

1. Preface

a. Who Is This Book For?

i. To the Programmer

ii. To the Instructor

iii. To the Technology Manager and
Executive

b. What Do I Need To Know?

c. How Is This Book Arranged?

i. Part I – Getting Started

ii. Part II – Connecting to the Physical
World

iii. Part III – Connecting to Other Things

iv. Part IV – Connecting to the Cloud

d. Some Background on the IoT

e. Complexity Redefined

f. Living on the Edge

i. Conventions Used in This Book

ii. Using Code Examples

iii. O’Reilly Online Learning

iv. How to Contact Us

2. I. Getting Started

3. 1. Setting Up Your Environment

a. What you’ll learn in this chapter

b. Designing Your System

i. Breaking Down The Problem

ii. Defining Relevant Outcomes

iii. Architecting a Solution

c. Building, Testing and Deploying Software for
the IoT

i. Step I: Prepare Your Development
Environment

ii. Configuring an Integrated
Development Environment (IDE)

iii. Setup Your GDA Project

iv. Setup Your CDA Project

v. Step II: Define Your Testing Strategy

d. Unit, Integration, and Performance Testing

i. Testing Tips for the Exercises in this
Book

ii. Step III: Managing Your Workflow -
Requirements, Source Code, and
CI/CD

iii. Managing Requirements

iv. Setting up a Cloud Project and
Repositories

v. Source Code Control Using Git
Remotes and Branching

vi. Automated CI/CD in the Cloud

vii. Automated CI/CD in your Local
Development Environment

viii. A Few Thoughts on Containerization

e. Conclusion

4. 2. Building Two Simple IoT Monitoring Applications

a. What you’ll learn in this chapter

b. Designing Your IoT Applications

i. The CDA

ii. CDA Implementation Details

iii. Create the CDA application module

iv. The GDA

c. Additional Exercises

Programming the Internet of
Things

An Introduction to Building Integrated, Device to
Cloud IoT Solutions

With Early Release ebooks, you get books in their earliest form—the author’s
raw and unedited content as they write—so you can take advantage of these
technologies long before the official release of these titles.

Andrew King

Programming the Internet of Things

by Andrew King

Copyright © 2021 Andrew King. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or
sales promotional use. Online editions are also available for
most titles (http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Melissa Duffield and Sarah Grey

Production Editor: Christopher Faucher

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: O’Reilly Media, Inc

July 2021: First Edition

Revision History for the Early Release

2020-08-10: First Release

http://oreilly.com/

See http://oreilly.com/catalog/errata.csp?isbn=9781492081418
for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media,
Inc. Programming the Internet of Things, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and
do not represent the publisher’s views. While the publisher and
the author have used good faith efforts to ensure that the
information and instructions contained in this work are
accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples
or other technology this work contains or describes is subject
to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-492-08134-0

http://oreilly.com/catalog/errata.csp?isbn=9781492081418

Preface

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the Preface of the final book. Please note that the GitHub repo will be made active
later on.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the author at
aking.em@gmail.com.

The Internet of Things (IoT) is a complex, interconnected
system-of-systems composed of different hardware devices,
software applications, data standards, communications
paradigms, and cloud services. Knowing where to start with
your own IoT project can be a bit daunting. Programming the
Internet of Things is designed to get you started on your IoT
development journey, and shows you, the developer, how to
make the IoT work.

If you decide to stay with me through this book, you’ll learn how
to write, test and deploy the software needed to build your own
basic, end-to-end IoT capability.

Who Is This Book For?
Programming the Internet of Things is written for programmers
by a programmer. It’s also designed for any technologist
(programmer or not) interested in learning about, and building,
end-to-end IoT solutions, as well as college-level instructors
teaching their own connected devices course.

This is not designed as a reference book, nor does it provide
an exhaustive deep dive into and analysis of the various
protocols commonly used for communicating amongst IoT
devices and cloud services. There are extremely well-written
specifications for this purpose (although we’ll certainly dive into
some of these details to better understand these protocols).

Those who are interested in practicing what is learned in each
chapter can move straight into the exercises at the end of each
chapter, while those interested more in the concepts and
general knowledge can simply move on to the next section. I’ve
organized this book so that each of these three groups -
Programmers, Instructors, and Information Technology (IT)
Executives - can benefit.

To the Programmer
If you’re embarking on your own IoT learning journey as a
practitioner, I’m assuming you’re mostly interested in
expanding your skillset, as you’ve witnessed the growth of IoT
opportunities and want to be part of this important technology
evolution. Over the years, I found the step-by-step, “build from

the ground up” approach to implementing integrated and open
IoT solutions to be most helpful in understanding the
complexities of this area, and so I follow this model throughout
the book.

The programming examples you’ll encounter throughout this
book are constructed from my own journey in learning about
the IoT, and have evolved to represent many of the lab module
assignments from the graduate-level Connected Devices
course I teach as part of Northeastern University’s Cyber
Physical Systems program.

Each chapter and exercise builds upon the previous, so if
you’re starting out with the IoT, I’d recommend walking through
each as-is, in the order given. If you’re experienced in this
space and are using this book as a reference guide, you may
consider incorporating specific lessons of interest into your own
application.

If you’re new to the IoT and unfamiliar with how an end-to-end
IoT system comes together through software, I’d recommend
walking through the book in order, working through each
exercise, and consider application customizations only after
you’ve mastered each chapter.

To the Instructor
The contents that form the underpinnings of this book have
been used successfully in my graduate-level Connected

Devices course for the past three years. This book is the
formalization of these lecture notes, presentations, examples,
and lab exercises, structured in much the same way as my
course.

The original class was designed as an introduction to the IoT,
but with student input and suggestions from my Teaching
Assistants, it quickly morphed into an advanced, project-
oriented software development course designed as one of the
final required classes for students wrapping up their Master’s in
the Cyber Physical Systems department of Northeastern
University. The goal of the course is to establish a strong
baseline of IoT knowledge to help students move from
academia into industry, bringing foundational IoT skills and
knowledge into their respective organizations.

This book is structured so it can be used as a reference guide
or even as a major component of a complete curriculum to help
you with your own IoT-related course. The content is focused
on constructing an end-to-end, open and integrated IoT
solution, from device to cloud, using a ‘learn as you build’
approach to teaching. Since each chapter builds upon the
previous, you can use this book to guide your students in
building their own platform from the ground up.

You can remain up to date on exercises and other relevant
content useful for teaching and explaining concepts on the
book’s website (https://programmingtheiot.com/programming-
the-iot-book/).

https://programmingtheiot.com/programming-the-iot-book/

To the Technology Manager and Executive
The contents of this book should help you better understand
the integration challenges inherent with any IoT project and
provide insight into the skillsets required to help your
technology team(s) succeed across your IoT initiatives.

If you’re part of this group, my assumption is that you’re mostly
concerned with understanding this technology area as a whole
– its integration challenges, dev team setup requirements and
needs, team skillsets, business user / stakeholder concerns
around the IoT, and the potential change management
challenges you may encounter as you embark on your
organization’s IoT journey.

What Do I Need To Know?
Although the exercises in this book assume that you have
experience as a programmer, most do not require sophisticated
programming skills or a formal computer science background.
However, if you intend to complete the exercises at the end of
most chapters, you’ll need to possess a basic level of comfort
working with both Python and Java as coding languages to
build simple applications comfortably; working in an Integrated
Development Environment (IDE); reading, writing, and
executing Unit Tests; and configuring Linux-based systems via
a shell-based command line.

All exercises are preceded by a to-be design diagram for the
specific task at hand, which provides specific detail on the way
any new logical components you build are to work together
along with the existing components you’ve already developed.
Most of these diagrams will follow the guidelines specified by
the Unified Modeling Language (UML) , and incorporate other
non-UML design constructs in order to make the design as
clear as possible. A legend is included within those diagrams
where I deemed it will add sufficient value, and excluded where
I felt it just adds noise.

For technology executives and managers, you don’t need to
implement the exercises yourself, but it will be helpful to read
through the entire book so you understand the challenges your
team will likely encounter.

For business stakeholders interested mostly in understanding
what the IoT entails, I recommend reading – at a minimum –
the Overview section of each chapter, then focusing your
efforts on the final chapter, which discusses a handful of
practical cases, scenarios, and implementation suggestions.

1

How Is This Book Arranged?
This book will take you through building an end-to-end, full-
stack, and integrated IoT solution using various open source
libraries and software components that you’ll build – step-by-
step. Each of these components will be part of the larger
system, and you’ll see how they interconnect with and map into
an end-state architecture as you work through each chapter’s
exercises.

If you’re not planning on implementing the exercises and just
want to get your feet wet with various IoT technologies, feel
free to skip around to those sections that are most interesting
to you and relevant for your needs.

I’ve grouped like chapters together and used this scheme to
establish the four parts of the book: Part I - Getting Started,
Part II - Connecting to the Physical World, Part III - Connecting
to Other Devices, and Part IV - Connecting to the Cloud. Let’s
review each in a bit more detail.

Part I – Getting Started
In this section, we build our initial foundation for IoT
development. You’ll start by creating a development and
testing environment, and wrap-up the section by writing two
simple applications to validate our environment is working
properly.

Chapter 1 is the longest chapter in the book as it lays
the groundwork for how you’ll build your end-to-end
solution. It will help you establish a baseline of IoT
knowledge and set up your workstation and
development environment so you can be productive as
quickly as possible. I’ll cover some basic IoT terms,
create a simple problem statement, define core
architectural concepts, and establish an initial design
approach that I’ll use as the framework for each
subsequent exercise.

NOTE
The IoT consists of a plethora of heterogeneous devices and
systems, and there are many tools and utilities available to
support development and system automation. The tools and
utilities I use throughout the book fall into the open source
category, and represent a small subset of those available to you.
These shouldn’t be taken as carte blanche recommendations, of
course, as you may have your own that you prefer to work with
and are best suited for your specific needs. My goal is only to
keep the content well-bounded, and to help inform a generalized
development and automation approach to help you be successful
implementing the exercises in this book.

Chapter 2 covers your development environment setup
and requirements capture approach, and then moves
into coding. In this chapter, you’ll create your first two
IoT applications - one in Python and the other in Java.
These will be quite simple, but set the stage for
subsequent chapters. Even if you’re an experienced
developer, it’s important to work through the exercises
as given so we’re working from the same baseline
going forward.

Part II – Connecting to the Physical World
This section covers a fundamental characteristic of the IoT –
integration with the physical world. You’ll learn how to read
sensor data and trigger an actuator both virtually using
emulators and on an actual IoT device.

Chapter 3 explores ways you can collect data from the
physical world (sensing), and trigger actions based on
that data (actuation). You’ll start by building a set of
simple emulators which you may continue using
throughout each subsequent exercise. These simple
emulators will help you simulate real sensors and
permit you to trigger actuation events.

Chapter 4 builds upon Chapter 3 by discussing ways to
connect to a small sampling of real sensors and
actuators if you choose to build and run your
applications on one or more physical devices. This
chapter focuses on the Raspberry Pi, and assumes the
hardware is running the Raspbian operating system.

Chapter 5 discusses telemetry and data formatting. I’ll
discuss ways to structure your data so it’s easy to
store, transmit, and understand by both humans and
machines. This will serve as the foundation for your
interoperability with other ‘things’.

Part III – Connecting to Other Things
This is where the rubber meets the road, so to speak. This
section focuses on integration across devices, as to be truly
integrated, you’ll need a way to get your telemetry and other
information from one place to another. The chapters in this
section focus on learning about and utilizing application layer
protocols designed for use within IoT ecosystems. I’ll assume
your networking layer is already in place and working, although
I’ll discuss a few wireless protocols along the way.

Chapter 6 introduces Publish / Subscribe protocols -
specifically Message Queuing Telemetry Transport
(MQTT) and other related standards often used in IoT
applications. I’ll walk through a select set of
specifications and explain how you can begin building
out a simple abstraction layer that allows you to easily
interface with common open source libraries.

Chapter 7 is nearly identical to Chapter 5, except it
focuses on Request / Response protocols - specifically
the Constrained Application Protocol (CoAP) and other
standards, also commonly used in IoT applications.

Chapter 8 explores the use of both Publish / Subscribe
and Request / Response protocols together. You’ll
integrate MQTT and CoAP as part of your solution, and
see how these two protocols complement one another.

Chapter 9 introduces yet another protocol - the OPC
UA (Open Platform Communications Unified
Architecture) - giving you the ability to use both the
publish / subscribe and request / response

communications paradigms through a single protocol
standard.

Part IV – Connecting to the Cloud
Finally, at the ‘top’ of the integration stack, you’ll learn how to
connect all your IoT device infrastructure to the cloud by using
your gateway application to serve as the go-between for your
cloud functionality and all your devices.

This section covers basic cloud connectivity principles, and
lightly covers the various cloud services that can store,
analyze, and manage your IoT environment. In each case,
you’ll build the same simple cloud application across each
platform.

Chapter 10 considers various IoT-centric cloud
services that are built on open source platforms that
can either be re-hosted in your own environment or
accessed via a free or paid tier.

Chapter 11 provides an overview of various
commercial cloud services that have IoT-specific
capabilities. As there are many books and tutorials
available for these platforms, I won’t go into detail on
building anything specific; this chapter will simply serve
as a review of these capabilities.

Chapter 12 examines a few simple IoT use cases that
I’ve found particularly helpful in preparing my
Connected Devices course at Northeastern University.
Specifically, I’ll cover the overall problem statement,
expected outcome, design approach, and target
solution for a home environmental monitoring system,
pet monitoring system, and hydroponic garden
management system.

In each chapter, I’ll provide a brief introduction to the topic
along with some helpful background material, which will include
some pertinent definitions that should be useful in
understanding the concepts I’ll discuss. I’ll also summarize why
each of these topics is important and what you can expect to
learn. Each chapter ends with some hands-on implementation
exercises to help you take the information presented and apply
it to your own application.

My hope is that this approach will allow you to understand, and
create, an integrated IoT system - end to end. It’s also
designed so you can skip to the chapters that are most
relevant for you as more of a reference guide, so you can skip
the exercises if you’re not interested in coding a solution,
although I do recommend you give them a try! If you do decide
to delve into each lab module, please keep in mind that they
are cumulative in that the work you do for each chapter will
generally be used – or referenced – in a later chapter.

Some Background on the IoT
It may be helpful to look at just what enabled these
ecosystems, and so here’s a brief summary of how we got to
this point. Computing took a big step forward with the invention
of the transistor in the 1950’s, followed in the 1960’s by Gordon
Moore’s paper describing the doubling of transistors packed in
the same physical space (later updated in the 1970’s) .2

With modern computing came modern networking, and the
beginnings of the Internet with the invention of the ARPAnet in
1969 . This led to new ways to chunk, or packetize, data using
the Network Control Protocol (NCP) and Transmission Control
Protocol (TCP) via the Internet Protocol (IP) and leveraging
existing wired infrastructure in the 1970’s. This was useful for
industry, allowing electrical industrial automation to move down
the path of centralized management of distributed, connected
systems. Supervisory Control and Data Acquisition (SCADA)
systems emerged from their proprietary roots, and
Programmable Logic Controllers (PLC’s) were developed to
take advantage of TCP/IP networking and related equipment
standards.

Eventually, we arrived at the 1980’s with the introduction of
User Datagram Protocol (UDP) and the birth of what many of
us experienced as the early modern Internet - the World Wide
Web (WWW) - invented in the late 1980’s by Tim Berners-Lee
.

I’m sure you’ve noticed a common theme: A problem is
followed by a technology innovation (often proprietary in
nature) to address the challenge, which then becomes
standardized (or is superseded by one or more standards),
leading to wide adoption and further innovation.

This brings us to the era of the IoT, where in the late 1980’s
and early 1990’s we begin to see the first connected devices
emerge, including the demonstration of an Internet-connected

3

4

5

6

toaster, demonstrated by John Romkey and Simon Hackett at
1990’s Interop show . Shortly thereafter, a web camera was
set up to monitor the coffee pot near the Trojan Room at the
Computer Lab at the University of Cambridge in 1991 .
Because who wants to make a trip to the coffee machine and
find the coffee pot empty? I

More devices followed, of course, and I’d guess even more
were built and connected as experiments in college labs,
dorms, homes, apartments, and businesses. All the while,
computing and networking continued to become more
inexpensive, powerful, and - of course - smaller. In 1999, Kevin
Ashton presented the “Internet of Things” at Proctor & Gamble
, which is widely believed to be the first coining of the phrase.

Fast forward to 2005, and the Interactive Design Institute in
Italy gives us the inexpensive and designed-for-novices
Arduino Single Board Computer (SBC) , opening the door for
more people to start building their own sensing and automation
systems. Add easily accessible storage and the ability to
analyze data through services reachable from anywhere on the
Internet, and we have the underpinnings of an IoT ecosystem;
that is, a lot of different things that may be individually unique,
but can be connected to each other in such a way as to serve a
larger purpose.

In this sense, I believe it’s best not to view the IoT as a bunch
of things that connect the physical world and the Internet to do
useful work. The essence of the IoT is heterogeneity: lots of

7

8

9

10

dissimilarity in terms of device types, features and capabilities,
and purposes as well as implementation approaches,
supported protocols, security, and management techniques.

Complexity Redefined
So, what exactly is the ‘Internet of Things’? It’s a complex set
of technology ecosystems that connect the physical world to
the Internet using a variety of edge computing devices and
cloud computing services.

For the purposes of this book, edge computing devices
represent the embedded electronics, small computers and
software applications that either interact directly with the
physical world through sensors and actuators or provide a
gateway, or bridge, for those devices and applications to
connect to the Internet. Cloud computing services represent
the computing systems, software applications, data storage,
and other computing services that live within one or more data
centers and are always accessible via the Internet.

To be sure, this is an oversimplification of two complex, and
often overloaded, technical terms. My intent is to provide a
relatively simple categorization of the key computing resources
for which to discuss the IoT and the integrated system you’ll
build as you work through the exercises in this book.

With that said, and for the remainder of the book, I’ll focus on
the IoT in terms of architecture and purpose; that is, how an

IoT system is designed, and the outcome the design is
expected to achieve.

The first step is to map these two technical terms of edge
computing devices and cloud computing services into
architectural tiers, where edge computing devices are part of
the edge tier, and cloud computing services are part of the
cloud tier. This provides both physical and logical separation of
the key functionality of an IoT system, meaning, for example,
that all sensing and actuation will take place in the edge tier,
and all long-term storage and complex analytics will take place
in the cloud tier.

This separation of tiers represents a high-level depiction of the
systems architecture, or plan, that I’ll use going forward to
describe the composition of the various physical and logical
components comprising an integrated IoT system.

NOTE
The Industrial Internet Consortium (IIC) has published a variety of
useful documents on a subset of the Internet of Things, called the
Industrial Internet of Things (IIoT). One such publication, the
Industrial Internet Reference Architecture (located here
https://www.iiconsortium.org/IIRA.htm), discusses a framework
and common vocabulary for IIoT systems, and has heavily
influenced my thinking on the topic of IoT architecture.11

https://www.iiconsortium.org/IIRA.htm

The real value in any IoT system is its ability to provide
measurement and analysis. When sufficient measurements are
collected, and with sufficient granularity and samples, an
analysis can be performed to determine how a system is
performing. The insight this analysis provides helps determine
if the system is achieving its desired outcomes, or if a
correction needs to be made.

If, for example, I can measure the inside temperature of a
refrigerator every minute, I can determine how long the items
stored in the refrigerator have been exposed to a given
temperature. If I sample the inside temperature only once a
day, I don’t have sufficient detail to make that determination.

Of course, the data that I collect needs to be understandable
by other systems, otherwise it’s pretty much useless. Building
integratable IoT solutions requires the developers of each part
of an IoT system to think carefully about how their design (and
data) might interact with other systems. This is why, although
individually these parts may be unique and NOT co-dependent
on another, it’s important for you as the developer to consider
how other systems (and other developers) may need to interact
with your software and data to serve this larger purpose we’ve
been discussing.

The nuances you as the developer will need to deal with at
each step along the way of building an integrated IoT system
are indeed significant – we can’t expect plug ‘n play, or even
consistent behaviors from the system you receive data from.

And, to make matters worse, your code may not always work
across every platform even with the best intentions of writing it
generically enough to function the same way from one
hardware device to another.

It’s not possible to cover all specialized platforms, of course,
nor is it easy to write consistent, semi low-level code at the
device level that doesn’t need to be optimized for every device.
As such, I’m going to work with the understanding that, while
every device may be a bit different, and have differences that
we need to account for when we create (and test) our
solutions, the code samples will be largely portable (with some
minor exceptions) and usable across most systems that can
run a Java Virtual Machine or Python 3 Interpreter.

Living on the Edge
Recall we have two architectural tiers: edge tier and cloud tier.
In terms of outcome analysis, the keys to the kingdom lie in the
cloud tier. Scalability is what gives the IoT its true power, and is
the ability for a system to handle as much (or as little) as we
want. For example, a scalable cloud system that supports the
IoT is one where I can have a single gateway device sending it
data, or thousands (or millions, or billions) without it failing.

You’ve likely read numerous reports describing the IoT as
being gazillions of connected devices which will drive some
exorbitant amount of business value by {pick your favorite year
post-2020}. In the cloud, I (mostly) don’t care about where my

services run, as long as they’re always available and can
handle any workload I throw at them, no matter how many
devices I have within my edge tier.

With all the scalability the cloud tier gives us, an IoT solution
generally exhibits the greatest complexity at the edge, which is
where most, and often all, of the heterogeneity lives. The two
categories of devices this book will focus on are constrained
devices and gateway devices. I’m leaving out the nomenclature
of “smart devices” on purpose, since it’s becoming less clear
how to best define “smart” versus “not so smart” devices. To
grossly over-simplify, constrained devices have some
limitations from a power, communications, and processing
perspective, whereas gateway devices do not.

An example of a constrained device is a low-power (sometimes
battery-operated), single-board computer (SBC), that either
reads data from the environment (such as temperature,
pressure, humidity, etc.), or triggers a valve to open or close
when instructed to do so. An example of a gateway device is
also an SBC, but much more powerful and likely requires a
direct-connect power supply, has the ability to communicate
with many different constrained devices, and also has enough
processing power to aggregate the data from these other
devices, perform some simple analytics, and then determine
when any relevant data is to be sent to the cloud for further
storage and processing.

Figure P-1 envisions a notional IoT systems architecture that
represents the relationships between these device types within
the edge tier and the services and other functionality that live
within the cloud tier.

Figure P-1. - Notional IoT System Architecture

I find it easiest to qualify these devices as follows:

Constrained devices only handle sensing, actuation, or
perhaps both, while only processing messages for
themselves, passing messages along if the right
communications protocol is implemented, and sending
messages to a gateway device. In short, they’re limited
in their abilities, and don’t connect directly to the
Internet – only via a gateway device.

Gateway devices are a super set – they can potentially
do the same work as a constrained device (in that they
may have sensor(s) or actuator(s) attached), but also
have the ability to perform ‘at the edge’ analytics,
determine how messages should be routed (if at all),
and of course, connect directly to the Internet and the
various cloud services that make the IoT useful for
business stakeholders.

Can a constrained device connect directly to the Internet?
Sure, if it contains a TCP/IP stack, has a routable IP address
that’s accessible to and from the public Internet, and of course
has the appropriate communications hardware to talk to, and is
connected with, the Internet. For the purposes of this book,
however, I’ll narrow the category of constrained devices to
these two limitations:

They do not support packet routing directly to or from
the public Internet (although we’ll assume they support
both TCP/IP and UDP/IP) and must interact with a
gateway device in order to be part of any IoT
ecosystem.

They do not contain adequate computing resources to
intelligently determine complex courses of action based
on the data they collect.

What it all means is this: As we make better computing devices
that are smaller, faster, and cheaper; use them to interact with
the physical world, and connect them (or their data) to the
Internet for processing using cloud services, we can derive
insights that help deliver better business outcomes.

At the end of this book, I’ll explore some use cases like the one
just discussed, but in more detail. Each use case will include
an implementation exercise that will allow you to explore the
concept using the knowledge you’ve gleaned from previous
chapters and the code you’ll develop as part of the exercises.

One last point before delving into our first section: Each
chapter begins with a haiku that attempts to capture the
essence of what you’ll learn and some of the challenges you’ll
likely encounter. How did this come to be? From my early days
as a software developer, one of the team’s I worked with had a
policy that if you committed code that caused the nightly build
to break, you’d have to write a haiku related to the issue and e-
mail it to everyone on the team. You may not encounter ‘broken
nightly builds’ much by working through the exercises in this
book, but the haiku’s should at least provide some levity before
you dig into each chapter.

Thanks for reading!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally
by the user.

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is
available for download at
https://github.com/oreillymedia/title_title.

If you have a technical question or a problem using the code
examples, please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book
and quoting example code does not require permission.
Incorporating a significant amount of example code from this
book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and

https://github.com/oreillymedia/title_title
mailto:bookquestions@oreilly.com

ISBN. For example: “Programming the Internet of Things by
Andrew King (O’Reilly). Copyright 2021 Andrew King, 978-1-
492-08141-8.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help companies
succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast
collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

mailto:permissions@oreilly.com
http://oreilly.com/
http://oreilly.com/

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

Email bookquestions@oreilly.com to comment or ask technical
questions about this book.

For news and information about our books and courses, visit
http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

1 The latest UML specification can be found on the Object Management
Group’s (OMG) website (https://www.omg.org/spec/UML/).

2 For further reading on Gordon Moore and Moore’s Law, see
https://www.britannica.com/biography/Gordon-Moore

3 https://en.wikipedia.org/wiki/ARPANET

4 S. D. Antón, D. Fraunholz, C. Lipps, F. Pohl, M. Zimmermann and H.
D. Schotten, “Two decades of SCADA exploitation: A brief history,”

mailto:bookquestions@oreilly.com
http://oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
https://www.omg.org/spec/UML/
https://www.britannica.com/biography/Gordon-Moore
https://en.wikipedia.org/wiki/ARPANET

2017 IEEE Conference on Application, Information and Network
Security (AINS), Miri, 2017, pp. 98-104, doi:
10.1109/AINS.2017.8270432.

5 Details on the IETF’s RFC 768 can be found at
https://tools.ietf.org/html/rfc768

6 For further reading on Tim Berners-Lee’s WWW proposal, please see
https://www.w3.org/History/1989/proposal.html

7 See an explanation at
https://www.livinginternet.com/i/ia_myths_toast.htm

8 See an explanation at
https://en.wikipedia.org/wiki/Trojan_Room_coffee_pot

9 You can read more about Kevin Ashton’s “Internet of Things”
presentation at https://www.rfidjournal.com/that-internet-of-things-thing

10 You can read a brief summary of the Arduino’s birth at
https://www.computerhistory.org/timeline/2005/

11 More information about the Industrial Internet Consortium can be
found on their website (https://www.iiconsortium.org/index.htm).

https://tools.ietf.org/html/rfc768
https://www.w3.org/History/1989/proposal.html
https://www.livinginternet.com/i/ia_myths_toast.htm
https://en.wikipedia.org/wiki/Trojan_Room_coffee_pot
https://www.rfidjournal.com/that-internet-of-things-thing
https://www.computerhistory.org/timeline/2005/
https://www.iiconsortium.org/index.htm

Part I. Getting Started

Chapter 1. Setting Up Your
Environment

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 1st chapter of the final book. Please note that the GitHub repo will be made
active later on.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the author at
aking.em@gmail.com.

A path lies ahead,

Brambles and thorns, then it clears.

Almost there. Patience.

Fundamental concepts: Identify a problem area to tackle and define an architecture as the
baseline for your IoT solution; Setup an IoT-centric development environment that supports
multiple deployment options.

You’ve likely gathered by now that the Internet of Things can
be vast, unwieldy, and very difficult to tame. To plan a way
forward, we’ll first want to identify a problem area to tackle and
then create an architecture from which to design and build our
IoT solution.

Let’s start with a few key questions to establish a baseline:
What problem are you trying to solve? Where does it start and
end? Why does it require an IoT ecosystem? How will all these
pieces work together to solve this problem? What outcome can
you expect if everything works as designed? We’ll explore
each of these in detail, and along the way construct an end-to-
end, integrated IoT solution that meets our needs.

What you’ll learn in this chapter
To help you really understand how an IoT system can and
should be constructed, I’ll dig into some basic architectural
concepts based on the questions above, and use this as the
basis for each programming activity. From there, you’ll build a
solution that addresses the problem layer by layer, adding
more functionality as you work through each subsequent
chapter.

It goes without saying, of course, that the right development
tools will likely save you time and frustration, not to mention
help you with testing, validation, and deployment. There are
many excellent open source and commercial development
tools and frameworks available to support you.

If you’ve been a developer for any length of time, I expect you
have your own specific development environment preferences
that best suit your programming style and approach. I certainly
have mine, and while the examples I present will be based on
my preferred set of tools, my goal in this chapter is not to

specify those you must use, but to help you ramp up on IoT
development in a way that enables you to move out quickly
and eventually choose your own for future development
projects.

The concepts I present will be what matter most – the
programming languages, tools (and their respective versions),
and methods can be changed. These concepts represent some
of the fundamentals of consistent software development:
system design, coding, and testing. Let’s dig into each and get
moving towards building your integrated IoT system.

Designing Your System
Creating a problem statement is probably the most important
part of this puzzle. Let’s try it by drafting something reasonably
straight-forward, but sufficient to encompass a variety of
interesting IoT challenges:

I want to understand the environment in my home and how it
changes over time, and make adjustments to enhance comfort
while saving money.

Seems simple enough, but this is a very broad goal. We can
narrow it down by defining the key actions and objects in our
problem statement. Our goal is to isolate the ‘what’, ‘why’, and
‘how’. Let’s first look at the ‘what’ and the ‘why’, and identify
any action(s) that the design should consider as part of this
process.

Breaking Down The Problem
The exercises in this book will focus on building an IoT solution
that can help you understand your home environment and
respond appropriately. The assumption is that you’ll want to
know what’s going on within your house (within reason), and
take some sort of action if it’s warranted (that is, if the
temperature is too hot, turn on the air conditioning). Simple,
right?

This part of your design approach requires three steps:

1. Collect Data

Let’s define this in terms of what can be sensed, like
temperature, humidity, etc. This is centered on the
capture and transmission of telemetry (measurement
data). The action, or rather, action category, will simply
be named data collection

Temperature

Relative Humidity

Barometric Pressure

System Performance (utilization metrics for
CPU, memory, storage)

2. Determine Relevant Changes

To decide which data is relevant, and whether or not a
change in value is important, we need to not only
collect data, but to store, and trend, time-series data on
the items we can sense (like temperature, humidity,

etc, as indicated above). Let’s refer to this action
category as data management.

3. Take Action

We’ll establish some basic rules to determine if we’ve
crossed any important thresholds, which simply means
we’ll send a signal to something if a threshold is
crossed that requires some type of action (e.g. turn up /
down a thermostat). We’ll refer to this action category
as system triggers.

Defining Relevant Outcomes
Now that we know what steps we need to take, let’s explore
the ‘why’ portion of our problem statement. We can summarize
this using the following two points:

Increase Comfort

Ideally, we’d like to maintain a consistent temperature
and humidity in our living environment. Things get a bit
more complicated when we consider the number of
rooms, how they’re used, etc. We’ll refer to this action
category as configuration management, and it goes
hand-in-hand with both data management and system
triggers.

Save Money

This gets a bit tricky. The most obvious way to save
money is to not spend it! Since we’ll likely need to
allocate financial resources to heat, cool, or humidify a
given area, we want to optimize - not too much
(wasteful), and not too little (we could end up with
frozen water pipes in the winter). Since we might have

some complexity to deal with here - including utility
costs, seasonal changes, etc., as well as anything
related to configuration management - we’ll probably
need some more advanced analytics to handle these
concerns. We’ll call this action category analytics.

You’ve likely noticed that each of the steps in the ‘what’ and
‘why’ sections above have an action category name that will
help with the solution design once we move onto the ‘how’. As
a reminder, these categories are: data collection, data
management, system triggers, configuration management, and
analytics. We’ll dig further into each of these as part of our
implementation approach.

Although the problem statement seems rather simple on the
surface, it turns out that the things you’ll need to do to address
the problem are actually quite common within many IoT
systems. There’s a need to collect data at its source, store and
analyze that data, and take action if some indicator suggests
that would be beneficial. Once you define your IoT architecture
and start building the components that implement it - even
though it will be specific to this problem - you’ll see how it can
be applied to many other problem areas.

Let’s take a quick look at a simple data flow that represents this
decision process in Figure 1-1. You’ll notice each action
category is highlighted in the data flow diagram depicted in
Figure 1-1:

Figure 1-1. Simple IoT data flow

Most IoT systems will require at least some of the five action
categories I’ve called out: data collection, data management,
analytics, configuration management, and system triggers. This
means we can define an architecture that maps these into a
systems diagram, and then start creating software components
that implement part of the system.

This is where the fun starts for us engineers, so let’s get going
with an architecture definition that can support our problem
statement (and will, in fact, be reusable for others).

Architecting a Solution
Organization, structure, and clarity are hallmarks of a good
architecture, but too much can make for a rigid system that
doesn’t scale well for future needs. And if we try to establish an
architecture that will meet all our plausible needs, we’ll never
finish (or perhaps even never get started)! It’s about balance,
so let’s define the architecture with future flexibility in mind, but
also keep things relatively well bounded. This will allow you to
focus on getting to a solution quickly, while still permitting
updates in the future. But first, there are a few key terms that
need to be defined to help establish a baseline architectural
construct to build your solution upon.

As you may recall from Figure 0-1 in the Preface, IoT systems
are generally designed with at least two (sometimes three or
more) architectural tiers in mind. This allows for the separation

of functionality both physically and logically, which permits for
flexible deployment schemes. All of this is to simply say that
the cloud services running within the cloud tier can - technically
speaking - be anywhere in the world, while the devices running
within the edge tier must be in the same location as the
physical systems that are to be measured. Just as Figure 0-1
implies, an example of this tiering may include a constrained
device with sensors or actuators talking to a gateway device,
which in turn talks to a cloud-based service, and vice-versa.

Since we need a place for these five categories of functionality
to be implemented, it’s important to identify their location within
the architecture so we can have some things running close to
where the action is, and others running in the cloud where you
and I can access (and even tweak) the functionality easily.
Recalling the edge tier and cloud tier architecture from the
Preface, let’s see how to map each of the action categories
from the ‘what’ and ‘why’ into each:

Edge Tier (constrained devices and gateway devices):
Data collection, data management, device triggers,
configuration management, and analytics.

Cloud Tier (cloud services): Data management,
configuration management and system analytics.

Why do the Edge Tier and Cloud Tier include similar
functionality? First, let’s take a look at how our flow chart fits
within a tiered architecture:

Figure 1-2. - Notional IoT data flows between the Edge and Cloud Tiers

Again, notice that we have some shared responsibility where
some of the action categories are implemented within both
tiers. Normally, duplication of effort is a bad thing - but in this
case, it can be an advantage! Simple analytics can be used to
trigger a device based on some simple settings if warranted -
for example, if the temperature in your home exceeds 80o F,
you’ll probably want to trigger the HVAC straight away and start
cooling things down to, say, 72o F. There’s no need to depend
on a remote cloud-based service in the Cloud Tier to do this,
although it would be useful to notify the Cloud Tier that this is
happening, and perhaps store some historical data for later
analysis.

Our architecture is starting to take shape. Now we just need a
way to map it to a systems diagram so we can interact with the
physical world (using sensors and actuators). It would also be
good to structure things within our Edge Tier to avoid exposing
components to the Internet unnecessarily. This can be
managed using a constrained device with a specialized
software application that can either run directly on the device,
or on a laptop or other generic computing system with
simulation logic that can emulate sensor and actuator behavior.

Since you’ll want to access the Internet eventually, your design
should include a gateway to handle this and other needs. This
functionality can be implemented as part of a software
application that runs on a gateway device (or, again, a laptop

or other generic computing system). Your gateway device and
constrained device will comprise the ‘edge’ of your IoT design,
which I’ll refer to as the edge tier of your architecture going
forward.

We’ll also want to deploy analytics services, storage
capabilities, and event managers in a way that’s secure, but
accessible from our gateway device and also by human
beings. There are many ways to do this, but we’ll focus on one
(or more) cloud services for this functionality.

Figure 1-3 provides a new view that will provide further insight
into what you’re going to build and how you can begin
incorporating the five action categories I’ve already mentioned.
It represents, in grey boxes, cloud services within the Cloud
Tier, and two applications within the Edge Tier - CDA and GDA
- that will be implemented to contain the functionality of your
constrained device and gateway device, respectively.

Figure 1-3. - Notional IoT simplified logical architecture with Edge and
Cloud Tiers

Let’s dig into each a bit further:

Constrained Device App (CDA)

You’ll build this software application to run within the
constrained device (emulated or actual), and it will
provide data collection and system triggers
functionality. It will handle the interface between the
device’s sensors (which read data from the
environment) and actuators (which trigger actions,
such as turning the thermostat on or off). It will also
play a role in taking action when an actuation is
needed. Eventually, it will be connected to a
communications library to send messages to, and
receive messages from, the Gateway Device App.

Gateway Device App (GDA)

You’ll build this software application to run within the
gateway device (emulated or actual), and it will provide
data management, analytics, and configuration
management functionality. It’s primary role is to
manage data and the connections between the CDA
and cloud services that exist within the Cloud Tier. It
will manage data locally as appropriate, and -
sometimes - take action by sending a command to the
constrained device that triggers an actuation. It will also
manage some of the configuration settings - that is,
those that represent nominal for your environment, and
perform some simple analytics when new telemetry is
received.

Cloud Services

All cloud services applications and functionality do the
heavy data processing and storage work, as they can
theoretically scale it ad infinitum. This simply means
that, if designed well, you can add as many devices as
you want, store as much data as you want, and do in-
depth analysis of that data - trends, highs, lows,
configuration values, etc., all while passing any
relevant insights along to a human end user, and
perhaps even generate Edge Tier actions based on
any defined threshold crossing(s). Technically, cloud
services within an IoT environment can handle all the
action categories previously mentioned, with the
exception of data collection (meaning, they don’t
perform sensing or actuation actions directly). You’ll
build some cloud services to handle this functionality,
but mostly utilize those generic services already
available from some cloud service providers.

Figure 1-4. - Notional IoT detailed logical architecture with Edge and Cloud
Tiers

Putting it all together into a detailed logical architecture,
Figure 1-4, shows how each major logical component within
our two architectural tiers interacts with the others. We’ll use
these two diagrams (Figure 1-3 and Figure 1-4) as our baseline
architecture for all the exercises in this book.

Now that we have a handle on what we’re up against, let’s get
our development environment setup so we can start slinging
code.

Building, Testing and Deploying Software for
the IoT
Building and deploying code across different operating
systems, hardware configurations, and configuration systems
is no walk in the park. With typical IoT projects, we not only
have to deal with different hardware components, but the
myriad ways to develop and deploy across these platforms, not
to mention the various Continuous Integration / Continuous
Deployment (CI/CD) idiosyncrasies with the various cloud
service provider environments we often work within.

With all these challenges, how do we even get started? First
things first - what problem are we trying to solve? As a
developer, you want to implement your IoT design in code, test
it, package it into something that can be easily distributed to
one or more systems, and deploy it safely. We can think of our

development challenges in two build, test and deploy phases,
that just so happen to map to our architectural tiering: Edge
Tier Environment and Cloud Tier Environment. We’ll dig into
the functionality within the Cloud Tier beginning in Chapter 10.
For now, we’ll focus just on our Edge Tier.

Although our Edge Tier will eventually have specialized
hardware to deal with, we can simulate some aspects of these
hardware components within our local development
environment. This will make deployment much easier and is
perfectly fine for all the exercises in this book except for
Chapter 4, which I’ll touch on later in this chapter and is
optional.

There are many ways to get up and running with IoT
development, but we’ll focus on three specific paths: One is
purely simulated, and as I mentioned previously is sufficient for
all but Chapter 4. The other two require IoT-specific hardware
and will be discussed in more depth in Chapter 4.

Integrated Simulated Deployment

This approach doesn’t require any specialized device, and
allows you to use your development workstation (laptop) as
both gateway device and constrained device. This means
you’ll run your GDA and CDA in your local computing
environment. You’ll emulate your sensing and actuation
hardware by building simple software simulators to capture
this functionality within your CDA. All exercises, with the
exception of those in Chapter 4, will work using this
deployment approach.

Separated Physical Deployment

This requires a hardware device, such as a Raspberry Pi,
that meets the hardware criteria listed in the below, giving
you the ability to connect to and interact with real sensors
and actuators. Although many off-the-shelf single-board
computing (SBC) devices can be used as full-blown
computing workstations, I’ll refer to this as your constrained
device, and it will run your CDA directly on the device. As
with the Simulated approach, you’ll run the GDA in your
local computing environment.

NOTE
The Internet Engineering Task Force’s (IETF) Request For
Comments document RFC 7228 defines various classes of
constrained devices (also referred to as constrained nodes).
These classes include Class 0 (very constrained), Class 1
(constrained), and Class 2 (somewhat constrained). For our
purposes, we’ll assume our CDA can run on Class 2 or even
more powerful devices, which typically support full IP-based
networking stacks, meaning the protocols we’ll deal with in this
book will generally work on these types of devices. Although
technically feasible to connect Class 2 devices directly to the
Internet, all of our examples and exercises will interact indirectly
with the Internet via the GDA.

Blended Physical Deployment

This approach is nearly identical to the Separated
Deployment approach, but will run both your CDA and GDA
on the SBC device (e.g. Raspberry Pi or other, similar
system). This technically means you can choose to deploy

1

each app to a different SBC, although it isn’t necessary for
any of the exercises listed.

If you choose either Path B or C for your deployment, there are
a wide range of inexpensive SBC’s that could work for you.
Like choosing our device should have general purpose
input/output (GPIO) functionality, at least one available Inter-
Integrated Circuit (I2C) bus, support TCP/IP and UDP/IP
networking via Wi-Fi or Ethernet, run a general purpose Linux-
based operating system such as Debian (or a derivative such
as Raspbian), and support Python 3 and Java 11 (or higher).

Although you may choose any SBC that works for your needs,
the exercises in the book will focus on the Integrated Simulated
Deployment Path, excepting Chapter 4 of course. Part II
introduces the concept of integration with the physical world,
and I’ll devote Chapter 4 to this type of integration using actual
hardware. While the principles will apply to many SBC’s, any
hardware-specific integration will focus on the Raspberry Pi
platform - specifically, the Raspberry Pi 3 Model B+, Model 4
Model B, and the latest version of the Raspberry Pi Zero W.

Irrespective of the selected Deployment Path, all exercises and
examples assume you’ll do your development and deployment
on a single workstation. This involves a three-step process that
includes preparation of your development environment,
defining your testing strategy, and identifying a build and
deployment automation approach. I’ll cover the basics of these
steps to get you started in this chapter, but also add to each as

you dig into later exercises that have additional dependencies,
testing, and automation needs.

NOTE
As I mentioned previously in this section, the exceptions to the
‘develop on a single workstation’ assumption are the exercises in
Chapter 4, where I’ll discuss implementation and deployment on
real hardware. Again, this only applies if you are planning on
following deployment path B and C, otherwise, all your Edge Tier
code will deploy and run on your local development workstation.

Step I: Prepare Your Development
Environment
Recall that your CDA will be written in Python, and your GDA
will be written in Java. Let’s make sure your workstation has
the right stuff installed to support these languages and their
associated dependencies, by following the steps below.

1. Install Python 3.7 or higher on your workstation (the
latest version as of this writing is 3.8.2). You can check
if it’s already installed, or install it if not, using the
following steps:

Open a terminal or console window, and type:

$ python3 –version

It should return something similar to the
following:

Python 3.7.6

If you get an error (e.g. ‘not found’), you’ll need
to install Python 3.7 or higher. Follow the
instructions for your operating system
(Windows, Mac, Linux) at
https://www.python.org/downloads/.

2. Install pip by downloading the script located at
https://bootstrap.pypa.io/get-pip.py.

a. Use Python to execute the pip installation.
Open a terminal or console window, and type:

$ python3 get-pip.py

3. Ensure Java 11 or higher is installed on your
workstation (the latest version of OpenJDK as of this
writing is Java 14). You can check if it’s already
installed, or install it if not, using the following steps:

a. Open a terminal or console window, and type:

$ java –version

b. It should return something like the following
(make sure it’s at least Java 8)

java 13.0.1 2019-10-15

Java(TM) SE Runtime Environment (build
13.0.1+9)

Java HotSpot(TM) 64-Bit Server VM (build
13.0.1+9, mixed mode, sharing)

c. If you get an error (e.g. ‘not found’), you’ll need
to install Java 11 or higher. Follow the
instructions for your platform (Windows,
MacOS, or Linux) here:
https://openjdk.java.net/install/

https://www.python.org/downloads/
https://bootstrap.pypa.io/get-pip.py
https://openjdk.java.net/install/

4. Install Git. Go to https://git-
scm.com/book/en/v2/Getting-Started-Installing-Git and
review the instructions for your specific operating
system.

NOTE
A prerequisite for any of the exercises in this book, and
for setting up your development environment, is a basic
understanding of Git – a source code management and
versioning tool. Many IDE’s (including Eclipse) come
with source code management already enabled via an
embedded Git client. In a previous step, you installed
Git via the command line so you can run Git commands
independently of your IDE. For more information on
using Git from the command line, please see https://git-
scm.com/docs/gittutorial.

TIP
You can use Git as a standalone source code
management tool on your local development
workstation, and also manage your source code in the
cloud using a variety of free and commercial services.
GitHub is the service I use, and will leverage some of
the features this platform provides to support CI/CD
pipelines, or workflow steps, that allow you to automate
the build, test, package, and deployment process.

5. Create a working development directory, and download
the source code and unit tests for this book:

2

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/docs/gittutorial

a. Open a terminal or console window, create a
new working development directory, and then
change to that directory. Type the following:

i. Linux/macOS:

mkdir $HOME/programmingtheiot

cd $HOME/programmingtheiot

ii. Windows:

mkdir C:\programmingtheiot

cd C:\programmingtheiot

b. Clone the following two source code
repositories for this book by typing the
following:

$ git clone
https://github.com/programmingtheiot/pytho
n-components.git

$ git clone
https://github.com/programmingtheiot/java-
components.git

6. Install and configure virtualenv using pip

a. Open a terminal or console window. Change
your directory to that of the
constraineddeviceapp code you just cloned
from GitHub, and install virtualenv by typing the
following:

i. Linux/macOS:

$ pip install virtualenv

ii. Windows:

3

C:\programmingtheiot> pip install
virtualenv

b. Configure virtualenv for your environment.
Change your directory to that of the
constraineddeviceapp code you just cloned
from GitHub, and type the following:

i. Linux/macOS

$ cd
$HOME/programmingtheiot/python-
components

$ virtualenv -p python3 .venv

$. .venv/bin/activate

(venv) $ pip install -r
basic_imports.txt

ii. Windows

cd C:\programmingtheiot\python-
components

C:\programmingtheiot\python-
components> virtualenv -p
C:\PathToYourPythonExecutable\pytho
n.exe .venv

C:\programmingtheiot\python-
components>
.venv\Scripts\activate.bat

(.venv)
C:\programmingtheiot\python-
components> pip install -r
basic_imports.txt

c. Your virtualenv environment is now set up, and
your terminal is running within virtualenv. You
can activate (using the activate script) and
then deactivate virtualenv (using the
deactivate command) from your command line
easily enough:

i. Linux/macOS

$. .venv/bin/activate

(venv) $ deactivate

ii. Windows

C:\programmingtheiot\python-
components>
.venv\Scripts\activate.bat

(.venv)
C:\programmingtheiot\python-
components> deactivate

At this point, your development workstation is mostly
configured, so let’s dig into the next section and install some
additional tools to make the development process more
streamlined.

Configuring an Integrated Development
Environment (IDE)
There are many excellent tools and IDE’s that help you, the
developer, write, test, and deploy applications written in both
Java and Python. There are tools that I’m very familiar with and
work well for my development needs. My guess is you’re much
the same and have your own tool preferences. It doesn’t really

matter which toolset you use, provided they meet some basic
requirements. For me, these include code highlighting and
completion, code formatting and refactoring, debugging,
compiling and packaging, unit and other testing, and source
code control.

There are many fantastic IDE’s on the market - both
commercial and open source, and the choice is certainly yours.
I developed the examples in this book using the Eclipse IDE
with PyDev installed, as it meets the requirements I’ve
specified and provides a bunch of other convenient features
that I regularly use in my development projects.

If you’re already familiar with writing, testing, and managing
software applications using a different IDE, most of this section
will be old hat. I do recommend you read through it, however,
as this section sets the stage for the development of your GDA
and CDA.

NOTE
I maintain detailed instructions for setting up Eclipse with PyDev
for use with Programming the IoT on my website for students of
my Connected Devices course. You can find more details on this
books website at https://programmingtheiot.com/programming-
the-iot-book.html.

Setup Your GDA Project

4

5

https://programmingtheiot.com/programming-the-iot-book.html

The first step in this process is to install the latest Eclipse IDE
for Java development. You can find the latest download links
for Eclipse at https://www.eclipse.org/downloads/. You’ll notice
that there are many different flavors of the IDE available. For
our purposes, you can simply choose ‘Eclipse IDE for Java
Developers’. Then, follow the instructions for installing the IDE
onto your local system.

Once installed, launch Eclipse, select ‘File -> Import’, and find
‘Git -> Projects from Git’, and click ‘Next’.

Select ‘Existing local repository’ and click ‘Next’. If you already
have some Git repositories in your home path, Eclipse will
probably pick them up and present them as options to import in
the next dialog (not shown). To pull in the newly cloned
repository, simply click ‘Add…’, which will take you to the next
dialog, shown in Figure 1-5. From here, you can add your new
Git repository.

On my workstation, the repository I want to import is located at
E:\aking\programmingtheiot\java-components. Yours will most
likely have a different name, so be sure to enter it correctly!

https://www.eclipse.org/downloads/

Figure 1-5. - Import java-components from your local Git repository

Click ‘Finish’, and you’ll see your new repository added to the
list of repositories you can import. Highlight this new repository
and click ‘Next…’. Eclipse will then present you with another
dialog, asking you to import the project, using one of the
options as shown in Figure 1-6.

Figure 1-6. - Import java-components as an existing Eclipse project

You now have a choice to make: you can import the java
components as an existing Eclipse project, using the new
project wizard, or simply as a general project. Unless you want
to fully customize your project environment, I’d recommend
using the first option - import an existing Eclipse project. This
process will look for a .project file in the working directory
(which I’ve included in each of the repositories you’ve already
cloned), resulting in a new Java project named ‘piot-java-
components’.

Click ‘Finish’, and you’ll see your new project added to the list
of projects in the Eclipse Package Explorer, which - by default -

should be on the left side of your IDE screen.

Your GDA project is now set up in Eclipse, so let’s explore the
files inside. Navigate to this project in Eclipse and click on the
‘>’ to expand it further, as shown in Figure 1-7.

Figure 1-7. - GDA project now setup and ready to use

NOTE
What if you don’t like the project name? Easy. You can simply
right click the ‘piot-java-components’ name. select ‘Rename…’,
type the new name, and click OK. Done. Just know that I’ll
continue to refer to the project by the original name throughout
the book :).

You’ll notice that there’s already two files in the project: One is
GatewayDeviceApp in the programmingtheiot.gda.app

package, and the other is at the top level called pom.xml. The
GatewayDeviceApp is a placeholder to get you started,
although you may replace it with your own. I’d recommend you
keep the naming convention the same, however, as the
pom.xml depends on this to compile, test, and package the
code. If you know your way around Maven already, feel free to
make any changes you’d like.

NOTE
For those of you new to Maven, the pom.xml is simply Maven’s
primary configuration file and contains instructions for loading
dependencies, their respective versions, naming conventions for
your application, build instructions, and of course packaging
instructions. Most of these dependencies are already included,
although you may want to add your own if you find others to be
useful. You’ll also notice that Maven has its own default directory
structure, which I’ve kept in place for the Java repository. To learn
more about these and other Maven features, I’d recommend you
walk through the 5-minute Maven tutorial located at
https://maven.apache.org/guides/getting-started/maven-in-five-
minutes.html.

Now, to make sure everything is in place and you can build,
package, and run the GDA, do the following:

1. Make sure your workstation is connected to the
Internet.

2. Build your project and create an executable package.

https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html

a. Right click on the project ‘piot-java-
components’ in Project Workspace, scroll down
to ‘Run As’, and click ‘Maven install’.

i. Since Maven will have to install any
missing dependencies specified in the
pom.xml, this may take a little bit to
run, depending on your Internet
connection speed and other factors.

b. Check the output in the Console at the bottom
of the Eclipse IDE screen. There should be no
errors, with the last few lines similar to the
following:

[INFO] --- maven-install-
plugin:2.4:install (default-install) @
gateway-device-app ---

[INFO] Installing
E:\aking\workspace\gda\programmingtheiot-
java\target\gateway-device-app-0.0.1.jar
to
C:\Users\aking\.m2\repository\programmingt
heiot\gda\gateway-device-
app\0.0.1\gateway-device-app-0.0.1.jar

[INFO] Installing
E:\aking\workspace\gda\programmingtheiot-
java\pom.xml to
C:\Users\aking\.m2\repository\programmingt
heiot\gda\gateway-device-
app\0.0.1\gateway-device-app-0.0.1.pom

[INFO] -----------------------------------

[INFO] BUILD SUCCESS

[INFO] -----------------------------------

[INFO] Total time: 4.525 s

[INFO] Finished at: 2020-07-04T14:31:45-
04:00

[INFO] -----------------------------------

3. Run your GDA application within Eclipse.

a. Right click on the project ‘programmingtheiot-
java’ again, scroll down to ‘Run As’, and this
time click ‘Java application’.

b. Check the output in the Console at the bottom
of the Eclipse IDE screen. As with your Maven
build, there should be no errors, with the output
similar to the following:

Jul 04, 2020 3:10:49 PM
programmingtheiot.gda.app.GatewayDeviceApp
initConfig INFO: Attempting to load
configuration.

Jul 04, 2020 3:10:49 PM
programmingtheiot.gda.app.GatewayDeviceApp
startApp INFO: Starting GDA...

Jul 04, 2020 3:10:49 PM
programmingtheiot.gda.app.GatewayDeviceApp
startApp INFO: GDA ran successfully.

At this point, you’re ready to start writing your own code for the
GDA. Now let’s get your development workstation setup for the
CDA.

Setup Your CDA Project
This process will mimic the GDA setup process, but requires
the addition of PyDev to Eclipse. Here’s a summary of activities
to get you started.

If not already running, launch the Eclipse IDE. In a separate
window or screen, open your web browser and navigate to
https://marketplace.eclipse.org/content/pydev-python-ide-
eclipse. Drag the PyDev “Install” icon from the web page and
drop it near the top of the Eclipse IDE (you’ll see a green ‘plus’
icon show up, which is the indicator you can drop it into the
IDE). Eclipse will then automatically install PyDev and its
dependencies for you.

Once PyDev is installed, you can switch the Python interpreter
to use the virtualenv environment you created in the previous
section. Select ‘Preferences -> PyDev -> Interpreters -> Python
Interpreter’. Eclipse will present a dialog similar to that shown
in Figure 1-8.

https://marketplace.eclipse.org/content/pydev-python-ide-eclipse

Figure 1-8. - Add a new Python interpreter

Then, simply add a new interpreter using the ‘Browse for
python/pypy.exe’ selection and provide the relevant information
in the next popup window. Once complete, select the virtualenv
interpreter and click ‘Up’ until it’s at the top of the list. At this
point virtualenv will be your default Python Interpreter, as
Figure 1-9 indicates. Click ‘Apply and Close’.

Figure 1-9. - Virtualenv Python interpreter now set as default

Once these steps are complete, select ‘File -> Import’, and
import the python-components Git repository you’ve already
cloned from GitHub. Again, this is nearly identical to the
previous steps shown in Figures 1-5, 1-6, and 1-7, except you’ll
import the python-components Git repository you cloned from
GitHub.

On my workstation, the repository I want to import is located at
E:\aking\programmingtheiot\python-components. As with the
GDA, your repository name will likely be different, so be sure to
use the correct path. I’ve also included the Eclipse .project file
within this repository, so you can simply import it as an Eclipse

project. This one will default to Python, so will use PyDev as
the project template. Again, you can import any way you’d like,
but my recommendation is to use import it as you did with the
GDA.

Once you complete the import process, you’ll notice a new
project in your Package Explorer named ‘piot-python-
components’. You now have the CDA components set up in
your Eclipse IDE.

To view the files inside, navigate to ‘piot-python-components’
and click on the ‘>’ to expand it further, as shown in Figure 1-
10.

Figure 1-10. - CDA project now setup and ready to use

You’ll notice that there’s already six files in the project: One is
ConstrainedDeviceApp in the programmingtheiot.cda.app
package, and the other is at the top level called pom.xml.
There are also four __init__.py files, which are empty files the
Python interpreter uses to determine which directories to
search for Python files (you can ignore these for now). Much
like the GDA example previously given (and written in Java),
the ConstrainedDeviceApp is simply a placeholder to get you
started.

There’s also a Maven pom.xml provided, which may seem odd
for those familiar with Maven, as this is a Python project, not
Java, and Maven is often associated with building, testing and
packaging Java applications. So, why Maven? It’s rather
flexible and doesn’t really care about the type of files it
manages, so will be useful for testing and packaging Python
modules. You won’t need this capability until you start working
on the exercises in the next chapter, so for now, you only need
to verify your CDA runs by doing the following:

NOTE
If you’ve worked extensively with Python, you’re likely familiar
with the PYTHONPATH environment variable. Since I’ve
attempted to keep the GDA and CDA packaging scheme similar,
you may need to tell PyDev (and your virtualenv environment)
how to navigate this directory structure to run your application.
Make sure ‘python’ is set for both ‘main’ and ‘test’ in
PYTHONPATH by doing the following: Right click ‘piot-python-
components’, select ‘PyDev - PYTHONPATH’, then click ‘Add
source folder’, as shown in Figure 1-11. Select the ‘python’ folder
under ‘main’, and click ‘Apply’. Do the same for the ‘python’ folder
under ‘test’. Click ‘Apply and Close’ to finish.

Figure 1-11. - Updating the PYTHONPATH environment variable within
PyDev and Eclipse

1. Run your CDA application within Eclipse.

a. Right click on the project ‘piot-python-
components’ again, scroll down to ‘Run As’,
and this time click Python Run’.

b. Check the output in the Console at the bottom
of the Eclipse IDE screen. As with your GDA
test run, there should be no errors, with the
output similar to the following:

2020-07-06 17:15:39,654:INFO:Attempting to
load configuration...

2020-07-06 17:15:39,655:INFO:Starting
CDA...

2020-07-06 17:15:39,655:INFO:CDA ran
successfully.

Congratulations! Both your GDA and CDA are set up and
working within your IDE. At this point, you’re technically ready
to start writing your own code for both applications. But before
we jump into the exercises in Chapter 2, we need to get our
heads wrapped around the next two steps: testing and
automation.

Step II: Define Your Testing Strategy
Now that your development environment is established for your
GDA and CDA, we can discuss how you’ll test the code you’re
about to develop. Obviously, good testing is a critically
important part of any engineering effort, and programming is no
exception to this. Every application you build should be
thoroughly tested, whether it works completely independently
of other applications or is tightly integrated with other systems.
Further, every unit of code you write should be tested to ensure
it behaves as expected. What exactly is a unit? For our
purposes, a unit is always going to be represented as a
function or method that you want to test.

NOTE
What’s the difference between a function and a method? To
grossly oversimplify, a function is a named grouping of code that
performs a task (such as adding two numbers together) and
returns a result. If the function accepts any input, it will be passed
as one or more parameters. A method is almost identical to a
function, but is attached to an object. In object oriented parlance,
an object is simply a class that’s been instantiated, and a class is
the formal definition of a component - its methods, parameters,
construction, and deconstruction logic. All of the Java examples
in this book will be represented in class form with methods
defined as part of each class. Python can be written in script form
with functions or as classes with methods, but I prefer to write
Python classes with methods and will do so for each Python
example shown in this book, with only a few exceptions to this.

Unit, Integration, and Performance Testing
There are many ways to test software applications and
systems, and some excellent books, articles and blogs on the
subject. Developing a working IoT solution requires careful
attention to testing - within an application and between different
applications and systems. For the purposes of the solution
you’ll develop, I’ll focus on just three: Unit tests, integration
tests, and performance tests.

Unit tests are code modules written to test the smallest
possible unit of code that’s accessible to the test, such as a
function or method. These tests are written to verify a set of

inputs to a given function or method returns an expected result.
Boundary conditions are often tested as well, to ensure the
function or method can handle these types of conditions
appropriately.

NOTE
A unit of code can technically be a single line, multiple lines of
code, or even an entire code library. For our purposes, a unit
refers to one or more lines of code, or an entire code library, that
can be accessed through a single interface that is available on
the local system - that is, a function or a method which
encapsulates the unit’s functionality and can be called from your
test application. This functionality can be, for example, a sorting
algorithm, a calculation, or even an entry point to one or more
additional functions or methods.

I use JUnit for unit testing Java code (included with Eclipse),
and PyUnit for unit testing Python code (part of the standard
Python interpreter, and available within PyDev). You don’t have
to install any additional components to write and execute unit
tests within your IDE if you’re using Eclipse and PyDev.

NOTE
In your GDA project, you’ve likely noticed that Maven creates two
directory structures for your source code: one for Java source
code located in ./src/main/java, and another Java unit test code
located in ./src/test/java. Since this is the default convention for
Maven projects, to leave it as is.

In your CDA project, the code path structure is a bit different than
the GDA project: the ./src/main/java and ./src/test/java are
missing. That probably seems quite sensible, since this is a
Python project and not Java! All the source code is contained
within ./src/programmingtheiot, while all the tests are contained
within ./tests/programmingtheiot.

Although I provide a bunch of unit tests for you to use, we’ll dig
into creating some of your own in Chapter 2. If you’re new to
this area of development, I’ve provided a couple simple code
snippets below in both Java and Python to help you become
more familiar with the code structure. Here’s a simple unit test
in Java using JUnit that verifies the method
addTwoIntegers() behaves as expected:

@Test

public int testAddTwoIntegers(int a, int b)

{

MyClass mc = new MyClass();

6

// baseline test

assertTrue(mc.addTwoIntegers(0, 0) == 0);

assertTrue(mc.addTwoIntegers(1, 2) == 3);

assertTrue(mc.addTwoIntegers(-1, 1) == 0);

assertTrue(mc.addTwoIntegers(-1, -2) == -3);

assertFalse(mc.addTwoIntegers(1, 2) == 4);

assertFalse(mc.addTwoIntegers(-1, -2) == -4);

}

What if you have a single test class with two individual unit
tests, but you only want to run one? Simply add @Ignore before
the @Test annotation, and JUnit will skip that particular test.
Remove the annotation to re-enable the test.

Let’s look at the same example in Python, using Python 3’s
built-in PyUnit framework and the unittest library :

def testAddTwoIntegers(self, a, b):

MyClass mc = MyClass()

baseline test

7

self.assertTrue(mc.addTwoIntegers(0, 0) == 0)

self.assertTrue(mc.addTwoIntegers(1, 2) == 3)

self.assertTrue(mc.addTwoIntegers(-1, 1) == 0)

self.assertTrue(mc.addTwoIntegers(-1, -2) == -3)

self.assertFalse(mc.addTwoIntegers(1, 2) == 4)

self.assertFalse(mc.addTwoIntegers(-1, -2) == -4)

PyUnit, much like JUnit, allows you to disable specific tests if
you wish. Simply add @unittest.skip("Put your reason
here.”), or just @unittest.skip as the annotation before the
method declaration, and the framework will skip over that
specific test.

Integration tests are super important for the IoT, as they can be
used to verify that the connections and interactions between
systems and applications work as expected. Let’s say you want
to test a simple sorting algorithm using a basic data set
embedded within the testing class - you’ll typically write one or
more unit tests, execute each one, and verify all is well.
Simple, right?

What if, however, the sorting algorithm needs to pull data from
a data repository accessible via your local network or even the
Internet? So what, you might ask? Well, now you have another
dependency just to run your sort test. You’ll need an integration

test to verify that data repository connection is both available
and working properly before exercising the sorting unit test.

These kinds of dependencies can make integration testing
pretty challenging with any environment, and even more so
with the IoT, since we sometimes have to set up servers to run
specialized protocols to test our stuff. Fortunately, Maven can
help with this, too, since it supports plugins which make some
of this much easier. For all the code that needs to integrate
only within the Edge Tier, we’ll use Maven plus some
specialized Unit Tests as part of our integration testing strategy.

Finally, performance tests are useful for testing how quickly, or
efficiently, a system handles a variety of conditions. They can
be used with both unit and integration tests when, for instance,
response time or the number of supported concurrent, or
simultaneous connections needs to be measured.

Let’s say there are many different systems that need to retrieve
a list of data from your data repository, and each one wants
that list of data sorted before your application returns it to them.
Ignoring system design and database schema optimization for
a moment, a series of performance tests can be used to time
the responsiveness of each system’s request (from the initial
request to the response), as well as the number of concurrent
systems that can access your application before it no longer
responds adequately.

Another aspect of performance testing is to test the load of the
system your application is running on, which can be quite
useful for IoT applications. IoT devices are generally
constrained in some way - memory, CPU, storage, etc -
whereas cloud services can scale as much as we need them
to. It stands to reason then, that our first IoT applications -
coming up in Chapter 2 - will set the stage for monitoring each
device’s performance individually.

Since performance testing often goes hand-in-hand with both
integration and unit testing, we’ll continue to use Maven and
specialized Unit Tests for this as well, along with open source
tools where needed.

NOTE
There are many performance testing tools available, and you can
also write your own. While system-to-system and
communications protocol performance testing is completely
optional for the purposes of this book, I’ll cover it in more detail
beginning in Part III, Chapter 5, where I’ll introduce Locust , a
tool you can use in your local environment to test scalability for
your solution. Locust allows for extensions that enable you to test
many different protocols and connection paradigms, which will be
important for device-to-device communications testing between
your GDA and CDA.

Testing Tips for the Exercises in this Book

8

The sample code provided for each exercise in this book
includes unit tests, which you can use to test the code you’ll
write. These unit tests are provided as part of the connected-
devices-java and connected-devices-python repositories
you’ve already pulled into your new iot-gateway and iot-device
(respectively) projects are key to ensuring your implementation
works properly.

Some exercises also have integration tests that you can use
as-is, or modify to suit your specific needs. I’ve also included
some sample performance tests you can use to test how well
some of your code performs when under load.

Your implementation of each exercise should pass each
provided unit test with 100% success. You’re welcome to add
more unit tests if you feel they’ll be helpful to verify the
functionality you develop. The integration tests and
performance tests provided will be helpful, but not required as
part of each exercise.

Remember, tests are your friend. And, like a friend, they
shouldn’t be ignored. They can surely be time consuming to
write and maintain, but any good friendship takes investment.
These tests - whether unit, integration, or performance - will
help you validate your design and verify your functionality is
working properly.

Step III: Managing Your Workflow -
Requirements, Source Code, and CI/CD

So you’ve figured out how you want to write your code and test
it - great! But wouldn’t it be great if you could manage all your
requirements, source code, and CI/CD pipelines. Let’s tackle
this in our last step, which is all about managing your overall
development process workflow. This includes requirements
tracking, source code management, and CI/CD automation.

You’re probably sick of me saying that building IoT systems is
hard, and that’s largely because of the nature of the Edge Tier
(since we often have to deal with different types of devices,
communication paradigms, operating environments, security
constraints, and so on). Fortunately, there are many modern
CI/CD tools that can be used to help navigate these troubled
waters. Let’s look at some selection requirements for these
tools, and then explore how to build out a CI/CD pipeline that
will work for our needs.

Your IoT CI/CD pipeline should support secure authentication
and authorization, scriptability from a Linux-like command line,
integration with Git and containerization infrastructure, and the
ability to run pipelines within my local environment as well as a
cloud-hosted environment.

There are many online services that provide these features,
some of which provide both free and paid service tiers. When
you downloaded the source code for this book, you pulled it
from my GitHub repositories using Git’s clone feature. GitHub
is an online service that supports overall developer workflow

9

management, including source code control (using Git), CI/CD
automation, and planning.

Each exercise will build, test, and deploy locally, but also
assume your code is committed to an online repository using
Git for source code management. You’re welcome to use the
online service of your choice, of course. For this book, all
examples and exercises will assume GitHub is being used. You
can learn more about GitHub’s features and create a free
account on their website (https://github.com/).

NOTE
There are lots of great resources, tools and online services
available that let you manage your development work and set up
automated CI/CD pipelines. Read through this section, try things
out, and then as you gain more experience, choose the tools and
service that works best for you.

Managing Requirements
Ah yes - requirements. What are we building, who cares, and
how are we going to build it? Plans are good, are they not?
And since they’re good, we should have a tool that embraces
goodness, which includes: task prioritization, task tracking,
team collaboration, and (maybe) integration with other tools.

Remember the code you cloned from my GitHub repository?
Choose one - for example, constraineddeviceapp, and open its

https://github.com/

URL in a web browser. You’ll notice that it has some Issues
(like, literally - there’s a column called ‘Issues’ on the main
page). If you click on ‘Issues’, you’ll see all the tasks
(requirements) that need to be implemented.

Each task contains the instructions and other details a
developer (you) will need to write the code and make sure it
works correctly.

So far, so good, right? These tasks - at least in GitHub - can be
organized into a board, so that you can see all of the things
that need to be implemented for a project. You’ve probably
heard of Agile project management processes such as
Scrum and Kanban.

One of the workflow organizational approaches GitHub let’s
you select for a project is a Kanban-based electronic board.
Kanban organizes tasks as cards, which can then be placed
into various columns within the board’s workflow depending on
their status. This is the approach we’ll use in the book to track
things that need to be done for each code repository.

NOTE
I’m managing all of the activities for this book within a Kanban
board, too. Each card on the board represents a task I (or one of
my team members) needs to complete. Cards only move to
‘Done’ after Sarah approves (thanks Sarah!)

10

This approach is really powerful, and I think you’ll see how it
will help you organize the work you need to do and track your
progress as you go through this book.

Setting up a Cloud Project and Repositories
This book is actually organized as a large IoT project using a
single Kanban board across the repositories. Each repository
will have a set of tasks that are aligned to chapter-based
milestones, which map back into the Kanban board.

The beauty of this approach is that, once your project and
repositories are properly set up, all you really need to do is
update your task status as you work through each chapter
writing, testing and committing your code. The workflow engine
will automatically parse your task updates, and represent the
task’s card on the board for you. Neat, huh?

If you’re interested in using GitHub to set all of this up, here’s a
simple 3-step process you can use to get started:

1. Create a GitHub account

a. If desired, create an organization associated
with the GitHub account

2. Within the your account (or organization), create the
following:

a. A new private project named ‘Programming the
IoT - Exercises’

b. A new private Git repository named ‘piot-java-
components’

c. A new private Git repository named ‘piot-
python-components’

3. Update the remote repository for both ‘piot-java-
components’ and ‘piot-python-components’

a. From the command line, execute the following
commands:

git remote set-url origin {your new URL}

git commit -m “Initial commit.”

git push

b. IMPORTANT: Be sure to do this for both ‘piot-
java-components’ and ‘piot-python-
components’, using the appropriate Git
repository URL for each!

NOTE
I’ve written a guide to help you configure all of this, located at the
book’s homepage (https://programmingtheiot.com/programming-
the-iot-book.html).

Once you complete the tasks above, your cloud-based
workflow environment is now set up and ready to use. Take a
look at Figure 1-12. It shows the task template I’ll use
throughout the book (GitHub calls this an ‘Issue’). This is the
stuff that goes into each task.

https://programmingtheiot.com/programming-the-iot-book.html

It’s rather simple, and you only have to enter five items: Name,
Description, Actions, Estimate, and Validation. You can update
this, but I’d recommend sticking with one template for all your
cards. If you create a card that doesn’t have any validation step
(for some reason), just enter ‘N/A’.

Figure 1-12. - Task template

Most of these categories are self-explanatory. But, why only
three levels-of-effort for Estimate? In this book, most of the
activities should take ~2 hours or less (Small), about half a day
(Medium), or about one day (Large). If you come across an
activity that you’re sure will take more than a day, it should be
broken down into smaller tasks that fit one of these three
levels-of-effort.

For example, a ‘task’ with the name Integrate IoT solution with
three cloud services certainly represents work that needs to be
done, but judging by the name only, it’s clearly way too big and
complicated to be a single work activity.

My suggestion is to write tasks that align to a specific code
module, or even a single method, as much as possible. I’m
sure you’ve heard this before: Keep it simple.

Figure 1-13 shows an example of the template filled in with the
first coding task you’ll have - creating the Constrained Device
Application (CDA).

Figure 1-13. - Example of a typical development task

And Figure 1-14 shows the result of adding the task as a
Kanban card. This card was generated automatically after
aligning the task to a project. Notice it’s been added into the
“To do” column on the board, since it’s new and there’s no
status as of yet. Once you start working on the task and
change its status, it will move to ‘In progress’.

Figure 1-14. - The new example task automatically added into the Kanban
board

Source Code Control Using Git Remotes and
Branching
One of the key benefits of using Git is the ability to collaborate
with others and synchronize your local code repository with a
remote repository stored in the cloud. If you’ve worked with Git
before, you’re already familiar with remotes and branching. I’m
not going to go into significant detail here, but they’re important
concepts to grasp as part of your automation environment.

Branching is simply a way of enabling each developer, or team,
to segment their work without negatively impacting the main
code base. In Git, this default main branch is currently called
‘master’, and is typically used to contain the code that has
been completed, tested, verified, and - usually - placed into
production. This is the default branch for both
‘programmingtheiot-java’ and ‘programmingtheiot-python’, and
while you can leave it as is and simply work off this default
branch, it’s not generally recommended for the reasons I
mentioned.

Branching strategies can differ from company to company and
team to team, although the one I like to use has each chapter
in a new branch, then once all is working correctly and properly
tested, the chapter branch gets merged into the master. From
there, a new branch is created from the merged master for the
next chapter, and so on.

This approach allows you to easily track changes between
chapters, and even go back to the historical record of an earlier
chapter if you want to see what changed between, say,
Chapter 2 and Chapter 5. In Eclipse, you can right-click on the
project (either ‘programmingtheiot-java’ or ‘programmingtheiot-
python’), and choose ‘Team > Switch To > New Branch…’ to
establish a new branch for your code.

I’d suggest you use the naming convention of ‘chapternn’ as
each branch name, where ‘nn’ is the two-digit chapter number.
For instance, the branch for Chapter 1 will be named
‘chapter01’, Chapter 2 will be named ‘chapter02’, and so on.

NOTE
All the gory details on Git branching and merging are out of
scope for this book, so I’d recommend reading the following
guide if you’d like to dig in https://git-scm.com/book/en/v2/Git-
Branching-Basic-Branching-and-Merging.

Automated CI/CD in the Cloud
Within Eclipse, you can write your CDA and GDA code,
execute unit tests, and build and package both applications.
This isn’t actually automated, since you have to start the
process yourself by executing a command like mvn install from
the command line, or invoking the Maven install process from
within the IDE. This is great for getting both applications to a
point where you can run them, but doesn’t actually run them -

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

you still need to manually start the applications up and then run
your integration and / or performance tests.

As a developer, part of your job is writing and testing code to
meet the requirements that have been captured (in cards on a
Kanban board, for example), so there’s always some manual
work involved. Once you know your code units function
correctly, it would be pretty slick to have everything else run
automatically - say, after committing and pushing your code to
the remote dev branch (such as ‘chapter02’, for example).

GitHub supports this automation through GitHub actions . I’ll
talk more about this in Chapter 2 and help you set up your own
automation for the applications you’re going to build.

Automated CI/CD in your Local Development
Environment
There are lots of ways to manage CI/CD within your local
environment. GitHub actions can be run locally using self-
hosted runners , for example. There’s also a workflow
automation tool called Jenkins that can be run locally,
integrates nicely with Git local and remote repositories, and
has a plugin architecture that allows you expand its capabilities
seemingly ad infinitum.

11

12

13

WARNING
There are lots of great 3rd party Jenkins plugins, but some are
not well maintained and may introduce security vulnerabilities. If
it’s a plugin you’re certain you need, be sure to track how often
it’s updated and patched. If it’s not regularly maintained, it could
introduce compatibility and security issues to your environment.

Once installed and secured, you can configure Jenkins to
automatically monitor your Git repository locally or remotely,
and run a build / test / deploy / run workflow on your local
system, checking the success at each step. If, for example, the
build fails because of a compile error in your code, Jenkins will
report on this and stop the process. The same is true if the
build succeeds, but the tests fail - the process stops at the first
failure point. This ensures your local deployment won’t get
overwritten with an update that doesn’t compile or fails to
successfully execute the configured tests.

Setting up any local automation tool can be a complicated and
time consuming endeavor. It’s super helpful, however, as it
basically automates all the stuff you’re going to do to build, test
and deploy your software. That said, it’s not required for any of
the exercises in this book.

I’ve detailed my own approach using GitHub actions and self-
hosted runners as well as Jenkins in a document on my
website at
https://programmingtheiot.com/setup/ConnectedDevices_DevE

https://programmingtheiot.com/setup/ConnectedDevices_DevEnvironmentSetup.html

nvironmentSetup.html. See the Table of Contents to navigate
to the section most relevant for your environment.

A Few Thoughts on Containerization
You’ve likely heard of containerization, which is simply a way to
package your application and all of its dependencies into a
single image, or container, that can be deployed to many
different operating environments. This approach is very
convenient, since it allows you to build your software and
deploy it in such a way as to make the hosting environment no
longer a concern, provided the target environment supports the
container infrastructure you’re using.

Docker is essentially an application engine that runs on a
variety of operating systems, such as Windows, Mac, and
Linux, and serves as a host for your container instance(s). Your
GDA and CDA, for example, can each be containerized and
then deployed to any hardware device that supports the
underlying container infrastructure and runtime.

It’s worth pointing out that containerizing any application that
has hardware-specific code may be problematic as it will not be
portable to another, different hardware platform (even if the
container engine is supported). If you want your hardware-
specific application to run on any platform that supports
Docker, that platform would require a hardware-specific
emulator compatible with the code developed for the
application.

14

https://programmingtheiot.com/setup/ConnectedDevices_DevEnvironmentSetup.html

For example, if your CDA has code that depends on Raspberry
Pi-specific hardware, This is less of a concern for us at the
moment, since you’ll be simply emulating sensors and
actuators and won’t have any hardware-specific code to worry
about until Chapter 4 (which, again, is optional). I’ll discuss this
more in Chapter 4, along with strategies to overcome
hardware-specificity in your CDA.

When using CI/CD pipelines in a remote, or cloud,
environment, you’ll notice that these services will likely deploy
to virtual machines and run your code within a container that
includes the required dependencies, all configured as part of
the pipeline. For many cases, this makes perfect sense and
can be an effective strategy to ensure consistency and ease of
deployment.

To keep things a bit more simple, I won’t walk through
containerization in this book for use within your development
environment and as part of your workstation, even though
there are many benefits to doing so. The primary reason is that
it adds another layer of complexity to manage initially and I
want to get you up and running with your own applications as
soon as possible.

If you’re interested in learning more about containerizing your
IoT workstation and local environment, I’ve detailed my
approach for the GDA, CDA, and other related applications
within
https://programmingtheiot.com/setup/ConnectedDevices_DevE

https://programmingtheiot.com/setup/ConnectedDevices_DevEnvironmentSetup.html

nvironmentSetup.html. See the section labeled ‘Using
Containers’ for more information.

Conclusion
Congratulations! You’ve just completed the longest - and
perhaps most tedious - chapter in the book. You learned about
some basic IoT principles, created a problem statement to
drive your IoT solution, and established a baseline IoT systems
architecture that includes the cloud tier and edge tier.

Perhaps most importantly, I introduced two applications - the
GDA and CDA - which will serve as the foundation for much of
your IoT software development throughout this book, and that
you’ll start building in Chapter 2. Finally, you set up your
development environment and workflow, learned about
requirements management, explored unit, integration and
performance testing, and considered some basic CI/CD
concepts to help automate your builds and deployment.

You’re now ready to start building your first two IoT applications
using Python and Java. If you’re ready to move on, I’d suggest
you grab a good cup of coffee or tea. Let’s dig in.

1 Details on the various classes of constrained devices can be found
within the IETF’s RFC 7228 (https://tools.ietf.org/html/rfc7228).

2 More information on GitHub can be found on their website
(https://github.com/).

https://programmingtheiot.com/setup/ConnectedDevices_DevEnvironmentSetup.html
https://tools.ietf.org/html/rfc7228
https://github.com/

3 Virtualenv provides a way to contain your Python 3 environment and
all the necessary library dependencies within a single, lightweight,
virtual environment.

4 The Eclipse IDE version used for the exercises and examples listed in
this book is 2020-06 and can be downloaded from the Eclipse website
(https://www.eclipse.org/downloads/).

5 More information on PyDev can be found on the project’s website
(http://www.pydev.org/).

6 Detailed information on JUnit and the latest version, JUnit 5, can be
found on the JUnit website (https://junit.org/junit5/).

7 Detailed information on Python 3’s unittest library can be found in the
unittest documentation (https://docs.python.org/3/library/unittest.html).

8 For more information on Locust, see the documentation from their
website (https://docs.locust.io/en/stable/what-is-locust.html).

9 You can read more about GitHub and its Git hosting features on their
website (https://github.com/).

10 Read more about the Agile Manifesto at https://agilemanifesto.org/.

11 GitHub actions is a feature available within GitHub that allows
customized workflows to be created for those who have an account
within GitHub. You can read more about GitHub actions on their
website (https://docs.github.com/en/actions).

12 Self-hosted runners, part of GitHub actions, allow you to run your
action workflows locally. There are caveats, of course, and security
considerations. You can read more about self-hosted runners on the
GitHub actions documentation website
(https://docs.github.com/en/actions/hosting-your-own-runners/about-
self-hosted-runners).

13 You can read more about Jenkins and its automation features at their
website (https://www.jenkins.io/).

14 You can read more about containerization concepts and Docker
containerization products at their website
(https://www.docker.com/resources/what-container).

https://www.eclipse.org/downloads/
http://www.pydev.org/
https://junit.org/junit5/
https://docs.python.org/3/library/unittest.html
https://docs.locust.io/en/stable/what-is-locust.html
https://github.com/
https://agilemanifesto.org/
https://docs.github.com/en/actions
https://docs.github.com/en/actions/hosting-your-own-runners/about-self-hosted-runners
https://www.jenkins.io/
https://www.docker.com/resources/what-container

Chapter 2. Building Two
Simple IoT Monitoring
Applications

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 2nd chapter of the final book. Please note that the GitHub repo will be made active
later on.

If you have comments about how we might improve the content and/or examples in this book, or if
you notice missing material within this chapter, please reach out to the author at
aking.em@gmail.com.

I must have data!

How much memory remains?

I dare not look. Sigh.

Fundamental concepts: Build two IoT performance monitoring applications – one as an IoT
gateway, and the other as an IoT constrained device.

This chapter focuses on the initial steps to getting your IoT
solution up and running. You’ll build upon these in the upcoming
chapters, so setting the basic design in place now is very
important. The overall architecture presented in Chapter 1
provides the initial guidance you’ll need to start coding your IoT

solution, and we’ll keep building upon it as we blaze ahead in this
chapter and beyond. I’m sure you’re anxious to start building out
your own solution based on what you’ll learn, but it’s important to
take things one step at a time.

We’ll start with two simple applications that collect some simple
telemetry about the devices (real or virtual): a Gateway Device
App (GDA) that will run on your “gateway device”, and a
Constrained Device App (CDA) that will run on your “constrained
device”. The design of each application provides the foundation
for all of the code you’ll develop for the edge tier, so you may want
to keep the design from Chapter 1 handy for reference.

What you’ll learn in this chapter
This is the beginning of your coding journey with the IoT. You’ll
learn how to define a detailed design for both your GDA and CDA,
separate the logical components of your design, and implement
the framework for these two applications in Java (GDA) and
Python (CDA).

These will be very simple applications, but they’ll serve as
important foundation layers for your overall solution. Each will
implement an application framework and exercise that framework
by incorporating external libraries used to track the performance of
a computing system. You’ll use the data they generate for your
initial foray into creating telemetry using your CDA and GDA.

Designing Your IoT Applications

Remember the problem statement from Chapter 1? Let’s briefly
review it now:

I want to understand the environment in my home and how it
changes over time, and make adjustments to enhance comfort
while saving money.

If you think about all of the things your applications will need to do
to address this problem, and also consider the importance of
testing system behavior and performance, there are some
important capabilities you’ll want to ‘bake in’ from the start. One is
the ability to easily add new features as we go, and the other is to
track each application’s performance so we know if it’s working
adequately.

The first step in designing both the GDA and CDA is to create an
application wrapper that can determine what features need to be
loaded and then launch those features consistently. I’ll introduce
application configuration using a configuration file in Chapter 3, so
no need to worry about that right now.

Your initial GDA and CDA designs will look very similar to one
another. They’ll collect some basic telemetry, which for now will
include just CPU utilization and memory utilization, and simply log
the data to the console. It won’t be long before you’ll have both
applications talking to one another.

Let’s get started, shall we?

NOTE
Most of the design diagrams throughout the book will follow Unified
Modeling Language (UML) notation. I’ll explain them as we go, but
you’ll want to become familiar with the UML’s class diagram and
relationship constructs. Check out the links at
https://www.uml.org/resource-hub.htm for tutorials and other helpful
UML resources.

The CDA
Your CDA needs four components: an application wrapper, a
manager to run the show, and two components to read the basic
system performance data we want to collect as part of our
telemetry: CPU utilization and memory utilization.

Let’s use Figure 2-1 to represent this design:

https://www.uml.org/resource-hub.htm

Figure 2-1. - CDA system performance design diagram

The class diagram in Figure 2-1 shows the four primary
components and their relationship to one another:
ConstrainedDeviceApp, which you’ll recall from Chapter 1 as
being part of the code base you’ve already downloaded, is the
application wrapper.

ConstrainedDeviceApp is the entry point for the application and
creates the instance of, and manages,
SystemPerformanceManager. There are also two other
components - SystemCpuUtilTask and SystemMemUtilTask. As
their names imply, these are components that will collect - you
guessed it - system CPU utilization and system memory
utilization. These components will be managed by
SystemPerformanceManager and run as asynchronous threads
that update a method you’ll define within
SystemPerformanceManager.

NOTE
If you’re already familiar with Python development and comfortable
implementing your solution from the UML design above, feel free to
skim the next section as a reference and write your code. I’d
recommend you do walk through CDA Testing Details, however, as it
will provide some insights into the unit test framework that’s part of
your codebase.

CDA Implementation Details
Before you start writing code, there’s some administrative steps
you’ll need to take to get your CDA code repository and Issues

tracker setup. This will let you easily track your work within your
project’s Kanban board. Let’s do this administrative work now.

NOTE
You may find this section to be a bit pedantic. Don’t worry! Once you
get through some of the drudgery that comes next, the following
code examples will be easier to digest and move more quickly. There
are two reasons for this:

1. The setup work will be done after this section; you’ll know
how to add tasks, write meaningful descriptions, and map
them to your Kanban board.

2. I’ll move along a bit faster and only explain the code that’s
somewhat specialized or unique to IoT environments. My
expectation is that you’ll ramp up quickly and won’t need a
line-by-line description of everything you need to write.

As I mentioned in Chapter 1, the tasks you write are called
‘Issues’. Figure 2-2 is a screenshot from my GitHub page
displaying all the CDA tasks that need to be implemented for this
chapter.

Figure 2-2. - CDA system performance design tasks

If you’re using GitHub, use your web browser to navigate to your
CDA’s Git repository page now. You’ll see there’s an ‘Issues’ tab -
click that, which will take you to a page similar to Figure 2-2, but
without any Issues.

Let’s change one of the labels first. Click ‘Labels’, and look for
‘Enhancements’. You can leave it as is or rename it to ‘Feature’,
which I recommend.

Go back to the Issues page, and now click ‘Milestones’. Let’s add
in one milestone for each chapter, as shown in Figure 2-3.

Figure 2-3. - Milestone listing for all CDA activities

See the green button? Simply click on that to add your milestone.
I’d recommend using the names provided in Figure 2-3, as it will
help to track all your work on a chapter-by-chapter basis in your
project’s Kanban board. You’ll see how as we add each task next.

Create the CDA application module
Let’s create an Issue with the requirements for
ConstrainedDeviceApp. Navigate back to your main CDA
repository page and click ‘Issues’. There’s still a green button in
the upper right corner, but it’s called ‘New issue’. Click that now.

NOTE
Issue tracking tools typically number your issues for you, often in the
order created. To make searching and sorting easier, however, it
helps to have your own naming convention embedded within the
issue title. Here’s what I recommend and am using myself: PIOT-
{app}-{chapter}-{order}, for example, PIOT-CDA-02-001. A quick look
at the name tells me this issue is part of Programming the Internet of
Things (PIOT), the CDA, Chapter 02, and task #001.

Name the issue PIOT-CDA-02-001: Create the CDA application
wrapper module, and add the following contents to the description
(feel free to customize if you’d like, but keep the template the
same):

Description

Create the ConstrainedDeviceApp application in Python.

Actions

Create a new Python package in the
programmingtheiot\cda source folder named app and
navigate to that folder.

Import the Python logging module: import logging

Create a new Python module named
ConstrainedDeviceApp. Define a class within the module
by the same name of ConstrainedDeviceApp.

Add the startApp() method, log info message indicating
app was started.

Add the stopApp() method, log info message indicating
app was stopped.

Add the main entry function to enable running as an
application. It will create an instance of
ConstrainedDeviceApp, call startApp(), wait 60 seconds,
then call stopApp(), as follows:

def main():
 cda = ConstrainedDeviceApp()
 cda.startApp()

 while True:
 sleep(60)
 cda.stopApp()
if __name__ == '__main__':
 main()

Estimate (Small = < 2 hrs ; Medium = 4 hrs ; Large = 8 hrs)

Small

Tests

Run the ConstrainedDeviceAppTest unit tests. The log
output should look similar to the following (you can ignore
the non-INFO messages - these are generated by the
PyUnit framework within Eclipse):

Finding files... done.
Importing test modules ... done.
2020-07-20 10:08:20,169:INFO:Initializing CDA...
2020-07-20 10:08:20,169:INFO:Loading
configuration...
2020-07-20 10:08:20,169:INFO:Starting CDA...
2020-07-20 10:08:20,169:INFO:CDA started.
2020-07-20 10:08:20,169:INFO:CDA stopping...
2020-07-20 10:08:20,170:INFO:CDA stopped with exit
code 0.

Ran 1 test in 0.001s
OK

Notice the template includes sections for Description, Actions,
Estimate, and Tests. This should be consistently applied to all your
tasks - this way, when you’re reviewing what needs to be done,
and what’s been accomplished, you have a consistent set of
requirements and testing criteria for each one.

NOTE
As you begin implementation, you can add separate notes to
chronicle your work. It’s often useful to add specifics such as
algorithm idiosyncrasies, testing setup requirements, static design
images, etc.

Save the issue, then navigate to the far right column. It will look
similar to Figure 2-4. This is where you can assign the issue (to
yourself), set the label to ‘Feature’, add a milestone, and align the
issue to a project (the one you created in the previous chapter -
this will ensure it shows up in your Kanban project board.

Figure 2-4. - You can set properties for each issue using the selections shown

OK - all the current requirements for the CDA application wrapper
are known, so it’s time to start writing code!

1. Open your IDE and navigate to piot-python-components.

2. Navigate to ‘src -> main -> python -> programmingtheiot -
> cda’ and create a new folder named ‘app’.

3. Add the remaining code as indicated in the task, including
the logging.

NOTE
Since there’s a sleep call in the main function, you’ll need to
import the time module using the following code:

from time import sleep

Follow the Test instructions to execute the
ConstrainedDeviceAppTest unit test (there’s only one). Check the
output in your IDE console - it will look similar to what I’ve included
above.

Your ConstrainedDeviceApp is beginning to come together, but
you still need a way to collect data and generate your first
telemetry data. We’ll work on that next.

CREATE THE SYSTEMPERFORMANCEMANAGER
MODULE

The next issue to create is for the SystemPerformanceManager.
Let’s name it PIOT-CDA-02-002 - Create module
SystemPerformanceManager. Here’s the description content:

Description

Create a new Python module named
SystemPerformanceManager with class name
SystemPerformanceManager.

Actions

Create a class within the module named
SystemPerformanceManager.

Add the startManager() method, log an info message
indicating manager was started.

Add the stopManager() method, log an info message
indicating manager was stopped.

Estimate (Small = < 2 hrs ; Medium = 4 hrs ; Large = 8 hrs)

Small

Tests

Run the SystemPerformanceManagerTest unit test. The
log output should look similar to the following:

2020-07-06 21:03:03,654:INFO:Initializing
SystemPerformanceManager...
2020-07-06 21:03:03,655:INFO:Started
SystemPerformanceManager.
2020-07-06 21:03:03,656:INFO:Stopped
SystemPerformanceManager.

This component will actually live in a different folder than the
application, so let’s create that now. In your IDE, navigate to ‘src -
> main -> python -> programmingtheiot -> cda’, and create a new
folder named ‘system’.

The requirements for SystemPerformanceManager are pretty
straight forward, so see if you can implement these on your own.
You can always review the solutions located in my python-
solutions GitHub page if you need a hint
(https://github.com/programmingtheiot/python-solutions)!

https://github.com/programmingtheiot/python-solutions

CONNECT SYSTEMPERFORMANCEMANAGER TO
CONSTRAINEDDEVICEAPP

This task is really straight forward and should only take a few
minutes. You’ll simply connect the SystemPerformanceManager
start and stop methods into the ConstrainedDeviceApp start and
stop methods, then run a quick test to ensure everything is
working correctly.

You can name this task PIOT-CDA-02-003 - Connect
SystemPerformanceManager to ConstrainedDeviceApp. Here’s
the task description:

Description

Create an instance of SystemPerformanceManager within
ConstrainedDeviceApp and invoke the manager’s start /
stop methods within the app’s start / stop methods.

Actions

Create a class-scoped instance of
SystemPerformanceManager within the
ConstrainedDeviceApp constructor called sysPerfManager
using the following:
self.sysPerfManager = SystemPerformanceManager()

Edit the startApp() method to include a call to
self.sysPerfManager.startManager().

Edit the stopApp() method to include a call to
self.sysPerfManager.stopManager().

Estimate (Small = < 2 hrs ; Medium = 4 hrs ; Large = 8 hrs)

Small

Tests

Run the ConstrainedDeviceAppTest again. It will still call
the startApp() and stopApp() methods on
ConstrainedDeviceApp, but this time generate output that
will look similar to the following:

Finding files... done.

Importing test modules ... done.
2020-07-20 10:23:00,146:INFO:Initializing CDA...

2020-07-20 10:23:00,147:INFO:Loading
configuration...

2020-07-20 10:23:00,260:INFO:Starting CDA...
2020-07-20 10:23:00,260:INFO:Started

SystemPerformanceManager.
2020-07-20 10:23:00,260:INFO:CDA started.
2020-07-20 10:23:00,260:INFO:CDA stopping...

2020-07-20 10:23:00,260:INFO:Stopped
SystemPerformanceManager.

2020-07-20 10:23:00,260:INFO:CDA stopped with
exit code 0.

Ran 1 test in 0.115s
OK

Pretty simple, right? OK - almost there. Let’s create the different
modules that will actually do the system monitoring next, and get
them connected to the SystemPerformanceManager. You can see
where I’m going with this, right?

CREATE THE SYSTEMCPUUTILTASK MODULE

This is where the rubber starts to hit the road for our system
performance application. The SystemCpuUtilTask will retrieve the

current CPU utilization across all cores, average them together,
and return the result as a float.

Let’s name it PIOT-CDA-02-003 - Create module
SystemCpuUtilTask. Here’s the description content:

Description

Create a new Python module named SystemCpuUtilTask
with class name SystemCpuUtilTask.

Actions

Import the psutil library.

Create a class within the module named
SystemCpuUtilTask.

In the constructor, add the following:
self.perfMgr = psutil()

Add the getTelemetry() method, and add the following:
cpuUtilPct = self.perfMgr.cpu_percent()

Within getTelemetry(), log an info message indicating data
was collected along with the value of cpuUtilPct.

Estimate (Small = < 2 hrs ; Medium = 4 hrs ; Large = 8 hrs)

Small

Tests

Run SystemCpuUtilTaskTest as a PyUnit test. All tests
should pass.

NOTE
You may recall psutil was one of the libraries you imported
when setting up your virtualenv environment and used pip
to install basic_imports.txt. This library gives you the ability
to monitor system metrics, such as CPU utilization and
memory utilization. You can read all about its features
online (https://psutil.readthedocs.io/en/latest/#).

Look carefully at the action specifying the following line of code:

puUtilPct = self.perfMgr.cpu_percent()

The library will aggregate all cores into a single CPU percentage,
which makes life rather easy for you as a developer. This class
essentially boils down to returning the value of this single line of
code.

OK, so before we go any further, why the fancy wrapper around
the code? Isn’t this overkill? Simply put, yes it is. But you’ll see a
pattern emerge in how you’ll write similar code to represent other,
more complicated sensors. The point of this particular exercise is
certainly to obtain the CPU utilization, but also to establish a
pattern of separation of control, or separation of key functions so
they can be managed and updated separately from the rest of the
application’s logic.

https://psutil.readthedocs.io/en/latest/

NOTE
As with any software design, there’s a balance between complexity,
clever coding, and just getting it done. I’ll attempt to strike that
balance throughout the book. You may have different ideas - that’s
great! I encourage you to consider how else you might implement
each exercise to meet your specific needs. This is part of what
makes programming creative and fun.

CREATE THE SYSTEMMEMUTILTASK MODULE

Assuming your tests for SystemCpuUtilTask run and all pass, you
can move onto the next module, which will be the creation of
SystemMemUtilTask. This will retrieve the current virtual memory
utilization and return the result as a float.

Let’s name it PIOT-CDA-02-004 - Create module
SystemMemUtilTask. Here’s the description content:

Description

Create a new Python module named SystemMemUtilTask
with class name SystemMemUtilTask.

Actions

Import the psutil library.

Create a class within the module named
SystemMemUtilTask.

In the constructor, add the following:
self.perfMgr = psutil()

Add the getTelemetry() method, and add the following:
memUtilPct = self.perfMgr.virtual_memory().percent

Within getTelemetry(), log an info message indicating data
was collected along with the value of memUtilPct.

Estimate (Small = < 2 hrs ; Medium = 4 hrs ; Large = 8 hrs)

Small

Tests

Run SystemMemUtilTask as a PyUnit test. All tests should
pass.

The key functionality is encapsulated in the following line of code:

memUtilPct = self.perfMgr.virtual_memory().percent

There are other properties you can extract from the call to
virtual_memory(), and you’re welcome to experiment. For now,
just return the percent utilization.

Make sure your SystemMemUtilTaskTest PyUnit tests all pass
before moving on. Now, let’s connect both SystemCpuUtilTask
and SystemMemUtilTask to SystemPerformanceManager.

You can repeat these same steps for SystemMemUtilTask, but use
the correct name of course! I’d suggest doing that now, and then
run the SystemMemUtilTaskTest unit test to ensure it’s returning
valid data.

How to Poll for Sensor Updates

Reading a single value from a sensor (emulated or real) is good,
but not very useful for our purposes, since we’ll want to monitor
these values over time to see if they change. Even after
connecting SystemCpuUtilTask and SystemMemUtilTask into
SystemPerformanceManager, you’ll want to process their data on
a recurring basis.

There are many ways to do this in Python: You can build your own
scheduling mechanism using Python’s concurrency library, or
leverage one of many open source libraries to do this for you. I’ve
included apscheduler in basic_imports.txt, which provides a
scheduling mechanism that will suit our purposes rather well.

NOTE
Python provides two mechanisms for running code in a way that
appears to execute simultaneously with other code. One is using
concurrency, and the other is using multiprocessing. The former is
handled using threads, whereas the latter is handled using separate
child processes. One key difference is that Python threads actually
get run in sequence using the same processor core as the main
application, but they happen in such a way as to appear to be
running simultaneously. Multiprocessing allows for true parallelism,
where the code written using the multiprocessor library can be
distributed to run on a separate processor core, which can execute in
parallel to other code in a different processor core. The CDA-specific
exercises and samples within this book will assume that threaded
concurrency in Python is sufficient for our needs, and so I won’t
discuss multiprocessing for any CDA development.

INTEGRATING SYSTEMCPUUTILTASK AND
SYSTEMMEMUTILTASK WITH

1

SYSTEMPERFORMANCEMANAGER

In this section, you’ll create two very similar tasks: PIOT-CDA-02-
006 - Connect SystemCpuUtilTask to
SystemPerformanceManager, and PIOT-CDA-02-007 - Connect
SystemMemUtilTask to SystemPerformanceManager.

Here’s the description content for PIOT-CDA-02-006 - Connect
SystemCpuUtilTask and SystemMemUtilTask to
SystemPerformanceManager:

Description

Create an instance of SystemCpuUtilTask and
SystemMemUtilTask within SystemPerformanceManager
and use the apscheduler library to run each task at a
regular interval.

Actions

Add the following import statement:
from apscheduler.schedulers.background import
BackgroundScheduler

Update the SystemPerformanceManager constructor to
accept a parameter named pollRate and set the default to
30:
def __init__(self, pollRate = 30):

Create a class-scoped instance of SystemCpuUtilTask
within the SystemPerformanceManager constructor
named cpuUtilTask

Create a class-scoped instance of SystemMemUtilTask
within the SystemPerformanceManager constructor
named memUtilTask

Create a public method named handleTelemetry() and add
the following lines of code:

cpuUtilPct = self.cpuUtilTask.getTelemetry()
memUtilPct = self.memUtilTask.getTelemetry()

Within handleTelemetry() add an informational log
message that logs the values of cpuUtilPct and
memUtilPct

Create a class-scoped instance of BackgroundScheduler
within the SystemPerformanceManager constructor
named scheduler

Add a job to the scheduler within the
SystemPerformanceManager using the following line of
code:
self.scheduler.add_job(’self.handleTelemetry', ‘interval',
seconds = pollRate)

Estimate (Small = < 2 hrs ; Medium = 4 hrs ; Large = 8 hrs)

Small

Tests

Add a unit test to SystemPerformanceManagerTest that
will create the SystemPerformanceManager instance with
pollRate = 10, call the startManager() method, wait for 65
seconds, and then call stopManager().

The test should display the application and
SystemPerformanceManager start log messages, followed
by a number of interspersed CPU utilization and memory
utilization messages representing six (mostly) different
values each, and then finally the
SystemPerformanceManager and application stop log
messages.

NOTE
Notice the use of apscheduler - it’s relatively straight-forward. This is
partly because, in Python, you’re able to pass function pointers (yes,
we’re calling them methods). This allows the callback you’ve already
created in SystemPerformanceManager called handleTelemetry() to
be easily invoked by apscheduler using concurrency.

You’re now ready to execute the full functional unit tests test of
ConstrainedDeviceApp. Run it now, and examine the log output. It
should look similar to the following (again, your log messages may
be different than mine):

2020-07-06 21:03:03,654:INFO:Attempting to load configuration...
2020-07-06 21:03:03,655:INFO:Starting CDA...
2020-07-06 21:03:03,655:INFO:Initialized SystemPerformanceManager.
2020-07-06 21:03:03,656:INFO:Starting SystemPerformanceManager...
2020-07-06 21:03:03,656:INFO:CDA ran successfully.

Congratulations! You’ve just completed the first iteration of the
CDA. It’s a fully standalone Python app, with a full suite of unit
tests for you to build upon over the next chapters. Now let’s move
onto the GDA and start writing some Java code.

The GDA
Your GDA will need the same three components as your CDA: an
application wrapper, a system performance manager, and
components to read the system performance data that will
comprise your GDA’s telemetry.

NOTE
In IoT systems, the gateway device may or may not generate its own
telemetry. The example you’ll build within this book only generates its
own system performance telemetry. The constrained device,
implemented as the CDA, will be responsible for not only generating
its specific system performance telemetry, but any sensor-specific
telemetry as well.

Let’s use the class diagram in Figure 2-5 to represent the GDA’s
design. You’ll notice it looks surprisingly similar to our CDA Design
(Figure 2-1), with the main differences being the implementation
language, the application wrapper name, and - of course - the
number of tasks!

Figure 2-5. - GDA system performance design diagram

Why is the gateway device doing all of this work? Tracking CPU
and memory utilization makes sense, since you’ll want to track the
device’s overall load and memory consumption.

But disk and network utilization? In Chapter 5, I’ll discuss local
caching of messages, so this will be an important metric to track.
In Chapter 6 and beyond, I’ll dig into passing messages between
devices (and eventually the cloud in Chapter 10), so tracking
network utilization will be pretty useful as well.

Aren’t there tools for this? Sure, and you should use them when
they make sense. Devices that are part of the IoT Edge Tier aren’t
always easy to manage, nor are they always able to participate in
network monitoring environments. This doesn’t mean we need to
build everything from scratch! But, we will anyway. Because we
can. And it’s fun :).

Back to the diagram. Notice that GatewayDeviceApp is the entry
point for the application and creates the instance of, and
manages, SystemPerformanceManager, which is rather similar to
the CDA design. We also have a SystemCpuUtilTask and
SystemMemUtilTask, along with the other tasks
(SystemDiskUtilTask, SystemNetInputTask, and
SystemNetOutputTask) that will help us later.

NOTE
It goes without saying, but if you’re already familiar with Java
development and comfortable implementing your solution from the
UML design in Figure 2-5, feel free to do so. But be sure to look
carefully at the requirements in the next section first.

GDA IMPLEMENTATION DETAILS

You’ll recognize these next steps, of course, because you already
did something similar for the CDA. Since the GDA repository is
different from the CDA repository, you’ll need to set up your issue
tracker separately.

Figure 2-6 gives you the lay of the land regarding the
requirements you need to implement for the GDA in this chapter,
and I’ll walk through each in turn.

Figure 2-7 lists the milestones you should create, but take note
that they’re a bit different from the CDA milestones. The names
are the same (by design), but there are no milestones for Chapter
3 and Chapter 4, and yet there is a milestone for Chapter 10 (the
CDA milestones end at Chapter 9).

Now would be a good time to create those milestones, and while
you’re at it, edit the ‘Enhancement’ label and rename it to
‘Feature’.

Figure 2-6. - GDA system performance design tasks

Figure 2-7. - Milestone listing for all GDA activities

Ready to create your first GDA issue? The process is the same
one you followed for your first CDA issue. Navigate back to your
main GDA repository page, click ‘Issues’, and then the green ‘New
issue’ button. This is the process you’ll follow for each new issue
within either repository.

Let’s start with the application wrapper for the GDA.

CREATE THE GDA APPLICATION MODULE

Much like with the CDA, the GDA application module issue will be
named PIOT-GDA-02-001: Create the GDA application wrapper
module. Here are the details:

Description

Create a new Java class named GatewayDeviceApp.

Actions

Create a new Java package in the programmingtheiot\gda
source folder named app and navigate to that folder.

Import the java.util.logging logging framework. You can
import all, or just Level and Logger.

Create a package-scoped constructor that accepts a
single parameter as follows: private
GatewayDeviceApp(String[] args)

Add the public stopApp(int code) method, and log an info
message indicating the app was stopped. Include a try /
catch block to handle the stop code. On exception, log an
error message along with the stack trace. Outside of the
try / catch block, and as the last line of code, log an
informational message with the code included.

Add the public startApp() method, and log an info
message indicating the app was started. Include a try /
catch block to handle the start code. On exception, log an
error message along with the stack trace, then call
stopApp(-1).

Add the private initConfig(String fileName) method, and
log an info message indicating the method was called. It
will mostly remain empty for now.

Add the private parseArgs(String[] args) method, and log
an info message indicating the method was called. For
now, the args can be ignored. Before the method exits,
call initConfig(null).

Update the constructor to include a call to
parseArgs(args).

Add the public static void main(String[] args) method to
enable running as an application. It will create an instance
of GatewayDeviceApp, call startApp(), wait 60 seconds,
then call stopApp(0), as follows:

public static void main(String[] args)
{
 GatewayDeviceApp gwApp = new
GatewayDeviceApp(args);

 gwApp.startApp();

 try {
 Thread.sleep(60000L);
 } catch (InterruptedException e) {
 // ignore
 }

 gwApp.stopApp(0);
}

Estimate (Small = < 2 hrs ; Medium = 4 hrs ; Large = 8 hrs)

Small

Tests

Run the GatewayDeviceAppTest unit test named
testRunGatewayApp(). The log output should look similar
to the following:

Jul 19, 2020 12:53:45 PM
programmingtheiot.gda.app.GatewayDeviceApp <init>

INFO: Initializing GDA...

Jul 19, 2020 12:53:45 PM

programmingtheiot.gda.app.GatewayDeviceApp
parseArgs

INFO: No command line args to parse.

Jul 19, 2020 12:53:45 PM

programmingtheiot.gda.app.GatewayDeviceApp
initConfig

INFO: Attempting to load configuration: Default.

Jul 19, 2020 12:53:45 PM
programmingtheiot.gda.app.GatewayDeviceApp

startApp

INFO: Starting GDA...

Jul 19, 2020 12:53:45 PM
programmingtheiot.gda.app.GatewayDeviceApp

startApp

INFO: GDA started successfully.

Jul 19, 2020 12:53:45 PM
programmingtheiot.gda.app.GatewayDeviceApp

stopApp

INFO: Stopping GDA...
Jul 19, 2020 12:53:45 PM

programmingtheiot.gda.app.GatewayDeviceApp

stopApp
INFO: GDA stopped successfully with exit code 0.

If you’ve downloaded the sample code, you’ll notice that this
module is already created for you. Embedded within the module
are a few commented ‘TODO’ lines of code as placeholders for
you to eventually add more functionality.

If you’re starting from scratch, however, just follow the instructions
above to implement your own version of the application wrapper.

Either way, run the unit test as specified - testRunGatewayApp() -
by using the JUnit 4 Runner. If you’re using Eclipse as your IDE,
simply right click on GatewayDeviceAppTest, and select “Run As -
> JUnit Test”. You should get a green bar along with sample
output as indicated under the “Tests” section above.

Your GatewayDeviceApp has some neat stuff in it, but it’s not very
useful as an IoT gateway application. Let’s start working on the
other components to bring this app to life.

CREATE THE SYSTEMPERFORMANCEMANAGER
MODULE

The next issue to create is for the SystemPerformanceManager.
Let’s name it PIOT-GDA-02-002 - Create module
SystemPerformanceManager. Here’s the description content:

Description

Create the SystemPerformanceManager module.

Actions

Create a new Java package in the programmingtheiot\gda
source folder named system and navigate to that folder.

Import the java.util.logging logging framework. You can
import all, or just Level and Logger.

Create a private variable as follows: private int pollSecs =
60;

Create a public constructor that accepts a single
parameter as follows: public
SystemPerformanceManager(int pollSecs)

Set this.pollSecs to pollSecs only after validating that
pollSecs is more than 1 and less than Integer.MAX. You
may choose other constraints if you wish.

Add the startManager() method, and log an info message
indicating manager was started.

Add the stopManager() method, and log an info message
indicating the manager was stopped.

Estimate (Small = < 2 hrs ; Medium = 4 hrs ; Large = 8 hrs)

Small

Tests

Run the SystemPerformanceManagerTest unit test named
testRunManager(). The log output should look similar to
the following:

Jul 19, 2020 1:01:38 PM

programmingtheiot.gda.system.SystemPerformanceManager

 startManager
INFO: SystemPerformanceManager is starting...

Jul 19, 2020 1:01:38 PM

programmingtheiot.gda.system.SystemPerformanceManager

 stopManager

INFO: SystemPerformanceManager is stopped.

The one currently active unit test for SystemPerformanceManager
is rather simple and not really automated, in that the only
validation is via a log file review. As you hook all the pieces
together, you’ll see how your unit tests for other classes can be
automatically validated, and then used to automate the entire test
flow of your system.

CONNECT SYSTEMPERFORMANCEMANAGER TO
GATEWAYDEVICEAPP

This is a simple task designed to hook the
SystemPerformanceManager to GatewayDeviceApp, and the only
objective with this is to ensure the app can properly delegate work
to the SystemPerformanceManager component.

You can name this task PIOT-GDA-02-003: Connect
SystemPerformanceManager to GatewayDeviceApp. Here are the
task details:

Description

Connect SystemPerformanceManager to
GatewayDeviceApp so it can be started and stopped with
the application. This work should be implemented within
the GatewayDeviceApp class.

Actions

Create a class-scoped variable named sysPerfManager.

Create an instance of SystemPerformanceManager within
the GatewayDeviceApp constructor called
this.sysPerfManager. Use ’10’ as the parameter to the
constructor.

Edit the startApp() method: Add a call to
sysPerfManager.startManager().

Edit the stopApp() method: Add a call to
sysPerfManager.stopManager().

Estimate (Small = < 2 hrs ; Medium = 4 hrs ; Large = 8 hrs)

Small

Tests

Run the GatewayDeviceAppTest unit test named
testRunGatewayApp(). The log output should look similar
to the following:

Jul 19, 2020 1:01:38 PM
programmingtheiot.gda.app.GatewayDeviceApp <init>

INFO: Initializing GDA...

Jul 19, 2020 1:01:38 PM
programmingtheiot.gda.app.GatewayDeviceApp

parseArgs

INFO: No command line args to parse.

Jul 19, 2020 1:01:38 PM
programmingtheiot.gda.app.GatewayDeviceApp

initConfig

INFO: Attempting to load configuration: Default.

Jul 19, 2020 1:01:38 PM
programmingtheiot.gda.app.GatewayDeviceApp

startApp

INFO: Starting GDA...
Jul 19, 2020 1:01:38 PM

programmingtheiot.gda.system.SystemPerformanceManager

 startManager
INFO: SystemPerformanceManager is starting...

Jul 19, 2020 1:01:38 PM

programmingtheiot.gda.app.GatewayDeviceApp
startApp

INFO: GDA started successfully.

Jul 19, 2020 1:01:38 PM

programmingtheiot.gda.app.GatewayDeviceApp
stopApp

INFO: Stopping GDA...

Jul 19, 2020 1:01:38 PM

programmingtheiot.gda.system.SystemPerformanceManager
 stopManager

INFO: SystemPerformanceManager is stopped.

Jul 19, 2020 1:01:38 PM
programmingtheiot.gda.app.GatewayDeviceApp

stopApp

INFO: GDA stopped successfully with exit code 0.

Simple, right? Notice the testing requirement - it’s not on the
SystemPerformanceManager; you’re simply rerunning the
GatewayDeviceAppTest unit test called testRunGatewayApp().
Neither this test nor the SystemPerformanceManager test has
changed - the connection between the two is now enabled, so the
output is a bit different.

With both components integrated, let’s build out the actual system
performance telemetry collection logic.

CREATE THE SYSTEMCPUUTILTASK MODULE

This is where the rubber starts to hit the road for our system
performance application. The SystemCpuUtilTask will retrieve the

current CPU utilization across all cores, average them together,
and return the result as a float.

Let’s name it PIOT-CDA-02-004 - Create module
SystemCpuUtilTask. Here’s the description content:

Description

Create the SystemCpuUtilTask module and implement the
functionality to retrieve CPU utilization.

Actions

Within the programmingtheiot.gda.system package, create
a new Java class named SystemCpuUtilTask.

Add the following import statements:

import java.lang.management.ManagementFactory;

Add the public getTelemetry() method. It will retrieve CPU
utilization (averaged across any / all cores) and return the
value as a float. Use the following code for the value:
ManagementFactory.getOperatingSystemMXBean().getSy
stemLoadAverage()

Estimate (Small = < 2 hrs ; Medium = 4 hrs ; Large = 8 hrs)

Small

Tests

Run the SystemCpuUtilTaskTest unit test (there’s only
one). If your Operating System supports retrieval of CPU
load, each test should pass while displaying values
greater than 0.0% and (likely) less than 100.0%. If your

Operating System doesn’t support this, each test will
result in negative value, as follows:

Test 1: CPU Util not supported on this OS: -1.0
Test 2: CPU Util not supported on this OS: -1.0

Test 3: CPU Util not supported on this OS: -1.0

Test 4: CPU Util not supported on this OS: -1.0
Test 5: CPU Util not supported on this OS: -1.0

NOTE
You may recall psutil was one of the libraries you imported when
setting up your virtualenv environment and used pip to install
basic_imports.txt. This library gives you the ability to monitor system
metrics, such as CPU utilization and memory utilization. You can
read all about its features online
(https://psutil.readthedocs.io/en/latest/#).

Look carefully at the action specifying the following line of code:

puUtilPct = self.perfMgr.cpu_percent()

The library will aggregate all cores into a single CPU percentage,
which makes life rather easy for you as a developer. This class
essentially boils down to returning the value of this single line of
code.

OK, so before we go any further, why the fancy wrapper around
the code? Isn’t this overkill? Simply put, yes it is. But you’ll see a
pattern emerge in how you’ll write similar code to represent other,
more complicated sensors.

https://psutil.readthedocs.io/en/latest/

One object with each exercise is to establish a pattern of
separation of control, or the separation of key functions so they
can be managed and updated separately from the rest of the
application’s logic.

NOTE
As with any software design, there’s a balance between complexity,
clever coding, and just getting it done. I’ll attempt to strike that
balance throughout the book. You may have different ideas - that’s
great! I encourage you to consider how else you might implement
each exercise to meet your specific needs. This is part of what
makes programming creative and fun.

CREATE THE SYSTEMMEMUTILTASK MODULE

I’m sure you’ve noticed a pattern here. We’re replicating some of
the functionality within the CDA here within the GDA. This is due
to the nature of distributed IoT devices and various operating or
runtime environments, as I’ve mentioned previously in the
Preface.

This next task is to create the memory utilization collection logic.
Let’s name it PIOT-GDA-02-005 - Create module
SystemMemUtilTask, and use the following as the description
content:

Description

Create the SystemMemUtilTask module and implement
the functionality to retrieve JVM memory utilization.

Actions

Within the programmingtheiot.gda.system package, create
a new Java class named SystemMemUtilTask.

Add the following import statements:

import java.lang.management.MemoryUsage;

Add the getTelemetry() method. It will retrieve JVM
memory utilization and return the value as a float. Use the
following code for the value:
ManagementFactory.getMemoryMXBean().getHeapMemo
ryUsage().getUsed()

Estimate (Small = < 2 hrs ; Medium = 4 hrs ; Large = 8 hrs)

Small

Tests

Run the SystemMemUtilTaskTest unit test. It should pass
while logging values between 0.0% and 100.0%.

The key functionality is encapsulated in the following line of code:

memUtilPct = self.perfMgr.virtual_memory().percent

There are other properties you can extract from the call to
virtual_memory(), and you’re welcome to experiment. For now,
just return the percent utilization.

Make sure your SystemMemUtilTaskTest JUnit tests all pass
before moving on. Now, let’s connect both SystemCpuUtilTask
and SystemMemUtilTask to SystemPerformanceManager.

RUNNING REPEATABLE TASKS IN JAVA

Although your GDA isn’t collecting sensor data, it clearly needs to
gather and assess its own system performance (such as CPU and
memory utilization, of course). This type of functionality is typically
collected in the background at regular intervals, and as with
Python, Java provides options for creating polling systems.

Fortunately, there’s no need to import any separate libraries,
however, because this is built-in to the core Java SDK.

NOTE
Java’s concurrency library is quite powerful, and allows you to use a
basic Timer functionality as well as a ScheduledExecutorService
(you can also create your own threaded polling system if you really
want to, of course). We’ll use ScheduledExecutorService, as it
provides a semi-guaranteed way to poll at regular intervals, handling
most of the complexity for us. Modern Java virtual machines will
handle the load distribution across the CPU architecture, meaning it
will utilize multiple cores if at all possible.

INTEGRATING SYSTEMCPUUTILTASK AND
SYSTEMMEMUTILTASK WITH
SYSTEMPERFORMANCEMANAGER

In this section, you’ll create two very similar tasks: PIOT-GDA-02-
006 - Connect SystemCpuUtilTask and SystemMemUtilTask to
SystemPerformanceManager.

This particular exercise is a bit more involved, even though it
doesn’t take many lines of code to complete. This is because
you’ll be using both concurrency and a Runnable implementation,

the latter of which is just an interface definition for a method that
can be invoked one or more times by a Java thread.

Let’s document this work using the following description:

Description

Connect SystemCpuUtilTask and SystemMemUtilTask into
SystemPerformanceManager, and call each instance’s
handleTelemetry() method from within a thread that starts
when the manager is started, and stops when the
manager is stopped. This work should be implemented
within the SystemPerformanceManager class.

Actions

Add the following import statements:

import java.util.concurrent.Executors;
import
java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledFuture;
import java.util.concurrent.TimeUnit;

Add the following members to the class:

private ScheduledExecutorService schedExecSvc =
null;
private SystemCpuUtilTask sysCpuUtilTask = null;
private SystemMemUtilTask sysMemUtilTask = null;
private Runnable taskRunner = null;
private boolean isStarted = false;

Create a public method named handleTelemetry() that
includes the following:

cpuUtilPct = this.cpuUtilTask.getTelemetry()

memUtilPct = this.memUtilTask.getTelemetry()

Log an info message that includes the values of
cpuUtilPct and memUtilPct

Within the constructor, add the following:

this.schedExecSvc =
Executors.newScheduledThreadPool(1);
this.sysCpuUtilTask = new SystemCpuUtilTask();
this.sysMemUtilTask = new SystemMemUtilTask();
this.taskRunner = () -> {
 this.handleTelemetry();
};

Within the startManager() method, add the following:

if (! this.isStarted) {
 ScheduledFuture<?> futureTask =
this.schedExecSvc.scheduleAtFixedRate(this.taskRunner,
 0L, this.pollSecs, TimeUnit.SECONDS);
 this.isStarted = true;
}

Within the stopManager() method, add the following:
this.schedExecSvc.shutdown();

Estimate (Small = < 2 hrs ; Medium = 4 hrs ; Large = 8
hrs)

Medium

Tests

In the GatewayDeviceAppTest test case, comment out the
@Test annotation before the testRunGatewayApp() unit
test, and uncomment the @Test annotation before the
testRunTimedGatewayApp unit test. Run the latter test - it
should yield output similar to the following:

Jul 19, 2020 1:53:19 PM

programmingtheiot.gda.app.GatewayDeviceApp <init>

INFO: Initializing GDA...
Jul 19, 2020 1:53:19 PM

programmingtheiot.gda.app.GatewayDeviceApp

parseArgs
INFO: No command line args to parse.

Jul 19, 2020 1:53:19 PM

programmingtheiot.gda.app.GatewayDeviceApp

initConfig
INFO: Attempting to load configuration: Default.

Jul 19, 2020 1:53:19 PM

programmingtheiot.gda.app.GatewayDeviceApp

startApp
INFO: Starting GDA...

Jul 19, 2020 1:53:19 PM

programmingtheiot.gda.system.SystemPerformanceManager

 startManager
INFO: SystemPerformanceManager is starting...

Jul 19, 2020 1:53:19 PM

programmingtheiot.gda.app.GatewayDeviceApp
startApp

INFO: GDA started successfully.

Jul 19, 2020 1:53:20 PM

programmingtheiot.gda.system.SystemPerformanceManager
 handleTelemetry

INFO: Handle telemetry results: cpuUtil=-1.0,

memUtil=6291456.0

Jul 19, 2020 1:53:50 PM
programmingtheiot.gda.system.SystemPerformanceManager

 handleTelemetry

INFO: Handle telemetry results: cpuUtil=-1.0,
memUtil=6291456.0

Jul 19, 2020 1:54:20 PM

programmingtheiot.gda.system.SystemPerformanceManager

 handleTelemetry

INFO: Handle telemetry results: cpuUtil=-1.0,

memUtil=6291456.0

Jul 19, 2020 1:54:24 PM

programmingtheiot.gda.app.GatewayDeviceApp
stopApp

INFO: Stopping GDA...

Jul 19, 2020 1:54:24 PM
programmingtheiot.gda.system.SystemPerformanceManager

 stopManager

INFO: SystemPerformanceManager is stopped.

Jul 19, 2020 1:54:24 PM
programmingtheiot.gda.app.GatewayDeviceApp

stopApp

INFO: GDA stopped successfully with exit code 0.

To test all of this new goodness, you only need to run the
GatewayDeviceAppTest unit test named
testRunTimedGatewayApp(). Follow the instructions listed above
under the Test section.

NOTE
JUnit unit tests can be included or excluded in a test run by using the
@Test annotation before the unit test method. You can simply
comment it out / uncomment it as desired. Note also that unit tests
are not designed to run in any particular order - you should expect
any random order and write your tests as standalone.

The sample output is provided above - notice that it’s quite
extensive! This is because you’re not only doing a bunch of cool
stuff, you’re also running the app for over a minute.

If your test run yields similar output, fantastic! Now you can really
celebrate. You’ve just completed the first iteration of both IoT Edge
Tier applications - the GDA and the CDA. The rest of this book is
about adding functionality to these applications, connecting them
together, and eventually hooking everything up to a cloud service.
Buckle up!

Additional Exercises
Figure 2-5 indicates the GDA actually has more than two
telemetry collection tasks. These are optional, but still important.
See if you can add the SystemDiskUtilTask, SystemNetInTask and
SystemNetOutTask components using the patterns for
SystemCpuUtilTask and SystemMemUtilTask.

In fact, it’s not a bad idea to implement these for the CDA as well,
although it’s less relevant as your CDA won’t be collecting and
storing much data.

Don’t forget to add your unit test cases for each!

1 You can read more about apscheduler on its website
(https://apscheduler.readthedocs.io/en/latest/userguide.html).

https://apscheduler.readthedocs.io/en/latest/userguide.html

About the Author

Andy King is a seasoned computer scientist, educator, and
technology executive with over 20 years of experience, largely
focused on designing and building network management tools,
telematics systems, sensor networks, and–more recently–the
Internet of Things ecosystem. As a Department Head, he’s led
IoT research and integration projects, currently advises clients
across North America on a wide range of IoT initiatives and
teaches the Connected Devices course in the Cyber Physical
Systems program at Northeastern University in Boston, MA.

	Preface
	Who Is This Book For?
	To the Programmer
	To the Instructor
	To the Technology Manager and Executive

	What Do I Need To Know?
	How Is This Book Arranged?
	Part I – Getting Started
	Part II – Connecting to the Physical World
	Part III – Connecting to Other Things
	Part IV – Connecting to the Cloud

	Some Background on the IoT
	Complexity Redefined
	Living on the Edge
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us

	I. Getting Started
	1. Setting Up Your Environment
	What you’ll learn in this chapter
	Designing Your System
	Breaking Down The Problem
	Defining Relevant Outcomes
	Architecting a Solution

	Building, Testing and Deploying Software for the IoT
	Step I: Prepare Your Development Environment
	Configuring an Integrated Development Environment (IDE)
	Setup Your GDA Project
	Setup Your CDA Project
	Step II: Define Your Testing Strategy

	Unit, Integration, and Performance Testing
	Testing Tips for the Exercises in this Book
	Step III: Managing Your Workflow - Requirements, Source Code, and CI/CD
	Managing Requirements
	Setting up a Cloud Project and Repositories
	Source Code Control Using Git Remotes and Branching
	Automated CI/CD in the Cloud
	Automated CI/CD in your Local Development Environment
	A Few Thoughts on Containerization

	Conclusion

	2. Building Two Simple IoT Monitoring Applications
	What you’ll learn in this chapter
	Designing Your IoT Applications
	The CDA
	CDA Implementation Details
	Create the CDA application module
	The GDA

	Additional Exercises

