessed fairly often because we’re providing users the ability to play the audio file. Due to its access profile, the standard class for our framework meets our requirements and will be the most effective. Google Cloud will charge you an early delete fee if the file is deleted before it has been stored for the duration of the class.

 For example, suppose you store 1,000 GB of Coldline Storage data in the US multi-region. If you add the data on day 1 and then remove it on day 60, you are charged $14 ($0.007/GB/mo. * 1,000 GB * 2 mo.) for storage from day 1 to 60, and then $7 ($0.007/GB/mo. * 1,000 GB * 1 mo.) for 30 days of early deletion from day 61 to 90. Cited from Google Cloud Storage documentation: https://cloud.google.com/storage/pricing#archival-pricing

 Let’s go ahead and create our first bucket using Node.js.

 	
 On your local workstation, git clone the following repository:https://gitlab.com/building-cloud-native-applications-google-cloud/chapter-two.git

 	
 From the cloned repository, go to the chapter-two folder.

 	
 Open the createBucket.js file in your favorite editor.

 	
 On line 6, replace the “key.json” with the service account key you downloaded.

 	
 On line 7, replace “ruicosta-blog” with your project id.

 	
 On the terminal within this folder, run npm install

 	
 On the terminal, run node createBucket.js

 	
 On successful execution, it should look like Figure 2-6

 [image: Code Screenshot for createBucket.js]
 Figure 2-6. Code Screenshot for createBucket.js

 You can go to the Google Cloud Storage console and your newly created bucket should be listed. Congratulations! You programmatically created your first bucket.

 Create a Bucket with Bucket Locks

 A bucket lock allows you to create a retention policy that locks the data preventing it from being deleted or overwritten. You can also lock a retention policy. Once it is locked you cannot unlock it; you will only be able to increase the retention period. See the warning in Figure 2-7 from the Cloud Console. This is warning you that if you lock the retention policy which is set for 5 days, you will lose the ability to shorten or remove it. If you want to delete the objects or the bucket itself, you can only do so after the 5 days have expired.

 [image: Locking the Cloud Storage Policy]
 Figure 2-7. Locking the Cloud Storage Policy

 If you attempt to delete objects younger than the retention period it will result in a PERMISSION_DENIED error.

 Let’s programmatically create a retention policy for 6 months. Objects in this bucket will not be able to be overwritten or deleted. Review line 5. This is the location where you can set the duration of the bucket lock.

 // Imports the Google Cloud client library
const {Storage} = require('@google-cloud/storage');
// Creates a client from a Google service account key.
const storage = new Storage({
 keyFilename: "key.json",
 projectId: "ruicosta-blog"
});
const retentionPeriod = 15780000; // 6 months.
const bucketName = 'rui-costa-bucket-name-2020-01';
async function createBucket() {
 await storage
 .createBucket(bucketName)
 .setRetentionPeriod(retentionPeriod);
 console.log(`Bucket ${bucketName} created.`);
}
createBucket().catch(console.error);

 To run the code snippet locally on your desktop follow these steps:

 	
 If you cloned the repo before, you can skip this step: On your local workstation git clone the following repository:https://gitlab.com/building-cloud-native-applications-google-cloud/chapter-two.git

 	
 From the cloned repository, go to the chapter-two folder.

 	
 Open the createBucketLock.js file in your favorite editor.

 	
 On line 5 replace the “key.json” with the service account key you downloaded.

 	
 On line 6 replace “ruicosta-blog” with your project id.

 	
 If you run npm install in a previous step within this folder you can skip this step: On the terminal within this folder run npm install

 	
 On the terminal run node createBucketLock.js

 	
 On successful execution, it should look like Figure 2-8

 [image: Code Screenshot for createBucketLock.js]
 Figure 2-8. Code Screenshot for createBucketLock.js

 You created a new bucket with a retention lock period of 6 months. If you try to upload a new file to the bucket and delete the uploaded file you will receive an error message.

 List Buckets

 Let’s now list the buckets we programmatically created. This is a useful command as it allows you to list all the buckets in your project, which can allow you to perform actions like Data Loss Prevention. We can loop through all the buckets and objects, then scan them for PII information with the Google Cloud Data Loss Prevention API. Line 12 we use a forEach() which calls the provided callback function once for each element in an array. Each element in the array is our list of buckets within our project.

 // Imports the Google Cloud client library
const {Storage} = require('@google-cloud/storage');
// Creates a client
const storage = new Storage({
 keyFilename: "key.json",
 projectId: "ruicosta-blog"
});
async function listBuckets() {
 // Lists all buckets in the current project
 const [buckets] = await storage.getBuckets();
 console.log('Buckets:');
 buckets.forEach(bucket => {
 console.log(bucket.name);
 });
}
listBuckets().catch(console.error);

 To run the code snippet locally on your desktop follow these steps:

 	
 If you cloned the repo before, you can skip this step: On your local workstation git clone the following repository:https://gitlab.com/building-cloud-native-applications-google-cloud/chapter-two.git

 	
 From the cloned repository, go to the chapter-two folder.

 	
 Open the listBuckets.js file in your favorite editor.

 	
 On line 5 replace the “key.json” with the service account key you downloaded.

 	
 On line 6 replace “ruicosta-blog” with your project id.

 	
 If you run npm install in a previous step within this folder you can skip this step: On the terminal within this folder run npm install

 	
 On the terminal run node listBuckets.js

 	
 On successful execution, it should look like Figure 2-9

 [image: Code Screenshot for listBuckes.js]
 Figure 2-9. Code Screenshot for listBuckes.js

 Upload a file

 We created a bucket. Now, getting objects to the bucket is the fun part. In the code snippet below we will upload a file called “rui_costa.jpg” to cloud storage within the bucket named “rui-costa-bucket-name-2020”.

const bucketName = 'rui-costa-bucket-name-2020';
const filename = 'rui_costa.jpg';
// Imports the Google Cloud client library
const {Storage} = require('@google-cloud/storage');
// Creates a client
const storage = new Storage({
 keyFilename: 'key.json',
 projectId: 'ruicosta-blog' }); async function uploadFile() {
// Uploads a local file to the bucket
await storage.bucket(bucketName).upload(filename, {
 metadata: {
 cacheControl: 'public, max-age=31536000',
 },
});
console.log(`${filename} uploaded to ${bucketName}.`);
 }
uploadFile().catch(console.error);

 To run the code snippet locally on your desktop follow these steps:

 	
 If you cloned the repo before, you can skip this step: On your local workstation git clone the following repository:https://gitlab.com/building-cloud-native-applications-google-cloud/chapter-two.git

 	
 From the cloned repository, go to the chapter-two folder.

 	
 Open the uploadFile.js file in your favorite editor.

 	
 On line 1 replace with your bucket name

 	
 On line 2 replace with the file you want to upload

 	
 On line 7 replace the “key.json” with the service account key you downloaded.

 	
 On line 8 replace “ruicosta-blog” with your project id.

 	
 If you run npm install in a previous step within this folder you can skip this step: On the terminal within this folder run npm install

 	
 On the terminal run node uploadFile.js

 	
 On successful execution, it should look like Figure 2-10

 [image: Code Screenshot for uploadFile.js]
 Figure 2-10. Code Screenshot for uploadFile.js

 That was easy! We now programmatically uploaded a file to our bucket.

 Download the File

 Another option you might need is getting data out of Cloud Storage. We created buckets and uploaded a file but how can we download this file now? The code snippet below will download the file you just uploaded to the local location you define. On line 3 you can change the name of the file that will be saved locally so as to not overwrite the existing file we uploaded:

 const bucketName = 'rui-costa-bucket-name-2020';
const srcFilename = 'rui_costa.jpg';
const destFilename = 'download_rui_costa.jpg';
// Imports the Google Cloud client library
const {Storage} = require('@google-cloud/storage');
// Creates a client
const storage = new Storage({
 keyFilename: 'key.json',
 projectId: 'ruicosta-blog'
 });
async function downloadFile() {
 const options = {
 destination: destFilename,
 };
 // Downloads the file
 await storage.bucket(bucketName).file(srcFilename).download(options);
 console.log(
 `gs://${bucketName}/${srcFilename} downloaded to ${destFilename}.`
);
}
downloadFile().catch(console.error);

 To run the code snippet locally on your desktop follow these steps:

 	
 If you cloned the repo before, you can skip this step. Otherwise, on your local workstation git clone the following repository:https://gitlab.com/building-cloud-native-applications-google-cloud/chapter-two.git

 	
 From the cloned repository, go to the Chapter 2 folder.

 	
 Open the downloadFile.js file in your favorite editor.

 	
 On line 1 replace with your bucket name

 	
 On line 2 replace with the file you want to download

 	
 On line 3 replace with the name you want to save the download file locally

 	
 On line 8 replace the “key.json” with the service account key you downloaded.

 	
 On line 9 replace “ruicosta-blog” with your project id.

 	
 If you run npm install in a previous step within this folder you can skip this step: On the terminal within this folder run npm install

 	
 On the terminal run node downloadFile.js

 	
 On successful execution, it should look like Figure 2-11

 [image: Code Screenshot for downloadFile.js]
 Figure 2-11. Code Screenshot for downloadFile.js

 Now we are having fun. We created a bucket, uploaded a file, and then downloaded the file! Congratulations.

 Signed URL with Python

 So far we have focused on the Node.js client library, but we can perform all the actions we have done thus far with other languages. Let’s say I wanted to send a file that was existing in Cloud Storage to an endpoint. One way we can accomplish this is via the signed URL method available to us. Example: We want to send a PDF file to the endpoint for the endpoint to convert the PDF to a PNG file. Below is a sample code that shows us how to use signed URLs in Python.

 Signed URLs is a URL that provides access to users and applications for a limited time. The signed URL allows users to access the object without authentication. In our framework, we authenticate and authorize the user via Identity Aware Proxy. At this point we generate a signed URL for a limited time that allows the user to play the respective audio file which is an object with Cloud Storage.

 Note

 Anyone who possesses the signed URL will be able to perform actions on the object as reading the object within the defined period of time.

 from google.cloud import storage
storage_client = storage.Client.from_service_account_json(service_acct)
bucket = storage_client.bucket(bucket_name)
for blob in bucket.list_blobs(prefix=str(prefix + "/")):
 if blob.name.endswith(".png"):
 url_lifetime = 3600 # Seconds in an hour
 serving_url = blob.generate_signed_url(expiration=url_lifetime, version='v4')

 Let’s review the code snippet. On line 5, we have a for loop that iterates through the defined bucket name on line 3. For each object that ends with the extension of “.png” we generate a signed URL with the expiration time set to 3600 seconds. The signed URL could be passed as a parameter to an endpoint. Since the URL has the needed authentication and authorization for the object, the endpoint will not be required to authenticate for the set period of time. Google makes it pretty easy for us to generate signed URLs that allow users or applications to access our objects without requiring them to authenticate or authorize.

 Uploading Audio Files for Our Framework

 Now that we have a good understanding of the storage options available as well as practicing how to get data in and out of Google Cloud, let’s move on to how we will get data to our cloud-native application. For our initial prototype, we will use the gsutil command to upload audio files to Cloud Storage with the associated custom metadata. Objects stored on Cloud Storage have metadata associated with the respective object. The metadata provides information about the object. For example, the storage class is a key-value pair that tells which class the object belongs to. The key-value pair would look something like storageClass:STANDARD. There are two types of metadata that we can associate with objects:

 	
 Fixed-key metadata: Metadata whose keys are defined for you, but you are able to set the value.

 	
 Custom metadata: Metadata that you set via client libraries or the gsutil.

 Within our framework metadata plays a key role. The following command is how we upload audio files within our framework to Cloud Storage.

 gsutil -h x-goog-meta-callid:1234567 -h x-goog-meta-stereo:true -h x-goog-meta-pubsubtopicname:[TOPIC_NAME] -h x-goog-meta-year:2019 -h x-goog-meta-month:11 -h x-goog-meta-day:06 -h x-goog-meta-starttime:1116 cp [YOUR_FILE_NAME.wav] gs://[YOUR_UPLOADED_AUDIO_FILES_BUCKET_NAME]

 This command will upload an audio file to the defined bucket with the following key-value pairs:

 	
 callid:1234567

 	
 stereo:true

 	
 pubsubtopicname:[TOPIC_NAME]

 	
 year:2019

 	
 month:11

 	
 day:06

 	
 starttime:1116

 Keep in mind that adding custom metadata with gsutil, you must prefix your metadata key with x-goog-meta-. The x-goog-meta is not stored as part of the key, just the name after the x-goog-meta prefix. For example, our gsutil command has a custom metadata key of x-goog-meta-stereo, however, the x-goog-meta will not be stored, stereo will be used as the key name only.

 As discussed, once the file is written to Cloud Storage it will trigger a Cloud Function. Below is a code snippet of the cloud function we will deploy.

 let pubSubObj = {
 'fileid': uniqid.time(),
 'filename': `gs://${file.bucket}/${file.name}`,
 'callid': file.metadata.callid === undefined ? 'undefined' : file.metadata.callid,
 'date': Date(Date.now()),
 'year': file.metadata.year === undefined ? 'undefined' : file.metadata.year,
 'month': file.metadata.month === undefined ? 'undefined' : file.metadata.month,
 'day': file.metadata.day === undefined ? 'undefined' : file.metadata.day,
 'starttime': file.metadata.starttime === undefined ? 'undefined' : file.metadata.starttime,
 'duration': duration, //get value from fluent-ffmpeg
 'stereo': file.metadata.stereo === undefined ? 'undefined' : file.metadata.stereo,
};

 This Javascript object will hold the key:value pairs from our custom metadata. Notice we are not referencing x-goog-meta when extracting the value. Again, we ignore the prefix even within our codebase.

 Now that we have a good understanding of Cloud Storage as well as how the framework works with Cloud Storage, let’s move on to Cloud Functions. Cloud Functions plays an important role in our framework as it will be the first step to start the process of transcribing the audio files.

 Cloud Functions

 Google Cloud Functions is a serverless compute solution that allows you to run event-based applications. Cloud Functions allows you to write single-purpose functions which can be attached to events from your services. An example is how our framework will leverage cloud functions. Our function will be triggered by an event, and the event will trigger a Cloud Function once an object is written to the Cloud Storage bucket that the function is attached to.

 Cloud Functions is a serverless offering from Google Cloud. It abstracts the compute infrastructure and allows you to focus on your code. You don’t have to worry about patching operating systems or provisioning resources. Cloud Functions scale automatically; they can scale from a single invocation to millions without intervention from the developer. For Cloud Storage, Cloud Functions supports the following trigger types:

 	
 google.storage.object.finalize

 	
 google.storage.object.delete

 	
 google.storage.object.archive

 	
 google.storage.object.metadataUpdate

 Our framework will leverage the google.storage.object.finalize trigger type. This event is triggered when a new object is created or an existing object is overwritten in the bucket. Below is a code snippet from our Cloud Function.

 exports.safLongRunJobFunc = (event, context, callback) => {
 const file = event;
 const topicName = file.metadata.pubsubtopicname;
 const audioPath = { uri: `gs://${file.bucket}/${file.name}` };
 const readFile = storage.bucket(file.bucket).file(file.name);

 On line 1, the event parameter in the first argument is the storage event data that is delivered in the Cloud Storage object format. When our event is triggered Cloud Storage will expose this object that contains information about our object including the custom metadata you applied when you uploaded the file via the gsutil command. Below is the object values that are exposed to the cloud function:

 {
 "kind": "storage#object",
 "id": string,
 "selfLink": string,
 "name": string,
 "bucket": string,
 "generation": long,
 "metageneration": long,
 "contentType": string,
 "timeCreated": datetime,
 "updated": datetime,
 "timeDeleted": datetime,
 "temporaryHold": boolean,
 "eventBasedHold": boolean,
 "retentionExpirationTime": datetime,
 "storageClass": string,
 "timeStorageClassUpdated": datetime,
 "size": unsigned long,
 "md5Hash": string,
 "mediaLink": string,
 "contentEncoding": string,
 "contentDisposition": string,
 "contentLanguage": string,
 "cacheControl": string,
 "metadata": {
 (key): string
 },
 "acl": [
 objectAccessControls Resource
],
 "owner": {
 "entity": string,
 "entityId": string
 },
 "crc32c": string,
 "componentCount": integer,
 "etag": string,
 "customerEncryption": {
 "encryptionAlgorithm": string,
 "keySha256": string
 },
 "kmsKeyName": string
}

 From our code snippet, we extract the following values:

 const topicName = file.metadata.pubsubtopicname;
const audioPath = { uri: `gs://${file.bucket}/${file.name}` };
const readFile = storage.bucket(file.bucket).file(file.name);

 The topicName is a custom metadata that we applied on upload, -h x-goog-meta-pubsubtopicname:[TOPIC_NAME] and now we have access to it in our code.

 Cloud Function Libraries

 Cloud Functions provides you the ability to use external modules. The dependencies for our framework are managed with npm and defined in a file called package.json. This allows developers to be creative with their functions. Our framework leverages the following external modules:

 const PubSub = require(`@google-cloud/pubsub`);
const storage = require('@google-cloud/storage')();
const speech = require('@google-cloud/speech').v1p1beta1;
const client = new speech.SpeechClient();
const uniqid = require('uniqid');
const ffmpeg = require('fluent-ffmpeg');
const ffmpegPath = require('@ffmpeg-installer/ffmpeg').path;

 The fluent-ffmpeg and ffmpeg-installer/ffmpeg allow our function to check the codec and length of the audio file. When submitting a job to Speech-to-Text for transcription we need to configure the sampleRateHertz parameter. Using the external libraries, we extract this information and pass it to the Speech-to-Text API. We are using the long-running job method available from the Speech-to-Text API. When we submit an audio file to be transcribed for a long-running job we need to wait for the API to complete, this process can take minutes to hours. The formula used is n/2 for how long the API will take to complete. For this we need to wait a certain amount of time before we check to see if the API is done.

 If we continuously poll the API we might hit a quota limit with Google Cloud. To avoid hitting a quota we only check the API for a completed job after the duration of the audio file divided by two is completed. Example: If the audio file is 1 hour long we will only check the API for completion after 30 minutes have passed. We will cover this in-depth in the Dataflow chapter as here we only submit the job to Speech-to-Text and receive the job name which then is sent as a key:value pair to Pub/Sub.

 GitLab CI/CD and Cloud Functions

 Let’s practice deploying a Cloud Function with GitLab CI/CD.

 Note

 You can practice along now on your local workstation or at a later time using Qwiklabs. The Qwiklabs Quest for this book is coming available soon.

 We leverage a core component of Cloud-native applications Continuous Integration (CI) and Continuous Delivery (CD) architecture to automate deployment tasks, and perform peer reviews prior to pushing the code to production. For our example we will leverage GitLab for Source Code Management and CI/CD.

 For our first integration step with GitLab https://about.gitlab.com/, we will keep it simple and focus on getting our code developed and deployed faster. You will need a GitLab account to follow along. To authorize GitLab access to our Google Cloud project we will need to create a service account and assign the required roles. Always keeping in mind to work with least privilege methodology.

 	
 Open the IAM & Admin in the Google Cloud Console:

 	
 On the menu click Service Accounts:

 	
 Click CREATE SERVICE ACCOUNT:

 	
 Enter your Service account details:

 	
 Service Account Name

 	
 Service Account ID

 	
 Service Account Description

 	
 Click Create.

 	
 Assign the following roles to the Service Account

 	
 Cloud Functions Admin

 	
 Service Account User

 	
 Click Continue

 	
 Click Done

 	
 Locate the newly created Service Account, click on the actions icon and select create key:

 	
 Choose JSON and click CREATE. This will download the JSON file to your local workstation.

 	
 Head over to your GitLab Project, and under settings go to CI/CD

 	
 Click Expand Variables

 	
 Create two new variables labeled as:

 	
 PROJECT_ID

 	
 SERVICE_ACCOUNT

 	
 Enter your Google Cloud project id

 	
 Open the JSON file for the service account you downloaded before, copy and paste its content to the SERVICE_ACCOUNT key. It should look something like Figure 2-12:

 [image: GitLab Variables Screenshot]
 Figure 2-12. GitLab Variables Screenshot

 At this point you have created a service account and provided the service account details to your GitLab project which will allow GitLab CI/CD to deploy the Cloud Function to your Google Cloud project. To trigger a pipeline we will need to create a .gitlab-ci.yml file, this file defines the order of the pipeline. Below is our .gitlab-ci.yml file we will use to deploy our cloud function.

 image: google/cloud-sdk:latest
deploy_production:
 stage: deploy
 only:
 - master
 script:
 - echo $SERVICE_ACCOUNT > ${HOME}/gcloud-service-key.json
 - gcloud auth activate-service-account --key-file ${HOME}/gcloud-service-key.json
 - gcloud --quiet --project $PROJECT_ID functions deploy safLongRunJobFunc --runtime=nodejs8 --trigger-event=google.storage.object.finalize --trigger-resource=audio-uploads-42892

 Pipeline configuration begins with jobs. Jobs are the most fundamental element of a configuration file. In our configuration file our job name is deploy_production. Notice , the name displayed for our job in Figure 2-13.

 [image: Screenshot of GitLab Pipeline]
 Figure 2-13. Screenshot of GitLab Pipeline

 The script keyword is a required component of the configuration file. It is the shell script which is executed by the runner. Here we are authenticating gcloud with the service account created and assigned to the variable within GitLab. The next step is the deployment of Cloud Functions using the gcloud command. We are also using the google/cloud-sdk:latest docker image as it contains the gcloud command, allowing for a lightweight docker image during the deployment.

 If you have not cloned the GitLab repository, go ahead and clone it to your local workstation. Open your favorite IDE, for this exercise we’llbe using Visual Code. Download or clone the following repository: https://gitlab.com/building-cloud-native-applications-google-cloud/speech-analysis-framework.git

 Copy the files in the saf-longrun-job-func folder to your GitLab repository local folder. For this you will need to have created a repository in GitLab and cloned the empty repository. It should look like Figure 2-14.

 [image: Screenshot of the sample code for the Cloud Function]
 Figure 2-14. Screenshot of the sample code for the Cloud Function

 	
 Create a new branch:

 [image: Creating a Feature Branch in Visual Studio Code]
 Figure 2-15. Creating a Feature Branch in Visual Studio Code

 	
 Make a small change to the index.js file, commit the changes, and push the branch to the origin of your repository.

 	
 Back in GitLab console create a merge request:

 You should be able to see the merge request. At this point, the CI/CD pipeline will not be executed. Our pipeline will only be triggered when it is merged into the master branch. This allows reviewers to review the changes and accept the merge request. This was defined in our GitLab configuration file as:

only:
 - master

 	
 After reviewing the changes you can Merge the request.

 	
 Head over to the CI/CD and view the jobs, the job should now be running:

 You have successfully created a GitLab pipeline that only executes when merged to the master branch. Developers can work off feature branches and only allowed users can merge the request to the master branch which will then execute the GitLab CI/CD pipeline which in our framework will deploy the source code to Google Cloud Function.

 Cloud Native Checkpoint

 Let’s revisit the considerations we listed for our cloud-native architecture and how we addressed each one with Cloud Storage and Cloud Functions.

 	
 Our application needs to be abstracted from the cloud infrastructure.

 	
 Here we are using Google Cloud Functions and Cloud Storage which abstracts us from having to manage operating systems, worrying about scalability, and allows us to focus on our application functionality. ✓

 	
 We need a method of Continuous Integration and Continuous Delivery.

 	
 Here we are using GitLab for CI/CD. We also are restricting merges to the master branch by approved users plus we only execute the CI/CD pipeline when the merge is accepted on the master branch. ✓

 	
 What are we missing? We will cover these topics in a later chapter:

 Staging

 Unit Testing

 Rollbacks

 	
 Our application has to be able to scale up and scale down as needed.

 	
 Cloud Functions to the rescue. Google Cloud automatically manages and scales the functions, our function must be stateless meaning one function invocation should not rely on in-memory state set by a previous invocation. ✓

 	
 Cloud Storage automatically increases the IO capacity for a bucket by distributing the request load across multiple servers. ✓

 Buckets have an initial IO capacity of around 1000 object write requests per second and 5000 object read requests per second.

 	
 How will our application manage failures?

 	
 We have not discussed this, but keeping in mind Cloud Functions are fully managed services provided by Google Cloud. Google Cloud will manage the infrastructure hosting our cloud functions, however, we still need to consider failures as bugs in our code. We will cover this in detail later, but this functionally will be provided by GitLab with rollback capabilities.

 	
 The application needs to be globally accessible.

 	
 At this point, we are only working with Cloud Storage and Cloud Functions. This is not the client-facing part of the application. However, we can build buckets and Cloud Functions in respective regions to be nearest the call center where the recordings are taking place. We will be covering this in-depth in an upcoming chapter.

 	
 Our framework needs to be based on a microservice architecture.

 	
 Not applicable yet, but it will. But you can consider our function as a micro-service since it is performing a single function. Our frontend as well as the endpoint will be deployed on Kubernetes which will be our orchestration software for our micro-services.

 	
 How will our application be secured?

 	
 Always trying to work with least privilege. In our framework, when we created the service account for GitLab we only provided the roles required for GitLab to deploy our function.

 Closing Remarks

 You covered quite a bit of ground in this chapter to start building the Framework. You learned how to work with Cloud Storage objects programmatically, via the command line and with the Cloud Console. You then moved on to create your first Cloud Function via the Cloud Console and dove deeper by using GitLab CI/CD to automate the deployment. Besides the automation you also learned how to perform peer reviews before allowing a feature branch to be merged to the master branch. This is a great first step in working with Cloud Native Applications. We willdive deeper in the following chapters on the building blocks of the Framework.

 Chapter 3. Creating a Queue

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the 3rd chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com.

 In this chapter, you will be introduced to Cloud Pub/Sub which is used as the message queue within the framework. You will also deploy the first part of the cloud-native application. For reference, you are currently in the process phase of the Framework. The process phase of the framework is a combination of Google Cloud services that you will use to convert audio files to text, enrich them, and start the process of streaming the data to BigQuery (see Figure 3-1).

 [image: Framework Architecture]
 Figure 3-1. Framework Architecture

 Message Queues

 In the first chapter we covered an overview of Cloud Pub/Sub, so let’s dive a bit deeper here. Message queuing and Publish-Subscribe messaging allow applications to transfer messages between each other. In computer science, this paradigm is used for Inter-Process Communication (IPC) which allows software components to share data. This is an important part of a microservices architecture since microservices applications are distributed among multiple machines, and you will need a way for them to share data. We have multiple options to share data including RESTful APIs, which we will cover in later chapters. But for the current phase in our framework, we will be leveraging a queue which provides a method of using an asynchronous process which provides higher throughput in your application, by not requiring your application to block for new messages. You can see the message queue workflow in Figure 3-2.

 [image: Message Queue Workflow]
 Figure 3-2. Message Queue Workflow

 Within our framework, we create a trigger event when an audio file is uploaded to Cloud Storage. The event executes the designated cloud function which performs the following actions:

 	
 Retrieves metadata

 	
 Checks audio file length

 	
 Sends the audio file to be processed by Speech-To-Text

 	
 Retrieves job name from Speech-To-Text

 	
 Sends a message to Cloud Pub/Sub that includes the following key-value pairs (message attributes):

 'fileid': uniqid.time(),
'filename': `gs://${file.bucket}/${file.name}`,
'callid': file.metadata.callid,
'date': Date(Date.now()),
'year': file.metadata.year,
'month': file.metadata.month,
'day': file.metadata.day,
'starttime': file.metadata.starttime,
'duration': duration,
'stereo': file.metadata.stereo,

 For our framework, you could have used a RESTful API in place of Cloud Pub/Sub. But to minimize the management of our application and its development, we are leveraging a managed messaging system that eliminates this complexity. If we did choose to implement a RESTful API, we would need to consider the following when developing it:

 	
 Will you use Swagger for my API framework? If you choose no, how will you generate documentation and client libraries if needed? You can get away with not doing anything, building a simple Express.js API and just doing a fetch request within your application. But will this scale?

 	
 How will the endpoint be secured?

 	
 What platform will the endpoint run on?

 	
 Who will manage the platform?

 	
 How will you monitor the platform not just for failures but for items as latency?

 	
 How will you integrate testing and automated deployment?

 You can continue adding items to the checklist of things that need to be considered when building an API. But this is one reason we choose the route of Cloud Pub/Sub: there is no need to worry about most of the items listed above, and Cloud Pub/Sub intergrages nicely with Cloud Dataflow which will perform our extract, transform, load (ETL) process.

 Even with the current trend of API first design, we need to be thoughtful about when and where to use APIs. For example: When you have multiple consumers of your API, you need to be cautious of changes that can break the current version. You need to be aware of announcing the deprecation of features with enough time for developers to modify their code as needed. Or you need to have a plan in place to handle multiple versions simultaneously. By leveraging a Publish-Subscribe messaging paradigm all we need to do is stay current with the SDK of our chosen messaging platform. This makes for a Publish-Subscribe platform message extremely simple, flexible, and powerful interprocess communication (IPC) paradigm.

 Keep in mind that we’re not saying to replace APIs with a Publish-Subscribe platform. If you need a client to make a request and wait for a response then you will be looking at building an API. We do just that in our Frontend that runs on Kubernetes. We are going to build an API in a later chapter that uses the BigQuery SDK to execute SQL statements.

 To guarantee a message delivery, you will receive a response from Cloud Pub/Sub which confirms the message has been received. In your Cloud Function code, you use an asynchronous operation for Cloud Pub/Sub. You will use a Javascript chaining process, where we execute multiple asynchronous operations in a chain. An operation will not be executed if the previous one is not completed allowing us to add a check for an exception with the .catch() handler.

 .then(() => {
 const pubSubData = JSON.stringify(pubSubObj);
 const dataBuffer = Buffer.from(pubSubData);
 const pubsub = new PubSub();
 return pubsub
 .topic(topicName)
 .publisher()
 .publish(dataBuffer)
 .then(messageId => {
 console.log(`Message ${messageId} published.`);
 callback(null, 'Success!');
 })
 .catch(err => {
 console.error('ERROR:', err);
 });

 In the code snippet above, if we don’t receive the messageId from Cloud Pub/Sub, we will raise an exception that will execute our .catch() handler. We can add notifications or a log message in the .catch() handler letting us know some failure has occurred. This acknowledgment from Cloud Pub/Sub guarantees its delivery.

 Message Queuing

 Messages queues and publish-subscribe messaging can be confused as being the same thing. They are very similar but subtle differences make them unique enough for us to highlight each. A message queue is an asynchronous service to service communication method to transfer messages. The message queue stores messages until they are processed, and each message is only processed by one subscriber. When a message needs to be received by multiple subscribers that is when you would use a publish-subscribe messaging paradigm (Figure 3-3).

 [image: Message Queue]
 Figure 3-3. Message Queue

 Publish-subscribe messaging differs from message queues as they do allow multiple subscribers to receive messages. Publish-subscribe messaging pushes the messages immediately to all subscribers, which allows Cloud Pub/Sub to provide high throughput rates for incoming messages. Cloud Pub/Sub is a publish-subscribe messaging paradigm and delivers each published message at least once for every subscription. Once a message has been sent to a subscriber, the subscriber needs to acknowledge the message (Figure 3-4). Pub/Sub will continuously attempt to deliver a message that has not been acknowledged. By default, a message that cannot be delivered within the maximum retention time of 7 days is deleted and is no longer accessible. This typically happens when subscribers do not keep up with the flow of messages.

 [image: Publish subscribe messaging]
 Figure 3-4. Publish-subscribe messaging

 Google Cloud Pub/Sub

 As mentioned, Cloud Pub/Sub is a Publish-Subscribe paradigm, and it’s an asynchronous messaging service. Pub/Sub is defined by the following core concepts:

 	
 Topic

 	
 This is where your application will send messages to.

 	
 Subscription

 	
 This is the holding bucket for your messages. The subscription will allow subscribers to pull messages from the subscription or the subscription will push messages to a defined endpoint. The messages will be distributed to each subscription defined in the topic Figure 3-5.

 	
 Message

 	
 The message contains the message plus which is optional the message attributes.

 	
 Message Attributes

 	
 This is a key:value pair list that can be added to the message.

 [image: Screenshot of a Cloud Pub Sub Topic]
 Figure 3-5. Screenshot of a Cloud Pub/Sub Topic

 Note

 Our preferred method is to use message attributes as this gives me the ability to programmatically lookup values for the needed key without processing the entire message. Example: In our framework, Cloud Dataflow will pull messages from Cloud Pub/Sub. Programmatically we extract the key:values pairs as follows: pub_sub_data['fileid']. This makes it simple to then assign the value to a variable in our code versus parsing the message body.

 Figure 3-6 outlines the different architectures available in Pub/Sub pull subscription.

 [image: Cloud Pub Sub Architecture]
 Figure 3-6. Cloud Pub/Sub Architecture

 You may notice in the diagram we are duplicating messages in the C Publisher. Cloud Pub/Sub allows multiple subscribers to a topic, allowing each subscriber to retrieve a copy of the message. The way I like to define it is that a topic is not the holding bucket of the message, but rather the subscription is the holding bucket. When you create a topic, you can create multiple subscriptions, and when a message is sent to the topic it will be distributed to the subscriptions created. It is only when the subscriber acknowledges the message in the respective subscription that the message will be delivered. Let’s review the life of a message in Figure 3-7, and examine it in more detail

 [image: Life of a Cloud Pub Sub Message]
 Figure 3-7. Life of a Cloud Pub/Sub Message

 With the Cloud Pub/Sub push subscription paradigm Pub/Sub sends each message to the subscriber’s application at a defined endpoint.

 	
 You or your application creates a Pub/Sub topic (Figure 3-8).

 [image: Screenshot of creating a Cloud Pub Sub Topic]
 Figure 3-8. Screenshot of creating a Cloud Pub/Sub Topic

 	
 A message payload is sent to the newly created topic

 	
 Cloud Pub/Sub forwards the message to the subscriptions, each subscription will get a copy of the message.

 	
 The message will live in the subscription up to 7 days before it will be deleted by Cloud Pub/Sub. The message will be removed from the subscription once your application acknowledges the message (Figure 3-9).

 [image: Cloud Pub Sub Message Retention]
 Figure 3-9. Cloud Pub/Sub Message Retention

 	
 A subscriber receives the message either by Pub/Sub pushing them to the subscriber’s defined endpoint or by the subscriber pulling the message from the Cloud Pub/Sub service.

 	
 In Figure 3-10 and Figure 3-11, you will see the simple message we pushed to the topic with a message body and one message attribute. Both subscriptions A and B received the message. We can now either pull or push the message from the subscription which will acknowledge and remove the message from the respective subscription.

 [image: Screenshot of Subscription A]
 Figure 3-10. Screenshot of Subscription A

 [image: Screenshot of Subscription B]
 Figure 3-11. Screenshot of Subscription B

 Receiving Messages with the Push Method

 In push delivery, the Pub/Sub service sends each message as an HTTPS request to the subscriber defined endpoint. We pre-configured an endpoint for you to test using the push method; you can git clone the sample code for this chapter at the following location.

 Figure 3-12 outlines how the push process will work in the example.

 [image: Cloud Pub Sub Push Method]
 Figure 3-12. Cloud Pub/Sub Push Method

 In this example, you will send a Cloud Pub/Sub message with a message and your phone number as an attribute to the pre-configured endpoint. This endpoint will then send the message data to the phone number you entered as the attribute. To make this secure, you will need to register your phone number with Firebase Authentication. My sample endpoint will validate the number before sending the SMS message to your phone.

 In step 1, you will need to authenticate with your phone number to the sample service https://sms.ruicosta.blog. This will add you as a user to Firebase with the number you entered, step 2. Copy and paste the phone number once you have signed in, we will use this later. You can find the source code for the Firebase Phone Auth in the repository you cloned. Follow the directions below for step 3.

 To create a push subscription:

 	
 Open Pub/Sub in the Google Cloud Console:

 	
 Click Create Topic to create a topic, and name it anything you like:

 	
 Click on Subscriptions in the menu:

 	
 Click Create Subscription:

 	
 Change the subscription to Push and enter the following URL as the endpoint: https://us-central1-ruicosta-blog.cloudfunctions.net/pubSubPushEndpoint

 	
 Enter a name for the subscription.

 	
 Leave all other options set to default and click create.

 Send a test message to the newly created subscription:

 	
 In the Cloud Console go back to the Topics and click the topic you created in step 2.

 	
 Click Publish Message:

 	
 For the message body enter anything you want to be included in the SMS message

 	
 Click Add An Attribute. For the attribute use the phone number you copied above when you authenticated your phone number. Make sure the attribute name is set to phonenumber.

 	
 Click Publish

 Check your phone--you should have received an SMS message. Congratulations! You just sent a message to Cloud Pub/Sub which processed the message and delivered it via SMS to the defined phone number. You can get all the code in the GitHub repository including the endpoint which validates the phone number and sends the SMS message via Twilio. For reference, here is the code snippet for the endpoint:

 exports.pubSubPushEndpoint = (req, res) => {
 const admin = require('firebase-admin');
 const app = admin.initializeApp();
 const message = req.body ? req.body.message : null;
 const phoneNumber = req.body ? req.body.message.attributes.phonenumber : null;
 if (message && phoneNumber) {
 const buffer = Buffer.from(message.data, "base64");
 const data = buffer ? buffer.toString() : null;
 const accountSid = '';
 const authToken = '';
 const client = require('twilio')(accountSid, authToken);
 admin
 .auth()
 .getUserByPhoneNumber(phoneNumber)
 .then(function (userRecord) {
 client.messages
 .create({
 body: data,
 from: '',
 to: phoneNumber
 })
 .then(message => res.sendStatus(204))
 .catch(function (error) {
 console.log("Twilio Error: ", error);
 res.sendStatus(400);
 });
 })
 .catch(function (error) {
 console.log("Firebase Auth Error: ", error);
 res.sendStatus(400);
 });
 }
return 0;
};

 Receiving Messages with the Pull Method

 In pull delivery, your application initiates a request to Pub/Sub to pull the messages from the subscription. Cloud Pub/Sub offers a wide array of SDKs for different programming languages. This allows you to incorporate the Pub/Sub SDK in a variety of applications including Google Cloud Services as Cloud Dataflow.

 Note

 You can practice along now on your local workstation or at a later time using Qwiklabs. The Qwiklabs Quest for this book is located at:

 You will need to have Node.js (https://nodejs.dev/) configured on your local machine if you’re following along locally. You will also need to have the Google Cloud SDK tool configured. You can find the instructions to install and configure the Google Cloud SDK at https://cloud.google.com/sdk/docs/authorizing:

 	
 Open Pub/Sub in the Google Cloud Console:

 	
 Click Create Topic to create a topic, and name it anything you like:

 	
 Click on Subscriptions in the menu:

 	
 Click Create Subscription:

 	
 Name your subscription, choose the topic you created in step 2 and leave the other values set to default, it should look like this:

 	
 Click Create

 	
 Git Clone the Chapter 3 code from:

 	
 Using your favorite IDE go to the chapter-three/pub-sub folder

 	
 Within this folder run in your terminal npm install --save @google-cloud/pubsub

 	
 Edit the getMessage.js file in your favorite IDE

 	
 Change the subscriptionName variable to the subscription you created in step 5 it should look something like this:

 	
 Now run in your terminal node getMessage.js

 	
 If you receive an error make sure your Google Cloud SDK is properly configured and or try running gcloud auth application-default login

 	
 Open Pub/Sub in the Google Cloud Console

 	
 Go to the topic you created in step 2

 	
 Click on Publish Message, enter some text into the message body and click publish

 	
 You should see the message you published received by your application in the console and it should look something like this:

 You have successfully created an application that receives and acknowledges the message.

 Publishing Messages

 Publishing messages through the Cloud Console is only useful for testing our workflow. In a production environment as well as within our framework you will want the application to do the publishing. When publishing a message you will need to define either a message body or message attributes. A message can have just a message body or vice versa a message can have only one or more message attributes. You can also have both. You also don’t need to worry about a unique identifier or timestamp as Pub/Sub will add those receptive fields.

 	
 If you have not Git Clone the repository, go ahead and clone the following repository:

 	
 In your favorite IDE, go to chapter-three/pub-sub

 	
 Within in this folder run in your terminal npm install --save @google-cloud/pubsub

 	
 Edit the sendMessage.js file in your favorite IDE

 	
 Change the topicName variable to the topic you created above, if you haven’t created a topic go the section Receiving Messages with the Pull Method at Step 2 for a instructions

 	
 Change the data variable to a message of your choice

 	
 When done it should look something like Figure 3-13

 [image: sendMessage.js Code Snippet Screenshot]
 Figure 3-13. sendMessage.js Code Snippet Screenshot

 	
 Run your application as follows: node sendMessage.js

 	
 Once your message has been delivered, run the getMessage.js file from the Receiving Messages with the Pull Method section

 	
 You should now see your message received in the getMessage.js application as Figure 3-14

 [image: sendMessage.js Terminal Output]
 Figure 3-14. sendMessage.js Terminal Output

 You have successfully published a message programmatically to Cloud Pub/Sub, programmatically received and acknowledged the message.

 Ordering Messages

 Cloud Pub/Sub is a highly scalable messaging service and allows “Google products including Ads, Search and Gmail use this infrastructure to send over 500 million messages per second, totaling over 1TB/s of data” - https://cloud.google.com/pubsub/architecture. Due to the highly scalable system, Pub/Sub does not guarantee the order of message delivery. Order is a complex architecture for messaging systems to implement at scale. It requires the messaging service to deliver a message and before sending the next message, it needs to guarantee the subscriber has received the message. The ordering of messages architecture puts a strain on incoming messages reducing the publisher to how many messages are accepted per second.

 If you need to handle message order, you can use an external service such as Cloud Firestore to store a unique ID and have the subscriber check Cloud Firestore which message it needs to process next. If you choose to go this route, you might consider not using Cloud Pub/Sub and instead utilize a service such as Firestore to be your messaging queue. At message delivery you will need to perform two actions: one to deliver the message to Pub/Sub and the second write to Firestore. This also applies to the subscriber since the subscriber needs to read from Firestore and then pull the message from Cloud Pub/Sub. These additional steps also introduce latency to your application.

 As an alternative approach, if you have a single publisher and single subscriber, you can sequence the messages with a counter. In the following exercise, we will configure a for loop which will send 100 messages to Pub/Sub, and you will then configure a single subscriber which uses a persistent counter to order the messages. We need to use the counterid variable as a message attribute when you publish the message as well as match the counterid variable starting value in the subscriber.

 	
 If you have not cloned the repository, go ahead and clone the following repository:

 	
 In your favorite IDE, go to chapter-three/pub-sub

 	
 Within in this folder run in your terminal npm install --save @google-cloud/pubsub

 	
 Edit the sendMessageLoadOrder.js file in your favorite IDE

 	
 Change the topicName variable to the topic you created above, if you haven’t created a topic create a Pub/Sub topic first.

 	
 Change the data variable to a message of your choice

 	
 In your favorite IDE edit the getMessageOrder.js and change the subscriptionName to your subscription, if you have not created a subscription go ahead and create one first.

 	
 Run the following command: node getMessageOrder.js

 	
 The above command will wait and listen for new messages

 	
 Run the following command to send 100 messages in a new terminal node sendMessageLoadOrder.js

 	
 Go back to the terminal you run the getMessageOrder.js and you will notice the messages being processed in order. It should look like Figure 3-15

 [image: Terminal Output of Message Order being Processed]
 Figure 3-15. Terminal Output of Message Order being Processed

 Since Cloud Pub/Sub does not guarantee the order of messages you can use the steps outlined in this exercise to order messages if your application requires order.

 Replaying and purging messages

 Once a message has been acknowledged, the message is not longer accessible to subscribers of a given subscription. In addition, the subscribers must process every message in a subscription --even if only a subset is needed.

 The Cloud Pub/Sub Seek feature extends the subscriber functionality to allow you to alter the acknowledgement state of messages. You can replay previously acknowledged messages, plus you can copy the state of one subscription to another by using seek in combination with a Snapshot.

 Using the Seek feature allows you to recover from unexpected subscriber problems, perform acknowledgement on a backlog of messages that are no longer relevant, and deploy new code features without accidentally acknowledging messages.

 Create and Seek to Snapshots

 	
 Create a topic and a subscription, run the following commands:

 gcloud pubsub topics create seek-demo-topic
gcloud pubsub subscriptions create seek-demo-sub --topic=seek-demo-topic --ack-deadline=1

 	
 There are no messages in the subscription that have been acknowledged. Capture this state by creating a snapshot:

 gcloud pubsub snapshots create my-snapshot --subscription=seek-demo-sub
gcloud pubsub snapshots list

 	
 Now publish, pull, and acknowledge a message:

 gcloud pubsub topics publish seek-demo-topic --message 'hello, world'
gcloud pubsub subscriptions pull --auto-ack seek-demo-sub
gcloud pubsub subscriptions pull --auto-ack seek-demo-sub

 	
 You can recover the message by seeking the subscription to the snapshot.

 gcloud pubsub subscriptions seek seek-demo-sub --snapshot=my-snapshot
gcloud pubsub subscriptions pull seek-demo-sub --auto-ack

 	
 You can seek other subscriptions to the same snapshot, as long as the subscription’s topic is the same as the snapshot’s topic

 gcloud pubsub subscriptions create seek-demo-sub2 --topic=seek-demo-topic --ack-deadline=10
gcloud pubsub subscriptions seek seek-demo-sub2 --snapshot=my-snapshot

 	
 Pulling from seek-demo-sub2 will now yield messages which were published before seek-demo-sub2 was created:

 gcloud pubsub subscriptions pull seek-demo-sub2 --auto-ack

 Seek to a timestamp

 Another way to replay messages that have been acknowledged is to seek a timestamp. To seek a timestamp, you must first configure the subscription to retain acknowledged messages using retain-acked-messages.

 	
 Run the following command to seek to a timestamp

 gcloud pubsub subscriptions update seek-demo-sub --retain-acked-messages

 	
 Now publish, pull, and acknowledge a message:

 gcloud pubsub topics publish seek-demo-topic --message 'hello, world'
gcloud pubsub subscriptions pull --auto-ack seek-demo-sub

 	
 The next pull should return no messages:

 gcloud pubsub subscriptions pull seek-demo-sub

 	
 Now seek the subscription back in time to recover the message

 TS_FORMAT=%Y-%m-%dT%H:%M:%SZ
gcloud pubsub subscriptions seek seek-demo-sub --time=$(date -u -d '-10 min' +$TS_FORMAT)

 	
 A subsequent pull should yield the message again:

 gcloud pubsub subscriptions pull --auto-ack seek-demo-sub

 	
 You can also use seek to skip delivery of all messages published before some point in time.

 gcloud pubsub topics publish seek-demo-topic --message 'hello, world'
gcloud pubsub subscriptions seek seek-demo-sub --time=$(date -u +$TS_FORMAT)

 	
 After some propagation delay of, say, 60 seconds the message will no longer be delivered.

 gcloud pubsub subscriptions pull seek-demo-sub

 Monitoring

 Monitoring Cloud Pub/Sub is a great way to keep your application and Cloud Pub/Sub healthy. Cloud Pub/Sub logs metrics to Cloud Monitoring. With Cloud Monitoring you can create dashboards to keep track of the metrics collecting allowing you to create alerts if things start to go wrong as making sure subscribers are keeping up with the flow of messages.

 To access Cloud Monitoring:

 	
 Open the Monitoring in the Google Cloud Console:

 	
 Click on Metrics Explorer

 	
 For the Resource Type and Metric select the following:

 	
 Cloud Pub/Sub Subscription

 	
 Unacked Messages

 	
 To simulate unacked messages in your favorite IDE, go to chapter-three/pub-sub

 	
 If you have not Git Clone the repository, go ahead and clone the following repository:

 	
 Edit the sendMessageLoad.js and change the topicName variable to your topic name

 	
 Run the following command in your terminal: node sendMesageLoad.js, the application will send 100 new messages to your Pub/Sub Topic and distribute them to the associated subscriptions

 	
 Go back the Cloud Monitoring > Metrics Explorer you should see the line chart for your subscription jump to 100, it should look like Figure 3-16

 [image: Cloud Logging Unacked Messages]
 Figure 3-16. Cloud Logging Unacked Messages

 	
 The messages count will stay at 100 until you acknowledge the messages or until the duration of the message retention period has elapsed. This chart is letting you know that you have 100 messages that have not been acknowledged.

 	
 You can run the following command to acknowledge the messages node getMessage.js which will reduce the count back to zero and it will look similar to Figure 3-18

 [image: Cloud Logging Unacked Messages]
 Figure 3-17. Cloud Logging Unacked Messages

 Cloud Monitoring provides additional metrics for Cloud Pub/Sub as well it allows you to send notifications based on a determined value you configure. To enable notifications you must first create a Notification Channel. Here’s a rundown of how to do that.

 	
 Open the Monitoring in the Google Cloud Console:

 	
 Click Alerting:

 	
 In the top menu Click Edit Notification Channels:

 	
 Configure the SMS Notification Channel

 	
 Back in the Altering Console click Create Policy:

 	
 Enter a Name for your Policy

 	
 Click Add Policy

 	
 For the Resource Type and Metric select the following:

 	
 Cloud Pub/Sub Subscription

 	
 Unacked Messages

 	
 In the configuration enter condition as:

 	
 Add the SMS Notification Channel you configured in step 4

 	
 Click Save

 	
 To test, run the following command in your terminal: node sendMesageLoad.js, the application will send 100 new messages to your Pub/Sub Topic which will trigger the alert policy you configured

 	
 You should receive an SMS message after about one minute

 Cloud Monitoring with altering enabled provides a method for you to be proactive about making sure your application which uses Cloud Pub/Sub is healthy. This is also a key component a Cloud-Native architecture managing failures.

 Pub/Sub or Pub/Sub Lite

 Google Cloud offers two versions of Cloud Pub/Sub: Cloud Pub/Sub, and Cloud Pub/Sub Lite. If you have predictable traffic patterns and you don’t require regional Pub/Sub then Cloud Pub/Sub Lite will be a more cost-effective solution. The following table is a comparison of Pub/Sub and Pub/Sub Lite from the Google Cloud Documentation located at https://cloud.google.com/pubsub/docs/choosing-pubsub-or-lite

 Table 3-1. Cloud Pub/Sub and Pub/Sub Lite Comparison

 	Feature
 	Pub/Sub
 	Pub/Sub Lite

 	Message replication
 	Multi-zone in single region
 	Single zone

 	Capacity
 	Automatically provisioned
 	Provision before you use

 	Pricing
 	Pay for the capacity that you use
 	Pay for the capacity that you provision

 	Storage
 	Unlimited
 	30 GiB-10 TiB per Lite topic

 	Retention period
 	Up to 7 days
 	Unlimited

 	Service endpoints
 	Global and regional
 	Regional

 	Resource namespace
 	Global
 	Zonal

 	Message routing
 	Global
 	Zonal

 A couple of items you need to be aware before choosing Pub/Sub Lite:

 	
 Pub/Sub Lite is a Zonal resource

 	
 You need to provision the capacity before you use the service

 	
 You pay for the capacity you provision

 For this, you need to fully understand your traffic pattern before choosing the Pub/Sub Lite. Here is another great table from the Google Cloud Pub/Sub documentation that compares the costs of Pub/Sub and Pub/Sub Lite, you can find the documentation at the following location: https://cloud.google.com/pubsub/lite/pricing

 Table 3-2. Cloud Pub/Sub and Pub/Sub Lite Cost Comparison

 	Data published/s
 	Data published/mo
 	Data received/mo
 	Storage/mo
 	Total Pub/Sub Lite cost/partition
 	Total Pub/Sub cost

 	1 MiB
 	2.5 TiB
 	2.5 TiB
 	84 GiB
 	$39
 	$200

 	1 MiB
 	2.5 TiB
 	5 TiB
 	84 GiB
 	$39
 	$300

 	10 MiB
 	25 TiB
 	25 TiB
 	844 GiB
 	$214
 	$2,000

 	10 MiB
 	25 TiB
 	50 TiB
 	844 GiB
 	$214
 	$3,000

 	100 MiB
 	247 TiB
 	247 TiB
 	8438 GiB
 	$2,138
 	$19,760

 	100 MiB
 	247 TiB
 	494 TiB
 	8438 GiB
 	$2,138
 	$29,640

 Pub/Sub Lite can be a great way to reduce costs as long as you know your pattern usage well.

 Framework Deployment Part One

 In this section, you will deploy the Cloud Function and enable the associated services for the cloud-native application. This will be the first part of our deployment of the fully functional cloud-native application. We would suggest you do this within your own Google Cloud project and not Qwiklabs. You can use Qwiklabs as the learning platform for the concepts introduced. Since Qwiklabs labs have an expiration date if you choose to use Qwiklabs, your work will be lost after a set time. If you want to keep this project on-going, we recommend using your own Google Cloud Project. You will deploy Part Two of the Framework in Chapter 4.

 Now that you have learned about Cloud Storage, Cloud Functions, and Cloud Pub/Sub which is the first stage of our cloud-native application which is getting the audio files ready to be enriched with the Google Cloud Machine Learning APIs. For this, you will create a storage bucket to upload the audio files to, create a Cloud Function deployed with GitLab CI/CD that will be triggered when the audio file is uploaded, and send the audio file to Speech-to-Text to be transcribed.

 You will need the following before getting started:

 	
 You will need a GitLab Account

 	
 You will need to have an empty GitLab repository created and clone locally to your workstation

 	
 You will need a Google Cloud Account

 	
 You will need to have a Google Cloud Project created

 Configuration and Deployment

 To authorize GitLab access to our Google Cloud project, we will need to create a Google Cloud service account and assign the required roles to the service account. This service account will authorize GitLab to deploy the Cloud Function to the defined project. Follow these steps:

 	
 Open the IAM & Admin in the Google Cloud Console:

 	
 On the menu click Service Accounts:

 	
 Click CREATE SERVICE ACCOUNT:

 	
 Enter your Service account details:

 	
 Service Account Name

 	
 Service Account ID

 	
 Service Account Description

 	
 Click Create.

 	
 Assign the following roles to the Service Account

 	
 Cloud Functions Developer

 	
 Service Account User

 	
 Click Continue

 	
 Click Done

 	
 Locate the newly created Service Account, click the actions icon, and select create a key:

 	
 Choose JSON and click CREATE. This will download the JSON file to your local workstation.

 	
 Head over to your GitLab Project, and under settings go to CI/CD

 	
 Click Expand Variables

 	
 Create two new variables labeled as:

 	
 PROJECT_ID

 	
 SERVICE_ACCOUNT

 	
 Enter your Google Cloud project id

 	
 Open the JSON file for the service account you downloaded before, copy and paste it’s content to the SERVICE_ACCOUNT key. It should look something like Figure 3-18:

 [image: GitLab Variables]
 Figure 3-18. GitLab Variables

 At this point you have the authorization configured for GitLab to deploy Cloud Functions to your Google Cloud Project. The next step is to create a storage bucket for the audio file uploads and the Pub/Sub topic.

 	
 To quickly create a storage bucket without going to the Cloud Console you can run the following command: gsutil mb gs://[BUCKET_NAME]/Keep in mind, that the bucket name needs to be a unique name across Google Cloud customers since it’s a globally accessible resource. Also, bucket names must contain only lowercase letters, numbers, dashes, underscores, and dots. Spaces are not allowed.

 	
 Create a new GitLab variable as we did in step 13 called TRIGGER_RESOURCE

 	
 Enter the newly created bucket name as the value for the GitLab variable, do not include gs:// in the value (Figure 3-19)

 [image: GitLab Variables]
 Figure 3-19. GitLab Variables

 	
 This bucket will hold the audio files and will be the resource your Cloud Function will be triggered on.

 	
 Run the following command to create a Pub/Sub topic: gcloud pubsub topics create my-topic

 	
 When you publish a message to Pub/Sub, Pub/Sub stores the message in the nearest Google Cloud region. Pub/Sub then delivers the message to subscribers across the world.

 If you need to restrict the regions you can run the following command which restricts the region to us-central1: gcloud pubsub topics update [YOUR_TOPIC] --message-storage-policy-allowed-regions=us-central1

 The next step is to prepare your application code to be pushed to the master branch in your GitLab repository.

 	
 Git clone the following repository: to come

 	
 Copy the folder in the cloned repository saf-longrun-job-func to your GitLab repository

 	
 Commit your changes and push the code to your repository

 	
 If you head back to GitLab CI/CD you should see your job running:

 	
 You should see the following message once the Pipeline has successfully executed:

 	
 Open the Cloud Function in the Google Cloud Console:

 	
 You should see the Cloud Function successfully deployed.

 	
 Click the on the function name you deployed and then click on the Trigger tab, this will list the configuration details for your trigger type and the associated resource which was defined the GitLab yml file as:

 gcloud --quiet --project $PROJECT_ID functions deploy safLongRunJobFunc --runtime=nodejs8 --trigger-event=google.storage.object.finalize --trigger-resource=$TRIGGER_RESOURCE

 	
 Before you can upload the audio file you need to enable the Cloud Speech-to-Text API. The cloud function will send the audio file to the Speech-to-Text API and it will receive a job name that will be included in the message sent to Pub/Sub. You can enable the API by running the following command:

 gcloud services enable speech

 To show this in context, you have just configured and deployed the components circled in Figure 3-20

 [image: Framework Architecture]
 Figure 3-20. Framework Architecture

 For the next part, you will test the components you just deployed. In your repository you cloned you will have a folder called sample audio files, you will use these audio files to test the deployed components.

 	
 Run the following command in your terminal to process a sample stereo audio file, replace the parameters within the brackets [] with your values. The sample audio files are located in the following folder from the clone repository: /chapter-three/sample-audio

 gsutil -h x-goog-meta-callid:1234567 -h x-goog-meta-stereo:true -h x-goog-meta-pubsubtopicname:[TOPIC_NAME] -h x-goog-meta-year:[YEAR] -h x-goog-meta-month:[MONTH_AS_04] -h x-goog-meta-day:[DAY_AS_06] -h x-goog-meta-starttime:[START_TIME_AS_0910] cp stereo.wav gs://[YOUR_UPLOADED_AUDIO_FILES_BUCKET_NAME]

 	
 Run the following command in your terminal to process a sample mono audio file, replace the parameters within the brackets [] with your values.

 gsutil -h x-goog-meta-callid:1234567 -h x-goog-meta-stereo:false -h x-goog-meta-pubsubtopicname:[TOPIC_NAME] -h x-goog-meta-year:[YEAR] -h x-goog-meta-month:[MONTH_AS_04] -h x-goog-meta-day:[DAY_AS_06] -h x-goog-meta-starttime:[START_TIME_AS_0910] cp mono.flac gs://[YOUR_UPLOADED_AUDIO_FILES_BUCKET_NAME]

 	
 You will not have a message in Cloud Pub/Sub, you can view it went well by viewing the logs as well as checking the subscription you should see the output shown in Figure 3-21:

 [image: Screenshot of Cloud Pub Message Body and Body Keys]

 Figure 3-21. Screenshot of Cloud/Pub Message Body and Body Keys

 You have successfully deployed and tested the first part of the cloud-native application.

 Cloud Native Checkpoint

 Let’s again revisit the considerations we listed for our cloud-native architecture and how we addressed each one with Cloud Pub/Sub.

 	
 Our application needs to be abstracted from the cloud infrastructure. Here you are using Cloud Pub/Sub which abstracts you from having to manage a queueing system, not having to worry about scalability, and allowing you to focus on your application functionality. ✓

 	
 We need a method of Continuous Integration and Continuous Delivery. This is not applicable for Cloud Pub/Sub, since your code to manage messages will be handled by Cloud Functions and Cloud Dataflow. ✓

 	
 Our application has to be able to scale up and scale down as needed. “Google products including Ads, Search and Gmail use this infrastructure to send over 500 million messages per second, totaling over 1TB/s of data” - https://cloud.google.com/pubsub/architecture ✓

 	
 How will our application manage failures? A key to managing failures will be for you to proactively monitor the application and Cloud Pub/Sub. In the monitoring section in Chapter X of this book, you learned how you can enable alerts for unacknowledged messages. This will be a key component to provide reliable service as knowing when Cloud Pub/Sub is unhealthy. ✓

 	
 The application needs to be globally accessible. A single message is stored in a single region but a topic can have messages stored in multiple regions. ✓

 	
 Our framework needs to be based on a microservice architecture. Not applicable yet but it will be once you deploy the application to Kubernetes.

 	
 How will our application be secured? In this chapter you learned how to use the Cloud Pub/Sub libraries using your personal credentials, you also deployed your application to Cloud Functions using GitLab and a restricted service account. ✓

 Closing Remarks

 In this chapter you learned about Cloud Pub/Sub and how it applies to the cloud native application. Cloud Pub/Sub is a powerful service that allows applications to pass messages between each other without introducing latency. It scales as needed, and since it’s a managed service it allows you to focus on your application code. You also deployed the first part of the application, and you will continue to build on this application as the chapter progresses. In the next chapter, you will learn about Cloud Dataflow. This will be a subscriber to the Cloud Pub/Sub Topic you created in this chapter to retrieve the messages that were sent by Cloud Functions. Cloud Pub/Sub is the bridge between Cloud Functions and Cloud Dataflow, and Cloud Dataflow will be the process that enriches our data.

 Chapter 4. Application Data Pipeline with Cloud Dataflow

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the 4th chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com.

 In this chapter, you will be introduced to Cloud Dataflow, which is used as the fully managed data processing pipeline within the framework. In Chapter 5, you will deploy the second part of the cloud-native application which is the pipeline running on Cloud Dataflow. For reference, you are currently in the process phase of the Framework where you will combine Google Cloud services to convert audio files to text, enrich them, and start the process of streaming the data to BigQuery with Cloud Dataflow (see Figure 4-1).

 [image: Speech Analysis Framework]
 Figure 4-1. Speech Analysis Framework

 Cloud Dataflow Overview

 Cloud Dataflow is a fully managed service for running Apache Beam pipelines that allow you to perform a variety of data processing tasks. Dataflow can move data from different sources: it can transform data, and it can in real-time perform data tasks such as detecting anomalies. Within the Framework, Dataflow will read data from Pub/Sub, call the Speech-to-Text and Natural Language APIs, enrich the data, and finally write it to BigQuery. Google donated the Google Cloud Dataflow SDK to the Apache Software Foundation in 2016, and other organizations have contributed runners and IOs to integrate Beam runners with existing Databases which has allowed the project to grow in features and community support.

 Apache Beam is a programming model that defines and executes the defined pipeline. The pipelines can be batch and streaming which are exposed to different runners as:

 	
 Google Cloud Dataflow

 	
 Apache Spark

 	
 Apache Flink

 	
 Apache Apex

 	
 DirectRunner (a local runner for testing)

 The idea is that the same pipelines can be executed on different runners allowing for probability and choice of what runner to use. For the Framework, you will use the Google Cloud Dataflow Runner. Choosing Cloud Dataflow as the runner allows you to focus on your pipeline and allows Cloud Dataflow to manage the resources on-demand and autoscale to achieve minimal latency and high resource utilization. When running the pipeline in Google Cloud the runner uploads the executable code and dependencies to Cloud Storage then creates a Dataflow job that executes your pipeline. You can set the runner programmatically, or specify it using the command-line. The following example shows how to build a pipeline by programmatically setting the runner to Dataflow.

 options = PipelineOptions(
 flags=argv,
 runner='DataflowRunner',
 project='my-project-id',
 job_name='unique-job-name',
 temp_location='gs://my-bucket/temp',
 region='us-central1')

 To execute your pipeline on Apache Spark you simply would change the runner to the SparkRunner, the following code is an example of setting the pipeline runner to Apache Spark.

 options = PipelineOptions(
 flags=argv,
 runner='SparkRunner',
 project='my-project-id',
 job_name='unique-job-name',
 temp_location='gs://my-bucket/temp',
 region='us-central1')
Choosing Apache Beam with Cloud Dataflow as the runner allows you to focus on your pipeline and any transformations that you need rather than supporting an infrastructure and your pipeline.

 Apache Beam Concepts

 In this section, you will read further about Apache Beam concepts that will allow you to understand the different components required to design and build a data processing pipeline.

 Pipelines

 A pipeline defines what steps the runner will execute on your data. Simply a pipeline is the representation of the input data, the transformations on the data, and the output of the data.

 Figure 4-2 is a simple representation of a pipeline.

 [image: Simple pipeline representation]
 Figure 4-2. Simple pipeline representation

 Figure 4-3 is a sample of the Framework pipeline you will deploy using Dataflow as the runner.

 Figure 4-3. Framework pipeline

 The following example code shows how the pipeline reads and writes to the respective files defined in the arguments used to run the job.

 with beam.Pipeline(argv=beam_args) as pipeline:
 lines = pipeline | 'Read files' >> beam.io.ReadFromText(args.input)
 lines | 'Write files' >> beam.io.WriteToText(args.output)

 You can pass the arguments to run the job as follows for the above pipeline:

 python3 dataflow.py --input [FILE_NAME] --output [FILE_NAME] --runner DataFlowRunner --project [PROJECT_ID] --temp_location gs://[BUCKET]/temp --staging_location gs://[BUCKET]/stag --region us-central1 --job_name myjob

 PCollection

 A PCollection defines the data on which your pipeline will operate on. The data can be from a fixed source like a file, or from a continuously updating source like Cloud Pub/Sub. In the Framework, the data will be unbounded from a continuously updating source coming from Cloud Pub/Sub. It will create an initial PCollection by reading data from Cloud Pub/Sub, and from there it will create a PCollection output for each step in your pipeline to write the data to BigQuery.

 [image: Apache Beam Pipeline]
 Figure 4-4. Apache Beam Pipeline

 Transforms

 A transform is a function that you define that is performed on your data. The function you define will perform the operations you defined on each element of your data and produce one or more PCollections as outputs. Your function can perform almost any operation on your data including the ability to use external libraries. As an example: In this framework you are enriching the data to collect metrics as to how long a user speaks for, you are also working with the Data Loss Prevention library that will redact PII data from the elements before sending them to the next transformation. But if you also want to redact PII voice segments from the raw audio file, you can use a transform with your defined function that imports the ffmpeg package that will allow you to mute the found PII information. The output element of the transform can be the continuous flow of enriched data and also write the redacted data to Google Cloud Storage.

 The framework you are working with performs the following transformations:

 	
 Read messages from Cloud Pub/Sub

 decode_messages = messages | 'DecodePubSubMessages' >> beam.Map(lambda x: x.decode('utf-8'))

 	
 Retrieve data from Speech-To-Text API for long audio file using asynchronous speech recognition

 stt_output = decode_messages | 'SpeechToTextOutput' >> beam.Map(stt_output_response)

 	
 Parse and enrich the Speech-To-Text API data

 parse_stt_output = stt_output | 'ParseSpeechToText' >> beam.Map(stt_parse_response)

 	
 Get from the Natural Language API the sentiment and entity response for elements in the ParseSpeechToText transformation

 stt_nlp_output = parse_stt_output | 'NaturalLanguageOutput' >> beam.Map(get_nlp_output)

 	
 If execution of pipeline argument includes dlp=true process elements from NaturalLanguageOutput transformation for redaction with the Google Cloud DLP API

 dlp_output = stt_nlp_output | 'RedactTextOptional' >> beam.Map(lambda j: redact_text(j, project_id))

 The Framework also uses the higher-level Map transform as seen in the code snippet below, Figure 4-5 represents the visual transformation in the Dataflow interface and Figure 4-6 and 4-7 represents the input and output elements of the transformation.

 # function to redact sensitive data if dlp key value is set to truedef redact_text(data, project):
 info_types = []
 deidentify_config = {
 "info_type_transformations": {
 "transformations": [
 {
 "primitive_transformation": {
 "replace_config": {
 "new_value": {
 "string_value": '#',
 }
 }
 }
 }
]
 }
 }
 if data['dlp'] == 'true' or data['dlp'] == 'True':
 dlp = google.cloud.dlp_v2.DlpServiceClient()
 parent = dlp.project_path(project)
 response = dlp.list_info_types('en-US')
 for info_type in response.info_types:
 info_types.append({'name': info_type.name})
 inspect_config = { "info_types": info_types}
 item = {"value": data['transcript']}
 response = dlp.deidentify_content(
 parent,
 inspect_config=inspect_config,
 deidentify_config=deidentify_config,
 item=item,
)
 data['transcript'] = response.item.value
 for words_element in data['words']:
 item = {"value": words_element['word']}
 response = dlp.deidentify_content(
 parent,
 inspect_config=inspect_config,
 deidentify_config=deidentify_config,
 item=item,
)
 words_element['word'] = response.item.value
 for entities_element in data['entities']:
 item = {"value": entities_element['name']}
 response = dlp.deidentify_content(
 parent,
 inspect_config=inspect_config,
 deidentify_config=deidentify_config,
 item=item,
)
 entities_element['name'] = response.item.value
 for sentences_element in data['sentences']:
 item = {"value": sentences_element['sentence']}
 response = dlp.deidentify_content(
 parent,
 inspect_config=inspect_config,
 deidentify_config=deidentify_config,
 item=item,
)
 sentences_element['sentence'] = response.item.value
 return data
dlp_output = stt_nlp_output | 'RedactTextOptional' >> beam.Map(lambda j: redact_text(j, project_id))

 [image: Cloud Dataflow RedactTextOptional Transform]
 Figure 4-5. Cloud Dataflow RedactTextOptional Transform

 [image: Output Elements of the RedactTextOptional Transform]
 Figure 4-6. Input Elements of the RedactTextOptional Transform

 Figure 4-7. Elements of the RedactTextOptional Transform

 ParDo

 A ParDo is an Apache Beam transform operation. As outlined in the Transforms section, it performs a user defined operation on a collection of elements. The output of a ParDo can be a single element or many elements, however, it does not output a single output per input element. In the framework you need to produce a single element per input element since you need to collect metrics per element. An element in the framework is the metadata plus the enriched data of the audio file. If you needed to perform a function on your elements, say split the words in the transcript into a list, a ParDo would be a great option to perform this operation. Since the Framework needs to collect an element per input element a beam.Map transform would work best. Since a beam.Map produces a single output for each element inputted.

 Map

 A Map is another transform operation available in Apache Beam. In the Framework you will be using the beam.Map as you will be performing a one-to-one mapping, and for every audio file you will produce enriched elements with the Machine Learning APIs. Below is an example of using the beam.Map within the Framework. In this code snippet the pipeline first runs the stt_output_response function which is a user defined function that extracts the data from the Speech-to-Text API and returns the elements to the next step in the pipeline called ParseSpeechToText. Figure 4-5 is the visual representation of the code snippet below in the Dataflow console.

 # function to get STT data from long audio file using asynchronous speech recognitiondef stt_output_response(data):
 from oauth2client.client import GoogleCredentials
 from googleapiclient import discovery
 credentials = GoogleCredentials.get_application_default()
 pub_sub_data = json.loads(data)
 speech_service = discovery.build('speech', 'v1p1beta1', credentials=credentials)
 get_operation = speech_service.operations().get(name=pub_sub_data['sttnameid'])
 response = get_operation.execute()
 # handle polling of STT
 if pub_sub_data['duration'] != 'NA':
 sleep_duration = round(int(float(pub_sub_data['duration'])) / 2)
 else:
 sleep_duration = 5
 logging.info('Sleeping for: %s', sleep_duration)
 time.sleep(sleep_duration)
 retry_count = 10
 while retry_count > 0 and not response.get('done', False):
 retry_count -= 1
 time.sleep(120)
 response = get_operation.execute()
 # return response to include STT data and agent search word
 response_list = [response,
 pub_sub_data['fileid'],
 pub_sub_data['dlp'],
 pub_sub_data['filename'],
 pub_sub_data['callid'],
 pub_sub_data['date'],
 pub_sub_data['year'],
 pub_sub_data['month'],
 pub_sub_data['day'],
 pub_sub_data['starttime'],
 pub_sub_data['duration'],
 pub_sub_data['stereo']
]
 return response_list
stt_output = decode_messages | 'SpeechToTextOutput' >> beam.Map(stt_output_response)
parse_stt_output = stt_output | 'ParseSpeechToText' >> beam.Map(stt_parse_response)

 [image: Dataflow Pipeline]
 Figure 4-8. Dataflow Pipeline

 Pipeline I/O

 Apache Beam I/O connectors let you read/write data into your pipeline and write output data. As an example, the Framework you are working with has a source of Cloud Pub/Sub and a sink of BigQuery. You can also write a custom I/O connector when connectors are not available for your data source or sink.

 The code snippet below is an example of using the Cloud Pub/Sub I/O connector as a source that is currently only supported in streaming.

 beam.io.ReadFromPubSub(subscription=known_args.input_subscription).with_output_types(bytes))

 The code snippet below is an example of using the BigQuery I/O connector as a sink.

 dlp_output | 'WriteToBigQuery' >> beam.io.WriteToBigQuery(
known_args.output_bigquery,
schema=bigquery_table_schema, create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
 write_disposition=beam.io.BigQueryDisposition.WRITE_APPEND)

 To view the list of available Built-in I/O transforms visit the Apache Beam website at https://beam.apache.org/documentation/io/built-in

 Aggregation

 Aggregation is an operation that is performed on many elements to produce some grouped value from those respective elements. As an example: You need a way to count the unique elements of a PCollection. You can use the beam.combiners.Count.PerElement()that will count the unique values of the elements in the PCollection.

 In the code snippet below, a pipeline is created with a PCollection. Then, the elements are counter per unique value:

 import apache_beam as beam
with beam.Pipeline() as pipeline:
 total_unique_elements = (
 pipeline
 | 'Create produce' >> beam.Create(
 ['audio_file_1', 'audio_file_2', 'audio_file_3',
 'audio_file_1', 'audio_file_4', 'audio_file_2',
 'audio_file_2', 'audio_file2', 'audio_file_5',
 'audio_file_3'])
 | 'Count unique elements' >> beam.combiners.Count.PerElement()
 | beam.Map(print))

 [image: Output of running unique count with Apache Beam aggregation]
 Figure 4-9. Output of running unique count with Apache Beam aggregation

 Apache Beam provides the following aggregation methods:

 	
 CoGroupByKey

 	
 CombineGlobally

 	
 CombinePerKey

 	
 CombineValues

 	
 Count

 	
 Distinct

 	
 GroupByKey

 	
 GroupBy

 	
 GroupIntoBatches

 	
 Latest

 	
 Max

 	
 Min

 	
 Mean

 	
 Sample

 	
 Sum

 	
 Top

 Runner

 Runners are the software that accepts a pipeline and executes it. Apache runners or execution engines include:

 	
 Google Cloud Dataflow

 	
 Apache Spark

 	
 Apache Flink

 	
 Apache Apex

 	
 A local runner for testing, DirectRunner

 Event Time

 The event time is a timestamp specified by the Pub/Sub publisher application as an attribute of a Pub/Sub message, rather than the publish_time field set on a message by the Pub/Sub service itself. If the timestamp attribute is not specified at publish time the default timestamp that is used is the publishTime set on the Pub/Sub message by Cloud Pub/Sub.

 Windowing

 When working with bounded datasets that have the same key within the data set you can use features such as GroupByKey. However, when working with unbounded data sets it’s impossible to group all the elements since new elements are constantly being added. Windowing enables you to group operations over the unbounded data set by dividing the data set into windows of finite collections according to their timestamps of the individual elements. You set the following windows with the Apache Beam SDK or Dataflow SQL streaming extensions:

 	
 Tumbling windows (called fixed windows in Apache Beam)

 	
 Hopping windows (called sliding windows in Apache Beam)

 	
 Session windows

 Tumbling Windows

 A tumbling window represents a fixed interval duration in the data stream which is uniform across all keys. For example, if you set a sixty-second tumbling window, the elements with timestamp values [0:00:10-0:00:00] are in the first window. Elements with timestamp values [0:1:00-0:01:00] are in the second window. Figure 4-10 illustrates how elements are divided by tumbling windows.

 Figure 4-10. Tumbling Windows called fixed windows in Apache Beam

 Hopping Windows

 A hopping window has a fixed duration which sets the time interval for when you want to capture data. You define the time interval to capture the data and the period you want to start. As an example, you can have a one-minute window and a thirty-second period. Which means it will capture one minute worth of data every thirty seconds.

 Figure 4-11 illustrates how elements are divided by hopping windows.

 [image: Hopping Windows called sliding windows in Apache Beam]
 Figure 4-11. Hopping Windows called sliding windows in Apache Beam

 Session Windows

 Session windows are data dependent windows, but they are not known ahead of time. Session windows will contain gaps of durations from other elements, for example; You collect metrics for IoT devices. These devices emit data events every second when they are in use. You need to understand and aggregate the utilization of the device’s data based on when they are in use. Since you don’t know ahead of time how long the devices are being used for something hoping for windows where you know the fixed duration would not work. You will still need a way of determining utilization. Session windows allow you to set the gap duration between events that can be aggregated into a session window. As an example in Figure 4-11, you set the minimum gap duration to one minute which is the threshold value of inactivity for a device, if data events arrive after the set gap duration the event data will be assigned to a new session window. If the data arrives within the gap duration then it will be assigned to the same session window. Using session windows with a minimum gap duration allows you to aggregate the utilization metrics of the IoT devices.

 Figure 4-12 visualizes how elements are divided into session windows.

 [image: Session Windows]
 Figure 4-12. Session Windows

 Dataflow Tumbling Window Example

 In this example, you will build a Dataflow Tumbling Window pipeline that shows you how to use Dataflow to:

 	
 Read messages published to a Pub/Sub topic

 	
 Window the messages by timestamp

 	
 Write the messages to Cloud Storage

 Before you begin, complete the following steps:

 	
 Follow the instructions for installing and initializing the Cloud SDK at https://cloud.google.com/sdk/docs

 	
 From the Google Cloud Console go to APIs & Services > Library

 	
 Enable the following Google Cloud APIs: Compute Engine, Google Cloud’s operations suite, Cloud Storage, Cloud Storage JSON, Pub/Sub, Cloud Scheduler, Resource Manager, and App Engine.

 	
 Create a service account key:

 	
 From the Google Cloud Console go to IAM & Admin > Service Accounts, select Create Service Account.

 	
 Enter a name in the Service account name field and click Create:

 	
 From the Role list, select Project > Owner:

 	
 Click Done and then Create.

 	
 On the newly created Service Account click on the 3 Dots and select Create Key

 	
 Choose JSON for the Key Type and click Create, the Service Account Key File will be downloaded to your local workstation

 	
 Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to point to the service account key you downloaded

 export GOOGLE_APPLICATION_CREDENTIALS=path/to/my/credentials.json

 	
 Create a Cloud Storage bucket in this project for the file exports from Cloud Dataflow. Cloud Storage bucket names must be globally unique.

 gsutil mb gs://$BUCKET_NAME

 	
 Create local variables for your bucket and project.

 BUCKET_NAME=bucket-name
PROJECT_NAME=$(gcloud config get-value project)

 	
 Create a Pub/Sub topic in this project:

 gcloud pubsub topics create my-topic

 	
 Create a Cloud Scheduler job, the job will publish a message to a Cloud Pub/Sub topic at one-minute intervals.

 gcloud scheduler jobs create pubsub publisher-job --schedule="* * * * *" \
--topic=my-topic --message-body="Hello Readers!"

 	
 Start the scheduler job.

 gcloud scheduler jobs run publisher-job

 	
 Use the following command to clone the sample code and install the Pipeline Python packages:

 To keep your Python environment isolated from your other applications it’s recommended that you use a Python virtual environment. Below are the steps to use the virtual environment for the Dataflow application.

 git clone https://...
virtualenv env
source env/bin/activate
pip install -U -r requirements.txt

 	
 Start the pipeline

 python pub_sub_cloud_storage.py \
 --project=$PROJECT_NAME \
 --input_topic=projects/$PROJECT_NAME/topics/my-topic \
 --output_path=gs://$BUCKET_NAME/samples/output \
 --runner=DataflowRunner \
 --region=us-central1 \
 --window_size=2 \
 --temp_location=gs://$BUCKET_NAME/temp

 You have successfully deployed a Cloud Scheduler that publishes messages to your defined topic and a Dataflow job to window the Pub/Sub messages. To view the job go to the Google Cloud Console > Big Data > Dataflow. Your job list should look like Figure 4-13.

 [image: Cloud Dataflow Job List]
 Figure 4-13. Cloud Dataflow Job List

 Open the job details. It should look like Figure 4-14:

 [image: Cloud Dataflow Job Details]
 Figure 4-14. Cloud Dataflow Job Details

 To view the files written to Cloud Storage, go to Google Cloud Console > Storage > Browser. Find the bucket you created in step 5 and go to samples/output to view the files. You can also run the following command on the terminal to list the files:

 gsutil ls gs://$BUCKET_NAME/samples

 Notice the timestamp of each file since you passed the window size of 2 as an argument to Dataflow, the window size was set to two minutes (Figure 4-15).

 python pub_sub_cloud_storage.py \
 --project=$PROJECT_NAME \
 --input_topic=projects/$PROJECT_NAME/topics/my-topic \
 --output_path=gs://$BUCKET_NAME/samples/output \
 --runner=DataflowRunner \
 --window_size=2 \
 --temp_location=gs://$BUCKET_NAME/temp

 [image: Two Minute Dataflow Windowing Output]
 Figure 4-15. Two Minute Dataflow Windowing Output

 For this step, you will update the window size to 5 minutes. Go to Google Cloud Console > Big Data > Dataflow and click on the existing job and click the stop button.. When prompted choose to Drain the job .

 	
 Start the pipeline, this time you are passing 5 as the window size telling the window to be set at 5-minute intervals.

 python pub_sub_cloud_storage.py \
--project=$PROJECT_NAME \ --input_topic=projects/$PROJECT_NAME/topics/chapter4-topic \ --output_path=gs://$BUCKET_NAME/samples/output \ --runner=DataflowRunner \
--region=us-central1 \
--window_size=5 \
--temp_location=gs://$BUCKET_NAME/temp

 	
 To view the files written to Cloud Storage run the following command on the terminal to list the files:

 gsutil ls gs://$BUCKET_NAME/samples

 	
 Notice the timestamp of each file, they are now set at intervals of 5 minutes (Figure 4-16).

 [image: Five Minute Dataflow Windowing Output]
 Figure 4-16. Five Minute Dataflow Windowing Output

 Congratulations! You have created two Cloud Dataflow jobs with Tumbling windows (called fixed windows in Apache Beam) at 2 and 5-minute intervals. This is a powerful method to perform aggregations across your streaming datasets. Imagine building scorecards, you can allow Dataflow to perform the aggregations as the mean value and write this to a database that will present scorecards to the users. At this point, you don’t need to perform aggregation on the Frontend providing for a fast user experience.

 Watermark

 A watermark is a value that you define that will let Dataflow know when to expect the data. If you set the value to 30 seconds, and an element arrives after the 30-second watermark and even though the timestamp is within the water it will be considered late.

 For example, if you have a window storing items for events in 30 seconds and you receive the following 3 elements [element 1: 2020-19-09 0:00:01], [element 2: 2020-19-09 0:00:05] & [element 3: 2020-19-09 0:00:15] but element 3 has the event time included in this interval but it comes to the system after the window computation is considered to be on late.

 Trigger

 Triggers determine when to emit aggregated results for each window.

 Beam provides a number of pre-built triggers that you can set:

 	Event time triggers

 	
 These triggers operate on the event time identified by the timestamp of each element. For example, the AfterWatermark() trigger emits the elements of a window after the watermark passes the end of the window which is based on the timestamps attached to the data elements. The following example uses both early as AfterProcessingTime() and late firings as late=AfterCount(1):

 AfterWatermark(
 early=AfterProcessingTime(delay=1 * 60), late=AfterCount(1))

 	Processing time triggers

 	
 These triggers operate on the processing time, the time when the element is processed. The AfterProcessingTime() trigger emits a window after a certain amount of processing time has passed since data was received. The processing time is determined by the system clock, rather than the data element’s timestamp.

 	Data-driven triggers

 	
 These triggers operate by examining the data as it arrives in each window, and firing when that data meets a certain property. Apache Beam provides one data-driven trigger AfterCount(). It is important to note, for example, you specify AfterCount(25) and only 10 elements arrive, those 10 elements will not be processed since it has not met the condition of 25. If you need those 10 elements, you should consider using composite triggers.

 	Composite triggers

 	These triggers combine multiple triggers. The Apache Beam Documentation notes the following composite triggers:

 	
 You can add additional early firings or late firings to AfterWatermark.pastEndOfWindow via .withEarlyFirings and .withLateFirings.

 	
 Repeatedly.forever specifies a trigger that executes forever. Any time the trigger’s conditions are met, it causes a window to emit results and then resets and starts over. It can be useful to combine Repeatedly.forever with .orFinally to specify a condition that causes the repeating trigger to stop.

 	
 AfterEach.inOrder combines multiple triggers to fire in a specific sequence. Each time a trigger in the sequence emits a window, the sequence advances to the next trigger.

 	
 AfterFirst takes multiple triggers and emits the first time any of its argument triggers is satisfied. This is equivalent to a logical OR operation for multiple triggers.

 	
 AfterAll takes multiple triggers and emits when all of its argument triggers are satisfied. This is equivalent to a logical AND operation for multiple triggers.

 	
 orFinally can serve as a final condition to cause any trigger to fire one final time and never fire again.

 	Composition triggers with AfterWatermark()

 	
 Useful composite triggers execute once when Beam estimates that all the data has arrived. For example, the following example trigger code executes on the following conditions:

 	
 The watermark passes the end of the window

 	
 Any time late data arrives, after a ten-minute delay

 	
 After two days, we assume no more data of interest will arrive, and the trigger stops executing

 pcollection | WindowInto(
 FixedWindows(1 * 60),
 trigger=AfterWatermark(late=AfterProcessingTime(10 * 60)),
 allowed_lateness=Duration(seconds=2*24*60*60)) # 2 days,
 accumulation_mode=AccumulationMode.DISCARDING)

 Closing Remarks

 In this chapter, you learned about Cloud Dataflow. Cloud Dataflow is a fully managed data processing pipeline that allows you to perform transformations at scale on your data. Within this framework, you are leveraging it to enrich speech to text data to provide users analytics of audio recordings. In Chapter 5 you will deploy the second part of the application, and you will continue to build on this application as the chapters progress..

 Citations:

 https://beam.apache.org/documentation/programming-guide/#data-driven-triggers

 Chapter 5. Deploying the Application Data Pipeline

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the 5th chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com.

 In this chapter, you will deploy Cloud Dataflow and learn about Cloud Dataflow monitoring so you can have a healthy pipeline. This will be Part Two of your deployment of the fully functional cloud-native application.

 Deploying the Cloud Dataflow Pipeline

 To deploy the Cloud Dataflow pipeline, run the commands below. The pipeline will perform the enrichment of the raw audio data leveraging Google Cloud Machine Learning APIs.

 	
 Create a storage bucket for the Dataflow Staging Files:

 gsutil mb gs://[BUCKET_NAME]/

 	
 Through the Google Cloud Console create a folder named tmp in the newly created bucket for the DataFlow staging files

 	
 Create a BigQuery Dataset that will hold the structured data after it has been processed by Cloud Dataflow:

 bq mk [YOUR_BIG_QUERY_DATABASE_NAME]

 	
 Enable the Cloud Dataflow API

 	
 gcloud services enable dataflow

 	
 Enable the Cloud Natural Language API:

 	gcloud services enable language.googleapis.com

 	
 Enable the Google Cloud Data Loss Prevention API

 gcloud services enable dlp.googleapis.com

 	
 Deploy the Cloud Dataflow Pipeline

 The Dataflow application uses packages and modules that don’t come as part of the standard library. To keep your Python environment isolated from your other applications it’s recommended that you use a Python virtual environment. Below are the steps to use the virtual environment for the Dataflow application.

 virtualenv env
source env/bin/activate
Deploy the Dataflow Pipeline
python3 saflongrunjobdataflow.py --project=[YOUR_PROJECT_ID] --input_topic=projects/[YOUR_PROJECT_ID]/topics/[YOUR_TOPIC_NAME] --runner=DataflowRunner --temp_location=gs://[YOUR_DATAFLOW_STAGING_BUCKET]/tmp --output_bigquery=[DATASET NAME].[TABLE] --requirements_file="requirements.txt"

 Replace the following parameters with your respective parameters:

 [YOUR_PROJECT_ID] # Your Google Cloud Project ID
[YOUR_TOPIC_NAME] # Your Pub/Sub Topic Name
[YOUR_DATAFLOW_STAGING_BUCKET] # The Staging bucket created in Step 1
[DATASET NAME] # The BigQuery Dataset you created in step 3
[TABLE] # A table name of your choice, something like transcripts.

 Dataflow will create the table for your, it has been defined to create the tables as follows in the Dataflow Pipeline code.

 create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED

 	
 Once the pipeline has successfully deployed which can take a few minutes you can continue below to test the newly added component to your cloud native application. You can confirm the pipeline installed successfully in the Cloud Console at Big Data > Dataflow. Figure 5-1 shows the successfully deployed pipeline.

 [image: Cloud Dataflow Deployed Apache Beam Pipeline]
 Figure 5-1. Cloud Dataflow Deployed Apache Beam Pipeline

 For the next part, you will test the components you just deployed. In your repository you cloned, you will have a folder called sample audio files, and you will use these audio files to test the deployed components.

 	
 Run the following command in your terminal to process a sample stereo audio file, replace the parameters within the brackets [] with your values. The sample audio files are located in the following folder from the clone repository: /chapter-three/sample-audio

 gsutil -h x-goog-meta-callid:1234567 -h x-goog-meta-stereo:true -h x-goog-meta-pubsubtopicname:[TOPIC_NAME] -h x-goog-meta-year:[YEAR] -h x-goog-meta-month:[MONTH_AS_04] -h x-goog-meta-day:[DAY_AS_06] -h x-goog-meta-starttime:[START_TIME_AS_0910] cp stereo.wav gs://[YOUR_UPLOADED_AUDIO_FILES_BUCKET_NAME]

 	
 Run the following command in your terminal to process a sample mono audio file, replace the parameters within the brackets [] with your values.

 gsutil -h x-goog-meta-callid:1234567 -h x-goog-meta-stereo:false -h x-goog-meta-pubsubtopicname:[TOPIC_NAME] -h x-goog-meta-year:[YEAR] -h x-goog-meta-month:[MONTH_AS_04] -h x-goog-meta-day:[DAY_AS_06] -h x-goog-meta-starttime:[START_TIME_AS_0910] cp mono.flac gs://[YOUR_UPLOADED_AUDIO_FILES_BUCKET_NAME]

 The Dataflow job streams data into BigQuery instead of using a job to load data into BigQuery. This approach enables you to query data without the delay of running a load job. You will learn more about BigQuery in Chapter 10. To view your newly created data, open the Cloud Console and go to Big Data > BigQuery.

 	
 Navigate to your Dataset and Table Name

 	
 In the Query Editor (Figure 5-2) run the following code samples to view your processed data, replace the fields in brackets with your parameters.

 [image: BigQuery Query Editor]
 Figure 5-2. BigQuery Query Editor

 	Order Natural Language Entities for all records See Figure 5-3

 SELECT
 *
FROM (
 SELECT
 entities.name,
 entities.type,
 COUNT(entities.name) AS count
 FROM
 `[YOUR_PROJECT_ID].[YOUR_DATASET].[YOUR_TABLE]`,
 UNNEST(entities) entities
 GROUP BY
 entities.name,
 entities.type
 ORDER BY
 count DESC)

 [image: Query Results]
 Figure 5-3. Query Results

 	
 List word, start time, end time, speaker tag and confidence for all records - See Figure 5-4

 SELECT
 ARRAY(
 SELECT
 AS STRUCT word,
 startSecs,
 endSecs,
 speakertag
 FROM
 UNNEST(words)) transcript
FROM
 `[YOUR_PROJECT_ID].[YOUR_DATASET].[YOUR_TABLE]`

 [image: Query Results]
 Figure 5-4. Query Results

 	
 Search Transcript with a regular expression - See Figure 5-5

 SELECT
 fileid,
 year,
 month,
 day,
 sentimentscore,
 magnitude,
 date
FROM
 `[YOUR_PROJECT_ID].[YOUR_DATASET].[YOUR_TABLE]`
WHERE
 (REGEXP_CONTAINS(transcript, '(?i) [YOUR_WORD]'))

 [image: Query Results]
 Figure 5-5. Query Results

 Cloud Dataflow Monitoring

 Google Cloud provides a powerful monitoring interface that lets you see and monitor your Dataflow jobs. The monitoring interface can show you:

 A list of all currently running Dataflow jobs

 A graphical view of your pipelines

 Details about your job’s status

 Any errors or warnings that occured during a job execution

 To access the Dataflow monitoring interface, navigate from the Google Cloud to the Big Data section and click Dataflow. A list of the Dataflow jobs appears along with their status as seen in Figure 5-6

 Figure 5-6. Cloud Dataflow Job List

 A Cloud Dataflow pipeline job can have the following statuses:

 	Running
 	the job is currently running

 	Starting
 	the job is created, but the job is still being prepared

 	Queued
 	a FlexRS (Flexible Resource Scheduling) job is queued

 	Canceling
	the job is being canceled

 	Canceled
	the job that was canceled by the user

 	Draining
	the job is being drained

 	Drained
	the user drained the job

 	Updating
	the job is being updated

 	Updated
	the user updated the job

 	Succeeded
	the job has finished successfully

 	Failed
	the job failed to complete

 To access a job’s monitoring charts and metrics, click the job Name. This will navigate you to the Job details page as seen in Figure 5-7.

 Figure 5-7. Cloud Dataflow Job Details

 The Job details page contains the following information:

 	Job graph
 	The visual representation of your pipeline

 	Job metrics
 	Metrics about the execution of your job

 	Job info
 	Descriptive information about your pipeline

 	Job logs
 	Logs generated by Dataflow

 	Worker logs
 	 logs generated by the Dataflow service at at the worker level

 	Job error reporting
 	Charts showing where errors occurred

 	Time selector
 	Tool that lets you adjust the timespan of your metrics

 	Job metrics
 	To view, (Figure 5-8) click on the Job metrics tab.

 Figure 5-8. Cloud Dataflow Job Metrics Page Details

 The Job metrics page details provide you with a wealth of information about your pipeline. Below are key metrics you should review when troubleshooting performance issues with your job.

 Cloud Dataflow throughput is the volume of data being processed at any point in time (Figure 5-9).

 Figure 5-9. Cloud Dataflow Throughput Metrics

 CPU utilization is the amount of CPU being used divided by the amount of CPU available for processing (Figure 5-10).

 Figure 5-10. Cloud Dataflow CPU Utilization Metrics

 Input metrics and output metrics are displayed if your streaming Dataflow job has read or written records using Pub/Sub (Figure 5-11).

 Figure 5-11. Cloud Dataflow Input and Output Metrics for Cloud Pub/Sub

 Requests latency is the response time of the elements processes either being an input to a transform or an output to a transform. If you notice high latency it would be recommended to check the transform operation code (Figure 5-12).

 Figure 5-12. Cloud Dataflow Requests Latency Metrics

 There are many more metrics to explore that go beyond the scope of this chapter. I recommend you visit the Google Cloud documentation (https://cloud.google.com/dataflow) on Cloud Dataflow Monitoring that provides a wider array of metrics you can explore further to make sure you have a healthy pipeline.

 Using Cloud Monitoring for Cloud Dataflow pipelines

 Google Cloud Monitoring provides you with the ability to log and troubleshoot your application including your Dataflow pipelines.

 You can explore Cloud Dataflow metrics by accessing the Cloud Monitoring, go to Google Cloud Console and click on Monitoring.

 	
 In the left navigation pane, click Metrics Explorer.

 	
 In the Find resource type and metric enter Dataflow Job.

 [image: Cloud Logging Metric Selection]
 Figure 5-13. Cloud Logging Resource Type Selection

 	
 From the list that appears, select a metric you’d like to view, example Element Count

 [image:]
 Figure 5-14. Cloud Logging Metric Selection

 	
 You should see a chart displayed on the right pane as Figure 5-15.

 [image: Cloud Logging Element Count Metric Graph]
 Figure 5-15. Cloud Logging Element Count Metric Graph

 Cloud Monitoring also allows you to group multiple resources.

 	
 In the Groups menu, select Create Group

 	
 Enter a name from your group example Speech Analytics Dataflow Group

 	
 Add filter criteria as shown in Figure 5-16.

 [image: Cloud Logging Group Criteria Selection]
 Figure 5-16. Cloud Logging Group Criteria Selection

 	
 Click Create

 	
 You should now see your group created with all your Apache Beam Pipelines grouped into a single dashboard as seen in Figure 5-17

 [image: Cloud Logging Grouping]
 Figure 5-17. Cloud Logging Grouping

 	
 In the Alerting menu, click on Create Policy.

 	
 In the Create new alerting policy page, define the alerting conditions and notification channels.For example in Figure 5-18 the condition has been set to System Lab for Dataflow:

 	
 Figure 5-18 Cloud Logging Alert Policy

 	
 Enter the required values including the notification channel.

 	
 Once complete you can view your Alert Policy example Figure 5-18

 [image: Cloud Logging Dataflow Alerting Policy for System Lag]
 Figure 5-18. Cloud Logging Dataflow Alerting Policy for System Lag

 Cloud Monitoring gives you a comprehensive set of tools to keep your pipeline running in a healthy state and alert you when a metric hits a threshold you set and needs your attention.

 Cloud Native Checkpoint

 Let’s revisit the considerations we listed for our cloud-native architecture and how we addressed each one with Cloud Dataflow.

 	
 Your application needs to be abstracted from the cloud infrastructure. Here you are using the Google Cloud Dataflow Runner. Choosing Cloud Dataflow as the runner allows you to focus on your pipeline and allows Cloud Dataflow to manage the resources on-demand and autoscale to achieve minimal latency and high resource utilization. The idea is that the same pipelines can be executed on different runners allowing for probability and choice of what runner to use.✓

 	
 You need a method of Continuous Integration and Continuous Delivery. You have not learned how to integrate CI/CD into your pipeline deployment. This is beyond the scope of this chapter, but the recommended approach is to leverage multiple deployment pipelines. For example: test, staging and production. You can perform unit tests on your code before deployment to validate a healthy pipeline before deploying it to production. In Chapter 8 you will learn how to integrate CI/CD into your pipeline deployment. ✓

 	
 The application has to be able to scale up and scale down as needed. Cloud Dataflow manages the resources on-demand and autoscale to achieve minimal latency and high resource utilization. ✓

 	
 How will the application manage failures? A key to managing failures will be for you to proactively monitor the application and Cloud Dataflow. In this chapter you learned how to review metrics and enable logging for Cloud Dataflow to provide a healthy pipeline. ✓

 	
 The application needs to be globally accessible. This is not relevant for our data processing pipeline. If you did detect a failure in your pipeline, you could easily deploy it to another zone or region. Since a Cloud Pub/Sub Topic can have messages stored in multiple regions you have provided resilience in the queue. Cloud Dataflow can pick up where it left off in the event of a Pipeline failure.✓

 	
 Our framework needs to be based on a microservice architecture. Not applicable yet but it will be once you deploy the application to Kubernetes.

 	
 How will our application be secured? Cloud Dataflow is secured with Google Cloud Service Accounts. ✓

 Closing Remarks

 In this chapter you deployed the data pipeline with Cloud Dataflow and learned about how to keep Cloud Dataflow healthy by using Cloud Monitoring. In the next chapter, you will learn about enriching data with Google Cloud services with Google Cloud Machine Learning APIs.

About the Authors

Rui Santos Costa Rui Costa has worked at Google in various roles, most recently as a Learning Consultant working with strategic customers and partners to create and execute on their Google Cloud learning plans. He has served as an AI Coach for the Google AI Impact Challenge and is also the founder of the Speech Analysis Framework, which has successfully graduated to become a Product within Google.

Jasen Baker has over 20 years of IT experience starting with a job finding “commercial companies” doing business on the internet in 1993, to founding a web hosting company in 1997. Jasen worked as a Unix engineer for 15 years working for various startups before landing technical roles at Nike, HP and eventually Google. His growing career progressed from the systems administration side, to presales, to training where Jasen enjoys an engaging career teaching the next generation of technologists about the transformation of cloud services and software development. Outside of technical training Jasen enjoys retro gaming, stock trading, and travel.

OEBPS/Images/delivery_push.png
Delivery type @

O eull
@® Push

Endpoint URL *
https://us-central1-ruicosta-blog.cloudfunctions.net/pubSubPushEndpoint @

[[] Enable authentication Leam more

OEBPS/Images/not_channels.png
/" EDIT NOTIFICATION CHANNELS

OEBPS/Images/deploying_the_application_data_pipeline_06.png
Jobs CREATE JOB FROM TEMPLATE

19 Running Filter jobs

@ Name

@ beamapp-ruicosta-0926184226-103807
() beamapp-ruicosta-0926183338-707703
© beamapp-ruicosta-0926181439-870201

O beamapp-ruicosta-0926180746-097342

Type

Streaming
Streaming
Streaming

Streaming

CREATE JOB FROM SQL

Status

Running
Draining
Drained

Drained

SDK version
2240
2240
2240

2240

C @LEARN

o
Region
us-centrall
us-centrall
us-centrall

us-centrall

OEBPS/Images/drain.png
(@ Drain

OEBPS/Images/creating_a_queue_677895_32.png
Unacked messages for pullsubscription

1 min interval (mean)

205 210 215 1220 1225 1230

Metric subscription_id

® num_undelivered_messages pullsubscription 0

OEBPS/Images/deploying_the_application_data_pipeline_09.png
Throughput (elements/sec) v @ Create alerting policy o

0045
003
o020
ootis
)
243 244 245 246 247 248 249 250 251 252 253 254
Name Value
©® Read PubSub Messages/Read 0017/s
@® Window into/Abandon Dummy Key 0
©® Window into/Add Dummy Key 0017/s

@® Window into/Add timestamps to messages 0017/s

OEBPS/Images/deploying_the_application_data_pipeline_08.png
beamapp-ruic...

JOB GRAPH JOB METRICS

Throughput (elements/sec) v @

Create alerting policy

Name

Read PubSub Messages/Read

Window into/Abandon Dummy Key

Window into/Add Dummy Key

Window into/Add timestamps to messages

2:42PM- 254 PM v

0045
0035
002
0ots

0
254

Value 1lI

0.017/s

0.017/s

0.017/s

0.017/s

OEBPS/Images/deploying_the_application_data_pipeline_07.png
Google Cloud Platform Search produ

<& beamapp-rui I OMAXTIMEw G SHARE Job info N
J0B GRAPH JOB METRICS Jobstatus Q Running
SDK version Apache Beam Python 3.8 SK 2.24.0
] Job region @ us-centrall
@ Read PubSub Messages Worker location @ us-central-f
Runnin
Vetoge Current workers @ 1
Latestworker status Worker pool started.
starttime ‘September 26,2020 at 2:42:30 PM GMT-4
Elapsed time 6min 33 sec
O Encryption type Googlemanaged key
Running
2stages
Resource metrics ~
Current vCPUs @ 4
Total vCPU time @ 0378vCPU N
O e wces curmmamay @ 1568
unning
1 stage Total memory time @ 1417 GB hr

Current HDD PD @ 43068

OEBPS/Images/creating_a_queue_677895_28.png
Acknowledged Message Counter ID: 93
Acknouledged Message Counter
Acknouledged Message Counter
Acknouledged Message Counter
Acknouledged Message Counter
Acknouledged Message Counter
Acknouledged Message Counter
Acknowledged Message Counter

OEBPS/Images/creating_a_queue_677895_27.png
) File Edit Selection View Go Run - sendMessagejs - building-cloud-native-applications-google-clou.. — o X

@ 5 getMessagejs Js sendMessagejs X W O
chapter-three > pub-sub > J5 sendMessagejs >
0 1 const topicName = ‘my-topic o
const data = JSON. stringify({health: '5-bars'}); e

const {Pubsub} = require(’@google-cloud/pubsub’);

const pubSubClient = new PubSub();

pos const dataBuffer = Buffer. from(data);

const messageId = await pubSubClient.topic(topicName).publish(dataBuffer);

2
3
2
5
6 async function publishMessage() { E
7
8
9 console. log("Message ${messageId} published.);

no
]

10}
1
L T e e s

PROBLEMS ~ OUTPUT DEBUG CONSOLE TERMINAL 1:node v + 0@ ~ x

PS C:\Users\rainb\Documents\projects\ruicosta-blog\building-cloud-native-applications-google-cloud\chapter-
three\pub-sub> node . \getMessage.js
Received message 452717197637832:
Data: {"health":"5-bars"}
® Attributes: [object Object]

B
X Pmaster ® ®0A0 In12,Col39 Spaces4 UTF8 CRIF JavaScript Prettir & 0

OEBPS/Images/our_use_case_and_framework_769731_09.png
[0]— o/ —

Code

Commit

Cl Pipeline

© C A

Review Stage Production

CD Pipeline

OEBPS/Images/creating_a_queue_18.png
+ PUBLISH MESSAGE

OEBPS/Images/creating_a_queue_677895_29.png
Z= Monitoring

OEBPS/Images/getting_data_into_google_cloud_883653_01.png
sample-42892

Objects Overview Permissions Bucket Lock

Upload files =~ Upload folder = Create folder ~ Manage holds

Filter by prefix...

Buckets / sample-42892 / folder

Name Size Type Storage class
= image.png 2.52 image/png Standard
MB

Delete

Last modified

6/21/20, 8:56:39 PM
uTC-4

Public access

Not public

Encryption

Google-managed
key

Retention expiration date

Holds

None

OEBPS/Images/our_use_case_and_framework_769731_06.png
@ ReadFromPubSub ~

Running
0 sec

(V] DecodePubSubMessages

Running
0 sec

(V] SpeechToTextOutput

Running
1 hr 24 min 58 sec

(V] ParseSpeechToText

Running
1sec

(V] NaturalLanguageOutput

Running
6 min 1 sec

(V] bigquerywrite
Running
6 min 38 sec

OEBPS/Images/getting_data_into_google_cloud_883653_02.png
ruicosta@Ruis-MBP-2: ~
ruicosta@Ruis-MBP-2 » gsutil stat gs://sample-42892/folder/
gs://sample-42892/folder/:

Creation time:
Update time:
Storage class:

Content-Length:

Content-Type:
Hash (crc32c):
Hash (md5):
ETag:
Generation:

Metageneration:

ruicosta@Ruis-MBP-2 »I

Mon, 22 Jun 2020 00:56:20 GMT
Mon, 22 Jun 2020 00:56:20 GMT
STANDARD

11

text/plain

XkI+Dw==
apnFdauH+MfR7R5S5+NJzg==
COPgrrCb100CEAE=
1592787380973667

OEBPS/Images/our_use_case_and_framework_769731_05.png

OEBPS/Images/getting_data_into_google_cloud_883653_03.png
ruicosta@Ruis-MBP-2 » g

gs://sample-42892/folder/ima
Creation time:

Update time:

Storage class:
Content-Length:
Content-Type:
Hash (crc32c):
Hash (md5):
ETag:
Generation:
Metageneration:

ruicosta@Ruis-MBP-2 »I

ruicosta@Ruis-MBP-2: ~
sutil stat gs://sample-42892/folder/image.
ge.png:
Mon, 22 Jun 2020 00:56:39 GMT
Mon, 22 Jun 2020 00:56:39 GMT
STANDARD
2646264
image/png
Poz+MA==
TZ4zEYQXZYXUATO7N8SpSA==
CI/3jrmbl00CEAE=
1592787399326607

OEBPS/Images/our_use_case_and_framework_769731_08.png
\V

Sentiment Timeline

T T T T T
o v 3

T

T T T
A » N

T
©

S N o5 > 4 &
N N S N N Ng
T T T T T T T T . T T T T T T T T T T T T T T
o > o © N o o & o 8 A > o A > A » o Q
N N N N 0 £ X &) - 0 S o » . <
NN N N N N N & N N NAREERNGEN

Sentence: | bought her a pair from a different store.

> 1:29/212 e——————— o

OEBPS/Images/getting_data_into_google_cloud_883653_04.png
ruicosta@Ruis-MBP-2: ~
ruicosta@Ruis-MBP-2 » gsutil stat gs://sample-42892/folder
No URLs matched: gs://Sample—42892/folder%

ruicosta@Ruis-MBP-2 » I

OEBPS/Images/our_use_case_and_framework_769731_07.png
transeript

Hello. Thank you for calling the Google merchandise store. How can | help you? Hi. | ordered a pair of Google Cruise last week. Okay
have they arrived? Yes, they have but | have two issues. Okay, one of those issues and Il see if | can help you the stock thing small
‘Advance generally title my feet and | also ordered a black pair ones but received a blue pair and the Google logo is missing and it
says Cloud. Okay. Thank you. Let me let me check your order. Can I have your name and your order ID? Sure. My name is Gabby and
my order idea. Wait a second

Four five six one two, three. Okay, that's four. Five. Six. One, two, three. Yeah. Okay Gabby. Let me check.Give me a second

Okay, | found you order and it seems that you did order a black pair of Google socks. It does not seem as we ship those out yet. Let
me check those. We have a blue pair first. Give me a second.

entities.name

Google

pair
merchandise store
issues

issues

entities.type

ORGANIZATION

OTHER
LocATION
OTHER
OTHER

entities.sentiment

0

0

0.10000000149011612

0.10000000149011612

-0.20000000298023224

OEBPS/Images/deploying_the_application_data_pipeline_645813_17.png
Criteria

Add criterion

Type *
Name v

Operator *
Starts with v

Value *
beam

CANCEL DONE

OEBPS/Images/our_use_case_and_framework_769731_02.png
demo_recording.flac metadata
Object metadata is information that tells browsers and other systems how to

handle your object, such as how to render, cache, or decompress it. Edit standard
metadata properties below or add custom metadata of your own. Learn more

Key Value

Content-Type audio/flac
Content-Encoding
Content-Disposition

Content-Language

en - English -

Cache-Control

agentid 12345 X
day 12 X
month 06 X
starttime 10:21 X
year 2020 X

=+ Add item

CANCEL SAVE

OEBPS/Images/deploying_the_application_data_pipeline_645813_16.png
1 min interval (mean)

215

235

240

245

250

255

aem

a0s

a0

az0

w©

OEBPS/Images/our_use_case_and_framework_769731_01.png
Batch

e Cloud
Pub/Sub

cous
© R

© Sonoren

@ uncersans @ oo
Cloud ® ==
Sorage Functons
@ ngest @ Process
Cloud
Kuoernetes — W N PV
ngine erts

® comos

® securty

Fay
® veuais

OEBPS/Images/deploying_the_application_data_pipeline_645813_19.png
Find resource type and metric @

Resource type: ~ Dataflow Job &

Metric: ~ System lag @

OEBPS/Images/our_use_case_and_framework_769731_04.png
@ @ Store |

Pub/Sub | Payload

O T

Upload Audiol @ - Get 1
L—.Flle _—J \—:ng Nami_}

D>

Cloud Function Google Cloud
Speech-To-Text API

fjr % Trlgger
____unctlou @

Cloud Storage

OEBPS/Images/deploying_the_application_data_pipeline_645813_18.png
Dataflow Job - Element count

=1 5 min interval (mean)
200

150
100
B
I 50
= l 0

2:15 2:30 2:45 3PM 3:15

OEBPS/Images/our_use_case_and_framework_769731_03.png
D /users/{uid}/followers/{id}

D

" >
—~

Firestore Cloud Function Action 1

Firebase Cloud Messaging

10:09
app hame

Alert Tltle
Some kinda alert
text,

OEBPS/Images/getting_data_into_google_cloud_883653_09.png
gt permissions
Edit metadata

Download

Coy

Move

Rename

Exportto Cloud Pub/Sub

Scan with Cloud Data Loss Prevention

OEBPS/Images/deploying_the_application_data_pipeline_645813_15.png
Find resource type and metric @

Resource type: ~ Dataflow Job @

Metric: ~ Element count @

OEBPS/Images/deploying_the_application_data_pipeline_645813_14.png
Find resource type and metric @

Resource type: ~ Dataflow Job &

Select a metric

OEBPS/Images/creating_a_queue_677895_26.png
) File Edit Selecton View Go Run - sendMessagejs - building-cloud-native-applications-google-clou.. — O X

@ 5 getMessagejs J5 sendMessagejs X W O
chapter-three > pub-sub > J5 sendMessagejs > ..
/O 1 const topicName = ‘my-topic'; —
2 const data - JSON.stringify({health: '5-bars'}); b
3 const {PubSub} - require(‘@google-cloud/pubsub’);
g ¢ const pubsubclient — new Pubsub();
5
6 async function publishMessage() {
pos 7 const dataBuffer = Buffer. from(data); =
8 | const messageld - await pubSubClient.topic(topichame).publish(dataBuffer);
9 | console.log("Message ${messageld} published.
e}
1

@ 12 publishMessage().catch(console.error);|

%
X Pmaster ® ®0A0 In12,Col39 Spaces4 UTF8 CRIF JavaScript Prettir & 0

OEBPS/Images/create_bucket.png
CREATE BUCKET

OEBPS/Images/getting_data_into_google_cloud_19.png
-+ CREATE SERVICE ACCOUNT

OEBPS/Images/getting_data_into_google_cloud_18.png
og Service Accounts

OEBPS/Images/getting_data_into_google_cloud_17.png
O 1AM &Admin

OEBPS/Images/creating_a_queue_294500_29.png
Z= Monitoring

OEBPS/Images/create.png

OEBPS/Images/our_use_case_and_framework_769731_10.png
<)
e
{30

€2) Google Cloud Load Balancer

onoao ooog

oDoOo Doo

Kubernetes Kubernetes Kubernetes
Engine Engine Engine

Fegion
asia-east1 us-centrald europe-west1

k8s pod

OEBPS/Images/getting_data_into_google_cloud_016170_21.png
Variables © Collapse

Environment varizbles are applied to environments via the runner. They can be protected by only exposing them to protected branches

or tags. Additionally, they can be masked so they are hidden in job logs, though they must match certain regexp requirements to do so.
You can use environment variables for passwords, secret keys, or whatever you want. You may also add variables that are made available
to the running application by prepending the variable key with K8s_SECRET_ . More information

Environment variables are configured by your administrator to be protected by default

Type Key Value Protected Masked Environments
Variable PROJECT_ID rrer v X Al (default) 4
Variable SERVICE_ACCOUNT [ST—— v x All (default) 4

Reveal values

OEBPS/Images/creating_a_queue_677895_50.png
Message 1396373909145028 published.

OEBPS/Images/framewk_arch.png
@ nayze

Kuberetes
Engine

® compue

Proxy.

® securty

OEBPS/Images/service_acc.png
og Service Accounts

OEBPS/Images/getting_data_into_google_cloud_25.png

OEBPS/Images/stop.png
W STOP

OEBPS/Images/creating_a_queue_294500_38.png
© 1AM &Admin

OEBPS/Images/sa_detail.png
Service account details

Service account name
gitlab-cicd

Display name for this service account

Service account ID

gitlab-cicd-681 @ruicosta-blog.iam.gserviceaccount.com X C
Service account description

Service Account for GitLab CI/CD

Describe what this service account will do

CREATE CANCEL

OEBPS/Images/cover.png
OREILLY"

Programming
Google Cloud

Building Cloud Native Applications with GCP

Early
Release %22

RAW &

UNEDITED

Rui Santos Costa
& Jasen Baker

OEBPS/Images/alerting.png
A Alerting

OEBPS/Images/creating_a_queue_677895_45.png
Type Key Value Protected Masked Environments

Variable ~ PROJECT_ID e v X All (defaul) | &
Variable SERVICE_ACCOUNT SRR R R v x Al (default) V4
Variable TRIGGER_RESOURCE SRR R R v x Al (default) V4

Revealvalues -

OEBPS/Images/getting_data_into_google_cloud_20.png

OEBPS/Images/creating_a_queue_294500_45.png
#170761842 Prmaster o sf6851ed
(] @ First Commit @

OEBPS/Images/application_data_pipeline_with_cloud_dataflow_501287_21.png
0o ruicosta@Ruis-MBP: ~ X2
ruicosta@Ruis-MBP P gsutil 1s gs://rui-costa-chapter-4/samples
gs://rui-costa-chapter-4/samples/output-18:40-18:45
gs://rui-costa-chapter-4/samples/output-18:45-18:50
gs://rui-costa-chapter-4/samples/output-18:50-18:55
gs://rui-costa-chapter-4/samples/output-18:55-19:00

ruicostaeRuis-MeP Sk I PR 643 15:00:40

OEBPS/Images/application_data_pipeline_withcloud_dataflow_007652_16.png
Jobs CREATE JOB FROM TEMPLATE

CREATE JOB FROM SQL
1 Running = Filter jobs
@ Name Type End time
() beamapp-ruicosta-0926180746-997342

Status
Streaming

SDK version Region
Running 2.240

us-centrall

OEBPS/Images/passed.png
Pipeline #170762340 triggered 2 hours ago by . Rui Costa

OEBPS/Images/application_data_pipeline_withcloud_dataflow_007652_14.png
Service account permissions (optional)

Grant this service account access to ruicosta-blog so that it has permission to complete
specific actions on the resources in your project. Learn more

Role Condition
Owner v

Add condition
Full access to all resources.

+ ADD ANOTHER ROLE

CONTINUE CANCEL

OEBPS/Images/create_sa.png
-+ CREATE SERVICE ACCOUNT

OEBPS/Images/application_data_pipeline_with_cloud_dataflow_501287_17.png
Google Cloud Platform

e* ruicosta-blog v

Py b .
3 eamapp-ruic...
O PP
= JOB GRAPH JOB METRICS
B
@ Read PubSub Messages ~
Running
1 stage
] Window into v
Running
2 stages
] Write to GCS
Running
1 stage

Job info

Job name

Job ID

Job type

Job status

SDK version

Job region @
Worker location @
Current workers @
Latest worker status
Start time

Elapsed time

Encryption type

Resource metrics

Current vVCPUs @
Total vCPU time @

beamapp-ruicosta-0926180746-997342
2020-09-26_11_07_56-13220376725958602460
Streaming

@ Running
Apache Beam Python 3.8 SDK 2.24.0

us-centrall
us-central1-c
1

Worker pool started.
September 26, 2020 at 2:07:57 PM GMT-4
3 min 28 sec

Google-managed key

4
0.178 vCPU hr

OEBPS/Images/application_data_pipeline_with_cloud_dataflow_501287_18.png
0o ruicosta@Ruis-MBP: ~ X2
ruicosta@Ruis-MBP P gsutil 1s gs://rui-costa-chapter-4/samples

gs://rui-costa-chapter-4/samples/output-18:14-18:16

gs://rui-costa-chapter-4/samples/output-18:16-18:18

gs://rui-costa-chapter-4/samples/output-18:18-18:20
ruicosta@Ruis-MBP

OEBPS/Images/getting_data_into_google_cloud_016170_08.png
Upload fles || Upload folder | Create folder

OEBPS/Images/getting_data_into_google_cloud_016170_05.png
= Storage

OEBPS/Images/create_policy.png
+ CREATE POLICY

OEBPS/Images/application_data_pipeline_with_cloud_dataflow_501287_11.png
60 Second
Window Size

OEBPS/Images/application_data_pipeline_with_cloud_dataflow_501287_10.png
Key 1

Key 2

60 Second
Window Size

OEBPS/Images/application_data_pipeline_with_cloud_dataflow_501287_13.png
Service account details

Service account name
local-workstation

Display name for this service account

Service account ID
local-workstation @ruicosta-blog.iam.gserviceaccount.com X C

Service account description

Describe what this service account will do

CREATE CANCEL

OEBPS/Images/application_data_pipeline_with_cloud_dataflow_501287_12.png
Window 0

fer 0 .-.

>
Min Gap Duration

Window 0

e _-'

OEBPS/Images/application_data_pipeline_withcloud_dataflow_007652_07.png
Output collections

Throughput (elements/sec) v @

aPM 4PM 5PM 6 PM
@ RedactTextOptional.out0: 0

RedactTextOptional.out0

Elements added 26
(Approximate)

Estimated size 3.17 MB

7PM

OEBPS/Images/message_body.png
Message body Body JSON keys

{"fileid":"kdd5jqpc”, filenam s://audio-uploads- fileid
42892/speech_commercial_mono.flac”callid":"1234567",'date":"Sun Aug 02 2020 filename.
14:00:31 GMT+0000

(UTC)",'year":"2020",'month":"08" 'day":"02","'starttime":"0956","duration":"132.8",'stereo":"fal
se",'sttnameid":"8786378570592249718"}

callid date
year month
day

starttime
duration

stereo

sttnameid

OEBPS/Images/getting_data_into_google_cloud_883653_16.png
) File Edit Selection View Go Run Terminal Help » downloadFilejs - chapter-two - Visual Studio Code. — o X

| EXPLORER reateBucketjs 15 createBucketLockjs 35 listBucketsjs 35 uploadFilejs

 OPEN EDITORS (1 UNSAVED 35 downloadFilejs >
Js createBucketjs 1 const bucketName = ‘rui-costa-bucket-name-2020';

L 15 createBucketLockjs const srcFilename = ‘rui_costa.jpg’;
et const destFilename = *download_rui_costa.jpg’;

Z’° // Imports the Google Cloud client library

15 uploadFilejs

pos

const {Storage} = require(’@google-cloud/storage");
® s downloadFilejs // Creates a client
 CHAPTER TWO const storage = new Storage({

LN s W

> node_modules keyFilename: *service-accont-@f82f2f5198e.json’,
R = ceeitsuce: projectId: ‘ruicosta-blog
| o=z . @));F downloadFile() {
_ 11 async function downloadFile
3 ok lilcetipg 12 const options = {
ejcowmicachiler: 13 destination: destFilename,
15 listBucketsjs 1w |y
1} packagejson 15 | // bounloads the file
0 et e 16 | auait storage.bucket(bucketName).file(srcFilenane).dounload(options);
Sty 17 console.log()) .
e ———— siosepon . g5://${bucketNane}/${srcFilenane} downloaded to ${destFilename}.
J5 uploadFilejs 2 3 ’
21 downloadFile().catch(console.error);
PROBLEMS OUTPUT DEBUGCONSOLE TERMINAL e v+ D o~ x
Ps C:\Users\rainb\Documents\projects\book\chapter-tuo> node -\downloadFile.js
g5://rui-costa-bucket-nane-2026/rui_costa.jpg dounloaded to download_rui_costa.jpg.
PS C:\Usens\rainb\Documents\projects\book\chapter—tuo> ||
> ouTune
> TIMELINE
> NPM SCRIPTS

OEBPS/Images/creating_a_queue_677895_19.png
Pub/Sub

OEBPS/Images/cloud_func.png
() Cloud Functions

OEBPS/Images/getting_data_into_google_cloud_883653_12.png
Lock retention policy for this bucket?

& Permanent. By locking this buckets retention policy, youTl lose the abilty
to shorten or remove t. You'l incur storage costs for the fullretention
duration of uploaded objects.

~RETENTION FOLICY DURATION
5days

Aretention policy protects & buckets abjects from deletion or modification
regardless of whether its locked. Only lock the policy f you want o be sure no one
(including you) can remove it or shorten it uration.

‘Confirm you want to lock this policy by entering the bucket name: sample-42892

Fample 42892

CANCEL LOCK POLICY

OEBPS/Images/getting_data_into_google_cloud_883653_13.png
) File Edit Selection View

k]
jo

EXPLORER

 OPEN EDITORS
J5 createBucketjs

X 15 createBucketockjs
 CHAPTER TWO

> node modules

J5 createBucketjs

J5 createBucketLockjs

15 downloadFilejs

35 listBucketsjs

{} packagejson

{} package-lockjson

1) service-accont-0fg2f2f5198ejson

15 uploadFilejs

> ouTune
> TIMELINE
> NPM SCRIPTS

Go Run Temminal Help createBucketlockjs - chapter-two - Visual Studio Code:

J5 createBucketjs Js createBucketlockjs X

J5 createBucketiockjs > .
1 // Inports the Google Cloud client library

2 const {Storage} = require(’@google-cloud/storage’);
3 // Creates a client from a Google service account key.
4 const storage = new Storage({

5 keyFilename: "service-accont-@f82f2f5198e.json”,
6 | projectld: "ruicosta-blog”

701

8 const retentionPeriod = 15780006; // 6 months.

9 const bucketName = ‘rui-costa-bucket-name-2620-61";

10 async function createBucket() {

1 await storage.createBucket(bucketName);

12 console. log("Bucket ${bucketNane} created.”);

13}

14 createBucket().catch(console. error);

PROBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL 1: powershell v

PS C:\Users\rainb\Documents\projects\book\chapter-two> node .\createBucketlock.js
Bucket rui-costa-bucket-nane-2026-61 created.
PS C:\Users\rainb\Docunents\projects\book\chapter-tuo> ||

+ 0 @

OEBPS/Images/creating_a_queue_24.png
») File Edit Selection View Go - getMessagejs - building-cloud-native-applications-googl...

Q@

J5 getMessagejs X

chapter-three > pub-sub > JS getMessagejs > @ listenForMessages

1
2
3
a
5
6
7
8
9

10
11
12
13

const subscriptionName = ‘pull-subscription’;
const timeout = 540;

// Imports the Google Cloud client library
const {PubSub} - require('@google-cloud/pubsub);

// Creates a client; cache this for further use
const pubSubClient = new PubSub();

function listenForMessages()
// References an existing subscription
const subscription = pubSubClient.subscription(subscriptionName);

OEBPS/Images/getting_data_into_google_cloud_883653_14.png
) File Edit Selection View Go Run Terminal Help ‘» listBucketsjs - chapter-two - Visual Studio Code — o X

| EXPLORER Js createBucketjs Js createBucketLockjs 5 listBucketsjs ® m
/ OPEN EDITORS 1 UNSAVED 15 listBucketsjs > ...
0 15 createBucketjs 1 // Inports the Google Cloud client library
15 createBucketLockjs 2 const {storage} = require("@google-cloud/storage");
O L - 3 // creates a client
i e 4 const storage = new Storage({
 CHAPTER-TWO 5 keyFilename: “service-accont-@f82f2f5198e.json”,
> node_modules 6 projectId: "ruicosta-blog"
ﬂ'> 1 createBucketjs 70
15 createBucketLockjs 8 async function listBuckets() {
IRl = comieric 9 | // Uists all buckets in the current project r
W 16 const [buckets] - await storage.getBuckets();
o 11 console.log('Buckets:");
3 el 12 buckets . forEach(bucket
{) package-lockjson 13 console. log(bucket .name|
1) senvice-accont-0f82@2f5198ejson 14 });
15 uploadFilejs 5}
16 listBuckets().catch(console.error);
PROBLEMS OUTPUT DEBUGCONSOLE TERMINAL e v+ D o~ x
Buckets:
artifacts. ruicosta-blog. appspot..con
rui-costa-bucket-nane-2020
rui-costa-bucket-nane-2020-61
® ruicosta-blog-public
ruicosta-blog. appspot. con
2 OUTUNE sample-42802
> TIMELINE staging.ruicosta-blog.appspot.com
> NPM SCRIPTS Ps C:\Users\rainb\Documents\projects\book\chapter—tuo> ||

OEBPS/Images/creating_a_queue_25.png
~) File Edit Selection View Go - getMessagejs- building-cloud-native-applications-go.. — O X

@ Js getMessagejs X W m -
chapter-three > pub-sub > JS getMessage,js > @ listenForMessages
1 const subscriptionName = ‘pull-subscription’;
2 const timeout = 548;
3
4 // Imports the Google Cloud client library
5 const {PubSub} = require(’@google-cloud/pubsub"); L
6
7 // Creates a client; cache this for further use
8 const pubSubClient = new PubSub();
q

PROBLEMS ~ OUTPUT DEBUG CONSOLE TERMINAL 1:node v~ + 0@ ~ x

PS C:\Users\rainb\Documents\projects\ruicosta-blog\building-cloud-native-applications-google-
cloud\chapter-three\pub-sub> node .\getMessage.js
Received message 452784658067633:
Data: Hello Cloud Pub/Sub
Attributes: [object Object]

©# O &8 B ¥ & O

OEBPS/Images/getting_data_into_google_cloud_883653_15.png
) File Edit Selection View Go Run Terminal Help uploadFile js - chapter-two - Visual Studio Code — o

@ EXPLORER Js createBucketjs Js createBucketLockjs 35 listBucketsjs 5 uploadFilejs X m
 OPEN EDITORS 15 uploadFiles > ...
0 J5 createBucketjs 1 const bucketName = *rui-costa-bucket-name-2020";
D e 2 const filename = ‘rui_costa.jpg’;
payee s 3 // Inports the Google Cloud client library
2 s uploadri 4 const {storage} = require("@google-cloud/storage");
uploadFilejs 5 // Creates a client
@ ELIIENTD 6 const storage = new Storage({
ﬂ'> > node_modules. 7 keyFilename: 'service-accont-8f82f2f5198e.json’,
J5 createBucketjs 8 projectId: ‘ruicosta-blog
O IS createBucketiockjs 9 | n:
PR — 10 async function uploadFile() {
s 11 | // Uploads a local file to the bucket
15 listBuckets.
3 st & 12 | auait storage.bucket(bucketName).upload(filenane, {
{) packagejson 13 metadata: {
{} package-lockjson 14 cacheControl: ‘public, max-age-31536000°,
= rui costajpg 15 1
{} service-accont-0f82f2f5198ejson 16 s
15 uploadrilejs 17 | console.log("${filename} uploaded to ${bucketName}.");
18}
19 uploadFile().catch(console.error);
PROBLEMS OUTPUT DESUGCONSOLE TERMINAL o v +DE A
PS C:\Users\rainb\Docunents\projects\book\chapter-two> node .\uploadrile.js
rui_costa. jpg uploaded to rui-costa-bucket-name-2620.
PS C:\Users\rainb\Docunents\projects\book\chapter-tuo> ||
> outune
> TIMELINE
> NPM SCRIPTS

OEBPS/Images/application_data_pipeline_with_cloud_dataflow_501287_04.png
Source. Read
Data Transform Transform Write
Transform

OEBPS/Images/creating_a_queue_22.png
CREATE SUBSCRIPTION

OEBPS/Images/application_data_pipeline_with_cloud_dataflow_501287_03.png
@ ReadFromPubSub

Running
0sec

@ DecodePubSubMessages.

Running
0sec

@ speechToTextOutput

Running
57min 49 sec

@ ParseSpeechToText

Running
1sec

@ NaturalLanguageOutput

Running
1 min 10 sec

@ RedactTextOptional

Running
9min7 sec

@ writeToBigQuery

Running
1 min 10 sec

OEBPS/Images/creating_a_queue_23.png
Subscription ID *
pull-subscription

Subscription name: projects/ruicosta-blog/subscriptions/pull-subscription

Select a Cloud Pub/Sub topic *
projects/ruicosta-blog/topics/my-topic

Delivery type @
@ Full
QO Push

OEBPS/Images/deploying_the_application_data_pipeline_645813_05.png
Query results & SAVE RESULTS

Query complete (0.3 sec elapsed, 3.9 KB processed)

Jobinformation Results JSON Execution details

Row fileid year month day sentimentscore magnitude date

1 jwtdomy 2009 6 12 0.0 10.199999809265137 Wed Jun 122019 18:46:00 GMT+0000 (UTC)

OEBPS/Images/application_data_pipeline_with_cloud_dataflow_501287_06.png
Input collections

Throughput (elements/sec) v @

apu 4P 5PM 6PN

@ NaturalLanguageOutput out0: 0

I

Naturall anguageOutput outd
Elements added 26
(Approximate)

Estimated size 317MB

OEBPS/Images/creating_a_queue_20.png
CREATE TOPIC

OEBPS/Images/application_data_pipeline_with_cloud_dataflow_501287_05.png
@ RedactTextOptional

Running
9min7 sec

OEBPS/Images/creating_a_queue_21.png
= Subscriptions

OEBPS/Images/application_data_pipeline_with_cloud_dataflow_501287_08.png
@ speechToTextOutput

Running
57min 49 sec

@ ParseSpeechToText

Running
1sec

OEBPS/Images/deploying_the_application_data_pipeline_645813_02.png
Query editor + M@IASK QUESTION
1| sezer
2 tileta,
5 year,
s monen,
s aay,
¢ sentimentscore,
magnitude,
6 date
5 rron
o Csaf.eranseripes’
11 waee
12 (REGEXP_CONTAINS(transcript, "(7i) google'))

13

Save view

© schedule query ~

() HIDE EDITOR

© 3 FULL SCREEN

£ More ~

OEBPS/Images/deploying_the_application_data_pipeline_645813_01.png
Google Cloud Platform

$ Jobs CREATE JOB FROM TEMPLATE CREATE JOB FROM SaL c e
W Rumning T Filter jobs) m
@ Name Type End time Elapsedtime Status Region

@ beamapp-ruiscosta-1116180951-515795 Streaming 314days20hr Running us-centrall

OEBPS/Images/deploying_the_application_data_pipeline_645813_04.png
Query results & SAVE RESULTS (4l EXPLORE DATA v

Query complete (0.3 sec elapsed, 15.9 K8 processed)

Jobinformation Results JSON Execution details

£ 200 row per page limit reached due to duplicate values or complex results. Displaying 1 results to reflect this.

Row transcriptword transcriptstartSecs transcriptendSecs transcript speakertag

1 Hello 05 08 1
Thank 08 09 1
you 09 1 1
for 1 12 1
calling 12 14 1
the 14 15 1
Google 15 18 1
merchandise 1.8 22 1
store. 22 25 1
How 25 26 1
can 26 28 1

' 28 28 1

OEBPS/Images/application_data_pipeline_with_cloud_dataflow_501287_09.png
RECE - B
© imvort apache beam as beam

with beam.Pipeline() as pipeline:
total_unique_elements = (

pipeline

| "Create produce’ >> beam.Create(
['audio_file 1', 'audio_file 2', 'audio_file 3',
‘audio_file 1', 'audio_file 4', 'audio_file 2',
‘audio_file 2', 'audio_file2', 'audio_file 5', 'audio_file 3'])

| 'Count unique elements' >> beam.combiners.Count.PerElement ()

| beam.Map(print))

© (‘audio file 1', 2)
(‘audio_file 2', 3)
('audio_file 3', 2)
(‘audio_file 4', 1)
('audio_file2', 1)
(‘audio_file 5', 1)

OEBPS/Images/deploying_the_application_data_pipeline_645813_03.png
Query results & SAVE RESULTS

Yi EXPLORE DATA v

Query complete (01 sec elapsed, cached)

Jobinformation Results JSON Execution details

Row name type count
1 pair OTHER 12
2 second OTHER 8
3 order OTHER 6
4 issues OTHER 4

5 name OTHER 4

OEBPS/Images/metrics_explorer.png
il, Metrics explorer

OEBPS/Images/application_data_pipeline_with_cloud_dataflow_501287_02.png
e - @ - I

OEBPS/Images/application_data_pipeline_with_cloud_dataflow_501287_01.png
|I|I| Cloud Speech-to-Text

R Cloud Natural

(J Cloud Dataflow =] ivontves

. Cloud Pub/sub ©" Data Loss Prevention BigQuery
ranscripts

?

11 CloudStorage —r>[] Cloud Functions

Kubemetes Engine ~ —b <@ IdentityAware Proxy —- @ User Frontend

Secure Visualize

Compute

OEBPS/Images/creating_a_queue_677895_11.png
@ subscription-b - Pub/Sub~uice X

€ - C @& consolecloud.google.com/cloudpubsub/subscription/detail subscription-b?project=ruicosta-blog@modal=pullmessa... ~ ¥¢ % &6 0 LA mO G)

+

Messages

Click Pullto view messages and temporarily delay message delivery to other subscribers.

L]

‘Select Enable ACK messages and then click ACK next to the message to permanently prevent message delivery to other subscribers. Only a few messages will

be pulled at a time. Click Pull again to retrieve more messages from the backlog. Use this option cautiously in production environments. If you miss the

acknowledgement deadline (10 seconds), the message will be sent again if no other subscribers of this subscription acknowledged the message.

[Enable ack messages
Filter table] m

Publish time Attribute keys Message body attribute; Ack
Jul18,2020,33919PM given_name Hello All AUl Ak

e]

OEBPS/Images/getting_data_into_google_cloud_883653_10.png
rL-J—;;—Ioad Audio l
___File]

B
\i/ Cloud Function
T Y

Cloud Storage

OEBPS/Images/creating_a_queue_677895_10.png
@ subscription-a~Pub/Sub-ruice X+

& > C @ consolecoud.google.com/cloudpubsub/subscription/detail/subscription-aZproject=ruicosta-blog&imodal=pullmessa,

Messages

Click Pullto view messages and temporarily delay message delivery to other subscribers.

L]
‘Select Enable ACK messages and then click ACK next to the message to permanently prevent message delivery to other subscribers. Only a few messages will
be pulled at a time. Click Pull again to retrieve more messages from the backlog. Use this option cautiously in production environments. If you miss the
acknowledgement deadline (10 seconds), the message will be sent again if no other subscribers of this subscription acknowledged the message.
[Enable ack messages
Filter table] m
Publish time Attribute keys Message body Ack

Jul 18,2020, 3:39:19 PM given_name. Hello All Deadline exceeded

e}

OEBPS/Images/getting_data_into_google_cloud_883653_11.png
) File Edit Selection View

k]
jo

EXPLORER

 OPEN EDITORS
X 15 createBucketjs
 CHAPTER TWO
> node modules
J5 createBucketjs
J5 createBucketLockjs
15 downloadFilejs
35 listBucketsjs
{} packagejson
{} package-lockjson
1) service-accont-0fg2f2f5198ejson
15 uploadFilejs

> ouTune
> TIMELINE
> NPM SCRIPTS

Go Run Temminal Help createBucketjs - chapter-two - Visual Studio Code

Js createBucketjs X
J5 createBucketjs > ..

1 // Inports the Google Cloud client library
const {Storage} = require(’@google-cloud/storage");

2
3
4 // Creates a client from a Google service account key.
5 const storage = new Storage({

6 | keyFilename: "service-accont-6f82f2f5198e.json”,

7

8

9

projectTd: "ruicosta-blog”
bH

10 const bucketNam
1
12 async function createBucket() {

*rui-costa-bucket-name-2020" ;

13 await storage.createBucket(bucketName);
14 | console.log("Bucket ${bucketName} created.’);
15}

16

17 createBucket().catch(console. error);

PROBLEMS OUTPUT DEBUGCONSOLE TERMINAL 1: powershell

PS C:\Users\rainb\Docunents\projects\book\chapter-tuo> node .\createBucket.js
Bucket rui-costa-bucket-nane-2628 created.

PS C:\Users\rainb\Docunents\projects\book\chapter-tuo> ||

+ 0 @

OEBPS/Images/creating_a_queue_677895_13.png
Pub/Sub

OEBPS/Images/creating_a_queue_677895_12.png
User
3 4
Push
Cloud PublSub >
Payload
message | [YOUR_MESSAGE]

phonenumber

[YOUR_PHONE_NUMBER]

Endpoint
Cloud Functions

—

OEBPS/Images/creating_a_queue_677895_06.png
Publisher A Publisher B Publisher C

i
i
i

Message 1 Message 2 Message 3
my-topic-a my-topic-b my-topic-c

my-subscription-xa Mmy-subscription-xb my-subscription-yc my-subscription-zc

Message 1 Message 2 Message 3 Message 3

l/ \Z L Duplicate Messages
Subscriber X Subscriber Y Subscriber Z

OEBPS/Images/creating_a_queue_677895_05.png
@ my-topic - Pub/Sub ~ nicostert X | +

< C @ consolecloudgooglec.. ¥ © A @ 6 © ® o5 @
Google Cloud Platform 8 ricostablog v
< my-topic + PUBLISH MESSAGE i C SHOWINFOPANEL
B SUBSCRIPTIONS 'SNAPSHOTS -

A subscription captures the stream of messages published to a given topic. You can also stream messages to
BigQuery or Cloud Storage by creating a subscription from a Cloud Dataflow job. Learn more

CREATE SUBSCRIPTION ~

= Filter table o
Subscription D 4 Subscription name Project
subscription-a projects/ruicosta-blog/subscriptions/subscripti. ruicosta-bl v

> subscriptionb projects/ruicosta-blog/subscriptions/subscripti. ruicosta-bl H v

OEBPS/Images/creating_a_queue_677895_08.png
& consolecloudgoogl. % & O A W & ©

Create a topic

Atopic forwards messages from publishers to subscribers.

Topic D *
my-

Topic name: proj

Encryption

@® Googlemanaged key
No configuration required

O Customer-managed key
Manage via Google Cloud Key Management s

CANCEL CREATETOPIC

OEBPS/Images/creating_a_queue_677895_07.png
Publisher A @

=

Message 1

= e

my-topic-a

©)

|
=

@ my-subscription-a

[J ¢

Message 1

Ie

—> Subscriber X @

OEBPS/Images/getting_data_into_google_cloud_883653_23.png
) File Edit Selection View Go Run Terminal Help indexjs - saf-longrun-job-func - Visual Studio Code ~ — o X

@ EXPLORER I indexjs X W o
 OPEN EDITORS 15 indexjs > © saflongRuniobFunc
O xmwes ST —
 SAFLONGRUNJOBFUNC 4,
1 gitlab-ciyml 43 function getAudioMetadata(path) {
N i a /1 check if file is a wav or flac audio file
) g 45 return new Promise((res, rej) = {
> a6 #fnpeg. Ffprobe(path, (err, metadata) => {
& a7 if (err) return rej(err);
a8 const audioMetabata = require("util’).inspect(r
(s} 49 if (laudioMetabata) throw new Error(’Cannot £ir
so return res(audioMetaData);
51 n;
3 52 ns
53 b
sa
55 remoteReadstrean() . then(resRemoteReadstrean => {
56 getAudioMetadata(resRemoteReadstrean) . then(res => {
57
58 resRenoteReadstrean. destroy();
59
60 /7 start cleanup - fluent—ffmpeg has an dirtyJSON ¢
61 let resstring = res.replace(/[&\/\\#+()$-5% " *2<>(})
62 resstring = resstring.replace(/:/g, ",'); // replac
® 63 let resarray = resstring.split(’,"); // split stri
> ouTune 64 /7 end cleanup
65

> TIMELINE B q
ST 66 let sampleRate = resArray[resArray.index0f("sample

&
B & Gohe i) e G0 Gif oo B) (6

OEBPS/Images/role.png
Role
Cloud Functions Developer v

Read and write access to all functions-
related resources.

Role
Service Account User v

Run operations as the service account.

Condition
Add condition

Condition
Add condition

OEBPS/Images/creating_a_queue_677895_09.png
Message retention duration @
Duration s from 10 minutes to 7 days

Days Hours Minutes
7 v 0 v~ 0 -
[Retain acknowledged messages @

When enabled, acknowledged messages are retained for the message retention duration
specified above. This increases message storage fees. Learn more

OEBPS/Images/getting_data_into_google_cloud_883653_24.png
£
i

jo

File Edit Selection View Go Run

E v U

Message (Ctri+E

~ CHANGES

Terminal Help indexs - saf-longrun-job-func - Visual Studio Code.

feature_branch|

Please provide a new branch name (Press Enter o confirm or ‘Escape’ to cancel) JetA
a 15

OEBPS/Images/getting_data_into_google_cloud_883653_26.png
Delete source branch

> 1 commitand 1 merge commit will be added to master. Modify merge commit

You can merge this merge request manually using the command line

OEBPS/Images/gitlab_vars.png
Type T Key Value Protected Masked Environments

Variable ~ PROJECT_ID S v X All (default) Vd

Variable ~ SERVICE_ACCOUNT S v x All (default) 7

Reveal values

OEBPS/Images/config_trigger.png
Configuration

Condition triggers if

Any time series violates

Condition Threshold For

is above v 50 1 minute

OEBPS/Images/deploying_the_application_data_pipeline_13.png

OEBPS/Images/deploying_the_application_data_pipeline_12.png
Requests latency in 99th percentile v

Create alerting policy

245 250 255 3PN

@ 99th percentile - chapter4-topic.subscription-2839649138503001306:

Sep 26,2020 2:59 PM

© 99th percentile - chapterd-
topic.subscription-
2839649138503001306

19.9s

19.9025

19.8955

19.888s

OEBPS/Images/deploying_the_application_data_pipeline_11.png
Input Metrics

All Pub/Sub subscriptions

Requests per sec Createalertingpolicy 22 I
o7s
osis
0sis
o4is
o3

24 250 255 arm a0s a0

@ chapterd-topic.subscription-2839649138503001306: 0.517/s

OEBPS/Images/deploying_the_application_data_pipeline_10.png
CPU utilization (All Workers) v @ Createalertingpolicy 22 I3

0%
0%
30%
20%
10%

— o
243 244 245 248 247 248 249 250 251 252 253 254
Name

@ beamapp-ruicosta-09261842:09261142-n186-hamess jz8¢ 3.14%

OEBPS/Images/getting_data_into_google_cloud_883653_22.png
Pipeline #161153142 triggered 4 hours ago by @ Rui Costa

Testing GitLab

© 2jobs for master in 2 minutes and 57 seconds (queued for 1 second)

o 3776e346 B

19 No related merge requests found.
Pipeline DAG @Ef) Jobs 2 Tests
Deploy

@ deploy_production I

OEBPS/Images/creating_a_queue_677895_02.png
Message #4 —> Message #3
% Message #2

Message #1

OEBPS/Images/creating_a_queue_677895_01.png
Batch

e Cloud
Pub/Sub

cous
© R

© Sonoren

@ uncersans @ oo
Cloud ® ==
Sorage Functons
@ ngest @ Process
Cloud
Kuoernetes — W N PV
ngine erts

® comos

® securty

Fay
® veuais

OEBPS/Images/creating_a_queue_677895_04.png
o Eiklklk eﬁegﬁﬂ
SSE% %B%Ew

OEBPS/Images/ci-cd.png
#161279038 e Pmaster -o- b26a3e84
. Merge branch ‘feature_branch’ i... @

OEBPS/Images/creating_a_queue_677895_03.png
Fﬁeﬂje HDOO 0=

