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What is a Gauge Transformation in Quantum Mechanics? 
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In classical theory, a physical state is an equivalence class under gauge transformations. Is the same true in quantum theory? The physical quantum states are the solutions of Dirac’s quantum constraint equation. They cannot be constructed as equivalence classes under the “simple” gauge transformations generated by the Dirac constraints. However, we show here that they can be constructed as equivalence classes under suitably defined “complete” gauge transformations. The complete gauge transformations are generated by the action of the quantum constraints on arbitrary individual components of the state. 
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In classical mechanics, a gauge invariant state can be gauge transforming linear components independently. We seen as an equivalence class of gauge-non-invariant states. 

show below that the space of the solutions of Dirac’s Two gauge-non-invariant states are equivalent if there is constraints is (naturally identified with) the space of the a gauge transformation sending one into the other. In the equivalence classes defined by the equivalence relation (2). 

canonical theory, the gauge transformations are generated Quantum gauge transformations in a finite dimensional by the first-class constraints. The same fails to be true Hilbert space. —Let us assume that we have a unitary rep-in quantum mechanics:

Dirac’s quantum constraints  C

resentation  U  of a (gauge) group  G  in a Hilbert space generate the gauge transformation c !  eitC c on the H . In this section we disregard all complications due to quantum states, but physical states cannot be seen as the infinite dimensionality of H . The generators of the equivalence classes under the equivalence relation representation are the Dirac constraints, and the space of c ⬃

physical states H

 eitC c . 

(1)

Ph is defined as the kernel of the Dirac constraints [1], namely, as the trivial representation of  G

Rather, physical states are the states which are annihilated in H . Vectors in HPh are gauge invariant, and represent by the Dirac constraints [1]. 

physical states. A gauge-non-invariant state can roughly We show in this Letter that one can see physical states be seen as a state in a particular gauge. Physical pre-as equivalence classes of gauge-non-invariant states in the dictions of a classical gauge theory are given by gauge quantum theory as well. But the equivalence relation is invariant quantities; but in concrete calculations, we usu-more complicated than (1). We call this alternative equiva-ally employ a gauge-non-invariant description— leaving lence relation a “complete” quantum gauge transformation. 

the task of extracting the physical quantities at the end. It Roughly, a complete quantum gauge transformation is would be nice to be able to do the same in the quantum defined as follows. f ⬃ c if and only if there are states theory, namely, to work on H without recurring to HPh, r i  and real numbers  ti  such that keeping track of gauge equivalence. Therefore, the prob-X

lem we pose here is to see if H

c 苷

r

Ph can be viewed as (is

 i , 

naturally isomorphic to) a space of equivalence classes in i

X

(2)

H , under suitable gauge transformations generated by  G. 

f 苷

 eitiC r i . 

Since HPh is a linear subspace of  H, the orthogonal i

projection p on HPh provides a natural definition of That is, a complete gauge transformation is obtained by quantum gauge equivalence in H : f ⬃ c if and only if 0031-9007兾98兾80(21)兾4613(4)$15.00
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p共f兲 苷 p共c兲 . 

(3)

Let  L  be the space of all vectors that can be written as in (6).  L  is a linear subspace, it is invariant under  U 关 g 兴 and We have HPh 苷 H

⬃ . Thus, our problem is to under-

is contained in  K. Let  S  be the subspace of  K  orthogonal stand the precise relation between this equivalence and to  L.  S  is a linear subspace, and it is invariant under  U 关 g 兴

the transformations generated by  U  in H . Can we in-as well. A vector r in  S  cannot be  U  invariant because terpret this equivalence as the possibility of being gauge it is in  K, therefore x 苷  U 关 g 兴r 2 r is different from transformed, as we do for the classical theory? More pre-zero. But since  S  is linear and  U  invariant, x is also in cisely, can we construct the equivalence relation 共⬃兲 di-S. But x is also in  L, by definition of  L. Since  L  and  S

rectly from  U  without having to solve for the invariant are orthogonal, r has to be zero. Therefore  S  is empty, states first? Clearly, if there exists a  g [  G  such that K  苷  L  and all vectors in  K  can be written as in (6). Now, f 苷  U 关 g 兴c , 

(4)

if p共f兲 苷 p共c兲, then 共f 2 c兲 [  K; therefore, there are gi  and r i  such that then f ⬃ c. However, the converse is not true in general. Namely, f and c can be equivalent under (3) X

f 2 c 苷

共 U 关 g

even if there is no  U 关 g 兴 that maps one into the other. 

 i  兴r i  2 r i  兲 . 

(7)

 i

Therefore, the equivalence relation (3) is different than the equivalence relation (1). 

It follows that

To get some intuition on how this may come about, X

X

consider the following simple example. 

Let the group

f 2

 U 关 gi 兴r i  苷 c 2

r i ⬅ r . 

(8)

 U 共1兲 act on  R 3 by generating rotations around the  z i

 i

axis. 

(We consider here a real, rather than complex, By adding r to both sums (with a corresponding  g  苷

Hilbert space, for simplicity.) The invariant subspace is identity), we have (5), Q.E.D. 

the one-dimensional  z  axis. The equivalence classes under Thus, we can  define  the equivalence relation: f ⬃ c (3) are the planes  z  苷 const. On the other hand, the if and only if there exist r i [ H and  gi [  G  such that equivalence classes under (1) are the orbits of the action of (5) holds. And we have

the group, which are the circles ( z  苷 const,  x 2 1  y 2 苷

H

const), parallel to the  z  苷 0 plane and centered on the HPh 苷

 z  axis. 

⬃ . 

(9)

Clearly, it is the linear structure of quantum mechanics Intuitively, a quantum state is a linear quantum superpo-that differentiates gauge equivalence (being on the same  z sition of classical configurations (a wave function over plane) from the fact of belonging to the same orbit (being configuration space). It is therefore reasonable that we on the same circle): Two distinct orbits on the same  z may gauge transform each individual component of the plane are in the same gauge equivalence class. 

superposition independently, without changing the gauge This example suggests that two quantum states are quan-invariant quantum state. 

tum gauge equivalent not only if they can be transformed We call the transformation c !  U 关 g 兴c a “simple” 

into each other by a finite rotation, but also if they can quantum gauge transformation, and the transformation be decomposed into a linear combination of vectors which X

X

can be independently rotated into each other (it is easy to c 苷

r i ! f 苷

 U 关 gi 兴r i

(10)

see that by rotating components independently, any two i

 i

vectors on the same  z  plane can be transformed into each a complete quantum gauge transformation. 

We have

other). We make this intuition concrete as follows. 

proven that physical quantum states cannot be viewed as Theorem. —c and f are equivalent [that is, (3) holds]

equivalence classes under simple quantum gauge transfor-if and only if there exist vectors r i [ H and group mations, but they can be viewed as equivalence classes elements  gi [  G  such that under complete quantum gauge transformations. 

X

 Infinite-dimensional

 issues. —Let

us

sketch

how

c 苷

r i, 

the above is realized in a simple example of infinite-i

X

(5)

dimensional Hilbert space. Let H be the space  L 2关 T 2兴 of f 苷

 U 关 g

functions c共a, b兲 on a two-torus, and let us have a single i  兴r i . 

≠

 i

constraint  C  苷 i

. We know what goes on in this case:

≠b

 Demonstration. —To prove that (5) implies (3) is im-The a variable is physical, the b variable is gauge. The mediate: It suffices to notice that p U 关 g 兴 苷 p. To prove physical information is contained in the a dependence of the converse, we begin by proving that any vector r in the the state, while the b dependence is arbitrary. Two states kernel  K  of p can be written as must be gauge equivalent if they have, in a suitable sense, X

the same a dependence. Thus, arbitrarily “moving pieces r 苷

共 U 关 g

of c共a, b兲 around in b” is a gauge transformation. The i  兴r i  2 r i  兲 . 

(6)

 i

group  G, however, acts on H by rotating states  rigidly 4614
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in the b direction:  U 共g兲c共a, b兲 苷 c共a, b 1 g兲. This we can define the equivalence relation by (7) instead of is only a small fraction of the physical gauge equivalence. 

by (5). This is done as shown below. 

Simple gauge transformations are rigid displacements Given an infinite-dimensional Hilbert space H and a of the state in b; complete gauge transformations are unitary representation  U  of a group  G  over it, we define  L

arbitrary deformations of the state in the b direction. It as the closed linear subspace of H formed by the vectors is easy to see that, in this case,  L  is formed by all of the R

that can be written as

states such that

c共a, b兲 d b 苷 0, namely, by all of thè X

b harmonics higher than zero. Indeed, harmonics higher r 苷

共 U 关 gi 兴r i  2 r i 兲 . 

(11)

than zero can all be set to zero with a complete gauge i 苷1

transformation of the form (5): It is sufficient to write the We then call two states gauge equivalent if their differ-harmonic as the sum of two equal terms, and rotate one ence is in  L, and define

of the two by half a wavelength. 

In infinite-dimensional spaces the well-known infinite H

subtleties of quantum mechanics may also appear. Zero HPh 苷

. 

(12)

 L

can be in the continuum spectrum of the Dirac constraints and therefore physical states appear as generalized states. 

The space HPh is defined in this way without recurring to This happens, for instance, if in the example above we generalized vectors or other extensions of H . This space replace the two-torus with  R 2. 

We have then to use

is naturally isomorphic to the space of generalized vectors continuum-spectrum techniques, such as Gel’fand triples that solve the Dirac constraints. 

[2] or something similar. In particular, H

To clarify how this may happen, consider the following. 

Ph is not a linear

subspace of H , but a linear subspace of a suitable closure In finite dimensions, if  L  is a proper subspace of H , then H of H , which can be defined as the dual of a suitable L⬜ the orthogonal complement of  L (that is, the set of dense subspace of H . 

vectors orthogonal to  L) is nontrivial, and In this case, the analysis of the previous section can be H 苷  L⬜ ©  L . 

(13)

repeated with minor modifications, using H .  U  acts on H by duality. H

H

Ph is the  U -invariant subspace of H . 

We can thus identify  L⬜ with

. In infinite dimensions, 

 L

Let  L  be the subspace of H formed by the vectors that can the orthogonal complement  L⬜ of a subspace  L  may be written in the form (6), where now the sum may contain be trivial (contain only the zero vector) even if  L  is an infinite numbers of terms, and the required convergence H

smaller that H . But

exists nevertheless, and it is

 L

is in H , not in H . Consider  S  苷

H

. As before, it

naturally identifiable with the space of  generalized  vectors H ©

Ph

 L

is easy to see that  S  is linear and  U  invariant. If r is a perpendicular to  L. Gauge invariance of a generalized nonvanishing vector in  S, it cannot be  U  invariant (because vector means being perpendicular to  L. Therefore, if we it would be in H

construct H

Ph) and x 苷  U 关 g 兴r 2 r is different Ph by requiring gauge invariance (solving the from zero. But  S  is left invariant as well; therefore, x [  S

Dirac constraints), we need generalized vectors. But if and not in  L, but x is also in  L, by definition of  L; we construct HPh as the space of the gauge equivalence classes, we may not need to introduce generalized states. 

therefore,  S  is empty and H 苷 HPh ©  L. 

We leave the analysis of this possibility for further work. 

Notice that even if c and f are in H , in general In conclusion, we have introduced the notion of “com-the r i’s are in H and not in H . More precisely, the plete quantum gauge transformation.” A complete gauge right-hand side of (7) is obviously in H if c and f are; transformation is obtained by arbitrarily decomposing a but when we split the sum into the two sums in (8), the vector in components and acting with the exponentiated individual sums need not converge in H . Thus, r in constraints on each component independently. Namely, (8) may be a generalized vector. Therefore we can still two vectors are gauge equivalent if Eq. (5) holds. We have define HPh as the space of the equivalence classes of shown that Dirac’s physical state space H

vectors in H under the equivalence relation (5), but we Ph can be obtained as the space of the equivalence classes of states, un-must allow for decompositions in generalized vectors r i der complete quantum gauge transformations. Therefore, as well. 

we suggest that the natural answer to the question in the However, the analysis above suggests that we can title is provided by the complete gauge transformations. 

avoid the cumbersome introduction of H and generalized In the classical Hamiltonian theory of constrained vectors altogether. This follows from the fact that space systems, one has to take two steps in order to reduce the L  of the vectors that can be written in the form (6) is full phase space G to the physical phase space GPh. First, a proper subspace of H . Thus, we can define  L  first, solve the constraint; that is, find the constraint surface and construct the linear space HPh as the space of the C in G. Second, factor away the gauge transformation; equivalence classes of vectors in H , equivalent under the that is, define GPh as the space of the gauge orbits in H

addition of vectors in  L, namely, as

. In other words, 

C . Dirac showed that in the quantum theory a single L

4615
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step is sufficient: The physical states are the ones that several useful comments. Support for this work came solve the quantum constraints. 

Here we have shown

from NSF Grant No. PHY-95-15506. 

that one can take this single step also by factoring away (complete) quantum gauge transformations. Thus, in the classical theory we find the physical states by solving the constraints  and  factoring away the gauge transformations. 

In the quantum theory we find the physical states by

*Electronic address: rovelli@pitt.edu solving the constraints  or  factoring away the gauge
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In classical theory, a physical state is an equivalence class under gauge transformations. Is the same
true in quantum theory? The physical quantum states are the solutions of Dirac’s quantum constraint
equation. They cannot be constructed as equivalence classes under the “simple” gauge transformations
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In classical mechanics, a gauge invariant state can be
seen as an equivalence class of gauge-non-invariant states.
Two gauge-non-invariant states are equivalent if there is
a gauge transformation sending one into the other. In the
canonical theory, the gauge transformations are generated
by the first-class constraints. The same fails to be true
in quantum mechanics: Dirac’s quantum constraints C
generate the gauge transformation ¢ — ey on the
quantum states, but physical states cannot be seen as
equivalence classes under the equivalence relation

hoghS 1
Rather, physical states are the states which are annihilated
by the Dirac constraints [1].

We show in this Letter that one can see physical states
as equivalence classes of gauge-non-invariant states in the
quantum theory as well. But the equivalence relation is
more complicated than (1). We call this altemative equiva-
lence relation a “complete” quantum gauge transformation.
Roughly, a complete quantum gauge transformation is
defined as follows. ¢ ~ y if and only if there are states
p; and real numbers ¢; such that

v =2 pi

=2 "pi.
:

That is, a complete gauge transformation is obtained by

(2)

0031-9007/98/80(21) /4613(4)$15.00

gauge transforming linear components independently. We
show below that the space of the solutions of Dirac’s
constraints is (naturally identified with) the space of the
equivalence classes defined by the equivalence relation (2).

Quantum gauge transformations in a finite dimensional
Hilbert space. — Let us assume that we have a unitary rep-
resentation U of a (gauge) group G in a Hilbert space
. In this section we disregard all complications due to
the infinite dimensionality of 4. The generators of the
representation are the Dirac constraints, and the space of
physical states Hpy is defined as the kemel of the Dirac
constraints [1], namely, as the trivial representation of G
in . Vectors in Hpy, are gauge invariant, and represent
physical states. A gauge-non-invariant state can roughly
be seen as a state in a particular gauge. Physical pre-
dictions of a classical gauge theory are given by gauge
invariant quantities; but in concrete calculations, we usu-
ally employ a gauge-non-invariant description— leaving
the task of extracting the physical quantities at the end. It
would be nice to be able to do the same in the quantum
theory, namely, to work on 4 without recurring to Hpy,,
keeping track of gauge equivalence. Therefore, the prob-
lem we pose here is to see if Hpy can be viewed as (is
naturally isomorphic to) a space of equivalence classes in
H, under suitable gauge transformations generated by G.

Since Hopy is a linear subspace of H, the orthogonal
projection 7 on FHp, provides a natural definition of
quantum gauge equivalence in H : ¢ ~ i if and only if
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