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Abstract: It is argued that the traditional distinction between artificial intelligence and cognitive simulation amounts to little more than
a difference in style of research -~ a different ordering in goal priorities and different methodological allegiances. Both enterprises are
constrained by empirical considerations and both are directed at understanding classes of tasks that are defined by essentially
psychological criteria. Because of the different ordering of priorities, however, they occasionally take somewhat different stands on
such issues as the power/generality trade-off and on the relevance of the sort of data collected in experimental psychology laboratories.

Computational systems are more than a tool for checking the consistency and completeness of theoretical ideas. They are ways of
empirically exploring the adequacy of methods and of discovering task demands. For psychologists, computational systems should be
viewed as functional models quite independent of (and likely not reducible to) neurophysiological systems, and cast at a level of
abstraction appropriate for capturing cognitive generalizations. As model objects, however, they do present a serious problem of in-
terpretation and communication since the task of extracting the relevant theoretical principles from a large complex program may be
formidable.

Methodologies for validating computer programs as cognitive models are briefly described. These may be classified as intermediate
state, relative complexity, and component analysis methods. Compared with the constraints imposed by criteria such as sufficiency,
breadth, and extendability, these experimentally based methods are relatively weak and may be most useful after some top-down
progress is made in the understanding of methods sufficient for relevant tasks — such as may be forthcoming from artificial intelligence

research,
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Introduction

The development of the field of artificial intelligence over the
last two decades has been hailed by many as being of paramount
theoretical importance to cognitive psychology (and therefore to
the philosophy of mind which has been increasingly sensitive to
the empirical sciences). Although the importance of this new
technical tool is generally accepted, opinion regarding the na-
ture and extent of its influence on the understanding of cognition
varies considerably — even among those sympathetic members of
the newly formed “Cognitive Science” fraternity. There are
those who believe that computers are merely a convenience, a
tool with which we can examine independently framed theories
for their completeness and consistency. John Anderson and
Gordon Bower, well-known computer users themselves, put it
this way: “The computer is only a computational tool for ex-
plicitly checking the predictions of the theory, for determining
whether all the specified mental processes are in fact fully
specified and whether they can work together as claimed
(Anderson & Bower, 1973, p. 143).”

Others believe that what we call intelligence or intelligent be-
havior is so constrained by the physical environment, the natural
laws governing realizable physical mechanisms and the require-
ments of ontogenetic and phylogenetic development, that in-
telligence can be studied more or less directly and inde-
pendently of how it is realized in detail in specific organisms or
artifacts. Between these positions are a variety of views that have
been examined by Reitman (1965) and Newell (1970).

Whatever view one takes regarding the particular role that
computer systems play in the development of cognitive theory,
there are many reasons for viewing the potential contribution of

©71978 Cambridge University Press 0140-525X/78/ZPYLY003%04 00/0

the computational approach with optimism. There are clear in-
dications in the history of science (e.g., Butterfield, 1957) that
periods of progress are coincident with major new technical and
conceptual developments or sometimes, as in the case of
Galileo’s use of geometry, with taking an existing formalism
seriously as a way of understanding the world. Similarly, philo-
sophical understanding also rests on available conceptual tools.
As Susanne Langer put it, “In every age, philosophical thinking
exploits some dominant concepts and makes its greatest
headway in solving problems conceived in terms of them (1962,
p.54).”

Several decades ago, the brilliant mathematician and com-
puter pioneer John von Neumann pointed out that in the past
science has dealt mainly with the concepts of energy, power,
force, and motion and he predicted that ““. . . in the future science
would be more concerned with problems of control, program-
ming, information processing, communication, organization, and
systems {Burks, 1970, p. 3).” The precise nature of the Weltan-
schauung which ties together this syndrome of concepts is not
yet clear (see, however, Simon, 1969; Newell and Simon, 1976).
They seem to represent a move away from the study of material
substance towards a more abstract study of form. The new con-
ceptual tools leading up to the development of artificial in-
telligence and cognitive science are bound up with such notions
as mechanism, information, and symbol.

Along with this general shift toward formalism (evident as well
in analytic philosophy, linguistics, and much of biology) has
been a more detailed working out of certain specific problem
domains. One which has seen great progress in the last fifteen or
twenty years is computer science. The formal analysis of al-
gorithms and data structures in this science has given us new
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insight into the nature of computation and process. Artificial in-
telligence has, from the earliest days, formed part of the frontier
of computer science. From the outset, people like von
Neumann, Turing, Shannon, Newell, Simon, McCarthy,
Minsky, and others recognized that the study of symbol process-
ing in computer science and attempts to understand the nature of
intelligent behavior were at some level inseparable.

But the question still remains in the minds of many
psychologists: How close a connection can we expect between
computational ideas and psychological theory? Is the relation
between the two to remain at the level of exchange of concepts
and a metaphorical focusing of attention or can it be more inti-
mate? In particular, can a program be a psychological theory?

Arntificial intelligence versus computer simulation

It has been generally assumed in discussions of such issues that
there are two distinct brands of “intelligent” computational
systems: Those designed primarily to do difficult tasks using
whatever clever techniques are available and those designed pri-
marily to simulate the human cognitive process. Now it is clear
that one could sort different computational systems in a variety of
ways. For example, one could use criteria such as the interests,
training and methodological commitment, and goals of the
designer. What is not so clear is what the difference between a
clever artificial intelligence (A.I.) system and a computer simula-
tion of a cognitive function would be if we controlled for: (a)
generality (i.e., range of tasks carried out); (b) power (i.e., the
level of performance of the system); and (c) the way in which we
described the system (i.e., at what level of abstraction we cast our
description of the process - from machine code to a flow chartor
a general statement of the method in terms of the principles and
rules followed). I see no compelling reason to believe that under
these conditions (i.e., comparing systems equated on a, b, ¢)
there need be any systematic difference between systems
designed purely as A.I artifacts and those designed as cognitive
simulations. Of course in general, a system designed with one or
the other of the goals as primary will differ on (a), (b), and (¢) and
these differences are worth some comment.

Generality and power. Consider first the issue of generality
and power. Newell (1969) has argued that there is a fundamental
inverse relation between the breadth or generality of a method
(roughly the range of tasks to which it is applicable) and its
power (roughly how well it does on problems to which it is ap-
plicable). This relationship arises in part because the narrower
the range of tasks to which a method is applicable the more one
can assume about the task in designing the method.
Psychologists are familiar with this trade-off in the area of statis-
tical methods for hypothesis testing where, in general, the more
that can be assumed about the data (e.g., sampling distribution,
true population mean, direction of sampling error, etc.) the more
powerful the test can be made. This phenomenon is ubiquitous:
The most powerful analytic tools (say in operations research) and
the most powerful computational systems are ones in which ad-
vance knowledge about the task domain has to be built into the
method. It is then typically up to the user to apply his general
skill when he decides which method to use with which task.

It is the existence of these built-in assumptions that gives
some methods their power. But this feature, plus the division of
labor that leaves to the human agent the problem of deciding
whether a method is applicable to a given risk, is precisely what
makes some computational systems seem implausible as
psychological models. Thus some of the criticism directed
against Evans’ (1968) geometrical analogies system, Winston’s
(1975) learning system, Waltz’ (1975) scene analysis system, or
Winograd’s (1972) language comprehension system is based on
such lack of generality. The high performance “expert” A.lL
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systems such as Dendral (Feigenbaum, Buchanan, & Lederberg,
1971), which infers chemical structures from mass spectroscopy
data, or MYCIN (Shortliffe, 1976), which diagnoses infectious
diseases, also exhibit the power-generality trade-off. Their
power derives from a pragmatically circumscribed, relatively
narrow range of problem-solving ability.

Such examples are taken by many as showing that systems
designed primarily to accomplish a particular task (i.e., an A.L
system) need not do so in the same way that people would. While
there may be some truth to this, our present point is that this is
not primarily a claim about A.l. versus computer simulation but
rather a comment about the more general phenomenon that
performance may be purchased at the price of generality. This
holds within theoretical psychology in general (where “perfor-
mance” refers to experimental fit) just as much as within cogni-
tive science. It is a basic fact of life that systems adequate for
some task X may be qualitatively different from systems ade-
quate for both task X and task Y.

While this qualitative discontinuity principle hangs over every
scientific enterprise, it is of special concern in cognitive science
where it has both a positive and a negative side. On the negative
side the considerable premium which is sometimes placed on
constructing systems with dazzling performance can blind one to
the ultimate concern with generality. On the positive side,
however, there is some reason to believe that in spite of this
performance snare the computational approach is on a more
secure footing than conventional theorizing in psychology. The
reason for this lies in the recurring themes which continue to
arise in very different areas of artificial intelligence application.
Whenever sufficiently broad task domains are challenged, AL
researchers find that they are preoccupied with problems of how
to represent task relevant knowledge and how to organize con-
trol so that relevant portions of this knowledge are brought to
bear when it is appropriate. Within these broad categories there
are problems of efficient search, of exploiting problem
constraints, of generating plans, of discovering and implement-
ing useful heuristics, and of decomposing the system into per-
spicuous extendable modules. Very few of these problems are
approached ab initio these days because they have been en-
countered and solved in various ways in many existing systems.
The, perhaps surprising, finding has been that no matter what
task domain one is concerned with the technical problems of or-
ganizing systemic complexity are very similar.

The recurrence of major problems of organization and
representation of knowledge, and the organization and distribu-
tion of responsibility or control (c.f., Pylyshyn, 1978, in press)
have produced the growing conviction among cognitive
scientists that intelligence is not to be had by putting together
language abilities, sensory abilities, visual abilities, memory,
motivation, and reasoning (as the chapters of typical psychology
textbooks suggest) but by bringing a large base of knowledge to
bear in a disciplined way in all cognitive tasks. In view of the
qualitative discontinuity principle mentioned earlier, the way a
problem domain is decomposed for research purposes may be
critical to the eventual generality of solutions. If the A.I. convic-
tion turns out to be correct, it will mean that the conventional
taxonomy of problem areas in psychology has been a misleading
one, being based partly on a historical view of mental faculties
and partly on the centrality of available research methods in
shaping psychological research (c.f., Newell, 1973b). It may turn
out, for example, that one cannot understand perception, reason-
ing, and memory independently of one another - that the general
laws of cognition are at the level of abstract information handling
principles (representation and control). Intelligence may be a
phenomenon which appears when a large system of specific
mechanisms and a large body of knowledge are organized along
the lines of these abstract principles. Should this be the case,
then work in artificial intelligence, even when apparently unmo-
tivated by a desire to simulate human behavior, could nonethe-
less supply the foundations for a cognitive psychology.
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Level of description. When a computational system is
presented as a model of some aspect of cognition, there is always
at least one major difficulty which has to be faced. This difficulty
is related to the following question: How is one to compare
processes that are operating in different media (i.e., processes
with different physical instantiations)? How is one to judge
whether the same process is running in two radically different
material systems (even two different computers)?

One thing should be clear: One cannot answer this question by
merely examining the two physical devices (or the device and
the organism). One can no more compare a machine and a person
than one can compare a plastic model of a molecule (say, DNA)
with the chemical substance itself or the diagrams and formulae
of Newton’s Principia with pictures from an all-sky camera or any
map with the territory it is supposed to depict. The model does
not have its intended interpretation “written on its sleeve.” The
appropriate comparison in each case is not between two physical
objects but between two carefully constructed descriptions of
the objects. For example, one compares a description of the
molecular model, which makes reference only to its three-
dimensional structure and to the identity of its components (leav-
ing out any mention of size, color, weight, taste, etc.), with a
description of an object derived from x-ray diffraction
photographs and other sources of evidence and mediated by a
chain of theoretical deductions.

Similarly, in the case of a computational model the relevant
object of comparison is not the computer program per se but a
description of the computational process cast at some appro-
priate level of abstraction. The level of abstraction which is ap-
propriate varies with the model and the goals of the theorist (i.e.,
the types of phenomena he wishes to explain). For example,
some models have parameters representing such abstractions as
aggressiveness (Colby, Weber, & Hilf, 1971) or the inferred mo-
tives of others (Schmidt, 1976). In these cases the details of the
algorithm, say the general flowchart level, are clearly irrelevant.
On the other hand there are models (e.g., Newell, 1973a) in
which the operation of each individual rule {production) is taken
to be an empirical hypothesis.

Whatever the model, there is clearly a level (or range of levels)
of description appropriate for comparison. There are equally
clearly levels at which it is inappropriate to make comparisons
with the human cognitive process. One particularly acute
difficulty with computational models is that the exact level that is
appropriate is often unclear - even to the theorist. In physical
models one is rarely tempted to, say, criticize a plastic model of a
chemical molecule because unlike molecules of the substance
being modelled it is inedible, or to decry Newton’s mechanics
because the planets are not the same color as his ink. But com-
parable errors are made routinely in criticizing computational
models. For example, when people criticize computers as
models because of the type of memory they have (i.e., location
addressable), because they lack flexible motivation (c.f., Neisser,
1963), because of their speed or precision, or because of their
serial operation, they are invariably victims of this fallacy. When
a computational system is presented as a model, the implementa-
tion details are not part of the description under which the
system is to be compared with the human cognitive process.
Similarly, the appropriate description of the human process is
typically one which does not include such properties as serial
versus parallel processing. The latter can enter indirectly by vir-
tue of different complexity profiles which may be exhibited by
serial and parallel algorithms operating on a variety of different
inputs (e.g., serial and parallel algorithms may exhibit different
relations between time taken to perform a task and various task
parameters such as size of input - see 3(b) below), but what is
inappropriate is, say, to criticize a serial algorithm on the
grounds that in the brain various events are taking place in dif-
ferent locations at the same time. (In fact, this is also true at the
level of electronic activity in a serial computer, showing that
what is parallel at one level of description may be best described

as serial at another level.) Similarly, though errors in hardware
are rare, systematic errors brought about by structural design fea-
tures or limitations in the use of resources at the level of the al-
gorithm are not uncommon (e.g., Feigenbaum, 1963; Newell &
Simon, 1972; Anderson, 1976).

The issue of the appropriate level of description at which com-
putational systems are to be evaluated remains a serious problem
in all computational models. With large comprehensive systems
the problem may become exceptionally acute. The SHRDLU
natural language system (Winograd, 1972) is a program of over
200 pages of instructions in a variety of high-level languages. To
present this as “a theory of language comprehension”™ is only
slightly less absurd than to exhibit its author under that descrip-
tion. Clearly what is needed is something approaching a theory
of the program; a description of the system which highlights the
general principles underlying its operation.

Computational theories have a unique difficulty in this
respect. Theories, such as those of physics, which explain
phenomena by appeal to nomological laws, make a clear separa-
tion between fundamental laws and systems of calculation based
on them. Such a distinction is not easily available in computa-
tional theories Complexity may be an endogenous part of this
approach, not because intelligent behavior depends on very
many factors (so does molecular motion) but because it may be
that the most interesting aspects of intelligent behavior are more
a function of the interaction of very many small components (e.g.,
a lot of specific knowledge) than the product of a few deep prin-
ciples. However, this is speculative and only time will tell. This
might, however, explain why the Newtonian style of theory (an
axiomatic, quantitative, mathematical approach) has had almost
no impact on cognitive psychology. Nonetheless, some abstrac-
tion of principles is essential if these systems are to mediate
understanding. But it should be kept in mind that developing a
system and describing its underlying principles are two distinct
tasks. The literature contains many examples in which one but
not the other of these tasks was well executed. (Itdoes work both
ways: One can have a good description - i.e., theory -~ of which
the program is a poor exemplar).

Before going on to discuss empirical constraints on computa-
tional systems, it might be appropriate to comment briefly on the
relation between the computational and the biological levels of
analysis since this bears on the more general issue of the level of
description discussed earlier. Although it is possible to simulate
biological functions, artificial intelligence systems are invariably
directed toward cognitive rather than biological states —i.e.,
computational states or expressions are given intentional or
cognitive interpretations. Thus computational systems are func-
tional models, in the sense understood in philosophy of mind
(e.g., Fodor, 1975; Dennett, 1971; Cummins, 1975; Haugeland,
next issue). Although the functional approach is the dominant one
in psychology, it is viewed in a different perspective in computa-
tionally oriented cognitive science than in biologically oriented
brain science. In both cases the more conventional type of func-
tional explanation is viewed as an incomplete explanation,
though for different reasons. For the former, a functional expla-
nation is incomplete unless it is instantiated (or in a form in
which it could be instantiated) in some physically describable ar-
tifact (the most convenient being a general purpose computer).
We shall not comment on the reason for demanding this criterion
beyond the remark that it forces a certain level of functional re-
duction which encourages, but does not ensure, mechanistic
explanation, and it makes empirical exploration of a certain kind
possible (see below; for more on this criterion see Pylyshyn, in
preparation). For brain science, conventional functional explana-
tion is incomplete unless the form of instantiation of functions in
organic tissue is known. Thus functional analysis is seen by the
latter discipline as a step towards a more complete, ultimately
biological, explanation.

Although this is not the place to argue this difficult question in
detail, it is perhaps appropriate to at least summarize some of the
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beliefs held by cognitive scientists, though I clearly cannot
speak for all of them. One position (the weak version) 1s that just
as it is not only possible but highly enlightening to study al-
gorithmic processes independently of how they are imple-
mented (e.g., most of computer science is independent of which
particular machines might be used), so there is much that can be
gained in trying to understand cognitive processes inde-
pendently of the biological mechanisms used to carry out those
processes in various organisms. Another position (the strong ver-
sion) is that cognition can only be understood at this level (i.e., in
terms of an intentional cognitive vocabulary which includes
beliefs, percepts, goals, etc.). This position claims that although
cognitive functions are indeed carried out by biological
mechanisms, there is an important sense in which questions
about how we perceive, acquire knowledge, act in accordance
with our goals and beliefs, and so forth cannot even be addressed
in the vocabulary of neurophysiology. Even if we could say what
process in the brain was responsible for some behavior, this
would not explain the act because the relevant regularities and
generalizations simply do not occur at that level of abstractness -
i.e., they are not expressible in the neural vocabulary (just as we
cannot express traffic laws in the vocabulary of mechanics). For
example, there is no question that a causal biological chain of
events intervenes between, say, being requested to ‘“‘please open
the door” and the ensuing behavior. But a completely different
biological description is relevant for each distinct way of being
requested (different linguistic forms, voices, intonations, mo-
dalities - whether spoken or written or presentated in sign lan-
guage), each different type of door opening mechanism, and each
different possible social or perceptual condition (e.g., whether
the person who is making the request is seen as being disabled
or as having his arms full or as holding a gun). It is only by going
to a nonbiological vocabulary that such relevant generalizations
as there may be in such situations can be captured.

Interestingly enough, the same is true of the relation between
algorithms and computer hardware: Although the latter carries
out the former, a description in terms of electronics would not
capture the rules by which the computation proceeds. Even
more importantly, however, the computational rules take the
form that they do because their terms represent something (e.g.,
numbers, alphabetic characters, propositions, etc.) and this
aspect cannot be captured by an electronic description. One
reason for this is that the semantics of expressions (in the
classical sense -i.e., how they are given an interpretation in
some domain) depend on the syntactic form of the expression,
and this is invariably lost in the translation to an electrical vo-
cabulary. The same holds for the relation between the cognitive
vocabulary and the brain vocabulary. Thus, the relevance of
computation to cognition is not only that the former provides the
relevant level of abstraction (or that it can be explored empir-
ically by being run on a computer—however important that is)
but that both cognition and computation are intentional rule-
governed phenomena. (This slight digression has been rather
sketchy but more detailed arguments for the claims are available
elsewhere - see especially Fodor, 1975; Fodor, 1978; Den-
nett, 1971; Pylyshyn, in preparation; Haugeland, next issue).

Responsiveness to empirical constraints. Among the criticisms
which have been leveled against the attention paid to artificial
intelligence by psychologists is that A.lL. is strictly a rational
exercise in building formal systems, more closely related to pure
mathematics than to psychology. The critics who hold such a
view correctly point out that if computational systems are to be
other than untrammeled works of the imagination, they must be
responsive to nature. They must, in other words, be empirically
constrained. Are A.l. models empirically constrained? Is the dif-
ference between A.I. and computer simulation simply that the
latter is constrained by empirical observation while the former is
not? I shall argue that both are subject to a broad spectrum of
natural and logical constraints, the difference being primarily
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one of the relative priorities placed on different types of
constraints and the methodological styles to which their
designers subscribe.

There are several ways in which the “pure” A.L style of re-
search — not apparently motivated by psychological goals - can
be seen as nevertheless empirically constrained. In the first
place, empirical requirements enter with the intuitive accep-
tance of a problem as requiring intelligent action. The class of
such problems is distinguished by criteria which are funda-
mentally cognitive. For instance, identifying certain classes of
patterns by machine can be trivial. It is not an A.IL. problem to
recognize certain auditory frequencies, certain optical gradients,
wave length combinations, and so forth. So long as the equiva-
lence class of that pattern has a simple physical characterization,
the problem of recognizing it is not one of A.I. Whatis a problem
of AL is to devise ways of recognizing equivalence classes
defined by psychological criteria: Classes such as the visual pat-
terns corresponding to someone’s face, to the presence of or-
dinary objects in a scene, to the sound of a spoken word, and so
on. These are all equivalence classes of physical events for
which there is a simple psychological (or phenomenological)
description, but no simple physical description - i.e., they are a
“natural kind” for humans in the sense that they taxonomize the
world in a way that is relevant to capturing psychological and be-
havioral regularities. There would be little interest in develop-
ing an A.L system to recognize a class of patterns which did not
have a psychologically relevant (natural kind) description - no
matter how technologically difficult the problem was.!

It should be noted here as well that if a person is capable of do-
ing a certain task X which is judged to require intelligence, then
any device that can be said to “do task X”” must not only be doing
the same task as the person but in some sense must also be doing
X “in the same way” that the person does it. Here we are merely
noting a systematic vagueness in the use of terms such as ““in the
same way”~ which is closely related to the problem noted earlier
of finding the appropriate description under which to evaluate a
model. This arises here because “doing task X does not refer
merely to the production of a record of behavior, since we would
not say that a video recorder or any other recorder-reproducer of
behavior “did task X.” When one speaks of the ability to ““do task
X” one invariably has in mind some class of tasks and hence *“do-
ing task X must refer to the contingencies under which one
particular behavior is produced as opposed to another. Thus, ifa
person and a computer are both capable of “doing task X" there
is some level of description of the two at which they are doing it
“in the same way.”

The distinction between what and how ~ between process and
product — becomes relative to the description under which a
system is examined and so it is inevitable that some empirical
data is smuggled into an A.L. system for a class of tasks that is a
natural kind for people (e.g., playing chess, drawing inferences,
but perhaps not, say, the skill acquired by learning one rule from
each of 50 different board games — which may be more like the
ability to perceive “grue” and “bleen” - c.f., Goodman, 1955).
The point is that, both for the notion of “pattern” in pattern
recognition and for the notion of “problem” in problem solving,
A.lL is interested in precisely those classes that form a “natural
kind” for us humans—that is at least one of the defining charac-
teristics of “intelligent” tasks and it does provide an empirical
constraint on A.I.

The second sense in which empirical constraints enter into
“pure A.L” is that programs can be thought of as actual experi-
ments put to nature (see Newell and Simon, 1976 for an excellent
discussion of this view). They allow for possible discoveries. As
in modern physics the intervention of nature in providing empir-
ical constraints on theory is subtle and infrequent (e.g., most of
the recent discoveries in particle physics are more or less
inevitable consequences of certain general mathematical
constraints, such as the group theoretic structures of Guage
theory). But the intervention of natural law does occur neverthe-
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less and is crucial to the form the theory or the system takes in
the long term.

As a “science of design” (see Simon, 1969), A.I. conducts ex-
periments in its own characteristic way. The goal of designing a
system to perform a certain function must be realized subject to
the constraints imposed by nature. In a discipline which
proceeds by attempting to synthesize new objects with specified
functions the distinction between empirical and formal (systems)
constraints becomes blurred. If a designer attempts to design a
system according to certain general premises as to how such a
system should operate, then there are many reasons (apart from
errors or lack of effort) why such an attempt might fail. It might
be that his analysis of the task requirements is flawed. It might
be because there are crucial aspects of his understanding of the
putative method which are incomplete. It might be that his view
of how the system is to function is not in the appropriate form for
implementation. The latter is an important consideration be-
cause there is always a way of describing a function which in
some sense appears to address the question of how it is carried
out but which is inappropriate for implementation because it is
not at the required level of specificity or reduction. For example,
one might propose that the method of playing chess consists of
selecting the best move, or of selecting a move such that there
exists a sequence of contingent choices beginning with the
selected move and terminating in checkmate. Such a description
glosses over the important aspects of the process and thus does
not provide an explanation — and may indeed be found to be
wrong (as in the chess example) when an attempt is made to fill
in the missing details.

Regardless of the precise reason for a system failing to operate
as expected (again barring actual programming errors) the
scientist discovers empirically that the system fails by observing
its behavior under a variety of conditions. Among the reasons for
failure are some which could in principle have been predicted
without experimentation with a program. But most failures are
not of this kind because it is not the lack of formal completeness
and consistency of the method which causes the failure but
rather the inadequacy of the method for an empirically provided
(and typically not completely specifiable) set of tasks. Even
when the task domain is a formal one (such as symbolic logic),
the task of discovering solutions in this domain is not understood
in a formal sense and so lends itself to empirical discovery. In the
latter case the completeness of a method can sometimes be
demonstrated formally but the naturalness and efficiency of the
method over interesting subsets of problems (again as provided
by intuitive and hence cognitive criteria) is established by em-
pirical exploration of the program.

The clearest examples of such discoveries occur in those func-
tions of A.I. in which the system must interface directly to a
physical environment — as in machine vision, speech recogni-
tion, and perceptual motor coordination (robotics). These have
provided the cleaiest cases of discoveries about what kinds of
relations must exist between various levels of the perceptual
system (e.g., acoustical, phonetic, prosodic, syntactic, semantic)
in order for the system to function. Similarly Waltz’ (1975) suc-
cess in designing a system for parsing a scene consisting of
polyhedra with shadows hinged on his empirical discovery that,
with a certain set of labels for elements of the image, the
contraints on physically possible scenes were so great that in
most cases a single correct analysis was mandatory.?2 Systems for
language comprehension are similarly constrained by the em-
pirical facts about the structure of language, the structure of the
world, and the structure of cognitive systems which use lan-
guage. Together, these constrain the possible form which a com-
putational comprehension system can take. Furthermore, the at-
tempt to build such a system is instrumental in discovering these
constraints so that A.I. also provides a methodology for dis-
covery.

Inasmuch as the empirical discoveries mentioned earlier
concern the structure of what Simon (1969) calls the “task envi-

ronment” (as well as the way this structure is cognized by the
human observer), and inasmuch as such structures are a funda-
mental determiner of human cognitive processing, we see that
even “‘pure” A.L can hardly avoid making some contributions to
cognitive psychology. However, there also remain some
significant differences between how the A.I. researcher and the
psychologist as cognitive simulator approach their largely over-
lapping goals. They owe their allegiance to rather different
methodologies. When a psychologist claims that some people
function the way his system does, he usually means that the com-
putational system meets certain kinds of constraints that are
considered central by the psychological community. In what
follows we shall discuss some of these experimental constraints
and examine where A I stands in relation to them.

Computer simulation: constraints from
psychological laboratories

Apart from such obvious sources as known limitations of human
information processing and the standard experimental tech-
niques of hypothesis-testing, there are three major sources of
specifically psychological empirical constraints on computer
models. Elsewhere® I have referred to these three sources for
convenience as intermediate state evidence, relative complexity
evidence, and component analysis evidence.

In order to introduce the idea behind these sources of con-
straint we shall begin by posing the following question. Sup-
pose someone produced what looked like a standard production
model mechanical calculator and claimed that it constituted a
model of human arithmetic skill. What grounds might you offer
to counter this claim? Before examining several typical argu-
ments one should note that a lot depends on exactly how the
original claim was presented. As was pointed out earlier, the
comparison of model and phenomenon is really a comparison
between two descriptions. The description under which one
should view the calculator would have to make clear, for
example, that such physical properties as color, weight, size, and
so forth are not meant to be part of the modeling function. On the
other hand, let us suppose that the numbers entered into the ma-
chine and the numbers appearing in the display window are to
be viewed as relevant. In addition to these there may be (as in
any model) a substantial grey region where it is not obvious, a
priori, whether certain aspects (e.g., the time taken to calculate
an answer in our example) are relevant or not. Assuming then
that we have our calculator and some reasonable description,
what are some grounds for thinking that this is not an adequate
model? Let us examine a few.

(a) If we give the device two numbers to add and examine it
closely as it goes through its calculation (e.g., by slowing it down
or stopping it periodically), we find that there are intermediate
states in the computation in which all digits have undergone
some change but none are yet at their final value. Subsequently,
there are intermediate states in which the register contains some
correct digits but these are scattered throughout the sum. And
finally, a number of positions, again apparently scattered through
the sum, arrive at their final value at the same time at the end of
the calculation. Now we have at least three general characteris-
tics of what might be called “states of knowledge” intermediate
between the initial and final states which appear to be quite dif-
ferent from the intermediate states which people go through (al-
though what the latter are is an empirical question). Methods for
studying intermediate states in human tasks are very few and
rather crude compared with more conventional experimental
methods. They consist mostly of the analysis of thinking-out-
loud protocols, supplemented by some inferences about missing
states. However, such evidence does represent a unique source
of constraint on models. The authoritative source on this
methodology is the comprehensive book by Newell and Simon
(1972).
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(b) We could attempt to rank various arithinetic problems in
order of their complexity in the model. Varous complexity
measures might be sought but two simple ones are the time
taken to complete the task and the number of elementary opera-
tions (e.g., machine cycles) which they required. More complex
measures might 1nclude some more abstract notion of ele-
mentary operation which applied not only to this one machine
but to a class of such machines. Sticking to the simple measures,
however, one finds that complexity in the model is independent
of how many digits are involved in the addition and of which
specific digits are used. Similarly, with multiplication one might
note the relation between number of digits and complexity and
observe that the latter does not depend strongly on which digits
are involved.

We can now do the same for human subjects. The scale of com-
plexity here can depend on such measurements as the time taken
to complete the task or the frequency of errors. Again we can
examine the empirical complexity as a function of variations in
the task. We might observe that this complexity measure
increases with the number of digits to be added, increases even
more rapidly with the number of digits to be multiplied, and
varies with the number of zeros 1n the problem as well as with
the number of columns requiring “carries” in adding. Clearly, on
such measures the two complexity ordenngs would not cor-
respond very well.

(¢) If we examine the model in finer detail, we can identify
various subtasks which contribute to the total computational
process. We might then be able to evaluate these subtasks inde-
pendently. For example, it could be that processing individual
columns conformed to data on human subjects even though the
overall performance measures yielded an inconsistent pattern
due to the way in which these are combined (e.g., from the fact
that in the model they are done i parallel). If this were so, it
should be posssible to show similar intermediate state or com-
plexity effects on single column addition tasks. Data on human
addition of pairs of digits show that the amount of time taken is
not constant (as might seem subjectively to be the case) but de-
pends on the smaller of the two digits (see Groen and Parkman,
1972). This is not the likely case in the model - even if we keep
in mind that “time” may map into a more complex dimension n
the model.

Component analysis of the task provides a powerful method of
validating models. The nature of errors people make often helps
to pinpoint loci of processing difficulty. Such bottlenecks can
also be revealed frequently by deliberately stressing certain
aspects of the system — for example, by exanining what happens
on progressively larger problems when external memory aids are
forbidden compared with when they are permitted. Young (1973)
has tuned his model of seriation in children by examining what
specific differences occur when certain types of information are
selectively provided or blocked dunng the task (e.g., by letting
the child see all the blocks, or only those he has seriated or only
the last one, the largest one, two at a time, etc.). Simon (1969) has
argued that we might obtain the most discrimimating evidence
concerning human information processing by observing the
human at the limits of his performance. If we could apply the
stress to his performance in a selective manner, governed by the
model we are constructing, we might be in an even better posi-
tion to make direct use of the observations.

In addition to the types of empincal constraints discussed pre-
viously there are a number of other general categories worth
mentioning. One is evidence 1egarding the malleability of be-
havior, which includes the ability of a system to assumilate new
information, to accommodate to new environmental demands,
and to learn by doing, as well as by being told or shown how. A
second source of constramt 1s related to the decelopment of in-
telligence — particularly ontogenetic, but also to some extent
phylogenetic development. Development is not merely a
process of incrementally adding new skills, but also mvolves
radical reorganization of intellectual structures. The mechamsm
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for such reorganization may never be discovered unless the evi-
dence of developmental sequences 1s mtroduced as part of the
empirical constraint on systems.

A third source of empirical constraint comes from the evidence
of neuropsychology and allied disciplines. For example, a va-
riety of evidence is available which bears on the problem of de-
composing intelligence into partially independent functions.
Evidence from pathologies such as aphasias, agnosias, and
apraxias as well as evidence of localization of certain functions
and of the organization of sensory and motor systems are all rele-
vant to the question of how the total function might be decom-
posed.

Even if one accepts that the sorts of constraints on intelligent
systems which we have been discussing are all potentially valid,
there still remain very important questions of priority. If we
apply all the constraints, there may be no place to stop, short of
producing a human. A system through which one is to under-
stand intelligence must necessarily be partial. The question of
which sequence of approximations or of application of con-
straints one ought to adopt as a matter of principle, and con-
sequently of what type of incompleteness one prefers to tolerate
along the way, 15 one on which there is a wide spectrum of
opimon. For example, Newell (1972) states his position on this
question as follows:

“I will, on balance, prefer to start with a grossly imperfect but
complete model, hoping to improve it eventually, rather than
start with an abstract but experimentally verified character-
ization, hoping to specify it further eventually. These may be
looked at simply as different approximating sequences toward
the same scientific end. But they do dictate quite different ap-
proaches . . . (p.375).”

This position, sometimes referred to as the “top-down” ap-
proach because it proceeds from a broad general system to well
established specific details, is characteristic of the artificial in-
telligence approach as opposed to the experimental psvchology
approach. However, top-down is a relative term. The approach
taken by Newell, Simon, and other cognitive scientists 1s much
more top-downish than 1s typical in psychology. Nonetheless itis
still much more data-oriented than is the approach followed in
most artificial intelligence laboratories. The kind of “grossly im-
perfect” details necessary to achieve some degree of complete-
ness over a broad domain 1s often more than most experimentally
minded psychologists would be willing to tolerate. Part of the
difficulty lies in what was earlier discussed as the problem of
finding the appropriate description under which to view the
system. But a large proportion of the contents of the more ambi-
tious general systems, at this state in the history of A.L,
represents genuine ad hocery stemming from ignorance of al-
ternative computational methods. Hopefully at least these
technical difficulties are temporary.

Conclusion

We have been discussing the relationship between artificial n-
telligence and psychology and in particularthe general question of
the nature of the empirical constraints to which models in cogni-
tive science are subjected. It was proposed that even the purest
cases of nonpsychologically motivated artificial intelligence are
subject to a vanety of empirical constraints imposed by the
natural laws which determine both how the mechanisims operate
and how physical environments behave. Other more directly
cognitive constraints arise in the definition of tasks, since the no-
tion of a task requirmg intelligence 1s a psychologically moti-
vated one.

In addition we have examined those emprirical constraints
which have traditionally held a special status in experimental
psychology. These are relatively “low level” or detailed
constraints for which there exist a variety of experimental
methodologies. With the aid of metatheoretical assumptions, em-
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pirical data gathered by such methods can be used by theorists to
narrow down the range of admissible models. But what use are
detailed constraints unless there are candidate models to dis-
criminate among? While it is true that models accounting for a
small set of such constraints are usually not difficult to produce
(in fact there is a glut of such micro-models in experimental
psychology), models which are sufficient for a broad range of
tasks are nearly nonexistent (depending on your view of what
constitutes a “broad range”). It can be argued that without at
least two systems which meet sufficiency criteria for some
psychologically interesting domain, data which constrain the
fine structure of mechanisms must either remain waiting in ar-
chives or else be used to infer mechanisms which may have no
role to play once the larger picture has been painted.4

The debate between those whose allegiance is to “top level”
sufficiency conditions (the archetypical A.I. type) and those
whose allegiance is to “low level” necessity conditions (the
archetypical experimental psychologist) will continue so long as
there are no general unifying principles (as there are in physics)
to ensure that the two approaches will converge. If there is to be
a unified science of cognition (and at least a few people believe
that there will not — see Chomsky, 1975), then general unifying
principles will have to be found at some level. There have been
grand theoreticians in psychology in the past (e.g., Freud, James,
Hull) who have sought such general principles with very limited
success (as measured by the longevity of their theories). It is a
distinct possibility that these attempts ran up against the same
barrier that prevented the blossoming of physics during the two
millenia that separated Aristotle and Galileo: The lack of a
powerful technical tool to discipline and extend the power of the
imagination. It remains to be seen whether the current optimism
in the potential of computational systems to fill such a need in
cognitive science is warranted.

NOTES

1. Of course it is not inconceivable that such goals may become rele-
vant in other contexts in which it will be important to recognize a class of
physical events which were equivalent with respect to some functional
need of the device — say for the survival of a mechanism in some exotic
nonhuman environment (e.g., in some long-term automated space
mission). But then it becomes problematic to decide whether such a
system exhibits intelligence. How does one decide, for example, whether
a system for recognizing some X was doing it intelligently or not? One way
to decide might be to ask whether the kinds of procedures demanded are
similar to those needed, say, to recognize scenes or whether the task can
be carried out largely noncomputationally as in a thermometer. The issue
does get cloudy, however, when the conditions become sufficiently alien.

2. Waltz (1975) had eleven possible labels for edges. These included
such labels as boundary, convex and concave interior, and crack and
shadow edges. Of the hundreds of thousands of logically possible permu-
tations for trihedral junctures some 500 are physically permissible for a
Y-shaped juncture and only 70 for an arrow-shaped juncture. Howeverif a
pair of junctures share a common line, then that line must receive the
same label at both junctures. This typically reduces the candidate label-
ings for that line to only a few which are further reduced by continuing to
examine adjacent junctures and “propagating labels.”

3. Most of the examples in this section are taken from Pylyshyn (1978,
in press).

4. One must, in fairness, add a third alternative which at this time in the
history of cognitive science may be more the rule that the exception. It
may be that experimental psychology and artificial intelligence live in a
loose but symbiotic relation in which each supplies a source of heuristic
inspiration and ideas to the other. While this may not be the way either
group would wish it, it may be a useful step in the courtship.
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dicated by op cit)

by John H. Andreae
Department of Electrical Engineering, University of Canterbury, Christchurch,
New Zealand

Al: another defense of the field. Whether Adificial Intelligence (Al) is
“pure,” “a rational exercise in building formal systems,” or “genuine ad
hocery,” another defence of the field is unwarranted Equally unwelcome is
another reminder of the current overoptimistic A | slogan that “intelligence is
knowledge " This has taken the place of the earlier “intelligence is heuris-
tics,” which replaced the first slogan, “intelligence is learming " The present
craze will soon pass, leaving behind a useful collection of knowledge struc-
tures to be added to the collection of heuristics and the meager collection of
learning techniques Pylyshyn suggests that “intelligence is not to be had by
putting together language abilities, sensory abilities, visual abilities,
memory, motivation, and reasoning,” but that it may appear when you put
together mechanisms, knowledge, and abstract principles! The sooner we
stop Jooking ahead to the second coming of intelligence (in machines) as a
future event, the better Machine intelligence is here to stay and to develop,
be it somewhat primitive My feeling is that the learning or acquisition aspect
of intelligence is being neglected; you may feel that some other aspect de-
serves attention Let us not all jump onto the same bandwagon at the same
time

Pylyshyn sees the “power-generality trade-off” as distinguishing A1 and
cognitive simulation efforts Now, both computers and human beings escape
this trade-off Computers escape it by being programmabile in an infinity of
ways It is only the programmed computer that is constrained by the trade-off,
not the computer itself Similarly, it is only the aging, educated human being
who is so constrained All the famous Al systems are heavily prepro-
grammed so that they strongly exhibit the power-generality trade-off Only
lip-service is paid to learning and knowledge acquisition, so each system
lands firmly on the power-generality scale

As evidence of this lip service to learning, we can compare Pylyshyn's
three main sources of empirical constraint (internal states, compiexity, and
task components) with his three “other general categories worth mention-
ing": learning, development, and neuropsychology Contrary to his earlier
warning that computational models must not be criticised for details of
memory, fléxibility. speed, precision, or serial operation, we now find him
recommending a comparison of internal states, complexity, and task
components Surely, if the human being performs a task with learning and the
machine happens to do it without learning, we can expect considerable dif-
ferences in internal states, complexity, and task components To make mat-
ters worse, internal states are largely unobservable, complexity is un-
measurable, and the components of a task are tikely to depend upon how it is
learned

by Michael A. Arbib

Computer and Information Science Department, University of Massachusetts,

Ambherst, Mass 01003
The halting problem for computational cognitive psychology. Pylyshyn of-
fers a number of convincing arguments for the claim that “Artificial In-
telligence offers useful tools and concepts for the cognitive psychologist ”
Unfortunately, he insists upon the far stronger claim that empirical
constraints actually force a convergence between Al and cognitive
psychology The evidence does not support this

(1) The paper is almost totally devoid of any thoughtful analysis of the reat
workings of recent contributions to Al The only exception is an approving
description of Waltz's discovery that constraint satisfaction can reduce the
search space in parsing a scene consisting of polyhedra with shadows Most
workers in machine vision hail this as an important contribution, but few
would view it as a model of human polyhedrail recognition, and most still
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seek alternative approaches which extend to non-poiyhedrai scenes The
claim for Al/psychology convergence is further weakened when we look at
the experience of the speech-understanding group at Carnegie-Mellon
University They constructed two systems - HARPY (the Markov-chain
model) met performance constraints far better than HEARSAY (which had
subsystems more closely tied to our ideas of human functioning)

(2) But Pylyshyn has an answer to this last exampie — an answer blatant in
its implicit rejection of testability He labels (without further analysis) most of
the best work in Al (including Winograd's language understanding system,
DENDRAL and MYCIN - it's not clear that anything is left in Al when the ex-
clusion principle is followed) as having power that derives from “a prag-
matically circumscribed, relatively narrow range of problem solving ability ”
Pylyshyn admits that such systems need not accomplish a task in the same
way people would; but then claims that if a system is general enough, it will
be human-like “Itis a basic fact of life that systems adequate for some task X
may be qualitatively different from systems adequate for both task X and task
Y " A marvellous escape clause, setting up an infinite regress!t Each time we
show Pylyshyn an Al program that performs well, but in a non-human way, he
just has to say “Ah, yes, but though it does tasks X, Y, and Z, it doesn'tdo W,
soof course it's different ” The halting problem is unsolvabie!

(3) 1do agree with Pylyshyn that Al can and does provide valuable input to
cognitive psychology But to view generality, as Pylyshyn does, as “the uiti-
mate concern” of Al, and to refer to attempts to get efficient programs to work
on weli-defined problem-domains as “the performance snare” is to miss the
point of much of the best work being done in Al today The aim of many
workers is to build high-performance systems —and such workers seek
generality not as part of a program, but as a set of concepts to aid the sharing
of methodology between diverse projects The generality, then, is not in the
program, but in the science But, alas for Pylyshyn's case, differences of ap-
proach far outweigh the commonalities Is it really helpful to cognitive
psychology to receive from Al the (bland) general principle that “organiza-
tion of knowledge is important” when there is so little agreement on the style
of its representation? Semantic nets, production systems and schemas (in
their diverse forms) can enrich the psychologist’s study of a system, but there
is no “convergent evolution” to a single approach which Al and cognitive
psychology modeis must use

(4) Pylyshyn offers an excellent discussion of the different levels at which
a model must be evaluated. Yet he is grossly inconsistent In arguing for the
convergence between Al and cognitive psychology he notes (causing great
mental anguish to those, such as myself, who believe that the brain is rele-
vant to psychology) that “the appropriate description of the human process is
typically one which does not include such properties as serial versus
parallel processing” and “[it] is inappropriate to criticize a serial algorithm
on the grounds that in the brain various events are taking place in different lo-
cations atthe same time " Yet when talking about experimental verification of
a model, Pylyshyn offers measures of task complexity and the lesion data of
neuropsychology — the very data ruled out by the above quotations! Perhaps
my feeling that strategies of parallel computation (cooperative computation
in my jargon) are at the heart of “computational cognitive science” is well-
founded after all

In summary, a good psychological model must confront data In doing so,
it will probably have peculiarities not contained in a high-performance Al
system (In building a high-performance Al system, one would use the com-
puter’s arithmetic capabilities In a cognitive model, human fallibility in addi-
tion may be a key criterion ) The design of the cognitive model may benefit
greatly from the tools and concepts of Al — but the model may still have spe-
cial features to fit it for the constraint of testing against human performance
In the list of references, Pylyshyn refers to his forthcoming book Towards a
Foundation for Cognitive Science One hopes that the unsupported
generalizations of the present paper will be replaced by a detailed account-
ing of the diverse, even inconsistent, approaches within Al, with a guide to
their wise deployment to specific problems of cognitive psychology

by Margaret Atherton
Department of Philosophy, City University of New York, Brooklyn College,
Brooklyn, New York
The artificiality of computer models. Quite often people express doubts
about the relevance of work on computers to psychological explanation by
claiming that computer simulation is really nothing more than artificial in-
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teltigence Pylyshyn seems to be saying that arguments like these are
insufficient to reject work with computers as a way of gaining insight into
psychologicai processes He thinks all work done on Al can provide in-
formation about how the mind works, even when the original intention was not
to capture some psychological process, but merely to get a computer that
could perform some task or other, by whatever means appropriate Thus
Pylyshyn seems to think A1 and CS will not in the end be readily distin-
guishable because Al will turn out to be a kind of CS More strictly, he
thinks the difference is one of research styles, and that the more useful
method for psychology is really that of A |

An important reason why it is commonly thought that A | can tell us little
that is interesting for psychology is that, unlike C.S, work in Al proceeds
unhampered by any constraints about how people do things Thus Al is
claimed to be little more than a formal system Without any empirical require-
ments imposed on the solution to an A | task, there is no reason to believe
the system says anything about the world, that it describes something that
has psychologicat reality Pylyshyn wants to argue, however, that there are
ways in which Al tasks are subject to empirical constraints, ways which
make it possible for the worker in A | to make discoveries about how people
do things If Pyiyshyn were right, then he would be presenting a way of
overturning an important objection to C S as a method of doing psychology
For people often complain that since the empirical constraints on C S
consist in our knowledge of how people do things, the resuiting programs are
nothing more than restatements in computer terminology of what we know al-
ready But Pylyshyn suggests that an Al approach provides sufficient
constraints and thus perhaps will allow us to make genuine discoveries
about cognitive processes

Pylyshyn is anxious to show that Al work does not constitute a formal
abstraction because he thinks that from fooking at computers it has been
possibie to develop a general model for intelligent functioning He wants to
preserve for us the possibility that a computer can be used to produce a big
overall picture of how the mind works, from which it might be possibie to
derive a “unified science of cognition " He suggests that work on A | gives
rise to a way of looking at the mind in which "one cannot understand percep-
tion, reasoning and memory independently of one another — that the general
laws of cognition are at the level of abstract information handling principles
| am not sure precisely how to understand Pylyshyn at this point If he means
that it is futile to try to discuss each mental ability in isolation from each
other, then this is undoubtedly true, but no one needed a computer to
consider such a possibility Plato and Aristotle, after all, each had models of
mind designed to exploit the interdependence of different mental functions
But Pylyshyn may also mean that perception, reasoning and memory are
each of them severally reducible to “abstract information handling prin-
ciples " If this is the case, however, there is a grave danger that this result is
an artifact of using computers and of assuming that people operate as com-
puters do

What Pylyshyn seems to think should discourage us from drawing this con-
clusion is his conviction that there are empirical constraints on all work done
on computers Since there are grounds for saying these systems are not
constrained by purely formal requirements alone, there wiil be reasons to
believe the resuiting systems are also theories that might describe some-
thing psychologically real Pylyshyn presents two examples of such empi-
rical constraints The first is that in choosing tasks to set the computer, our
choice is constrained by ideas about what kinds of tasks require intelligence
in the human to be solved What we take to be, for example, a pattern or what
we take to be a problem is constrained by our notions of what forms a
“natural kind" for humans Thus we ask the computer o recognize faces or
play chess, rather than to recognize patterns or solve problems that lack a
“psychologically relevant (natural kind) description ™ But for this kind of
constraint to be genuinely empirical, it has to be true that our notions of
natural kinds constitute restrictions on our psychological capacities
Pylyshyn gives examples of non-naturat kinds of tasks: he cites the skill
defined by learning one rule from each of fifty board games or the ability to
perceive Goodman's grue/bleen But while these are skills that humans on
the whole don't learn, that is not the same as saying they are skills humans
can't learn And if, for example, Goodman's entrenchment theory were cor-
rect, then that blue/green is a natura!l kind rather than grue/bleen could
depend in part upon a vast series of social facts, a previous history of which
“kinds” have been recognized, and not solely upon psychological
constraints Thus focussing on what people do does represent an abstraction

from what they can do, an abstraction which need not be motivated by any
particular psychological facts There would be no special reason for assum-
ing a system that had been designed to recognize blue/green was subject to
empirical restraints such that we could argue the process it embodied
constituted a psychological theory | suspect that identifying a description of
a natural kind with one that is psychologically relevant depends on identify-
ing what we do naturally as what we've been programmed to do But this is to
assume the validity of the computer model

Pylyshyn's second kind of case hinges on the fact that we design com-
puters o operate in nature, therefore requiring them to be subject to natural
constraints This is certainly true But the natural constraints can only serve
as reasons for taking computer systems to be psychological theorir ~ if na-
ture imposes the same constraints on humans that it does on computers One
of Pylyshyn's examples concerns the constraints provided by physically
possible restrictions on descriptions of edges But this environmental restric-
tion is psychologically constraining only if humans process in terms of
edges Without reasons for believing this is so, such a constraint wouldn't
hold for any description of the “task environment,” unless there were an
assumption that humans deal with the environment in the same way a com-
puter does

| am not convinced therefore that work in Al has provided a sufficient
reason for taking the computer as a model of mind Its suggestiveness as a
metaphor has to be set against the possibility that enquiry will become
deadlocked through sticking to a particular conception of how the mind
works | fear that Pylyshyn's examples of allegedly empirical constraints
might be evidence of just such a deadlock For Pylyshyn's constraints could
be empirical rather than merely formal, | have suggested, only if we assume
we know more about how the mind works than we are really entitled to
assume In particular, they encourage us to imagine the mind works like a
computer But the possibility that minds don't work the way computers do
must be allowed to be just as live a possibility if the computer model is to be
subjected to genuinely empirical tests

by L. Jonathan Cohen
The Queen's College, Oxford University, Oxtord, England

Rational reconstruction of inferential processes —a task straddling the
Al - CS boundaries. Pylyshyn argues against overstatement of the dif-
ference between artificial intelligence and computer simulation as types of
research-project in cognitive science His argument is reinforced if we ask
the question: Within which of the two types of research-project should we in-
clude the construction of programmes to represent methods of reasoning that
are attributed to human beings on the strength of logical analysis or phiio-
sophical reconstruction rather than psychological experiment? Examples of
such methods of reasoning might be natural deduction (e g, in accordance
with the rules of Gentzen, 1934) or inductive learning (e g, in accordance
with some elementary strategy for evaluating probabilities) Cognitive
competences of this kind seem to straddle whatever frontier there may be
between the traditional domains of arificial intelligence and computer
simulation On the one hand, they are not necessarily a proper target for com-
puter simulation, since psychological experiment may be able to show that
relevant human performance tends to be incompetent in certain charac-
teristic respects For exampie, some psychologists (Wason & Johnson-Laird,
1972, see also Johnson-Laird, this Commentary) have claimed to show this in
relation to deductive reasoning, and others (Kahneman & Tversky, 1973,
1974) have claimed to show it in relation to probabilistic reasoning On the
other hand, the methods of reasoning in question are not put forward as arte-
facts of philosophical ingenuity Rather, they are held out as natural
diamonds of human reason: the only contribution that the philosophers will
admit to is some systematic cutting and polishing Thus some logicians
(Kneale & Kneale, 1962, p 539) claim that Gentzen ‘has in fact presented
logic in a fashion more natural than that of Frege, Whitehead and Russell;’
and others (Reichenbach, 1949, p 337ff) concern themselves with which
admissible interpretations of the mathematical cajculus of probability ‘are
used ' Nor need there be any shortage of what Pylyshyn calls ‘intermediate
state evidence’ in relation to these methods of reasoning it is of the essence
of a natural deduction system to reveal intermediate links in a chain of rea-
soning (though admittedly strategies for seeking or selecting those links will
not be part of the system)

Indeed, in some areas, experimentally revealed performance data, which
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might afford a basis for computer simulation projects, cannot be properly in-
terpreted for this purpose unless an adequate logical or philosophical theory
of the underlying competence is available Yet in constructing a theory of,
say, probabilistic reasoning from the fragmentary data afforded by such
sources as rational intuition or the history of science, philosophers can
hardly avoid supposing that the competence in question adopts the most
efficient and economical means to achieve its characteristic tasks A
philosopher has no alternative but to proceed on that supposition in trimming
and polishing the superficially incoherent and heterogeneous data so as to
organise them into a unitary theory But the supposition seems more
germane to research in artificial intefligence than to computer simulation

An example will help to clarify the point A computer simulation project for
elementary probabilistic reasoning must obviously take account of
Kahneman and Tversky's experimental data But what is the correct in-
terpretation of these data? According to Kahneman and Tversky, one of the
tendencies to which their subjects were particularly prone was to judge an
outcome by the extent to which it was representative of (i e , similar to) the
evidence rather than by its correctly calculated mathematical probability
Since the subjects were asked to judge a probability, Kahneman and Tversky
interpret this response of their subjects as being faflacious But the validity of
their interpretation rests on the assumption that all reasoning about
probabilities has to conform to the principles of the mathematical caiculus of
probability, and this assumption turns out to be a rather questionable one
Let us call probabilities that so conform ‘Pascalian’ ones, in tribute to the
mathematician who first began to theorise about them Then there are cer-
tainly just as good grounds for saying that various kinds of non-Pascalian
probability are possible as for saying that non-Euclidean geometries and
non-Zermelian set theories are possible Indeed it can be shown (Cohen,
1977) that, when the central modern tradition in inductive logic (the tradition
of Bacon, 1620, and Mill, 1843) is adequately refined and systematised, it
generates a theory of non-Pascalian probability according to which the rea-
sonings of Kahneman and Tversky's subjects about representativeness are
not at all fallacious Though there are many kinds of problems about which it
is natural and proper to think in terms of Pascalian probabilities, there are
others (in particular some of the questions put to Kahneman and Tversky's
subjects) about which it is equally natural and proper to think in terms of
Baconian probabilities The arguments for this conclusion (in Cohen, 1977)
are characteristically philosophical and have as their main premises a
logical reconstruction of the proof procedures that are conventionally ac-
ceptable to lay juries in Anglo-American taw courts, and an analysis of
reputable experimentalists’ reasonings about controls, hidden variables,
and so forth But the conclusion is scarcely in doubt Indeed, when Locke
(1690, Bk IV, ch XVI, para 12) spoke of analogy as the ground of
probability, or Hume (1739, Bk |, Pt I, sec Xill) remarked that ‘in proportion
as the resemblance decays, the probability diminishes,’ they already an-
ticipated this conclusion, albeit in a loose, impressionistic way The
Baconian probability of a given situation’s having a certain characteristic
(e g, of a particular individual seed's germinating) can be graded by the
extent to which the causally relevant circumstances of the given situation re-
sembie the causally relevant circumstances of another situation that does
have the characteristic It is just unfortunate that, whereas Pascalian
probability managed to attract the attention of mathematicians as early as the
seventeenth century, Baconian probability has had to wait until the present
decade for the formalisation of its logical structure At any rate, there is now
available a powerful general theory of inductive competence (i e, of the
ability to learn from experience) that is open to computerised representation
The theory lacks all the artificial constraints that infect range-theoretical in-
ductive logics (like that of Carnap, 1950} and inhibit the use of such logics as
models of actual human reasoning But it still seems hardly fruitful to ask
whether construction of the relevant programme would belong to computer
simulation or to artificial intelligence The pointlessness of that question isa
further argument in support of Pylyshyn's thesis
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by Steven Cushing and Norbert Hornstein
Research Staff Higher Order Software, Inc , 806 Massachusetts Ave , Cambridge,
Mass 02139 and Department of Philosophy, Harvard University, Cambridge,
Mass 02138
Software systems, language, and empirical constraints. Pylyshyn's paper
seems to present the following point: (1) It is possible that work in Al might
contribute theoretically to the development of cognitive theory
(1) can be interpreted in at least three different ways: (2) The results here-
tofore attained in Al research have in fact contributed to cognitive theory in
some domain and hence it is reasonable to believe that this sort of research
will continue to make fruitful contributions to the articulation of cognitive
theory (3) Though no concrete resuits have yet been produced, nonetheless,
the constraints on Al research are of a piece with cognitive psychological
constraints and hence could be expected to lead to fruitful insights for cogni-
tive theory (4) There is nothing in Al research which would prevent it from
making a contribution to cognitive theory
It is clear that interpretations (2)—(4) make progressively weaker claims
and that the interest of (1) will be directly proportional to how strongly itis in-
terpreted (2) wouid be the most interesting from the perspective of cognitive
theory, as it would make the strongest possible claims concerning the
relevance of Al research for psychology, while (4) would seem to be of
substantially less interest, as it says little more than that it is not logicatlly im-
possible that Al research will lead to psychologically interesting findings
Dresher and Hornstein (1976, 1977, 1978) argue that (2) is incorrect be-
cause Al research into language has in fact made no contribution of any kind
to a scientific theory of language, due to its not having enunciated any
general principles and hence none of any psychological interest Weizen-
baum (1976) and Dresher and Hornstein (1976) challenge (3) by pointing out
that the aims of Al research into language are of dubious psychological
interest, as these aims, despite all protestations to the contrary, are
essentially technological, not scientific, and hence tend to lead away from a
consideration of the issues which would be of such interest Contrary to what
Pylyshyn seems to say, the nature of the constraints in Al research into lan-
guage results in more “than a difference in style of research”; it makes such
work of dubious value for any psychological theory of language, as it focuses
attention away from the psychologically and scientifically interesting ques-
tions
There is a stronger and weaker version of (4) The weaker version, which
claims that it is not a logical contradiction to believe that work in Al might
lead to illuminating results for a psychologically interesting theory of lan-
guage, is correct, but so minimai as to be virtually devoid of interest A
second, stronger claim, is that in some broad sense Al and cognitive
psychology deal with the same entities — computable functions and com-
putational processes - and hence work in Al cannot help but say something
of interest for cognitive theory The problem with this, however, is that, ai-
though it is correct, it is hard to see why dealing with the same sorts of things
at this level of generality wouid lead to interesting theoretical overiap Both
plumbing and fluid dynamics deal with water in motion, but there is littie
reason to believe that breakthroughs in the former will contribute
significantly to theories of the latter
This aside, however, there is some truth to this second claim, and it is
worth sketching the conditions which would make work on computational
processes of psychological interest Al work on language and mind presup-
poses a parallelism between minds and information-processing systems, a
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parallelism that is also assumed or argued for by some non-Al researchers
(Miller and Johnson-Laird, 1976 [See also Johnson-Laird, this Commentary};
Fodor, 1975 op cit) We agree that such a metaphor can be useful in
gaining insight into the nature of cognitive processes, but we think that this is
possible only if at least two important conditions are satisfied First, we think
that any adequate computer modet of the mind will have to be formulated not
in terms of programs, as in current Al work, but in terms of software systems,
as discussed by some authors in the newly emerging field of software
engineering We find it highly implausible that complex mental processes
can be modeled adequately in terms of sequential lists of instructions, (that
is, programs, by definition) The mind is a highly complex system of related
and interacting, but essentially autonomous components, and it seems likely
that some of the more interesting generalizations concerning its structure
and operation will involve the interfaces between these components at least
as much as the individual programs that may make them up Not surpris-
ingly, it is precisely in regard to their interfaces that some of the more
interesting properties of software systems have emerged (Hamilton and
Zeldin, 1976)

Second, we think that such an approach to the study of mind would require
a genuine theory of software systems, rather than the sort of ad hoc program-
ming that is endemic to current Al work Dresher and Hornstein (1976, 1977,
1978) argue that natural language-related work in Al has been generally de-
void of explanatory value because of the ad hoc character of the programs
involved Most of this work, as we noted above, seems to be not scientifically,
but technologically oriented, i e, geared toward developing machines that
can process sentences of natural language, rather than seeking general prin-
ciples that can serve as genuine scientific explanations of linguistic
phenomena The ad hoc character of computer programming has become a
serious problem much more generally, however, especially in connection
with the specification of large and very large software systems, and it is
precisely this problem that motivated the development of software engineer-
ing in the first place While this motivation has also been primarily
technological, e g, minimizing cost in the development of large systems,
one of its aims is to develop a general theory of software systems that ac-
counts for their essential properties in a principled way Such a theory might
very well be of genuine scientific interest, precisely because of its concern
for general explanatory principles

Such a theory would characterize the notion “possible software system”
and, in accordance with the parallelism mentioned above, could thus be
taken equally as characterizing the notion “possible mind," just as the notion
“possibie grammar” as a device that generates structured strings of objects
is viewed in linguistics as providing an abstract characterization of the no-
tion “possible language " Given such a formal characterization of “possible
mind,” we might then be able to constrain it in accordance with known empi-
rical facts to get a notion of “possible X mind,” where X = “human” or any
other species, just as linguists try to constrain grammars to get a characteri-
zation of “possible human language " The notion “possible human mind”
might then be further constrainable in accordance with the idiosyncratic
facts of an individual's culture and life experience, giving us an explanatory
account of an individual human mind and its associated behavior The dif-
ference between this approach and the one current in Al would be essentially
the same as that between generative and taxonomic linguistics Rather than
starting from scratch, as it were, and building up programming systems ad
hoc, we would be beginning with a principled account of the sort of entity we
assume the human mind to bé and then narrowing that account down in ac-
cordance with empirical facts to determine precisely which entities of that
sort the mind really is

Hamilton and Zeldin (1976) argue, in effect, that the notion “possible
software system” can be formalized in terms of three theoretical constructs —
data types, the kinds of entities that systems operate on or produce; func-
tions (or operations), the entities that operate on or produce the members of
data types; and control structures, the relationships in accordance with
which functions can be decomposed or combined - and that each of these
cqnstructs can exist on various fayers, which are strikingly reminiscent, in
concept, to the "leveis of description” of generative grammar They also
provide a formal methodology for representing these constructs abstractly, in
terms that are entirely independent of a system’'s implementation in
particular configurations of hardware or resident software (operating
systems, etc ) Tothe extent that their theory does, in fact, capture the notion
“possible software system” (see Peters and Tripp, 1977, for some relevant re-

marks), we can presumably take it as equaily a theory of “possible mind,”
and proceed to constrain it accordingly -

Cushing (1977a, b, ¢), infact, argues that the algebraic characterization of
data types that is incorporated in Hamilton and Zeldin's theory (Cushing,
1978) provides a revealing model for the semantic lexicon of a natural lan-
guage, as one component of the human mind The model incorporates an
empirical claim as to where in the lexicon we would most naturally expect to
find constraints, as part of a general characterization of the kind of
subcomponents that make it up Cushing argues that the semantic lexicon is
a heterogeneous algebra (Birkhoff and Lipson, 1970) and that such issues as
the dispute over lexical decomposition vs meaning postulates receive a
natural and revealing reformulation, when viewed in this light

We will not speculate here on how fruitful this kind of research might ulti-
mately turn out to be, because that can be determined oniy by time and
further work We do think, however, that something along these lines is a
necessary prerequisite to a computer-based mode! of cognition It may, in
fact, turn out that the mind is not a computational device at all and that
entirely new concepts will have to be developed to account adequately for its
operation Our point is simply that any adequate theory of mind will have to
base itself firmly on the search for general explanatory principles, and that
this applies to computationally-based theories as much as to any other
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by Daniel C. Dennett
Department of Philosophy, Tufts University, Medford, Mass 02155

Why not the whole iguana? | have no disagreements worth mentioning with
Pylyshyn's paper, but would like to explore two comments of his

“There have been grand theoreticians in psychology in the past (e g,
Freud, James, Hull) who have sought general principles with very limited
success,” Pylyshyn suggests, because they lacked “a powerful technical
tool to discipline and extend the power of the imagination " And now for the
first time we have the tool that might permit us to express and test at least
sketches of unified cognitive theories of whole creatures, the sort of theories
to which Freud et al aspired Moreover, as Pylyshyn observes, the users of
that too! have come to a consensus of sorts that theories of the whole creature
are what is needed:
"The recurrence of major probiems of organization and representation of
knowledge, and the organization and distribution of responsibility or con-
trol have produced the growing conviction among cognitive scientists
that intetligence is not to be had by putting together language abilities,
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sensory abilities, visual abilities, memory, motivation, and reasoning (as the
chapters of typical psychology textbooks suggest) but by bringing a large
base of knowledge to bear in a disciplined way in all cognitive tasks "

Very true, but then why have cognitive scientists persisted in attempting to
model sub-subsystems with artificially walled-off boundaries (not just tan-
guage understanders, but nursery-story-only understanders, for instance)?
Why are they not trying to model whole cognitive creatures? Because a
mode! of a whole human being would be too big to handle; peopie know too
much about too many topics, have too many interests, capacities, modalities
of perception and action One has to restrict oneself to a “toy” problem in a
particuiar domain in order to keep the model “‘small” enough to be designed
and tested at a reasonable cost in time and money But faced with the con-
clusions quoted above, why not obtain one's simplicity and scaling down by
attempting to mode! a whole cognitive creature of much less sophistication
than a human being? Why not try to do a whole starfish, for instance? It has
no eyes or ears, only rudimentary pattern-discrimination capacities, few
modes of action, few needs or intellectual accomplishments That could be a
warm-up exercise for something a bit more challenging: a turtle, perhaps, or
a mole A turtle must organize its world knowledge, such as it is, so that it can
keep life and limb together by making real time decisions based on that
knowledge, so while a turtle-simulation would not need a natural language
parser, for instance, it would need just the sorts of efficient organization and
fiexibility of control distribution you have to provide in the representation of
world knowledge behind a natural language parsing system of a simulated
human agent such as SHRDLU

Perhaps there are good reasons for not pursuing such projects | suspect
that one of the real reasons such projects are not pursued is that in order to
design a computer simulation of a turtle you wouid have to learn all about
turties, and who wants to go to all that trouble, when you already know
enough about yourseif and your friends (you think) to have all the perfor-
mance data you need for the human mini-task of your choice? Moreover, only
people who also knew a great deal about turtles would be knowledgeable
enough to be impressed by your results

Considering the abstractness of the problems properly addressed in A |
(Dennett, 1978), one can put this attitude in a better light: one does not want
to get bogged down with technical problems in modeling the cognitive ec-
centricities of turtles if the point of the exercise is to uncover very general,
very abstract principles that will apply as well to the cognitive organization of
the most sophisticated human beings So why not then make up a whole
cognitive creature, a Martian three-wheeled iguana, say, and an environ-
mental niche for it to cope with? | think such a project could teach us a great
deal about the deep principles of human cognitive psychotogy, but if it could
not, | am quite sure that most of the current A | modeling of familiar human
mini-tasks could not either
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by Zoltan Domotor
Department of Philosophy, University of Pennsylvania, Philadelphia, Pa 19174

Al: model-theoretic aspects. Many of the controversies affecting the founda-
tions of artificial intelligence (A ) and cognitive science appear to be a
result of attempts to answer too sophisticated questions too quickly Rather
curiously, in A | it has become a custom to adapt and adopt insidious con-
cepts (such as inductive inference, inference by analogy. self-knowledge,
self-awareness, association, causality, and many more) to tell fancy stories
about what “intelligent” programs do Marvin Minsky and Seymour Papert
claim in their M1 T memo No 252 [op cit Leibovic, this Commentary] that
“[The A 1] ideas pass a fundamental test that rejects many traditional notions
in psychology and phitosophy; if a theory of Vision is to be taken seriously,
one should be able to use it to make a Seeing Machine!” Poor philosophers!
Since they typically cannot read/write programs, they may never find out that
many of their perennial problems have actually been solved by others

it is reassuring to read Pylyshyn's interesting paper suggesting that this
sort of thing could not happen so fast to psychologists because they are stitl
the supreme power in providing the necessary empirical constraints for com-
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putational systems Biologists should stay out of this enterprise, at least for
the time being

What are computational systems and what are empirical constraints? This
is just it! These concepts are quite vague and unstabilized, and so are the in-
ferences and arguments based on them!

Let me try first to deal with the aforementioned concepts along the lines of
traditional philosophy of science and then comment on some of Pylyshyn’s
claims and arguments Due to limitations on space and time, all | can do is
give a sketch

By a scientific system (frame) one usually means (among philosophers) a
(formal) theory together with a bundle of intended applications (intended
models) Correspondingly, a computational system (hopefully) may be
conceived as a (large compiex) program accompanied with a family of
intended interpretations Thus, for example, physicists endow mathema-
ticians' differential equations with physical meaning by providing adequate
intended physical models and, mutatis mutandis, Al specialists do the
same with programs Put conversely, a physicist associates mathematical
structures with physical systems or objects of his concern in order to tease
out interesting theorems with physical relevance Again, cognitive spe-
cialists associate computational structures with their psychological entities
Empirical truth is then understood as a composite of mathematicallcomputa-
tional truth within the intended models and the empirical adequacy of the
models While one hardly ever questions the validity of theorems of
mathematical physics, one often wonders about the appropriateness of the
intended models Similarly, foundationally the possible bugs in programs
are irrelevant; what counts is the adequacy of the intended modeis the A |
programs are supposed to describe

The foregoing conceptual scenario remains incomplete until we bring in
models of data and intersystem relationships, that is, representations of one
scientific/computational system within another Models of data come with er-
ror and preprocessing structures whose discussion requires extra care (often
neglected by Al experts) Representations are best understood as maps
with two components The first (syntactic) component assigns to
sentences/program units of the represented scientific/computationat system
unique sentences/programs of the representing system in such a way that
logic, inference, and laws are preserved, perhaps at the cost of destroying
the similarity types of the basic nonlogical components The second (se-
mantic) component relates the represented intended models to the
representing models By means of this sort of intersystem gadgetry one can
understand many of the crucial relations between levels of description, such
as reduction, equivalence, and passage from micro- to macro-theorizing

It seems to me that Pylyshyn's empirical constraints in cognitive theorizing
are the physicist's or philosopher's intended models Indeed, if a cognitive
scientist wants to write a program for simulating face recognition and
whatnot, he has to pack his intended models with psychological structure
How eise could he claim that he is studying cognition? Thus in this case the
claim that one needs empirical constraints is trivially valid Also, in this
context the business of levels of description is no different from that in
physics There is no need to create a new philosophy of science here

However, in A | theorizing, | will argue, Pylyshyn's claim regarding the
necessity of empirical constraints supplied by psychotogy is doubtful To set
the initial intuitions and inspiration on the right track, in Al one may start
with psychological constraints, but atong the way, as research progresses,
these constraints become typically not only unnecessary but even irrelevant
In a bootstrap fashion, Al structures start to take care of themselves with
their own internal foundations, laws, and life, with no direct recourse to
psychological limitations The most recent results in theory-formation pro-
grams and program-formation programs rely on artificial intelligence and
programming experience, and not on philosophy or psychology Just as the
first design of airplanes was strongly dependent on the dynamics of wings
and flight of birds, and later the development of propeller and jet aircrafts,
helicopters, and rockets went its own way with no connections to ornithology,
A | takes a similar course of development

Pylyshyn seems to use the term “intelligence” too anthropocentrically |do
not see why every form of intelligence should be measured by a
psychological yardstick Specifically, | disagree with his highly qualified
claim that “if a person and computer are both capable of ‘doing task x,’
there is some level of description of the two at which they are doing it 'in the
same way ' " How do you know, for example, that | am executing a muitiplica-
tion 19 x 18 in the same way you do? It so happens that | simply remember
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the result My A| colleague’s younger son seems to use a safe guess You
may use one of the problem decompositions 19 x (18 + 1) - 19 or
(19 -1) x 18+ 18o0r Computers could use something still different, in a
binary system | do not see how we do it “in the same way" even after stretch-
ing the meaning of the “same " Mind you, this is just a jejune example!

| submit that there is an urgent need for retiable foundations of artificial in-
telligence, powerful enough to render secondary many of the philosopher's
speculations on what computers cannot do, the psychologist's anxieties
about A |’s intellectual imperialism, and the current high-flown theorizing of
Al connoisseurs Naturally, such foundations should be established within
Al itself it is encouraging to observe that several of the overused concepts
such as knowiedge and intelligence are currently undergoing rapid evolu-
tion and redefinition, with increasingly less relevance to philosophy and
psychology Aristotelian physics was stuck with psychologically constrained
concepts of the class of warm and heavy, and it took many centuries of com-
plex abstraction to pass to physical structures that today have a life of their
own The single most powerful example of this century is the Fregean separa-
tion of logic from psychology

Until the bootstrap effect takes over fully, we will be attracted to and
tolerated in advising the A | fraternity regarding what to do and how to do it

by Hubert L. Dreyfus
Department of Philosophy, University of Calitornia, Berkeley, Calif 94720

Empirical evidence for a pessimistic prognosis for cognitive science.
Pylyshyn's paper provides a plausible list of empirical constraints on com-
puter models of human cognitive processes Among these constraints, evi-
dence concerning the generality of a model's performance plays a crucial
role when we come to assess the claim that a given computer model
contributes to the understanding of human behavior | have no quarrel with
the criteria Pylyshyn sets forth; what puzzles me is his claim that “there are
many reasons for viewing the potential contribution of the computational ap-
proach with optimism " Pessimism seems to me more in order, since the
particular programs Pylyshyn mentions all fail the generality test

The obvious obstacle to Pylyshyn's position is that the only unqualified
successes in Al: Samuel's checkers program, DENDRAL, MYCIN, and
MATHLAB are all examples of domain-specific knowledge engineering
Pylyshyn, however, dismisses such an objection as merely “a comment
about the more general phenomena that performance may be purchased at
the price of generality,” and adds that “some of the criticism directed against
Evans's {1968) geometrical analogies system, Winston's (1975) learning
system, Waltz's (1975) scene anaylsis system, or Winograd's (1972) lan-
guage comprehension system is based on such a lack of generality " Using
these programs as examples, let us see if the criticism is justified

To begin with, putting the objection in terms of generality misses the point
It is not the specificity of these programs that disqualifies them as explana-
tory models of human psychological processes; it is the non-gerieralizability
of their clever exploitation of domain-specific properties Waltz's program
depends, as Pylyshyn notes, on the working out of the possible real world
permutations of 11 labels for edges If we add one cylinder or cone to the
scene, the whole program breaks down For this very reason the success of
the program provides no evidence that edge intersection analysis plays a
role in human scene perception What makes such a suggestion implausible
is not, as Pylyshyn would have us believe that Waltz's program has
purchased power at the price of specificity and so lacks generality, but
rather that the program has clearly exploited specific features of rectilinear
objects, and so cannot be generalized to other sorts of scenes

Waltz wisely never claims psychotogical relevance for his work, but Win-
ston does in fact, he claims that “learning requires in someone the same
skills illuminated in fmy] theory” (Winston, 1975 op c¢it)} But Winston’s
program suffers from an even more damaging sort of non-generalizable
specificity than does Waltz's Whereas in respect to Waltz's program
Pylyshyn can consistently, if impiausibly, hold that, after all, scene percep-
tion may be the result of a combination of “a large system of specific
mechanisms,” the Winston program works only because it has excluded from
its task domain the very ability it is supposed to explain The program can
“learn” a simplified geometricat concept like arch only if the programmer
makes explicit, pre-selects, and pre-weights a small set of relevant features
such as “left-of,” “standing,” “supported by,” from which the program can
then build its description But there is no clue as to how the program could

be extended to cover this essential work of discriminating, selecting, and
weighting Again the problem is not lack of generality, but rather the fact that
the original success depends on tricks which preclude generalization to
essential aspects of the task domain

It is a fact worth pondering in this connection that when they originally
presented their programs Evans, Winston, and Winograd all suggested that
the methods they proposed could be generalized (and Winston has made the
same claim for Waltz's program), yet in no case has the generalization been
forthcoming Among these A | researchers, only Winograd subsequently ad-
dressed himself to the issue of generalizability, and his conclusion agrees
completely with my critique rather than with Pylyshyn's defense
“Current systems, even the best ones, often resemble a house of cards The
researchers are interested in the higher leveis, and try to build up the
minimum of supporting props at the lower levels The result is an
extremely fragile structure, which may reach impressive heights, but
collapses immediately if swayed in the slightest from the specific domain
(often even the specific examples) for which it was built " (Bobrow &
Winograd, 1977)

Pylyshyn’s argument that from even the most domain-dependent program
something can be carried over to others, namely that “researchers find that
they are preoccupied with problems of how to represent task relevant
knowledge and how to organize control so that relevant portions of this
knowledge are brought to bear when it is appropriate” only shows thatall A |
programs sooner or later run up against the same wall This is about as en-
couraging for the unity of Cognitive Science as the fact that alchemists, try-
ing to distill gold from dirt, ali became preoccupied with making hotter and
hotter fumaces That this persistence in thinking ail that was needed was
more heat control led to steady progress in the development of heat resistant
retorts may well be true and gratifying, but hardly shows that those seeking to
use heat to transmute the baser metals were on the right track Likewise, the
assumption that a large knowledge base and better contror of the resulting
mass of facts holds the key to success in Al may lead to better data struc-
tures, but may hide the fact that many human capacities are involved inin-
telligent behavior, and that the attempt to represent what human beings
perceive, imagine, feel, desire, and skillfully do as a body of rule-governed
facts may be totally misguided

Pylyshyn's point that physics flourished when Galileo discovered the ap-
propriate formalism for describing physical motion provides no grounds for
disregarding A | 's difticulties, since the question is whether intentional be-
havior, involving as it does self-interpreting entities acting in concrete situa-
tions, can be captured in any abstract set of rules And it only begs the ques-
tion at issue to assert that the pioneers in A | “recognized that the study of
symbol processing in computer science and attempts to understand the na-
ture of intelligent behavior were at some level inseparable” (my italics)
Precisely what is to be tested is the hypothesis that intelligent behavior can
be understood as “symbol processing "' Yet Pylyshyn holds that “the
relevance of computation to cognition is that both cognition and com-
putation are intentional rule-governed phenomena" (my italics) Only such a
question begging assumption could account for Pylyshyn's optimism in the
face of A |'s persistent failure to meet his first, and most important, empirical
criterion

NOTE

1. It is to Newell and Simons’ credit that in their article, “Computer
Science as Empirical Inquiry,” cited by Pylyshyn, they formulate this
precise point, not as a fact to be recognized, but as an hypothesis to be
tested.
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by Helen Goodluck
Department of Linguistics, The University of Massachusetts, Amherst, Mass
Levels of evolution and psycholinguistic evidence. In commenting on
Pylyshyn's paper, | will direct my remarks toward some of his observations on
Al research mainly as pentains to the study of natural language, since this is
the area with which 1 am familiar
Pylyshyn's review of some of the relevant parameters for evaluation of Al
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systems is particuiarly valuable in that it contains a clear statement of a prob-
lem that | think is the basis for some of the reservations linguists and
psychologists may have about the contribution made by Al research to their
field(s) (For a critique of some Al systems for natural language processing,
see Dresher and Hornstein, 1976)

Pylyshyn observes that: “The issue of the appropriate level of description
at which computational systems are to be evaluated remains a serious prob-
lem in all computational models " As Pylyshyn notes, certain levels (such as
the mechanical operation of computers or the “program per se" are clearly
inappropriate to evaluate an A! system as a representation of a cognitive
function However, just what the appropriate level for evaluation is remains
undetermined The reason that this indeterminacy may give pause to a lin-
guist or psychologist is that it makes it difficuit to evaluate exactly what part
of the contribution made by Al research to the elucidation of a problem in a
given area results from the application of principles particular to the dis-
cipline of Al rather than from general research strategies common to Al and
other disciplines

For example, Pylyshyn makes the following comments on Al language
comprehension systems: “Systems for language comprehension
are constrained by the empirical facts about the structure of the lan-
guage, the structure of the world, and the structure of cognitive systems
which use language Together, these constrain the possible form which a
computational comprehension system can take Furthermore, the attempt to
buitd such a system is instrumental in discovering these constraints so that
Al also provides a methodology for discovery " The first two sentences of
this quotation are fairly uncontroversiai; not just an Al system, but any at-
tempt to mode! language comprehension will be constrained in this way
However, it is not clear that the claim that Al provides a “"methodology for dis-
covery” amounts to more than the statement that study of the data of natural
language by the researcher may lead him to discover previously unnoticed
phenomena, ie, to more than the observation that “nothing quite
concentrates the mind as having to build such a model [as one in the form of
a computer program]” (Johnson-Laird, 1977, p 212, and this Commentary)
Although progress has been made in modeling natural tanguage
phenomena familiar through the work of linguists and psychologists, little
has been discovered about natural language in the course of Al research on
systems modeling language comprehension However, suppose that such
discoveries are made Without a well-defined level of evaluation for Al
systems, it is difficult to know whether a discovery is the direct resuit of the
system of analysis f this level turns out to be one that defines concepts that
piay a crucial role in discoveries made in the course of Al research, and
these concepts are distinct from those available within other disciplines that
treat the same data, then Al will indeed have some special claim to furthering
the study of cognition

The lack of a well-defined level of evaluation for Al systems does not in
principle make the task of evaluating the potential of a system as a source of
predictions and discovery an impossible one One approach might be to
look at the extent to which the success of a computational system in simutat-
ing cognitive phenomena results from properties of that system not shared by
other computational systems For example, experimental evidence from
psycholinguistics suggests that while there appears to be some support for
parailel processing as a factor in the comprehension of semantic ambiguity
involving the interpretation of grammatical relations such as ‘subject’ and
‘object,” there is considerably less evidence for parailel processing of
syntactic ambiguity (For a review of some of the literature, see Fodor, Bever,
and Garrett, 1974, Ch 6, pp 361-367 and fn 4) A model for sentence
comprehension must reflect this distinction in some way Suppose that of two
Al models for language comprehension one reflects the distinction between
the processing of semantic and syntactic ambiguity, and the other does not,
or can do so only in a complex way, and that this foliows from differences in
the computational design (rather than differences that could equally well be
features of non-computationai models) The model that reflects the natural
language phenomenon wouid be a serious candidate as a source of dis-
covery in language processing insofar as it proved a superior model for
some known phenomenon A fruitful approach for Al research, and hence for
the areas of cognition that it deals with, may be the comparison of properties
of Al systems that accurately simulate known characteristics of cognitive
systems with those that fail to do so, or can do so only by resort to complex
ad hoc devices From such a comparison. the correct level of evatuation of Al
systems that Pylyshyn observes to be lacking may be approached
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Introspection, black boxes, and machine equivalence. John von Neumann
noted that once any process can be clearly and unambiguously described, a
computer program can be written to represent that process to any desired
degree of accuracy and completeness But the rub lies in his further opinion
that the primary language and logics of the nervous system must be
structurally different from the symbolic manipulations we formally use in our
conventional analysis (von Neumann, 1958) If so, one should not be sur-
prised that in many cases our external languages permit only crude and
artificial approximations, which result in but partial success in modeling the
deeper processes

Because of von Neumann's first point, Pylyshyn's question, “In particular,
can a program be a psychological theory?" is answered affirmatively
However, that is a relatively uninteresting and trivial question compared to
three other matters that Pylyshyn discusses and upon which | wish to com-
ment: one relates 1o serial vs parallel processing; a second is concerned
with modeling levels and black-box equivalence; the third addresses modei-
ing constraints imposed by introspection

With respect to the first matter, Pylyshyn states that it is inappropriate “to
criticize a serial algorithm on the grounds thatin the brain various events are
taking place in different locations at the same time " | disagree In a sense
Pylyshyn's point is defensible; for computation as it is usually understood,
the serial-parallel conilict ceased to exist theoreticaily with Turing’s proof
(Turing, 1937) that a single tape manipulating one character at a time could
compute any computable number However, for our present purposes it is not
so important to consider computabie numbers as to consider whether or not
some theoretical or practical constraints might apply differently in the two
(serial, parallei) cases

Two considerations fotlow: 1) in principle the brain may do more than or be
different from a simple computer; thus the question is open as to whether a
serial digital machine is adequate to imitate the brain (if that is our aim) 2)
Parallel processes of sufficient complexity may require serial representation
that is so extensive as to be absurd It may be that the lifetime of the universe
is not a long enough period to compute serially all the operations of a brain’s
lifetime (assuming serial digital equivalence were possible)

Consider a simple estimate of the serial digital computation requirement
for simulating a small portion of the brain The cerebellum constitutes about
10 percent of the central nervous system in man According to present esti-
mates, this is 10 percent of roughly 10'!, or about 10 cells. A small fraction
of those cells (about one ten-thousandth) constitutes the Purkinje cells
These 108 Purkinje cells are estimated to have as many as 300,000 individual
synaptic inputs each

Suppose now we form a rough upper-timit estimate for the number of
puises (idealized, simplified spikes) that could occur and should be handled
in a century of brain function in our serial representation For the Purkinje-celi
inputs alone we have:

3 x 10" connections x 102 pulses/sec per connection
x 3 x 107 seclyr
x 102 yr/century =102 pulses/century

Now if we take a conservative computer simulation rate of 107/sec, then we
will require about 10'¢ sec or 3 x 108 years just to represent these pulses
Notice that we have considered only the input signal traffic We have not
mentioned continuous variable, non-linear interactions within each cell, or
output considerations, to say nothing of specifying the interconnection ma-
trix Note, too, that ali of this, in addition to the nearly 10? years needed for
simplified input signal representation, would be only for 10° cells out of
10" —one part in 100,000 It thus follows that the entire lifetime of the
universe may not be sufficient to compute the lifetime action of one brain by
serial digital techniques
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It seems reasonable to suppose that for many modeling representations of
the brain, serial algorithms themselves are wholly inappropriate Of course
for representation of some processes (notably the conscious introspective
step-by-step plodding thinking we do in overt problem solving), serial tech-
niques can be fine But | suspect that the really interesting and potent CNS
operations (like pattern recognition, language synthesis and analysis,
creativity, emotions, insight, etc ) which are manifestly unavailable to con-
scious introspection, are beyond the reach of our serial analysis and/or
possibility of representation Finally, we appear to be in the unfortunate bind
that we aimost totally lack paralle! computing concepts or theory So far we
have been able only to visualize relatively simple parallel multiples of serial
processors That is probably far removed, indeed, from the few-step, great-
parallelism processes that appear to work in nervous tissue

Pylyshyn's second and third topics that | wish to comment upon, black-box
equivalence and introspective constraints, are sufficiently related that dis-
cussion together seems appropriate

Pylyshyn correctly observes that systems designed to do a particular task
in, say, artificial intelligence, need not do so in the same way that people
would Obviously if the automaton successfully replicates a particular human
behavior, there is black-box eguivalence at that level Now what is in that
black box at some much lower level could be electronics, mathematical
expressions, wheels and levers, or copper pipes and oil, but most certainly
not living neurons The issue of interest, of course, is whether at some inter-
mediate level - say, gross algorithmic or functional subsystem - there may
be similarity or even equivalence

| agree with Pylyshyn's view that there are many levels of modeling com-
parison which are inappropriate, but outside of the grossest (behavioral)
level, | feel (unlike Pylyshyn) that most, if not all, comparisons probably are
inappropriate This owes principally to the fact that we really do not know
much, if anything, about our internal processes True, we can make state-
ments about our beliefs, percepts, goals, and so forth, but what can we eluci-
date about our esthetics, speech and scene analysis, or language synthesis,
for example?

Thus | take issue with Pylyshyn's subsequent statement that any device do-
ing a certain task x must be doing it in the same way that the person does it
This disagreement takes into account Pylyshyn's proviso that * if both
person and computer are both capable of doing task x there is some level of
description of the two at which they are doing it in the same way ” | do not see
how, aside from tautology, such an assertion can be defended A single
counter-example will suffice: a computer can be programmed to recognize
multi-font typewritten alphanumeric characters in many different ways The
literature abounds with examples Clearly at most one of these systems does
it “in the same way " All others obviously do it differently And | doubt that
even one comes close to modeling human procedures

Pylyshyn's observations on the utilities (and dangers) of empirical
constraints in mode! making are well taken Without such constraints infinite
numbers of models are possible Unfortunately, if the numbers of degrees of
freedom or states of a system are large compared to the numbers of
constraints on those states obtained through finite observation, an infinite
number of models is still possible One thus is well advised to view models
with restraint and nervous systems with humility
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The problem of generality. One can "mode!” just about anything, from eco-
nomic cycles to weather patterns, on a suitably programmed computer; and
such models can be a powerful aid to scientific investigation But
psychological modelling seems special Whereas there is no danger of any
computer containing actual market crashes or cyclones, getting one to dis-
play actual intelligence is the whole idea So psychology is unique, in that
studying appropriate computing systems can be thought of as studying “the
real thing,” though modified and perhaps simplified in various ways

Pylyshyn, | think, takes this view, summing it up with the remark; *  both
cognition and computation are intentional rule-governed phenomena " Ac-
cordingly, he also says that artificial inteltigence and cognitive simulation
differ in “iittte more than style of research,” and that*  even '‘pure’ Al
can hardly avoid making some contributions to cognitive psychoiogy ” A |
and CS are both studying cognition and intelligence, but they differ in
which modifications and simplifications they will tolerate at the outset

This is an elegant position, presented with a wealth of examples and
insightful observations, but | think problems emerge when we ook closely at
the supporting arguments First, since not all of computer science counts as
“cognitive science,” one wants to know why artificial intelligence research
does Pylyshyn anticipates this question in his section “Responsiveness to
empirical constraints ” The gist of his long repiy is that “intelligence” (or
“task requiring intelligence”) is an anthropomorphic notion, and that an inte-
gral part of that notion concerns the relevant “task environment " So one
could hardly build any inteiligent artifact without ipso facto discovering a lot
about human intelligence, including, at least, the task environments that de-
termine human cognition

Incredibly, however, the only specific citation in this section is to "Waltz’s
(1975, op cit ) success in designing a system for parsing a scene consisting
of polyhedra with shadows " But Waltz’s system “succeeds” only by exploit-
ing tricks that are utterly idiosyncratic to polyhedra. It is as if | built a machine
that “visually” (that is, optically) “parsed” scenes of mixed fruit by analyzing
the distinctive fine structure of their absorption spectra Would my successful
gimmick have to count as a discovery on any level about fruit identification
by people (or its “task environment”)? If not, then why do Waltz's gimmicks
fare any better? The mere fact that people can recognize polyhedra and fruit
on sight does not prove that either of these machines has anything what-
soever to do with psychology; nor does it make any difference that one was
put together in a room labeled “A | Lab " A theoretical discussion of what
wouid make a difference would just bring back all the issues about
performing "in the same way as people do,” which Pylyshyn is trying to
downplay

Second, most A | programs employ “gimmicks’” of one sort or another, that
is, techniques that are utterly ungeneralizable because they depend entirely
on the peculiar quirks of a special class of cases Pylyshyn has this in mind
when he introduces his “qualitative discontinuity principle” in the "power-
generality tradeoff”; and he acknowledges that it “makes some computa-
tional systems seem implausible as psychological models " But he goes on
to say that the computational approach is on a comparatively secure footing
anyway because no matter what A1 workers try to do, they find themselves
preoccupied with the same problems: “how to represent knowledge and
how to organize control ” Presumably this is supposed to reassure us that,
after all, certain fundamental principles do transcend those awkward qualita-
tive discontinuities But it sounds to me like defending witchcraft on the
grounds that, no matter how diverse the projects, the same problems of in-
cantation and speli-casting recur Of course the computational approach
leads to a preoccupation with representation and control — that is practically
a definition of it 1| will not be reassured until there is some independent
reason to believe that gimmickry can be transcended

Finally, there is a problem about how exactly A | and C S are supposed to
differ (in research style or whatever) In his last four paragraphs, Pylyshyn
suggests that A | is a “top-down” approach compared to C S, which is more
“bottom-up” (though still not as bottom-up as the approach of traditional ex-
perimental psychology) A top-down approach is one that seeks “some
degree of completeness over a broad domain,” that is, an account that
roughly captures the general features in a wide spectrum of data, even at the
expense of blurring local details Or, the relative emphasis can shift, until at
the opposite (bottom-up) extreme, you have many locally impressive but nar-
rowly isolated “micro-modeis "

The trouble is that no A | system has ever displayed even a hint of broad
generality; at best, they are impressive in narrowly isolated domains (and
Pylyshyn admits as much when he says they purchase performance at the
price of generality) Why this contradiction? Well, if A | is to be on a common
scale with empirical psychology at all, it has to be at the opposite end, be-
cause it self-consciously spurns traditional psychological data Thus it can
offer at most broad general principles |f the computational approach to
psychology eventually pans out (and we all agree that this remains to be
seen), then the top-down/bottom-up taxonomy will be vindicated By the
same token, however, the failure so far of Al to have any broad general suc-
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cesses, Or even to come up with any interesting generalizations beyond its
own premises, must be counted as prima facie evidence against the ap-
proach

by P.J. Hayes
Department of Computer Sciences, University of Essex, Colchester, Essex C04
35Q, England

Doing Al but saying CS. This is a most stimulating paper, full of insightful re-
marks | wish | had written most of it But | think Pylyshyn doesn't quite carry
his main thesis, which | take to be that cognitive simulation (CS) and artiticial
intelligence (Al} are really only different styles of doing the same sort of em-
pirical research

| will urge a slightly different view, one which | think accords better with the
way in which many workers in Al and CS view their own activities While
agreeing with Pylyshyn that Al problems are defined by cognitive or
psychological criteria, by and large (although it is difficult to say quite what
‘problem’ Lenat's [1977; see also this Commentary) program is solving, for
just one significant example), | suggest that there is a crucial difference in
the kinds of hypotheses they test Pure Al hypotheses have the form ‘this be-
haviour can be realised by the following computation ' Pure CS hypotheses
have the form ‘this behaviour, of this organism, is realised by the fotlowing
computation’ Both are hypotheses relating behaviour to computation (in a
sufficiently broad sense) and both are empirical But the kinds of empirical
test they are subject to are different Al hypotheses are tested by implement-
ing the algorithm and seeing how weil! it works - Pylyshyn correctly notes that
running a program is often a real experiment CS hypotheses are more
difficult to test, as Pylyshyn’s insightful discussion of some of the rather weak
and inconclusive techniques illustrates It is important to realise that his
three ‘sources of empirical constraint’ on computational theories apply only
to CS hypotheses, not to Al hypotheses Thus, | suggest, the differences
between Al and CS are not mere side-effects of divergent methodological
allegiances, but reflect a real difference between the kinds of hypotheses be-
ing tested, between what Al-ers and CS-ers are trying to do Al gets its prob-
lem statement from psychology, but its criteria of adequacy and success
from engineering and computer science; CS, on the other hand, is wholly a
branch of psychology The ‘levels of description’ probiem, noted by
Pylyshyn, crops up in both areas: it concerns exactly what is meant by ‘the
following computation:

| have sketched the ‘pure’ Al and CS formulations, and examples of both
can be found in the literature But many workers explore various sorts of com-
promise or mixed position: Al types often use introspection or psycho-experi-
mental results as at least a source of inspiration; CS types sometimes use,
explicitly or implicitly, an argument of the form: ‘this algorithm works, and |
can't think of any other that would; so there aren’t any others that work; so this
must be the way the organism does it", to justify their Al activity by CS criteria
More interestingly, there is a conscious agnosticism embraced by many Al
workers, of the general form that since our knowledge of, say, human cogni-
tive processing is so poor, it is not worth distinguishing the two kinds of
hypothesis: to discover how people work, we might as well just ask how they
possibly could work Something like this view is the most poputar among the
Al community 1t is reflected in Pylyshyn's more sophisticated, and 1 think
correct, idea, that CS progress may have to wait until more top-down con-
straints on what computations could possibly mediate cognitive activity are
made available from progress in Al CS is, after all, much harder than Al To
discover how people work, maybe we have to first discover how they could
possibly work

There is a stronger thesis, that to do Al is to do CS already, since there
could be onty one way to implement cognitive behaviour as an algorithm
One who embraces this view can regard himself as investigating the abstract
principies of intelligence | think | see something of this view echoed in
Pylyshyn's early remark: ‘| see no compelling reason to believe there
need be any systematic difference between systems designed purely as Al
artifacts and those designed as cognitive simulations’ 1 tend to agree, as do
many other Al workers, but it is important to realise that this is a nonobvious
thesis and a priori even rather unlikely After all, it is a commonplace of com-
puter science that a given behaviour can often be realised by a variety of al-
gorithms, each of which can certainly be implemented in a variety of ways |
wonder why it seems so plausible? Is it - horrid thought — a rationalisation of
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the inner conflict that we want to do Al (it's easier and more fun) but we want
to be seen to be doing CS (it's more respectabie)?
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The correspondence and coherence theories of cognitive truth.
Philosophers often distinguish two theories of truth: the correspondence
theory and the coherence theory An assertion is true according to the cor-
respondence theory if it corresponds to some state of affairs in the world Itis
true according to the coherence theory if it coheres with some set of asser-
tions constituting a general body of knowledge The same sort of distinction
appears to underlie the methodological difference between experimental
psychotogy and artificial intelligence Psychologists want their assertions to
correspond to the facts; intuition is a notoriously fallible guide to the facts;
hence, the truth is best revealed by forsaking the armchair for the laboratory
and undertaking controlled and detailed observations Artificial in-
telligencers want their assertions to fit together in a coherent and
comprehensive way; intuition is a notoriously failible guide to consistency;
hence, the truth is best secured by forsaking the armchair for the computer
and the construction of large-scale computer programs A viable cognitive
science, however, needs theories that both cohere and correspond to the
facts Clearly, some sort of rapprochement between experimental psychol-
ogy and artificial intelligence is required, but how is it to be effected?

The answer according to Zenon Pylyshyn is that psychology should move
in the direction of artificial intelligence He argues that its theories are al-
ready empirically constrained and that the detailed constraints discovered in
the laboratory will not lead to a science of cognition until some general unify-
ing theoretical principles have been established at the computer console It
is true, of course, that computers have had a scant effect on the course of
psychological theorizing (with a handful of striking exceptions) Unfortu-
nately, it is also true that reasoned argument is seidom responsible for an
abrupt change in behaviour, not even in the methodological habits of scien-
tists Precept is less powerful than example Hence, much as | shouid wel-
come a growing adherence to Pylyshyn's principles on the part of
psychologists, i am not sanguine about its likelihood

Psychologists are suspicious of the idea of deveioping their theories in the
form of computer programs Given the current state of knowledge, such pro-
grams inevitably invoive a large number of ad hoc and simplifying assump-
tions They may embody empirical constraints, but they often tack empirical
consequences They do not yield the sort of predictions that can be tested in
the laboratory, and tests are usually otiose since the program can generally
be seen to be false in psychological terms Consider the fate of oid Al pro-
grams They are not refuted At best, their cleverest ideas are ripped out of
them and embodied in more advanced systems; at worst, they persist as
hulks drifting in an intellectual vacuum Why should psychologists devote a
massive number of man-hours to constructing large, complicated and ob-
viously erroneous models when there are pienty of other workers in the Al
fraternity who are prepared to do so? This seems to be an unanswerable ob-
jection

Yet, | do not believe that the moral is that psychology should continue in its
present ways There is a desperate need, as Pylyshyn emphasises, for unify-
ing theoretical principles After twenty years, the experimental study of
human information processing has not yielded them, and seems unlikely to
do so How should we proceed?

Pylyshyn draws our attention to the matter of description: one does not
criticize a model of a chemical molecule because, unlike the molecule itself,
it is not edible He argues that what is needed is “something approaching a
theory of the program; a description of the system which highlights the
general principles underlying its operation ” Of course, there is a perfectiy
good medium for describing such principles, the ordinary everyday lan-
guage of psychology After all, much of our knowledge of Al programs comes
from reading such descriptions of them Cynics sometimes say that these
descriptions often go beyond what is actually embodied in code In fact, |
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consider this alleged shortcoming a virtue - or, rather, | take it as the central
commandment of the following set of methodological principles for
psychology

Psychology needs general theories, and they shouid be developed and
couched in the vernacular of the discipline There is an awkward problem of
scale here, but one can only hope that psychologists will recover some of the
comprehensiveness of the illustrious founders of the subject Such theories
naturally tend to be vague No matter Explicit models of parts of them should
be developed in the form of computer programs The primary aim of such a
program should be neither to simulate human behaviour nor to carry out a
difficult task by the ingenious exercise of artificial intelligence On the
contrary, the point of the program should be to develop the general theory
Hence, only a small part of the theory should be tackled at any one time, and
the program should be small-scale and easy to modify It should embody
principles and eschew ad hoc patches, or at least allow the theory to be
easily discerned In my experience, the development of such programs is a
truly dialectical process, which leads to revisions in the general theory, and
which can even suggest experimental tests of general theoretical principles
(e g, see Miller and Johnson-Laird, 1976; Johnson-Laird, 1977, Steedman
and Johnson-Laird, in press; Johnson-Laird and Steedman, in press)

Such an approach will not supplant artificial intelligence: there are some
discoveries that can probably be made only by developing large-scaie pro-
grams However, experiment and computer programs offer at best limited
methodologies, and it is unlikely that either on its own will elucidate the na-
ture of human mentality The experimenter's concept of truth contains the
latent danger of his becoming a Gradgrind, whose only concern is to es-
tablish the facts The programmer's concept of truth contains the latent
danger of his becoming a Flat-earther, whose only concern is to maintain the
internal consistency of his ideas Like Pylyshyn, | believe that our best hope
is to bring the two methodologies together Unlike Pylyshyn, 1 believe that
this goal is best achieved by cutting programs down to the psychologist's
size
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by K. N. Leibovic
Department of Biophysical Sciences, State University of New York at Buftalo, Buf-
talo, N Y 14214

The problem of validation. Computers not only compute but also simulate
In Artificial Intelligence (A | ) computers can be made to simulate “learning,”
“choice,” and other “intelligent” operations as defined by the programmer
We must define in advance (and possibly interactively) the programs that the
computer is to execute, inciuding random moves, trials, optimizations with
respect to criteria, and so forth

The computer per se is not endowed with intelligence, unlike living things
(at least a few) Per se computer “intelligence” can serve no function, while
biological intelligence has a paramount survival function It is surely of
interest to study the behavior of apes and men in a comparative way |t is of
no interest whatever to investigate how a computer could “run a maze for
food reward” except as a means for evaluating preconceived hypotheses or
possible predictions of a model generated with or without the aid of a com-
puter

Thus, the computer is basically a different “animal” from the one whose in-
telligence we wish to study. Moreover, the computer is constrained by its lan-
guage and its rules of operation as expressed in the programming rules
These are different from the language and operation of animals and men, al-
though a correspondence may be set up with the aid of a model Therefore, if
we can discover generai principles of information, representation, and con-

trol in A | we may ask whether analogous principles operate in the brain, al-
though there is no a priori reason why such a correspondence should exist

The preceding arguments imply that when a computer and a person “do a
task x in the same way" this can only be meaningful with respect to the
equivalence of computer and person in a specific model It is stated that the
“clearest examples of discovery” are those where A | interfaces directly with
the environment, for example, in speech or pattern recognition or sensorimo-
tor coordination As Pylyshyn says, one can discover through simulation
(e.g, Waltz, 1975) “that with a certain set of labels the constraints
(are) so great that a single correct analysis is mandatory ” But in what
sense is this different in principle from discovering by simulation that within
certain parameter ranges a differential equation has oscillatory solutions? In
both cases our discovery can telt us something about psychology only if the
correspondence between the model and biological intelligence is valid it is
precisely this problem of validation that qualifies any conclusions about
psychology when a computer does “a task X in the same way" as a person

Psychology is in crisis: Freud and his contemporaries produced for us
great new insights that were, however, qualitative and not universal, unlike
physical “laws " Psychology has been reaching for quantification through
statistics and computation Unfortunately, the tools as such demand, but do
not of themselves yield, meaningful quantification A quantitative psycho-
logical theory cannot exist without the appropriate quantitative data of the
biological substrate Once these are known, computer simulation and A |
can make a significant impact Without these data, the value of A| canbeto
suggest possible viewpoints and, perhaps, negative existence theorems
(Minsky & Papert, 1969; Leibovic, 1976)

In conclusion, therefore, the distinction between A 1 and biologicalily valid
cognitive simutation is more than a matter of style.
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by D. B. Lenat
Department of Computer Science, Carnegie-Mellon University, Schenley Park,
Pittsburgh, Pa 15213
On astrophysics and superhuman performance. A close friend of mine, an
astrophysicist, came to stay for a few days recently Asliobserved him work, |
found to my astonishment that he sat at a desk and - what is even more
significant ~ he used pencil and paper to carry out his research, even as | do
Clearly there must be some deep commonality between Al and astrophysics,
it we employ such similar experimental tools Under subtie questioning, he
revealed that his research was, just as mine, continually evaluated againsta
large set of observed data; ie, both fields are subject to empirical
constraints

This parody could be continued, but the lesson is clear by now: surface
simitarities are often merely that The author sees “no compeiling reason” for
a difference between pure Al artifacts and cognitive simulation systems
Such a difference is fundamental: each system is constrained to fit a (some-
what idealized) model of a particular kind of information processing system
In the cognitive simulations, this is of course a model of the human IPS
(involving STM, LTM, their peculiarities as represented by psychologicat
data, etc ) In Al artifacts, the analogous constraint is much weaker and indi-
cates tailoring the system to the underlying “machine” (computer + lan-
guage) architecture — and its pecuiiarities As the architectures are radically
different, so are the classes of algorithms that may be taken as primitive, as
natural, as feasible | am not quibbling about “implementation details,” but
rather fundamental distinctions that can and must be drawn at all but the
highest (and most vacuous) levels of description At any nontrivial level, man
and machine are not doing X in “the same way "

This difference manifests itself again when we ask which tasks are suitable
for investigation, and what are the criteria for success In cognitive simula-
tion, the goal is to match human performance — including human error and
imperfection In Al, there is no corresponding ideat: distinctly superhuman
performance is much more desirable than precisely human performance For
example, my research centers about automating the discovery of powerful
new heuristics useful to mathematicians This is an activity which can be
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done only by the very best mathematicians, and even then only rarely (on the
order of once in several decades) The negligible number of humans capa-
ble of performing it makes it no less attractive to attack by Al Of course it
would not be fit for cognitive simulation, since it is not what the author calls
“a natural kind" of task

The motivation for actually writing computer programs is different as well
The psychologist attempts to validate a theory, and he builds his program
solely to run it The Al researcher, however, builds his program to experiment
upon it; it is his species of laboratory animal He probes, mutates,
exacerbates - and observes the resultant effects This experimentation is
oriented toward discovering the sources of the apparent intelligence
exhibited, pointing the way toward ever more powerful (not necessarily more
human-like) mechanisms and system designs In this regard, Al is much
more an empirical science than cognitive simulation

There may be much that the two fields can benefit from sharing, even if
their commonality is not quite so deep as some of us desire After all, | stilf
get along splendidly with the astrophysicist

by Christopher Longuet-Higgins
Center for Research on Perception and Cognition, Laboratory of Experimental Psy-
chology, University of Sussex, Falmer, Brighton BN1 9QG, England
On describing cognitive processes. There is practically nothing in
Pylyshyn’s article with which any reasonable man could disagree, but this
will not stop unreasonable men from doing so In particular, he is obviously
right to stress the distinction between different levels of description of in-
tellectual processes, whether these are taking place in someone’'s mind or
inside an electronic computer Even in the computational case it is impera-
tive to distinguish among (1) what David Marr [oper cit, Uliman, this Com-
mentary] describes as the “method” by which a given problem might be
solved, (2) the computer program in which the method is embodied, (3) the
machine code instructions into which this program is transiated by the com-
piler, and (4) the (virtually indescribable) physical events inside the
hardware of the computer that accompany the actual running of the program
Each of these has its analogy in the description of a human intellectual
process: (1) at the level of “method,” a very direct comparison may be possi-
ble, for exampie in the case of arithmetical multiplication, which either a
human being or a computer can perform either straightforwardly or by look-
ing up logarithms (2) is rather more problematical: computer programs are
directly available for inspection in a sense in which mental routines clearly
are not Pylyshyn is therefore quite right to stress that a computer program,
which is a putative simulation of a human intellectual process, cannot itseif
be regarded as a theory of that process (I will come back to this point later )
When we come to (3) and (4), the cognitive psychologist must at the moment
admit to being out of his depth Plainly there is a sense in which the patterns
of pulses travelling to and fro in the computer have their analogue in the
nerve impulses travelling through the brain, but any resembiance between
the detailed patterns must be purely coincidental As for (3), it is a moot point
whether one should attempt to find any biological analogy to the concept of a
machine code; possibly the routines stored in the cortex (or wherever) might
qualify for such a comparison, but we have no idea of the representation in
which these routines are actually stored
Perhaps the most immediate challenge to the artificial intelligence worker

who is attempting to describe the effective procedure by which the human
being solves a given intellectual problem (having chosen, intentionally or
not, his method of doing so) is to discover an appropriate language in which
to specify the detailed processes —be they serial, parallel, or both — that
mediate cognitive tasks in general No existing computer language couid
qualify for this purpose, but some high-level languages seem to capture, bet-
ter than others, certain essential features of human cognition Thus LISP is
plainly a more interesting language from this point of view than FORTRAN,
say; there is nothing in FORTRAN that corresponds to the dual nature of a
LISP expression, which can be regarded either as a piece of text to be
manipulated or as a piece of program to be run In any convincing account of
human thought a similar distinction will probably be crucial John Mc-
Carthy's [cf this Commentary] insight into this matter is stiif, in my opinion,
the most important contribution that has yet been made by computer
scientists to our understanding of information processing in general But
clearly one needs to go very much further, not least in the direction of clarify-
ing our ideas about paralle! processes, and the extent to which they must be
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kept in separate compartments if deadlocks and simitar disasters are to be
avoided It may well be that when we have a much better understanding of
the semantics of natural languages we shall find that something quite similar
to natural language is the best vehicle of expression for precise ideas about
cognitive processes in general; but this is a wild speculation

One thing that Pytyshyn does not say very loudly, perhaps for diplomatic
reasons, is whether or not he thinks there is any real distinction between
artificial intelligence and cognitive simulation on the one hand, and
theoretical psychology on the other it coutd be argued that psychology is or
is not a science according as one can or cannot claim the existence of an un-
derlying theory Botany graduated from a taxonomy to a science when evolu-
tionary theory came of age, and in psychology a similar transition may be in
progress Most readers of this journal will probably take it for granted that
psychology desperately needs a coherent body of ideas and nontrivial
generalisations about cognitive processes in general and those of human
beings in particular; the very idea of a complex process cries out for
clarification in computational terms But it is not enough merely to make such
a claim: what we all have to do is to try to spell out in detail what we believe
may happen when someone utters a sentence or interprets a visual input;
when we have a few more interesting candidate accounts of such skills we
will be able (perhaps) to catch ourselves employing new and promising
ideas about cognition ~ ideas that are iess likely to emerge from reflections
of a more general and philosophical nature

by John McDermott
Department of Computer Science, Carnegie-Mellon University, Schenley Park,
Pittsburgh, Pa 15213

On A.l. as psychology: now and then. Pylyshyn begins his article with the
claim that the only significant difference between Artificial intelligence (A 1)
systems and psychological models is that their designers have different
methodological allegiances As Pylyshyn develops this claim, it becomes
clear that he recognizes that many (and perhaps most) current A | systems
do not qualify as psychological models; thus, assigning some reasonable in-
terpretation to the claim becomes problematic | think what he is saying is
that although the methodology of Al is different from that of cognitive
psychologists who build computer modets, and although A1 systems do not
(for the most part) currently qualify as psychological models, nevertheless in
time, these systems will aimost inevitably become psychological models If
this is Pylyshyn's view, then | think he misunderstands the A | enterprise In
order to focus attention on what I think are his most serious misconceptions, |
will consider some of the support that he offers for his position within the
context of the following two questions: (1) To what extent are current A t
systems psychologically interesting? (2) To what extent will future Al
systems be psychologically interesting? Pylyshyn lists three kinds of evi-
dence (intermediate state, relative complexity, and component analysis) that
can be used to determine the adequacy of a psychological model Since few
current A | systems satisfy any of these criteria even minimally, | assume that
Pylyshyn’s answer to the first question would be that cusrent A | systems are
psychologically interesting only in the weak sense of being experiments for
the discovery of mechanisms of intelligence (some of which will, it is hoped,
turn out to be the mechanisms that humans use) Pylyshyn's answer to the
second question, however, would be that most A | systems of the future will
be psychologically interesting in the strong sense of being psychological
models

| cannot find in Pylyshyn’s article convincing support for what | am ciaim-
ing would be his answer to this second question (which may, of course, be
because it is not the answer he would give) He observes that much of the
manifest dissimilarity between A | systems and psychological modeis might
disappear if we controlled for generality and power and for the level of
abstraction at which the descriptions are given But this observation allows
him to conclude only that there are not necessarily any differences between
the two Later he elaborates on the methodological allegiances of the A |
system builder and the psychological model builder According to Pylyshyn,
one crucial difference between the two methodologies is that the A | system
builder takes a top-down approach (i e , is concerned with sufficiency condi-
tions), whereas the psychoiogical model builder takes a bottom-up approach
(i e, is concerned with necessity conditions). Pylyshyn couples this observa-
tion with the other one and reaches the much stronger conclusion that it is
likely that the differences between A | systems and psychological models
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will someday disappear His premises appear to be: (1) A | system builders
are attempting to build inteltigent systems that are both general and power-
ful: (2) There is only a limited number of ways in which an intelligent system
that is both general and powerful can be built Thus his conclusion: the
sufficient conditions of the Al system builder wiil turn out to be the
necessary conditions of the psychological modet builder

The most serious flaw in this argument is Pylyshyn's assumption that A |
system builders are concerned (at least ultimately) with systems that are
general as well as powerful It is not clear why he makes this assumption He
argues that A | is interested in those classes of tasks that form a “natural
kind” for human beings; perhaps he infers from this that Al must be
interested simultaneously in all classes of tasks that form a “natural kind'" for
human beings But surely such an inference is not valid There are many
people who claim to be in A1 who have no (higher) goal than to build a
system that can do a single class of tasks intelligently; undoubtedly these
people will be unmoved by Pylyshyn's assertion that they should have an “ul-
timate concern with generality " Pylyshyn could, of course, claim that the
reason that Al system builders must have an ultimate concern with
generality is that a general system is always more adequate (and thus more
desirable) even for a specific class of tasks than is a specialized system But
he offers no support for such a claim

Let me modify my second question and then point out a second flaw in
Pylyshyn's argument: To what extent will future A | systems that are general
as well as powerful be psychologically interesting? For Pylyshyn to claim
that this subset of Al systems will be psychological models, he must
provide some support for his premise that the number of such systems is
necessarily small Pylyshyn offers one piece of evidence He observes
(perhaps somewhat prematurely) that the space of solutions to A | ’s central
problems - system organization and knowledge representation —is fairly
well understood Within this space of solutions, only a few appear appro-
priate for general systems since such systems impose a variety of constraints
on their designers that more specialized A | systems do not Thus Pylyshyn's
claim that future A ] systems that are general as well as powerful will qualify
as psychological models has some plausibility However, at the present
time, it is not clear that the constraints are all that severe; it may be that many
future general systems will be as unpsychological as the specialized A |
systems of today

by Allen Newel!
Department of Computer Science, Carnegie-Mellon University, Schenley Park,
Pittsburgh, Pa 15213
State-of-the-art constraints. As to the underlying theses of Pylyshyn's
paper, how could | have any quarrel? The computer is for psychology more
than a computer:; it is an embodiment of a symbol system, thereby having im-
mense theoretical significance Work in pure Al, that is to say, work motivated
by non-psychological considerations (an odd sense of purity, come to look at
it), is subject to constraints that increase its chances of contributing to under-
standing intelligent action in humans Mostly this happens because the task
structures are so-cailed natural kinds for humans (I would have been
pleased if Pylyshyn had clarified the notion of “natural kind"; it is one of those
pregnant quasi-technical terms, like “competence,” which for me obscures
almost as much as it helps ) Much is explained in the practice of science —
here, cognitive science - by distinguishing alternative approximating se-
quences for approaching empirical truth And so on All of this makes
eminent good sense to me 1find it easy to hang loose on the exact adequacy
of his description of the enterprise Such meta remarks are useful in a rough
and ready way, nothing more should be asked of them However, | dare say
others may not see it that way Some no doubt will be considerably more up-
tight (intellectually), wishing, in the words of the Arabian Nights, to spend
their days in the durbur, bidding and forbidding
Let me pursue the theme of hanging loose It is valuable to realize that
much that appears to be of general methodological and philosophical
concern is just a reflection of the current state of the art of a science (often, its
state of obscurity) Consider the fretting that has occurred over what claims a
program-qua-theory makes Programs often contain many mechanisms just
to make the simulation operational, mechanisms that seem in no wise distin-
guishable from other mechanisms that are theoretically relevant in other
types of models, the irrelevant seems more easily distinguished, such as the
color of the ink used to write equations Now, it is a reasonable presumption

'

that psychology will progress to models of the information processing archi-
tecture of human cognition That is, positing a basic invariant structure within
which symbolic processing occurs will become a matter of course Given
this, the claims about what is psychologically relevant will gradually become
clearer and the whole question will become moot, except at a few special
junctures In short, there is no general issue of moment, only getting the
substantive state of the science sufficiently advanced

Consider, to continue this example, the plausible outcome that the archi-
tectures putatively describing man have some quite idiosyncratic features
that impress themselves in various ways on most of the processing that man
does - giving it characteristic shape, even if not deternuning exactly what
can and cannot be computed Such features might be the (characteristic)
ratios of read to write times in long-term memory, or the underlying
representation out of which more generai knowledge structures must be
encoded (e g, memory might be event oriented) Then to work on human
cognition, as opposed to “pure” Al, would be to focus attention within this
class of architectures As our knowledge of this special class increases, the
separation between it and other classes of computational mechanisms can
be expected to increase, until there would be little doubt about which enter-
prise a particular scientist was engaged in This does not really btunt the
genera) point that Pylyshyn makes about the relevance of all of Al to cogni-
tion The situation simply reflects the structure of Computer Science
generally, which fractures into subdomains both by task (partial differential
equations vs graphic displays) and architectures (array processors vs net-
works of microcomputers) These separations imply that knowledge has lo-
cality, but do not gainsay that the whole science gradually gets itself
together by understanding what is true in its subdomains and how to
generalize them Nothing fundamental is at stake and there seems to me
nothing special about the pure-Al vs human-cognition issue to distinguish it
from, say, the uniprocessor vs multi-microcomputer issue Sometimes, as
with optical computers, the underlying medium and the specialized process-
ing is so strong that for long periods of time it appears as a distinct field But
watch what will happen if optical computing ever achieves the abitity to sup-
port general symbolic processing Zip! it will be assimilated into the main
stream of computer science as just another technology, which both teaches
us some special lessons and yields one more instantiation of what we have
come to understand about information processing The point is that nothing
in this seems more than the garden variety evolution of scientific and
technical knowiedge

The mutterings about languages of intention and their essential separation
from the underlying language of neurophysiology can provide a last
example As Pylyshyn notes, this same separation exists between the sym-
bolic level of computer architecture (the programming level) and the lower
levels (the logic or circuit levels, the latter probably being most analogous to
the neural level) | am not sure what content lies behind Pylyshyn's statement
that “  the computational rules take the forms that they do because their
terms represent something ( ) and this aspect cannot be captured by an
electronic description ” Within computer structure there is no issue that |
know of corresponding to the one raised here (and more generally in philo-
sophical psychology) It is rather clear in what sense the same exact system
can be completely described at each structure level Electronics engineers
never find it appropriate to get into the hassles with programmers that are
evidenced by the discussions of the language of intentionality Elements of
confusion are to be solved just by the individual computer scientist's thinking
a little bit harder about the specific case at hand This all happens, of course,
not by any virtue of computer scientists and engineers They are mortal and
of limited rationality like the rest of us It happens because of the state of art —
the matter is all laid bare to be seen and understood by one fool as well as
another

In a great article, whose exact reference | have mislaid, but which was
entitled “There is plenty of room at the bottom,” Feynman observed how easy
biology woulid be if one were simply small enough to go and look Much of
what passes for the profound arises from the accidents of the veil nature hap-
pens to have passed between us and the phenomena we wish to understand
When finalty seen in a clear light, the substance of the matter makes all
larger issues moot It suggests that such considerations as Pylyshyn lays
before us, should be taken freely but without much concern about their
details They are commentary, helpful to focus the attention and alert the
mind The issues that are ultimately engaged will come clear and obvious in
the morning light of some substantive advance
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by Andrew Ortony
Center for the Study of Reading, University of lilinois at Urbana-Champaign, Ur-

bana, Ill 61820
Cognitive psychology, artificial intelligence, and cognitive simulation.
Pylyshyn's interesting and provocative paper contains two main claims One
of them he simply asserts For the other, he offers several arguments, none of
which, I think, is very convincing

The first ciaim is that the field of Artificial Intelligence (Al) is generally
recognized as being of “paramount theoretical importance to cognitive
psychology " As stated, | think this is faise Practitioners of Al sometimes
overestimate the relevance of their efforts to psychology, perhaps because
they have conceptions of psychoiogy that are different from those of cogni-
tive psychologists But it is the psychologists, not the computer scientists,
who must make such evaluations Now, while many psychologists have
adopted the computer metaphor for human information processing, they
nevertheless seem to be largely ignorant of Al in Pylyshyn's rather general
sense of it So, contra Pylyshyn, it can be argued that Al is not (at least, not
yet) generally accepted as being of paramount importance to cognitive
psychology at ali This conclusion can be reached either by denying that the
importance is generally accepted, since many cognitive psychologists know
very little about Al, or by denying that it is of paramount importance, since if it
were, it would be more influential than it is This may seem a smail point, but
the underlying issue is cruciai to Pylyshyn's paper

The gist of what Pylyshyn has to say revolves around his second claim
Briefly, it is that there is no essential difference between “pure” At and cogni-
tive simulation, a claim that has an important connection with Pylyshyn’s first
There is a version of the first claim that is true, namely that cognitive simula-
tion is of paramount importance to cognitive psychology In fact, | think that
Pylyshyn's most serious mistake is to lump together pure Al and cognitive
simulation under the genera!l heading of Al This is because what is true of
cognitive simulation in particular is often not true of pure Al, and thus not of
Al in general Consequently, the viability of the distinction between cognitive
simulation and pure Al becomes of central importance

Pure Al comprises systems designed to attain a particular behavior, or
range of behaviors, regardiess of the mechanisms employed to do so Typi-
cally they need only be concerned with what Minsky (1975) refers to as “suf-
ficiency " Cognitive simulation, on the other hand, comprises systems
intended to simulate, as far as possible, the processes that humans employ
in the generation of such (intelligent) behavior Pylyshyn believes that there
are no important differences between the two, provided that one controls for
three particular variables when making comparisons About each of these
variables — generality, power, and level of description — he has some very
interesting, and often insightful things to say But he believes that people
(like me) who maintain that there are important differences between pure Al
and cognitive simulation, are actually deluded as a result of their neglect of
those variables He claims that if we equate a pure Al system and a cognitive
system on each of these variables, then “there need be (no) systematic dif-
ference " | suspect that this amounts to saying that if we equate any two
theories of the same phenomenon on these or simitar variables, the theories
will turn out to be variants of one another, and will be logically equivalent
The reductio ad absurdum if one takes any pair of things and then equates
them in the respects in which they differ, their differences will always go
away! But, if the things really are different then they cannot be so equated
and such efforts are not only unwarranted, but also doomed to failure

The crucial difference between pure Al and cognitive simulation always
remains In Althere is no necessary intention that the program be an embodi-
ment of a psychological theory at any level of description, while in cognitive
simulation there is It is true that pure Al may by chance embody a
psychological theory, but only by chance, and, for the most part, it is absurd
to try to construe the mechanisms employed as instantiations of theories
about human performance Symptomatic of Pylyshyn's misconception is his
beliet that: if a person is capable of doing a certain task x which is
judged to require intelligence, then any device that can be said to ‘do task x’
must not only be doing the same task as the person but in some sense must
also be doing x ‘in the same way' that the person does it " | think that some
simple examples show that this is not so Consider first the machine transla-
tion efforts of the '50s Machine translation could be called Al on the grounds
that language translation requires intelligence Yet nobody would believe
that a program that attempted word-for-word translation by dictionary look-up
could be regarded as an impiementation of a theory of human translation,
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even if it worked Or consider the mechanism of finding lexical items in the
“internal lexicon " Longuet-Higgins and | (Longuet-Higgins and Ortony,
1968, see also Longuet-Higgins, this Commentary ), devised an algorithm for
a theoretically optimally efficient search strategy that invoived representing
the lexicon as a tree of letter sequences it would be ludicrous to maintain
that the mechanism employed was supposed to model the one used by
people Finally, consider the tens (if not hundreds) of programs that have
been written to play chess or engage in automatic theorem proving Many of
them utilize so-called “brute-force” techniques They generate as many con-
tinuation board states or inferences as are physically possible within the
constraints imposed by machine size and speed But, this bears no
significant relationship to the mechanism employed by human problem-
solvers Such programs can only be said to be doing the task in the same
way as a human in an utterly triviai and useless sense

The upshot of all this seems to me to indicate the falsity of Pylyshyn's claim
that Al is subject to empirical constraints It is false because he equates pure
Al and cognitive simulation while, in fact, only the latter is subject to such
constraints Pure Al typically is not and need not be

So, Pylyshyn, while rightly distinguishing between the use of computers to
simulate processes, and the use of computers to simulate products, then
biurs the distinction and attributes to the latter, characteristics that belong
only to the former Furthermore, he fails to note one of the most important
benefits to be derived from cognitive simulation, namely, that it provides an
opportunity to experiment with, and to model a large number of complex,
interacting processes The dynamic characteristics of computer modelling
provide a much better way of representing the compiex interactions that are
s0 characteristic of human cognition than do the static representations af-
forded by more traditional modelling technigues It is precisely in its inca-
pacity to deal with real-time thought processes in a general way that cogni-
tive psychology has its greatest weakness, while it is precisely in its capacity
to model such processes that cognitive simulation has its greatest strength
Thus, uniike pure Al, cognitive simulation makes a fine bedfetiow for cogni-
tive psychology it is an encouraging sign that their offspring, Cognitive
Science, is coming of age
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by Juan Pascual-Leone
Department of Psychology, York University, Downsview, Ont , M3J 1P3 Canada

Computational models for metasubjective processes. Although Al and
Computer Simulation (henceforth jointly abbreviated AIS) lead to specific
programs and programming systems which can be considered to embody
theories of cognitive information processing, the sense in which this embodi-
ment exists is not clear As Pylyshyn indicates, AlS systems are so complex
that it is often difficult to know which aspects or components of the program
are theoretically relevant and which ones are not in addition AlS programs
are usually local, rather task-specific in nature, embodying much more of the
structure of the task at hand than of general unifying principles applicable
across types of tasks (for any given type of subject) What is needed, and
usually does not exist, is a theory of the program — in Pylyshyn's words, “a
description of the system which highlights the general principles underlying
its operation ”

This criticism of AlS programmes qua theories has been raised by Weizen-
baum (1976) with great clarity (see also Pascual-Leone, 1976a, 1976b and
1977a, 1977b) in spite of these difficuities Pylyshyn believes that the AIS ap-
proach "“is on a more secure footing than conventional theorizing in
psychology ” He reaches this conclusion despite the fact that programs must
be task specific and, therefore, the general principles of human processing
can hardly be discovered by way of writing programs, although extant pro-
grams could be used as data (together with psychological data) to infer
these principles

| disagree with Pylyshyn's quoted statement and believe that his faith may
be the result of a historical artifact, i e , the long and excessive domination of
empiricism in modern technologically-based and technologically-financed
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science The immense heuristic and epistemologicai/historical importance
of AIS work for cognitive psychology could be largely due to the not-yet-
quite-past dogmatic domination of empiricism in psychology This, often
naive, empiricism has led to psychological theories of the local (situation or
task specific) variety Organismic functional laws or principles which could
only be inferred empirically, by the power of the imagination, from charac-
teristic patterns of performance (empirical invariants) found across types of
situations, have thus been ignored by the scientific establishment As a
result, despite the pioneering work of psychoanalysts, Gestalt psychologists,
Piagetians, etc it became common in the forties and fifties to ccnfuse the
process (the organismic generating operations) with the performance The
resulting lack of representations for the process and the concurrent em-
phasis on the description of performances, ied to two unfortunate trends The
first epistemological trend was the theoretical reduction of all performances
to two types: learned performance (i e, transfer of learning) and jnnate
performance (i e , maturation) In this manner the concept of problem solving
via a mental computation which generates (constructs) a novel performance
became lost, until it was re-invented and made empirically explicit by the
AlS revolution The second erroneous epistemological trend brought about
by excessive empiricism, and which AIS work has eliminated, is the naive
equation of theoretical prediction with empiricist generalization AIS work
has re-invented and empirically demonstrated the possibility and power of
rationalist prediction, ie, prediction of novel performance via process-
theoretical computational methods

These achievements of the AIS revolution and its future contributions to
psychology could be jeopardized, however, by a new brand of dogmatic em-
piricism (the computational or Al empiricism) which Pylyshyn implicitly
criticizes but also reflects in his paper Pylyshyn's statement that the AIS ap-
proach “is on a more secure footing than conventional theorizing in
Psychology” is only warranted if this approach is contrasted with the old em-
piricist psychological methods - the methods which the AlS revolution has
helped to correct When the AlS approach is compared with the possibility of
a modern constructive rationalist psychology (a new psychology iniormed by
the AlS computational methods but free from the constraints imposed by the
computer, which constructs process models for the sole need of experi-
mental or structural prediction), Pylyshyn's statement is no longer so certain

A constructive rationalist approach to cognitive psychology would be one
in which exptlicit process modeis are constructed of the mental operations
produced by the subject in connection with tasks Unlike AIS models, these
purely psychological process modeis would be used exciusively to make ra-
tionalist predictions of quantitative, qualitative or quantitative-structural
characteristics of subjects’ performances New process-descriptive lan-
guages may be convenient for this purpose; molar (“macro”) languages able
to reflect, at a suitable level of generality, subjects’ true psychological
constraints (the metasubjective constraints) inferred from their performance
across types of situations Actual execution of these metasubjective models
on a computer ("however important that is” - to use Pylyshyn's fitting remark)
should necessitate the translation (transcription?) of the model to a less com-
pact, but probably more explicit, computer-compatible language Process
models formulated with metasubjective languages could serve as descrip-
tions of the functionally-motar, intentional processes (i e , the metasubjective
processes) which govern the subjects’ psychological intercourse with their
environment

The metasubjective simulation models couid help to provide the inductive
basis needed to infer the general principles of organismic computational
power, as weli as the functional characteristics of the organism’s inte ntional
structures A recurrent theme in Pylyshyn’s criticism of AIS methods is the
lack of clarity regarding general principles and the lack of clear separation
between relevant (intentional) and irrelevant (caiculational) aspects of the
AIS programs These metasubjective models could also serve to connect
more ciosely the AlS theoretical enterprise with the empirical constraints and
methods of conventional psychology Failure to develop these metasubjec-
tive simulation procedures could condemn the promising AlS revolution to
the isolationist/empiricist fate of other past “revolutions " The best safeguard
of cognitive science may be in the open-minded constructive rationatism of
its scientists For technology is no more free of error than the mind of its user
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by Karl H. Pribram
Department of Psychology, Stantord University, Stanford, Calif 94305

On behalf of the neurosciences. Pylyshyn’'s analysis of the differences in
approach between the extremes of artificial intelligence (A 1) and cognitive
psychologists (C P ) is a most interesting one In a sense, A | scientists take
the interaction between their own intelligence and that of the computer as the
experimental datum, while C P scientists use the computer as an "in vitro”
tool to check out “independently framed theories for completeness and
consistency” much as the biochemist uses his test tubes Pylyshyn argues
well that the experiments undertaken by the A { community are not altogether
that different from those carried out by C P s, since the latter are also deeply
influenced by the computer as a mode! of cognitive processing

| have no argument with either Pylyshyn's analysis or with his conclusions
But | do want to raise a caveat Both Al and CP scientists are apt to
construct “unrealistic” models of human cognitive processing unless they
give serious heed to developments in the neurosciences In fact, heed is
paid, but often there is a tack of seriousness whenever the neurological data
become the least bit complex

Do | mean by this that | believe that the neurosciences are going to provide
the models for cognitive processes? Certainly not Pylyshyn clearly states his
position, “for psychologists, computational systems should be viewed as
functional models quite independent of (and likely not reducible to)
neurophysiological systems,” and in part | agree with him Nonetheless, |
feel that someone in the “Cognitive Science Fraternity” must attend to the
neurosciences sufficiently to know whether the cognitive machine-language
is appropriate to the machinery of the brain For high-level languages, this
concern may not matter, but when such rudimentary processes as pattern
recognition, decision and memory storage are involved, attention to wetware
becomes nontrivial As a case in point, current computers are essentially
serial processors while much of the brain operates on paraliel processing
principles The memories of current computers are location addressabie
while the brain’s memory is more probabty content addressable True, one
can overcome these differences by appropriately programming, but to the
extent that computers as presently constituted are to be taken seriously in
modelling cognitive processes because they provide previously un-
recognized insights, we do not yet know the power of alternative configura-
tions that might embody principles of brain function in cognition additional to
those now available

In short, my plea is that cognitive scientists continue to be problem-
oriented rather than succumbing to the lure of technique The computer is
powerful both as a model and as a tooi, and a cognitive discipline centered
on this instrument is certainly commendable Pylyshyn has made the case
that the two subdisciplines invoived with the cognitive functioning of com-
puters might fruitfully court each other My view would be that such courtship
might be incestuous and breed a monstrous cognitive science Perhaps bet-
ter that each branch of the family court one of the neurosciences - the result-
ing offspring of such a union might prove healthier and therefore in the long
run more viable

by R. S. Rodger

Department of Psychology, Dalhousie University, Halifax, N S , B3H 4J1, Canada
Computer-specific methods Pylyshyn writes that research on Artificial In-
telligence and Cognitive Simulation is, "directed at understanding classes of
tasks which are defined by essentially psychological criteria ” it could be
argued that it is not “classes of tasks” that research helps us to understand
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but methods of operation It seems quite possible that “methods™ not pre-
vtously 1in use by humans may be discovered through research on Al itis
even conceivable that after discovery they might remain useful for computers
and impractical for humans The history of mathematics may be said to be
replete with examples of newly discovered methods for solving problems; so
| see no reason why A | research may not yield results of a similar kind The
danger 1s that, once discovered, the new methods may be dismissed as
trivial Remember the story of the mathematician proving a new theorem to
his colleagues and, half-way through, claiming that the next step was trivial
After a heated discussion for half an hour, everyone agreed that indeed the
step was tnviai!

Cognitive Simulation, as a psychological endeavour, would not aim at
developing methods for their own sake, but insist that they represent, at an
appropriate abstract level, processes used by humans If we adopt the
author's terms of reference: compare systems with the same generality, the
same power and having the same abstract description, it is difficult to see
how one can deny his concluston that the distinction between A 1 and Cogni-
tive Simulation 1s littte more than one of style and the orderning of goal
priorities Imagine a human system and a machine system with the same
generality and power but differing in certain details such as their inter-
mediate states, relative complexity and the components they use For
example, they step through problems differently and distribute their time and
their errors differently Pylyshyn might argue that this description is not
sufficiently abstract because, “there 1s some level of description of the two at
which they are doing it ‘in the same way ’ " An expenmental psychologist,
interested 1n simulating cognitive processes, would not accept so high a
level of abstraction as appropriate

A good At system will, among other things, make rather few errors, but a
good simutation makes Just the correct number of errors of just the human
kind at just the nght places!

Equating research on A | with that on Cognitive Simulation appears to be a
return to the doctrnneof Protagoras, that “Man Is the measure of all things " In
spite of the obvious attractions, for a psychologist, in bringing the A1 branch
of Computing Sctence under the psychologist’'s umbrella, | believe this topic
should be allowed to develop in its own direction, untrammelled by the limi-
tations of human thinking, at least insofar as computers can avoid them and
still communicate with their programmers

by Roger C. Schank
Department of Computer Science, Yale University, New Haven, Conn 06520

Al vs. CS: a methodological distinction. One of the more significant divid-
ing lines in Al has always been the one separating those whose primary
interests are to find out how people work from those who are more interested
in getting machines to be smarter The problem with this dividing line Is that
it 1s a methodological one more than one that ngidly defines goais Ail re-
searchers are happy to shed light on a problem in which their interest 1s only
secondary after all

One 1ssue that needs discussion with respect to Pylyshyn's paper, then, I1s
whether thhs methodological difference produces systems that are in some
way essentially different The answer has to be that it can and often does, al-
though sometimes it does not Pylyshyn has argued the “does not” side of the
1ssue, so here it 1s necessary to show that the “"does” side also exists

The questions are, then, does the working methodology one chooses affect
one’s results; and can there be a difference In results? In other words, are
there Al programs that are cleariy not, and could never be, psychological
theories?

There are general lines that must be followed in an argument of this sort
First, we must discuss those Al programs that could not in principle be
psychological theories Second, we must dea! with those that could be but
can be shown not to be

The class of Al programs that can in no way be psychological theories are
those that rely on hardware devices for therr front ends that are radically dif-
ferent, in terms of the output they produce, than the human dewvices for which
they substitute Such devices exist in speech understanding systems to
process the incoming speech signal, and in automatic vision systems to
process scenes In both of these cases, there would be no problem if the
hardware necessary for the task 1n any sense approximated the accuracy of
the human device that does the same job But, n fact, they in no way come
close As a result, the Al researchers that do speech and vision have had to
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develop systems that must recover from errorful data as soon as they start
out This affects the entire system 1n such a way as to cause a major part of
the program to be worrying about issues that simply do not come up when
people are met with the same situation Thus, people almost never mistake
the words “king” and “queen,” both because of the expectations and
knowledge they have attached to those words and because ther
phonological shape 1s quite different However, these words are similar
enough phonologically for an imperfect hardware device to confuse them,
and a great deal of effort must be put into methods of both detecting mistakes
and recovering errors  Simifar problems occur in vision systems as well

Vision and speech constitute two major areas of Al, then, that do not use,
nor really care a great deal about, psychological theories of human process-
ing They are 1n no sense simulations and probably should not be

in areas such as the processing of written textual matenal, which constitute
a large part of Al activity these days, we find a great many researchers
concerned with doing cognitive simulations (Pylyshyn's term) as opposed to
artificial intelligence (in the sense that Pylyshyn uses that term) Our re-
search at Yale has always had the goal of being both a cognitive simulation
and artificial intelligence, so of course that puts us nght in the middle of the
argument that Pylyshyn tries to make | am thus forced to disagree with the
distinction that Pylyshyn sets up (hts point exactly of course) and at the same
time argue that the distinction sensibly exists for others

in the processing of written text there are two methodologies that cor-
respond to Pylyshyn's distinction One trnies to model human capabiijties and
the other just tnes to do the Job | do not see how both of these approaches
can be psychologicai theones (in any senous sense of that term) at the same
time (Pylyshyn could argue here that they are just competing psychological
theories, but that argument would allow everything anyone ever thought
about a process to constitute a theory of a human process Clearly there are
many ways computers do things that no one n hus nght mind would equate
with psychological theory )

To take one example of a place where such theories compete, we can look
at the use (or each of the uses) of syntax in processing sentences There are
some natural language programs that use totally separate syntactic parsers
and worry about meaning later In opposition to them are the programs that
do very little syntactic processing, all of which is fired off by expectations
about meaning Now it seems to me that white the latter approach 1s a possi-
ble (albeit not validated) psychological theory, the former simply cannot be
so regarded Is it a senous suggestion about humans that they analyze a
sentence solely by grammatical rules applied to syntactic categories of
words, never considering the meaning of those words untit they have made a
complete pass through the sentence looking at the syntactic structure onty?
Such a parsing iogic, used In various forms by researchers in natural lan-
guage over the years, treats a sentence as something that can be scanned
through before the meaning of a word is even considered Certainly the re-
searchers who do such things believe they are doing Al, but there is no
psychological theory then

My point 1s stmply this: There are those of us for whom Al and cognitive
simulation are clearly the same thing But this 1s purely a methodolog:cal
assumption about how one should go about creating and testing such a
theory | believe strongly in that assumption in doing my own Al research, but
there are those who do not subscribe to it and are thus not creating
psychological theories; and there are those who ought not subscribe to it,
considenng the tasks they have at hand

by Thomas W. Simon
Department of Philosophy, University of Florida, Gainesville, Fla 32611

The AI/CS distinction and theory evaluation. Because the distinction
between artificial intelligence (Al) and computer simulation (CS) is generally
uncritically accepted, Pylyshyn's challenge to that distinction 1s welcomed, if
for no other reason than that it jars our intuitions out of their complacency Al
and CS have yet to be completely accepted into the matnstream of scientific
thought On the one hand, like most of the “pure” studies today, the “purer”
aspects of Al research are being challenged for their lack of reievancy What
could a chess-playing machine possibly tell us about human thinking if there
1s no concern to have the machine play chess like a human? CS, on the other
hand, still 1s not accepted by many as a legitimate means of psychological
theorizing Perhaps, some of Pylyshyn's arguments will help to overcome
some of these obstacles
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Nevertheless, Pylyshyn may be in danger of blurring the distinction too
much In fact, it is not clear what would constitute a “systematic distinction”
between Al and CS for Pylyshyn, since all those differentia he relegates to
style are just those that clearly and systematically distinguish the two If Al
research is only constrained by very general empirical laws in focusing on
problems that constitute “natural kinds,” but CS is constrained by much more
refined sources stemming from psychological methodology, then that seems
to be as much of a distinction of kind as one could hope to find Admittedly,
Al research may uncover descriptions of processes which are useful in
explaining human thinking (particularly if in order to do a task as well as a
human an Al device needs to do it in the same way) Yet, that does not distin-
guish Al research from analyses of poetry, which may yield similar fruits itis
just as likely that Al research will hinder our understanding of the human
mind There may be spinoffs from Al into psychology, but there is not any
stronger systematic link between Al spinoffs and any others to psychological
explanations

tmportant differences do exist between a discipline that is concerned to
simulate the way humans think as well as the end-product and one only
concerned to replicate or improve upon this end-product Although it is true
that: *  any device that can be said to ‘do task x” must not only be doing the
same [intelligent] task as the person but in some sense must also be doing x
‘in the same way’ that the person does it,” in many cases its truth is only at-
tained by trivializing the claim A chess master and a duffer both do the same
task, but not at all in the same way, except in the vaguest sense of “in the
same way ” More bizarrely, the wind, a bulldozer, and a human can ali de-
molish a house, but only in the most trivial sense do they accomplish this
task in the same way

Moreover, the AI/CS distinction is not adequately blurred in terms of the
generality/power trade-off Criticism of the admitted power but fack of
generality of many computer systems is not simply “a comment about the
more general phenomenon that performance may be purchased at the price
of generality " Rather, it is a very serious charge against both Al and CS,
particularly in light of the fact that researchers in both seem to place more
emphasis on developing systems rather than on specifying the underlying
principles The goal of cognitivism in psychology ought to be undermining a
previous unfortunate inverse relationship between power and generatity
Furthermore, if “the most interesting aspects of intelligent behavior are more
a function of the interaction of very small components (e g, a iot of specific
knowiedge) than the product of a few deep principles,” then the continuity
between Al and CS becomes even more unlikely For, intuitively, the more
that two radicaliy different means are divided into component parts the less
the likelihood of finding similarities between them At some abstract, deep
level there might welt be some similarities between automatic and human
door-openers, but when the two means are divided into sub-processes, the
differences become more apparent

Turning to the problem of evaluating CS methodology, Pylyshyn's dis-
cussion does go beyond the rather meager fruits of the Turing test and the
like Yet, sources of evidence such as intermediate state, relative complexity,
and component analysis are fairly weak Methods for studying intermediate
states in human tasks, consisting of introspective reports plus inferences to
intermediate states, are not only “very few and rather crude,” but may also be
inherently so Compiexity evidence merely indicates being on the right track
(but nowhere near the station) toward uncovering the principies of mentation
because it is too easy to envisage two different devices accomplishing the
same task in the same time frame but by radically different means
Component analysis, although the strongest source of evidence, is in-
ferential, which may well be a potite way of talking about guesswork A likely
check on this guesswork is at the neural level, which cognitivists sometimes
all too readily dismiss

Even if we know how to evaluate a computer simulation, it is still not
altogether clear what aspect of the simulation should be the object of evalua-
tion While Pylyshyn is correct to note that“  the relevant object of com-
parison is not the computer program per se but a description of the computa-
tional process cast at some level of abstraction,” the problem of developing
a means for specifying the appropriate level of abstraction remains An im-
mediate difficulty is that any number of theories can be extracted from the
same program Also, the extracted features are often recast into verbal form
so that one of the main advantages of simulation, precision, is undermined
Yet, despite these and other limitations CS does provide at least the first
steps towards constructing a scientific theory of the human mind

by Aaron Sloman
Cognitive Studies Programme, School of Social Sciences,
University of Sussex, Brighton, England

Artificial intelligence and empirical psychology. If | conjecture that the sum
of the first n odd numbers is always a perfect square, | can test this withn =
1,n =2 n =3 etc Is this an empirical investigation? If | use a computer
instead, is it being used for an “empirical exploration”? These would not nor-
mally be called empirical investigations, unlike running the same programs
to test a computer

Consider two definitions: An investigation is empirical if it is based on
examination of individual cases, but not if it uses a general proof It is empi-
ricalz if (like physics and geology) it is concerned with objects in the world of
experience, and not merely (like number theory and theory of computation)
with formal abstract structures

What Pylyshyn is really saying is that some work in Artificial Intelligence is
empiricali, like some mathematical explorations in other words, Al often
uses “formal,” but not “substantive,” empirical investigations

Experiments with an Al program might be empirical in both senses They
could reveal a failure of the program to understand something it was
intended to be able to cope with (a formal empirical discovery) or they could
show that people sometimes use language in a fashion not previously
noticed (a substantive empirical discovery) Similarly, a vision program may
fail where it was intended to cope, or it may fail in tasks the programmer had
not realised most people couid cope with

Pylyshyn suggests that empirical investigations can show “what kinds of
relations must (sic) exist ” Substantive empirical investigations might
show what can exist, but "must” in this context presupposes a formal
demonstration The example mentioned, namely Waltz's program, proves
nothing about what must exist Moreover the power of his label-set is a
formal, not a substantive, empirical discovery, whose status as an explana-
tion of human abilities depends on the unavailability of anything better

Al versus computer simulation A divergence between Al and simulation
systems is predictable Contrast (a) behaviour based on considerable
expertise, built up over many years, like linguistic or perceptual skills, with
(b) the floundering, exploratory, non-expert behaviour of beginners strug-
gling with puzzles, like the novice logician, chess-player, or child seriator
Only the latter incompetent behaviour is easily amenable to observation
Deeply-compiled expert skills invoive rapid and compiex processes not
available to introspection or laboratory observation So the “simulators” will
tend to concentrate on (b), unlike the Al fraternity

But Ai programs are still relevant to psychology, since they are testable by
their generality, extendability and ability to account for the fine structure of
phenomena When adequate theories of human learing emerge, it may be
possible to test some Al models by asking if they could be built up by
processes typical of human learning (Studying how infants learn is distinct
from studying what they fearn when, as in pre-computational psychology ) Al
work tends to produce deeper insights into human processes than simulation
studies, since expert behaviour, not fumbling problem-solving protocols, is
most characteristically human

Is parallelism relevant? Admittedly, a serial computer may be no bar to
studying brain processes since parallelism can be simulated as closely as
required But it is clear that many human abilities involve parallel processing
at a cognitive level, e g, a child producing number names, pointing at dif-
ferent objects, and monitoring the two processes to keep them in phase But
even if theories without such paralleiism aren’t adequate explanations of how
we do things, they are steps towards formalisations of the tasks we perform
and the information required for this

What is a “natural kind"? There are simple algebraic tests for straightness
of a line yet they probably have little to do with how peopie perceive straight-
ness and other shape properties — an important unsolved Al problem So the
existence of a non-intelligent solution to a problem does not preclude the
possibility of solutions using (human) intelligence

Pylyshyn uses the notion of a pattern or problem being a “natural kind” for
humans Has he forgotten the variability of human beings, and the extent to
which a "natural kind” may depend on a cultural context, like the symbols
people can recognise easily? A particular class of patterns or problems
which now does not form a “natural kind” for humans may one day form part
of a widely practised skill Consider the sight-reading of piano music

Can we observe computational processes? Pylyshyn assumes that we can
observe intermediate states But when people or programs produce pro-
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tocols or answer questions about their strategies this may give misleading
information about their normal functioning Further, much information about
what is going on, (e g, about indexing strategies, matching procedures,
rules for parsing and interpreting) may be quite inaccessibie to processes
concerned with external communication and global decision-making
Procedures may have been compiled into “unreadable” lower level lan-
guages, and sub-processes may use “private” work-spaces Opening the
machine to look at its innards would be like trying to understand a very high-
level program by examining its machine-code compiled form

Empirical constraints in common sense As part of our ability to communi-
cate and our self-knowledge about skills, beliefs, habits etc, we share
encyclopaedic knowledge about what people can do We use it when we
gossip, read novels, judge others, or make plans But psychologists often
think that unless they do experiments they are not scientists, so they rarely at-
tempt to anaiyse and codify this knowledge, as linguists and philosophers
do

Since people doing Al have fewer hang-ups about being scientists, they
are more willing to start from common knowledge about what people can do
(e g, understand English, interpret drawings, plan actions, etc) We can
often test explanatory models by noting how their performance falls short of
what we know people can do, without relying on new experimental results
Thus there are empirical constraints on Al theories embedded in common
sense

Until Al can account for most of what ordinary people know about people,
there may be no urgent need for new psychological data, except in the rare
cases where two different models appear to be equivalent in explanatory
power, generality, extendability, etc (Crucial psychological experiments
may not always be feasible )

Of course, common-sense is often mistaken But, although it is not a good
source of laws (indeed, it is doubtful whether there can be laws of
psychology) it is a good source of information about possibilities - that is,
things people can do The discovery and explanation of possibilities is a
major feature of the progress of science And it is possibilities (abilities, ca-
pacities, skills) rather than laws that Al is mostly concerned with explaining

This will be lost on most psychologists untii their training problems are
revised to “how is this possible?” instead of “why does this occur?” The lat-
ter encourages a search for correlated conditions instead of expianatory
mechanisms

How top-down is A | ? Pylyshyn suggests that Al workers try to devise com-
plete systems He should have said they try to devise working subsystems A
complete intelligent system would be a teachable robot, with moods emo-
tions, etc In relation to the task of designing a person, Al work is mainly bot-
tom-up, not top-down, since most computer models deal with a small sub-
component of some human ability (e g part of the ability to interpret pictures,
understand stories, etc ) Pylyshyn meant that Al work first explains general
features of an ability, and iater adds refinements to explain details But this is
misleading, since relative to long-term goals, Al work is bottom-up, not top-
down

This has serious risks By refiecting on processes typical of complete
human beings, and on interactions between subsystems, we can formulate
constraints which current computer models violate These “interface”
constraints may be more significant than constraints generated by the un-
derlying computer — the brain

For example, what you see can remind you of something, generate
changes of mood, heip you soive a problem, teach you a concept, help you
understand a conversation, etc What features of a vision system are
necessary for this, and what features are required by the other systems?
Further study may show that existing program structures are grossly inade-
quate, even if their factual content (e g , about image- and scene-features) is
correct But until bottom-up explorations have generated much more
technical know-how, it may be premature to switch to the top-down mode and
try designing complete systems, except in occasional philosophical mo-
ments

by N. S. Sutherland

Centre for Research on Perception and Cognition, University of Sussex,

Brighton, Sussex, BN1 9QG, England
Task constraints and process models. If a neuroanatomist were to present
us with a complete wiring diagram of an individual nervous system specify-
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ing every synaptic connection and the probability of a nerve impulse being
generated for every possible combination of inputs at each synapse, we
wouid have a complete model of cognition and the controi of behavior The
model would be virtually useless: so too would be the tape of an Al program
punched in machine code Because of the limitations of our own cognitive
systems, we can only understand any compiex system in terms of higher
level concepts that describe the outcome of blocks of lower ievel operations
(Some examples of such concepts are “lateral inhibition,” “receptive fieid,”
“depth first search,” “list structure,” “recursive procedure,” and "relaxation
method ") | cite the hypothetical example of the neuroanatomical model to
itlustrate Pylyshyn's claim that the goal of cognitive psychology, as of all
science, is understanding: models of mental functioning, including com-
puter models, are only of value insofar as they further our understanding it
follows that the principles behind Al programs are of importance for the
psychologist, not the detailed implementation Pylyshyn goes on to argue
that “if a person and a computer are both capabie of doing the same task
there is some leve! of description of the two at which they are ‘doing it in the
same way' " This claim may be correct, but it glosses over the difficulty of
how to decide what is the appropriate level of description

Pylyshyn argues that computer programs must at some level of description
correspond to mental functioning since the task constraints are the same for
both systems If a computer program interacts directly with the real world
through sensory channels that correspond to our own, it will be subject to the
same task constraints as ourselves In visual perception the constraints are
imposed by the relationships between the optic array and the 3-D environ-
ment that gives rise to this array according to the laws of physics and optics
By attempting to write programs that infer a 3-D description of polyhedral
bodies from line drawings, a number of workers in Al (e g, Clowes, 1971;
Mackworth, 1973; Waltz, 1975) have considerably added to our knowledge of
how aspects of the optical array are refated to bodies in the scene Huffman
(1971) has also provided important insights simply by reflecting on projeg-
tive geometry, and without writing any programs: nevertheless, some of the
constraints specified by Al workers would probably not have been dis-
covered without the discipline of writing programs, and to this extent Al can
be thought of as a useful way of specifying task constraints Even in scene
analysis programs, however, it does not automatically follow that the
constraints used by programs are the same as those used by people For
example, Waltz's vision program appears to have a richer knowledge of the
depth information that can be provided by shadows than does the human
perceptual system (compare Fig 2 32in Waltz, 1975, p 65,0p cit)

Moreover, the discovery of task constraints is not the only task facing the
psychologist: he should also seek to specify the processes that take ad-
vantage of these constraints in order to carry out the task Not all
psychologists would agree that this is a sensible goal for psychology J J
Gibson (1966), for exampie, has articulated very clearly the need to specify
task constraints, but appears to believe that once that is done nothing
remains to be discovered In this tradition, Neisser (1976) tatks of information
being “picked up” from the optical array and used to guide behavior: it is
true that Neisser also acknowledges the existence of vaguely defined “sche-
mata” but he appears to believe that they determine what information is
“picked up" rather than how it is used Unlike Gibson and his followers, most
psychologists are interested in process modeis Computer programs are at
the moment the only tool we have for giving rigorous expression to such
models, for proving their formai adequacy and consistency, and for inves-
tigating their formal limitations But it is here that the difficulty glossed over
by Pylyshyn arises: how do we decide under what description the processes
embodied in the computer model are the same as those embodied in the
brain?

This question can be illustrated by a further example from vision Whereas
Waltz’'s program works by listing for each kind of 2-D vertex the possible
combination of kinds of 3-D edges to which it couid correspond, Mackworth
has written a program'that uses the same information about 3-D edges in a
much more general way: the direction of a line in the picture constrains the
plane in which the corresponding edge in the scene lies Armed with this
knowledge, Mackworth's program arrives at a more highly constrained
description of the 3-D scene than do those of Clowes or Waltz Moreover, the
processes embodied in the program are, at least superficially, very different
from those used by Clowes or Waltz The constraints used in all three pro-
grams are based on projective geometry and are to that extent similar, but
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they are used in different ways and it is hard to design experimental tests of
which method is used by the human brain

In their experimental investigations, experimental psychologists rely
mainly on error and reaction time data Most Al programs either do not make
errors or make very different errors from people; since the relative lengths of
time taken by a computer to carry out different processes are unlikely to cor-
respond to those taken by the brain, it is difficult or impossible to extract pre-
dictions about human RTs from such programs Pylyshyn is aware of this
difficulty, but tends to dismiss it through his example of a hand cafculator as
a poor model of how people do arithmetic The example is misleading since
a hand calculator is computationally very simple, avoiding the difficulties
that arise when one tries to decide how far a really complex program models
some complex psychological process simply

It couid be argued that this difficulty is the most serious current obstacle to
progress in cognitive psychology it should, moreover, be noted that it is not
unique to theories couched in terms of programs [t applies with equal force
to any complex model of mental functioning and to many that are not so com-
plex: consider, for example, the failure of experimental psychologists to
specify with any degree of certainty the intervening processes occurring in
such a simple paradigm as the Sperling memory search task, or the chaos
that currently reigns in the field of semantic categorization It may indeed be
that we will have to be content for some time to come with very general
descriptions of the processes mediating cognition: it could even be thal
many of the details will only be supplied as a result of advances in neuro-
physiology The most successful visual preprocessing program (Marr, 1976)
directly simuiates in its first stage the known physiology of receptive fields
and its subsequent stages exhibit why this is a useful way in which to com-
mence the analysis of the retinal image

In summary, then, a successful Al program constitutes an existence proof
that the information supplied to the program is sufficient for executing the
task It is, therefore, a useful way of investigating task constraints, but the
constraints used by the program are not necessarily identical to those used
by people Although Al remains the only way of specifying and investigating
formal models of complex processes, it is in practice extremely difficult to
decide at what level of description a computer mode! applies to the
processes underlying human cognition This difficulty should, however, not
turn psychologists away from computer programs since in practice exactly
the same problems arise when they try to test their own more loosely formu-
lated models of cognition
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On the relation between Al and CS: the heart of the problem. Pylyshyn has
analysed the differences between the disciplines of artificial intelligence
and cognitive simulation He argues that these amount to no more than a “dif-
ference in style,” i e, they are unimportant The basic argument is that in
both areas the tasks tackled are defined by “essentially psychological cri-
teria " This is a phrase that should always arouse suspicion, but in the
present case it is offered a reasonable definition: it is taken to define tasks
that involve taxonomies that normally require humans for their application,
such as identifying the different visual patterns corresponding to a given
person’s face

To this an artificial intelligence theorist might object that his discipline is

essentially different from cognitive simulation First, the aim is to reduce

“psychological criteria” to non-psychological criteria, ie, taking the
example above, to make it possible to define equivalence classes in terms of
the classificatory operations of an automaton rather than those of a human
Second, in method: he is willing to employ processes or devices that are
known not to parallel those underlying human cognition An example might
be the creation of large libraries of templates to solve complex recognition
problems

An answer to this, based on Pylyshyn's arguments, might be that what ap-
pears incompatible on one level of description may be no problem on
another The incorporation of templates in a program may be no more of a
difficulty than the use of transistors in the computer on which the program is
run, if one chooses to take a sufficiently global view of the overall process as
a model for some corresponding cognitive activity indeed, a procedure that
may seem an inappropriate analogy fer one task may find an application to
another Templates are out of fashion to expiain visuai pattern perception
But suppose 1 ask, “What is 8 times 7?" it is not unlikely that you will rear-
range this as "7 times 8" in your head before finding the answer Access to
the internal multiplication table appears to be governed by a lock that recog-
nizes a limited number of keys

The question might be rephrased: “Do programs produced by artificial in-
telligence practitioners provide models for cognitive processes?” To this the
Al theorist above will answer No: because in designing his programs he
does not attempt to make them correct representations of the processes and
processing that may underlie cognitive attainments He is willing to include
teatures, such as unrestricted and error-free memory, which do not pertain to
human cognition but which work, or help his programs to work And, at the
level at which his interest lies, these features are important elements in
characterising his programs But his opponent, standing on Pylyshyn’s
ground, will reply Yes: because Al programs are reievant to the problems of
understanding cognitive performance They address the same inputs, or
tasks, and provide, or attempt to provide appropriate answers Even a model
that proves eventually to be wrong may be useful and revealing Further, as
Pylyshyn says, if a person and computer both “do task x,” there is some level
of description, if only we make it sufficiently general and sufficiently vague,
at which they do it “in the same way "

To this conflict there is no resolution, because whether we classify the
contrast between an emphasis on correctness, or the assignment of priority
to relevance, as no more than a “difference in style,” or as much more than
that, is itself a matter of personai style, and so unresolvable

But this unsatisfactory conclusion is not unique to the Al-cognitive simula-
tion debate It is a feature of all sciences that may be applied to human prob-
lems (or some other specialised field) and also more generally For example,
consider an imaginary debate between the “mechanical physiologists — men
such as Harvey, who recognized the heart to be a pump, and the anatomists
who defined bones and muscles as levers and cables - and the common run
of engineers The latter might argue: “We are in different fields, pursuing dif-
ferent aims For we desire only that our devices work and solve everyday
problems We use wood and metal, not bone And we have no compunction
in employing wheels and gears, which do not exist in the human body " To
this the mechanical physiologists might rely: “Nay, we are brethren For we
employ our knowledge of the principles of statics and dynamics, as do you
Your devices may serve as models for us: Would Harvey have understood the
heart to be a pump if he had not previously comprehended the working of the
common water-pump? At our level of description the difference between
bone and metal is no matter Nor need we be overly concerned at the dif-
ference between wheels and flaii joints For there is a level of description,
sufficiently general, at which a man and a car are one: both consume energy
to produce forward motion and in this sense both function ‘in the same way ' "

by Shimon Uliman

Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

545 Technology Square, Cambridge, Mass 02139
A.l. systems and human cognition: the missing link. Are A | systems likely
to make significant contributions to the theory of human cognition? It is
Pylyshyn's optimistic view that even “pure” Al systems, completely unmoti-
vated by experimental evidence, “"can hardiy avoid” making such a contribu-
tion He argues that although such systems do not use experimental evi-
dence and natural constraints explicitly, their success depends nevertheless

THE BEHAVIORAL AND BRAIN SCIENCES (1978), 1 117



Commentary/Pylyshyn: Computational models and empirical constraints

on “a variety of experimental constraints imposed by the natural laws which
determine both how the mechanisms operate and how physical environ-
ments behave " Various constraints are thereby “smuggled into” pure Al
systems, rendering them pertinent to the study of human cognition | accept
the argument but not the conclusion An important link is missing which, if
ignored, will probably hinder the contribution of “pure A | " to the theory of
human cognition If experience gained from Ai systems is to help in
constructing theories of human cognition, the constraints discussed by
Pylyshyn have to be addressed explicitly They have to be isolated, their in-
dividual influence assessed and incorporated in a systematic theory There
are two main reasons why such an approach is needed One stems from the
need for what | shall call "mapping-over the relevant conclusions,” the
second from the need to distinguish between what | shall call type 1 and type
2theories

1 Mapping-over the relevant conclusions Atypical program faced by the
cognitive scientist is to understand how the human cognitive system carries
out a certain task X The “pure A | " researcher, on the other hand, might try to
construct an artificial system that is also capable of achieving X As Pylyshyn
points out, constraints from a number of sources affect the possible ways in
which the task might be accomplished The constraints discussed by
Pylyshyn can be divided into four main categories: (C1 ) Constraints inherent
in the task domain (C2) Constraints that stem from general computational
considerations These include computability, aspects of compiexity, and the
abstract rules of representation and control (C3) Constraints imposed by
the particular computation method (“algorithm,” “software”) in use (C4)
Constraints imposed by the mechanism, i e, the physical characteristics
("hardware”) of the system

For example, the fact that a standard pocket calculator presents only the
first 8 decimal digits of the square root of 2 0 is the result of constraints of
type C4 The fact that this number cannot be represented by any finite
decimal belongs to the realm of C1 Whether the number is rounded-off or
truncated is a problem that falls under C3 Of the above four groups, C1 and
C2 are common to any system that achieves X, while C3 and C4 might be
system-dependent It follows that to be of value to cognitive theory, the
properties of the artificial system determined by C1 and C2 have to be
separated from the effects of C3 and C4 Unfortunately, this separation be-
comes impracticable unless the system has been developed with such a
goal in mind Pylyshyn's analysis offers a two-stage solution to this problem
In the first stage, large “pure A | " systems will be constructed In the second
stage, theories will be developed to shed light on the incomprehensible pro-
grams of stage 1

An alternative approach that seems to me more plausible is to develop
A1 -type models from their conception in an “exploratory” rather than “pure
performance” mode, aiming explicitly at isolating and revealing fundamental
principles Furthermore, the identification of causal links between certain
constraints and assumptions on the one hand and specific properties of the
system on the other is not only useful/ in developing a theory, it also
constitutes a part of it For example, Marcus’ work [Marcus 1977] on the
syntactic recognition of natural language suggests a link between specific
properties of the language parser and Chomsky's “specified subject” and
“subjacency” constraints [Chomsky 1975] If his analysis is correct, this link
by itself seems to me an interesting part of the theory of language

To sum up the first point: Identifying and exploring the effects of various
constraints, assumptions, and engineering decisions (that have to be made
whenever a system is implemented) are essential for the development of
cognitive theories and for the mapping-over of relevant conclusions To ac-
complish this task, exploratory programs, whose behavior is well-under-
stood, and which address the above problems explicitly, are needed

2 Overlooking type 1 theories An important question raised by Pylyshyn
is: “Can a program be a psychological theory?” The answer is probably posi-
tive in a trivial sense: Once a theory has been formulated, it can be cast in the
form of a computer program Less trivial, however, are the following aspects
of the question: (1) Does the writing of programs provide a useful means for
the development of theories? and (2 ) When is a computer program an ad-
vantageous way of expressing a theory?

I do not wish to examine these questions at iength, only to point out some
implications to the problem at hand Marr [1977b] offered a distinction
between what he called “type 1" and “type 2" theories of information-
processing problems In a type 1 theory the underlying principles
(“competence”) are clearly distinguishable from implementation details
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(“performance”), giving rise to a relatively “clean” and concise formulation
The type 2 theories are less elegant and more complex They might be re-
quired, for exampie, for the description of systems whose behavior is de-
termined by the simultaneous action of a large number of processes The
theory that accounts for such a system and predicts its behavior might be as
complex as the system itself Newton's Gravitation theory is an example of a
type 1 theory that explains the complex motion of the planets The problem of
protein folding is cited by Marr [1977b] as a likely candidate for a type 2
theory In the study of cognitive capacities, it is often unclear whether or not
the system under investigation has a type 1 theory However, it is important
not to overlook type 1 theories when they do exist The danger of using “pure
A.l'” systems in the development and the expression of cognitive theories is
their tendency to concentrate on “type 2" and overlook “type 1" theories

Pylyshyn offers the view that a unified type 2 theory might underly such
faculties as language, perception, reasoning, and memory | do not share
this view, at least as far as it concerns perception Various attempts have
been made at devising uniform schemes of representation and control that
will assist visual perception as well as other intelligent tasks [Freuder 1976]
The lesson from this and other work [e g, Hanson and Riseman 1976} is, as
far as | can tell, that such general studies have limited applicability to the
theory of visual perception (at least in its present stage) Problems of repre-
sentation do indeed play an important role in the study of vision [Marr and
Nishihara in press], but visual representations seem to be shaped primarily
by the specific visual tasks rather than by “abstract information handling
principles " In contrast with Pylyshyn’s view, it seems to me that in the realm
of perception type 1, task-specific, principles can be formulated A careful
examination of the problem domain and the study of the individual effects of
various constraints will be more effective in unraveling these principles than
“pure A | " systems An early exampie of the “explicit exploration mode” was
the analysis by Waltz {1975, op cit ] of scenes containing polyhedral ob-
jects Although there are no reasons to believe that his method of interpreta-
tion is applicable to human vision, it goes far beyond preceding work (e g ,
Guzman 1968), by making explicit the use of constraints imposed by the
physical world Some additional examples of evolving type 1 theories in the
Al study of perception are Marr's theory of early visual processing [1976]
and of occluding contours [1977a), Uliman's [1976] method for detecting
light sources and the theory of visual motion interpretation [1977), the theory
of human stereo vision by Marr and Poggio [in preparation} and Stevens’
[1977] study of local parallelism

Finally, it should be pointed out that identifying the contributions of the
various constraints is also important for the success of Al systems per se
One reason for this is the need to evaluate partial results Al systems often
achieve only a partial success This is understandabie since they often aim
at comprehensive “top-down” goals (e.g, the study of children’'s story
comprehension, [Charniak 1972]) But this style of research requires that a
certain discipline be’ adopted to enable the accumulation of partial
knowledge [McDermott 1976] A partiaily successful system usually has both
desirable and undesirable properties !f the system has been developed in
pure-performance rather than in exploratory mode, successive improve-
ments might prove impracticable, leading to the situation described by Mc-
Dermott [1976): “After five theses have been written, each promising with
fuzzy grandeur a different solution to a problem, peopie will begin to doubt
that the problem has any soiution at all Five theses, each building on the
previous one, might have been enough to solve it completely[p 8] "

It should be emphasized that A1 is potentially a powerful tool for isolating
constraints and for exploring the effects of individual mechanisms Com-
pared with the psychologist, the A | researcher has a better control over what
is included in his system, and he can trace with greater ease the internal
stages that lead to a certain behavior Recent studies that have successfully
exploited these advantages are Marcus's [1977] study of natural language
parsing and Fahlman’s {1977] investigation of the utility of a fast set-intersec-
tion mechanism

In conclusion: | share Pylyshyn’s view that A | can provide a powerful tool
in the exploration of cognitive theories | do not believe, however, that such
contributions from Al will come inadvertently, as a spin-off of pursuing
“pure A | " goals
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A.l and the methodology of scientific research: some cautions and limita-
tions. While Pylyshyn's concern to increase the credibility and utility of A |
research to the study of cognition is laudable, he makes or implies several
methodological claims which cannot go unchailenged | believe that
considerable “evidence,” in the form of cogent arguments long available
from the philosophy of science and the methodology of scientific research,
militates against the position he presents, and restricts the manner in which
Al can contribute to a hoped-for science of cognition Consider four classes
of constraints that greatly change the relationship between A | and cognition
from what Pylyshyn proposes

The rofe of technology in science Although it need not be in principle, A |
is limited in practice to the use of available computation systems (computers
and their programs) Thus Pytyshyn asks “Can a program be a psychological
theory?” and later asserts “"What is needed is something approaching a
theory of the program ” So a program alone cannot be a theory: It can, at
best, be a mode! which instantiates a theory, and thus its role is to provide
data which must be assessed in the light of methodological criteria Thus
computation, like all technology, is never of decisive theoretical import in
science: It can constrain and change the data base, but it is never sufficient
to guarantee theory change (see Weimer, 1976) No matter what data it
provides, Al need not change any psychological theory of cognition, no
matter how “relevant” those data Thus we must reject Pylyshyn’s claim that
Al could perhaps “supply the foundations for a cognitive psychology,” be-
cause no matter what transpires in Al it will not be a “foundation’ for any
science Science has no foundations that are other than conventional
agreement (See Popper, 1959, 1963; Kuhn, 1970; Lakatos, 1970; Weimer,
1975)

Data and the inference to theory Even when correctly interpreted as
models to provide data for the domain of cognition, there is absolutely no
reason to suppose that computation data (despite their quantitative precision
or “axiomatic” appearance) are superior to any other form of data (inciuding
mystical intuition) in leading to theoretical principles It is not, as Pylyshyn's
abstract asserts, that “the task of extracting the relevant theoretical prin-
ciples from a large complex program may be formidable,” but rather that it is
simply impossible The leap from data to theory must always be made by
theoretical imagination (tacit knowledge, call it what one will} rather than by
some explicit or formalized inductive inference procedure This is so be-
cause there are always an indefinitely large number of theories that entail
any amount of data and are in conflict with one another, and there is no way

to determine, from evidence or data, which of those theories is more defensi-
ble (see Maxweli, 1975; Weimer, 1977) The computer can't think for us, and
no matter how much data it provides it can't make our theoretical work any
less difficuit

Interjected caveat: the danger of symbolic precision |f one appreciates
the methodological constraints that rule out any algorithm or “logic" of
scientific discovery, the notion of data as foundations for science, etc , itis
easy to see that sheer quantification or symbolic precision is of no merit in
science Early opponents of the computer as a panacea were often shouted
into silence by the scientistic taunt that precision and exactness were the
“essence” of science, and opposition thereto must obviously be “un-
scientific” and obscurantist It is commendable that Pylyshyn carefully
avoids any such scientism (as Hayek, 1952, called it), although his remarks
on the lack of success of “grand theoreticians” in psychology and the trend
toward “formalism™ in specific domains feaves one in doubt as to why
precise theorizing is nonexistent in psychology The answer may lie in some
problems of complex phenomena which Pylyshyn's account does not ad-
dress

Complex phenomena and the limits of explanation Sciences which deat
with phenomena of low complexity (such as physics) explain those
phenomena by subsuming particulars to covering laws, and those laws in
turn to theories which “deduce” them This account was proposed by
positivists and logical empiricists as the nature of scientific explanation (and
codified in the well known Hempel-Oppenheim “covering law” model) But
as Hayek (1967) pointed out (initially from studying the complex
phenomenon of the market place in economics in the 1920s) the phenomena
of the social, psychological, and biological sciences require another type of
explanation, explanation of the principle, rather than explanation of the
particular They do so because it is impossible to achieve explanation of the
particular in highly complex systems Later, and independently, von Neu-
mann (1966) argued the same thing in his pioneering research in automata
theory, which showed that in a system of high complexity the simplest mode!
of a phenomenon is at least as complex as the phenomenon itself Thus our
understanding of complex systems such as cognition will be limited, in prin-
ciple, to accounts which provide what Hayek called explanations of the prin-
ciple (see Shaw, 1971, Weimer, 1978) The “new" kind of theory which
Pylyshyn correctly sees to be necessary for cognition will not be of the axio-
matic form associated with Newtonian physics because that latter theory is
one of explanation of the particular for simple (low complexity) phenomena
The trend toward formatlism will be irrelevant to the study of complex
phenomena insofar as it is limited to explanation of the particular What we
require for “cognitive science” to be other than a promissory note is not just
more use of the computer, or functional and intentional specification of vari-
ables, but an understanding of complex phenomena Pylyshyn’s “new theory
to explain the program” will not explain particulars, but must instead specify
the principles according to which the system operates Thus it would appear
that A} will be of value if it can help us to achieve explanations of the prin-
ciple for cognition, not because it is based on top-down analysis (all
theoretical science must be), nor because it is intentional (even behaviorism
is), etc [see Haugeland et al , next issue]
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by Yorick Wilks

Department of Language and Linguistics, University of Essex,

Colchester C04 3SQ England
Artificial intelligence and real constraints. Pylyshyn's paper addresses a
most difficult and important issue: Do Attificial Intelligence (A | ) systems,
whether programmed on computers or not, have anything of vatue to offer to
cognitive psychologists? | take the point of departure of his argument to be
the passage where he sets out the view, in order to attack it, of those who
answer no to the above question on the ground that "A | is strictly a rational
exercise in building formal systems, more closely related to pure
mathematics than psychology " Pylyshyn argues in the paper that Al
systems are in fact empiricaily constrained in many ways, and that investiga-
tion of these ways lends no support to the supposed distinction between A |
and cognitive simulation, on the ground that the latter is constrained by em-
pirical psychological observation, while the former is not

Since | find myself in agreement with Pylyshyn's substantive claims, while
at the same time admiring the breadth of perspectives he has been able to
draw on these issues, my commentary will be restricted to expository and pe-
ripheral matters

On the expository level, | think Pylyshyn relies too much on distinctions he
has drawn elsewhere, but has no space to explain in this paper One
example | found particularly acute: a central ctaim for Pylyshyn is that both
cognition and computation are “intentional rule-governed phenomena,” but
instead of some exploration and exposition of this interesting claim the text
whisks us off to texts by Dennett and Fodor et al Doing that might be alright if
the meaning of the key phrase were clear, but it is not, and most particularly
the word “intentional” in this context is a clique usage that is liable to mis-
iead it may even cause unwary readers to think it is no more than a typo for
“intensional,” and who could blame them, since such contexts as “an inten-
tional vocabutary which inctudes beliefs " show that the word does have
much of the meaning of “intensional” as well as the standard philosophical
sense of “having to do with intentions *  am not accusing Pylyshyn of confu-
sion here, only arguing that the sense he assigns to this key term must be
provided if it is to bear the weight he seems to want to put on it

Let me now make brief comments on four closely related issues in the
paper, which go beyond mere expositional difficulties Each issue demands
far more extended and carefu! discussion than | can give it here

1 Same task performance implies "“doing things the same way” This
issue is near the heart of the relation of A | and psychology, and Pylyshyn's
claim is essential to his argument that “even ‘pure’ A | can hardly avoid mak-
ing some contribution to cognitive psychology™:*  if a person and a com-
puter are both capable of 'doing task X' there is some levei of description of
the two at which they are doing it ‘in the same way’ "

The most obvious trouble with this claim is the existence of what are prima
facie counter examples - the successful sentence analyzer that processes
English right to teft — uniess Pylyshyn's phrase “some level of description of
the two" is so interpreted as to make the claim true; that is, in the standard
philosophical jargon, unless Pylyshyn's claim is analytic But that would be
dubious procedure in a paper about the power of empirical constraints!

Moveover, in an interesting section later on, Pylyshyn discusses three
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“level of description,” arguments that might cause us to say that a standard
pocket calculator was not a proper model of the human arithmetical process
| cannot find any precise point in that discussion where he avoids the trap he
has set himself with the above quoted claim, according to which there must
be some level of description at which the caiculator is doing things “the
same way” as we do

2 A model's non-independence of biological implementation (in brain
science) and of mechanical implementation (in cognitive science) Pylyshyn
distinguishes these two notions of non-independence and notes that, in the
latter case, machine implementation “makes empirical investigation of a
certain kind possible " | agree about the importance of this, apart from the
reservations of (3) and (4) beiow

However, Pylyshyn goes on immediateiy to introduce a weak and strong
version of the thesis of the independence of cognitive models and brain
mechanisms, one of which he seems by implication to hold But he also ap-
pears to support the non-independency thesis on machine implementation of
cognitive models

There is no inconsistency so far, but it does seem to arise when he, at one
and the same time, uses an independency thesis on machine implementa-
tion as support for an independency thesis on cognitive models and the
brain:* justasitis  highly enlightening to study algorithmic processes
independently of how they are implemented so there is much that can be
gained in trying to understand cognitive processes independently of bio-
logical mechanisms ”

3 Difficulties about the status of the implementation of Al models
Pylyshyn correctly believes that the machine implementation of A | models,
or theories as they should be called, is important He aiso seems to believe,
in a quite straightforward way, that A | experiments have been done. though |
think this requires considerable documentation and demonstration. This
claim is important to Pylyshyn because he wishes to present At as a highly
empirical subject, although [ believe that all his major points still carry
without this claim that A { experiments have actually been done

There is already a clear sense in Computer Science in which a theory is
distinguished from a program embodying it, contrary to Pylyshyn's worry that
" a clear separation between fundamental laws and systems of caicula-
tion based on them is not easily available in computational theories ”
And in a clear philosophical sense it can be shown that programs can be
models of theories of a cognitive science type, as | have tried to set out (in
Wilks, 1974) So Pylyshyn, in my view, has no need to stretch the word "“ex-
periment” to include current A | work so as to argue the empirical status of
A |, for that can be independently established along other lines in his paper

A very complex issue relevant to this point, one that Pylyshyn touches on
but which | would very much like to see him develop further, is the
significance for his argument of proofs of program correctness: that is, strong
implementation independence for A | theories These do not exist for any
really interesting A | programs, but would it affect Pylyshyn's claims about
the empirical status of A | (and so confirm the psychologists’ fears about A |
that | quoted at the beginning of this commentary) if they did?

4 Al and discovery Pylyshyn refers to the work of Waltz as constituting
“empirical discovery” in Al | believe that it in no way belitties Waltz's
considerable achievement to deny that the discovery came, as Pylyshyn
claims, “from empirical exploration of the program,” at ieast in the sense of
running it in anything like an experiment Even if i am right, this does not tell
against the relevance of Al for cognitive psychology, nor does it deny that
Waltz's work is properly called A |

From the little | know of vision work, it seems to me that Waltz's observa-
tions, to which Pylyshyn refers, could have been made without writing a
program at all, and so the program functioned for him only in the older sense
(ie,NOTthe A | sense)of “heuristic™: as “an aid to discovery ”

It should be clear by now that | agree with Pylyshyn's claims, but believe

“that at several points he has misdescribed A! work, and in a way that he

need not have done; for his arguments would have stood, even with At in the
slightly less empirical and more confused state that | believe it to be in It
will, | hope, be clear that t found Pylyshyn's paper enormously stimulating,
and a very encouraging pointer to the future relations of A | and psychology
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Author’s Response

by Zenon Pylyshyn

The A.L debate: generality, goals,
and methodological parochialism

1. Prelude

It is gratifying to have my essay receive such wide interdisci-
plinary attention. Though the commentaries vary widely in their
emphasis and approach, collectively they raise most of the
contentious issues about the foundations of cognitive science
that have been debated inside and outside the discipline. In
responding, I have in most cases chosen to address a number of
recurring themes rather than to reply directly to specific authors,
thereby decreasing the temptation to indulge in nit-picking argu-
ments.

As a preface to my response I must point out that many of the
commentaries were directed at points that I had simply not un-
dertaken to defend in my brief essay. Thus I had not gone into
the question of what Ullman refers to as “constraints imposed by
the mechanism” or what I call elsewhere (1978) the “architec-
ture of the cognitive virtual machine.” Nor had I assumed the
task of defending the technical achievements of A.I. against the
field’s perennial detractors (e.g., Dreyfus, Haugeland, Cushing
and Hormstein). I shall nonetheless make some brief remarks on
both these issues later in this response.

As a final prefatory remark I should attempt to clear up one
general misunderstanding concerning the goal of my essay. It
was not intended to threaten anyone’s job security by suggesting
that A.I. and psychology were identical! The differences be-
ween the two disciplines are obvious enough not to require com-
ment. My remarks were addressed to that subset of the manifold
goals of the two enterprises that is specifically directed toward
the intellectual task of casting some light on the nature of in-
telligence or cognitive functions. Here I am making precisely the
distinction Ullman refers to as “explanatory” versus “‘pure
performance” mode. As the examples Ullman cites show, this
distinction cuts across the A.I.-psychology discipline boundary.

But clearly a large proportion of the efforts of both disciplines
is directed in various directions other than explanation and
understanding - such as developing tools, solving specific
technical puzzles, and applying the resulting insights and tech-
niques to various engineering enterprises (e.g., behavior
modification, automated postal sorting systems, etc.). Thus the
fact (on which McDermott focusses in his commentary) that
many A.L. workers “have no (higher) goal than to build a system
that can do a single class of tasks intelligently,” and indeed get
along very well with little interest in generality, is really beside
the point. I wish them every success, as I do the innumerable
psychologists who likewise have different goals from those with
which I was concerned in my essay. Nonetheless, there is a
deeply rooted and widely accepted goal in both camps directed
at understanding the underlying processes of intelligence, and
this goal does have to take generality seriously, if for no other
reason than that it may well be the defining characteristic of the
phenomenon of intelligence and may be the sole criterion able to
exclude “ad hocery” (see also section 4).1

As a further footnote to this distinction between the body of
work being pursued under the aegis of some particular disci-
plinary affiliation and the specific task of providing an under-
standing of intelligent action I should acknowledge a possibility
raised astutely by Domotor. He observes that while A.I. may
have started out with a rather deliberate interest in human in-
telligence, it could develop an autonomous independent view of

its subject matter which would take it in a quite different direc-
tion in the future. He cites as a parallel historical case the
development of logic as a subject independent of psychology.
This is an intriguing possibility, closely related to the com-
petence-performance distinction in linguistics. There is alsa
some evidence for such a possibility in A.L. from such work as
John McCarthy’sttempt to study the epistemological as distinct
from the heuristic problems of A.I. In general, however, I do not
believe that such a pursuit will form the basis of an autonomous
A.lL discipline. One reason is to be found in the very quotation
from Minsky and Papert that Domotor cites at the beginning of
his commentary: viz, A.L. is committed to the criterion of realiz-
ability. This in tum puts it firmly in contact with the heuristic
problems — with pragmatics, resource-limited computation, and
with behavior that relates to human performance. Unless the dis-
cipline changes radically it will be staunchly unwilling to rest on
the sorts of idealizations accepted in logic and linguistics. As a
consequence, its commitment to both explanation and the crea-
tion of working systems will locate it somewhere between a
design discipline and a pure science.

Nonetheless, Domotor’s point is well taken, it is clearly logi-
cally possible for some future A.I. program to pursue a less
anthropocentric notion of intelligence and hence to be of less
direct relevance to psychology than present projections suggest.
But then there would still remain the computational task
(perhaps no longer called A.I.) whose goal it would be to develop
natural intelligent (N.I.) systems and that, much to the dismay of
some members of the psychological community, might still place
little emphasis on the data of psychological laboratories as op-
posed to more general sufficiency constraints. This would pre-
sumably not prevent people like Ortony from protesting that N.I.
was unimportant to psychology on the parochial grounds that “it
is the psychologists, not the computer scientists who must make
such evaluations.”

2. Methodological parochialism and the
equivalence of processes

The last point, concerning the parochialism inherent in the
views expressed by many of the commentators, deserves some
special attention because it is both widespread and apparently
quite unconscious. The widespread belief that A.1. is concerned
merely with designing @ method of doing a task while
psychology is concerned with how people actually do it is rem-
iniscent of an old debate that some psychologists conducted
with generative linguists. In the latter case the cry was, “You lin-
guists are merely concerned to provide some method of
characterizing the structure of a language, whereas we
psychologists want to find out how people actually represent and
process language.” The grain of truth in these claims should not
obscure the fact that the main distinction among linguists,
psychologists, and A.L. researchers (at least as pertains to these
particular arguments) is the class of evidence to which they
assign a special or privileged status in their practice. However,
there is no a priori reason why reaction time, frequency of errors,
extendability of the theory to broader domains, intuitions of am-
biguity or well-formedness, or the ability actually to perform a
theoretically interesting class of tasks should be taken as exclu-
sive if one’s goal is to understand cognition. Clearly, all these cri-
teria can be relevant to understanding cognitive phenomena, and
none of them can claim to represent a more direct path to
psychological truth. Thus Arbib is quite correct in asserting that
“a good psychological model must confront data,” as is Johnson-
Laird in insisting that such systems must ‘“‘both cohere and cor-
respond to facts.” But to claim further that certain specific kinds
of data must be given priority is simply to reveal one’s affiliation,
or bias, or deliberate research strategy. It is not an argument that
Al systems are thereby less eligible candidates for psy-
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chological models than are psychologists’ systems: Both are
partial explanations, though they may be partial in different
ways.

As another example of how this parochialism manifests itself,
consider what seems to me to be a rather straightforward remark
I make in my essay to the effect that doing the same task versus
doing a task “in the same way” is not as obvious a distinction as
some people might assume. This remark was based on the
observation that to specify what constitutes “doing a task” is
really to specify certain constraints on a class of methods. Nearly
one-third of the commentators singled out this remark as “ob-
viously” false. Counterexamples cited ranged from different
ways of demolishing a house, playing chess, and doing multi-
plications to recognizing typewritten characters, translating lan-
guages, and looking up words in a dictionary.

A number of lessons can be learned from examining several of
these examples. First, some computer methods (e.g., language
translation by word-for-word transliteration) are simply bad
methods in that they do not work. They are bad as psychology
and bad as A.l. They are not responsive to the demands of the
task and nothing more can be said about them than that one has
no more guarantee of winning by playing on a computer than by
playing in a laboratory. Second, methods such as those for recog-
nizing characters may be useful for narrow practical applications,
but may be totally inadequate as general accounts of vision. This
conclusion, however, is one that would be just as obvious by A.L
criteria as by psychological ones, and would not provide any
basis for arguing divergent goals for A.I. and psychology. Finally,
the chess example provides an excellent illustration of the main
point I was driving at in my remarks regarding how specifying
what constitutes “doing a task” constrains the class of possible
methods.

Chess shares with many A.L tasks the property of not being a
very well-specified task. What a chess master knows, how this
knowledge is organized, and how it must be accessed and
operated on in order to meet the general criterion of “playing
well” or of “making the correct move” are open research ques-
tions. Any program that plays very good chess is a contribution to
specifying what the task of playing chess is. It constrains the set
of methods that correspond to “playing chess well.” Doing ex-
periments on good chess players (Chase & Simon, 1973) also
does this, but uses a quite different point of entry. Both are in-
complete specifications and both provide constraints. I see no
principled difference between these approaches, though clearly
they represent very different research strategies. The A.I. worker
may be satisfied in stopping at an incomplete understanding of
the chess-playing task, provided his program performs well. He
may stop short of inquiring what the general principles are in
virtue of which high performance was achievable and may still
be applauded by some of the A.I. community. On the other hand,
the psychologist may in turn be satisfied with an incomplete un-
derstanding of chess masters’ competence, provided his model
predicts latencies and error data. He may stop short of asking
how his various hypothetical mechanisms could function
together to to produce expert play and yet he may still publish
his results in a respected psychological journal. But one should
not conclude from these differences in tolerance for incomplete-
ness that the two enterprises are divergent. On the contrary, a
desire to understand how general principles, particular
knowledge, and task demands fit together in the context of chess
lies at the intersection of both approaches.

The basic point in this discussion can be put another way. The
reason that too much is made of the distinction between doing
the same task and doing it in the same way is that there is a
presumption that “‘the same way” is a clear and well understood
notion. It is not. What is at issue here is nothing less than the
very difficult notion of the semantic equivalence of processes.
Such an equivalence relation is highly abstract, as Scott and
Strachey (1971) have shown. To suppose that knowing that two
systems (or an organism and a computer) are doing the same task
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will further allow us to say whether they are doing it in the same
way is to suppose that we have general agreement on what
constitutes semantic equivalence (strong equivalence) for cogni-
tive processes. Though the goal of establishing strong equiva-
lence is undeniably important, to claim that one class of
constraining methods (e.g., reaction time, error rate) is superior
or more direct than another (e.g., generality of mechanisms, in-
tuitions, logical analyses of the task, extendability or learnability
of the method, and any of the class of “intrinsic constraints” dis-
cussed by Moore & Newell, 1974) is simply to reveal one’s
methodological allegiance.

3. Underlying architecture

In my essay I placed considerable emphasis on the notion of
level of description or level of aggregation, though the topic was
not described as fully as elsewhere (1978). Longuet-Higgins
focusses attention on this issue when he speaks of the need for
“an appropriate language in which to specify the detailed
processes.” For a language defines a virtual machine architec-
ture — a set of commands to be taken as primitive, and certain
specifications concerning the way in which these commands
interact, the resources available to the system, and various other
restrictions and facilities governing the processes that can be
expressed in the language and are hence executable on the vir-
tual machine. The architecture determines both what algorithms
can be carried out and their relative complexity functions over
different inputs. For example, a classical Turing machine cannot
carry out a tree sort algorithm, which requires a register architec-
ture, while a register machine in which arithmetic operations are
not primitive cannot execute the usual binary search algorithm,
and so on. A virtual machine of special interest to cognitive
psychology is one that contains exactly those operations that are
cognitively primitive and that conforms to appropriate resource
limitations characteristic of human processing. Elsewhere (1978,
in preparation) I have suggested a number of criteria for deter-
mining whether a proposed operation is a suitable candidate for
a cognitive primitive. Briefly, this relies on the notion that if an
operation is too macroscopic, it will fail to account for certain ob-
served differences among cognitive phenomena, while if it is too
microscopic, it will fail to capture significant cognitive general-
izations or rules.

Clearly, a great deal more needs to be said concerning this
idea of a cognitive virtual machine architecture. Recent work by
Allen Newell (1972, 1973a) is directed explicitly at its design.
An adequate architecture would not only address the issue raised
by Ullman of isolating and explicitly addressing the separate
sources of constraint on computational systems, but it would also
resolve the level of description problem, as Newell observed in
his commentary. Put in terms that linguists frequently prefer,
one might say that such a virtual machine would represent the
minimally powerful formalism for expressing humanly realizable
processes, and so it would, like universal grammar, capture
universal properties of mind. It would also address what Pascual-
Leone refers to as “metasubjective constraints.”

Now, although the design of such an architecture is clearly a
goal of special concern to psychologists, programming such a vir-
tual machine to carry out intelligent tasks is exactly the same
kind of problem as is faced in writing A.I. programs subject to the
constraints of any other virtual machine (e.g., LISP). Thus, the
enterprise does not resolve the debate raised in section 2 con-
cerning the question of which additional process constraints
should receive priority.

In addition to inferring the primitive operations that make up
the mental architecture, one may also be interested in abstract-
ing the more general properties of the class of processes ade-
quate for a particular task at hand. For example, one might wish
to specify some intrinsic constraints that such processes should
meet (along the lines of Moore and Newell, 1973) or to attempt to
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give an abstract characterization of the method that a particular
function demands (what Marr, 1977, calls a type I theory and
what I have referred to in another context as “requisite computa-
tions” — Pylyshyn, 1972). One might even go further and attempt
to develop an abstract mathematical theory of certain classes of
procedures or data structures (as some of the work in theoretical
computer science attempts to do). All of these enterprises are un-
dertaken in A.1L., although they may perhaps not attain the same
prominence outside the field as, say, specialized high-perfor-
mance systems.

In view of the diverse levels of abstraction at which computa-
tion is studied within A.1L, it is puzzling to find Cushing & Horn-
stein presenting what they seem to feel is an original proposal
that “any adequate computer model will have to be formulated
not in terms of programs, as in current A.IL. work, but in terms of
software systems.” This will no doubt come as a surprise to re-
searchers in A.l., who from the beginning of the discipline have
taken the notion of software systems and their attending prob-
lems of control structures, run-time structures, modularity, ex-
tensibility, interfacing, data structure design, and so on, as the
core technical problems of A.I. (see for example, the early paper
by Newell, 1962, or the review of the goals of A.I. language
design by Bobrow & Raphael, 1974). If Cushing & Hornstein
think that they have stumbled onto a new idea with their
observation that “the mind is a highly complex system of related
and interacting but essentially autonomous components,” then
they simply have not been reading the A.l. literature (a relevant
sample of which might include Hewett, 1977; Bobrow &
Winograd, 1977, all the work on extensible languages, on
production systems, on distributed computation, and in fact just
about anything on the problems of organizing computation
systems for modularity and extensibility). The same applies to
the authors’ claim that we require higher-level languages and
theories of software systems. Such pursuits are the bread and
butter of theoretical A.I. The sort of mathematical characteriza-
tion of software systems the authors cite is just one of a large
number of approaches to the theoretical understanding of large
interacting systems, and only time will tell whether it has any
special merits in contrast with, say, the work on distributed com-
putation implicit in the studies of speech recognition, or the
analyses of computation on the HYDRA system (both being car-
ried out at Carnegie-Mellon University). In any case, it is clear
that the sort of venture Cushing & Hornstein have in mind is not
being neglected within A 1., although it is not obvious (nor have
they proposed an argument to support the position) that progress
at such an abstract level will contribute much in the absence of
experience gained from attempts to develop specific systems
designed to perform specific tasks.

4. Generality and general principles

Arbib argues that my generality criterion leads to an infinite
regress since it is always possible, when confronted with a
system that seems unreasonable as a cognitive model, to say that
it was not sufficiently general. But this is only circular the way all
inductive hypotheses are. To provide evidence for the
hypothesis that generality leads to convergence, one does not
examine a single case but one attempts to show that more general
systems tend to be more plausible as cognitive models (e.g.,
contain more terms and processes that can be given psycho-
logical interpretations). This seems to be clearly the case at the
lower extreme of the generality dimension. However, Arbib is
correct in claiming that generality may not be in the program but
in the “... set of concepts to aid the sharing of methodology
between diverse projects.” But the concepts that aid in sharing
methodology must be ones that reveal the principles whereby
high performance can be achieved. Insofar as we design systems
with such principles in mind, attempt to isolate or make
transparent their sources of performance, and use subsystems

and methods also used by other processes, we obtain what I
would consider to be a more general system, for generality does
not refer only to the performance of one isolated program. To the
extent that a program is an instance in a more general framework,
it can be related to or interfaced with other programs and, more
importantly, it becomes, in principle, more extendible. That is
the crucial sense of generality. And incidentally, in this sense 1
consider it quite likely that the HEARSAY system (which Arbib
refers to as an example of a more cognitively oriented system)
will also prove to be a more general system than the Markov-
chain model HARPY (at least if closely parallel early develop-
ments in machine translation can be taken as a guide).

5. Serial versus parallel computation

Arbib, Harmon, Pribram, and Sloman raise the issue of serial
versus parallel computation. There is no question but that this
distinction is an important one. Whether or not a process in-
volves parallel computation is really a question about how
resource limits apply to it and is thus a material distinction. My
point was that this is only relevant insofar as it constitutes a func-
tional distinction. This is why I emphasized that structural evi-
dence (e.g., “in the brain various events are taking place in dif-
ferent places at the same time”) does not bear directly on this
distinction. I offered as a counterexample the observation that
we would find the same to be true in a serial digital computer if
we poked electrodes into it. The reason that structural evidence
cannot decide the issue is that below the level of computational
primitives (i.e., below the level of virtual machine architecture)
one is concerned with questions of implementation, admittedly
interesting in their own right, but not questions of algorithms or
methods, and hence not questions of whether the cognitive
process is serial or parallel.

As a footnote to this point I might remark that Harmon’s nu-
merical argument for parallel processing is not sound, for related
reasons. The only relevant events are computational event-types
and not physical event-tokens. This can be highlighted by noting
that the numbers game with respect to brains can also be played
to show that “the entire lifetime of the universe” would be
insufficient to simulate the activities of one computer by another.
One has but to enumerate all the physically discriminable states
of the target computer and all the physical connections through
which causal effects could propagate. But of course only a
minute fraction of the physical parameter fluctuations and causal
chains are relevant to the device functioning as a computer.
Since we have little idea of what the computationally (i.e., cogni-
tively) relevant physical events are in the brain, we cannot
simply count anatomical units indiscriminantly and hope to draw
meaningful conclusions about cognition’s being serial or
parallel.

6. What is “empirical”?

Sloman, Leibovic, and Otto* question whether A.I. can be
considered empirical, as opposed to merely formal. Sloman is
most specific in distinguishing formal from substantive explora-
tions and discoveries. I do not wish to make too much of the term
empirical, and perhaps Sloman’s distinction is a useful one. But I
think it is worth pointing out that the distinction between these
two types of discovery is precisely the difference between what
philosophers have called analytic and synthetic truth and is sub-
ject to the same arguments as those used against that distinction.
For instance, Quine (1951) pointed out that the fact that some
propositions seem to be analytically (or formally) true, and thus
independent of how the world actually is, may simply reflect our
lack of creativity in imagining how it might otherwise be. I think
Waltz’s discoveries are a good example of this. Sloman takes the
Waltz discovery to be “merely a formal empirical discovery” -

THE BEHAVIORAL AND BRAIN SCIENCES (1978), 1 123



Response/Pylyshyn: Computational models and empirical constraints

implying that it has nothing to do with how the world actually is
but merely reveals something about a formal system. But one
could (with difficulty perhaps) imagine a world in which objects,
reflectances, sensors, and so forth, were such that Waltz’s system
of labels did not converge on an interpretation of the scene. One
might then be inclined to say that Waltz had made a substantive
empirical discovery, just as it is an empirical discovery that the
identity of a phonetic stimulus cannot be established from
physical properties of a segment of the speech signal temporally
localized at the point where that phonetic stimulus is perceived
to occur. In fact, the types of knowledge (e.g., phonologic,
syntactic, semantic) that must be brought to bear in identifying a
phonetic stimulus were empirically discovered in the course of
designing speech recognition systems. (The word “must” here
has the force of a claim that the theoretical generalization is em-
pirically true - not that it has been formally demonstrated.
Indeed, further research could conceivably show it to be false.)

7. The goals of psychology and AL

Lenat’s rather whimsical parody suggesting a parallel relation
between A.l. and astrophysics on the one hand and A.L. and
psychology on the other misses two crucial points that render it
quite irrelevant. The first is that whatever might be their simi-
larities, A.I. and astrophysics investigate completely different
phenomena, while quite the opposite is true of A.I. and cognitive
psychology, as I have argued. The second is that although A.L
and astrophysics may employ the same tools (even computers) it
would be a mistake to consider the computer as a tool in the same
sense when used in A.I and cognitive psychology. But Lenat ap-
pears to assume exactly this in his claim that the psychologist
“builds his program solely to run it” in order “to validate a
theory.” But this is a gross oversimplification of the cognitive
science enterprise. It assumes, for instance, that a theory is first
constructed, making use of experimental data, and then a com-
putational model is built to instantiate it. Apart from some very
simple and uninteresting cases, this is not at all what happens.
The attempt to understand some phenomena in terms of methods
sufficient to exhibit them, to design such methods subject to
general constraints as well as some known facts (not necessarily
stemming from psychological experiments), to examine the
(partial) system for sources of inadequacy, and to redesign the
system in the light of discoveries made along the way all
contribute to the basic content of the model and typically
precede the development of a psychological theory. The situa-
tion is in fact exactly parallel to the story Lenat gives of what the
A.lL researcher does.

Lenat has a clear understanding of the A.I. enterprise, but his
commentary betrays a stereotyped and seriously flawed image of
what the cognitive psychology enterprise is about - an image
that, I should add, is also shared by a large number of
psychologists. These prejudices are sufficiently serious and
widespread to merit some extended response. First, Lenat
claims that cognitive simulation’s concern is “to match human
performance - including human error and imperfection.” The
status of evidence regarding human errors was raised by many of
the commentators. Some, like Sloman and Pascual-Leone, feel
that too much emphasis is being placed on error-infested perfor-
mance by “computer simulation” psychologists. Others, like
Sutherland and Treisman, appear to emphasize its importance.
Arbib seems to take the same position as Lenat does when he
speaks of the need to account for “human fallibility.” But the
view that a central task of cognitive psychology is to duplicate er-
rorful performance of humans is, to say the least, a very mislead-
ing way to look at the goals of that science.

Essentially, cognitive science seeks to understand, not to
match anything (not withstanding the ubiquity of the “variance
accounted for” criterion, a methodological throwback from the
positivist era). It does this by searching for general principles
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and showing how these, in combination with particular
knowledge, particular goals and tasks, and particular
mechanisms, are able to account separately for different aspects
of a phenomenon. Errors and imperfections are not the primary
phenomena to be accounted for; rather, it is the competence to
deal with the task. The importance of error data is that they
provide clues as to how this competence may be realized within
certain kinds of resource-limited mechanisms. In other words,
errors tell us something about the way the algorithms and the ar-
chitecture fit together - just as errors in real computers can do
the same (though in that case they are called “bugs” and we try
to eliminate them). The reason errors are helpful in this respect
is that the constraints of the underlying architecture are most
visible when the system is forced to operate at its limit, that is,
when errors are induced.

Second, Lenat claims that A.L is interested in superhuman
performance or performance that may rarely be exhibited and
then only by the very best experts; the performance of such tasks
“would not be fit for cognitive simulation.” This is the myth that
psychologists attempt to account for the typical or the modal
cases. But that is simply false in general. If one wants to under-
stand language phenomena, one studies competent speakers. If
one wants to understand chess skill, one studies chess masters
(when they are available). If one wants to study mathematical
skills, one studies expert mathematicians, as did Hadamard and
Wertheimer. Again, as in the case of the use of error data, evi-
dence gathered from beginners or ontogenetic evidence
gathered from children is useful either to infer subskills directly,
to conjecture as to the set of possible methods, or because it is of
intrinsic interest. But to understand cognitive processes is not to
account for the typical or most frequent or the bungling cases.

Another interesting observation that casts doubt on the view
that psychology needs to proceed by working up from data to
theory to implementation is provided by Cohen’s commentary.
He gives a nice example of the central role played by the logical
analysis of a task domain. It raises an issue I did not discuss in
my essay but that provides another argument in favor of the A.IL.
approach to cognitive modelling. The way in which experi-
mental data are interpreted is extremely sensitive to one’s im-
plicit normative system. Whether behavior is to be construed as
appropriate to a task or aberrant depends on one’s understanding
of the task and its goals as well as on the normative system one
adopts. Thus one might argue that both A.1.’s contribution to task
analysis and philosophy’s contribution to the analysis of norma-
tive systems (e.g., the Pascalian versus non-Pascalian probability
case cited by Cohen) ought to be pursued prior to the attempt to
devise a model from the experimental data.

8. The achievements of cognitive science

In spite of the fact that my essay was clearly not intended as a
defense of the accomplishments of either A.I. or cognitive
psychology, a number of commentators argued that my main
points were invalidated by what they considered to be the lack of
achievements of A.I. Although I tend to agree with Andreae that
a defense of the field is not necessary, a number of points raised
by several commentators in their attack on A.1’s achievements
bear some comment.

Dreyfus correctly takes generalizability, rather than the mere
generality of one particular program, as the appropriate criterion
for discussion. But then both he and Haugeland go on to argue
that the sorts of systems I alluded to are incurably nongeneraliz- -
able. I do not wish to enter into arguments concerning the merits
of particular systems. I suspect that many of those cited by
Dreyfus are, indeed, not generalizable without some major
redesign. The point I wish to make is that this is not an issue on
which one can pronounce without a deeper understanding of the
systems in question and the (often implicit) principles determin-
ing their performance — and possibly even calls for some effort at
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attempting to build the more general systems. What carries over
from one system to another as a technical “saving” will rarely be
obvious from a casual examination.

To take a specific example, consider the Waltz system, which
was cited by both Dreyfus and Haugeland as a paradigm case of
nonextensibility. Haugeland draws a parallel between a system
like Waltz’s, which succeeds only “by exploiting tricks that are
utterly idiosyncratic to polyhedra,” and a system that identifies
fruit by analyzing their absorption spectra (we shall put aside the
fact that it is almost certainly not possible to do this in general,
since being visually similar to an apple - as opposed to ap-
plesauce or apple pie - is not the sort of property to which
spectrograms respond). In neither case, Haugeland claims,
should this count as a discovery about identification by people.

Two issues are relevant to this example. First, to show that
fruit recognition by spectral analysis is not an adequate model of
visual recognition one need not, as Haugeland claims, rein-
troduce the question of “how people do it.” It is a straightfor-
ward question of the extendibility of the method at least to some
independently plausible cognitive subdomain or cognitive
faculty (e.g., recognition of outdoor scenes or recognition of faces
or English sentences.)

Second, it is not obvious from a superficial description of the
process how far a particular method will generalize. Part of the
problem relates to our earlier remarks concerning the difficulty
in specifying the equivalence of methods. Thus while it may be
that a system using the particular set of labels developed by
Waltz will only work for polyhedra, it is not obvious a priori that,
for example, a superset of very similar labels could not be an
essential component of a vision system, or, even more relevantly,
that the method of constraint analysis or label propagation
developed by Waltz might not be a very general method of wide
applicability, one embodying important cognitive principles
(Winston, 1977).

Note that even the crude but seminal system of Waltz gives an
interesting account of certain human visual phenomena, such as
the perception of certain ambiguous and anomalous figures. It
also shows how certain dispersed sources of local evidence can
be exploited to resolve potential global ambiguities, and sug-
gests ways in which locally parallel processing might operate in
the visual system; all in all, it is a nontrivial contribution to
understanding aspects of perception from a system built from
very limited considerations and using what appear, on the sur-
face, to be mere “gimmicks.” The obvious moral is that whatever
the ultimate verdict on the generality of the principles embodied
in a system such as Waltz’s, one is not entitled to dismiss the dis-
covery that a certain method works well in a restricted domain
merely on the basis of superficial observations as, for example,
that it seems to depend on “peculiar quirks.” The issue is a
scientific one not to be resolved by an a priori approach.

But there is an even more general theme that recurs in the
commentaries of Dreyfus, Cushing & Hornstein, Goodluck, and
Haugeland. It is that A.L is a poor approach to understanding
cognition because it has failed heretofore to discover any general
principles. For example, Goodluck claims that in A L. “little has
been discovered about natural language.” This is a frequently
made and much debated allegation. Its chief value lies in point-
ing out that the measure of a discovery depends a lot on what one
considers a “natural language phenomenon” and on what one is
willing to count as a discovery or a relevant principle.

For example, Goodluck cites the distinction between process-
ing syntactic ambiguity and processing semantic ambiguity, and
suggests that a system reflecting this difference by virtue of some
properties of the computation itself would be a useful model.
Unlike some other arguments directed against computer models,
this proposal at least has the virtue of being quite specific in
proposing a phenomenon of processing that would count as rele-
vant. The trouble is that properties such as the one suggested
abound in most computational models: In fact, exact analogues of
the phenomenon in question can be seen in many computational

systems. Without taking a stand on particular proposals I would
simply note that countless examples of just this sort have been
frequently cited in support of, say, the ATN parsers, without
arousing much enthusiasm among A.l’s detractors. These
people always have the option of considering the cited
properties to be adventitious to these systems, and hence not af-
fording a principled account of the phenomena. And they may be
right. But it does highlight the problem discussed earlier, of
separating principles from the details of particular implementa-
tions.

Haugeland and Dreyfus go even further in their indictment of
A.L. Haugeland claims that A.I. has not even “come up with any
interesting generalizations beyond its own premises.” It is not
clear what kind of response these authors would accept as
answering their challenge. They might find it instructive to try to
persuade a nonbeliever of the intellectual achievements (“be-
yond its own premises”) of, say, philosophy, linguistics, eco-
nomics, or any other controversial discipline. The outcome is in-
variably the same: What counts as an achievement in one field
can be dismissed with no difficulty by an unsympathetic outsider
as merely meeting incestuous internal criteria. Thus, the
philosophers’ distinctions are viewed as word games by many
scientists, who deny that any cumulative progress has been
made, say, by philosophy of mind; the discovery of syntactic
rules and even putative syntactic universals are very often
considered irrelevant by psychologists and some A.I researchers
on the grounds that in using language one does not appeal
directly to such principles but makes inferences based on seman-
tics and pragmatics, which readily override syntactic regu-
larities, and so on. Progress is usually judged by the degree to
which findings are relevant to the problems as formulated within
a particular approach.

Thus it is not surprising that many of the fundamental dis-
coveries of A.L, such as those roughly categorized under the
heading of principles of representation (e.g., data structures,
procedural representations) and principles of control (e.g., pat-
tern-evoked procedures, forward versus backward chaining,
context mechanisms) are dismissed by Haugeland and Dreyfus
as merely symptoms of A.L’s preoccupation with programs. And
of course this is true in the same sense that the discovery of
syntactic regularities follows from a preoccupation with formal-
ism and with conditions of well-formedness. What this way of
putting it misses is that the source of motivation for the dis-
coveries in no way invalidates the insights so gained. It is rem-
iniscent of the story of the sailor in the crow’s nest of a ship who
cried out that there were icebergs ahead. He was ignored by
those on deck on the grounds that he was moved to say that be-
cause he was up there rather than down on the deck with the
others. And the deckhands were of course quite right — had he
been on the deck he would have said something quite different!

The problem of justifying a pursuit is made easier if there are
dramatic practical achievements (such as airplanes and atomic
energy) to point to. That is in part why some A.l researchers
have focused their energies on “‘expert systems” (e.g., MYCIN,
DENDRAL) whose performance is indeed impressive. But just
as important is the discovery that search has certain fundamental
properties and tradeoffs, that associating specific information
with processes that transform representations rather than with
the representations themselves greatly influences access
efficiency (a fundamental point missing in neobehaviorist media-
tional theories), and that the systematic withholding and releas-
ing of processes (such as compilation, interpretation, drawing in-
ferences, initiating searches) is one of the cornerstones of in-
telligent problem solving as well as of language comprehension.
There are also a number of very general principles which are
only gradually being articulated within the A.I. community.
Many of these have been part of the implicit art of the AL field
but have not been distilled and articulated as general principles.
Newell & Simon (1976 op. cit.) mention some of these, which
they refer to as “laws of qualitative structure,” and argue that
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such general principles have historically had profound effects on
the development of science.

After observing at rather close range the squabble among
transformational linguists, psychologists, philosophers, and A.L.
researchers ~ all of whom share immeasureably more of a com-
mon world view than they care to admit - I can only conclude
that to ask a discipline to defend its existence by enumerating its
successes in a manner acceptable to people outside that dis-
cipline is supreme folly. No a priori argument for anything as
general as an entire discipline can have much validity. Even the
often cited case of alchemy does not seem relevant to me since
whether alchemy failed as a science (as opposed to one of its
rather specific subgoals having to be revised) is not clear, and
even less clear is whether the arguments advanced against it at
the time were sound (even assuming that the conclusions were

valid).

9. Transduction and nonhuman intelligence

(a) Transduction. The form in which one assumes that a
system makes contact with an environment is critical in deter-
mining the shape of any resulting theory of perception and
cognition. Thus, if one assumes that there are primitive
transducers for texture or for parallax motion or for objects
located “in the coordinates of the environment” (as some would
put it), one gets Gibsonian perception theory; if one assumes that
there are primitive transducers for operands and reinforcers, one
gets behaviorism; and if one assumes that there are primitive
transducers for lines and vertices, one can get successful block-
world perception theories. On the other hand, simply accepting
the point-intensity transduction of video cameras as primitive
may place the unnatural burden of perception on low-level prob-
lems and on the wrong starting elements. The problem is exactly
the same as that discussed earlier in connection with choosing
the right primitive cognitive operations. Thus Atherton is correct
in pointing out that constraints imposed by the environment are
relativized to the transduction primitives through which the en-
vironment’s effects are presumed to be felt. Artificial in-
telligence criteria will prevent the excesses of Gibsonianism and
behaviorism, but could lead to unreasonable processing if inap-
propriate transduction primitives are assumed (as in Hauge-
land’s example of absorption spectra). My contention is that in
order to carve up the perceptual world in the right way (i.e., ina
way that captures its cognitively relevant features such that
sensory patterns are partitioned into phonemes, objects, move-
ments, colors, and so on), we will be driven to design the correct
transducer functions (an example of which may be Marr's
“primal sketch”). Even though we may be forced to accept point-
intensity transducing hardware and Fourier analyzers as input
devices, we should still treat the low-level functions as the vir-
tual transducers. The actual front-end hardware should bear the
same relation to perception as machine instructions bear to
cognitive processes - that is, they should be thought of as simu-
lating the underlying cognitive architecture. Thus, in reply to
Schank’s point concerning the special status of A.I. systems that
use certain specialized front-end hardware, I must reiterate the
earlier point that the electronics are irrelevant to the modeling -
only the cognitive, virtual machine architecture and algorithms
written for it are significant.

(b) Primitive creatures, evolution, and learning. There was
much interest in the early days of A.1. in the prospect of design-
ing systems that in some sense were self-structuring (either
through explicit training, as in the Perceptron work, or indirectly
through some sort of simulated evolution). The basic
deficiencies of this approach were recognized rather early in the
game when it was realized that an environment cannot induce
the rich required structure unless at least two conditions could
be fulfilled. The first is that the environment must communicate
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back to the system more than merely its success or failure in
meeting overall criteria of performance. The second is that the
system has to possess an initial structure that gives it the capacity
to make use of that information appropriately (as McCarthy has
put it, in order for a system to learn it must be capable of being
told, i.e., it must already possess an epistemologically adequate
representation scheme). This in part answers Andreae’s com-
plaint that learning is being neglected (Newell & Simon, 1972
op. cit., discuss other strategic reasons for this neglect). Attrac-
tive as is the prospect of cracking the “‘complexity barrier” (as
Winograd has termed it) by letting the environment control the
growth of complexity, it seems that this will not happen until
much more is known about the representation of knowledge.

Another approach to dealing with complexity is suggested by
Dennett. He offers the proposal that instead of treating carefully
delimited microworlds (such as the blocks world), or treating
complex open-ended domains in a superficial manner, we might
set ourselves the task of modeling the entire cognitive system
and the entire environment of less sophisticated creatures - and
specifically artificially created ones. This is an extremely intruig-
ing possibility which, if carried out successfully, would be in
keeping with Domotor’s idea that it might be possible to inves-
tigate intelligence in a less anthropocentric manner. I am aware
of very few proposals along this line (apart perhaps from the class
of “self-adapting systems” alluded to above). One intruiging
early study was Toda’s (1962) proposal to “‘begin with an envi-
ronment, and attempt to design a subject with minimal qualities
to function effectively in this environment.” Although Toda’s
work was carried out in a game-theoretic framework, rather than
in A.IL, the basic idea may be well worth exploring again today.
The danger, as in any attempt to cut complexity down to
manageable proportions, is that one is constantly pursued by the
“qualitative discontinuity principle,” which I mentioned in my
essay, and one thus always runs the danger of simplifying away
the interesting problems, as has happened in empiricist
psychology. But it may well be worth a try - there is no sure and
easy way in this business.

10. Conclusion and neuroscientific coda

I am left with the strange feeling that only a few of the
disagreements expressed by the commentators are substantive.
In a number of commentaries (e.g., those of Ullman, Johnson-
Laird, Hayes, Longuet-Higgins, Treisman, Newell, and others)
the only debatable point is the impression some of these writers
have that what they say might be in conflict with my views. In a
number of other cases I do not see that much is left after the
misinterpretations are cleared up. In fact, some commentators
even discovered indirect ways of making my point. For example,
Ortony says that my claim that there might be no substantive dif-
ference among systems for some domain if they were equated for
power, generality, and level of analysis is equivalent to claiming
that if we equate two things on the only way they differ then they
will be indistinguishable. But of course that is simply to say that
he agrees with my proposal that those are indeed the main di-
mensions of difference!

A few commentators (Sutherland, Arbib, Harmon, Leibovic,
Pribram) were uneasy about the status I assigned to neurophysi-
ological evidence in the cognitive science enterprise. Although I
am skeptical as to whether such evidence can ever be relevant to
specifying the algorithms that humans use, I can see that it might
be useful in constraining the architecture of the virtual machine.?
But the history of the subject does not encourage one to expect
strong constraints from neuroscience, except perhaps at the level
of transducers, or perhaps in suggesting a useful taxonomy of
skills, methods, or even “mental faculties.” Even the work of
Marr, which pays close attention to neurophysiology, does not
seem to me constrained in any material way by that line of evi-
dence (and here my impressions are not in agreement with
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Sutherland’s). Of course I do not wish to prejudge the eventual
possibility of more powerful constraints — especially if
neurophysiological theory upgrades its theoretical approach to
include consideration of more computationally relevant mech-
anisms. Thus I would endorse Pribram’s advice that some cogni-
tive scientists should “court one of the neurosciences.”

NOTES
Asterisks indicate commentary is to appear in a forthcoming issue.

1. It might be noted that the charge of being ad hoc could be made
equally well against proposals in any of the cognitive disciplines. Thus an
ad hoc AL system is one that does not contain general mechanisms apply-
ing outside the arbitrary and narrow class of problems for which it was ex-
plicity designed. But this is also true of most micromodels that fill the
psychological literature. To the extent that such models are developed in
direct response to an empirical result arising from a very particular experi-
mental paradigm, they have no more claim to offer theoretical insight re-
garding a cognitive process than do narrow A.L systems such as, say, those
designed for recognizing printed characters — notwithstanding the fact
that the former derive from experiments. In both cases generality is cru-
cial.

2. This does not, by the way, apply to data from various pathologies
such as aphasias and agnosias. Such data represent rather direct evidence
for the functional (not structural or anatomical) taxonomy of certain cogni-
tive skills, and hence have implications at the level of algorithms. Further-

more, such evidence is quite independent of any neurophysiological in-
terpretations that might be placed on its etiology.
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