

Programming Media
Art Using Processing

http://taylorandfrancis.com

Programming Media
Art Using Processing

A Beginner’s Guide

Margaret Noble

First Edition published 2021
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2021 Margaret Noble

CRC Press is an imprint of Taylor & Francis Group, LLC

The right of Margaret Noble to be identified as author of this work has been asserted by her in
accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. For works that are not available on CCC, please contact mpkbookspermissions@tandf.
co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Library of Congress Cataloging-in-Publication Data
Names: Noble, Margaret (Performance artist), author.
Title: Programming media art using processing : a beginner’s guide /
Margaret Noble.
Description: First edition. | Boca Raton : CRC Press, 2021. | Includes
bibliographical references and index.
Identifiers: LCCN 2020038700 | ISBN 9780367508289 (paperback) | ISBN
9780367509590 (hardback) | ISBN 9781003051985 (ebook)
Subjects: LCSH: Processing (Computer program language) | Computer
graphics–Computer programs. | New media art.
Classification: LCC QA76.73.P75 N63 2021 | DDC 006.6/8–dc23
LC record available at https://lccn.loc.gov/2020038700

ISBN: 978-0-367-50959-0 (hbk)
ISBN: 978-0-367-50828-9 (pbk)
ISBN: 978-1-003-05198-5 (ebk)

Typeset in Minion Pro
by KnowledgeWorks Global Ltd.

eResources for each chapter are available at www.routledge.com/9780367508289.

https://lccn.loc.gov/2020038700
http://www.routledge.com/9780367508289
http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk

v

Contents

Acknowledgements, ix
Contributors, xi
Author, xiii
Introduction, 1

Chapter 1    ◾   � Designing Graphically with the Language
of Code	 5

GETTING STARTED & BASIC OVERVIEW	 5

LESSON 1.1: PIXEL GRID SYSTEM	 9

LESSON 1.2: CODE AND CANVAS WINDOWS	 10

11

18

21

OF CODE� 22

NO STROKE)� 26

27

30

31

PROJECT: GEOMETRIC DESIGN	 34

LESSON 1.3: LINES, WIDTH, AND HEIGHT

LESSON 1.4: MORE SHAPES

LESSON 1.5: GRAYSCALE

LESSON 1.6: S YNTAX, COMMENTS, AND ORDER

LESSON 1.7: L INE COMMANDS (STROKE AND

LESSON 1.8: COLORING PIXELS

LESSON 1.9: ADDING TRANSPARENCY VALUES

LESSON 1.10: T HE PROCESSING REFERENCE – IMPORTANT
 RESOURCE!

vi    ◾    Contents

Chapter 2    ◾   � Creating Responsive Environments	 35
LESSON 2.1: DYNAMIC COMPUTER PROGRAMS	 36

LESSON 2.2: FIRST ANIMATIONS	 39

LESSON 2.3: ANIMATION TRAILS	 43

LESSON 2.4: FINDING EXACT COORDINATES	 44

LESSON 2.5: COMPLEX SHAPES	 47

LESSON 2.6: �LINKING SHAPES FOR SYNCHED
MOVEMENT� 49

LESSON 2.7: ADDING TEXT	 50

LESSON 2.8: ROTATING SHAPES	 51

PROJECT: INTERACTIVE ENVIRONMENT	 54

Chapter 3    ◾   � Automated Animations	 57
LESSON 3.1: COUNTING VARIABLES	 58

LESSON 3.2 �MOVING OBJECTS IN MULTIPLE
DIRECTIONS� 64

LESSON 3.3 GROWING SHAPES WITH THE MOUSE	 67

LESSON 3.4: PRINTLN() FOR DEBUGGING	 69

LESSON 3.5: �CONSTRAIN() FOR STOPPING
ANIMATIONS� 71

LESSON 3.6: RANDOM() OPPORTUNITIES	 76

LESSON 3.7: AUTOMATED ROTATIONS	 80

PROJECT: AUTOMATED ENVIRONMENT	 82

Chapter 4    ◾   � Animated Collages	 85
LESSON 4.1 PREPARING AND IMPORTING IMAGERY	 86

LESSON 4.2: MOVING IMAGES	 91

LESSON 4.3: �FADING AND COLORING IMAGES USING
TINT()� 93

LESSON 4.4: RESIZING IMAGES & MULTIPLES	 95

LESSON 4.5: CONSTRAINING MOUSE MOVEMENTS	 98

LESSON 4.6: �VOID KEY PRESSED() WITH IMAGE
ROTATIONS� 100

Contents    ◾    vii

LESSON 4.7: CREATE FONTS	 102

LESSON 4.8: �PROJECT OPTIMIZATION AND
NOSMOOTH()� 106

PROJECT: ANIMATED AND INTERACTIVE COLLAGE	 107

Chapter 5    ◾   � Conditional Interactions and Rollovers	 109
LESSON 5.1: �CONDITIONAL STATEMENTS AND

RELATIONAL OPERATORS� 110

LESSON 5.2: �CONDITIONAL STATEMENTS WITH
CUSTOM VARIABLES� 114

LESSON 5.3: AND vs. OR	 116

LESSON 5.4: LOGICAL OPERATORS DEFINING SPACES	 120

LESSON 5.5: �VARIATIONS WITH MOUSE
AND KEYBOARD ACTIONS� 123

LESSON 5.6: �TWO VARIABLES: ALTERNATING
MOVEMENTS� 126

LESSON 5.7: �COLOR DETECTION USING THE GET()
FUNCTION� 128

PROJECT: ROLLOVER ANIMATION	 132

Chapter 6    ◾   � Events and Interactions for Simple
Games: Part 1	 135

LESSON 6.1: �TURNING THINGS ON WITH BOOLEAN
VARIABLES� 137

LESSON 6.2: �TOGGLING BETWEEN TWO STATES USING
BOOLEAN VARIABLES� 139

LESSON 6.3: MULTIPLE BUTTONS ALTERNATING	 142

LESSON 6.4: �BOOLEANS WORKING WITH NUMERICAL
VARIABLES� 145

LESSON 6.5: SPECIFIC KEYBOARD INTERACTIONS	 147

LESSON 6.6: CREATING A WALKING CHARACTER	 150

LESSON 6.7: BOUNDARIES	 153

viii    ◾    Contents

Chapter 7    ◾   � Events and Interactions for
Simple Games: Part 2	 157

LESSON 7.1: TIMERS	 158

LESSON 7.2: CONTINUOUS MOTION KEY CONTROLS	 162

LESSON 7.3: FOR LOOPS ARE EFFICIENT	 164

LESSON 7.4: COLOR DETECTION WITH FOR LOOPS	 168

LESSON 7.5: �GAME CREATION FROM KEYS, LOOPS,
AND COLOR DETECTION� 170

LESSON 7.6: �IMAGE COLLISIONS WITH THE DISTANCE()
FUNCTION� 175

LESSON 7.7: �TWO PLAYERS, DIRECTIONAL MOVEMENT,
AND JUMPING!� 180

Chapter 8    ◾   � Multilevel Architectures and Arrays	 189
LESSON 8.1: BASIC LEVELS ARCHITECTURE	 190

LESSON 8.2: STATES WITHIN LEVELS	 194

LESSON 8.3: ARRAYS	 200

LESSON 8.4: IMAGE ARRAYS	 205

LESSON 8.5: PLAYER OPTIONS	 210

LESSON 8.6: CHOICE-BASED PROJECTS	 214

CONCLUSION	 222

FINAL PROJECT: MULTILEVEL INTERACTIVE EXPERIENCE	 223

INDEX, 227

ix

Acknowledgements

If it wasn’t for the support I received from the community members of
High Tech High, this book would not have happened. I would like to start
with a very special thanks to the school leader who hired me, Robert Kuhl.
Furthermore, I am grateful to the school founders: Larry Rosenstock,
Rob Riordan, and Ben Daley. Their support and encouragement for over
a decade of teaching (including a one-year fellowship to study computer
programming) opened the door for my students and me to explore an
exciting new learning environment with endless creative possibilities. I
also want to recognize my collaborative colleagues throughout the years,
who pushed my thinking and showed me new ways to serve my students’
learning and growth.

Truth be told, I am most grateful for the collaborative learning I experi-
enced with my students. Without the frequent input and creative production
put forth by my students, I wouldn’t have had the insights I needed to shape
this curriculum. Every year, students revised how the class tackled challeng-
ing problems, discovered and shared new coding techniques with each other,
and produced dynamic project examples for future students to build on.

These acknowledgements wouldn’t be complete without a celebration of
the Processing community. Thank you to Casey Reas and Ben Fry for cre-
ating such an accessible and artistic entry point into computer program-
ming. Their Processing project has opened the door for many students
who would not have previously entered it. Thank you to the Processing
Foundation, which is made up of community driven educators and leaders
like Daniel Shiffman. These teachers and organizers support and further
these transformative learning experiences, which are highly engaging and
open to all. Also, a big thank you to every kind stranger on the Processing
forum who answered the many questions posted by me and my students.

Finally, thank you to my husband and my mom. They keep me believ-
ing in myself and exploring new frontiers.

http://taylorandfrancis.com

xi

Contributors

STUDENT CONTRIBUTORS

Amelia Berry

Claire Bridges

Blake Brownyard

Lorena Bustillos

JJ Chasavah

Maiah Cooper

Natalie Cote

Elijah Devillanueva

Sierra Gillingham

Flavia Huerta

Sarah Hughes

Samuel Kahn

Noah Lau

Ricardo Lednick

David Lopez

Olivia Madarang

Maelee McCarron

Tuesday Motch

Darryl Nagal

Liam Nolan

Nalani Patterson

Gillian Probert

Connor Port

Angelica Quevedo

Jakob Rosen

Tung Tran

Cianan Veltz

Kathryn Wylie

Michel Yanez

http://taylorandfrancis.com

xiii

About the Author

Margaret Noble �was born in Texas, raised in San Diego, and received her
key artistic training in Chicago. She holds a BA in Philosophy from the
University of California, San Diego, and an MFA in Studio and Sound Art
from the School of the Art Institute of Chicago, Illinois.

Margaret Noble is an accomplished media producer with a background
in public education, artistic production, and large-scale exhibition devel-
opment. Her artworks have been exhibited nationally and internationally.
Margaret Noble came to education from industry as a professional artist.
Throughout her 13+ years of teaching in secondary and higher education,
she has consistently supported diverse learners in producing meaningful,
community-driven, multimedia projects.

Margaret and her students have also received several awards and rec-
ognitions for their classroom projects, including features in Edutopia and
Wired magazine. To learn more about Margaret Noble’s work, please visit:
https://nobleeducator.com.

https://nobleeducator.com

http://taylorandfrancis.com

1

Introduction

This book is designed for learners with little or no computer program-
ming experience and an interest in making interactive graphics. There are
a variety of ways to learn computer programming and the lessons from
this book were shaped by the feedback received from hundreds of students.
Many of these students were intimidated by computers, while others had
prior experiences with programming lessons that were frustrating or felt
inaccessible. All learners are different. However, two consistent challenges
were frequently expressed: (1) the illegibility of code training manuals
(often due to a sea of small, black and white text) and (2) the assump-
tion of pre-existing knowledge (even in beginning manuals). To address
these concerns, this book employs a variety of strategies. The designers
of Processing wrote a programming language that uses color markers to
make key information visible, and this book is also published in color to
clearly illustrate examples and concepts. The code examples published in
this book also feature a line-by-line numbering system to help learners
keep track of where they are when working through a lengthy code tran-
scription. Furthermore, the lessons in this book are rhythmically broken
down into digestible parts with code annotations and diagrams to help
learners focus on the details, one step at a time. There is no assumption of
any pre-existing programming experience for users of these lessons.

This book doesn’t contain lectures on the history of computer pro-
gramming; instead, the text is grounded in the idea of learning by doing.
By following the lessons and producing the projects sequentially in this
book, readers will develop the beginning foundational skills needed to
understand computer programming basics across many languages. The
first chapter introduces a series of graphical code commands, which will
result in the programming of a geometric art project. With each following
chapter, the programming challenges and project outcomes presented will

2    ◾    Programming Media Art Using Processing

elevate in complexity and creative opportunity. Essentially, the chapters
and projects in this book provide a series of architectural structures and
it is the learners who will determine what inspires them most to produce.
By designing and building projects of interest, the intention is to create a
learning experience that naturally flows rather than feeling like a chore or
a checkbox.

A few comments and suggestions before beginning:

•	 Not all of the printed illustrations shown in this book are to the scale
of the programmed examples.

•	 Once installed, the Processing interface on your computer may look
slightly different from the ones pictured in this book. Not to worry –
it should still work the same.

•	 Sometimes computers and applications glitch or crash. If this hap-
pens to you, first try quitting the Processing program and then
reopen it to see if the problem goes away. If it doesn’t, then try
rebooting your computer. It is surprising how often these two simple
steps fix tech issues.

•	 Sometimes, you will be frustrated with an exercise or project. That’s
okay – it is part of the process of problem solving. Take a break.
Afterwards, approach the code problem from different angles by iso-
lating different parts of the code and running tests.

•	 Sometimes it is just a typo. One misspelled word or missing semico-
lon can break a well-written program. Keep an eye out for the little
things.

•	 It is strongly encouraged that you download the exercise answers
and project examples from the publisher’s website (www.routledge.
com/9780367508289) to help you work backwards through some of
the challenges you might encounter. There is no shame in starting
with the answer and moving backwards to understand things more
clearly.

•	 You may see the option to create multiple tabs within one program
when coding in Processing. To keep your work consistent with the
exercises and examples in this book, write your programs exclusively
in one Processing tab.

http://www.routledge.com/9780367508289
http://www.routledge.com/9780367508289

Introduction    ◾    3

•	 Save your work. In a world of autosaving cloud-based applications, it
is easy to forget to save. However, Processing does not have an auto-
save function (as of yet) and there is nothing more frustrating than
losing one’s hard-won work.

•	 It is strongly encouraged that you make sure you understand a sec-
tion before moving forward to the next one since each exercise and
project is designed to build on one another.

•	 There is always more you can explore and there are often several dif-
ferent ways to solve the same problem. It is advisable that you run
your own supplemental experiments on the code examples provided.
By doing this, you will learn a ton about how things work.

•	 When you experiment, save multiple versions of the same program.
Sometimes a pursuit may take you down a rabbit hole and cause you
to forget where you were before you started testing new ideas. To
avoid this, keep a copy of your first solution attempts off to the side
while you run new tests on a second version.

•	 Make a personal library of key code examples. It is really helpful to
have a reference of favorite/useful techniques since most folks don’t
memorize code.

Ultimately, this is a hands-on, practical guide. The goal is to learn by
doing, so let’s go.

eResources for each chapter are available at www.routledge.com/
9780367508289.

http://www.routledge.com/9780367508289
http://www.routledge.com/9780367508289

http://taylorandfrancis.com

5

C h a p t e r 1

Designing Graphically
with the Language
of Code

GETTING STARTED & BASIC OVERVIEW

Install Processing for free on your computer; it works on Macs, PCs, and
Linux.

FIGURE 1.1  Student project example: geometric graphic design. (Printed with
permission from Michel Yanez.)

6    ◾    Programming Media Art Using Processing

Link: https://processing.org/download/

Once on the Processing web page, scroll down to the list of “stable
releases” and try to install the most recent version of Processing on your
computer. If you have difficulty installing this version, then try one of the
earlier releases. The projects in this book will work fine across the various
versions of Processing. Once installed, open Processing and press the play
button. You should see something like this.

FIGURE 1.2

FIGURE 1.3

https://processing.org/download/

Designing Graphically with Code Language    ◾    7

As shown in Figure 1.3, your Processing workspace has two windows.
You enter text commands into the editor window and see your graphic
results on the canvas window (also called the sketch window). You push
the play button to test for results whenever you change the code.

As you move through these tutorials, it is advised that you save all of
your exercises and example files for future reference.

FIGURE 1.4

8    ◾    Programming Media Art Using Processing

When you save a Processing file, you will notice that Processing auto-
matically places a .pde file inside of a folder.

It is important that you keep this folder with the .pde file inside of it.
Processing also requires that the folder and .pde file have the same name.
When you have mismatched names between a file and a folder or separate
this file path, you will get errors when opening your project.

FIGURE 1.5

Designing Graphically with Code Language    ◾    9

LESSON 1.1: PIXEL GRID SYSTEM
Processing uses a pixel grid system for plotting shapes on the canvas win-
dow. Every point on the screen is a pixel and each point is specified by the
locations of x, y (horizontal and vertical placements).

The pixel grid system has its 0,0 coordinate in the upper left corner
(this is different from beginning Algebra). The x-axis moves from left to
right (0 to the specified width of your canvas). The y-axis moves from the
top to the bottom, (0 to the specified height of your canvas.) This can be
confusing because the “highest” point of your canvas is at the bottom of
your grid.

FIGURE 1.6  The longest point on the canvas is also called the height of the
canvas.

10    ◾    Programming Media Art Using Processing

Exercise 1.1

Grab a piece of paper and draw a quick sketch of a Processing canvas that
is 100 × 100 pixels. Label the following coordinates on your paper sketch:

LESSON 1.2: CODE AND CANVAS WINDOWS
By default, Processing opens the canvas window in the size of 100 pixels
by 100 pixels. You can specify your preferred canvas dimensions by typ-
ing the command size() into the editor window and specifying how many
pixels you want for its width and height inside of the parentheses.

Important: Details matter! If the line of code you are typing uses punc-
tuations such as parentheses, commas, brackets, and/or semicolons, then
copy these details exactly.

TABLE 1.1  Coordinates for Exercise 1.1

X Y

0 0
100 100

50 50
0 100

100 0

FIGURE 1.7

FIGURE 1.8  (Canvas size is 400 × 200).

Designing Graphically with Code Language    ◾    11

You must also specify the background color of your canvas or it will
default to gray. For now, we will use 255, which is white. More on color
options soon.

Try this code:

The words in blue are called functions (or commands). After the blue
functions, the numbers inside of the parentheses are called arguments.
“Arguments” are the parameters of a function(). Arguments specify the
details Processing needs to draw shapes and colors in the canvas window.

FIGURE 1.9

FIGURE 1.10

FIGURE 1.11

LESSON 1.3: LINES, WIDTH, AND HEIGHT

12    ◾    Programming Media Art Using Processing

This is how a line works…

Try the following code to make a different line(). Take note of how the
arguments describe each end point of the line().

FIGURE 1.12

FIGURE 1.13

Designing Graphically with Code Language    ◾    13

Try another:

Make this line:

FIGURE 1.14

FIGURE 1.15

14    ◾    Programming Media Art Using Processing

Now replace the line’s third and fourth arguments the words, “width”
and “height” – like this:

As you can see, the code in Figures 1.15 and 1.16 give you the same
results. What do you think width and height refer to? In Processing,
width and height refer back to the size() of the canvas. They are said to be
“built-in variables” and they fluctuate in value depending on the canvas
size.

FIGURE 1.16

FIGURE 1.17  (In this case, width = 200, height = 100).

Designing Graphically with Code Language    ◾    15

You can also manipulate the values of width and height with math
operations.

FIGURE 1.18  (In this case, width = 125, height = 150).

FIGURE 1.19  (Width = 100 (200 divided by 2) and height = 100).

16    ◾    Programming Media Art Using Processing

And so on…

There are many possible mathematical applications for designing visual
art in code and width and height are very handy for thinking out graphi-
cal layouts. You can use width and height in the same program as many
times as you like and in almost any numerical argument.

FIGURE 1.20  (Width = 66 (200 divided by 3, rounded up) and height = 100).

TABLE 1.2  Math Symbols Used in Processing

Application Symbol

division /
multiplication *
addition +
subtraction -

Designing Graphically with Code Language    ◾    17

Exercise 1.2

Code the following picture with a 300 × 300 pixel canvas size using the
built-in variables width and height in some of the line() arguments. It
might be easiest to first code the lines with numerical arguments and then
replace these values with width and height where appropriate.

FIGURE 1.21

18    ◾    Programming Media Art Using Processing

It is time to add to our graphic design tool kit as there are many shape
functions we can use. Like the line() function, the arguments of other
shape functions control different parameters. See if you can guess what
the arguments control for the following shapes?

FIGURE 1.22

LESSON 1.4: MORE SHAPES

Designing Graphically with Code Language    ◾    19

Answers:

FIGURE 1.23

FIGURE 1.24

20    ◾    Programming Media Art Using Processing

Play around with the following code to verify your understanding:

Tip: It is sometimes confusing that the x,y anchor points for the rect()
are positioned in the upper left corner rather than in the center like the
ellipse(). If you prefer to have your rectangle anchor points in the center,
then you can add the following command before your rectangles:

rectMode (CENTER);

Exercise 1.3

Code the following two ellipses, two lines, and one rectangle on a 300 ×
200 pixel sized canvas.

FIGURE 1.25

FIGURE 1.26

Designing Graphically with Code Language    ◾    21

In Processing, by default lines and outlines are black, while shapes are
filled white. But you can designate between grayscale tones very simply by
specifying an argument of 0 (the darkest black) all the way up to 255 (the
lightest white).

FIGURE 1.27

TABLE 1.3  Black and White Controls in Processing

In Processing Description

fill() Fills in the color of shapes.
stroke() Colors the outlines of shapes and lines.
background() Colors the background of the canvas.
0 - 255 Grayscale numerical range. 0 is black, 255 is white and all shades

of gray are in between.

LESSON 1.5: GRAYSCALE

22    ◾    Programming Media Art Using Processing

Exercise 1.4

Use the following starter code and complete the design pictured.

Syntax

When you program the computer, you need to speak in a language that
Processing understands. The syntax of a computer language is the set of
rules that define the proper order and combinations of letters, numbers,
and symbols. The syntax rules must be strictly followed or the computer
won’t be able to process your code. If you misspell words, miss punctua-
tion, or misuse capitalizations, then your program will have errors.

FIGURE 1.28

FIGURE 1.29

LESSON 1.6: SYNTAX, COMMENTS, AND ORDER OF CODE

Designing Graphically with Code Language    ◾    23

Processing gives you feedback on broken code in a message area below
the editor. Usually, the highlighted line of code is not the problematic line.
The malfunctioning line of code is often before the highlighted line. In
Figure 1.29, the fill(0) is missing a semicolon.

Comments

Comments are annotations in the code to help you stay organized in a
sea of text. We use two forward slashes//to indicate a comment. The two
forward slashes can also be used to turn off a line of code. This is really
helpful when you need to troubleshoot a problem with your program.

By isolating different lines of code, it is easier to pinpoint where issues
might be.

Forward slashes used to create comments:

Forward slashes to turn off individual lines of code commands. In
Figure 1.31 below, stroke() and fill() are not read by the computer.

render everything in between as unreadable by Processing.

FIGURE 1.30

FIGURE 1.31

There is a shorthand for turning off large chunks of code. Using /* at the
beginning of the section and */ after the last line you want to turn off will

24    ◾    Programming Media Art Using Processing

Order of Code

The order of code commands impacts how the code will run. Code lines
that start at the top will impact the lines of code that come after. On the
left, you see that the first gray fill() command is overridden by a second
black fill() command coloring both shapes black. On the right, you see
that you need to specify a new color fill before the shapes you want to be
in a different color.

FIGURE 1.32

FIGURE 1.33

Designing Graphically with Code Language    ◾    25

Exercise 1.5

Code the following on a 300 × 300 canvas.

FIGURE 1.34

26    ◾    Programming Media Art Using Processing

In your designs, you may want to manipulate the look of lines and out-
lines. Here are two new commands for modifying lines in your projects.

Exercise 1.6

Code the following image on a 200 × 200 pixel canvas and annotate your
code with organizational comments.

TABLE 1.4   Line Commands

Command Description

noStroke() Removes outlines on shapes.
strokeWeight() Changes the thickness of lines and shape outlines.

FIGURE 1.35

LESSON 1.7: LINE COMMANDS (STROKE AND NO STROKE)

Designing Graphically with Code Language    ◾    27

In the art class, the primary colors were red, yellow, and blue. In the digital
environment, our primary colors are red, green, and blue also known as
RGB. These are the colors of light.

FIGURE 1.36

TABLE 1.5  Processing Color Use Overview
Description Examples
Color functions commonly used: fill() //colors the inside of shapes

stroke() //colors lines and outlines

Code functions using R,G,B color
have 3 arguments. One argument
for each color (red, green, and
blue).

fill (255, 0, 0) ; // red
stroke (0, 255, 0) ; // green
fill (0, 0, 255) ; // blue

Code functions using grayscale
color have 1 argument.

stroke (0); // black
fill (255): // white

RGB color values range from 0 to
255.
0 is the darkest and 255 is the
lightest.

stroke (0, 25, 0); //dark green
fill (0, 0, 255); // bright blue

Colors that are not primary red,
green, and blue are made by
various mixes of these 3.

fill (150, 0,100); //dark wine color
stroke (173, 201, 20); // lime green color

LESSON 1.8: COLORING PIXELS

28    ◾    Programming Media Art Using Processing

Play with this code to see R, G, B (red, green, blue) arguments in action.

Tip: Processing has a color selector that gives you the exact RGB mix
for a specified color.

FIGURE 1.37

FIGURE 1.38

Designing Graphically with Code Language    ◾    29

Exercise 1.7

Code the following sketch on a 300 × 300 canvas.

FIGURE 1.39

30    ◾    Programming Media Art Using Processing

Some really nice results can be achieved by adding transparency to your
designs. For color, add a fourth argument to your R,G,B formulation to
specify opacity. For grayscale, add a second argument. The number range
for opacity is 0 to 255. Play with the following program to see how trans-
parency works.

Exercise 1.8

Type the following starter code:

FIGURE 1.41

FIGURE 1.40

LESSON 1.9: ADDING TRANSPARENCY VALUES

Designing Graphically with Code Language    ◾    31

Next, add four more circles to match the following design:

IMPORTANT RESOURCE!
The reference is a comprehensive, online library of code commands avail-
able for use in Processing. It is an important place to figure out things not
covered in this book and will also expand your knowledge of things you
already know. For the purposes of this chapter, we are going to use the
reference to learn about more 2D shapes.

FIGURE 1.42

LESSON 1.10: THE PROCESSING REFERENCE –

32    ◾    Programming Media Art Using Processing

Go to https://processing.org/reference/ to find the following page.

FIGURE 1.43

https://processing.org/reference/

Designing Graphically with Code Language    ◾    33

First, navigate to the “2D Primitives” category. Here you will find
many more possible shapes available for your projects. Next, click on the
quad() function to open its dedicated page. The following diagram uses
the quad() entry as an example on how to navigate the reference pages.

FIGURE 1.44

34    ◾    Programming Media Art Using Processing

PROJECT: GEOMETRIC DESIGN
Code a geometrically patterned design with a variety of different shapes
using the colors of your choice. Aim to go beyond lines, rects, and ellipses
with new 2D shapes from the Processing reference. For project examples,
see the download folder available from the publisher’s website.

FIGURE 1.45  Student project example: geometric graphic design. (Printed with
permission from Flavia Huerta.)

35

C h a p t e r 2

Creating Responsive
Environments

In this chapter, we will design 2D environments that are interactive! Shapes
will move, grow, and color shift in response to the computer mouse.

FIGURE 2.1  Student project example: interactive environment. (Printed with
permission from Flavia Huerta.)

36    ◾    Programming Media Art Using Processing

LESSON 2.1: DYNAMIC COMPUTER PROGRAMS
In Chapter 1, the programs we wrote were static – the shapes stayed in
place at the coordinates they were plotted. In order to create shapes that
animate, we need to write programs that are dynamic.

FIGURE 2.2  Student project example: interactive environment. (Printed with
permission from Noah Lau.)

FIGURE 2.3

Creating Responsive Environments    ◾    37

These “dynamic” programs are a directional series of events comprised
of graphical animations that respond to user input. We can look at the
stages of an arcade video game to help us envision how we will code our
active projects in Processing.

Figure 2.3 and Table 2.1 represent stills from a student Processing project
(printed with permission from Blake Brownyard).

Technically, we will add two new structures to make our programs
dynamic: void setup() and void draw(). These two structures function
differently, void setup() loads code commands once – much like a start-up

TABLE 2.1  Video Game Stages
1) �Users prepare to play, the computer

program sets-up.
2) �Once the setup is complete, the conditions

of the game are initialized and the
computer draws animations in response
to user input.

3) �This cycle continues and the computer
program draws new graphics that shift
and vary with each new instruction or
interaction.

4) �Eventually, the cycle ends.

38    ◾    Programming Media Art Using Processing

screen. With void draw(), the code commands run continuously, and it
is this procedure that allows for animation. It is important to take note
of their shared syntax styles. Processing presents void setup() and void
draw() in the colors green and blue, followed by an empty parentheses set.

The curly brackets we see after the parentheses hold the code com-
mands “inside” of void setup() or void draw().

FIGURE 2.4

FIGURE 2.5

TABLE 2.2  Void Setup() and Void Draw() Overview

Summary Notes

Code in
curly
brackets {}

Now that we have entered dynamic programming, from now on, all of
your code lines/functions will be inside a pair of curly brackets associated
with active structures like void setup() and void draw(). If some of your
commands are not contained within curly brackets while other lines are,
you will get errors from the Processing console that read, “you’re mixing
active and static modes.”

void setup()
runs once.

You will use void setup() for code commands that only need to happen
once. For example, the size() command will go inside of void setup()
because canvas sizes don’t fluctuate.

void draw()
runs
continually.

void draw() is continually running and updating the animation frames.
The majority of your dynamic animations and interactions will be
programmed inside of void draw().

Creating Responsive Environments    ◾    39

Exercise 2.1

Think back to your geometric design project from the previous chapter. If
you could animate the various shapes you used before, what would you do?
Make a list of four or more simple animations you would like to implement.

LESSON 2.2: FIRST ANIMATIONS
Type and run the following code:

If you run the above code and see the same picture, this means that
you have correctly implemented a visual design within the structures of
void setup() and void draw(). Now, we can have some fun and animate
this design. As previously mentioned, void draw() is constantly updating
frames. Right now, nothing is animated because the arguments inside of
void draw() are static numbers. Remember “functions” and “arguments”
from the last chapter?

FIGURE 2.6  Example design printed with permission from Ricardo Lednick.

40    ◾    Programming Media Art Using Processing

We need argument values that change over time in order to animate
our designs. Processing has two built-in variables we can use to get things
moving: mouseX and mouseY. In the previous example (Figure 2.6), ani-
mate the red color fill() of the sun by replacing the argument 255 with
mouseX like this:

Now, move your computer mouse from left to right to see what
changes. Next, replace the height argument of the ellipse() with mouseY
like this:

Now, move your mouse up and down. As you can see, mouseY fluc-
tuates in value depending on where the mouse moves vertically. And,
mouseX fluctuates in value depending on where the mouse moves hori-
zontally. It is as if the canvas window is a mouse pad. See the following
diagram for understanding how mouseX and mouseY vary depending on
your mouse’s position.

FIGURE 2.7

FIGURE 2.8

FIGURE 2.9

Creating Responsive Environments    ◾    41

You can use mouseX and mouseY multiple times throughout your code
in any numerical argument. Try plugging mouseX and mouseY in various
places to see what animations you can create. You can use mouseX and
mouseY to grow/shrink shapes, fade colors/transparencies, move shapes
around, and so much more.

FIGURE 2.10

TABLE 2.3  Examples of MouseX and MouseY Animation Applications

Code Example Animation

fill (0, 255, 0, mouseY): The green fill will become transparent when the
mouse is moved up and then return to full opacity
when the mouse is moved down.

strokeWeight (mouseX); The line/outline thickness of shapes that follow
this command will grow and shrink when the
mouse is moved left and right.

ellipse (100,100, 50, mouseY); The ellipse will change size from tall to short when
the mouse is moved up and down.

rect (mouseX, mouseY, 50, 50); The rectangle will follow the mouse on both X and
Y axes.

rect (mouseX*.5, 50, 50, 50); The rectangle will follow the mouse on the
horizontal axis but will be limited in its range
because mouseX is multiplied by .5 (thus steadily
decreasing). See Table 1. 2 from Chapter 1 for
math symbols used in Processing.

42    ◾    Programming Media Art Using Processing

Exercise 2.2

Program the following starter lines of code:

a.	Make the light blue rect() move up and down with the mouse.

b.	Make the pink ellipse() grow evenly when the mouse is moved left
and right.

c.	Make the dark blue line() turn invisible when the mouse is moved
up and down.

d.	Make the background() cycle through multiple colors when the
mouse is moved around in a circle.

FIGURE 2.11

Creating Responsive Environments    ◾    43

LESSON 2.3: ANIMATION TRAILS
Type the following code and move your mouse around:

As discussed earlier, void setup() and void draw() operate differently. To
see this difference in action, move the background() command from void
draw() into void setup().

FIGURE 2.12

44    ◾    Programming Media Art Using Processing

In most complex designs, you will usually want your background() in
void draw() to avoid unwanted animation artifacts. But, for simpler line/
shape animations these trails are fun.

Exercise 2.3

Create your own unique animation design with shape trails.

LESSON 2.4: FINDING EXACT COORDINATES
Maybe you are tired of guessing where the exact x,y coordinates are when
drawing a shape in a specific place? We have two new tools to help with
this issue: println() and void mousePressed().

Type and run the following code. Click your mouse where the black
lines intersect.

FIGURE 2.13

Creating Responsive Environments    ◾    45

If you look at the bottom of your Processing editor window to the black
console, you will see values for mouseX and mouseY wherever you clicked
in the canvas window.

It is the println() function that writes information to the black console
area. In Figure 2.14, we configured println() to report on the position of
mouseX and mouseY inside of the active structure mousePressed(). This

FIGURE 2.14

FIGURE 2.15

46    ◾    Programming Media Art Using Processing

strategy is really helpful for precise control over graphic design. First, we
will look at the syntax used with the println() function:

The other new structure shown in Figure 2.14 is void mousePressed(). The
void mousePressed() structure functions as its own self-contained entity
using curly brackets just like void setup() and void draw().

Exercise 2.4

FIGURE 2.17

FIGURE 2.18

FIGURE 2.16

Creating Responsive Environments    ◾    47

a.	Use the println() function with void mousePressed() to insert a blue
triangle, as shown above (see code from Figure 2.14). If you haven’t
learned how to make a triangle yet, look it up on the Processing web-
site reference: https://processing.org/reference/ under 2D Primitives.

b.	Move the red outlined ellipse() from void draw() to void mouse‑
Pressed(). Run the code and explain why this happens.

c.	Now, move the background() from void draw() into void setup().
Run the code and explain why this happens.

LESSON 2.5: COMPLEX SHAPES

FIGURE 2.19

https://processing.org/reference/

48    ◾    Programming Media Art Using Processing

If you want a custom shape with multiple vertices, you can use the begin‑
Shape() command. Here’s how:

Exercise 2.5

Create your own multi-pointed silhouette shape using beginShape().

FIGURE 2.20

Creating Responsive Environments    ◾    49

LESSON 2.6: LINKING SHAPES FOR SYNCHED MOVEMENT
Type and play the following program:

Although there are comments labeling “eyes”, “mouth”, and “head” in the
code – there is no discernable face. The shapes are stacked on top of each
other in relation to mouseX and mouseY. To create definition in our mov-
ing designs, we can offset the shapes with simple math.

FIGURE 2.21

FIGURE 2.22

50    ◾    Programming Media Art Using Processing

Exercise 2.6

Using the starter code from Figure 2.22, add three more design details
to move with the mouse. For example: add a hat, eyebrows, ears, or other
accessories of your choice.

LESSON 2.7: ADDING TEXT
You may want to add labels or instructions in your designs. Here’s how
text works:

If you don’t like the anchor position for placing text (bottom, far left),
you can explore other anchor positions with the additional command,
textAlign(). See explanation on the Processing Reference (https://
processing.org/reference/).

Exercise 2.7

Code the following text design on a 200 × 100 sized canvas. Don’t forget to
use void mousePressed() with println() to help you find the coordinates.

FIGURE 2.23

https://processing.org/reference/
https://processing.org/reference/

Creating Responsive Environments    ◾    51

LESSON 2.8: ROTATING SHAPES

We will use the rotate() command and radian degrees to spin rectangles
and ellipses into new positions. In order to do this, it is helpful to use some
modifying commands in our code. Run the following program:

FIGURE 2.24

FIGURE 2.25

52    ◾    Programming Media Art Using Processing

FIGURE 2.26

Creating Responsive Environments    ◾    53

TABLE 2.4  Rotate() Overview
Code Command Explanation

pushMatrix(); Use this command to begin a temporary grid transformation.

translate (100,100); Move the 0,0 position of the X,Y pixel grid system to the
center of the shape you want to rotate.

rotate (radians (30);
rotate (radians (60);

The rotate() function rotates the entire coordinate system
around the origin. In Figure 2.26, the black rectangle is at
30 radian degrees and the white rectangle is at 60 radian
degrees. Here is a diagram of how Processing measures angles
in degrees:

popMatrix(); Close the temporary transformation of the pixel grid system.

54    ◾    Programming Media Art Using Processing

Exercise 2.8

a.	Using the previous code example (Figure 2.26), finish the pictured
design above.

b.	Now add +mouseX to each of the radian() values and test what ani-
mates when you move the mouse.

PROJECT: INTERACTIVE ENVIRONMENT
Make a place. It can be a landscape, spacescape, cityscape, or other specific
place/environment that has transforming or moving parts which respond
to the mouse. You can make things grow, move, fade, or change color. Aim
to have a minimum of eight unique animated mouse interactions. See proj-
ect examples in the downloads folder available from the publisher’s web-
site. Art challenge: design your place in perspective considering directional
light and object angles.

FIGURE 2.27

Creating Responsive Environments    ◾    55

FIGURE 2.28  Student project example: interactive environment. (Printed with
permission from David Lopez.)

FIGURE 2.29  Student project example: interactive environment. (Printed with
permission from Natalie Cote.)

56    ◾    Programming Media Art Using Processing

FIGURE 2.30  Design tip: each 3D object shown here is made of layered flat
shapes.

57

C h a p t e r 3

Automated Animations

In Chapter 2, we programmed interactive animations that were responsive
to computer mouse movements. Now, we are going to automate our ani-
mations by writing custom variables that trigger events when the program
starts. This new strategy will allow us to automatically start with visual
changes in movement, shape, and color. Design details like rising moons
and clock rotations will come to life, pushing our projects into more inter-
esting domains.

FIGURE 3.1  Student project example: animated art project. (Printed with per-
mission from Lorena Bustillos.)

58    ◾    Programming Media Art Using Processing

LESSON 3.1: COUNTING VARIABLES
To automate our animation designs, we will use numerical variables that
count up or down. We have already used two variables built into the
Processing language, mouseX and mouseY. These two count up or down
in sync with computer mouse movements. Now, we are going to write our
own custom variables that automatically move up or down in value.

Run the following program:

FIGURE 3.3

FIGURE 3.2  Student project example: animated art project. (Printed with per-
mission from Kathryn Wylie.)

Automated Animations    ◾    59

If you see the purple circle traveling from left to right, then you have
successfully written your first custom variable animation. So, what is new
here?

These three steps are essential for using custom variables. As with all
computer programming, the syntax must be strictly adhered to. Do not
ignore the placement of semicolons, equal signs or other punctuations.
The following diagrams (Figures 3.5–3.7), present a detailed overview of
the three steps needed to implement custom variables.

FIGURE 3.4

60    ◾    Programming Media Art Using Processing

Step 1:
Declare the variable.

FIGURE 3.5

Automated Animations    ◾    61

Step 2:
Place your variable in the argument you want to animate.

FIGURE 3.6

62    ◾    Programming Media Art Using Processing

Step 3:
Write an assignment operator to make your variable change over time.

FIGURE 3.7

Automated Animations    ◾    63

Now, we will put it all together but this time using a float variable. Run
the following program to stretch the yellow ellipse:

Exercise 3.1

a.	Start with the previous code from Figure 3.8 and write a new custom
variable that animates the orange ellipse to move down.

b.	Write a third custom variable and animate the background to change
from black to white.

FIGURE 3.8

64    ◾    Programming Media Art Using Processing

LESSON 3.2 MOVING OBJECTS IN MULTIPLE DIRECTIONS
Depending on your animation goals, you may want to have variables start
off-screen or move backwards. Below is a diagram explaining how these
two work:

FIGURE 3.9

Automated Animations    ◾    65

Exercise 3.2

Run the following starter code:

FIGURE 3.10

66    ◾    Programming Media Art Using Processing

Now, using custom variables make each square travel in the following
directions at different speeds:

FIGURE 3.11

Automated Animations    ◾    67

LESSON 3.3 GROWING SHAPES WITH THE MOUSE
In the following program, you will see three examples of custom variables
making shapes grow.

Run the code:

What if you want the shapes to animate only when you click the mouse?

FIGURE 3.12

68    ◾    Programming Media Art Using Processing

Add a void mousePressed() to the previous example and move your
assignment operators from void draw() to inside of it:

Test the code. If you press the mouse several times, your shapes should
transform. To see more dramatic transformations with each click, make
your assignment operator values larger.

Exercise 3.3

Add onto the previous example (Figures 3.12–3.13) the following
animations:

a.	Code a second black rectangle in the center of the canvas that grows
in width only when the mouse is pressed.

b.	Code a second white line in the center of the canvas that stretches
down only when the mouse is pressed.

FIGURE 3.13

Automated Animations    ◾    69

LESSON 3.4: PRINTLN() FOR DEBUGGING
Run the following program:

FIGURE 3.14

FIGURE 3.15

70    ◾    Programming Media Art Using Processing

If you typed the code exactly as above, you will notice that nothing
animates. Even though there are comments, variables, and assignment
operators that imply transformations, the design doesn’t change. You
could probably see what the problems are if you look closely at the code,
but sometimes the answer isn’t obvious in a sea of text. One of the best
tools for debugging your code is to get a println() report of your custom
variables. In Chapter 2, we used println() inside of void mousePressed()
to get single reports of vertex positions. But, in this case we want to see
how the variables will behave over time. So, we will use println() inside
of void draw().

The same syntax applies for using println() with custom variables:

Add these two println() commands to your code from Figure 3.15
inside of void draw() after your assignment operator (but before your clos-
ing bracket). Then, run the code briefly and watch the black console print
information on your two variables. If you scroll to the top of the feed you
should see this:

FIGURE 3.16

FIGURE 3.17

Automated Animations    ◾    71

This is very helpful information for figuring out why things weren’t
animating:

Exercise 3.4

a.	Using the previous information, correct the two malfunctioning
animations in the example (Figure 3.15).

b.	Add a third animation of your choice with a new custom variable
and a println().

LESSON 3.5: CONSTRAIN() FOR STOPPING ANIMATIONS
Run the following program:

TABLE 3.1  Example Println() Results Explained

Variable Name Println() Results Correction

fadein The fadein variable starts at 256
and increases by 1 over time.
Thus, the opacity isn’t fading in
because this variable value starts
fully opaque

Change the starting value of
this variable to 0.

movedown This variable is increasing as
expected but the increments are
very small. The animation is too
tiny/slow for us to see easily.

Add a larger assignment
operator value to make this
animation move faster.

FIGURE 3.18

72    ◾    Programming Media Art Using Processing

As you can see in the animation and the println() report, the animation
does something unexpected. The ellipse decreases in size until the variable
“shrink” hits – 1 and then the ellipse starts to grow again. This is because
visualizing a negative size is not possible for growth. So, Processing
defaults to the absolute value of the negative number, which in turn causes
the shape to grow. But, maybe you would like the ellipse to stop shrinking
when the variable hits 0? Enter the constrain() command.

Add this second assignment operator to the previous example
(Figure 3.18) and run the code:

As you see from the animation and the println(), the variable “shrink”
stops at 0. Here’s a syntax breakdown of constrain():

FIGURE 3.19

FIGURE 3.20

Automated Animations    ◾    73

Run the following code:

It is important to notice that whether your variable is counting up
or down, the constrain() syntax values are always written in this order:
lowest value, highest value.

FIGURE 3.21

74    ◾    Programming Media Art Using Processing

Exercise 3.5

Run the following starter code:

FIGURE 3.22

Automated Animations    ◾    75

Now, animate the blue rectangle to move right and the green circle to move
left at different speeds. Use constrain() to stop them both in the middle.

FIGURE 3.23

76    ◾    Programming Media Art Using Processing

LESSON 3.6: RANDOM() OPPORTUNITIES
Processing has a random() number generator. Run the following code:

You can plug random() into most numerical arguments. In the above
example, the X and Y positions of the ellipses are randomized to the can-
vas’s center section.

ἀ e syntax for random() is as follows:

FIGURE 3.24

FIGURE 3.25

Automated Animations    ◾    77

Animations made with random() look interesting when you move the
background() into setup(). Try it.

FIGURE 3.26

78    ◾    Programming Media Art Using Processing

But remember, when your background() is in setup() then all of your
animations will leave animation artifacts or “trails.” Maybe you don’t
want this effect on all of your animations. We can keep the trail effect in
parts of our screen and mask it away elsewhere by strategically placing
shapes in void draw(). Run the following program:

As you can see with the two moving red ellipses, animation artifacts
only show where the background() is exposed.

FIGURE 3.27

Automated Animations    ◾    79

Exercise 3.6

Code the following randomized color animation with the white back-
ground in void setup() and the black rect() in void draw().

FIGURE 3.28

80    ◾    Programming Media Art Using Processing

LESSON 3.7: AUTOMATED ROTATIONS
Remember the mouse responsive animations using rotate() from
Chapter 2? Now, we will automate these rotations with a custom variable.
Run the following program:

FIGURE 3.29

Automated Animations    ◾    81

Most of this should feel familiar except for the additional use of a cus-
tom variable inserted into radians() – which causes the automated rota-
tion. However, the x and y vertices positions of the four ellipses might be
a bit confusing because of the temporary movement of the 0,0 position for
the grid system. Here’s a detailed diagram to understand the argument
positions for each ellipse. It is helpful to turn off the assignment operator
to see each ellipse in its starting position.

FIGURE 3.30

82    ◾    Programming Media Art Using Processing

Exercise 3.7

Add two more pinwheels to the previous program (Figure 3.30), a yellow
one in the middle that spins backwards, and a blue one on the far right
that spins forward and faster than the other two.

PROJECT: AUTOMATED ENVIRONMENT
Create a new environment. If your last project was outside then make an
indoor environment (or, the reverse). This time add automated animations
with custom variables that change position, size, and color. Consider also
using mousePressed(), mouseX, and mouseY to enhance your automated
project with interactivity as well. See project examples in the downloads
folder available from the publisher’s website.

FIGURE 3.31

Automated Animations    ◾    83

FIGURE 3.32  Student project example: animated art project. (Printed with per-
mission from Nalani Patterson.)

FIGURE 3.33  Student project example: animated art project. (Printed with per-
mission from Liam Nolan).

http://taylorandfrancis.com

85

C h a p t e r 4

Animated Collages

In Chapters 1–3, we programmed our designs with only the shape com-
mands available from Processing. In this chapter, we will import external
images such as photographs, digital drawings, scans, and/or internet clip
art. This strategy will allow for more detailed project designs using unique
textures, complex patterns, and non-standard shapes.

FIGURE 4.1  Student project example: animated collage. (Printed with permis-
sion from Maiah Cooper.)

86    ◾    Programming Media Art Using Processing

LESSON 4.1 PREPARING AND IMPORTING IMAGERY
Before we import our images, we need to optimize them for Processing.
The following table is an overview on preparing images for use in
Processing.

FIGURE 4.2  Student project example: animated collage. (Printed with permis-
sion from Claire Bridges.)

TABLE 4.1  Preparing Images

Guideline Explanation

Dots Per Inch
(DPI)

An image quality of 70 – 100 DPI is a good resolution for computer
graphics. Higher image resolutions may slow your Processing projects
down. Images taken from the internet are usually within this DPI
range. If you scan or create your own custom images on the computer,
you usually can specify their DPI. See your particular device/software
for more information.

Aspect Ratio This is the width and height of your images in pixels (aka size). It is
usually best to keep your image imports the same size or smaller than
your Processing project’s canvas.

File Formats .jpg and .png are the most common file formats.
.png allows for invisible backgrounds and transparencies.

(Continued)

Animated Collages    ◾    87

For the following lessons and exercises, please download the folder:
“Chapter 4 Lesson Imagery” from the publisher’s website. Here, you will
find the following four .png files at a resolution of 72 DPI and a size of
200 × 200 pixels. All four of these images have invisible backgrounds. If
you are unable to download these images, then find similar images and
use the same file names:

Images are external to Processing and need to be imported in a particu-
lar way. In order to make them available for use in a Processing sketch, we
need to create a data folder inside of our Processing sketch folder.

To do this:

•	 First, create a new Processing file

•	 Go to “Sketch” on the title bar and click “Show Sketchbook Folder”

Sources You can use digital imagery from online or your own archives. If your
images are too high in resolution, the wrong file format, or need
design edits, then adjust them in a photo-editing program. There are
plenty of retail and free applications/websites available for editing
imagery. Keywords when searching for editors: image converter,
background eraser, photo editor, and photo manipulation.

TABLE 4.1 (Continued)  Preparing Images
Guideline Explanation

FIGURE 4.3

88    ◾    Programming Media Art Using Processing

Next:

•	 Create a new folder inside of the Processing sketchbook folder and
name it: data (this folder must have this exact name)

•	 Place the four .png photos inside of the data folder

FIGURE 4.4

FIGURE 4.5

Animated Collages    ◾    89

It is critical that your images are placed inside of the data folder. If you
run an image-based Processing project and your photos are not in the
correct place, then your program might crash. If this happens with future
projects, quit Processing and verify your files are in the project’s data
folder.

Once your images are in the right place, the next step is to write the
code to display them. The following example (Figure 4.6) outlines the
three steps needed to display an image on the Processing canvas. Pay spe-
cial attention to the code and comments of this example. There are new
types of variables, commands, and syntax. When you run the program
(and, if you have no typos and your data folder is in place) then the follow-
ing green image should appear.

FIGURE 4.6

90    ◾    Programming Media Art Using Processing

Exercise 4.1

To keep your work consistent with the examples and exercises in this
chapter, use the following names for the PImage variables: lines, rabbit,
redblob, and greenblob. For this exercise, add onto the previous example
(Figure 4.6), so that all four of the .png images are displayed in all four
corners like this:

TABLE 4.2  Programming Steps for Displaying Images

Step Explanation

(1) In order to access an image, a PImage variable first needs to be declared at the
top of your code above void setup() and void draw(). As with other custom
variables, you can name PImage variables most anything.

(2) In void setup(), we load the images from the data folder into the PImage
variables. It is very important that you type the file name in quotes exactly as it
reads in the data folder (including .jpg or .png). Also, note that images are
loaded in void setup() to free up CPU usage.

(3) In void draw(), we tell the computer where to display the images. In the
previous example (Figure 4.6), there are three arguments inside of the image()
command:
image (PImage name, x position, y position);
Also, note that using the command:
imageMode (CENTER);
before image() will anchor your x and y positions at the center.

FIGURE 4.7

Animated Collages    ◾    91

LESSON 4.2: MOVING IMAGES
As with Processing shapes, imported images can be animated in a vari-
ety of ways using custom variables. Create a new Processing sketch, add
the data folder, and run the following code to see these two images move
across the screen.

FIGURE 4.8

92    ◾    Programming Media Art Using Processing

Exercise 4.2

In the previous example (Figure 4.8), half of the work is completed for this
exercise. Now, adjust this code so that:

a.	All four images start off-screen on all four sides.

b.	All four images move to the center of the canvas at different speeds.

c.	All four images stop in the center.

FIGURE 4.9

Animated Collages    ◾    93

LESSON 4.3: FADING AND COLORING IMAGES USING TINT()
We can colorize and change the opacity of an image using the tint() com-
mand. The tint() command works similarly to fill() and stroke(), how-
ever, the color results are not always the same.

Create a new Processing sketch, add the data folder, and run the follow-
ing code:

TABLE 4.3  Tint() Overview

Example Visual Result

tint (0); Black overlay
tint (100); Gray overlay
tint (255); White overlay – but not visible
noTint(); Fully opaque and original image color
tint (255, 0); Fully transparent
tint (255, 100); Some transparency, no color change
tint (255, 0, 0);
tint (0, 255, 0);
tint (0, 0, 255);

Red image overlays
Green image overlays
Blue image overlays

FIGURE 4.10

94    ◾    Programming Media Art Using Processing

To see how tint() works, play around with the previous example by
changing the tint() for each image. Also, note that because void draw()
is always running, a tint() command to one image will impact all of the
images in a project. If you don’t want certain images tinted, then use the
noTint() command before them.

Exercise 4.3

In the following starter code (Figure 4.11), the bunny fades out and the far
left blob turns red when you click the mouse. To see this in action, create
a new Processing sketch, add the data folder, and run the code. After you
get it working, program the following additions:

a.	Make the blue, squiggly line start transparent and fade in with
mouse clicks.

b.	Make the far right blob start black and turn green with mouse clicks.

Animated Collages    ◾    95

LESSON 4.4: RESIZING IMAGES & MULTIPLES
Using lots of images in a Processing project requires extra CPU power
and this can potentially bog down your program. But, the detailed design
opportunities available from imported images makes this challenge worth
overcoming. Resizing images can be particularly burdensome on CPU
usage but there are workarounds. The first workaround is to correct the
size of your images before you import them into Processing. However, for
a variety of reasons this option may not work for you. The following table
shows two alternate methods for resizing images in Processing.

FIGURE 4.11

96    ◾    Programming Media Art Using Processing

If you don’t need to resize images but you do want to display several
copies of the same image, then method (2) without the 4th and 5th argu-
ments in image() will work best.

TABLE 4.4  Image Resizing Overview

Method Outcome Code Example

(1)
Resize your
images in
void setup()
with the .resize
command

This method is far
less burdening on
CPU usage.
However, if you
want to resize
several copies of
the same image
then you have to
declare, load,
resize, and display
each copy.

(2)
Resize your
images in
void draw() by
adding a 4th and
5th argument to
the image()
command

Most convenient,
there are no extra
commands
needed. Also, less
lines of code are
needed if you want
to resize several
copies of the same
image.
This method
allows for scaled
animations.
However, this
method might
slow your program
down so use it
sparingly.

Animated Collages    ◾    97

Exercise 4.4

The following program animates the red bunny to grow. Start a new
Processing sketch, add the data folder, and run the code. Afterwards,
make the green bunny shrink until it gets to 25 × 25 pixels.

FIGURE 4.12

98    ◾    Programming Media Art Using Processing

LESSON 4.5: CONSTRAINING MOUSE MOVEMENTS
Imported images can easily be programmed to respond to mouse move-
ments. Just drop mouseX or mouseY into one of the image() command’s
arguments and watch things transform. But, what if you want to limit
the mouseX or mouseY animations to a certain range? Ideally, you would
apply the constrain() function directly to them. This kind of works but is
a bit sloppy. To see for yourself, create a new Processing sketch, add the
data folder, and run the following code:

FIGURE 4.13  The bunny/ellipse won’t stay within the white lines.

Animated Collages    ◾    99

As you can see, the boundaries are not very clean for keeping the bunny/
ellipse inside of the white lines. The mouse is hard to control with exact
precision. But, we can fix this by assigning a limited range of mouseX
movements to a custom variable. Create a new Processing sketch, add the
data folder, and run the following code:

In this revised version of constrain(), a range of mouseX values are
assigned to the custom variable “a”. A custom variable is more control-
lable than the mouse and so the boundaries stay tight. Move the mouse
and watch the println() report to see for yourself.

FIGURE 4.14

100    ◾    Programming Media Art Using Processing

Exercise 4.5

Add onto the previous example (Figure 4.14), so that the ellipse/bunny can
also move up and down but only within the white lines.

LESSON 4.6: VOID KEY PRESSED() WITH IMAGE ROTATIONS
In Chapters 2 and 3, we used the rotate() command to spin Processing
shapes. Now, we will apply the rotate() command to imported images by
pressing a key. Create a new Processing sketch, add the data folder, and
run the following program:

As you can see, void keyPressed() works like void mousePressed() but
with any key pressed.

FIGURE 4.15

Animated Collages    ◾    101

Exercise 4.6

Using the code from the previous example (Figure 4.15), add 2 more of the
same image in the same place. But this time, make the 2 additions green
and spin them counterclockwise when a key is pressed.

FIGURE 4.16  Positioning after several keys pressed.

102    ◾    Programming Media Art Using Processing

Side note: Some interesting animations can result when you move your
background() into void setup().

LESSON 4.7: CREATE FONTS
When adding text to your projects, you may want to customize your fonts.
Processing has a built-in tool that allows you to create custom fonts for
your projects.

Create a new Processing sketch, navigate to “Tools” and select “Create
Font”.

FIGURE 4.17

FIGURE 4.18

Animated Collages    ◾    103

Next, select the font type “Calibri” and a size of 50…

FIGURE 4.19

104    ◾    Programming Media Art Using Processing

If you look at your Processing sketch folder, you should see the newly
created font inside of the data folder:

Now, we will program the font to display. Run, the following code:

FIGURE 4.20

FIGURE 4.21

Animated Collages    ◾    105

As you can see, there are similarities between displaying a custom font
and an imported image. PFonts variables are declared at the top, and also
initialized in void setup(). However, in void draw(), things are little dif-
ferent because you use two commands: textfont() and text(). For a review
of the X, Y anchor positions of text(), see Lesson 2.7.

Exercise 4.7

Start a new Processing sketch, create an “AdobeArabic-Italic” font at a size
of 48, and run the following animated program:

Next, add onto this program with the following:

a.	Create a new font of your choice.

b.	Finish the sentence, “My favorite things are…” with a new text line
in a different color that slides in from the right side and stops under
the first text line.

FIGURE 4.22

106    ◾    Programming Media Art Using Processing

LESSON 4.8: PROJECT OPTIMIZATION AND NOSMOOTH()
The lessons in this chapter provide several tools for creating dynamic proj-
ects with imported images. But, it is important to remember that using
lots of images can bog your program down. To optimize your image-based
projects, keep an eye on the DPI resolution and size of each image you
import. If you find that your animations aren’t behaving as you expected,
run a println() report on your variables to get more information. Finally, if
you find that your image-based project is running slow or the animations
look jerky then use the command noSmooth(). By default, Processing
automatically smooths the edges of images by 3 pixels. Here’s a compari-
son of the built-in smoothing versus running the noSmooth() command:

Sometimes this built-in smoothing really helps with the look of images
displayed in Processing and sometimes it isn’t detectable. But, if you have
several imported images, this smoothing feature might slow your anima-
tions down. If you have a heavily image-based project then try adding
noSmooth() inside of void setup() to optimize your animations. To see
this principle in action, download the project examples for this chapter
from the publisher’s website and compare how they run with noSmooth()
turned on and off.

FIGURE 4.23

Animated Collages    ◾    107

PROJECT: ANIMATED AND INTERACTIVE COLLAGE
Using the programming strategies from Chapters 1 to 4, create a visu-
ally integrated and animated collage with several imported images. Make
sure that there are animations that are both interactive and automated.
Consider making an abstracted portrait or another new environment.
Also, note that it can be helpful to make a project plan and prepare your
images (Table 4.1) before you begin programming. See project examples in
the download folder available from the publisher’s website.

FIGURE 4.24  Student project example: animated collage. (Printed with permis-
sion from Natalie Cote.)

108    ◾    Programming Media Art Using Processing

FIGURE 4.25  Student project example: animated collage. (Printed with permis-
sion from Sierra Gillingham.)

FIGURE 4.26  Student project example: animated collage. (Printed with permis-
sion from Cianan Veltz.)

109

C h a p t e r 5

Conditional Interactions
and Rollovers

In this chapter, we will program conditions for triggering animations and
events. For example, in Figure 5.1, when the user moves the mouse, the
marble follows it down the ramp. In Figure 5.2, when the mouse hovers

FIGURE 5.1  Student project example: rollover animation. (Printed with permis-
sion from Gillian Probert.)

110    ◾    Programming Media Art Using Processing

over the doorbell, the program displays the words, “ring, ring.” The tech-
niques in this chapter are the foundations of building complex projects
intricately responsive to user input.

LESSON 5.1: CONDITIONAL STATEMENTS
AND RELATIONAL OPERATORS
In order to program a sequence of interactive choices and events, we will
use if statements. These if statements contain conditions that the com-
puter verifies as either true or false. Depending on the answers to a condi-
tional if statement, the computer will execute specific code commands or
ignore them. For the projects in this book, some common conditions and
events we will implement are shown in Table 5.1.

FIGURE 5.2  Student project example: rollover animation. (Printed with permis-
sion from Olivia Madarang.)

Conditional Interactions and Rollovers    ◾    111

To program these events, our conditional tests will be written as
numerical statements. We will make comparisons to check things like
the position of the mouse or the value of a variable. If the computer pro-
gram verifies that a certain numerical statement is true then it will execute
the code. In order to write these expressions, we need to use relational
operators.

TABLE 5.1  Conditions and Events

Condition Event

if the mouse is hovering over a certain region... then trigger an animation.
if the mouse is clicked in a certain position... then load the next screen.
if a certain key is pressed... then move a character image.
if a variable becomes larger than a certain value... then reset this variable.

FIGURE 5.3

112    ◾    Programming Media Art Using Processing

To see this all put together, run the following program:

Conditional statements allow computer programs to make decisions on
whether or not to execute lines of code. In the previous example, when
the mouse is on the left, the condition becomes false and the ellipse is not
drawn. But, when the mouse is moved right beyond 150, the condition
becomes true and the ellipse is drawn.

FIGURE 5.4

FIGURE 5.5

Conditional Interactions and Rollovers    ◾    113

It is important to note the new syntax and formatting of conditional
statements. The word if is followed by a test condition in parenthesis. The
code you wish to execute is then written in between curly brackets. As you
can see, the semicolon does not close every line of code in a program. Also,
if you miss a bracket pairing then your code will break. Finally, remember
that the commands inside of the if statement’s curly brackets will only be
executed if the condition is fulfilled (true). Once the code is executed, the
program moves on and exits the if statement.

Exercise 5.1

On a 300 × 300 canvas, program the following rollover so that the yellow
ellipse only displays when the mouse cursor is on the upper half of the
screen.

FIGURE 5.6

114    ◾    Programming Media Art Using Processing

LESSON 5.2: CONDITIONAL STATEMENTS
WITH CUSTOM VARIABLES
Combining conditional statements with custom variables is the real pow-
erhouse of programming. Run the following code of a looping rectangle:

In the previous example, when the variable x gets to 500, it is reset to
−150 and the program exits the if statement. But, x’s assignment operator
(x = x + 5) brings x’s value right back up to 500. So, the cycle repeats caus-
ing the conditional test to become true over and over again, thus creating
a looping animation.

You may have also noticed that the condition (x == 500), has two equal
signs but the variable reset (x = −150) has only one. This is an important
syntax detail.

FIGURE 5.7

Conditional Interactions and Rollovers    ◾    115

The looping logic shown in this example is the underlying principle
for creating many interesting animations such as scrolling image back-
grounds. In the project examples download packet associated with this
chapter (available on the publisher’s website), there is an annotated model
of a scrolling image background.

Exercise 5.2

Using the following starter code:

a.	Make the green ellipse travel up while turning black.

b.	Reset the ellipse’s position and color every time it goes off-screen.

FIGURE 5.8

FIGURE 5.9

116    ◾    Programming Media Art Using Processing

LESSON 5.3: AND vs. OR
In more complex projects, you will have several conditional statements.
Conditionals offer a weaved tapestry of dynamic interaction but must be
programmed carefully. Multiple logics can overlap or even conflict with
each other. To see this in action, run the following program:

In the previous example, each if statement has its own condition. But,
they also have overlapping conditions. Consequently, they both can be
executed at the same time (in certain circumstances).

FIGURE 5.10

Conditional Interactions and Rollovers    ◾    117

In many projects, having conditional logic with multiple events occur-
ring at the same time will be desirable (or at least not an issue). But, some-
times you may want events triggered independently and not overlapping.
We can extend the if structure to allow for a choice between two or more
conditions. To do this, we will use else if. In the previous code example
(Figure 5.10), replace the second if statement with else if like this:

You will now see that only one ellipse can display at a time. Even though
these two conditionals have overlapping regions, the program gives prior-
ity to the if condition over the else if condition. The else if condition only
becomes active when the mouse is beyond their overlapping sections. In
Processing, every conditional statement opens with one (and only one)
use of the word if. However, you can extend an if statement with as many
else if choices as needed. Also, if you need a condition that specifies every-
thing else not specified in the previous if or else if statements then you
can use one else at the end of your conditional statement. At first this may
seem confusing but the more you use conditional logic, the clearer it will

FIGURE 5.11

FIGURE 5.12

118    ◾    Programming Media Art Using Processing

become. To see if, else if and else structures working together, run the
following example:

In the previous example, four conditions execute four different out-
comes depending on the value of the variable, “count”. The first three
conditions control the color of the two triangles while the final else condi-
tion resets the “count” variable to 0 (which starts the whole sequence over
again). This example is a good model for observing the syntax of complex
conditional statements using if, else if, and else structures. It is impera-
tive to understand how these conditional statements and keywords work
together in order to move forward with more advanced programming.

FIGURE 5.13

Conditional Interactions and Rollovers    ◾    119

Exercise 5.3

Do not run the following code examples right away. First, see if you can
guess what color the ellipses will be by examining the conditional state-
ments. Then run the code to check your answers.

TABLE 5.2  Conditional Statements Overview

Keyword Placement & Instances Condition Specifications Format

if The keyword if is always
required, always used
first, and only used once
per each conditional
statement.

A testable condition is
always specified inside of
parentheses after if.

if (condition) {
code to execute;
}

else if The keyword else if is
optional and used as
many times as needed
after if.

A testable condition is
always specified inside of
parentheses after else if.

else if (condition) {
code to execute;
}

else The keyword else is
optional, only used once,
and always last in the
sequence.
It can follow if or else if.

No condition needs to be
specified. The keyword
else refers to all
conditions not previously
specified by any
conjoining if or else if(s).

else {
code to execute;
}

FIGURE 5.14

120    ◾    Programming Media Art Using Processing

LESSON 5.4: LOGICAL OPERATORS DEFINING SPACES
In your projects, you may need to define very specific parameters with
your conditional statements. A program may have several animations,
boundaries, and/or responsive actions running simultaneously. In order
to make sure programming events are all uniquely defined, we often need
to conjoin several expressions inside of one condition. To get started on
this, run the following program:

As you test the program, you will notice that whenever mouseX is past
25, the face displays. That is pretty handy but what if we want even more
specificity for our rollover face. What about the face displaying whenever
our mouse is within any side of the blue rectangle? To write a conditional
that can specify all of these areas, we will need to use logical operators to
conjoin multiple expressions.

FIGURE 5.15

Conditional Interactions and Rollovers    ◾    121

The logical operator, “or” (expressed with double pipes: | |) conjoins
two alternate conditions. If either side of the | | operator is true then the
code will be executed. The logical operator “and” (expressed with double
ampersands: &&) combines conditions. All conditions conjoined by the
&& operator must be true before the code will be executed. The “not”
operator (expressed with an exclamation point:!) is used to negate an
expression. We will use this in future chapters. In summary, logical opera-
tors combine simple relational statements into more complex expressions.

Returning back to the rollover example from Figure 5.15, we will expand
the original if statement to cover all 4 sides needed to make a perfectly
square rollover. Using the println() function inside of mousePressed(),
we can figure out exactly what coordinates we need to define the bound-
aries on both the vertical and horizontal axes. Using the && operator, we
will rewrite the conditional to cover all four of these sides.

FIGURE 5.16

122    ◾    Programming Media Art Using Processing

The previous example illustrates how to define boundaries around all
sides of a rectangle using the logical operator, &&. It is important to note
that parentheses enclose each individual condition and the entire con-
joined condition for the sake of clarity. Also, keep an eye out for logical
errors when conjoining conditions. In the following example, the condi-
tion will never be true because it is logically impossible:

FIGURE 5.17

FIGURE 5.18

Conditional Interactions and Rollovers    ◾    123

Exercise 5.4

Using the following starter code, figure out the boundaries of the rectan-
gular flashlight. Then write a conditional if statement that turns on the
yellow light stream only when the mouse hovers over the flashlight.

LESSON 5.5: VARIATIONS WITH MOUSE
AND KEYBOARD ACTIONS
The mouse buttons and computer keys offer even more interactive opportu-
nities than previously covered. In Processing, the keyword mousePressed
has two applications. Inside of void draw(), mousePressed functions as a
variable that stores whether or not the mouse button is currently pressed
down. But, the void mousePressed() function (outside of draw) is called
only once and then exits after the mouse is pressed down. These prin-
ciples are similar for keyPressed() and void keyPressed(). It can be easy

FIGURE 5.19

124    ◾    Programming Media Art Using Processing

to confuse these variations. To see the differences, run the following pro-
gram and test the actions described in the comments:

As you can see, the behaviors for maxing out the colors on each ellipse
vary greatly depending on which version of mousePressed or keyPressed
you apply. Also, depending on your machine, the key buttons may behave

FIGURE 5.20

Conditional Interactions and Rollovers    ◾    125

a bit differently. For certain Operating Systems, holding down a key may
cause multiple calls to the function keyPressed() while on other machines
it will execute only once.

Exercise 5.5

Add onto the following starter program so that:

1.	When you hold the mouse down, the black ellipse goes left while the
red ellipse goes right.

2.	When you hold a key down, the green ellipse moves up while the
blue ellipse moves down.

FIGURE 5.21

126    ◾    Programming Media Art Using Processing

LESSON 5.6: TWO VARIABLES: ALTERNATING MOVEMENTS
Now, we will program a traveling shape to change its direction when
crossing a boundary. In order to do this, we need to use two custom vari-
ables: one for the shape’s position and the other for its directional velocity.
Typically, when we move a shape to the right, we add to the position vari-
able and when we move to the left, we subtract.

But, to make a shape switch between two directions, we need to alter-
nate between positive and negative values. To do this, we will add to our
program a velocity variable, multiply it by −1, and capitalize on the follow-
ing mathematical concepts:

FIGURE 5.22

FIGURE 5.23

Conditional Interactions and Rollovers    ◾    127

Using these principles, we will alternate a variable between positive and
negative. To see how this works, run the following program:

In the above example, we use the “or” logical operator (| |) to create a
choice of two conditions. If the position variable “x” becomes less than 0
or greater than 200 then “velx” is multiplied by −1. Due to the principles
of multiplying integers (Figure 5.23), “velx” alternates between positive
and negative values each time it crosses one of these boundaries. Thus,
the assignment operator that causes the square’s movement (x = x + velx)
updates and alternates the direction of the traveling square.

FIGURE 5.24

128    ◾    Programming Media Art Using Processing

Exercise 5.6

For the following exercise, download the folder: “Chapter 5 Lesson
Imagery” from the publisher’s website. Then, run the starter code with the
image file “planet.png” inside of the data folder (see Lesson 4.1 for more
information on loading images).

a.	Program the planet to bounce up and down.

b.	Now, implement a second variable with a different velocity so that
the planet bounces off all 4 walls.

LESSON 5.7: COLOR DETECTION
USING THE GET() FUNCTION
So far, animation boundaries have been programmed cleanly in rectan-
gular regions. But, at some point you may need to activate a rounded or
odd shaped region in your project. You can do this using color detection
with the get() function. There are 16,777,216 possible RGB colors and
Processing’s get() function can detect them all. The 3 values (R,G,B) that
we are used to seeing in color commands like fill() and stroke() can be

FIGURE 5.25

Conditional Interactions and Rollovers    ◾    129

replaced by number codes provided by the get() function. To see color
detection in action with the get() function, run the following program:

If you click on each color and observe the println() report, you will see
that get() grabs a color value from wherever the mouse is. The color values
are then assigned to a variable named “c.” Now, “c” is available for further
programming (which we will see in the next example). Before moving for-
ward, it is important to note that where you place the get() command mat-
ters. The get() function can only detect the colors of shapes and images
that are placed before it in a program. You can test this for yourself by
moving get() up higher in the program.

FIGURE 5.26

130    ◾    Programming Media Art Using Processing

Now, we will implement the get() command to create a rollover face
responsive to color detection. Run the following program:

As you can see, this strategy provides a nice alternative for creating
active regions in your projects. However, this technique is specific to solid
color detection and will be less reliable with multicolored images and pho-
tos. Also, don’t forget to keep in mind that the order of your code matters
when placing the get() command. Always, put get() just after the shapes,
you need color detection on. If you put get() after shape functions that you
don’t need color detection information on, then you may see your anima-
tions glitch. In the previous example, you can see this glitching in action
by moving get() down in the program just before the close of void draw().

FIGURE 5.27

Conditional Interactions and Rollovers    ◾    131

When you hover over an eye, the animation flickers because get() is deal-
ing with two color layers, one causing the if conditional to fulfill and the
other causing it to exit.

Exercise 5.7

For the following exercise, download the folder: “Chapter 5 Lesson
Imagery” from the publisher’s website. Next, run the following starter code
with the image file “balloons.png” inside of the data folder (see Lesson 4.1
for more info on loading images).

FIGURE 5.28

132    ◾    Programming Media Art Using Processing

In the previous starter code, the balloons move up when you hover your
mouse over the small, black ellipse. Now, program the following additions:

a.	Place a white ellipse() of the same size underneath the black ellipse().

b.	Find the numerical color code for white.

c.	Add an else if conditional statement that makes the balloons move
down when you hover your mouse over the white ellipse().

PROJECT: ROLLOVER ANIMATION
Create a responsive animation that transforms when the mouse hovers
over different parts of the canvas. Consider selecting shapes/images that
work together to create several animation frames of one subject. Think
of this project as bringing to life an object, space, or creature. See project
examples in the downloads folder available from the publisher’s website.

FIGURE 5.29  Student project example: rollover animation. (Printed with per-
mission from Amelia Berry.)

FIGURE 5.30  Student project example: rollover animation. (Printed with per-
mission from Connor Port.)

Conditional Interactions and Rollovers    ◾    133

FIGURE 5.31  Project example of animated bear.

http://taylorandfrancis.com

135

C h a p t e r 6

Events and Interactions
for Simple Games:
Part 1

In Chapters 6 and 7, the concepts presented are meant to be used as parts
for a more complex project such as a multilevel game or interactive nar-
rative. Because these examples fit into larger architectures presented in

FIGURE 6.1  Student project example: scrolling video game. (Printed with per-
mission from Elijah Devillanueva.)

136    ◾    Programming Media Art Using Processing

Chapter 8, the final master project will be tackled at the end of this book.
Use these next three chapters to test ideas as you plan for your concluding
project.

It is also important to note that programs constructed from these
examples can be arranged in a variety of ways depending on the creator’s
vision. As you move through these chapters and later develop a more com-
plex project on your own, there will be new challenges. This is because
each producer’s goals are different and there is no exact template for an
original project.

One of the most important aspects of creating a successful outcome
is a clear understanding of the conditional logic structures in your proj-
ect. Your computer will execute your vision based on the structures you
design. Sometimes there are unintended results when programming a
series of events with multiple conditions and outcomes. Often, a slight
adjustment of brackets will make all the difference in the functionality of
your project. Fitting the different pieces together will take some practice.
However, with plenty of experimentation (and a personal archive of anno-
tated code examples), your work will eventually click!

FIGURE 6.2  Student project example: scrolling video game. (Printed with per-
mission from Elijah Devillanueva.)

Events and Interactions for Simple Games-1    ◾    137

LESSON 6.1: TURNING THINGS ON WITH BOOLEAN
VARIABLES
Thus far, we have exclusively used the numerical variable types: floats and
integers. These variables usually count up or down and animate designs/
events over time. However, sometimes we might need a simple switch that
turns an event on or off. For these purposes, we will use boolean variables
(named after the mathematician, George Boole). Booleans are assigned a
value of true or false and nothing else.

TABLE 6.1  Commonly Used Variables

Type Naming Conventions Values
Declared and Initialized
Examples

Integer Most any word (without
spaces) except for keywords
that are built into Processing.

whole numbers int move = −5;
int jump = 3;

Float “ decimal numbers float fly = 5.0;
float change = −0.5;

Boolean “ true or false boolean button =
true;
boolean switch =
false;

138    ◾    Programming Media Art Using Processing

Run the following example:

In Figure 6.3, there are two conditions the computer must check for. If
the boolean variable, “button” returns as true, then we will see a red fill.
Otherwise, if the “button” variable returns as false, then the else state-
ment will trigger a white fill. And, since “button” is initialized as false,
the ellipse() starts out white. But, when the mouse is pressed, “button”
becomes true and the fill() becomes red.

Exercise 6.1

Create a black canvas that is 200 × 200 pixels. Write a program that uses
a conditional statement with a boolean variable that starts with a red
ellipse() and changes to blue rect() when the mouse is pressed.

FIGURE 6.3

Events and Interactions for Simple Games-1    ◾    139

LESSON 6.2: TOGGLING BETWEEN TWO
STATES USING BOOLEAN VARIABLES
As introduced in Chapter 5, the use of relational and logical operators
(Figure 6.5) is key to programming complex interactions. In the previ-
ous example, we used a boolean variable to turn something on. Now, we
will implement the negation operator (!) to create a switch that alternates
between on and off.

FIGURE 6.4

140    ◾    Programming Media Art Using Processing

In order to create the alternating states of “on” and “off”, we will pro-
gram a boolean variable to negate itself (variable =! variable). Since a bool-
ean variable can only be true or false, every time a certain condition is

FIGURE 6.5

Events and Interactions for Simple Games-1    ◾    141

fulfilled, the boolean variable will switch to its opposite value. Run the
following program:

Whenever the mouse is clicked on the left side of the screen, the bool-
ean variable “circle1” alternates between true and false. If “circle1” is true,
then the black ellipse is drawn. If the “circle1” returns false, then the black
ellipse is not drawn. Also, it is important to note that we see a new short-
hand for writing a boolean variable as true:

if (circle1) is the same as if (circle1 == true).

FIGURE 6.6

142    ◾    Programming Media Art Using Processing

Exercise 6.2

Add onto the previous example (Figure 6.6), by programming two more
black ellipses as button switches. Program these two new ellipses so that
they also toggle on and off when clicked in their respective regions.

LESSON 6.3: MULTIPLE BUTTONS ALTERNATING
In the previous exercise, all of the black ellipses can be turned on, or off,
or in combinations of on and off. But, what if you want each button to be
limited so that only one can be turned on at a time. There are different

FIGURE 6.7

Events and Interactions for Simple Games-1    ◾    143

ways to explore this but the next example shows a direct and consistent
solution. Run the following program:

In the previous example, the canvas is sectioned into 3 regions (upper,
middle, and bottom). The top two regions can only have one boolean vari-
able be true at a time. This is because we have specified that if one boolean
becomes true (in a particular region), then the other boolean becomes
false. So, if the top red light is on, then the yellow light is off and vice versa.

FIGURE 6.8

144    ◾    Programming Media Art Using Processing

Exercise 6.3

Complete the previous example (Figure 6.8) with a third green ellipse()
button on the bottom. Program the three sections so that only one color
can be turned on at a time.

FIGURE 6.9

Events and Interactions for Simple Games-1    ◾    145

LESSON 6.4: BOOLEANS WORKING
WITH NUMERICAL VARIABLES
Together, booleans and numerical variables offer endless possibilities for
time-based events, animations, and action triggers. Run the following
program:

Although this example is simple, it demonstrates a helpful structure for
triggering animation actions on demand. The assignment operator only
increases by 2 when “going” is true. As long as “going” remains true, the
rectangle will move right. If the mouse is pressed again, “going” becomes
false and the assignment operator is no longer active.

FIGURE 6.10

146    ◾    Programming Media Art Using Processing

Exercise 6.4

Type the following starter code:

a.	Now, add a conditional if statement into void draw() that causes the
red ellipse to travel upward when the mouse is pressed.

b.	Next, inside of void mousePressed(), add another if statement that
resets the variable “y” to 150 when it is less than 0.

FIGURE 6.11

Events and Interactions for Simple Games-1    ◾    147

LESSON 6.5: SPECIFIC KEYBOARD INTERACTIONS
The keyboard also offers a world of possibilities for programming interac-
tivity. Run the following program:

The previous example shows the beginning idea of a two player game
using the number keys “1” and “9”. As with the two versions of mouse‑
Pressed, there are two versions of keyPressed in Processing but key‑
Pressed offers even more possibilities due to the many keys available. The
following table explains the syntax for commonly used keys and functions.

FIGURE 6.12

148    ◾    Programming Media Art Using Processing

TABLE 6.2  Keyboard Programming Syntax

keyPressed void keyPressed()

Description A built-in variable typically
used inside of void draw() that
is activated by holding a key
down.

An independent function outside
of void draw() that is called once
every time a key is pressed.

Example without
a specified key

Example using a
specified
number key

Example using a
specified letter
key

Example using
arrow keys

(See the Processing reference for key codes not presented in this table.)

Events and Interactions for Simple Games-1    ◾    149

Exercise 6.5

For the following exercise, download the folder: “Chapter 6 Lesson
Imagery” from the publisher’s website. Next, run the following starter
code with the image file “face.png” inside of the data folder (see Lesson 4.1
for more info on loading images).

Now, finish the code so that the face also moves up and down with the
corresponding arrow keys.

FIGURE 6.13

150    ◾    Programming Media Art Using Processing

LESSON 6.6: CREATING A WALKING CHARACTER

Now, we will combine keyboard interactivity with the toggle of a bool-
ean variable to simulate a walking character composed from two 8-bit
styled, animation frames. From the download folder, “Chapter 6 Lesson

FIGURE 6.14  Student project example: walking character. (Printed with permis-
sion from Angelica Quevedo.)

Events and Interactions for Simple Games-1    ◾    151

Imagery” import the images “friend1.png” and “friend2.png” inside of a
data folder and run the following program:

In the previous example, one x-position variable controls the placement
of t wo d ifferent i mages. These t wo i mages a lternately load e very t ime a
key is pressed and thus create the appearance of a walking animation. The
direction of the animation is controlled by the left and right arrow keys.

FIGURE 6.15

152    ◾    Programming Media Art Using Processing

Exercise 6.6

Write a program using the images “rocketa.png” and “rocketb.png” (from
the “Chapter 6 Lesson Imagery” download folder), that alternates between
the two rocket images and moves up/down with the corresponding arrow
keys.

FIGURE 6.16

Events and Interactions for Simple Games-1    ◾    153

LESSON 6.7: BOUNDARIES
Now that we have the tools to create more complex keyboard controls, we
may want to limit where users can move to on the canvas. Depending on
the goals of your specific project, you might have placed a fence in your
design to tell a story or positioned a net to create a game. Boundaries,
(sometimes called “hitboxes”) are very useful for illustrated, interactive
works. To see a boundary structure in action, run the following program:

FIGURE 6.17

154    ◾    Programming Media Art Using Processing

In Figure 6.17, the arrow keys are programmed to control the horizontal
movement of the green rect(). But, when the green rect() touches the left
or right side of the purple boundaries – it bounces back. This is because
there is a conditional statement resetting the variable “rectx” on both
sides. If, when moving to the left, variable “rectx” becomes smaller than
72, then “rectx” is reset back to 72. On the right side, if “rectx” becomes
larger than 324, then it is reset back to 324. To easily determine these
boundary values, we can watch the println() report in the black console
window while moving the green square to a boundary position. Also, it
is important to note that there is a new shorthand for writing assignment
operators. Figure 6.18 summarizes this shortcut syntax:

Exercise 6.7

Modify the code example from Figure 6.17 with the following additions:

a.	Program the green square to move up and down with the corre-
sponding arrow keys.

b.	Program top and bottom purple boundaries.

FIGURE 6.18

Events and Interactions for Simple Games-1    ◾    155

This concludes, Chapter 6: Events and Interactions for Simple Games:
Part 1. Displayed in this chapter (as well as the next two), are screenshots
from student projects utilizing all lessons from this book. The download
folder at the end of Chapter 8 contains program examples of all of the stu-
dent projects pictured plus more. Feel free to look ahead at these examples,
but please note that these projects contain lessons not covered yet and it
is recommended that you complete Chapters 7 and 8 before starting your
final project.

FIGURE 6.19  Student project example: three level, puzzle game. (Printed with
permission from Gillian Probert.)

http://taylorandfrancis.com

157

C h a p t e r 7

Events and Interactions
for Simple Games:
Part 2

In this chapter, we will explore another set of commonly used procedures
for making games and multilayered projects. We will start by program-
ming timers. Clocked events are frequently used for triggering game

FIGURE 7.1  Student project example: interactive, memory game. (Printed with
permission from Lorena Bustillos.)

158    ◾    Programming Media Art Using Processing

interactions and user outcomes. Next, we will dig into the efficiency of for
loops by generating number sets and multiple shape iterations. Along the
way, we will also explore a keyboard control system that implements con-
tinuous motion and a two-player jumping game. Also prominent in this
chapter is an overview of two strategies for programming collision detec-
tions. For our purposes, collisions occur when two images/shapes inter-
sect on the canvas. For example, an animated character colliding with a
moving obstacle or a reward graphic. Think of Mrs. Pacman, colliding
with the blue ghosts (obstacles) or eating the jumping fruits (rewards). By
implementing detectable collisions, projects can be enhanced with score-
boards, scenery changes, accelerated levels, or whatever your imagination
dictates. As with Chapter 6, the examples here are pieces meant to fit into a
larger project of your designing. An unpacking of multilevel project archi-
tectures will be presented in Chapter 8.

LESSON 7.1: TIMERS
There is nothing more exciting than a countdown. Countdowns place pres-
sure on users working through a timed event such as a video game hunt or
race. There are several ways to program a timer but in this lesson, we will
create a seconds timer by manipulating Processing’s built-in variable, fra‑
meCount. In Processing, frameCount holds the number of frames that
have been displayed after a program starts. By default, Processing loads
60 frames per second and this value offers an opportunity to easily track
when a second has passed. To execute this opportunity, we will implement
the “modulo operator,” which is represented in Processing by the percent-
age symbol: %. Modulo reports, the remainder of two numbers divided.
For example, 20 divided by 3 is 6, with a remainder of 2. So, 20% 3 = 2.

FIGURE 7.2  Student project example: play characters from a matching memory
game. (Printed with permission from Lorena Bustillos.)

Events and Interactions for Simple Games-2    ◾    159

Run the following program to see how modulo (%) and frameCount
work together to create a timer:

Here, the modulo operator is used to determine if an exact second
has passed. Remember, that by default the void draw() cycle runs at 60
frames per second. So, when the frameCount is divided by 60, modulo (%)
returns a remainder of 0. Thus, every time modulo (%) returns 0 – a second
has passed. We plug this calculation into a conditional if statement, which

FIGURE 7.3

FIGURE 7.4

160    ◾    Programming Media Art Using Processing

subtracts 1 one from the “timer” variable each time the second mark is
hit. The “timer” variable is also displayed as a countdown on the canvas
window with the text() command (see Chapter 2). Whereas, before we
used text() to print words, now we use it to print the fluctuating value of
a variable (no quotes needed). Also, note the usage of textAlign(), which
anchors the text in the middle.

Perhaps a continuously counting timer doesn’t suit your programming
goals. You might need a timer to stop at a certain number or reset when a
button is pressed. Run the following example:

In the previous example (Figure 7.5), we’ve implemented a count-
down with a boolean variable called “stop” inside of void draw(). When
the “timer” variable counts down to 0, “stop” becomes true holding the

FIGURE 7.5

Events and Interactions for Simple Games-2    ◾    161

“timer” variable at 0. To create a reset button, we use void keyPressed() to
reset and restart the countdown whenever a key is pressed.

Exercise 7.1

Program a timer displayed on a green canvas that counts up from 0 to 5,
and resets/restarts whenever the mouse is pressed.

FIGURE 7.6

162    ◾    Programming Media Art Using Processing

LESSON 7.2: CONTINUOUS MOTION KEY CONTROLS
In Chapter 6 , we looked a t s trategies for k eyboard c ontrols t hat moved
shapes i ncrementally w ith e ach k ey p ress. N ow, w e w ill t ackle a nother
popular k eyboard c ontrol s tyle o ften u sed i n v ideo g ames: m ultidirec-
tional, continuous motion. Run the following example:

FIGURE 7.7  (Code example continued in Figure 7.8).

Events and Interactions for Simple Games-2    ◾    163

In t he p revious e xample (Figures 7.7–7.8), i t i s t he p lacement o f t he
assignment operators (code lines 23, 24) inside of void draw() that facili-
tate the continuous motion of the ellipse(). Triggered by the arrow keys,
the movements change direction depending on what values are assigned
to “directionX” and “directionY”. The following table presents this exam-
ple in detail.

FIGURE 7.8

TABLE 7.1  Notes on Directional Keyboard Motion (Figures 7.7–7.8).

Assignment Operation
Key Variable x = x + (speed * directionX);
Pressed Values y = y + (speed * directionY); Outcome

Left directionX = –1; x = x + (2.5 * −1); x = x − 2.5; //move left
directionY = 0; y = y + (2.5 * 0); y = y + 0; //no y axis travel

Right directionX = 1; x = x + (2.5 * 1); x = x + 2.5; //move right
directionY = 0; y = y + (2.5 * 0); y = y + 0; //no y axis travel

Up directionX = 0; x = x + (2.5 * 0); x = x + 0; //no x axis travel
directionY = –1; y = y + (2.5 * −1); y = y – 2.5; //move up

Down directionX = 0; x = x + (2.5 * 0); x = x + 0; //no x axis travel
directionY = 1; y = y + (2.5 * 1); y = y + 2.5; //move down

Shift directionX = 0; x = x + (2.5 * 0); x = x + 0; //no x axis travel
directionY = 0; y = y + (2.5 * 0); y = y + 0; //no y axis travel

164    ◾    Programming Media Art Using Processing

Exercise 7.2

Building onto the previous example (Figures 7.7–7.8), program boundaries
for all 4 sides of the canvas so that the ellipse is unable to move off screen.
(For a review on creating boundaries, see Lesson 6.7.)

LESSON 7.3: FOR LOOPS ARE EFFICIENT
What, if your project required 100 shapes to be displayed simultaneously
on the canvas? A task of this length would be quite tedious to program
(100 lines of code!) Fortunately, Processing (like all programming lan-
guages) provides a variety of efficiency structures. One such structure
used to create repetition is called a for loop. The for loop creates a variable,
that contains a sequence of numbers which can be plugged into whatever
command needs repeating. Up until now, the variables we declared were
considered “global variables” since they were declared at the top and acces-
sible throughout the entire program. In the case of a for loop, the variables

FIGURE 7.9

Events and Interactions for Simple Games-2    ◾    165

are usually placed “locally,” which means they are only accessible to the
code within the for loop’s brackets. Run the following program:

Previously, it would have required 17 lines of code to program
17 ellipses(). But, the for loop achieves the same results in about 3 lines of
code. To strategically implement a for loop, it is critical to understand the
3 parts that define its parameters.

TABLE 7.2  Defining the 3 Parameters of a For Loop

Part Name Variable Limit Assignment Operator

Explanation: The variable
holds the set of
repetitions. It is
declared and
initialized at a
starting value of
your choice.
(It is common to
see these
variables named
“i” or “j”.)

Here we specify
the final
possible value
in the repetitive
sequence.

This mathematical operation
works on the variable to
generate a series of new values
until the limit is reached.
(This part is often written in
shorthand, see Figure 6.18).

Example:
(from code
line 10,
Figure 7.10)

int i = 0;
The first value in
the repetition
series is 0.

i <= 400;
The last possible
value in the
repetition series
is 400.

i += 25;
Iterations of the variable “i” are
produced incrementally by 25.
So, her we have:
0, 25, 50, 75, 100...400.

FIGURE 7.10

166    ◾    Programming Media Art Using Processing

The three parts that define a for loop are separated by semicolons and
enclosed in parentheses. Once the for loop is defined, the variable gener-
ated by the for loop can be plugged into the code commands you want
iterated (as long as the commands are contained within the for loop’s curly
brackets). In Figure 7.10, the set of numbers contained in “i” are plugged
into the x position of the ellipse() command, thus drawing a horizontal
series of 17 ellipses. Once completed, the for loop exits.

Like any other variable, we can plug a for loop variable into a variety of
functions and arguments. Run the following program:

In Figure 7.11, we plug the for loop variable “i” into fill() and rect() to
produce a sequence of rectangles in decreasing size and color. To verify the
values a for loop produces, we use the println() function.

Another important note about for loops is that they must have an exit
condition (a viable limit). Otherwise, the for loop will behave as an infinite
loop and possibly crash your program. The following table contains some
examples of infinite loops.

FIGURE 7.11

Events and Interactions for Simple Games-2    ◾    167

Another powerful use of a for loop is to nest one for loop inside of
another. This creates a matrix of values, which can be used for gridded
designs. Run the following program:

By inserting a second for loop inside of the first one, a matrix is created
that generates every “j” to every “i”. This strategy is fun for creating color-
ful gradients. As you advance in your programming studies, you will find
that there are many more possibilities for using loops.

TABLE 7.3  Infinite Loop Examples

Expression Problem

The limit i<=0 is never possible because “i”
starts at 25 and counts up by increments of
50. This loop has no exit condition and will
loop infinitely.

The limit i >=350 is never possible because
“i” starts at 300 and counts down by
decrements of 50. This loop has no exit
condition and will loop infinitely.

FIGURE 7.12

168    ◾    Programming Media Art Using Processing

Exercise 7.3

Program a 250 × 250 pixel canvas with an embedded for loop of rectangles
(50 × 50 pixels) that cover the canvas in the gradient colors of your choice.
Multiple answers possible.

LESSON 7.4: COLOR DETECTION WITH FOR LOOPS
In Lesson 5.7, we explored color detection with the get() command. The
following example is a review on how color detection works but this time
implemented with a for loop. Run the following program:

FIGURE 7.13

FIGURE 7.14

Events and Interactions for Simple Games-2    ◾    169

Color detection offers a variety of opportunities for game styled inter-
actions and we will apply more complexity with this technique moving
forward.

Exercise 7.4

The following starter code uses the random() function inside of two sepa-
rate for loops to create blue and green animated obstacles. There are also
two text() reports shown on the canvas of the variables: “detectblue” and
“detectgreen.” First, run the starter code to see the line animations, then
program the following additions:

a.	Write a conditional if statement that adds 1 to the “detectblue” vari-
able whenever the mouse is over blue.

b.	Create a similar detection/report for the green lines.

FIGURE 7.15

170    ◾    Programming Media Art Using Processing

LESSON 7.5: GAME CREATION FROM KEYS,
LOOPS, AND COLOR DETECTION
The following example implements a keyboard control system that moves
a pink rect() as the player. An embedded for loop is used to generate a grid
of looping, black ellipses that function as obstacles to the player. The rest of
the program uses color detection to see collisions between the pink rect()
and the black obstacles. A collisions report is displayed on the canvas by a
“lives” variable. Run the following program:

FIGURE 7.16  Code example continued in Figures 7.17–7.18.

Events and Interactions for Simple Games-2    ◾    171

FIGURE 7.17  Code example continued in Figure 7.18.

172    ◾    Programming Media Art Using Processing

As you can see, intricate procedures produce longer programs.
Annotations and organization is key to navigating these more lengthy
projects. Below are a few follow-up notes to further unpack this example.

FIGURE 7.18

Events and Interactions for Simple Games-2    ◾    173

(Continued)

TABLE 7.4  Key Notes for Program Example (Figures 7.16–7.18).

Code
Lines

Subject Notes

1–8 global
variables

These variables are placed globally so they can be accessed by
multiple parts of the program.

27–45 for loops
vs
the looping
in void
draw()

The variable named “obstaclesMove” is added to “i” inside of
the embedded for loop. But, further down, we see the
“obstaclesMove” assignment operator and reset outside of the
embedded for loop. This placement is due to the behavior of a
for loop. A for loop does its entire repetition sequence within
one cycle of void draw(). If the assignment operator and reset
were placed inside of the embedded for loop, then they would
execute 20 times faster to account for every value in the for
loop variable cycle.
“i” values = −50, 50, 150, 250, 350
“j” values = 50, 150, 250, 350
“i” * “j”= 20 repetitions

By placing the assignment operator and reset for
“obstaclesMove” outside of the for loop, the program executes
these commands once per each cycle of void draw() and the
animation runs at a more desirable pace.

174    ◾    Programming Media Art Using Processing

51 text()
command
variations

To display custom labels next to the value of a variable shown
on the canvas, use the following syntax for the text()
command:
text (“text you want to display” + variable name, x, y);

53–59 4 sided
color
detection

In this color detection example, our 20 × 20 pink rect() covers
a much larger region than the mouse cursor we used in prior
examples. We also now have moving obstacles, which could
touch any side of the pink rect(). For accurate collision
detection, we need to program a color detection that covers all
four sides of the rect(). So, color detection is set at 11 pixels
from the center of every side of the rect().

56–59, 62 local
variables

Each one of these variables are initialized inside of void
draw() with fluctuating values pulled from the get()
command. These variables are not needed outside of void
draw(), so it is most efficient to declare and initialize them
locally.

66–69 syntax
legibility

Here we see a lengthy, conjoined conditional statement spread
over 4 lines to create better legibility. As long as your syntax is
correct, spreading longer statements over several lines of code
should work fine.

TABLE 7.4 (Continued)  Key Notes for Program Example (Figures 7.16–7.18).

Code
Lines

Subject Notes

Events and Interactions for Simple Games-2    ◾    175

Exercise 7.5

a.	Add a conditional if statement inside of void draw(), that displays
“YOU WIN” on the canvas whenever the pink rectangle crosses the
bottom boundary of the canvas.

b.	Add a second conditional if statement inside of void draw(), that
displays “GAME OVER” on the canvas whenever the “lives” variable
is equivalent to 0.

LESSON 7.6: IMAGE COLLISIONS WITH
THE DISTANCE() FUNCTION

When an image contains several colors, color detection may prove unre-
liable for collisions. The dist() function detects the amount of space
between two points – so, color doesn’t matter. In the following example,
the arrow keys are used to control a player dodging two falling enemies.
A yellow health bar shrinks each time the dist() function detects an inter-
section between the player and an enemy. To get started on this example,

FIGURE 7.19

FIGURE 7.20

176    ◾    Programming Media Art Using Processing

download the folder: “Chapter 7 Lesson Imagery” and import the images
“player.png”, “enemy.png”, and “place.png”. Place the images inside of a
data folder (see Lesson 4.1 for more info on loading images) and run the
following program.

FIGURE 7.21  Code example continued in Figure 7.22).

Events and Interactions for Simple Games-2    ◾    177

FIGURE 7.22

178    ◾    Programming Media Art Using Processing

The following table unpacks this example in depth.

TABLE 7.5  Notes on Program Example (Figures 7.21–7.22).

Code Lines Subject Notes

2, 4,
66–71

dist()
function
collisions

The dist() function measures the distance between 2
points.

Although a design may have an odd shape, if it is a .png
with a transparent background, it still reads as a
rectangular shape. When using the dist() function for
collision detection on all 4 sides, consider using images
that fit well in an evenly sized box. These images will
produce the most visibly accurate collisions. In this
example, both the player and enemy are 100 × 100 pixels
in size, so the distance from their center anchor points
to each side is 50. When the player and enemy intersect,
their dist() is roughly 100 (50 + 50). These collisions are
not perfect but pretty close! Finesse your values as you
see fit.

32–35, 74 health bar The health bar is a simple yellow rect() with an integer
variable controlling the height of the rect(). In this case,
rectMode (CENTER) is not used because we want the
health bar to shrink in one direction rather than equally
from the center. Every time the player collides with an
enemy, 50 pixels are subtracted from the height of the
rect().

55, 63 randomized
enemy positions

To spice the game up, a random() number is plugged
into the horizontal positions of each enemy. These
positions change every time the enemies are reset to the
top of the screen.

Events and Interactions for Simple Games-2    ◾    179

Exercise 7.6

Building on the example from Figure 7.23,

a.	Add an assignment operator that acts on the “enemySpeed” variable
so that it increases by 5 every time the player passes the right side.

b.	Write a conditional if statement that implements the tint() func-
tion in red and prints the text, “game over” whenever the “health”
variable becomes 0 or less. (See Lesson 4.3 for a review on the tint()
function.)

FIGURE 7.23

180    ◾    Programming Media Art Using Processing

LESSON 7.7: TWO PLAYERS, DIRECTIONAL
MOVEMENT, AND JUMPING!

Now, we will program a two-player skateboarding game which keeps the
orientation of an image consistent with the characters’ movements and
gives users the ability to make the skaters jump. From the download
folder: “Chapter 7 Lesson Imagery”, import the following images inside
of a data folder:

FIGURE 7.25

FIGURE 7.24

Events and Interactions for Simple Games-2    ◾    181

Now, run the following program:

FIGURE 7.26  Code example continued in Figures 7.27–7.29.

182    ◾    Programming Media Art Using Processing

FIGURE 7.27  Code example continued in Figures 7.28–7.29.

Events and Interactions for Simple Games-2    ◾    183

FIGURE 7.28  Code example continued in Figure 7.29.

184    ◾    Programming Media Art Using Processing

FIGURE 7.29

Events and Interactions for Simple Games-2    ◾    185

TABLE 7.6  Notes on Program Example (Figures 7.26–7.29)

Code
Line

Subject Notes

20, 24,
44–56

state
variables

Up until now, we have used integers to count up or count
down for animations, but here we use the integer variables,
“aquaOri” and “pinkOri” as state variables. Depending on
what number these variables become – a different state will be
executed. In this particular example, both of these variables
determine which orientation the photo should be facing (one
for the aqua skater image and the other for the pink skater). If
either of their values becomes 1, then the state is right facing.
If their values are 2, then the state is left facing.

58–70,
88–100,
119–127,
132–142,
145–162

horizontal
keyboard
movements

The keys “a” and “d”’ control the directional travel of the aqua
skater and the keys “j” and “l” control the same for the pink
skater. This time we use booleans to control motion in
increments of 5 (rather than the continuous motion shown in
an earlier example.) These movements are initiated with
keyPressed() and stopped with keyReleased(). Depending on
your machine, the key buttons may behave differently.

72–86,
102–116,
128–130,
139–141

jumping
keyboard
movements

The keys “w” and “i” control when the skaters jump. If the
booleans “jumpaqua” and “jumppink” become true, the
skaters are propelled up and over in their respective directions.
Traveling upwards means that y values are getting smaller.
When the skaters’ y-axis variables become less than 50 (almost
to the top of the screen), they are then reset back to their
ground position of 425 and turned false.

186    ◾    Programming Media Art Using Processing

Exercise 7.7

a.	Each skater image is 150 × 150 pixels in size. Program a collision
using the dist() function that resets each skater back to their starting
position whenever they intersect.

b.	Create a scoreboard for each skater on the canvas that tracks and
adds a point whenever one passes the other and makes it to the other
side.

We have now concluded this chapter on simple techniques for video
game design. The next and final chapter of this book provides a variety of
multilevel architectures for creating more complex projects. The templates
within Chapter 8 combined with the lessons from Chapters 1 to 7 should
provide you with enough ideas and strategies to create an original and
interactively fun, master project.

As previously mentioned, several unique and innovative student proj-
ects based on the lessons from this book are available for download at the
end of Chapter 8.

FIGURE 7.30

Events and Interactions for Simple Games-2    ◾    187

FIGURE 7.31  Student project example: interactive makeover simulation. (Printed
with permission from Kathryn Wylie.)

FIGURE 7.32  Student project example: variations of interactive makeover simu-
lation. (Printed with permission from Kathryn Wylie.)

http://taylorandfrancis.com

189

C h a p t e r 8

Multilevel Architectures
and Arrays

In this last chapter, we will use variable collections and level structures
to create multilayered, interactive experiences. The lessons presented in
this chapter are meant to provide organizational structures that can be

FIGURE 8.1  Student project example: multilevel, escape room game. (Printed
with permission from Sierra Gillingham.)

190    ◾    Programming Media Art Using Processing

interwoven with any of the examples presented in this book. Your last
assignment will be to make a master project of your choice. Depending on
your interests, this could manifest as a combat game, an interactive mys-
tery, a visual design program, a choice-based quiz, or? Examples of these
types of projects and many more creative expressions are provided in the
downloads folder for this chapter (available on the publisher’s website).
Let’s get started!

LESSON 8.1: BASIC LEVELS ARCHITECTURE

In this example, we will create a series of screens that change every time
a button is clicked. The code here should feel familiar. What’s different is
how the elements are combined. Run the following program:

FIGURE 8.2  Student project example: multilevel, escape room game. (Printed
with permission from Sierra Gillingham.)

FIGURE 8.3

Multilevel Architectures and Arrays    ◾    191

FIGURE 8.4  Code continued in Figure 8.5.

192    ◾    Programming Media Art Using Processing

FIGURE 8.5

Multilevel Architectures and Arrays    ◾    193

Exercise 8.1

TABLE 8.1  Notes on Program Example (Figures 8.4–8.5).

Code Lines: Subject: Notes:

1, 15, 45,
60, 63, 82

screen
changing
variable

We use an int named “screen” to function as a state variable.
Previously, we used integer variables for animations and
counting sequences. Here, we use an integer variable for
specifying states of activity such as screen levels. The “screen”
variable changes when the mousePressed() function adds 1
to it.

67–72 button
activated

Displayed at the end of void draw() is the button design. But,
the button display is only a visual cue to tell the user where to
click. It is the conditional within mousePressed() that
actually checks to see if the button region was pressed. Also,
note that since the button is displayed on every screen, it only
needs to be drawn once after all of the screens inside of void
draw().

59–64 reset and
restart

All of the variable values are changed by the time the third
“screen” loads. In order to make the whole system repeatable
when it is restarted, we reset these variables back to their
original values inside of “screen” 4.

FIGURE 8.6

194    ◾    Programming Media Art Using Processing

In the previous example, the reset “screen” is 4. Change it to 5 and make
a new “screen” 4 with the following details:

a.	Program the new “screen” 4 with a green background and white let-
ters that read: “Screen 4”.

b.	Animate the text line “Screen” to move up and the number “4” to
move down.

c.	Update the variables inside the reset “screen” 5, so that all the whole
system is repeatable with all animations intact.

LESSON 8.2: STATES WITHIN LEVELS

In this example, we will move a sea turtle through various ocean back-
grounds. From the download folder: “Chapter 8 Lesson Imagery”, import
the following images inside of a data folder.

FIGURE 8.7

Multilevel Architectures and Arrays    ◾    195

FIGURE 8.8

196    ◾    Programming Media Art Using Processing

Now, run the following program.

FIGURE 8.9  Code continued in Figures 8.10–8.11.

Multilevel Architectures and Arrays    ◾    197

FIGURE 8.10  Code continued in Figure 8.11.

198    ◾    Programming Media Art Using Processing

FIGURE 8.11

Multilevel Architectures and Arrays    ◾    199

Exercise 8.2

Add onto the previous example so that the turtle now moves with all four
arrow keys to all four sides of the canvas causing a level change whenever

FIGURE 8.12

TABLE 8.2  Notes on Program Example (Figures 8.9–8.11).

Code
Lines:

Subject: Notes:

7, 14, 25 inactive variable/
image

These code lines are set up in preparation for
Exercise 8.2.

1–3 state variables Throughout the program we use these two different
integer variables. The variable “level” triggers changes
to the ocean backgrounds whenever the turtle crosses a
side. The variable “state” determines the turtle’s
orientation and directional movement.

88–102,
113–124

keyboard
controls over
turtle

In mousePressed(), we assign each “state” of turtle’s
movements to a specific key. In lines 88–102, we
initialize each state with a direction and image
orientation for the turtle.

105–109 levels change
turtle direction

Here, we have set up a conditional that checks to see if
the turtle’s x-axis variable has crossed either side of the
screen. When it does, the “level” variable changes and
the turtle’s direction is reversed. This is because the
“state” variable is multiplied by −1 whenever it reaches
a boundary. (See Lesson 5.6 for a review of alternating
directional movement.)

80–85 reset and restart Here, we reset all variables back to their initial values
for a perfect restart whenever “level” becomes 5.

200    ◾    Programming Media Art Using Processing

any side is crossed. Make sure the correct image orientation is loaded
for each “state” and that when a “level” is changed, the turtle reverses its
direction. Don’t forget to reset the turtle’s y-axis position whenever the
“level” goes back to 1.

LESSON 8.3: ARRAYS
Another efficiency structure commonly used in programming is the
array[]. Identified by square brackets, an array[] is a set of same-type
variables (integers, floats, booleans, images, etc.). Until now, we pro-
grammed single variables stacked up, one at a time in our projects. But,
the array[] structure can hold large collections of variables in one con-
tainer. For example, instead of declaring and initializing 15 float variables
separately, we could declare one array[] to hold all 15 float variables at
once. The array[] structure is not only useful for writing programs more
economically but it also provides new design and functionality oppor-
tunities. As with variables, an array[] can be declared, initialized, and
implemented in a variety of ways. To start our investigation, run the fol-
lowing program:

FIGURE 8.13

Multilevel Architectures and Arrays    ◾    201

In Figure 8.13, we see an array[] declared and initialized in one line of
code. The syntax of an array[] is structured a bit differently when com-
pared to single variables.

Not every program requires an array[] to be declared and initialized in
the same line of code. More on that later.

Another important aspect of understanding how an array[] works is,
knowing the difference between the values held in an array[] and the
index numbers that refer to these values. As shown in Figure 8.13, there
is an index position assigned to every value in an array[]. Index values
always start at 0. For example, an array containing 6 values has 6 index
positions: 0,1,2,3,4,5. We use these index numbers to call certain values
from an array[] for use in our programs. It is also important to note that if
you try to call an index number that doesn’t exist in the specified array[],
your program will come up with errors.

FIGURE 8.14  (The array[] called “MySet” contains 6 indices (0,1,2,3,4,5). Index
number 6 called by println() is out of bounds.)

TABLE 8.3  Declaring and Initializing an Array in the Same Line of Code

Example: int[] Myset = new int[] {15,75,123,105,165,290};

Explanation: Declare
the
array[]
data
type

Name
the
array[]

Assign
the
array[]

Write the
keyword
new

Repeat the
array[]
data type

Assign values to the
array[] inside of curly
brackets {}

202    ◾    Programming Media Art Using Processing

In this next example, we will use the same array[] from Figure 8.13 to
vary the positions of 6 different ellipses. Run the following program:

In Figure 8.15, each value of the array[] is plugged into an individual
ellipse(). Depending on your project needs, this strategy may be neces-
sary. However, this repetition of ellipse() commands can be streamlined.
To reduce code redundancy, we can use the iterative power of a for loop to
consolidate the program’s access to all of the array[] values. The following
example uses just one ellipse() command and a for loop to create a vari-
able index. Run the program:

FIGURE 8.15

FIGURE 8.16

Multilevel Architectures and Arrays    ◾    203

In Figure 8.16, the for loop is used to access each value in the array []
at once by creating a variable set called “i,” that is identical to the array’s
index. It is important to note that these two must be identical. If you gener-
ate a variable index for an array[] that is too large or contains numbers not
included in the original index, then your program will have errors. Once
you have a variable index generated by the for loop, you can plug it into
your array[] and apply the array[] where you need it. Therefore, in Figure
8.16, we applied the array[] of integers to the x position of the ellipse(). In
the next array[] example, we will expand on this strategy by initializing
an array[] with random() values every time the mouse is pressed. Run the
following example:

FIGURE 8.17

204    ◾    Programming Media Art Using Processing

Exercise 8.3

TABLE 8.4  Notes on Program Example (Figure 8.17).

Code
Lines Subject Notes

1–2 array[] declared
but not initialized
in the same line
of code

In this example, we declare a new float array[] with
6 values. But, we do not initialize these values until later in
the program with mousePressed(). However, that does not
mean the array[] starts off empty. By default, an int or
float array[] will contain a set of zeros until initialized.
That is why, when you first run this example, there are 6
black ellipses stacked on top of each other prior to the
mouse being pressed. (Also, note that the default value of
an int or float variable is 0, while booleans are false.)

11–13 println() with
arrays[]

It is always beneficial to use println() to verify variables
and this is no different for an array[]. If you only need
information on one member of the array, then you can
implement println() as demonstrated in Figure 8.13.
However, if you want to access the whole array[] set more
efficiently, it turns out that the println() command will
organize an array[] report very nicely if you only put the
array[] name in println(). If you need to label the array[]
report, add a 2nd println() with the name of the array[] in
quotes.

16–20 for loop array[]
index

We use a for loop to create the index “i” for the “x” array[].
By plugging “i” into x[], all values of the array[] are called
simultaneously. In this example, x[i] is applied to the red
fill() and the x-axis position of the ellipse(). Thus
generating 6 variations of color and placement.

23–32 mousePresssed()
initializes the
array[]

Every time the mouse is pressed, each indice for x[] is
assigned a new random() float value.

FIGURE 8.18

Multilevel Architectures and Arrays    ◾    205

a.	Building onto the previous example (Figure 8.18), by adding a sec-
ond array[] called “y” that holds 6 float values and uses the same “i”
index that the “x” array[] uses.

b.	Next, plug y[i] into the green argument of fill() and the y-axis posi-
tion of the ellipse().

c.	In mousePressed(), initialize each value in y[] to load a random()
number.

LESSON 8.4: IMAGE ARRAYS

In this example, we will load an array[] with a sequence of images and use
mousePressed() to trigger them to appear as stacking boxes. From the

FIGURE 8.19

206    ◾    Programming Media Art Using Processing

download folder: “Chapter 8 Lesson Imagery”, import the following
images inside of a data folder:

Please note that all of the .png images used in this example are 500 × 500
pixels with transparency. For this particular example, the images were all
exported the exact same size as the canvas to create a perfect, symmetrical
display of stacking boxes that all have the same x,y anchor point. Run the
following program.

FIGURE 8.20

Multilevel Architectures and Arrays    ◾    207

FIGURE 8.21

208    ◾    Programming Media Art Using Processing

TABLE 8.5  Notes on Program Example (Figure 8.21).

Location/
Code Lines

Subject Notes

data
folder

invisible
image

The image box0.png is completely invisible. This was designed
intentionally to delay the actual box display until the first click
(since index# 0 loads when the program starts).

data
folder

inactive
images

The images: box4.png, box5.png are intended for use in
Exercise 8.4.

11–14,
data
folder

for loop
image
loading

Just as we did with single image variables, we initialize images
from the data folder into the array[] inside of void setup(). We
could load each image as an individual line of code with the
indices separated but it is more efficient to use a for loop. This
technique works well if all the images for the array[] are named
the same and numbered consecutively (starting at 0) in the data
folder.

for (int i = 0; i< 4; i++){
boxes[i] = loadImage("box" + i + "png");
 }

2, 22–23,
25–26,
29–31

global
index
variable
for the
array[]

In this example, we want to manipulate the members of the box
array[] individually with mousePressed(). A for loop in void
draw() is not the solution because its index variable would be local
and not accessible by the entire program. So, we create a global
index variable called “build”.

33–36 box build
direction
change

An array[] is said to have a “length” which starts at 0 and stops
wherever the programmer specifies. In this case, our array[] has a
length of 4: it starts with index number 0 and ends with index
number 3. Within mousePressed(), we use a conditional
statement to reverse the “direction” variable whenever “build” hits
one of array[] ends. (See Lesson 5.6 for a review of alternating
directional movement.)

Multilevel Architectures and Arrays    ◾    209

Exercise 8.4

Complete the previous example (Figure 8.21), so that all 6 images labeled
“box” (from the data folder) are loaded into the image array[] and trig-
gered to stack up and down whenever the mouse is pressed.

FIGURE 8.22

210    ◾    Programming Media Art Using Processing

LESSON 8.5: PLAYER OPTIONS
In Lesson 8.3, we used an array[] to load large variable sets simultaneously
and in Lesson 8.4, we used an array[] to scroll through a set of images.
Now, we will combine an array[] with keyboard movements to create a
choice of cars for users to move through various screens.

From the download folder: “Chapter 8 Lesson Imagery”, import the fol-
lowing images inside of a data folder:

FIGURE 8.24

FIGURE 8.23

Multilevel Architectures and Arrays    ◾    211

Now, run the following program:

FIGURE 8.25  Code continued in Figure 8.26.

212    ◾    Programming Media Art Using Processing

FIGURE 8.26

Multilevel Architectures and Arrays    ◾    213

Exercise 8.5

Build onto the previous example with the following additions:

a.	Expand the “wall” array[] to hold all 3 wall images from the data
folder.

TABLE 8.6  Notes on Program Example (Figures 8.25–8.26).
Location/
Code Lines Subject Notes
data folder inactive

image
wall2.png is intended for use in Exercise 8.5

4 array[]
indexes

In this example, the car[] and wall[] arrays each work
differently. Since, we call each image from the “wall”
array[] in an isolated screen, we do not need a variable
index. But, in the case of the “car” array[], we do need a
global index variable because we want to be able to
interchange images from the set throughout the entire
program.

33–39,
44–50,
52–58

car selection Each of these 3 code blocks activate a region of the screen
that responds when the mouse is pressed. These 3 regions
correspond to the 3 cars pictured in wall0.png. As soon as
one of these regions is clicked, a value is assigned to the
index variable “choice” and the associated car image is
loaded into the “car” array[].

64 array[]
selection in
action

Once the index variable “choice” is initialized in “screen” 1,
the selected car is controllable by keyboard movements
across screens.

79–87 keyboard
variations

Depending on your machine and keyboard responsiveness,
the car[] reset position may vary.

FIGURE 8.27

214    ◾    Programming Media Art Using Processing

b.	Program in another “screen” (before the final reset screen) that dis-
plays wall[2] with car[choice]. This will be your new “screen” 3.

c.	Program a conditional statement in this new “screen” 3 that advances
to “screen” 4 when the car moves backwards off the left side.

d.	Make “screen” 4 your new final reset screen.

LESSON 8.6: CHOICE-BASED PROJECTS
Now, in this final example, we will look at designing an entire interactive
project as a quiz that shows the user their results. We are going to pro-
gram an interactive box of candy! This strategy will combine pretty much
every technique from the entire book and can serve as a template for other
choice-based projects you envision.

FIGURE 8.28

Multilevel Architectures and Arrays    ◾    215

From the download folder: “Chapter 8 Lesson Imagery”, import the fol-
lowing images inside of a data folder:

Now, run the following program. (Please note that the chocolate selec-
tions are not active yet.)

FIGURE 8.29

216    ◾    Programming Media Art Using Processing

FIGURE 8.30  Code continued in Figures 8.31–8.34.

Multilevel Architectures and Arrays    ◾    217

FIGURE 8.31  Code continued in Figures 8.32–8.34.

218    ◾    Programming Media Art Using Processing

FIGURE 8.32  Code continued in Figures 8.33–8.34.

Multilevel Architectures and Arrays    ◾    219

FIGURE 8.33  Code continued in Figure 8.34.

220    ◾    Programming Media Art Using Processing

FIGURE 8.34

Multilevel Architectures and Arrays    ◾    221

TABLE 8.7  Notes on Program Example (Figures 8.30–8.34).

Location/
Code Lines Subject Notes

data folder inactive
images

The images: candy12.png, candy13.png, candy14.png, and
candy15.png are intended for use in Exercise 8.6

5–8 boolean
variables

In this example, we use boolean variables to create toggle
switches that register which candies are selected by the user.
As an aside, it is possible to write a boolean array[]. But, in
this code example, the organization of the program reads
clearer with individual boolean variables. Also, please note
the groups of 4 boolean variables declared on one line. This
syntax was implemented to remove clutter and does not
change variable functioning. You can apply this to int and
float variables as well.

3, 132–134 screen
changes

The state variable “screen” advances each candy box scene by 1
with mousePressed().

33–52,
136–193

making
selections

In screens 1–4, candy selections are logged based on where
the mouse is pressed. (Remember, the chocolate selections are
not yet active.) Each mousePressed() achieves two purposes:
advance the screen levels and register the user’s candy choices.
Choices are saved as true boolean variables.
Also, when looking at the candy choice conditionals in
mousePressed(), you might think that the “screen” variable
value should match the candy section displayed. For example,
since lollipops are displayed in “screen” 1, the conditional
should reflect this. However, in line 137, we see that the
“screen” variable is actually 2 for the lollipop selection. This is
because as soon as you click a choice you are also
simultaneously advancing to the next value of “screen”.

54–101,
132–194

selection
results

Once “screen” becomes 5, conditional tests for pops, mints,
and taffies are checked to see which boolean variables turned
true for display in the candy box.

104–119 reset When we click to begin the experience again, we reset the
start screen and all of the candy choices. So, “screen” becomes
1 and every boolean is returned to false.

222    ◾    Programming Media Art Using Processing

Exercise 8.6

Complete the previous example so that the chocolate selection works as well.

CONCLUSION
We are now at the drop off point from guided instruction to independent
creative application. There are many ways to head into your final project.
You can remix one of the examples from this chapter or start with one
of the project examples in the download folder. The key is to start with a
project plan and begin coding with an overall structure. Then add things
in piece by piece to test their impact on the rest of the program. It is also
a good idea to prioritize what challenges you will tackle first, here’s a few
final tips before you begin.

•	 Remember to always check your bracket positioning. Small adjust-
ments of bracket syntax will make huge differences in the function-
ality of your code.

FIGURE 8.35

Multilevel Architectures and Arrays    ◾    223

•	 Use println() to verify your variables are doing what you want them
to.

•	 When you experiment with your project, save multiple versions of
the same program. As I wrote in the introduction, sometimes a pur-
suit may take you down a rabbit hole and cause you to forget where
you were before you started testing new ideas. To avoid this, keep a
copy of your first solution attempt off to the side while you run new
tests on other versions.

•	 Take a break! Solutions will come to you when you rest and take your
mind off a frustrating code problem.

•	 If all else fails, consider using the Processing forum (https://discourse.
processing.org). It is free to sign-up and you will find a wealth of pro-
grammers including college students that enjoy looking at code chal-
lenges and helping new learners. The generosity of these members is
incredible and these boards are moderated, so rest assured that this
is a safe space for programmers! Your success at receiving useful help
from the forum depends on how you engage with it. Before posting,
do a keyword search of previous posts. The answer might be waiting
for you without having to wait for an answer. If you do post, always
read the forum’s guidelines before asking questions. When you fol-
low the guidelines you will get great results.

•	 In many ways, this book just scratches the surface of what you can do
with Processing. If you would like to implement coding techniques
not presented in this text, there is no end to the amount of resources
available to you. From books to free tutorial websites and YouTube
videos – you will have a wealth of information to explore.

Onwards to your masterpiece!

FINAL PROJECT: MULTILEVEL INTERACTIVE EXPERIENCE
Create a visually dynamic and interactively interesting project with mul-
tiple screen changes. This could be a game, simulation, story, quiz, or ani-
mated art experience. See project examples in the downloads folder for
Chapter 8, available from the publisher’s website.

https://discourse.processing.org
https://discourse.processing.org

224    ◾    Programming Media Art Using Processing

FIGURE 8.36  Student project example: two player, knight fighting game.
(Printed with permission from Blake Brownyard.)

FIGURE 8.37  Student project example: two player, knight fighting game.
(Printed with permission from Blake Brownyard.)

Multilevel Architectures and Arrays    ◾    225

FIGURE 8.38  Student project example: interactive visual metaphor about bias
and the “other”. (Printed with permission from Maiah Cooper.)

FIGURE 8.39  Student project example: interactive visual metaphor about bias
and the “other”. (Printed with permission from Maiah Cooper.)

226    ◾    Programming Media Art Using Processing

FIGURE 8.40  Project example: graphic design sketch pad.

227

Index

Italicized and bold pages refer to ἀgures and tables respectively.

/*, 23 resizing images and multiples,
&& operator, 121–122, 122 95–97, 96, 97

student project example, 85–86,
107, 107–108 A

tint(), fading and coloring images
using, 93, 93, 93–94, 95

Animation(s) void key pressed() with image
automated, 57–83 rotations, 100–102, 100–102

automated rotations, 80–83, conditional interactions and rollovers,
80–83 109–133

constrain() for stopping color detection using the get()
animations, 71–75, 71–75 function, 128–133, 129–133

counting variables, 58–63, 58–63 conditional statements and
growing shapes with mouse, 67–68, relational operators, 110–113,

67–69 111, 111–113
moving objects in multiple conditional statements with custom

directions, 64–66, 64–66 variables, 114–115, 114–115
println() for debugging, 69–70, logical operators deἀning spaces,

69–71, 71 120–123, 120–123
random() opportunities, 76–79, overview, 109–110

76–79 student project example, 109–110,
student project example, 57, 57–58, 132, 132–133

83 two variables (alternating
collages, 85–108 movements), 126–128,

constraining mouse movements, 126–128
98–99, 98–100 variations with mouse and

fonts creation, 102–105, 102–105 keyboard actions, 123–125,
images, preparing and importing, 124–125

86–87, 86–90, 87–90, 90 and vs. or, 116–119, 116–119, 119
moving images, 91–92, 91–92 constrain() for stopping, 71–75,
overview, 85 71–75
Processing sketch, 87, 87–88 ἀrst, 39–42, 39–42, 41
project optimization and mouseX, 40–41, 40–41, 41

noSmooth(), 106, 106 mouseY, 40–41, 40–41, 41

228    ◾    Index

void draw(), 39
void setup(), 39

trails, 43–44, 43–44
Animation trails, 43–44, 43–44

background(), 43, 44
void draw(), 43, 44
void setup(), 43

Architecture
basic levels, 190–193, 190–194, 193
multilevel, see multilevel architectures

Arguments, 11, 11, 17
Arrays, 200–204, 200–205, 201, 204; see

also multilevel architectures
declaring and initializing, 201
image, 205–207, 205–209, 208, 209
for loops, 202–203
player options, 210–213, 210–214, 213
states within levels, 194–199, 194–200,

199
Aspect ratio, images, 86
Automated animations, 57–83

automated rotations, 80–83, 80–83
constrain() for stopping animations,

71–75, 71–75
counting variables, 58–63, 58–63
growing shapes with mouse, 67–68,

67–69
moving objects in multiple directions,

64–66, 64–66
println() for debugging, 69–70, 69–71,

71
random() opportunities, 76–79, 76–79
student project example, 57, 57–58, 83

Automated rotations, 80–83, 80–83
Autosaving, 3

B

Background() command, 42, 47, 77–78,
102

animation trails, 43, 44
Basic levels architecture, 190–193,

190–194, 193
BeginShape() command, 48, 48
Boole, George, 137
Boolean variables, 137, 137–138, 138–139

with numerical variables, 145–146,
145–146

toggling between two states using,
139–142, 140–142

Boundaries, 153–155, 153–155
“Built-in variables,” 14

C

Canvas window, 7, 10–11, 10–11
pixel grid system, 9, 9–10

Choice-based projects, 214–220, 214–222,
220–221, 222

Cloud-based applications, 3
Code language, graphic designing with,

5–34
canvas window, 7, 10–11, 10–11
code and canvas windows, 10–11,

10–11
coloring pixels, 26–29, 27, 27–29
comments, 23, 23–24
editor window, 7
geometric graphic design, 5

student project example, 5, 34, 34
getting started and overview, 5–8
grayscale, 21, 21–22, 21–22
line commands (stroke and no stroke),

26, 26, 26
lines, width, and height, 11–16, 11–17
more shapes, 18–20, 18–20
order of code, 24, 24–25
pixel grid system, 9, 9–10
Processing ἀle, saving, 8, 8
Processing reference, 31–33, 32–33
Processing web page, 6, 6
Processing workspace, 7, 7
syntax, 22, 22–23
transparency values, adding, 30–31,

30–31
Collages, animated, 85–108

constraining mouse movements,
98–99, 98–100

fonts creation, 102–105, 102–105
images, preparing and importing,

86–87, 86–90, 87–90, 90
moving images, 91–92, 91–92

Index    ◾    229

overview, 85
Processing sketch, 87, 87–88
project optimization and noSmooth(),

106, 106
resizing images and multiples, 95–97,

96, 97
student project example, 85–86, 107,

107–108
tint(), fading and coloring images

using, 93, 93, 93–94, 95
void key pressed() with image

rotations, 100–102, 100–102
Color detection

games creation, 170–172, 170–175,
173–174, 175

with for loops, 168–169, 168–169
using the get() function, 128–133,

129–133
Coloring images, using tint(), 93, 93,

93–94, 95
Coloring pixels, 26–29, 27, 27–29
Comments, 23, 23–24
Complex shapes, 47–48, 47–48

beginShape() command, 48, 48
Conditional interactions and rollovers,

109–133
color detection using the get()

function, 128–133, 129–133
conditional statements

with custom variables, 114–115,
114–115

and relational operators, 110–113,
111, 111–113

logical operators deἀning spaces,
120–123, 120–123

overview, 109–110
student project example, 109–110, 132,

132–133
two variables (alternating movements),

126–128, 126–128
variations with mouse and keyboard

actions, 123–125, 124–125
and vs. or, 116–119, 116–119, 119

Conditional statements, 110–113, 111, 113
with custom variables, 114–115,

114–115
else if statements, 117–118, 119, 119

else statement, 117–118, 119, 119
if statements, 110–113, 111, 112–113,

116–118, 119, 119
overview, 119
and vs. or, 116–119, 116–119, 119

Constrain() command
mouse movements, 98–99, 98–99
for stopping animations, 71–75, 71–75

Continuous motion key controls, 162–164,
162–164, 163

Coordinates, ἀnding
background(), 47
ellipse(), 47
ἀnding, 44–47, 45–46
mousePressed(), 45
mouseX, 45
mouseY, 45
println(), 44, 45–46, 47
responsive environments, 44–47,

45–46
void draw(), 47
void mousePressed(), 44, 46–47
void setup(), 47

Counting variables, 58–63, 58–63
Custom variables, conditional statements

with, 114–115, 114–115

D

Debugging, println() for, 69–70, 69–71, 71
Distance() function, image collisions

with, 175–177, 175–179, 178, 179
Dots Per Inch (DPI), images, 86
Dynamic computer programs, 36, 36–39

video game stages, 37
void draw(), 37–38, 38, 38
void setup(), 37–38, 38, 38
vs. static, 36, 36

E

Editor window, 7
Ellipse() command, 20, 40, 42, 47, 132,

138, 163, 165, 166, 202, 203, 205
Else if statements, 117–118, 119, 119, 132

230    ◾    Index

Else statement, 117–118, 119, 119
Environments (responsive), creating,

35–56; see also 2D environments
animation trails, 43–44, 43–44
complex shapes, 47–48, 47–48
coordinates, ἀnding, 44–47, 45–46
dynamic computer programs, 36,

36–39, 37–38, 38
ἀrst animations, 39–42, 39–42, 41
interactive environment (student

project example), 35, 35–36, 54,
55–56

linking shapes for synched movement,
49, 49–50

rotating shapes, 51–52, 51–56, 53, 54–56
text, adding, 50, 50–51

Events and interactions
simple games-1, see simple games-1,

events and interactions
simple games-2, see simple games-2,

events and interactions

F

Fading, images, using tint(), 93, 93,
93–94, 95

File formats, images, 86
Fill(0) command, 23
Fill() command, 23, 24, 128, 138, 205

fading and coloring images, 93
ἀrst animations, 40

First animations, 39–42, 39–42, 41
mouseX, 40–41, 40–41, 41
mouseY, 40–41, 40–41, 41
void draw(), 39
void setup(), 39

Float variables, 137, 137, 200, 205
Fonts, creation, 102–105, 102–105
For loops, 164–168, 165–168, 202–203

color detection with, 168–169, 168–169
efficiency of, 158, 164–168, 165–168
games creation, 170–172, 170–175,

173–174, 175
inἀnite loop examples, 167
parameters, 165

Forward slashes, 23

FrameCount, 158–159, 159
Functions (commands), 11, 11; see also

specific entries

G

Geometric graphic design (student project
example), 5, 34, 34; see also
graphic designing, with code
language

Get() function, 168
color detection using, 128–133, 129–133

Graphic designing, with code language,
5–34

canvas window, 7, 10–11, 10–11
code and canvas windows, 10–11,

10–11
coloring pixels, 26–29, 27, 27–29
comments, 23, 23–24
editor window, 7
geometric graphic design, 5

student project example, 5, 34, 34
getting started and overview, 5–8
grayscale, 21, 21–22, 21–22
line commands (stroke and no stroke),

26, 26, 26
lines, width, and height, 11–16, 11–17
more shapes, 18–20, 18–20
order of code, 24, 24–25
pixel grid system, 9, 9–10
Processing ἀle, saving, 8, 8
Processing reference, 31–33, 32–33
Processing web page, 6, 6
Processing workspace, 7, 7
syntax, 22, 22–23
transparency values, adding, 30–31,

30–31
Grayscale, 21, 21–22, 21–22
Growing shapes, with mouse, 67–68,

67–69

H

Height, 14–17, 14–17
Hitboxes, 153

Index    ◾    231

I

If statements, 110–113, 111, 112–113,
116–118, 119, 119, 121, 123, 146,
159, 169, 175, 179

Image arrays, 205–207, 205–209, 208, 209
Image collisions, with the distance()

function, 175–177, 175–179,
178, 179

Image() command, 96, 98
Image(s)

aspect ratio, 86
Dots Per Inch (DPI), 86
fading and coloring, using tint(), 93,

93, 93–94, 95
ἀle formats, 86
moving, 91–92, 91–92
PImage variables, 90
preparing and importing, 86–87,

86–90, 87–90, 90
Processing sketch, 87, 87–88
programming steps for displaying, 90
resizing, 95–97, 96, 97
rotations, void key pressed() with,

100–102
sources, 87

Integers, 137, 137
Interactive environment (student project

example), 35, 35–36, 54,
55–56; see also environments
(responsive), creating

K

Keyboard
continuous motion key controls,

162–164, 162–164, 163
directional motion, 163
games creation, 170–172, 170–175,

173–174, 175
programming syntax, 148
speciἀc interactions, 147, 147–149, 148,

149
variations with, 123–125, 124–125

KeyPressed(), 123–125, 124–125, 147

L

Learners, challenges for, 1
Learning by doing, 1
Line() function, 12–13, 12–13, 17, 42

no stroke, 26, 26, 26
stroke, 26, 26, 26

Logical operators, 120–123, 120–123, 139,
140

&& operator, 121–122, 122

M

Math symbols, used in Processing, 16
Mouse

action, variations with, 123–125,
124–125

constraining movements, 98–99,
98–100

growing shapes with, 67–68, 67–69
Mouse movements, constraining, 98–99,

98–100
MousePressed() function, 45, 50, 82, 121,

123–124, 124, 147, 205
MouseX, 49, 58, 82, 120

animation applications examples, 41
constraining mouse movements,

98–99, 98–99
ἀnding coordinates, 45
ἀrst animations, 40–41, 40–41, 41

MouseY, 49, 58, 82
animation applications examples, 41
constraining mouse movements,

98–99, 98–99
ἀnding coordinates, 45
ἀrst animations, 40–41, 40–41, 41

Moving images, 91–92, 91–92
Moving objects, in multiple directions,

64–66, 64–66
Multilevel architectures, 189–226

arrays, 200–204, 200–205, 201, 204
basic levels architecture, 190–193,

190–194, 193
choice-based projects, 214–220,

214–222, 220–221, 222

232    ◾    Index

ἀnal project, 223–224, 224–226
image arrays, 205–207, 205–209, 208,

209
overview, 189–190
player options, 210–213, 210–214, 213
program example, 193, 199, 204, 208,

220–221
states within levels, 194–199, 194–200,

199
student project example, 189–190

N

NoSmooth() command, 106, 106
project optimization and, 106, 106

NoStroke() command, 26, 26
NoTint() command, 94
Numerical variables, boolean variables

with, 145–146, 145–146

O

Operator(s)
&&, 121–122, 122
logical, 120–123, 120–123, 139, 140
relational, 110–113, 111, 111–113, 139,

140
Order of code, 24, 24–25

P

PImage variables, 90
Pixel grid system, 9, 9–10
Println() function, 99, 106, 121, 129, 153,

166, 223
coordinates, ἀnding, 44, 45–46, 47, 50
for debugging, 69–70, 69–71, 71
for stopping animations, 72, 72

Processing; see also graphic designing,
with code language

black and white controls in, 21
color use overview, 27
reference, 31–33, 32–33
RGB mix, 28

Processing ἀle, saving, 8, 8
Processing sketch, 87, 87–88
Processing tab, 2
Processing web page, 6, 6
Processing workspace, 7, 7
Project optimization, noSmooth()

command for, 106, 106

Q

Quad() function, 33, 33

R

Radians() function, 81
Random() function, 169, 203, 205

automated animations, 76–79,
76–79

Rect() command, 20, 42, 79, 138,
154, 170

RectMode (CENTER), 20
Red, green, and blue (RGB), 27

digital color mixing, 27–28,
27–28

Reference, 3
processing, 31–33, 32–33

Relational operators, 110–113, 111,
111–113, 139, 140

Resizing, images, 95–97, 96, 97
Responsive environments, creating,

see environments (responsive),
creating

Rollover animation, 109–133; see also
conditional interactions
and rollovers; conditional
statements

student project example, 109–110, 132,
132–133

Rotate() command, 51, 52, 53
automated rotations, 80–83, 80–83
void mousePressed() with, 100–102,

100–102
Rotating shapes, 51–52, 51–56, 53,

54–56
Rotations, void key pressed() with image,

100–102, 100–102

Index    ◾    233

S

Setup() function, 77, 78
Simple games-1, events and interactions,

135–155
boolean variables, 137, 137–138,

138–139
with numerical variables, 145–146,

145–146
toggling between two states using,

139–142, 140–142
boundaries, 153–155, 153–155
logical operators, 139, 140
multiple buttons alternating, 142–144,

143–144
overview, 135–136
relational operators, 139, 140
speciἀc keyboard interactions, 147,

147–149, 148, 149
student project example, 135–136,

135–136, 150, 155
walking character, creating, 150–152,

150–152
Simple games-2, events and interactions

continuous motion key controls,
162–164, 162–164, 163

image collisions with the distance()
function, 175–177, 175–179, 178,
179

from keys, loops, and color detection,
170–172, 170–175, 173–174, 175

for loops, 164–168, 165–168
color detection with, 168–169,

168–169
efficiency of, 164–168, 165–168
inἀnite loop examples, 167
parameters, 165

overview, 157–158
program example, 173–174, 178, 185
student project examples, 157–158, 187
timers, 158–161, 159–161
two players, directional movement,

and-jumping, 180–184,
180–186, 185, 186

Size() command, 10, 10, 14
Sketch window, 7

Static computer programs, 36, 36; see also
graphic designing, with code
language vs. dynamic, 36, 36

Stroke() command, 23, 26, 26,
26, 128

fading and coloring images, 93
StrokeWeight() command,

26
Syntax, 22, 22–23

T

Text, adding, 50, 50–51
TextAlign() command, 50, 160
Text() command, 105, 160, 169
Textfont() command, 105
Timers, 158–161, 159–161

frameCount, 158–159, 159
text(), 160
textAlign(), 160

Tint() function, 179
fading and coloring images using, 93,

93, 93–94, 95
overview, 93

Transparency values, adding, 30–31,
30–31

“2D Primitives,” 33
2D environments; see also responsive

environments, creating student
project example, 35, 35–36

Two-player skateboarding game
program, 180–184, 180–186,
185, 186

directional movement and jumping,
180–184, 180–186, 185, 186

program example, 185

V

Variables
alternating movements, 126–128,

126–128
boolean, 137, 137–138, 138–139,

145–146, 145–146
commonly used, 137

234    ◾    Index

counting, 58–63, 58–63
custom, conditional statements with,

114–115, 114–115
floats, 137, 137, 200, 205
integers, 137, 137
for loops, 164–168, 165, 165–168
numerical, 145–146, 145–146
PImage, 90

Video game stages, 37
Void draw(), 47, 68, 68, 70, 78, 79, 94,

105, 123, 130, 146, 159, 160, 163,
173–174, 175

animation trails, 43, 44
dynamic computer programs, 37–38,

38, 38
ἀrst animations, 39

Void key pressed() command, 161

with image rotations, 100–102,
100–102

Void mousePressed() command, 44,
46–47, 68, 68, 70, 123–124,
146

Void setup(), 47, 79, 102, 105, 106
animation trails, 43
dynamic computer programs, 37–38,

38, 38
ἀrst animations, 39

W

Walking character, creating, 150–152,
150–152

Width, 14–17, 14–17

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Acknowledgements
	Contributors
	Author
	Introduction
	Chapter 1: Designing Graphically with the Language of Code
	GETTING STARTED & BASIC OVERVIEW
	LESSON 1.1: PIXEL GRID SYSTEM
	LESSON 1.2: CODE AND CANVAS WINDOWS
	LESSON 1.3: LINES, WIDTH, AND HEIGHT
	LESSON 1.4: MORE SHAPES
	LESSON 1.5: GRAYSCALE
	LESSON 1.6: SYNTAX, COMMENTS, AND ORDER OF CODE
	LESSON 1.7: LINE COMMANDS (STROKE AND NO STROKE)
	LESSON 1.8: COLORING PIXELS
	LESSON 1.9: ADDING TRANSPARENCY VALUES
	LESSON 1.10: THE PROCESSING REFERENCE – IMPORTANT RESOURCE!
	PROJECT: GEOMETRIC DESIGN

	Chapter 2: Creating Responsive Environments
	LESSON 2.1: DYNAMIC COMPUTER PROGRAMS
	LESSON 2.2: FIRST ANIMATIONS
	LESSON 2.3: ANIMATION TRAILS
	LESSON 2.4: FINDING EXACT COORDINATES
	LESSON 2.5: COMPLEX SHAPES
	LESSON 2.6: LINKING SHAPES FOR SYNCHED MOVEMENT
	LESSON 2.7: ADDING TEXT
	LESSON 2.8: ROTATING SHAPES
	PROJECT: INTERACTIVE ENVIRONMENT

	Chapter 3: Automated Animations
	LESSON 3.1: COUNTING VARIABLES
	LESSON 3.2: MOVING OBJECTS IN MULTIPLE DIRECTIONS
	LESSON 3.3: GROWING SHAPES WITH THE MOUSE
	LESSON 3.4: PRINTLN() FOR DEBUGGING
	LESSON 3.5: CONSTRAIN() FOR STOPPING ANIMATIONS
	LESSON 3.6: RANDOM() OPPORTUNITIES
	LESSON 3.7: AUTOMATED ROTATIONS
	PROJECT: AUTOMATED ENVIRONMENT

	Chapter 4: Animated Collages
	LESSON 4.1: PREPARING AND IMPORTING IMAGERY
	LESSON 4.2: MOVING IMAGES
	LESSON 4.3: FADING AND COLORING IMAGES USING TINT()
	LESSON 4.4: RESIZING IMAGES & MULTIPLES
	LESSON 4.5: CONSTRAINING MOUSE MOVEMENTS
	LESSON 4.6: VOID KEY PRESSED() WITH IMAGE ROTATIONS
	LESSON 4.7: CREATE FONTS
	LESSON 4.8: PROJECT OPTIMIZATION AND NOSMOOTH()
	PROJECT: ANIMATED AND INTERACTIVE COLLAGE

	Chapter 5: Conditional Interactions and Rollovers
	LESSON 5.1: CONDITIONAL STATEMENTS AND RELATIONAL OPERATORS
	LESSON 5.2: CONDITIONAL STATEMENTS WITH CUSTOM VARIABLES
	LESSON 5.3: AND vs. OR
	LESSON 5.4: LOGICAL OPERATORS DEFINING SPACES
	LESSON 5.5: VARIATIONS WITH MOUSEAND KEYBOARD ACTIONS
	LESSON 5.6: TWO VARIABLES: ALTERNATING MOVEMENTS
	LESSON 5.7: COLOR DETECTION USING THE GET() FUNCTION
	PROJECT: ROLLOVER ANIMATION

	Chapter 6: Events and Interactions for Simple Games: Part 1
	LESSON 6.1: TURNING THINGS ON WITH BOOLEAN VARIABLES
	LESSON 6.2: TOGGLING BETWEEN TWO STATES USING BOOLEAN VARIABLES
	LESSON 6.3: MULTIPLE BUTTONS ALTERNATING
	LESSON 6.4: BOOLEANS WORKING WITH NUMERICAL VARIABLES
	LESSON 6.5: SPECIFIC KEYBOARD INTERACTIONS
	LESSON 6.6: CREATING A WALKING CHARACTER
	LESSON 6.7: BOUNDARIES

	Chapter 7: Events and Interactions for Simple Games: Part 2
	LESSON 7.1: TIMERS
	LESSON 7.2: CONTINUOUS MOTION KEY CONTROLS
	LESSON 7.3: FOR LOOPS ARE EFFICIENT
	LESSON 7.4: COLOR DETECTION WITH FOR LOOPS
	LESSON 7.5: GAME CREATION FROM KEYS, LOOPS, AND COLOR DETECTION
	LESSON 7.6: IMAGE COLLISIONS WITH THE DISTANCE() FUNCTION
	LESSON 7.7: TWO PLAYERS, DIRECTIONAL MOVEMENT, AND JUMPING!

	Chapter 8: Multilevel Architectures and Arrays
	LESSON 8.1: BASIC LEVELS ARCHITECTURE
	LESSON 8.2: STATES WITHIN LEVELS
	LESSON 8.3: ARRAYS
	LESSON 8.4: IMAGE ARRAYS
	LESSON 8.5: PLAYER OPTIONS
	LESSON 8.6: CHOICE-BASED PROJECTS
	CONCLUSION
	FINAL PROJECT: MULTILEVEL INTERACTIVE EXPERIENCE

	INDEX

