

Index

Chapter 1 Introduction

1. Purpose

2. About the Execution Environment for Source Code

Chapter 2 For beginners

1. Histogram Generation from Random Data

2. Height vs Weight Scatter Plot

3. Plotting a Sine Wave with Matplotlib

4. Creating Box Plots of Exam Scores

5. Heatmap of Correlation Matrix

6. Simple Time Series Data Plotting

7. Quarterly Sales Stacked Bar Chart

8. Visualizing Multiple Functions with Python

9. Bubble Chart of Population vs GDP

10. Create a Pair Plot of Iris Dataset

11. 3D Scatter Plot of Customer Data

12. Creating a Violin Plot for Age Distribution

13. Density Plot of Random Data

14. Creating a Donut Chart for Budget Allocation

15. Creating Polar Plots of Trigonometric Functions for

Weather Analysis

16. Creating a Sunburst Chart with Hierarchical Data

17. Waterfall Chart for Financial Data Analysis

18. Funnel Chart of Sales Conversion

19. Candlestick Chart of Stock Prices

20. Creating a Treemap of Product Categories

21. Streamgraph of Web Traffic Data

22. Visualizing Network Connections with Chord Diagrams

23. Create a Sankey Diagram of Energy Flow

Chapter 3 For advanced

1. Bubble Map of Sales Data

2. Hierarchical Clustering Dendrogram

3. Parallel Coordinates Plot for Customer Data Analysis

4. Word Cloud Generation from Text Data

5. Social Network Graph Visualization

6. Visualizing Spatial Data with Voronoi Diagrams

7. Creating a Lollipop Chart for Survey Results

8. Dot Plot of Categorical Data

9. Creating a Dumbbell Plot for Comparative Data

Analysis

10. Generate a Ridgeline Plot of Distribution Data

11. Matrix Plot of Confusion Matrix

12. Plotting a Wind Rose Diagram

13. Bullet Chart for Performance Targets

14. Creating a Horizon Chart with Time Series Data

15. Network Flow Diagram for Traffic Data Visualization

16. Heatmap of Missing Data Visualization

17. Connected Scatter Plot for Sales Trend Analysis

18. Nested Pie Chart of Demographic Data

19. Creating a Dumbbell Dot Plot for Sales Comparison

20. Creating a Circular Packing Plot of Hierarchical Data

21. Generating a Beeswarm Plot of Distribution Data

22. Joy Plot of Distribution Data

23. Heatmap of Correlation Matrix

24. Generating Pair Grid Plot for Customer Satisfaction

Analysis

25. Facet Grid Plot of Categorical Data

26. Plotting a Linear Regression

27. Creating a Residual Plot for Regression Analysis

28. Categorical Plot of Survey Data

29. Creating a Strip Plot of Categorical Data

30. Swarm Plot of Distribution Data

31. Factor Plot of Categorical Data

32. Comparative Point Plot Generation

33. Creating a Bar Plot with Categorical Data

34. Count Plot of Categorical Data

35. KDE Plot of Distribution Data

36. Violin Plot Creation with Seaborn

37. Boxen Plot Visualization of Distribution Data

38. Joint Plot of Bivariate Data

39. Lmplot Regression Analysis

40. Creating a Pair Plot for Customer Data Analysis

41. Heatmap of Correlation Matrix

42. Scatter Matrix Plot of Multivariate Data

43. Parallel Coordinates Plot Creation

44. Andrews Curves Plot for Multivariate Data Analysis

45. RadViz Plot for Multivariate Data Visualization

46. Creating a Lag Plot for Time Series Analysis

47. Autocorrelation Plot of Time Series Data

48. Bootstrap Plot of Statistical Data

49. Creating a Hexbin Plot with Pandas

50. Creating a Scatter Plot Matrix for Customer Data

Analysis

51. Generate a Box Plot Using Pandas

52. Violin Plot for Sales Data Analysis

53. Plotting a KDE Plot Using Pandas

54. Creating a Density Plot with Pandas

55. Bar Plot Visualization with Pandas

56. Creating an Area Plot Using Pandas

57. Scatter Plot Creation with Pandas

58. Box Plot Visualization Using Plotly

59. Creating a Violin Plot Using Plotly

60. Creating Interactive Line Plots with Plotly

61. Bar Plot Visualization with Plotly

62. Creating a Pie Chart with Plotly

63. Creating a Treemap with Plotly

64. Plotting a Funnel Chart Using Plotly

65. Creating a Waterfall Chart with Plotly for Financial

Analysis

66. Generate a Candlestick Chart Using Plotly

67. Creating a Heatmap with Plotly

68. Plotting a Contour Plot with Plotly

69. Creating 3D Scatter Plots with Plotly

70. 3D Surface Plot with Plotly for Customer Satisfaction

Analysis

71. Creating a 3D Line Plot with Plotly

72. 3D Mesh Plot Visualization

73. Creating 3D Volume Plots with Plotly for Data

Visualization

74. Creating a 3D Cone Plot with Plotly for Sales Data

Visualization

75. Creating a 3D Streamline Plot with Plotly

76. 3D Box Plot Creation Using Plotly

77. Creating a 3D Violin Plot with Plotly

78. 3D Parallel Coordinates Plot

79. 3D Andrews Curves Plot with Plotly

Chapter 4 Request for review evaluation

Appendix: Execution Environment

Chapter 1 Introduction

1. Purpose

This e-book is designed for readers who already possess a

foundational understanding of programming and wish to

delve deeper into data manipulation and visualization using

Python.

Through 100 meticulously crafted exercises, readers will

explore various techniques and tools essential for effective

data handling and visualization.

Each exercise is accompanied by source code and detailed

explanations of the output, making the learning process

straightforward and intuitive.

This book allows readers to expand their knowledge

effortlessly during commutes or in short breaks, and running

the provided code further deepens comprehension.

Whether you are looking to enhance your data analysis skills

or simply seek practical coding exercises, this book offers a

comprehensive guide to mastering Python for data

manipulation and visualization.

2. About the Execution Environment

for Source Code

For information on the execution environment used for the

source code in this book, please refer to the appendix at the

end of the book.

Chapter 2 For beginners

1. Histogram Generation from

Random Data

Importance★★★★☆

Difficulty★★☆☆☆

You are a data analyst working for a marketing company.

The company wants to understand the distribution of

customer ages in their database.

Your task is to create a histogram that visualizes this

distribution using randomly generated age data.

Generate a dataset of 1000 customer ages, assuming the

ages range from 18 to 80 years old.

Then, create a histogram to visualize the distribution of

these ages.

Make sure to include appropriate labels and a title for the

histogram.

The histogram should have 10 bins.

Use matplotlib for visualization.

Generate the sample data within your code.

【Data Generation Code Example】

import numpy as np

Generate random age data

ages = np.random.randint(18, 81, 1000)

【Diagram Answer】

【Code Answer】

import numpy as np

import matplotlib.pyplot as plt

Generate random age data

ages = np.random.randint(18, 81, 1000)

Create the histogram

plt.figure(figsize=(10, 6))

plt.hist(ages, bins=10, edgecolor='black')

Add labels and title

plt.xlabel('Age')

plt.ylabel('Frequency')

plt.title('Distribution of Customer Ages')

Display the plot

plt.show()

This code demonstrates how to create a histogram using

randomly generated data in Python.

Let's break down the process step by step:

Importing necessary libraries:

We import numpy (as np) for generating random data.

We import matplotlib.pyplot (as plt) for creating the

visualization.

Generating random data:

We use numpy's random.randint() function to generate

1000 random integers between 18 and 80 (inclusive).

This simulates a dataset of customer ages.

Creating the histogram:

We use plt.figure(figsize=(10, 6)) to set the size of the plot.

plt.hist() is the main function for creating the histogram:

The first argument is our data (ages).

bins=10 specifies that we want 10 bins in our histogram.

edgecolor='black' adds a black outline to each bar for better

visibility.

Adding labels and title:

plt.xlabel('Age') adds a label to the x-axis.

plt.ylabel('Frequency') adds a label to the y-axis.

plt.title('Distribution of Customer Ages') adds a title to the

plot.

Displaying the plot:

plt.show() is called to display the final histogram.

This code effectively visualizes the distribution of ages in

the randomly generated dataset.

The histogram allows us to quickly see which age ranges are

most common among the customers.

This type of visualization is crucial in data analysis as it

provides an immediate understanding of data distribution,

which can inform marketing strategies or other business

decisions.

【Trivia】
‣ Histograms are excellent tools for visualizing the

distribution of continuous data.

‣ The number of bins in a histogram can significantly affect

its interpretation. Too few bins might obscure important

details, while too many can make the overall pattern hard to

discern.

‣ Matplotlib is just one of many visualization libraries in

Python. Others include Seaborn, which is built on top of

Matplotlib and provides a higher-level interface, and Plotly,

which is great for interactive visualizations.

‣ When working with real-world data, it's often necessary to

clean and preprocess the data before visualization. This

might involve handling missing values, removing outliers, or

transforming the data.

‣ In addition to histograms, other types of plots like box

plots, violin plots, or kernel density estimation plots can also

be useful for understanding data distributions.

‣ The random seed in numpy can be set for reproducibility

of random number generation, which is crucial in scientific

computing and data analysis.

‣ When dealing with large datasets, consider using libraries

like pandas for data manipulation before visualization.

‣ In a professional setting, it's often good practice to save

your visualizations as image files (e.g., PNG or PDF) for

inclusion in reports or presentations.

2. Height vs Weight Scatter Plot

Importance★★★★☆

Difficulty★★☆☆☆

A fitness center wants to analyze the relationship between

the height and weight of their clients to provide better

personalized training programs.

You are tasked with creating a scatter plot to visualize this

relationship.

Generate a sample dataset of 100 clients, each with random

height (in cm) and weight (in kg).

Use Python to create this scatter plot.

【Data Generation Code Example】

import random

import pandas as pd

import numpy as np

np.random.seed(42)

height = [random.uniform(150, 200) for _ in range(100)]

weight = [random.uniform(50, 100) for _ in range(100)]

data = pd.DataFrame({'Height': height, 'Weight': weight})

【Diagram Answer】

【Code Answer】

import matplotlib.pyplot as plt

import pandas as pd

import random

import numpy as np

np.random.seed(42)

height = [random.uniform(150, 200) for _ in range(100)]

weight = [random.uniform(50, 100) for _ in range(100)]

data = pd.DataFrame({'Height': height, 'Weight': weight})

plt.scatter(data['Height'], data['Weight'], alpha=0.6)

plt.title('Scatter Plot of Height vs Weight')

plt.xlabel('Height (cm)')

plt.ylabel('Weight (kg)')

plt.grid(True)

plt.show()

The code first imports necessary libraries, including

matplotlib.pyplot for plotting, pandas for data manipulation,

and random and numpy for generating random data.

To ensure reproducibility, np.random.seed(42) is used.

The height and weight lists are generated using list

comprehensions, with random values between specified

ranges for each of the 100 clients.

A pandas DataFrame is then created with this data.

The scatter plot is created using plt.scatter(), which takes

the height and weight data as inputs.

The transparency of the points is set using the alpha

parameter.

The plot is then customized with a title, x-axis label, y-axis

label, and grid lines for better readability.

Finally, plt.show() displays the plot.

【Trivia】
Scatter plots are widely used to visualize relationships

between two quantitative variables.

They can help identify patterns, trends, and possible

correlations within the data.

In this case, examining the scatter plot can reveal if there's

any correlation between height and weight, which can

inform decisions in creating personalized fitness programs.

3. Plotting a Sine Wave with

Matplotlib

Importance★★★★☆

Difficulty★★☆☆☆

A local weather station wants to visualize temperature

fluctuations throughout the day.

They've asked you to create a sine wave plot that

represents the typical daily temperature pattern.

Your task is to generate a sine wave using numpy, and then

plot it using matplotlib.

The x-axis should represent 24 hours of the day, and the y-

axis should represent temperature in Celsius.

The sine wave should have an amplitude of 5°C and be

centered around 20°C.

Please create the input data within your code and produce a

clear, labeled plot.

Make sure to include appropriate titles and labels for the

axes.

【Data Generation Code Example】

import numpy as np

x = np.linspace(0, 24, 100)

y = 5 * np.sin(2 * np.pi * x / 24) + 20

【Diagram Answer】

【Code Answer】

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0, 24, 100)

y = 5 * np.sin(2 * np.pi * x / 24) + 20

plt.figure(figsize=(10, 6))

plt.plot(x, y)

plt.title('Daily Temperature Fluctuation')

plt.xlabel('Time (hours)')

plt.ylabel('Temperature (°C)')

plt.grid(True)

plt.xticks(np.arange(0, 25, 4))

plt.ylim(10, 30)

plt.show()

This code demonstrates how to create a sine wave plot

using numpy and matplotlib in Python.

Let's break down the code and explain each part in detail:

Importing necessary libraries:

numpy (as np): Used for numerical operations and creating

arrays.

matplotlib.pyplot (as plt): Used for creating plots and

visualizations.

Creating the input data:

np.linspace(0, 24, 100): This function generates 100 evenly

spaced points between 0 and 24, representing the hours in

a day.

The sine wave equation: 5 * np.sin(2 * np.pi * x / 24) + 20

5: Amplitude of the sine wave (temperature variation)

np.sin(): Sine function from numpy

2 * np.pi * x / 24: Adjusts the sine wave to complete one

cycle in 24 hours

20: Shifts the sine wave vertically to center it around 20°C

Creating the plot:

plt.figure(figsize=(10, 6)): Sets the size of the plot

plt.plot(x, y): Plots the data points

plt.title(): Adds a title to the plot

plt.xlabel() and plt.ylabel(): Label the x and y axes

plt.grid(True): Adds a grid to the plot for better readability

plt.xticks(np.arange(0, 25, 4)): Sets x-axis ticks at 4-hour

intervals

plt.ylim(10, 30): Sets the y-axis range from 10°C to 30°C

plt.show(): Displays the plot

This code effectively visualizes daily temperature

fluctuations using a sine wave.

The resulting plot shows how temperature varies over 24

hours, with the peak occurring at the midpoint (12 hours)

and the trough at the beginning/end of the day.

This representation is a simplified model of daily

temperature changes, which can be useful for

understanding general patterns in weather data.

【Trivia】
‣ Sine waves are fundamental in many natural phenomena,

including sound waves, light waves, and alternating

electrical currents.

‣ In meteorology, while daily temperature patterns are often

approximated by sine waves, real temperature fluctuations

are typically more complex due to factors like cloud cover,

precipitation, and wind.

‣ Matplotlib is one of the most popular plotting libraries in

Python, offering a MATLAB-like interface for creating a wide

variety of static, animated, and interactive visualizations.

‣ The use of numpy in this example demonstrates its power

in handling mathematical operations efficiently, especially

when working with large arrays of data.

‣ In more advanced weather modeling, Fourier analysis

(which involves decomposing signals into sine and cosine

components) is often used to analyze and predict

temperature patterns over longer periods.

4. Creating Box Plots of Exam Scores

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a school district.

The principal has asked you to analyze the exam scores of

students from different classes to compare their

performance.

Your task is to create a box plot that visualizes the

distribution of exam scores for each class.

The data consists of exam scores for three classes: Class A,

Class B, and Class C.

Each class has 30 students.

The scores are on a scale of 0 to 100.

Your objectives are:

Generate sample data for the three classes.

Create a box plot using matplotlib to compare the exam

scores across the three classes.

Properly label the x-axis with class names and the y-axis

with "Exam Scores".

Add a title to the plot: "Comparison of Exam Scores Across

Classes".

Display the plot.

Write a Python script that accomplishes these tasks.

Make sure to use appropriate data structures and matplotlib

functions to create an informative and visually appealing

box plot.

【Data Generation Code Example】

import numpy as np

np.random.seed(42)

class_a = np.random.normal(75, 10, 30).clip(0, 100)

class_b = np.random.normal(70, 15, 30).clip(0, 100)

class_c = np.random.normal(80, 8, 30).clip(0, 100)

data = [class_a, class_b, class_c]

【Diagram Answer】

【Code Answer】

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(42)

Generate sample data for three classes

class_a = np.random.normal(75, 10, 30).clip(0, 100)

class_b = np.random.normal(70, 15, 30).clip(0, 100)

class_c = np.random.normal(80, 8, 30).clip(0, 100)

Combine data into a list

data = [class_a, class_b, class_c]

Create the box plot

fig, ax = plt.subplots(figsize=(10, 6))

box_plot = ax.boxplot(data, labels=['Class A', 'Class B',

'Class C'], patch_artist=True)

Customize the box plot colors

colors = ['lightblue', 'lightgreen', 'lightpink']

[box_plot['boxes'][i].set_facecolor(colors[i]) for i in

range(len(colors))]

Set labels and title

ax.set_xlabel('Classes')

ax.set_ylabel('Exam Scores')

ax.set_title('Comparison of Exam Scores Across Classes')

Add grid lines for better readability

ax.yaxis.grid(True, linestyle='--', alpha=0.7)

Display the plot

plt.tight_layout()

plt.show()

This Python script creates a box plot to compare exam

scores across three different classes.

Let's break down the code and explain the data processing

and visualization steps:

Data Generation:

We use NumPy's random number generation to create

synthetic exam scores for three classes.

The np.random.normal() function generates normally

distributed random numbers.

For each class, we specify a mean score, standard deviation,

and number of students (30).

The .clip(0, 100) method ensures all scores are between 0

and 100.

Data Structure:

The exam scores for each class are stored in separate

NumPy arrays.

These arrays are then combined into a list called data for

easy plotting.

Creating the Plot:

We use matplotlib to create the box plot.

fig, ax = plt.subplots(figsize=(10, 6)) creates a new figure

and axes with a specified size.

ax.boxplot() is used to create the box plot, passing in our

data list.

Customizing the Plot:

We set labels for each box using the labels parameter in

boxplot().

The patch_artist=True argument allows us to color the

boxes.

We define a list of colors and use a list comprehension to set

the face color of each box.

Adding Labels and Title:

ax.set_xlabel() and ax.set_ylabel() are used to label the x

and y axes.

ax.set_title() adds a title to the plot.

Enhancing Readability:

We add horizontal grid lines using ax.yaxis.grid() to make it

easier to read the score values.

Displaying the Plot:

plt.tight_layout() adjusts the plot layout to prevent

overlapping.

plt.show() displays the final plot.

This box plot provides a visual comparison of exam score

distributions across the three classes.

Each box represents a class, showing the median, quartiles,

and potential outliers.

The different colors make it easy to distinguish between

classes at a glance.

【Trivia】
‣ Box plots, also known as box-and-whisker plots, were

introduced by John Tukey in 1970 as part of Exploratory

Data Analysis.

‣ In a box plot, the box represents the interquartile range

(IQR), which contains the middle 50% of the data.

‣ The line inside the box represents the median, while the

whiskers typically extend to 1.5 times the IQR.

‣ Points beyond the whiskers are often considered outliers

and are plotted individually.

‣ Box plots are particularly useful for comparing

distributions across groups and identifying skewness in data.

‣ While matplotlib is used here, other Python libraries like

Seaborn can create box plots with even less code.

‣ In educational data analysis, box plots are frequently used

to compare test scores across different groups, such as

classes, schools, or demographic categories.

‣ The np.random.seed() function is used to ensure

reproducibility of random number generation, which is

crucial for scientific and educational demonstrations.

5. Heatmap of Correlation Matrix

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst at a retail company, and you have

been given a dataset containing various sales metrics. Your

task is to create a heatmap of the correlation matrix to

identify the relationships between different metrics. This will

help the company understand which metrics are closely

related and can influence each other.

Generate a sample dataset with at least five different sales

metrics and create a heatmap of the correlation matrix

using Python. The heatmap should clearly show the

correlation values between the metrics.

Use the following code to generate the sample dataset:

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(0)

data = pd.DataFrame({

'Sales': np.random.rand(100) * 1000,

'Profit': np.random.rand(100) * 500,

'Discount': np.random.rand(100) * 50,

'Customer_Age': np.random.randint(18, 70, size=100),

'Customer_Satisfaction': np.random.randint(1, 10, size=100)

})

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

np.random.seed(0)

data = pd.DataFrame({

'Sales': np.random.rand(100) * 1000,

'Profit': np.random.rand(100) * 500,

'Discount': np.random.rand(100) * 50,

'Customer_Age': np.random.randint(18, 70, size=100),

'Customer_Satisfaction': np.random.randint(1, 10, size=100)

})

correlation_matrix = data.corr()

sns.heatmap(correlation_matrix, annot=True,

cmap='coolwarm')

plt.title('Heatmap of Correlation Matrix')

plt.show()

To create a heatmap of the correlation matrix, follow these

steps:

Import necessary libraries: You need pandas for data

manipulation, numpy for numerical operations, seaborn for

creating the heatmap, and matplotlib for displaying the plot.

Generate the sample dataset: The dataset includes five

metrics: 'Sales', 'Profit', 'Discount', 'Customer_Age', and

'Customer_Satisfaction'. Random values are generated for

each metric using numpy.

Calculate the correlation matrix: Use the corr() method from

pandas to compute the correlation matrix of the dataset.

This matrix shows the correlation coefficients between each

pair of metrics.

Create the heatmap: Use seaborn's heatmap() function to

create the heatmap. The annot=True parameter adds the

correlation values to the heatmap cells, and

cmap='coolwarm' sets the color scheme.

Display the heatmap: Use matplotlib's show() function to

display the heatmap. The title is set using plt.title().

This process helps visualize the relationships between

different metrics, making it easier to identify which metrics

are positively or negatively correlated.

【Trivia】
‣ Correlation Coefficient: The correlation coefficient ranges

from -1 to 1. A value close to 1 indicates a strong positive

correlation, while a value close to -1 indicates a strong

negative correlation. A value around 0 indicates no

correlation.

‣ Heatmap Color Schemes: The color scheme used in a

heatmap can significantly impact its readability. Common

schemes include 'coolwarm', 'viridis', and 'plasma'. Each

scheme has its advantages depending on the data

distribution and the audience's preference.

‣ Seaborn Library: Seaborn is built on top of Matplotlib and

provides a high-level interface for drawing attractive and

informative statistical graphics. It is particularly useful for

visualizing complex datasets.

6. Simple Time Series Data Plotting

Importance★★★★☆

Difficulty★★☆☆☆

You are a data analyst at a retail company. Your manager

has asked you to analyze the sales data for the past 12

months and visualize it to identify any trends or patterns.

Create a time series plot using Python to display the sales

data.

Generate the sales data within your code.

The x-axis should represent the months, and the y-axis

should represent the sales figures.

Ensure that the plot is clear and well-labeled.

【Data Generation Code Example】

import numpy as np

import pandas as pd

months = pd.date_range(start='2023-01-01', periods=12,

freq='M')

sales = np.random.randint(1000, 5000, size=12)

data = pd.DataFrame({'Month': months, 'Sales': sales})

【Diagram Answer】

【Code Answer】

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

months = pd.date_range(start='2023-01-01', periods=12,

freq='M')

sales = np.random.randint(1000, 5000, size=12)

data = pd.DataFrame({'Month': months, 'Sales': sales})

plt.figure(figsize=(10, 5))

plt.plot(data['Month'], data['Sales'], marker='o', linestyle='-

', color='b')

plt.title('Monthly Sales Data')

plt.xlabel('Month')

plt.ylabel('Sales')

plt.grid(True)

plt.xticks(rotation=45)

plt.tight_layout()

plt.show()

To create a time series plot in Python, we use the matplotlib

library, which is a powerful tool for data visualization.

First, we import the necessary libraries: matplotlib.pyplot for

plotting, pandas for handling data, and numpy for

generating random sales data.

We generate a range of dates representing the last 12

months using pd.date_range and create random sales

figures using np.random.randint.

These are combined into a DataFrame for easy

manipulation.

In the plotting section, we use plt.plot to create the line plot,

specifying the x and y data.

We add a title, labels for the axes, and grid lines for better

readability.

The plt.xticks(rotation=45) command rotates the x-axis

labels to prevent overlap.

Finally, plt.tight_layout() ensures that the plot elements fit

within the figure area, and plt.show() displays the plot.

【Trivia】
‣ Time series analysis is crucial in various fields such as

finance, economics, and retail to understand trends and

make forecasts.

‣ The matplotlib library is highly customizable, allowing for

detailed and complex visualizations.

‣ Pandas is often used in conjunction with matplotlib

because it simplifies data manipulation and preparation for

plotting.

‣ Random data generation using numpy is a common

practice for creating sample datasets for testing and

demonstration purposes.

7. Quarterly Sales Stacked Bar Chart

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst at a retail company. Your manager

has asked you to create a stacked bar chart to visualize the

quarterly sales of three different products (Product A,

Product B, and Product C) over the year 2023. The data

should be generated within the code. Your task is to write a

Python script that generates this data and then creates a

stacked bar chart to display it.

The chart should have:

‣ The x-axis representing the quarters (Q1, Q2, Q3, Q4).

‣ The y-axis representing the sales amount.

‣ Different colors for each product.

‣ A legend to distinguish between the products.

【Data Generation Code Example】

import pandas as pd

import numpy as np

quarters = ['Q1', 'Q2', 'Q3', 'Q4']

products = ['Product A', 'Product B', 'Product C']

data = {product: np.random.randint(1000, 5000, size=4) for

product in products}

data['Quarter'] = quarters

df = pd.DataFrame(data)

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

quarters = ['Q1', 'Q2', 'Q3', 'Q4']

products = ['Product A', 'Product B', 'Product C']

data = {product: np.random.randint(1000, 5000, size=4) for

product in products}

data['Quarter'] = quarters

df = pd.DataFrame(data)

fig, ax = plt.subplots()

ax.bar(df['Quarter'], df['Product A'], label='Product A')

ax.bar(df['Quarter'], df['Product B'], bottom=df['Product A'],

label='Product B')

ax.bar(df['Quarter'], df['Product C'], bottom=df['Product

A']+df['Product B'], label='Product C')

ax.set_xlabel('Quarters')

ax.set_ylabel('Sales Amount')

ax.set_title('Quarterly Sales of Products in 2023')

ax.legend()

plt.show()

To create a stacked bar chart of quarterly sales, we start by

generating the data.

We use the numpy library to create random sales data for

three products across four quarters.

The data is stored in a dictionary and then converted into a

pandas DataFrame for easy manipulation.

Next, we use the matplotlib library to create the stacked bar

chart.

We initialize a figure and axis using plt.subplots().

We then plot the sales data for each product using the

ax.bar() function.

The bottom parameter is used to stack the bars on top of

each other.

For example, the sales of Product B are stacked on top of

Product A, and Product C is stacked on top of both.

We set the labels for the x-axis and y-axis, and add a title to

the chart.

Finally, we add a legend to distinguish between the products

and display the chart using plt.show().

【Trivia】

‣ Stacked bar charts are useful for comparing the total

values across categories as well as the individual

contributions to the total.

‣ The pandas library is widely used for data manipulation

and analysis in Python, making it a powerful tool for

preparing data for visualization.

‣ matplotlib is one of the most popular plotting libraries in

Python, known for its flexibility and extensive customization

options.

8. Visualizing Multiple Functions with

Python

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a renewable energy

company.

The company wants to compare the power output of

different types of solar panels over a 24-hour period.

You have been given data for three types of solar panels:

monocrystalline, polycrystalline, and thin-film.

Your task is to create a multi-line graph that visualizes the

power output of these three types of solar panels from 0 to

24 hours.

The data should be generated within your code using the

following guidelines:

Time range: 0 to 24 hours (x-axis)

Power output range: 0 to 100 watts (y-axis)

Monocrystalline panels: Highest efficiency, peaking around

midday

Polycrystalline panels: Slightly lower efficiency than

monocrystalline

Thin-film panels: Lower efficiency but more consistent

throughout the day

Create a Python script that generates this data and plots a

multi-line graph with the following requirements:

Use appropriate libraries for data manipulation and

visualization.

Generate data points for each hour from 0 to 24.

Create three lines on the graph, one for each type of solar

panel.

Include a legend to identify each line.

Label the x-axis as "Time (hours)" and the y-axis as "Power

Output (watts)".

Give the graph an appropriate title.

Use different colors and/or line styles to distinguish between

the three types of panels.

Your code should be efficient, well-commented, and follow

Python best practices.

【Data Generation Code Example】

import numpy as np

hours = np.arange(25)

monocrystalline = 100 * np.sin(np.pi * hours / 24) ** 2

polycrystalline = 90 * np.sin(np.pi * hours / 24) ** 2

thin_film = 70 + 20 * np.sin(np.pi * hours / 24) ** 2

data = np.column_stack((hours, monocrystalline,

polycrystalline, thin_film))

【Diagram Answer】

【Code Answer】

import numpy as np

import matplotlib.pyplot as plt

Generate time data

hours = np.arange(25)

Generate power output data for each panel type

monocrystalline = 100 * np.sin(np.pi * hours / 24) ** 2

polycrystalline = 90 * np.sin(np.pi * hours / 24) ** 2

thin_film = 70 + 20 * np.sin(np.pi * hours / 24) ** 2

Create the plot

plt.figure(figsize=(12, 6))

plt.plot(hours, monocrystalline, 'r-', label='Monocrystalline')

plt.plot(hours, polycrystalline, 'b--', label='Polycrystalline')

plt.plot(hours, thin_film, 'g-.', label='Thin-film')

Customize the plot

plt.title('Solar Panel Power Output Over 24 Hours')

plt.xlabel('Time (hours)')

plt.ylabel('Power Output (watts)')

plt.legend()

plt.grid(True)

Display the plot

plt.show()

This Python script creates a multi-line graph to visualize the

power output of three different types of solar panels over a

24-hour period.

Let's break down the code and explain each part in detail:

Importing necessary libraries:

numpy (as np): Used for efficient numerical operations and

array manipulations.

matplotlib.pyplot (as plt): Used for creating the plot and

customizing its appearance.

Data Generation:

We use numpy's arange function to create an array of hours

from 0 to 24 (inclusive).

For each type of solar panel, we generate power output data

using numpy's sin function and element-wise operations:

Monocrystalline: Highest efficiency, modeled as a perfect

sine wave squared, reaching 100 watts at peak.

Polycrystalline: Slightly lower efficiency, modeled similarly

but with a peak of 90 watts.

Thin-film: More consistent output, modeled as a sine wave

squared with a base of 70 watts and a peak addition of 20

watts.

Creating the Plot:

plt.figure(figsize=(12, 6)): Creates a new figure with a width

of 12 inches and a height of 6 inches.

plt.plot(): This function is called three times, once for each

type of solar panel. It plots the hours on the x-axis and the

corresponding power output on the y-axis.

The first argument is the x-axis data (hours).

The second argument is the y-axis data (power output for

each panel type).

The third argument is a string that specifies the color and

line style:

'r-': Red solid line for monocrystalline

'b--': Blue dashed line for polycrystalline

'g-.': Green dash-dot line for thin-film

The label argument assigns a name to each line for the

legend.

Customizing the Plot:

plt.title(): Sets the title of the graph.

plt.xlabel() and plt.ylabel(): Label the x and y axes,

respectively.

plt.legend(): Adds a legend to the plot, using the labels

specified in the plt.plot() calls.

plt.grid(True): Adds a grid to the plot for easier reading of

values.

Displaying the Plot:

plt.show(): This function displays the plot.

This code demonstrates several key concepts in Python data

visualization:

Using numpy for efficient data generation and manipulation

Creating a multi-line plot with matplotlib

Customizing plot appearance (colors, line styles, labels, title,

legend, grid)

Modeling real-world phenomena (solar panel efficiency) with

mathematical functions

The resulting graph effectively compares the power output

of the three types of solar panels, allowing for easy visual

analysis of their performance throughout the day.

【Trivia】
‣ Solar panel efficiency is typically measured as a

percentage of the sun's energy that is converted into

electricity. Monocrystalline panels are generally the most

efficient, with some models reaching over 22% efficiency.

‣ The power output of solar panels is affected by various

factors including temperature, shading, and the angle of

sunlight. This is why the curves in our graph are not perfect

semicircles.

‣ Thin-film solar panels, while less efficient, can perform

better in low-light conditions and at high temperatures

compared to crystalline silicon panels.

‣ The time of peak solar energy production is typically

around solar noon, which is why our simulated data peaks at

the 12-hour mark.

‣ Python's matplotlib library, used in this example, is based

on MATLAB's plotting interface. It was originally developed

as a patch to make Python more MATLAB-like for a group of

neuroimaging researchers.

‣ The sine function used to generate our data is a

fundamental trigonometric function that repeats every 2π

radians. By manipulating this function (squaring it and

adjusting its amplitude and offset), we can model a wide

variety of natural phenomena, including the daily cycle of

solar energy production.

‣ In real-world applications, more complex models would be

used to predict solar panel output, taking into account

factors such as weather conditions, panel orientation, and

geographical location.

9. Bubble Chart of Population vs GDP

Importance★★★★☆

Difficulty★★★☆☆

A multinational corporation is evaluating potential markets

for expansion. They are considering countries based on their

population and GDP.

Your task is to generate a bubble chart that visualizes the

relationship between population and GDP for various

countries.

The size of the bubbles should represent the population

size.

Use the following dataset:

Country: ['Country A', 'Country B', 'Country C', 'Country D',

'Country E']

Population (in millions): [50, 80, 120, 60, 90]

GDP (in billion USD): [500, 700, 1500, 800, 1000]

【Data Generation Code Example】

Create data for the bubble chart

import pandas as pd

countries=['Country A', 'Country B', 'Country C', 'Country D',

'Country E']

population=[50, 80, 120, 60, 90]

gdp=[500, 700, 1500, 800, 1000]

data=pd.DataFrame({'Country','Population','GDP'})

【Diagram Answer】

【Code Answer】

Importing required libraries

import pandas as pd

import matplotlib.pyplot as plt

Create data for the bubble chart

countries=['Country A','Country B','Country C','Country

D','Country E']

population=[50,80,120,60,90]

gdp=[500,700,1500,800,1000]

data=pd.DataFrame({'Country','Population','GDP'})

Create bubble chart

plt.scatter(data['GDP'],data['Population'],s=[pop*10 for pop

in data['Population']],alpha=0.5)

for i in range(len(data)).text(data['GDP'][i],data['Population']

[i],data['Country'][i],fontsize=9)

plt.title('Population vs GDP Bubble Chart')

plt.xlabel('GDP (in billion USD)')

plt.ylabel('Population (in millions)')

plt.grid(True)

plt.show()

This exercise involves creating a bubble chart to visualize

the relationship between population and GDP for different

countries.

First, we import the necessary libraries: pandas for data

manipulation and matplotlib for plotting.

We create a DataFrame using pandas with the provided

data, listing countries, their populations, and GDPs. The

population data will be used to determine the size of the

bubbles.

The scatter function from matplotlib is used to create the

bubble chart. The x-axis represents GDP, and the y-axis

represents population. The size of the bubbles (s parameter)

is set proportional to the population, with an alpha value to

make the bubbles semi-transparent.

A loop adds text labels to each bubble, showing the country

name at the corresponding (GDP, population) coordinates.

Titles and labels are added to the chart for better

readability, and grid lines are enabled for easier

interpretation. Finally, plt.show() displays the chart.

This problem helps users practice data visualization,

specifically creating and customizing bubble charts, which is

useful for comparing multiple variables simultaneously.

【Trivia】
Bubble charts are a variation of scatter plots where a third

dimension of the data is shown through the size of markers.

They are especially useful in situations where you need to

show the relationship between three different measures. For

example, in business, they can be used to plot financial

data, such as revenue, profit, and market share, giving a

multi-dimensional view of performance. Additionally, bubble

charts can help in identifying patterns, trends, and outliers

in complex datasets, making them a valuable tool in data

analysis and presentation.

10. Create a Pair Plot of Iris Dataset

Importance★★★★☆

Difficulty★★★☆☆

You are working as a data analyst for a botanical research

organization.

Your task is to analyze the famous Iris dataset to understand

the relationships between different features.

Specifically, you need to create a pair plot to visualize these

relationships.

Using the Iris dataset, generate a pair plot to show the

relationships between sepal length, sepal width, petal

length, and petal width.

Make sure to color-code the different species in the dataset.

【Data Generation Code Example】

import pandas as pd

from seaborn import load_dataset

df = load_dataset('iris')

【Diagram Answer】

【Code Answer】

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

df = sns.load_dataset('iris')

sns.pairplot(df, hue='species')

plt.show()

First, the necessary libraries are imported: pandas for data

manipulation, seaborn for the pair plot, and matplotlib for

displaying the plot.

The Iris dataset is loaded directly using seaborn's

load_dataset function, which simplifies the process.

The pair plot is created using seaborn's pairplot function,

with the 'hue' parameter set to 'species' to color-code the

different species.

Finally, plt.show() is called to display the plot. This function

is necessary to render the plot in some environments.

The pair plot provides a matrix of scatter plots that display

relationships between each pair of features in the dataset.

The diagonal of the matrix shows the distribution of each

feature. Color-coding by species helps in identifying patterns

and differences between the species.

【Trivia】
The Iris dataset was introduced by the British biologist and

statistician Ronald Fisher in his 1936 paper, "The use of

multiple measurements in taxonomic problems." It includes

150 observations of iris flowers, with four features: sepal

length, sepal width, petal length, and petal width, across

three species: Iris setosa, Iris versicolor, and Iris virginica.

This dataset is widely used as a beginner's dataset for

machine learning and data visualization exercises due to its

simplicity and well-defined classes.

11. 3D Scatter Plot of Customer Data

Importance★★★★☆

Difficulty★★★☆☆

A retail company wants to visualize their customer data in a

3D space to better understand the relationship between

customer age, annual spending, and loyalty points.

Your task is to create a 3D scatter plot using Python that

represents this data.

The company has provided you with the following

requirements:

Generate random data for 100 customers with the following

attributes:

Age: between 18 and 80 years old

Annual Spending: between $100 and $10,000

Loyalty Points: between 0 and 1000 points

Create a 3D scatter plot where:

X-axis represents Age

Y-axis represents Annual Spending

Z-axis represents Loyalty Points

Each point should represent a customer.

Use different colors for points based on age groups:

18-30: Red

31-50: Green

51-80: Blue

Add appropriate labels, title, and a legend to the plot.

Ensure the plot is visually appealing and easy to interpret.

Your code should include data generation and visualization

in a single script.

Focus on efficient data manipulation and visualization

techniques in Python.

【Data Generation Code Example】

import numpy as np

np.random.seed(42)

age = np.random.randint(18, 81, 100)

spending = np.random.uniform(100, 10001, 100)

loyalty = np.random.randint(0, 1001, 100)

【Diagram Answer】

【Code Answer】

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

np.random.seed(42)

age = np.random.randint(18, 81, 100)

spending = np.random.uniform(100, 10001, 100)

loyalty = np.random.randint(0, 1001, 100)

fig = plt.figure(figsize=(10, 8))

ax = fig.add_subplot(111, projection='3d')

Define color based on age group

colors = ['red' if a <= 30 else 'green' if a <= 50 else 'blue'

for a in age]

scatter = ax.scatter(age, spending, loyalty, c=colors, s=50,

alpha=0.6)

ax.set_xlabel('Age')

ax.set_ylabel('Annual Spending ($)')

ax.set_zlabel('Loyalty Points')

ax.set_title('3D Scatter Plot of Customer Data')

Create legend

legend_elements = [plt.Line2D(, , marker='o', color='w',

label='18-30', markerfacecolor='r', markersize=10),

plt.Line2D(, , marker='o', color='w', label='31-50',

markerfacecolor='g', markersize=10),

plt.Line2D(, , marker='o', color='w', label='51-80',

markerfacecolor='b', markersize=10)]

ax.legend(handles=legend_elements, title='Age Groups')

plt.tight_layout()

plt.show()

This code creates a 3D scatter plot to visualize customer

data based on age, annual spending, and loyalty points.

Let's break down the code and explain the key concepts:

Data Generation:

We use NumPy's random functions to generate data for 100

customers.

np.random.randint() is used for age and loyalty points

(integer values).

np.random.uniform() is used for annual spending (float

values).

np.random.seed(42) ensures reproducibility of the random

data.

Importing Libraries:

NumPy (np) for numerical operations and data generation.

Matplotlib (plt) for creating the plot.

Axes3D from mpl_toolkits.mplot3d for 3D plotting

capabilities.

Creating the 3D Plot:

fig = plt.figure(figsize=(10, 8)) creates a new figure with

specified size.

ax = fig.add_subplot(111, projection='3d') adds a 3D

subplot to the figure.

Color Assignment:

We use a list comprehension to assign colors based on age

groups.

This creates a list of color strings ('red', 'green', or 'blue') for

each customer.

Plotting the Data:

ax.scatter() is used to create the 3D scatter plot.

It takes the x, y, and z coordinates (age, spending, loyalty)

and the color list.

s=50 sets the size of the markers, and alpha=0.6 makes

them slightly transparent.

Setting Labels and Title:

ax.set_xlabel(), ax.set_ylabel(), and ax.set_zlabel() set axis

labels.

ax.set_title() sets the plot title.

Creating a Legend:

We create custom legend elements using plt.Line2D().

Each element represents an age group with its

corresponding color.

ax.legend() adds the legend to the plot with a title.

Finalizing and Displaying the Plot:

plt.tight_layout() adjusts the plot layout to prevent

overlapping.

plt.show() displays the final plot.

This code demonstrates several important concepts in

Python data visualization:

3D plotting with Matplotlib

Random data generation with NumPy

Color-coding data points based on conditions

Creating custom legends

Properly labeling axes and titling plots

The resulting visualization allows for easy interpretation of

the relationships between customer age, spending, and

loyalty points, with color-coding providing an additional

dimension of information.

【Trivia】
‣ 3D scatter plots are useful for visualizing relationships

between three variables, but they can become cluttered

with large datasets.

‣ Matplotlib's 3D plotting capabilities were introduced in

version 1.0.0, released in 2010.

‣ The mpl_toolkits.mplot3d module provides 3D plotting

tools as an extension to Matplotlib's 2D plotting capabilities.

‣ When working with 3D plots, it's important to consider the

viewing angle, as some data points may be obscured

depending on the perspective.

‣ The alpha parameter in scatter plots controls the

transparency of points, which can help in visualizing

overlapping data points.

‣ List comprehensions, as used for color assignment in this

example, are a powerful and concise way to create lists in

Python, often more efficient than traditional for loops.

‣ The numpy.random.seed() function is crucial for

reproducibility in scientific computing and data science,

ensuring that random number generation can be replicated

across different runs or by different users.

‣ While 3D plots can be visually appealing, they are not

always the most effective way to convey information.

Sometimes, multiple 2D plots or other visualization

techniques might be more appropriate, depending on the

data and the message you want to convey.

12. Creating a Violin Plot for Age

Distribution

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a company that wants to

visualize the age distribution of its customers. The goal is to

create a violin plot to understand the distribution better.

Use the following steps to generate a synthetic dataset of

ages and then create a violin plot.

Ensure the ages range from 18 to 70, and there are 200

data points.

Write the necessary code to generate the data and create

the plot.

【Data Generation Code Example】

import numpy as np

import pandas as pd

Create a synthetic dataset of ages ranging from 18 to 70

with 200 data pointsages = np.random.randint(18, 71, 200)

Convert to DataFrame for easy manipulationdata =

pd.DataFrame({'Age': ages})

data.head()

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

Create a synthetic dataset of ages ranging from 18 to 70

with 200 data points

ages = np.random.randint(18, 71, 200)

Convert to DataFrame for easy manipulation

data = pd.DataFrame({'Age': ages})

Plotting the violin plot

plt.figure(figsize=(10, 6))

sns.violinplot(x=data['Age'])

plt.title('Age Distribution of Customers')

plt.xlabel('Age')

plt.show()

This exercise aims to teach the reader how to create a violin

plot using Python.

First, synthetic data is generated to represent customer

ages ranging from 18 to 70 using NumPy's randint function.

This data is then converted into a pandas DataFrame for

easier manipulation.

For visualization, the Seaborn library is used due to its

simplicity and powerful plotting capabilities.

A violin plot is a combination of a box plot and a kernel

density plot, showing the distribution shape of the data.

The plt.figure function is used to set the size of the plot.

The sns.violinplot function creates the violin plot, and

plt.title and plt.xlabel are used to set the plot title and x-axis

label, respectively.

Finally, plt.show displays the plot.

【Trivia】
‣ Violin plots are particularly useful for comparing multiple

categories or distributions.

‣ They not only show summary statistics like a box plot but

also the density of the data at different values.

‣ Seaborn's violinplot function automatically combines both

the box plot and kernel density estimate, providing a

comprehensive view of the data.

13. Density Plot of Random Data

Importance★★★★☆

Difficulty★★☆☆☆

You are working as a data analyst for a marketing firm.

Your manager wants to visualize the distribution of customer

ages in a recent survey to understand the age

demographics better.

To practice, generate a random dataset of customer ages

and create a density plot to visualize the distribution.

The ages should be normally distributed with a mean of 35

and a standard deviation of 10.

Provide the code to generate the random data and the

density plot.

【Data Generation Code Example】

import numpy as np

np.random.seed(0)

ages = np.random.normal(35, 10, 1000)

【Diagram Answer】

【Code Answer】

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

np.random.seed(0)

ages = np.random.normal(35, 10, 1000)

plt.figure(figsize=(10, 6))

sns.kdeplot(ages, shade=True)

plt.title('Density Plot of Customer Ages')

plt.xlabel('Age')

plt.ylabel('Density')

plt.grid(True)

plt.show()

First, we import the necessary libraries: numpy for data

generation, and matplotlib and seaborn for plotting.

We set the random seed using np.random.seed(0) to ensure

reproducibility of the random data.

Next, we generate 1000 random ages following a normal

distribution with a mean of 35 and a standard deviation of

10 using np.random.normal(35, 10, 1000).

We create a density plot using seaborn's kdeplot function

with the shade parameter set to True to fill the area under

the curve.

We then set the title, x-axis label, and y-axis label for the

plot using plt.title, plt.xlabel, and plt.ylabel respectively.

Finally, we enable the grid for better readability using

plt.grid(True) and display the plot with plt.show().

【Trivia】
Density plots are useful for visualizing the distribution of

data and identifying patterns or anomalies.

They provide a smoothed version of a histogram, which can

help in understanding the underlying distribution without

the binning effects of a histogram.

Seaborn is built on top of matplotlib and provides a high-

level interface for drawing attractive statistical graphics.

14. Creating a Donut Chart for Budget

Allocation

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a small startup company.

The CEO has asked you to create a visual representation of

the company's budget allocation for the upcoming fiscal

year.

The budget is divided into five main categories: Marketing,

Research & Development, Operations, Human Resources,

and IT Infrastructure.

Your task is to create a donut chart using Python that clearly

shows the percentage allocation for each category.

The CEO wants to be able to quickly understand how the

budget is distributed across these key areas.

Please write a Python script that:

Creates sample data for the budget allocation

Uses matplotlib to generate a donut chart

Displays the percentage for each category within the chart

Uses a color scheme that is easy to distinguish

Includes a legend for easy reference

Ensure that your code is efficient and well-commented.

The chart should be visually appealing and easy to interpret

at a glance.

【Data Generation Code Example】

import numpy as np

Generate sample data for budget allocation

categories = ['Marketing', 'R&D', 'Operations', 'HR', 'IT']

budget_allocation = np.random.randint(1000, 10000,

size=5)

【Diagram Answer】

【Code Answer】

import matplotlib.pyplot as plt

import numpy as np

Generate sample data for budget allocation

categories = ['Marketing', 'R&D', 'Operations', 'HR', 'IT']

budget_allocation = np.random.randint(1000, 10000,

size=5)

Calculate percentages

total_budget = np.sum(budget_allocation)

percentages = [round((x/total_budget)*100, 1) for x in

budget_allocation]

Set up the plot

plt.figure(figsize=(10, 8))

Create color palette

colors = plt.cm.Set3(np.linspace(0, 1, len(categories)))

Create donut chart

center_circle = plt.Circle((0,0), 0.70, fc='white')

plt.pie(budget_allocation, labels=categories, colors=colors,

autopct=lambda pct: f'{pct:.1f}%', startangle=90,

pctdistance=0.85)

plt.gca().add_artist(center_circle)

Add title and legend

plt.title('Budget Allocation', fontsize=16)

plt.legend(categories, title='Categories', loc='center left',

bbox_to_anchor=(1, 0, 0.5, 1))

Display the chart

plt.axis('equal')

plt.tight_layout()

plt.show()

This Python script creates a donut chart to visualize budget

allocation across different categories.

Let's break down the code and explain each part in detail:

Importing necessary libraries:

matplotlib.pyplot is imported as plt for creating the chart

numpy is imported as np for numerical operations

Data Generation:

We create a list of categories for the budget allocation

We use np.random.randint() to generate random integers

between 1000 and 10000 for each category, simulating

budget amounts

Data Processing:

We calculate the total budget by summing up all allocations

We then calculate the percentage for each category using a

list comprehension

The percentages are rounded to one decimal place for

clarity

Setting up the plot:

plt.figure(figsize=(10, 8)) creates a new figure with specified

dimensions

Color Palette:

We use plt.cm.Set3 colormap to generate a color palette

np.linspace(0, 1, len(categories)) creates evenly spaced

values between 0 and 1

Creating the Donut Chart:

plt.pie() function is used to create the basic pie chart

We pass in our budget_allocation data, labels (categories),

and colors

autopct parameter is set to a lambda function that formats

the percentage display

startangle=90 rotates the chart so the first slice starts at

the top

pctdistance=0.85 positions the percentage labels

Adding the center circle:

We create a white circle using plt.Circle() and add it to the

center of the pie chart

This transforms the pie chart into a donut chart

Adding title and legend:

plt.title() adds a title to the chart

plt.legend() creates a legend, which is positioned outside

the chart for clarity

Finalizing and displaying:

plt.axis('equal') ensures the chart is circular

plt.tight_layout() adjusts the layout to prevent overlapping

plt.show() displays the final chart

This script demonstrates several key aspects of data

visualization with Python:

Data generation and processing

Use of matplotlib for creating charts

Customization of chart elements (colors, labels, legend,

etc.)

Transformation of a pie chart into a donut chart

Proper formatting and layout of the visualization

【Trivia】
‣ Donut charts are often preferred over pie charts for their

ability to use the center space for additional information or

to simply reduce the chart's ink-to-data ratio.

‣ The use of np.random.randint() for data generation is a

common practice in data analysis for creating sample

datasets or for testing visualization techniques.

‣ The colormap used in this example (Set3) is part of

matplotlib's qualitative colormaps, which are designed to be

easily distinguishable and work well for categorical data.

‣ The lambda function used in the autopct parameter of

plt.pie() is a powerful way to customize the display of data

in charts. It allows for on-the-fly formatting of the displayed

values.

‣ The bbox_to_anchor parameter in plt.legend() is a

versatile tool for positioning the legend. It can be

particularly useful when dealing with charts that have

limited space within the plot area.

‣ While donut charts are visually appealing, they can be less

effective than bar charts for comparing values accurately.

They are best used when the goal is to show composition

and the number of categories is relatively small (usually 5-7

at most).

15. Creating Polar Plots of

Trigonometric Functions for Weather

Analysis

Importance★★★★☆

Difficulty★★★☆☆

A meteorological research company wants to analyze wind

patterns in a coastal area.

They have collected data on wind direction and speed over

a year.

Your task is to create a polar plot that visualizes this data

using trigonometric functions.

The company provides you with the following requirements:

Generate sample data for wind direction (in degrees) and

wind speed (in km/h) for 360 data points, representing a full

year of daily measurements.

Convert the wind direction from degrees to radians for

plotting.

Create a polar plot where:

The angle represents the wind direction

The radius represents the wind speed

Plot three different trigonometric functions to represent

different aspects of the wind data:

Use the sine function to create a pattern that emphasizes

east-west winds

Use the cosine function to create a pattern that emphasizes

north-south winds

Use the tangent function to create a pattern that

emphasizes diagonal winds

Add appropriate labels, a title, and a legend to the plot.

Ensure that the plot is visually appealing and easy to

interpret.

Your code should generate the sample data and create the

required polar plot.

The goal is to practice Python data manipulation and

visualization techniques,

focusing on working with trigonometric functions and

creating polar plots.

【Data Generation Code Example】

import numpy as np

np.random.seed(42)

wind_direction = np.random.uniform(0, 360, 360)

wind_speed = np.random.uniform(0, 50, 360)

Convert wind direction to radians

wind_direction_rad = np.radians(wind_direction)

【Diagram Answer】

【Code Answer】

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(42)

wind_direction = np.random.uniform(0, 360, 360)

wind_speed = np.random.uniform(0, 50, 360)

Convert wind direction to radians

wind_direction_rad = np.radians(wind_direction)

Create the polar plot

fig, ax = plt.subplots(subplot_kw={'projection': 'polar'})

Plot sine function (east-west emphasis)

ax.plot(wind_direction_rad, wind_speed *

np.abs(np.sin(wind_direction_rad)), label='East-West Winds')

Plot cosine function (north-south emphasis)

ax.plot(wind_direction_rad, wind_speed *

np.abs(np.cos(wind_direction_rad)), label='North-South

Winds')

Plot tangent function (diagonal emphasis)

ax.plot(wind_direction_rad, wind_speed *

np.abs(np.tan(wind_direction_rad)), label='Diagonal Winds')

Set plot properties

ax.set_theta_zero_location('N')

ax.set_theta_direction(-1)

ax.set_thetagrids(np.arange(0, 360, 45), ['N', 'NE', 'E', 'SE',

'S', 'SW', 'W', 'NW'])

ax.set_title('Wind Patterns Analysis')

ax.legend(loc='lower right', bbox_to_anchor=(1.2, 0.1))

plt.tight_layout()

plt.show()

This code creates a polar plot of trigonometric functions to

visualize wind patterns.

Here's a detailed explanation of the Python data

manipulation and visualization techniques used:

Data Generation:

We use NumPy's random module to generate sample data

for wind direction and speed.

np.random.uniform() is used to create 360 random values

between 0 and 360 for wind direction, and between 0 and

50 for wind speed.

The np.random.seed(42) ensures reproducibility of the

random data.

Data Conversion:

Wind direction is converted from degrees to radians using

np.radians().

This conversion is necessary because trigonometric

functions in NumPy work with radians.

Creating the Polar Plot:

We use Matplotlib to create the plot, specifically

plt.subplots() with the polar projection.

The subplot_kw={'projection': 'polar'} argument sets up the

axes for a polar plot.

Plotting Trigonometric Functions:

We plot three different functions using the plot() method of

the axes object:

a. Sine function: wind_speed *

np.abs(np.sin(wind_direction_rad))

b. Cosine function: wind_speed *

np.abs(np.cos(wind_direction_rad))

c. Tangent function: wind_speed *

np.abs(np.tan(wind_direction_rad))

The absolute value (np.abs()) is used to ensure all values

are positive for plotting.

Each function emphasizes different wind directions: sine for

east-west, cosine for north-south, and tangent for diagonal.

Customizing the Plot:

set_theta_zero_location('N') sets the 0-degree position to

North.

set_theta_direction(-1) makes the plot read clockwise.

set_thetagrids() sets custom labels for the angular grid.

set_title() adds a title to the plot.

legend() adds a legend to identify each line.

Displaying the Plot:

plt.tight_layout() adjusts the plot layout to prevent

overlapping.

plt.show() displays the final plot.

This code demonstrates key concepts in data visualization

with Python, including:

Working with NumPy for data manipulation and

mathematical operations

Using Matplotlib for creating complex, customized plots

Applying trigonometric functions to real-world data

Customizing plot aesthetics for better data interpretation

The resulting polar plot provides a visual representation of

wind patterns,

allowing for easy comparison of different wind directions

and speeds throughout the year.

【Trivia】
‣ Polar plots are particularly useful in meteorology for

visualizing wind data, as they naturally represent directional

information.

‣ The use of trigonometric functions in this context helps

emphasize different aspects of the wind data:

Sine emphasizes east-west winds because it peaks at 90°

and 270°.

Cosine emphasizes north-south winds because it peaks at 0°

and 180°.

Tangent emphasizes diagonal winds because it peaks at 45°,

135°, 225°, and 315°.

‣ In real-world applications, wind roses are a common type

of polar plot used in meteorology. They show the distribution

of wind speed and direction at a particular location.

‣ The choice of color in such plots can greatly affect

interpretation. Using a color scale that represents wind

speed can add another dimension to the visualization.

‣ When working with real wind data, it's common to bin the

data into discrete direction intervals (e.g., 16 or 32 compass

directions) to create a more summarized view.

‣ Polar plots can be used in many other fields beyond

meteorology, such as in physics to represent antenna

radiation patterns, in biology to show the distribution of

animal movements, or in statistics to visualize cyclical

patterns in data.

16. Creating a Sunburst Chart with

Hierarchical Data

Importance★★★☆☆

Difficulty★★★☆☆

A retail company wants to visualize their product sales

hierarchy in a clear and interactive way to understand their

product categories better.

They have three levels of hierarchy: Category, Subcategory,

and Product.

Your task is to create a sunburst chart that shows this

hierarchical data.

Create the sample data within the code and then generate a

sunburst chart from it.

The sample data should include the following structure:

Category: Electronics, Furniture

Subcategory under Electronics: Computers, Phones

Products under Computers: Laptop, Desktop

Products under Phones: Smartphone, Landline

Subcategory under Furniture: Chairs, Tables

Products under Chairs: Office Chair, Dining Chair

Products under Tables: Coffee Table, Dining Table

Each product should have a random sales value associated

with it.

Write the code to generate and visualize this data in a

sunburst chart.

【Data Generation Code Example】

import random

import pandas as pd

random.seed(0)

data = {

'Category': ['Electronics']*4 + ['Furniture']*4,

'Subcategory': ['Computers']*2 + ['Phones']*2 + ['Chairs']*2

+ ['Tables']*2,

'Product': ['Laptop', 'Desktop', 'Smartphone', 'Landline',

'Office Chair', 'Dining Chair', 'Coffee Table', 'Dining Table'],

'Sales': [random.randint(1000, 5000) for _ in range(8)]

}

df = pd.DataFrame(data)

print(df)

【Diagram Answer】

【Code Answer】

import pandas as pd

import plotly.express as px

df = pd.DataFrame({

'Category': ['Electronics']*4 + ['Furniture']*4,

'Subcategory': ['Computers']*2 + ['Phones']*2 + ['Chairs']*2

+ ['Tables']*2,

'Product': ['Laptop', 'Desktop', 'Smartphone', 'Landline',

'Office Chair', 'Dining Chair', 'Coffee Table', 'Dining Table'],

'Sales': [2740, 3985, 2167, 4954, 1164, 4890, 1230, 4742]

})

fig = px.sunburst(df, path=['Category', 'Subcategory',

'Product'], values='Sales', title='Product Sales Hierarchy')

fig.show()

First, import the necessary libraries.

We use pandas for data manipulation and plotly.express for

creating the sunburst chart.

The data is created within the code as specified, using a

hierarchical structure with categories, subcategories, and

products.

Each product has an associated sales value, which is

randomly generated in the sample data creation code.

In the visualization code, a DataFrame is created with the

specified structure.

The plotly.express.sunburst function is used to create the

sunburst chart.

The path parameter defines the hierarchy, and the values

parameter specifies the metric to be visualized, in this case,

sales.

The chart is displayed using fig.show().

【Trivia】
‣ The sunburst chart is a visualization that is useful for

displaying hierarchical data.

‣ It provides an intuitive way to explore data at different

levels of detail.

‣ Plotly is a popular library for interactive visualizations in

Python, offering various chart types and customization

options.

‣ Using a sunburst chart, one can easily identify which

categories or subcategories contribute the most to the total

sales or any other metric.

17. Waterfall Chart for Financial Data

Analysis

Importance★★★★☆

Difficulty★★★☆☆

Your client is a financial analyst who needs to visualize the

changes in their company's profit over a fiscal year.

They have provided you with the initial profit, a series of

gains and losses, and the final profit, and they want you to

plot a waterfall chart to illustrate this data.

Create a Python script that generates the necessary data,

processes it, and produces a waterfall chart to display the

financial data.

Write a Python script to achieve the following:

Generate the input data for the initial profit, monthly gains

and losses, and the final profit.

Process this data to calculate the cumulative profit after

each gain or loss.

Plot a waterfall chart using Matplotlib to show how each

gain or loss contributes to the overall profit.

You can assume the initial profit is $100,000 and the

monthly changes (gains and losses) are as follows (in

dollars): 10,000, -5,000, 15,000, -10,000, 5,000, -3,000,

20,000, -7,000, 8,000, -4,000, 12,000, -6,000.

The final profit should match the cumulative result of these

changes.

The x-axis should represent the months and the y-axis

should represent the profit in dollars.

【Data Generation Code Example】

import numpy as np

import pandas as pd

Initial data

initial_profit = 100000

monthly_changes = [10000, -5000, 15000, -10000, 5000,

-3000, 20000, -7000, 8000, -4000, 12000, -6000]

Create DataFrame

months = [f'Month {i+1}' for i in

range(len(monthly_changes))]

data = {'Month': months, 'Change': monthly_changes}

df = pd.DataFrame(data)

Calculate cumulative profit

df['Cumulative'] = df['Change'].cumsum() + initial_profit

df

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

Initial data

initial_profit = 100000

monthly_changes = [10000, -5000, 15000, -10000, 5000,

-3000, 20000, -7000, 8000, -4000, 12000, -6000]

Create DataFrame

months = [f'Month {i+1}' for i in

range(len(monthly_changes))]

data = {'Month': months, 'Change': monthly_changes}

df = pd.DataFrame(data)

Calculate cumulative profit

df['Cumulative'] = df['Change'].cumsum() + initial_profit

Plot waterfall chart

fig, ax = plt.subplots()

bar_colors = ['green' if x > 0 else 'red' for x in df['Change']]

ax.bar(df['Month'], df['Change'], color=bar_colors)

ax.plot(df['Month'], df['Cumulative'], marker='o',

color='blue')

ax.axhline(y=initial_profit, color='black', linestyle='--')

ax.set_ylabel('Profit in Dollars')

ax.set_title('Monthly Profit Changes - Waterfall Chart')

plt.xticks(rotation=45)

plt.tight_layout()

plt.show()

First, we import the necessary libraries: numpy, pandas, and

matplotlib.

Next, we define the initial profit as $100,000 and a list of

monthly changes (gains and losses).

We then create a DataFrame to hold the month names and

corresponding changes.

Using the cumsum method, we calculate the cumulative

profit after each monthly change and store it in a new

column called 'Cumulative'.

For plotting the waterfall chart, we create a figure and axis

using Matplotlib.

We set the bar colors based on whether the change is

positive (green) or negative (red).

We then plot the bars for each month's change and overlay

a line plot to show the cumulative profit trend.

A horizontal dashed line representing the initial profit is

added for reference.

Finally, we set the y-axis label, chart title, rotate the x-axis

labels for better readability, and use tight_layout to ensure

the plot elements fit well within the figure.

When the script is run, it will display a waterfall chart

illustrating the profit changes over the months.

【Trivia】
‣ The waterfall chart is also known as a cascade chart or

bridge chart.

‣ It is commonly used in financial analysis to visually break

down the cumulative effect of sequential positive and

negative values.

‣ Matplotlib does not have a built-in function for waterfall

charts, so they are often created using a combination of bar

and line plots.

‣ Waterfall charts are especially useful for identifying the

most significant positive and negative contributions to the

total change.

18. Funnel Chart of Sales Conversion

Importance★★★★☆

Difficulty★★★☆☆

You are tasked with visualizing the sales conversion process

for a company.

The sales funnel consists of five stages: Prospecting, Initial

Contact, Qualification, Proposal, and Closure.

Each stage has the following number of leads: 1000, 800,

600, 300, and 150, respectively.

Your goal is to create a funnel chart to illustrate this sales

conversion process.

Write a Python script that generates the funnel chart using

the given data.

【Data Generation Code Example】

import matplotlib.pyplot as plt

Data preparation for the sales funnel

data = {'Stage': ['Prospecting', 'Initial Contact',

'Qualification', 'Proposal', 'Closure'],

'Leads': [1000, 800, 600, 300, 150]}

Visualization of the funnel chart using Matplotlib

plt.figure(figsize=(10, 6))

plt.plot(data['Stage'], data['Leads'], marker='o', linestyle='-

', color='blue')

plt.title('Sales Conversion Funnel')

plt.xlabel('Stage')

plt.ylabel('Number of Leads')

plt.gca().invert_yaxis()

plt.fill_between(data['Stage'], data['Leads'], color='skyblue',

alpha=0.4)

plt.show()

【Diagram Answer】

【Code Answer】

import matplotlib.pyplot as plt

data = {'Stage': ['Prospecting', 'Initial Contact',

'Qualification', 'Proposal', 'Closure'],

'Leads': [1000, 800, 600, 300, 150]}

plt.figure(figsize=(10, 6))

plt.plot(data['Stage'], data['Leads'], marker='o', linestyle='-

', color='blue')

plt.title('Sales Conversion Funnel')

plt.xlabel('Stage')

plt.ylabel('Number of Leads')

plt.gca().invert_yaxis()

plt.fill_between(data['Stage'], data['Leads'], color='skyblue',

alpha=0.4)

plt.show()

To visualize the sales conversion process, you need to

create a funnel chart, which shows the progression of leads

through different sales stages.

First, prepare the data, listing the stages of the funnel and

the number of leads at each stage.

Use Matplotlib to generate the chart:

plt.figure(figsize=(10, 6)): Set the figure size for better

visibility.

plt.plot(data['Stage'], data['Leads'], marker='o', linestyle='-

', color='blue'): Plot the stages on the x-axis and the

number of leads on the y-axis, with markers and lines

connecting the points.

plt.title('Sales Conversion Funnel'): Add a title to the chart.

plt.xlabel('Stage') and plt.ylabel('Number of Leads'): Label

the x and y axes.

plt.gca().invert_yaxis(): Invert the y-axis to represent the

funnel shape correctly.

plt.fill_between(data['Stage'], data['Leads'], color='skyblue',

alpha=0.4): Fill the area under the curve to enhance the

visual representation of the funnel.

plt.show(): Display the chart.

The funnel chart clearly shows the reduction in the number

of leads as they progress through each stage of the sales

process. This visualization helps in understanding where

most leads drop off and where improvements might be

needed.

【Trivia】
The funnel chart is a popular tool in sales and marketing to

visualize the conversion rates between different stages of a

process.

It helps identify bottlenecks and areas that need

improvement to increase overall efficiency and

effectiveness.

The concept can also be applied to other fields, such as user

journey analysis, recruitment processes, and any multi-step

process where tracking conversion rates is beneficial.

19. Candlestick Chart of Stock Prices

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst at a financial firm. Your manager has

asked you to create a candlestick chart to visualize the

stock prices of a company over a period of time.

To do this, you need to generate a dataset of stock prices

including the date, open, high, low, and close prices.

Use Python to process this data and create a candlestick

chart.

Ensure that the chart is properly labeled and easy to

understand.

Use the following code to generate sample data for this

task.

【Data Generation Code Example】

import pandas as pd

import numpy as np

import datetime

Generate a date range

dates = pd.date_range(start='2023-01-01', end='2023-01-

10')

Generate random stock prices

np.random.seed(0)

data = {'Date': dates,

'Open': np.random.randint(100, 200, size=len(dates)),

'High': np.random.randint(200, 300, size=len(dates)),

'Low': np.random.randint(50, 100, size=len(dates)),

'Close': np.random.randint(100, 200, size=len(dates))}

Create a DataFrame

df = pd.DataFrame(data)

Ensure the 'Date' column is of datetime type

df['Date'] = pd.to_datetime(df['Date'])

Print the DataFrame

print(df)

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import datetime

import matplotlib.pyplot as plt

import matplotlib.dates as mdates

from mplfinance.original_flavor import candlestick_ohlc

Generate a date range

dates = pd.date_range(start='2023-01-01', end='2023-01-

10')

Generate random stock prices

np.random.seed(0)

data = {'Date': dates,

'Open': np.random.randint(100, 200, size=len(dates)),

'High': np.random.randint(200, 300, size=len(dates)),

'Low': np.random.randint(50, 100, size=len(dates)),

'Close': np.random.randint(100, 200, size=len(dates))}

Create a DataFrame

df = pd.DataFrame(data)

Ensure the 'Date' column is of datetime type

df['Date'] = pd.to_datetime(df['Date'])

Convert dates to matplotlib format

df['Date'] = [mdates.date2num(date) for date in df['Date']]

Prepare data for candlestick chart

ohlc = df[['Date', 'Open', 'High', 'Low', 'Close']].values

Create a figure and axis

fig, ax = plt.subplots()

Plot the candlestick chart

candlestick_ohlc(ax, ohlc, width=0.6, colorup='g',

colordown='r')

Set labels and title

ax.set_xlabel('Date')

ax.set_ylabel('Price')

ax.set_title('Candlestick Chart of Stock Prices')

Format the x-axis to show dates

ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-

%m-%d'))

plt.xticks(rotation=45)

Show the plot

plt.show()

To create a candlestick chart of stock prices, we first need to

generate a dataset that includes the date, open, high, low,

and close prices.

This is done using the pandas library to create a date range

and numpy to generate random stock prices.

We then create a DataFrame to hold this data and ensure

the 'Date' column is of datetime type.

After generating the data, we convert the dates to a format

suitable for plotting with matplotlib.

The candlestick_ohlc function from mplfinance is used to

plot the candlestick chart.

We set up the figure and axis for the plot, then use the

candlestick_ohlc function to plot the data.

Labels and titles are added for clarity, and the x-axis is

formatted to display dates properly.

Finally, the plot is displayed using plt.show().

【Trivia】
Candlestick charts were first used by Japanese rice traders

in the 18th century.

They provide a visual representation of price movements

within a specified time period and are widely used in

financial markets for technical analysis.

Each candlestick represents one time period (e.g., a day)

and shows the open, high, low, and close prices for that

period.

20. Creating a Treemap of Product

Categories

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst for an e-commerce company.

The marketing team wants to visualize the distribution of

product categories in their inventory to better understand

which areas might need more focus or promotion.

They've asked you to create a treemap that shows the

hierarchy and relative sizes of different product categories.

Your task is to:

Create a sample dataset of product categories and their

quantities.

Use Python to process this data and create a treemap

visualization.

Ensure the treemap clearly shows the hierarchy of main

categories and subcategories.

Use color coding to distinguish between different main

categories.

Include labels for each category and subcategory, along

with their respective quantities.

Please write a Python script that generates the required

dataset and creates the treemap visualization.

Make sure your code is efficient and well-commented for

future reference.

【Data Generation Code Example】

import pandas as pd

data = {

'Category': ['Electronics', 'Electronics', 'Electronics',

'Clothing', 'Clothing', 'Clothing', 'Home', 'Home', 'Home'],

'Subcategory': ['Smartphones', 'Laptops', 'Accessories',

'Men', 'Women', 'Kids', 'Furniture', 'Decor', 'Kitchenware'],

'Quantity': [500, 300, 1000, 800, 1200, 600, 400, 700, 500]

}

df = pd.DataFrame(data)

【Diagram Answer】

【Code Answer】

import pandas as pd

import plotly.express as px

Create sample dataset

data = {

'Category': ['Electronics', 'Electronics', 'Electronics',

'Clothing', 'Clothing', 'Clothing', 'Home', 'Home', 'Home'],

'Subcategory': ['Smartphones', 'Laptops', 'Accessories',

'Men', 'Women', 'Kids', 'Furniture', 'Decor', 'Kitchenware'],

'Quantity': [500, 300, 1000, 800, 1200, 600, 400, 700, 500]

}

df = pd.DataFrame(data)

Create treemap

fig = px.treemap(

df,

path=['Category', 'Subcategory'],

values='Quantity',

color='Category',

color_discrete_sequence=px.colors.qualitative.Set3,

title='Product Categories Treemap',

hover_data=['Quantity']

)

Update layout and show plot

fig.update_traces(textinfo='label+value')

fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))

fig.show()

This code creates a treemap visualization of product

categories using Python and the Plotly library.

Let's break down the process step by step:

Data Preparation:

We start by importing the necessary libraries: pandas for

data manipulation and plotly.express for creating the

visualization.

We create a sample dataset using a dictionary with three

columns: 'Category', 'Subcategory', and 'Quantity'.

This data is then converted into a pandas DataFrame for

easy manipulation.

Creating the Treemap:

We use the px.treemap() function from Plotly Express to

create the treemap visualization.

The 'path' parameter defines the hierarchy of our treemap.

In this case, we use ['Category', 'Subcategory'] to create two

levels.

'values' parameter is set to 'Quantity', which determines the

size of each box in the treemap.

'color' is set to 'Category', which means each main category

will have a distinct color.

We use a predefined color sequence (Set3) for a visually

appealing color scheme.

A title is added to the plot for clarity.

'hover_data' is set to display the quantity when hovering

over each box.

Customizing the Treemap:

We use update_traces() to customize the text information

displayed on each box. 'label+value' shows both the

category name and its quantity.

update_layout() is used to adjust the margins of the plot for

better presentation.

Displaying the Plot:

Finally, we call fig.show() to display the interactive treemap.

This visualization allows us to quickly grasp the distribution

of products across categories and subcategories.

The size of each box represents the quantity of products,

while the color distinguishes between main categories.

This makes it easy to identify which categories or

subcategories might need more attention or have the

largest inventory.

【Trivia】
‣ Treemaps were invented by Ben Shneiderman in the

1990s as a way to visualize hierarchical data structures.

‣ Treemaps are particularly useful for displaying large

hierarchical datasets in a limited space.

‣ The Plotly library used in this example is not just for

treemaps; it's a powerful tool for creating various interactive

visualizations in Python.

‣ Color choice in data visualization is crucial. The Set3 color

palette used here is designed to be colorblind-friendly.

‣ While treemaps are great for showing hierarchical data,

they can become difficult to read if there are too many

levels or items.

‣ In e-commerce, treemaps can be used not just for

inventory visualization, but also for analyzing sales data,

customer segmentation, and more.

‣ The pandas library used here is named after "panel data",

an econometrics term for multidimensional structured data

sets.

‣ Efficient data visualization can significantly speed up

decision-making processes in businesses by making

complex data easily understandable.

21. Streamgraph of Web Traffic Data

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst at a company that monitors web

traffic to various sections of its website. Your task is to

create a streamgraph that visualizes the web traffic data

over time for different sections of the website.

The data includes the number of visits to each section

(Home, About, Products, Contact) over a period of 12

months.

Generate the input data within the code and create a

streamgraph using Python.

Ensure the graph is clear and well-labeled.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(0)

months = pd.date_range(start='2023-01-01', periods=12,

freq='M')

sections = ['Home', 'About', 'Products', 'Contact']

data = {section: np.random.randint(1000, 5000, size=12)

for section in sections}

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.dates as mdates

from matplotlib.streamplot import streamplot

np.random.seed(0)

months = pd.date_range(start='2023-01-01', periods=12,

freq='M')

sections = ['Home', 'About', 'Products', 'Contact']

data = {section: np.random.randint(1000, 5000, size=12)

for section in sections}

df = pd.DataFrame(data, index=months)

fig, ax = plt.subplots(figsize=(10, 6))

ax.stackplot(df.index, df.T, labels=sections)

ax.set_title('Web Traffic Streamgraph')

ax.set_xlabel('Month')

ax.set_ylabel('Number of Visits')

ax.legend(loc='upper left')

ax.xaxis.set_major_locator(mdates.MonthLocator())

ax.xaxis.set_major_formatter(mdates.DateFormatter('%b

%Y'))

plt.xticks(rotation=45)

plt.tight_layout()

plt.show()

To create a streamgraph of web traffic data, we start by

importing the necessary libraries: pandas for data

manipulation, numpy for generating random data, and

matplotlib for plotting.

We set a random seed for reproducibility and generate a

date range representing 12 months. We define the sections

of the website and create a dictionary with random visit

numbers for each section over the 12 months.

We convert this dictionary into a pandas DataFrame, with

the months as the index. This DataFrame structure allows us

to easily manipulate and visualize the data.

Next, we set up a matplotlib figure and axis. We use the

stackplot function to create the streamgraph, passing the

index of the DataFrame (months) and the transposed

DataFrame values (visit numbers for each section). This

function stacks the data to show the cumulative visits over

time.

We add titles and labels to the graph for clarity. The x-axis is

formatted to show month names and years, and the labels

are rotated for better readability. Finally, we use

plt.tight_layout() to ensure the layout is adjusted properly

and plt.show() to display the graph.

【Trivia】
‣ Streamgraphs are a type of stacked area chart that is used

to display the changes in data over time. They are

particularly useful for showing the flow and distribution of

data across different categories.

‣ The stackplot function in matplotlib is a simple yet

powerful tool for creating streamgraphs. It automatically

handles the stacking of data and can be customized with

various parameters.

‣ Using random data generation with numpy is a common

practice in data visualization exercises to simulate real-

world scenarios without needing actual data.

22. Visualizing Network Connections

with Chord Diagrams

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a multinational

technology company.

The company wants to visualize the data transfer between

its various global data centers to optimize network traffic

and improve efficiency.

Your task is to create a chord diagram that represents the

data transfer volumes between different data centers.

The diagram should clearly show the relationships and

transfer volumes between each pair of data centers.

Use Python to generate sample data for 5 data centers and

create a chord diagram to visualize their interconnections.

Make sure to include labels for each data center and use

color coding to represent different transfer volumes.

The final visualization should be clear and informative,

allowing stakeholders to quickly understand the data

transfer patterns across the company's global network.

【Data Generation Code Example】

import numpy as np

Generate random data for 5 data centers

np.random.seed(42)

data_centers = ['DC_A', 'DC_B', 'DC_C', 'DC_D', 'DC_E']

matrix = np.random.randint(100, 1000, size=(5, 5))

np.fill_diagonal(matrix, 0) # Set diagonal to 0 as data

centers don't transfer to themselves

【Diagram Answer】

【Code Answer】

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.path import Path

import matplotlib.patches as patches

Generate random data for 5 data centers

np.random.seed(42)

data_centers = ['DC_A', 'DC_B', 'DC_C', 'DC_D', 'DC_E']

matrix = np.random.randint(100, 1000, size=(5, 5))

np.fill_diagonal(matrix, 0) # Set diagonal to 0 as data

centers don't transfer to themselves

Set up the plot

fig, ax = plt.subplots(figsize=(10, 10))

ax.set_xlim(-1.1, 1.1)

ax.set_ylim(-1.1, 1.1)

Calculate angles for each data center

angles = np.linspace(0, 2np.pi, len(data_centers),

endpoint=False)

Draw the outer circle

circle = plt.Circle((0, 0), 1, fill=False)

ax.add_artist(circle)

Add labels for data centers

for angle, label in zip(angles, data_centers)

x = np.cos(angle)

y = np.sin(angle)

ax.text(1.1x, 1.1*y, label, ha='center', va='center')

Create bezier curves for connections

for i in range(len(data_centers))

start_angle = angles[i]

for j in range(i+1, len(data_centers))

end_angle = angles[j]

Calculate control points

radius = 1

x1 = radius * np.cos(start_angle)

y1 = radius * np.sin(start_angle)

x = radius * np.cos(end_angle)

y = radius * np.sin(end_angle)

Calculate the midpoint

xm = (x1 + x) / 2

ym = (y1 + y) / 2

Calculate the distance of control point from midpoint

distance = np.sqrt((x-x1)**2 + (y-y1)**2) * 0.4

Calculate control point coordinates

x_ctrl = xm + distance * (y-y1) / np.sqrt((x-x1)**2 + (y-

y1)**2)

y_ctrl = ym - distance * (x-x1) / np.sqrt((x-x1)**2 + (y-

y1)**2)

Create the bezier curve

verts = [(x1, y1), (x_ctrl, y_ctrl), (x, y)]

codes = [Path.MOVETO, Path.CURVE3, Path.CURVE3]

path = Path(verts, codes)

Set color based on transfer volume

color = plt.cm.viridis(matrix[i, j] / matrix.max())

Add the path to the plot

patch = patches.PathPatch(path, facecolor='none',

edgecolor=color, lw=2, alpha=0.7)

ax.add_patch(patch)

plt.title("Data Transfer Between Global Data Centers")

plt.axis('off')

plt.tight_layout()

plt.show()

This code creates a chord diagram to visualize network

connections between data centers.

Here's a detailed explanation of the Python data processing

and visualization techniques used:

Data Generation:

We use NumPy to generate random data representing data

transfer volumes between 5 data centers.

The np.random.randint() function creates a 5x5 matrix with

random integers between 100 and 999.

We set the diagonal to 0 as data centers don't transfer data

to themselves.

Setting up the Plot:

We create a new figure and axis using plt.subplots().

The plot limits are set to [-1.1, 1.1] for both x and y axes to

accommodate the circular layout.

Calculating Angles:

We use np.linspace() to calculate evenly spaced angles for

each data center around the circle.

Drawing the Outer Circle:

A circle is drawn using plt.Circle() to represent the boundary

of the chord diagram.

Adding Labels:

We use a loop to add labels for each data center around the

circle.

The ax.text() function is used to place the labels slightly

outside the circle.

Creating Bezier Curves:

We use nested loops to create connections between each

pair of data centers.

Bezier curves are used to create smooth arcs between the

data centers.

The curves are created using matplotlib.path.Path and

matplotlib.patches.PathPatch.

Calculating Control Points:

We calculate control points for the Bezier curves to ensure

smooth arcs.

The control points are positioned perpendicular to the

midpoint between two data centers.

Color Coding:

We use a color map (plt.cm.viridis) to assign colors based on

the transfer volume.

The color intensity is normalized based on the maximum

transfer volume in the matrix.

Adding Curves to the Plot:

Each curve is added to the plot as a PathPatch with the

calculated color and some transparency.

Finalizing the Plot:

We add a title to the plot using plt.title().

The axis is turned off with plt.axis('off') for a cleaner look.

plt.tight_layout() is used to optimize the plot layout.

Finally, plt.show() displays the completed chord diagram.

This visualization technique effectively shows the

relationships and transfer volumes between data centers,

allowing for quick identification of high-volume connections

and potential network optimization opportunities.

【Trivia】
‣ Chord diagrams were first introduced by Martin Krzywinski

in 2009 for visualizing genomic data.

‣ These diagrams are particularly useful for showing

relationships between entities in a network or system.

‣ While often used in bioinformatics, chord diagrams have

found applications in various fields including social network

analysis, migration patterns, and trade relationships.

‣ The name "chord diagram" comes from the resemblance

of the connecting arcs to musical chords.

‣ In network analysis, the thickness of the chords often

represents the strength or volume of the connection.

‣ Interactive versions of chord diagrams can provide even

more detailed information on mouseover or click events.

‣ Chord diagrams can become difficult to read with too

many entities, typically becoming less effective with more

than 20-30 nodes.

‣ Color coding in chord diagrams can represent different

types of relationships or, as in this case, the intensity of the

connection.

‣ The circular layout of chord diagrams makes them space-

efficient for displaying complex relationship data.

‣ Advanced versions of chord diagrams can include

hierarchical grouping of nodes for more complex

relationship visualization.

23. Create a Sankey Diagram of

Energy Flow

Importance★★★★☆

Difficulty★★★☆☆

You are working for an energy company that wants to

visualize the energy flow from different sources to various

sectors.

Your task is to create a Sankey diagram that shows the

energy flow from sources like Coal, Natural Gas, and Solar to

sectors such as Residential, Commercial, and Industrial.

The data should be generated within the code.

The purpose of this exercise is to practice Python data

manipulation and visualization.

Please write the code to generate the Sankey diagram using

Python.

【Data Generation Code Example】

import pandas as pd

import plotly.graph_objects as go

data = {

'source': ['Coal', 'Coal', 'Natural Gas', 'Natural Gas', 'Solar'],

'target': ['Residential', 'Commercial', 'Residential',

'Industrial', 'Commercial'],

'value': [100, 200, 150, 250, 300]

}

df = pd.DataFrame(data)

【Diagram Answer】

【Code Answer】

import pandas as pd

import plotly.graph_objects as go

data = {

'source': ['Coal', 'Coal', 'Natural Gas', 'Natural Gas', 'Solar'],

'target': ['Residential', 'Commercial', 'Residential',

'Industrial', 'Commercial'],

'value': [100, 200, 150, 250, 300]

}

df = pd.DataFrame(data)

labels = list(set(df['source']).union(set(df['target'])))

label_to_index = lambda x: labels.index(x)

source_indices = [label_to_index(x) for x in df['source']]

target_indices = [label_to_index(x) for x in df['target']]

fig = go.Figure(data=[go.Sankey(

node=dict(

pad=15,

thickness=20,

line=dict(color="black", width=0.5),

label=labels

),

link=dict(

source=source_indices,

target=target_indices,

value=df['value']

)

)])

fig.update_layout(title_text="Energy Flow Sankey Diagram",

font_size=10)

fig.show()

In this exercise, you will learn how to create a Sankey

diagram using Python, which is a powerful tool for

visualizing the flow of energy from different sources to

various sectors.

First, we import the necessary libraries: pandas for data

manipulation and plotly.graph_objects for creating the

Sankey diagram.

We then create a dictionary containing the source, target,

and value data, which represents the energy flow.

This data is converted into a pandas DataFrame for easier

manipulation.

Next, we generate a list of unique labels from the source

and target columns and create a mapping function to

convert these labels into indices.

We then create lists of source and target indices using list

comprehensions.

Finally, we use the plotly.graph_objects library to create the

Sankey diagram.

We define the nodes and links, specifying their properties

such as padding, thickness, and labels.

The diagram is then displayed using the fig.show() method.

【Trivia】
‣ Sankey diagrams are named after Captain Matthew Henry

Phineas Riall Sankey, who used this type of diagram in 1898

to show the energy efficiency of a steam engine.

‣ Plotly is an interactive, open-source graphing library that

supports over 40 unique chart types, including Sankey

diagrams.

‣ Sankey diagrams are particularly useful for visualizing

energy, material, and cost flows, making them valuable

tools in various industries such as energy, manufacturing,

and finance.

Chapter 3 For advanced

1. Bubble Map of Sales Data

Importance★★★★☆

Difficulty★★★☆☆

You are tasked with visualizing the sales data of a retail

company across different cities in the USA. The company

wants to see a bubble map where each bubble represents

the total sales in a city, with the size of the bubble

corresponding to the sales amount.Generate a bubble map

using the given sales data to help the company understand

their sales distribution geographically. The data includes city

names, their corresponding latitude and longitude, and the

total sales amount.Create the necessary data within your

code and then plot the bubble map.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(0)

cities = ['New York', 'Los Angeles', 'Chicago', 'Houston',

'Phoenix']

latitudes = [40.7128, 34.0522, 41.8781, 29.7604, 33.4484]

longitudes = [-74.0060, -118.2437, -87.6298, -95.3698,

-112.0740]

sales = np.random.randint(100, 1000, size=len(cities))

data = pd.DataFrame({'City': cities, 'Latitude': latitudes,

'Longitude': longitudes, 'Sales': sales})

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

cities = ['New York', 'Los Angeles', 'Chicago', 'Houston',

'Phoenix']

latitudes = [40.7128, 34.0522, 41.8781, 29.7604, 33.4484]

longitudes = [-74.0060, -118.2437, -87.6298, -95.3698,

-112.0740]

sales = np.random.randint(100, 1000, size=len(cities))

data = pd.DataFrame({'City': cities, 'Latitude': latitudes,

'Longitude': longitudes, 'Sales': sales})

plt.figure(figsize=(10, 6))

plt.scatter(data['Longitude'], data['Latitude'],

s=data['Sales'], alpha=0.5)

for i in range(len(data)):

plt.text(data['Longitude'][i], data['Latitude'][i], data['City']

[i], fontsize=12)

plt.xlabel('Longitude')

plt.ylabel('Latitude')

plt.title('Sales Distribution Across Cities')

plt.show()

The provided code generates a bubble map to visualize

sales data across various cities in the USA.

First, it imports the necessary libraries: pandas for data

manipulation, numpy for random number generation, and

matplotlib for plotting.

It then creates sample data for five cities, including their

names, latitudes, longitudes, and sales amounts, and stores

this data in a pandas DataFrame.

The bubble map is created using the scatter function from

matplotlib, where the s parameter determines the size of

the bubbles based on the sales amount.

Each city name is added next to its corresponding bubble

using a loop and the text function.

Finally, the map is displayed with labeled axes and a title.

This exercise demonstrates key concepts in data

visualization, such as creating scatter plots, adjusting

bubble sizes based on data values, and annotating points on

a plot.

【Trivia】
‣ Bubble maps are a type of visualization that combines a

geographic map with a bubble chart, providing insights into

data distribution across different locations.

‣ When creating visualizations, it is important to ensure that

the size of the bubbles accurately reflects the data to avoid

misleading interpretations.

‣ The alpha parameter in the scatter function adjusts the

transparency of the bubbles, which can be useful for

visualizing overlapping data points.

2. Hierarchical Clustering

Dendrogram

Importance★★★★☆

Difficulty★★★☆☆

A marketing company wants to understand the similarities

between different product categories based on various

features.

They have a dataset containing features of 10 different

products.

Your task is to perform hierarchical clustering on this

dataset and plot a dendrogram to visualize the clustering.

Generate a random dataset of 10 products with 4 features

each and create a dendrogram using hierarchical clustering.

【Data Generation Code Example】

import numpy as np

np.random.seed(42)

data = np.random.rand(10, 4)

labels = [f'Product {i}' for i in range(1, 11)]

【Diagram Answer】

【Code Answer】

import numpy as np

import matplotlib.pyplot as plt

import scipy.cluster.hierarchy as sch

np.random.seed(42)

data = np.random.rand(10, 4)

labels = [f'Product {i}' for i in range(1, 11)]

plt.figure(figsize=(10, 7))

dendrogram = sch.dendrogram(sch.linkage(data,

method='ward'), labels=labels)

plt.title('Hierarchical Clustering Dendrogram')

plt.xlabel('Products')

plt.ylabel('Euclidean distances')

plt.show()

Hierarchical clustering is a method of cluster analysis that

seeks to build a hierarchy of clusters.

It is particularly useful for understanding the structure of a

dataset and visualizing the relationships between different

data points.

In this exercise, we start by generating a random dataset of

10 products with 4 features each using NumPy.

We then perform hierarchical clustering using the linkage

function from the SciPy library.

The linkage function creates a hierarchical clustering

encoded as a linkage matrix.

We use the 'ward' method, which minimizes the variance of

the clusters being merged.

Finally, we plot the dendrogram using the dendrogram

function from SciPy, which visualizes the hierarchical

clustering as a tree.

The x-axis of the dendrogram represents the products, and

the y-axis represents the Euclidean distances between

clusters.

This visualization helps in understanding which products are

more similar to each other.

【Trivia】
‣ Hierarchical clustering can be divided into two main types:

agglomerative and divisive.

‣ Agglomerative clustering, which is used in this exercise,

starts with each data point as a single cluster and merges

the closest pairs of clusters step by step.

‣ Divisive clustering, on the other hand, starts with the

entire dataset as a single cluster and splits it into smaller

clusters.

‣ The choice of distance metric and linkage method (e.g.,

single, complete, average, ward) can significantly affect the

resulting dendrogram and clustering outcome.

3. Parallel Coordinates Plot for

Customer Data Analysis

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst at a retail company. Your manager

has asked you to analyze customer data to identify patterns

and trends. You need to create a Parallel Coordinates Plot to

visualize the relationships between different customer

attributes such as age, annual income, and spending score.

Generate a sample dataset with the following columns:

'Age', 'Annual Income (k$)', and 'Spending Score (1-100)'.

Each column should have 100 rows of randomly generated

data.

Use Python to create a Parallel Coordinates Plot of this data.

Ensure that the plot is clear and well-labeled.

Write the code to generate the sample data and the code to

create the plot.

【Data Generation Code Example】

import pandas as pd

import numpy as np

data = pd.DataFrame({

'Age': np.random.randint(18, 70, 100),

'Annual Income (k$)': np.random.randint(15, 137, 100),

'Spending Score (1-100)': np.random.randint(1, 101, 100)

})

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from pandas.plotting import parallel_coordinates

data = pd.DataFrame({

'Age': np.random.randint(18, 70, 100),

'Annual Income (k$)': np.random.randint(15, 137, 100),

'Spending Score (1-100)': np.random.randint(1, 101, 100)

})

plt.figure(figsize=(10, 6))

parallel_coordinates(data.assign(Group=data.index % 5),

'Group', color=plt.cm.tab10.colors)

plt.title('Parallel Coordinates Plot of Customer Data')

plt.xlabel('Attributes')

plt.ylabel('Values')

plt.legend([])

plt.show()

Parallel Coordinates Plot is a common way of visualizing

high-dimensional data.

In this exercise, we first generate a sample dataset with

three columns: 'Age', 'Annual Income (k$)', and 'Spending

Score (1-100)'. Each column contains 100 rows of randomly

generated data.

The pandas library is used to create the DataFrame, and

numpy is used to generate random integers.

To create the Parallel Coordinates Plot, we use the

parallel_coordinates function from pandas.plotting.

We assign a 'Group' column to color the lines differently,

which is derived from the index of the DataFrame.

The plt.figure function sets the size of the plot, and plt.title,

plt.xlabel, and plt.ylabel functions are used to label the plot.

Finally, plt.legend([]) is used to hide the legend, and

plt.show() displays the plot.

This plot helps in visualizing the relationships between

different attributes of the customers, making it easier to

identify patterns and trends.

【Trivia】
‣ Parallel Coordinates Plot was first introduced by Alfred

Inselberg in the 1950s.

‣ This type of plot is particularly useful in multivariate data

analysis, where traditional 2D plots fall short.

‣ In machine learning, Parallel Coordinates Plots are often

used for visualizing feature importance and relationships in

high-dimensional datasets.

4. Word Cloud Generation from Text

Data

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst for a marketing firm, and your

manager has asked you to generate a visual representation

of the most common words in customer feedback. Your task

is to create a word cloud from a given set of text data. This

will help the marketing team to quickly grasp the main

points of the customer feedback.Write a Python code that

processes the text data, generates a word cloud, and

displays it. The text data should be created within the code.

【Data Generation Code Example】

text_data = 'customer feedback is very important important

feedback helps us improve improve our services services

are very very important customer satisfaction is key key to

success'

【Diagram Answer】

【Code Answer】

import matplotlib.pyplot as plt

from wordcloud import WordCloud

text_data = 'customer feedback is very important important

feedback helps us improve improve our services services

are very very important customer satisfaction is key key to

success'

wordcloud = WordCloud(width=800, height=400,

background_color='white').generate(text_data)

plt.figure(figsize=(10, 5))

plt.imshow(wordcloud, interpolation='bilinear')

plt.axis('off')

plt.show()

To create a word cloud from text data, you first need to

install the wordcloud library if you haven't already.

Start by importing the necessary libraries: matplotlib.pyplot

for displaying the word cloud and WordCloud from the

wordcloud library for generating it.

Next, create a string variable called text_data that contains

the customer feedback. This text data will be used to

generate the word cloud.

Create a WordCloud object with specified parameters such

as width, height, and background color. Use the generate

method of the WordCloud object to generate the word cloud

from the text_data.

Then, create a plot using matplotlib.pyplot. The imshow

function is used to display the word cloud image, and

interpolation='bilinear' makes the word cloud look

smoother. Use axis('off') to hide the axis, providing a cleaner

look to the word cloud. Finally, use plt.show() to display the

word cloud.

This code snippet processes the text data, generates a word

cloud, and displays it as a visual representation of the most

common words.

【Trivia】
‣ Word clouds are a popular way to visualize the frequency

of words in a text dataset. They provide a quick and intuitive

way to understand the main topics or sentiments expressed

in the text.

‣ The size of each word in the word cloud indicates its

frequency or importance in the text data. Larger words

appear more frequently or are more significant than smaller

ones.

‣ Word clouds are commonly used in various fields such as

marketing, data analysis, and social media monitoring to

identify trends, keywords, and key phrases.

5. Social Network Graph Visualization

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst at a social media company. Your task

is to create a visualization of social connections within a

small community. This will help the company understand the

network structure and identify key influencers.

Create a Python script to generate a network graph based

on the following data:

Users: [Alice, Bob, Charlie, David, Eve]

Connections: [("Alice", "Bob"), ("Alice", "Charlie"), ("Bob",

"David"), ("Charlie", "David"), ("David", "Eve")]

The graph should display nodes for each user and edges

representing their connections. Use appropriate labels and

colors to enhance the visualization.

Write the code to generate and visualize this network graph.

【Data Generation Code Example】

import networkx as nx

import matplotlib.pyplot as plt

users = ["Alice", "Bob", "Charlie", "David", "Eve"]

connections = [("Alice", "Bob"), ("Alice", "Charlie"), ("Bob",

"David"), ("Charlie", "David"), ("David", "Eve")]

G = nx.Graph()

G.add_nodes_from(users)

G.add_edges_from(connections)

nx.draw(G, with_labels=True, node_color='lightblue',

edge_color='gray', node_size=2000, font_size=15)

plt.show()

【Diagram Answer】

【Code Answer】

import networkx as nx

import matplotlib.pyplot as plt

users = ["Alice", "Bob", "Charlie", "David", "Eve"]

connections = [("Alice", "Bob"), ("Alice", "Charlie"), ("Bob",

"David"), ("Charlie", "David"), ("David", "Eve")]

G = nx.Graph()

G.add_nodes_from(users)

G.add_edges_from(connections)

pos = nx.spring_layout(G) # Position nodes using

Fruchterman-Reingold force-directed algorithm

nx.draw(G, pos, with_labels=True, node_color='lightblue',

edge_color='gray', node_size=2000, font_size=15)

plt.title("Social Network Graph")

plt.show()

To create and visualize a network graph in Python, we use

the NetworkX library, which provides tools to create,

manipulate, and study the structure, dynamics, and

functions of complex networks. We also use Matplotlib for

visualization.

First, we import the necessary libraries: NetworkX and

Matplotlib. We then define the users and their connections

as lists. The users list contains the names of the individuals,

and the connections list contains tuples representing the

relationships between them.

We create an empty graph object G using nx.Graph(). We

add nodes (users) to the graph using

G.add_nodes_from(users) and edges (connections) using

G.add_edges_from(connections).

To position the nodes in a visually appealing way, we use

the nx.spring_layout(G) function, which applies the

Fruchterman-Reingold force-directed algorithm. This

algorithm positions nodes such that all the edges are of

more or less equal length and the nodes are evenly

distributed.

We then draw the graph using nx.draw(), specifying the

positions of the nodes, labels, node colors, edge colors,

node sizes, and font sizes. Finally, we display the graph with

plt.show(). This creates a visual representation of the social

network, making it easier to identify key connections and

influencers.

【Trivia】
Network graphs are a powerful tool in social network

analysis (SNA). They help visualize relationships and

interactions within a network, making it easier to identify

patterns and key influencers. The Fruchterman-Reingold

algorithm used for node positioning is one of the most

popular force-directed algorithms, balancing the repulsive

and attractive forces between nodes to create an

aesthetically pleasing layout.

6. Visualizing Spatial Data with

Voronoi Diagrams

Importance★★★★☆

Difficulty★★★☆☆

A real estate company wants to analyze the distribution of

their properties across a city and determine the areas of

influence for each property.

They have asked you to create a Voronoi diagram to

visualize this information.

Your task is to:

Generate a dataset of 20 properties with random locations

(x and y coordinates) within a 100x100 grid.

Create a Voronoi diagram using these property locations.

Plot the Voronoi diagram, showing the property locations as

points and the Voronoi cells in different colors.

Add a title and legend to the plot.

Use Python to complete this task, focusing on data

manipulation and visualization techniques.

Make sure to generate the input data within your code.

【Data Generation Code Example】

import numpy as np

np.random.seed(42)

properties = np.random.rand(20, 2) * 100

【Diagram Answer】

【Code Answer】

import numpy as np

import matplotlib.pyplot as plt

from scipy.spatial import Voronoi

np.random.seed(42)

properties = np.random.rand(20, 2) * 100

vor = Voronoi(properties)

fig, ax = plt.subplots(figsize=(10, 10))

Plot Voronoi diagram

regions = [r for r in vor.regions if -1 not in r and r]

for region in regions:

polygon = [vor.vertices[i] for i in region]

plt.fill(*zip(*polygon), alpha=0.4)

Plot property locations

plt.plot(properties[:, 0], properties[:, 1], 'ko', markersize=8)

plt.title('Property Distribution and Areas of Influence')

plt.xlabel('X Coordinate')

plt.ylabel('Y Coordinate')

plt.xlim(0, 100)

plt.ylim(0, 100)

Add legend

plt.plot([], [], 'ko', label='Properties')

plt.plot([], [], color='C0', alpha=0.4, linewidth=10,

label='Areas of Influence')

plt.legend()

plt.show()

This code demonstrates how to create a Voronoi diagram to

visualize spatial data using Python.

Let's break down the process step by step:

Data Generation:

We use NumPy to generate random data points representing

property locations.

The np.random.rand(20, 2) * 100 creates 20 pairs of random

coordinates between 0 and 100.

We set a random seed for reproducibility.

Importing Libraries:

We import NumPy for data manipulation, Matplotlib for

plotting, and SciPy's Voronoi function for creating the

Voronoi diagram.

Creating the Voronoi Diagram:

We use Voronoi(properties) to compute the Voronoi diagram

based on our property locations.

Setting up the Plot:

We create a new figure and axes using plt.subplots() with a

specified figure size.

Plotting Voronoi Cells:

We iterate through the Voronoi regions, excluding any that

contain -1 (which represents infinity).

For each region, we create a polygon using the vertex

coordinates and fill it with a semi-transparent color.

Plotting Property Locations:

We use plt.plot() to add black dots ('ko') representing the

property locations.

Adding Labels and Title:

We set the title, x-label, and y-label to provide context for

the visualization.

Setting Plot Limits:

We use plt.xlim() and plt.ylim() to set the plot boundaries to

match our data range (0 to 100).

Adding a Legend:

We create dummy plots with plt.plot([], []) to add legend

entries for properties and areas of influence.

Displaying the Plot:

Finally, we call plt.show() to display the completed Voronoi

diagram.

This code demonstrates several key aspects of data

visualization in Python:

Random data generation using NumPy

Spatial data analysis using SciPy's Voronoi function

Advanced plotting techniques with Matplotlib, including

custom polygons and legend creation

Combining multiple data representations (points and

polygons) in a single plot

The resulting Voronoi diagram effectively visualizes the

distribution of properties and their areas of influence,

providing a clear and intuitive representation of spatial data.

【Trivia】
‣ Voronoi diagrams are named after Georgy Voronoi, a

Ukrainian mathematician who defined and studied these

structures in 1908.

‣ Voronoi diagrams have a wide range of applications

beyond real estate, including:

In ecology, to study animal territories and plant competition

In computer graphics, for procedural texture generation and

mesh generation

In urban planning, to determine optimal locations for public

services

‣ The dual graph of a Voronoi diagram is called a Delaunay

triangulation, which has its own set of important

applications in computational geometry.

‣ Voronoi diagrams can be extended to three or more

dimensions, although visualization becomes more

challenging.

‣ In computational geometry, the time complexity for

constructing a Voronoi diagram for n points in 2D space is

O(n log n) using Fortune's algorithm.

‣ The concept of Voronoi diagrams appears in nature, such

as in the pattern of a giraffe's spots or the structure of

honeycombs.

‣ In machine learning, Voronoi diagrams are related to the

k-nearest neighbors algorithm and can be used for spatial

classification problems.

7. Creating a Lollipop Chart for

Survey Results

Importance★★★★☆

Difficulty★★★☆☆

You are working for a company that recently conducted a

survey to measure customer satisfaction across various

services.

Your task is to visualize the survey results using a lollipop

chart to clearly demonstrate the satisfaction levels.

Create a lollipop chart based on the following survey results:

"Service A" - 85, "Service B" - 90, "Service C" - 75, "Service

D" - 80, "Service E" - 95.

Please use Python for data processing and visualization.

Your solution should include generating the sample data and

creating the lollipop chart.

【Data Generation Code Example】

import pandas as pd

services = ['Service A', 'Service B', 'Service C', 'Service D',

'Service E']

scores = [85, 90, 75, 80, 95]

survey_data = pd.DataFrame({'Service': services, 'Score':

scores})

【Diagram Answer】

【Code Answer】

import matplotlib.pyplot as plt

import pandas as pd

services = ['Service A', 'Service B', 'Service C', 'Service D',

'Service E']

scores = [85, 90, 75, 80, 95]

survey_data = pd.DataFrame({'Service': services, 'Score':

scores})

fig, ax = plt.subplots()

ax.stem(survey_data['Service'], survey_data['Score'],

use_line_collection=True)

ax.set_xlabel('Service')

ax.set_ylabel('Satisfaction Score')

ax.set_title('Customer Satisfaction Survey Results')

plt.show()

The first step is to import the necessary libraries, pandas for

data manipulation and matplotlib for plotting.

We define two lists: services containing the names of the

services and scores containing their corresponding

satisfaction scores.

These lists are then converted into a pandas DataFrame for

easy data handling.

Next, we create a lollipop chart using matplotlib's stem

function, which is ideal for this type of visualization as it

draws vertical lines from a baseline to the data points.

We customize the chart by setting labels for the x-axis and

y-axis and giving the chart a title.

Finally, the chart is displayed using plt.show().

【Trivia】
Lollipop charts are an alternative to bar charts and are often

used to highlight individual data points.

They are especially useful when you have limited data

points and want to emphasize the values clearly.

The stem function in matplotlib is specifically designed for

creating lollipop charts and can be customized extensively.

8. Dot Plot of Categorical Data

Importance★★★☆☆

Difficulty★★☆☆☆

You are a data analyst working for a retail company. Your

manager has asked you to visualize the distribution of

customer satisfaction ratings for a recent product launch.

The ratings are categorical and range from "Very

Unsatisfied" to "Very Satisfied". Create a dot plot to show

the frequency of each rating category. Use Python for data

processing and visualization. Generate the input data within

your code.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(0)

ratings = np.random.choice(['Very Unsatisfied', 'Unsatisfied',

'Neutral', 'Satisfied', 'Very Satisfied'], size=100, p=[0.1, 0.1,

0.2, 0.3, 0.3])

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(0)

ratings = np.random.choice(['Very Unsatisfied', 'Unsatisfied',

'Neutral', 'Satisfied', 'Very Satisfied'], size=100, p=[0.1, 0.1,

0.2, 0.3, 0.3])

ratings_df = pd.DataFrame(ratings, columns=['Rating'])

rating_counts =

ratings_df['Rating'].value_counts().sort_index()

plt.figure(figsize=(10, 6))

plt.plot(rating_counts.index, rating_counts.values, 'bo')

plt.title('Customer Satisfaction Ratings')

plt.xlabel('Rating')

plt.ylabel('Frequency')

plt.grid(True)

plt.show()

First, we import the necessary libraries: pandas for data

manipulation, numpy for generating random data, and

matplotlib for plotting.

We set a random seed for reproducibility.

We generate 100 random customer satisfaction ratings

using numpy's random.choice function.

The ratings are chosen from five categories: 'Very

Unsatisfied', 'Unsatisfied', 'Neutral', 'Satisfied', and 'Very

Satisfied', with specified probabilities for each category.

Next, we create a pandas DataFrame from the generated

ratings.

We then count the occurrences of each rating category

using the value_counts method and sort the index to ensure

the categories are in order.

We create a dot plot using matplotlib by plotting the rating

categories on the x-axis and their frequencies on the y-axis.

We add a title, and labels for the x and y axes, and enable

the grid for better readability.

Finally, we display the plot using plt.show().

【Trivia】
‣ Dot plots are useful for visualizing the distribution of

categorical data and can be easier to interpret than bar

charts for small datasets.

‣ The value_counts method in pandas is a quick way to

count unique values in a Series.

‣ Setting a random seed with np.random.seed(0) ensures

that the random data generated is the same each time the

code is run, which is useful for reproducibility.

‣ Matplotlib's plot function is versatile and can be used for

various types of plots, including dot plots, by adjusting the

markers and line styles.

9. Creating a Dumbbell Plot for

Comparative Data Analysis

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a retail company that

operates in multiple cities.

The company wants to compare the average sales per

customer between two years (2022 and 2023) for their top 5

cities.

They believe this visualization will help them understand

which cities have shown improvement or decline in average

sales per customer.

Your task is to create a dumbbell plot using Python to

visualize this comparison.

The plot should clearly show the average sales per customer

for each city in both years, connected by a line to represent

the change.

Requirements:

Create sample data for 5 cities with their average sales per

customer for 2022 and 2023.

Use matplotlib to create the dumbbell plot.

Sort the data so that the cities are ordered from highest to

lowest average sales in 2023.

Use different colors for 2022 and 2023 data points, and a

third color for the connecting lines.

Add appropriate labels, title, and a legend to the plot.

Ensure the y-axis starts from 0 to provide an accurate visual

representation.

Your code should generate the sample data and create the

dumbbell plot in a single, executable script.

【Data Generation Code Example】

import numpy as np

np.random.seed(42)

cities = ['New York', 'Los Angeles', 'Chicago', 'Houston',

'Phoenix']

sales_2022 = np.random.randint(500, 1000, 5)

sales_2023 = np.random.randint(600, 1100, 5)

data = list(zip(cities, sales_2022, sales_2023))

data.sort(key=lambda x: x, reverse=True)

【Diagram Answer】

【Code Answer】

import matplotlib.pyplot as plt

import numpy as np

Generate sample data

np.random.seed(42)

cities = ['New York', 'Los Angeles', 'Chicago', 'Houston',

'Phoenix']

sales_2022 = np.random.randint(500, 1000, 5)

sales_2023 = np.random.randint(600, 1100, 5)

data = list(zip(cities, sales_2022, sales_2023))

data.sort(key=lambda x: x, reverse=True)

Prepare data for plotting

cities, sales_2022, sales_2023 = zip(*data)

y_positions = range(len(cities))

Create the plot

fig, ax = plt.subplots(figsize=(10, 6))

Plot the lines

ax.hlines(y=y_positions, xmin=sales_2022,

xmax=sales_2023, color='gray', alpha=0.5)

Plot the points

ax.scatter(sales_2022, y_positions, color='blue', s=50,

label='2022')

ax.scatter(sales_2023, y_positions, color='red', s=50,

label='2023')

Customize the plot

ax.set_yticks(y_positions)

ax.set_yticklabels(cities)

ax.set_xlabel('Average Sales per Customer ($)')

ax.set_title('Comparison of Average Sales per Customer:

2022 vs 2023')

ax.legend()

Ensure y-axis starts from 0

ax.set_xlim(0, max(max(sales_2022), max(sales_2023)) *

1.1)

Display the plot

plt.tight_layout()

plt.show()

This code creates a dumbbell plot to compare average sales

per customer between 2022 and 2023 for five cities.

Let's break down the code and explain its key components:

Data Generation:

We use NumPy to generate random sample data for our

analysis.

The np.random.seed(42) ensures reproducibility of the

random data.

We create lists for cities and their corresponding sales data

for 2022 and 2023.

The data is then sorted based on 2023 sales in descending

order.

Data Preparation:

We unzip the sorted data into separate lists for cities and

sales figures.

y_positions is created to determine the vertical positions of

each city on the plot.

Plot Creation:

We use plt.subplots() to create a figure and axis object.

The figure size is set to 10x6 inches for better visibility.

Plotting the Data:

Horizontal lines (hlines) are drawn between the 2022 and

2023 sales figures for each city.

Scatter plots are used to create points for 2022 (blue) and

2023 (red) sales data.

Plot Customization:

We set the y-axis ticks to match the number of cities and

label them with city names.

The x-axis is labeled "Average Sales per Customer ($)".

A title is added to the plot for clarity.

A legend is included to differentiate between 2022 and 2023

data points.

Axis Adjustment:

We set the x-axis to start from 0 and extend slightly beyond

the maximum sales value.

This ensures an accurate visual representation of the data.

Display:

plt.tight_layout() is used to adjust the plot layout for better

fit.

Finally, plt.show() displays the plot.

This dumbbell plot effectively visualizes the change in

average sales per customer for each city between 2022 and

2023.

The horizontal lines connect the data points for each city,

making it easy to see which cities improved (line slopes

upward to the right) or declined (line slopes downward to

the right) in terms of average sales.

The sorting of cities based on 2023 sales helps in quickly

identifying top-performing cities.

【Trivia】
‣ Dumbbell plots, also known as DNA plots or barbell plots,

are excellent for comparing two data points for multiple

categories.

‣ They are named "dumbbell plots" because the shape

formed by the two data points and the connecting line

resembles a dumbbell weight used in strength training.

‣ Dumbbell plots are particularly useful in before-and-after

comparisons, such as comparing data from two different

time periods or conditions.

‣ While matplotlib is used in this example, other Python

libraries like Seaborn also offer functions to create dumbbell

plots with less code.

‣ The choice of colors in data visualization is crucial. In this

plot, using contrasting colors (blue and red) helps in easily

distinguishing between the two years.

‣ Starting the y-axis from zero in bar-like plots (including

dumbbell plots) is a best practice in data visualization, as it

prevents misrepresentation of the magnitude of differences.

‣ Sorting the data (in this case by 2023 sales) can reveal

patterns that might not be apparent in unsorted data, such

as overall trends or outliers.

10. Generate a Ridgeline Plot of

Distribution Data

Importance★★★★☆

Difficulty★★★☆☆

You are tasked with analyzing the distribution of customer

satisfaction scores for a company that conducts monthly

surveys.

The company wants to visualize how these scores have

changed over the past 12 months.

Your task is to create a ridgeline plot that displays the

distribution of customer satisfaction scores for each month.

Generate synthetic data for the past 12 months and

visualize it using a ridgeline plot.

【Data Generation Code Example】

import numpy as np

import pandas as pd

Generate synthetic data for customer satisfaction scores

over 12 months

months = pd.date_range('2023-07-01', periods=12,

freq='M').strftime('%Y-%m').tolist()

data = [np.random.normal(loc=75, scale=10, size=200) for

_ in months]

Create DataFrame

df = pd.DataFrame({month: scores for month, scores in

zip(months, data)})

df = df.melt(var_name='Month', value_name='Satisfaction')

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

Generate synthetic data for customer satisfaction scores

over 12 months

months = pd.date_range('2023-07-01', periods=12,

freq='M').strftime('%Y-%m').tolist()

data = [np.random.normal(loc=75, scale=10, size=200) for

_ in months]

Create DataFrame

df = pd.DataFrame({month: scores for month, scores in

zip(months, data)})

df = df.melt(var_name='Month', value_name='Satisfaction')

Plot the ridgeline plot

plt.figure(figsize=(10, 8))

sns.violinplot(x='Satisfaction', y='Month', data=df,

scale='width', inner=None)

plt.title('Ridgeline Plot of Customer Satisfaction Scores Over

12 Months')

plt.xlabel('Satisfaction Score')

plt.ylabel('Month')

plt.show()

To begin, we import the necessary libraries: numpy, pandas,

matplotlib.pyplot, and seaborn.

Numpy and pandas are essential for data manipulation,

while matplotlib and seaborn are used for data visualization.

First, we generate synthetic data for customer satisfaction

scores over the past 12 months.

We create a list of months using pd.date_range and format

them as strings.

Then, for each month, we generate 200 random satisfaction

scores following a normal distribution with a mean of 75 and

a standard deviation of 10 using np.random.normal.

Next, we create a pandas DataFrame from the generated

data.

Each column in the DataFrame represents a month, and

each row represents a satisfaction score.

We then use the melt function to transform the DataFrame

into a long format suitable for plotting.

The melt function creates two columns: 'Month' and

'Satisfaction', which is required for the seaborn plotting

function.

Finally, we use seaborn's violinplot function to create a

ridgeline plot.

We set the x-axis to 'Satisfaction' and the y-axis to 'Month'.

The scale='width' parameter ensures that the widths of the

violins are comparable.

We remove the inner part of the violins with inner=None to

make the plot look cleaner.

After setting the plot's title and axis labels, we display the

plot with plt.show().

【Trivia】
Ridgeline plots are useful for visualizing the distribution of a

variable over multiple categories or time periods.

They are particularly helpful in showing the evolution of

distributions over time.

Seaborn's violinplot is often used to create ridgeline plots

because it provides a clear representation of the data's

density.

Adjusting the scale parameter in the violinplot function can

help in comparing different distributions effectively.

11. Matrix Plot of Confusion Matrix

Importance★★★★☆

Difficulty★★★☆☆

You are working as a data analyst for a retail company. Your

task is to evaluate the performance of a classification model

that predicts whether a customer will make a purchase

based on their browsing history.

To do this, you need to create a confusion matrix and

visualize it using a matrix plot.

Generate a sample dataset of actual and predicted values,

and then create a matrix plot of the confusion matrix.

Ensure that your code outputs the plot correctly.

【Data Generation Code Example】

import numpy as np

np.random.seed(42)

actual = np.random.choice([0, 1], size=100)

predicted = np.random.choice([0, 1], size=100)

【Diagram Answer】

【Code Answer】

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.metrics import confusion_matrix

np.random.seed(42)

actual = np.random.choice([0, 1], size=100)

predicted = np.random.choice([0, 1], size=100)

cm = confusion_matrix(actual, predicted)

plt.figure(figsize=(8, 6))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',

xticklabels=['Predicted No', 'Predicted Yes'], yticklabels=

['Actual No', 'Actual Yes'])

plt.xlabel('Predicted')

plt.ylabel('Actual')

plt.title('Confusion Matrix')

plt.show()

To solve this problem, you first need to generate a sample

dataset of actual and predicted values.

This can be done using NumPy's random choice function to

create arrays of binary values (0 and 1).

Once you have the data, you can compute the confusion

matrix using the confusion_matrix function from the

sklearn.metrics module.

The confusion matrix is a table that is often used to describe

the performance of a classification model.

It shows the counts of true positive, true negative, false

positive, and false negative predictions.

Next, to visualize the confusion matrix, you can use the

seaborn library, which provides a high-level interface for

drawing attractive statistical graphics.

The heatmap function from seaborn can be used to create a

matrix plot of the confusion matrix.

In the plot, you can use the annot parameter to display the

counts in each cell, and the cmap parameter to choose a

color map.

Labels for the x and y axes can be set using the xticklabels

and yticklabels parameters.

Finally, you can add labels and a title to the plot using

plt.xlabel, plt.ylabel, and plt.title, respectively.

The plt.show function is used to display the plot.

【Trivia】
‣ The confusion matrix is a crucial tool in evaluating the

performance of classification models, especially in the case

of imbalanced datasets.

‣ True Positive (TP) and True Negative (TN) are the cases

where the model correctly predicts the positive and

negative classes, respectively.

‣ False Positive (FP) and False Negative (FN) are the cases

where the model incorrectly predicts the positive and

negative classes, respectively.

‣ The confusion matrix can be used to calculate other

important metrics such as accuracy, precision, recall, and

F1-score.

‣ Seaborn's heatmap function provides a simple yet

powerful way to visualize the confusion matrix, making it

easier to interpret the results.

12. Plotting a Wind Rose Diagram

Importance★★★★☆

Difficulty★★★☆☆

A local weather station in your city has collected wind speed

and direction data over the past month. They need a visual

representation to analyze wind patterns. Your task is to

create a Wind Rose Diagram using Python to help them

understand the distribution of wind speeds and directions.

Use the provided sample data within your code to generate

this diagram.

【Data Generation Code Example】

import numpy as np

import pandas as pd

np.random.seed(0)

directions = np.random.choice(['N', 'NE', 'E', 'SE', 'S', 'SW',

'W', 'NW'], 100)

speeds = np.random.uniform(0, 20, 100)

data = pd.DataFrame({'direction': directions, 'speed':

speeds})

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from matplotlib.projections.polar import PolarAxes

np.random.seed(0)

directions = np.random.choice(['N', 'NE', 'E', 'SE', 'S', 'SW',

'W', 'NW'], 100)

speeds = np.random.uniform(0, 20, 100)

data = pd.DataFrame({'direction': directions, 'speed':

speeds})

def wind_rose(data):

direction_map = {'N': 0, 'NE': 45, 'E': 90, 'SE': 135, 'S': 180,

'SW': 225, 'W': 270, 'NW': 315}

textdata['angle'] = data['direction'].map(direction_map)

fig = plt.figure(figsize=(10, 8))

ax = fig.add_subplot(111, projection='polar')

bins = np.linspace(0, 20, 5)

for i in range(len(bins)-1):

 subset = data[(data['speed'] >= bins[i]) & (data['speed']

< bins[i+1])]

 hist, bin_edges = np.histogram(subset['angle'],

bins=np.arange(0, 361, 45))

 angles = np.deg2rad(np.arange(0, 360, 45))

 widths = np.deg2rad(45)

 ax.bar(angles, hist, width=widths, bottom=i,

label=f'{bins[i]:.1f}-{bins[i+1]:.1f} m/s')

ax.set_theta_zero_location('N')

ax.set_theta_direction(-1)

ax.set_xticks(angles)

ax.set_xticklabels(['N', 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NW'])

ax.set_yticks(range(len(bins)))

ax.set_yticklabels([f'{bins[i]:.1f}-{bins[i+1]:.1f}' for i in

range(len(bins)-1)])

plt.legend(loc='upper right', bbox_to_anchor=(1.1, 1.1))

plt.title('Wind Rose Diagram')

plt.show()

wind_rose(data)

To create a Wind Rose Diagram, we first need to import

necessary libraries such as numpy, pandas, and matplotlib.

We generate sample data for wind directions and speeds

using numpy's random functions.

The data is stored in a pandas DataFrame.

We then map the wind directions to corresponding angles

using a dictionary.

The wind_rose function converts wind directions to angles

and plots the data on a polar plot.

We divide wind speeds into bins and plot each bin as a bar

in the polar plot, with the angle representing the wind

direction.

The bars' heights represent the frequency of wind speeds

within each bin.

We configure the polar plot to have North at the top and

angles increasing clockwise.

Finally, we add labels and a legend to the plot for clarity and

display the plot using plt.show().

【Trivia】
‣ Wind Rose Diagrams are commonly used in meteorology

to visualize wind patterns over a specific period.

‣ They help in understanding prevailing wind directions and

speeds, which is crucial for various applications such as

aviation, marine navigation, and urban planning.

‣ The concept of a Wind Rose dates back to ancient times

when mariners used it for navigation.

13. Bullet Chart for Performance

Targets

Importance★★★★☆

Difficulty★★★☆☆

You are working as a data analyst for a retail company. Your

manager has asked you to create a bullet chart to visualize

the performance targets of different departments. The chart

should display the actual performance, target, and ranges

(poor, satisfactory, and good). The data should be

generated within the code.

Create a Python script that generates the necessary data

and visualizes it using a bullet chart.

【Data Generation Code Example】

import pandas as pd

import numpy as np

Generate sample data

data = pd.DataFrame({

'Department': ['Sales', 'Marketing', 'HR', 'IT', 'Finance'],

'Actual': np.random.randint(50, 100, size=5),

'Target': np.random.randint(70, 90, size=5),

'Poor': [60] * 5,

'Satisfactory': [80] * 5,

'Good': [100] * 5

})

data

【Diagram Answer】

【Code Answer】

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

Generate sample data

data = pd.DataFrame({

 'Department': ['Sales', 'Marketing', 'HR', 'IT', 'Finance'],

 'Actual': np.random.randint(50, 100, size=5),

 'Target': np.random.randint(70, 90, size=5),

 'Poor': [60] * 5,

 'Satisfactory': [80] * 5,

 'Good': [100] * 5

})

Create a bullet chart

fig, ax = plt.subplots(figsize=(10, 6))

for idx, row in data.iterrows():

 ax.broken_barh([(0, row['Poor'])], (idx - 0.4, 0.8),

facecolors='red')

 ax.broken_barh([(row['Poor'], row['Satisfactory'] -

row['Poor'])], (idx - 0.4, 0.8), facecolors='yellow')

 ax.broken_barh([(row['Satisfactory'], row['Good'] -

row['Satisfactory'])], (idx - 0.4, 0.8), facecolors='green')

 ax.broken_barh([(0, row['Actual'])], (idx - 0.2, 0.4),

facecolors='blue')

 ax.plot(row['Target'], idx, 'o', color='black')

ax.set_yticks(range(len(data)))

ax.set_yticklabels(data['Department'])

ax.set_xlabel('Performance')

ax.set_title('Department Performance Targets')

plt.show()

To create a bullet chart in Python, we first generate the

sample data using pandas and numpy. The data includes the

department names, actual performance, target

performance, and the ranges for poor, satisfactory, and

good performance.

We then use matplotlib to create the bullet chart. The

broken_barh function is used to create horizontal bars for

the different performance ranges. The facecolors parameter

is used to set the colors for the different ranges: red for

poor, yellow for satisfactory, and green for good.

For the actual performance, we use a narrower bar with a

blue color to distinguish it from the performance ranges.

The target performance is marked with a black dot using the

plot function.

The y-axis is labeled with the department names, and the x-

axis represents the performance. The chart title is set to

"Department Performance Targets".

This visualization helps to quickly compare the actual

performance of each department against their targets and

predefined performance ranges.

【Trivia】
Bullet charts were introduced by Stephen Few as a way to

replace dashboard gauges and meters. They are more

space-efficient and provide a clearer view of performance

data. Bullet charts are particularly useful in business

dashboards to visualize key performance indicators (KPIs).

14. Creating a Horizon Chart with

Time Series Data

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst at a company that monitors website

traffic over time. You need to visualize this data using a

horizon chart to easily identify trends and patterns. The data

includes daily visits to the website over the past year.

Create a horizon chart of this time series data. Generate

synthetic data for the purpose of this exercise. Ensure the

code efficiently processes and visualizes the

data.Requirements:Generate daily website traffic data for

the past year.Process the data to prepare it for

visualization.Create a horizon chart to visualize the trends

and patterns in the data.

【Data Generation Code Example】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Generate sample data

np.random.seed(42)

dates = pd.date_range(start="2023-01-01", end="2023-12-

31")

traffic = np.random.poisson(lam=200, size=len(dates))

Create DataFrame

data = pd.DataFrame({"Date": dates, "Traffic": traffic})

Process data for horizon chart

Calculate moving average to smooth the data

data["Traffic_MA"] =

data["Traffic"].rolling(window=7).mean().fillna(method='bfill

')

Display the data

data.head()

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Generate sample data

np.random.seed(42)

dates = pd.date_range(start="2023-01-01", end="2023-12-

31")

traffic = np.random.poisson(lam=200, size=len(dates))

Create DataFrame

data = pd.DataFrame({"Date": dates, "Traffic": traffic})

Process data for horizon chart

data["Traffic_MA"] =

data["Traffic"].rolling(window=7).mean().fillna(method='bfill

')

Normalize the data for horizon chart

data["Traffic_MA_Norm"] = (data["Traffic_MA"] -

data["Traffic_MA"].mean()) / data["Traffic_MA"].std()

Create horizon chart

fig, ax = plt.subplots(figsize=(14, 7))

Plot different layers of the horizon chart

colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728",

"#9467bd", "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22",

"#17becf"]

for i, color in enumerate(colors):

 layer = np.maximum(0, data["Traffic_MA_Norm"] - i) -

np.maximum(0, data["Traffic_MA_Norm"] - (i + 1))

 ax.fill_between(data["Date"], layer, color=color,

alpha=0.7)

Set labels and title

ax.set_title("Horizon Chart of Daily Website Traffic")

ax.set_xlabel("Date")

ax.set_ylabel("Normalized Traffic (Moving Average)")

plt.show()

A horizon chart is an effective way to visualize time series

data by layering different bands of the data on top of each

other. This technique allows for the identification of trends

and patterns even in large datasets. To create a horizon

chart, follow these steps:Generate the Data:A random

dataset of daily website traffic over a year is generated

using a Poisson distribution. This is done for simplicity and

to mimic the fluctuations in real website traffic data.The

dates are created using pd.date_range, and the traffic

values are generated using np.random.poisson.Create the

DataFrame:The generated dates and traffic data are

combined into a DataFrame using pd.DataFrame.Process the

Data:A moving average is calculated using the

.rolling(window=7).mean() method to smooth the traffic

data. This helps in reducing noise and making trends more

apparent.Normalize the Data:The moving average data is

normalized by subtracting the mean and dividing by the

standard deviation. Normalization helps in standardizing the

data range, making it suitable for a horizon chart.Create the

Horizon Chart:The horizon chart is created by plotting

different layers of the normalized data. Each layer

represents a band of values, and different colors are used to

differentiate these bands.The fill_between function is used

to fill the area between layers with colors, providing a clear

visual distinction.Labels and titles are added to the chart for

clarity.By following these steps, the horizon chart effectively

visualizes the trends and patterns in the website traffic

data, making it easier to analyze and interpret.

【Trivia】
Horizon charts are particularly useful for large datasets

where traditional line or bar charts become cluttered and

difficult to interpret. They were popularized by the software

company Panopticon Software (now part of Altair) and are

often used in financial data analysis, climate data

visualization, and any field requiring the clear

representation of time series data. The concept of layering

data bands in different colors allows for a compact and

visually appealing representation, making it easier to spot

anomalies and trends at a glance.

15. Network Flow Diagram for Traffic

Data Visualization

Importance★★★★☆

Difficulty★★★☆☆

You are working for a city transportation department that

wants to visualize the flow of traffic between various

intersections in the city.

Using Python, generate a network flow diagram to show

traffic data between these intersections.

Create a random dataset representing traffic flow between

different intersections, including the following columns:

'Source', 'Target', and 'Weight'.

'Source' and 'Target' columns should contain intersection

names, and the 'Weight' column should represent the traffic

flow intensity.

Visualize this network using a suitable Python library.

【Data Generation Code Example】

import random

import pandas as pd

sources = ['A', 'B', 'C', 'D', 'E']

targets = ['F', 'G', 'H', 'I', 'J']

random.seed(0)

data = {'Source': [random.choice(sources) for _ in

range(15)],

'Target': [random.choice(targets) for _ in range(15)],

'Weight': [random.randint(1, 100) for _ in range(15)]}

df = pd.DataFrame(data)

df.head()

【Diagram Answer】

【Code Answer】

import pandas as pd

import random

import matplotlib.pyplot as plt

import networkx as nx

sources = ['A', 'B', 'C', 'D', 'E']

targets = ['F', 'G', 'H', 'I', 'J']

random.seed(0)

data = {'Source': [random.choice(sources) for _ in

range(15)],

'Target': [random.choice(targets) for _ in range(15)],

'Weight': [random.randint(1, 100) for _ in range(15)]}

df = pd.DataFrame(data)

G = nx.from_pandas_edgelist(df, 'Source', 'Target', True)

pos = nx.spring_layout(G)

plt.figure(figsize=(10, 7))

nx.draw(G, pos, with_labels=True, node_size=5000,

node_color='skyblue', font_size=15, font_weight='bold')

edge_labels = nx.get_edge_attributes(G, 'Weight')

nx.draw_networkx_edge_labels(G, pos,

edge_labels=edge_labels, font_color='red')

plt.title('Traffic Flow Between Intersections')

plt.show()

To generate a network flow diagram for traffic data

visualization, we start by importing the necessary libraries:

pandas for data manipulation, random for generating

random data, matplotlib for plotting, and networkx for

creating the network graph.

We define the source and target intersections and use a

random seed for reproducibility.

We then create a dataset with columns 'Source', 'Target',

and 'Weight' to represent the traffic flow between

intersections.

The dataset is converted into a pandas DataFrame.

Next, we use networkx to create a graph from the

DataFrame using 'Source' and 'Target' as nodes and 'Weight'

as edge attributes.

We define the position of nodes using the spring layout

algorithm and plot the graph using matplotlib.

Nodes are drawn with labels, and edges are labeled with

their corresponding weights to show traffic flow intensity.

Finally, we set the plot title and display the graph.

【Trivia】
‣ Network flow diagrams are widely used in various fields,

including transportation, telecommunications, and logistics,

to visualize and optimize the flow of goods, information, and

traffic.

‣ NetworkX is a powerful Python library specifically

designed for the creation, manipulation, and study of

complex networks and their dynamics.

‣ Visualization of traffic data helps city planners and

engineers identify congestion points and optimize traffic

light timings to improve overall traffic flow efficiency.

16. Heatmap of Missing Data

Visualization

Importance★★★★★

Difficulty★★★☆☆

You are a data analyst at a retail company. Your task is to

analyze a dataset containing information about customer

transactions.

This dataset contains missing values, and your manager

wants to visualize these missing values to understand the

data quality.

Create a heatmap to visualize the missing data in the

dataset.

To simulate the scenario, generate a sample dataset with

missing values and then plot the heatmap of the missing

data.

Use Python for data manipulation and visualization.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(0)

data = pd.DataFrame({

'CustomerID': np.arange(1, 101),

'TransactionAmount': np.random.choice([np.nan, 50, 100,

150, 200], 100, p=[0.1, 0.3, 0.3, 0.2, 0.1]),

'ProductID': np.random.choice([np.nan, 'P1', 'P2', 'P3', 'P4'],

100, p=[0.2, 0.3, 0.2, 0.2, 0.1]),

'PurchaseDate': pd.date_range(start='2023-01-01',

periods=100, freq='D')

})

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

np.random.seed(0)

data = pd.DataFrame({

'CustomerID': np.arange(1, 101),

'TransactionAmount': np.random.choice([np.nan, 50, 100,

150, 200], 100, p=[0.1, 0.3, 0.3, 0.2, 0.1]),

'ProductID': np.random.choice([np.nan, 'P1', 'P2', 'P3', 'P4'],

100, p=[0.2, 0.3, 0.2, 0.2, 0.1]),

'PurchaseDate': pd.date_range(start='2023-01-01',

periods=100, freq='D')

})

missing_data = data.isnull()

plt.figure(figsize=(10, 6))

sns.heatmap(missing_data, cbar=False, cmap='viridis')

plt.title('Heatmap of Missing Data')

plt.xlabel('Columns')

plt.ylabel('Rows')

plt.show()

First, a sample dataset is created using Pandas and NumPy.

The dataset consists of 100 records with four columns:

'CustomerID', 'TransactionAmount', 'ProductID', and

'PurchaseDate'.

Missing values are introduced in the 'TransactionAmount'

and 'ProductID' columns using the np.random.choice

method.

The isnull method of the DataFrame is then used to create a

boolean DataFrame indicating the presence of missing

values.

This boolean DataFrame is visualized using Seaborn's

heatmap function, where missing values are represented in

a distinct color.

The heatmap is customized with a title and axis labels using

Matplotlib to ensure clarity.

【Trivia】
‣ Heatmaps are a powerful tool for visualizing missing data

because they provide a clear and immediate visual

representation of where missing values are concentrated in

the dataset.

‣ Seaborn's heatmap function is highly customizable,

allowing you to change colors, add annotations, and modify

other aesthetic aspects to suit your needs.

‣ Handling and visualizing missing data is a critical step in

data preprocessing, as it helps in deciding the best method

to handle these gaps, such as imputation or removal of

missing values.

17. Connected Scatter Plot for Sales

Trend Analysis

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst for a retail company.

The marketing team wants to visualize the sales trend of

their top-selling product over the past 12 months.

They specifically requested a connected scatter plot to show

the relationship between time and sales volume.

Your task is to create a connected scatter plot using Python

that displays:

Monthly sales data points

A line connecting these points in chronological order

Clear labels for each month

Appropriate axis labels and a title

Use the provided code to generate sample data for 12

months of sales.

Then, create the connected scatter plot using matplotlib.

Ensure your code is efficient and follows best practices for

data visualization in Python.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(42)

dates = pd.date_range(start='2023-01-01', end='2023-12-

31', freq='M')

sales = np.random.randint(1000, 5000, size=12)

df = pd.DataFrame({'Date': dates, 'Sales': sales})

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(42)

dates = pd.date_range(start='2023-01-01', end='2023-12-

31', freq='M')

sales = np.random.randint(1000, 5000, size=12)

df = pd.DataFrame({'Date': dates, 'Sales': sales})

Set up the plot

plt.figure(figsize=(12, 6))

plt.scatter(df['Date'], df['Sales'], s=50, color='blue',

zorder=2)

plt.plot(df['Date'], df['Sales'], color='red', zorder=1)

Customize the plot

plt.title('Monthly Sales Trend (2023)', fontsize=16)

plt.xlabel('Month', fontsize=12)

plt.ylabel('Sales Volume', fontsize=12)

plt.grid(True, linestyle='--', alpha=0.7)

Format x-axis to show month names

plt.gca().xaxis.set_major_formatter(plt.matplotlib.dates.Date

Formatter('%b'))

plt.xticks(rotation=45)

Add labels for each point

[plt.annotate(f'{sale}', (date, sale), textcoords="offset

points", xytext=(0,10), ha='center') for date, sale in

zip(df['Date'], df['Sales'])]

plt.tight_layout()

plt.show()

This code creates a connected scatter plot to visualize

monthly sales data.

Here's a detailed explanation of the Python data processing

and visualization techniques used:

Data Generation:

We use pandas and numpy to create sample data.

pd.date_range() generates a series of dates at monthly

intervals for the year 2023.

np.random.randint() creates random sales figures between

1000 and 5000.

The data is stored in a pandas DataFrame for easy

manipulation.

Setting up the Plot:

plt.figure(figsize=(12, 6)) creates a new figure with specified

dimensions.

plt.scatter() plots individual data points (scatter plot).

plt.plot() connects these points with a line.

The 'zorder' parameter ensures the scatter points appear on

top of the line.

Customizing the Plot:

plt.title(), plt.xlabel(), and plt.ylabel() set the title and axis

labels.

plt.grid() adds a grid to the plot for better readability.

Formatting the X-axis:

plt.gca().xaxis.set_major_formatter() formats the x-axis to

show month abbreviations.

plt.xticks(rotation=45) rotates the x-axis labels for better

visibility.

Adding Data Labels:

A list comprehension with plt.annotate() adds labels to each

data point.

'textcoords' and 'xytext' parameters position the labels

above each point.

Finalizing and Displaying:

plt.tight_layout() adjusts the plot to fit within the figure area.

plt.show() displays the final plot.

This code demonstrates key concepts in Python data

visualization:

Data manipulation with pandas

Creating and customizing plots with matplotlib

Combining different plot types (scatter and line)

Formatting axis labels and adding annotations

Using list comprehensions for efficient data labeling

【Trivia】
‣ Connected scatter plots are particularly useful for showing

how a relationship between two variables evolves over time.

‣ This type of plot was popularized by The New York Times

in their data journalism pieces.

‣ While matplotlib is used here, other Python libraries like

Seaborn or Plotly can also create similar visualizations with

different syntax.

‣ The 'zorder' parameter in matplotlib determines the

drawing order of plot elements, which is crucial for ensuring

visibility of all components.

‣ List comprehensions, as used for adding labels, are a

powerful Python feature that can significantly reduce code

complexity and improve readability.

‣ The DateFormatter class from matplotlib.dates is a

powerful tool for customizing date representations on plot

axes.

‣ Random seed setting (np.random.seed()) ensures

reproducibility of random data generation, which is crucial

for consistent results in data analysis and visualization.

18. Nested Pie Chart of Demographic

Data

Importance★★★☆☆

Difficulty★★★☆☆

You are a data analyst for a city government. Your task is to

visualize the demographic breakdown of the city's

population by age groups and gender using a nested pie

chart. The city's population is divided into three main age

groups: Children (0-14 years), Adults (15-64 years), and

Seniors (65+ years). Each age group is further divided by

gender (Male, Female).

Create a nested pie chart to represent this data. The data is

as follows:

‣ Children: Male (3000), Female (2800)

‣ Adults: Male (15000), Female (16000)

‣ Seniors: Male (4000), Female (4500)

【Data Generation Code Example】

import pandas as pd

data = {'Age Group': ['Children', 'Children', 'Adults', 'Adults',

'Seniors', 'Seniors'],

'Gender': ['Male', 'Female', 'Male', 'Female', 'Male', 'Female'],

'Population': [3000, 2800, 15000, 16000, 4000, 4500]}

df = pd.DataFrame(data)

【Diagram Answer】

【Code Answer】

import pandas as pd

import matplotlib.pyplot as plt

data = {'Age Group': ['Children', 'Children', 'Adults', 'Adults',

'Seniors', 'Seniors'],

'Gender': ['Male', 'Female', 'Male', 'Female', 'Male', 'Female'],

'Population': [3000, 2800, 15000, 16000, 4000, 4500]}

df = pd.DataFrame(data)

groups = df.groupby('Age Group').sum().reset_index()

size1 = groups['Population'].values

size2 = df['Population'].values

labels1 = groups['Age Group'].values

labels2 = df.apply(lambda x: f"{x['Age Group']}-

{x['Gender']}", axis=1).values

plt.figure(figsize=(8, 8))

ax = plt.gca()

ax.pie(size1, labels=labels1, radius=1,

wedgeprops=dict(width=0.3, edgecolor='w'))

ax.pie(size2, labels=labels2, radius=0.7,

wedgeprops=dict(width=0.3, edgecolor='w'))

plt.title('City Population Demographics')

plt.show()

To solve this problem, start by importing the necessary

libraries: pandas for data manipulation and matplotlib for

plotting.

First, create a dictionary with the given demographic data

and convert it into a DataFrame using pandas. The

DataFrame should contain columns for the age group,

gender, and population.

Next, group the data by the 'Age Group' column and sum

the populations to get the total population for each age

group. Reset the index of the grouped data to ensure it

aligns correctly for plotting.

Extract the population sizes and labels for both the outer

and inner rings of the pie chart. The outer ring represents

the age groups, and the inner ring represents the gender

distribution within each age group.

Create a nested pie chart using matplotlib's pie function.

The outer pie chart uses the total population sizes for each

age group, and the inner pie chart uses the population sizes

for each gender within each age group. Set the radius and

width of the wedges to create the nested effect. Ensure the

edge colors are white for better visual separation.

Finally, set the chart title and display the plot using

plt.show().

【Trivia】
Nested pie charts, also known as sunburst charts or multi-

level pie charts, are a type of visualization that allows you to

show hierarchical data through concentric circles. The outer

ring represents the top level of the hierarchy, while the

inner rings represent lower levels. This type of chart is

particularly useful for displaying the breakdown of a

population into subcategories, such as demographic data,

sales by category, or organizational structures.

19. Creating a Dumbbell Dot Plot for

Sales Comparison

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst for a retail company that wants to

compare sales performance between two quarters.

The company has provided you with sales data for various

product categories in Q1 and Q2.

Your task is to create a dumbbell dot plot to visually

represent the change in sales for each category between

these two quarters.

The plot should clearly show the sales values for both

quarters and the difference between them.

Use Python to generate sample data, process it, and create

the dumbbell dot plot.

Make sure to include proper labeling and formatting to make

the plot easily interpretable.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(42)

categories = ['Electronics', 'Clothing', 'Home', 'Books',

'Sports', 'Food']

q1_sales = np.random.randint(100, 1000, len(categories))

q2_sales = q1_sales + np.random.randint(-200, 400,

len(categories))

data = pd.DataFrame({'Category': categories, 'Q1_Sales':

q1_sales, 'Q2_Sales': q2_sales})

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(42)

categories = ['Electronics', 'Clothing', 'Home', 'Books',

'Sports', 'Food']

q1_sales = np.random.randint(100, 1000, len(categories))

q2_sales = q1_sales + np.random.randint(-200, 400,

len(categories))

data = pd.DataFrame({'Category': categories, 'Q1_Sales':

q1_sales, 'Q2_Sales': q2_sales})

fig, ax = plt.subplots(figsize=(10, 6))

y_positions = range(len(categories))

Plot lines connecting Q1 and Q2 sales

[plt.plot([row.Q1_Sales, row.Q2_Sales], [i, i], 'o-',

color='gray', linewidth=1) for i, row in data.iterrows()]

Plot Q1 sales (blue dots)

ax.scatter(data['Q1_Sales'], y_positions, color='blue', s=50,

label='Q1 Sales')

Plot Q2 sales (red dots)

ax.scatter(data['Q2_Sales'], y_positions, color='red', s=50,

label='Q2 Sales')

Set y-axis labels and ticks

ax.set_yticks(y_positions)

ax.set_yticklabels(categories)

Set labels and title

ax.set_xlabel('Sales ($)')

ax.set_title('Sales Comparison: Q1 vs Q2')

ax.legend()

Add grid lines

ax.grid(True, axis='x', linestyle='--', alpha=0.7)

Adjust layout and display plot

plt.tight_layout()

plt.show()

This code creates a dumbbell dot plot to compare sales data

between two quarters for different product categories.

Let's break down the key steps in the data processing and

visualization process:

Data Generation:

We use NumPy to generate random sales data for Q1 and

Q2.

The np.random.seed(42) ensures reproducibility of the

random data.

We create a pandas DataFrame to store the category names

and sales data.

Plot Setup:

We use matplotlib to create the plot, setting the figure size

to 10x6 inches.

The y_positions variable is created to determine the vertical

placement of each category.

Plotting the Dumbbell Lines:

We use a list comprehension with plt.plot() to draw lines

connecting Q1 and Q2 sales for each category.

These lines are colored gray and have circular markers at

each end.

Plotting the Sales Points:

We use ax.scatter() to plot Q1 sales as blue dots and Q2

sales as red dots.

The s=50 parameter sets the size of the dots.

Y-axis Formatting:

We set the y-axis ticks to match our y_positions and label

them with the category names.

Labels and Title:

We add an x-axis label for "Sales ($)" and set a title for the

plot.

A legend is added to distinguish between Q1 and Q2 sales.

Grid Lines:

We add vertical grid lines to make it easier to read the sales

values.

Final Adjustments:

plt.tight_layout() is used to automatically adjust the plot

layout.

Finally, plt.show() displays the plot.

This visualization technique effectively shows the change in

sales between Q1 and Q2 for each product category.

The dumbbell design allows for easy comparison of the two

values, with the length of the line indicating the magnitude

of change.

The color coding (blue for Q1, red for Q2) further enhances

the readability of the plot.

【Trivia】
‣ Dumbbell plots, also known as DNA plots or barbell plots,

are excellent for comparing two related values across

multiple categories.

‣ This type of plot is named after its resemblance to a

dumbbell weight, with two data points connected by a line.

‣ Dumbbell plots are particularly useful in business contexts

for before-and-after comparisons, such as sales

performance across different time periods.

‣ The technique of using np.random.seed() is crucial in data

science for reproducibility, allowing others to generate the

same "random" data.

‣ Matplotlib, the library used for plotting, is highly

customizable and can create a wide variety of statistical

graphics beyond dumbbell plots.

‣ In data visualization, the principle of "small multiples"

(repeating the same chart type for different categories) is

effectively applied in dumbbell plots.

‣ The use of pandas DataFrame in this example

demonstrates its versatility in handling structured data for

both analysis and visualization tasks.

20. Creating a Circular Packing Plot of

Hierarchical Data

Importance★★★★☆

Difficulty★★★★☆

A client in the e-commerce sector wants to visualize their

product category hierarchy using a circular packing plot.

They have provided you with hierarchical data representing

the main categories, subcategories, and the number of

products in each subcategory. Your task is to generate a

circular packing plot to help them better understand the

distribution and relationships within their product

categories.You will need to create sample data for this

exercise. The data should have the following

structure:Category ASubcategory A1: 150

productsSubcategory A2: 100 productsCategory

BSubcategory B1: 200 productsSubcategory B2: 50

productsSubcategory B3: 75 productsCategory

CSubcategory C1: 300 productsUse Python to generate this

data and create a circular packing plot.

【Data Generation Code Example】

import pandas as pd

Creating hierarchical data for the circular packing plot

data = {

'Category': ['A', 'A', 'B', 'B', 'B', 'C'],

'Subcategory': ['A1', 'A2', 'B1', 'B2', 'B3', 'C1'],

'Products': [150, 100, 200, 50, 75, 300]

}

Convert to DataFrame

df = pd.DataFrame(data)

df

【Diagram Answer】

【Code Answer】

import pandas as pd

import matplotlib.pyplot as plt

import squarify

Creating hierarchical data for the circular packing plot

data = {

 'Category': ['A', 'A', 'B', 'B', 'B', 'C'],

 'Subcategory': ['A1', 'A2', 'B1', 'B2', 'B3', 'C1'],

 'Products': [150, 100, 200, 50, 75, 300]

}

Convert to DataFrame

df = pd.DataFrame(data)

Aggregate data for circular packing plot

agg_data = df.groupby(['Category',

'Subcategory']).sum().reset_index()

Create sizes and labels for the plot

sizes = agg_data['Products']

labels = agg_data['Subcategory'] + ' (' +

agg_data['Products'].astype(str) + ')'

Create the circular packing plot

fig, ax = plt.subplots(figsize=(10, 8))

squarify.plot(sizes=sizes, label=labels, alpha=0.7, ax=ax)

ax.axis('off')

plt.title('Circular Packing Plot of Product Categories')

plt.show()

In this exercise, you are required to create a circular packing

plot using hierarchical data provided by a client.

First, you need to generate the sample data. We create a

dictionary containing the main categories, subcategories,

and the number of products in each subcategory.

This data is then converted into a pandas DataFrame for

easier manipulation.

Next, we aggregate the data to prepare it for plotting.

We group the data by the 'Category' and 'Subcategory'

columns, summing the 'Products' to get the total number of

products for each subcategory.

For the circular packing plot, we use the squarify library,

which is typically used for treemap visualizations but works

well for this type of plot too.

We prepare the sizes and labels for the plot, which are

derived from the aggregated data.

The sizes variable holds the number of products in each

subcategory, and the labels variable is a combination of the

subcategory names and their respective product counts.

We then create a plot using squarify.plot, passing the sizes

and labels. We set the alpha parameter to 0.7 for

transparency and remove the axis for better visualization.

Finally, we set the title and display the plot using plt.show().

This process helps visualize the distribution and

relationships within the product categories, making it easier

for the client to understand their data.

【Trivia】
Circular packing plots are a variation of treemaps that

display hierarchical data in a circular layout. They are useful

for visualizing proportions within categories in a more

aesthetically pleasing and space-efficient manner.

While squarify is commonly used for treemaps, it can be

adapted for circular packing plots with some customization,

demonstrating the flexibility of visualization tools in Python.

21. Generating a Beeswarm Plot of

Distribution Data

Importance★★★★☆

Difficulty★★★☆☆

You are working for a market research company.

Your task is to visualize the distribution of customer

satisfaction scores for different product categories.

The satisfaction scores range from 1 to 10, and you have

data for three categories: Electronics, Clothing, and

Groceries.

Generate a beeswarm plot to show the distribution of

satisfaction scores for these categories.

Use the provided code to create the input data and then

write the code to generate the plot.

【Data Generation Code Example】

import numpy as np

import pandas as pdnp.random.seed(42) # For

reproducibilitycategories = ['Electronics', 'Clothing',

'Groceries']

data = pd.DataFrame({

'Category': np.random.choice(categories, 300),

'Score': np.random.randint(1, 11, 300)

})print(data.head())

【Diagram Answer】

【Code Answer】

import numpy as np # Import numpy for numerical

operations # Set a random seed for reproducibility

import pandas as pd # Import pandas for data manipulation

import matplotlib.pyplot as plt # Import matplotlib for

plotting

import seaborn as sns # Import seaborn for advanced

plottingnp.random.seed(42) # For reproducibilitycategories

= ['Electronics', 'Clothing', 'Groceries'] # Define product

categories

data = pd.DataFrame({ # Create a DataFrame with random

categories and scores

'Category': np.random.choice(categories, 300),

'Score': np.random.randint(1, 11, 300)

})plt.figure(figsize=(10, 6)) # Set the figure size

sns.swarmplot(x='Category', y='Score', data=data) #

Create a beeswarm plot

plt.title('Distribution of Customer Satisfaction Scores') # Set

the title

plt.xlabel('Product Category') # Set the x-axis label

plt.ylabel('Satisfaction Score') # Set the y-axis label

plt.show() # Display the plot

To create a beeswarm plot in Python, you need to use the

seaborn library, which builds on top of matplotlib.

First, import the necessary libraries: numpy for numerical

operations, pandas for data manipulation, matplotlib for

plotting, and seaborn for advanced plotting functions.

Set a random seed using np.random.seed(42) to ensure that

the random numbers generated are reproducible.

Define the product categories as a list: categories =

['Electronics', 'Clothing', 'Groceries'].

Next, create a DataFrame data with random categories and

satisfaction scores using np.random.choice for the

categories and np.random.randint for the scores.

To generate the plot, set the figure size using

plt.figure(figsize=(10, 6)).

Use the sns.swarmplot function to create the beeswarm

plot, specifying the x-axis as the 'Category' column and the

y-axis as the 'Score' column of your DataFrame.

Add a title and axis labels using plt.title, plt.xlabel, and

plt.ylabel to make the plot more informative.

Finally, use plt.show() to display the plot.

This process demonstrates how to manipulate data and

visualize distributions using Python, helping you understand

how to create informative and visually appealing plots.

【Trivia】

‣ Beeswarm plots are particularly useful for displaying all

data points to show the distribution and density without

overlapping, unlike box plots or histograms.

‣ The seaborn library, built on top of matplotlib, simplifies

complex visualizations and provides an aesthetically

pleasing default style.

‣ Random seeds in numpy ensure that the random number

generation is reproducible, which is crucial for consistent

data analysis results.

22. Joy Plot of Distribution Data

Importance★★★☆☆

Difficulty★★★☆☆

You are working as a data analyst for a retail company.

Your task is to visualize the distribution of monthly sales

data across different regions to identify patterns and trends.

You decide to use a Joy Plot (also known as a Ridge Plot) to

display the distribution of sales data for each region.

Generate sample sales data for five regions over 12 months

and create a Joy Plot to visualize the distributions.

【Data Generation Code Example】

import numpy as np

import pandas as pd

regions = ['North', 'South', 'East', 'West', 'Central']

#Create a dictionary to store sales data

data = {'Month': np.tile(np.arange(1, 13), len(regions)),

'Region': np.repeat(regions, 12),

'Sales': np.random.randint(1000, 5000, 12 * len(regions))}

#Convert dictionary to DataFrame

df = pd.DataFrame(data)

df

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

#Create sample data

regions = ['North', 'South', 'East', 'West', 'Central']

data = {'Month': np.tile(np.arange(1, 13), len(regions)),

'Region': np.repeat(regions, 12),

'Sales': np.random.randint(1000, 5000, 12 * len(regions))}

df = pd.DataFrame(data)

#Set up the plot

sns.set(style='whitegrid')

g = sns.FacetGrid(df, row='Region', hue='Region',

aspect=4, height=1.5, palette='muted')

#Plot each distribution

g.map(sns.kdeplot, 'Sales', fill=True)

g.map(plt.axhline, y=0, lw=2, clip_on=False)

g.fig.subplots_adjust(hspace=-0.3)

#Remove axes details that do not play well with overlap

g.set_titles("")

g.set(yticks=[])

g.despine(bottom=True, left=True)

#Show plot

plt.show()

The first step involves importing necessary libraries: numpy,

pandas, matplotlib, and seaborn.

These libraries are essential for data manipulation and

visualization.

Next, sample sales data is generated using numpy to create

arrays of months and random sales values for different

regions.

The data is organized into a dictionary and then converted

into a pandas DataFrame.

This DataFrame will be used for plotting.

The visualization is set up using seaborn, a high-level

interface for drawing attractive statistical graphics.

The FacetGrid function is used to create a grid for plotting

the distributions of sales data by region.

The kdeplot function from seaborn is employed to plot

kernel density estimates for each region, with the fill=True

parameter to fill the area under the curves.

Some aesthetic adjustments are made to the plot: hiding

axis titles, removing y-axis ticks, and despine to remove the

top and right spines for a cleaner look.

The subplots_adjust method is used to adjust the spacing

between the plots to achieve the overlapping effect

characteristic of Joy Plots.

Finally, plt.show() is called to display the plot. This step

renders the Joy Plot, showing the distribution of sales data

for each region across different months.

【Trivia】
Joy Plots are named after the iconic album cover of Joy

Division's "Unknown Pleasures," which features a series of

stacked line plots.

These plots are particularly useful for visualizing the

distribution of data across multiple categories or time

periods.

23. Heatmap of Correlation Matrix

Importance★★★☆☆

Difficulty★★☆☆☆

You are an analyst at a retail company. Your task is to

understand the relationship between different sales metrics.

Create a heatmap of the correlation matrix for the following

sales data: total sales, online sales, in-store sales, and

discount amount. The goal is to visualize the correlations to

help the team understand how these metrics relate to each

other.Write a Python code to generate this heatmap.

【Data Generation Code Example】

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

#Create a DataFrame with sales data

data = {

'total_sales': np.random.randint(1000, 5000, 100),

'online_sales': np.random.randint(200, 3000, 100),

'in_store_sales': np.random.randint(500, 4000, 100),

'discount_amount': np.random.uniform(5, 50, 100)

}

df = pd.DataFrame(data)

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

#Create a DataFrame with sales data

df = pd.DataFrame({

'total_sales': np.random.randint(1000, 5000, 100),

'online_sales': np.random.randint(200, 3000, 100),

'in_store_sales': np.random.randint(500, 4000, 100),

'discount_amount': np.random.uniform(5, 50, 100)

})

#Calculate the correlation matrix

corr_matrix = df.corr()

#Create a heatmap

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')

plt.title('Correlation Matrix Heatmap')

plt.show()

The code begins by importing necessary libraries: pandas

for data manipulation, numpy for numerical operations,

seaborn for data visualization, and matplotlib for plotting.

A DataFrame df is created with four columns representing

different sales metrics: total sales, online sales, in-store

sales, and discount amount. Random values are generated

for each column to simulate sales data.

The correlation matrix of the DataFrame is calculated using

the .corr() method. This matrix shows the pairwise

correlation coefficients between the columns, indicating how

strongly they are related.

Seaborn's heatmap function is used to create a heatmap of

the correlation matrix. The annot=True parameter adds the

correlation values to the heatmap cells, and

cmap='coolwarm' specifies the color scheme. The plot is

titled 'Correlation Matrix Heatmap' using plt.title(), and

plt.show() displays the heatmap.

【Trivia】
A correlation matrix is a table showing correlation

coefficients between variables. Each cell in the table shows

the correlation between two variables. The value is in the

range of -1 to 1. A value closer to 1 implies a strong positive

correlation, while a value closer to -1 implies a strong

negative correlation. A value around 0 implies no

correlation. Heatmaps are useful for visualizing the strength

and direction of correlations in large datasets.

24. Generating Pair Grid Plot for

Customer Satisfaction Analysis

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a retail company.

The company has collected customer satisfaction data

across multiple dimensions for their new product line.

Your task is to create a pair grid plot to visualize the

relationships between different satisfaction metrics.

The dataset includes the following variables:

Overall Satisfaction (1-10 scale)

Product Quality (1-10 scale)

Customer Service (1-10 scale)

Price Satisfaction (1-10 scale)

Likelihood to Recommend (1-10 scale)

Create a pair grid plot using seaborn to visualize the

relationships between these variables.

The plot should include scatter plots for each pair of

variables and histograms for each individual variable.

Use different colors for each variable to enhance readability.

Your code should generate the sample data within the script

and produce the pair grid plot without requiring any external

data files.

【Data Generation Code Example】

import numpy as np

np.random.seed(42)

n_samples = 200

overall_satisfaction = np.random.randint(1, 11, n_samples)

product_quality = np.random.randint(1, 11, n_samples)

customer_service = np.random.randint(1, 11, n_samples)

price_satisfaction = np.random.randint(1, 11, n_samples)

likelihood_to_recommend = np.random.randint(1, 11,

n_samples)

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

np.random.seed(42)

n_samples = 200

data = pd.DataFrame({

'Overall Satisfaction': np.random.randint(1, 11, n_samples),

'Product Quality': np.random.randint(1, 11, n_samples),

'Customer Service': np.random.randint(1, 11, n_samples),

'Price Satisfaction': np.random.randint(1, 11, n_samples),

'Likelihood to Recommend': np.random.randint(1, 11,

n_samples)

})

sns.set(style="ticks", color_codes=True)

g = sns.PairGrid(data)

g.map_diag(plt.hist)

g.map_offdiag(plt.scatter)

g.add_legend()

plt.tight_layout()

plt.show()

This code generates a pair grid plot to visualize relationships

between different customer satisfaction metrics.

Let's break down the code and explain its key components:

Data Generation:

We use NumPy to generate random data for our satisfaction

metrics.

We create a pandas DataFrame with 200 samples and 5

variables.

Each variable is randomly generated with values between 1

and 10.

Data Visualization:

We use seaborn, a statistical data visualization library built

on top of matplotlib.

The sns.PairGrid(data) function creates a grid of axes for

plotting pairwise relationships in the dataset.

Plotting:

g.map_diag(plt.hist) plots histograms on the diagonal axes,

showing the distribution of each variable.

g.map_offdiag(plt.scatter) creates scatter plots for each pair

of variables on the off-diagonal axes.

This allows us to see both the distribution of individual

variables and the relationships between pairs of variables.

Customization:

sns.set(style="ticks", color_codes=True) sets the visual

style of the plot.

g.add_legend() adds a legend to the plot for better

interpretation.

plt.tight_layout() adjusts the plot layout to prevent

overlapping.

Display:

plt.show() displays the final plot.

This pair grid plot is particularly useful for exploring

multivariate data.

It allows us to quickly identify patterns, correlations, and

distributions across multiple variables simultaneously.

For example, we can easily spot if there's a strong

correlation between overall satisfaction and likelihood to

recommend, or if product quality has a uniform or skewed

distribution.

The use of scatter plots for pairwise comparisons helps in

identifying linear or non-linear relationships between

variables, while the histograms on the diagonal provide

insight into the distribution of each individual metric.

This visualization technique is extremely valuable in

customer satisfaction analysis as it provides a

comprehensive overview of how different aspects of

customer experience relate to each other, helping

businesses identify areas for improvement and understand

the factors that most strongly influence overall customer

satisfaction.

【Trivia】
‣ Pair grid plots, also known as scatterplot matrices or

SPLOM, were introduced by John W. Tukey and Paul A. Tukey

in 1981.

‣ Seaborn, the library used for creating this plot, is named

after a character from the novel "The Voyage of the Dawn

Treader" by C.S. Lewis.

‣ The concept of using a matrix of scatterplots to visualize

multivariate data relationships dates back to 1920s, but it

became more popular with the advent of computer graphics

in the 1970s and 1980s.

‣ Pair grid plots are particularly useful in exploratory data

analysis (EDA), a concept popularized by John Tukey in his

1977 book "Exploratory Data Analysis."

‣ The diagonal elements in a pair grid plot can be

customized to show various types of univariate plots, not

just histograms. Common alternatives include kernel density

estimates or box plots.

‣ In large datasets with many variables, pair grid plots can

become cluttered. Advanced techniques like hierarchical

clustering can be used to order the variables and reveal

patterns more effectively.

‣ The seaborn library used in this example is built on top of

matplotlib, which in turn was inspired by MATLAB's plotting

capabilities.

‣ Pair grid plots are not limited to continuous variables.

They can also be used with categorical data, where the off-

diagonal plots might show box plots or violin plots instead of

scatter plots.

25. Facet Grid Plot of Categorical

Data

Importance★★★★☆

Difficulty★★★☆☆

A retail company wants to analyze the sales performance

across different regions and product categories. They have

data on sales amounts, regions, and product categories.

Your task is to create a Facet Grid plot that visualizes the

distribution of sales amounts across these categories and

regions. Use the provided sample data to generate the plot.

Ensure the plot is clear and informative.

【Data Generation Code Example】

import pandas as pd

import numpy as np

Generate sample data

np.random.seed(42)

regions = ['North', 'South', 'East', 'West']

categories = ['Electronics', 'Clothing', 'Groceries']

data = {

'Region': [regions[np.random.randint(0, 4)] for _ in

range(100)],

'Category': [categories[np.random.randint(0, 3)] for _ in

range(100)],

'Sales': np.random.randint(100, 1000, 100)

}

df = pd.DataFrame(data)

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

Generate sample data

np.random.seed(42)

regions = ['North', 'South', 'East', 'West']

categories = ['Electronics', 'Clothing', 'Groceries']

data = {

'Region': [regions[np.random.randint(0, 4)] for _ in

range(100)],

'Category': [categories[np.random.randint(0, 3)] for _ in

range(100)],

'Sales': np.random.randint(100, 1000, 100)

}

df = pd.DataFrame(data)

Create the FacetGrid plot

g = sns.FacetGrid(df, col="Region", row="Category",

margin_titles=True)

g.map(sns.histplot, "Sales")

plt.show()

To create a Facet Grid plot of categorical data, you first need

to generate a sample dataset.

In this example, the dataset consists of sales data

categorized by regions and product categories.

The data is generated using NumPy's random functions to

ensure a diverse and random distribution of values.

The pandas library is used to create a DataFrame from the

generated data.

The core of the visualization process involves using

Seaborn's FacetGrid class.

A FacetGrid allows you to create a grid of plots based on the

values of categorical variables.

In this case, the grid is defined by the 'Region' and

'Category' columns in the dataset.

Each cell in the grid represents a combination of a region

and a category, and the sales data is visualized within each

cell.

The map method is used to apply a specific plotting function

(in this case, sns.histplot) to each cell in the grid.

Finally, plt.show() is called to display the plot.

This approach provides a clear and organized way to

visualize how sales amounts are distributed across different

regions and product categories, making it easier to identify

patterns and trends in the data.

【Trivia】
‣ Seaborn's FacetGrid is particularly useful for visualizing

complex relationships in multi-dimensional categorical data.

‣ The FacetGrid can be customized extensively, including

adjusting the size of the grid, adding titles, and modifying

the appearance of the plots.

‣ Histograms, scatter plots, and other types of plots can be

used within the FacetGrid to represent the data in various

ways.

‣ The margin_titles parameter in FacetGrid helps in

displaying the titles of the rows and columns on the

margins, making the grid more readable.

26. Plotting a Linear Regression

Importance★★★★☆

Difficulty★★★☆☆

You are working as a data analyst for a retail company. The

company wants to understand the relationship between

advertising spending and sales.

Your task is to create a scatter plot of the given data and fit

a linear regression line to visualize this relationship.

Generate the data within the code, create the plot, and

display it. Use Python's data processing and visualization

libraries to achieve this.

【Data Generation Code Example】

import numpy as np

import pandas as pd

Generate sample datanp.random.seed(0)

advertising_spend = np.random.uniform(1000, 5000, 100)

sales = 5 * advertising_spend + np.random.normal(0, 1000,

100)

Create DataFramedata = pd.DataFrame({'Advertising

Spend': advertising_spend, 'Sales': sales})

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.linear_model import LinearRegression

Generate sample datanp.random.seed(0)

advertising_spend = np.random.uniform(1000, 5000, 100)

sales = 5 * advertising_spend + np.random.normal(0, 1000,

100)

Create DataFramedata = pd.DataFrame({'Advertising

Spend': advertising_spend, 'Sales': sales})

Fit linear regression modelmodel = LinearRegression()

model.fit(data[['Advertising Spend']], data['Sales'])

sales_pred = model.predict(data[['Advertising Spend']])

Plot data and regression lineplt.figure(figsize=(10, 6))

sns.scatterplot(x='Advertising Spend', y='Sales',

data=data)

plt.plot(data['Advertising Spend'], sales_pred, color='red',

label='Linear Regression Line')

plt.xlabel('Advertising Spend')

plt.ylabel('Sales')

plt.title('Linear Relationship between Advertising Spend and

Sales')

plt.legend()

plt.show()

First, we import the necessary libraries: numpy, pandas,

matplotlib, seaborn, and sklearn.

numpy is used for numerical operations, pandas for data

manipulation, matplotlib and seaborn for plotting, and

sklearn for the linear regression model.

We generate random data for advertising spending using

numpy's uniform function, which creates 100 data points

between 1000 and 5000.

To simulate sales data, we assume a linear relationship

where sales are five times the advertising spend plus some

random noise.

This noise is added using numpy's normal function to make

the data more realistic.

We store the generated data in a pandas DataFrame for

easier manipulation and plotting.

Next, we fit a linear regression model using sklearn's

LinearRegression class.

We train the model with the advertising spend as the

predictor variable and sales as the target variable.

After fitting the model, we use it to predict sales based on

the advertising spend.

For visualization, we create a scatter plot of the advertising

spend against sales using seaborn's scatterplot function.

We also plot the regression line using matplotlib's plot

function, setting the x-values as the advertising spend and

the y-values as the predicted sales.

Labels and a title are added for clarity, and we use the

legend to differentiate between the data points and the

regression line.

Finally, we display the plot using plt.show().

【Trivia】
Linear regression is one of the simplest and most commonly

used machine learning algorithms.

It assumes a linear relationship between the input variables

(independent variables) and the single output variable

(dependent variable).

The goal is to find the line that best fits the data, minimizing

the sum of the squared differences between the observed

and predicted values.

This method is highly interpretable, making it valuable for

understanding relationships between variables in various

fields such as economics, biology, and social sciences.

27. Creating a Residual Plot for

Regression Analysis

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a real estate company.

The company wants to understand the relationship between

house prices and their square footage.

They have collected data on recent house sales, including

the price and square footage of each house.

Your task is to create a linear regression model to predict

house prices based on square footage, and then create a

residual plot to assess the model's performance.

Specifically, you need to:

Generate sample data for house prices and square footage.

Perform a linear regression analysis.

Create a residual plot to visualize the differences between

the actual prices and the predicted prices.

Include appropriate labels and a title for the plot.

Write a Python script that accomplishes these tasks using

libraries such as NumPy, Pandas, Matplotlib, and Scikit-

learn.

Make sure to create the sample data within your code.

【Data Generation Code Example】

import numpy as np

np.random.seed(42)

square_footage = np.random.uniform(1000, 5000, 100)

price = 100000 + 200 * square_footage +

np.random.normal(0, 50000, 100)

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

np.random.seed(42)

square_footage = np.random.uniform(1000, 5000, 100)

price = 100000 + 200 * square_footage +

np.random.normal(0, 50000, 100)

df = pd.DataFrame({'Square Footage': square_footage,

'Price': price})

X = df[['Square Footage']]

y = df['Price']

model = LinearRegression()

model.fit(X, y)

predictions = model.predict(X)

residuals = y - predictions

plt.figure(figsize=(10, 6))

plt.scatter(predictions, residuals, color='blue', alpha=0.6)

plt.axhline(y=0, color='red', linestyle='--')

plt.xlabel('Predicted House Prices')

plt.ylabel('Residuals')

plt.title('Residual Plot for House Price Prediction')

plt.show()

This code demonstrates how to create a residual plot for a

regression analysis using Python.

Let's break down the process step by step:

Data Generation:

We start by generating sample data for our analysis.

We create two arrays: 'square_footage' and 'price'.

The 'square_footage' array contains random values between

1000 and 5000, representing the square footage of houses.

The 'price' array is calculated based on a linear relationship

with square footage, plus some random noise to simulate

real-world variability.

Data Preparation:

We create a pandas DataFrame from our generated data.

This step organizes our data into a structured format,

making it easier to work with.

Linear Regression:

We use scikit-learn's LinearRegression class to create and fit

our model.

We separate our data into features (X) and target (y).

In this case, 'Square Footage' is our feature, and 'Price' is

our target.

The 'fit' method trains the model on our data.

Making Predictions:

We use the trained model to make predictions on our input

data.

These predictions represent the estimated house prices

based on square footage.

Calculating Residuals:

Residuals are the differences between the actual values (y)

and the predicted values.

We calculate these by subtracting the predictions from the

actual prices.

Creating the Residual Plot:

We use matplotlib to create the residual plot.

Here's what each part of the plotting code does:

plt.figure(figsize=(10, 6)): Sets the size of the plot.

plt.scatter(predictions, residuals, color='blue', alpha=0.6):

Creates a scatter plot of predicted prices vs. residuals.

The alpha parameter sets the transparency of the points.

plt.axhline(y=0, color='red', linestyle='--'): Adds a horizontal

line at y=0 to help visualize the distribution of residuals

above and below zero.

plt.xlabel() and plt.ylabel(): Add labels to the x and y axes.

plt.title(): Adds a title to the plot.

plt.show(): Displays the plot.

The resulting residual plot allows us to visually assess the

performance of our regression model.

In an ideal scenario, the residuals should be randomly

scattered around the horizontal line at y=0.

Any patterns in the residual plot could indicate issues with

the model, such as non-linearity or heteroscedasticity.

This exercise demonstrates key skills in Python data

manipulation and visualization, including working with

NumPy for numerical operations, Pandas for data

structuring, scikit-learn for machine learning tasks, and

matplotlib for creating informative visualizations.

【Trivia】
‣ Residual plots are crucial tools in regression analysis for

checking the assumptions of linear regression.

‣ A perfect residual plot would show a random scatter of

points with no discernible pattern.

‣ Patterns in residual plots can indicate issues like non-

linearity, heteroscedasticity, or the need for additional

predictor variables.

‣ The scikit-learn library used in this example is one of the

most popular machine learning libraries in Python.

‣ In real estate analysis, factors beyond square footage (like

location, age of the house, etc.) would typically be included

for more accurate price predictions.

‣ The numpy.random.seed() function is used to ensure

reproducibility of random number generation, which is

important for consistent results in data science projects.

‣ The alpha parameter in plt.scatter() controls the

transparency of points, which can be useful for visualizing

overlapping data points.

28. Categorical Plot of Survey Data

Importance★★★★☆

Difficulty★★★☆☆

You are working as a data analyst for a company that

recently conducted a survey to understand customer

preferences for different product categories. The survey

results include responses from 100 customers, with each

customer rating their preference for three product

categories: 'Electronics', 'Clothing', and 'Groceries'. Your

task is to generate a categorical plot to visualize the survey

data. Create the input data within your code and ensure the

plot is displayed.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(0)

data = pd.DataFrame({

'CustomerID': range(1, 101),

'Electronics': np.random.randint(1, 6, 100),

'Clothing': np.random.randint(1, 6, 100),

'Groceries': np.random.randint(1, 6, 100)

})

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

np.random.seed(0)

data = pd.DataFrame({

'CustomerID': range(1, 101),

'Electronics': np.random.randint(1, 6, 100),

'Clothing': np.random.randint(1, 6, 100),

'Groceries': np.random.randint(1, 6, 100)

})

data_melted = pd.melt(data, id_vars=['CustomerID'],

value_vars=['Electronics', 'Clothing', 'Groceries'],

var_name='Category', value_name='Rating')

sns.catplot(data=data_melted, kind='box', x='Category',

y='Rating')

plt.title('Customer Preferences for Product Categories')

plt.show()

First, we import the necessary libraries: pandas for data

manipulation, numpy for generating random data, seaborn

for plotting, and matplotlib for displaying the plot.

We set a random seed using np.random.seed(0) to ensure

reproducibility of the random data.

Next, we create a DataFrame named data with 100 rows,

where each row represents a customer.

The DataFrame includes columns for 'CustomerID',

'Electronics', 'Clothing', and 'Groceries', with random integer

values between 1 and 5 representing customer ratings.

We then use the pd.melt function to transform the

DataFrame from wide format to long format.

This function takes the original DataFrame and creates a

new DataFrame where each row represents a single rating

for a specific category.

The id_vars parameter specifies the columns to keep as

identifiers, and the value_vars parameter specifies the

columns to unpivot.

The resulting DataFrame has three columns: 'CustomerID',

'Category', and 'Rating'.

Next, we use seaborn's catplot function to create a

categorical plot.

We specify the data source as data_melted, the plot type as

'box', and the x and y axes as 'Category' and 'Rating',

respectively.

Finally, we set the plot title using plt.title and display the

plot using plt.show.

【Trivia】
‣ Seaborn is built on top of matplotlib and provides a high-

level interface for drawing attractive and informative

statistical graphics.

‣ The pd.melt function is particularly useful for transforming

data into a format suitable for plotting and analysis.

‣ Box plots are useful for visualizing the distribution of data

and identifying outliers. They show the median, quartiles,

and potential outliers in the data.

‣ Setting a random seed ensures that the random numbers

generated are reproducible, which is crucial for debugging

and sharing results.

29. Creating a Strip Plot of

Categorical Data

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst at a retail company. Your manager

has asked you to visualize the distribution of sales amounts

across different product categories to identify any patterns

or anomalies. Create a strip plot to display this information.

Generate a sample dataset with the following structure:

Categories: 'Electronics', 'Clothing', 'Home & Kitchen'

Sales Amounts: Random values between 10 and 500

Use Python to create this visualization.

【Data Generation Code Example】

import pandas as pd

import numpy as np

categories = ['Electronics', 'Clothing', 'Home & Kitchen']

data = pd.DataFrame({

'Category': [categories[i % 3] for i in range(300)],

'Sales Amount': np.random.randint(10, 501, 300)

})

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

categories = ['Electronics', 'Clothing', 'Home & Kitchen']

data = pd.DataFrame({

'Category': [categories[i % 3] for i in range(300)],

'Sales Amount': np.random.randint(10, 501, 300)

})

sns.stripplot(x='Category', y='Sales Amount', data=data)

plt.title('Sales Amount Distribution by Category')

plt.xlabel('Category')

plt.ylabel('Sales Amount')

plt.show()

To create a strip plot of categorical data, we first need to

generate a sample dataset.

We use the pandas library to create a DataFrame and

numpy to generate random sales amounts.

The 'Category' column contains repeated values for

'Electronics', 'Clothing', and 'Home & Kitchen'.

The 'Sales Amount' column contains random integers

between 10 and 500.

Next, we use the seaborn library to create the strip plot.

The sns.stripplot function takes the x and y parameters to

define the categorical and numerical data, respectively.

We pass the DataFrame to the data parameter.

Finally, we use matplotlib's plt functions to add a title and

labels to the plot and display it with plt.show().

【Trivia】
‣ Strip plots are useful for visualizing the distribution of data

points across different categories, especially when dealing

with small datasets.

‣ Seaborn's stripplot function can be customized with

various parameters, such as jitter, to improve the readability

of overlapping points.

‣ Combining strip plots with other plots like box plots can

provide more insights into the data distribution.

30. Swarm Plot of Distribution Data

Importance★★★☆☆

Difficulty★★☆☆☆

You are a data analyst working for a company that wants to

visualize the distribution of a particular dataset.

Your task is to create a swarm plot that shows the

distribution of this data.

First, you need to generate a sample dataset with values

following a normal distribution.

Then, using this dataset, create a swarm plot.

The plot should help in understanding the distribution of the

data points.

【Data Generation Code Example】

import numpy as np

import pandas as pd

data = pd.DataFrame({ 'value': np.random.normal(0, 1,

100) })

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

data = pd.DataFrame({ 'value': np.random.normal(0, 1,

100) })

plt.figure(figsize=(10, 6))

sns.swarmplot(x=data['value'])

plt.title('Swarm Plot of Distribution Data')

plt.xlabel('Value')

plt.show()

To create a swarm plot, we start by generating the data.

Here, we use the numpy library to create a normal

distribution of 100 data points with a mean of 0 and a

standard deviation of 1.

This data is stored in a pandas DataFrame.

Next, we import the necessary libraries for plotting:

matplotlib.pyplot and seaborn.

Matplotlib is a fundamental library for creating static,

animated, and interactive visualizations in Python.

Seaborn, built on top of matplotlib, provides a high-level

interface for drawing attractive and informative statistical

graphics.

We then use seaborn's swarmplot function to create the

swarm plot.

The 'x' parameter is set to the 'value' column of our

DataFrame.

This function positions each data point individually along the

x-axis, ensuring they do not overlap, thus showing the

distribution of values clearly.

Finally, we add a title and label to the x-axis for better

understanding of the plot, and use plt.show() to display the

plot.

【Trivia】
‣ Seaborn's swarm plot is particularly useful when you need

to visualize all individual observations along with their

distribution.

‣ Unlike strip plots, swarm plots adjust the positions of data

points to avoid overlap, providing a better view of the data

density.

‣ Seaborn also provides other similar plots like box plots and

violin plots that can be used to show data distributions with

additional statistical information.

‣ Combining swarm plots with other plot types can give a

comprehensive view of data distributions and outliers.

31. Factor Plot of Categorical Data

Importance★★★★☆

Difficulty★★★☆☆

A retail company wants to analyze customer satisfaction

across different store locations.

The company conducted a survey, gathering satisfaction

ratings (1 to 5) from customers at three different stores

(Store A, Store B, Store C).

Your task is to create a factor plot to visualize the

distribution of customer satisfaction ratings across these

stores.

This will help the company understand if there are

significant differences in customer satisfaction between the

stores.

Generate the input data within your code.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(0)

data = {

'Store': ['Store A']*100 + ['Store B']*100 + ['Store C']*100,

'Satisfaction': np.random.choice([1, 2, 3, 4, 5], 300, p=[0.1,

0.2, 0.4, 0.2, 0.1])

}

df = pd.DataFrame(data)

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

np.random.seed(0)

data = {

'Store': ['Store A']*100 + ['Store B']*100 + ['Store C']*100,

'Satisfaction': np.random.choice([1, 2, 3, 4, 5], 300, p=[0.1,

0.2, 0.4, 0.2, 0.1])

}

df = pd.DataFrame(data)

sns.catplot(x='Store', y='Satisfaction', kind='box', data=df)

plt.title('Customer Satisfaction Ratings by Store')

plt.xlabel('Store')

plt.ylabel('Satisfaction Rating')

plt.show()

To solve this problem, we first need to generate the input

data.

We use NumPy and pandas to create a DataFrame that

simulates survey results for customer satisfaction ratings

across three stores.

We seed the random number generator to ensure

reproducibility.

The satisfaction ratings are generated randomly based on

specified probabilities.

The pandas DataFrame stores this data with two columns:

'Store' and 'Satisfaction'.

Next, we use the seaborn library to create a factor plot.

Seaborn is a powerful visualization library built on top of

matplotlib, providing high-level functions for statistical plots.

Here, we use sns.catplot() with kind='box' to create a box

plot, which visualizes the distribution of satisfaction ratings

for each store.

Box plots display the median, quartiles, and potential

outliers, giving a clear summary of the data distribution.

We set the title and labels for the x and y axes to make the

plot informative.

Finally, plt.show() is called to display the plot.

This visualization helps to compare customer satisfaction

across the stores, revealing any significant differences.

【Trivia】
‣ Box plots are useful for detecting outliers and

understanding the spread of data.

‣ Seaborn provides many other categorical plots like bar

plots, count plots, and violin plots, each useful for different

types of data analysis.

‣ Using a seed with random number generators ensures

that the results are reproducible, which is crucial for

debugging and comparing results in data analysis.

32. Comparative Point Plot

Generation

Importance★★★★☆

Difficulty★★★☆☆

A marketing manager at a multinational company wants to

compare the sales performance of three product lines across

different regions.

They have collected data on sales figures for each product

line in various countries.

Your task is to create a point plot that visually represents

this comparative data.

The manager wants to see:

‣ Sales figures for each product line

‣ Data points for different countries

‣ Clear differentiation between product lines

Create a Python script that generates sample data and

produces a point plot using seaborn.

The plot should clearly show the sales performance of each

product line across different countries, allowing for easy

comparison.

Make sure to include appropriate labels, a title, and a legend

in your visualization.

Your code should:

Generate sample data for three product lines and multiple

countries

Create a point plot using seaborn

Customize the plot for clarity and readability

Display the final visualization

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(42)

countries = ['USA', 'Canada', 'UK', 'Germany', 'France',

'Japan', 'Australia']

product_lines = ['Electronics', 'Clothing', 'Home Goods']

data = [{'Country': country, 'Product Line': product, 'Sales':

np.random.randint(100, 1000)} for country in countries for

product in product_lines]

df = pd.DataFrame(data)

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

np.random.seed(42)

countries = ['USA', 'Canada', 'UK', 'Germany', 'France',

'Japan', 'Australia']

product_lines = ['Electronics', 'Clothing', 'Home Goods']

data = [{'Country': country, 'Product Line': product, 'Sales':

np.random.randint(100, 1000)} for country in countries for

product in product_lines]

df = pd.DataFrame(data)

plt.figure(figsize=(12, 6))

sns.pointplot(x='Country', y='Sales', hue='Product Line',

data=df, palette='deep')

plt.title('Sales Performance by Product Line Across

Countries', fontsize=16)

plt.xlabel('Country', fontsize=12)

plt.ylabel('Sales', fontsize=12)

plt.xticks(rotation=45)

plt.legend(title='Product Line', title_fontsize='12',

fontsize='10')

plt.tight_layout()

plt.show()

This code creates a point plot to compare sales performance

across different product lines and countries.

Let's break down the key components of the data

processing and visualization:

Data Generation:

We use NumPy's random number generator to create

sample sales data.

The data is structured as a list of dictionaries, each

containing information about the country, product line, and

sales figure.

This list is then converted into a pandas DataFrame for easy

manipulation.

Data Visualization:

Setting up the plot:

We use matplotlib.pyplot to create a figure with a specified

size (12x6 inches).

Creating the point plot:

The seaborn.pointplot function is used to create the

visualization.

It takes the following main arguments:

x='Country': Countries are plotted on the x-axis

y='Sales': Sales figures are plotted on the y-axis

hue='Product Line': This differentiates the product lines by

color

data=df: The DataFrame containing our data

palette='deep': A color palette for distinguishing product

lines

Customizing the plot:

We set a title for the plot using plt.title()

X and Y axis labels are added with plt.xlabel() and

plt.ylabel()

X-axis labels (country names) are rotated 45 degrees for

better readability using plt.xticks(rotation=45)

A legend is added and customized using plt.legend()

Finalizing and displaying:

plt.tight_layout() is used to automatically adjust the plot

layout

plt.show() displays the final visualization

This code demonstrates several important aspects of data

visualization in Python:

Using pandas for data manipulation

Leveraging seaborn for statistical data visualization

Customizing plots with matplotlib for improved clarity and

aesthetics

The resulting point plot effectively shows:

The sales performance of each product line across different

countries

How sales vary between countries for each product line

Which product lines perform better or worse in specific

countries

This type of visualization is particularly useful for comparing

categorical data across multiple categories and subgroups,

making it ideal for the marketing manager's needs in this

scenario.

【Trivia】
‣ Seaborn is built on top of matplotlib and provides a high-

level interface for drawing attractive statistical graphics.

‣ Point plots are excellent for showing the central tendency

(like mean or median) of numeric variables for different

levels of categorical variables.

‣ In a point plot, the points represent the mean of the y

variable for each x category, while the error bars often

represent the 95% confidence interval.

‣ The 'deep' color palette in seaborn is designed to be

colorblind-friendly, making your visualizations more

accessible.

‣ Rotating x-axis labels is a common technique to prevent

overlapping when dealing with long category names or

many categories.

‣ The tight_layout() function in matplotlib automatically

adjusts subplot parameters to give specified padding. This is

particularly useful when you have titles, labels, or other

elements that might otherwise overlap.

‣ Seaborn integrates closely with pandas data structures,

making it easy to plot data directly from DataFrames.

‣ When working with real-world data, it's often necessary to

handle missing values or outliers before creating

visualizations. Pandas provides various methods for this,

such as dropna() for removing rows with missing data or

fillna() for filling in missing values.

33. Creating a Bar Plot with

Categorical Data

Importance★★★★☆

Difficulty★★☆☆☆

A retail store wants to visualize the distribution of sales

across different product categories to identify the most

popular ones.

Your task is to create a bar plot that shows the total sales for

each product category.

Use the provided sample data to generate this plot.

The data consists of two columns: "Category" and "Sales".

The "Category" column contains the product categories, and

the "Sales" column contains the sales amounts for each

transaction.

Generate the necessary sample data and create the bar

plot.

【Data Generation Code Example】

import pandas as pd

import numpy as np

Generating sample datacategories = ['Electronics',

'Clothing', 'Groceries', 'Home & Garden', 'Sports', 'Toys']

np.random.seed(0) # For reproducibility

data = pd.DataFrame({

'Category': np.random.choice(categories, 100),

'Sales': np.random.randint(10, 1000, 100)

})

data.head()

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Generating sample datacategories = ['Electronics',

'Clothing', 'Groceries', 'Home & Garden', 'Sports', 'Toys']

np.random.seed(0) # For reproducibility

data = pd.DataFrame({

'Category': np.random.choice(categories, 100),

'Sales': np.random.randint(10, 1000, 100)

})

Aggregating sales data by categorysales_by_category =

data.groupby('Category').sum().reset_index()

Creating the bar plotplt.figure(figsize=(10, 6))

sns.barplot(x='Category', y='Sales',

data=sales_by_category)

plt.title('Total Sales by Category')

plt.xlabel('Category')

plt.ylabel('Total Sales')

plt.show()

To begin, we generate the sample data using numpy and

pandas.

We create a DataFrame with two columns: "Category" and

"Sales". The "Category" column is populated with random

choices from a predefined list of product categories, and the

"Sales" column contains random integers representing sales

amounts.

By using np.random.seed(0), we ensure that the random

data is reproducible.

After generating the sample data, we aggregate the sales

amounts by category using the groupby method in pandas.

This groups the data by the "Category" column and sums

the "Sales" values for each category.

The result is a new DataFrame where each row represents a

product category and its corresponding total sales.

We then create a bar plot to visualize the total sales for

each product category.

We use seaborn's barplot function, specifying the x-axis as

"Category" and the y-axis as "Sales".

We also customize the plot by setting the figure size, adding

a title, and labeling the axes.

When the code is executed, it displays a bar plot showing

the total sales for each product category, allowing the retail

store to identify which categories are the most popular.

【Trivia】
Seaborn is built on top of matplotlib and provides a high-

level interface for drawing attractive statistical graphics.

It simplifies the process of creating complex visualizations

with fewer lines of code.

Additionally, seaborn integrates well with pandas

DataFrames, making it easy to visualize data directly from

DataFrame objects.

34. Count Plot of Categorical Data

Importance★★★★☆

Difficulty★★★☆☆

A retail company wants to analyze the distribution of their

product categories to better understand their inventory.

They have provided you with a sample dataset of product

categories and the number of products in each category.

Your task is to create a count plot to visualize the frequency

of each product category.

Write a Python code to generate a count plot of the product

categories using the provided sample data.

Use the following data for your analysis:Category A: 30

productsCategory B: 45 productsCategory C: 15

productsCategory D: 25 productsCategory E: 10 products

【Data Generation Code Example】

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

data = {'Category': ['A', 'B', 'C', 'D', 'E'], 'Count': [30, 45, 15,

25, 10]}

df = pd.DataFrame(data)

【Diagram Answer】

【Code Answer】

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

data = {'Category': ['A', 'B', 'C', 'D', 'E'], 'Count': [30, 45, 15,

25, 10]}

df = pd.DataFrame(data)

sns.countplot(data=df, x='Category', y='Count')

plt.xlabel('Product Category')

plt.ylabel('Number of Products')

plt.title('Count of Products by Category')

plt.show()

To solve this problem, we first need to create a dataset

containing the product categories and their respective

counts.

This is done using a dictionary where the keys are

'Category' and 'Count', and the values are lists of category

labels and their corresponding product counts.

We then convert this dictionary into a pandas DataFrame for

easier manipulation and plotting.

For visualization, we use the seaborn library, which provides

a high-level interface for drawing attractive and informative

statistical graphics.

The sns.countplot function is used to create a count plot.

In this case, we set the data parameter to our DataFrame df,

x to 'Category', and y to 'Count' to specify the categorical

and numerical data for the plot.

After specifying the data for the plot, we use plt.xlabel,

plt.ylabel, and plt.title to set the labels for the x-axis, y-axis,

and the title of the plot, respectively.

Finally, we call plt.show() to display the plot.

This code will generate a count plot showing the number of

products in each category, helping the retail company

understand their inventory distribution.

【Trivia】
Count plots are particularly useful for visualizing the

distribution of categorical data.

They are often used in exploratory data analysis to

understand the frequency of different categories in a

dataset.

Seaborn's countplot function is a powerful tool because it

can easily handle pandas DataFrames, allowing for quick

and effective data visualization.

Using count plots can help businesses identify trends, make

informed decisions about inventory management, and spot

categories that may need attention.

35. KDE Plot of Distribution Data

Importance★★★★☆

Difficulty★★★☆☆

You are working as a data analyst for a company that wants

to visualize the distribution of their sales data using a Kernel

Density Estimate (KDE) plot.

Your task is to create a KDE plot based on a sample sales

data.

This will help the company understand the distribution and

density of sales over a certain period.

Generate the sample sales data within your code and

produce the KDE plot.

Use appropriate libraries to accomplish this task.

【Data Generation Code Example】

import numpy as np

np.random.seed(42)

sales_data = np.random.normal(loc=100, scale=20,

size=1000)

【Diagram Answer】

【Code Answer】

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

np.random.seed(42)

sales_data = np.random.normal(loc=100, scale=20,

size=1000)

plt.figure(figsize=(10,6))

sns.kdeplot(sales_data, shade=True, color="blue")

plt.title("KDE Plot of Sales Data Distribution")

plt.xlabel("Sales")

plt.ylabel("Density")

plt.grid(True)

plt.show()

To create a Kernel Density Estimate (KDE) plot, we first need

to generate sample data.

We use NumPy to create random sales data with a normal

distribution, setting a seed for reproducibility.

The KDE plot will be created using Seaborn and Matplotlib

libraries.

We start by importing the necessary libraries: NumPy for

data generation, Matplotlib for plotting, and Seaborn for the

KDE plot.

We set the seed for NumPy's random number generator to

ensure the results are reproducible.

Then, we generate the sample sales data using a normal

distribution with a mean (loc) of 100 and a standard

deviation (scale) of 20, creating 1000 data points.

Next, we initialize a figure for our plot and use Seaborn's

kdeplot function to create the KDE plot of the sales data.

The shade parameter adds shading under the curve, and

color specifies the color of the plot.

We then add a title and labels for the x and y axes using

Matplotlib's title, xlabel, and ylabel functions.

Finally, we display the plot using plt.show(). The grid

function is used to add a grid to the plot for better

readability.

【Trivia】
‣ The Kernel Density Estimate (KDE) is a non-parametric

way to estimate the probability density function of a random

variable.

‣ KDE plots are particularly useful for visualizing the

distribution of data without assuming an underlying

distribution model.

‣ The bandwidth parameter in KDE controls the smoothness

of the estimated density curve: a smaller bandwidth leads

to a more wiggly curve, while a larger bandwidth leads to a

smoother curve.

36. Violin Plot Creation with Seaborn

Importance★★★★☆

Difficulty★★★☆☆

A company wants to analyze the distribution of customer

ages across different regions to tailor their marketing

strategies. They have gathered age data from three

different regions: North, South, and West. Using this data,

they would like to create a violin plot to visualize the age

distribution in each region.You need to write a Python script

that performs the following tasks:Generate random age data

for three regions.Create a violin plot to visualize the age

distribution for these regions.Ensure the generated data has

the following properties:Ages range from 18 to 70.Each

region should have 100 data points.Write the code to

generate the data and create the violin plot using Seaborn.

【Data Generation Code Example】

import numpy as np

import pandas as pd

np.random.seed(42)

regions = ['North', 'South', 'West']

ages = [np.random.randint(18, 71, 100) for _ in regions]

data = pd.DataFrame({'Region': np.repeat(regions, 100),

'Age': np.concatenate(ages)})

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

np.random.seed(42)

regions = ['North', 'South', 'West']

ages = [np.random.randint(18, 71, 100) for _ in regions]

data = pd.DataFrame({'Region': np.repeat(regions, 100),

'Age': np.concatenate(ages)})

sns.violinplot(x='Region', y='Age', data=data)

plt.title('Age Distribution by Region')

plt.xlabel('Region')

plt.ylabel('Age')

plt.show()

The code begins by importing necessary libraries: numpy,

pandas, seaborn, and matplotlib.

A random seed is set using np.random.seed(42) to ensure

reproducibility of the random numbers.

Three regions are defined in a list: North, South, and West.

For each region, 100 random integers representing ages

between 18 and 70 are generated using

np.random.randint(18, 71, 100). The data for all regions are

then combined into a pandas DataFrame with columns

'Region' and 'Age'. The 'Region' column repeats each region

name 100 times, and the 'Age' column contains the

concatenated age data.

The violin plot is created using sns.violinplot(), with 'Region'

as the x-axis and 'Age' as the y-axis. Seaborn's violin plot

function provides a method to visualize the distribution of

the data, including its density. The plot is titled 'Age

Distribution by Region', and the axes are labeled

appropriately. Finally, plt.show() displays the plot.

Violin plots are useful for understanding the distribution and

density of the data. They combine aspects of box plots and

kernel density plots, providing a comprehensive view of the

data distribution. In this example, the violin plot helps

visualize age distributions across different regions, aiding in

decision-making for targeted marketing strategies.

【Trivia】
Violin plots were introduced by John W. Tukey, an American

mathematician and statistician, known for his development

of exploratory data analysis techniques. Violin plots are

especially useful when comparing multiple categories or

groups, as they provide detailed insights into the data's

distribution, including the presence of multiple modes.

37. Boxen Plot Visualization of

Distribution Data

Importance★★★★☆

Difficulty★★★☆☆

A company wants to analyze the distribution of its sales

data for the past year.

You are tasked with creating a visualization that helps in

understanding the spread and outliers in the data.

Specifically, you need to create a boxen plot for the sales

data to provide a detailed view of the distribution.

Generate a dataset of 500 random sales records ranging

between $100 and $10000.

Create a boxen plot using Python to visualize this data.

【Data Generation Code Example】

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

np.random.seed(42) # For reproducibility

Generate random sales data

sales_data = np.random.uniform(100, 10000, 500)

Convert to DataFrame

sales_df = pd.DataFrame(sales_data, columns=['Sales'])

Display first few rows

sales_df.head()

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

np.random.seed(42) # For reproducibility

Generate random sales data

sales_data = np.random.uniform(100, 10000, 500)

Convert to DataFrame

sales_df = pd.DataFrame(sales_data, columns=['Sales'])

Create boxen plot

sns.set(style="whitegrid")

plt.figure(figsize=(10, 6))

sns.boxenplot(x=sales_df['Sales'])

plt.title('Boxen Plot of Sales Data')

plt.xlabel('Sales Amount ($)')

plt.show()

A boxen plot is a variation of a box plot that provides more

detailed information on the distribution, especially on the

tails.

This plot is particularly useful when dealing with large

datasets or when you need to understand the distribution's

spread and outliers more comprehensively.

In this exercise, we first generate a synthetic dataset

representing sales records using np.random.uniform, which

creates 500 random values uniformly distributed between

$100 and $10,000.

We then convert this data into a pandas DataFrame for

easier handling.

Next, we use the seaborn library, which is built on top of

matplotlib and provides a high-level interface for drawing

attractive statistical graphics.

By calling sns.boxenplot and passing our sales data, we

create the boxen plot.

The plt.title and plt.xlabel functions are used to add a title

and label to the x-axis, respectively.

Finally, plt.show is called to display the plot. This function

ensures that the plot is rendered in a graphical window.

【Trivia】
‣ Boxen plots, introduced in seaborn version 0.9.0, are

specifically designed to provide more insight into the tails of

the distribution compared to traditional box plots.

‣ The term "boxen plot" comes from the combination of

"box plot" and "violin plot", reflecting its hybrid nature.

‣ While traditional box plots are limited to showing median,

quartiles, and potential outliers, boxen plots use a series of

nested boxes to show additional quantiles, giving a more

detailed view of the data distribution.

‣ Understanding data distributions is crucial in fields like

finance, where identifying outliers can be key to risk

management and decision-making.

‣ The seaborn library is highly recommended for statistical

data visualization due to its ease of use and integration with

pandas data structures.

38. Joint Plot of Bivariate Data

Importance★★★★☆

Difficulty★★★☆☆

A marketing company wants to understand the relationship

between the number of online advertisements shown and

the number of products sold.

Create a joint plot to visualize the correlation between these

two variables.

The data includes the number of ads shown (ranging from 1

to 100) and the number of products sold (with some random

variation).

Generate the sample data within your code.

【Data Generation Code Example】

import numpy as np

np.random.seed(0)

ads_shown = np.random.randint(1, 101, 100)

products_sold = ads_shown * 1.5 + np.random.normal(0,

10, 100)

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

np.random.seed(0)

ads_shown = np.random.randint(1, 101, 100)

products_sold = ads_shown * 1.5 + np.random.normal(0,

10, 100)

data = pd.DataFrame({'Ads_Shown': ads_shown,

'Products_Sold': products_sold})

sns.jointplot(x='Ads_Shown', y='Products_Sold', data=data,

kind='reg')

plt.show()

This exercise focuses on creating a joint plot to visualize the

relationship between two variables, in this case, the number

of advertisements shown and the number of products sold.

Joint plots are useful for examining how two variables are

related by combining scatter plots and histograms.

First, the necessary libraries are imported: numpy for

generating random data, pandas for data manipulation,

matplotlib for plotting, and seaborn for creating the joint

plot.

The numpy random seed is set for reproducibility.

Next, the sample data is generated using numpy. The

number of ads shown is generated as random integers

between 1 and 100. The number of products sold is

calculated based on the ads shown, with some added

random variation to simulate real-world data.

The data is then stored in a pandas DataFrame, which

makes it easy to handle and pass to the plotting function.

Seaborn's jointplot function is used to create the plot,

specifying the x and y variables and the type of plot ('reg'

for regression). The plot is then displayed using plt.show().

This exercise demonstrates how to visualize the correlation

between two variables using Python's data manipulation

and visualization libraries. It also highlights the importance

of data preparation and the integration of different libraries

to achieve the desired analysis.

【Trivia】
‣ Joint plots are part of the Seaborn library, which is built on

top of Matplotlib and provides a high-level interface for

drawing attractive statistical graphics.

‣ The 'kind' parameter in the sns.jointplot function can take

various values like 'scatter', 'reg', 'resid', 'kde', or 'hex', each

providing a different type of joint plot.

‣ Adding a regression line to a scatter plot can help in

understanding the trend and strength of the relationship

between the variables.

39. Lmplot Regression Analysis

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst at a retail company. Your task is to

visualize the relationship between advertising spend and

sales for various products.

Generate a regression plot using seaborn's lmplot to display

this relationship.

Use the following sample data:

advertising_spend: A list of advertising expenses in

thousands of dollars.

sales: A list of corresponding sales figures in thousands of

units.

Create the data within the code, and then generate a

regression plot showing the relationship.

Ensure the plot includes a regression line and a scatter plot

of the data points.

【Data Generation Code Example】

import pandas as pd

import numpy as np

data = {

"advertising_spend": np.random.randint(50, 150, 100),

"sales": np.random.randint(200, 1000, 100)

}

df = pd.DataFrame(data)

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

data = {

"advertising_spend": np.random.randint(50, 150, 100),

"sales": np.random.randint(200, 1000, 100)

}

df = pd.DataFrame(data)

sns.lmplot(x="advertising_spend", y="sales", data=df)

plt.title("Regression Analysis of Advertising Spend vs Sales")

plt.xlabel("Advertising Spend (Thousands of $)")

plt.ylabel("Sales (Thousands of Units)")

plt.show()

To create the regression analysis plot, first, we import the

necessary libraries: pandas for data manipulation, numpy

for generating random data, seaborn for visualization, and

matplotlib for plotting.

We then generate sample data with advertising spend and

sales figures using numpy's random integer generation. This

data is stored in a dictionary and then converted into a

DataFrame using pandas.

The core of the task is the visualization part, where we use

seaborn's lmplot to create a scatter plot with a regression

line. lmplot takes the DataFrame and the column names for

the x and y axes as parameters.

Finally, we add titles and labels to the plot using matplotlib's

plt functions to make the plot informative and clear. The

plt.show() function displays the plot.

【Trivia】
‣ The lmplot function in seaborn combines both scatter plots

and regression lines, making it a powerful tool for quickly

visualizing linear relationships.

‣ Seaborn is built on top of matplotlib and provides a high-

level interface for drawing attractive and informative

statistical graphics.

‣ Regression analysis is a fundamental statistical method

used in predictive analytics, making it essential for

understanding relationships between variables and

forecasting.

40. Creating a Pair Plot for Customer

Data Analysis

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for an e-commerce company.

The marketing team wants to understand the relationships

between different customer attributes and their spending

behavior.

They have provided you with a dataset containing

information about customers' age, income, time spent on

the website, and total amount spent.

Your task is to create a pair plot using Seaborn to visualize

the relationships between these variables.

The pair plot should include scatter plots for all pairs of

variables and histograms for each variable on the diagonal.

Additionally, use different colors to represent customer

categories (e.g., 'Regular', 'Premium', 'VIP') in the plot.

Generate sample data within your code to represent this

scenario.

Ensure that your visualization is clear and informative for

the marketing team to draw insights from.

【Data Generation Code Example】

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

np.random.seed(42)

n_samples = 200

age = np.random.randint(18, 70, n_samples)

income = np.random.normal(50000, 15000, n_samples)

time_spent = np.random.exponential(60, n_samples)

amount_spent = np.random.normal(500, 200, n_samples) +

income * 0.01

categories = np.random.choice(['Regular', 'Premium', 'VIP'],

n_samples, p=[0.6, 0.3, 0.1])

data = pd.DataFrame({'Age': age,

'Income': income,

'Time_Spent': time_spent,

'Amount_Spent': amount_spent,

'Category': categories})

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

np.random.seed(42)

n_samples = 200

age = np.random.randint(18, 70, n_samples)

income = np.random.normal(50000, 15000, n_samples)

time_spent = np.random.exponential(60, n_samples)

amount_spent = np.random.normal(500, 200, n_samples) +

income * 0.01

categories = np.random.choice(['Regular', 'Premium', 'VIP'],

n_samples, p=[0.6, 0.3, 0.1])

data = pd.DataFrame({'Age': age,

'Income': income,

'Time_Spent': time_spent,

'Amount_Spent': amount_spent,

'Category': categories})

Set the style for the plot

sns.set(style="ticks", color_codes=True)

Create the pair plot

g = sns.pairplot(data, hue="Category", vars=["Age",

"Income", "Time_Spent", "Amount_Spent"],

diag_kind="hist", plot_kws={"alpha": 0.6}, height=2.5)

Customize the plot

g.fig.suptitle("Customer Attributes and Spending Behavior",

y=1.02)

Adjust the layout and display the plot

plt.tight_layout()

plt.show()

This code creates a pair plot to visualize relationships

between customer attributes and spending behavior.

Let's break down the key components and explain the data

visualization process:

Data Generation:

We use NumPy to generate random data for 200 customers.

The data includes age (18-70), income (normal distribution),

time spent on the website (exponential distribution), and

amount spent (related to income).

We also assign customer categories (Regular, Premium, VIP)

with different probabilities.

Data Preparation:

The generated data is organized into a pandas DataFrame,

which is a 2D labeled data structure.

Each column represents a different attribute: Age, Income,

Time_Spent, Amount_Spent, and Category.

Seaborn Pair Plot:

We use seaborn's pairplot function to create the

visualization.

pairplot creates a grid of axes with scatter plots for each

pair of variables and histograms on the diagonal.

The 'hue' parameter is set to "Category", which colors the

data points based on the customer category.

We specify the variables to include in the plot using the

'vars' parameter.

'diag_kind="hist"' sets the diagonal plots to be histograms.

'plot_kws={"alpha": 0.6}' sets the transparency of the

scatter plot points.

'height=2.5' sets the size of each subplot.

Customization:

We set a title for the entire figure using g.fig.suptitle().

plt.tight_layout() adjusts the spacing between subplots for a

cleaner look.

Display:

Finally, plt.show() displays the plot.

This pair plot allows the marketing team to quickly visualize:

‣ The distribution of each variable (on the diagonal)

‣ The relationships between pairs of variables (scatter plots)

‣ How these relationships might differ across customer

categories (color coding)

The resulting visualization provides a comprehensive

overview of the customer data, enabling the marketing

team to identify patterns, correlations, and potential

segmentation strategies based on customer attributes and

spending behavior.

【Trivia】
‣ Seaborn is built on top of Matplotlib and provides a high-

level interface for drawing attractive statistical graphics.

‣ The pair plot is particularly useful for exploring

correlations between multiple variables simultaneously.

‣ The exponential distribution used for 'time_spent' is often

appropriate for modeling the time between events, like

customer visits to a website.

‣ The seed in np.random.seed(42) ensures reproducibility of

the random data generation. The number 42 is a reference

to "The Hitchhiker's Guide to the Galaxy" by Douglas

Adams.

‣ In data visualization, it's important to consider color

blindness. Seaborn's default color palette is generally

accessible, but you can use sns.color_palette() to create

custom, colorblind-friendly palettes.

‣ The pairplot function in Seaborn automatically handles

both continuous and categorical variables, adjusting the plot

type accordingly.

‣ Pair plots can become computationally intensive and

visually cluttered with a large number of variables. It's

generally recommended to limit them to 5-6 key variables.

41. Heatmap of Correlation Matrix

Importance★★★★☆

Difficulty★★★☆☆

You are working as a data analyst for a financial firm.

Your task is to analyze the correlation between different

financial indicators for a given set of data.

You need to create a heatmap to visualize these

correlations.

Use the provided code to generate sample data and then

write the necessary Python code to create and display a

heatmap of the correlation matrix.

This will help the firm understand the relationships between

different financial metrics.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(42)

data = pd.DataFrame(np.random.randn(100, 5), columns=

['Metric_A', 'Metric_B', 'Metric_C', 'Metric_D', 'Metric_E'])

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

np.random.seed(42)

data = pd.DataFrame(np.random.randn(100, 5), columns=

['Metric_A', 'Metric_B', 'Metric_C', 'Metric_D', 'Metric_E'])

corr = data.corr()

plt.figure(figsize=(10, 8))

sns.heatmap(corr, annot=True, cmap='coolwarm', vmin=-1,

vmax=1)

plt.title('Heatmap of Correlation Matrix')

plt.show()

To solve this problem, first, import the necessary libraries:

pandas for data manipulation, numpy for numerical

operations, seaborn for advanced visualizations, and

matplotlib.pyplot for basic plotting functions.

We begin by setting a random seed using

np.random.seed(42) to ensure reproducibility.

Next, generate a DataFrame data with 100 rows and 5

columns of random numbers, representing different financial

metrics: 'Metric_A', 'Metric_B', 'Metric_C', 'Metric_D', and

'Metric_E'. This is achieved using

pd.DataFrame(np.random.randn(100, 5), columns=

['Metric_A', 'Metric_B', 'Metric_C', 'Metric_D', 'Metric_E']).

Calculate the correlation matrix of the DataFrame using

data.corr(), which computes pairwise correlation of columns,

excluding NA/null values.

To visualize the correlation matrix, use sns.heatmap() from

the seaborn library. Create a figure with specific dimensions

using plt.figure(figsize=(10, 8)). Then, generate the

heatmap by passing the correlation matrix corr to

sns.heatmap() with additional parameters like annot=True

to display the correlation values on the heatmap,

cmap='coolwarm' for the color map, and vmin=-1, vmax=1

to set the range of the color scale.

Finally, set the title of the heatmap with plt.title('Heatmap of

Correlation Matrix') and display the plot using plt.show().

【Trivia】

‣ A correlation matrix is a table showing correlation

coefficients between many variables. Each cell in the table

shows the correlation between two variables. The value is

between -1 and 1.

‣ Heatmaps are a great way to visualize the strength of

correlations between variables in a dataset. High positive or

negative correlations are easily spotted with contrasting

colors.

‣ Seaborn's heatmap() function provides several options to

enhance the visualization, such as annotating cells with

correlation values and using different color maps to

represent the data effectively.

42. Scatter Matrix Plot of Multivariate

Data

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a retail company. Your

team has collected data on various product attributes and

sales performance. The goal is to identify relationships

between different attributes to optimize product offerings.

Using the data provided, create a scatter matrix plot to

visualize the relationships between the following attributes:

'Price', 'Sales', 'Discount', and 'Advertising'.Generate a

synthetic dataset for these attributes and create the scatter

matrix plot using Python. Ensure your visualization clearly

shows the relationships between all pairs of attributes.

【Data Generation Code Example】

import numpy as np

import pandas as pd

Generate random data for the attributes

data = pd.DataFrame({

'Price': np.random.uniform(5, 100, 100),

'Sales': np.random.uniform(50, 5000, 100),

'Discount': np.random.uniform(0, 50, 100),

'Advertising': np.random.uniform(200, 2000, 100)

})

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

Generate random data for the attributes

data = pd.DataFrame({

'Price': np.random.uniform(5, 100, 100),

'Sales': np.random.uniform(50, 5000, 100),

'Discount': np.random.uniform(0, 50, 100),

'Advertising': np.random.uniform(200, 2000, 100)

})

Create a scatter matrix plot

sns.pairplot(data)

plt.show()

To visualize the relationships between multiple variables, a

scatter matrix plot, also known as a pair plot, is a powerful

tool.

This plot shows scatter plots for every pair of variables,

along with the distribution of each variable along the

diagonal.

First, we import the necessary libraries: NumPy for

generating random data, Pandas for handling the data in a

DataFrame, Matplotlib for plotting, and Seaborn for creating

the pair plot.

We then generate synthetic data for four attributes: 'Price',

'Sales', 'Discount', and 'Advertising'. Each attribute contains

100 random values within specified ranges.

We create the DataFrame using Pandas. The DataFrame

structure makes it easy to manipulate and visualize the

data.

Next, we use the sns.pairplot() function from Seaborn to

create the scatter matrix plot. This function takes the

DataFrame as input and generates the pair plot, showing

scatter plots for each pair of variables and histograms for

individual variables.

Finally, plt.show() displays the plot. This visualization helps

in understanding the relationships and correlations between

the different attributes.

【Trivia】
Scatter matrix plots are particularly useful in exploratory

data analysis (EDA) to identify potential correlations and

interactions between variables.

Seaborn's pairplot() function simplifies the creation of these

plots, providing an intuitive way to visualize complex

multivariate data.

Such visualizations are often used in machine learning to

understand the data better before building predictive

models. They help in detecting patterns, clusters, and

outliers in the data.

43. Parallel Coordinates Plot Creation

Importance★★★☆☆

Difficulty★★★☆☆

A marketing research company wants to analyze customer

satisfaction data across multiple product categories to

identify patterns and correlations.

They have collected data on customer ratings for four

products: Product A, Product B, Product C, and Product D.

Each rating ranges from 1 to 5.

Create a parallel coordinates plot to visualize the

relationships and patterns in the ratings.

Generate synthetic data for this analysis, and ensure your

code produces a clear and informative plot.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(0)

data = {f'Product {chr(65+i)}': np.random.randint(1, 6,

100) for i in range(4)}

df = pd.DataFrame(data)

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from pandas.plotting import parallel_coordinates

np.random.seed(0)

data = {f'Product {chr(65+i)}': np.random.randint(1, 6,

100) for i in range(4)}

df = pd.DataFrame(data)

plt.figure(figsize=(10, 6))

parallel_coordinates(df.assign(Group=1),

class_column='Group', colormap='viridis')

plt.title('Customer Satisfaction Across Products')

plt.xlabel('Product')

plt.ylabel('Rating')

plt.show()

Parallel coordinates plots are a common way to visualize

multivariate data.

In this exercise, we generate synthetic customer satisfaction

ratings for four products, ranging from 1 to 5.

Using NumPy, we create random integers to simulate the

ratings, ensuring reproducibility with a random seed.

This data is then stored in a pandas DataFrame.

The parallel_coordinates function from pandas is used to

create the plot.

This function requires a DataFrame and a column name to

distinguish different classes.

Since our data does not have classes, we create a dummy

class column with a single value.

The colormap parameter allows us to specify a color map for

the lines in the plot.

We then use Matplotlib to set up the figure and axes, giving

the plot a title, and labeling the axes for clarity.

The final step is to display the plot using plt.show().

This exercise helps you understand how to preprocess data

and visualize complex relationships using parallel

coordinates plots.

【Trivia】
‣ Parallel coordinates plots were first introduced by Alfred

Inselberg in the 1980s.

‣ They are especially useful for detecting clusters and

outliers in multivariate data.

‣ In a parallel coordinates plot, each axis represents a

variable, and each line represents an observation.

‣ These plots can become cluttered with large datasets, so

sometimes techniques like brushing and linking are used to

enhance readability.

44. Andrews Curves Plot for

Multivariate Data Analysis

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst at a retail company. Your manager

has asked you to analyze the sales data of different

products to identify patterns and trends. You have been

provided with a dataset containing sales figures for various

products across multiple regions. Your task is to create an

Andrews Curves plot to visualize the multivariate data and

help identify any patterns or clusters in the sales data.

Generate the sample data within your code and then create

the Andrews Curves plot. The data should include sales

figures for at least four products across three regions.

Use the following columns for your dataset: 'Region',

'Product_A', 'Product_B', 'Product_C', 'Product_D'. The

'Region' column should contain categorical data

representing different regions (e.g., 'North', 'South', 'East',

'West'). The sales figures should be random integers

between 50 and 200.

Write the Python code to generate the sample data and

create the Andrews Curves plot. The plot should be clearly

labeled and should help in visualizing the multivariate data.

【Data Generation Code Example】

import pandas as pd

import numpy as np

regions = ['North', 'South', 'East', 'West']

data = pd.DataFrame({

'Region': [regions[i % 4] for i in range(20)],

'Product_A': np.random.randint(50, 200, 20),

'Product_B': np.random.randint(50, 200, 20),

'Product_C': np.random.randint(50, 200, 20),

'Product_D': np.random.randint(50, 200, 20)

})

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from pandas.plotting import andrews_curves

regions = ['North', 'South', 'East', 'West']

data = pd.DataFrame({

'Region': [regions[i % 4] for i in range(20)],

'Product_A': np.random.randint(50, 200, 20),

'Product_B': np.random.randint(50, 200, 20),

'Product_C': np.random.randint(50, 200, 20),

'Product_D': np.random.randint(50, 200, 20)

})

plt.figure()

andrews_curves(data, 'Region')

plt.title('Andrews Curves of Sales Data')

plt.show()

Andrews Curves are a way to visualize multivariate data by

transforming each observation into a continuous function.

This allows for the visualization of high-dimensional data in

a two-dimensional plot.

In this exercise, you first generate a sample dataset with

sales figures for four products across four regions.

The sales figures are random integers between 50 and 200.

The dataset is created using pandas, a powerful data

manipulation library in Python.

Next, you use the andrews_curves function from the

pandas.plotting module to create the Andrews Curves plot.

This function requires the dataset and the column name

representing the categorical variable (in this case, 'Region').

The plot is then displayed using matplotlib.pyplot.

The title of the plot is set to 'Andrews Curves of Sales Data'

to provide context.

This exercise helps in understanding how to manipulate

data using pandas and visualize it using Andrews Curves.

It is particularly useful for identifying patterns and clusters

in multivariate data.

【Trivia】
‣ Andrews Curves are named after David F. Andrews, who

introduced them in 1972.

‣ They are particularly useful for detecting outliers and

clusters in high-dimensional data.

‣ The transformation used in Andrews Curves is based on

Fourier series, which is a way to represent a function as a

sum of sine and cosine terms.

‣ While Andrews Curves can be insightful, they may not

always be the best choice for very large datasets due to

potential overplotting.

45. RadViz Plot for Multivariate Data

Visualization

Importance★★★★☆

Difficulty★★★☆☆

A client working for a data analytics company wants to

visualize the relationships between different features of

their product using a RadViz plot. They have provided you

with a dataset that includes several features. Your task is to

create a RadViz plot to help them understand the

correlations and distributions of these features. Generate a

sample dataset for demonstration purposes and plot it using

a RadViz plot.

【Data Generation Code Example】

import pandas as pd

Generate sample data

data = pd.DataFrame({

'Feature1': [0.1, 0.3, 0.5, 0.2, 0.4],

'Feature2': [0.6, 0.7, 0.1, 0.8, 0.5],

'Feature3': [0.9, 0.3, 0.2, 0.4, 0.6],

'Feature4': [0.5, 0.6, 0.7, 0.8, 0.9],

'Category': ['A', 'B', 'A', 'B', 'A']

})

【Diagram Answer】

【Code Answer】

import pandas as pd

import matplotlib.pyplot as plt

from pandas.plotting import radviz

Generate sample data

data = pd.DataFrame({

'Feature1': [0.1, 0.3, 0.5, 0.2, 0.4],

'Feature2': [0.6, 0.7, 0.1, 0.8, 0.5],

'Feature3': [0.9, 0.3, 0.2, 0.4, 0.6],

'Feature4': [0.5, 0.6, 0.7, 0.8, 0.9],

'Category': ['A', 'B', 'A', 'B', 'A']

})

Create RadViz plot

plt.figure(figsize=(8, 6))

radviz(data, 'Category')

plt.title('RadViz Plot of Multivariate Data')

plt.show()

To create a RadViz plot, we first import the necessary

libraries, including pandas for data manipulation, matplotlib

for plotting, and radviz from pandas.plotting for creating the

RadViz plot.

Next, we generate a sample dataset using pandas'

DataFrame. The dataset contains four features (Feature1,

Feature2, Feature3, Feature4) and a categorical column

('Category') that indicates the class of each data point.

We then use the radviz function from pandas.plotting to

create the RadViz plot. The function takes two arguments:

the dataset and the column name that contains the

categorical data. The radviz function automatically plots the

data points in a circular layout, where each feature is

positioned at a point on the circumference of the circle.

Finally, we use matplotlib's plt.show() function to display the

plot. The plt.title() function is used to add a title to the plot

for better understanding.

The RadViz plot helps in visualizing multivariate data by

displaying the relationships and distributions of different

features in a circular layout. This plot can be particularly

useful for identifying patterns and correlations between

features in a dataset.

【Trivia】
RadViz, short for Radial Visualization, is a method used to

project multidimensional data onto a 2D plane. The

technique places each feature at equidistant points on the

circumference of a circle. Each data point is plotted inside

the circle based on the weighted sum of the features. This

visualization method is particularly effective in identifying

clusters and patterns in multivariate datasets. RadViz is

commonly used in fields such as data mining,

bioinformatics, and finance for exploratory data analysis.

46. Creating a Lag Plot for Time

Series Analysis

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for an e-commerce company.

The company wants to understand the relationship between

daily sales volumes over time.

They have asked you to create a lag plot to visualize the

correlation between sales on consecutive days.

Your task is to:

Generate a sample dataset of daily sales for the last 100

days.

Create a lag plot using this data, with a lag of 1 day.

Add appropriate labels and a title to the plot.

Ensure the plot is visually appealing and easy to interpret.

Use the following code to generate the sample data, then

write a Python script to create the required lag plot.

【Data Generation Code Example】

import numpy as np

import pandas as pd

np.random.seed(42)

date_range =

pd.date_range(end=pd.Timestamp.now().floor('D'),

periods=100)

sales = np.random.randint(100, 1000, size=100) +

np.sin(np.arange(100) * 0.3) * 50

df = pd.DataFrame({'Date': date_range, 'Sales':

sales.astype(int)})

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from pandas.plotting import lag_plot

np.random.seed(42)

date_range =

pd.date_range(end=pd.Timestamp.now().floor('D'),

periods=100)

sales = np.random.randint(100, 1000, size=100) +

np.sin(np.arange(100) * 0.3) * 50

df = pd.DataFrame({'Date': date_range, 'Sales':

sales.astype(int)})

plt.figure(figsize=(10, 8))

lag_plot(df['Sales'], lag=1)

plt.title('Lag Plot of Daily Sales (Lag = 1)', fontsize=16)

plt.xlabel('Sales (t)', fontsize=12)

plt.ylabel('Sales (t+1)', fontsize=12)

plt.grid(True, alpha=0.3)

plt.tight_layout()

plt.show()

This code creates a lag plot for time series analysis of daily

sales data.

Let's break down the solution and explain each part in

detail:

Data Generation:

We use NumPy and Pandas to create a sample dataset.

np.random.seed(42) ensures reproducibility of the random

data.

We generate dates for the last 100 days using

pd.date_range().

Sales data is created using random integers and a sine

function to add some cyclical pattern.

The data is stored in a Pandas DataFrame with 'Date' and

'Sales' columns.

Importing Required Libraries:

We import NumPy for numerical operations, Pandas for data

manipulation, Matplotlib for plotting, and the lag_plot

function from Pandas plotting module.

Creating the Lag Plot:

plt.figure(figsize=(10, 8)) sets up a new figure with specified

dimensions.

lag_plot(df['Sales'], lag=1) creates the lag plot using the

'Sales' column from our DataFrame.

The lag=1 parameter means we're comparing each day's

sales with the previous day's sales.

Customizing the Plot:

plt.title() adds a title to the plot.

plt.xlabel() and plt.ylabel() label the x and y axes.

plt.grid(True, alpha=0.3) adds a light grid to the plot for

better readability.

plt.tight_layout() adjusts the plot layout to prevent

overlapping elements.

Displaying the Plot:

plt.show() displays the final plot.

The resulting lag plot helps visualize the correlation

between sales on consecutive days.

Each point on the plot represents two consecutive days,

with the x-coordinate being the sales on one day and the y-

coordinate being the sales on the following day.

Interpreting the Lag Plot:

If points cluster along a diagonal line from bottom-left to

top-right, it indicates a positive correlation between

consecutive days' sales.

A random scatter suggests little to no correlation.

Any visible patterns (like clusters or curves) can indicate

more complex relationships or seasonality in the data.

This visualization is valuable for understanding time series

patterns and can help in forecasting future sales based on

past performance.

【Trivia】

‣ Lag plots are a powerful tool in time series analysis,

helping to identify autocorrelation in data.

‣ The concept of "lag" in time series refers to the time

difference between observations. A lag of 1 compares each

observation with the immediately preceding one.

‣ Lag plots can reveal various patterns:

A diagonal line indicates strong autocorrelation

A circular pattern might suggest a cyclical trend

A random scatter implies no significant autocorrelation

‣ In finance and economics, lag plots are often used to

analyze stock prices, economic indicators, and other time-

dependent variables.

‣ The pandas.plotting.lag_plot() function is a convenient

way to create lag plots in Python, but you can also create

them manually using scatter plots.

‣ Lag plots are closely related to autocorrelation plots (ACF

plots), another important tool in time series analysis.

‣ When working with real-world data, it's often useful to

create multiple lag plots with different lag values to

understand short-term and long-term patterns.

‣ Lag plots can help in identifying outliers or anomalies in

time series data, as these will appear as points far from the

main cluster.

‣ The interpretation of lag plots can be enhanced by

combining them with other time series techniques like

decomposition or spectral analysis.

‣ In machine learning, features derived from lag analysis

can be valuable inputs for time series forecasting models.

47. Autocorrelation Plot of Time

Series Data

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst at a retail company. Your manager

has asked you to analyze the sales data to identify any

patterns or trends. Specifically, they want you to generate

an autocorrelation plot to understand how sales figures

correlate with themselves over different time lags.

To help you get started, you need to create a synthetic time

series dataset representing daily sales for one year. Then,

generate an autocorrelation plot using Python to visualize

the data.

Write the code to create the dataset and generate the

autocorrelation plot.

【Data Generation Code Example】

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from statsmodels.graphics.tsaplots import plot_acf

np.random.seed(0)

days = 365

sales = np.cumsum(np.random.randn(days) * 10 + 100)

data = pd.Series(sales)

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from statsmodels.graphics.tsaplots import plot_acf

np.random.seed(0)

days = 365

sales = np.cumsum(np.random.randn(days) * 10 + 100)

data = pd.Series(sales)

plt.figure(figsize=(10, 6))

plot_acf(data, lags=40)

plt.title('Autocorrelation of Daily Sales')

plt.xlabel('Lag')

plt.ylabel('Autocorrelation')

plt.show()

To generate an autocorrelation plot of time series data, we

first need to create a synthetic dataset.

We use the numpy library to generate random sales data for

365 days. The np.cumsum function is used to create a

cumulative sum of normally distributed random numbers,

simulating daily sales figures that have an underlying trend.

The pandas library is then used to convert this array into a

Series object for easier manipulation.

Next, we use the plot_acf function from the statsmodels

library to generate the autocorrelation plot. This function

computes the autocorrelation of the time series data for

different lags and plots the results.

The matplotlib library is used to customize the plot, setting

the figure size and adding titles and labels to make the plot

more informative. The plt.show() function is called to display

the plot.

Autocorrelation plots are useful for identifying patterns in

time series data, such as seasonality or trends, by showing

how the data correlates with itself over different time lags.

【Trivia】
‣ Autocorrelation, also known as serial correlation, is the

correlation of a signal with a delayed copy of itself as a

function of delay.

‣ In time series analysis, autocorrelation can help identify

repeating patterns, such as seasonal effects, and is crucial

for model selection in forecasting.

‣ The statsmodels library in Python provides various tools

for time series analysis, including functions for

autocorrelation, partial autocorrelation, and more advanced

time series models like ARIMA.

48. Bootstrap Plot of Statistical Data

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst at a retail company. Your manager

has asked you to analyze the sales data to understand the

distribution of sales and to create a bootstrap plot to

visualize this distribution.

Generate a sample dataset of daily sales figures for the past

year (365 days).

Use this data to create a bootstrap plot that shows the

distribution of the sales data.

Ensure that the plot is clear and informative.

【Data Generation Code Example】

import numpy as np

np.random.seed(0)

daily_sales = np.random.normal(loc=200, scale=50,

size=365)

【Diagram Answer】

【Code Answer】

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

np.random.seed(0)

daily_sales = np.random.normal(loc=200, scale=50,

size=365)

bootstrap_samples = [np.random.choice(daily_sales,

size=365, replace=True).mean() for _ in range(1000)]

plt.figure(figsize=(10, 6))

sns.histplot(bootstrap_samples, kde=True)

plt.title('Bootstrap Distribution of Daily Sales')

plt.xlabel('Mean Sales')

plt.ylabel('Frequency')

plt.show()

First, we import the necessary libraries: numpy,

matplotlib.pyplot, and seaborn.

We use numpy to generate a sample dataset of daily sales

figures for the past year.

The sales data is generated using a normal distribution with

a mean (loc) of 200 and a standard deviation (scale) of 50.

We set the random seed to ensure reproducibility.

Next, we create bootstrap samples from the daily sales

data.

Bootstrap sampling involves randomly selecting data points

with replacement to create new samples.

We generate 1000 bootstrap samples, each of size 365 (the

same as the original dataset), and calculate the mean of

each sample.

We then use seaborn's histplot function to create a

histogram of the bootstrap sample means.

The kde=True parameter adds a Kernel Density Estimate

(KDE) plot, which provides a smooth curve representing the

distribution.

We set the figure size to make the plot more readable and

add titles and labels to the plot for clarity.

Finally, we display the plot using plt.show().

【Trivia】
‣ Bootstrap sampling is a powerful statistical technique

used to estimate the distribution of a statistic (e.g., mean,

median) by resampling with replacement from the original

data.

‣ It is particularly useful when the sample size is small or

when the underlying distribution is unknown.

‣ The term "bootstrap" comes from the phrase "pulling

oneself up by one's bootstraps," reflecting the method's

ability to generate estimates from the data itself without

relying on external assumptions.

‣ Seaborn is a Python visualization library based on

matplotlib that provides a high-level interface for drawing

attractive statistical graphics.

49. Creating a Hexbin Plot with

Pandas

Importance★★★☆☆

Difficulty★★★☆☆

You are a data analyst working for a retail company. Your

task is to analyze the relationship between the amount

spent by customers and the number of items they purchase.

You decide to use a hexbin plot to visualize the density of

points where most customers' spending and purchase

behavior cluster.

Create a sample dataset with two columns: 'AmountSpent'

(amount of money spent by the customers) and

'ItemsPurchased' (number of items purchased by the

customers).

Generate a hexbin plot using this data to help your team

understand the spending patterns and purchasing behavior

of the customers.

【Data Generation Code Example】

import pandas as pd

import numpy as np

Create sample datanp.random.seed(0)

amount_spent = np.random.normal(100, 20, 1000)

items_purchased = np.random.normal(10, 3, 1000)

Create DataFramedf = pd.DataFrame({'AmountSpent':

amount_spent, 'ItemsPurchased': items_purchased})

df.head()

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(0)

amount_spent = np.random.normal(100, 20, 1000)

items_purchased = np.random.normal(10, 3, 1000)

df = pd.DataFrame({'AmountSpent': amount_spent,

'ItemsPurchased': items_purchased})

plt.figure(figsize=(10, 6))

plt.hexbin(df['AmountSpent'], df['ItemsPurchased'],

gridsize=30, cmap='Blues')

plt.colorbar(label='Counts')

plt.xlabel('Amount Spent')

plt.ylabel('Items Purchased')

plt.title('Hexbin Plot of Amount Spent vs. Items Purchased')

plt.show()

A hexbin plot is a two-dimensional histogram that is useful

for visualizing the relationship between two variables when

you have a large number of data points. Instead of plotting

each individual data point, which can result in overplotting,

a hexbin plot groups points into hexagonal bins and colors

them according to the number of points in each bin. This

allows you to see the density and distribution of the data

more clearly.

First, we import the necessary libraries: pandas for data

manipulation, numpy for generating random data, and

matplotlib for plotting.

We then set a random seed for reproducibility and generate

random data for the 'AmountSpent' and 'ItemsPurchased'

columns using a normal distribution. 'AmountSpent' is

generated with a mean of 100 and a standard deviation of

20, while 'ItemsPurchased' is generated with a mean of 10

and a standard deviation of 3.

We create a DataFrame with this data and then use

matplotlib to create the hexbin plot. We specify the x and y

variables, set the grid size of the hexagons, and choose a

color map ('Blues'). The color bar is added to indicate the

counts in each bin, and we label the axes and the plot for

clarity. Finally, we display the plot. This hexbin plot helps

visualize the density of customer spending and purchasing

behavior, highlighting areas where most customers'

behaviors cluster.

【Trivia】

Hexbin plots are particularly useful in cases where scatter

plots fail to provide clear insights due to overplotting, which

happens when too many points overlap, making it difficult

to discern patterns.

The hexagonal binning technique was popularized by the

statistical software package Hexbin in the 1980s, providing

a way to manage large datasets in a visually interpretable

manner.

Hexbin plots are especially useful in fields such as

astronomy, where data from observations often involve

large datasets with overlapping points.

50. Creating a Scatter Plot Matrix for

Customer Data Analysis

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst for an e-commerce company.

The marketing team wants to understand the relationships

between various customer attributes and their spending

behavior.

They have provided you with a dataset containing

information on customer age, years as a customer, annual

income, and total spending.

Your task is to create a scatter plot matrix using pandas to

visualize the relationships between these variables.

Specifically, you need to:

Create a pandas DataFrame with the following columns:

'Age', 'Years_as_Customer', 'Annual_Income', and

'Total_Spending'.

Generate sample data for 100 customers.

Use pandas and seaborn to create a scatter plot matrix.

Ensure the diagonal plots show histograms of each variable.

Add appropriate labels and a title to the plot.

Write a Python script that accomplishes these tasks and

displays the scatter plot matrix.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(42)

data = pd.DataFrame({

'Age': np.random.randint(18, 70, 100),

'Years_as_Customer': np.random.randint(1, 20, 100),

'Annual_Income': np.random.randint(20000, 200000, 100),

'Total_Spending': np.random.randint(1000, 50000, 100)

})

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

np.random.seed(42)

data = pd.DataFrame({

'Age': np.random.randint(18, 70, 100),

'Years_as_Customer': np.random.randint(1, 20, 100),

'Annual_Income': np.random.randint(20000, 200000, 100),

'Total_Spending': np.random.randint(1000, 50000, 100)

})

Set up the plot style and size

sns.set(style="ticks", color_codes=True)

plt.figure(figsize=(12, 10))

Create the scatter plot matrix

scatter_matrix = sns.pairplot(data, diag_kind="hist",

plot_kws={"alpha": 0.6})

Set the title

scatter_matrix.fig.suptitle("Customer Data Scatter Plot

Matrix", y=1.02)

Adjust layout and display the plot

plt.tight_layout()

plt.show()

This code creates a scatter plot matrix to visualize

relationships between customer attributes.

Let's break down the key components and explain the data

processing and visualization techniques used:

Data Generation:

We use numpy's random functions to generate sample data

for 100 customers.

The data includes age (18-70), years as a customer (1-20),

annual income (20,000-200,000), and total spending (1,000-

50,000).

This simulated data is stored in a pandas DataFrame, which

is a 2D labeled data structure.

Data Visualization Setup:

We import seaborn (sns) and matplotlib.pyplot (plt) for

advanced data visualization.

seaborn is built on top of matplotlib and provides a high-

level interface for drawing attractive statistical graphics.

Plotting:

We use seaborn's pairplot function to create the scatter plot

matrix.

pairplot creates a grid of axes with each variable in the

dataset shared across the y-axes across a single row and

the x-axes across a single column.

The diagonal plots are set to show histograms

(diag_kind="hist") instead of scatter plots, providing a

distribution view of each variable.

Customization:

We set the style to "ticks" and enable color codes for better

visual appeal.

The figure size is set to 12x10 inches for better readability.

We add a title to the entire plot using fig.suptitle().

The alpha parameter in plot_kws sets the transparency of

the points, helping to visualize overlapping data points.

Display:

plt.tight_layout() adjusts the plot to ensure all labels are

visible.

plt.show() displays the final plot.

This scatter plot matrix allows for quick visual analysis of

relationships between all pairs of variables.

Each cell shows the relationship between two variables, with

the variable names on the diagonal.

This is particularly useful for identifying correlations,

clusters, or outliers in the data.

【Trivia】
‣ Scatter plot matrices, also known as SPLOM (Scatter PLOt

Matrix), were introduced by John W. Tukey and Paul A. Tukey

in 1981.

‣ The diagonal elements in a scatter plot matrix often show

the distribution of a single variable. Histograms are

common, but kernel density estimates or box plots can also

be used.

‣ Seaborn's pairplot function is a wrapper around PairGrid,

which offers more flexibility for customizing the plot.

‣ When dealing with large datasets, consider using hexbin

plots or 2D kernel density estimation instead of scatter plots

to avoid overplotting.

‣ Color coding points based on a categorical variable can

add an extra dimension to the scatter plot matrix, revealing

group-specific patterns.

‣ For datasets with many variables, consider using

dimensionality reduction techniques like PCA before creating

a scatter plot matrix to focus on the most important

relationships.

51. Generate a Box Plot Using Pandas

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a retail company. Your

manager has asked you to analyze the sales data for

different product categories to understand their distribution.

Generate a box plot to visualize the distribution of sales for

each product category.

Create a sample dataset with the following columns:

'Category' (with values 'Electronics', 'Clothing', 'Groceries')

and 'Sales' (random integers between 100 and 1000).

Use this dataset to create the box plot.

Ensure the box plot is labeled appropriately with titles and

axis labels.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(0)

categories = ['Electronics', 'Clothing', 'Groceries']

data = {'Category': [categories[i % 3] for i in range(300)],

'Sales': np.random.randint(100, 1000, 300)}

df = pd.DataFrame(data)

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(0)

categories = ['Electronics', 'Clothing', 'Groceries']

data = {'Category': [categories[i % 3] for i in range(300)],

'Sales': np.random.randint(100, 1000, 300)}

df = pd.DataFrame(data)

plt.figure(figsize=(10, 6))

df.boxplot(column='Sales', by='Category')

plt.title('Sales Distribution by Category')

plt.suptitle('')

plt.xlabel('Category')

plt.ylabel('Sales')

plt.show()

To generate a box plot using Pandas, you first need to create

a DataFrame with the necessary data.

In this case, the DataFrame contains two columns:

'Category' and 'Sales'.

The 'Category' column includes three different product

categories: 'Electronics', 'Clothing', and 'Groceries'.

The 'Sales' column contains random integers between 100

and 1000 to simulate sales data.

The box plot is created using the boxplot method of the

DataFrame, specifying 'Sales' as the column to plot and

'Category' as the grouping variable.

The plt.figure function is used to set the size of the plot, and

plt.show is called to display the plot.

The plot is labeled with a title, and the x and y axes are

labeled appropriately to make the plot informative.

【Trivia】
‣ Box plots are also known as whisker plots.

‣ They provide a graphical summary of data, showing the

median, quartiles, and potential outliers.

‣ John Tukey, an American mathematician, introduced the

box plot in 1977.

‣ Box plots are particularly useful for comparing

distributions across multiple groups or categories.

52. Violin Plot for Sales Data Analysis

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst at a retail company. Your manager

has asked you to analyze the distribution of daily sales for

two different product categories over the past month.

You need to visualize this data using a violin plot to

understand the distribution and compare the sales between

the two categories.

Create a violin plot using the given sample data to show the

distribution of daily sales for 'Category A' and 'Category B'.

Generate the sample data and then plot the violin plot.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(0)

data = pd.DataFrame({

'Category': ['Category A']*30 + ['Category B']*30,

'Sales': np.concatenate([np.random.normal(200, 30, 30),

np.random.normal(150, 20, 30)])

})

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

np.random.seed(0)

data = pd.DataFrame({

'Category': ['Category A']*30 + ['Category B']*30,

'Sales': np.concatenate([np.random.normal(200, 30, 30),

np.random.normal(150, 20, 30)])

})

sns.violinplot(x='Category', y='Sales', data=data)

plt.title('Violin Plot of Daily Sales Distribution')

plt.show()

To generate the sample data, we use NumPy to create two

sets of random numbers representing sales figures for

'Category A' and 'Category B'.

Each category has 30 daily sales data points. 'Category A'

sales are normally distributed with a mean of 200 and a

standard deviation of 30, while 'Category B' sales have a

mean of 150 and a standard deviation of 20.

This data is combined into a single DataFrame with columns

for 'Category' and 'Sales'.

To create the violin plot, we use the Seaborn library, which

provides a high-level interface for drawing attractive

statistical graphics.

We call the sns.violinplot function, specifying the DataFrame

and the columns to use for the x-axis (Category) and y-axis

(Sales).

Finally, we set the title of the plot and use plt.show() to

display the plot.

The violin plot provides a visual comparison of the sales

distributions for the two categories. It combines aspects of a

box plot and a kernel density plot, showing the distribution's

shape, central tendency, and variability.

【Trivia】
Violin plots are particularly useful for comparing multiple

categories of data because they display the entire

distribution.

They are more informative than box plots alone because

they show the density of the data at different values, which

can reveal multimodal distributions (distributions with

multiple peaks).

Seaborn's violin plot function also allows for additional

customization, such as splitting the violins for each category

to compare two distributions side by side.

53. Plotting a KDE Plot Using Pandas

Importance★★★☆☆

Difficulty★★★☆☆

You are working as a data analyst for a retail company. Your

manager has asked you to analyze the distribution of the

total purchase amounts made by customers. To better

understand the distribution, you need to create a Kernel

Density Estimate (KDE) plot. Using Python and pandas,

generate a sample dataset of customer purchase amounts

and create a KDE plot to visualize the distribution.

The dataset should have a column named 'PurchaseAmount'

with 1000 randomly generated purchase amounts following

a normal distribution with a mean of 50 and a standard

deviation of 15.

Write a code to create this dataset and plot the KDE. Ensure

your plot is clear and properly labeled.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(0)

data = pd.DataFrame({'PurchaseAmount':

np.random.normal(50, 15, 1000)})

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

np.random.seed(0)

data = pd.DataFrame({'PurchaseAmount':

np.random.normal(50, 15, 1000)})

sns.kdeplot(data['PurchaseAmount'], shade=True)

plt.title('KDE of Purchase Amounts')

plt.xlabel('Purchase Amount')

plt.ylabel('Density')

plt.show()

Kernel Density Estimation (KDE) is a non-parametric way to

estimate the probability density function of a random

variable.

In this task, we are using KDE to visualize the distribution of

purchase amounts in a retail dataset.

First, we import necessary libraries: pandas for data

manipulation, numpy for generating random data,

matplotlib for plotting, and seaborn for creating the KDE

plot.

We set a random seed to ensure the reproducibility of our

results.

Next, we create a DataFrame with one column,

'PurchaseAmount', containing 1000 randomly generated

values from a normal distribution with a mean of 50 and a

standard deviation of 15.

To plot the KDE, we use seaborn's kdeplot function, passing

in our 'PurchaseAmount' data.

The 'shade' parameter is set to True to fill the area under

the KDE curve.

We then set the title and labels for the x and y axes to make

the plot informative.

Finally, we display the plot using plt.show().

【Trivia】
‣ KDE plots are useful for visualizing the distribution of data

without making assumptions about the underlying

distribution shape, unlike histograms which can be sensitive

to bin size and placement.

‣ Seaborn, built on top of matplotlib, provides a high-level

interface for drawing attractive and informative statistical

graphics.

‣ In addition to KDE plots, seaborn also supports other types

of plots like bar plots, box plots, and pair plots, making it a

versatile tool for data visualization.

‣ KDE can be particularly useful when dealing with small

datasets, as it can give a smoother estimate of the

distribution compared to a histogram.

54. Creating a Density Plot with

Pandas

Importance★★★★☆

Difficulty★★★☆☆

You are working as a data analyst for a retail company. The

company wants to analyze the distribution of customer ages

to better understand their target demographic. Your task is

to create a density plot using a sample dataset of customer

ages.First, generate a sample dataset of 1000 customer

ages ranging from 18 to 70. Then, using this dataset, create

a density plot to visualize the age distribution.Provide the

Python code that generates the dataset and the density

plot.

【Data Generation Code Example】

import pandas as pd

import numpy as np

ages = pd.Series(np.random.randint(18, 71, size=1000))

【Diagram Answer】

【Code Answer】

import pandas as pd # Importing necessary libraries

import numpy as np # Importing necessary libraries

import matplotlib.pyplot as plt # Importing necessary

libraries

ages = pd.Series(np.random.randint(18, 71, size=1000)) #

Creating a sample dataset of customer ages

plt.figure(figsize=(10, 6)) # # Setting the figure size

ages.plot(kind='density') # # Creating a density plot

plt.title('Density Plot of Customer Ages') # # Adding a title

to the plot

plt.xlabel('Age') # # Adding an x-axis label

plt.ylabel('Density') # # Adding a y-axis label

plt.grid(True) # # Adding a grid for better readability

plt.show() # # Displaying the plot

To create a density plot using Pandas, follow these steps:

First, you need to generate a sample dataset. This can be

done using numpy to create a series of random integers

representing ages. In the sample code,

numpy.random.randint generates 1000 random integers

between 18 and 70, which are then converted to a Pandas

Series.

Once the data is prepared, you can create a density plot

using the plot method with kind='density'. This method

computes and plots a Kernel Density Estimate (KDE), which

is a smoothed approximation of the data distribution.

To make the plot more informative, set the figure size using

plt.figure, and add titles and labels for the axes using

plt.title, plt.xlabel, and plt.ylabel. Adding a grid with

plt.grid(True) improves readability. Finally, plt.show()

displays the plot.

This process is useful for visualizing the distribution of data

points and identifying patterns or outliers. Density plots are

especially helpful when comparing distributions across

different datasets.

【Trivia】
‣ Kernel Density Estimation (KDE) is a non-parametric way

to estimate the probability density function of a random

variable. It is used to smooth the distribution of data points.

‣ Density plots are similar to histograms, but they provide a

continuous estimation of the distribution, making them

more suitable for identifying the underlying pattern of data.

‣ In data analysis, understanding the distribution of data is

crucial for making informed decisions, as it reveals insights

about the spread, central tendency, and variability of the

dataset.

55. Bar Plot Visualization with Pandas

Importance★★★★☆

Difficulty★★☆☆☆

You are a data analyst at a retail company. The company

wants to visualize the monthly sales data for the first half of

the year to identify trends and compare sales performance.

Your task is to create a bar plot using Pandas to display the

sales data for January to June.

Generate the following sales data:January: $10,000February:

$12,000March: $9,000April: $15,000May: $8,000June:

$14,000Create a bar plot to visualize this data.

【Data Generation Code Example】

import pandas as pd

data = {'Month': ['January', 'February', 'March', 'April', 'May',

'June'], 'Sales': [10000, 12000, 9000, 15000, 8000, 14000]}

df = pd.DataFrame(data)

【Diagram Answer】

【Code Answer】

import pandas as pd

import matplotlib.pyplot as plt

df = pd.DataFrame({'Month': ['January', 'February', 'March',

'April', 'May', 'June'], 'Sales': [10000, 12000, 9000, 15000,

8000, 14000]})

df.plot(kind='bar', x='Month', y='Sales', legend=False)

plt.title('Monthly Sales Data')

plt.xlabel('Month')

plt.ylabel('Sales ($)')

plt.show()

First, we create a Pandas DataFrame with the given sales

data.

The data consists of two columns: 'Month' and 'Sales'.

The 'Month' column includes the names of the months from

January to June, and the 'Sales' column includes the

corresponding sales figures in dollars.

To visualize the data, we use the plot method of the

DataFrame with kind='bar', specifying the 'Month' column

for the x-axis and the 'Sales' column for the y-axis.

The legend=False argument is used to hide the legend.

We then customize the plot with the title, xlabel, and ylabel

functions from Matplotlib to add a title and label the axes.

Finally, we use plt.show() to display the plot.

This exercise helps in understanding how to create a bar

plot using Pandas and Matplotlib, which is a fundamental

skill for data visualization in Python.

【Trivia】
‣ The plot method in Pandas is a wrapper around

Matplotlib's plotting functions, making it easier to create

basic plots from DataFrame data.

‣ Bar plots are particularly useful for comparing categorical

data, such as sales figures for different months or regions.

‣ The plt.show() function is essential for rendering the plot

when using Matplotlib, as it triggers the display of the

current figure.

56. Creating an Area Plot Using

Pandas

Importance★★★★☆

Difficulty★★★☆☆

You are working as a data analyst for a retail company and

need to visualize the monthly sales data of three different

product categories (Electronics, Furniture, and Clothing)

over a year.

Your goal is to create an area plot to show the sales trends

for these categories.

Use Python and Pandas to generate the required data and

plot the area chart.

Ensure that the plot clearly shows the sales trends for each

product category.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(0)

months = pd.date_range('2023-01-01', periods=12,

freq='M')

electronics_sales = np.random.randint(200, 500, size=12)

furniture_sales = np.random.randint(150, 400, size=12)

clothing_sales = np.random.randint(100, 350, size=12)

sales_data = pd.DataFrame({

'Month': months,

'Electronics': electronics_sales,

'Furniture': furniture_sales,

'Clothing': clothing_sales

})

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(0)

months = pd.date_range('2023-01-01', periods=12,

freq='M')

electronics_sales = np.random.randint(200, 500, size=12)

furniture_sales = np.random.randint(150, 400, size=12)

clothing_sales = np.random.randint(100, 350, size=12)

sales_data = pd.DataFrame({

'Month': months,

'Electronics': electronics_sales,

'Furniture': furniture_sales,

'Clothing': clothing_sales

})

sales_data.set_index('Month').plot(kind='area',

stacked=True, alpha=0.5)

plt.title('Monthly Sales Data')

plt.xlabel('Month')

plt.ylabel('Sales')

plt.legend(loc='upper left')

plt.show()

This exercise requires you to create a monthly sales data

visualization for three product categories using an area plot.

First, you need to import the necessary libraries: pandas for

data manipulation, numpy for generating random sales

data, and matplotlib for plotting.

The code sets a random seed for reproducibility and

generates a range of dates for the months in 2023.

Random sales data for Electronics, Furniture, and Clothing

are created using numpy's randint function.

These data are then combined into a pandas DataFrame

with months as the index.

To create the area plot, the DataFrame is indexed by

'Month', and the plot function is used with the 'area' kind.

The 'stacked' parameter ensures the plot is stacked, and

'alpha' sets the transparency.

Finally, titles and labels are added for clarity, and the plot is

displayed using plt.show().

【Trivia】

‣ Area plots are useful for visualizing cumulative data over

time, showing how different components contribute to the

total.

‣ Transparency (alpha) in plotting helps to see overlapping

areas more clearly, which is particularly useful in stacked

area plots.

‣ Ensuring that legends are clearly labeled and placed helps

in making the plot more readable and informative.

‣ The random seed in numpy ensures that the randomly

generated numbers can be reproduced, which is important

for debugging and consistency in data analysis.

57. Scatter Plot Creation with Pandas

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst for a retail company and need to

visualize the relationship between the advertising budget

and the sales revenue.

Create a scatter plot using Pandas to show this relationship.

The dataset contains two columns: 'AdvertisingBudget' and

'SalesRevenue'.

Generate the data with random values for this exercise.

Ensure that the scatter plot is clear and well-labeled.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(0)

data = pd.DataFrame({

'AdvertisingBudget': np.random.rand(50) * 1000,

'SalesRevenue': np.random.rand(50) * 5000

})

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(0)

data = pd.DataFrame({

'AdvertisingBudget': np.random.rand(50) * 1000,

'SalesRevenue': np.random.rand(50) * 5000

})

plt.scatter(data['AdvertisingBudget'], data['SalesRevenue'])

plt.title('Advertising Budget vs Sales Revenue')

plt.xlabel('Advertising Budget ($)')

plt.ylabel('Sales Revenue ($)')

plt.grid(True)

plt.show()

First, we import the necessary libraries: pandas, numpy, and

matplotlib.pyplot.

Pandas is used for data manipulation, numpy for generating

random data, and matplotlib for plotting.

We set a random seed to ensure the generated data is

reproducible.

We then create a DataFrame with two columns:

'AdvertisingBudget' and 'SalesRevenue'.

Each column is populated with 50 random values scaled

appropriately (AdvertisingBudget between 0 and 1000

dollars, SalesRevenue between 0 and 5000 dollars).

To create the scatter plot, we use plt.scatter(), passing the

'AdvertisingBudget' as the x-axis and 'SalesRevenue' as the

y-axis.

We add a title and labels for both axes to ensure the plot is

understandable.

Finally, we enable the grid for better readability and display

the plot using plt.show().

【Trivia】
‣ Scatter plots are useful for identifying potential

correlations between two variables.

‣ In a scatter plot, each point represents an observation

from the dataset, providing a visual representation of the

data distribution.

‣ Adding a regression line to a scatter plot can help to

visualize the trend and strength of the relationship between

the variables.

‣ Matplotlib allows customization of scatter plots, such as

changing point colors, sizes, and adding annotations, which

can enhance data visualization.

58. Box Plot Visualization Using Plotly

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst for a retail company and you need to

visualize the distribution of sales data to identify potential

outliers and understand the spread of sales across different

product categories.

Using the provided dataset, create a box plot to visualize

the sales data for each product category.

Ensure the plot clearly displays the median, quartiles, and

any outliers.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(42)

categories = ['Electronics', 'Clothing', 'Home & Garden',

'Books', 'Toys']

data = {'Category': np.random.choice(categories, 100),

'Sales': np.random.lognormal(mean=3, sigma=1,

size=100)}

df = pd.DataFrame(data)

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import plotly.express as px

np.random.seed(42)

categories = ['Electronics', 'Clothing', 'Home & Garden',

'Books', 'Toys']

data = {'Category': np.random.choice(categories, 100),

'Sales': np.random.lognormal(mean=3, sigma=1,

size=100)}

df = pd.DataFrame(data)

fig = px.box(df, x='Category', y='Sales', title='Sales

Distribution by Category',

labels={'Category': 'Product Category', 'Sales': 'Sales

Amount'})

fig.show()

Box plots are used to display the distribution of a dataset

based on a five-number summary: minimum, first quartile,

median, third quartile, and maximum.

In this exercise, the data is generated using a log-normal

distribution to simulate sales data across different product

categories.

The code starts by importing necessary libraries: pandas for

data manipulation, numpy for random data generation, and

plotly for visualization.

A dataset is created with random categories and sales

values using numpy's random.choice and random.lognormal

functions.

Pandas is used to create a DataFrame from this data.

Plotly's express module (px) is used to generate a box plot.

The px.box function is called with the DataFrame, specifying

the x-axis as 'Category' and y-axis as 'Sales'.

The title and labels parameters are used to customize the

plot.

Finally, fig.show() displays the box plot.

【Trivia】
‣ Box plots were introduced by John Tukey in 1970 as a way

to visually summarize data.

‣ The "box" in a box plot shows the interquartile range

(IQR), which is the range between the first and third

quartiles.

‣ The "whiskers" extend from the box to the smallest and

largest values within 1.5 times the IQR from the quartiles.

‣ Outliers are plotted as individual points beyond the

whiskers.

‣ Plotly is a powerful graphing library that supports

interactive plots, making it useful for exploring data visually.

59. Creating a Violin Plot Using Plotly

Importance★★★★☆

Difficulty★★★☆☆

A client is interested in visualizing the distribution of two

different datasets to compare their variability and central

tendency. They have provided two sets of data: one

representing heights of males and another representing

heights of females. Your task is to create a violin plot to

visualize these distributions using Plotly. This visualization

will help the client understand the differences and

similarities between the two datasets. Please use the

following code to generate sample data and then create the

violin plot.

【Data Generation Code Example】

import numpy as np

np.random.seed(42)

heights_male = np.random.normal(175, 10, 200)

heights_female = np.random.normal(165, 10, 200)

【Diagram Answer】

【Code Answer】

import plotly.graph_objects as go

import numpy as np

np.random.seed(42)

heights_male = np.random.normal(175, 10, 200)

heights_female = np.random.normal(165, 10, 200)

fig = go.Figure()

fig.add_trace(go.Violin(y=heights_male, name='Male',

box_visible=True, meanline_visible=True))

fig.add_trace(go.Violin(y=heights_female, name='Female',

box_visible=True, meanline_visible=True))

fig.update_layout(title='Height Distribution by Gender',

yaxis_title='Height (cm)')

fig.show()

To create a violin plot using Plotly, you first need to import

the necessary libraries. In this case, plotly.graph_objects is

used for creating and displaying the plot.

The sample data is generated using NumPy's

random.normal function, which creates arrays of normally

distributed data. The np.random.seed(42) ensures that the

data is reproducible. Two datasets are generated: one for

males with a mean height of 175 cm and a standard

deviation of 10 cm, and another for females with a mean

height of 165 cm and a standard deviation of 10 cm. Each

dataset contains 200 data points.

Next, you create a Figure object using go.Figure(). To this

figure, you add two violin traces using

fig.add_trace(go.Violin()). Each trace represents one of the

datasets (male and female heights). The parameters

box_visible=True and meanline_visible=True ensure that the

box plot and mean line are visible within the violin plot.

Finally, the layout of the plot is updated with a title and y-

axis label using fig.update_layout(), and the plot is displayed

with fig.show().

Violin plots are useful for visualizing the distribution of data

across different categories. They combine aspects of box

plots and density plots, showing the probability density of

the data at different values, along with summary statistics

like the median and interquartile range. This makes them a

powerful tool for comparing distributions.

【Trivia】
‣ Violin plots are particularly useful when comparing

multiple distributions, as they can show differences in

distribution shape, central tendency, and variability.

‣ The combination of box plot and density plot features in a

violin plot provides a more comprehensive understanding of

the data compared to using either method alone.

‣ Plotly is a versatile library for creating interactive plots,

making it easier to explore data visually and gain insights

through interactive features like zooming and hovering.

60. Creating Interactive Line Plots

with Plotly

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a fitness tracking

company.

The company has collected daily step count data for 100

users over a 30-day period.

Your task is to create an interactive line plot using Plotly to

visualize the average daily step count across all users.

The plot should show the trend of average steps over time,

with the ability to hover over data points for more

information.

Your objectives are:

Generate sample data for 100 users over 30 days.

Calculate the average daily step count across all users.

Create an interactive line plot using Plotly.

Include appropriate labels, title, and hover information.

Please write a Python script that accomplishes these tasks.

Make sure to include code for data generation within your

script.

【Data Generation Code Example】

import numpy as np

import pandas as pd

np.random.seed(42)

date_range = pd.date_range(start='2024-01-01',

periods=30)

users = range(1, 101)

data = np.random.randint(1000, 15000, size=(len(users),

len(date_range)))

df = pd.DataFrame(data, columns=date_range,

index=users)

df_melted = df.reset_index().melt(id_vars='index',

var_name='Date', value_name='Steps')

df_melted = df_melted.rename(columns={'index': 'User'})

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import plotly.graph_objects as go

Generate sample data

np.random.seed(42)

date_range = pd.date_range(start='2024-01-01',

periods=30)

users = range(1, 101)

data = np.random.randint(1000, 15000, size=(len(users),

len(date_range)))

df = pd.DataFrame(data, columns=date_range,

index=users)

Calculate average daily step count

avg_steps = df.mean()

Create interactive line plot

fig = go.Figure()

fig.add_trace(go.Scatter(x=avg_steps.index,

y=avg_steps.values,

mode='lines+markers',

name='Average Steps',

hovertemplate='Date: %{x}Average Steps: %{y:.0f}

<extra></extra>'))

Customize layout

fig.update_layout(

title='Average Daily Step Count Over 30 Days',

xaxis_title='Date',

yaxis_title='Average Steps',

hovermode='x unified',

template='plotly_white'

)

Show the plot

fig.show()

This Python script creates an interactive line plot using

Plotly to visualize the average daily step count across 100

users over a 30-day period.

Let's break down the code and explain each part in detail:

Data Generation:

We use NumPy and Pandas to generate sample data.

A random seed is set for reproducibility.

We create a date range for 30 days starting from January 1,

2024.

We generate random step counts between 1000 and 15000

for 100 users over 30 days.

The data is stored in a Pandas DataFrame.

Data Processing:

We calculate the average daily step count across all users

using the mean() function.

This gives us a series of average steps for each day.

Creating the Interactive Line Plot:

We import Plotly's graph_objects module to create the plot.

We initialize a Figure object using go.Figure().

We add a trace to the figure using fig.add_trace().

The trace is a Scatter plot with mode set to 'lines+markers',

which creates a line with markers at each data point.

We set the x-axis to the dates and the y-axis to the average

step counts.

The hovertemplate is customized to show the date and

average steps when hovering over a point.

Customizing the Layout:

We use fig.update_layout() to customize the appearance of

the plot.

We set a title for the plot, labels for the x and y axes, and

choose a white template for a clean look.

The hovermode is set to 'x unified', which shows hover

information for all traces at the same x-coordinate.

Displaying the Plot:

Finally, we call fig.show() to display the interactive plot.

This script demonstrates several key concepts in data

visualization with Python:

Data generation and manipulation using NumPy and Pandas

Calculating summary statistics (average steps)

Creating interactive plots with Plotly

Customizing plot appearance and hover information

The resulting plot allows users to interact with the data,

seeing the trend of average steps over time and getting

specific values by hovering over data points.

This type of visualization is particularly useful for analyzing

trends and patterns in time-series data.

【Trivia】
‣ Plotly is an open-source graphing library that allows you to

create interactive, publication-quality graphs in Python.

‣ The 'plotly_white' template used in this example is one of

several built-in themes in Plotly. Other options include

'plotly', 'plotly_dark', 'ggplot2', 'seaborn', and more.

‣ The average adult takes between 4,000 to 18,000 steps

per day. The wide range in our generated data (1,000 to

15,000) reflects the variability in real-world step counts.

‣ Interactive plots are particularly useful for data

exploration as they allow users to zoom, pan, and hover

over data points for more information.

‣ The use of a random seed (np.random.seed(42)) ensures

that the same "random" data is generated each time the

script is run, which is crucial for reproducibility in data

analysis and scientific computing.

‣ Plotly can be used to create a wide variety of chart types

beyond line plots, including bar charts, scatter plots,

heatmaps, 3D plots, and more.

‣ The hover template in Plotly uses a special syntax where

%{x} and %{y} refer to the x and y values of the data

point, respectively. This allows for dynamic updating of

hover information.

‣ While Matplotlib is often considered the standard plotting

library in Python, Plotly has gained popularity due to its

interactive features and ability to create web-ready

visualizations.

61. Bar Plot Visualization with Plotly

Importance★★★★☆

Difficulty★★★☆☆

A customer wants to visualize their sales data for different

product categories over several months to identify trends

and patterns.

You need to create a bar plot using Plotly to display this

information.

Generate a dataset with random sales numbers for three

product categories ("Electronics," "Clothing," "Groceries")

over six months.

The dataset should have columns: "Month," "Category," and

"Sales."

Write the Python code to generate this dataset and create a

bar plot using Plotly.

Ensure the plot has appropriate labels and a title.

【Data Generation Code Example】

import pandas as pd

import numpy as np

months = ["January", "February", "March", "April", "May",

"June"]

categories = ["Electronics", "Clothing", "Groceries"]

data = {"Month": [month for month in months for _ in

categories],

"Category": [category for _ in months for category in

categories],

"Sales": np.random.randint(100, 1000, size=len(months) *

len(categories))}

df = pd.DataFrame(data)

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import plotly.express as px

months = ["January", "February", "March", "April", "May",

"June"]

categories = ["Electronics", "Clothing", "Groceries"]

data = {"Month": [month for month in months for _ in

categories],

"Category": [category for _ in months for category in

categories],

"Sales": np.random.randint(100, 1000, size=len(months) *

len(categories))}

df = pd.DataFrame(data)

fig = px.bar(df, x="Month", y="Sales", color="Category",

barmode="group", title="Monthly Sales by Category")

fig.show()

The code begins by importing necessary libraries: pandas

for data manipulation, numpy for generating random

numbers, and plotly.express for creating the plot.

A list of months and categories is created to represent the

sales data.

A dictionary named 'data' is constructed where the "Month"

key has a list of months repeated for each category,

the "Category" key has each category repeated for the

number of months,

and the "Sales" key has random sales numbers generated

using numpy's randint function.

This dictionary is converted into a pandas DataFrame

named 'df'.

The plotly.express bar function (px.bar) is used to create a

bar plot.

The x-axis is set to "Month", the y-axis to "Sales", and

different colors are used for each "Category".

The barmode is set to "group" to place bars for different

categories side by side, and a title is added to the plot.

Finally, fig.show() displays the plot.

【Trivia】
Plotly is a versatile library that allows for interactive plotting

in Python.

It can be used to create a variety of plots including line

plots, scatter plots, and bar plots.

Plotly's express module is a high-level interface which

makes it easy and quick to create plots with just a few lines

of code.

Interactive plots generated by Plotly can be easily

embedded in web applications and shared.

62. Creating a Pie Chart with Plotly

Importance★★★★☆

Difficulty★★★☆☆

A retail company wants to visualize the sales distribution

across different product categories to understand their

market better.

They need a pie chart that shows the percentage of sales

for each category.

The data includes the categories 'Electronics', 'Furniture',

'Clothing', and 'Books', with respective sales figures of

15000, 8000, 6000, and 3000.

Create a Python script to generate this pie chart using Plotly.

【Data Generation Code Example】

sales_data=dict()

sales_data['Categories']=

['Electronics','Furniture','Clothing','Books']

sales_data['Sales']=[15000,8000,6000,3000]

【Diagram Answer】

【Code Answer】

import plotly.express as px

sales_data=dict()

sales_data['Categories']=

['Electronics','Furniture','Clothing','Books']

sales_data['Sales']=[15000,8000,6000,3000]

fig=px.pie(values=sales_data['Sales'],names=sales_data['C

ategories'],title='Sales Distribution by Category')

fig.show()

To create a pie chart using Plotly, you first need to import

the Plotly Express module.

Then, you define the sales data in a dictionary with keys

'Categories' and 'Sales'.

The 'Categories' key holds a list of product categories, and

the 'Sales' key holds the corresponding sales figures.

The px.pie function from Plotly Express is used to create the

pie chart.

You pass the sales figures to the values parameter and the

categories to the names parameter.

Additionally, you can set the title of the pie chart using the

title parameter.

Finally, the show method is called on the figure object to

display the chart.

【Trivia】
Pie charts are useful for showing the relative proportions of

different categories within a dataset.

However, they can become difficult to interpret if there are

too many categories or if the differences between them are

very small.

In such cases, other types of visualizations like bar charts or

stacked bar charts might be more effective.

Plotly is a powerful graphing library that makes interactive

plots easy to create and customize, which can be

particularly useful for data presentations and dashboards.

63. Creating a Treemap with Plotly

Importance★★★☆☆

Difficulty★★☆☆☆

A company wants to visualize their sales data to understand

the distribution across different product categories and

regions.

Your task is to create a treemap using Plotly that displays

this information.

The data should include the following fields: 'Region',

'Category', and 'Sales'.

Use the generated data to create a treemap where the size

of each rectangle represents the sales volume.

【Data Generation Code Example】

import pandas as pd

import numpy as np

np.random.seed(0)

regions = ['North', 'South', 'East', 'West']

categories = ['Electronics', 'Clothing', 'Furniture']

data = pd.DataFrame({

'Region': np.random.choice(regions, 100),

'Category': np.random.choice(categories, 100),

'Sales': np.random.randint(1000, 10000, 100)

})

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import plotly.express as px

np.random.seed(0)

regions = ['North', 'South', 'East', 'West']

categories = ['Electronics', 'Clothing', 'Furniture']

data = pd.DataFrame({

'Region': np.random.choice(regions, 100),

'Category': np.random.choice(categories, 100),

'Sales': np.random.randint(1000, 10000, 100)

})

fig = px.treemap(data, path=['Region', 'Category'],

values='Sales', title='Sales Distribution by Region and

Category')

fig.show()

First, the necessary libraries are imported, including pandas

for data manipulation, numpy for random data generation,

and plotly.express for creating the treemap.

The random seed is set to ensure reproducibility.

Arrays for regions and categories are defined, and a

DataFrame is created with 100 random entries for regions

and categories, and random sales values between 1000 and

10000.

Using plotly.express's treemap function, the data is

visualized, with 'Region' and 'Category' defining the

hierarchy and 'Sales' determining the size of each rectangle.

The resulting plot provides a clear, visual representation of

sales distribution across different regions and product

categories.

【Trivia】
‣ Treemaps are particularly useful for visualizing hierarchical

data, where the size of each rectangle reflects a

quantitative dimension.

‣ Plotly is a powerful library for interactive data

visualizations, making it easier to explore complex datasets.

‣ The choice of using random data helps in learning the

process without needing actual data, and the skills can be

directly applied to real-world data scenarios.

64. Plotting a Funnel Chart Using

Plotly

Importance★★★☆☆

Difficulty★★★☆☆

A digital marketing agency wants to visualize the conversion

rates of their sales funnel.

They have the following stages: 'Website Visits', 'Sign-Ups',

'Free Trials', and 'Purchases'.

Each stage has the following number of users: 5000, 1500,

800, and 200 respectively.

Create a funnel chart to help the agency understand their

conversion rates at each stage.

Use Python and Plotly to generate the funnel chart.

Below is the code to create the necessary data for this

visualization.

Complete the code to generate the funnel chart.

【Data Generation Code Example】

import pandas as pd

import plotly.express as px

data = {

'Stage': ['Website Visits', 'Sign-Ups', 'Free Trials',

'Purchases'],

'Users': [5000, 1500, 800, 200]

}

df = pd.DataFrame(data)

Complete the code to plot the funnel chart using Plotly

【Diagram Answer】

【Code Answer】

import pandas as pd

import plotly.express as px

data = {

'Stage': ['Website Visits', 'Sign-Ups', 'Free Trials',

'Purchases'],

'Users': [5000, 1500, 800, 200]

}

df = pd.DataFrame(data)

fig = px.funnel(df, x='Users', y='Stage', title='Sales Funnel')

fig.show()

To create a funnel chart using Plotly, we first import the

necessary libraries, pandas and plotly.express.

Pandas is used to handle the data in a structured format,

and Plotly Express is a high-level interface for Plotly that

makes it easy to create various types of plots.

We then define a dictionary to store the stages of the sales

funnel and the number of users at each stage.

This dictionary is converted into a pandas DataFrame for

easier manipulation and plotting.

The core part of the code involves using the px.funnel

function from Plotly Express.

This function requires the DataFrame, the x-axis value

(number of users), and the y-axis value (stages of the

funnel).

We also add a title to the chart using the title parameter.

Finally, the fig.show() command displays the funnel chart.

This exercise demonstrates basic data handling with pandas

and visualization with Plotly, focusing on creating a funnel

chart to represent conversion rates at different stages of a

sales process.

【Trivia】
‣ Funnel charts are often used in sales and marketing to

visualize the stages of a process and identify potential areas

where drop-offs occur.

‣ Plotly is a powerful graphing library that supports

interactive and dynamic visualizations, making it ideal for

data analysis and presentation.

‣ In addition to funnel charts, Plotly Express can create a

wide variety of plots, including scatter plots, line charts, bar

charts, and more.

65. Creating a Waterfall Chart with

Plotly for Financial Analysis

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst at a growing e-commerce company.

The CEO has asked you to create a waterfall chart to

visualize the company's financial performance over the past

year.

The chart should show how various income and expense

categories contribute to the overall change in the

company's financial position.

Your task is to:

Create sample data representing different financial

categories and their respective values.

Use Plotly to create a waterfall chart that clearly shows how

each category impacts the company's bottom line.

Ensure the chart is visually appealing and easy to

understand, with appropriate labels and colors.

Add a title and axis labels to the chart.

The waterfall chart should include the following categories:

Starting Balance

Revenue

Cost of Goods Sold

Operating Expenses

Taxes

Investments

Final Balance

Your code should generate the sample data and create the

waterfall chart in a single, executable script.

【Data Generation Code Example】

import pandas as pd

data = pd.DataFrame([

("Starting Balance", 1000000),

("Revenue", 500000),

("Cost of Goods Sold", -300000),

("Operating Expenses", -100000),

("Taxes", -50000),

("Investments", -200000),

("Final Balance", 850000)

], columns=["Category", "Amount"])

data["Type"] = ["total", "relative", "relative", "relative",

"relative", "relative", "total"]

【Diagram Answer】

【Code Answer】

import pandas as pd

import plotly.graph_objects as go

data = pd.DataFrame([

("Starting Balance", 1000000),

("Revenue", 500000),

("Cost of Goods Sold", -300000),

("Operating Expenses", -100000),

("Taxes", -50000),

("Investments", -200000),

("Final Balance", 850000)

], columns=["Category", "Amount"])

data["Type"] = ["total", "relative", "relative", "relative",

"relative", "relative", "total"]

fig = go.Figure(go.Waterfall(

name = "Financial Performance",

orientation = "v",

measure = data["Type"],

x = data["Category"],

textposition = "outside",

text = data["Amount"].apply(lambda x: f"${x:,.0f}"),

y = data["Amount"],

connector = {"line":{"color":"rgb(63, 63, 63)"}},

))

fig.update_layout(

title = "E-commerce Company Financial Performance",

showlegend = False,

xaxis_title = "Categories",

yaxis_title = "Amount (USD)"

)

fig.show()

This code creates a waterfall chart using Plotly to visualize

the financial performance of an e-commerce company.

Let's break down the code and explain its key components:

Data Preparation:

We use pandas to create a DataFrame with financial

categories and their corresponding amounts.

The 'Type' column is added to specify whether each

category is a 'total' or 'relative' value.

Plotly Waterfall Chart Creation:

We import the necessary Plotly module: plotly.graph_objects

as go.

A Figure object is created using go.Figure().

Inside the Figure, we create a Waterfall chart using

go.Waterfall().

Waterfall Chart Configuration:

name: Sets the name of the chart (used in legends).

orientation: "v" for vertical orientation.

measure: Specifies whether each bar is a total or relative

value.

x: Sets the x-axis labels (categories).

textposition: Places the text labels outside the bars.

text: Formats the amount values as currency strings.

y: Sets the y-axis values (amounts).

connector: Configures the lines connecting the bars.

Data Formatting:

We use a lambda function to format the amount values as

currency strings: lambda x: f"${x:,.0f}".

This adds a dollar sign, comma separators, and removes

decimal places.

Chart Layout:

update_layout() is used to customize the chart's

appearance.

We set a title, hide the legend, and add axis titles.

Displaying the Chart:

fig.show() renders and displays the chart.

This code demonstrates several important aspects of data

visualization with Python:

Data manipulation with pandas

Creating interactive charts with Plotly

Customizing chart appearance and labels

Formatting numerical data for better readability

The resulting waterfall chart effectively shows how each

financial category contributes to the company's overall

financial position, making it easy to identify the impact of

revenues, expenses, and investments.

【Trivia】

‣ Waterfall charts are also known as bridge charts or

cascade charts.

‣ They are particularly useful for understanding how an

initial value is affected by a series of intermediate positive

or negative values.

‣ Waterfall charts were popularized by McKinsey & Company

in the 1960s for visualizing financial statements.

‣ While Plotly is used here, other Python libraries like

Matplotlib and Seaborn can also create waterfall charts,

though with more complex code.

‣ Waterfall charts are commonly used in financial analysis,

project management, and inventory analysis.

‣ The color coding in waterfall charts typically uses green

for positive values, red for negative values, and a neutral

color like blue or gray for totals.

‣ Interactive features of Plotly charts, such as hover

information and zooming, make them particularly useful for

detailed data exploration.

66. Generate a Candlestick Chart

Using Plotly

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a financial firm. Your task

is to generate a candlestick chart to visualize stock price

movements over a period of time. The chart should include

open, high, low, and close prices for each day. Use the Plotly

library in Python to create this visualization.

Create a sample dataset within your code that includes the

following columns: 'Date', 'Open', 'High', 'Low', 'Close'. The

dataset should cover a period of 10 days. Ensure that the

dates are sequential and the prices are realistic.

Write the Python code to generate and display the

candlestick chart using Plotly.

【Data Generation Code Example】

import pandas as pd

import numpy as np

dates = pd.date_range(start='2024-07-01', periods=10)

open_prices = np.random.uniform(low=100, high=200,

size=10)

high_prices = open_prices + np.random.uniform(low=1,

high=10, size=10)

low_prices = open_prices - np.random.uniform(low=1,

high=10, size=10)

close_prices = open_prices + np.random.uniform(low=-5,

high=5, size=10)

data = pd.DataFrame({'Date': dates, 'Open': open_prices,

'High': high_prices, 'Low': low_prices, 'Close': close_prices})

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import plotly.graph_objects as go

dates = pd.date_range(start='2024-07-01', periods=10)

open_prices = np.random.uniform(low=100, high=200,

size=10)

high_prices = open_prices + np.random.uniform(low=1,

high=10, size=10)

low_prices = open_prices - np.random.uniform(low=1,

high=10, size=10)

close_prices = open_prices + np.random.uniform(low=-5,

high=5, size=10)

data = pd.DataFrame({'Date': dates, 'Open': open_prices,

'High': high_prices, 'Low': low_prices, 'Close': close_prices})

fig = go.Figure(data=[go.Candlestick(x=data['Date'],

open=data['Open'], high=data['High'], low=data['Low'],

close=data['Close'])])

fig.update_layout(title='Stock Price Movements',

xaxis_title='Date', yaxis_title='Price')

fig.show()

To generate a candlestick chart using Plotly, you first need

to create a dataset that includes the necessary columns:

'Date', 'Open', 'High', 'Low', and 'Close'. In this example, the

dataset covers a period of 10 days. The dates are generated

using pd.date_range, and the prices are generated using

np.random.uniform to ensure they are realistic.

Once the dataset is created, you can use Plotly's go.Figure

and go.Candlestick to create the candlestick chart. The

go.Candlestick function takes the 'Date', 'Open', 'High',

'Low', and 'Close' columns as inputs. The fig.update_layout

method is used to add titles to the chart and the axes.

Finally, the fig.show() method displays the chart.

This exercise helps you practice data manipulation and

visualization using Python, focusing on financial data. It

demonstrates how to generate sample data and visualize it

effectively using Plotly.

【Trivia】
‣ Candlestick charts originated in Japan and were used by

rice traders in the 18th century to track market prices and

daily momentum.

‣ Plotly is an open-source graphing library that makes

interactive, publication-quality graphs online. It is

particularly useful for creating complex visualizations like

candlestick charts.

‣ The 'Open', 'High', 'Low', and 'Close' prices are essential

components of financial data analysis, providing insights

into market trends and price movements.

67. Creating a Heatmap with Plotly

Importance★★★★☆

Difficulty★★★☆☆

You are working as a data analyst for a retail company.

Your manager has asked you to analyze the sales data and

create a heatmap to visualize the sales performance across

different stores and product categories.

The heatmap should help identify patterns and trends in the

sales data.

Use Plotly to create the heatmap.Create a heatmap that

visualizes the sales performance of different products across

various stores.

The data should include store names, product categories,

and sales figures.

Use the following sample data:‣ Stores: ['Store A', 'Store B',

'Store C', 'Store D']

‣ Product Categories: ['Electronics', 'Clothing', 'Groceries',

'Furniture']

‣ Sales Figures: Random integers between 1000 and 5000

【Data Generation Code Example】

import pandas as pd

import numpy as np

Sample data creation

stores = ['Store A', 'Store B', 'Store C', 'Store D']

categories = ['Electronics', 'Clothing', 'Groceries', 'Furniture']

sales_data = np.random.randint(1000, 5000, size=

(len(stores), len(categories)))

Creating DataFrame

df = pd.DataFrame(sales_data, index=stores,

columns=categories)

df

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import plotly.express as px

Sample data creation

stores = ['Store A', 'Store B', 'Store C', 'Store D']

categories = ['Electronics', 'Clothing', 'Groceries', 'Furniture']

sales_data = np.random.randint(1000, 5000, size=

(len(stores), len(categories)))

Creating DataFrame

df = pd.DataFrame(sales_data, index=stores,

columns=categories)

Creating heatmap using Plotly

fig = px.imshow(df, labels=dict(x="Product Categories",

y="Stores", color="Sales Figures"), x=categories, y=stores)

fig.show()

To create the heatmap, we start by importing the necessary

libraries: pandas, numpy, and plotly.express.

We define the sample data, including store names, product

categories, and random sales figures.

This data is then structured into a DataFrame using pandas.

The px.imshow function from Plotly is used to generate the

heatmap.

We pass the DataFrame and label the axes and color scale

appropriately.

The heatmap is displayed using fig.show(), allowing us to

visually analyze sales performance across stores and

product categories.

This exercise demonstrates essential data manipulation and

visualization skills, focusing on creating a clear and

informative heatmap.

The heatmap provides an intuitive way to identify patterns

and trends in the sales data, facilitating better decision-

making.

【Trivia】
Heatmaps are a powerful tool for visualizing complex data

relationships in a matrix format.

They are widely used in various fields, including biology

(e.g., gene expression data), finance (e.g., correlation

matrices), and marketing (e.g., sales performance).

Plotly, a versatile visualization library, offers interactive

heatmaps, enhancing data exploration and presentation

capabilities.

68. Plotting a Contour Plot with Plotly

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a geological survey

company.

Your task is to visualize the topography of a region using a

contour plot.

You are provided with X and Y coordinates representing the

geographical area and a function that generates the

elevation data (Z values).

Create a contour plot using Plotly to help your team

understand the topographical variations of the region.

【Data Generation Code Example】

import numpy as np

Create data

X = np.linspace(-5, 5, 100)

Y = np.linspace(-5, 5, 100)

X, Y = np.meshgrid(X, Y)

Z = np.sin(np.sqrt(X**2 + Y**2))

Z values represent elevation data

X = X.flatten()

Y = Y.flatten()

Z = Z.flatten()

【Diagram Answer】

【Code Answer】

import numpy as np

import plotly.graph_objects as go

Create data

X = np.linspace(-5, 5, 100)

Y = np.linspace(-5, 5, 100)

X, Y = np.meshgrid(X, Y)

Z = np.sin(np.sqrt(X**2 + Y**2))

Create a contour plot

fig = go.Figure(data=go.Contour(

 x=X[0], # Flattening is not needed

 y=Y[:,0], # Flattening is not needed

 z=Z

))

Show the plot

fig.show()

To create a contour plot with Plotly, you first need to prepare

your data.

The numpy.linspace function generates linearly spaced

values, which are used to create a meshgrid representing

the X and Y coordinates of the region.

Using numpy.meshgrid, these coordinates are combined to

form a grid.

The Z values, representing elevation data, are generated

using a mathematical function that calculates the elevation

at each point in the grid.

In this example, the function np.sin(np.sqrt(X**2 + Y**2)) is

used to create a radial elevation pattern.The go.Figure

function from Plotly is then used to create a contour plot.

The go.Contour method takes the X, Y, and Z values and

generates the contour plot.

The X and Y values are not flattened, as Plotly's go.Contour

can handle 2D arrays directly.

The fig.show() method displays the plot, allowing the team

to visualize the topography of the region.

【Trivia】
Contour plots are widely used in various fields, including

geography, meteorology, and engineering, to represent

three-dimensional data in two dimensions.

They help in understanding the elevation, temperature,

pressure, and other continuous data variations across a

surface.

Plotly's interactive features make it an excellent choice for

exploring such data visually.

69. Creating 3D Scatter Plots with

Plotly

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a multinational e-

commerce company.

The company wants to visualize the relationship between

customer age, annual spending, and the number of

purchases made in the last year.

Your task is to create a 3D scatter plot using Plotly to help

the marketing team understand these relationships better.

Create a Python script that does the following:

Generate a dataset of 100 customers with the following

information:

Age (between 18 and 70)

Annual spending (between $100 and $10,000)

Number of purchases (between 1 and 50)

Create a 3D scatter plot using Plotly with the following

specifications:

X-axis: Age

Y-axis: Annual spending

Z-axis: Number of purchases

Each point should represent a customer

Color the points based on the annual spending (use a color

scale from blue to red)

Add hover text to display the exact values for each

customer

Customize the plot with appropriate titles, labels, and a

color bar.

Display the plot in your default web colab.

Your code should generate the data and create the plot in a

single script, without reading from or writing to external

files.

【Data Generation Code Example】

import numpy as np

np.random.seed(42)

age = np.random.randint(18, 71, 100)

spending = np.random.uniform(100, 10000, 100)

purchases = np.random.randint(1, 51, 100)

【Diagram Answer】

【Code Answer】

import numpy as np

import plotly.graph_objects as go

np.random.seed(42)

age = np.random.randint(18, 71, 100)

spending = np.random.uniform(100, 10000, 100)

purchases = np.random.randint(1, 51, 100)

fig = go.Figure(data=[go.Scatter3d(

x=age,

y=spending,

z=purchases,

mode='markers',

marker=dict(

size=5,

color=spending,

colorscale='Blues',

opacity=0.8,

colorbar=dict(title='Annual Spending ($)')

),

text=[f'Age: {a}Spending: ${s:.2f}Purchases: {p}' for a, s,

p in zip(age, spending, purchases)],

hoverinfo='text'

)])

fig.update_layout(

title='Customer Age, Spending, and Purchase Frequency',

scene=dict(

xaxis_title='Age',

yaxis_title='Annual Spending ($)',

zaxis_title='Number of Purchases'

)

)

fig.show()

This code creates a 3D scatter plot using Plotly to visualize

the relationship between customer age, annual spending,

and number of purchases.

Let's break down the code and explain its key components:

Data Generation:

We use NumPy to generate random data for 100 customers.

np.random.seed(42) ensures reproducibility of the random

data.

age is generated as integers between 18 and 70.

spending is generated as float values between 100 and

10,000.

purchases is generated as integers between 1 and 50.

Plotly Setup:

We import plotly.graph_objects to create the 3D scatter plot.

Creating the 3D Scatter Plot:

We use go.Figure() to initialize a new figure.

Inside the figure, we create a go.Scatter3d object, which

represents our 3D scatter plot.

The x, y, and z parameters are set to our generated data:

age, spending, and purchases respectively.

We set the mode to 'markers' to create a scatter plot.

Marker Customization:

The marker parameter is a dictionary that defines how each

point (marker) looks.

We set the size to 5 for all markers.

The color is set to spending, which means the color of each

point will be based on the spending value.

colorscale='Blues' sets a color gradient from light to dark

blue based on spending.

opacity=0.8 makes the markers slightly transparent.

We add a colorbar to show the scale of spending values.

Hover Information:

We create custom hover text using a list comprehension,

formatting the age, spending, and purchases for each point.

hoverinfo='text' tells Plotly to use our custom text for the

hover information.

Layout Customization:

We use update_layout() to set the overall title of the plot.

The scene parameter is used to set titles for each axis in the

3D plot.

Displaying the Plot:

fig.show() opens the plot in the default web colab.

This code demonstrates several important concepts in data

visualization with Python:

Using NumPy for efficient data generation and manipulation

Creating interactive 3D plots with Plotly

Customizing plot aesthetics (colors, sizes, opacity)

Adding informative hover text to enhance user interaction

Properly labeling axes and adding a title for clear

communication of data

The resulting plot allows users to interactively explore the

relationships between customer age, spending, and

purchase frequency, providing valuable insights for the

marketing team.

【Trivia】
‣ Plotly is an open-source graphing library that allows you to

create interactive, publication-quality graphs.

‣ 3D scatter plots are particularly useful for visualizing

relationships between three variables simultaneously.

‣ The 'Blues' colorscale used in this example is just one of

many built-in colorscales in Plotly. Others include 'Viridis',

'Plasma', 'Inferno', and 'Magma'.

‣ Plotly graphs can be easily embedded in web applications,

making them great for creating dashboards.

‣ The numpy.random.seed() function is crucial for

reproducibility in data science projects, ensuring that

random numbers are generated in the same sequence each

time the code is run.

‣ In real-world scenarios, this type of visualization could

help identify customer segments or trends, such as whether

older customers tend to spend more or make more frequent

purchases.

‣ Plotly allows for extensive customization, including the

ability to add dropdown menus, sliders, and buttons to

interact with the plot.

70. 3D Surface Plot with Plotly for

Customer Satisfaction Analysis

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst for a large e-commerce company.

The customer service department wants to visualize the

relationship between customer satisfaction, product price,

and delivery time.

They believe these factors are crucial for improving overall

customer experience.

Your task is to create a 3D surface plot using Plotly to

represent this data.

The x-axis should represent the product price (ranging from

$10 to $100), the y-axis should represent the delivery time

(ranging from 1 to 10 days), and the z-axis should represent

the customer satisfaction score (ranging from 1 to 10).

Generate sample data for 100 products with varying prices

and delivery times, and assign random satisfaction scores.

Then, create a 3D surface plot that clearly shows how

customer satisfaction changes with respect to price and

delivery time.

Make sure to include appropriate labels, title, and color

scale in your visualization.

【Data Generation Code Example】

import numpy as np

import pandas as pd

np.random.seed(42)

product_prices = np.random.uniform(10, 100, 100)

delivery_times = np.random.randint(1, 11, 100)

satisfaction_scores = np.random.randint(1, 11, 100)

df = pd.DataFrame({'Price': product_prices, 'DeliveryTime':

delivery_times, 'Satisfaction': satisfaction_scores})

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import plotly.graph_objects as go

np.random.seed(42)

product_prices = np.random.uniform(10, 100, 100)

delivery_times = np.random.randint(1, 11, 100)

satisfaction_scores = np.random.randint(1, 11, 100)

df = pd.DataFrame({'Price': product_prices, 'DeliveryTime':

delivery_times, 'Satisfaction': satisfaction_scores})

Create a pivot table for the 3D surface plot

pivot_table = df.pivot_table(values='Satisfaction',

index='DeliveryTime', columns='Price',

aggfunc=np.mean).sort_index(ascending=False)

Create the 3D surface plot

fig = go.Figure(data=[go.Surface(z=pivot_table.values,

x=pivot_table.columns, y=pivot_table.index)])

Customize the layout

fig.update_layout(

title='Customer Satisfaction vs. Price and Delivery Time',

scene = dict(

xaxis_title='Price ($)',

yaxis_title='Delivery Time (days)',

zaxis_title='Satisfaction Score'

),

width=800,

height=800,

margin=dict(r=20, b=10, l=10, t=40)

)

Show the plot

fig.show()

This code creates a 3D surface plot to visualize the

relationship between customer satisfaction, product price,

and delivery time.

Let's break down the data processing and visualization

steps:

Data Generation:

We use NumPy to generate random data for 100 products.

Product prices range from $10 to $100.

Delivery times range from 1 to 10 days.

Satisfaction scores range from 1 to 10.

We create a pandas DataFrame to store this data.

Data Processing:

We create a pivot table from the DataFrame.

The pivot table calculates the mean satisfaction score for

each combination of price and delivery time.

This step is crucial for creating the 3D surface plot, as it

transforms the data into the required format.

Creating the 3D Surface Plot:

We use Plotly's graph_objects module to create the plot.

The go.Surface() function is used to create the 3D surface.

We pass the pivot table values as the z parameter, which

represents the height of the surface.

The x and y parameters are set to the columns (prices) and

index (delivery times) of the pivot table, respectively.

Customizing the Plot:

We use fig.update_layout() to customize various aspects of

the plot.

We set a title for the entire plot.

We define labels for each axis (x: Price, y: Delivery Time, z:

Satisfaction Score).

We set the dimensions of the plot (width and height).

We adjust the margins to ensure the plot fits well within the

display area.

Displaying the Plot:

Finally, we use fig.show() to display the interactive 3D

surface plot.

This visualization allows us to see how customer satisfaction

varies with different combinations of price and delivery

time.

The x-axis represents product prices, the y-axis represents

delivery times, and the z-axis (height of the surface)

represents the average satisfaction score.

The color gradient of the surface also helps to quickly

identify areas of high and low satisfaction.

By analyzing this plot, the e-commerce company can

identify optimal price points and delivery times that lead to

higher customer satisfaction.

For example, they might notice that satisfaction is generally

higher for lower-priced items with shorter delivery times, or

they might identify unexpected patterns that could inform

business decisions.

【Trivia】
‣ 3D surface plots are particularly useful for visualizing

relationships between three variables, making them ideal

for complex data analysis tasks.

‣ Plotly is an open-source graphing library that creates

interactive, publication-quality graphs. It's particularly

popular for creating web-based visualizations.

‣ The pivot_table function in pandas is a powerful tool for

reshaping data and calculating aggregate statistics, which is

often necessary for creating advanced visualizations.

‣ In data visualization, color scales can significantly

enhance the readability of 3D plots. Plotly automatically

applies a color scale to the surface, making it easier to

interpret the data.

‣ Interactive 3D plots allow users to rotate, zoom, and hover

over data points, providing a more engaging and

informative experience compared to static 2D plots.

‣ When working with real-world data, it's important to

handle missing values and outliers before creating

visualizations to ensure accurate representation of the data.

‣ In e-commerce, understanding the relationship between

factors like price, delivery time, and customer satisfaction

can lead to improved business strategies and increased

customer loyalty.

71. Creating a 3D Line Plot with Plotly

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst for a logistics company.

Your task is to visualize the movement of a delivery truck

over time in a 3D space.

The truck's coordinates (x, y, z) change over time, and you

need to create a 3D line plot to represent this movement.

Generate sample data for the truck's coordinates over a

period of time and create a 3D line plot using Plotly.

Ensure the plot has labeled axes and a title.

【Data Generation Code Example】

import numpy as np

import pandas as pd

Generate sample data

np.random.seed(0)

time = np.arange(0, 100, 1)

x = np.cumsum(np.random.randn(100))

y = np.cumsum(np.random.randn(100))

z = np.cumsum(np.random.randn(100))

Create a DataFrame

data = pd.DataFrame({'time': time, 'x': x, 'y': y, 'z': z})

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import plotly.graph_objs as go

import plotly.express as px

Generate sample data

np.random.seed(0)

time = np.arange(0, 100, 1)

x = np.cumsum(np.random.randn(100))

y = np.cumsum(np.random.randn(100))

z = np.cumsum(np.random.randn(100))

Create a DataFrame

data = pd.DataFrame({'time': time, 'x': x, 'y': y, 'z': z})

Create the 3D line plot

fig = go.Figure()

fig.add_trace(go.Scatter3d(x=data['x'], y=data['y'],

z=data['z'], mode='lines', name='Truck Movement'))

fig.update_layout(title='3D Line Plot of Truck Movement',

scene=dict(xaxis_title='X Coordinate', yaxis_title='Y

Coordinate', zaxis_title='Z Coordinate'))

fig.show()

First, we generate the sample data for the truck's

coordinates using NumPy.

We use np.random.seed(0) to ensure the randomness is

consistent each time the code runs.

We then create an array for the time variable and use

np.cumsum(np.random.randn(100)) to generate cumulative

sums of random numbers for the x, y, and z coordinates.

This gives us a trajectory for the truck in a 3D space.

Next, we store this data in a pandas DataFrame to make it

easy to handle and plot.

The DataFrame contains columns for time, x, y, and z.

Using Plotly, we create a 3D scatter plot with lines

connecting the points to represent the truck's movement.

We use go.Scatter3d to create the 3D line plot and

fig.update_layout to add titles to the axes and the plot itself.

Finally, we use fig.show() to display the plot.

【Trivia】
Plotly is an interactive graphing library that supports a wide

range of chart types, including 3D plots, which makes it very

useful for visualizing complex data in a more intuitive way.

The np.cumsum function is often used in time series

analysis to compute the cumulative sum of elements, which

can represent a running total or accumulated value over

time.

72. 3D Mesh Plot Visualization

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a topographical research

company.

Your team has gathered elevation data for a specific region

and you need to visualize this data in a 3D mesh plot using

Plotly.

Your goal is to generate a 3D mesh plot where the x and y

coordinates represent the geographical location and the z

coordinate represents the elevation.Generate the data

programmatically and create a 3D mesh plot using Plotly to

visualize it.

【Data Generation Code Example】

import numpy as np

x = np.linspace(-5, 5, 50)

y = np.linspace(-5, 5, 50)

x, y = np.meshgrid(x, y)

z = np.sin(np.sqrt(x + y))

【Diagram Answer】

【Code Answer】

import plotly.graph_objects as go

import numpy as np

x = np.linspace(-5, 5, 50)

y = np.linspace(-5, 5, 50)

x, y = np.meshgrid(x, y)

z = np.sin(np.sqrt(x + y))

mesh = go.Mesh3d(x=x.flatten(), y=y.flatten(),

z=z.flatten(), color='lightblue', opacity=0.50)

fig = go.Figure(data=[mesh])

fig.update_layout(scene=dict(zaxis=dict(nticks=4, range=

[-1,1])))

fig.show()

This task involves creating a 3D mesh plot using Plotly, a

popular data visualization library.

First, we generate the data. We use numpy to create a grid

of x and y values, ranging from -5 to 5 with 50 points in

each direction. We then compute the z values using the

function z = sin(sqrt(x^2 + y^2)), which gives us a wave-

like surface. This simulates elevation data in a specific

region.

For visualization, we use Plotly. We import the necessary

modules and generate the 3D mesh plot using go.Mesh3d.

This function takes x, y, and z coordinates as inputs and

plots them in 3D space. We flatten the x, y, and z arrays to

convert them into one-dimensional arrays, which is the

required format for go.Mesh3d. We also set the color and

opacity of the mesh.

Finally, we create a figure object with go.Figure and add the

mesh data to it. We update the layout to adjust the z-axis

ticks and range, ensuring the plot is displayed correctly. The

plot is then shown using fig.show().

This exercise is crucial for understanding how to process

and visualize 3D data, a common task in topographical and

other scientific research.

【Trivia】
‣ Plotly's Mesh3d is particularly useful for visualizing three-

dimensional surfaces and structures, which is crucial in

fields like geology, meteorology, and engineering.

‣ The function z = sin(sqrt(x^2 + y^2)) is often used in

visualizations to create aesthetically pleasing wave-like

patterns that mimic real-world terrains.

‣ Plotly is built on top of D3.js and provides high-level

interfaces to create interactive and publication-quality

graphical representations.

73. Creating 3D Volume Plots with

Plotly for Data Visualization

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a pharmaceutical

company.

The company has developed a new drug and wants to

visualize its concentration in different parts of a 3D model of

the human body.

Your task is to create a 3D volume plot using Plotly to

represent this data.

The data represents drug concentration levels in a 3D grid

of the human torso, with dimensions 20x0x0.

Each point in the grid has an x, y, and z coordinate, along

with a corresponding drug concentration value.

Your objectives are:

Generate sample data representing the drug concentration

in a 3D grid.

Create a 3D volume plot using Plotly to visualize this data.

Customize the plot with appropriate labels, title, and color

scale.

Ensure the plot is interactive, allowing users to rotate and

zoom in/out of the 3D model.

Please write Python code to accomplish these tasks,

focusing on data manipulation and visualization techniques.

Make sure to include the data generation step in your code.

【Data Generation Code Example】

import numpy as np

np.random.seed(42)

x, y, z = np.mgrid[0:20:20j, 0:20:20j, 0:20:20j]

Generate random concentration values

values = np.random.rand(20, 20, 20) * 100

Simulate higher concentration in the center

center = (10, 10, 10)

distance = np.sqrt((x - center)**2 + (y - center)**2 + (z -

center)**2)

values = values * (1 / (1 + distance/10))

【Diagram Answer】

【Code Answer】

import numpy as np

import plotly.graph_objects as go

np.random.seed(42)

x, y, z = np.mgrid[0:20:20j, 0:20:20j, 0:20:20j]

Generate random concentration values

values = np.random.rand(20, 20, 20) * 100

Simulate higher concentration in the center

center = (10, 10, 10)

distance = np.sqrt((x - center)**2 + (y - center)**2 + (z -

center)**2)

values = values * (1 / (1 + distance/10))

Create 3D volume plot

fig = go.Figure(data=go.Volume(

x=x.flatten(),

y=y.flatten(),

z=z.flatten(),

value=values.flatten(),

isomin=0,

isomax=100,

opacity=0.1,

surface_count=25,

colorscale='Viridis'

))

Customize the plot

fig.update_layout(

title='Drug Concentration in Human Torso',

scene=dict(

xaxis_title='X Axis',

yaxis_title='Y Axis',

zaxis_title='Z Axis'

),

width=700,

margin=dict(r=20, b=10, l=10, t=40)

)

Show the plot

fig.show()

This code creates a 3D volume plot to visualize drug

concentration in a human torso using Plotly.

Let's break down the key components and explain the data

manipulation and visualization techniques used:

Data Generation:

We use NumPy's mgrid function to create three 3D arrays (x,

y, z) representing a 20x0x0 grid.

Random concentration values are generated using

np.random.rand() and scaled by 100.

To simulate higher concentration in the center, we calculate

the distance from each point to the center and adjust the

values accordingly.

Importing Libraries:

We import NumPy for data manipulation and Plotly's

graph_objects for creating the 3D volume plot.

Creating the 3D Volume Plot:

We use go.Volume() to create the 3D volume plot.

The x, y, and z arrays are flattened to 1D arrays, as required

by Plotly.

The value parameter takes the flattened concentration

values.

isomin and isomax set the range for the isosurface values.

opacity controls the transparency of the volume.

surface_count determines the number of isosurfaces.

colorscale sets the color scheme for the plot (Viridis in this

case).

Customizing the Plot:

fig.update_layout() is used to customize the plot's

appearance.

We set a title for the plot and labels for each axis.

The plot's dimensions and margins are adjusted for better

visibility.

Displaying the Plot:

fig.show() renders the interactive 3D plot.

This visualization technique allows for an intuitive

representation of 3D data, making it easier to understand

the distribution of drug concentration throughout the

modeled torso.

The interactive nature of the plot enables users to rotate,

zoom, and explore the data from different angles, providing

valuable insights into the drug's distribution patterns.

【Trivia】
‣ 3D volume plots are particularly useful in medical

imaging, geological surveys, and fluid dynamics simulations.

‣ The Viridis colorscale used in this example is designed to

be perceptually uniform and colorblind-friendly.

‣ Plotly's 3D plotting capabilities are built on WebGL,

allowing for smooth rendering of complex 3D visualizations

in web colabs.

‣ The surface_count parameter in the Volume plot

determines the level of detail in the visualization. Higher

values provide more detail but may slow down rendering.

‣ The opacity setting is crucial in 3D volume plots. Lower

opacity allows viewers to see internal structures, while

higher opacity emphasizes surface features.

‣ Plotly supports various 3D plot types besides volume

plots, including surface plots, scatter plots, and mesh plots,

each suited for different types of 3D data visualization.

74. Creating a 3D Cone Plot with

Plotly for Sales Data Visualization

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst for a multinational retail company.

The company wants to visualize its sales data across

different countries and product categories using a 3D cone

plot.

Your task is to create a Python script that generates a 3D

cone plot using Plotly to represent sales data.

The plot should have the following characteristics:

The x-axis represents different countries.

The y-axis represents various product categories.

The z-axis (height of the cones) represents the sales

volume.

The color of the cones should indicate the profit margin (use

a color scale from red for low margins to green for high

margins).

Create a function that generates sample data for 5

countries, 4 product categories, with random sales volumes

and profit margins.

Then, use this data to create the 3D cone plot using Plotly.

Make sure to include appropriate labels, a title, and a color

bar for the profit margin.

【Data Generation Code Example】

import numpy as np

np.random.seed(42)

countries = ['USA', 'China', 'Germany', 'Japan', 'Brazil']

categories = ['Electronics', 'Clothing', 'Food', 'Home Goods']

generate_data = lambda: [

[country, category, np.random.randint(1000, 10000),

np.random.uniform(0.05, 0.3)]

for country in countries

for category in categories

]

data = generate_data()

【Diagram Answer】

【Code Answer】

import numpy as np

import plotly.graph_objects as go

np.random.seed(42)

countries = ['USA', 'China', 'Germany', 'Japan', 'Brazil']

categories = ['Electronics', 'Clothing', 'Food', 'Home Goods']

generate_data = lambda: [

[country, category, np.random.randint(1000, 10000),

np.random.uniform(0.05, 0.3)]

for country in countries

for category in categories

]

data = generate_data()

Extract data for plotting

x, y, z, colors = zip(*[

(countries.index(d), categories.index(d), d, d)

for d in data

])

Create the 3D cone plot

fig = go.Figure(data=[go.Cone(

x=x,

y=y,

z=z,

u=np.zeros_like(z),

v=np.zeros_like(z),

w=z,

colorscale='RdYlGn',

colorbar=dict(title='Profit Margin'),

showscale=True,

sizeref=0.5,

colorbar_title_side='right',

hoverinfo='text',

text=[f'Country: {d}Category: {d}Sales: {d}Profit Margin:

{d:.2f}' for d in data]

)])

Customize the layout

fig.update_layout(

scene=dict(

xaxis_title='Countries',

yaxis_title='Product Categories',

zaxis_title='Sales Volume',

xaxis_ticktext=countries,

xaxis_tickvals=list(range(len(countries))),

yaxis_ticktext=categories,

yaxis_tickvals=list(range(len(categories))),

),

title='3D Cone Plot of Sales Data by Country and Product

Category'

)

Show the plot

fig.show()

This code creates a 3D cone plot using Plotly to visualize

sales data across different countries and product categories.

Let's break down the code and explain its key components:

Data Generation:

We use NumPy to generate random sample data for our

visualization.

The generate_data function creates a list of data points,

each containing a country, product category, sales volume,

and profit margin.

We use list comprehension and lambda functions to create

this data efficiently.

Data Extraction:

We extract the necessary data from our generated dataset

using the zip function and list comprehension.

The x and y values are converted to indices of the countries

and categories lists, respectively, to position the cones

correctly on the plot.

The z values represent the sales volume, which will

determine the height of the cones.

The colors values represent the profit margins, which will

determine the color of the cones.

Creating the 3D Cone Plot:

We use go.Figure() to create a new Plotly figure.

The go.Cone() function is used to create the cone plot.

We set the x, y, and z parameters to position the cones.

The u and v parameters are set to zero, while w is set to z,

making the cones point upwards.

We use the 'RdYlGn' colorscale, which ranges from red (low

values) to green (high values), representing profit margins.

The sizeref parameter is used to adjust the size of the

cones.

We add hover information using the text parameter, which

displays detailed information about each cone when

hovering over it.

Customizing the Layout:

We use fig.update_layout() to customize the appearance of

the plot.

We set the axis titles and customize the tick labels to show

country names and product categories instead of numerical

indices.

We add a title to the entire plot.

Displaying the Plot:

Finally, we use fig.show() to display the interactive 3D cone

plot.

This visualization allows for easy comparison of sales

volumes across different countries and product categories,

while also providing information about profit margins

through the color of the cones.

The interactive nature of Plotly allows users to rotate the

plot, zoom in/out, and hover over cones to get detailed

information.

【Trivia】
‣ 3D cone plots are particularly useful for visualizing

directional data or data with magnitude and direction.

‣ Plotly is an open-source graphing library that makes it

easy to create interactive, publication-quality graphs.

‣ The 'RdYlGn' colorscale used in this example is a diverging

color scale, which is effective for highlighting extremes in

your data.

‣ Lambda functions in Python are small anonymous

functions that can have any number of arguments but can

only have one expression.

‣ List comprehensions provide a concise way to create lists

in Python, often replacing the need for traditional loops.

‣ The NumPy library is fundamental for scientific computing

in Python, providing support for large, multi-dimensional

arrays and matrices.

‣ When working with 3D visualizations, it's important to

consider the balance between information density and

readability.

75. Creating a 3D Streamline Plot

with Plotly

Importance★★★★☆

Difficulty★★★☆☆

A weather research company needs to visualize wind flow in

a three-dimensional space to analyze wind patterns around

a particular region.

You are provided with sample wind velocity data for x, y,

and z coordinates.

Your task is to create a 3D streamline plot using Plotly to

visualize these wind patterns.

Generate synthetic data for wind velocities and create the

3D streamline plot.

Ensure your code processes the data and displays the plot

correctly.

【Data Generation Code Example】

import numpy as np

Generate grid points for 3D space

x, y, z = np.meshgrid(np.linspace(-10, 10, 30),

np.linspace(-10, 10, 30), np.linspace(-10, 10, 30))

Define wind velocity components as functions of x, y, z

u = -1 - x + y + z

v = 1 + x - y - z

w = 1 + x + y - z**2

【Diagram Answer】

【Code Answer】

import numpy as np

import plotly.graph_objects as go

Generate grid points for 3D space

x, y, z = np.meshgrid(np.linspace(-10, 10, 30),

np.linspace(-10, 10, 30), np.linspace(-10, 10, 30))

Define wind velocity components as functions of x, y, z

u = -1 - x + y + z

v = 1 + x - y - z

w = 1 + x + y - z**2

Create streamline plot

fig = go.Figure(data=go.Streamline(x=x.flatten(),

y=y.flatten(), z=z.flatten(), u=u.flatten(), v=v.flatten(),

w=w.flatten(), starts=dict(x=0, y=0, z=0)))

Update layout for better visualization

fig.update_layout(scene=dict(aspectmode='cube'),

title='3D Streamline Plot of Wind Patterns')

fig.show()

To create a 3D streamline plot using Plotly, follow these

steps.

First, generate a grid of points in a three-dimensional space

using numpy.meshgrid. This creates a mesh grid that spans

the space where we want to visualize the wind patterns.

Next, define the wind velocity components (u, v, w) as

functions of x, y, and z coordinates. In this example, these

are mathematical functions of x, y, and z that simulate wind

flow in the 3D space.

Once the velocity components are defined, create the

streamline plot using plotly.graph_objects. The

go.Streamline function is used to generate the streamline

plot by passing the flattened arrays of x, y, z coordinates

and their respective velocities.

Finally, update the plot layout for better visualization and

display the plot using fig.show(). This code provides a clear

visualization of wind patterns in three dimensions.

【Trivia】
Streamline plots are essential in fluid dynamics to visualize

flow patterns.

They help in understanding how fluid (or air) moves in a

given space, which is crucial for applications like weather

forecasting, aerodynamics, and engineering.

Plotly provides a powerful and flexible tool for creating

interactive visualizations, making it easier to explore and

analyze complex datasets.

76. 3D Box Plot Creation Using Plotly

Importance★★★☆☆

Difficulty★★★☆☆

You are a data analyst at a real estate company. Your task is

to visualize the distribution of property prices across

different regions in a 3D plot. This visualization will help

stakeholders understand how prices vary not just across

regions but also in relation to property types and years of

construction.To achieve this, create a 3D box plot using

Plotly. Generate sample data for property prices, regions,

property types, and years of construction. Then, write code

to produce a 3D box plot that shows the distribution of

prices across these dimensions.

【Data Generation Code Example】

import pandas as pd

import numpy as np

Generate sample data for regions, property types,

years, and prices

regions = ['North', 'South', 'East', 'West']

property_types = ['House', 'Apartment', 'Condo']

years = np.arange(2000, 2021)

Creating a DataFrame with random data

np.random.seed(42)

data = {

 'Region': np.random.choice(regions, 100),

 'Property_Type': np.random.choice(property_types, 100),

 'Year': np.random.choice(years, 100),

 'Price': np.random.uniform(100000, 500000, 100)

}

df = pd.DataFrame(data)

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import plotly.express as px

Generate sample data for regions, property types,

years, and prices

regions = ['North', 'South', 'East', 'West']

property_types = ['House', 'Apartment', 'Condo']

years = np.arange(2000, 2021)

Creating a DataFrame with random data

np.random.seed(42)

data = { 'Region': np.random.choice(regions, 100),

 'Property_Type': np.random.choice(property_types,

100),

 'Year': np.random.choice(years, 100),

 'Price': np.random.uniform(100000, 500000, 100) }

df = pd.DataFrame(data)

Create a 3D box plot

fig = px.box(df, x='Region', y='Price', color='Property_Type',

animation_frame='Year')

fig.show()

To create a 3D box plot using Plotly, we begin by importing

the necessary libraries: pandas for data manipulation,

numpy for generating random data, and plotly.express for

visualization.

First, we define the categories for our data: regions,

property types, and years. We use numpy to create an array

of years from 2000 to 2020. Next, we generate random data

for 100 entries. The regions and property types are selected

randomly from their respective lists, and the years are

chosen randomly from the defined array. Prices are

generated as random floats between 100,000 and 500,000.

This data is then stored in a pandas DataFrame.

The visualization is created using Plotly Express' px.box

function. This function is used to create box plots, which

display the distribution of a dataset. We set 'Region' as the

x-axis, 'Price' as the y-axis, and 'Property_Type' as the color

dimension. The 'animation_frame' parameter is set to 'Year'

to create an animation that shows the change in price

distribution over time. The resulting plot is displayed using

fig.show().

This exercise is valuable for learning how to manipulate data

in pandas, generate random sample data, and create

interactive visualizations using Plotly. The 3D aspect is

achieved by using different dimensions (x, y, color, and

animation_frame) to represent the data, providing a

comprehensive view of the dataset.

【Trivia】

‣ Plotly Express is a high-level interface for Plotly, making it

easy to create complex visualizations with simple

commands.

‣ Box plots are useful for identifying outliers and

understanding the distribution of data. They display the

median, quartiles, and potential outliers in a dataset.

‣ Animations in visualizations can help show changes over

time or other continuous variables, making trends and

patterns more apparent.

‣ In a box plot, the box represents the interquartile range

(IQR) where 50% of the data points lie, the line inside the

box is the median, and the "whiskers" extend to the

smallest and largest values within 1.5 times the IQR from

the quartiles. Points outside this range are considered

outliers.

77. Creating a 3D Violin Plot with

Plotly

Importance★★★☆☆

Difficulty★★★★☆

You are a data analyst working for a financial services

company. You have been asked to visualize the distribution

of annual incomes for three different departments: Sales,

Marketing, and Development. Use a 3D violin plot to

represent the income distribution for each department. The

dataset includes 200 data points for each department.

Create the necessary data within your code and use Plotly

to generate the plot. Ensure that the plot clearly

distinguishes the departments and provides insight into the

income distribution.

【Data Generation Code Example】

import numpy as np

import pandas as pd

import plotly.graph_objects as go

Generate random data for the example

departments = ['Sales', 'Marketing', 'Development']

data = pd.DataFrame({

'Department': np.repeat(departments, 200),

'Income': np.concatenate([np.random.normal(loc, 5000,

200) for loc in [70000, 60000, 80000]])

})

【Diagram Answer】

【Code Answer】

import numpy as np

import pandas as pd

import plotly.graph_objects as go

Generate random data for the example

departments = ['Sales', 'Marketing', 'Development']

data = pd.DataFrame({

'Department': np.repeat(departments, 200),

'Income': np.concatenate([np.random.normal(loc, 5000,

200) for loc in [70000, 60000, 80000]])

})

Create the 3D violin plot

fig = go.Figure(data=[

go.Violin(x=data['Department'][data['Department'] ==

dept],

y=data['Income'][data['Department'] == dept],

name=dept,

box_visible=True,

meanline_visible=True)

for dept in departments

])

Customize the layout of the plot

fig.update_layout(title='3D Violin Plot of Incomes by

Department',

xaxis_title='Department',

yaxis_title='Income',

width=800,

height=600)

fig.show()

First, the code generates the necessary data. Using numpy

and pandas, it creates a dataset with 200 income values for

each department: Sales, Marketing, and Development. Each

department's income values are normally distributed around

a specified mean with a standard deviation of 5000.

Next, the code uses plotly.graph_objects to create a 3D

violin plot. The go.Figure function is used to create a figure

object, and go.Violin is used to create the violin plots for

each department. For each department, the x values

correspond to the department name, and the y values

correspond to the income values. The box_visible parameter

adds a box plot inside the violin plot, and meanline_visible

adds a line indicating the mean of the distribution.

Finally, the fig.update_layout method customizes the layout

of the plot, setting the title and axis labels, as well as

adjusting the size of the plot. The fig.show method is called

to display the plot.

【Trivia】
‣ Violin plots are a method of plotting numeric data and can

be understood as a combination of a box plot and a kernel

density plot.

‣ The width of the violin plot at a given value on the y-axis

represents the density of the data at that value.

‣ 3D violin plots can provide a more comprehensive view of

the data distribution across different categories, making

them useful for comparing multiple distributions

simultaneously.

‣ Plotly is a powerful and flexible graphing library that can

create interactive plots and charts, making it a popular

choice for data visualization in Python.

78. 3D Parallel Coordinates Plot

Importance★★★☆☆

Difficulty★★★☆☆

You are working as a data analyst for a car manufacturing

company. The company wants to visualize the performance

of different car models across various metrics to identify

trends and outliers. Your task is to create a 3D Parallel

Coordinates Plot to compare the car models based on their

performance metrics such as horsepower, weight,

acceleration, and fuel efficiency. Generate the sample data

within your code and produce the plot.

【Data Generation Code Example】

import pandas as pd

import numpy as np

Generate sample data

np.random.seed(0)

car_models = ['Model ' + str(i) for i in range(1, 11)]

horsepower = np.random.randint(100, 400, size=10)

weight = np.random.randint(1000, 4000, size=10)

acceleration = np.random.uniform(5, 15, size=10)

fuel_efficiency = np.random.uniform(10, 30, size=10)

Create a DataFrame

df = pd.DataFrame({

 'Car Model': car_models,

 'Horsepower': horsepower,

 'Weight': weight,

 'Acceleration': acceleration,

 'Fuel Efficiency': fuel_efficiency

})

df

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import plotly.express as px

Generate sample data

np.random.seed(0)

car_models = ['Model ' + str(i) for i in range(1, 11)]

horsepower = np.random.randint(100, 400, size=10)

weight = np.random.randint(1000, 4000, size=10)

acceleration = np.random.uniform(5, 15, size=10)

fuel_efficiency = np.random.uniform(10, 30, size=10)

Create a DataFrame

df = pd.DataFrame({

 'Car Model': car_models,

 'Horsepower': horsepower,

 'Weight': weight,

 'Acceleration': acceleration,

 'Fuel Efficiency': fuel_efficiency

})

Plot the 3D Parallel Coordinates Plot

fig = px.parallel_coordinates(df,

 dimensions=['Horsepower', 'Weight', 'Acceleration', 'Fuel

Efficiency'],

 color='Horsepower',

 labels={

 'Horsepower': 'Horsepower',

 'Weight': 'Weight',

 'Acceleration': 'Acceleration',

 'Fuel Efficiency': 'Fuel Efficiency'

 },

 color_continuous_scale=px.colors.diverging.Tealrose,

 color_continuous_midpoint=df['Horsepower'].mean()

)

fig.show()

The task involves creating a 3D Parallel Coordinates Plot

using Plotly to compare different car models based on

various performance metrics such as horsepower, weight,

acceleration, and fuel efficiency.

First, you generate the sample data. You use numpy to

create arrays of random values for the metrics and combine

them into a DataFrame using pandas.

The DataFrame df is structured with columns 'Car Model',

'Horsepower', 'Weight', 'Acceleration', and 'Fuel Efficiency'.

Each row represents a different car model with its

corresponding performance metrics.

Next, you use Plotly Express to create the 3D Parallel

Coordinates Plot. The px.parallel_coordinates function is

called with the DataFrame df and the dimensions parameter

specifying the metrics to plot.

The color parameter is set to 'Horsepower' to color the lines

based on the horsepower values. The labels dictionary

provides readable labels for the axes. The

color_continuous_scale is set to px.colors.diverging.Tealrose

to use a diverging color scale, and

color_continuous_midpoint is set to the mean horsepower to

center the color gradient.

Finally, fig.show() is called to display the plot. This

visualization helps in identifying trends and outliers in the

performance of different car models across multiple metrics.

【Trivia】
‣ Parallel Coordinates Plot is particularly useful for

multivariate data analysis, allowing for the visualization of

high-dimensional datasets in a two-dimensional plane.

‣ Plotly Express is a high-level interface for Plotly, which

simplifies the creation of complex visualizations with concise

and expressive syntax.

‣ The color_continuous_scale parameter in Plotly allows for

the customization of color gradients, enhancing the visual

appeal and interpretability of the plots.

79. 3D Andrews Curves Plot with

Plotly

Importance★★★★☆

Difficulty★★★☆☆

You are a data analyst working for a company that wants to

visualize high-dimensional data to identify patterns and

relationships. Your task is to create a 3D Andrews Curves

plot using Plotly to help in visualizing these patterns.

To do this, you will generate a sample dataset with multiple

features and then create the 3D Andrews Curves plot. The

dataset should have at least 5 features and 50 rows.

Write the Python code to generate the sample data and

create the 3D Andrews Curves plot using Plotly.

【Data Generation Code Example】

import pandas as pd

import numpy as np

Create sample data

np.random.seed(0)

data = np.random.rand(50, 5)

columns = ['Feature1', 'Feature2', 'Feature3', 'Feature4',

'Feature5']

df = pd.DataFrame(data, columns=columns)

【Diagram Answer】

【Code Answer】

import pandas as pd

import numpy as np

import plotly.express as px

Create sample data

np.random.seed(0)

data = np.random.rand(50, 5)

columns = ['Feature1', 'Feature2', 'Feature3', 'Feature4',

'Feature5']

df = pd.DataFrame(data, columns=columns)

Create 3D Andrews Curves plot

fig = px.line_3d(df, x='Feature1', y='Feature2',

z='Feature3', color='Feature4')

fig.show()

To create a 3D Andrews Curves plot using Plotly, you first

need to generate a sample dataset. This can be done using

NumPy to create random data and Pandas to structure it

into a DataFrame. In this example, we generate a dataset

with 50 rows and 5 features.

Next, we use Plotly Express to create the 3D Andrews

Curves plot. Plotly Express is a high-level interface for Plotly,

which simplifies the process of creating complex

visualizations. The px.line_3d function is used to create a 3D

line plot. We specify the x, y, and z axes using the features

from our dataset and use another feature to color the lines.

This helps in visualizing the high-dimensional data in a more

comprehensible manner.

The fig.show() function is then called to display the plot.

This plot will help in identifying patterns and relationships in

the high-dimensional data, making it easier to draw insights.

【Trivia】
‣ Andrews Curves are a way to visualize high-dimensional

data by transforming it into a continuous function. This

method helps in identifying clusters and outliers in the data.

‣ Plotly is an interactive graphing library that makes it easy

to create complex visualizations with minimal code. It

supports a wide range of chart types and is highly

customizable.

‣ Using 3D plots can sometimes make it easier to

understand relationships in data that have more than three

dimensions by providing an additional perspective.

However, they can also be more challenging to interpret

than 2D plots.

Chapter 4 Request for review

evaluation

Thank you for taking the time to read through this book.

I hope that the 100 exercises on data manipulation and

visualization with Python have been both informative and

enjoyable.

Each exercise was carefully designed to enhance your

understanding by providing not just the source code, but

also detailed explanations and diagrams of the results.

Your feedback is incredibly valuable to me.

Whether you found the exercises helpful, the explanations

clear, or if there were areas you felt could be improved, I

would love to hear from you.

Reviews and comments from readers like you help me

improve and shape future projects.

If you enjoyed the book or if it fell short of your

expectations, please share your thoughts.

Even if you’re pressed for time, a quick star rating would

mean a lot.

I read every single review and take your feedback to heart,

using it to refine my work and develop new content that

better serves your needs.

Your insights and suggestions are not only welcome but

essential.

Whether it's a new topic you'd like to see explored or

specific improvements to the exercises and explanations, I

am here to listen and learn from you.

This dialogue between us helps me create resources that

are more attuned to what you need and want.

Once again, thank you for your time and support.

I look forward to hearing from you and hopefully, to meeting

you again through future books.

Your journey with Python data manipulation and

visualization is just beginning, and I’m honored to be a part

of it.

Happy coding and see you next time!

Appendix: Execution

Environment

In this eBook, we will use Google Colab to run Python code.

Google Colab is a free Python execution environment that

runs in your browser.

Below are the steps to use Google Colab to execute Python

code.

Log in with a Google account

First, log in to your Google account. If you don't have an

account yet, you need to create a new one.

Access Google Colab

Open your web browser and go to the following URL:

http://colab.research.google.com

Create a new notebook

Once the Google Colab homepage appears, click the

"New Notebook" button. This will create a new Python

notebook.

Enter Python code

Enter Python code in the cell of the notebook. For

example, enter the following simple code:

print("Hello, Google Colab!")

Run the code

To run the code, click the play button (▶️) on the left side

of the code cell or select the cell and press Shift+Enter.

Check the execution result

If the code runs successfully, the result will be displayed

below the cell. In the above example, "Hello, Google Colab!"

will be displayed.

Save the notebook

To save the notebook, select "Save to Drive" from the

"File" menu at the top of the screen. The notebook will be

saved to your Google Drive.

Install libraries

If you need any Python libraries, enter the following in a

cell and run it:

!pip install library-name

For example, to install numpy, do the following:

!pip install numpy

Open an existing notebook

To open an existing notebook, select the notebook from

Google Drive or choose "Open Notebook" from the "File"

menu in Colab.

These are the steps to run Python code on Google Colab.

With this, you can easily use a Python execution

environment in the cloud.

	Chapter 1 Introduction
	1. Purpose
	2. About the Execution Environment for Source Code
	Chapter 2 For beginners
	1. Histogram Generation from Random Data
	2. Height vs Weight Scatter Plot
	3. Plotting a Sine Wave with Matplotlib
	4. Creating Box Plots of Exam Scores
	5. Heatmap of Correlation Matrix
	6. Simple Time Series Data Plotting
	7. Quarterly Sales Stacked Bar Chart
	8. Visualizing Multiple Functions with Python
	9. Bubble Chart of Population vs GDP
	10. Create a Pair Plot of Iris Dataset
	11. 3D Scatter Plot of Customer Data
	12. Creating a Violin Plot for Age Distribution
	13. Density Plot of Random Data
	14. Creating a Donut Chart for Budget Allocation
	15. Creating Polar Plots of Trigonometric Functions for Weather Analysis
	16. Creating a Sunburst Chart with Hierarchical Data
	17. Waterfall Chart for Financial Data Analysis
	18. Funnel Chart of Sales Conversion
	19. Candlestick Chart of Stock Prices
	20. Creating a Treemap of Product Categories
	21. Streamgraph of Web Traffic Data
	22. Visualizing Network Connections with Chord Diagrams
	23. Create a Sankey Diagram of Energy Flow
	Chapter 3 For advanced
	1. Bubble Map of Sales Data
	2. Hierarchical Clustering Dendrogram
	3. Parallel Coordinates Plot for Customer Data Analysis
	4. Word Cloud Generation from Text Data
	5. Social Network Graph Visualization
	6. Visualizing Spatial Data with Voronoi Diagrams
	7. Creating a Lollipop Chart for Survey Results
	8. Dot Plot of Categorical Data
	9. Creating a Dumbbell Plot for Comparative Data Analysis
	10. Generate a Ridgeline Plot of Distribution Data
	11. Matrix Plot of Confusion Matrix
	12. Plotting a Wind Rose Diagram
	13. Bullet Chart for Performance Targets
	14. Creating a Horizon Chart with Time Series Data
	15. Network Flow Diagram for Traffic Data Visualization
	16. Heatmap of Missing Data Visualization
	17. Connected Scatter Plot for Sales Trend Analysis
	18. Nested Pie Chart of Demographic Data
	19. Creating a Dumbbell Dot Plot for Sales Comparison
	20. Creating a Circular Packing Plot of Hierarchical Data
	21. Generating a Beeswarm Plot of Distribution Data
	22. Joy Plot of Distribution Data
	23. Heatmap of Correlation Matrix
	24. Generating Pair Grid Plot for Customer Satisfaction Analysis
	25. Facet Grid Plot of Categorical Data
	26. Plotting a Linear Regression
	27. Creating a Residual Plot for Regression Analysis
	28. Categorical Plot of Survey Data
	29. Creating a Strip Plot of Categorical Data
	30. Swarm Plot of Distribution Data
	31. Factor Plot of Categorical Data
	32. Comparative Point Plot Generation
	33. Creating a Bar Plot with Categorical Data
	34. Count Plot of Categorical Data
	35. KDE Plot of Distribution Data
	36. Violin Plot Creation with Seaborn
	37. Boxen Plot Visualization of Distribution Data
	38. Joint Plot of Bivariate Data
	39. Lmplot Regression Analysis
	40. Creating a Pair Plot for Customer Data Analysis
	41. Heatmap of Correlation Matrix
	42. Scatter Matrix Plot of Multivariate Data
	43. Parallel Coordinates Plot Creation
	44. Andrews Curves Plot for Multivariate Data Analysis
	45. RadViz Plot for Multivariate Data Visualization
	46. Creating a Lag Plot for Time Series Analysis
	47. Autocorrelation Plot of Time Series Data
	48. Bootstrap Plot of Statistical Data
	49. Creating a Hexbin Plot with Pandas
	50. Creating a Scatter Plot Matrix for Customer Data Analysis
	51. Generate a Box Plot Using Pandas
	52. Violin Plot for Sales Data Analysis
	53. Plotting a KDE Plot Using Pandas
	54. Creating a Density Plot with Pandas
	55. Bar Plot Visualization with Pandas
	56. Creating an Area Plot Using Pandas
	57. Scatter Plot Creation with Pandas
	58. Box Plot Visualization Using Plotly
	59. Creating a Violin Plot Using Plotly
	60. Creating Interactive Line Plots with Plotly
	61. Bar Plot Visualization with Plotly
	62. Creating a Pie Chart with Plotly
	63. Creating a Treemap with Plotly
	64. Plotting a Funnel Chart Using Plotly
	65. Creating a Waterfall Chart with Plotly for Financial Analysis
	66. Generate a Candlestick Chart Using Plotly
	67. Creating a Heatmap with Plotly
	68. Plotting a Contour Plot with Plotly
	69. Creating 3D Scatter Plots with Plotly
	70. 3D Surface Plot with Plotly for Customer Satisfaction Analysis
	71. Creating a 3D Line Plot with Plotly
	72. 3D Mesh Plot Visualization
	73. Creating 3D Volume Plots with Plotly for Data Visualization
	74. Creating a 3D Cone Plot with Plotly for Sales Data Visualization
	75. Creating a 3D Streamline Plot with Plotly
	76. 3D Box Plot Creation Using Plotly
	77. Creating a 3D Violin Plot with Plotly
	78. 3D Parallel Coordinates Plot
	79. 3D Andrews Curves Plot with Plotly
	Chapter 4 Request for review evaluation
	Appendix: Execution Environment

